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ABSTRACT

Statistical Methods for High-dimensional Networked Data Analysis

by

Yan Zhou

Chair: Peter X. K. Song

Networked data are frequently encountered in many scientific disciplines. One ma-

jor challenges in the analysis of such data are its high dimensionality and complex

dependence. My dissertation consists of three projects.

The first project focuses on the development of sparse multivariate factor analysis

regression model to construct the underlying sparse association map between gene

expressions and biomarkers. This is motivated by the fact that some associations

may be obscured by unknown confounding factors that are not collected in the data.

I have shown that accounting for such unobserved confounding factors can increase

both sensitivity and specificity for detecting important gene-biomarker associations

and thus lead to more interpretable association maps.

The second project concerns the reconstruction of the underlying gene regulatory

network using directed acyclic graphical models. My project aims to reduce false

discoveries by identifying and removing edges resulted from shared confounding fac-

tors. I propose sparse structural factor equation models, in which structural equation

models are used to capture directed graphs while factor analysis models are used to

account for potential latent factors. I have shown that the proposed method enables

xiv



me to obtain a simpler and more interpretable topology of a gene regulatory network.

The third project is devoted to the development of a new regression analysis

methodology to analyze electroencephalogram (EEG) neuroimaging data that are

correlated among electrodes within an EEG-net. To address analytic challenges

pertaining to the integration of network topology into the analysis, I propose hy-

brid quadratic inference functions that utilize both prior and data-driven correlations

among network nodes into statistical estimation and inference. The proposed method

is conceptually simple and computationally fast and more importantly has appeal-

ing large-sample properties. In a real EEG data analysis I applied the proposed

method to detect significant association of iron deficiency on event-related potential

measured in two subregions, which was not found using the classical spatial ANOVA

random-effects models.
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CHAPTER I

Introduction

1.1 Overarching goals

Massive complex data collected from biomedical studies presents a comprehensive

set of significant analytic challenges in statistical modeling and data analysis. Many

new opportunities emerge for the development of statistical methodologies useful to

understand biological and disease mechanisms, leading to the development of better

medical treatments and the improvement of patient’s quality of life. The focus of

my dissertation research is concerned with the development of new statistical models

and data analytics to analyze high-throughput microarray data and large-scale neu-

roimaging data that arise from networks (e.g. genetic pathways and EEG electrodes

on the scalp), and thus are correlated via networks.

More specifically my dissertation includes the following three projects:

Project I: Construction of high-dimensional sparse association maps

between genes and biomarkers. In the first project of my dissertation, I focus

on the development of an effective statistical approach to construct disease-related

sparse genetic association maps with improved accuracy, through which I can not

only segregate unobserved genetic variations from the noise but also detect master

regulators, namely those genetic variants that are simultaneously correlated with

multiple phenotypes (e.g. gene expressions).
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Project II: Reconstruction of gene regulatory networks among genes.

In the second project of my dissertation, I develop a new statistical procedure to

construct sparse gene regulatory networks in the framework of Bayesian networks

via directed acyclic graphical models. I utilize the factor analysis model to account

for unobserved confounding, through which the proposed method can enable me to

greatly improve both sensitivity and specificity in the discovery of causal relationships.

Project III: Regression analysis of networked data. In the third project of

my dissertation, I develop a new regression analysis of networked data to assess po-

tential adverse effects of prenatal exposure to iron deficiency on auditory recognition

memory of two-month old infants, where memory functionality is measured by Elec-

troencephalogram (EEG) neuroimaging. In this study, one of my primary interests

is to incorporate certain established expert knowledge of brain functionality into sta-

tistical estimation and inference, so the resulting method enjoys better statistically

powerful and meaningful discoveries.

The rest of this Chapter is organized as follows: Section 1.2 discusses some major

challenges in high-throughput microarray data analysis and outlines the development

of new methodology to construct genetic association maps for breast cancer. Section

1.3 highlights the importance of genetic regulatory network for the understanding

of gene functions and cellular dynamics in system genomics. Some approaches of

Bayesian network are reviewed, followed by an outline of my development of new

methodology for a exploratory analysis of genetic pathway. Section 1.4 presents a

brief introduction to the scientific background of prenatal iron deficiency on auditory

recognition memory of newborn infants. Then, motivated by EEG neuroimaging

data, this section discusses the formulation of regression analysis of networked data.

Finally, Section 1.5 outlines the organization in the remainder of my dissertation.

2



1.2 Project I: Construction of association maps

1.2.1 Background

The currently available DNA microarray technology allows gene expression lev-

els to be measured for the whole genome simultaneously across multiple samples.

While the availability of genome-wide expression data has been increasing rapidly,

the shortfall of relevant statistical techniques to analyze such high-throughout ex-

pression data is a clear concern. Alternative to uncovering single genes for complex

traits, a system-based perspective is getting an increasing interest in elucidating the

patterns underlying gene expression data and mechanisms related to the operation

of a complex multicellular biology system. This gives rise to various opportunities

for an enhanced understanding of functional genomics (Allison et al., 2006; Sieberts

and Schadt , 2007). However, a number of challenges arise from both the complex-

ity of biological mechanism of genetic networks and a tremendously large number

of genes/biomarkers, which create significant obstacles for understanding, analyz-

ing and interpreting such massive high-dimensional data. In the recent literature,

enormous efforts have been made to develop statistical methods for the analysis of

high-throughput microarray data. In spite of much progress, there are still many gaps

that demand new methodology development in order to furnish suitable statistical

methods satisfying different needs in biomedical studies.

Important characteristics in the high-throughput microarray data analysis include

the underlying gene-gene relationships and gene-trait relationships. In such analysis,

a significant challenge often encountered in practice is that the sample size is small

relative to the number of genes or biomarkers. A popular strategy to address this

challenge is rooted in the utility of “sparsity” assumption, which refers to the scenario

where the number of true signals is sparse and of lower dimension than the sample

size. This assumption is widely used in many data mining approaches to unveil key

3



genetic features and network patterns of the underlying biological mechanism. Under

the assumption of sparsity, statistical models will facilitate data analysis through

effective data dimension reduction. Thus, the resulting model enables us to detect

low-dimensional signals which is regarded as the most efficient strategy to analyze

high-dimensional data.

There is a vast literature concerning the development of sparse models in the

past two decades or so. I just name a few that are related closely to my project.

Tibshirani (1996) first proposed the least absolute shrinkage and selection operator

(LASSO) method based on L1 norm penalty on regression coefficients, which has

received a great deal of attention in the use of regularization techniques for variable

selection and estimation. Since then, LASSO has been adapted or directly applied

to a variety of statistical models and machine learning procedures, including but

not limited to multivariate regression, generalized linear models, graphical models

and principle component analysis (Yuan and Lin, 2007; Zou, 2006; Zou et al., 2006;

Friedman et al., 2010a). In the meanwhile, the LASSO method has been also extended

to accommodate different types of penalties on regression coefficients, such as group

LASSO (Yuan and Lin, 2006), fused LASSO (Tibshirani et al., 2005), elastic net

(Zou and Hastie, 2005), nonnegative garrote (Breiman, 1995) and SCAD (Fan and

Li , 2001). It is worth mentioning that some of these methods have been employed

in high-throughput microarray data analysis, including, for example, gene regulatory

network reconstruction (Wille et al., 2004; Shimamura et al., 2007), and genome-wide

association studies (Wu et al., 2009; Kooperberg et al., 2010). More details may be

found in a review paper by Bansal et al. (2010).

Genetic dependency structure among genes is another important characteristic of

interest in the high-throughput microarray data analysis. In addition to the varia-

tions explained by some targeted genetic variants, there exists an extra dependence

among gene expressions due to unobserved genetic or non-genetic factors (Brem and
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Kruglyak , 2005). This is because, in general, a gene is likely to show strong expression

correlations with other genes when they are in a common biological pathway and/or

they share some measured and unmeasured genetic variants. It is noteworthy that

dependencies among gene expressions may also be attributed to some shared non-

genetic variants, such as environmental factors, population admixtures or kinship,

batch effects in microarray experiments, changes in cellular composition, and other

common physiological or biological factors. In order to examine and characterize such

genetic dependency structure in high-throughput microarray data, I utilize the mean-

s of the factor analysis model, which has been extensively studied in the statistical

literature, to capture potential latent factors attributive to dependencies among gene

expressions.

The method of the factor analysis model is regarded as one of the most popular

dimension reduction techniques, in which variations of correlated variables are mod-

eled by a low number of latent factors. See for example, (Kustra et al., 2006; Stegle

et al., 2008; Friguet et al., 2009; Blum et al., 2010), among others. Researchers have

employed such model to deal with the genetic dependency structure in functional

gene expression profiles. Also, Carvalho et al. (2008) pointed out that the pathway

dependencies may be explained by some latent factors identified from the factor anal-

ysis model, which are further confirmed by some known biological structures. Thus,

taking advantage of the factor model analysis, I am hopefully to develop an effec-

tive procedure to analyze pathway-specific gene expressions by dissecting them into

co-regulated cellular mechanisms.

1.2.2 Motivating data

Project I is motivated by large datasets of RNA transcript levels and DNA copy

numbers of about 20K genes/clones from more than 170 primary breast tumor spec-

imens in a breast cancer cohort study. The primary aim is to conduct an integrative
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analysis of DNA and RNA data that helps identify possibly more subtle (yet biologi-

cally important) genetic regulatory relationships in cancer cells. It is generally hard to

construct either RNA-DNA associations or transcriptional regulatory networks with

high accuracy due to a large proportion of masked signals. That is, in reality a sizable

amount of measured gene expression variations are not only regulated by genetic vari-

ants of interest, but also possibly by other different genetic variants (e.g. microRNA

regulations, DNA methylation) or even non-genetic variables (e.g. environmental ex-

posures). Thus, it is critically important in the genetic association analysis to adjust

confounding variables or the difference in cellular composition mentioned above, some

of which may have been already measured but others are not measured in a study.

A useful strategy to account for unmeasured confounding is to utilize the latent fac-

tor model to explicitly segregate the unmeasured confounding from the measurement

noise. This idea has motivated Project I of my dissertation research.

1.2.3 Outline of methodology development

Gene expressions may be associated with copy number alterations (CNAs) in

proximal genes within a several Mb window (cis-acting), as well as remote alterations

throughout the genome (trans-acting). Simultaneously detecting genome-wide cis-

and trans-acting associations is of primary interest in system biology because nu-

merous passenger genes amidst the limited set of drivers may contribute to tumor

progression. In addition, some CNAs, known as master regulators, play more im-

portant roles than other CNAs in the regulatory network, in terms of their ability

of influencing many gene expressions simultaneously. Borrowing the sparse machine

learning techniques, we may formulate the task of constructing a genetic regulatory

association as a variable selection problem. Generalizing the classical LASSO reg-

ularization technique for the selection of individual predictors, I propose a double

sparsity penalty function that encourages both group-wise and within-group sparsity
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in Project I. As a result, the proposed method can select a master regulator that

relates to a group of genes and can further detect non-zero associations of individual

genes within an identified group including both cis-acting and trans-acting gene-CNA

relationships. I hope to establish evidence that ignoring unmeasured confounding in

such analysis may lead to not only the reduction of statistical power and true asso-

ciation signals, but also the loss of an opportunity to further explore latent genetic

features related to the unmeasured confounding. Some of the existing methods such

as principle component analysis (PCA) (Wall et al., 2003) lack meaningful biological

interpretations. The proposed statistical approach in Chapter 2, termed as the sparse

multivariate factor analysis regression model (smFARM), plays the following roles in

the construction of sparse association maps: (i) identify master regulators; (ii) identi-

fy possible low-dimensional latent factors; and (iii) evaluate and interpret the impact

of latent factors on the association map by a further gene-enrichment analysis.

1.3 Project II: Reconstruction of gene regulatory networks

1.3.1 Background

Reconstruction of gene regulatory networks (GRN) using gene expression data

is of great importance in system biology as it pertains to the crucial knowledge of

regulatory mechanisms in biological processes. A number of computational methods

have been developed to infer gene networks from gene expression data. For example,

co-expression or relevance network is constructed based on partial correlations in pairs

of genes (Butte et al., 2000; Basso et al., 2005). Gaussian graphical model (GGM)

has also been employed to construct gene networks (Dobra et al., 2004; Schfer and

Strimmer , 2005). However, the gaussian graphical model infers an undirected graph

with edges being present (absent) if the corresponding pairs of genes are conditionally

dependent (independent), given all other genes. In contrast, the gene regulatory
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network is formulated as a type of causal network represented by a directed acyclic

graph (DAG). DAG is also named as Bayesian network in the literature, which has

been utilized to establish a dependency structure among genes (Friedman et al., 2000;

Segal et al., 2003). To my best knowledge, Xiong et al. (2004) are the first to apply

structural equation models (SEM) to gene regulatory network reconstruction using

gene expression data. Recently, many machine learning methods have also been

proposed to construct sparse DAGs, such as partial correlation (Yang et al., 2011),

regularized inverse covariance estimation (Huang et al., 2006; Levina et al., 2008),

and sparse Bayesian network methods (Li and Yang , 2005; Shojaie and Michailidis ,

2010; Fu and Zhou, 2013; Aragam and Zhou, 2014), among others. However, these

existing methods often report many spurious findings, and an improvement is of great

interest.

1.3.2 Motivating data

Project II is first motivated by my empirical insight obtained from Project I; that

is, gene expression heterogeneity may be explained by both non-genetic latent factors

and variables that characterize genetic pathways. The latter appears to be highly

relevant to some biological functions. Therefore, without adjusting for latent fac-

tors, the analysis will lead to inflated false positive discoveries in the construction of

gene regulatory network. Project II is motivated by a multivariate flow cytometry

data given in Sachs et al. (2005), which has previously been analyzed by Shojaie

and Michailidis (2010); Fu and Zhou (2013); Friedman et al. (2008), among others.

This dataset includes 11 phosphorylated proteins and n=7466 cells. The consensus

network, constructed by experimental annotations, has 20 directed edges and is used

as the benchmark to assess the accuracy of an estimated network structure. Accord-

ing to Shojaie and Michailidis (2010), the ordering of the proteins in the consensus

network is treated as prior information in the analysis.
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1.3.3 Outline of methodology development

To reduce false discoveries, one strategy is to identify and remove those edges re-

sulted from shared confounding factors. The key objective of Chapter 3 is to discern

and quantify non-genetic variations from the gene expression measurements that are

responsible for false causal relationships. Consequently, removing these non-genetic

variations helps improve the construction of GRN. Given the annotated gene order-

ing (causality) in a pathway network, I develop the structural factor equation model

(SFEM) by incorporating a factor analysis model into the structural equation model

for a DAG, where the factor analysis model is to account for non-genetic confounders.

The proposed SFEM may be converted into a generalized factor model, in which the

model identifiability problem can be easily tackled. A LASSO-based penalized like-

lihood approach is developed for the SFEM to yield a sparse causal network. By

comparing with the existing regularization methods such as the well-known PC al-

gorithm, the proposed SFEM methodology outperforms in the case of small sample

sizes, and therefore leads to simpler and more interpretable causal relationships in a

GRN.

1.4 Project III: Regression analysis of networked data

1.4.1 Background

Iron deficiency (ID), one of the most common nutritional deficiencies in the world,

is a public health challenge in both developing and developed countries. ID is the

main cause of anemia, which affects 25% of the world’s population (McLean et al.,

2009). Most of the affected populations are young children and women. In developing

countries, the prevalence of ID is high in all age groups and demographics, especially

among pregnant women and young children (WHO , 1999). Much attention has been

gathered to reduce the prevalence of ID in young children, not only because of its
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ubiquity, but also because many studies have revealed the negative effects of ID on

individual development of social emotion, neuron behavior and cognition.

The fundamental scientific hypothesis that scientists are interested in is that these

developmental challenges for ID infants and children might be due to ID-induced

disrupted functioning in some brain areas, such as basal ganglia and hippocampus

(Lozoff and Georgieff , 2006). For example, the hippocampus, important for learning,

memory and the other cognitive functions, has been found to be vulnerable to ID

during late prenatal and early postnatal period in animal models (Fretham et al.,

2011; Lozoff and Georgieff , 2006; Radlowski and Johnson, 2013; Ranade et al., 2013).

However, it is hard to directly assess the effect of prenatal and early postnatal ID

on the development of hippocampus in human because of some ethical issues. The

popular non-invasive approach is to use hippocampus-related cognitive functions, such

as auditory or visual recognition memory, measured by electroencephalogram sensor

net.

1.4.2 Motivating data

The electroencephalogram (EEG) data analyzed in Chapter 4 comes from one

of our collaborative projects with scientists in the Center for Human Growth and

Development, University of Michigan. Two-month old infant’s brain electrical activity

is collected during a period of 2000 milliseconds using a 64-channel EEG sensor net.

The data collection occurs at two time points: when an infant hears his/her mother’s

voice and when hears a stranger’s voice. At each time point, event-related potentials

(ERP, a type of neuroimaging data), including P2, P750 and low slow wave (LSW),

are recorded as primary outcomes of auditory recognition memory. These three ERPs

are widely used as primary outcomes of auditory recognition memory (Mai et al., 2012;

Siddappa et al., 2004). The scientific objective of the project is to evaluate whether

or not, and if so how, iron deficiency affects auditory recognition memory for infants.
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In this project, I consider the outcome LSW for illustration. Clearly, LSW mea-

surements from 64 electrodes on an infant are correlated in the EEG-net, and such

correlation is highly clustered according to subregions of memory functionality. Ac-

cording to our collaborators, dependence mechanisms of LSW measurements could be

very complex that cannot be easily represented by conventional covariance or correla-

tion matrices. For example, dependence symmetry may be invalid among electrodes,

and strength of dependence may not be explicitly modeled due to the lack of legiti-

mate distance metric bnetween electrodes. The standard analysis of the data using

spatial ANOVA mixed-effects model (Fields and Kuperberg , 2012; Gevins and Smith,

2000) assumed implicitly symmetric exchangeable correlations among 64 nodes for

the LSW data, and failed to detect significant association of iron deficiency on LSW.

Thus, it motivates methodology research in Project III.

1.4.3 Outline of methodology development

In order to achieve high statistical efficiency in studying the effect of iron deficien-

cy on infant’s memory, I develop a method that strives to address a very important

analytic challenge: to integrate some established knowledge of brain network topol-

ogy into the estimation and inference for regression parameters. By recognizing the

EEG-net as a network, I consider the marginal regression model for networked data

in Chapter 4, because such model has great flexibility on allowing various forms of

dependence structures among nodes and its ease on handling categorical outcomes.

For the estimation of regression coefficients in the marginal model, both generalized

estimating equation (GEE) (Liang and Zeger , 1986) and quadratic inference function

(QIF) (Qu et al., 2000) have been extensively studied in the literature. And many

authors have advocated the importance of incorporating proper correlation struc-

tures in GEE or QIF to achieve desirable estimation efficiency; see for example, Pan

(2001), Qu et al. (2008), Wang and Carey (2003) and Zhou and Qu (2012). However,
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these two methods cannot be directly applied to deal with networked data because

of the challenge on incorporating network dependence structures of potentially high

dimension.

I develop a new method that allows combining two sources of knowledge regarding

dependence structures of ERP amplitudes: one is the established or expert’s prior

knowledge about the subregions of functionality related to memory, and the other is

the data-driven covariance from the available data at hand. In fact, I follow the strat-

egy of Stein (1956)’s linear shrinkage estimation, which is later investigated by Ledoit

and Wolf (2004) in the context of covariance matrix estimation. Since the shrinkage

tuning parameter can be determined by maximizing the estimation efficiency, the

proposed method is hoped to automatically allocate larger weights to more relevant

correlation structures while to down weight non-informative structures. More impor-

tantly I establish large-sample properties in both estimation and inference for the

proposed method. The proposed method is applied to detect significant association

of iron deficiency on ERP measurements, which has not been found using the classical

spatial ANOVA random-effects models.

1.5 Organization of the dissertation

The dissertation is structured as follows. Chapter 2 provides the detail con-

cerning the development of the sparse multivariate factor analysis regression model

(smFARM) to construct gene-biomarker association maps. In Chapter 3, I propose

the structural factor equation model (SFEM) to reconstruct the gene regulatory net-

work under the assumption that there is a natural ordering among nodes. Chapter 4

is devoted to the development of regression analysis of networked data (RAND) mo-

tivated by networked EEG neuroimaging data. I propose a new estimation method,

termed as hybrid quadratic inference function (HQIF), for which related theoretical

properties are established. Chapter 5 presents some concluding remarks and future
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work. Most of technical details such as theoretical proofs are provided in appendices.
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CHAPTER II

Sparse multivariate factor analysis regression

models and its application to high-throughput

array data analysis

In this chapter I present the sparse multivariate regression model that provides a

useful tool to explore complex associations between multiple response variables and

multiple predictors. When the multiple responses are correlated, ignoring such depen-

dency will impair statistical power in the data analysis. Motivated by an integrative

genomic data analysis, we propose a new methodology – sparse multivariate factor

analysis regression model (smFARM), in which correlations of the response variables

are analyzed by a factor analysis model with latent factors. This proposed method

not only allows us to address the challenge that the number of regression parame-

ters is larger than the sample size, but also to adjust for unobserved genetic and/or

non-genetic factors that potentially conceals the underlying response-predictor asso-

ciations. The proposed smFARM is implemented efficiently by utilizing the strength

of the EM algorithm and the group-wise coordinate descend algorithm. The proposed

methodology is evaluated and compared to the existing methods through extensive

simulation studies. We apply smFARM in an integrative genomics analysis of a breast

cancer dataset on the relationship between DNA copy numbers and gene expression
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arrays to derive genetic regulatory patterns relevant to breast cancer.

2.1 Introduction

Unveiling regulatory patterns between genetic variants and gene expressions is

of great importance to a broad range of biological studies, in the hope to improve

our understanding of complex disease pathogenesis. As reported in many recent ge-

netic studies, high-throughput gene expression array experiments and genotype or

DNA copy number array experiments are carried out on the same set of subjects.

This provides the unique opportunity to assess regulatory relationships among DNAs

and RNAs. Copy number alterations (CNAs), including both germline variants and

somatic copy number aberrations are found to be largely associated with disease

mechanisms in many studies (Pollack et al., 1999). In particular, somatic aberrations

are discovered to be important for tumorigenesis. For example, oncogene activation

by gene amplification or the loss of a tumor suppressor by gene deletion can cause

transcriptional errors, which contributes to cancer pathogenesis (Yuan et al., 2012).

On the other hand, gene expression can be related to copy number alterations in

proximal genes within a several Mb window (cis-acting), as well as remote alterations

throughout the genome (trans-acting). It has been regarded as a difficult task to

detect genomewide cis- and trans-acting effects simultaneously due to the fact that

numerous passenger genes amidst the limited set of drivers may contribute to tu-

mor progression. Recent studies (Horlings et al., 2010; Lahti et al., 2013; Pollack

et al., 2002) have focused on the cis-acting effects of copy number on gene expressions

and there are few studies that have considered trans-acting effects on a genomewide

scale. To address these challenges require new analytic tools suitable for well-powered

genomic studies.

The construction of genome-wide regulatory map by exploiting genomic and tran-

scriptomic data typically involves in a large number of gene expressions as response
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variables and high-dimensional genetic variants (e.g. DNA copy number alterations)

as predictors. This analytic task can be primarily formulated by a multivariate re-

gression analysis (Bedrick and Tsai , 1994; Lutz and Buhlmann, 2006). Usually, the

genetic regulatory relationships are intrinsically sparse, in the sense that one genetic

variant may regulate only a small proportion of gene expressions, rather than the

majority of them. It is also reported that some genetic variants, known as master

regulators, play more important roles than other variants in the regulatory network,

in terms of their ability of influencing many gene expressions simultaneously (Gard-

ner et al., 2003; Jeong et al., 2001). Thus, it is of great interest to develop proper

multivariate regression models that account for both the sparsity in the regulatory

relationships and the existence of master regulators in the mapping of genetic associa-

tions. Towards this goal, sparse penalty functions such as LASSO (Tibshirani , 1996),

elastic net (Zou and Hastie, 2005), and group LASSO (Yuan and Lin, 2006) have

been introduced to the multivariate regression framework (e.g. Lutz and Buhlmann

(2006); Turlach et al. (2005); Yuan et al. (2012)). Readers can find more details about

the comparison of our work with the existing method in Section 2.5.

Some researchers (e.g. Gibson (2008); Leek and Storey (2007)) have pointed out

that gene expressions are influenced by many biological and non-biological factors.

Biological factors could include, for example, genotype polymorphisms/mutations,

DNA copy number variations, DNA methylation, microRNA regulations, protein

regulations and others. Non-biological factors include sample collection noises, in-

strumental errors, and batch effects. In addition, population admixtures or kinship

in a study population may also influence data generation mechanism of gene ex-

pression profiles. Because of these complications, quite often only a small portion

of variations in gene expressions can be explained by one type of genetic predictors

under investigation. Moreover, it is reported that gene expression heterogeneity is

presented strongly in many studies but it is not yet properly taken into account in
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statistical analysis. For example, Leek and Storey (2007) and Stegle et al. (2008) have

showed that gene expression heterogeneity not only leads to the reduction of statisti-

cal power but also produces spurious association signals when studying the regulatory

relationships between genotypes and gene expressions. This motivates us to develop

a new method that employs the factor analysis model to account for such hetero-

geneity attributed to some unobserved genetic and/or non-genetic variabilities. As a

result, we can improve both statistical power and accuracy of identifying significant

associations between genes and genetic markers.

In this chapter, we plan to achieve three objectives via a sparse multivariate factor

analysis regression model (smFARM): (i) to identify both trans-acting and cis-acting

effects in one modeling framework; (ii) to regularize the association map by encourag-

ing the selection of important predictors; and (iii) to estimate the covariance matrix

of the response variables via the means of multivariate factor analysis. The factor

analysis model enables us to understand and interpret additional association features

beyond what expression-genetic variant associations describe. The mean model com-

ponent of smFARM is parameterized by a matrix of regression coefficients that are

supposed to contain many zeros because of sparse genetic regulatory relationships.

This part of modeling relates closely to the remMap method proposed by Peng et al.

(2010) for the identification of genetic regulatory relationships and master predic-

tors using a regularized multivariate regression model. Compared to remMap, our

proposed smFARM further extends their model and captures residual correlations of

the responses using latent factors. As discussed earlier, when studying the regulato-

ry relationships between gene expressions and DNA copy numbers, gene expression

levels could be often confounded by unobserved genetic and/or non-genetic factors.

Thus, incorporating the latent factors in smFARM leads to a more efficient method

to extract important features of the regulatory network than remMap. This is shown

in our analysis of the same breast cancer data set, which was previously analyzed in

17



Peng et al. (2010). We find that smFARM is able to identify several new novel regu-

latory relationships between gene expressions and copy number alternation intervals

(CNAIs). Another new contribution of important is the analysis and interpretation

of the latent factors. By utilizing gene set enrichment analysis (GSEA), we decom-

pose these latent factors into pathway subcomponents and reveal additional variations

highly relevant to some important biological functions of breast cancer.

The remainder of this chapter is organized as follows. In Section 2.2, we first

introduce multivariate factor analysis regression model (mFARM) and then develop

the sparse regularization procedure in Section 2.3. Section 2.4 presents an efficient

EM-GCD algorithm and its implementation. Also, criteria for selecting tuning pa-

rameters and the number of latent factors are discussed in Section 2.4. Section 2.5

discusses the relationship between our method and other available methods. Section

2.6 is devoted to the evaluation of the proposed approach through extensive simu-

lation studies. Section 2.7 presents the analysis of breast cancer data to illustrate

the application of the proposed smFARM. We provide some concluding remarks in

Section 2.8. Related technical details are included in the Appendix A, B and C.

2.2 Model

2.2.1 Multivariate regression model

Multivariate regression model plays an important role in multivariate data anal-

ysis. Such model extends the classical one-dimensional regression model, which is

widely used to deal with correlated response variables. Following the common nota-

tions in multivariate regression model, for subject i, we assume that the conditional

distribution of a Q×1 random vector yi = (yi1, . . . , yiQ)T given P -element explanatory

vector xi = (xi1, . . . , xiP )T is a multivariate normal distribution. And its expectation
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is specified by the following linear equations:

E(yi|xi) = Θxi, i = 1, . . . , N, (2.1)

where Θ = {θqp} is a Q × P matrix of unknown regression coefficients, and its co-

variance is Var(yi|xi) = Σ, which is an unknown Q × Q positive definite covariance

matrix independent of xi. Obviously, if Q = 1, model (2.1) becomes the classical

one-dimensional regression model, where Θ is a P-dimensional regression coefficient

vector. In matrix Θ, the q-th row represents the vector of regression coefficients

corresponding to the q-th regression model, i.e. E(yiq|xi) =
∑P

p=1 θqpxip, which re-

gresses the q-th response variable yiq on all P predictors. Clearly, the ordinary least

square method (or equivalently the maximum likelihood method under the normally

distributed errors) yields the estimator of Θ as Θ̂T = (XTX)−1XTY . This implies

that each row of Θ can be estimated separately by regressing each of Q responses on

the P predictors ignoring the dependence across the Q responses. This is because

in this estimation there are no common coefficients and/or common parameters in

Σ shared across Q individual one-dimensional regression models. In contrast, when

some common features are present in the mean models and/or covariance matrices,

borrowing strengths across different margins will be beneficial. Consequently, joint

estimation involving all Q rows would provide better statistical power.

2.2.2 Factor analysis model

In this section, we propose to model the covariance Σ by the following factor

analysis model:

Σ = BBT + Ψ, (2.2)

where B is a Q×K matrix of factor loadings pertinent to communalities for K (≤ Q)

latent factors and Ψ is a Q × Q diagonal matrix of uniqueness. Clearly, the mean
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model (2.1) does not involve the K latent factors, while the covariance model (2.2)

is determined by loadings B and uniqueness Ψ. Factor analysis is one of the popular

dimension reduction techniques that represents variations of correlated variables by

a low number of latent factors. See for example, Blum et al. (2010), Friguet et al.

(2009), Kustra et al. (2006) and Stegle et al. (2008), among others, in which the

factor analysis model has been employed to deal with heterogeneity in functional

gene expression profiles.

2.2.3 Multivariate factor analysis regression model

Combining models (2.1) and (2.2), with P predictors xi and K unobserved latent

factors zi = (zi1, . . . , ziK)T , we propose the following multivariate factor analysis

regression model (mFARM):

yi = Θxi +Bzi + εi, i = 1, . . . , N, (2.3)

where zi’s are i.i.d. K-variate vectors of latent factors following multivariate normal

distribution MVNK(0, I), and εi’s are i.i.d. measurement errors with MVNQ(0,Ψ)

and are independent of the latent factors zi1, . . . , ziK . In matrix notation, model

(2.3) may be rewritten as follows:

Y = XΘT + ZBT + E, (2.4)

where Y T
Q×N = (y1, . . . , yN), XT

P×N = (x1, . . . , xN), ZT
K×N = (z1, . . . , zN) and ET

Q×N =

(ε1, . . . , εN). For simplicity, we assume that all Q responses and all P predictors are

standardized to have zero mean and thus the intercept terms are removed from (2.4).

Our proposed mFARM model (2.4) will improve the capacity of statistical analysis

for the construction of genetic regulatory maps with high-throughput array data,

because it accounts for unobserved factors that better capture variabilities in the
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residuals.

2.3 Regularized Estimation

To achieve sparsity in the estimation of parameter matrix Θ, which characterizes

the association map of interest, and to encourage the detection of master predictors

(i.e. master regulators) in a similar spirit to the remMap method (Peng et al., 2010),

we propose the following doubly penalized loss function:

L(Θ,Ψ, B) =
1

2N

N∑

i=1

(yi −Θxi)
T (BBT + Ψ)−1(yi −Θxi)

+ λ1

Q∑

q=1

P∑

p=1

|θqp|+ λ2

P∑

p=1

√
θ2

1p + · · ·+ θ2
Qp,

(2.5)

where λ1 and λ2 are two nonnegative tuning parameters. The first L1 norm penalty

term in the above loss function controls the overall sparsity in Θ, while the second

L2 norm penalty term controls the column sparsity in Θ. The use of two penalties

facilitates the selection of important predictors that affect multiple responses simul-

taneously.

If there is some a priori knowledge about the known relationship between a predic-

tor Xp and a response Yq, such information may be incorporated into the optimization

procedure in a similar way suggested in Peng et al. (2010). That is, consider a pre-

specified Q× P matrix C∗ whose (q, p)-th element as:

C∗qp =





2, if Xp is independent of Yq;

0, if Xp is associated withYq;

1, if there is no prior information.

(2.6)

As a result, given an unknown matrix Θ∗, the (q, p)-th entry θ∗qp will be set as 0 in

advance if C∗qp = 2; otherwise, θ∗qp will or will not be penalized according to C∗qp = 1
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or C∗qp = 0. After setting matrix Θ = Θ∗ according to C∗, the modified objective

function is given by

L(Θ,Ψ, B) =
1

2N

N∑

i=1

(yi −Θxi)
T (BBT + Ψ)−1(yi −Θxi)

+ λ1

Q∑

q=1

P∑

p=1

|Cqpθqp|+ λ2

P∑

p=1

√
C1pθ

2
1p + · · ·+ CQpθ2

Qp,

(2.7)

where a Q× P matrix C = {Cqp} is defined as Cqp = 1{C∗qp = 1}.

Without loss of generality, we assume that both λ1 and λ2 are positive, and if one

of them is zero, we can modify our methodology with little effort. Also, the proposed

smFARM may be used to deal with the case of high-dimensional measurements with

min(P,Q) � N , which is pervasive in biological studies, such as microarray data

that contain thousands of biological markers from typically dozens to hundreds of

subjects.

2.4 EM-GCD Algorithm

In this section, we estimate three unknown parameter matrices, (Θ, B,Ψ), through

minimizing the doubly penalized loss function (2.7), where Θ and (B,Ψ) are involved

in the mean model and the covariance model, respectively. In this section, we propose

a two-step iterative approach to estimate these three matrices. Given the current es-

timates of (B(t),Ψ(t)), Θ(t+1) is given through minimizing the doubly penalized loss

function (2.7), and (B(t+1),Ψ(t+1)) are updated through the EM algorithm presented

below in Section 2.4.1. Repeating these two-step procedure iteratively till conver-

gence, we obtain estimates (Θ̂, B̂, Ψ̂) in the end.

Before introducing our formulation, we summarize some notations used in this

section. Let IK , IQ and IN denote identity matrices with dimension K, Q and N ,

respectively. Given (q0 , p0) as an arbitrary target for updating, we denote Ap0 as the
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p0-th column of a matrix A ∈ RQ×P and Aq0p0 as the q0-th element of Ap0 . ‖Ap0‖0,

which counts a total number of non-zero elements in a vector, is the L0 norm of Ap0 .

Notation [Ap0 (q0)] is a vector where [Ap0 (q0)]q = Aqp0 , if q 6= q0 ; and [Ap0 (q0)]q0 = 0,

otherwise. And notation [A(·, p0)] is a matrix where [A(·, p0)]p = Ap, if p 6= p0 ; and

[A(·, p0)]p0 = 0, otherwise. Similarly, [A(q0 , p0)] is a matrix where [A(q0 , p0)]qp = Aqp,

if (q, p) 6= (q0 , p0); and [A(q0 , p0)]q0p0 = 0, otherwise.

2.4.1 EM algorithm

The EM algorithm is used to estimate (B,Ψ) in the factor analysis model. Note

that, there are several well established methods to estimate these factor model pa-

rameters, such as principal component estimation method, maximum likelihood esti-

mation method (Johnson and Wichern, 2007) and EM algorithm (Rubin and Thay-

er , 1982). Under the normality assumption, we may implement the EM algorithm

by treating the latent factors zi as “missing data” and Θ as a fixed “known” con-

stant matrix and then maximizing the joint log-likelihood of the full data {(y∗i ,

yi − Θxi, zi), i = 1, . . . , N}. In fact, using the EM algorithm to estimate Ψ, B

and Z enjoys computational simplicity and numerical stability. This is because the

algorithm only operates the matrix inverse, (BBT + Ψ)−1 = Ψ−1−Ψ−1B(BTΨ−1B+

IK)−1BTΨ−1, at low-dimension K, instead of high-dimension Q, which gives rise to

computational efficiency in the parameter estimation. It is easy to derive the EM

algorithm updates of B and Ψ at the (t+ 1)-th iteration, respectively, given by

B(t+1) =

{ N∑

i=1

y∗iE
(
zTi |y∗i ;B(t),Ψ(t)

)}{ N∑

i=1

E
(
ziz

T
i |y∗i ;B(t),Ψ(t)

)}−1

,

Ψ(t+1) =
1

N
diag

{ N∑

i=1

y∗i y
∗T
i −B(t+1)

N∑

i=1

E
(
zi|y∗i ;B(t),Ψ(t)

)
y∗Ti

}
.
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Specifically, if Ψ = σ2IQ in the case of LOw-Rank representation and Sparse regression

(LORS) (Yang et al., 2013), we consider a simple re-parameterization by letting B̃ =

σ−1B, and z̃i = σzi. Clearly, Bzi and B̃z̃i follow the same distribution. Thus, the EM

algorithm updates B̃ and σ2 at the (t+ 1)-th iteration by the following expressions:

B̃(t+1) =

{ N∑

i=1

y∗iE
(
z̃Ti |y∗i ; B̃(t), σ2(t)

)}{ N∑

i=1

E
(
z̃iz̃

T
i |y∗i ; B̃(t), σ2(t+1)

)}−1

,

σ2(t+1)
=

1

NQ

N∑

i=1

y∗Ti

{
IQ − B̃(t)

(
IK + B̃T (t)B̃(t)

)−1
B̃T (t)

}
y∗i .

2.4.2 Group-wise coordinate descent (GCD) algorithm

We implement an efficient algorithm to yield the optimal solution to minimizing

(2.7) under a fixed positive definite Σ
def
= BBT + Ψ, along the lines of the sparse

group LASSO (Friedman et al., 2010b). Since minimizing (2.7) with respect to Θ is

equivalent to a convex optimization problem, the objective function decreases over

iterations, and the algorithmic convergence is warranted (Tseng , 2009). A similar

algorithm for the loss function (2.7) with the adaptive L1 norm and L2 norm penalties

can be established with minor modifications on the one presented below.

Given Cp0 , we first define an “inactive” set Ap0

def
= {q : Cqp0 = 0, 1 ≤ q ≤ Q}, and

an “active” set Bp0

def
= {q : Cqp0 = 1, 1 ≤ q ≤ Q}. θp0 = (θ1p0

, . . . , θQp0 )T is split into

two sub-vectors θA
p0

and θB
p0

, where θA
qp0

= θqp0 , if q ∈ Ap0
; and θA

qp0
= 0, otherwise.

Similarly, θB
qp0

= θqp0 , if q ∈ Bp0
; and θB

qp0
= 0, otherwise. Given Rp0

= ‖Cp0‖0,

HAp0
is an Rp0

×Q matrix of full rank with elements 0 or 1, satisfying HAp0
θA
p0

= 0,

which sets θA
qp0

= 0 for q 6∈ Ap0
. Finally, let S(·, ·) denote the soft-thresholding

operator S(z, γ) = sgn(z)(|z| − γ)+. The following proposition gives a procedure for

sequentially updating Θ one column at a time.

Proposition II.1. Given [Θ(·, p0)], θ̂p0 = θ̂A
p0

+ θ̂B
p0

, a minimizer of (2.7), satisfies:
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(i) Suppose θB
p0

is withheld. Let Ỹ T
Ap0

= Y T − [Θ(·, p0)]X
T − θB

p0
XT
p0

, we have

θ̂A
p0

=
{
IQ − ΣHT

Ap0

(
HAp0

ΣHT
Ap0

)−1

HAp0

}
Ỹ T

Ap0
Xp0

/
∥∥Xp0

∥∥2

2
, (2.8)

(ii) Suppose θA
p0

is withheld. Let Ỹ T
Bp0

= Y T − [Θ(·, p0)]X
T − θA

p0
XT
p0

, we have

θ̂B
p0

= 0, if
∥∥∥ 1

N
Σ−1Ỹ T

Bp0
Xp0
− λ1sp0

∥∥∥
2
≤ λ2, (2.9)

where sp0 = (s1p0 , . . . , sQp0)
T , with

sqp0 =





sgn(θ̂qp0 ), if θ̂qp0 6= 0 and q ∈ Bp0
,

∈ [−1, 1], if θ̂qp0 = 0 and q ∈ Bp0
,

0, if q /∈ Bp0
;

(iii) If θ̂B
p0

does not satisfy condition (2.9), given [Θ(q0 , p0)] and θB
p0

obtained from

current estimates of Θ, θq0p0 with q0 ∈ Bp0
is estimated by

θ̂q0p0 =





NS
(

1
N
XT
p0

(
Y −X[Θ(q0 , p0)]

T
)
Σ−1
q0
, λ1 + λ2

)

Σ−1
q0q0

∥∥Xp0

∥∥2

2

, if
∥∥[θB

p0
(q0)]

∥∥
2

= 0,

0, if
∣∣∣ 1

N
XT
p0

(
Y −X[Θ(q0 , p0)]

T
)
Σ−1
q0

∣∣∣ ≤ λ1, and
∥∥[θB

p0
(q0)]

∥∥
2
6= 0,

NS
(

1
N
XT
p0

(
Y −X[Θ(q0 , p0)]

T
)
Σ−1
q0
, λ1

)

Σ−1
q0q0

∥∥Xp0

∥∥2

2
+ 2Nλ2

∥∥θB
p0

∥∥−1

2

, otherwise.

(2.10)

From Proposition II.1, we know that if Σ is an identity matrix, θ̂q0p0 with q0 ∈ Ap0

given in (2.8) is actually an ordinary least square estimate. In addition, (2.10) gives us

the coordinate descent method to update Θ. To sum up, our procedure in Proposition

II.1 can efficiently shrink a group of “active” predictors to exactly zero by (2.9),

while also shrink some individuals within that group to zero. The detailed proof of

Proposition II.1 is given in the Appendix B. The GCD algorithm is implemented by
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the following steps:

Algorithm 1 GCD algorithm

Step 1. Start with an initial value Θ̂ = Θ(0).
Step 2a. Given p0-th column of Θ, θ̂A

p0
is updated via (2.8).

Step 2b. Check if (2.9) is satisfied. If so, set θ̂B
p0

= 0.

Step 2c. If (2.9) is not satisfied, update θ̂q0p0 for q0 ∈ Bp0
via (2.10).

Step 2d. Step 2c is iterated until convergence.
Step 3. Iterate the entire subloop of Step 2 over p0 = 1, . . . , P until convergence.

Finally, a combination of the EM algorithm and GCD algorithm, termed as the

EM-GCD algorithm in this section, allows us to iteratively update Θ, B and Ψ. The

detail is provided in the following Algorithm 2.

Algorithm 2 EM-GCD algorithm

Step 1. Set an initial value Θ(0) whose (q, p)-th element is

θ̂(0)
qp =





NS( 1
N
XT
p Yq, λ1)

‖Xp‖2
2

, if Cqp = 1,

XT
p Yq/‖Xp‖2

2, if Cqp = 0.

Let Ψ(0) = IQ, and let B(0) be the first K right-singular vectors of Y −XΘ(0)T .
Step 2a. Given B(t), Ψ(t), and Θ(t), at iteration t+1, Θ(t+1) is updated by the
GCD algorithm that sequentially updates one column θp (p = 1, . . . , P ) of Θ at a
time, until convergence.
Step 2b. Given Θ(t+1), update B(t+1) and Ψ(t+1) iteratively using the EM algorithm
till convergence.
Step 3. Repeat the two-step cycle, 2a and 2b, until convergence.
Step 4. Output the final estimates Θ̂, B̂ and Ψ̂.

2.4.3 Tuning parameter selection

We first consider the selection of the tuning parameters (λ1, λ2) with a given

K = K0, and then discuss the selection of K. Following Peng et al. (2010), we

adopt the M -fold cross-validation method to choose the tuning parameters (λ1, λ2).

Since the true model is believed to be sparse as suggested by Peng et al. (2010), we

utilize the ordinary least squares (OLS) estimates instead of the shrunken estimates
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to calculate the cross-validation score. This is because, when there are many potential

poor predictors, the cross-validation score based on shrunken estimates often leads to

severe false positive rates (Peng et al., 2010; Efron et al., 2004). In contrast, using the

OLS estimates seems to make a reasonable remedy for such a problem, which is also

observed in our simulation studies. It is worth pointing out that Bayesian information

criterion (BIC), another popular tuning selection method, is not considered here,

mainly because estimating the degrees of freedom needed in the BIC is difficult under

a nonorthogonal design.

We now turn to discuss the selection of the number of latent factors K. The

number of latent factors in the proposed smFARM can affect the resulting sparsity

of regression coefficient matrix Θ and have to be tuned properly. Basically, selecting

the number K can be implemented in the M-fold cross validation procedure. For

more details, see Appendix A. In this section, for the computational ease, BIC is also

applied to choose the number K. The value of BIC with K latent factors is given by:

BIC(K) = log

{
N−1‖Y −XΘ̃T − Ê(Z|Y )B̂T‖F

}
+ log(N)d̂f(K)/N, (2.11)

where Θ̃ and (B̂, Ê(Z|Y )) are obtained from a re-estimation step based on OLS model

and the EM algorithm discussed in Sections 2.4.1 and 2.4.2. Here ‖ · ‖F denotes the

Frobenius norm of matrix.

To determine degrees of freedom in (2.11), we note that the factor analysis mod-

el can be viewed as a special nonlinear smoothing procedure of the form: Ŷ =

(IN − ĤZ)XΘ̃T + ĤZY , where ĤZ = E(Ẑ|Y ){E(ẐZT |Y )}−1E(Ẑ|Y )T stands for

the smoothing matrix. Thus, the degrees of freedom d̂f(K) = tr[∂Ŷ /∂Y |Θ̃] may be

approximated by tr[ĤZ ].

In summary, Algorithm 3 presents the steps to select tuning parameters λ1, λ2,

and K.
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Algorithm 3 Tuning parameter selection

Step 1a. Given the number of latent factors K = K0, select the optimal λ∗1 and
λ∗2 by the M-fold cross validation method.

Step 1b. Re-estimate Θ̃(λ∗1, λ
∗
2) from the OLS regression as well as B̂ and Ê(Z|Y )

from the EM algorithm.
Step 1c. Calculate BIC at K = K0 using (2.11).
Step 2. Letting K vary from 0 to a given large number, select the optimal K that
minimizes the BIC.

2.5 Relationship to the existing methods

In the past two decades or so, many regularized variable selection methods have

been proposed in the statistical literature, including but not limited to LASSO (Tib-

shirani , 1996), group LASSO (Yuan and Lin, 2006), fused LASSO (Tibshirani et al.,

2005), elastic net (Zou and Hastie, 2005), nonnegative garrote (Breiman, 1995), and

SCAD (Fan and Li , 2001). Some of these methods or their variants have been specifi-

cally developed in the context of multivariate regression models. For example, Turlach

et al. (2005) considered the max-L1 penalty to select a common subset of predictors

in multiple response regression; Yuan and Lin (2007) proposed a dimension reduction

method by encouraging sparsity among singular values in the regression coefficient

matrix; Peng et al. (2010) developed a regularized method to identify master predic-

tors via a mixture of L1 and L2 penalties. However, all the existing methods have

not addressed structures of dependencies among multiple responses, which potentially

leads to the loss of an opportunity to further explore potentially important features

contained in the residuals.

Recently, Rothman et al. (2010) proposed multivariate regression with covariance

estimation (MRCE) method, a penalized log-likelihood approach with L1 penalty to

select a subset of predictors while accounting for correlated errors. Later both Lee

and Liu (2012) and Yin and Li (2011) extended MRCE (Rothman et al., 2010) to

explore the conditional independence relationships among responses via covariance

matrix Σ, adjusting for possible genetic effects on gene expressions. Following the
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same idea, Cai et al. (2013) presented a covariate-adjusted precision matrix estimation

(CAPME) method. Different from the approaches proposed by Lee and Liu (2012),

Rothman et al. (2010) and Yin and Li (2011), the CAPME approach does not make

the multivariate normal assumption on the error distribution. It is noted that all

the existing methods have concerned only with constructing a conditional association

network among the responses (e.g. gene-gene relationship), instead of focusing on

constructing a response-predictor (e.g. gene-CNA) association map, and thus can not

be applicable to identify master predictors. In addition, Yang et al. (2013) proposed

a sparse multivariate regression model with low-rank representation to account for

confounding factors (LORS). Our smFARM may be regarded as being equivalent

to LORS, by setting our ZBT = L, where L is a low rank matrix with rank K.

Unlike LORS, which employs singular value decomposition (SVD) to construct a

low-rank representation of L, we use a factor analysis model to directly and explicitly

decompose the L as factors Z and corresponding factor loadings B for better biological

interpretations. Furthermore, LORS assumes an isotropic noise ε ∼ MVN(0, σ2I),

whereas our smFARM assumes a unique variance structure with ε ∼ MVN(0,Ψ).

Apart from these modeling differences, our smFARM provides a framework that allows

for more relevant and detailed interpretation about the residuals. In contrast, the

interpretation for the L matrix does not seem to be straightforward.

2.6 Simulation Studies

2.6.1 Simulation Setup

We conduct three simulation experiments to assess the performance of the pro-

posed model and optimization method. To specify simulation settings, we mimic a

microarray data with N = 200 subjects, Q = 400 gene expressions and P = 400

variables of copy number alterations (CNAs). For each simulation, we consider a
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specific association map between genes and CNAs which is sparse with groups. The

graphic presentation of each map is given in Figure 2.1. In simulation experiment

I, we begin with a simple association map, in which 5 CNAs are master regulators

(or hubs) shown in Figure 2.1(a). These master CNAs are strong and totally link to

114 genes, on average each regulating 20 to 30 gene expressions. The total number of

nonzero associations in this map is 125. In simulation experiment II, we investigate

a more complex association map consisting of 46 weak CNA master regulators out

of 400 CNAs with each connecting with 1 to 8 genes. The total number of nonzero

associations is 183; see Figure 2.1(b). This situation is more challenging as it contains

more clusters of low degrees in comparison to Figure 2.1(a). It is expected that the

L1 norm penalty in favor of individual signal selection would perform better than the

group penalty. Simulation experiment III concerns a more practical situation, where

the topology of an association map may be neither group dominated nor individual

dominated. We consider a map shown in Figure 2.1(c) which includes 5 strong master

CNAI regulators, each influencing 24 to 37 genes, 5 weak master CNAI regulators,

each influencing 3 to 7 genes, and 20 CNAIs linking to only 1 or 2 genes. The total

number of nonzero associations is 192.

In the first two simulation experiments I and II, P categorical CNAs x = (x1, . . . , xP )T

are generated as predictors from xp ∼ Binomial(2, 0.2) − 1, with values −1, 0, or 1,

representing copy number deletion, normal and amplification. In the third simu-

lation study, continuous copy number alternation intervals (CNAIs) are generated

to mimic the true predictor characteristics discussed in Section 2.7. Based on the

real breast cancer data, we find that there exits the heterogeneity within CNAIs,

characterized by certain chromosome-specific structures, occurring in the forms of

both within-chromosome and between-chromosome differences. Here we assume that

these P continuous CNAIs belong to 23 distinct chromosomes, with the number of

CNAIs (i.e. Pi, i = 1, . . . , 23) on the i-th chromosome proportional to the size of
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that chromosome obtained from the real data. Within the i-th chromosome, any

pair of CNAIs, say, CNAIm and CNAIn, is set to be positively correlated and such

correlation decreases when their genetic distance increases according to 0.9|m−n|/2 for

m, n = 1, . . . , Pi. If two CNAIs come from different chromosomes, a much weaker

correlation is randomly drawn from {0.25, 0.252, . . . , 0.2523} together with a randomly

generated positive or negative sign. Finally we compute the nearest positive definite

symmetric matrix Ξ based on the above correlations using the algorithm in Higham

(1988), and P continuous CNAs are generated from x ∼ MVNP (0,Ξ).

To specify the Q×P association map of Θ = {θqp}, we first specify a sparse indica-

tor matrix ∆ = {δqp} which defines the connectivity in a genetic association mapping

between Q genes and P CNAs. If δqp = 1, we generate θqp from Unif([−5,−1]
⋃

[1, 5]);

otherwise, θqp = 0. To specify the Q×K factor loadings matrix B, we start with an

initial matrix B∗ = {b∗qk}, with b∗qk
i.i.d.∼ Unif([0, τ ]) and τ is a given positive constant.

Then specify matrix B as of the form B = UV
1
2 , where V is a diagonal matrix with

diagonal entries being the eigenvalues of B∗B∗T , and the column vectors of U are

the orthonormal eigenvectors of B∗B∗T . In other words, matrix B is specified by an

orthogonal rotation of the initial matrix B∗. Note that the factor loadings have an

“indeterminacy” problem, which means both B and BT give rise to the same covari-

ance matrix Σ = BBT + Ψ, where T is an arbitrary orthogonal matrix. To ensure a

unique solution, we impose a constraint on B that BTB is a diagonal matrix (Ander-

son and Rubin, 1956). Our procedure of generating the values of factor loadings for

matrix B accounts for such constraints. Given Θ and B, for each subject, we generate

K latent factors z = (z1, . . . , zK)T by zk ∼ Normal(0, 1) and Q measurement errors

ε = (ε1, . . . , εQ)T ∼ MVNQ(0,Ψ), where the uniqueness Ψ is set as Ψ = σ2IQ in the

simulation studies. Recall that τ and σ2 are two constants that control the size of

communality and that of uniqueness, respectively. The choice of both τ and σ2 is

based on a pre-specified scale of signal-to-noise ratio, according to SNR1 of regression
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mean effects and SNR2 of latent factor’s effects, namely SNR1 = avg
[

diag(Cov(Θx))
diag(Cov(ε))

]
and

SNR2 = avg
[

diag(Cov(Bz))
diag(Cov(ε))

]
, respectively. Finally, Q gene expressions y = (y1, . . . , yQ)T

are generated from model (2.3) by y|x, z ∼ MVNQ(Θx+Bz,Ψ). Hereafter, a dataset

of N i.i.d. (y, x) pairs is generated for each simulation round.

For convenience, responses and predictors are all centered to mean zero and the

prior knowledge matrix C = {Cqp} is set as all entries are 1, namely all predictors are

subject to shrinkage. Our primary evaluation criterion is the total number of false

discoveries, TF = FP + FN, where FP and FN are the respective numbers of false pos-

itives and false negatives. Here, a “positive” (or a “negative”) refers to a nonzero (or a

zero) entry of Θ. Following Fan et al. (2009), additional criteria used in the evaluation

include sensitivity (Sen), and Matthews correlation coefficient (MCC) score defined

respectively, by Sen = TP/(TP + FN), and MCC = (TP×TN−FP×FN)√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

.

To assess the performance of our smFARM, we mainly compare it with remMap

by varying SNR1, SNR2 and K. It is worth noting that Peng et al. (2010)’s remMap

approach, which is established for the classic multivariate regression models (i.e.

Ktrue = 0), has been compared with two popular existing methods, single LASSO

penalty (i.e. λ2 = 0) and Q separate individual LASSO regressions, and its superiori-

ty has been showed in the paper (Peng et al., 2010). So the comparisons to the latter

two methods are not reported in our comparison. In the first part of Simulation I

(denoted as I.1), we simulate data without any latent factors and aim to show the

consistency between the remMap and our proposed smFARM method. Then in the

rest of simulation experiments, the second part of Simulation I (denoted as I.2), II

and III, we set the true number of latent factors as Ktrue = 2, and focus on comparing

three scenarios with K = 0 (i.e. remMap), K = Ktrue (i.e. 2), and K = KBIC. The

BIC criterion is given in (2.11) over the range of 0 to 4, in which tr[ĤZ ] is used as

the estimated degrees of freedom. And KBIC is also compared with KCV from cross

validation criterion. The tuning parameters (λ1, λ2) are determined through 5-fold
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cross validation. And a total of 50 independently replicated datasets is used in the

evaluation of our method. Results of method comparisons are summarized in Table

2.1.

2.6.2 Findings from Simulation Studies

Let us first focus on simulation study I, including two cases I.1 and I.2, the cor-

responding numerical results are reported in the top part of Table 2.1. In Simulation

I.1, when the true model contains no latent factors, subject to rounding errors, our

smFARM and the remMap perform equally well in terms of MCC. With no surprise,

we find that, in both smFARM and remMap, larger SNR1 leads to better performance

in terms of lower TF, higher Sensitivity and higher MCC through the comparison

between SNR=1:0:3 and SNR=1:0:5. This finding is repeated by the comparison

between SNR=1:1:3 and SNR=1:1:5 with Ktrue = 2 in Simulation I.2. When the

ratio of SNR1 to SNR2 is fixed at 1:1, smaller variation in the measurement errors

(i.e. larger SNR1) will lead to better performances. Moreover, an encouraging finding

in Simulation I.2 is that, comparing our method accounting for the latent factors

to the remMap ignoring the latent factors, the smFARM approach is clearly more

effective to identify true signals than the remMap when Ktrue 6= 0. In addition,

both simulation studies I.1 and I.2 show us that our BIC criterion works quite well

to determine the true number of latent factors. With fixed SNR1, when comparing

(SNR, Ktrue) = (1:0:3, 0) in Simulation I.1 with (SNR, Ktrue) = (1:1:3, 2) in Simula-

tion I.2, and (SNR, Ktrue) = (1:0:5, 0) in Simulation I.1 with (SNR, Ktrue) = (1:1:5, 2)

in Simulation I.2, we obtain very similar results of our smFARM when the latent fac-

tors are accounted for. These findings also suggest that SNR2 has a strong influence

on the performance of the remMap when the dependency of latent factors is ignored

in the analysis.

It is interesting to note that results of group selection in simulation study I are
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rather stable and accurate across the four cases in the top part of Table 2.1. This

is probably because identifying clusters in these settings is not hard due to group-

dominant topology designed in the association maps (also see Figure 2.1(a)). In other

words, relative to the L1 penalty, the L2 penalty is more effective to remove irrelevant

groups or clusters.

The results given in the middle part and the bottom part of Tables 2.1 concern

simulation studies II and III. Once again these results show that the proposed sm-

FARM performs very well in all key aspects of regulator detection, group selection and

latent factor identification. Taking Simulation II as an example, when evaluating the

performance of smFARM in the case SNR=1:3:5 among K=0, 2, 3, smFARM selects

the true number of latent factors (i.e. 2) with 100% success rate by both KBIC and

KCV. Moreover, both regulator selection and group selection show us that smFARM

achieves the highest sensitivity and MCC as well as the lowest total false rate. From

the comparison between (SNR, Ktrue) = (1:0:5, 0) and (SNR, Ktrue) = (1:3:5, 2), it is

evident that when properly adjusting the latent factors, SNR2 will have little influ-

ence on the reconstruction of the association map. Once again this summary implies

that it is important to account for unobserved factors in the association analysis of

high-throughput array data, and failing to adjust for such underlying heterogeneity

will incur the loss of statistical power in the reconstruction of association map. In

addition, all the above conclusions have repeated consistently in the more realistic

simulation study III with continuous predictors. To sum up, our proposed method

has demonstrated clearly as being a very effective tool to achieve desirable statisti-

cal power by accounting for latent factors in the regulatory map reconstruction with

high-dimensional complex data.
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Figure 2.1: True association maps of Θ (connectivity vs. heatmap) for Simulation
I, II, and III. (LHS: connectivity maps of Θ between genes (white) and
biomarkers (black); RHS: corresponding heatmap of Θ.)

14 Y. ZHOU ET AL.

Fig 1: True association maps of Θ (connectivity vs. heatmap) for Simulation
I, II, and III. (LHS: connectivity maps of Θ between genes (white) and
biomarkers (black); RHS: corresponding heatmap of Θ.)
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2.7 Application

We now apply the proposed smFARM to analyze a breast cancer dataset, which

has been previously analyzed in Peng et al. (2010) using remMap without accounting

for latent factors. The data is measured by CGH arrays and cDNA expression arrays

over 172 breast cancer tumor samples, and then is preprocessed in the same way as

was done in Peng et al. (2010). Briefly, based on the CGH array data of about 17K

genes, the genome is divided into 384 copy number alteration intervals (CNAIs). The

DNA copy number status of these CNAIs is treated as predictors in the analysis.

In addition, RNA transcripts of 654 breast cancer related genes, a union set of 7

published breast cancer gene lists, are treated as responses in the analysis.

Our primary goal is to reconstruct a regulatory association map between copy

number alterations and RNA expressions, adjusting for tumor subtypes and potential

latent factors. The estimated loadings from the factor model can provide information

for additional genetic or non-genetic features left in the residuals. For each pair

of CNAI and RNA transcript, it can be classified as a linked (or cis-) pair, if the

transcript falls in the genome region of the CNAI; or otherwise an unlinked (trans-)

pair. Based on this definition, there are totally 519 linked pairs identified. In addition,

tumor subtypes could be important confounders affecting the construction of genetic

regulatory map in array CGH analysis. Thus, the 172 samples are divided into 5

subtypes based on their expression profiles (Peng et al., 2010). In our analysis, we

include four subtype dummy predictors to adjust for the subtype-specific effects. Our

analysis is based on the following mFARM:

YRNA = XCNAIΘ
T +GsubtypeΠ

T + ZBT + E, (2.12)

where YRNA is a 172 × 654 RNA expression matrix, XCNAI is a 172 × 384 CNAIs

output matrix and Gsubtype is a 172 × 4 tumor subtype indicator matrix, Θ and Π
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are two regression coefficient matrices with respect to CNAIs and tumor subtype. In

addition, P (= 654) responses YRNA and Q(= 389) predictors (XCNAI, Gsubtype) are

centered to zero.

One of our objectives is to detect potential trans-regulations, by adjusting for

all 519 cis pairs. This can be set up by letting Cqp = 0 if q-th CNAI links to p-th

gene; and Cqp = 1, otherwise. In this way, there will be no shrinkage imposed on the

coefficients of cis pairs.

To evaluate the performance of the proposed regularization procedure in terms

of selection stability, we generate 100 bootstrap samples from the original dataset.

For each bootstrap sample, we select tuning parameters (λ1, λ2) using 10-fold cross

validation on a 25×30 grid. As pointed above, the mechanism of biological pathways

underlying breast cancer is notoriously complex, so that the associated genetic het-

erogeneity may induce a large number of genetic and/or non-genetic latent factors.

For example, Lucas et al. (2010) obtained 56 latent factors in a breast tumor study.

In practice, however, researchers would like to focus on several leading latent factors

for more meaningful biological interpretations. For instance, Carvalho et al. (2008)

controlled the number of latent factors by an upper bound K ≤ 10 in a breast cancer

hormonal study. In this analysis, we select the number of latent factors K over a

range of 0 to 10 using the BIC in (2.11) with degrees of freedom d̂f(K) = tr[ĤZ ]+K,

where tr[ĤZ ] and K quantify the respective complexity of the mean model and factor

analysis model. Under this BIC criterion, among 100 bootstrap samples, the number

of latent factors K=5 has been selected with the highest frequency 50%, then K=6

with 28% and K=4 with 22%. The results of stability for the regulatory relationships

are listed in Table 2.2. Note that, any trans-regulations with 10% selection rate or

lower are not reported in Table 2.2.

As seen from Table 2.2, two CNAIs on 17q12 are associated with multiple unlinked

genes. Specifically, compared to the results in Peng et al. (2010) using remMap, we
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Table 2.2: Association map detection frequencies over 100 bootstrap samples.

Trans-group Selection Transcripts being trans-regulated

CNAI Nucleotide position(bp) Clone ID Gene Symbol Cytoband Freq.(%)

CNAI1 17q12, 34811630-34811630 68400 BM455010 17 65
418240 LOC90110 17q21.2 43
159608 - - 18
270535 BM466581 19 15
756931 S100A1 1q21 14

CNAI2 17q12, 34944071-35154416 159608 BM455010 17 19
854899 DUSP6 12q22-q23 18

1337808 DUSP6 12q22-q23 16
725321 ESR1 6q25.1 14
503602 CAMK2N1 1p36.12 12

Note: gene BM455010 does not fall into the CNAI1 or CNAI2, but sits very closely
to them. This probably should be treated as a cis regulation.

have detected additional regulation relationships between CNAI2 and genes of ESR1,

DUSP6, and CAMK2N1. These new findings are highly biologically relevant and quite

intriguing. CNAI2 is part of the ERBB2 amplification region, and the amplification of

ERBB2 is the key characteristics of the “HER+” subtype breast tumors. On the other

hand, ESR1 encodes an estrogen receptor, which is over-expressed in around 70% of

breast cancer cases, referred to as the “ER+” subtype. Our findings here suggest

the potential interplay between these two important oncogenes of breast cancer—

ERBB2 and ESR1. Discoveries given in our analysis helps to shed light on better

understanding of targeted molecular regions and mechanism for breast cancer.

Besides the above findings of trans-regulation relationship, the results from smFARM

also suggest that CNAIs together with other covariates only explain a limited propor-

tion of the variation of gene expressions, and the latent factors serve as a useful source

for additional knowledge generation. Here we refit smFARM on this breast cancer

data with K=5, which has the highest selection rate from 100 bootstrap samples. To

make sense of biological interpretation on these 5 latent factors, we apply the varimax

orthogonal rotation method (Kaiser , 1958) on the estimated loadings B̂ to achieve
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sparse relationships between the latent factors and the regulated genes. The heatmap

of B̂ after the varimax rotation is displayed in Figure 2.2, which provides us a graphic

overview of the relative sparsity and block skeleton of these latent factors, as well as

the biological crosstalk in terms of genes linked to multiple latent factors.

Figure 2.2: Breast cancer hormonal pathways are displayed by the heatmap of gene-
factor loadings |B̂q,k| after varimax rotation from the fitted smFARM
model for the 654 selected genes and 5 factors.
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When gene sets share genes, examination of how they overlap can highlight com-

mon processes, pathways, and underlying biological themes. To further unveil the

potential biological functions of these 5 latent factors, we then employ a web-based s-

tatistic tool (http://www.broadinstitute.org/gsea/msigdb/help_annotations.

jsp#overlap) to perform enrichment analysis for specific lists of probe sets. The

assessment of enrichment is based on an overlap statistic (e.g. Chang and Nevins

(2006), Mootha et al. (2003), Subramanian et al. (2005)), such as Fisher exact test

in a two-way annotation contingency table, which evaluates its overlap with a user

provided gene set, and an estimate of the statistical significance, with certain chosen

annotations. The sources of annotations considered in our analysis include a combi-
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nation of canonical pathways (CP), KEGG gene sets and Gene Ontology (GO) gene

sets.

We then annotate these breast cancer related genes through the identified latent

factors. By testing whether a set of “top” genes within each latent factor (i.e. by

top genes, we mean those genes that have strong loadings on the latent factors with

cutoffs of 25% and 75% quantiles) are significantly enriched in the above CP, GO and

KEGG loci, we can learn how these top gene components overlay multiple aspects of

known biological activities. The corresponding results are presented in Table 2.3.

We find that, when adjusting the CNAIs effect, latent factors 1, 3 and 5 are sig-

nificantly enriched in some known genetic pathways with p < 1.00e−5. Since these

654 breast cancer related genes are preselected from the published breast cancer gene

lists, including many cell cycle-regulated genes, it is not surprising to observe that

some genes from the enrichment analysis show significant over-representation of cell

cycle characteristics. It is of great interest to note that we have identified two gene

sets that do not belong to cell cycle pathways: chromosome(GO:0005694) gene set

and FOXM1 pathway. It is suggested that malfunction of genes in chromosome

(GO:0005694) may result in uncontrolled cell proliferation and cancer development.

Mosca et al. (2010) reported that there are 71 genes from chromosome (GO:0005694)

to be altered in breast cancer cells. From our enrichment analysis, we have detected

17 genes in overlap with chromosome (GO:0005694), 11 of which are from the pre-

specified list of 71 breast cancer related genes. FOXM1 transcription factor network

in Forkhead signaling pathways also includes some important cancer genes, such as

BRCA2, ESR1 and FOXM1. Mutations in gene BRCA2, which is involved in DNA

repair pathway, causes about half of the cases of early-onset breast cancer (Sharan

et al., 1997); gene ESR1, as mentioned above has found to be frequently amplified in

breast cancer (Holst et al., 2007); and gene FoxM1 is tightly regulated during the cell

cycle in terms of expression and transcriptional activity, as well as the development
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Table 2.3: Summary of biological terms characterizing factors adjusting for CNAIs
effect (p < 1.00e−5).

No. Genes No. Genes
Type Pathway in Gene Set in Overlap p-value

Factor 1 GO CELL CYCLE PROCESS 193 27 9.65e−11

GO MITOTIC CELL CYCLE 153 24 9.76e−11

GO CELL CYCLE GO:0007049 315 33 1.85e−09

GO CELL CYCLE PHASE 170 23 4.76e−09

GO M PHASE 114 17 1.20e−07

CP REACTOME CELL CYCLE MITOTIC 325 30 1.82e−07

GO CHROMOSOME 124 17 4.15e−07

KEGG KEGG CELL CYCLE 128 15 8.85e−07

GO M PHASE OF MITOTIC CELL CYCLE 85 12 1.53e−06

GO MITOSIS 82 13 1.84e−06

Factor 3 GO MITOTIC CELL CYCLE 153 18 3.31e−08

GO CELL CYCLE PROCESS 193 20 4.93e−08

CP PID FOXM1PATHWAY 40 9 3.81e−07

GO M PHASE 114 14 6.77e−07

GO CELL CYCLE GO:0007049 315 24 7.73e−07

GO CELL CYCLE PHASE 170 17 8.48e−07

GO M PHASE OF MITOTIC CELL CYCLE 85 12 9.51e−07

GO MITOSIS 82 11 4.53e−06

Factor 5 GO CELL CYCLE PROCESS 193 16 6.43e−08

GO CELL CYCLE GO:0007049 315 19 5.62e−07

GO MITOTIC CELL CYCLE 153 13 8.74e−07

CP REACTOME CELL CYCLE MITOTIC 325 19 9.03e−07

CP PID PLK1 PATHWAY 46 7 6.99e−06

Note: Top overlaps with cutoff p < 1.00e−5 are chosen because the result-
s from another web-based statistical tool Gather (see Chang and Nevins (2006),
http://gather.genome.duke.edu/) are highly matched these top gene sets from Fisher
exact test when p < 1.00e−5.
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and progression of many malignancies, including breast cancer (Ahmad et al., 2010).

In summary, we have found that latent factors 1, 3 and 5 are closely tied with genes

involved in cell division and duplication in breast cancer. In contrast, no pathways

have been found to be significantly associated with factors 2 and 4, implying that these

two factors are possibly tied with unknown non-genetic causes, such as environmental

conditions, batch effects and population heterogeneity.

2.8 Discussion

We developed a new methodology, sparse multivariate factor analysis regression

model, to reconstruct a sparse genetic association map. The proposed smFARM ex-

tends the classic multivariate regression model to allow a low-dimensional set of latent

factors to account for the dependence among response variables instead of assuming

residuals being i.i.d. noise. Through gene enrichment analysis, our method helps

to explore additional “nuggets” in the residuals that can enhance the understanding

of the underlying data generation mechanism. We also developed an effective and

flexible EM-GCD algorithm to obtain regularized estimation and variable selection

in the smFARM.

We have shown that by accounting for a suitable number of latent factors, the

proposed smFARM can effectively identify response-predictor associations from high

dimensional data with improved sensitivity and accuracy. The numerical results have

indicated that the proposed smFARM works well to derive not only the underlying

sparse association relationship but also the number of latent factors. In contrast,

if variations explained by these latent factors are not modeled properly, the result-

ing association map given by the existing methods such as remMap is of low power.

Furthermore, the real breast cancer data example has also shown that our proposed

smFARM provides richer and biologically relevant discoveries to facilitate transcrip-

tomic analyses. Not only can we construct the sparse genetic association map between
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CNAIs and gene expressions, but also perform in-depth gene enrichment analysis for

the latent factors, which helps us to understand and interpret the residual features

tied with either genetic or non-genetic regulations and mechanisms. This latter is the

new contribution from our proposed method.

To our knowledge, there are some other methods that can characterize the variabil-

ity in the gene expressions such as singular value decomposition (SVD) or principle

component analysis (PCA). There is a direct relationship between PCA and SVD in

the case where principal components are calculated from the covariance (Wall et al.,

2003). Furthermore, the essential difference between SVD/PCA and factor analysis

lies whether or not a covariance model is used for the residuals. Refer to Schneeweiss

and Mathes (1995), Tipping and Bishop (1999) and Van Wieringen and Van De Wiel

(2011) for more details. We find that unlike PCA/SVD using superficial labeling

such as “eigengenes”, “supergenes”, or “meta-genes” without clear biological entity

(Alter et al., 2000), the latent factors can provide meaningful and relevant biological

interpretation in the reconstruction of association map, which is appealing in practice.

Although we have focused on a combination of L1 and L2 penalties, some other

penalties, such as adaptive LASSO and adaptive group LASSO may be established

in our method with minor modifications. Moreover, if the covariance matrix Σ of the

response variables is sparse, we may further consider regularizing the factor loadings

B and simultaneously penalizing coefficient matrix Θ and loading matrix B. Besides

the gene-CNA association analysis illustrated in this chapter, our proposed method

may be applied in a broad range of problems. For instance, it may be applied to

systematically explore the relationship between gene expression levels and genotypes

as to, for example, whether a gene is differentially expressed with different genotypes

(or alleles) at a specific locus. The loci that are associated with gene expression levels

are known as expression quantitative loci (eQTL). For a given gene, an eQTL data

analysis aims to identify genetic loci or single nucleotide polymorphisms (SNPs) that
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are linked or associated with expression levels of a common gene. Moreover, in eQTL

analysis, SNPs may be naturally grouped according to their functionality or biological

pathways based on some prior knowledge. When we are interested in associations

of multiple SNPs simultaneously within a biological pathway, incorporating genetic

or non-genetic latent factors would help us to achieve a more powerful and richer

analysis, leading to better understanding of the underlying biological mechanisms.
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CHAPTER III

Sparse structural factor equation model and its

applications to the reconstruction of genetic

regulatory networks

Directed acyclic graph (DAG) or Bayesian network has been widely utilized in the

literature to represent causal relationships among genetic variants. A DAG describes

the causal dependency structure among nodes in a network. When there exists a

natural ordering among nodes, the objective of establishing a DAG is equivalent to

estimating the network structure, which can be challenging due to the fact that some

causal relationships may be obscured by unobserved shared factors. These latent

factors may result in undirected edges among nodes, and thus the resulting network

contains both directed and undirected edges, the so-called mixed graph. In this chap-

ter, we mainly focus on a special class of mixed graphs – acyclic directed mixed graphs

(ADMGs), which includes two subgraphs. One subgraph is a DAG with all directed

edges, and the other is an undirected graph with all undirected edges. Structural e-

quation model (SEM) is an appealing tool to formulate causal relationships in a DAG,

but cannot be directly used if the existence of undirected edges is known. Hence, I

propose a new graphical modeling approach, called the sparse structural factor equa-

tion model (SFEM), in which I use the structural equation model for DAGs, while
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accounting for potential latent factors using a factor analysis model. Utilizing latent

factors, I hope to (i) identify and remove undirected edges induced by unobserved

shared factors (i.e. common latent factors, such as unmeasured environmental fac-

tors); (ii) adjust for undirected edges in an ADMG that are annotated by the available

published findings, using the means of node augmentation that enables us to convert

an ADMG into a DAG. In this way, I yield a simpler and more interpretable causal

network. The proposed SFEM is evaluated and compared to the existing methods

(e.g. PC-algorithm) through extensive simulation studies, as well as real, proteomic

data for the construction of human cell signaling pathways.

3.1 Introduction

Biological molecules in living organisms such as mRNAs and proteins do not

function in isolation; rather they work together and interact with each other via an

comprehensive functional network. Reconstruction of gene regulatory network (GRN)

using gene expression data is of great importance for understanding gene functions

and cellular dynamics in system biology as it pertains to the crucial knowledge of

regulatory mechanisms in biological processes. Physical gene-gene interactions among

individual genes can be experimentally derived by identifying transcription factors

and their regulatory target genes, so can protein-protein interactions. However, such

an experimental approach is time-consuming and labor intensive. The technological

innovations in recent years allow gene expression levels to be measured for the whole

genome simultaneously and across collections of related samples. These genome-

wide expression data provide valuable information that can be fruitfully exploited to

infer the network structure. In fact, a number of computational methods have been

proposed in the literature to estimate gene networks from gene expression data.

Graphical model is currently a popular tool used for gene network inference. It

has been useful to analyze and visualize conditional independence relationships among
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variables of interest. Major components of a graphical model include nodes represent-

ing random variables and edges encoding relationships between the enclosing nodes.

Based on whether edges have directions, graphical models have been classified into

two types: a directed graphical model and an undirected graphical model. A di-

rected graphical model (or Bayesian network) is a special type of a graphical model,

whose dependence structure is represented by a directed acyclic graph (DAG). The

utility of DAG for inferring causality has received much attention in the recent litera-

ture, in particular, its applications to the reconstruction of gene regulatory networks

(Friedman et al., 2000; Segal et al., 2003; Hartemink et al.; Peer et al., 2001).

Although DAGs have attractive properties in causal inference, when learning

causal relationships in practice, sometimes not only the directed edges may be de-

tected, but also undirected edges. And the resulting graph may lead to mixed graphs

or even undirected graphs (Anandkumar et al., 2013). Hence, we ought to consider a

more general form of DAG, in which undirected edges are allowed. In this chapter,

we consider a subclass of mixed graphs, named as acyclic directed mixed graphs (AD-

MGs), which are constructed by both DAGs and undirected graphs. Furthermore,

we are interested in two different types of ADMGs. One is a DAG with numerous

undirected edges, which could be caused by some unobserved common factors. For ex-

ample, in a gene network analysis, latent factors may include genes that have not been

included in the microarray, environmental factors, and latent population structure a-

mong the samples. Unfortunately, these factors or their effects could not be directly

measured in the experiment and could influence all the observed gene expressions.

And an exploratory analysis refers to the reconstruction of causal relationships while

cleaning out the undirected edges induced by common latent factors. On the other

hand, another type of ADMG is a DAG with a small proportion of undirected edges,

and these undirected edges could be preselected from expert’s empirical knowledge

or learned directly from experiments. In this case, we do not assume that common
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latent factors exist, and we call the detection of causal relationships by cleaning out a

limited number of preselected undirected edges as confirmatory analysis. In addition,

to our knowledge, the existence of undirected edges may distort causal relationships

without being accounted for in the data analysis. Thus, it is critical to adjust for

such undirected edges if exist, because if ignored, the analysis would yield either an

excessive amount of false positives or reduced statistical power. To address this issue,

we develop a new regularized estimation method to reconstruct DAGs with a known

ordering.

Learning the dependence structure of a DAG from data presents a great challenge

due to the fact that the number of candidate DAGs can grow super-exponentially

along with the number of nodes (Robinson, 1973). The existing approaches for the

DAG structure learning can be roughly categorized into three classes (Schmidt , 2010):

search-and-score approaches, constraint-based approaches and hybrid approaches. A

search-and-score approach attempts to learn a DAG structure by optimizing some

criteria, such as the BIC or validation set likelihood, using either a search algorithm

(Lam and Bacchus , 1994; Heckerman et al., 1995) or Bayesian posterior distribution

(Friedman and Koller , 2003; Ellis and Wong , 2008; Zhou, 2011). A constraint-based

approach tries to prune a set of possible edges identified by conditional independence

hypothesis tests, including the well-known Peter-Clark (PC) algorithm (Spirtes et al.,

2000), or by removing conditional dependencies that fall below a threshold (Cheng

et al., 2002). A hybrid method uses the constraint-based reasoning to prune a set

of edges considered in the setting of a score-based method, which has been devel-

oped to improve computational efficiency (Li and Yang , 2004; Tsamardinos et al.,

2006). Recently, Kalisch and Buhlmann (2007) proposed a computationally efficient

implementation for the PC algorithm to search sparse high-dimensional DAGs with

polynomial complexity. However, the associated computational burden remains a big

hurdle due to the size of the space of large DAGs.
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A vast majority of the recent work has focused on the reconstruction of a sparse

DAG through the penalized likelihood approach. In the special case where a topo-

logical ordering of the nodes is given, learning the structure of a DAG is equivalent

to sparse estimation of modified Cholesky decomposition of a concentration matrix

(i.e. the inverse of covariance matrix) (Li and Yang , 2005; Huang et al., 2006; Levina

et al., 2008; Shojaie and Michailidis , 2010), which is computationally feasible. The

information of node ordering is usually determined by a natural ordering of temporal

observations, previous experiments and a priori knowledge (Shojaie and Michailidis ,

2010). For example, when learning GRNs for microarray data, a priori knowledge of

the node ordering could be obtained from the existing annotation software such as

Cytoscape (Lopes et al., 2010). If there is no established knowledge concerning the

topological ordering, or each node is allowed to have more than one parental node,

the penalized likelihood technique has proven to be computationally intricate (Van de

Geer and Bhlmann, 2013). Combining a method of enforcing acyclicity with a block

coordinate descent algorithm, Fu and Zhou (2013) and Aragam and Zhou (2014)

developed some penalized methods for the estimation of DAG structures without a

priori knowledge of the node ordering. However, from the above literature review, we

find that no systematic work has been done in constructing sparse causal relationships

under the framework of ADMG. Thus, it leads to the key interest of this research

topic.

This chapter concerns a sparse estimation of DAGs using the proposed structural

factor equation model, where accounting for latent factors is undertaken by the factor

analysis model. In the presence of latent factors, learning DAG structure suffers the

problem of parameter identifiability due to the fact that there may be multiple DAGs

that equivalently explain the observed data (i.e. moral graph). In order to overcome

this difficulty, one must restrict the set of possible graphical models. In this regard,

I establish the needed criteria for parameter identifiability in the proposed structural
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factor equation model.

The rest of this chapter is organized as follows. Section 3.2 introduces the pro-

posed model on exploratory analysis and criteria for model identifiability, followed by

the penalized estimation of DAGs based an EM-Coordinate-Descent (EM-CD) algo-

rithm for numerical implementation in Section 3.3. Operating characteristics of the

proposed method are examined on both simulated and real data in Sections 3.4 and

3.5, respectively. Section 3.6 presents the proposed model on confirmatory analysis.

This chapter is concluded with discussion in Section 3.7, where the estimation of

directed acyclic graphs with unknown ordering is discussed.

3.2 Structural factor equation model

3.2.1 Background and notation

Given a P -dimensional random vector y = (y1, . . . , yP )T with a known partial

ordering, we use a DAG G = (V,E) to describe causal relations among them. That is,

each component yi corresponds to one node in the DAG, with a directed edge between

two nodes indicating a causal relation between them. Without loss of generality, we

assume that y has been sorted according to its known ordering, which means a causal

relation is only possible from variable yj to variable yi (i.e. yj → yi) for j < i. The set

of parental nodes of yi is denoted by pa(i) = {j : j < i, yj → yi}. Specifically, if for

any k < i and k 6∈ pa(i), we have yi is independent of yk conditioning on {yj}j∈pa(i).

To model causality among the components of y, we invoke a structural equation

model (SEM) of the following form:

yi =
∑

j∈pa(i)

θijyj + εi, i = 1, . . . , P, (3.1)

where εi’s are independent normal random errors with mean 0 and variance σ2
i > 0,
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and εi is independent of yi’s parental nodes. Here Θ = {θij} is a P×P lower triangular

matrix with zeros on the diagonal and is termed as the weighted adjacency matrix of

a DAG G.

Given a weighted adjacency matrix Θ of G and variance matrix of ε = (ε1, . . . , εP )T

D = diag(σ2
1, . . . , σ

2
P ), the SEM in (3.1) has the following first two moments of y.

They are, µ = E(y) = 0, and Σ = Cov(y) = (I − Θ)−TD(I − Θ)−1, and hence

Σ, the covariance matrix of y, is uniquely determined by (Θ, D). Considering the

concentration matrix Ω = Σ−1, we have a unique modified Cholesky decomposition

given by Ω = (I − Θ)D−1(I − Θ)T , where I − Θ known as the Cholesky factor that

is a lower triangular matrix with the unit diagonals. This expression gives us an

explicit connection between the DAG structure Θ and the concentration matrix Ω.

It is worth pointing out that the above expression depends on the assumption of a

known ordering of variables.

3.2.2 Structural factor equation model

To introduce latent factors into the SEM given in (3.1), we relax the assumptions

that the error terms εi’s are mutually independent. First, consider the following model

with normally distributed dependent errors given in a matrix form:

y = Θy + ε, (3.2)

where normal variant ε has mean 0 and covariance W . We propose to model the

covariance W by the following factor analysis model:

W = BBT + Ψ, (3.3)

where B is a P ×K factor loading matrix for K (≤ P ) latent factors and Ψ is a P ×P

diagonal matrix of uniqueness. Clearly, the mean of y is 0 while the covariance W of
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error ε is determined by the factor loadings B and uniqueness Ψ.

Combining models (3.2) and (3.3) gives rise to the following structural factor

equation model (SFEM):

y = Θy +Bz + e (3.4)

where z is a K-variate vector of uncorrelated latent factors following multivariate

normal distribution MVNK(0, I) and e is an error vector according to MVNP (0,Ψ)

and is independent of z. Moreover, the first two moments of y are respectively, µ = 0

and Σ = (I − Θ)−T (BBT + Ψ)(I − Θ)−1. It is obvious that SFEM (3.4) reduces to

the classical SEM with K = 0. From (3.4), we can also see that conditioning on the

vector of K unobserved latent variables z, the vector of variables, y, satisfies the SEM

for a DAG.

Note that the above analysis can be further formulated as an exploratory analysis

(EA) or a confirmatory analysis (CA); in the latter, some entries of matrix B are set

as zero in advance based on some established knowledge on an ADMG, whereas in the

former, no a priori constraints are imposed and all entries of B will be determined

by data. Hence, the proposed SFEM may be engaged with two different types of

analyses in constructing a casual network.

3.2.3 Graphical representation of SFEM

As mentioned above, due to the potential influence of latent factors, we ought

to consider a more general form of DAG, in which undirected edges are allowed. To

proceed, we introduce some notations. Consider a special class of graphs, i.e. directed

mixed graphs (DMGs), each of which includes both directed and undirected edges.

A mixed graph is defined as G = (V,E, U), where V is a finite set of vertices and

E, U ⊆ V × V are two disjoint sets of edges. The edges in E are directed or mono-

directed; that is, (i, j) ∈ E ⇒ (j, i) 6∈ E, so we denote this kind of edge as j → i.

The edges in U are undirected or bi-directed; that is, (i, j) ∈ E ⇒ (j, i) ∈ E and
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vice versa, so we denote this type of edge by i ↔ j. The Figure 3.1 displays some

examples of DMGs.

Figure 3.1: Four examples of directed mixed graphs. The graph in (b) is cyclic, while
all others are acyclic. The solid line indicates an directed edge and the
dashed line denotes an undirected edge.

3Y2Y

1Y 3Y2Y

1Y 3Y2Y

(a) (b)

(c)

1Y

1Y 3Y2Y

(d)

In this chapter, we focus on acyclic directed mixed graphs (ADMGs), a subclass of

DMGs, which do not include directed self-loops (e.g. (j, j) 6∈ E∪U). More specifically,

an ADMG (V,E, U) consists of two subgraphs: one is a DAG (V,E) with all mono-

directed edges, which may be modeled by a weighted adjacency matrix Θ, and the

other is a subgraph of all undirected edges (V, U), which are determined by nonzero

entries in the covariance matrix W = BBT + Ψ with Wij = Wji 6= 0 for (i, j) ∈ U or

i = j. As mentioned above, the proposed SFEM may be used in two different types

of analyses when constructing a casual network. In the following sections, we focus

primarily on the exploratory analysis (EA), while the confirmatory analysis (EA) is

discussed in Section 3.6.

As mentioned above, EA is used when there is no a priori knowledge about ma-

trices B and Θ. In the gene regulatory network study, common factors that relate to

matrix B could be, for example, environmental variables, which are not measured but

may alter gene expressions substantially. These factors could create many undirected

edges, which impairs the power of identifying the underlying true causal relationships
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among genes. For example, Figure 3.1 (d) shows that the directed chain network

among nodes Y1, Y2 and Y3 is fully masked by three undirected edges (dashed line).

Thus, it is difficult to reconstruct a DAG without controlling the trigger of undirected

edges. Figure 3.2 shows an example of ADMG modeled by SFEM: the vector of latent

factors z1, z2 and z3 in SFEM helps to account for the extra variations beyond what

variables y1, . . . , y9 can describe. In other words, the proposed SFEM may be used to

construct a DAG among y1, . . . , y9 conditional on three latent factors z1, z2 and z3.

Figure 3.2: An example of SFEM for exploratory analysis: 3 common latent factors
z1, z2 and z3.

3.2.4 Parameter identifiability in SFEM

Parameter identifiability in SFEM for an exploratory analysis may be set up using

the framework of factor models. That is, SFEM (3.4) may be rewritten as follows:

y = (I −Θ)−1Bz + (I −Θ)−1e = Γz + δ, (3.5)

where Γ = (I −Θ)−1B and δ = (I −Θ)−1e. Then, the resulting covariance matrix is

Σ = ΓΓT + Σδ with Σδ = (I −Θ)−1Ψ(I −Θ)−T . For model (3.5), we need to impose

extra assumptions in order to identify both matrices Σδ and Γ.

• Identifiability condition (A) for the model (3.5): assume that ΓTΣ−1
δ Γ = BTΨ−1B
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is diagonal with distinct entries arranged in a decreasing order;

• Identifiability condition (B) for matrix Σδ: assume that there exists a unique

modified Cholesky decomposition of Σδ = (I −Θ)−1Ψ(I −Θ)−T .

3.3 Penalized estimation

3.3.1 Formulation

When a natural ordering of the variables is available and the number of latent

factors K = 0 (i.e. B = 0), the reconstruction of a DAG is equivalent to sparse

estimation of the modified Cholesky decomposition of Σ−1
δ . In this case, the identifia-

bility condition (A) automatically holds. Several regularization approaches have been

proposed to shrink elements in Θ to zero. See Pourahmadi (1999); Wu and Pourah-

madi (2003); Bickel and Levina (2008); Huang et al. (2006); Levina et al. (2008),

just name a few. More specifically, Huang et al. (2006) proposed adding an L1 norm

penalty on Θ to encourage zeros. Levina et al. (2008) proposed a banding procedure

using a nested LASSO penalty. Recently, Shojaie and Michailidis (2010) employed

the adaptive LASSO penalty to estimate the skeleton of DAG in the framework of

SEMs and showed that this LASSO method is not sensitive to random permutations

of the order of variables in y.

Given that our objective is to detect the sparse skeleton of DAG adjusting for

latent factors, we propose the following penalized loss function:

min
Θ

1

2N

N∑

n=1

(yn −Θyn)T (BBT + Ψ)−1(yn −Θyn) + λ

P∑

i=1

i−1∑

j=1

ξij|cijθij|, (3.6)

where yn = (yn1, . . . , ynP )T is the data from unit n, and λ is a nonnegative tuning

parameter. The L1 norm penalty term in the above loss function regularizes the

sparsity in Θ.
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If there is a priori knowledge about the causal relationship in y, such information

may be incorporated into the optimization procedure. That is, define a pre-specified

P × P matrix C = {cij}, whose (i, j)-th element is given by:

cij =





1, if there is no prior information between j and i, when j < i;

0, if j → i based on prior knowledge, when j < i.

(3.7)

Note that the utility of matrix C in the penalty corresponds to the objective of

exploratory analysis, namely all available edges will be kept in the analysis. And

Ξ = {ξij} is a P×P lower triangular matrix of adaptive weights with (i, j)-th element

given by

ξij =





max(1, |θ̃ij|−γ), if cij = 1 and j < i;

0, otherwise,

(3.8)

where θ̃ij is obtained from the regular LASSO estimation obtained from (3.6) by

setting ξij = 1 if cij = 1 and j < i.

3.3.2 EM-Coordinate-Descent Algorithm

We propose a two-step iterative approach to estimate three unknown matrices

(Θ, B,Ψ) in the SFEM. Given the current estimates (B(t),Ψ(t)), Θ(t+1) is updated

by minimizing the penalized loss function (3.6) using the coordinated descent (CD)

algorithm, and then (B(t+1),Ψ(t+1)) are updated through the EM algorithm. Both

EM algorithm and CD algorithm are presented below. Repeating these two-step

procedure iteratively till convergence, we obtain estimates (Θ̂, B̂, Ψ̂) in the end.

3.3.2.1 EM algorithm

Similar to Section 2.4.1 in Chapter 2, the EM algorithm is used to estimate (B,Ψ)

in the factor analysis model. We may implement the EM algorithm by treating the

latent factors zn = (zn1, . . . , znK)T , n = 1, . . . , N as “missing data” and Θ as a fixed
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“known” constant matrix, where the M-step maximizes the joint normal log-likelihood

of the full data {(y∗n , yn − Θyn, zn), n = 1, . . . , N}. It is easy to derive the EM

algorithm to update B and Ψ at the (t+1)-th iteration, respectively, given as follows.

In the E-step, we obtain the following moments of zn, n = 1, . . . , N ,

E(zn|y∗n;B,Ψ) = (BTΨ−1B + IK)−1BTΨ−1y∗n,

V ar(zn|y∗n;B,Ψ) = IK −BTΨ−1B(BTΨ−1B + IK)−1,

E(znz
T
n |y∗n;B,Ψ) = E(zn|y∗n;B,Ψ)E(zTn |y∗n;B,Ψ) + V ar(zn|y∗n;B,Ψ).

(3.9)

In the M-step, B and Ψ are updated at the (t+ 1)-th iteration by, respectively,

B(t+1) =
{ N∑

n=1

y∗nE(zTn |y∗n;B(t),Ψ(t))
}{ N∑

n=1

[
E(znz

T
n |y∗n;B(t),Ψ(t))

]}−1

,

Ψ(t+1) =
1

N

N∑

n=1

E
[
(y∗n −Bzn)(y∗n −Bzn)T |y∗n;B(t),Ψ(t)

]
.

(3.10)

Specifically, if Ψ = σ2IQ, we consider a simple re-parameterization by letting

B̃ = σ−1B, and z̃n = σzn. Clearly, Bzn and B̃z̃n follow the same distribution. Thus,

the EM algorithm updates B̃ and σ2 at the (t + 1)-th iteration by the following

expressions:

B̃(t+1) =

{ N∑

n=1

y∗nE
(
z̃Tn |y∗n; B̃(t), σ2(t)

)}{ N∑

n=1

E
(
z̃nz̃

T
n |y∗n; B̃(t), σ2(t+1)

)}−1

,

σ2(t+1)
=

1

NQ

N∑

n=1

y∗Tn

{
IQ − B̃(t)

(
IK + B̃T (t)B̃(t)

)−1
B̃T (t)

}
y∗n.

(3.11)

3.3.2.2 Coordinate descent algorithm

We implement an efficient algorithm to yield the optimal solution that mini-

mizes the L1-norm penalized loss function (3.6) under a fixed positive definite matrix

W = BBT +Ψ. Since minimizing (3.6) with respect to Θ is equivalent to a convex op-
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timization problem, the objective function decreases over iterations, and the algorith-

mic convergence is warranted (Tseng , 2009). We first reformulate the optimization,

so that the loss function (3.6) reduces to a regular LASSO regression problem with

ξij = 1 and cij = 1 in (3.6). Then, we apply the following active-shooting algorithm

to find the sparse solution of Θ efficiently.

Given Y T
P×N = (yT1 , . . . , y

T
N) and Ỹ , YW−1/2 with W = BBT +Ψ, it is easy to see

that the quadratic loss function 1
2N

∑N
n=1(yn −Θyn)T (BBT + Ψ)−1(yn −Θyn) equal-

s to 1
2N
‖ Y − Xβ ‖2, where β = (θ21, . . . , θP1, . . . , θPP−1)T , Y = (Ỹ T

2 , . . . , Ỹ
T
P )T ,

and X = (X(2,1), . . . ,X(P,P−1)) is an N(P − 1) by P (P−1)
2

matrix with X(i, j) =

( 0
1st block

, . . . , Ỹ T
j

(i−1)th block

, . . . , 0
(P−1)th block

)T . Thus, the L1-norm minimization in (3.6)

is equivalent to the following optimization:

min
Θ

1

2N
‖ Y − Xβ ‖2 +λ

P (P−1)
2∑

h=1

ξh|chβh|, (3.12)

with ξh being the h-th element of vector ξ = (ξ21, . . . , ξPP−1)T and ch being the h-th

element of vector c = (c21, . . . , cPP−1)T . The dimensions of Y and β are N(P − 1)

and P (P − 1)/2, respectively, which are higher than N and P . This could give rise

to significant computational burden. Note that X is a block matrix with many zero

blocks. Thus, taking such structural feathers into computation can help run the

LASSO optimization algorithm more efficiently. To further boost the computational

efficiency, we implement the active-shooting method (Friedman et al., 2007, 2010a;

Peng et al., 2009) in the coordinate descent algorithm. It can be shown that the

resulting computational complexity of solving (3.12) is min(O(NP 2), O(P 3)), which

is equivalent to performing P individual LASSO regressions in the neighborhood

selection method (Shojaie and Michailidis , 2010).

Unlike the neighborhood selection method (Shojaie and Michailidis , 2010) which

imposes sparsity on individual neighborhoods during optimization, the sparsity of
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β is treated in a global fashion via the regularized objective function (3.12). Thus,

our approach utilizes the data more efficiently, and appears more natural to deal

with networks with hubs corresponding to, for example, master regulators. Indeed,

detecting master regulators is of great interest in the reconstruction of gene regulatory

networks. In addition, when certain a priori knowledge of directed edges is available,

the proposed method (3.12) has the flexibility of incorporating such prior knowledge.

For example, we can determine whether to penalize a pair of nodes by including the

corresponding entry in the weight term c or not. Also with the utilization of the term

ξ, we can assign different adaptive weights to different pairs of nodes according to

their importance.

The active-shooting algorithm proceeds as follows: at each updating step, we first

define an “active” set of currently nonzero coefficients and update the coefficients

within the active set until convergence is achieved before moving on to update other

parameters. This is feasible because the active set usually remains small under the

sparse model assumption. Defining a current active set H = {h : chβh 6= 0}, we

update βh0∈H by (3.13) with all other βh6=h0 fixed until convergence is achieved in H.

β̂h0 =





(Y −
∑

h6=h0
βhXh)TXh0/‖Xh0‖2

2, if ch0 = 0,

S
(

(Y −
∑

h6=h0
βhXh)TXh0 , Nλξh0

)
/‖Xh0‖2

2, if ch0 = 1,

(3.13)

where S(a, b) = sgn(a)(|a| − b)+ is the soft-thresholding operator.

Finally, a combination of the EM algorithm and the CD algorithm, termed as the

EM-CD algorithm, allows us to iteratively update Θ, B and Ψ. The detail is provided

in the following Algorithm 4.
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Algorithm 4 EM-CD algorithm

Step 1. Initialization of B(0), Ψ(0), and β(0) with some suitable values
Step 2. Given B(t), Ψ(t), and β(t), for iteration t+1, β(t+1) is updated by the
active-shooting CD algorithm
Step 3. Given β(t+1), (B(t+1), Ψ(t+1)) are iteratively updated based on the EM
algorithm till convergence
Step 4. Repeat the above two steps till convergence.

3.3.3 Tuning parameter selection

The choice of the number of latent factors K and the tuning parameter λ are

of great importance in the proposed method. We first consider the selection of the

number of latent factors K, and then discuss the selection of tuning parameter λ. The

number of latent factors in the proposed SFEM can affect the resulting sparsity in the

weighted adjacency matrix Θ and have to be tuned properly. Because the SFEM is a

generalized type of factor analysis model, methods that have been developed in the

literature for selecting the number of factors may be applied to the SFEM. Bai and

Ng (2002) and Onatski (2010) proposed statistics to determine the number of static

factors in certain approximate factor analysis models. Onatski (2009) developed tests

for the number of factors using the empirical distribution of eigenvalues of the sample

covariance matrix. Hirose and Konishi (2012) and Caner and Han (2013) applied

the shrinkage estimation to select relevant factors.

In this chapter, we propose to use an “eigenvalue ratio (ER)” criterion to s-

elect the number of latent factors K, due mainly to its simplicity and computa-

tional ease (Ahn and Horenstein, 2013). Note that the generalized factor model

y = (I − Θ)−1Bz + (I − Θ)−1e = Γz + δ given in (3.5), where Γ = (I − Θ)−1B.

Hence, we can covert the selection of the number of latent factors K in B to s-

elect K in Γ based on the generalized factor model. Following Ahn and Horen-

stein (2013), for a sample covariance matrix Y Y T/(NP ), denote its kth largest

eigenvalues by ηk, k = 1, . . . ,min(N,P ). The corresponding eigenvalue ratio is
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given by ER(k) = ηk/ηk+1. Then we propose an “eigenvalue ratio” criterion as

KER = arg maxKmin≤k≤Kmax ER(k), where Kmin and Kmax may be prespecified by

the scree plot; for example Kmin = 1 or 2, Kmax = min(N,P )/2.

In respect to the selection of tuning parameter λ, we adopt the M -fold cross-

validation method. Since the true model is believed to be sparse, we utilize the

ordinary least squares (OLS) estimates instead of the shrunken estimates to calculate

the cross-validation score. This is because, when there are many potential poor

predictors, the cross-validation score based on the shrunken estimates often leads to

severe false positive rates (Peng et al., 2010; Efron et al., 2004). In contrast, using the

OLS estimates seems to make a reasonable remedy for such a problem, which is also

observed in our simulation studies. It is worth pointing out that Bayesian information

criterion (BIC), another popular tuning selection method, is not considered here,

mainly because estimating the degrees of freedom required in the BIC is difficult

under a nonorthogonal design.

3.4 Numerical Results

To examine the performance of the proposed SFEM for the exploratory analysis,

we conduct two simulation experiments.

The two simulated DAGs are displayed in Figure 3.3 with details given as follows.

In simulation experiment I, we begin with a small DAG, which is randomly generated

with P = 50 nodes and M = 25 edges by the R-package pcalg (Kalisch and Buhlmann,

2007). To control for the sparsity of the graph, we further set the maximum number

of parents for any given node is 2 and the depth of DAG is 3. Then we randomly

generate DAG until exact M = 25 edges are achieved. Figure 3.3(a) displays one

simulated DAG.

In simulation experiment II, we investigate a more complex DAG consisting of 19

master regulators (i.e. parental nodes). Among them, 4 are strong master regulators,
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each influencing 14 to 18 nodes, 7 are weak master regulators, each influencing 3 to 7

nodes, and the rest 8 parental nodes link to only 1 or 2 nodes. Such DAG topology is

generated by randomly selecting 19 master parental nodes, and within each parental

node, children nodes are further randomly selected. As a result, we create a DAG with

M = 100 edges. In this second experiment, we begin with the SFEM with P = 200

nodes and different number of latent factors K = 1, 5, 10. For the case of K = 5, we

vary the number of nodes as P = 50, 100, 200. Clearly, with a fixed number of edges

M = 100, the sparsity of DAG increases with an increased P . Figure 3.3(b) shows a

simulated DAG.

Figure 3.3: Topology of two simulated DAGs. (a) A small DAG with 50 nodes and
25 edges. (b) A large DAG with 200 nodes and 100 edges.

For each of the two DAGs we generate N = 25, 100 observations, respectively,

from the structural factor equation model (3.4). For the networks of these directed

edges in Figure 3.3, we generate adjacency weights θij
i.i.d.∼ U([−3,−1]

⋃
[1, 3]) in

Simulation I, and set constant θij = 0.5 in Simulation II. In each case, we simulate

latent factors znk
i.i.d.∼ N(0, 1), loadings Bik

i.i.d.∼ U([−b,−a]
⋃

[a, b]) and noise enj
i.i.d.∼

N(0, σ2), where a, b and σ2 are chosen to satisfy a prespecified signal-to-noise ratio:

SNR =
√
tr(Σ)/tr(Σδ). The tuning parameter is determined by the 5-fold cross

validation method, and 50 replicates are carried out to draw summary statistics.
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The performance of the exploratory analysis via the SFEM is mainly compared

under three scenarios: (i) ignoring latent factors (K = 0, i.e. Shojaie and Michailidis

(2010)); (ii) the number of latent factors K is over/under-specified; and (iii) the

number of latent factors K is unknown but selected by the eigenvalue-ratio (ER)

method, i.e. K = K̂ER. Note that KER = maxKmin≤k≤Kmax ηk/ηk+1, where ηk is the

kth largest eigenvalue of
∑N

n=1 yny
T
n /(NP ). Kmin and Kmax are chosen as Kmin = 1,

Kmax = min(N,P )/2 in the simulation studies.

For each simulated dataset, we generate the solution path for Θ using a geometric

sequence of tuning parameter λ’s, starting from the largest value λmax for which

Θ̂λmax = 0 and decreasing to the smallest value λmin = 10−4. Note that the number of

totally detected edges increases as tuning parameter λ decreases. We then evaluate

the performance of the SFEM under different latent factors nested within a series

of the tuning parameter values. In addition, we further compare the performance of

the proposed SFEM with the existing PC-algorithm (Kalisch and Buhlmann, 2007),

where the significance levels of the PC-algorithm are given by a geometric sequence

of values ranging in [10−10, . . . , 0.95]. Note that the PC-algorithm does not require

the node ordering as an input. So to be fair, in this comparison we simply ignore

the direction of an edge and a correct discovery includes either an directed edge or

undirected edge.

Figure 3.4 shows the plot of the number of correctly detected edges versus the

number of totally detected edges across different numbers of latent factors averaged

over 50 replicates. Here “oracle” represents the case where the SFEM uses the true

covariance matrix W = BBT + Ψ without estimation of B and Ψ. We observe that

the case of K = Ktrue with estimated B and Ψ outperforms the all other cases with a

misspecified K, and its performance is close to that of the “oracle” case. This means

that the EM algorithm works well to estimate W matrix. The PC-algorithm performs

the worst, and is even worse than the SFEM with K = 0. This is probably because
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the PC-algorithm does not utilize any a priori knowledge of node ordering and is

operated under the setting of completed partially directed acyclic graph (CPDAG).

As a consequence, it may include many false undirected edges induced by the shared

latent factors. Specifically, in Figure 3.4(b) when we detect 100 edges, the sparse

SFEM with K = Ktrue can detect more than 95% of the true edges correctly with an

average standard deviation of 1.45 edges, whereas the PC-algorithm can only detect

about 10% of the true edges successfully.

The quality of our method is further measured by the average number of true

positive(TP), false positive(FP), false negative(FN) edges, and sensitivity(Sen) and

Matthews correlation coefficient score (MCC). Table 3.1 summarizes the average per-

formance of the SFEM with K = KER for different number of P in Simulation

experiment II with Ktrue = 5. For example, when P = 200 and θij = 0.5, on average

the estimated graph is able to identify 104.04 directed edges, of which 98.12 edges

are the true edges, and in Θ the other 5.92 edges are false. Note that when P = 200,

the number of parameters to be estimated is around 20, 000, which is much larger

than the sample size N = 100. In this high-dimensional setting with a substantial

influence of latent factors (K = 5), results in Table 3.1 suggest that our regulariza-

tion method can estimate the DAG structure with reasonable accuracy even with the

limited sample size N = 100. Of course, when P is relatively small (i.e. P = 50 or

100), the SFEM method shows better results than those with P = 200.

Table 3.2 lists the results of Simulation experiments I and II with different numbers

of latent factors. Table 3.2 suggests that the proposed ER criterion works quite

well in selecting the number of latent factors, except for the case of Simulation II

with SNR=2:1. This is because in this setting SNR is relatively small, and it is

interesting to notice that, although K = 2 is selected, which is near the true K = 1,

the resulting performance (KER = 2) appears much better than that with an under-

specified K = 0 (e.g. MCC=0.85 versus 0.29). As shown in the Table 3.2, ignoring (or
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Figure 3.4: Simulation results two DAG networks, where x-axis is the number of
totally detected edges, and y-axis is the number of correctly identified
edges. The vertical grey line corresponds to the number of true edges.
(a) Simulation I: P = 50, N = 25, K = 2,M = 25, and KER = 2. (b)
Simulation II: P = 200, N = 100, K = 5,M = 100, and KER = 5.
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under-specifying) unobserved factors in the SFEM results abundant nonzero entries

in Θ that produce excessive false edges. In contrast, if the number of factors is

over-identified, the resulting SFEM would produce a scant Θ matrix that leads to

many false negative discoveries. To sum up, the proposed SFEMER method shows a

satisfactory performance with the highest sensitivity and MCC as well as the lowest

total false rate.

3.5 Analysis of cell signaling data

This section demonstrates an application of the proposed SFEM method to ana-

lyze multivariate flow cytometry data available in Sachs et al. (2005), which has been

previously analyzed by Shojaie and Michailidis (2010); Fu and Zhou (2013); Fried-

man et al. (2008); Aragam and Zhou (2014), among others. This dataset includes 11

phosphorylated proteins from N = 7466 cells. The consensus network, constructed

by experimental annotations, has 20 edges, which is displayed in Figure 3.5 and is

used as the benchmark to assess the accuracy of an estimated network structure. A

direction from node i to node j is interpreted as a causal influence from protein i to

protein j. Following Shojaie and Michailidis (2010), the node ordering in the DAG

is treated as a priori feature among 11 proteins.

Based on the scree plot in Figure 3.6 and the eigenvalue-ratio (ER) method, we

obtain KER = 4. We explore the SFEM under different numbers of latent factors

K = 0, 2, 4, 6, where K = 0 corresponding to the analysis given by Shojaie and

Michailidis (2010) and K = 4 is the estimated number of latent factors. Figure 3.7

shows the plot of the number of correctly detected edges versus the number of totally

detected edges across different number of latent factors. Compared withK = 0, 2, 4, 6,

we find that the SFEM with the estimated KER = 4 performs slightly better than the

other cases. To compare the SFEM with K = 0 with the SFEM with K = 4 when

both methods detected 25 edges, out of them, 10 edges detected by the latter are
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Figure 3.5: The consensus signaling network of 11 proteins.

in the consensus network, while 7 edges detected by the former are in the consensus

network. For these two models, after selecting the optimal tuning parameters from

the 5-fold cross-validation method, compared with the SFEM with K = 0, we find

that the SFEM with K = 4 shows a different DAG in Figure 3.8, the difference occurs

mainly in the domain of false discoveries. For example, the SFEM with KER = 4,

which adjusts for 4 shared latent factors, performs better than the SFEM with K = 0

in terms of low FP; among the total of 25 directed edges, 15 edges from KER = 4

are false positive in comparison to 18 false positive edges from K = 0. Hence, the

SFEM with KER = 4 appears more reliable in the data analysis, which gives fewer

false positives and more true positive signals in comparison to the SFEM with K = 0.

Nevertheless, several known edges are not detected by both SFEMs with K = 0

and KER = 4. One possible reason is that the proposed SFEM is a linear Bayesian

network, which may not be able to detect nonlinear causal relationships.
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Figure 3.6: The scree plot of eigenvalues.

Figure 3.7: The plot of the correct discovery, where x-axis is the number of totally
detected edges, and y-axis is the number of correctly identified edges.
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Figure 3.8: Causal interactions among 11 proteins of the signaling pathway: black
represents TP, pink represents FN, and grey represents FP. In the right
panel, Z1, . . . , Z4 represents 4 common latent factors.

3.6 Confirmatory analysis of ADMG

3.6.1 Formulation

As mentioned above, a confirmatory analysis concerns the situation where there is

the knowledge about the existence of undirected edges together with directed edges.

In this case of ADMG, the proposed sparse SFEM may be used to reconstruct the

subgraph of directed edges, accounting for undirected edges. The key idea behind the

use of SFEM to deal with edges of mixed types stems from the augmentation approach

that converts each undirected edge into two directed edges via an augmented variable

as their parental node. The resulting graphical model is known as the semi-Markovian

causal model (SMCM), in which yi ↔ yj is replaced by a new path yi ← z(i,j) → yj,

where z(i,j) is the augmented variable, see for example Pearl (2000); Richardson and

Spirtes (2002); Kalisch and Bhlmann (2013). In this way, we transform an ADMG

into a DAG by using augmented parental nodes to enlarge the vertex set. Then the

proposed SFEM is ready to be applied to model ADMG with the augmented nodes
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being treated as latent factors. Figure 3.9 shows an example, in which two augmented

nodes z1 and z2 are introduced in Figure 3.9(b) to reformulate two undirected edges

y1 ↔ y3 and y4 ↔ y5.

Figure 3.9: Graphical representation of SFEM for confirmatory analysis.
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(b) a DAG with two augmented nodes(a) an ADMG with two undirected edges
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By enlarging the vertex set V from V = (y1, . . . , y7) to V = (y1, . . . , y7, z1, z2),

we can jointly model the above ADMG in Figure 3.9 (a) by the structural equation

model with two augmented nodes:



y1

y2

y3

y4

y5

y6

y7

z1

z2




=




0 0 0 0 0 0 0 b11 0

θ21 0 0 0 0 0 0 0 0

0 θ32 0 0 0 0 0 b31 0

θ41 0 0 0 0 0 0 0 b42

0 0 θ53 0 0 0 0 0 b52

0 0 0 θ64 0 0 0 0 0

0 0 0 0 θ75 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0




×




y1

y2

y3

y4

y5

y6

y7

z1

z2




+




δ1

δ2

δ3

δ4

δ5

δ6

δ7

δ8

δ9




. (3.14)

Note that the weighted adjacency matrix in (3.14), denoted by Θ̃, is a block matrix
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given as follows:

Θ̃ =




Θ7×7 B7×2

02×7 02×2


 .

By assuming that δy = (δ1, . . . , δ7)T ∼ MVN7(0,Ψ) and z = (z1, z2)T = (δ8, δ9)T ∼

MVN2(0, I), it is easy to show that the covariance of y = (y1, . . . , y7)T is Σ = (I −

Θ)−T (BBT + Ψ)(I − Θ)−1, which is the same as the covariance matrix given in the

SFEM (3.4). Thus, by treating augmented variables as latent factors, we can apply

the proposed SFEM to model ADMG in Figure 3.9 (a) by



y1

y2

y3

y4

y5

y6

y7




=




0 0 0 0 0 0 0

θ21 0 0 0 0 0 0

0 θ32 0 0 0 0 0

θ41 0 0 0 0 0 0

0 0 θ53 0 0 0 0

0 0 0 θ64 0 0 0

0 0 0 0 θ75 0 0




×




y1

y2

y3

y4

y5

y6

y7




+




b11 0

0 0

b31 0

0 b42

0 b52

0 0

0 0




×



z1

z2


+




δ1

δ2

δ3

δ4

δ5

δ6

δ7




,

(3.15)

where the position of nonzero elements in the factor loading matrixB is predetermined

by induced augmented variables, and we call these nonzero bij’s as unconstrained

parameters, whereas these zero bij’s as constrained parameters. Furthermore, we call

the above SFEM (3.15) as the SFEM for confirmatory analysis (SFEM-CA). Note

that the SFEM-CA has the same expression as the SFEM given in (3.4). However,

the SFEM-CA considers a structured factor loading matrix B via a priori knowledge

of undirected edges, which is different from the unstructured B matrix included in

the SFEM for exploratory analysis.

Recall that the SFEM is a generalized factor model and can be rewritten as

y = (I − Θ)−1Bz + (I − Θ)−1e = Γz + δ. For the SFEM-CA, we impose extra

assumptions to identify Σδ = (I −Θ)−1Ψ(I −Θ)−T and Γ separately. Note that the

identification condition for Σδ in SFEM-CA is the same as the identifiability condition
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(B) given in Section 3.2.4. Then we impose another assumption as follows:

• Identifiability condition (C) for Γ: each factor has at least three children (Grze-

byk et al., 2004)

Note that the identifiability condition (C) is a necessary condition for identification

of a generalized factor model (Grzebyk et al., 2004), and this condition is widely used

for its ease of verification (Snchez et al., 2005). It is easy to show that the SFEM

displayed in Figure 3.9(b) also satisfies this condition, since each column of Γ has at

least three nonzero entries. One can refer to Grzebyk et al. (2004) and Drton et al.

(2011) for more theoretical discussions about the sufficient and necessary conditions

for identifiability of a generalized factor model and conditions for global identifiability

of ADMGs using linear SEM, respectively.

Similar to Section 3.3.2, the EM algorithm is used to estimate (B,Ψ) in the

SFEM-CA. The E-step in (3.9) is the same for the SFEM-CA. The M-step that

maximizes the normal joint log-likelihood of the full data {(y∗n , yn −Θyn, zn), n =

1, . . . , N} is different. In the M-step for the SFEM-CA, B = (b1, . . . , bP )T and Ψ =

diag(Ψ1, . . . ,ΨP ) are updated at one variable yp at one time p = 1, . . . , P . Consider

the p-th variable yp with factor loading vector bp = (bp1, . . . , bpK)T on K latent factors.

Rearrange the elements of bp as Upbp = [b1T

p , b
0T

p ]T by a K × K rotation matrix Up,

where b1
p is a vector that contains Kp unconstrained loadings to be estimated, and b0

p

is a vector that consists of K −Kp constrained loadings equal to zero. Accordingly,

similar partitions are applied to a K × K matrix Q ,
∑N

n=1 E(znz
T
n |y∗n;B,Ψ) and

the p-th row of a P × K matrix η ,
∑N

n=1 y
∗
nE(zTn |y∗n;B(t),Ψ(t)) in the E-step, so

the resulting Kp × Kp block Q1p and 1 × Kp block η1p correspond to the subvector

of unconstrained loadings for variable yp. The M-step updates the subvector b1
p and

73



uniqueness Ψp as follows:

b1
p = Q−1

1p η
T
1p,

Ψp = Sp − η1pQ
−1
1p η

T
1p

(3.16)

where Sp is the p-th diagonal element of S =
∑N

n=1 y
∗
ny
∗T
n . Furthermore, we can

implement the EM-CD Algorithm 4 in a similar way to estimate Θ by optimizing the

objective function (3.6) or equivalently(3.12).

3.6.2 Some numerical results

We assess the performance of the proposed SFEM-CA by a simulation experiment.

We first randomly generate a DAG with P = 50 nodes and M = 40 edges by the R-

package pcalg (Kalisch et al., 2007). To control for the sparsity, we set the maximum

number of parents for any given node as 4. Then, we add 10 randomly generated undi-

rected edges. To guarantee the parameter identifiability in the SFEM-CA, we restrict

each column of the generated Γ = (I −Θ)−1B to have at least three nonzero entries.

One of the simulated ADMG is displayed in Figure 3.6.2. Observations are generated

according to the SFEM-CA. We first generate θij
i.i.d.∼ U([−3,−1]

⋃
[1, 3]) based on

the topology among 50 observed variables shown in Figure 3.10 (a), 10 augmented

variables znk
i.i.d.∼ N(0, 1), and noise enj

i.i.d.∼ N(0, 1). Given the relationships between

50 observed variables and 10 augmented variables shown in Figure 3.10 (b), we fur-

ther generate factor loadings with a constant 0.5, where signs are randomly generated

with probability 0.5. 50 replicates are carried out to draw summary statistics.

Similar to Section 3.4, for each simulated dataset, we generate the solution path

along a geometric sequence of tuning parameter λ, starting from the largest value λmax

for which Θ̂λmax = 0 and decreasing to the smallest value λmin = 10−3. To compare

the proposed SFEM-CA with the classic PC-algorithm, a geometric sequence of the

significance levels ranging in [10−5, . . . , 0.8] is considered for the PC-algorithm. The
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Figure 3.10: The network of an ADMG with 50 nodes and 50 edges. Among 50 edges,
40 are directed edges showed in (a) and 10 are undirected edges induced
by 10 augmented variables Z1, . . . , Z10 showed in (b).

performances of the proposed SFEM-CA and the PC-algorithm on the ADMG are

shown in Figure 3.11. The plot shows the number of correctly detected edges versus

the number of totally detected edges, averaged across 50 replicates. It is evident that

the proposed SFEM-CA outperforms consistently over the PC-algorithm. For the

example of both SFEM-CA and PC algorithm having detected 40 edges on average,

approximately 29 edges given by the SFEM-CA are the true signals, whereas only

23 edges given by the PC-algorithm are correct. As mentioned above, since the

PC-algorithm does not utilize any a priori knowledge of node ordering, it seems

to perform better in the setting of ADMG than in a DAG whose edges may be

contaminated by unmeasured factors considered in the exploratory analysis. The

observed discrepancies between the SFEM-CA and the PC-algorithm in Figure 3.11

is marginal and largely attributed to the use of node ordering information in the

SFEM-CA.

Based on the optimally chosen tuning parameter from the 5-fold cross-validation
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Figure 3.11: The plot of the correct discovery in the ADMG over 50 replicates.
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method, we compare this optimal SFEM-CA with the best case (in terms of the

highest MCC ) obtained from the PC algorithm with the significance level α =

0.05. The corresponding results are summarized in Table 3.4. From this table, it

is easy to see that the PC-algorithm tends to estimate a larger DAG with more false

positives, whereas the SFEM-CA favors a smaller DAG with fewer false positives and

the precision rate (PPV = TP
TP+FP

) is around 92%.

3.7 Discussion

We have proposed a class of SFEMs for both exploratory analysis and confirmatory

analysis with the availability of node ordering among the variables. The proposed

new methodology is based on a combination of the structural equation model and

the factor analysis model. The proposed SFEM may be regarded as a generalized

factor analysis model that can separate directed and undirected edges by modeling

the concentration matrix. Our presentation of the proposed model has been primarily

based on the exploratory contexts.

When there are no latent factors included, the proposed SFEM reduces to the

classical SEM. Thus, the reconstruction of DAGs based on our the proposed L1 nor-

m regularization method is equivalent to the L1 norm penalized likelihood method
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proposed by Shojaie and Michailidis (2010). From their simulation studies, Shojaie

and Michailidis (2010) have shown that their method (i.e. the SFEM with K = 0)

is not sensitive to random permutations of the order of variables in high dimensional

sparse settings. However, their results depend on the fact that the randomly gener-

ated DAGs have a moderate size of v-structures(i.e., i → k ← j). If the number of

v-structures increases, the performance of any method utilizing a given node ordering

would rapidly deteriorate (Altomare et al., 2013). Hence, learning the order of the

variables is of great importance. Recently, Fu and Zhou (2013), and Aragam and

Zhou (2014) applied L1-norm penalty and MCP penalty, respectively, to estimate

DAGs from penalized likelihood under an unknown order of variables. However, their

objective functions are non-convex, which might cause multiple local solutions in the

optimization. Hence, it is interesting to explore how the direction of causality among

network nodes may be possibly estimated under the SFEM in the future work. Also,

when the order of variables is known a priori, the reconstruction of a causal net-

work from time-course observations based on Granger causality (Granger , 1969) is

a potentially promising area of research to extend the proposed SFEM method. In

addition, in the real data analysis, many causal relations in gene regulatory networks

are possibly nonlinear, which may not be detectable using the linear SFEM proposed

in this chapter. Thus, learning nonlinearity casuality is another interesting extension

of this research topic.
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Table 3.1: Performance comparison under different number of nodes.

P Total(TP+FP) TP FP FN Sen MCC KER(%)

50 99.07 97.12 1.95 1.94 0.98 0.99 5 (100%)
100 100.69 97.56 3.13 2.17 0.97 0.97 5 (100%)
200 104.04 98.12 5.92 1.88 0.98 0.96 5 (100%)

Table 3.2: Results of Simulation I and II: Impact of different number of latent factors K
and different SNR levels on DAG estimation.

SNR Ktrue Method Total(TP+FP) TP FP FN Sen MCC KER(%)

Simulation I
3:1 2 SFRMER 29.44 24.76 4.68 0.24 0.99 0.92 2 (100%)

SFEMK=0 118.84 24.96 93.88 0.04 0.99 0.44
SFEMK=5 25.88 20.24 5.64 4.76 0.81 0.80

Simulation II
4:1 5 SFEMER 104.04 98.12 5.92 1.88 0.98 0.96 5 (100%)

SFEMK=0 1530.92 97.96 1432.96 2.04 0.98 0.24
SFEMK=7 72.29 63.86 8.43 36.14 0.64 0.70

2:1 1 SFEMER 88.2 79.84 8.34 20.16 0.80 0.85 2(100%)
SFEMK=1 104.44 97.44 7.00 2.56 0.97 0.95
SFEMK=0 1015.32 93.64 921.68 6.36 0.94 0.29

6:1 10 SFEMER 93.76 91.52 2.24 8.48 0.92 0.94 10 (100%)
SFEMK=0 3686.72 97.64 3589.08 2.36 0.98 0.14
SFEMK=15 53.28 49.64 3.64 50.36 0.50 0.67

Table 3.3: Comparison between SFEM with K=0 and 4 ( KER = 4) under the selected
optimal tuning parameter.

Method Total TP FP FN Method Total TP FP FN

K=0 42 15 27 5 K=4 25 10 15 10

Table 3.4: Comparison between the optimal SFEM and the best case of the PC-
algorithm, where PPV denotes discovery precision rate (%).

Method Total(TP+FP) TP PPV FP FN Sen Spec MCC

SFEM 26.28 24.08 92 2.20 15.92 0.60 0.998 0.74
PC-algorithm 31.12 21.92 70 11.20 18.01 0.55 0.99 0.61
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CHAPTER IV

Regression analysis of networked data

This chapter concerns the development of a new regression analysis methodology

to assess relationships between multi-dimensional response variables and covariates

that are correlated through networks. To address analytic challenges pertaining to the

integration of network topology into the regression analysis, we propose a method of

hybrid quadratic inference functions (HQIF) that utilizes both prior and data-driven

correlations among network nodes into statistical estimation and inference. Moreover,

a Godambe information based tuning strategy is proposed to allocate weights between

the prior and data-driven pieces of network knowledge, so that the resulting estima-

tion achieves desirable efficiency. The proposed method is conceptually simple and

computationally fast, and more importantly has appealing large-sample properties in

both estimation and inference. This new methodology is evaluated through simula-

tion studies and illustrated by a motivating example of neuroimaging data about an

association study of iron deficiency on infant’s auditory recognition memory.

4.1 Introduction

Data collected from networks are pervasive in practice. A network refers to a set

of nodes or vertices joined in pairs by edges (Newman, 2010). An important feature

of a network is that between-node distance may not be defined precisely in a numeric
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metric, and because of this it differs from the space-time system. The focus of this

chapter is to develop a new methodology for regression analysis of multi-dimensional

response variables on covariates that are collected from networks. Although in the

current literature considerable attention has been given to methods of learning net-

work topology, little work has been done in the regression analysis, a methodology

that plays a central role in studying response-covariate relationships. Because data

from a network are correlated across nodes, in order to achieve high statistical effi-

ciency we aim to address an analytic challenge concerning the need of incorporating

appropriate dependence structures in parameter estimation and inference.

Networked data have more complex dependence mechanisms than what conven-

tional covariance or correlation matrices may describe. For example, dependence

symmetry may be invalid among nodes, and strength of dependence may not be ex-

plicitly modelled due to the lack of legitimate distance function between nodes. Our

motivating example comes from one of our collaborative projects with scientists in the

Center for Human Growth and Development. The scientific objective of the project is

to evaluate whether or not, and if so how, iron deficiency affects auditory recognition

memory for infants. Infant’s memory capability is measured by electrical activities of

the brain during a period of 2000 milliseconds using electroencephalography (EEG)

net with 64-channel sensors on the scalp (Figure 4.1). The data collection occurs

at two time points: when an infant hears his/her mother’s voice and when hears

a stranger’s voice. At each time point, three event-related potentials (ERPs), i.e.

P2, P750 and late slow wave (LSW), are reported after the standard data process-

ing. These three ERPs are widely used as primary outcomes of auditory recognition

memory (Mai et al., 2012; Siddappa et al., 2004). In this chapter, we consider only

the outcome LSW for motivation. Clearly, LSW measurements from 64 electrodes

on an infant are correlated in the EEG-net, and such correlation is highly clustered

according to subregions of memory functionality. According to our collaborators, cor-
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Figure 4.1: Layout of the EGI 64-channel sensor net with 6 outlined clusters of nodes
related to auditory recognition memory and 1 additional cluster of the
remaining nodes.

relations of LSW measurements are not necessarily symmetric over the 64 nodes. The

standard analysis of the data using spatial ANOVA mixed-effects model (Fields and

Kuperberg , 2012; Gevins and Smith, 2000) assumed implicitly symmetric exchange-

able correlations among 64 nodes for the LSW data, and failed to detect significant

association of iron deficiency on LSW.

To improve the standard analysis our new idea is to recognize the EEG-net as a

network, in which we intend to develop a flexible dependence model that can bet-

ter reflect the underlying relationships among the electrodes; for example, to allow

clustered and asymmetric dependence relationships. In particular, we develop a nov-

el strategy to combine two sources of knowledge regarding the network topology in

estimation and inference; one source is from expertise of our collaborators regarding

the established or prior knowledge about subregions of memory functionality, and

the other is the learned dependencies using a statistical method from the available
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data at hand. Some of popular statistical methods useful to learn sparse condition-

al dependence structures of network include sparse partial correlation (Peng et al.,

2009) (R package space), graphical LASSO (Yuan and Lin, 2007) (R package glasso),

neighborhood selection (Meinshausen and Buehlmann, 2006), nonparanormal (Liu

et al., 2012) (R package huge), among others.

In this chapter we consider the marginal regression model for networked data,

because such model has great flexibility on allowing various forms of dependence

structures among nodes and its ease on handling categorical outcomes. In contrast,

generalized linear mixed effects models for binary data are computationally intricate

and may become prohibited when the number of random effects is large. For the

estimation of regression coefficients in the marginal model, both generalized estimat-

ing equation (GEE) (Liang and Zeger , 1986) and quadratic inference function (QIF)

(Qu et al., 2000) have been extensively studied in the literature. However, these two

methods cannot be directly applied to deal with networked data because of the chal-

lenge on incorporating network dependence structures of potentially high dimension.

One desirable method to fit the marginal model under unstructured correlation is Qu

and Lindsay (2003)’s adaptive estimating equation method, which does not require

the inverse of correlation matrix. A disadvantage of using unstructured correlation in

Qu and Lindsay (2003)’s adaptive QIF or GEE is the involvement of a large number

of nuisance parameters in the estimation, leading to some potential loss of estimation

efficiency and numerical instability. Many authors have advocated the importance

of incorporating proper correlation structures in GEE or QIF to achieve desirable

estimation efficiency; see for example, Pan (2001), Qu et al. (2008), Wang and Carey

(2003) and Zhou and Qu (2012).

Our strategy to combine two sources of network topology follows Stein (1956)’s

linear shrinkage estimation, which was later extensively discussed by Ledoit and Wolf

(2004) in the context of covariance matrix estimation. We propose to shrink an
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unstructured covariance matrix towards a prior network structure (or a target struc-

ture) represented by an adjacency matrix with “0” elements for no connection and

“1” elements for connection between nodes. Following Hansen (1982) we construct

an over-identified estimating function, in which a shrinkage tuning parameter is in-

volved and determined by minimizing the inverse of Godambe information to achieve

desirable estimation efficiency. As a result, our estimation method will allocate larg-

er weights to more relevant correlation structures and to downweight others. It is

worth noting that the process of tuning does not affect estimation consistency nor

asymptotic normality but gains efficiency when it is done properly.

This chapter is organized as follows: Section 4.2 briefly describes the QIF method

and the adaptive estimating equation method. Section 4.3 introduces the hybrid

quadratic inference functions (HQIF) for estimating regression parameters and se-

lecting shrinkage coefficient for networked data, in which the large sample properties

are discussed. Section 4.4 presents simulation studies to compare our HQIF method

with the popular GEE and the conventional QIF methods. ERPs data is analyzed

using the proposed method in Section 4.5, followed by a discussion in Section 4.6.

Some technical details are listed in the Appendix D and E.

4.2 Framework

4.2.1 Estimating functions

Consider data arising from a network. Suppose that the response variable yij

and the associated p-dimensional covariate xij are measured at node (or vertex) j

for subject i, j = 1, . . . ,m and i = 1, . . . , n. Let yi = (yi1, . . . , yim)T , m × p matrix

xi = (xi1, . . . , xim)T , and (yi, xi), i = 1, . . . , n are i.i.d. samples from n subjects. To

perform a regression analysis of the networked data, we adopt the population-average

model framework where the mean model is specified by µij = E(yij|xij) = µ(xTijβ),
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with µ(·) being a known link function, β being a p-dimensional parameter vector of

interest, and µi = (µi1, . . . , µim)T .

To proceed with the quasi-likelihood approach to estimating and making inference

on β, according to Liang and Zeger (1986), the second moment of yi is specified by

Vi = A
1/2
i R(α)A

1/2
i with R(α) being a working correlation matrix and Ai being the

diagonal matrix of the marginal variances var(yij|xij) = φv(µij), where v(·) is the

variance function and φ is the dispersion parameter. The seminal work of generalized

estimating equations (GEE) (Liang and Zeger , 1986) is to obtain an estimate of β

by solving equation
n∑
i=1

µ̇Ti V
−1
i (yi− µi) = 0, where µ̇i(·) is the gradient vector of µi(·)

with respect to β; see for example Song (2007)’s Chapters 2 and 5 for more details.

Because the number of nodes in a network is fixed, we denote variance Vi ≡ V . Under

some regularity conditions, the resulting GEE estimator is shown to be consistent and

asymptotically normal, but may be of low efficiency if working correlation R(α) does

not sufficiently represent the true correlation structure.

A variety of strategies have been proposed to improve the efficiency for the GEE

estimator. Among them, the QIF method proposed by Qu et al. (2000) is of great

popularity. QIF approach is based on an assumption that the inverse of the working

correlation matrix, R−1, may be expanded approximately as a linear combination of

several basis matrices,

R−1(α) =
K∑

k=0

akMk, (4.1)

where M0 is the identity matrix, and Mk, k = 1, . . . , K, are known symmetric basis

matrices with 0 and 1 components, and ak’s are unknown coefficients that may depend

on parameter α. Then, the GEE may be written as a linear combination of estimating
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functions in the following extended score vector,

f̄n(β) =
1

n

n∑

i=1

fi(β) =
1

n

n∑

i=1




µ̇Ti A
−1
i (yi − µi)

µ̇Ti A
−1/2
i M1A

−1/2
i (yi − µi)

...

µ̇Ti A
−1/2
i MKA

−1/2
i (yi − µi)



, (4.2)

where the dimension of f̄n(β) is p(K + 1). Unlike the GEE, the QIF does not require

estimate nuisance parameter α. Because f̄n(β) is an over-identified score vector, β can

not be solved from f̄n(β) = 0. Instead, the QIF method is to minimize a quadratic

objective function of the following form, similar to Hansen (1982)’s idea of generalized

method of moments,

nf̄Tn (β)Γ−1(β)f̄n(β), (4.3)

where the optimal weighting matrix is Γ(β) = var{fi(β)}, which may be consistently

estimated by its sample covariance matrix Γ̄n = n−1
n∑
i=1

fi(β)fTi (β). In implemen-

tation, we adopt the unique Moore-Penrose generalized inverse in (4.3) to ensure

numerical stability, as the matrix Γ̄n may become singular in some cases (Hu and

Song , 2012).

4.2.2 Graphic interpretation to basis matrices

We now present some geometric insights on the connection between basis matrices

and network topology using two popular correlation structures. This discussion helps

us to understand in which form the prior expert’s knowledge of network topology

may enter the estimation procedure. For the ease of discussion, consider a three-

dimensional network. First, the exchangeable correlation matrix, according to Qu

et al. (2000), has two basis matrices in (4.1), namely M0 = I, and M1 with 0 on

the diagonal and 1 elsewhere. The other example is the AR-1 correlation structure
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Figure 4.2: Graphic representations of basis matrices Mcomp (M1), Mchain (M∗
1 ) and

M∗
2 for a network of three nodes.

1

3

2

1 2 31 2 3

(a) (b) (c)

that has three basis matrices in (4.1), including M0 = I, and M∗
1 with 1 on the

sub-diagonals and 0 elsewhere, and M∗
2 with 1 on the two corner components of the

diagonal.

All these basis matrices may be regarded as adjacency matrices, and their graphic

representations are displayed in Figure 4.2. It is interesting to note that M0 = I is

an adjacency matrix of independence graph with no connectivity among the nodes;

basis matrix M1 in panel (a) from the exchangeable correlation corresponds to a

complete graph, and denoted by Mcomp; the basis matrices for the AR-1 correlation,

M∗
1 in panel (b) represents a chain graph and denoted by Mchain; and in panel (c)

M∗
2 indicates both beginning node and ending node as absorbing nodes in a chain

graph. Such graphic representation about between-node connectivity is a typical

form of network topology knowledge available from subject-matter scientists, or from

a learned network derived by the inverse of correlation matrix using training data or

pilot study data. More importantly, the QIF theory has demonstrated the feasibility

of incorporating adjacency matrices in the estimation and inference via eqn. (4.2)

for the parameters in regression models. The key insight here is that each nonzero

off-diagonal element in the adjacency matrix (or basis matrix) corresponds to an edge

in a graphic model that describes the existence of conditional dependence between

two nodes given the other nodes. Since no numeric value of connection strength is

available in an adjacency matrix, it is particularly suitable to represent certain prior
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knowledge about a network topology. In the case of exchangeable correlation matrix,

the complete network adjacency matrix Mcomp is regarded as being sufficient, since the

inverse of the correlation matrix, R−1(α), can be fully represented by basis matrices

I and Mcomp. In the case of AR-1, the chain network adjacency matrix Mchain is

partially sufficient, since it only captures the conditional dependence among nodes

without self-connectivity of the beginning and ending nodes.

4.2.3 Data-driven network topology

Note that the QIF method is easy to be generalized for networked data analysis

as long as the adjacency matrices can be constructed in a reasonable manner. In

practice, however, the underlying graphic structures from the networked data are so

complex that simple structures, such as complete graph in Fig. 4.2(a) and chain graph

in Fig. 4.2(b), are not sufficient. On the other hand, using the available data we can

establish some data-driven knowledge via, for example, an unstructured dependency

in which all variances and covariances are estimated. A drawback of this approach

is that in a high-dimensional network the inverse of estimated covariance could be

computationally unstable or even prohibited by the standard software. One solution

given by Qu and Lindsay (2003) is the so-called adaptive procedure that requires

only the estimation of covariance matrix. It follows from Cayley-Hamilton theorem

(Bhatia, 1997) that for an m×m positive-definite matrix we have

V −1 =
(−1)(m−1)

det(V )
(c1I + c2V + · · ·+ cm−1V

m−2 + V m−1). (4.4)

Consequently, the optimal weight matrix V −1µ̇ for a basic estimating function s =

y−µ(β) lies in the space spanned by the columns of {µ̇, V µ̇, . . . , V m−1µ̇}. For the sake

of parsimony, Qu and Lindsay (2003) suggested include only the gradient direction

generated by the first two columns {µ̇, V µ̇} in (4.4). This gives the following extended
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score vector,

h̄n(β) = (h̄(1)
n , h̄(2)

n )T =
1

n

n∑

i=1




µ̇Ti (yi − µi)

µ̇Ti V (yi − µi)


 , (4.5)

where V is consistently estimated by V̂ = 1
n

n∑
i=1

sis
T
i with si = yi − µi(β). Clearly,

h̄n(β) in (4.5) does not require the availability of basis matrices given by the expan-

sion in (4.1). However, the number of parameters in matrix V to be estimated is

large, especially in the case of large complex networks, and thus “overfitting” may

occur in the determination of network dependence structure. Therefore, it seems crit-

ical to regularize the covariance matrix estimation, so that the resulting estimated

dependencies would balance parsimony and quality of fit to improve statistical power.

4.3 New Methodology

4.3.1 Hybrid quadratic inference function

Inspired by the idea of shrinkage estimation introduced by Stein (1956), our reg-

ularization procedure considers to shrink estimation of covariance V toward a known

prior structure H (an expert’s given adjacency matrix). We propose to build up the

new extended score ḡn

ḡn(β|γ) =
1

n

n∑

i=1

gi(β|γ) =
1

n

n∑

i=1




µ̇Ti A
−1
i (yi − µi)

µ̇Ti

{
γA
−1/2
i HA

−1/2
i + (1− γ)V

}
(yi − µi)


 ,

(4.6)

where γ ∈ [0, 1] denotes the shrinkage intensity coefficient. The second component in

(4.6) is deemed an improvement in estimation efficiency. Let Ui(γ) = γA
−1/2
i HA

−1/2
i +

(1 − γ)V , and Ui(γ) is called a linear shrinkage estimator of V (Ledoit and Wolf ,

2004). Note that for γ = 1 the shrinkage estimator favors fully the target H, whereas

γ = 0 reduces to the unrestricted covariance V . The key feature of this approach is
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that it offers a systematic way to obtain a regularized dependence structure, which

outperforms an individual structure A
−1/2
i HA

−1/2
i or V in terms of numerical stability

and statistical efficiency in the estimation of regression parameter β.

Equivalently, the extended score ḡn in (4.6) can be rewritten as

ḡn(β|γ) =
γ

n

n∑

i=1




µ̇Ti A
−1
i (yi − µi)

µ̇Ti A
−1/2
i HA

−1/2
i (yi − µi)


+

(1− γ)

n

n∑

i=1




µ̇Ti A
−1
i (yi − µi)

µ̇Ti V (yi − µi)


 .

(4.7)

Hence, ḡn(β|γ) can be viewed as γf̄n(β|H) + (1 − γ)h̄n(β|V ), where γ describes the

relative weighting of importance given to f̄n versus h̄n. For convenience, we call

ḡn(β|γ) in (4.7) the hybrid extended score vector, which is based on unbiased esti-

mating functions. Note that f̄n(β|H) can produce poor results if the target network

structure H is noninformative and far from the truth; similarly, h̄n(β|V ) may lose effi-

ciency if certain prior dependency structure is known. Therefore, the proposed ḡn by

allocating higher weights to more relevant extend score vectors has potential promise

to improve both computational performance and statistical properties in estimation

and inference for β.

Consequently, given shrinkage coefficient γ, we can estimate β by minimizing the

following hybrid quadratic inference function (HQIF) Qn

Qn(β|γ) = nḡTn (β|γ)Γ−1(β|γ)ḡn(β|γ), (4.8)

where Γ can be consistently estimated by Γ̄n = n−1
n∑
i=1

gi(β|γ)g
T

i (β|γ). Since the

estimator of β depends on the choice of shrinkage coefficient γ, it is denoted by β̂(γ)

in the rest of the chapter.
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4.3.2 Asymptotic properties

According to Hansen (1982)’s theory of generalized method of moments, under

some regularity conditions (Hansen, 1982; Harris et al., 1999), it is known that the

GMM estimator of β is not only consistent but also asymptotically normally dis-

tributed. With a known target structure H, and a fixed shrinkage coefficient γ, these

large-sample properties remain valid for the proposed HQIF estimator obtained by

minimizing the HQIF (4.8). They are, β̂(γ)
p−→ β0, as n→∞; and

√
n(β̂(γ)− β0)

d−→ N(0, J−1(β0|γ)), as n→∞, (4.9)

where J(β0|γ) = GT (β0|γ)Γ−1(β0|γ)G(β0|γ), having Γ̄n(β̂|γ)
p−→ Γ(β0|γ) and ˙̄gn(β̂|γ)

p−→

G(β0|γ), is the Godambe information of gi(β0|γ). Note that the hybrid extended score

vector gi(β0|γ) is constructed on the basis of a known target structure H, so β̂(γ) and

J(β0|γ) depend not only on γ but also on H, and for the notational convenience its

dependence on H is not indexed explicitly in the rest of this chapter, unless necessary.

In addition to the above large sample properties, the asymptotic χ2-distribution

of the QIF (Qu and Lindsay , 2003; Qu et al., 2000) can be easily extended to the

HQIF method with little effort. That is, the hybrid quadratic score-type statistic

Q̂n(β̂(γ)|γ)
d−→ χ2

rank{Γ(β0|γ)}−p, which can be used to test for goodness-of-fit under the

null hypothesis H0 : E(ḡn) = 0. Furthermore, a score-type test for a nested model

can also be derived. Consider a partition consisting of parameter of interest βA and

other parameter βB, say β = (βA, βB). To test the null hypothesis H0 : βA = a0, the

test statistic takes the form Qn(a0, β̃B(γ)|γ)−Qn(β̂A(γ), β̂B(γ)|γ)
d−→ χ2

dim(a0), where

β̃B = arg min
βB

Qn(a0, βB|γ), and (β̂A(γ), β̂B(γ)) = arg min
(βA, βB)

Qn(βA, βB|γ). Note that

this asymptotic χ2 distribution under H0 : βA = a0 holds for any γ ∈ [0, 1].
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4.3.3 Choice of the shrinkage coefficient

We hope to determine a desirable shrinkage coefficient γ that can achieve a bal-

ance between two types of network dependence structures under a certain optimality

criterion. In this section we propose to select γ by minimizing the trace of the inverse

of the Godambe information matrix J(β0|γ) to optimize estimation efficiency over

γ ∈ [0, 1]. That is,

γ̃ = arg min
γ∈[0,1]

tr{J−1(β0|γ)}. (4.10)

The Godambe information matrix may be consistently estimated by Ĵ(β̂(γ)|γ) =

˙̄gTn (β̂(γ)|γ) Γ̄−1
n (β̂(γ)|γ) ˙̄gn(β̂(γ)|γ). Therefore, an estimated norm is η̂(γ) = tr

{
Ĵ−1

(β̂(γ)|γ)
}

, which is the sample counterpart of norm η0(γ) = tr
{
J−1(β0|γ)

}
. Note

that η0(γ) is continuous on γ ∈ [0, 1] and may not be a unimodal function of γ,

so there possibly exist multiple shrinkage coefficients that minimize η0(γ). In the

implementation, greedy searching over a dense grid of γ values is carried out, and let

γ∗0 = sup {γ̃} for all γ̃ minimizing η0(γ). Here we pick the largest value γ∗0 to be in

more favor of the prior dependency structure H than the unrestricted covariance V .

This leads to the unique tuning value for the maximum efficiency.

The following lemma shows that the optimal shrinkage coefficient γ∗0 can be con-

sistently selected when the sample size goes to infinity.

Lemma IV.1. Let S0 = {γ : min
γ∈[0,1]

η0(γ)} with η0(γ) = tr
{
J−1(β0|γ)

}
and S = {γ :

min
γ∈[0,1]

η̂(γ)} with η̂(γ) = tr
{
Ĵ−1(β̂(γ)|γ)

}
. Suppose that |S0| = |S| <∞, and that both

sensitivity matrix G(β0|γ) and variability matrix Γ(β0|γ) are bounded for γ ∈ [0, 1].

Let γ∗0 = sup {S0}. Then γ̂∗ = sup {S} is weakly consistent, namely γ̂∗
p−→ γ∗0 , as

n→∞.

The proof for Lemma IV.1 is outlined in the Appendix. Following the standard

GMM arguments, we consequently establish the following theorem.
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Theorem IV.2. Under some regularity conditions of GMM (Chapter 1 from Harris

et al. (1999)), the regression parameter estimator β̂(γ̂∗) at the optimal tuning γ̂∗ =

sup {S} is asymptotically normal,
√
n(β̂(γ̂∗)− β0)

d−→ N(0, J−1(β0|γ∗0)), as n→∞.

Theorem IV.2 indicates that the regression parameter estimator at the optimal

shrinkage coefficient γ̂∗ is asymptotically normal distributed and more efficient than

other estimators obtained under an arbitrary γ ∈ [0, 1]\S.

4.4 Simulation Experiment

We conduct simulation studies to evaluate the performance of the proposed HQIF

method under an expert prespecified adjacency matrix H∗ with an optimal shrinkage

coefficient γ̂∗, denoted by HQIF(H = H∗, γ = γ̂∗). We consider cases with both con-

tinuous and binary responses. And we first present simulation results for networked

continuous data. Similar results are also found in binary outcomes. The efficiency

of regression parameter estimation is compared under different network structures:

complete network, chain network, and 5-subregion network. Correlation matrices

R(α) used in data generation corresponding to the following three types of networks:

(N1) complete network with exchangeable correlation REX(α = 0.7), where H∗ =

Mcomp is used because basis matrix Mcomp gives a natural adjacency matrix of a com-

plete network resembling a subregion of similarly active neuro nodes;

(N2) chain network with AR-1 correlation RAR(α = 0.7), where H∗ = Mchain is used

because basis matrix Mchain provides a relevant adjacency matrix of a chain network

mimicking certain neuro-nerve branches;

(N3) two networks of five subregions with function-specific clusters respectively, Ra
CL =

block-diag{REX(α = 0.7), RAR(α = 0.6), I(α = 0), REX(α = 0.5), RAR(α = 0.8)},

Rb
CL = block-diag{REX(α = 0.4), RAR(α = 0.6), I(α = 0), REX(α = 0.2), RAR(α =

0.8)}, where H∗ is a sparse prior target structure given by HCL = block-diag{0,Mchain,
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0, 0,Mchain} with Mchain being the adjacency matrix of chain graph.

For each scenario, 500 replications are carried out to draw summary statistics.

For each simulation, the optimal shrinkage coefficient γ̂∗ is determined using the grid

search method over a range from 0 to 1 with 25 equally spaced points. To illustrate

estimation efficiency, we consider the mean squared error, MSE(β̂) = 1
500

500∑
s=1

‖β̂(s) −

β0‖2
2, and the total variance Tvar(β̂) = 1

500

500∑
s=1

tr{v̂ar(β̂(s))}, where β̂(s) is the estimate

from the s-th simulation and β0 is the true parameter. The relative efficiency is

measured under two criteria, namely simulated relative efficiency (SRE ) and ratio of

variances (Rvar). SRE (or Rvar) is defined as the ratio of MSE (or Tvar) between

two methods under comparison. In all comparisons, we choose HQIF(H = H∗, γ = 1)

(i.e. only prior structure H∗ being used in HQIF) as the reference. In addition, we

also investigate the finite sample performance of goodness-of-fit test statistic and

score-type test statistic between nested models in both aspects of Type I error and

power at significance level 0.05.

4.4.1 Networked continuous data

The continuous response variables are generated from a marginal model: yij =

xTijβ0 + εij, where xij = (x
(1)
ij , x

(2)
ij )T , x

(1)
ij and x

(2)
ij are generated independently from

N( j
m
, 1) with varying means j

m
over m nodes, εi = (εi1, . . . , εim)T ∼ MVNm(0, R(α)),

β0 = (β1
0 , β

2
0)T = (1, 1)T , n is the sample size ranging from n = 50, 100, 500, and m is

the number of vertices. The size of complete network N1 or chain network N2 is set

as m = 10 to mimic a subregion of the brain network in our data analysis, whereas

the network of five subregions N3 has varying numbers of vertices, m = 50, 100, 150,

and the resulting dimension for each block in Ra
CL or Rb

CL is set as m
5
× m

5
.

Table 4.1 summarizes results of estimation efficiency obtained by different es-

timation methods under the three types of network structures: complete network

N1, chain network N2, and 5-subregion network N3 (Ra
CL). Table 4.2 summarizes
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Table 4.1: Summary results of simulated relative efficiency (SRE ) and ratio of vari-
ances (Rvar) of β over 500 simulations for E(yij) = xTijβ0, where β0 =
(1, 1)T . Three network structures used are: complete network N1, chain
network N2, and 5-subregion network N3 (Ra

CL). For each network, the
fully prior-based HQIF(H = H∗, γ = 1) is used as reference with SRE = 1
and Rvar = 1. HQIF(H = H∗, γ = γ̂∗) denotes the HQIF estimator we are
interested with the prior network structure H∗ and the optimally selected
shrinkage coefficient γ̂∗.

n=50 n=100 n=500
True Network Method SRE Rvar SRE Rvar SRE Rvar
Complete HQIF(H = Mcomp, γ = γ̂∗) 0.915 1.161 0.916 1.084 0.996 1.017
H∗ = Mcomp HQIF(γ = 0) 0.913 1.161 0.915 1.084 0.996 1.017
m = 10 HQIF(H = Mchain, γ = 1) 0.980 0.983 0.946 0.971 0.959 0.962

GEE independence 0.956 0.798 0.889 0.824 0.832 0.842
GEE unstructured 0.007 0.000 0.351 0.436 1.000 1.007
GEE oracle(R = RTrue) 1.123 0.913 1.033 0.961 0.998 0.990

Chain HQIF(H = Mchain, γ = γ̂∗) 0.983 1.025 0.994 1.008 1.001 1.001
H∗ = Mchain HQIF(γ = 0) 0.862 0.994 0.893 0.963 0.932 0.929
m = 10 HQIF(H = Mcomp, γ = 1) 0.808 0.779 0.770 0.782 0.775 0.785

GEE independence 0.812 0.673 0.732 0.695 0.700 0.712
GEE unstructured 0.010 0.021 0.006 0.003 1.009 1.009
GEE oracle(R = RTrue) 1.106 0.914 1.061 0.964 1.016 0.997

5-Subregion(Ra
CL) HQIF(H = HCL, γ = γ̂∗) 1.302 2.202 1.593 1.971 1.623 1.788

H∗ = HCL HQIF(γ = 0) 1.279 2.106 1.528 1.882 1.558 1.727
m = 50 HQIF(H = Mcomp, γ = 1) 0.989 0.940 0.943 0.948 0.946 0.954

HQIF(H = Mchain, γ = 1) 1.504 1.521 1.495 1.501 1.478 1.500
GEE independence 1.020 0.894 0.967 0.922 0.955 0.946
GEE oracle(R = RTrue) 2.504 2.325 2.772 2.416 2.292 2.513
HQIF(H = HCL, γ = γ̂∗) 1.181 2.533 1.458 2.109 1.748 1.865
HQIF(γ = 0) 1.183 1.906 1.265 1.612 1.348 1.421

m = 100 HQIF(H = Mcomp, γ = 1) 0.799 0.790 0.834 0.776 0.790 0.793
HQIF(H = Mchain, γ = 1) 1.048 1.149 1.195 1.119 1.182 1.129
GEE independence 0.832 0.748 0.863 0.758 0.799 0.787
GEE oracle(R = RTrue) 2.503 2.173 2.553 2.266 2.537 2.359
HQIF(H = HCL, γ = γ̂∗) 1.033 2.117 1.358 1.823 1.409 1.569
HQIF(γ = 0) 1.147 1.826 1.275 1.547 1.284 1.350

m = 150 HQIF(H = Mcomp, γ = 1) 0.656 0.649 0.672 0.649 0.659 0.652
HQIF(H = Mchain, γ = 1) 0.942 0.861 0.905 0.850 0.741 0.855
GEE independence 0.694 0.614 0.686 0.631 0.654 0.648
GEE oracle(R = RTrue) 2.443 2.008 2.309 2.069 2.067 2.140
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Table 4.2: Summary results of simulated relative efficiency (SRE ) and ratio of vari-
ances (Rvar) of β over 500 simulations for E(yij) = xTijβ0, where β0 =
(1, 1)T . The network structure of outcomes is a 5-subregion network N3
with Rb

CL. For each case, the fully prior-based HQIF(H = HCL, γ = 1) is
used as reference with SRE = 1 and Rvar = 1. HQIF(H = HCL, γ = γ̂∗)
denotes the HQIF estimator we are interested with the prior network struc-
ture HCL and the optimally selected shrinkage coefficient γ̂∗.

5-Subregion n=50 n=100 n=500

Network (Rb
CL) Method SRE Rvar SRE Rvar SRE Rvar

H∗ = HCL HQIF(H = HCL, γ = γ̂∗) 0.985 2.215 1.316 1.882 1.482 1.623

HQIF(γ = 0) 0.924 2.061 1.268 1.754 1.354 1.517

m = 50 HQIF(H = Mcomp, γ = 1) 0.981 0.945 0.957 0.957 0.946 0.964

HQIF(H = Mchain, γ = 1) 1.273 1.308 1.306 1.299 1.259 1.297

GEE independence 1.014 0.900 0.982 0.932 0.954 0.956

GEE oracle(R = RTrue) 1.815 1.692 1.970 1.762 1.648 1.834

HQIF(H = HCL, γ = γ̂∗) 0.837 2.652 1.127 2.036 1.496 1.621

HQIF(γ = 0) 0.932 2.230 1.077 1.735 1.308 1.394

m = 100 HQIF(H = Mcomp, γ = 1) 0.940 0.919 0.943 0.908 0.924 0.925

HQIF(H = Mchain, γ = 1) 1.076 1.170 1.188 1.146 1.202 1.155

GEE independence 0.975 0.872 0.978 0.888 0.934 0.919

GEE oracle(R = RTrue) 1.904 1.655 1.897 1.735 1.963 1.803

HQIF(H = HCL, γ = γ̂∗) 0.837 2.347 1.108 1.923 1.297 1.561

HQIF(γ = 0) 0.841 2.289 1.085 1.756 1.200 1.350

m = 150 HQIF(H = Mcomp, γ = 1) 0.842 0.822 0.844 0.826 0.839 0.830

HQIF(H = Mchain, γ = 1) 1.056 0.983 1.027 0.974 0.865 0.978

GEE independence 0.880 0.780 0.861 0.804 0.832 0.825

GEE oracle(R = RTrue) 1.961 1.596 1.846 1.646 1.645 1.701
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results of estimation efficiency obtained by different estimation methods under the

5-subregion network N3 (Rb
CL). Here we focus on the comparison of HQIF estima-

tors obtained under HQIF(H = H∗, γ = γ̂∗) to other estimates obtained respec-

tively from the complete structure HQIF(H = Mcomp, γ = 1), the chain structure

HQIF(H = Mchain, γ = 1), and the fully data-driven structure HQIF(γ = 0). Besides,

our method is also compared to GEE estimates under independence correlation rep-

resenting the independence network, under unstructured correlation, and under the

true correlation R(α). The GEE with the true correlation represents the “oracle”

case with the true correlation parameter α, because it is of semiparametric efficien-

cy. In the 5-subregion network N3 setting, the GEE unstructured estimation is not

provided, because of numerical failure in the case of 100-dimensional network.

From Table 4.1 and Table 4.2, we can see that HQIF(H = H∗, γ = γ̂∗) shows a

steady rise in SRE and fall in Rvar when n increases in all different types of networks.

Also, it is not surprising to see that the performance of the GEE unstructured esti-

mator is the worst under moderate sample size (n = 50 or n = 100), because in this

case a large number of correlation parameters need to be estimated. When the true

network is the complete graph N1, the SRE and Rvar of HQIF(H = Mcomp, γ = γ̂∗)

are very similar to those given by the data-driven HQIF(γ = 0) regardless of sample

sizes. When the true network is the chain graph N2, the performance of HQIF(H =

Mchain, γ = γ̂∗) becomes closer to that of the GEE oracle when the sample size in-

creases. In the scenario of the 5-subregion graph N3 (Ra
CL or Rb

CL), it is easy to see

that HQIF(H = HCL, γ = γ̂∗) appears to be the top performer, particularly superior

to HQIF(H = HCL, γ = 1) and HQIF(γ = 0) under n = 100, 500. It also works much

better than the other working target structures, such as the complete structure by

HQIF(H = Mcomp, γ = 1), and the independence structure by GEE independence.

We also find that HQIF(γ = 0) and HQIF(H = Mchain, γ = 1) may perform better

than the HQIF(H = HCL, γ = γ̂∗) method when n = 50. These phenomena could be
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expected because estimators have not achieved asymptotic unbiasedness with small

sample sizes.

When the network structure is specified as a more realistic scenario of the 5-

subregion network N3 with varying network size (m = 50, 100, 150), we present the

results of optimal shrinkage coefficient selection obtained under Ra
CL in Fig. 4.3 and

obtained under Rb
CL in Fig. 4.4. Specifically, the histograms of the selected optimal

shrinkage coefficient γ̂∗ for HQIF(H = HCL, γ = γ̂∗) method show that the percentage

of sample counterpart γ̂∗ falling near the optimal value γ∗0 increases as the sample

size increases. This confirms the selection consistency, γ̂∗
p−→ γ∗0 , as n → ∞ given

in Lemma IV.1. Besides, the fourth column in Fig. 4.3 or Fig. 4.4 shows that the

target structure HCL tends to be more weighted (γ̂∗ > 1
2
) and thus more informative

than the unrestricted covariance V with the increase of the network size. In addition,

we also present the results of estimation efficiency SRE obtained under Ra
CL and

Rb
CL with sample size n = 100 and 500 in Fig. 4.5. We can see that the proposed

HQIF(H = HCL, γ = γ̂∗) outperforms the other approaches, judged by its lower SRE

relative to the GEE oracle with SRE = 1. When the sample size is 500, the HQIF

method utilizing both prior and data-driven information is clearly superior to the

other approaches.

To investigate the performance of test statistics given in Section 4.3.2, here we

consider the following simulation setup. The full model is given by yij = xTijβ0 +θzi+

εij, where zi is a subject-level variable generated from a Bernoulli distribution with

probability 0.5, while xij and εij are generated by the same distributions above. The

hypothesis of interest is H0 : θ = 0 versus H1 : θ 6= 0. Type I error rates are computed

with θ = 0, while power is calculated under θ = 0.2. For our HQIF method, the size

and power of score-type test are obtained by averaging over 25 candidate shrinkage

coefficients in the range from 0 to 1 to remove the influence of γ selection.

Table 4.3 summarizes empirical Type I errors and power of score-type test statis-
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tics constructed from the HQIF method at significance level 0.05 over 500 replications.

It is clear that the Type I error is well controlled in all cases, and the power increas-

es as the sample size increases. Specifically, when sample size is large (n = 500),

HQIF(H = H∗, γ = 1) with an expert prespecified prior target H∗ performs slightly

better than HQIF(γ = 0) and HQIF(H = H∗, γ ∈ [0, 1]) for the complete network and

the chain network. When HQIF(γ = 0) is compared with HQIF(H = H∗, γ ∈ [0, 1]),

we find that their results are only marginally different. For the 5-subregion network

N3 (Ra
CL), when the sample size is n = 100, HQIF(γ = 0) performs slightly better

than HQIF(H = HCL, γ = 1) with a prespecified prior target HCL. When compared

with HQIF(H = HCL, γ ∈ [0, 1]), the results differ only marginally. In addition, for

the case of N3 (Ra
CL or Rb

CL) with network size m = 100, Fig. 4.6 and Fig. 4.7 show

QQ-plots of test statistics Qn(a0, β̃B|γ) − Qn(β̂A, β̂B|γ) and Q̂n(β̂|γ) based on 500

simulated datasets with sample size n = 50 and n = 500, respectively. For testing

H0 : θ = 0, it is clear that the plots of the null distribution for the test statistic

Qn(a0, β̃B|γ) − Qn(β̂A, β̂B|γ) indicate satisfactory approximation to the χ2
1 distribu-

tion, even though the sample size is fairly small n = 50 in Fig. 4.6. For the goodness

of fit test H0 : E(ḡn) = 0, the QQ-plots of the null distribution for the test statistic

Q̂n(β̂|γ) also closely follows χ2
3 distribution. These results demonstrate that the null

distribution for the score-type testing approach is not sensitive to the choice of the

prior network structure H or the shrinkage coefficient γ. However, it is worth to

point out that the Wald test statistics, which depend on β̂ and var(β̂), are dependent

on the selection of H and γ. This is an advantage of the QIF over the GEE in the

hypothesis test.
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Table 4.3: Average empirical Type I error rates and power of test statistics at sig-
nificance level 0.05 over 500 replications. Three network structures used
are: complete network N1, chain network N2, and 5-subregion network N3
(Ra

CL).
n=50 n=100 n=500

Network HQIF Size Power Size Power Size Power
Complete H∗ = Mcomp, γ ∈ [0, 1] 0.031 0.112 0.063 0.243 0.050 0.764
m = 10 γ = 0 0.030 0.114 0.062 0.242 0.052 0.764

H∗ = Mcomp, γ = 1 0.028 0.100 0.066 0.234 0.046 0.772
Chain H∗ = Mchain, γ ∈ [0, 1] 0.040 0.154 0.061 0.380 0.051 0.955
m = 10 γ = 0 0.042 0.156 0.062 0.366 0.054 0.952

H∗ = Mchain, γ = 1 0.038 0.154 0.060 0.396 0.046 0.958
5-Subregion H∗ = HCL, γ ∈ [0, 1] 0.049 0.615 0.049 0.945 0.044 1.000
m = 50 γ = 0 0.046 0.642 0.046 0.952 0.048 1.000

H∗ = HCL, γ = 1 0.052 0.546 0.056 0.920 0.042 1.000
H∗ = HCL, γ ∈ [0, 1] 0.043 0.784 0.055 0.986 0.056 1.000

m = 100 γ = 0 0.044 0.796 0.056 0.992 0.056 1.000
H∗ = HCL, γ = 1 0.048 0.656 0.060 0.958 0.048 1.000
H∗ = HCL, γ ∈ [0, 1] 0.066 0.878 0.055 0.997 0.068 1.000

m = 150 γ = 0 0.072 0.898 0.052 1.000 0.078 1.000
H∗ = HCL, γ = 1 0.062 0.754 0.064 0.986 0.050 1.000
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4.4.2 Networked binary data

The correlated binary responses in a network are generated using R package mvtBi-

naryEP from the following logistic model: logit(µij) = xTijβ0, with xij = (x
(1)
ij , x

(2)
ij )T .

A node-varying covariate is given by x
(1)
ij = j

m
, j = 1, . . . ,m, and the other covari-

ate x
(2)
ij is generated independently from U(0, 1); n is the sample size ranging from

n = 50, 100, 500, and m is the number of vertices for a network. We consider the

same three network structures as those given in the beginning of Section 4.4: the

complete network N1 (REX), the chain network N2 (RAR) and the 5-subregion net-

work N3 (Ra
CL), which have already been used in the simulation study of continuous

data. The size of complete network N1 or chain network N2 is set as m = 10 to mimic

a subregion of the EEG nodes in our data analysis with β0 = (β1
0 , β

2
0)T = (0.5, 0.2)T .

The network of five subregions N3 has varying numbers of vertices, m = 25, 50, with

β0 = (β1
0 , β

2
0)T = (0.5, 0.1)T , and the resulting dimension for each block in Ra

CL is

set as m
5
× m

5
. The prior adjacency matrix H∗ for the complete network N1 and

the chain network N2 are Mcomp and Mchain, respectively. In addition, H∗ for the 5-

subregion network N3 is given by HCL = block-diag{Mcomp,Mchain, 0,Mcomp,Mchain},

where Mcomp and Mchain are the adjacency matrices of complete and chain graphs,

respectively.
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Table 4.4: Summary results of simulated relative efficiency (SRE ) and ratio of vari-
ances (Rvar) of β over 500 simulations for logit(µij) = xTijβ0. Three net-
work structures used are: complete network N1, chain network N2, and
5-subregion network N3 (Ra

CL). For each network, the fully prior-based
HQIF(H = H∗, γ = 1) is used as reference with SRE = 1 and Rvar = 1.
HQIF(H = H∗, γ = γ̂∗) denotes the HQIF estimator we are interested
with the prior network structure H∗ and the optimally selected shrinkage
coefficient γ̂∗.

n=50 n=100 n=500
Network Method SRE Rvar SRE Rvar SRE Rvar
Complete HQIF(H = Mcomp, γ = γ̂∗) 0.978 1.078 0.976 1.038 0.992 1.005
H∗ = Mcomp HQIF(γ = 0) 0.869 1.071 0.945 1.038 0.964 1.005
m = 10 HQIF(H = Mchain, γ = 1) 0.945 0.928 0.932 0.917 0.887 0.902

GEE independence 0.754 0.611 0.695 0.615 0.629 0.621
GEE unstructured 0.000 0.000 0.891 1.109 0.968 1.020
GEE oracle(R = RTrue) 1.187 0.970 1.078 0.983 1.015 1.000

Chain HQIF(H = Mchain, γ = γ̂∗) 1.002 1.022 0.999 1.006 1.000 1.001
H∗ = Mchain HQIF(γ = 0) 0.883 1.010 0.915 0.975 0.939 0.950
m = 10 HQIF(H = Mcomp, γ = 1) 0.778 0.804 0.834 0.811 0.799 0.818

GEE independence 0.800 0.717 0.794 0.729 0.743 0.745
GEE unstructured 0.000 0.000 0.000 0.000 0.996 1.019
GEE oracle(R = RTrue) 1.102 0.961 1.047 0.976 1.012 1.003

5-Subregion HQIF(H = HCL, γ = γ̂∗) 0.889 1.193 0.932 1.113 1.028 1.046
H∗ = HCL HQIF(γ = 0) 0.851 1.198 0.939 1.114 1.028 1.046
m = 25 HQIF(H = Mcomp, γ = 1) 0.795 0.836 0.899 0.832 0.832 0.836

HQIF(H = Mchain, γ = 1) 0.887 0.931 0.962 0.930 0.898 0.932
GEE independence 0.849 0.777 0.915 0.790 0.826 0.809
GEE oracle(R = RTrue) 1.331 1.137 1.280 1.165 1.228 1.203
HQIF(H = HCL, γ = γ̂∗) 0.930 1.226 0.998 1.116 1.051 1.049
HQIF(γ = 0) 0.929 1.227 0.998 1.116 1.051 1.049

m = 50 HQIF(H = Mcomp, γ = 1) 0.809 0.838 0.843 0.835 0.843 0.833
HQIF(H = Mchain, γ = 1) 0.751 0.927 0.909 0.918 0.937 0.921
GEE independence 0.908 0.764 0.863 0.778 0.802 0.791
GEE oracle(R = RTrue) 1.534 1.285 1.314 1.314 1.305 1.344
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Table 4.5: Average empirical Type I error rates and power of test statistics at signif-
icance level 0.05 over 500 replications. The network structure used here is
the 5-subregion network N3 (Ra

CL).
5-Subregion HQIF n=50 n=100 n=500

Network H∗ = HCL Size Power Size Power Size Power

γ ∈ [0, 1] 0.020 0.150 0.030 0.295 0.044 0.897
m = 25 γ = 0 0.025 0.170 0.025 0.315 0.035 0.930

γ = 1 0.020 0.155 0.030 0.290 0.045 0.890
γ ∈ [0, 1] 0.034 0.122 0.022 0.294 0.080 0.879

m = 50 γ = 0 0.025 0.120 0.035 0.300 0.080 0.895
γ = 1 0.004 0.125 0.025 0.290 0.085 0.875

To investigate the performance of test statistics given in Section 4.3.2, here we

consider the same hypothesis of subject-level effect as that considered in the first

simulation study under H0 : θ = 0, in a population-average logistic model logit(µij) =

xTijβ+ θzi for 5-subregion network N3 (Ra
CL). Type I errors are computed with θ = 0,

while power is calculated with θ = 0.2.

Tables 4.4-4.5 and Figures 4.8-4.10 present results summarised over 500 replica-

tions. Most of conclusions remain similar to those drawn in the case of continuous

outcomes. However, for the 5-subregion network N3 (Ra
CL), the prior target HCL

does not appear to be informative compared to the sample covariance regardless of

the sample size. This once again indicates the importance of adding a proper and

relevant prior H matrix in the HQIF.
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4.5 Data Example: infant’s memory ERP study

We apply the proposed method to an infant’s auditory recognition memory study

conducted by the Center for Human Growth and Development. The electroencephalo-

gram (EEG) data was recorded with a 64-channel HydroCel Geodesic Sensor Net for

161 infants of 2 months old, from which event-related potentials (ERP), a kind of

neuroimaging data, are observed. Based on serum ferritin and ZPP levels in cord

blood measured at birth, there were 52 infants labeled as being iron deficient (ID)

while 109 infants are classified as iron sufficient (IS). Each infant hears both his/her

mother’s voice and stranger’s voice in order to assess auditory recognition memory

using EEG. The primary scientific objective of this study is to evaluate the effect

of pre and/or postnatal environmental exposures (e.g. lead and pesticides) and iron

deficiency (ID) on child neuro-developmental outcomes. After data pre-processing,

data of 56 nodes are left for the analysis (see more details in Appendix E).

The outcome (yij) considered in this data analysis is a continuous variable of

late slow wave (LSW) measured as a response to mother’s voice stimulus, a kind of

ERP reflective to memory updating. Nine covariates are included in the analysis.

They are centered infant age (xi1), centered lead (Pb) concentration in cord blood

(xi2), iron status (xi3) as a binary measurement (with 1 for ID and 0 for IS), and six

dummy variables for seven brain hemisphere regions, i.e. left frontal-central (x4j),

middle frontal-central (x5j), right frontal-central (x6j), left parietal-occipital (x7j),

middle parietal-occipital (x8j), right parietal-occipital (x9j) and other central (as the

reference). More details about hemisphere regions and the average amplitude of LSW

over the hemisphere are provided in Appendix. In this analysis, interaction effects

between iron status and hemisphere regions (i.e. xi3x4j, xi3x5j, xi3x6j, xi3x7j, xi3x8j

and xi3x9j) are of key interest, as they enable us to assess whether iron status may

alter the amplitude of LSW under mother’s voice stimulus over the 7 regions. We
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consider the marginal linear model of the following form:

E(yij|xi) = β0 + β1xi1 + β2xi2 + β3xi3 + β4x4j + β5x5j + β6x6j + β7x7j

+ β8x8j + β9x9j + β10xi3x4j + β11xi3x5j + β12xi3x6j + β13xi3x7j

+ β14xi3x8j + β15xi3x9j, i = 1, . . . , 161, j = 1, . . . , 56.

(4.11)

Table 4.6 reports the results of regression coefficient estimation, including point

estimates, standard errors and sum of variance estimates obtained by several meth-

ods. They are GEE estimator with independent working network, HQIF estima-

tor with fully data-driven structure HQIF(γ = 0), HQIF estimators obtained under

HQIF(H = H∗, γ = 1) and those obtained from HQIF(H = H∗, γ = γ̂∗).

In consultation with our collaborators, we consider two types of prior target H∗ for

the HQIF: one is a 7-block complete network H7comp = block-diag{Mcomp, . . . ,Mcomp}

based on the 7-block hemisphere (see Fig. 4.1), and the other is a sparse network

structure learned from the separate (or pilot) LSW data under stranger’s voice stim-

ulus using R package space (with a threshold 0.1), where the topology of Hstranger is

displayed in Fig. 4.11.

As shown in Table 4.6, HQIF(H∗ = H7comp, γ̂
∗ = 0.875) yields the smallest esti-

mated total of variances tr{v̂ar(β̂)} = 1.263 among five different HQIF estimators and

the GEE estimator with independence network. The prior target H7comp is strongly

favored with γ̂∗ = 0.875 and thus highly informative to unveil the dependence of LSW

outcomes among 56 nodes in comparison to the fully data-driven covariance matrix.

The next top performer is HQIF(H∗ = Hstranger, γ̂
∗ = 0.583) with tr{v̂ar(β̂)} = 1.306,

suggesting that the prior target Hstranger is slightly more favorable than the data driv-

en dependency structure with γ̂∗ = 0.583. Although these two top methods provide

similar parameter estimates, the former enables us to identify more significant group-

region interaction effects than the latter. For example, interaction effect β10 = 0.714

is statistically significant, implying that the expected LSW amplitude is elevated by

112



14 YAN ZHOU AND P. X.-K. SONG

Fig. 6: Sparse graphic representation of the learned network among 56 electrodes based on the
LSW data under stranger’s voice stimulus. Different colours of nodes represent 7 subregions.

Table 3: The estimated regression parameters β̂ for the infant’s memory ERP data to mother’s
voice stimulus(*: p-value<0.05). The estimated standard errors are reported inside the parenthe-
ses. The first four columns are HQIF estimators under two types of network structures suggested
by our collaborators with different shrinkage coefficients. The other two columns are HQIF esti-
mators with fully data-driven structure and GEE estimators with working independent network,
respectively. “fc” denotes frontal-central and “po” denotes parietal-occipital. The last row lists
the estimated sum of variance for β̂ (i.e. tr{v̂ar(β̂)}). For HQIF method, tr{v̂ar(β̂)} is equivalent
to η̂(γ) = tr

{
Ĵ−1(β̂(γ)|γ,H∗)

}
at γ = 0, 1, γ̂∗, where the γ̂∗ is determined based on the grid

search method over a range from 0 to 1 with 25 equally spaced points.

HQIF H∗ = H7comp HQIF H∗ = Hstranger HQIF GEE
parameter γ̂∗=0.875 γ = 1 γ̂∗ = 0.583 γ = 1 γ = 0 independence

age -0.003 (0.002) -0.001 (0.002) -0.003 (0.001) -0.006 (0.002)* -0.003 (0.001)* -0.001 (0.002)
Pb -0.006 (0.003) 0 (0.004) -0.005 (0.003) 0.003 (0.004) -0.006 (0.003)* 0 (0.004)
group 0.158 (0.174) 0.502 (0.261) 0.158 (0.174) 0.247 (0.209) 0.176 (0.173) 0.587 (0.271)*
left fc -0.803 (0.220)* -0.794 (0.334)* -0.854 (0.218)* -0.483 (0.266) -0.811 (0.220)* -0.824 (0.335)*
middle fc -0.360 (0.189) -0.570 (0.273)* -0.338 (0.183) -0.535 (0.199)* -0.363 (0.186) -0.580 (0.275)*
right fc -1.375 (0.218)* -1.028 (0.341)* -1.327 (0.215)* -0.940 (0.228)* -1.373 (0.218)* -1.045 (0.343)*
left po -0.167 (0.259) 0.494 (0.369) -0.359 (0.251) -0.764 (0.276)* -0.200 (0.251) 0.466 (0.370)
middle po -0.056 (0.281) 1.566 (0.367)* -0.110 (0.280) -0.567 (0.265)* -0.071 (0.282) 1.566 (0.367)*
right po 0.573 (0.240)* 1.056 (0.392)* 0.603 (0.230)* 0.503 (0.252)* 0.559 (0.229)* 1.065 (0.392)*
group × left fc 0.714 (0.344)* -0.672 (0.676) 0.571 (0.380) -0.429 (0.474) 0.482 (0.374) -1.143 (0.762)
group × middle fc 0.120 (0.312) -0.641 (0.581) 0.092 (0.339) -0.376 (0.380) -0.081 (0.336) -1.167 (0.703)
group × right fc -0.462(0.379) -0.604 (0.647) -0.458 (0.388) -0.456 (0.422) -0.612 (0.390) -1.101 (0.746)
group × left po 0.056 (0.392) -0.086 (0.551) 0.167 (0.413) 0.192 (0.444) 0.246 (0.410) 0.207 (0.593)
group × middle po -0.112(0.484) -0.495 (0.665) -0.080 (0.480) 0.313 (0.466) -0.006 (0.491) -0.277 (0.689)
group × right po -1.427(0.374)* -1.143 (0.677) -1.417 (0.366)* -1.165 (0.419)* -1.337 (0.367)* -0.959 (0.689)

tr{v̂ar(β̂)} 1.263 3.238 1.306 1.568 1.314 3.763

Figure 4.11: Sparse graphic representation of the learned network among 56 elec-
trodes based on the LSW data under stranger’s voice stimulus. Different
colors of nodes represent 7 subregions.

0.714 units with the ID group over the IS group in the left frontal-central subre-

gion. Likewise, significant interaction effect β15 = −1.427 suggests that the expected

LSW amplitude is 1.427 units lower in the ID group than the IS group in the right

parietal-occipital subregion of hemisphere. In summary, by allocating higher weights

to more relevant network structure in the estimation and inference, the proposed

HQIF(H = H∗, γ = γ̂∗) method indicates promise to improve statistical power in the

networked data analysis.
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4.6 Discussion

In this chapter, we have proposed a statistically efficient and computationally fea-

sible approach to conducting the regression analysis of networked data. The proposed

hybrid method constructs estimating functions based on the prior and data-driven

network topology, and then combines them via the means of linear shrinkage. Com-

pared with the existing GEE and QIF methods, our HQIF is more flexible and reliable

to deal with complex dependence structures of networked data. Following the GMM

theory, our method can naturally tune the shrinkage by minimizing the inverse of Go-

dambe information, so it allocates higher weights to the more informative component

of estimating function. Consequently, the HQIF improves the estimation efficiency

over the existing GEE or QIF methods. The HQIF estimator has been also proven to

be consistent and asymptotically Gaussian. In addition, HQIF-based test statistics

follow chi-square distributions, which are not sensitive to the choice of tuning coeffi-

cient γ and the choice of the prior structure. This property allows one to enjoy the

robustness of both the goodness-of-fit test and score-type test for nested models.

In practice although it is difficult to specify a very informative prior network

topology, our simulation shows efficiency improvement as long as part of the prior

structure captured is relevant. This is credited to the flexibility of our method that

can accommodate not only a target structure but also the data-driven sample covari-

ance. Note that, our methodology requires to estimate the common covariance V

across the subjects. In practice, networked data may not be measured with the same

size of vertices, and could be unbalanced due to data missingness or experimental con-

straints, such as bad channels in the EEG data. To improve the proposed method for

unbalanced networked data, the sample covariance matrix could be possibly obtained

by the method of Qu et al. (2010).

Finally, methods of sparse graph estimation are useful statistical tools to learn

the target structure H from networked data. In practice, either training data or pilot
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study data may not be always available. If the data is first analyzed to obtain the

target H and then the same data is reanalyzed to obtain the results for regression

model, we may face an over-fitting problem. In such situation, some adjustments

may be needed to reach a proper inference. Nevertheless, the consistency of our

HQIF estimation relies only on the unbiasedness assumption for the extended scores,

which is not dependent on the choice of H and can be justified by the goodness-of-fit

test provided in this chapter.
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CHAPTER V

Summary and future work

This dissertation has focused on the development of statistical methodologies for

the analysis of high-dimensional networked data. Due to complex dependence struc-

tures and large scales of such networked data, the need for innovative statistical

models, analytic methods and algorithms has motivated me to the pursuit of three

thesis research topics in this thesis.

In the first project, a sparse multivariate factor analysis regression model (sm-

FARM) has been proposed in Chapter II to identify sparse association maps between

gene expressions and biomarkers. The novelty of the proposed methodology lies on

the utility of latent factors to segregate and quantify unobserved genetic variations

from the measurement noise. The sparse learning method developed for the high-

dimensional genetic data (large p small n) allows both the number of genes and the

number of genetic variants to be high-dimensional, in which I proposed and imple-

mented double sparsity penalties for both dimensions in order to yield desirable sparse

association maps. As a result, my method can select a master regulator that relates

to a group of genes and further identify non-zero associations of individual genes

within a detected group including both cis-acting and trans-acting relationships. In

addition, my method can also identify possible low-dimensional latent factors, and

then evaluate and interpret the impact of latent factors on the association map by
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gene-enrichment analysis.

In regard to the future work of Project I, many biomedical projects have collected

time-course genetic variants and expression data, such as methylation data. Such

longitudinal genetic/genomic data present new analytic challenges in modeling and

data analysis, and furthermore, there is a need to generalize the association mapping

models with random effects to evaluate the underlying genetic association maps for

time-varying genetic data.

Chapter III discusses the reconstruction of gene regulatory networks (GRN) from

expression data using sparse structural factor equation model (SFEM). The GRN

may be formulated as a type of causal Gaussian network represented by directed

acyclic graphs (DAGs). The general problem of estimation of directed graphs is

computationally NP-hard and direction of interactions may not be distinguishable

from observations. In the second project, I consider a special case of this problem,

which relies on a priori knowledge of the ordering among network nodes. Such a priori

knowledge of the ordering is usually provided by some existing annotation software

such as Cytoscape, which is limited by context and tissue specificity. A future work of

great importance is to generalize the assumption of the ordering, so that the ordering

of variables is not prefixed. Fu and Zhou (2013), and Aragam and Zhou (2014) have

done some work in this regard. They construct penalized estimation of DAGs from

the structural equation models which circumvent the ordering problem by combining

a method of enforcing acyclicity with a block coordinate descent algorithm. It will

be interesting to see how the directions of causality among network nodes can be

estimated under SFEM.

In the third project, a new regression analysis of networked data (RAND) ap-

proach has been proposed in Chapter IV to assess potential adverse effect of prenatal

exposure to iron deficiency on auditory recognition memory of two-month old infants.

RAND builds upon the quadratic inference functions (QIF) Qu et al. (2000); Qu and
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Lindsay (2003), and further improves the estimating efficiency by incorporating the

prior knowledge of network topology into constructing a flexible dependence model.

The resulting hybrid quadratic inference functions (HQIF) take a similar form as the

generalized method of moments Hansen (1982), hence preserves some desirable prop-

erties of GMM. For example, the HQIF estimator is consistent and asymptotically

normally distributed. At the meanwhile, the HQIF objective function offers a means

for hypothesis testing, such as a goodness-of-fit test and a score-type test for a nested

model.

In terms of future work, two directions of research on EEG neuroimaging da-

ta are worth pursuing within the RAND framework. Note that the design of the

cognitive study could be very complex, where ERPs could be recorded on the same

subjects under different stimulus. To further adjust for the dependence structure

among different stimulus, the first interesting problem is to extend RAND to ana-

lyze networked EEG data with repeated measurements. By decomposing the high-

dimensional spatio-stimulus dependence structure into between-stimulus and within-

stimulus components, an quasi-likelihood estimation approach can be developed, since

the estimation efficiency is resulted from a construction of over-identified estimating

equations.

In addition, the standard statistical analysis of ERPs is conducted on scalar mea-

sures such as mean or peak amplitude measured at prespecified location of EEG waves

and does not take full advantage of the wealth of space and time information. There-

fore, the second interesting problem is to generalize the RAND method by following

the idea of the spatio-temporal correlation modeling. In this case, varying coefficient

models (Qu and Li , 2006) can be useful, since this model can test whether coefficient

functions are time varying or time invariant.
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APPENDIX A

M-fold Cross Validation

The M-fold cross-validation score CVols is given by:

CVols(λ1, λ2;K = K0) =
M∑

i=1

trace
{(
Y (i) −X(i)Θ̃(i)T

)(
Σ̂

(i)
ols

)−1(
Y (i) −X(i)Θ̃(i)T

)T}
,

(A.1)

where Θ̃(i) = Θ̃(i)(λ1, λ2) is the OLS estimates based on the i-th training data

S−(i) = (Y −(i), X−(i)), i.e. the subset of the data with the i-th sample deleted. And

Θ̃(i)(λ1, λ2) = {θ̃(i)
qp } is derived by taking the following steps:

• Given the shrunken estimates Θ̂(i)(λ1, λ2) = {θ̂(i)
qp }, for each response q, define

a Y
−(i)
q -oriented active predictor set Hq = {p : θ̂

(i)
qp 6= 0, 1 ≤ p ≤ P};

• Set θ̃
(i)
qp = 0, if p /∈ Hq; otherwise, {θ̃(i)

qp , p ∈ Hq} contains the OLS estimates

obtained by regressing Y
−(i)
q on {X−(i)

p , p ∈Hq}.

In (A.1), Σ̂
(i)
ols is calculated from the factor analysis model using S−(i) given Θ̃(i)(λ1, λ2).

Hereafter, the optimal tuning parameters (λ∗1, λ
∗
2) at K = K0 are determined by

minimizing CVols(λ1, λ2;K = K0). And the optimal number of latent factors KCV

are chosen by minimizing CVols(λ
∗
1, λ
∗
2;K = K0) among K0 = 0 to a given large

number.

121



APPENDIX B

Proof of Proposition II.1

For notational convenience in presenting the algorithm, we first set Ẽ = ZBT +E

and reformulate model Y = XΘT + ZBT + E as the following format

−→
Y

NQ×1
= X

NQ×QP

−→
Γ

QP×1
+
−→
E

NQ×1
, (B.1)

where
−→
Y , Vec(Y T ), X , X ⊗ IQ = (X1 ⊗ IQ, . . . , XP ⊗ IQ),

−→
E , Vec(ẼT ) =

(Z ⊗ IQ)Vec(B) + Vec(ET ). Note that, W , V ar(
−→
Y ) = IN ⊗ (BBT + Ψ) = IN ⊗ Σ,

with W−1 = IN ⊗ Σ−1,
−→
Γ , Vec(Θ) = (θT1 , . . . , θ

T
P )T with θp = (θ1p, . . . , θQp)

T , and

−→
C = Vec(C) = (CT

1 , . . . , C
T
P )T with Cp = (C1p, . . . , CQp)

T , our corresponding joint

least squares loss function is given by

L(
−→
Γ ;W, λ1, λ2) =

1

2N

[−→
Y −

P∑

p=1

(Xp ⊗ IQ)θp

]T
W−1

[−→
Y −

P∑

p=1

(Xp ⊗ IQ)θp

]

+ λ1

P∑

p=1

‖Cp � θp‖1 + λ2

P∑

p=1

‖Cp � θp‖2,

where � represents the element-wise operator Hadamard product. In order to show

Proposition II.1, given [Θ(·, p0)], we first split θp0 into two parts θA
p0

and θB
p0

. Next,

we will iterate between θA
p0

and θB
p0

to update θp0 .
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Given the current estimates of Θ, θ̂A
p0

is the solution of the following constrained

optimization problem:

arg min
β

1

2N

[
Vec(Ỹ T

Ap0
)− (Xp0 ⊗ IQ)β

]T
W−1

[
Vec(Ỹ T

Ap0
)− (Xp0 ⊗ IQ)β

]
,

s. t. HAp0
β = 0.

(B.2)

where Ỹ T
Ap0

= Y T − [Θ(·, p0)]X
T − θB

p0
XT
p0

, and HAp0
is a ‖Cp0‖0 × Q matrix of full

rank with elements 0 or 1, satisfying HAp0
θA
p0

= 0, which sets θA
qp0

= 0 for q 6∈

Ap0
. Employing the method of Lagrange multipliers, we get the following constraint

estimator of θA
p0

θ̂A
p0

=
{
IQ − ΣHT

Ap0

(
HAp0

ΣHT
Ap0

)−1

HAp0

}
Ỹ T

Ap0
Xp0

/
∥∥Xp0

∥∥2

2
, (B.3)

On the other hand, θ̂B
p0

is the solution of the constrained optimization problem:

arg min
β

1

2N

[
Vec(Ỹ T

Bp0
)− (Xp0 ⊗ IQ)β

]T
W−1

[
Vec(Ỹ T

Bp0
)− (Xp0 ⊗ IQ)β

]

+ λ1‖Cp0 � β‖1 + λ2‖Cp0 � β‖2,

s. t. HBp0
β = 0.

(B.4)

where Ỹ T
Bp0

= Y T − [Θ(·, p0)]X
T − θA

p0
XT
p0

, and HBp0
is a (Q − ‖Cp0‖0) × Q matrix

with 0 and 1 elements, which set θB
qp0

= 0, if q 6∈ Bp0 . The subgradient equation of

θB
p0

is given by

θB
p0

=
{
IQ − ΣHT

Bp0

(
HBp0

ΣHT
Bp0

)−1

HBp0

}[
Ỹ T

Bp0
Xp0 −NΣ(λ1sp0 + λ2tp0)

]
/‖Xp0‖2

2,

(B.5)
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where sp0 = (s1p0 , . . . , sQp0)
T , with

sqp0 =





sgn(θqp0), if q ∈ Bp0 and θqp0 6= 0,

∈ [−1, 1], if q ∈ Bp0 and θqp0 = 0,

0, if q 6∈ Bp0 ,

(B.6)

and tp0 = (t1p0 , . . . , tQp0)
T , with

tqp0 =




θqp0/‖θB

p0
‖2, if q ∈ Bp0 and ‖θB

p0
‖2 6= 0,

0, if q 6∈ Bp0 ,

(B.7)

and ‖tp0‖2 ≤ 1, if ‖θB
p0
‖2 = 0. If ‖θB

p0
‖2 = 0, (B.5) is equivalent to 1

N
Ỹ T

Bp0
Xp0 −

λ1Σsp0 = λ2Σtp0 . We can determine it by minimizing J(sp0) = ‖ 1
N

Σ−1Ỹ T
Bp0

Xp0 −

λ1sp0‖2 with respect to sp0 and check if J(ŝp0) ≤ λ2, with

ŝqp0 =





sgn
( 1

λ1N
XT
p0
ỸBp0

Σ−1
q

)
min

(
| 1

λ1N
XT
p0
ỸBp0

Σ−1
q |, 1

)
, if q ∈ Bp0 ,

0, if q 6∈ Bp0 .

If J(ŝp0) ≤ λ2, we have θ̂B
p0

= 0Q×1; otherwise, we will use a coordinate-wise

algorithm to update θqp0 if q ∈ Bp0 . Given q0 ∈ Bp0 and a Q× P matrix [Θ(q0 , p0)],

the subgradient equation of θq0p0 is

− 1

N
XT
p0

(
Y −X[Θ(q0 , p0)]

T
)
Σ−1
q0

+
‖Xp0‖2

2

N
Σ−1
q0q0

θq0p0

+ λ1sq0p0 + λ2tq0p0 = 0,

(B.8)

where

sq0p0 =




sgn(θq0p0), if θq0p0 6= 0,

∈ [−1, 1], if θq0p0 = 0,

(B.9)

124



tq0p0 =





θq0p0√
θ2
q0p0

+
∥∥[θB

p0
(q0)]

∥∥2

2

, if
∥∥[θB

p0
(q0)]

∥∥
2
6= 0,

sgn(θq0p0), if
∥∥[θB

p0
(q0)]

∥∥
2

= 0 and θq0p0 6= 0,

∈ [−1, 1], if
∥∥[θB

p0
(q0)]

∥∥
2

= 0 and θq0p0 = 0 .

(B.10)

Therefore, from (B.8) we have

θ̂q0p0 =





NS
(

1
N
XT
p0

(
Y −X[Θ(q0 , p0)]

T
)
Σ−1
q0
, λ1 + λ2

)

Σ−1
q0q0

∥∥Xp0

∥∥2

2

, if
∥∥[θB

p0
(q0)]

∥∥
2

= 0,

0, if
∣∣∣ 1

N
XT
p0

(
Y −X[Θ(q0 , p0)]

T
)
Σ−1
q0

∣∣∣ ≤ λ1, and
∥∥[θB

p0
(q0)]

∥∥
2
6= 0.

(B.11)

Otherwise, θ̂q0p0 is the solution of the following nonlinear equation:

− 1

N
XT
p0

(
Y −X[Θ(q0 , p0)]

T
)
Σ−1
q0

+
‖Xp0‖2

2

N
Σ−1
q0q0

θq0p0

+ λ1sgn(θq0p0) + λ2
θq0p0√

θ2
q0p0

+
∥∥[θB

p0
(q0)]

∥∥2

2

= 0.
(B.12)

Since equation (B.12) is nonlinear with respect to θq0p0 , an approximate solution

to (B.12) can be given by approximating the group lasso penalty
√
θ2
q0p0

+
∥∥[θB

p0
(q0)]

∥∥2

2

with a ridge penalty
θ2q0p0

+

∥∥[θB
p0

(q0 )]

∥∥2

2∥∥θB
p0

∥∥
2

. This results in the following solution:

θ̂q0p0 =
NS
(

1
N
XT
p0

(
Y −X[Θ(q0 , p0)]

T
)
Σ−1
q0
, λ1

)

Σ−1
q0q0

∥∥Xp0

∥∥2

2
+ 2Nλ2

∥∥θB
p0

∥∥−1

2

, (B.13)

where [Θ(q0 , p0)] and θB
p0

are obtained from the current estimates of Θ.
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APPENDIX C

Additional details concerning analysis of gene set

enrichment

GSEA (http://www.broadinstitute.org/gsea/msigdb/help_annotations.jsp#

overlap) and Gather (http://gather.genome.duke.edu/) are two web-based soft-

wares. To assess enrichment for specific lists of probe sets, we simply enter the list

into the web based interface and all associations are tested and reported.

Here we fit smFARM with and without incorporating the CNAI information and

compute overlaps of a set of factor-driven genes with CP, GO and KEGG pathways.

Here factor-driven genes are genes satisfying factor loadings |B̂q,k| > 0.1 after varimax

rotation. Results of enrichment are summarized in Table C.1.

From Table C.1, we find that adjusting for the variations of CNAIs allows us

to detect more enriched gene sets as well as to obtain smaller p-values for pathways.

This again indicates that simultaneously considering gene set associations from latent

factors and the shared genetic effects from CNAIs can improve the efficiency in the

association analysis.
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APPENDIX D

Proof of Lemma IV.1

Given a target structure H, and under some regularity conditions stated in Harris

et al. (1999)’s Chapter 1, for a given γ, β̂(γ) obtained by minimising the HQIF (4.8)

given in Chapter 4 is consistent and asymptotically normal (see Section 4.3.2). In

addition, since the weighting covariance matrix Γ̄n(β̂|γ)
p−→ Γ(β0|γ) and ˙̄gn(β̂|γ)

p−→

G(β0|γ), the inverse of the Godambe information matrix J−1(β0|γ) of gi may be

consistently estimated by Ĵ−1(β̂(γ)|γ) =
{

˙̄gTn (β̂(γ)|γ)Γ̄−1
n (β̂(γ)|γ) ˙̄gn(β̂(γ)|γ)

}−1
, so is

its trace, i.e. tr{Ĵ−1(β̂(γ)|γ)} p−→ tr{J−1(β0|γ)}.

Let η̂(γ) = tr{Ĵ−1(β̂(γ)|γ)}, and let η0(γ) be tr{J−1(β0|γ)}. It follows that

η̂(γ) − η0(γ)
p−→ 0 pointwise of γ on the compact set [0, 1]. To show that η̂(γ) is

stochastically equicontinuous, we check a stochastic Lipschitz-type condition on η̂(γ),

E{supγ∈[0,1]|∂η̂(γ)/∂γ|} < ∞. With the application of Lemma 1 in Wang et al.

(1986), we have

∂η̂(γ)

∂γ
= − tr{Ĵ−1(γ)Ŵ (γ)Ĵ−1(γ)} = − tr{Ŵ (γ)Ĵ−2(γ)}

≤ ρ
(
Ŵ (γ)

)
tr{Ĵ−2(γ)} ≤ ‖Ŵ (γ)‖m∞ tr{Ĵ−2(γ)},

(D.1)

where Ŵ (γ) is given in (D.2) below and ρ
(
Ŵ (γ)

)
is the spectral radius of a p × p

real symmetric matrix Ŵ (γ) and ‖ · ‖m∞ is a matrix norm defined as ‖Ŵ‖m∞ =
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p ·maxi,j |Ŵij|. Note that,

Ŵ (γ)
def
=
∂Ĵ(β̂(γ)|γ)

∂γ
=
∂ ˙̄g∗

T

n

∂γ
Γ̄−1
n

˙̄gn + ˙̄g∗
T

n Γ̄−1
n

∂ ˙̄gn
∂γ
− ˙̄g∗

T

n Γ̄−1
n

∂Γ̄n
∂γ

Γ̄−1
n

˙̄gn, (D.2)

with ∂ ˙̄gn
∂γ

= ˙̄fn− ˙̄hn and ˙̄gn = γ ˙̄fn+(1−γ) ˙̄hn. For sufficiently large n, ˙̄gn is continuous

on γ ∈ [0, 1] and thus bounded. Since Γ̄n is also bounded and positive definite on

γ ∈ [0, 1], so does the Γ̄−1
n . Besides, the expression of Γ̄n(γ) = n−1

n∑
i=1

{
γfi + (1 −

γ)hi
}{
γfi+(1−γ)hi

}T
implies that ∂Γ̄n(γ)/∂γ is continuous on [0, 1], so ∂Γ̄n(γ)/∂γ

is also element-wise bounded. Hence, each term in (D.2) is elementwise bounded

on γ ∈ [0, 1] and we have ‖Ŵ (γ)‖m∞ < ∞. On the other hand, the regularity

conditions ensure that tr{Ĵ−2(γ)} <∞. Thus, ∂η̂(γ)
∂γ

can be uniformly bounded, and

the Lipschitz-type condition is satisfied. Then we have the uniformity of convergence

Newey (1991), supγ∈[0,1]|η̂(γ) − η0(γ)| p−→ 0. Finally, since S0 = {γ : max
γ∈[0,1]

η0(γ)} and

S = {γ : max
γ∈[0,1]

η̂(γ)} with |S0| = |S| < ∞, we have γ̂∗
p−→ γ∗0 , as n → ∞, where

γ∗0 = sup {S0} and γ̂∗ = sup {S}.
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APPENDIX E

Additional background about the infant memory

ERP study

The electroencephalogram (EEG) was recorded by a 64-electrode HydroCel Geodesic

Sensor Net (Electrical Geodesics Inc., Eugene, OR). Due to data quality, the follow-

ing electrodes are excluded in the data analysis: (62, 63), (1, 17, 61, 64), (5, 10).

The remaining 56 electrodes are used in the analysis. Our collaborators outlined six

regions of interests for waveform analysis, including left frontal-central (11, 12, 13,

14, 15, 18, 19), middle frontal-central (3, 4, 6, 7, 8, 9, 54), right frontal-central (2,

53, 56, 57, 58, 59, 60), left parietal-occipital (24, 25, 26, 27, 28, 29, 30, 32), middle

parietal-occipital (31, 33, 34, 35, 36, 37, 38, 39, 40), right parietal-occipital (42, 43,

44, 45 46, 47, 48, 52), and the seventh region containing the other central nodes (16,

20, 21, 22, 23, 41, 49, 50, 51, 55). See Figure 4.1 for their positions in Chapter 4.

Fig. E.1 displays the average amplitude of LSW under mother’s voice stimulus

for IS group (the left panel) or ID group (the right panel) over the hemisphere. From

this figure we see that the average amplitude of LSW in either IS group or ID group is

negative in both frontal and central regions (left frontal-central, middle frontal-central

and right frontal-central), but positive in parietal-occipital scalp regions (left parietal-

occipital, middle parietal-occipital and right parietal-occipital). The objective of
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Fig. 7: The average amplitude of LSW under mother’s voice stimulus for each iron group.

occipital, middle parietal-occipital and right parietal-occipital). The objective of the data analysis is to
assess interaction effects between iron status and hemisphere regions, adjusting for confounding factors.
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