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ABSTRACT

Conductivity-Based Nanocomposite Structural Health Monitoring via Electrical
Impedance Tomography

by

Tyler N. Tallman

Chair: Kon-Well Wang

Nanocomposites have incredible potential when integrated as matrices in fiber-reinforced

composites for transformative conductivity-based structural health monitoring (SHM). Key

to this potential is the dependence of nanocomposite conductivity on well-connected nano-

filler networks. Damage that severs the network or strain that affects the connectivity will

manifest as a conductivity change. These damage or strain-induced conductivity changes

can then be detected and spatially located by electrical impedance tomography (EIT). The

nanofiller network therefore acts as an integrated sensor network giving unprecedented

insight into the mechanical state of the structure.

Despite the potential of combining nanocomposite matrices with EIT, important limi-

tations exist. EIT, for example, requires large electrode arrays that are too unwieldy to be

practically implemented on in-service structures. EIT also tends to be insensitive to small,

highly localized conductivity losses as is expected from common modes fiber-reinforced

composite damage such as matrix cracking and delamination. Furthermore, there are gaps

in the fundamental understanding of nanocomposite conductivity.

This thesis advances the state of the art by addressing the aforementioned limitations

of EIT for conductivity-based SHM. This is done by insightfully leveraging the unique

xiv



properties of nanocomposite conductivity to circumvent EIT’s limitations. First, nanocom-

posite conductive properties are studied. This results in fundamental contributions to the

understanding of nanocomposite piezoresistivity, the influence of nanofiller alignment on

transverse percolation and conductivity, and conductivity evolution due to electrical load-

ing. Next, the potential of EIT for conductivity-based health monitoring is studied and

demonstrated for damage detection in carbon nanofiber (CNF)/epoxy and glass fiber/epoxy

laminates manufactured with carbon black (CB) filler and for strain detection in CNF/

polyurethane (PU). Lastly, the previously developed insights into nanocomposite conduc-

tive properties and damage detection via EIT are combined to greatly enhance EIT for

SHM. This is done by first exploring how the sensitivity of EIT to delamination can be

enhanced through nanofiller alignment and tailoring. A method of coupling the EIT image

reconstruction process with known conductivity changes such as those induced by strain-

ing piezoresistive nanocomposites is developed and presented. This approach will tremen-

dously bolster the image quality of EIT or, synonymously, significantly abate the number

of electrodes required by EIT.

In achieving the aforementioned, important scholarly contributions are made to the

fundamental understanding of nanocomposite conductivity and enhancing EIT. Important

broader impacts are also made by not only demonstrating the potential of EIT for SHM

but also by developing the framework through which EIT can be markedly enhanced to

transform it into a powerful imaging technique.
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CHAPTER 1

Literature Review

1.1 Introduction

Laminated fiber-reinforced polymer composites such as glass fiber reinforced polymer
(GFRP) are becoming increasingly embraced as primary structural materials due to their
high strength, low weight, and superior fatigue characteristics. Despite these advantages,
laminated composites are susceptible to damage not normally found in traditional engi-
neering alloys such as delaminations or the separation of fibrous layers induced by low-
velocity impacts, high load cycles, or excessive loads. Delaminations considerably reduce
structural stiffness and if left unaddressed can lead to failure [9]. These considerations are
extremely important in aerospace applications employing structural composites because
of the effects of highcycle fatigue-induced damage and the possibility of ballistic impacts
with environmental debris. Aircraft structural failures can have devastatingly catastrophic
consequences; therefore, accurate and reliable damage identification is crucial to ensuring
operational safety. Accurate damage detection, however, is challenging in fiber-reinforced
composites. Delaminations, for example, develop internally without outwardly visible
warnings. Furthermore, damage accumulation in composites tends to be progressive in
nature beginning with the formation of matrix cracks that propagate into delamination and
eventually fiber fracture. In compression-dominated structures, matrix damage itself can
cause sufficient stiffness reduction to effect an end-of-life situation. Matrix integrity is
therefore critical to ensuring operational safety [10]. A robust detection scheme could sig-
nificantly abate the potential consequences of damage in fiber-reinforced composites by
ensuring damages are detected at their onset so that the structure can either be removed
from service or repaired.

Traditional design approaches are based on damage tolerance and allow certain amounts
of noncritical damage to accumulate in composites between inspection intervals. This ap-
proach requires a good understanding of damage growth rates, the effects of damage on
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stiffness, and the effects of damage on structural strength. As an alternative, SHM is gain-
ing acceptance in structural maintenance. Quite generally defined, SHM is any process
by which damage is detected, located, and characterized in engineering structures; it con-
tinuously monitors the condition of a structure thereby reducing the cost of unnecessary
inspections while simultaneously providing real-time signals to prompt inspections only
when necessary. SHM for fibrous composites needs to be sensitive to small defects such
as matrix cracking and delamination initiation. To this end, a variety of SHM techniques
have been researched including vibration testing, embedded sensing, guided wave sensing,
and conductance monitoring. An important realization of SHM research is that no single
approach is ideal for every structure, and the limitations of any method are important to
identify. The methods summarized below are well-suited to a myriad of applications, but
their limitations regarding the health monitoring of fiber-reinforced composites are tersely
summarized.

Vibration testing monitors the response of a structure in either the time domain or the
frequency domain through natural frequency, mode shape, dynamically measured flexibil-
ity, matrix update, or neural-network based methods. These approaches typically excite
structures at low frequencies thereby engaging low-order modes and natural frequencies.
Damage is expected to manifest as a local stiffness reduction that alters the mode shapes or
natural frequencies. Because low-order modes typically have characteristic lengths greatly
exceeding that of matrix cracking or delamination initiation, they are not sensitive to incip-
ient damage in fiber-reinforced composites [11] [12].

Embedded sensing SHM encompasses any approach that requires the application of
discrete sensors built into or onto the structure. Strain gauges, fiber optic sensors, and em-
bedded carbon nanotube (CNT) threads are examples of embedded sensors [13] [14] [15].
These approaches have two important limitations. First, because of their discrete nature,
they are insensitive to damage sufficiently removed from the sensor. And, second, em-
bedding a sensor inevitably introduces stress concentrations where it is embedded. Stress
concentrations are especially important to laminated composites because failure will most
likely initiate at these points [10].

Guided wave sensing excites a structure by forcing stress waves to follow paths defined
by the material properties of the structure. High-frequency guided wave techniques such
as Lamb wave tomography interrogate structures with wavelengths that are small enough
to discern matrix cracking [16] [17]. It is the author’s opinion that guided wave methods
have considerable potential for composite SHM, and interested readers are directed to the
preceding citations for a much more detailed treatment. Guided wave methods, however,
do require mechanically active (often piezoelectric) sensors/actuators be embedded into the
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structure. This can be difficult in fiber-reinforced composites [3].
Conductance-based monitoring schemes locate damage by identifying changes in diffu-

sive properties. Electrical diffusion is most often employed, but thermal diffusion has also
been studied [18]. Electrical conductivity-based SHM initially received attention in carbon
fiber reinforced polymer (CFRP) composites in which the carbon fibers are the conduct-
ing phase, and fiber breakage will result in a loss of conductivity [19] [20] [21] [22] [23].
However, this approach is not sensitive to matrix damage, and delamination initiation may
therefore go undetected.

A different approach to conductivity-based SHM is herein studied in which carbon
nanofillers are utilized to impart conductivity to the matrix of fiber-reinforced compos-
ites. With the addition of a pervasive, well-connect nanofiller network, the matrix itself
becomes self-sensing and the nanofillers act as an integrated sensor network giving un-
precedented insight into the mechanical state of the matrix. To better envision this, con-
sider the mechanism of conductivity in nanocomposites. That is, nanocomposites depend
on well-connected nanofiller networks for electrical conductivity. Electrons traverse the
network by traveling along the highly conductive nanofillers and tunneling between suf-
ficiently proximate fillers. Damage that severs the nanofiller network will manifest as a
loss of conductivity centralized in the area of the damage. This is depicted qualitatively in
Figure 1.1.

This approach has considerable potential for composite SHM because it addresses the
limitations of the previously described methods. First, because nanofillers are exceedingly
diminutive, incipient damage will greatly exceed their characteristic dimensions thereby
ensuring sensitivity to small damages. Second, a well-connected and pervasive nanofiller
network will ensure sensitivity throughout the composite structure. Third, nanofillers are of
negligible parasitic weight and result in no decrease in mechanical properties of the fiber-
reinforced composite. The addition of nanofillers can actually enhance the mechanical
properties of fiber-reinforced composites [24] [25] [26]. And, finally, the sensing elements
in conductivity-based methods are not mechanically active.

State of the art conductivity-based damage identification is summarized in the follow-
ing sections. These methods can be broadly categorized as either nanocomposite ma-
trix/resistance change methods or sensing layer/tomographic methods. A brief introduction
to nanocomposites and nanofillers, however, is presented first.
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Figure 1.1: Qualitative depiction of damage-induced conductivity loss. Top: nanofillers
are dispersed in a matrix. A well-connected network exists as shown in red such that
resistance can be measured across the material. Middle: some damage event occurs. This
could be, for example, an impact, delamination, or matrix cracking. Bottom: as a result of
the damage event, the connection between nanofillers has been severed in the region of the
blue fillers. There is now a measurable difference in material resistance because there are
fewer connected paths of nanofillers spanning the domain.
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1.2 Nanocomposites and Nanofillers

Because nanocomposites are so prevalent in this work, it is worth having some introduc-
tion to them. An exhaustive review regarding the properties of nanocomposites certainly
exceeds the scope of this study; however, interested readers are directed to an excellent and
thorough review written by Thostenson, Li, and Chou [27]. Nonetheless, quite generally, a
nanocomposite is an encompassing term that refers to a multiphase material consisting of a
matrix phase and a filler phase with characteristic filler dimensions expressible in nanome-
ters. These fillers are typically CNTs, CNFs, or CB. Representative images of these fillers
can be seen in Figure 1.2.

Since their discovery [28], CNTs have received tremendous attention due to their ex-
cellent mechanical (elastic modulus of 270 - 1500 GPa [29] [30], tensile strength of 10 -
500 GPa [29]), electrical (conductivity of 102 - 107 S/m [31]), and thermal properties (con-
ductivity of 3000 - 6000 W/m-K [29]). Structurally, they are nearly one-dimensional with
aspect ratios that can exceed 1000 and are formed from single or multiple concentric cylin-
ders of rolled-up sheets of graphene [32] [33]. CNT nanocomposites have also been studied
for their potential in damage detection [34] [35] [36], strain sensing [6] [37] [38] [7] [39],
damping enhancement [40] [41] [42], electrical conductivity enhancement [43] [44] [45],
and mechanical enhancement [46] [24].

CNFs are hollow fibers of stacked graphene frusta. Like CNTs, they have exception-
ally high aspect ratios ranging from 250 - 2000 [29]. However, they are considerably less
expensive than CNTs while retaining very good mechanical (elastic modulus of 240 GPa,
tensile strength of 2.92 GPa [47]), electrical (conductivity of 105 S/m [48]), and thermal
properties (conductivity of 1950 W/m-K [49]). CNFs also contribute considerable mechan-
ical enhancement to composites [24] [25] [26].

CNT fillers and CNF fillers are attractive because their high aspect ratios enable per-
colation and low weight fractions [50] [51]. However, high aspect ratios also make them
difficult to disperse among structural fibers without entanglement. Conversely, because CB
fillers form as stacks of several hexagonal carbon rings, they have much lower aspect ratios
and are more easily dispersed among structural fibers [52]. For this reason, CB is often
preferred in the development of fiber-reinforced composites.
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Figure 1.2: Representative examples of nanofillers Left: cluster of MWCNTs imaged via
TEM [1]. Middle: single CNF imaged via SEM as part of this thesis work. Right: cluster
of CB imaged via SEM [2].

1.3 Nanocomposite Matrix/Resistance Change Methods

1.3.1 Beam Structures

Employing nanocomposites as matrices in fiber-reinforced composites extends self-sensing
capabilities to structural elements. This is a tremendous advantage over many types of SHM
because the sensing network (i.e. the nanofillers) becomes an inherent part of the structure.
Because of this, nanocomposite matrix methods have received considerable attention. The
simplest structural elements are characterized by one dimension wherein resistance is mea-
sured before, after, or during loading scenarios at two points along the length of a beam by
electrodes spanning the width of the beam. This approach provides valuable insight into
the correlation between resistance and damage initiation, propagation, and accumulation.
However, damage location cannot be discerned beyond the fact that it has occurred between
the electrodes. Resistance generally increases linearly with load prior to failure and returns
to an initial value for low load cycles. Resistance increases dramatically at failure initiation
(typically micro-cracking of the matrix) and is irreversible. Resistance then continues to ir-
reversibly accumulate as loading continues after failure initiation. These conclusions agree
well with intuition. Tensile loads will increase or decrease the spacing between fillers. As
a result, electrons have diminished or enhanced probability of tunneling thereby changing
the conductivity of the composite. As long as the load is within the linear elastic regime,
the inter-filler spacing should return to its original value. However, this may change with
plastic deformation or fatigue loading after which the nanofillers may not return to their
unloaded configurations. Additionally, failure such as micro-cracking induces a change in
filler spacing that cannot be recovered. Continued damage accumulation will continue to
eliminate conductive pathways effectively increasing composite resistivity.
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Because the exact electrical response of a fiber-reinforced composite with a nanocom-
posite matrix varies greatly with the specific type of nanocomposite and loading, it is dif-
ficult to arrive at general conclusions beyond the aforementioned. However, there is valu-
able insight to be gained by studying specific works. To that end, specific contributions to
nanocomposite matrix/resistance change methods are summarized in the following.

Thostenson and Chou [53] fabricated a five-ply, unidirectional, glass-fiber/epoxy lam-
inate with 0.5 wt.% multi wall carbon nanotube (MWCNT)s dispersed in the epoxy. The
center ply of the laminate was cut at the middle in order to promote delamination during
tensile loading. Resistance was measured during tensile loading, and resistance increased
linearly with load until delamination initiation. Upon delamination initiation, the resistance
jumped dramatically and continued to increase at an increasing rate as the load increased.
A [0/90]s cross-ply was similarly subjected to tensile loads where resistance was observed
to increase linearly with load until the initiation of micro-cracking at which time the resis-
tance jumped markedly and continued to increase at a substantial rate. It was noted that in
both specimens that there was only a slight reduction in stiffness at damage initiation, but
there was a substantial change in resistance.

Böger, Wichmann, Meyer, and Schulte [34] manufactured a glass fiber/epoxy laminate
modified by the addition of MWCNTs and CB at 0.3 wt.%. The composite was subjected to
interlaminar shear strength tests, incremental tensile tests, and fatigue tests while resistance
was measured. The interlaminar shear strength was measured according to ASTM D-2344.
Only a nominal increase in interlaminar shear strength due to nanofillers was recorded. A
substantial increase in resistance was measured at failure. The incremental tensile tests sub-
jected the composite to loading cycles that went from zero strain to an increasing maximum
strain. Resistance measurements scaled linearly with strain and returned to the unstrained
resistance for five cycles. After five cycles, resistance measurements returned to a larger
unstrained resistance indicating the accumulation of irreversible damage. Lastly, dynamic
tests were performed in order to induce fatigue loading. A decrease in stiffness of the
composite was observed accompanied by an increase in resistance.

Nofar, Hoa, and Pugh [35] manufactured GFRP plates with 1 wt.% MWCNTs incorpo-
rated into the epoxy matrix. Upon curing, composite plates were cut into beams according
to ASTM D-3039 and subjected to static tensile tests during which resistance was mea-
sured between two points along the length of the beam. Resistance increased linearly with
strain until the beams’ elastic limit was reached. Beyond the elastic limit the resistance
increased dramatically implying the initiation of irreversible damage between the measure-
ment points. The tensile test was then repeated with four measurement points along the
length of the beam. Utilizing additional measurement points enabled rudimentary damage
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location by monitoring which measurement pair detected the largest increase in resistance
at failure. Response to fatigue loading was also studied. It was found that resistance in-
creases significantly less for cyclic loads below the elastic limit.

Gao, Thostenson, Zhang, and Chou [54] manufactured cross-ply E-glass/vinyl ester
composite laminates with MWCNTs dispersed throughout the matrix. Quasi-static and
cyclic tensile loading tests were performed during which specimen resistance was measured
and acoustic emission counts were recorded. The length-normalized resistance change and
acoustic emission counts trended similarly with strain for the initial quasi-static loading.
However, length-normalized resistance change and acoustic emission counts trended sig-
nificantly differently for subsequent quasi-static reloads. This implies that the resistance
changes correspond to micro-damages or cracks that produce acoustic events. Reloading
simply reopens cracks producing no acoustic events. Incremental cyclic loading resulted in
increasing irreversible damage marked by increasing unloaded resistance. Acoustic emis-
sion counts increased with increasing increments again implying the formation of new
micro-damages or cracks that were marked by increases in resistance.

Kim et al. [55] studied the damage mechanism of 3D braided composites manufactured
with MWCNTs by resistance change methods. MWCNTs were dispersed by three-roll
mill calendaring in a vinyl ester monomer, and vacuum-assisted resin transfer molding
was used to produce the braided composites. 10 mm × 1.75 mm samples were prepared
for tensile testing. Tensile testing was conducted at a cross-head speed of 1.27 mm/min
while a constant voltage was applied across the specimens. Current was measured and the
corresponding specimen resistance calculated. The observed resistance change was then
categorized into five stages based on the slope of the resistance change curve. The different
slopes of the resistance change curve were attributed to different damage mechanisms or the
evolution of damage mechanisms as straining progressed. Damage initially took the form
of transverse cracks and micro-delaminations, then matrix cracking at the interface between
tow and matrix, accumulation of micro-delaminations or transverse cracks, saturation of
micro-delaminations, and finally closing of micro-delaminations through Poisson effects.
These mechanisms were then confirmed by X-ray computed tomography.

Gao et al. [56] investigated the influence of nanofiller dispersion uniformity on damage
sensing characteristics in glass fiber/epoxy laminates with a stacking sequence of [0/902/0].
MWCNTs were uniformly dispersed by three-roll milling while non-uniform dispersions
were achieved by using a nanotube-containing fiber sizing agent. The resulting panels
were cut into 0.5 in wide strips and loaded in quasi-static and incremental cyclic tension
at 1.27 mm/min. It was concluded that both uniform and non-uniform dispersions are
capable of creating percolated nanofiller networks for conductivity-based damage detec-
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tion. Furthermore, filler agglomeration is responsible for much lower resistance changes
in non-uniformly dispersed networks. However, the use of a sizing agent was much more
convenient during manufacturing.

Gao et al. [57] explored the influence of impacts on resistance change in six-layer
epoxy/plain glass fiber manufactured with SC-15 epoxy resin containing CNTs (solid con-
tent of 6.2%). Upon curing, the composite panel was cut into 10.2 cm × 15.2 cm sections.
7.62 cm silver paint electrodes were then applied on the opposing 10.2 cm edges such that
resistance could be measured along the 15.2 cm direction. 70 J impacts were then induced
in the center of the plate, and the resistance change ratio was measured for repeated im-
pacts. It was found that resistance increases with each new impact up to a 120% change
after 11 loadings.

Pedrazzoli, Dorigato, and Pegoretti [58] modified the epoxy matrix of a glass fiber
laminate with 2 wt.% CB and CNF. The CB/CNF ratio was 90/10. A two component epoxy
resin was used with EC157 epoxy base constituted by a mixture of Bisphenol A/Bisphenol
F/Hexanediol diglycidyl ether and W152 LR amminic hardener. The laminate measured
300 mm × 300 mm, was made from six layers of balanced E glass woven fabric, and
was approximately 0.7 - 0.9 mm thick upon curing. Quasi-static tensile tests and creep
tests were performed on 250 mm × 15 mm specimens cut from the original laminate by
using a MTS 858-Mini Bionix servo-hydraulic testing machine, and resistance along the
length of the beams was monitored during mechanical testing. Monotonic tensile tests were
conducted at a constant cross head rate of 2 mm/s. The specimens were loaded until failure
(approximately 2.25% strain), and resistance increased linearly for less than 1% strain. A
rapid increase in resistance change rate was observed just before failure. This resistance
trend is consistent with the formation of irreversible damage and cracking. Creep tests were
performed by loading specimens at stress levels from 100 MPa to 350 MPa at temperatures
ranging from 20 ◦C to 90 ◦C for 3600 seconds. Resistance initially spiked due to the creep
load; however, as the experiment progressed, the resistance decayed exponentially to a
constant value. The rate of decay was greater at lower temperatures, and the constant value
to which the resistance decayed was greater at elevated temperatures. It was hypothesized
that this behavior is a result of the nanofiller network initially responding to the high load.
When deformational process kinetics are reduced at lower temperatures, nanoparticles are
able to reform conductive networks thereby causing the measured resistance to decay. But,
at elevated temperatures, higher strain rates may hinder reformation of conductive paths.
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1.3.2 Plate Structures

Two-dimensional resistance change methods in plate structures are a natural extension of
the previously described one-dimensional resistance change methods and endeavor to iden-
tify where damage occurs in fiber-reinforced plates with nanocomposite matrices. The
simplest approach to locating damage in a plate structure is to instrument the plate with an
array or a grid of electrodes. Resistance between neighboring electrode pairs is compared
before and after damage, and damage is assumed to have occurred between electrode pairs
that register the largest change in resistance. Applying an electrode grid to one side of
a plate enables in-plane measurements while applying an electrode grid to both sides of
a plate enables through-thickness measurements. Damage is often simulated by drilling
holes through the plate or by impacting the plate. In-plane measurements are better suited
for locating through-hole damage, but through-thickness measurements are better suited
for locating sub-surface damage such as delaminations that are induced by impacts. A
tightly packed grid will have better resolution but will require more electrodes. While
able to coarsely locate damage, electrode grid methods require a surfeit of electrodes or
measurement points making them unpalatable for integrated SHM as detailed below.

Zhang et al. [3] modified glass fiber/epoxy unidirectional [0]10 and [45/0/-45/90]s lam-
inates with 2 wt.% CB or 2 wt.% CB and copper chloride (CC). Unidirectional specimens
were machined into beams measuring 150 mm × 20 mm × 4 mm for double cantilever
beam and end notched flexure tests to determine the influence of nanofillers on Mode I and
Mode II fracture toughness respectively. Mode I fracture toughness was measured accord-
ing to ASTM D-5528, and Mode II fracture toughness was measured according to ESIS
in a three-point bending configuration. Electrodes covering the width of the beams were
applied to measure the through-thickness resistance. Nanofillers increased Mode I fracture
toughness at the onset of delamination by 13.3% and the Mode I fracture toughness average
plateau value by 8.6%. Mode II fracture toughness at the onset of delamination increased
by 22.4% and the Mode II fracture toughness average plateau value increased by 18.7%.
A departure from linear increase in resistance was observed in both tests as delamination
initiated. The [45/0/-45/90]s laminate was trimmed to 150 mm× 100 mm, and a 9× 9 grid
of electrodes was attached to the top and bottom surfaces for through-thickness measure-
ments. Nine electrodes were also attached along each edge for in-plane measurements so
that the two methods could be compared. The plate was drop-weight impacted according
to ASTM D-7136M/D-7136M-05 at 6.7 J/mm. Glass fiber/epoxy laminate samples were
impacted multiple times at various fractions of the standard energy. Impact damage was im-
aged by weighting and interpolating resistance changes between electrodes before and after
damage, and damage location and progression was captured. While the approach was suc-
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cessful at locating damage, it is a resistance change technique with discrete measurements
interpolated for ease of visibility, not tomography. C-scans verified damage detection. A
comparison of impact detection by in-plane electrodes and through-thickness electrodes
can be seen in Figure 1.3 and Figure 1.4 respectively.

Viets, Kaysser, and Schulte [4] manufactured 16-layer, unidirectional, glass-fiber lam-
inates modified with 1 wt.% MWCNTs and 12 wt.% CB using Epikote RIMR 135 epoxy
resin with RIMH 137 amine hardener. Two plates were cut to final dimensions of 120 mm
× 120 mm × 3 mm. Ten parallel lines of conductive silver ink were applied on the top
and bottom of each laminate. Lines on top were perpendicular to the 0 ◦-fiber direction
and lines on bottom were parallel to the 0 ◦-fiber direction. Resistance measurements were
taken through the thickness where lines intersected. The plates were then impacted with
an impact energy of 7.65 J. Comparing resistance before and after impact, a map of re-
sistance changes was generated by interpolating resistance changes at each measurement
point. These maps showed a pronounced change in conductivity centered about the impact.
Ultrasonic C-scan verified sub-surface and barely visible damage. A schematic of the elec-
trode placement used in this research and the resulting damage detection is shown in Figure
1.5.

Naghashpour and Van Hoa [59] fabricated three-layer textile composite plates with
MWCNT loadings at 0.1, 0.2, 0.25, 0.3, 0.4, and 1 wt.%. A grid of 40 electrodes was
attached on the plate surface. Resistances between electrode pairs were measured before
and after damage, and damage was located by identifying the electrode pair that registers
the largest resistance change. Two types of damage were studied – through-holes of various
sizes and at various locations and impact caused by collision with high velocity projectiles
and drop weights. Their results indicated that sensitivity to damage decreases as nanofiller
loading increases; however, loadings just above the percolation threshold result in non-
uniform distributions. Therefore, a tradeoff exists between optimal sensitivity and uniform
distribution. Holes as small as 1/16” in diameter could be detected although sensitivity
to small damages decreased dramatically in the presence of larger damages. Nonetheless,
multiple holes could also be detected. Impact damages as small as 1 J and as large as 78
J could be detected. The accuracy of damage location for this method is limited by the
coarseness of the electrode grid.

Naghashpour and Hoa [5] also manufactured carbon fiber/epoxy plates with 0.3 wt.%
MWCNTs using three-mill rolling. Electrodes were then attached to a 13 in × 22 in plate
such that 4-point measurement could be made at grid points. A novel strategy was proposed
to circumvent limitations imposed by contact resistance wherein two measurement points
are associated with each grid point. This measurement approach was then used to detect
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Figure 1.3: Schematic of in-plane measurement points by Zhang et al. [3] and detection of
imacts at (from top to bottom) 50, 100, and 150% of 6.7 J/mm for 2.0 wt. % CB (left) and
2.0 wt. % CB and CC (right).
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Figure 1.4: Schematic of through-thickness measurement points by Zhang et al. [3] and
detection of imacts at (from top to bottom) 50, 100, and 150% of 6.7 J/mm for 2.0 wt. %
CB (left) and 2.0 wt. % CB and CC (right).

13



Figure 1.5: Schematic of measurement points by Viets et al. [4] and detection of 7.65 J
impact. The black outline is the delamination outline as imaged by ultrasonic C-scan.
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through-holes (1/16 in - 6/16 in), low energy (1 - 3 J) impact, and high energy (78 J) impact
damage. All of these damages were successfully imaged by plotting the percent change in
electric potential between grid points. A schematic of the electrode placement used in this
research and the resulting damage detection is shown in Figure 1.6.

1.4 Sensing Layer/Tomographic Methods

EIT is a more sophisticated method of locating changes in conductivity due to damage
by reconstructing an internal conductivity distribution based on boundary measurements.
Considerable work has been done on nanocomposite thin films or sensing layers wherein
the sensing film or layer is applied to the structure to be monitored and EIT is employed
to detect exposure to stimuli such as pH, impact, and strain. Consequently, EIT has been
shown to have considerable potential for nanocomposite SHM. However, these publica-
tions employ EIT routines that use at least 32 electrodes. This is still more than is practical
for many SHM applications. A key difference between EIT and resistance change methods
is that as a tomographic approach, there is potential to bolster EIT through multi-physics
coupling or physics-based insight of the domain being imaged. Resistance change methods,
conversely, can never provide any more information than what the resistance is between two
points making them fundamentally limited from an image generation perspective.

Hou, Loh, and Lynch [6] first used EIT to image the conductivity distribution of CNT
thin films. Using polyelectrolyte constituents polyaniline (PANI) emeraldine base, polyvinyl
alcohol (PVA), and polysodium styrene-4-sulfonate (PSS), homogeneous nanostructured
thin films were fabricated via a layer-by-layer self-assembly method with single wall car-
bon nanotube (SWCNT) fillers. [SWCNT-PSS/PANI]50, [SWCNT-PSS/PANI]100, and [SW-
CNT-PSS/PVA]50 thin films were imaged by EIT to detect mechanical etching, regions
of different conductivity, and exposure to pH buffer solutions. Straight, diagonal, and L-
shapes were mechanically etched into four separate 25 mm× 25 mm [SWCNT-PSS/PVA]50

specimens. A 32-electrode EIT system was able to accurately locate the etchings while re-
producing their geometry. Next, the ability of EIT to detect variations in conductivity
was tested. A 18 mm × 18 mm window was mechanically etched from the center of a
[SWCNT-PSS/PVA]50 film exposing the substrate. Next, the layer-by-layer process fabri-
cated another [SWCNT-PSS/PVA]25 film over the 50-layer and exposed substrate. A 9 mm
× 18 mm window was again mechanically etched from the area that was originally etched,
and another 25-bilayer film was deposited resulting in regions of the substrate having 25,
50, or 100-bilayers. Since previous research had established that films with different num-
bers of layers have different conductivities, a 32-electrode EIT system was used to image
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Figure 1.6: Schematic of electrode placement by Naghashpour and Van Hoa [5] and
detection of 1, 2, and 3 J impacts.
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the film system. EIT was able to accurately image the geometries of the conductivities
while discerning conductivity. In order to test sensitivity to pH, five plastic wells were
mounted to two 25 mm × 60 mm [SWCNT-PSS/PANI]100 films and filled with pH buffer
solutions. The first [SWCNT-PSS/PANI]100 film had wells filled with pH buffer solutions
of 7, 7.5, 8, 8.5, and 9. The second [SWCNT-PSS/PANI]100 film had wells filled with pH
buffer solutions of 7, 6.5, 6, 5.5, and 5. Because such films have been shown to drastically
increase in film resistance with increasing pH buffer solutions, different regions of conduc-
tivity are expected. A 48-electrode EIT system was able to locate pH exposure and discern
different levels of pH buffer solution. Lastly, the ability of EIT to reproduce absolute con-
ductivities was investigated. To that end, a pristine 25 mm× 25 mm [SWCNT-PSS/PVA]50

film was fabricated on a silicon substrate and imaged via EIT using 32 electrodes. The film
was then cut into sixteen equally sized squares, and the resistance of each square was mea-
sured from which the conductivity of each square could be calculated. These conductivity
values were compared to the average value calculate by EIT in the same region. The two
methods of determining conductivity agreed within 2.1% indicating that EIT is a viable
method to determine absolute conductivity.

Loh, Hou, Lynch, and Kotov [37] fabricated [SWCNT-PSS/PVA]n sensing skins on
glass or aluminum 6061-TS substrates by the layer-by-layer process. EIT was then used to
image changes in film conductivity due to mechanical etching, impacts, and strain. Three
holes measuring 1 mm × 1 mm, 2.5 mm × 2.5 mm, and 8 mm × 6 mm were etched
into a 25 mm × 25 mm [SWCNT-PSS/PVA]50 film on a glass substrate. An EIT system
with 32 electrodes was able to accurately identify the size and geometry of the etchings.
[SWCNT-PSS/PVA]50 films on glass substrates were affixed onto polyvinyl chloride Type
I tensile coupons by epoxy. The coupon was then mounted in an MTS-810 load frame
that performed tensile-compressive cyclic loading of ±2000 µε or ±5000 µε at 50 µε/s.
The films were imaged via EIT with 32 electrodes at 1000 µε increments. EIT produced
nearly uniform conductivity images that scaled linearly with the applied strain. Slight non-
uniformities were observed along the edges of each image, and these were believed to be
the result of localized lack of strain transfer where the film’s substrate was poorly bonded to
the test coupons, misalignment of the testing coupon, or numerical artifacts of EIT. Lastly,
[SWCNT-PSS/PVA]50 films were deposited onto both sides of 110 mm× 110 mm primer-
coated aluminum 6061-T6 alloy plates. A pendulum striker was used to impact the coated
plates. Two plates were prepared and each received four impacts of varying energy. The
first plate was impacted and imaged shortly after fabrication. The second plate was first
impacted twice and imaged. Then it was stored in ambient conditions for approximately 14
days and impacted twice more in order to assess potential of CNT sensing films to detect
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Figure 1.7: Example of EIT electrode requirements and image quality [6]. The conductiv-
ity loss is due to the CNF thin film being etched away.
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damage throughout a structure’s lifetime. Damage as small as 0.09 J was detectable in the
first plate, and damage as small as 0.19 was detectable in the second plate. Storing the plate
for 14 days seemed to have no effect on the results. This study demonstrates that strain and
mechanical damage to nanocomposites can be capture via EIT.

Loyola et al. [60] combined MWCNT polyvinylidene fluoride (PVDF) film sensing
layers with GFRPs by spray deposition. The sensing layer film consisted of two parts –
MWCNT PSS/N-methyl-2-pyrrolidone solution and a latex of 150 nm diameter spherical
particles of Kynar PVDF suspended in an Aquatec surfactant solution. The film formula-
tion was spray deposited on 381 mm× 381 mm unidirectional E-LR 0908 fiber laminae that
was masked to contain six equally spaced sensing areas measuring 78 mm× 78 mm. Lam-
inates were constructed following a [0/45/90/-45]2s stacking sequence. The sensing films
were placed only on the top and bottom plies in order to facilitate electrode access. Because
of the inherent anisotropy of laminates, the sensing films were also electrically anisotropic
with a preferred conductivity in the fiber direction. Consequently, an anisotropic EIT re-
construction algorithm was employed. A sensitivity study was conducted by drilling pro-
gressively larger through-holes at the center of the laminates. It was concluded that 3.18
mm diameter hole was the lower limit of EIT on this material. However, the image artifact
due to the 3.18 mm hole was comparable to the image noise. Sensitivity to damage location
was also characterized by dividing the specimen into a 3 × 3 grid of equally sized squares.
A 6.35 mm diameter hole was drilled at the center of each partition and imaged by EIT
with 32 electrodes. It was found that EIT is least sensitive to damage in the center and most
sensitive to damage near electrodes, particularly at corners. Following ASTM D-7136,
specimens were impacted at 20, 60, 100, and 140 J using an instrumented Instron Dynatup
9250G drop-weight tester. EIT was able to detect impacts that did not cause immediately
visible damage.
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CHAPTER 2

Problem Statement, Research Goal, and Thesis
Organization

The literature surveyed in Chapter 1 establishes that conductivity-based methods have in-
credible potential for transformative SHM of fiber-reinforced composites with integrated
nanocomposites. Furthermore, the literature cited in the tomographic methods section
establishes that EIT can accurately be employed on nanocomposites. State of the art
conductivity-based SHM techniques utilize either nanocomposite matrix/resistance change
methods or sensing layer/EIT methods. Both of these approaches have advantages; how-
ever, they both also have important limitations.

By using nanocomposites as matrices, nanocomposite matrix/resistance change meth-
ods ensure sensitivity to matrix damage. This is important because fiber-reinforced com-
posite failure is often initiated through matrix damage. A robust conductivity-based SHM
technique must, therefore, retain sensitivity to matrix damage. Resistance change meth-
ods, however, also require large, unwieldy electrode arrays to crudely locate damage as
exemplified in Figures 1.3, 1.4, 1.5, and 1.6. This dependence on large electrode arrays
makes resistance change methods unpalatable if not impractical to implement on in-service
structures.

Sensing layer/EIT methods are quite powerful in their adaptability because they can be
applied to a myriad of structures and are not necessarily limited to fiber-reinforced compos-
ites. EIT, furthermore, has considerable potential for conductivity-based SHM because it
can provide better spatial resolution than resistance change methods with fewer electrodes
as exemplified in Figure 1.7. However, with regard to fiber-reinforced composite SHM,
sensing layer approaches add weight to often weight-conscious composite structures such
as airplanes, are not sensitive to damage sufficiently removed from the sensing layer such
as internal damage initiated by cyclic loading, and are vulnerable to superficial damage
induced by hail, sleet, or dust which poses no real threat to the structure. EIT also tends
to be insensitive to abrupt, highly localized conductivity changes as is expected in matrix
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cracking and delamination initiation, suffers from poor resolution, and still requires more
electrodes than is desirable from an implementation perspective.

An ideal fiber-reinforced composite SHM system should have all of the advantages of
the state of the art methods and none of the disadvantages. That is, an ideal fiber-reinforced

composite SHM system should be sensitive to matrix damage, require a minimum number

of sensors, and be able to spatially locate where damage has occurred. In this light, a
concise problem statement, novel idea to advance the state of the art, and research goal are
formed as follows.

Problem statement: existing SHM methods are insufficient or not ideally suited for fiber-
reinforced composites. Nanocomposite conductivity-based health monitoring via EIT has
considerable potential but also important limitations.

Novel idea: advance the state of the art in fiber-reinforced composite SHM by combining
the superior imaging capabilities of EIT with self-sensing nanocomposite matrices. Then
leverage the unique properties of nanocomposites to overcome the limitations of EIT.

Research goal: develop EIT into a robust conductivity-based SHM technique for fibrous
composites with nanocomposite matrices.

In order to achieve this goal the mathematical formulation of EIT will first be presented.
The unique properties of nanocomposite conductivity are then investigated. Having devel-
oped an understanding of nanocomposite conductive properties, damage and strain identifi-
cation via EIT will next be experimentally investigated and demonstrated. And, finally, the
insights developed in the two preceding chapters will be combined to markedly enhance
EIT for SHM. Following the technical contributions of this thesis, its scholarly contribu-
tions and broader impacts are summarized, and, lastly, recommendations for future work
are made.
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CHAPTER 3

Electrical Impedance Tomography Theory and
Formulation

3.1 Introduction and History

EIT is a method of non-invasively imaging an internal conductivity distribution by inversely
solving Laplace’s equation given boundary voltage data [61]. Because the conductivity of a
nanocomposite is inherently linked to its mechanical state, EIT can be used to locate strain
or damage. EIT is attractive for SHM because it is minimally invasive, can be employed
in nearly real time, and is low cost. Based on Calderón’s inverse problem [62], EIT was
originally developed for subterraneous prospecting [63] [64] and specialized medical imag-
ing applications [65] [66]. Impedance imaging began with Henderson and Webster [67] in
1978, but the first tomographic impedance images were produced by Barber, Brown, and
Freeston [68].

Procedurally, the domain to be imaged by EIT is lined with electrodes. Current is in-
jected and grounded between the first electrode pair while voltages are measured between
the remaining electrode pairs not involved in the current injection as depicted in Figure
3.1. The current injection is then moved to the next electrode pair, and the voltage is again
measured between electrode pairs not involved in the current injection. Measurements
are not taken from electrodes involved in the current injection because even slight errors
in the estimated contact impedance can result in large electrode voltage prediction errors.
This process repeats until every electrode pair has received a current injection. The same
injection and measurement process is repeated analytically – this is known as the forward
problem or the forward operator. The forward operator returns a vector of predicted bound-
ary voltages for a prescribed conductivity distribution. Consequently, the goal of EIT is to
find a conductivity distribution that minimizes the error between the forward operator and
the experimentally measured voltages.
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Figure 3.1: EIT injection schematic. Current is injected between the first electrode pair
while the resulting voltage is measured between the remaining electrode pairs that are not
involved in the injection process. All electrode pairs receive a current injection.
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3.2 Forward Problem

Laplace’s equation governs the relationship between currents and voltages for steady state
diffusion as shown in equation 3.1.

∂

∂xi
σij

∂u

∂xj
= 0 (3.1)

Summation notation is used here, and repeated indices imply summation over the dimen-
sion of the problem. Summation is not implied for indices referring to electrodes unless the
summation operator is explicitly stated. The general anisotropic form of the forward prob-
lem will be derived here, but this of course simplifies to the isotropic case for σij = σδij

where δij is the Kronecker delta. Regarding Equation 3.1, it is assumed in EIT that di-
rect currents or sufficiently low frequency alternating currents are used such that magnetic
fields can be neglected. The complete electrode model (CEM) boundary conditions are
employed to simulate contact impedance between the assumed perfectly conducting elec-
trodes and the domain as shown in equation 3.2. Equation 3.3 enforces the conservation of
charge by requiring that the current through the electrodes sums to zero.

σij
∂u

∂xi
nj =

1

zl
(Vl − u) (3.2)

L∑
l=1

∫
El

σij
∂u

∂xi
nj dSl = 0 (3.3)

In the preceding, u is the domain potential, ni is the outward pointing normal, zl is
the contact impedance between the lth electrode and the domain, and Vl is the voltage on
the lth electrode. These equations are most conveniently solved through finite element
discretization in the following manner.[

AM + AZ AW

AT
W AD

][
U

V

]
=

[
0

I

]
(3.4)

AeM ij =

∫
Ωe

∂wi
∂xk

σkl
∂wj
∂xl

dΩe (3.5)

AZ ij =
L∑
l=1

∫
El

1

zl
wiwj dSl (3.6)

AW li = −
∫
El

1

zl
wi dSl (3.7)
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AD = diag

(
El
zl

)
(3.8)

Explicit details of the forward problem formulation by the finite element method can
be found in Appendix A. Equation 3.4 is the discretization of the CEM forward problem.
U is a vector of domain potentials, V is a vector of electrode voltages, and I is a vector
of current injections. The ith entry of the jth column of the local diffusion stiffness matrix
for the eth element is formed as shown in equation 3.5 where wi is the ith interpolation or
weighting function. Linear interpolation functions are herein employed. Local diffusion
stiffness matrices are assembled into the global diffusion stiffness matrix, AM . Equation
3.6, equation 3.7, and equation 3.8 account for additional degrees of freedom introduced
by the electrodes and contact impedance between the electrodes and the domain. El is the
electrode length in two dimensions or the electrode area in three dimensions, and sum-
mations run over the total number of electrodes, L. Equation 3.4 is only solved up to an
arbitrary constant or electrical ground point, but this can be remedied by enforcing that
grounded electrode of the injection pair is zero. However, because EIT makes use of the
difference between electrodes, determining a ground point inconsequential.

3.3 Inverse Problem

Image recovery through EIT has received very thorough mathematical treatment. Numer-
ous reconstruction algorithms have emerged the most popular of which are Gauss-Newton
minimization, maximum a posteriori (MAP) estimates, and the primal-dual interior point
method (PDIPM). Gauss-Newton minimization is used in this research because of its supe-
rior convergence and ability to satisfactorily image both discrete conductivity losses due to
damage and smoothly varying conductivity distributions due to strain. It is therefore more
diligently treated than MAP and PDIPM algorithms in the following sections. The general
process of recovering the conductivity distribution is known as the EIT inverse problem.

3.3.1 Gauss-Newton Method

The Gauss-Newton method iteratively updates a conductivity estimate to minimize the dif-
ference between experimental measurements and an analytical model in the least-squares
sense according to equation 3.9 [61].

σ∗ = arg min
σ

(
‖Vm − F(σ)‖2) (3.9)
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Figure 3.2: Representative solution to the forward problem with unit conductivity and
current injection. Current is injected and grounded at the bottom right corner. Electrodes
and electrode solutions are not shown.
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Vm is the vector of experimentally measured voltages, F(σ) is a vector of analytically
predicted boundary voltages supplied by the forward operator, σ is the conductivity distri-
bution provided to the forward operator, and σ∗ is the conductivity distribution that satis-
fies the minimization. Note that anisotropy has been abandoned here because recovering
anisotropic conductivity typically requires special considerations. This will be treated later
in Chapter 6. Also note that the conductivity distribution is now bold faced to indicate that
it has been discretized by the preceding finite element formulation of the forward problem.
To proceed, F(σ) is approximated by a Taylor series expansion centered about an initial
conductivity estimate, σ0. Only the linear terms of the expansion are retained resulting in
equation 3.10. This approximation of F(σ) is then substituted into equation 3.9 resulting
in equation 3.11.

F(σ) ≈ F(σ0) +
∂F(σ0)

∂σ
(σ − σ0) (3.10)

σ∗ = arg min
σ

(∥∥∥∥Vm − F(σ0)− ∂F(σ0)

∂σ
(σ − σ0)

∥∥∥∥2
)

(3.11)

By substituting J = ∂F(σ0)/∂σ, ∆σ = σ−σ0, and Ve = Vm−F(σ0) into equation
3.11, equation 3.12 can be formed.

σ∗ = arg min
σ

(
‖Ve − J∆σ‖2) (3.12)

Because J is severely rank-deficient, ∆σ needs to be recovered by means of Tikhonov
regularization the new minimization formulation and explicit solution to which are shown
in equation 3.13 and equation 3.14 respectively.

σ∗ = arg min
σ

(
‖Ve − J∆σ‖2 + α ‖Lσ‖2) (3.13)

∆σ =
(
JTJ + α2LTL

)−1
JTVe (3.14)

The conductivity estimate is then updated as shown in equation 3.15 until the error is suf-
ficiently minimized.

σ∗n+1 = σ∗n + ∆σ (3.15)

L is the regularization term, and its contribution is controlled by α. Herein, the unweighted
discrete Laplace operator is employed for regularization, but the identity matrix is another
common choice.
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L = Lij =


degree(Ωi) if i = j

−1 if i 6= j and Ωi is adjacent to Ωj

0 otherwise

(3.16)

L = Lij is a square matrix sized by the number of elements in the finite element mesh
of the forward problem. The ith value of the diagonal is equal to the number of elements
that share an edge in two dimensions or a side in three dimensions with the ith element. If
the ith and jth elements share an edge in two dimensions or a surface in three dimensions,
Lij = Lji = −1. All other entries are zero. Although subscript i and j previously ran over
the dimension of the domain, they are merely employed as generic indices to elucidate the
formation of L here.

Lastly, J, also known as the sensitivity matrix, is formed by enforcing the conserva-
tion of power through the electrodes and in the domain thereby relating electrode voltage
perturbations to conductivity perturbations as shown in equation 3.17 [61].

JMN e = −
∫

Ωe

∂uM

∂xi

∂ūN

∂xi
dΩe (3.17)

Computationally, MN is a single index of J and refers to the integral of the contraction of
the gradient of the voltage on the eth element due to current supplied by the Mth electrode
injection pair and the gradient of the voltage on the eth element due to the Nth adjoint field.
The adjoint field is the domain solution due to a unit current injection being supplied to the
Nth electrode measurement pair. This integral is evaluated over the eth element. This can
also be thought of as the sensitivity of the Nth electrode measurement pair due to a slight
conductivity perturbation of the eth finite element when the current is injected in the Mth
electrode pair. Detailed sensitivity matrix calculations for linear triangular and tetrahedral
elements can be found in Appendix B.

3.3.1.1 Convergence

Convergence is an important consideration for EIT. Given an appropriate initial estimate,
Gauss-Newton minimization techniques enjoy quadratic convergence. However, in light of
the underdetermined nature of the inverse problem, this is not seen in EIT. Nonetheless, it
has been demonstrated that iterative Gauss-Newton methods converge to a smaller error in
fewer iterations than other reconstruction methods [69] [70]. The convergence of Gauss-
Newton methods in EIT has been proven for appropriately selected regularizations [71].

The regularization parameter α2 is selected such that smooth convergence is obtained
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Figure 3.3: Left: representative convergence plot of experimental EIT. Right: voltage
difference measurements by the forward operator after convergence and the experimentally
measured voltages.

in the experimental EIT results throughout this document. Figure 3.3 shows a representa-
tive example of convergence obtained experimentally by plotting relative residual against
iteration number. Also shown in Figure 3.3 is a representative comparison of the volt-
ages predicted by the forward operator after convergence and the experimentally measured
boundary voltages.

3.3.1.2 Baseline Subtraction

The previously described Gauss-Newton EIT formulation reconstructs the absolute con-
ductivity distribution. This means the method tries to incrementally update the initial con-
ductivity estimate to match the true conductivity as closely as possible. However, absolute
conductivity reconstructions are typically not reported because even slight discrepancies in
electrode placement between the experiment and the forward operator can result in large
conductivity prediction errors. Consequently, the difference between images is typically
reported. This means that the domain is imaged at two distinct instances in time, and the
difference between these two reconstructions is presented. Because the errors due to elec-
trode placement discrepancies are common to both images, they subtract out. For example,
the domain could be imaged before damage and after damage. The undamaged case is often
referred to as the baseline state, and damage becomes evident by subtracting the baseline
from the damaged reconstruction. However, the baseline need not be the undamaged case.
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Figure 3.4: Representative EIT solution using the Gauss-Newton method on a quadrilateral
mesh.

3.3.2 Maximum a Posteriori Method

MAP estimates use a priori knowledge of measurement noise variance and conductivity
distribution covariance to linearize the difference between voltage measurements at two
times with a single step. This approach has the advantage of being exceptionally fast be-
cause the sensitivity matrix can be calculated offline, and MAP methods have excellent
noise rejection. However, they can fail if the difference between states cannot be well rep-
resented by a single-step linearization. Based on [72], voltage measurements are assumed
to be expressible as shown in equation 3.18.

vi = aiui + bi (3.18)

vi is the ith component of the vector of the measured voltages and ui is the ith component
of the vector of the true voltages. Random measurement noise is represented by ai and bi.
MAP algorithms try to find the difference in conductivity between measurements at times
t1 and t2. To that end, define zi as

zi =
v1
i − v2

i
1
2

(v1
i + v2

i )
. (3.19)

Expressing zi in terms of u1
i and u2

i results in
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zi =
u1
i − u2

i
1
2

(u1
i + u2

i )

1

1 +
2bi

1 + ai (u1
i + u2

i )

. (3.20)

Utilizing the voltage measurements in this form reduces the effect of additive noise by a
factor of 1/2ai

(
u1i + u2i

). The conductivity difference between the times is recovered as

∆σ =
(
JTR−1

n J + R−1
x

)−1 (
JTR−1

n z + R−1
x x∞

)
. (3.21)

Rn is a diagonal matrix of the noise power in each component of the signal, R−1
x is a

regularization parameter, and x∞ is a conductivity difference estimate.

3.3.3 Total Variation Regularization and the Primal-Dual Interior Point
Method

Total variation regularization adds a penalty term to the minimization problem shown in
equation 3.9 such that discontinuous conductivity distributions are not penalized and can be
recovered. Gauss-Newton minimization and MAP algorithms, conversely, favor smoothly
varying conductivity distributions resulting in blurry or smeared images. This is a result of
the quadratic nature of the minimization problem. Recovering discontinuous conductivity
distributions is a desirable property in applications such as medical imaging because or-
gans have clearly defined boundaries with distinct conductivities [73] [74] [75]. Damage to
a nanocomposite will also result in a discontinuity at the damage location; however, total
variation regularization methods are not as adept at recovering smoothly varying conductiv-
ities as produced by strain fields. The penalty term added to the minimization measures the
total amplitude of the oscillations of a function and is called the total variation functional
as shown in equation 3.22 [61].

TV(σ) =

∫
Ω

|∇σ| dΩ (3.22)

Adding equation 3.22 as a penalty term in equation 3.9 results in the following mini-
mization problem.

σ∗ = arg min
σ

(
‖Vm − F(σ)‖2 + TV(σ)

)
(3.23)

Conductivity is recovered from equation 3.23 by a flavor of primal-dual linear program-
ming. The PDIPM algorithm was developed for inverse problems with linear forward op-
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erators [76]. Quite succinctly, primal-dual methods endeavor to minimize some primary
problem such as equation 3.23 subject to some dual problem constraints, and primal-dual
methods proceed by iteratively improving a dual feasible point until a primal feasible point
can be found satisfying the constraints. Much more thoroughly treated in [61] [73], the
system of nonlinear equations that defines the PDIPM for EIT are shown below.

‖yi‖ ≤ 1 (3.24)

JT (F(σ)−Vm) + αTTσ = 0 (3.25)

Tσ − Ey = 0 (3.26)

Here, E = diag
(√
‖Tiσ‖2 + β

)
, β is a centering parameter, and T is the discrete form of

the total variation operator. That is, Tσ = TV (σ). Initial estimates of σ and y are updated
iteratively as shown in equation 3.27 where K = diag (1− yiTiσ/Eii).[

JTJ αTT

KT −E

][
∆σ

∆y

]
= −

[
JT (F(σ)−Vm) + αTTy

Tσ − Ey

]
(3.27)

Subscripts in the preceding denote the ith entry of a vector, the ith row of a matrix, or in
the case of a repeated subscript, the ith term of the main diagonal of a matrix. Summation
is not implied by repeated subscripts.

Despite the potential of total variation regularization and the PDIPM to recover dis-
continuous conductivities as induced by damage, they are not employed herein because
they are not nearly as robust as Gauss-Newton methods. Recovering ∆y from equation
3.27 also requires carefully implemented line search algorithms. Such tediousness makes
the PDIPM less palatable from a computational point of view for integrated SHM. Hallaji
et al. [77] did, however, use total variation regularization for the detection of damage to
copper skins on cementitious structures.
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CHAPTER 4

Nanocomposite Conductive Properties

4.1 Introduction

Because nanocomposites depend on nanofiller networks for electrical conductivity, they
exhibit unique conductive properties. Mechanical and electrical/thermal loading, for ex-
ample, can result in appreciable if not substantial conductivity changes. Similarly, the
directionality of the nanofiller network or lack thereof can markedly influence electrical
diffusivity. Understanding these phenomena is therefore not only critical to successfully
employing conductivity-based SHM but also to later enhancing EIT.

Nanocomposite piezoresistivity has received considerable attention from a modeling
and prediction perspective for the development of high sensitivity strain sensors [7] [38]
[50] [78]. These modeling efforts, however, have been exclusively concerned with piezore-
sistive response to tensile or compressive strain and often limited to microscale analyses
whereas, ideally, a robust piezoresistivity model should be more general and amenable to
structural-scale analyses. Certainly a structural-scale piezoresistivity model is required if
nanocomposites are ever to be implemented at large scales for conductivity-based SHM.
A gap therefore exists in state of the art piezoresistivity modeling between what is needed
and what currently exists.

Another interesting property of nanocomposite conductivity is electrical anisotropy in-
duced by nanofiller alignment. Advances in nanomanufacturing have enabled microscale
alignment in nanocomposites by means of mechanical forces, electric or magnetic fields,
shear flow, or electro-spinning [32]. For example, Sharma, Bakis, and Wang studied how
carbon nanofibers could be aligned and chained in epoxide [79]. Thostenson and Chou
extruded polymer melts through rectangular die prior to cooling to produce highly aligned
nanocomposite films [80]. With respect to structural composites, Gungor and Bakis ap-
plied strong electric fields through the thickness direction of glass fiber/epoxy compos-
ite plates with carbon black filler prior to curing in order to induce networking through
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the thickness direction. They found this increased the through-thickness conductivity by
a factor of 104 [81]. Domingues, Logakis, and Skordos applied electric fields to align
CNTs in glass fiber reinforced thermosetting composites. They found that alignment in-
creased through-thickness conductivity by an order of magnitude but the in-plane con-
ductivity was unaffected [82]. Studies such as the preceding are of keen interest from a
SHM and damage identification perspective because the influence of microscale nanofiller
alignment on structural-scale damage identification is relatively unexplored. However, the
prospect of microscale alignment also poses important challenges. For example, many
conductivity-based SHM techniques depend on in-plane measurements; that is, nanofillers
may be aligned through the thickness direction of composite plates, but SHM measure-
ments are not made through the thickness direction. This is certainly the case for tomo-
graphic approaches. Percolation probability, critical volume fraction, and conductivity
transverse to the alignment direction are therefore pressing considerations. Without per-
colation, conductivity-based SHM will not be possible because conductivity-based SHM
depends on the existence of a well-connected nanofiller network. And with excessive resis-
tivity in the measurement direction, conductivity-based SHM will require the application
of prohibitively large voltages thereby effectively nullifying its practicality. In light of the
preceding discussion, another important gap in the state of the art is identified: properties
transverse to the alignment direction have not yet been dutifully investigated.

The response of nanocomposites to electrical loading is varied. Loh et al. [83] reported
a drift in voltage taken while using a CNT thin film strain sensor. In this case, the con-
ductivity of the composite increased, and this was speculated to be due to Joule heating
of nanotubes activating electrons to tunnel between filler junctions. Cardoso et al. [84]
also found the conductivity of CNF/epoxy to increase with temperature. However, Ku-
mar et al. [85] and Qilin et al. [86] both reported a decrease in conductivity of a CNF
nanocomposite under electrical loading due to thermal expansion of the matrix increasing
the distance between filler junctions. Because of the disparities in nanocomposite response
to electrical loading, it is important to characterize how conductivity evolves for a particular
nanocomposite prior to employing it.

This chapter addresses the preceding limitations. First, an analytical piezoresistivity
model is developed for arbitrarily strained MWCNT nanocomposites with low filler aggre-
gation. Because of its analytical formulation, this model is amenable to the finite element
formulation and therefore enables structural-scale piezoresistive analysis. Next, the influ-
ence of nanofiller alignment on transverse conductivity, percolation, and rate of transition
from non-percolating to percolating is studied through the development of an equivalent re-
sistor network model. And, lastly, the mechanism of electric loading-induced conductivity
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evolution in CNF/epoxy is studied experimentally.

4.2 Nanocomposite Piezoresistivity

4.2.1 Mechanisms of Piezoresistivity

Nanocomposite piezoresistivity is rooted in the dependence of nanocomposite conductiv-
ity on the formation of electrically percolated nanofiller networks. Electrical percolation
refers to a nanofiller network being sufficiently well distributed and connected that elec-
trons can travel from filler-to-filler and throughout the nanocomposite. However, even in
well-connected nanofiller networks, the fillers are not in direct physical contact but sepa-
rated by a thin layer of matrix material. Electrons are able to tunnel through this matrix
layer and between sufficiently proximate fillers thereby enabling composite conductivity.
Electron tunneling is the origin of piezoresistivity in nanocomposites because the equiva-
lent resistance between neighboring fillers is a function of their separation [38] [87].

Rtunnel =
h2t

Ae2
√

2mϕ
exp

(
4πt

h

√
2mϕ

)
(4.1)

In equation 4.1 h is Planck’s constant, t is the distance between fillers, A is the overlap-
ping area between fillers, m is the mass of an electron, e is the charge of an electron, and
ϕ is the potential barrier height between fillers. Because nanofillers are themselves ex-
tremely conductive, the equivalent resistance between fillers dominates the resistivity of
the nanocomposite. This means that electrical connectedness between fillers and therefore
nanocomposite conductivity is not binary but depends on filler-to-filler proximity.

In the simplest interpretation, strain will alter the spacing between fillers thereby al-
tering the equivalent resistance between fillers. However, upon closer scrutiny, piezoresis-
tivity is more nuanced; strain will also influence the filler volume fraction and degree of
filler randomness [88]. Filler volume fraction and randomness in turn influence the perco-
lation probability and critical volume fraction respectively, and these factors influence the
composite conductivity.

4.2.2 State of the Art Conductivity and Piezoresistivity Models

Existing models of CNT composite conductivity and piezoresistivity can be categorized as
either equivalent resistor network based, percolation theory based, or analytical. Treated
more diligently later, resistor network methods employ statistical methods of placing sticks
within two or three-dimensional domains until a desired volume or weight fraction is
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reached [7] [38] [50] [89]. An equivalent resistor network is formed from the intrinsic
CNT resistance and the tunneling resistance between neighboring CNTs that are less than
the tunneling cutoff distance apart. Such models are well-suited to incorporate piezoresis-
tivity with the addition of fiber reorientation. Strain reorients CNTs increasing inter-filler
spacing and degrading percolated networks into non-conductive networks [88]. Compar-
ison of resistance before and after strain determines the piezoresistivity of the composite
for the volume fraction and filler parameters being investigated. Resistor network models
provide exceptional physical insight into piezoresistive trends; however, due to the extreme
number of sticks needed to form a percolated network, they are computationally burden-
some and limited to extremely small scales not suitable to macroscale structural analysis.
Additionally, fiber reorientation considers only uniaxial strain whereas an ideal piezoresis-
tivity model should be more general.

Percolation based piezoresistivity models such as the one developed by Cattin et al. [78]
modify percolation power laws with parameters extractable from experiments. This method
has had considerable success in modeling negative piezoresistivity and has successfully
been fit to a lot of independently collected experimental data. Again, however, these models
consider only uniaxial tension or compression.

Analytical conductivity models derive explicit functions of filler parameters and assume
an average inter-filler spacing [90] [91]. Takeda, Shindo, Kuronuma, and Narita developed
an analytical expression for CNT composite conductivity as a function of σm matrix con-
ductivity, σf filler conductivity, v volume fraction, vc critical volume fraction, df filler
diameter, lf filler length, λ filler waviness ratio, and ξ percent network percolation [91].

σc = σm +
4ξvlf

3πλ2d2
f

(
4lf

πd2
fσf

+
h2t

Ae2
√

2mϕ
exp

(
4πt

h

√
2mϕ

)) (4.2)

The percent network percolation ξ is an approximation independent of filler aspect ratio.

ξ =
v1/3 − v1/3

c

1− v1/3
c

(4.3)

Analytical conductivity models have had success in predicting CNT composite conductiv-
ity, but no work has been done to incorporate piezoresistivity.
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4.2.3 Development of an Analytical Piezoresistivity Model

The insights of Takeda, Shindo, Kuronuma, and Narita [91] are leveraged by incorporat-
ing the influence of strain into their analytical conductivity model. To begin, the network
percolation approximation ξ is replaced by the power-law developed in percolation theory.

P = K(v − vc)ψ (4.4)

According to percolation theory, ψ = ψ (lf/df) = 0.4 in three-dimensional systems when
the filler satisfies lf/df = 1, and K is a constant of proportionality selected to ensure the
percolation probability is one when the volume fraction equals one [92] [93]. According
to Takeda, Shindo, Kuronuma, and Narita [91], the average inter-filler spacing is related to
the volume fraction through a power-law in which the fillers become closer together as the
volume fraction increases, t = αvβ [89] [91]. This is modified as

t = α (v − vc)β [nm] (4.5)

ensuring that fillers transition abruptly from distant to proximate as the volume fraction
exceeds the critical volume fraction. This modification also allows factors that influence
critical volume fraction such as filler alignment and length to affect the inter-filler spacing.

The model herein developed assumes that filler parameters and composite conductivity
versus weight fraction are known. Additionally, only filler volume fractions exceeding
the critical volume fraction are considered. Piezoresistivity is incorporated into equation
4.2 by updating the volume fraction and critical volume fraction to reflect the strain state.
Knowing the strained volume fraction and strained critical volume fraction, the percolation
probability and average inter-filler spacing are recalculated. First, consider the volume
fraction

v =

w

ρf

w

ρf
+

1− w
ρm

(4.6)

as a function of the filler weight fraction w, filler mass density ρf , and the matrix mass
density ρm [50] [91]. Because CNTs have a much higher modulus of elasticity than poly-
mers, it can be assumed that they are rigid rendering the filler density constant while the
matrix density changes due to strain. Let Uij = δij + εij where δij is the Kronecker delta
and εij is the infinitesimal strain tensor formed from the symmetric part of the gradient of
the displacement.
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εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(4.7)

Volumetric strain is defined as (V − V0)/V = det |Uij| − 1. Geometric considerations are
then employed to relate deformed matrix density to volumetric strain as follows.

ρm deformed =
(1− v)ρm

det |Uij| − v
(4.8)

Strain also degrades electrically connected networks through filler translation and reori-
entation decreasing percolation probability. In uniaxial tension, fillers reorient in a manner
favoring the direction of the load [88]. Networks of CNTs with a preferred orientation have
higher critical volume fractions due to the decreased likelihood of aligned fillers being in
contact to form a connected network [94] [95] [96]. The excluded volume approach has
had success in predicting critical volume fractions [50] [97], but here it is utilized to track
the degradation of CNT networks due to strain. Excluded volume is the volume around a
CNT through which the centerline of another CNT cannot enter to avoid penetration. The
theory asserts that critical volume fraction is linked to the excluded volume of the filler
rather than the true volume of the filler. The average excluded volume for a spherocylinder
is

〈Ve〉 =
4π

3
d3
f + 2πd2

f lf + 2df l
2
f 〈sin(γ)〉µ (4.9)

and the total average excluded volume for high-aspect ratio stick fillers is known to be in
the range 1.4 ≤ 〈Vex〉 ≤ 2.8 [97] [98]. The lower limit corresponds to randomly oriented
sticks of infinite aspect ratio and the upper limit corresponds to perfectly aligned sticks
or spheres. The volume of a spherocylinder CNT is denoted as V . The predicted critical
volume fraction takes the following form.

vc = 1− exp

(
−〈Vex〉V
〈Ve〉

)
(4.10)

Filler orientation is accounted for by 〈sin(γ)〉µ. Let (θi, φi) orient the axis of the ith CNT
in spherical coordinates. The CNT is allowed to take any value of φi while θi is limited
to −θµ ≤ θ ≤ θµ and is considered to be randomly oriented if θµ = π/2 and perfectly
aligned if θµ = 0. Let γ be the angle between the ith and jth fillers. The average of
sin(γ) over all (θi, φi) and (θj , φj) is 〈sin(γ)〉µ. Calculating 〈sin(γ)〉µ explicitly is quite
tedious, but it can be well approximated by Monte Carlo integration techniques for random
values of [cos(θi), cos(θj), φi, φj] in sin(γ) = ‖ui × uj‖ = [1− ui · uj]

1/2 where ui =

[sin(θi) cos(φi), sin(θi) sin(φi), cos(θi)]
T . Exact values of 〈sin(γ)〉µ are known to be 0
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Figure 4.1: Fitting of Monte Carlo calculated 〈sin(γ)〉µ as a function of θµ.

and π/4 for θµ = 0 and θµ = π/2 respectively [98]. Fitting the Monte Carlo integration
technique to a polynomial results in equation 4.11 and is shown in Figure 4.1.

〈sin(γ)〉µ = 0.018θ5
µ + 0.021θ4

µ − 0.234θ2
µ − 0.015θ2

µ + 0.909θµ. (4.11)

Deformation is incorporated into critical volume fraction through the use of principal
strains. Principal strains are the eigenvalues of the infinitesimal strain tensor εij and repre-
sent the transformation from an arbitrary strain state to a shear free state of pure tension or
compression. Recalling that fillers reorient in a manner that favors the direction of uniaxial
tension, filler randomness should decrease as the largest principal strain increases. This
relation is expressed as follows.

sin (θµ) =
1 + ε3

1 + ε1

(4.12)
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Here, ε1 and ε3 are the first and third principal strains obeying ε1 ≥ ε2 ≥ ε3. The fillers
are initially randomly oriented implying θµ = π/2 and 〈Vex〉 = 1.4. To retain an easily im-
plementable model, a simple linear relation between the deformed 〈Vex〉 and the deformed
〈sin(γ)〉µ is assumed.

〈Vex〉 = 2.8− 5.6

π
〈sin(γ)〉µ (4.13)

This form ensures the upper and lower limits on 〈Vex〉 are satisfied for random and aligned
networks, and the assumed linear dependence of 〈Vex〉 on 〈sin(γ)〉µ is justified as follows.
According to excluded volume theory [98], the total excluded volume of a system is given
as 〈Vex〉 = 〈Ve〉Nc where Nc is the critical concentration of fillers and Nc ∝ 1/l2fdf for
high aspect-ratio fillers such as CNTs. From equation 4.9, the product of 〈Ve〉 and Nc is a
function of lf , df , and linear in 〈sin(γ)〉µ. Since CNTs have been assumed to be rigid, their
dimensions do not change and 〈Vex〉 only depends linearly on 〈sin(γ)〉µ.

Variations in tunneling resistance contribute significantly to CNT composite piezoresis-
tivity due to exponential dependence on inter-filler spacing [7] [87] [99]. The dependence
of inter-filler spacing on strain is modeled by first recalculating equation 4.5 with the pre-
viously discussed strained volume fraction and strained critical volume fraction. This rep-
resents the average inter-filler spacing of an unstrained nanocomposite manufactured with
the same volume fraction and critical volume fraction as is induced by straining. Next,
let the average inter-filler spacing increase by the first principal strain when the volume
fraction decreases. Conversely, the average inter-filler spacing decreases by the third prin-
cipal strain when the volume fraction increases. This can be expressed by the following
conditionals where vs is the strained volume fraction.

t =


(1 + ε1)α(v − vc)β [nm] if v/vs > 1

(1 + ε3)α(v − vc)β [nm] if v/vs < 1

α(v − vc)β [nm] if v/vs = 1

(4.14)

For a prescribed strain state, the strain-dependent parameters can be recalculated and equa-
tion 4.2 resolved for the new conductivity.

4.2.4 Comparison of Analytical Predictions to Experimental Litera-
ture

The analytical model is tested by comparison to the experimental results of Hu et al. [7] that
provides manufacturing data consistent with the assumptions such as filler length (lf = 5
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Figure 4.2: Fitting of piezoresistivity model to experimental data of Hu et al. [7] to deter-
mine unstrained parameters α and β.

µm), diameter (df = 50 nm), conductivity (σf = 104 S/m), and composite conductivity
versus weight fraction. Additionally, the same numerical parameters are used as in their
simulations such as straight CNTs (λ = 1.0) and potential barrier height (ϕ = 1.5 eV).
The parameters α and β are selected to fit equation 4.5 to the experimental data. Figure 4.2
shows the results of this curve-fitting where α = 0.702 and β = −0.039.

Consider a prismatic member in uniaxial tension with modulus of elasticity E = 2.4

GPa, Poisson’s ratio ν = 0.35, ρm = 1100 kg/m3, and ρf = 2100 kg/m [38] [50] [100].
Elementary mechanics dictates that the infinitesimal strain tensor will have non-zero com-
ponents only along the diagonal with ε11 = σ11/E and ε22 = ε33 = −νε11. The stress σ11

is selected to generate the desired strain and the predicted resistance change ratio ∆R/R0 is
plotted against strain in Figure 4.3.

Examination of Figure 4.3 shows that the model predicts piezoresistive response very
well for the entire tensile strain range and for compressive strain up to approximately -4000
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Figure 4.3: Comparison of analytical piezoresistivity model to experimental results of Hu
et al. [7].
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micro-strain. It shows a weakly nonlinear resistance change ratio that is corroborated ex-
perimentally by other researchers [37] [101]. The experimental results of Hu et al. [7]
for weight fractions exceeding 2% are also predominantly linear in the range of -4000
to 6000 micro-strain, and the accuracy of the model developed in this chapter over this
range exceeds the accuracy of existing resistor network/fiber reorientation models. How-
ever, piezoresistive saturation is not captured. Piezoresistive saturation occurs when the
CNTs cannot move closer together, and the conductivity does not change with increas-
ing compression. For the experiment cited in Figure 4.3, this occurs from -4000 to -6000
micro-strain. Additionally, for lower weight fractions, the experimental piezoresistive re-
sponses are more non-linear than predicted. Both of these artifacts are limitations of an
average inter-filler spacing model. Some CNTs are much closer together than the average
spacing predicts and consequently saturate with little applied strain whereas the average
inter-filler spacing will not saturate within the limits of elastic deformation. Alternatively,
some CNTs are much further apart than the average spacing predicts. Since the tunneling
resistance depends exponentially on the inter-filler spacing, CNTs with inter-filler spac-
ing much larger than the average will experience markedly greater changes in tunneling
resistance for the same strain. Because better agreement is achieved at higher weight frac-
tions, it can be deduced that the spacing between any two neighboring CNTs more closely
matches the predicted average inter-filler spacing as weight fraction increases.

4.2.5 Finite Element Integration

Using CNT nanocomposites for self-sensing structures requires a piezoresistivity model
that can be applied through existing tools of structural engineering. The model developed
is readily adapted to finite element analysis by treating each element as a distinct domain
whose change in conductivity can be determined by its nodal displacements. The gradient
of the displacement field takes the following form in finite element analysis with linear
tetrahedral elements.

∂uie
∂xj

=
4∑

A=1

dAie
∂wA
∂ζk

∂ζk
∂xj

(4.15)

Here, dAie is the finite element displacement solution of the Ath node belonging to the eth
element and repeated indices imply summation. The finite element interpolation functions
are linear and denoted as wA. Lastly, recognize ∂ζk/∂xj as the inverse of the Jacobian matrix
the jkth element of which is expressed as follows.
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Figure 4.4: A 1 m beam with a 0.2 m diameter circular cross-section clamped at the left
end and displaced downward by 0.01 m at the right end. Displacement is magnified by a
factor of ten for visibility. The beam has the same material properties as used to generate
Figure 4.3 at 2 wt.%. Note that the conductivity decreases where the beam is in tension
and increases where the beam is in compression. The conductivity change is not symmetric
(i.e. of equal change in magnitude in tension and compression) because of the exponential
nature of the equivalent resistance between fillers.

∂xj
∂ζk

=
4∑

A=1

xAje
∂wA
∂ζk

(4.16)

The conductivity change due to a prescribed strain state can now be calculated on an ele-
mental level. An example of the piezoresistivity model integrated with a finite simulation
is shown in Figure 4.4.

4.3 Nanofiller Alignment

4.3.1 State of the Art Alignment Modeling

Rather than relying on experiments to study the influence of manufacturing parameters on
nanocomposite conduction properties, considerable effort has been dedicated to electrically
modeling nanocomposites. A popular approach involves placing individual fillers within a
micro-domain until a desired volume fraction is reached [38] [7] [50] [95] [102] [103] [104]
[105] [106] [107] [108] [89] [109] [110] [99]. The fillers are then treated as resistor ele-
ments with filler-to-filler junctions bridged by additional resistor elements the resistances of
which are determined by, among other factors, the length of the filler-to-filler junction. This
approach, while conceptually simple, has proven powerful in both its predictive capabili-
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ties and amenability to filler alignment [95] [103] [104] [106] [107] [89], filler clustering
and aggregation [104] [108], and piezoresistivity [38] [7] [110]. With regard to systems
of aligned fillers, studies have been conducted in two-dimensional [95] [106] [107] [89]
and three-dimensional systems [7] [103] [104] [109]. Du et al. [95] examined the in-
fluence of nanofiller alignment on conductivity and percolation in two-dimensional sys-
tems and stacked sequences of two-dimensional systems. This research was motivated
by thin, stacked nanocomposite films for transistors and flexible electronics. They found
that conductivity exhibits a power-law dependence on alignment as well as loading. Fur-
thermore, maximum conductivity is achieved for neither completely random nor highly
aligned fillers. But, rather, it occurs for a certain degree of alignment between extremes.
This study also included measurements at an angle with respect to the alignment direction.
Thostenson et al. [106] studied the influence of filler alignment on conductivity in two-
dimensional systems motivated by anisotropy induced by the presence of structural fibers.
Li and Chou [107] examined the influence of nanofiller alignment on conductivity for both
straight and wavy fillers in two-dimensional systems. Bao et al. [103] and Bao et al. [104]
conducted studies in three-dimensional systems. They also found that the maximum con-
ductivity in the alignment direction occurs for partially aligned fillers. Hu et al. [7] studied
the influence of alignment on strain sensor sensitivity. Rahman and Servati [89] used two-
dimensional simulations to study the influence of filler alignment on minimum inter-tube
distance, inter-tube tunneling resistances, and sensitivity to mechanical strain. Of the pre-
viously cited studies, only Du et al. [95] examined percolation transverse to the alignment
direction and this was limited to a two-dimensional case.

4.3.2 Development of an Equivalent Resistor Network Nanocomposite
Model

For comparison to experimental literature [50] [111] [112], MWCNTs with length lf = 5
µm and diameter df = 50 nm are herein simulated. The CNTs are assumed to be straight
and modeled by their centerlines. The first endpoint of a CNT is randomly placed within a
10 µm× 10 µm× 10 µm cube. Using spherical coordinates, the second endpoint of a CNT
is placed in the (x̃, ỹ, z̃) domain according to equation 4.17.

x̃2 = x̃1 + lf cos(θ) sin(φ)

ỹ2 = ỹ1 + lf sin(θ) sin(φ)

z̃2 = z̃1 ± cos(φ)

(4.17)
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θ is randomly selected such that 0 ≤ θ ≤ 2π, cos(φ) is randomly selected such that
cos(φm) ≤ cos(φ) ≤ 1, and ± indicates that lf cos(φ) is randomly added or subtracted
from z1. The degree of alignment is controlled by φm. As depicted in Figure 4.5, CNTs
must exist in one of two spherical cones the center of which is located at (x̃1, ỹ1, z̃1). As
φm goes to zero, the fillers become perfectly aligned in the z̃-direction. Alternatively, as
φm goes to 90◦, the spherical cones coalesce into a sphere and the CNTs are completely
random. Examples of random and aligned nanofiller networks are shown in Figure 4.6.

Soft-core CNTs that are allowed to penetrate each other continue to be generated until
the desired volume fraction is reached. Soft-core CNTs are used in this simulation because
of the considerable reduction in computational time compared to hard-core fillers. While
allowing fillers to penetrate each other is seemingly a physical impossibility, as noted by
Yu, Song, and Sun [99], a hard-core model leads to high rejection rates during nanofiller
generation whereas physical nanofillers can easily bend at apparently overlapping junctions
due to their high aspect ratios thereby avoiding penetration.

Furthermore, some CNTs will inevitably extend beyond the boundaries of the 10 µm ×
10 µm × 10 µm cube, and following the generation sufficiently many fillers to reach the
prescribed volume fraction, these fillers are trimmed such that they end on the cube faces.
As opposed to enforcing symmetric boundaries [104], this ensures that even for the same
prescribed filler volume fraction, different simulations will have very slight differences
in volume fractions remaining in the cube. This approach is favored over the symmet-
ric boundary approach because real, physical nanocomposites have the same microscale
variation in filler volume fraction. Representative examples of filler networks for different
degrees of alignment are shown in Figure 4.6.

After the CNTs are generated and trimmed, standard geometric principles for calcu-
lating the shortest distance between two arbitrary line segments are employed in order to
calculate the shortest distance between every pair of fillers. Consider two arbitrary fillers
and let t be the minimum distance between them. Once t is calculated, three possibilities
exist. First, if t > df + dt where dt is the tunneling cutoff distance (dt =1 nm [7]), the
two fillers in consideration are not electrically connected. If a CNT is not electrically con-
nected to any other CNTs, it is considered to be electrically isolated and eliminated from
the simulation because it does not contribute to the nanocomposite conductivity. Second,
if df + dm ≤ t ≤ df + dt where dm is an approximate value of the equilibrium distance be-
tween CNTs in a polymeric matrix under Lennard-Jones or van der Waals forces (dm = 0.5
nm [7] [113]), there is a junction for electron tunneling between the two fillers in consider-
ation. The tunneling resistance is calculated as shown in equation 4.1. It is herein assumed
that the filler overlap area is approximately equal to the CNT cross-sectional area. And,
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Figure 4.5: Depiction of filler placement within spherical cones. CNT shown in red.
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Figure 4.6: Representative random and aligned CNT networks. CNTs shown in red.

third, if t < df + dm, the fillers are either penetrating, in contact, or closer than allowable
by equilibrium conditions. In this case it is still assumed that a tunneling junction exists,
but now equation 4.1 is calculated with t = dm.

CNTs not eliminated due to isolation are discretized into finite elements by nodes at
their endpoints and nodes generated at the tunneling junctions. Elements belonging to
fillers have resistances due to the intrinsic resistivity of CNTs. This is calculated as follows.

Re =
4le

πd2
fσCNT

(4.18)

In the preceding equation, le is the element length and σCNT is the CNT conductivity. It is
also possible, however, for fillers to not contribute to the nanocomposite conductivity and
not be electrically isolated. This occurs when a group of fillers either form a chain or a
closed loop without connection to a CNT network spanning the domain. Such groups can
be eliminated by first identifying all of the elements that have a node on opposing faces
of the cube. Next, all of the elements that share a node with elements that have a node
on opposing faces of the domain are identified and grouped with the previously identified
elements. This process of identifying elements that share a node with the previously iden-
tified elements continues until there is no change in the group of stored elements. Elements
not stored are eliminated, and even for dense filler networks, this approach to eliminating
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isolated filler groups is quite expeditious. For visual elucidation, a schematic depicting the
discretization of two fillers within the tunneling distance is provided in Figure 4.7.

After calculating elemental resistances of nanofillers and tunneling junctions, the finite
element method is employed to determine the total resistance of the nanofiller network.
The finite element stiffness matrices for resistor elements can be formed by considering a
single resistor element in isolation as shown in Figure 4.7. By Ohm’s law and following the
direction of current flow indicated by the arrow, the current in node 1 is I1 = 1

Re
(V1 − V2)

and the current in node 2 is I2 = 1
Re

(V2 − V1). These two relations can be expressed in
matrix form as follows. [

I1

I2

]
=

1

Re

[
1 −1

−1 1

][
V1

V2

]
(4.19)

Therefore, the elemental stiffness matrix of the eth resistor element takes the following
form.

Ke =
1

Re

[
1 −1

−1 1

]
(4.20)

Elemental contributions are then assembled into the global problem, KV = I, via
standard finite element assembly procedures wherein Kirchhoff’s current law at each node
is satisfied through additive contributions of resistor element matrices. Dirichlet boundary
conditions of 1 V and 0 V are applied on opposing faces of the cube and the global stiffness
matrix is inverted by applying standard finite element procedures for boundary conditions
to recover the voltage at every node in the domain. The magnitude of the resulting current
in the eth resistor element can be found from equation 4.21.

Ie =
1

Re

|V1 − V2| (4.21)

V1 and V2 are the voltages of the two nodes belonging to the eth element. The total current
entering the domain can be calculated by summing the current in elements touching the face
on which 1 V was applied. The total resistance of the nanocomposite is then calculated via
Ohm’s law, and the conductivity is found by knowing the domain dimensions.

4.3.3 Influence of Alignment on Conductivity and Percolation

The model is tested for random, unaligned MWCNT networks by comparing its predictions
to experimental literature [50] [111] [112] using ϕ = 1.5 eV and σCNT = 104 S/m [38] [7].
The values of simulation parameters are representative of MWCNTs and are selected from

49



Figure 4.7: Left: schematic representation of two fillers (shown in red) discretized into
resistor elements with a tunneling junction (shown in green). Right: depiction of current
and voltages at nodes for derivation of finite element matrices.

Hu et al. [7] for comparison to experimental predictions. This comparison is shown in
Figure 4.8. Because of the excellent agreement between the model and experimental data,
there is confidence in its predictive capabilities and next the influence of alignment on
conductivity in both the aligned and transverse directions is examined for φm = 15◦, 30◦,
45◦, 60◦, and 75◦ as also shown in Figure 4.8. Consistent with observations by other
researchers [95] [103] [104] [107], these results indicate that the greatest conductivity in
the alignment direction is not achieved for the most highly aligned fillers. Also note that
Figure 4.8 only shows conductivities for volume fractions exceeding the critical volume
fraction.

Next, the influence of alignment on percolation probability in the transverse direction
is examined. The simulation is considered to have percolated if a path of electrically con-
nected CNTs exists which spans opposite sides of the domain transverse to the alignment
direction. For each volume fraction considered, the simulation is run one hundred times.
The percolation probability is then plotted against the volume fraction for φm = 15◦, 30◦,
45◦, 60◦, 75◦, and 90◦, and the simulation results are fit to a sigmoid curve the equation for
which is shown in equation 4.22.

P (v) =
1

1 + e−β(v−vc)
(4.22)

Here, v is the filler volume fraction and vc is the critical filler volume fraction. The exponent
β and the critical filler volume fraction are determined by the curve-fitting process, and the
results of this analysis can be seen in Figure 4.9. Because the most interesting aspect of
this analysis is the volume fraction at which each curve transitions from non-percolating
to percolating, the volume fraction step size is refined near the critical volume fraction.
Furthermore, although percolation probability is traditionally expressed as P (v) ∝ (v −
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Figure 4.8: Left: comparison of model predictions for random, unaligned CNT networks
and experimental literature. Right: model predictions of conductivity in the transverse
(triangles) and aligned (circles) directions.

vc)
β [92] [93], these simulation results are instead fit to the sigmoid function because it

can accommodate the entirety of the data (i.e. the non-percolating region) and therefore
objectively select the critical volume fraction as a fitting parameter.

Valuable new insights regarding percolation transverse to the alignment direction can
be obtained by plotting the curve-fitting parameters of equation 4.22 as shown in Figure
4.10. First, an exponential dependence of vc on cos(φm) is observed as vc ∝ (cos(φm))α

Second, an additional exponential dependence of β on cos(φm) is observed as β/β90◦ ∝ 1−
(cos(φm))α. Note, however, that the exponent α in the preceding should not be interpreted
as being equal in both instances. Rather, α is used as a generic term. The exponential
dependence of vc on cos(φm) implies that much higher filler volume fractions are needed
to ensure percolation in the transverse direction for even moderate alignment increases
especially beyond φm = 30◦. From a conductivity-based SHM material design perspective,
this insight is particularly valuable. It implies that over-aligning fillers not only decreases
the conductivity in the alignment direction but also markedly hinders the formation of
percolating networks transverse to the alignment direction. Even increasing alignment from
φm = 30◦ to φm = 15◦ approximately doubles the critical volume fraction thereby adding
tremendous monetary cost to the material manufacturing process.

The second insight from these simulations regards the pronounced decay of the expo-
nent β with increasing alignment; namely, β/β90◦ ∝ 1 − (cos(φm))α. Physically, larger
values of β correspond to more rapid transitions from non-percolating to percolating. By
normalizing the results in Figure 4.10 by β90◦ , it can be seen that there is a progressively
slower transition from non-percolating to percolating as alignment increases. A similar
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Figure 4.9: Transverse percolation probability simulation results (circles) and curve-fitting
to sigmoid functions (lines).

trend is observed in the two-dimensional simulations of Du et al. [95]. Further insight can
be gained by recognizing that the form of the proportionality for β/β90◦ is reminiscent
of a result in percolation theory by Balberg et al. [114], P⊥ ∝

∑N
i=1

[
1− (cos(θi))

2]1/2.
Here, P⊥ is the sum of the projections of the fillers in the transverse direction for N fillers
and −θµ ≤ θi ≤ θµ where θµ is an angle governing the filler alignment not unlike φm as
used in the simulations in this section. Employing the identity sin2(θi) + cos2(θi) = 1,
P⊥ can be rewritten as P⊥ ∝

∑N
i=1 sin(θi). This result implies some relationship exists

between the rate of transition from non-percolating to percolating transverse to the align-
ment direction and the projection of the nanofillers in the transverse direction which can be
elucidated by plotting β/β90◦ against sin(φm). This is shown in Figure 4.10 where β/β90◦

displays a decidedly linear dependence on sin(φm) as evidenced by the curve-fitting pro-
cess (R2 = 0.9945). This linear dependence suggests that the rate of transition from non-
percolating to percolating depends directly on the projection of the length of the filler in
the transverse direction.

Next, the influence of alignment on conductivity in both the transverse and alignment
directions as a function of φm is considered as shown in Figure 4.11. Again, consistent with
the observations of other researchers [95] [103] [104] [107], the maximum conductivity in
the alignment direction does not occur when the fillers are most highly aligned. And, as
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Figure 4.10: Left: curve-fitting transverse parameters β and vc as a function of cos(φm).
The exponent values are normalized by β90◦ . Right: β/β90◦ as a linear function of sin(φm).

also observed by Bao et al. [103], the angle of alignment at which maximum conductivity in
the alignment direction is achieved is not the same for each volume fraction. Rather, higher
volume fractions require higher degrees of alignment to achieve maximum conductivity in
the alignment direction. Examining the left-most plot of Figure 4.11, it can be seen that
there is a sharp drop in transverse conductivity as the alignment exceeds φm = 30◦. This
implies that seeking maximum conductivity in the alignment direction can markedly reduce
transverse conductivity; rather, a slightly lower alignment value will still enhance alignment
conductivity but without great detriment to the transverse conductivity. Please note that
filler volume fractions of vf = 0.01, 0.02, and 0.03 do not have transverse conductivities
plotted for alignments that did not percolate.

As depicted in Figures 4.10 and Figure 4.11, the simulations indicate that alignment
results in a general degradation of percolation and conductivity transverse to the alignment
direction, and this trend is only exacerbated as nanofillers become even more aligned. The
physical mechanism for this degradation is speculated to be decreased nanofiller projection
in the transverse direction or, synonymously, increased dependence on electron tunneling
junctions. To better envision this, consider an electron traveling along a highly-aligned
nanofiller network in the alignment direction. Because the nanofillers are much more dis-
posed to run in the alignment direction, the electron can travel almost the entire length of
the nanofiller before needing to tunnel to another nanofiller in order to progress along the
network. Conversely, to travel transverse to the alignment direction, the electron will need
to tunnel much more frequently to progress along the network because a much smaller
projection of the nanofiller exists in the transverse direction. Therefore, as alignment in-
creases, an increasing number of tunneling junctions are required for an electron to travel
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Figure 4.11: Left: transverse conductivity as a function of φm for each filler volume
fraction. Right: aligned conductivity as a function of φm for each filler volume fraction.

transverse to the alignment direction. However, increasing alignment also diminishes the
total number of tunneling junctions forming due to the decreased likelihood of nearly par-
allel sticks intersecting. These compounding factors very quickly destroy percolating net-
works transverse to the alignment direction. Just as aligning fillers destroys percolating
paths transverse to the alignment direction, it similarly reduces transverse conductivity by
decreasing the number of parallel tunneling junctions through the network.

4.4 Nanocomposite Conductivity Evolution

4.4.1 Mechanisms of Conductivity Evolution

Temperature increases due to electrical loading can cause nanocomposite conductivity to
change or evolve over time. A possible explanation for this is that heating will cause
thermal expansion in the matrix and fillers will consequently drift apart. This will result
in decreased composite conductivity as observed in [85] [86]. Although the thermal ex-
pansion is initiated by electrical loading, this type of conductivity evolution is a result of
piezoresistivity. In light of the previously developed piezoresistivity model, thermal expan-
sion will cause an increase in inter-filler spacing, a decrease in filler volume fraction, and
no change to filler randomness. Alternatively, localized Joule heating of the nanofillers can
slowly activate electrons to tunnel thereby increasing tunneling probability and nanocom-
posite conductivity [83]. These competing effects are the reason some researchers have
observed an increase in conductivity while others have observed a decrease in conductivity
due to electrical loading. It is likely that the dominant mechanism depends on the matrix’s
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thermal expansion properties. If there fillers experience a non-negligible drift apart due
to thermal expansion, nanocomposite conductivity will drop. Conversely, if the thermal
expansion is sufficiently diminutive, an increase in tunneling probability will dominate and
nanocomposite conductivity will increase. Herein, the influence of electrical loading and
elevated temperature on CNF/epoxy conductivity is studied.

4.4.2 Electrical Impedance Spectroscopy

Frequency-dependent properties can often be elucidated by examining the real and imagi-
nary parts of the impedance through electrical impedance spectroscopy (EIS). Numerous
researchers have leveraged EIS to develop equivalent circuit models that describe the be-
havior of nanocomposites [83] [101] [115] [116]. Nanocomposite equivalent circuits are
parallel resistor-capacitor configurations of varying sophistication. To conduct EIS testing,
a 6.35 mm × 6.35 mm square of CNF/epoxy is cut from the CNF/epoxy plate described
in Chapter 5. Electrodes are attached by applying a colloidal silver paste (TedPella 16032)
on opposing ends. Upon drying, copper tape is applied over the paste and a Wayne Kerr
6500B impedance analyzer measures the magnitude of the impedance and phase lag due to
interrogation signals ranging from f = 32.2 kHz to f = 1.9 MHz at 40 ◦C, 50 ◦C, and
60 ◦C. The experimental real and imaginary parts of the impedance are formed by the first
equality in equation 4.23 and equation 4.24 while the second equality represents the circuit
equivalent.

Re(Z) = |Z| cos(θ) = Rs +
Rp

1 + ω2R2
pC

2
p

(4.23)

Im(Z) = |Z| sin(θ) =
ωR2

pCp

1 + ω2R2
pC

2
p

(4.24)

|Z| is the measured impedance magnitude, θ is the measured phase lag, and ω is the in-
terrogation angular frequency. Rs is the series resistor, Rp is the parallel resistor, and Cp
is the parallel capacitor of the equivalent circuit shown in Figure 4.12. Plotting −Im(Z)

against Re(Z) results in arcs as shown in Figure 4.12. By examining the shifts of these
arcs due to elevated temperatures and leveraging the insights of previous researchers, the
mechanisms of conductivity evolution in the CNF/epoxy composite can be deduced. For
example, it has been noted that variations to Rs will shift the arc along the abscissa, varia-
tions toRp will change the radius of the arc, and variations toCp will rotate the arc about its
center. Rp is the strain sensitive component [83]. As the temperature increases, the arcs ex-
pand outward consistent with an increase in Rp demonstrating the influence of temperature
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Figure 4.12: Left: equivalent circuit model for nanocomposites. Right: EIS plots of
CNF/epoxy at increasing temperatures. Each plot is a parametric function of frequency
beginning at the bottom right and increasing counter clock-wise to the maximum frequency
at the top left.

on CNF/epoxy. However, the arcs also shift leftward along the abscissa with increasing
temperature consistent with a decrease in Rs. The nature of this change is undetermined.

4.4.3 Conductivity Evolution Imaging

Based on the exponential trend of the EIT voltage measurements for CNF/epoxy shown
in Figure 5.3, it is speculated that the conductivity also evolved exponentially under DC
loading. In light of the reconstruction errors evident in Figure 5.4, let the conductivity of
the eth element in the EIT reconstruction evolve as

σe (t) = (σi − σf ) e−κt + σf + ε. (4.25)

Here, σi is the initial conductivity, σf is the steady-state conductivity, ε is an error term re-
sulting from electrode misplacements, and the exponent is a function of current magnitude
κ = κ (| − σ∇φ|) [117]. Now consider differentiating equation 3.11 with respect to time.
Because the true conductivity is a function of time as shown in equation 4.25 but the initial
conductivity estimate is not, ∂σ0/∂t = 0 and ∂F(σ0)/∂t = 0. This implies
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Figure 4.13: Conductivity evolution of undamaged CNF/epoxy at different times. Con-
sistent with the voltage trends observed in Figure 5.3, ∂σ/∂t goes to zero with increasing
time.

∂

(
Vm − F(σ0)−

∂F(σ0)

∂σ
(σ − σ0)

)
∂t

= J
∂σ

∂t
− ∂Vm

∂t
= 0. (4.26)

Equation 4.26 can now be rearranged as follows.

J
∂σ

∂t
=
∂Vm

∂t
(4.27)

∂σ/∂t can be recovered from equation 4.27 through Tikhonov regularization to image the
conductivity evolution in CNF/epoxy as shown in Figure 4.13.

Several speculations about the distribution of nanofillers can be postulated from con-
ductivity evolution imaging shown in Figure 4.13. CNF distribution influences the rate
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of conductivity change and accounts for the variability seen in Figure 4.13. In regions of
low filler concentration, the material is more sensitive to thermal expansion because there
are fewer nanofiller junctions and the loss of even a few tunneling paths due to expansion
will have a large influence to reduce conductivity. Conversely, regions of higher filler con-
centration can afford to lose more tunneling paths and remain conductive. Therefore, the
conductivity evolves less rapidly. Other researchers have observed a similar increase in sen-
sitivity to strain for nanocomposites with lower weight fractions [38] [7] [101]. Research
has also established that nanocomposites with high weight fractions have a closer average
inter-filler spacing [89] [91]. Since resistance between fillers depends exponentially on
spacing, regions of high filler concentration should be more closely packed making them
less sensitive to evolution via thermal expansion whereas regions of sparse filler density
will be further apart on average and therefore much more sensitive to thermal expansion.
In other words, thermal expansion will have a greater influence on a region of sparsely
packed nanofillers because they are initially more distant than a region of the composite
with densely packed fillers.

4.5 Summary and Conclusions

This chapter has explored unique features of nanocomposite conductivity through model-
ing and experimentation. First, an analytical model for CNT composite piezoresistivity
was developed. This model accounts for the influence of strain on volume fraction, critical
volume fraction, percolation probability, and inter-filler spacing. The model predictions
agree well with experimental results in existing literature, and it has the ability to analyze
the piezoresistive response of CNT composites under arbitrary straining whereas prevail-
ing models examine only uniaxial strain. This adaptability lends itself to integration with
the finite element method thereby enabling piezoresistive analysis of arbitrary strains at
structural scales for the first time.

Next, the development of a nanocomposite equivalent resistor network model was pre-
sented in order to study the influence of nanofiller alignment on transverse network prop-
erties. Model predictions compare very favorably to experimental data for random CNT
networks. Data from transverse percolation simulations were fit to sigmoid functions in
order to determine the critical volume fraction and exponent β. These simulations indi-
cate that both the transverse critical volume fraction and the rate of transition from non-
percolating to percolating depend exponentially on the cosine of the alignment angle φm,
but the rate of transition from non-percolating to percolating can also be expressed linearly
in sin(φm). The degradation of percolation and conductivity transverse to the alignment
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direction is believed to be due to decreasing filler projection or increasing dependence on
electron tunneling in the transverse direction with increasing alignment. Consistent with
existing literature, the maximum conductivity in the alignment direction does not occur for
the highest degree of alignment and varies with filler volume fraction. Insights obtained
from these simulations are indispensable to the development of nanocomposites employed
for conductivity-based SHM wherein measurements transverse to the filler alignment di-
rection are essential.

Lastly, the mechanism for the conductivity evolution of CNF/epoxy nanocomposites
was studied. Conductivity evolution is speculated to be due to thermal expansion of the
epoxy which causes fillers to drift apart thereby lowering the composite conductivity. EIS
testing was performed at elevated temperatures in order to verify this. Consistent with
existing equivalent circuit models, the EIS plots shifted in a manner which is attributable to
piezoresistive effects. This implies that thermal expansion is responsible for conductivity
evolution.
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CHAPTER 5

Experimental Damage and Strain Detection in
Nanocomposites via Electrical Impedance

Tomography

5.1 Introduction

While EIT has received excellent treatment tracking damage to CNT thin films [6] [37],
cementitious structures [77] [118] [119] [120], and sensing layers in GFRPs [60], no work
has been done to utilize EIT on composites with a self-sensing nanocomposite matrix.
Sensing skins, though powerful in their adaptability, have important limitations specifically
concerning composite SHM. For example, damage sufficiently removed from the sensing
layer or skin such as internal damage initiated by cyclic loading may go undetected. Super-
ficial damage to the coating induced by hail, sleet, or dust in aerospace applications may
also register as damage when there is no real threat to the structure. And, lastly, the ad-
ditional weight of a coating may be unpalatable to weight-conscious aerospace structures.
The self-sensing nanocomposite matrix approach herein studied circumvents these limita-
tions. Because the matrix permeates every layer, the composite is sensitive to both internal
and external damage and immune to false positives from superficial damage. Nanofillers
are also of negligible parasitic weight.

Damage detection via resistance change methods applied to GFRP plates with nanofiller-
rich matrices have been studied [4] [3] [59] [5]. These studies employ resistance change
methods wherein, as the name suggests, resistance is measured between electrodes located
along the edges of the structure or over the surface of the structure before and after a dam-
age event occurs. Resistance values are then interpolated and large changes correspond to
damage. This method, though computationally inexpensive, is limited by the density of the
electrode array employed. That is, sparse arrays can only coarsely locate damage, but large
arrays are prohibitively burdensome to implement. A gap in the literature therefore exists –
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leveraging the superior imaging capabilities of EIT for damage detection in nanocomposite
matrices has yet to receive diligent treatment. This chapter addresses that gap. EIT is used
to experimentally locate damage in two materials, a CNF/epoxy plate and glass fiber/epoxy
laminates with CB filler. The former is a simpler composite with only two phases. Simple
through-hole damage is induced and detected as a proof of concept. The latter is a real
structural laminate on which EIT sensitivity, ability to detect multiple damages, and ability
to detect impact damage is studied.

Lastly, strain-induced conductivity changes are imaged via EIT in highly compliant
CNF/PU composites. Highly flexible skins capable of tactile imaging and distributed strain
sensing are of keen interest to robotic and biomedical applications wherein it is necessary
to spatially resolve points of contact [121]. Locating contact within flexible planar skins
has been approached by incorporating a sensing medium into a compliant matrix such that
a grid is formed either by the sensing medium [122] or by line electrodes sandwiching
the sensing medium [123]. Pressure-induced capacitance changes are then measured at
the grid points so that pressure fields can be imaged by interpolating capacitance changes
between measurement points. Despite the success of this approach, an important limitation
is the dependence on a grid of sensors. That is, sensitivity to stimuli may be lost away
from grid points particularly in a sparse grid. This can be circumvented by increasing the
density of the grid, but this will necessarily add to both the manufacturing complexity and
cost while simultaneously increasing the number of measurements necessary to form an
image. Sparse grids, furthermore, are not particularly adept at discerning the geometry of
pressure-induced strain fields. Nanocomposites such as CNF/PU have tremendous potential
as an alternative to embedded grid systems for flexible skins capable of tactile imaging and
distributed strain sensing when combined with EIT.

5.2 Carbon Nanofiber/Epoxy

5.2.1 Carbon Nanofiber/Epoxy Manufacturing

Pyrograf-III PR-24-XT-HHT (Applied Sciences Inc., Cedarville, OH) brand unfunctional-
ized CNFs with diameters ranging from 60 nm to 150 nm and lengths from 30 µm to 100
µm are dispersed in epoxy via horn sonication. Bisphenol F/aromatic diamine epoxy resin
consisting of Epon 862 epoxide and Curative W curing agent (both from Momentive Spe-
cialty Chemicals, Columbus, OH) is used. CNFs are added at a concentration of 1 wt.%.
This is a threshold value providing the maximum conductivity to the cured composite with
the least increase in mix viscosity.
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Acetone and Triton X-100 (Bioworld, Dublin, OH) surfactant are used to facilitate the
dispersion of CNFs in epoxide. Acetone lowers the viscosity of the epoxide, and Triton
X-100 modifies the surface of CNFs to enhance dispersion. Epoxide to acetone is used
at a volume ratio of 2:1 while Triton X-100 to CNF is used at a weight ratio of 0.76:1.
The CNF/epoxide/acetone/Triton X-100 mixture is sonicated for 5 minutes with a horn
sonicator operating at 900 W and 20 kHz. The mixture is then stirred at 60 ◦C for 24 hours
by a magnetic stirrer in order to facilitate the evaporation of acetone after sonication. Next,
curing agent and BYK A-501 (BYK-Chemie USA Inc., Wallington, CT) air-release agent
are added into the mixture. An Epoxide to curing agent weight ratio of 100:26.4 is used,
and an air-release agent to epoxy weight ratio of 0.5:1 is used. The final mixture is stirred
by hand for 5 minutes and degassed at room temperature for 30 minutes. Figure 5.1 is
an optical microscope image showing the structure of CNF in the epoxide/acetone/Triton
X-100 mixture after sonication. The degassed mixture is poured into a silicone mold and
cured in an oven for 1 hour at 121 ◦C and 2.5 hours at 177 ◦C. The cured composite is cut
by using a water-cooled diamond saw to 54 mm × 52 mm × 5 mm.

The CNF/epoxy plate was manufactured by Dr. Sila Gungor at the Pennsylvania State
University as part of a collaborative project. The manufacturing methods described repre-
sent her work but are included for completeness [32].

5.2.2 Experimental Setup

EIT experiments are conducted using a Keithley 6221 high-precision AC/DC current source
and a National Instruments PXIe-6368 16-channel analog input data acquisition (DAQ)
card. The PXIe-6368 card is limited to voltage inputs of fewer than 10 volts with respect
to the system ground while the boundary voltages are expected to exceed this. Therefore,
inverting amplifier circuits are constructed from OPA227 op-amps with the gain shown in
equation 5.1. Resistors are chosen so that the voltage output is within the DAQ range.

Vout = −R2

R1

Vin (5.1)

Electrodes are prepared in the following manner. First, the CNF/epoxy specimen is
lightly sanded along its edges. Next, colloidal silver paste is applied on the specimen
edges at evenly spaced, quarter-inch patches. Upon drying, copper tape is applied over the
silver paint with tabs extended onto a wooden base. Lastly, a nail is driven through the
copper tape tabs and to the wooden base. This ensures that alligator clips can be attached
for current injections and voltage measurements without mechanically stressing the tape-
to-paste electrode junctions. Contact impedances are estimated by comparing two and
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Figure 5.1: Optical microscope image of dispersion of CNF in epoxide/acetone/Triton
X-100 mixture after 5 minutes of horn sonication conducted at 900 W and 20 kHz.
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four-probe measurements. The amplifier schematic and experimental setup can be seen in
Figure 5.2.

A 10 mA DC current is injected between electrode pairs for 20 minutes while the result-
ing voltage is measured at 128 Hz. Voltages are measured with respect to ground, and the
data is smoothed with a moving average of half-width 256. Based on the observed voltage
trend, measurements are fit to an exponential equation of the following form.

v = aebt + c (5.2)

An example of the electrode voltage fitting can be seen in Figure 5.3. The electrode pair
differences necessary for EIT are formed offline as the difference of the voltage fits. The
material is allowed to cool for at least three hours between current injections, and the
voltage responses over time are tested for repeatability. This ensures the voltage drift is
due to the conductivity evolution of CNF/epoxy and not electrode degradation. The voltage
measurements increased as the experiment progressed implying that CNF/epoxy becomes
less conductive under DC current injections.

5.2.3 Through-Hole Detection

A 6.35 mm diameter hole is drilled through the CNF/epoxy as indicated in Figure 5.4 and
Figure 5.5. Figure 5.4 also shows the absolute conductivity image before and after damage.
Consistent with the need for baseline subtraction as described in Chapter 3, an abundance
of reconstruction errors are visible. However, damage is clearly recovered after baseline
subtraction as shown in Figure 5.5.

5.3 Glass Fiber/Epoxy with Carbon Black Filler

5.3.1 Glass Fiber/Epoxy Manufacturing

Two glass fiber/epoxy laminated plates are identically manufactured with hand lay-up fol-
lowed by vacuum bagging and reinforced by stitched unidirectional E-glass with 225 g/m2

areal weight. Epon 8132 epoxy resin consisting of a bisphenol-A based epoxide diluted
with alkyl glycidyl ether and Jeffamine T-403 polyetheramine curing agent is used as the
matrix material. The mix ratio of epoxide to curing agent is 100:40 by weight. Cabot Black
Pearls 2000 CB are used as nanofillers on account of their high structure. High structure
CB is comprised of elongated clusters of individual CB particles that facilitate the for-
mation percolated electrical networks at much lower filler volume fractions. Conversely,
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Figure 5.2: Top left: image of lab setup showing specimen, amplifier circuits, DAQ,
and current source. Top right: close up of electrode connections. Bottom: schematic of
electrodes, amplifier, and DAQ. Electrode voltage is measured with respect to ground and
scaled by an inverting amplifier. The data is rescaled and electrode voltage differences are
computed offline.
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Figure 5.3: Left: representative DC voltages measured on electrodes three and four due to
the first current injection. The data follows a decidedly exponential trend. Right: difference
in voltage between electrodes three and four due to the first current injection. The voltage
differences are not curve-fit. Rather, the dashed red line represents the difference of the
voltage fits shown to the left.

Figure 5.4: Undamaged and damaged conductivity reconstructions of CNF/epoxy. Left:
undamaged absolute EIT reconstruction. Note the abundance of conductivity reconstruc-
tion errors that may be falsely identified as damage. Right: damaged absolute EIT recon-
struction. There is a new conductivity artifact that is actually due to damage. However,
the same errors as in the undamaged case exist. The black circle indicates the true damage
location and size.
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Figure 5.5: Damage detection results with undamaged baseline subtraction in CNF/epoxy.
The black circle indicates the true damage location and size.

low structure CB is more spherical in shape and requires higher volume fractions to reach
percolation.

CB particles are dispersed in epoxide by a magnetic stirrer and a sonication bath. CB is
initially magnetically stirred in epoxide for 15 minutes at a rate of 250 rpm. The mixture is
then mixed for 4 hours in an ultrasonic bath operating at 45 kHz and 55 W average power.
Following sonication, the mixture is magnetically stirred for an additional 15 minutes at
250 rpm. Proper amounts of curing agent and BYK A-501 air release agent are then mixed
into the CB epoxide, stirred by hand for 5 minutes, and degassed for 30 minutes.

Each glass fiber layer is impregnated with CB-filled epoxy using a hand roller. A total of
26 layers are used to produce a 4 mm thick plate with a stacking sequence of [0/[0/90]6s/0].
A schematic illustration of the vacuum bag arrangement is shown in Figure 5.6. Aluminum
foils are placed on the top and bottom of the impregnated laminate as electrodes in order
to apply an AC field to the laminate while the matrix is still a dielectric liquid. This po-
larizes and chains the highly conductive CB particles through the thickness direction via
dielectrophoresis. Without chaining the CB particles, the laminate would be several orders
of magnitude more conductive in-plane than through the thickness direction. However, the
chaining process makes the laminates nearly electrically isotropic. Based on [81], field
parameters of 1000 V/cm and 1 kHz are selected to tailor the conductivity of the material.
While the AC electric field is applied, the laminate is cured in an oven according to the fol-
lowing schedule: 30 minutes at 65 ◦C, 2 hours at 80 ◦C, and 3 hours at 125 ◦C. The cured
composites have a calculated fiber volume fraction of approximately 0.60. Cured laminates
are trimmed around the edges with a water-cooled diamond saw to final dimensions of 150
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Figure 5.6: Cross-sectional schematic of the vacuum bag arrangement used to manufacture
the laminated glass/epoxy plates.

mm × 150 mm × 4 mm. The 4 mm thickness dimension is as-molded.
The glass fiber/epoxy laminates with CB filler were manufactured by Dr. Sila Gungor

at the Pennsylvania State University as part of a collaborative project. The manufacturing
methods described represent her work but are included for completeness [32] [81].

5.3.2 Experimental Setup

DC currents are injected via a Keithley 6221 high-precision AC/DC current source at 0.025
µA, and voltages are measured with a National Instruments PXIe-6368 16-channel analog
input DAQ card. Because of the high resistivity of the material, voltage buffer circuits
are constructed from OPA227 op-amps thereby ensuring minimal current was leaked from
electrodes that are not actively supplying current. Electrodes are prepared by first lightly
sanding the GFRP plates along their edges. Next, colloidal silver paint patches are applied
at even intervals and copper tape is applied over the silver paint with tabs extended onto
a wooden base. A nail is then driven through the copper tape tabs and into the wooden
base so that alligator clips could be attached without mechanically stressing the electrodes.
Measurements are taken for 10 seconds at 128 Hz. Data is smoothed using a moving
average of half-width 256. The experimental setup is shown in Figure 5.7.
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Figure 5.7: Top left: image of lab setup showing specimen, buffer circuits, DAQ, and cur-
rent source. Top right: close up of electrode connections. Bottom: schematic of electrodes,
buffer, and DAQ.
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5.3.3 Through-Hole Detection

Sensitivity to damage, or the lower threshold of detectability, is an important aspect of
SHM. In order to address this, through-hole damage with increasing size is induced, and
EIT is employed to detect the damage. Prior to inducing through-hole damage, the first
glass fiber/epoxy plate is cut to approximately 95 mm× 95 mm. Next, a 1.59 mm diameter
hole is drilled through the specimen, and EIT measurements are collected. The hole is sub-
sequently bored out to diameters of 3.18 mm, 4.76 mm, and 6.35 mm. EIT measurements
are collected after each new diameter. Figure 5.8 shows the results of this analysis with the
undamaged baseline subtracted.

The capability to detect multiple damages is another important SHM consideration. To
examine this capability, a second hole is drilled through the same glass fiber/epoxy plate.
The second hole is initially 1.59 mm in diameter. It is then bored out to 3.18 mm, 4.76 mm,
and 6.35 mm in diameter. EIT measurements are again collected after each new diameter to
assess whether the second through-hole could be detected. After the second hole is bored
out to 6.35 mm, a third 6.35 mm diameter hole is drilled through the same glass fiber/epoxy
plate. Figure 5.8 also shows the ability of EIT to detect multiple through-holes.

Each image shown in Figure 5.8 is normalized by the same value – the maximum error
of the entire set of images. Normalizing the results in this manner enables them to be
plotted on the same scale, and the influence of increasing through-hole diameter on the
EIT reconstructions becomes obvious. However, this also causes smaller through-holes to
appear much less prominently. Figure 5.9 shows the EIT images for a single 1.59 mm hole
and a single 3.18 mm hole each plotted individually and normalized by their respective
maximum values. The 3.18 mm hole is now immediately visible, but the 1.59 mm hole
is arguably not discernible from the image noise. For the parameters employed, it can
therefore be concluded that EIT is sensitive to through-holes in glass fiber/epoxy laminates
with CB filler at least as small as 3.18 mm in diameter but larger than 1.59 mm in diameter.

Next, consider the EIT image of a small through-hole in the presence of a larger
through-hole as shown in Figure 5.8 F). Because the larger through-hole dominates the
image, the smaller through-hole may go undetected. However, this can be circumvented
by using a different baseline. As shown in Figure 5.10, using the single 6.35 mm diameter
through-hole reconstruction shown in Figure 5.8 D) as the baseline, the second 3.18 mm
diameter through-hole becomes immediately visible.

70



Figure 5.8: Sensitivity and multiple damage detection. Each image is normalized by the
same value – the maximum error of the entire set of images. The undamaged baseline is
subtracted. Through-hole size and location indicated by white circles. Diameters of each
through-hole are as follows. A) 1.59 mm. B) 3.18 mm. C) 4.76 mm. D) 6.35 mm. E) 6.35
mm and 1.59 mm. F) 6.35 mm and 3.18 mm. G) 6.35 mm and 4.76 mm. H) 6.35 mm and
6.35 mm. I) 6.35 mm, 6.35 mm, and 6.35 mm.
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Figure 5.9: Sensitivity to small through-holes. Images are each individually normalized
by their respective maximum errors. The undamaged baseline is subtracted. Through-hole
size and location indicated by white circles. Top: EIT reconstruction with a single 1.59
mm diameter hole. Bottom: EIT reconstruction with a single 3.18 mm diameter hole.
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Figure 5.10: EIT reconstruction of a second 3.18 mm hole normalized by its maximum
value. The single 6.35 mm diameter through-hole baseline shown in Figure 5.8 D) is sub-
tracted. Damage size and location indicated by the white circle.

5.3.4 Impact Damage Detection

Because low-velocity impacts often induce delamination [124], their detection is an impor-
tant SHM consideration. Inasmuch, a second, identical GFRP plate is impacted via drop
tower at 50 J. The indenter is hemispherical with a diameter of 12.7 mm, and the plate is
cut to approximately 101 mm × 152 mm in order to accommodate the impact machine
with simply-supported, symmetric boundary conditions. The impact resulted in a slight
indentation at the impact location and the formation of a crack initiating at the indentation
and running along the fiber direction on the top surface of the plate. The post-impacted
plate is shown in Figure 5.11.

While taking EIT measurements after the impact, it is noted that several electrodes are
unresponsive, and it is believed that the impact damaged the electrodes. They consequently
had to be reapplied. Despite careful meticulousness, it is impossible to replace electrodes
with exact precision so some discrepancies exist between electrode placement in the un-
damaged baseline and the damaged reconstructions. This results in additional errors in the
EIT reconstruction. Nonetheless, these errors appear to be minimal. Figure 5.12 shows
the EIT image of impact damage. The location of the indenter and the EIT reconstruction
align well, and the EIT reconstruction has an elongated region of conductivity change that
captures the crack damage.
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Figure 5.11: Photograph of post-impacted glass fiber/epoxy plate. The plate is impacted
slightly off center resulting in a visible indentation and crack.

74



Figure 5.12: EIT image of impact damage detection. Good correlation between the re-
construction peak and the impact location is observed. A conductivity artifact running the
length of the plate and originating at the impact location indicates that the crack damage
was captured as well.

5.4 Carbon Nanofiber/Polyurethane

5.4.1 Carbon Nanofiber/Polyurethane Manufacturing

CNF/PU specimens are produced using ReoFlex 20 PU from Smooth-On (Easton, PA) and
Pyrograf III-PR-24-XT-HHT CNFs from Applied Sciences (Cedarville, OH). The manu-
facturer’s data states that the PU has a Shore hardness of approximately 20A and a tensile
modulus of approximately 190 MPa at 100% strain. Measured amounts of PU and CNFs
are combined to produce specimens at 7.5, 10.5, 12.5, and 15% filler volume fraction.
CNFs and PU are first hand-mixed in a cup to form a dough-like material. This mixture
is then placed into a 2-roll mill and shear-mixed. Specimens containing 10.5, 12.5, and
15% CNF filler are shear-mixed for 5 minutes while the specimen containing 7.5% CNF
is shear-mixed for 20 minutes in order to obtain good dispersion and similar CNF aspect
ratio. Immediately after mixing, the material is spread evenly into an open, rectangular
silicone mold measuring 25.4 mm × 76.2 mm × 2.5 mm. A flat cover is then put onto the
top of the mold and the material is cured at room temperature for at least 16 hours. Lastly,
the material is post-cured for an additional 6 hours at 65 ◦C to stabilize the mechanical
properties of the PU. Portions for scanning electron microscope (SEM) imaging, tensile
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testing, and EIT imaging are cut from the as-molded specimens using a razor.
The dispersion of CNFs is qualitatively assessed via SEM imaging as shown in Figure

5.13. Additional noteworthy SEM images can be seen in Figures 5.14, 5.15, and 5.16. SEM
imaging is performed via a Hitachi SU8000 In-Line SEM in the Lurie Nanofabrication
Facility (LNF) at the University of Michigan. CNF/PU specimens are immersed in liquid
nitrogen for approximately 10 minutes and then fractured in order to obtain a good surface
for imaging.

The CNF/PU nanocomposites were manufactured by Dr. Sila Gungor at the Penn-
sylvania State University as part of a collaborative project. The manufacturing methods
described represent her work but are included for completeness.

5.4.2 Tensile Testing

5.4.2.1 Experimental Setup

Tests of the CNF/PU nanocomposites are performed in order to assess the influence of
filler volume fraction and viscoelasticity on piezoresistive response when bonded to a much
stiffer substrate undergoing mechanical loading. These tests are important because there
is a growing interest in using nanocomposites as discrete strain sensors with higher gauge
factors than traditional strain gauges [7] [101]. In strain sensor applications, nanocompos-
ites will necessarily be bonded to much stiffer substrates. Furthermore, this testing gives
some insight into the sensitivity of each filler volume fraction and a more controlled look
at the influence of viscoelasticity on piezoresistive response.

Thin strips of the CNF/PU specimens measuring 25.4 mm × 6.35 mm × 2.5 mm are
completely bonded on one side onto polyvinyl chloride (PVC) bars and loaded into a MTS-
810 load frame as shown in Figure 5.17 and strained at 0.1 mm/s. Two loading regimens are
considered. In the first, the PVC bar is subjected to linearly increasing tension, sinusoidal
variation between tension and compression, and finally linearly decreasing compression.
The second load regimen applies and holds constant tension intermittently. Longitudinal
strain is measured via a strain gauge bonded to the back surface of the PVC bars. Colloidal
silver paste electrodes are applied such that the resistance of the CNF/PU can be measured
along the 25.4 mm dimension via an Agilent 34401A digital multimeter. The longitudinal
strain induced by both load regimens and the nanocomposite piezoresistive responses can
be seen in Figure 5.18.
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Figure 5.13: SEM images of CNF distribution at a) 7.5% filler volume fraction. b) 10.5%
filler volume fraction. c) 12.5% filler volume fraction. d) 15% filler volume fraction. e)
Close up of a single CNF within the 7.5% filler volume fraction sample.
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Figure 5.14: Fracture surface of 12.5% filler volume fraction CNF/PU.
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Figure 5.15: CNFs sticking out of a fracture surface at 15% filler volume fraction.

79



Figure 5.16: Close up of a CNF protruding from the PU at 15% filler volume fraction.
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Figure 5.17: CNF/PU bonded to a PVC bar and loaded in MTS-810 load frame.
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5.4.2.2 Piezoresistive Response

Consider first the results for the sinusoidally varying strains shown in Figure 5.18. For pos-
itive tensile strain, the 7.5% filler volume fraction material first shows a positive piezoresis-
tive response. That is, resistance increases with increasing tension. As the strain cycle goes
into compression the material exhibits negative piezoresistivity such that resistance again
increases with increasing compression. A similar albeit muted trend is observed for 10.5%.
These results also resemble observations by Dubey et al. [125]. However, at 12.5 and 15%
filler volume fraction the piezoresistive response of the material changes markedly to the
point of appearing out of phase with the strain. While a complete analysis of the nature
of negative piezoresistivity exceeds the scope of this study, Cattin and Hubert [78] and
Toprakci et al. [126] provide excellent insight into the topic and interested readers are di-
rected to their preceding citations. It is apparent, however, that the dominant mechanism of
piezoresistivity in CNF/PU is volume fraction-dependent and changes markedly between
10.5 and 12.5% filler volume fraction.

Now consider the right-most column of Figure 5.18 wherein the PVC bars are put in
tension, held, and then released for several cycles. All volume fractions respond imme-
diately to the sudden application of tensile strain. However, the most dramatic change in
resistance occurs either with the application of tension to the PVC bar or the release of
tension with decay occurring between due to the viscoelastic response of the PU. The in-
fluence of a suddenly released load dominates the response for 12.5 and 15% filler volume
fraction again suggesting a volume fraction-dependent dominant mechanism of piezoresis-
tivity. Interested readers are directed to Dubey et al. [125] for a discussion on the influence
of strain rate on piezoresistive response. It is also important to note that because of shear
lag in the viscoelastic CNF/PU strip, determination of the strain state of the CNF/PU is not
trivial. It is stress free on all sides except where bonded, and the traction on the bonded
side is dictated by the response of the PVC bar which, for regions sufficiently removed
from the grips, is in a state of pure uniaxial stress. It is worth reiterating, however, that
highly compliant nanocomposite transducers bonded to structures for strain sensing will
encounter a similar situation. It is therefore important to conduct tests as herein presented
before employing such nanocomposites as discrete, strain-sensing transducers.
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Figure 5.18: Percent change in CNF/PU resistance during tensile loading at 7.5, 10.5, 12.5,
and 15% filler volume fraction. The left column shows the response to linearly increasing
tension, sinusoidally varying tension and compression, and, lastly, linearly decreasing com-
pression. The right column shows the response to cyclically applied and held tension. Both
loading cases show a marked difference in CNF/PU response from 10.5 to 12.5% indicating
a volume fraction-dependent change in the dominant piezoresistive mechanism.
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Figure 5.19: a) EIT set up with marble indenters atop the CNF/PU nanocomposite. Elec-
trodes made of patches of colloidal silver paste can be seen on the edges of the composite.
b) Demonstration of the flexibility of the CNF/PU nanocomposite. The material is easily
deformed and recovers to its original state.

5.4.3 Distributed Strain Sensing

5.4.3.1 Experimental Setup

Electrodes are attached to the CNF/PU composites by first applying seven evenly spaced
1.59 mm patches of colloidal silver paste per side as shown in Figure 5.19. The paste is
allowed to dry for at least one hour before jumper wires are pushed lightly into the patches
and then glued to an acrylic base. An additional drop of silver paste is then applied where
the jumper wire touches the originally applied patch to ensure good electrical contact. A
Keithley 6221 current source is used to supply 2.5 mA DC injections between electrodes.
Voltages are measured using two 16-channel National Instruments 6368-PXIe data acquisi-
tion cards for 10 s at 128 Hz. Data is collected via an in-house LabView code and smoothed
using a moving average of half-width 256.

Distributed strain is induced in 25.4 mm × 25.4 mm CNF/PU samples by resting a 1.2
kg mass atop three bonded glass marbles as shown in Figure 5.19. Spherical glass marbles
are used because they are non-conductive and their curvature does not cut into the soft
CNF/PU. Three marbles are used to demonstrate the ability of EIT to clearly differentiate
between multiple points of contact. In light of the viscoelastic effects observed during
tensile testing, the mass is allowed to rest atop the CNF/PU samples for an hour before
using a 28-electrode system to image strain-induced conductivity changes.
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5.4.3.2 Strain Field Imaging

As shown in Figure 5.20, EIT accurately captures three distinct points of contact due to
the spherical indenters for each volume fraction. Larger changes in conductivity are ob-
served for lower volume fractions implying that they are more sensitive to the imposed
strain fields. However, the EIT image produced for 7.5% filler volume fraction has a re-
gion in which the conductivity change is markedly larger. This is speculated to be due to
non-uniform nanofiller dispersion and a region of lower nanofiller density in the vicinity
of the region in question. Conversely, as the filler volume fraction increases, such devi-
ations are less pronounced. Contrasting the results shown in Figure 5.20 with the results
shown in Figure 5.18, it can be inferred that the type of loading markedly influences the
piezoresistive response of CNF/PU. That is, conductivity increases are seen for all filler
volume fractions through EIT imaging wherein Hertzian contact-like strains are induced.
The CNF/PU, however, displays greatly varying negative piezoresistivity when bonded to
a stiffer substrate in dynamic sinusoidal loading. Conductivity increases in the region of
the distributed load indicating that the nanofillers are becoming closer together thereby de-
creasing the tunneling resistance felt by electrons. Additionally, the compression increases
the density of the nanofiller network thereby increasing the number of viable tunneling
junctions. These factors seemingly dominate the response resulting in a net increase in
conductivity.

5.5 Summary and Conclusions

EIT was investigated as a health monitoring technique for damage and strain detection in
CNF/epoxy, glass fiber/epoxy laminates with CB filler, and CNF/PU. EIT was able to
adeptly locate through-holes in both CNF/epoxy and glass fiber epoxy laminates with CB
filler, and a lower detectability limit of 3.18 mm by EIT was experimentally determined.
Impact damage was also successfully located in a glass fiber/epoxy laminate.

SEM imaging indicated that uniform nanofiller dispersion was achieved during CNF/PU
manufacturing. Tests of the CNF/PU nanocomposite material bonded to a mechanically de-
formed substrate revealed that the piezoresistive response depends strongly on the nanofiller
volume fraction. Distributed strain sensing via EIT, however, resulted in much more consis-
tent results. Three distinct points of contact were imaged via EIT, and sensitivity increased
with decreasing filler volume fraction. The relative ease and low cost of CNF/PU manufac-
turing combined with these results demonstrate the considerable potential of CNF/PU and
EIT for tactile imaging and distributed strain sensing.
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Figure 5.20: EIT images of percent change in conductivity due to distributed straining.
EIT clearly captures three distinct points of contact, and larger increases in conductivity
are observed for lower volume fractions.
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Based on these results, it is believed that conductivity-based health monitoring via EIT
has considerable potential. Unlike sensing layer approaches, the nanocomposite matrix ap-
proach ensures the entire composite is self-sensing. EIT is also able to accurately locate
both through-hole damage and impact damage with only 16 electrodes. This is a consider-
able improvement over the two-dimensional resistance change methods summarized in the
literature review.
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CHAPTER 6

Methods for Electrical Impedance Tomography
Enhancement

6.1 Introduction

Chapter 5 has established that EIT has considerable potential for damage and strain iden-
tification in nanocomposite matrices, and Chapter 4 has elucidated some unique proper-
ties of nanocomposites. These two efforts are now brought together to enhance EIT for
conductivity-based SHM. First, the electrical anisotropy induced by nanofiller alignment
is leveraged to enhance sensitivity to delaminations. This is a novel, microscale approach
to enhancing the sensitivity. That is, how nanofillers can be manipulated on microscales
through varying degrees of alignment and at various orientations to enhance structural-
scale sensitivity to delamination is studied. It is important to acknowledge that achieving
the nanofiller tailoring herein described in structural composites remains a challenge, and
while this investigation is motivated by delaminations in laminated composites, the forth-
coming analysis does not explicitly model the reinforcing structural fibers. Rather, conduc-
tivity values are obtained based on the nanocomposite resistor network model developed
in Chapter 4, and it is assumed the structural composite has those bulk conductivities. The
manufacturing challenge therefore becomes achieving high degrees of nanofiller fidelity
in the presence of structural fibers. Nonetheless, this approach shows promise of being a
powerful method of enhancing delamination detection.

Second, a method of significantly enhancing the resolution of EIT or, synonymously,
decreasing the number of electrodes required to produce quality images is presented. The
novel insight to this approach is to specifically address the rank-deficiency of the inverse
problem by introducing additional constraints. Although presented as a general mathemat-
ical approach and applicable to any system wherein the conductivity can be changed in a
known manner, this approach is specifically motivated by piezoresistive nanocomposites.
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Multi-physics approaches to overcoming the limitations of EIT have been proposed
such as magnetic resonance EIT (MR-EIT) [127] [128] and coupling the EIT reconstruction
with localized conductivity changes induced by elastic deformation (sometimes referred to
as impediography) [129] [130]. These approaches, though insightful and capable of pro-
ducing high-quality images, impose upon some of EITs most valuable features – low cost
and portability. MR-EIT requires magnetic resonance imaging (MRI) systems, and impe-
diography requires a method of inducing localized conductivity changes such as acoustic
arrays or highly engineered meta-materials capable of vibration localization. It is there-
fore desirable to develop a method of EIT enhancement that does not come at the expense
of its other attributes. As opposed to inducing highly localized elastic deformations as in
impediography to enhance EIT [129], global conductivity changes have the potential to be
integrated without ancillary equipment. In aerospace venues, for example, routine pres-
surization of the cabin or the added weight of fueling will cause predictable, global strain
fields. In a carefully engineered nanocomposite material, the global conductivity changes
induced by these strain fields could also be known and therefore easily integrated into an
EIT routine for greatly bolstered damage identification.

6.2 Delamination Sensitivity Enhancement through Nano-
filler Alignment

6.2.1 The Influence of Anisotropic Conductivity on Boundary Voltage

Care was taken in the description of the nanofiller alignment simulations in Chapter 4 to
distinguish the micro or (x̃, ỹ, z̃) domain. This distinction is important because different
orientations of the microscale domain are next considered in the EIT domain. To clarify,
alignment refers to fillers being more disposed to run parallel to each other while orientation
refers to the direction in which fillers are aligned. The EIT domain is defined within the
(x, y, z) basis. In this basis, the structure of interest is a thin plate measuring 10 cm ×
10 cm × 3 mm. The x and y-directions span the plate while the z-direction is through
the thickness of the plate. Assuming the thin plate has conductive properties determined
by the microscale nanofiller alignment analysis, the conductivity in the EIT domain can
be expressed using standard tensor rotation rules, σij = R(α, β, γ)kiσ̃klR(α, β, γ)lj . Here,
Rij is the rotation tensor formed from the Euler angles α, β, and γ. More explicitly, α is
the first rotation of the (x̃, ỹ, z̃) basis about the z-axis. The second rotation of the (x̃, ỹ, z̃)

basis is by β about the x̃-axis, and the last rotation of the (x̃, ỹ, z̃) basis is about the z̃-axis
by γ. For a prescribed degree of alignment, fillers are equally disposed run in either the x̃
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Figure 6.1: Conductivity versus volume fraction in the transverse and alignment directions
for three different degrees of alignment..

or ỹ-direcion. Because of this, conductivity in the micro-domain is transversely isotropic
and the choice of γ is inconsequential. Allowing for different orientations of the micro-
domain in the EIT domain is akin to the fillers to be aligned at an angle with respect to the
through-thickness direction of a plate. Three degrees of nanofiller alignment are selected
for the sensitivity enhancement analysis as shown in Figure 6.1. Because the conductivity
is calculated in the microscale domain, σ̃ is a diagonal matrix with σ̃11 = σ̃22 = σ̃T where
σ̃T is the conductivity transverse to the alignment direction and σ̃33 = σ̃A where where σ̃A
is the conductivity in the nanofiller aligment direction. σ̃ij = 0 for i 6= j.

Delaminations to be detected by EIT are simulated as thin voids in a reference mesh.
The voids are formed by the intersection of two slightly overlapping spheres thereby en-
suring a zero-thickness edge as is expected from a real delamination. Delaminations are
centered through the plate thickness and located in the plane as shown in Figure 6.2. Two
cases are considered. The first case considers a single delamination with a diameter of 1.7
cm and a maximum opening of 0.12 mm. The second case considers a second delamina-
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tion with a diameter of 1.2 cm and a maximum opening of 0.06 mm in the presence of the
original delamination. The sensitivity enhancement analysis begins by examining the influ-
ence of filler alignment and orientation on boundary voltage measurements. Because EIT
depends on in-plane boundary voltages, it is desirable to tailor the nanocomposite conduc-
tivity to enhance boundary voltage changes due to delamination. To this end, for a given
damage state and conductivity, the norm of the percent change in boundary voltages due to
damage is considered as a function of the Euler angle β. If the aligned conductivity is more
sensitive, this norm is expected to increase. The Euler angle α is fixed at 45◦ for identical
conduction in the x and y-directions. As shown in Figure 6.2, both φm and β have a large
influence on the boundary voltage sensitivity. Furthermore, it is observed that the greatest
gains are obtained for 1% filler volume fraction. Because the anisotropic ratio is greatest
for each value of φm at 1% filler volume fraction, it can be inferred that higher anisotropic
ratios result in greater sensitivities. The symmetry of the curves about β = 90◦ is expected
because of the symmetry of the σ̃ tensor.

6.2.2 Formulation of the Anisotropic Electrical Impedance Tomogra-
phy Inverse Problem

The EIT forward problem was presented in general for both isotropic and anisotropic con-
ductivity in Chapter 3. The inverse problem, however, requires more special consideration
and will be presented here. In order to proceed, it must first be conceded that a unique solu-
tion generally does not exist for anisotropic EIT [131] [132]. Nonetheless, as demonstrated
by other researchers [60] [133], a solution can be recovered for mild degrees of anisotropy
if it is assumed that the eigenvectors of the conductivity tensor are preserved during the
minimization. In light of this assumption, rewrite the conductivity as σij = κσ0

ij and select
κ such that det(σ0

ij = 1) [133]. Immediately discretize κ such that EIT now endeavors
to find κ to minimize ‖Vm − F(κσ0

ij)‖
2. Similar to the isotropic formulation, linearize

F(κσ0
ij) by retaining the linear terms of a Taylor series expansion centered about κ0 as

shown in equation 6.1. This approximation is substituted into the minimization expression
resulting in equation 6.2.

F(κσ0
ij) ≈ F(κ0σ

0
ij) +

∂F(κ0σ
0
ij)

∂κ
(κ− κ0) (6.1)

Vm − F(κσ0
ij)−

∂F(κ0σ
0
ij)

∂κ
(κ− κ0) = 0 (6.2)

Substituting J = ∂F(κ0σ
0
ij)/∂κ, ∆κ = κ − κ0, and Ve = Vm − F(κσ0

ij), equation 6.2
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Figure 6.2: Norm of the percent change in boundary voltage due to single and double
delamination cases as a function of β for φm = 45◦, 60◦, 75◦, and isotropic (90◦) conduc-
tivities at 1%-5% filler volume fraction. Thickness dimensions in schematic exaggerated
for clarity.

92



can be rewritten as follows.

J∆κ = Ve (6.3)

The anisotropic sensitivity matrix now takes the form shown in equation 6.4.

JMN e = −
∫

Ωe

∂uM

∂xi
σ0
ij

∂ūN

∂xj
dΩe (6.4)

Lastly, ∆κ is recovered again via Tikhonov regularization.

∆κ =
(
JTJ + α2LTL

)−1
JTVe (6.5)

This anisotropic formulation simplifies to the isotropic case for κσ0
ij = κδij . The most

important assumption in the preceding was that the eigenvectors of σ0
ij are preserved dur-

ing minimization. This assumption makes the problem tractable by reducing the possible
unknowns per element from six to one. However, anisotropic EIT is not as robust as the
isotropic case and prone to diverge for highly anisotropic materials.

6.2.3 Enhanced Delamination Detection through Nanofiller Alignment

The combined effect of anisotropic conductivity induced by filler alignment and EIT for
enhanced delamination detection is now presented. Because the greatest gains in Figure
6.2 are seen at 1% filler volume fraction, the analysis is restricted to such for β = 0◦, 30◦,
60◦, and 90◦. Figure 6.3 shows the EIT images for the single delamination case, and Figure
6.4 shows the EIT images for the double delamination case. These figures show that is
indeed possible to markedly enhance the sensitivity of EIT to delaminations by microscale
nanofiller tailoring. A final example of the enhancement afforded by nanofiller alignment
is shown in Figure 6.5 for β = 60◦ and φm = 45◦ on a more refined mesh with a single
delamination.

6.3 Image Enhancement through Incorporation of Known
Conductivity Changes

6.3.1 Formulation of the Coupled Inverse Problem

In order to formulate the coupled EIT inverse problem, recall first the standard minimiza-
tion problem restated below.
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Figure 6.3: Single delamination detection by EIT as a function of β and φm.
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Figure 6.4: Double delamination detection by EIT as a function of β and φm.
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Figure 6.5: Enhanced delamination detection on a more refined mesh with β = 60◦ and
φm = 45◦.

σ∗ = arg min
σ

(∥∥∥∥Vm − F(σ0)− ∂F(σ0)

∂σ
(σ − σ0)

∥∥∥∥2
)

(6.6)

Here, the conductivity distribution has not been boldfaced to indicate discretization by finite
elements so that a more general formulation may be considered. Now consider imposing a
strain field resulting in a piezoresistive conductivity change on the domain being imaged.
As established by the development of an analytical piezoresistivity model in Chapter 4,
it can be assumed that there is a known relationship between the unstrained conductivity
distribution and the strained conductivity distribution as shown in equation 6.7 where σ̄ is
the strained conductivity.

σ̄ = G(σ) (6.7)

In the strained state, EIT measurements can again be collected and a new inverse prob-
lem formed to find the conductivity distribution, σ̄∗, that satisfies the minimization shown
in equation 6.8.

σ̄∗ = arg min
σ̄

(∥∥∥∥V̄m − F(σ̄0)− ∂F(σ̄0)

∂σ̄
(σ̄ − σ̄0)

∥∥∥∥2
)

(6.8)

Here, V̄m is the vector of experimentally collected voltages in the strained state. Equation
6.7 can now be substituted into equation 6.8 resulting in equation 6.9.
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G(σ∗) = arg min
σ

(∥∥∥∥V̄m − F(G(σ0))− ∂F(G(σ0))

∂G(σ)
(G(σ)−G(σ0))

∥∥∥∥2
)

(6.9)

It has herein implicitly been assumed that by knowing G, the initial conductivity estimate
σ0 becomes G(σ0) in the changed stated. Furthermore, assuming G is invertible, the con-
ductivity distribution satisfying the minimization in equation 6.8 can be recovered from σ̄∗

as σ∗ = G−1(σ̄∗). Appealing to the intuition afforded by piezoresistive nanocomposites,
the invertible assumption is akin to a nanocomposite undergoing conductivity change for
some prescribed strain and then recovering to the original unstrained conductivity. This
effectively adds more constraints to the conductivity distributions which acceptably fit the
voltage measurements.

6.3.2 Conductivity Recovery through Discretization

To make practical use of the previously described coupling process, the domain must be
discretized by the finite element method described in Chapter 3. In light of this discretiza-
tion process, it is possible to revisit the minimization and arrive at an explicit solution for
the conductivity distribution. Begin by recasting equation 6.6 and equation 6.9 in light of
the finite element discretization.

σ∗ = arg min
σ

(∥∥∥∥Vm − F(σ0)− ∂F(σ0)

∂σ
(σ − σ0)

∥∥∥∥2
)

(6.10)

Gσ∗ = arg min
σ

(∥∥∥∥V̄m − F(Gσ0)− ∂F(Gσ0)

∂Gσ
(Gσ −Gσ0)

∥∥∥∥2
)

(6.11)

G(σ) is now expressed as the product of a matrix and a vector. Substituting J = ∂F(σ0)/∂σ,
J̄ = ∂F(Gσ0)/∂Gσ, Ve = Vm − F(σ0), V̄e = V̄m − F(Gσ0), ∆σ = σ − σ0, and
G∆σ = Gσ −Gσ0, equation 6.10 and equation 6.11 can now be written as follows.

σ∗ = arg min
σ

‖Ve − J∆σ‖2 (6.12)

Gσ∗ = arg min
σ

∥∥V̄e − J̄G∆σ
∥∥2 (6.13)

Again employing Tikhonov regularization, ∆σ can be recovered from equation 6.12 and
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equation 6.13 as shown in equation 6.14 and equation 6.15.

∆σ =
(
JTJ + α2LTL

)−1
JTVe (6.14)

∆σ =
(
[J̄G]T [J̄G] + α2LTL

)−1
[J̄G]T V̄e (6.15)

These two equations for ∆σ can be combined as shown in equation 6.16.

∆σ =

[ J

J̄G

]T [
J

J̄G

]
+ α2LTL

−1 [
J

J̄G

]T [
Ve

V̄e

]
(6.16)

Although the coupling process considered only one conductivity change, this can be re-
peated for arbitrarily many known conductivity changes. For n known changes, equation
6.16 takes the form of equation 6.17.

∆σ =




J
...

J̄nGn


T 

J
...

J̄nGn

+ α2LTL


−1 

J
...

J̄nGn


T 

Ve

...
V̄n
e

 (6.17)

As in the standard EIT formulation, σ∗ is updated as σ∗n+1 = σ∗n + ∆σ. This approach is

expected to be successful if Rank




J
...

J̄nGn


 > Rank(J).

Lastly, it is worth considering the formation of the strained sensitivity matrix, J̄.

J̄MN e = −
∫

Ωe

∂uM(Gσ)

∂xi

∂ūN(Gσ)

∂xi
dΩe (6.18)

The functional dependence of uM = uM(Gσ) is written explicitly to emphasize that these
forward solutions are evaluated now with the strained conductivity, Gσ. Also, it is worth
reiterating that ū is the forward solution due to the adjoint injection field whereas bars have
been placed over symbols in this chapter to denote a quantity coming from the strained
domain.

6.3.3 Simulation Procedures

To test the proposed coupling technique, the conductivity distribution of a reference finite
element mesh will be reproduced. Consistent with good EIT practices, the reference mesh
is more refined (∼2000 elements) than the EIT mesh (∼1300) elements and there exists no
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Figure 6.6: Reference mesh with an image to reproduce and the EIT mesh on which the
image will be produced.

assemblage of elements in the EIT mesh that exactly matches the conductivity distribution
of the reference mesh. Both the reference mesh and the EIT mesh can be seen in Figure
6.6.

In these simulations, a unit current is applied and unit background conductivity is used
in a unit square domain. The incorporation of globally known conductivity changes will
henceforth be referred to as enhancements. These enhancements take the form of two-
dimensional sine waves.

Gee = σe − σe

10
(sin (pπxec) sin (qπyec)) (6.19)

Here, G is a diagonal matrix the eth diagonal element of which is calculated by equation
6.19 where σe is the conductivity of the eth element, xec is the x-coordinate of the centroid
of the eth element, and yec is the y-coordinate of the centroid of the eth element. p and q
are integers ranging from 1 to 5. The form of these enhancements is selected based on the
simple intuition regarding the orthogonality of sine waves.

6.3.4 Rank and Image Enhancement

The potential of the proposed coupling process is first assessed by using singular value
decomposition to assess the rank of the sensitivity matrices for 4, 8, 12, and 16 electrodes
with 0, 5, 15, and 25 enhancements. Singular value decomposition is an effective way to
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Figure 6.7: Rank assessment of unenhanced and enhanced sensitivity matrices by singular
value decomposition. Left: plot of all scenarios considered. Right: close up of singular
value indices up to 140.

visually ascertain the rank of large numerical matrices. As shown in Figure 6.7, the index
at which there is a sudden drop of singular value corresponds to the rank of the sensitivity
matrix.

A couple of important insights can be gleaned from Figure 6.7. First, recalling that
there are ∼1300 elements in the EIT mesh, the singular value plots for 16 electrodes with
15 or 25 enhancements and 12 electrodes with 25 enhancements show that it is indeed
possible to achieve a full rank sensitivity matrix. And, second, up to the point of being full
rank, the rank seems to enhance in direct proportion to the number of enhancements. That
is, the unenhanced sensitivity matrix has a rank of (L− 3)L/2 where L is the total number
of electrodes. Consider the 16 electrode case. Unenhanced, the sensitivity matrix has a
rank of 104. With 5 enhancements, the singular values drop just past 600 which implies the
rank of the enhanced sensitivity matrix is approximately (1 +n)(L− 3)L/2 where n is the
number of enhancements.

Next, the potential of this approach is demonstrated by showing how enhancements
affect image reconstruction. This is shown in Figure 6.8 where the distribution in Figure
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6.7 is being reproduced by EIT. These results make it clear that the proposed coupling
method can not only markedly enhance image quality but also significantly reduce the
number of electrodes necessary to produce a quality image.

Although there are a couple of scenarios in which the sensitivity matrix is full rank, no
perfect conductivity reconstructions exist in Figure 6.8. This is to be expected because of
the care that was taken to avoid so called inverse crimes [134]. Furthermore, the image
quality seems to reach a saturation point. That is, the images stop improving better beyond
a certain quality. This is also a consequence of avoiding an inverse crime. Simply put, no
perfect solution is available to EIT so enhancing the sensitivity matrix past the maximum
rank does not produce a better image.

Lastly, a final example of the power of this approach is provided by comparing the
image reconstruction with 16 electrodes and no enhancements to the image reconstruction
with 16 electrodes and 25 enhancements on a much more complicated reference image as
shown in Figure 6.9. In this example, the reference mesh has approximately 4000 elements
and the EIT mesh has approximately 3000 thereby ensuring the enhanced sensitivity ma-
trix is not full rank. Here, the unenhanced image captures the basic shape of the reference
image, but consistent with the limitations of EIT, it is blurry and identifiable details are
not discernable. The enhanced image, however, still is not perfect, but it is significantly
improved to the point that the shape can be easily recognized and identified without knowl-
edge of the reference image.

6.4 Summary and Conclusions

In this chapter, the influence of tailoring nanofiller alignment and directionality has been
investigated to enhance delamination detection. Anisotropic conductivity values from the
equivalent resistor network model developed in Chapter 4 were used to determine how
alignment-induced anisotropy influences changes in boundary voltage due to damage. It
was found that degree of alignment, orientation through the plate thickness, and anisotropic
ratio all have a pronounced influence on sensitivity. Anisotropic EIT was then employed
to locate a single and double delamination case for conductivities with φm = 45◦, 60◦,
and 75◦ at β = 0◦, 30◦, 60◦, and 90◦ and 1% filler volume fraction. Compared to random
nanofiller networks with isotropic conductivity, it was found that anisotropic conductivity
markedly enhances EIT sensitivity, but overly anisotropic conductivity degrades the image.
This implies that incorporating microscale nanocomposite tailoring has incredible potential
to bolster structural-scale SHM and sensitivity to delaminations.

Next, a method of coupling the EIT image reconstruction process with globally known
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Figure 6.8: Influence of coupling enhancements on EIT images for 4, 8, 12, and 16 elec-
trodes with 0, 5, 15, 25 enhancements. As expected from the singular value decomposition
analysis, for a given number of electrodes, adding enhancements significantly improves the
image.
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Figure 6.9: Comparison of unenhanced image with an image produced with 25 enhance-
ments. Both use 16 electrodes. In this more complicated example, the enhanced image
very decidedly outperforms the unenhanced image.

conductivity changes was postulated and formulated. This approach, motivated by piezore-
sistive nanocomposites, is predicated on the supposition that adding additional constraints
to the sensitivity matrix to enhance its rank will result in a better image or, alternatively, can
enable quality images to be produced with fewer electrodes. Singular value decomposition
analysis showed that the coupling process does indeed enhance the rank of the sensitivity
matrix, and image reconstruction examples demonstrated the potential of this approach by
producing markedly superior images. Unlike other multi-physics EIT enhancement tech-
niques, this approach does not necessarily impose upon the advantages of EIT. Particularly
for nanocomposite SHM, this technique has considerable potential to significantly enhance
image quality or reduce the implementation burden of EIT.
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CHAPTER 7

Summary of Scholarly Contributions and
Broader Impacts

This research radically expands the potential of EIT for conductivity-based health moni-
toring of nanocomposites by first extending the fundamental knowledge of nanocomposite
conductivity, concretely demonstrating the potential of EIT for strain and damage identi-
fication in nanocomposites, and lastly, significantly advancing state of the art EIT by ex-
ploiting the unique properties of nanocomposites. The scholarly contributions and broader
impacts of each chapter are summarized below.

7.1 Nanocomposite Conductive Properties

Factors influencing nanocomposite conductivity including strain, nanofiller alignment, and
electric current-induced temperature loading have been studied in Chapter 4. Because of
their potential as high-sensitivity strain sensors, considerable effort has been dedicated to
piezoresistivity modeling. Equivalent resistor network piezoresistivity models are com-
putationally burdensome, limited to micro-scale analysis, and over predict piezoresistive
response. Percolation-based models have yielded accurate predictions but, again, are lim-
ited to tensile strain. An analytical piezoresistivity model for CNT nanocomposites was
developed to address this limitation in the state of the art. Model predictions agree well
with existing experimental piezoresistivity literature, and the model is amenable to the fi-
nite element formulation thereby enabling the analysis of complicated structures subjected
to arbitrary strains. This represents an important broader impact and step in transitioning
piezoresistive analysis from micro to structural scales.

Next, the influence of nanofiller alignment on transverse properties was studied. While
considerable attention has been paid to the influence of alignment on conductivity in the
alignment direction, little consideration had been paid to transverse properties. Because

104



of the potential to enhance sensitivity to delaminations, there is a strong interest in align-
ing nanofillers from a SHM perspective. A knowledge gap therefore existed which was
addressed by contributing fundamental insights on transverse percolation and conductivity.

Nanocomposites also exhibit conductivity evolution under electrical loading. Because
different nanocomposites demonstrate different conductivity evolution responses, under-
standing the mechanisms of any particular nanocomposite is important. Chapter 4 exper-
imentally studied the conductivity evolution of a CNF/epoxy. EIS was employed at ele-
vated temperatures to determine that the dominant mechanism of conductivity evolution
in CNF/epoxy is thermal expansion. Because of this, CNF/epoxy conductivity decreases
with time due to electrical loading. EIT was then modified to image the rate of conductiv-
ity change, and it was speculated that the rate of conductivity change is influenced by the
nanofiller distribution with regions of more densely packed nanofillers evolving less rapidly
and regions of more sparsely packed nanofillers evolving more rapidly. These findings are
important scholarly contributions to the fundamental understanding of how CNF/epoxy
responds to electrical loading.

7.2 Damage and Strain Detection via Electrical Impedance
Tomography

Based on the literature review in Chapter 1, conductivity-based health monitoring has
potential for unprecedented levels of integrated and continuous damage detection in fi-
brous composites. Considerable attention has been devoted to damage detection in fiber-
reinforced composites with nanocomposite matrices by resistance change methods in the
literature, but these methods employ unpalatable arrays of electrodes. EIT has also been
diligently studied for damage detection in CNT thin films and sensing sprays applied to
GFRPs. However, no work had previously been done that utilizes EIT for damage detec-
tion in fiber-reinforced composites with nanocomposite matrices. This gap in the literature
has been addressed by investigating the potential of EIT to detect damage to CNF/epoxy
and glass fiber/epoxy laminates with CB filler and strain in CNF/PU. This approach com-
bines the entirely self-sensing capabilities of a nanocomposite matrix with the superior
imaging of EIT. A considerable improvement over resistance change methods, damage
was detected using only 16 electrodes. And, compared to sensing coat approaches, a com-
pletely self-sensing matrix will be sensitive to both internally and externally initiated dam-
age, is immune to superficial damage, and does not contribute parasitic weight. Therefore,
important scholarly contributions are made by addressing a gap in existing conductivity-
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based SHM literature while simultaneously making a broader impact by demonstrating the
applicability of EIT for SHM in nanocomposites.

7.3 Methods for Electrical Impedance Tomography En-
hancement

Despite the potential of EIT for health monitoring, it has important limitations. Chapter
6 advances the state of the art by contributing insightful knowledge on how EIT can be
enhanced. While these advances were motivated by SHM applications and nanocomposite
properties, they are potentially applicable to a wide array of EIT applications.

First, the sensitivity of EIT to delamination damage was enhanced. This was done by
investigating how nanofillers could be aligned to induce anisotropic conductivity and then
investigating which anisotropic conductivity produced the greatest delamination-induced
change in boundary voltage. It was found that nanofiller alignment can markedly enhance
the sensitivity of EIT to delaminations. However, it was also found that overly anisotropic
conductivity, while producing larger delamination-induced boundary voltage changes, was
difficult for EIT to reconstruct. This result is an important broader impact because it shows
that EIT is indeed capable of robustly detecting one of the most notoriously difficult to
detect damage modes of composites, delaminations.

Next, the poor resolution or, synonymously, the need for large electrode arrays was
addressed. This was done by identifying the root cause of these limitations to be the rank
deficiency of the sensitivity matrix. The rank of the sensitivity matrix was then bolstered by
coupling the image reconstruction process with known conductivity changes such as those
induced by strain in piezoresistive nanocomposites. It was found that the image quality of
EIT can significantly be enhanced by this process. Alternatively, the number of electrodes
needed to produce quality images can be significantly abated. This is a potentially high-
impact result because not only does it increase the appeal of EIT for SHM applications, but
it shows that multi-physics coupling to enhance the rank of the sensitivity matrix can radi-
cally improve image quality which is EIT’s greatest limitation from a biomedical imaging
perspective.
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CHAPTER 8

Recommendations for Future Work

This thesis has convincingly demonstrated the potential of EIT for conductivity-based dam-
age and strain identification, developed novel insights into nanocomposite conductive prop-
erties, and leveraged these insights to develop a theoretical frame work to fundamentally
enhance EIT. However, it is the author’s opinion that, while promising, conductivity-based
SHM via EIT is a relatively immature field and will require due diligence before it is truly
field-worthy. Nonetheless, because of the potential to develop self-sensing fibrous com-
posites with the ability to spatially resolve damage and strain, the author also believes
conductivity-base SHM via EIT is worth pursuing. This chapter further details what the
author perceives to be important areas of future work.

First, implementation of EIT in the field or on in-service structures has several chal-
lenges. Robust, practical electrodes need to be researched and developed. Using silver
paste and copper tape works well in laboratory settings, but these methods would fail
abysmally on in-service structures. Ideally, electrodes should be manufactured into fiber-
reinforced composites rather than being applied as an afterthought. Furthermore, efficient,
robust, and adaptable EIT algorithms will be necessary for field deployment. This means
that the routine can automatically handle and adapt to, for example, an electrode mal-
functioning or a non-convergent solution without human assistance. And, because EIT
necessarily consumes power for current injections, future work should concentrate on de-
veloping technologies capable of generating and supplying this power while in-service on
the structure. Energy harvesting methods, for example, have potential in this regard.

The second area of future research regards the development of fiber-reinforced compos-
ites with nanocomposite matrices. At present, it is possible to achieve high conductivities
and uniform dispersion without structural fibers, but these properties both drop markedly in
the presence of reinforcing fibers. Overly resistive materials will require the application of
prohibitively large voltages to conduct EIT. Methods of inducing nanofiller chaining [81],
however, show promise to facilitate the formation of well-connected and therefore more
conductive nanofiller networks in fiber-reinforced composites. Furthermore, because of
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the incredible diversity among piezoresistive responses, much more fundamental research
is required before nanocomposites can be employed for integrated strain sensing.

The author’s success, albeit entirely analytical, with enhancing the image quality of
EIT gives him strong reason to believe that, particularly in biomedical applications, EIT
has incredible potential to be transformed into a powerful imaging modularity. The key
will be to find the multi-physics coupling that not only addresses the rank deficiency of the
sensitivity matrix but also retains EIT’s most valuable assets such as low cost, portability,
and being completely benign in biomedical applications. In addition to further researching
methods of enhancing EIT, experimental work should be undertaken to verify the coupling
process herein presented. The author recommends doing so by employing phantom tanks as
is common practice in medical EIT development. That is, a small tank should be filled with
conducting fluid (e.g. saline water) and some artifact to be imaged by EIT placed in the
tank. This artifact could be, for example, a gelatin mold with a conductivity that is different
than the saline. Next, known conductivity changes can be induced by precisely placing
sections of gelatin of a third conductivity with known geometry into the phantom tank and
correspondingly updating the forward problem and G to reflect this. This approach, while
far from practical SHM or medical applications, would be an important proof of concept
that experimental EIT can indeed be greatly bolstered by addressing the rank deficiency of
the sensitivity matrix. A phantom would be the ideal setup to very carefully induce known
conductivity changes. An example of an EIT phantom can be seen in Figure 8.1.
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Figure 8.1: Example of an EIT phantom tank [8].
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APPENDIX A

Detailed Forward Problem Formulation

A.1 Introduction

This appendix more diligently treats the finite element formulation of the forward problem
with explicit solutions for the forward problem CEM matrices in two and three dimensions.
This content has been relegated to an appendix because the finite element formulation is
necessary to this research but not advanced by it.

Unless otherwise state, indicial notation is used in the following. Summation is implied
over repeated subscripts. However, description of the finite element methods can result in
a plethora of subscripts and superscripts. Indicial notation has been abandoned in these
instances for clarity. Linear interpolation functions are used in this research and the ex-
plicitly computed CEM matrices, but the general forms of the CEM matrices are derived
for any order of interpolation. Conductivity has also been assumed to be a completely
general tensor. Also, because their gradients are constant vectors, only linear triangular
and tetrahedral elements are considered in this appendix. Hexahedral elements have been
used at several points in the preceding chapters, but converting triangular/tetrahedral code
to quadrilateral/hexahedral code is straight-forward.

A.2 Formulation of Steady State Diffusion Weak Form
and Discretization

Consider the domain equation for steady-state diffusion [61] [135] [136].

− ∂ji
∂xi

=
∂

∂xj
σij

∂u

∂xj
= f (A.1)

Here, ji is the current density vector, σij is the conductivity tensor, u is the domain poten-
tial, and f is an internal current source. It is assumed that the total current flowing through
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active electrodes is known and no current flows through boundaries of the domain where
electrodes are not attached. These conditions are expressed as follows.∫

El

σij
∂u

∂xi
nj dSl = Il (A.2)

σij
∂u

∂xi
nj = 0 off

L⋃
l=1

El (A.3)

The outward pointing normal is specified as ni and the total number of electrodes is L. In
addition to the interface condition given in equation 3.2, equation A.4 enforces conservation
of charge.

L∑
l=1

Il = 0 (A.4)

Now, formulate the weak form of equation A.1 according to variational principles by
multiplying it by a weighting function ψ that satisfies the Dirichlet boundary conditions
and integrating the result over the domain.∫

Ω

ψ
∂

∂xj
σij

∂u

∂xj
dΩ =

∫
Ω

ψf dΩ (A.5)

An absence of internal sources is assumed resulting in f = 0. Using Green’s second iden-
tity and the vector identity ∂

∂xj
ψσij

∂u
∂xi

= ∂ψ
∂xi
σij

∂u
∂xj

+ ψ ∂
∂xj
σij

∂u
∂xj

, equation A.5 becomes∫
Ω

∂

∂xj
ψσij

∂u

∂xi
dΩ−

∫
Ω

∂ψ

∂xi
σij

∂u

∂xj
dΩ = 0. (A.6)

By the divergence theorem, equation A.6 can be rewritten as∫
Ω

∂ψ

∂xi
σij

∂u

∂xj
dΩ =

∫
∂Ω

ψσij
∂u

∂xi
nj dS =

∫
Γ

σij
∂u

∂xj
njψ dS (A.7)

where Γ =
⋃
lEl is the union of the electrodes and equation A.3 is enforced off the elec-

trodes. Substituting the domain-electrode CEM interface condition from equation 3.2 into
equation A.7 results in the following relation.

∫
Ω

∂ψ

∂xi
σij

∂u

∂xj
dΩ =

L∑
l=1

∫
El

1

zl
(Vl − u)ψ dSl (A.8)

Equation A.8 is discretized by partitioning the domain Ω into disjoint subsets Ωe so that it
can be expressed as an assembly of subsets.
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∑
e

∫
Ωe

∂ψe
∂xi

σij
∂ue
∂xj

dΩe =
∑
e

L∑
l=1

∫
∂Ωe

1

zl
(Vl − ue)ψe dSe (A.9)

Here,
∑

e(·) implies the assembly of elements. u and ψ are now expressed element-wise in
the following manner.

ue =
N∑
A=1

wAdAe (A.10)

ψe =
N∑
A=1

wAcAe (A.11)

dAe is the solution to the forward problem at the Ath node of the eth element, and cAe is the
variation of the Ath node of the eth element. Equation A.10 is the interpolation of the nodal
solutions over the eth element and summed over N nodes per element. The nodal solutions
are recovered by minimizing equation A.9 with respect to the nodal variations.

A.3 Formulation of Complete Electrode Model Matrices

Consider the left hand side of equation A.9 for the eth element. Upon substituting equation
A.10 and equation A.11 for ue and ψe,

∫
Ωe

∂ψe
∂xi

σij
∂ue
∂xj

dΩe =
N∑
A=1

N∑
B=1

cAe

∫
Ωe

∂wA

∂xi
σij
∂wB

∂xj
dΩe d

B
e . (A.12)

Because cAe and dAe are constants, they are pulled outside of the integral. In order to form the
gradients of the interpolation functions, the interpolation functions must first be defined.
Defining the interpolation functions as wA = wA(xi) makes evaluating the integrals in
equation A.9 unpalatable and computationally inefficient. Instead, define the interpolation
functions on an isoparametric domain.

xi =
N∑
A=1

wA (ζ)xAi (A.13)

xAi is the i-coordinate of the Ath node. This isoparametric mapping is depicted for a tetra-
hedral element in Figure A.1. Similarly, a triangular element can be mapped to the ζ1 − ζ2

plane of Figure A.1, and a line can be mapped to a bi-unit domain running from ζ = −1 to
ζ = 1.

112



Figure A.1: An arbitrary tetrahedral element depicted to the left is mapped to the isopara-
metric domain shown to the right by the inverse of the Jacobian operator.
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Now the chain rule of differentiation can be employed to form the gradient of the interpo-
lation functions.

∂wA

∂xi
=
∂wA

∂ζj

∂ζj
∂xi

(A.14)

Recognize ∂ζi/∂xj as the inverse of ∂xi/∂ζj which can be formed by differentiating equa-
tion A.13. Equation A.12 can now be rewritten as follows.

∫
Ωe

∂ψe
∂xi

σij
∂ue
∂xj

dΩe =
N∑
A=1

N∑
B=1

cAe

∫
Ωe

∂wA

∂ζk

∂ζk
∂xi

σij
∂wB

∂ζl

∂ζl
∂xj

dΩe d
B
e (A.15)

Because of the isoparametric domains selected, integrals over these domains can be
evaluated exactly using numerical quadrature with appropriately selected Lagrange poly-
nomials. Linear elements are used in this research, and tetrahedral, triangle, and line ele-
ments will be detailed here. That is, w1 = ζ1, w2 = ζ2, w3 = ζ3, and w4 = 1− ζ1− ζ2− ζ3

in three dimensions; w1 = ζ1, w2 = ζ2, and w3 = 1 − ζ1 − ζ2 in two dimensions; and
w1 = 1/2(1 − ζ) and w2 = 1/2(1 + ζ) in one dimension. Expressing equation A.15 in the
isoparametric domain requires the integrand be multiplied by det |∂xi/∂ζj|.

∫
Ωe

∂ψe
∂xi

σij
∂ue
∂xj

dΩe =
N∑
A=1

N∑
B=1

cAe

∫
Ωeζ

∂wA

∂ζk

∂ζk
∂xi

σij
∂wB

∂ζl

∂ζl
∂xj

det

∣∣∣∣∂xm∂ζn

∣∣∣∣ dΩeζ d
B
e (A.16)

Ωeζ denotes integration of the eth element in the isoparametric domain. The integral in
equation A.16 can now be evaluated as a sum of weighted polynomials evaluated at quadra-
ture points as follows.

∫
Ωeζ

p (ζi) dΩeζ =
M∑
m

amp (ζm) (A.17)

Here, the summation runs over the number of quadrature points and am is the mth weight.
Returning to equation A.16, since the nodal solution and nodal variation have been moved
outside the integral, every part of the integrand is known and it can be evaluated to form
the local diffusion stiffness matrix for the eth element.

114



∫
Ωe

∂ψe
∂xi

σij
∂ue
∂xj

dΩe =
N∑
A=1

N∑
B=1

cAe k
AB
e dBe

=
[
c1
e c2

e . . . cNe

]
ke


d1
e

d2
e
...
dNe

 (A.18)

kABe is the local diffusion stiffness matrix of the eth element and can be assembled into
the global diffusion stiffness matrix AM . As also shown in equation A.18, the summations
over the interpolation functions can be expressed through linear algebra.

For two-dimensional analysis with linear triangle elements, the local diffusion stiffness
matrix for the eth element is

ke =
1

2

 1 0

0 1

−1 −1

[xe1 − xe3 xe2 − xe3
ye1 − ye3 ye2 − ye3

]−1 [
σ11 σ12

σ21 σ22

]
. . .

. . .

[
xe1 − xe3 xe2 − xe3
ye1 − ye3 ye2 − ye3

]−T  1 0

0 1

−1 −1


T

det

∣∣∣∣∣
[
xe1 − xe3 xe2 − xe3
ye1 − ye3 ye2 − ye3

]∣∣∣∣∣ . (A.19)

For three-dimensional analysis with linear tetrahedral elements, the local diffusion stiffness
matrix for the eth element is
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ke =
1

6


1 0 0

0 1 0

0 0 1

−1 −1 −1


x

e
1 − xe4 xe2 − xe4 xe3 − xe4
ye1 − ye4 ye2 − ye4 ye3 − ye4
ze1 − ze4 ze2 − ze4 ze3 − ze4


−1

. . .

. . .

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33


x

e
1 − xe4 xe2 − xe4 xe3 − xe4
ye1 − ye4 ye2 − ye4 ye3 − ye4
ze1 − ze4 ze2 − ze4 ze3 − ze4


−T

. . .

. . .


1 0 0

0 1 0

0 0 1

−1 −1 −1


T

det

∣∣∣∣∣∣∣
x

e
1 − xe4 xe2 − xe4 xe3 − xe4
ye1 − ye4 ye2 − ye4 ye3 − ye4
ze1 − ze4 ze2 − ze4 ze3 − ze4


∣∣∣∣∣∣∣ . (A.20)

Indicial notation has been abandoned here, and xei , y
e
i , or zei is the x-, y-, or z-coordinate

of the ith node of the eth element. This abuse of indicial notation elucidates subscripts
and nodal coordinates. The gradients of the interpolation functions with respect to their
independent variables have been evaluated in equation A.19 and equation A.20. Because
the interpolation functions are linear, their gradients are constant and the integral of equa-
tion A.16 can be evaluated immediately. However, equation A.17 will need to be used for
higher order interpolation functions. Also, recognize the area of the eth triangular element
as

Ae =
1

2
det

∣∣∣∣∣
[
xe1 − xe3 xe2 − xe3
ye1 − ye3 ye2 − ye3

]∣∣∣∣∣ (A.21)

and the volume of the eth tetrahedral element as

V e =
1

6
det

∣∣∣∣∣∣∣
x

e
1 − xe4 xe2 − xe4 xe3 − xe4
ye1 − ye4 ye2 − ye4 ye3 − ye4
ze1 − ze4 ze2 − ze4 ze3 − ze4


∣∣∣∣∣∣∣ . (A.22)

AZ , AW , and AD can be formed by isolating the remaining integrals in equation A.9.
Similar to the development of ke, the integrals in equation A.9 can be written in terms
of equation A.10 and equation A.11 with nodal solutions and variations pulled outside the
integral as vectors. The right hand side of equation A.9 for the lth electrode can be rewritten
as follows.
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∑
e

∫
∂Ωe

1

zl
(Vl − ue)ψe dSe =

∑
e

(
−
∫
∂Ωe

1

zl
ueψe dSe +

∫
∂Ωe

1

zl
Vlψe dSe

)
(A.23)

AZ and AW can be formed by moving the right hand side of equation A.23 to the left hand
side of equation A.9 and substituting equation A.10 and equation A.11. First, however, it
is important to the CEM formulation to use the correct interpolation functions when form-
ing the CEM matrices. The element diffusion stiffness matrices use interpolation functions
that are of the same dimension of the domain, but AZ and AW are formed using inter-
polation functions one degree lower than the dimension of the domain. For example, a
two-dimensional simulation uses w1 = ζ1, w2 = ζ2, and w3 = 1 − ζ1 − ζ2 in the domain,
but w1 = 1/2(1 − ζ) and w2 = 1/2(1 + ζ) are used to form AZ and AW . To form AZ

and AW , the explicit steps of expressing integrals in the isoparametric domain will not be
shown, but the final expression for linear elements will reflect the transformation.

To form AZ , use the first integral on the right hand side of equation A.23 and consider
the eth element of the lth electrode.

∫
Ωe

1

zl
ueψe dSe =

N∑
A=1

N∑
B=1

cAe

∫
Ωe

1

zl
wAwB dSe d

B
e

=
[
c1
e c2

e . . . cNe

]
Ae l
Z


d1
e

d2
e
...
dNe

 (A.24)

The integral in equation A.24 can be evaluated to find the AZ matrix of the eth element
of the lth electrode. The AZ matrix of the eth linear line element of the lth electrode in
two-dimensional analysis is

Ae l
Z =

∫ 1

−1

he

8zl

[
1− 2ζ + ζ2 1− ζ2

1− ζ2 1 + 2ζ + ζ2

]
dζ

=
he

6zl

[
2 1

1 2

]
. (A.25)

he is the line element length. The AZ matrix of the eth linear triangle element of the lth
electrode in three-dimensional analysis is
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Ae l
Z =

∫ 1

0

∫ 1−ζ1

0

2Ae

zl

 ζ2
1 ζ1ζ2 ζ1 (1− ζ1 − ζ2)

ζ1ζ2 ζ2
2 ζ2 (1− ζ1 − ζ2)

ζ1 (1− ζ1 − ζ2) ζ2 (1− ζ1 − ζ2) (1− ζ1 − ζ2)2

 dζ2 dζ1

=
Ae

12zl

2 1 1

1 2 1

1 1 2

 . (A.26)

Ae l
Z is formed for every element that is part of an electrode. These matrices are then as-

sembled into the global AZ matrix.
AW links the domain voltage to the electrode voltages. Its number of rows equals the

number of nodes in the finite element simulation, and its number of columns equals the
number of electrodes. Specifying an electrode corresponds to specifying a column vector
in AW . To form AW , use the second integral on the right hand side of equation A.23 and
consider the eth element of the lth electrode.

−
∫

Ωe

1

zl
ψeVl dSe = −

N∑
A=1

cAe

∫
Ωe

1

zl
wA dSe Vl

=
[
c1
e c2

e . . . cNe

]
Ae l
WVl (A.27)

Because the voltage is assumed to be constant on each electrode, Vl is also pulled out of
the integral. The AW column vector of the eth linear line element of the lth electrode in
two-dimensional analysis is

Ae l
W = −

∫ 1

−1

he

2zl

[
1
2

(1− ζ)
1
2

(1 + ζ)

]
dζ

= − h
e

2zl

[
1

1

]
. (A.28)

The AW column vector of the eth linear triangle element of the lth electrode in three-
dimensional analysis is
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Ae l
W = −

∫ 1

0

∫ 1−ζ1

0

2Ae

zl

 ζ1

ζ2

1− ζ1 − ζ2

 dζ2 dζ1

= −A
e

3zl

1

1

1

 . (A.29)

Computationally, the formation of AD is straightforward, but its derivation requires
considering the total current in the system and enforcing equation A.4. The current through
the lth electrode is

Il =

∫
El

1

zl
(Vl − u) dS =

1

zl
ElVl −

∫
El

1

zl
u dS. (A.30)

Assuming a constant contact impedance and electrode voltage, the first quantity in the right
hand side of equation A.30 relates the electrode current to the electrode voltage by El/zl.
This accounts for the form of AD while the last term in the right hand side of equation
A.30 can be recognized as equation A.27 but with the nodal solution instead of the nodal
variation. This accounts for the coupling of the domain voltage to the electrode voltage by
AW .

A.4 Matrix Assembly

Local ke, Ae l
Z , and Ae l

W matrices are assembled into global AM , AZ , and AW matrices
respectively. Assembly of local matrices is most conveniently visualized by considering
the assembly of the global nodal variation and the global nodal solution vectors. That
is, the vector of nodes belonging to each element is a subset of a global vector of nodes.
The global variation vector is c =

[
c1 c2 . . . cn . . . cN

]
where cn corresponds to

the nodal variation at the nth of N total nodes. Similarly, the global solution vector is
d =

[
d1 d2 . . . dn . . . dN

]
where dn corresponds to the nodal solution at the nth of

N total nodes. The assembly of the global diffusion stiffness matrix can now be expressed
as

∑
e

∫
Ωe

∂ψe
∂xi

σij
∂ue
∂xj

dΩe = cTAMd. (A.31)

Elements of each local diffusion stiffness matrix must be placed in the global matrix such
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that they still contract out with the appropriate nodal variations and solutions. Because
elements may share nodes, some entries to the global matrix will be additive. Consider, for
example, the local diffusion stiffness matrices of the eth and the eth+1 elements for linear
triangles. Furthermore, let the eth and the eth+1 elements share a side as shown in Figure
A.2.

cTeA
e
Mde =

[
c1
e c2

e c3
e

]k
11
e k12

e k13
e

k21
e k22

e k23
e

k31
e k32

e k33
e


d

1
e

d2
e

d3
e

 (A.32)

cTe+1A
e+1
M de+1 =

[
c1
e+1 c2

e+1 c3
e+1

]k
11
e+1 k12

e+1 k13
e+1

k21
e+1 k22

e+1 k23
e+1

k31
e+1 k32

e+1 k33
e+1


d

1
e+1

d2
e+1

d3
e+1

 (A.33)

Additionally, let the nodes belonging to the eth and eth+1 elements corresponding to the
following global nodes.

[
c1
e c2

e c3
e

]
7→
[
c4 c5 c6

]
[
d1
e d2

e d3
e

]
7→
[
d4 d5 d6

]
[
c1
e+1 c2

e+1 c3
e+1

]
7→
[
c5 c7 c6

]
[
d1
e+1 d2

e+1 d3
e+1

]
7→
[
d5 d7 d6

]
These local matrices are assembled into the global matrix as follows.

cTAMd =



...
c4

c5

c6

c7

...



T 

k11
e k12

e k13
e

k21
e k22

e + k11
e+1 k23

e + k12
e+1 k13

e+1

k31
e k32

e + k21
e+1 k33

e + k22
e+1 k23

e+1

k31
e+1 k32

e+1 k33
e+1





...
d4

d5

d6

d7

...


(A.34)

Because the two elements considered share the fifth and sixth global nodes, the corre-
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Figure A.2: Two arbitrary triangular elements with local and global nodes labeled.
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sponding entries to the global diffusion stiffness matrix has a contribution from each. It is
important to remember that this is merely an illustrative example considering two elements
in isolation. A real mesh will have more shared entries and local matrices may not be con-
fined to blocks in the global matrix. The assembly process can be automated in a loop with
knowledge of the nodal connectivity matrix. The global AZ is assembled in an identical
manner, and the global AW matrix is assembled in a similar manner. The difference is
that electrode voltage degrees of freedom must match in the contractions instead of nodal
voltage solutions.

A.5 Sparse Indexing in MATLAB

The forward problem and EIT code used in this research was written entirely in MATLAB
(The MathWorks Inc., Natick, MA) by the author. The finite element method necessitates
the inversion of large matrices. Fortunately, these matrices are sparse and the memory
requirements for inversion can be considerably reduced by using the sparse( ) command
in MATLAB. However, MATLAB has a reputation of being unpalatable for finite element
analysis because the manner in which it indexes and populates sparse matrices is very time
consuming especially when the sparse( ) command is embedded in a loop. Triplet indexing
circumvents this. Triplet indexing forms three vectors as matrix entries are calculated –
one vector of the row number, one vector for the column number, and one vector for the
value of a particular entry. The sparse( ) command is not called until the triplet vectors
have been populated. This approach enables fine meshes to be solved quite expeditiously
in MATLAB.

A.6 Mesh Generation and Post-Processing

Meshing is the process of discretizing a domain into disjoint subsets; that is, breaking a
domain into many connected elements. Many commercial and open sources meshers ex-
ist, and, in the author’s experience, they all have a bit of a learning curve. It is therefore
recommended that users find one available to them and then commit to learning it. The au-
thor prefers Cubit (Sandia Corporation, Sandia National Laboratories, Albuquerque, NM)
where available. Netgen is also a good open source option for tetrahedral elements.

Post-processing is the process of visualizing data. ParaView (Sandia Corporation, Kit-
ware Inc. Sandia National Laboratories, Albuquerque, NM) is a powerful open source
post-processor capable of rendering both forward problem solutions and conductivity dis-
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tributions recovered during the inverse problem. All figures herein, however, were gener-
ated via code written by the author in MATLAB.
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APPENDIX B

Detailed Sensitivity Matrix Calculations

B.1 Introduction

The sensitivity matrix can look intimidating to the uninitiated, but forming its entries is
really no more difficult than forming the finite element stiffness matrix for steady-state
diffusion as was presented in Appendix A. Here, the exact form of sensitivity matrix entries
will be derived for linear triangle and tetrahedral elements, but, again, it is a easy extension
to quadrilateral or hexahedral elements. This will also be put in the context of some psuedo-
code necessary to build up the entire matrix.

B.2 Evaluation of the Sensitivity Matrix Entries

Begin by recalling the form of the sensitivity matrix for anisotropic conductivity. This
simplifies to the isotropic case when δij is substituted for σij . Note, also, that the super-
script 0 has been dropped from σij for notational convenience.

JQR e = −
∫

Ωe

∂uQ

∂xi
σij
∂ūR

∂xj
dΩe (B.1)

Again, repeated subscripts imply summation over the domain of the problem. Also note
that now QR is an index of the sensitivity matrix instead of the previously used MN . This
is just to avoid using the same indices as are used to sum over the number of nodes per
element. Just as in the formulation of the finite element matrices, proceed by substituting
the explicit forms for u shown in equation A.10.
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JQR e = −
∫

Ωe

∂uQ

∂xi
σij
∂ūR

∂xj
dΩe

= −
N∑
A=1

N∑
B=1

dAQe

∫
Ωe

∂wA

∂xi
σij
∂wB

∂xj
dΩe d̄

BR
e (B.2)

dAQe refers to the Ath nodal solution of the eth element due to the Qth injection, and d̄BRe
refers to the Bth nodal solution of the eth element due to a unit current injection by the
Rth electrode measurement pair. Now the gradients of the interpolations functions can be
evaluated via the chain rule as in equation A.14.

−
∫

Ωe

∂uQ

∂xi
σij
∂ūR

∂xj
dΩe = −

N∑
A=1

N∑
B=1

dAQe

∫
Ωe

∂wA

∂ζk

∂ζk
∂xi

σij
∂wB

∂ζl

∂ζl
∂xj

dΩe d̄
BR
e (B.3)

This integral is then carried out in the isoparametric domain by multiplying it by det |∂xi/∂ζj|.

−
∫

Ωe

∂uQ

∂xi
σij
∂ūR

∂xj
dΩe = −

N∑
A=1

N∑
B=1

dAQe

∫
Ωeζ

∂wA

∂ζk

∂ζk
∂xi

σij
∂wB

∂ζl

∂ζl
∂xj

det

∣∣∣∣∂xm∂ζn

∣∣∣∣ dΩe d̄
BR
e

(B.4)
Now express the summations through linear algebra.

−
∫

Ωe

∂uQ

∂xi
σij
∂ūR

∂xj
dΩe =

N∑
A=1

N∑
B=1

dAQe jABe dBRe

=
[
d1Q
e d2Q

e . . . dN Q
e

]
je


d̄1R
e

d̄2R
e
...

d̄N R
e

 (B.5)

je can now be evaluate for triangular elements.
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je = −1

2

 1 0

0 1

−1 −1

[xe1 − xe3 xe2 − xe3
ye1 − ye3 ye2 − ye3

]−1 [
σ11 σ12

σ21 σ22

]
. . .

. . .

[
xe1 − xe3 xe2 − xe3
ye1 − ye3 ye2 − ye3

]−T  1 0

0 1

−1 −1


T

det

∣∣∣∣∣
[
xe1 − xe3 xe2 − xe3
ye1 − ye3 ye2 − ye3

]∣∣∣∣∣ (B.6)

Similarly for tetrahedral elements.

je = −1

6


1 0 0

0 1 0

0 0 1

−1 −1 −1


x

e
1 − xe4 xe2 − xe4 xe3 − xe4
ye1 − ye4 ye2 − ye4 ye3 − ye4
ze1 − ze4 ze2 − ze4 ze3 − ze4


−1

. . .

. . .

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33


x

e
1 − xe4 xe2 − xe4 xe3 − xe4
ye1 − ye4 ye2 − ye4 ye3 − ye4
ze1 − ze4 ze2 − ze4 ze3 − ze4


−T

. . .

. . .


1 0 0

0 1 0

0 0 1

−1 −1 −1


T

det

∣∣∣∣∣∣∣
x

e
1 − xe4 xe2 − xe4 xe3 − xe4
ye1 − ye4 ye2 − ye4 ye3 − ye4
ze1 − ze4 ze2 − ze4 ze3 − ze4


∣∣∣∣∣∣∣ (B.7)

These matrices are of course identical to equation A.19 and equation A.20, but they
were derived just to solidify that the evaluation of the sensitivity matrix really is quite
straight-forward. The major difference is that each entry calculated in the sensitivity matrix
is a scalar, not a matrix like in the formation of the diffusion stiffness matrix. This is
because the nodal solutions dAQe and d̄BRe are known vectors so the linear algebra shown
in equation B.6 now results in a scalar whereas in the formation of the diffusion stiffness
matrices the contracting vectors were either variations to be minimized or solutions to be
recovered.
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B.3 Indexing the Sensitivity Matrix

Indexing the sensitivity matrix is often counter-intuitive due to the QR index of JQRe.
Here, the structure used in this research to populate the sensitivity matrix will be presented
as pseudo-code. Casual MATLAB-esque language will be used. As before, let L be the
total number of electrodes, E be the total number of elements in the mesh, and N be the
number of nodes per element.

begin sensitivity matrix

solve forward problem for prescribed current injections between all electrode pairs, save

domain solutions

solve forward problem for unit current injections between all electrode pairs, save domain

solutions

initialize sensitivity matrix, J =zeros(L2,E)

initialize indexing counter, l = 0

for i = 1 : L

for j = 1 : L

l = l + 1

for k = 1 : E

recall [d1 i
k d2 i

k . . . dN i
k ]

recall [d̄1 j
k d̄2 j

k . . . d̄N j
k ]

find the coordinates of the nodes belonging to the kth ele-

ment

evaluate equation B.6 or equation B.7
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evaluate equation B.5, store as Jij k

update J as J(l, k) = J(l, k) + Jij k

end for k = 1 : E

end for j = 1 : L

end for i = 1 : L

end sensitivity matrix

The author is not a computer scientist so there are most certainly more efficient ways of
populating the sensitivity matrix. However, it is hoped that the pseudo-code provided will
be sufficient as a starting point.
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