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Abstract

Self-assembly is the process of spontaneous organization of a set of interacting

components - colloidal particles in suspension interacting with one another can organize into

crystals, gels, glasses and even primitive devices on the microscale. We examine how particle

shape - one of many possible interparticle interactions - drives the self-assembly of colloids

in three different colloidal systems. When particles interact only via their shape, entropic

crystallization can occur; we discuss a design strategy for creating hard, polyhedral parti-

cles that entropically stabilize arbitrary crystal structures. As a strategy for targeting novel

crystal structures, we examine the use of Voronoi particles, which are hard, space-filling

particles in the shape of Voronoi cells of a target structure. Although Voronoi particles sta-

bilize their target structure in the limit of high pressure by construction, the thermodynamic

assembly of the same structure at moderate pressure, close to the onset of crystallization,

is not guaranteed. Indeed, we find that a more symmetric crystal is often preferred due

to additional entropic contributions of several kBT arising from configurational or occupa-

tional degeneracy. We characterize the assembly behavior of the Voronoi particles in terms

of the symmetries of the building blocks as well as the symmetries of crystal structures and

demonstrate how controlling the degeneracies through a modification of particle shape and

field-directed assembly can significantly improve the assembly propensity.

With the addition of non-adsorbing, polymer depletants, hard colloids experi-

ence an emergent attraction dependent on polymer concentration, the form of which is dic-

tated by the colloid shape; we study a system of oblate, spheroidal colloids that self-assemble

xii



thread-like clusters. We develop methods to identify particle position and orientation, and

apply them in a joint analysis of experimental systems. In both simulation and experiment

the colloids condense into orientationally disordered droplets at low polymer concentrations;

at higher concentrations, where we expect orientational alignment, we observe kinetic arrest

into primarily linear clusters of aligned colloids. We show that these low-valence structures

are a result of the anisotropic particle shape, which give rise to an effective potential capable

of forming mechanically stable, low valence structures.

Furthermore, particle surfaces can be patterned with metal coatings, introduc-

ing enthalpic attraction between particles; we study a system of prolate spheroidal colloids,

half-coated in gold. These particles assemble one dimensional fibers that can be reversibly

actuated upon the application of an electric field. Many natural micrometer-scale assem-

blies can be actuated to control their optical, transport, and mechanical properties, yet such

functionality is lacking in colloidal structures synthesized thus far. Here, we show with ex-

periments and computer simulations that Janus ellipsoids can self-assemble into self-limiting

one-dimensional fibers with shape-memory properties, and that the fibrillar assemblies can

be actuated on application of an external alternating-current electric field. Actuation of the

fibers occurs through a sliding mechanism (allowed by the curved ellipsoidal surfaces) that

permits the rapid and reversible elongation and contraction of the Janus-ellipsoid chains

by 36%. Colloidal-scale actuation might be useful in microrobotics and in applications of

shape-memory materials.

In these three, significantly different colloidal systems, we find shape plays a

xiii



critical role. By understanding and isolating its impact, we enhance shape’s utility as a

parameter for the design of self-assembling colloids.
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Chapter 1

Introduction

Self assembly encompasses the process and outcome of the spontaneous structure formation

from a system comprised of interacting components [1]. Self assembly is perhaps easiest

understood in contrast to top-down, guided assembly, in which an agent with global knowl-

edge of the end structure directs the components; instead the end structure is encoded into

interactions of the components with each other and their environment. This broad defini-

tion applies to physical systems at every scale - from cosmological[2] to nanoscale[3], from

economic markets[4] to biological systems[5, 6] to biocompatible materials[7] and robotic

swarms[8, 9].

The focus of this thesis is on the thermodynamic self assembly of colloidal

particles. Thermodynamic self-assembly specifies a subset of self assembly in which thermal

fluctuations drive random particle motion and minimize the system’s free-energy[1]. Colloids

are particles of matter ranging from the nano- to microscale, often suspended in solution.
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At the colloidal scale, there are relatively few types of interactions that participate in driv-

ing self assembly [10, 11]. The work presented in this thesis includes particles interacting

via excluded-volume interactions (particles cannot occupy the same space), van der Waals

interactions (an attractive force arising from fluctuating dipole moments in the particles),

hydrophobic interaction (a chemical tendency for certain surfaces to avoid water, driving mu-

tual attraction) and depletion (an imbalance of osomotic pressure that drives large particles

in solution with smaller particles close together). Interactions of these types are generically

described by an interaction potential

U = f(~r1 . . . ~rN) (1.1)

where f is an arbitrary function and ~ri is a coordinate vector describing all the degrees of

freedom of particle i. In many cases this function is accurately described by a sum of pair-wise

interactions, with three- and more-body interactions entering the equations as corrections

[12].

U =
∑
i 6=j

Upair(~ri, ~rj) + . . . (1.2)

where Upair describes the pair-wise interactions, such as excluded volume. The connection

between particle interactions and bulk thermodynamic behavior and structures in described

by statistical mechanics. For a system with N particles, fixed volume V and held at tem-

perature T = kB/β (kB is Boltzmann’s constant), it can be shown that the probability of

observing a state described by {~r1 . . . ~rN} is proportional to exp (−βU(~r0 . . . ~rN)) (Boltzmann

2



distribution). The partition function Z is a sum over all possible states; in classical physics,

it becomes an integral.

Z =

∫
d~r1 . . .

∫
d~rN exp

(
−β
∑
i 6=j

∑
Upair(~ri, ~rj)

)
(1.3)

where the sum is taken over all particle pairs. We connect to the microscopic picture of a

system to the observable quantities through macrostates - sets of microstates for which a

given observable A has some values A0. A system in thermal equilibrium will evolve to a

macrostate (a collection of microstates {~r1 . . . ~rN}) that minimize its free energy, defined as

F = −kB ln(Z) (1.4)

For all but the simplest cases exact evaluation of the partition function is

impossible, though there exist many perturbative treatments [12]. However, it it possible

to sample thermodynamic systems that escape analytical description using computational

techniques such as molecular dynamics (integrating particle dynamics with a modified form of

Newton’s equation to fix temperature and/or pressure), Monte Carlo methods (a statistical

scheme for sampling microstates according to the appropriate Boltzmann distribution) or

combinations of the two[13].

The work presented in this thesis employs both Monte Carlo and molecular

dynamics methods in close connection to experimental work to understand the role of shape

in the self assembly of anisotropic colloids. The last decade has seen tremendous growth
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in the library of synthesizable colloids. Glotzer and Solomon [14] set forth anisotropy di-

mensions as a framework for describing the many different types of anisotropies that can

be introduced to a colloid. Beginning with a spherical particle, the surface can be modified

with, for example, a metallic coating [15], to make regions of the particle’s surface attrac-

tive. The extent and patterning of this surface modification is described by the ”patchiness”

dimension. Similarly, particles may be faceted[16], branched[17] or stretched[18]. These di-

mensions introduce shape to the particle - which, in the context of the pair-wise interactions

described above, is a volume exclusion interaction that depends both on particle orientation

and position -

Ushape(~ri, ~qi, ~rj, ~qj) =


∞ : if overlap

0 : else

(1.5)

. where ~r, and ~q are the translational and rotational degrees of freedom, respectively. Ushape

may be “softened” with an algebraic divergence as shapes begin to overlap, such as in the

discrete-element method[19] - ”shape” encompasses short-range, anisotropic repulsion. In the

following chapters, the role of the contribution of this term to the free energy and particle

interactions is investigated for three different systems.
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1.1 Entropic self-assembly

The work described in Chapter 1 is limited to systems with only interactions of the form of

Eq. 1.5, the partition function reduces to a sum or integral over allowable configurations,

Z =

∫
Ω?

1

d~r1 . . .

∫
Ω?

N

d~rN (1.6)

, where Ωi is the domain of the integral over ~ri which produces no overlaps with any other

particles. In this special case, we can think of the free energy of the system as completely

dominated by the entropy S[20, 21, 22], defined as

S = kBT ln(Ω) (1.7)

where Ω is the number of microstates available to the system. In these systems, minimizing

the free energy proceeds by maximizing entropy; the most probable macrostate minimizes

the free energy. In systems of hard spheres, if 49.4% of the system volume is occupied by

particles, the particles crystallize[23]; by providing an identical environment for all particles,

the system maximizes the number of accessible, non-overlapping configurations.

As shown in many recent papers [24, 25, 26, 22, 16, 27, 28, 29, 30], colloidal

particles with faceted shapes can thermodynamically stablize a wide variety of crystal struc-

tures from entropy alone; hard tetrahedra even self assemble a quasicrystal [31]. In Chapter

2, we devise a method to design shapes to self assemble arbitrary crystal structures and by
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studying the failings of this method, refine our understanding of how particle symmetry -

and lack thereof - can modify the shape-entropy of the system.

1.2 Emergent attraction

In Chapters 3 and 4, we relax the constraint that all interactions have the form of Eq.

1.5 and study a system governed by volume exclusions between colloids and polymers, but

consider the polymers to be mutually penetrable [32]. In this system, investigated both

experimentally and in silico, we study oblate ellipsoid colloids of aspect ratio ε = 0.5 in

suspension with polymers at varying density. Surrounding each colloid is a layer that is

impenetrable to the polymers that is on the order of their radius of gyration, RG. As two

colloids approach one another, the excluded halo surrounding each colloid begins to overlap.

As a result, there is more accessible volume to each polymer - their Ωi increases, yielding a

net increase in system entropy. In such systems, the colloids are driven towards aggregation

because as they aggregate, the entropy of the polymers to increases, lowering the overall free

energy. Thus, there is a net attraction between the colloids which depends on the amount

of overlapping volume of their excluded volume halos. This attraction is “emergent”; all

components of the system are strictly repulsive, yet there is an effective attraction that

arises from the thermodynamic behavior of the polymers.

The emergent attraction is analytically quantifiable if we model the polymers

as ideal, penetrable hard spheres[33]; the polymers are represented as spheres of radius ≈ RG

that have an non-overlap interaction with the colloids, but do not interact with each other.

6



In this case we can factor the partition function thusly:

Z =

∫
Ω?

1

d~r1 . . .

∫
ΩN?

polymer

d~rNpolymer

∫
Ω?

1

d~r1 . . .

∫
ΩN?

colloid

d~rNcolloid
(1.8)

Z = V
Npolymer

free

∫
Ω?

1

d~r1 . . .

∫
ΩN?

colloid

d~rNcolloid
. (1.9)

where Vfree is the volume accessible to the polymers. In terms of free energy, this results in

F = −kBTNpolymer ln(Vfree)− Scolloid + F0 (1.10)

where Scolloid is the entropy of the colloids and F0 is a constant offset. There is a com-

petition between Scolloid, which at low densities promotes a disperse state, and maximizing

Vfree, which promotes colloidal aggregation. The impact of colloid shape in these systems

is encoded in Vfree - the amount of overlapping excluded volume depends on their rela-

tive position and orientation in anisotropic particles; Vfree encodes an anisotropic, emergent

attractive interaction between colloids.

In Chapter 3, image processing methods are developed to perform quantitative

image processing of anisotropic particles in the spirit of [34], allowing for direct comparison

between experimental and computational studies. These methods are then applied to a joint

computational and experimental studies of oblate colloidal spheroids in Chapter 4. In this

system, which undergoes arrest en route to thermodynamic equilibrium, the colloid shape
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dictates the local structure of the arrested state.

1.3 Surface anisotropy and shape

In Chapter 6, attractive and long-range repulsive interactions are introduced in addition to

shape. In a second joint computational and experimental study, nearly identical colloids to

those studied in Chapter 4 are elongated into prolate spheroids rather than oblate spheroids

and then additionally coated with an attractive layer of gold and chrome covering half the

particle along their major axis. The particles are electrostatically charged as well; in solution,

the range of this repulsion can be tuned by adding salt to solution.

Spherical patchy particles have been shown to assemble chiral strands[35],

open lattices [36, 37], micelles [38] and bilayers [39] in thermal equilibrium. The surface

modification of the elongated particles drives them to self assemble into one-dimensional

fibers; as discussed in detail in Chapter 6, the curved surface of the particles promotes

achiral, one-dimensional ordering and plays an important role in the kinetics and structure

of their assembly.

Additionally, these particles are subjected to an external electric field. Exter-

nal fields can induce interesting behavior in patchy particle systems due to a heterogeneous

response to the field (e.g. staggered chains[40], reconfigurable fibers[41] and self-propelled

particles[42]). In Chapter 5, upon application of the field the particles reconfigure into elon-

gated versions of their self assembled fiber. The spheroidal shape of the particles allows for

the reversible, diffusionless elongation, creating a micro-actuator.
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1.4 Summary

In the absence of all interactions, particle shape alone can produce a surprising diversity of

ordered assemblies. This thesis presents a series of self assembly studies which gradually add

interactions to systems of particles with anisotropic shapes; even as these interactions are

introduced, shape plays a critical role in the self assembly processes and material function.
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Chapter 2

Symmetry Considerations for the

Targeted Assembly of Entropically

Stabilized Colloidal Crystals via

Voronoi Particles

The contents of this chapter are drawn from a manuscript coauthored with Pablo Damasceno,

Michael Engel and Sharon Glotzer. All figure panels were jointly prepared by all authors;

Benjamin Schultz is the primary author and conducted all simulations and data analysis.
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2.1 Introduction

Once a scientific curiosity, the assembly of nanoparticle superlattices and colloidal crystals

is well on its way to becoming an industry. To attain such a status, however, requires that

targeted crystal structures can be assembled with high quality and yield from inexpensive,

easy-to-make building blocks. Great strides in this direction have been made recently us-

ing DNA-programmable assembly[43, 44, 45, 46]. At the same time, entropically-stabilized

superlattices of extraordinary complexity have been predicted[31, 47, 25, 24] and, occasion-

ally, observed by exploiting particle shape [48, 16, 17]. Although our understanding of the

relationship between particle shape and crystal structure is quickly advancing, it is still

not possible to predict a priori the crystals that will form from any arbitrary set of building

blocks, nor the complementary prediction of the set of building blocks that will best assemble

a given target structure. This latter challenge is the focus of the present paper.

Here we approach the challenge of building block design via symmetry prin-

ciples and entropic degeneracies. Despite recent advances in our understanding of the ther-

modynamics of hard particle systems [49, 30], little is known about the relationship, if any,

between the symmetries of particles and the assemblies they form. In contrast, symmetry

principles in atomic crystals state that (i) the arrangement of atoms tends towards the high-

est possible symmetry, and (ii) counteracting factors due to special properties of the atoms

may prevent attainment of the highest possible symmetry[50]. It has been observed in recent

papers that these symmetry ”rules” also apply for hard particles. Structures of high sym-
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metry are stabilized by entropy because such structures provide identical local environments

for each particle, thereby maximizing the average free volume per particle and, thus, the

system entropy (E.g. FCC and BCC are assembled by 41% of the polyhedra in Damasceno

et al. [24]. The ”counteracting factors” that result in more complex structures come from

pronounced shape anisotropies). Locally, however, entropy favors disorder and asymmetry,

and in clusters, symmetry factors in the rotational partition function can destabilize highly

symmetric clusters of spheres in favor of clusters of lower symmetry, as shown recently for

clusters of micron-sized PMMA spheres [51]. This competition between local and global

preferred symmetries makes building block design difficult when short range interactions, or

simply entropic interactions, are considered.

We do, however, have some predictive knowledge of the assembly behavior of

hard particles based on shape parameters like the isoperimetric quotient (IQ = 36πV 2

A3 ), which

quantifies the roundness of a particle, and the average coordination number of the dense

fluid, which correlates with the number of large facets [24]. Recent work by van Anders, et

al[52, 22] further quantifies the entropic valence associated with particle shape that explains

the tendency for faceted particles to adopt face-to-face configurations, as observed in many

studies[53, 24, 31, 54] . Facets can act as emergent attractive ”entropic patches”[22] with

strengths of several kBT at moderate pressures around the crystallization transition. At

infinite pressure, the assembly problem becomes a packing problem; however, the relationship

between the two problems remains an open question [55, 56, 57, 58, 24, 59]. Particles may

assemble thermodynamically stable or metastable crystals away from infinite pressure that
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are less dense than, but identical in structure to, that in which the shape packs most densely

[25]. Conversely, particles may assemble different crystal structures unrelated to the densest

packings, which become stable only at much higher pressures. For example, cubes readily

self-assemble a cubic crystal[29] and spheres an FCC crystal at densities near φp = 0.5 ,

both of which also correspond to those shapes’ respective densest packings. In contrast,

tetrahedra self-assemble a quasicrystal at a φp ≈ 0.50 [31], not the densest packing (a dimer

crystal[35, 57], which is not thermodynamically stable until φp = 0.847 [28]).

In this work, we propose and test a design strategy based on construction of

particles whose shapes are given by the Voronoi tessellation of a target crystal structure,

where the centers of the Voronoi cells represent the centers of the particles. By construction,

these ”Voronoi particles” (VPs) are space-filling, and in the infinite pressure limit pack so

that their centers reproduce the original target structure.

2.2 Background and approach

Previous studies of the thermodynamics of space-filling shapes have been limited to the

most symmetric sets of polyhedra. In Agarwal and Escobedo [25], the melting (as opposed

to assembly) behavior of six crystals of space-filling shapes was studied. In John et al. [60]

the phase diagram of space filling tetragonal parallelepipeds was determined via melting

studies. In Khadilkar and Escobedo [61], the assembly behavior of three different binary

mixtures of binary space-filling polyhedra were studied, and it was reported that the space-

filling crystals could be assembled only through the introduction of enthalpic patches. In
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this work, we investigate a large set of space-filling polyhedra in order to observe trends and

correlations with particle shape.

Like the construction of (often highly idealized) pair potentials guaranteed to

produce the corresponding ideal crystal in the limit of zero temperature [62, 63], Voronoi

particles are ideal shapes guaranteed to produce the target structure in the limit of zero

pressure. In order for a VP to assemble its target structure, facets of the VP must ”bond”

selectively via entropy. Facets are known to produce directional entropic forces[22] that

promote effective bonding upon crowding, thus we expect the facets to promote the assembly

of the space-filling structure. As in the case of pair potentials, which may or may not

produce the target structure at finite temperatures due to entropic effects, our shapes may

not assemble the target structure away from infinite pressure, again due to entropy (we find

nonselective bonding and packing degeneracies play an important role in our systems).

Our goal here is to understand under which conditions VPs will assemble their

target structure, under which conditions they do not and develop strategies for design based

on our findings. We evaluate our strategy by selecting 46 crystal structures whose Voronoi

tessellations contain a single Wyckoff position and thus yield a single type of particle shape,

and we conduct assembly simulations using Monte Carlo methods. We show that the ma-

jority (72%) of the VPs studied self-assemble an ordered structure, but only the simplest

structures with the most symmetric VPs assemble their space filling, target structures at

moderate densities. We show how particle asymmetries can thermodynamically stabilize

non-space-filling structures due to orientational and occupational packing degeneracies, and
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support our results with free energy calculations for the specific case of the hexagonal di-

amond structure assembled from its VP. To improve the utility of Voronoi particles, we

demonstrate entropic assembly strategies (shape modification and field-directed assembly)

that can successfully assemble target structures.

2.3 Results

Our results are presented as follows. We begin with the findings from the assembly simula-

tions of the VP for all 46 target structures. We identify metrics that allow us to correlate

the assembly propensity of each target structure with particle shape. To elucidate the role

of particle symmetry and orientational entropic degeneracies, we present a detailed study

of the hexagonal diamond VP. We comment on multi-component VP systems, showing an

example of occupationally degenerate crystal. Finally, we use our results to modify selected

VPs and their assembly pathways to promote assembly of target structures not achievable

without modification.

2.3.1 General findings

We classify the VPs into three categories: VP that self-assembled into (i) their target struc-

ture (Table 2.1, (ii) an ordered structure that was not the target structure (Table 2.2), and

(iii) no ordered structure on the timescale of our simulations (Table 2.5). In Figure 2.2a),

we show a scatter plot of the rotation group symmetry (NROT ) of the VP against the size

of the crystal basis (NB) that generated the VP. Because these metrics are discrete, several
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VP map onto the same point; pie charts are drawn in these locations. Images on this plot

correspond to the VPs and structures listed in Tables 2.1, 2.2 and 2.5.

From Figure 2.2a), we see that the highest symmetry VP, corresponding to the

simplest structures (NB ≤ 2), are the most likely to assemble their space-filling structure at

finite packing fractions. We find the VP of the FCC, BCC, cubic, body-centered tetragonal,

hexagonal, HCP, diamond and β-Sn successfully assembled their target structure. Degen-

erate, dense local packings or ”bonded” states that are incompatible with the assembly of

space filling structures are a detriment to assembly propensity. The symmetry of the particle

is anti-correlated with this quantity; the more symmetric the particle, the fewer unique ways

it can be placed next to a neighbor. This trend is reflected in Figure 2.2a.

As crystal structures become more complex, crystal symmetries are broken;

this is reflected in the negative correlation between VP symmetry and the basis size. For

crystal structures of moderate complexity, we find many VP that assemble into structures

other than their space filling, target structures. Particles with very low symmetry, generated

by crystal structures with the largest bases, tended to be poor assemblers; these particles

were the most ”rock-like” (low symmetry and many different types of large facets, Nf≥µ).

Most of the crystallizing particles self-assembled into orientationally degen-

erate, rather than space-filling structures. An orientationally degenerate diamond crystal

(ODD) assembled by the hexagonal diamond VP is shown in Figure 2.3. Several additional

examples are shown in Figure 2.4: the VPs of γ-Se, monoclinic, CuTi3, and A14 VP assemble

12, 6, 3 and 8 fold degenerate crystals, respectively. The tetragonal parallelepiped (VP of
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the orthorhombic lattice) also assembled into phases with a six-fold orientational degeneracy

called a parquet phase [60]. Although the crystalline packing is argued from melting studies

to be the thermodynamically preferred state for parallelepipeds above φp ≈ 0.7[60], we find

only columnar and parquet phases to be accessible by assembly from the fluid phase. We also

observed the high pressure lithium VP order into a BCC lattice with no orientational order

until it has passed its rotational jamming point (rotational dynamics arrest, as discussed for

the VP of the hexagonal diamond structure in the following section).

In Figure 2.2b, we examine assembly behavior as a function of Nf≥µ, the

number of large facets and Nf,max, the multiplicity of the largest facet (see Methods), with

the same color scheme as Figure 2.2a. From this figure we see that the particles that assemble

their target structures have primarily one type of large facet, and the shape has many copies

of this largest facet. Particles with many types of facets (Nf≥µ) suffer from non-selectivity

of entropic bonds. Some particles with several such facets (higher symmetry, large Nf,max)

still crystallize, while particles with too many competing facets (large Nf≥µ) with small

multiplicity (Nf,max) are poor assemblers.

2.3.2 An example: hexagonal diamond Voronoi particle

The results above demonstrate that orientational degeneracies are capable of stabilizing non-

space filling crystals. As an example, we consider the assembly behavior of the VP for the

hexagonal diamond (HD, Wurzite) structure. This VP (C3v) is a representative example

of one that assembles a crystal other than its target structure (blue in Figure 2.2). This
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particle shape has low symmetry (Figure 2.2a), and assembles a four-fold, orientationally

degenerate diamond crystal (ODD) instead of HD. To account for the entropic contribution

of the 4N -fold degeneracy of the ODD structure, we shift the free energy by −ln(4)NkBT

relative to the HD as discussed in Methods and in Appendix A.

ODD is related to HD as FCC is related to HCP; HD consists of tetrahedrally

close-packed (TCP) layers with an AB stacking. Figure 2.3a shows a HD VP with its faces

colored by facet shape. The VP is a truncated tetrahedron with three augmented tips, and

thus the particle has a three-fold rotation axis. There are two large facet types (red, cyan).

In the target structure (2.3c, top 3 layers), red facets are adjacent to one another and cyan

facets are adjacent to one another; the particles pack in tetrahedrally close-packed layers.

The bottom three layers of Figure 2.3c highlight the AB stacking.

At the onset of order (φp = 0.59) we did not observe the selective red-red,

cyan-cyan bonding of the HD structure. Instead, the VPs assembled TCP layers that stack

in an ABC pattern (Figure 2.3b, bottom three layers) to assemble the ODD structure. The

VPs bond non-selectively in this crystal structure (Figure 2.3b, top 3 layers). The VPs

exhibit a four-fold orientational degeneracy at each lattice site.

In NVT simulations in which we initialize the system in a perfect HD crystal,

we observed HD VP losing their orientational order at packing fractions around φp = 0.59. In

fluid-HD coexistence simulations, we observed the thermodynamic phase transition from HD

to ODD, confirming that ODD is the thermodynamically stable structure at these packing

fractions, rather than HD or any structure with stacking faults (Figure 2.7). In coexistence
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simulations of HD and ODD phases, we observed HD losing orientational order, but the

stacking of the TCP layers remained unchanged; the free energy penalty of a stacking fault

is very low in these systems (Figure 2.8).

In both the HD and ODD structures, each VP is tetrahedrally coordinated;

thus we expect the free volume of these two structures to be nearly identical at packing

fractions just above the onset of order (φp = 0.59). This suggests that ODD is stabilized

solely by the free energy associated with the orientational degeneracy. Our calculations

(Figure 2.3d) confirm this and we find that the orientational degeneracy stabilizes the ODD

up to φp = 0.77. Above φp = 0.77, our free energy calculations predict that HD is the

stable configuration until φp = 1.0. We were unable to observe this crossover at φp = 0.77

because at these high densities, the simulations (and likely experiments) become non-ergodic.

Examination of the rotational dynamics of the hexagonal diamond VP near this crossover

regime demonstrates this non-ergodicity, and justifies the explicit shifting of the ODD free

energy curve. Figure 2.3e shows the rotational autocorrelation function ψ of the VPs in the

HD phase. We observe that ψ at first decays and near φp = 0.67, ψ plateaus to a constant

value, indicating the dynamics have become frozen and the system non-ergodic.

To compare the magnitude of the thermodynamic driving force for crystalliza-

tion into orientationally degenerate versus non-degenerate crystals, we note that in van An-

ders et al. [22]. The potential of mean force and torque (PMFT) is calculated for comparably

truncated tetrahedra, which produces entropic bond strengths in ODD of ≈ 2.5kBT . Thus

the entropic forces driving the assembly of the OD relative to the HDD (ln(4) = 1.4kBT )
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are comparable to the emergent forces driving crystallization quantified by the PMFT. To

stabilize HD over ODD at lower packing fractions would require additional interparticle in-

teractions, as in Khadilkar and Escobedo [61], and the magnitude of the required interactions

must overcome the entropy from orientational degeneracies. Figure 2.4 shows several other

VPs that assemble orientationally degenerate structures, along with the magnitude of the

free energy due to their degeneracies.

2.3.3 Beyond single component systems

Many crystals have two (or more) Wyckoff positions and thus generate two (or more) VP.

Binary mixtures of hard particles may crystallize[64, 65], or phase separate[26]. We studied

a limited set of two-VP target structures to provide examples of VP phase behavior unique

to multi-component VP systems. We did not observe any shape mixtures that crystallized

into their space-filling structure: we observed phase separation (in VPs of the PtS crystal),

observed mixtures that did not crystallize on the timescale of our simulation and observed

several that crystallized into a non-space filling crystal.

The VPs generated by the trigonal-ω crystal (Figure 2.5 a-g) crystalize into

an occupationally and orientationally degenerate, non-space-filling crystal. The VPs corre-

sponding the Zn and Nb atomic sites of the trigonal-ω crystal assembled into a BCC crystal

in which the type of VP at each lattice site is random. This mixing entropy can be thought

of in same manner as orientational degeneracy can be for single-component systems, with the

exception that this form of degeneracy entropy can only occur in multi-component systems.
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We consider, as in the case of orientationally degenerate crystals, the first-order contribu-

tions to free energy, we now have three terms: rattling free energy, orientational degeneracy

and now an occupational degeneracy term equivalent to a lattice gas mixing entropy term.

For a binary mixture of species fraction of f and 1− f , this term has the form

Fmixing = NkBT (f ln f + (1− f) ln(1− f)) (2.1)

and contributes 0.64kBT toward stabilizing the occupationally degenerate crystal relative

to the space-filling target structure for f = 2/3 (for trigonal-ω). We only observed occu-

pationally degeneracy in structures with orientational degeneracy (trigonal-ω) or disorder

(β-Mn).

The VPs generated by the PtS crystal (Figure 2.5 h-n) phase separate at

φp = 0.57, with the VP corresponding to the sulfur atoms crystallizing while the platinum

VPs remain fluid. This phase separation is particularly notable because the particles have

a densest packing as a co-crystal and thus at some pressure there must be a solid-solid

transition from a demixed state to a mixed crystalline state. At low density, these particles

are in a mixed fluid state; thus there is a re-entrant mixing transition in this system upon

increasing pressure. Any VP mixture exhibiting phase separation exhibits this reentrant

behavior.
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2.3.4 Assembly engineering via mesoblock assembly

Having shown that competing degenerate dense packings may be stabilized relative to space-

filling structures away from infinite pressure, we next modify particle shapes and, through

the use of external fields, their assembly pathways so as to disfavor degenerate packings and

successfully assemble both the hexagonal diamond target structure examined above, and

a carbon 4-ring target crystal structure (Figure 2.6e). We consider two general strategies

motivated by our findings. In the first strategy, we construct mesoblocks that increase the

symmetry of the VPs, thereby reducing the number of degenerate dense packings. When

this is insufficient, we consider a second strategy and couple the particle orientations to an

external field. A third strategy, not considered here, is to introduce explicit interparticle

forces, e.g. through the use of attractive ligands, to further disfavor competing packings, as

explored for other particle shapes in Millan et al. [66], Khadilkar and Escobedo [61].

To illustrate the first strategy, consider the carbon 4-ring crystal structure [67].

The VP of this system has the point groupD2, IQ = 0.45 and has two large facet types (Nf≥µ,

see Table 2.5). Due to its low symmetry and expected frustrated bonding between its largest

facets (Figure 2.6), we expect, and confirm, that this particle is a poor assembler - it does

not order on the timescale of our simulations. To improve the assembly propensity into the

target structure, we construct a two-particle and a four-particle mesoblock. The mesoblock

comprising two VPs has C2v symmetry and 2 large facet types – not much improvement over

the VP. The mesoblock comprising four VPs is convex, and has D4h symmetry and a single

large facet type – attributes consistent with particles observed to assemble their space-filling
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structure (Figure 2.6g). The latter mesoblock incorporates all particles in the primitive unit

cell of the original target structure.

We performed assembly experiments for the VP and the two mesoblocks and

found that only the four-VP mesoblock (the most symmetric one of the three shapes) as-

sembles the space filling structure, consistent with our expectations (Figure 2.6) based on

the findings in Figure 2.2. This observation suggests that to self assemble some structures,

it may be beneficial to incorporate some of the structural complexity into the building block

(in this case, four scattering centers) and assemble these higher-symmetry mesoblocks for

which there are fewer packing degeneracies.

To illustrate the second strategy, consider again the VP of hexagonal diamond.

We constructed a convex mesoblock (D3) of two HD VPs (C3v), and find that these particles

do not assemble any ordered phase. These mesoblocks are identical in shape to the t = 2
3

particles studied in Haji-Akbari et al. [68]. In that work, this shape was found to be on the

boundary between a fluid region and one that crystallizes into the space-filling structure.

However, the crystallization of this particle was reported to be exceptionally difficult, and

indeed we were unable to assemble this mesoblock here. The reason assembly is difficult

for this shape can be observed by calculations of the PMFT arising from competing local

packings or ”entropically bonded arrangements” as pictured in Figure 2.6c. However, if we

disfavor these local packings with the application of an aligning external field (as described

in the Methods), we indeed find its space-filling structure as low as φ = 0.56, shown in Figure

2.6d. Experimentally, we imagine that such alignment could possibly be achieved via shear
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flow.

2.3.5 Discussion

The role of orientational and occupational packing degeneracies in VP assembly can be un-

derstood by considering the contributions to the free energy for such systems. The free

energy consists, to first order, of a term from ”vibrational” or ”rattling” motion of the par-

ticles and a term from the degeneracy of their local arrangement (this simple picture misses

some collective effects). Revisiting the relationships between entropy and symmetry, we find

that entropy can simultaneously favor symmetry and asymmetry. Globally, entropy favors

symmetry; even in orientationally degenerate crystals, the environments of each particle are

approximately the same. Vibrational entropy is maximized through the translational sym-

metry of the lattice. Locally, however, entropy still favors asymmetry. In the single VP

systems studied here systems, local asymmetry takes the form of orientational degeneracies;

the system exploits the asymmetry of the particles to maximize entropy. If particles are

sufficiently symmetric, then the system cannot make orientational degenerate configurations

that are consistent with the global ordering being driven by thermodynamic assembly. We

can further interpret the behavior of many shapes that do not crystallize within this frame-

work; in these cases the entropy of the local, asymmetric packings overwhelms the driving

force to maximize vibrational entropy via ordering.
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2.4 Conclusions

Using the Voronoi tessellation, we constructed a set of hard, polyhedral particles (Voronoi

particles), whose space-filling configuration is isostructural to atomic crystals. At infinite

pressure, the thermodynamic ground state of a VP system is guaranteed to be the space-

filling structure. We find that at finite pressures, the most symmetric VP and with uniform

faceting assemble their target structure. Many VP assemble non-space-filling, crystal struc-

tures and that are stabilized with respect to the target structure by orientational (and, in

the multi-component systems occupational) degeneracies. Based on our findings, we show

how VP can be modified to enhance selective entropic bonding and thus assembly, and how

mesoblocks of fused VP can enhance assembly by increasing the particle symmetry and

limiting the number of degenerate packings.

From this study, we learn the limits of engineering of assembly structure by

modifying particle shape alone. By breaking particle symmetries we can thermodynami-

cally stabilize arbitrary structures at infinite pressures. However, at finite pressures/packing

fractions crystal structures with orientational degeneracy are stabilized by the additional en-

tropy from the degeneracy. From an engineering standpoint, we must design particles so that

this degeneracy does not make the desired structure unstable. This could be accomplished

with enthalpic patches, designing shapes for which the rattling entropy in competing struc-

tures suffers in OD configurations, by constructing mesoblocks that incorporate structural

complexity into the building block or by modifying the assembly environment by imposing
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external potentials.

2.5 Model and methods

2.5.1 Voronoi particle construction

Construction of Voronoi particles via tessellation of target structures is performed as shown

for the arsenic (As) crystal in Figure 2.1a-c. Starting with the target structure, we computed

the Voronoi tessellation (Figure 2.1b), which associates each point in space with the closest

lattice site. The Voronoi tessellation divides space into a set of convex polyhedra given a

set of points. Around each point p, a polyhedral Voronoi cell is constructed that contains

all points in space closer to a point p than any other point. If the set of points are periodic,

like those in a crystal, the Voronoi cells are identical at each crystal site and equivalent to

the Wigner-Seitz cell or the first Brillouin zone of the reciprocal lattice.

In atomic crystals, each facet of the Voronoi cell corresponds a nearest neighbor

bond. Each type of bond (length and angle) corresponds to a facet of a different shape; if

particles have identical bonds, their Voronoi cells will contain duplicate facets. In Figure

2.1b-c), the facets of the Voronoi tessellation are colored by shape to highlight the types of

bonds present in the crystal structure. In a Voronoi tessellation, all facets are flush with

identical facets of the Voronoi cells of adjacent crystal positions. The Voronoi cell at point

p has the same point group symmetries as the Wyckoff position of point p.

The shape(s) of the resulting Voronoi cells provide the shape for the particles.
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We placed 2000 hard VPs (choosing a number commensurate with self-assembling their

space filling structure away from density 1) in a periodic simulation box in a disordered

initial configuration, and then conducted equilibrium Monte Carlo simulations as described

below. Figure 2.1c) shows the structure targeted by this self-assembly process for the As

VP; Figure 2.1d shows a non-space-filling crystal structure resulting from MC simulation.

Tables 2.1, 2.2 and 2.5 list the structures from which the VPs were generated along with

properties of the corresponding Voronoi polyhedra.

2.5.2 Properties of Voronoi particles

There are many metrics with which one can characterize polyhedron. One may characterize

the roundness of a polyhedron with the isoperimetric quotient (IQ)

Where V is the volume of the polyhedron and A is its surface area. Spheres

have an IQ = 1, all other shapes have an 0 ≤ IQ ≤ 1. Space-filling shapes are furthered

constrained by the Kelvin conjecture, which states that the shape that can partition space

in to equal volume components with minimal volume is the truncated octahedral (Voronoi

cell of the BCC lattice). While more optimal equal volume but not identical tessellations

have been found, the truncated octahedral is still believed to be the roundest, space filling

shape, with an IQ = 0.753.

By selecting target crystal structures with a single Wyckoff position, we created

space filling tilings that divide space into identical polyhedral subunits. The problem of

dividing space into equal volume polyhedra with minimal surface area is the subject of the
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Kelvin conjecture; the minimal surface area structure for identical subunits is conjectured to

be the truncated octahedra, the Voronoi cell of the BCC lattice. This places an upper bound

on the isoperimetric quotient of each VP at IQ = 36A3

V 2 = 0.754. In Damasceno et al. [24],

it is predicted that polyhedra with a higher IQ will assemble crystals without orientational

order; the shapes in this study have IQs ranging from 0.262 to 0.754 , and thus are predicted

to order into crystals with orientational and positional order.

The symmetry of a polyhedron can quantified in a number of ways. For phys-

ical motivations, we choose to use the order of the rotation group, NROT . A polyhedron’s

rotation group contains all rotation operations that map it onto itself. The largest rotation

group possible for a space-filling polyhedron is the O group, of order 24.

A polyhedron can be further characterized by looking at the distribution of

its facets’ areas and shapes. We define Nf≥µ to be the number of types of unique facets

greater than or equal to the mean facet size. We define Nf,max to be the multiplicity of the

largest facet. We note that both of these quantities are positively correlated with the NROT

but not entirely determined by it. For example, a six fold rotational axis may be centered

in a hexagonal facet, or it may pass through a vertex about which six identical facets come

together.

Due to the nature of the Voronoi tessellation, nearest neighbor bonds in the

target structure are mapped to facets on the particles. Each type of bond (length, angle, etc)

is mapped to a unique shape of facet. In the space-filling configuration, identical facets on

adjacent Voronoi cells are in contact. It has been observed that large facets seem to have the
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most significant impact on assembly structures; Nf≥µ characterizes the types of misbonding

that can occur between particles and Nf,max characterizes the number of ways correct bonds

can be made.

2.5.3 Monte Carlo simulations of self-assembly

Monte Carlo simulations were carried out as described in Haji-Akbari et al. [31] using in-

house code. For each target structure, we conducted NVT simulations in a triclinic box (using

methods described in Damasceno et al. [24]), commensurate with the target structure. We

ran simulations from φp = 0.53 − 0.63. Below this range, polyhedra rarely order because

the fluid is thermodynamically stable relative to the crystal. Above this region, simulations

are often kinetically arrested because the densities are too high to see appreciable particle

motion on the timescale of the simulations. We also conducted NPT simulations for each

of the 46 shapes in which the box dimensions and angles can fluctuate. Those simulations

were conducted at reduced pressures that correspond to the densities at which assemblies

were observed in the NVT runs (P* between 10 and 18, depending on particle shape). All

simulations were run for a minimum of 40 million MC sweeps, with as many as 100 million

sweeps for systems that did not assemble their space-filling structure. We simulated several

different lattice parameters where appropriate (e.g. triclinic Bravais lattices).
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2.5.4 Field-directed self-assembly

We conducted several field-directed self-assembly simulations of the hexagonal diamond

mesoparticle. In these simulations, we place a director on the 3-fold rotation axis of each

particle i, n̂i. An external potential is added to our Monte Carlo simulations of the form

Ufield =
N∑
i=0

γ|n̂i − ẑ|2 (2.2)

where γ is a spring constant and ẑ is the direction of the aligning field. This potential is

evaluated with γ = 10 and trial moves were accepted according to the Metropolis criterion

with a temperature T = 1.

2.5.5 Structural identification

To identify the assembled structure, we look at the positions of points at the centroids of

the Voronoi particles. We can compute bond order diagrams and diffraction patterns, and

compare these to known structures. Bond order diagrams are a histogram of bond angles

projected onto the surface of a sphere; stereographic projections of the BODs are shown

beside simulation snapshots (e.g., in Figure 2.4) to show the crystal structure. We say a

particle self-assembles its space-filling structure if it can be compressed to a space-filling

configuration by scaling their positions.
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2.5.6 Free energy calculations

In select cases, we assessed the relative thermodynamic stability of the orientationally de-

generate assembly structures and target, space-filling structures of VP. We computed the

free energy difference between a hard particle crystal and an Einstein crystal using Frenkel

Ladd thermodynamic integration as described in Haji-Akbari et al. [28]. Einstein crystal

coordinates and orientations {~r0} and {~q0} for the target structures were computed directly

from the perfect, space-filling tessellations.

Computing the coordinates of the Einstein crystal for the orientationally de-

generate structure required additional care. Orientationally degenerate crystals have long-

range translational order, but the orientation of each particle at each lattice site can be in

one of NOD orientations. While the environment of each particle is approximately identical,

we found that generating OD crystal coordinates using the perfect crystal coordinates and

rotations produced configurations with high local densities (e.g. corners of shapes nearly

overlapping) that cause the thermodynamic integration to diverge.

To initialize an orientationally degenerate Einstein crystal, we take {~r0} from

the assembly’s perfect crystal structure and compute a set of NOD-fold degenerate orienta-

tions observed in the assembly structure {~q0}. We assume the structure is non-ergodic in the

region near the thermodynamic transition to the space-filling structure. Each particle is then

assigned an orientation at random from {~q0}. At the high densities required to observe the

order-order phase transitions, this procedure created locally dense regions that caused the

Frenkel Ladd integration to diverge if exact values of {~qeq} were used. Instead, we generated
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orientationally degenerate configurations at φp = 0.5 and compressed to the densest possible

packing fraction while performing small MC rotations. Once compacted, {~r0} were scaled to

create the desired density. We verified that the results of our calculations do not depend on

the particular instance of the orientationally degenerate crystal. In orientationally degen-

erate structures, there are NOD orientations for each particle in which the vibrational free

energy from translation and rotation is roughly equivalent. To account for this additional

entropy, we shift the free energy of the OD structure by − ln(NOD)kBT per particle. Similar

shifts have been employed in free energy calculations of degenerate dimer crystals[69].

2.5.7 Calculation of VP orientational correlation function

We initialized a perfect hexagonal diamond (HD) crystal, placed a director on the largest

facet and 3-fold rotation axis of the HD VP, and computed the rotational autocorrelation

function of this vector over a minimum of 40× 106 Monte Carlo sweeps for packing fractions

between φ = 0.54− 0.80. We define the orientational correlation function as

ψ(t) = 〈n̂(t)n̂(0)〉 (2.3)

where n̂ is the particle director. A system for which the director remains parallel to its

original orientation will have ψ = 1. A system for which the n̂(t) is uniformly distributed

around the unit sphere, psi = 0. We also note that in a system for which n̂(t) averaged time

trajectory has tetrahedral symmetry, and n̂(0) intersects a three-fold rotation axis, ψ = 0.

This is the case in the orientationally degenerate diamond crystal.
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2.5.8 Coexistence simulations of hexagonal diamond VPs

Here, we report the results from coexistence simulations of the HD VP. In order to verify that

the orientationally degenerate diamond (ODD) structure is the thermodynamically stable

structure at the onset of crystallization. As shown in Figure 2.7, we initialize a system with

half of the system in HD and half of the system as a disordered fluid at packing fractions

φ = 0.54− 0.60 and run 25 million MC sweeps. We find that even when seeded with the HD

structure the fluid crystallizes into ODD. For φ = 0.54 − 0.55 we observe a melting of the

HDD structure into the fluid and a recrystallization into ODD.

Figure 2.8 reports coexistence simulations of the ODD and HDD structures.

We initialize a system with half of the system in HD and half the system in ODD at packing

fractions from φ = 0.57−0.60 and run for 25 million MC sweeps. We do not observe a solid-

solid transition from HD to ODD; instead the HD phase becomes orientationally degenerate

(see Figure 2.8d). This ODHD can be interpreted as an ODD phase with low-free energy

stacking faults. We note the the ODD structure does not melt until below φ = 0.57 due to

hysteresis surrounding the phase transition.
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e

Voronoi
Particle

Figure 2.1: a) An example target crystal (arsenic). b), Computed Voronoi tessellation.
c), Hexagonal diamond Voronoi particle from several views. d) Voronoi particles in their
space-filling, target structure. e) Resulting equilibrium assembly from MC simulation.
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Table 2.1: Table of Voronoi polyhedra that self assemble their space-filling structure

Number
Target
Crystal

Image Rotation Group Nb Nf≥µ Nf,max IQ

1 BCC Oh 1 1 8 0.7530

2 β-Sn D2d 2 2 4 0.6515

3 Cubic Oh 1 1 6 0.5240

4 Diamond T 2 1 4 0.4617

5 FCC Oh 1 1 12 0.7400

6 HCP D3h 2 2 6 0.7405

7
Hexagonal,
a = 1, c = 1

D6h 1 1 2 0.6046

8
Tetragonal

BC a = b = 1,
c = 2

D4h 1 1 4 0.6989
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Table 2.2: Table of Voronoi polyhedra that self assemble a non-space-filling crystal instead
of their target crystal

Number
Target
Crystal

Assembled
Crystal

Image
Rotation
Group

NB Nf≥µ Nf,max IQ

9 A14
8-fold OD

FCT
CS 4 3 1 0.6828

10 As
6-fold OD

Cubic
C3v 2 2 3 0.5559

11 CuTi3
3-fold OD

FCC
D4h 4 1 8 0.7461

12 I2
12-fold OD

BCC
C2v 4 3 1 0.6828

13 Li cI16 Rotator BCC C3 8 3 3 0.7135

14 γ-Pu
12-fold OD

FCC
D2 2 3 4 0.7460

15 γ-Se
12-fold OD

cubic
C2 3 2 2 0.5745

16
Hexagonal
a = 1, c = 2

Parquet
(hexagonal

coordination)
D6h 1 1 6 0.5224

17
Hexagonal
diamond

ODD
Diamond

C3v 4 2 1 0.4446
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Table 2.3: Table 2.2, cont. (1)

Number
Target
Crystal

Assembled
Crystal

Image
Rotation
Group

NB Nf≥µ Nf,max IQ

18
monoclinic
α = 75◦

6-fold OD
Cubic

D2h 1 2 2 0.5797

19
Base-centered

monoclinic
α = 85◦

6-fold OD
base-centered

monoclinic
D1d 1 3 4 0.6844

20

Base-centered
Orthorhombic
a = 1, b = 2,

c = 4

3-fold OD
hexagonal

D2h 2 1 2 0.4886

21

Face-centered
Orthorhombic
a = 1, b = 2,

c = 4

3-fold OD
hexagonal

D2h 1 2 2 0.5756

22

Body-
centered

Orthorhombic
a = 1, b = 2,

c = 4

3-fold OD
hexagonal

D2h 1 2 2 0.5274

23
Tetragonal
a = b = 1,
c = 2

Parquet D4h 1 1 4 0.4524

24
Tetragonal
a = b = 1,
c = 4

Parquet D4h 1 1 4 0.3103

25
Tetragonal
a = b = 2,
c = 1

Parquet D4h 1 1 2 0.4418

37



Table 2.4: Table 2.2, cont. (2)

Number
Target
Crystal

Assembled
Crystal

Image
Rotation
Group

NB Nf≥µ Nf,max IQ

26
Orthorhombic
a = 1, b = 2,

c = 4
Parquet D2h 1 1 2 0.3297

27
Tetragonal
a = b = 4
c = 1

Parquet D4h 1 1 2 0.2618

28

Body-
centered

Tetragonal
a = b = 1,
c = 4

Parquet D4h 1 1 4 0.5079

29

Body-
centered

Tetragonal
a = b = 4,
c = 1

Parquet D4h 1 1 2 0.3912

30
Rhombohedral
α = 65◦,
β = 85◦

3-fold OD
sheared

Hexagonal
S2 1 4 2 0.5826

30
Rhombohedral
α = 75◦,
β = 85◦

3-fold OD
sheared

Hexagonal
S2 1 4 2 0.6818

32
Rhombic
Graphite

2-fold OD
Honeycomb

C3v 2 1 3 0.3654

33
Triclinic
α = 65◦,
β = 85◦

Parquet S2 1 3 2 0.5534

34
Triclinic
α = 75◦,
β = 85◦

Parquet S2 1 2 2 0.5553
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Table 2.5: Table of Voronoi polyhedra that do not self assemble a crystal

Number
Target
Crystal

Image Rotation Group NB Nf≥µ Nf,max IQ

35 Si bct5 C4v 2 2 1 0.5372

36 SiBC8 C3 8 3 3 0.5791

37
Te High
Pressure

C1 4 5 1 0.6954

38 α-Ga Cs 4 4 1 0.5935

39 α-N2 C3 8 1 1 0.6327

40 α-O2 Cs 2 4 1 0.6238

41 α-U Cs 2 2 2 0.5867

42 β-O2 C3 2 2 1 0.6176

43 black P Cs 4 4 2 0.6321

44
carbon 3

ring
C2v 6 2 2 0.3307

45
carbon 4

ring
C2v 4 2 2 0.4134

46 γ-N2 C2v 4 2 1 0.5858
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Figure 2.2: a) and b) Results from all single Voronoi particle assemblies. Green particles
are VP that assemble their space filling structure (Table 2.1), blue particles are VP that
form an ordered structure that is not space filling (Table 2.2), and red particles are VP that
do not assemble an ordered structure (Table 2.5). Pie charts are placed where VP systems
are mapped exactly onto the same parameters. a) Assembly behavior as a function of VP
rotational symmetry and number of particles in the target structure’s primitive unit cell. b)
Assembly behavior as a function of the number of large facet types with area greater than
or equal to the mean facet area (Nf≥µ) versus the multiplicity of the largest facet (Nmax).
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Figure 2.3: a) Colorized HD VP from several views. b) Assembly structure of the HD
VP, orientationally degenerate diamond. This structure is composed of tetrahedrally closed
packed layers in which the HD VP adopt one of four nominally equivalent orientations (shown
in top three layers), and stack ABC (shown in bottom three layers). c) Space-filling target
structure of the HD VP. The particles have no orientational degeneracy (shown in top three
layers) and stack AB (shown in bottom three layers). d) Helmholtz free energy difference
calculated between these two structures using the Frenkel-Ladd method. The orientational
degeneracy stabilizes the non-space filling structure up to a φp = 0.77. e) Orientational
correlation function for packing fractions near the predicted thermodynamic transition. The
HD VP is kinetically arrested before the thermodynamic ODD to HD phase transition.
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a b

c d

γ-Se, C2
OD Cubic
ln(12) = 2.48

Monoclinic, D2h
OD Cubic
ln(6) =1.79

CuTi3, D4h
OD FCC
ln(3) = 1.10

A14, Cs
OD FCT
ln(8) = 2.078

Figure 2.4: Simulation snapshots of four systems that do not assemble space-filling structures.
They share the common feature that the crystals have full positional order and partial
orientational order (orientationally degenerate). Under each snapshot, the name of the
target structure is listed, followed by the point group of the Voronoi particle. The second
line lists the assembled crystal. The third line lists the entropy per particle contributed to
the stabilization of the orientational degenerate structure relative to the space filling target
structure.
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Figure 2.5: a) The two Voronoi particles generated by trigonal-ω (ZnNb2) labelled by atom
type. b-d) The target structure, its diffraction pattern and bond-order diagram respectively.
e-f) The assembled structure (an occupationally degenerate BCC lattice), its diffraction
pattern and bond-order diagram. h) The two Voronoi particles generated by PtS, labelled
by atom type. i-k) The target structure, its bond-order diagram and its diffraction pattern
respectively. l-n) The phase separated, assembly structure, the bond-order diagram of the
Pt VPs and the bond-order diagram of the S VPs respectively.

43



F
ie

ld

Space-filling Mesoblock Assembly
(with harmonic field)

Disordered Mesoblock
Assembly

6

3

M
esoparticles
+Field

Voronoi
Particles

Symmetrize
Particles

(mesoblocks)

External
Potentials

Pair
Potentials

[Millan et al.21]

Fewer Degenerate Packings

Space-filling Mesoblock AssemblyDisordered Voronoi Particle AssemblyCarbon 4-Ring Target 
 Voronoi Particle Assembly

a)

c) d)

e) f) g)

b)

Figure 2.6: Two examples of engineering hard-particle building blocks using Voronoi particles
as a basis for design. a) and b) Diagrammatic representations of our particle engineering.
In a) representation of how constructing mesoblocks from Voronoi particle decrease the size
of the effective basis and increases the symmetry of particles. In b) we outline how these
assembly strategies reduce the number of degenerate packings that inhibit that assembly
of space-filling structures. c) A first attempt to assemble the hexagonal diamond with a
mesoparticle; although this mesoblock increases the symmetry of the basic particle, it also
introduces several locally dense packings (shown on the right) that are inconsistent a crystal
structure. d) An external field is introduced to disfavor these competing packings; this yields
the assembly of the target space-filling structures. e) The Voronoi tessellation of the carbon
4-ring structure. The VP does not assemble the target structure (f), but by fusing several
VP together, we can construct mesoblocks of higher symmetry that successfully assemble
the target structure (g).
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a b cInitial Configuration

Bond Order
Diagram

d e f
After 25 million MC sweeps

Bond Order
Diagram

Figure 2.7: Phase coexistence simulations of HD VPs at φ = 0.54. Particles initialized
in the disordered phase are tan. Particles initialized in the HD phase are teal. a) Initial
configuration. b) The particle centers and nearest neighbor bonds. c) Bond order diagram
showing hexagonal order. d) The equilibrated configuration. e) Particle centers and bonds,
showing the fluid and crystal regions. f) The tetrahedral order in the ODD crystal region.
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Bond Order
Diagram

Bond Order
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Figure 2.8: Phase coexistence simulations of HD VPs at φ = 0.59. Particles initialized in
the ODD phase are red, green, blue and yellow corresponding to their orientation. Particles
initialized in the HD phase are teal and tan, according to their initial orientation. a) shows
the initial configuration. b) shows a zoomed in section of the HD region. c) Bond order
diagram showing a superposition of hexagonal order and tetrahedral order. d) shows the
equilibrated configuration. e) shows a zoomed in section of the resulting ODHD region.
Note the degenerate particle orientations. f) Bond order diagram showing the remaining
superposition of hexagonal order and tetrahedral order.
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Chapter 3

Image processing of confocal image

volumes

This chapter reviews and describes a new method for the extraction of particle coordinates

from three-dimensional image volumes, such as those attained by confocal microscopy. This

method used to analyze confocal image volumes in chapter 4 and portions of this chapter

are also included in the manuscript in preparation by co-authored with Lilian Hsiao, Jens

Glaser, Michael Engel, Megan Szakasits, Sharon Glotzer and Michael Solomon.

3.1 3-dimensional images in self-assembly

One of the salient features of studying self-assembly and statistical mechanics at the colloidal

scale is that the particles can be imaged with optical microscopes. In particular, colloidal

particles in suspension can be density and index of refraction matched with the solution in
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which they are suspended[34]. In this case, confocal laser-scanning microscopes (CLSM) can

be used to capture full three-dimensional image volumes of the suspension by scanning the

microscope’s focal plane through the sample (see Figure 3.1 for a schematic).

Once image volumes have been acquired, we wish to extract the coordinates of

all particles in the volume for quantitative analysis. For spherical particles this procedure has

existed for nearly two decades [34]; particle positions can also be linked together to compute

per-particle trajectories. Once computed, these particle trajectories can be used for real

space structure determination [70, 71] and to study defect dynamics [72], for example.

Recently, three-dimensional image volumes have become accessible to experi-

mentalists working outside of the micron scale. Through tomographic reconstruction, mil-

limeter scale (granular matter) experiments can be imaged with X-rays [73]. Nanoscale as-

sembly experiments can be imaged using tomographic reconstructions of transmission elec-

tron micrographs [74]. These image volumes are not fundamentally different from those

captured by a CLSM and the same fundamental image processing methods can be applied

to all cases, though each microscopic techniqe has its own characteristic quirks.

3.2 Beyond mondisperse spheres

The image processing methods described in [34] have been extended in the past two decades

to track particles in suspension beyond monodisperse spheres. The main difficulty in these

more complicated cases is the particle identification; reconstructing particle trajectories can

proceed in essentially the same manner for all particles. Particle identification is complicated
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by extra degrees of freedom. Spherical particles may be polydisperse - Leocmach and Tanaka

[75] developed methods for imaging polydisperse mixtures of spheres using a hierarchical

difference-of-Gaussians approach that is capable of determining particle size and positions.

There are a number of methods that are designed for tracking anisotropic

particles that have both translational and rotational degrees of freedom. For rod and prolate

ellipsoidal particles, there exists methods for determining particle orientation from the the

intensity backbone of the rod [76] which have recently been refined [77]. Elongated particles

with surface anisotropy (breaking their cylindrical symmetry) can be identified by combined

imaging of the reflection and fluorescence channels of the microscope (fluorescently tagged

particles emit at a different wavelength than they are illuminated with) [78]. At the granular

scale, there are several papers in which tetrahedral and ellipsoidal granular particles [79, 73]

are imaged using methods based on the watershed cut, which has not been extensively

applied to colloidal systems. Flexible, elongated objects have been identified and tracked

using the Delanuay triangulation by Chen et al. [80].

While scientists have found success processing image volumes, most of the

above methods rely on some particular assumptions about the system in order to identify

particle positions and orientations. We seek a more general purpose approach and author

an open-source software framework for extracting anisotropic particle coordinates.
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3.3 A watershed segmentation approach to particle iden-

tification

The problem of detecting oblate colloidal spheroids (described in chapter 4) led us to consider

particle detection methods that do not depend strongly on particle shape. This pursuit led us

to select the watershed cut algorithm, which is a traditional method of image segmentation,

as the work-horse of our algorithm. The work of [73] also employed the watershed cut while

segmenting image volumes of granular systems; our work is the first to adapt this method

to colloidal systems.

The watershed cut divides an image into catchment basins of local minima -

pixels from which a steepest descent path leads to the same minimum are clustered together.

The cut can be efficiently computed as described in Cousty et al. [81]; we summarize the

algorithm here. We define our image I and an array containing basin labels φ. For each

voxel, we launch a steepest descent path over the network of edges between voxels. The

edges of this network are weighted by the difference between the intensity of voxels they

connect (∆I = I(i, j, k) − I(i′, j′, k′)); the steepest descent path is computed by traversing

the network along maximally weighted edges until a minimum is reached. Once a putative

minimum is reached (a voxel that is surrounded by voxels of equal or higher intensity), a

breadth-first search is used to identify the full domain of the basin (minima are defined as

sets of voxels that are surrounded by pixels of higher intensity). Once the identification of

the minima is complete, all of the points visited along the descent path are given the same
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label stored in φ. As this path is computed, the current label φ0 is checked at each voxel; if

any point has already been labelled, the process can be short-circuited and all points that

are in the current path can be labelled φ0. This algorithm is inherently serial, however it

still can be efficiently parallelized for images with small segments by taking steepest descent

paths in different regions of the images and accessing φ with atomic operations.

The watershed cut method segments the image into bright regions; in confocal

microscopy, fluorescent particles are bright regions separated by dark solution. Others have

binarized the image volume and performed watershed cuts after performing an edge-distance

transform [73]; we found this approach was not well suited for confocal images where particles

where particle are usually poorly separated by a threshold. However, segmenting raw confocal

image volumes leads to vast over-segmentation of the particles (Figure 3.2). Noise is image

volumes can be suppressed with blurring; however in dense suspensions we found the amount

of blurring required to suppress over segmentation resulted in under-segmentation as a result

of loss of resolution.

This problem of over-segmentation can be overcome by pre-flooding the image

as described in Figure 3.2. This algorithm requires the user to specify a depth δ by which

to fill minima. Minima in the image are identified and the edges are searched for a lowest

value. The extent of the minima is filled to match the minimum value of the edge. We then

check the surrounding minima, checking if this minima has merged with adjacent minima,

and the process is repeated until the minimum is no longer a minimum or has been filled

to a depth δ. This process preserves more spatial resolution than blurring, but eliminates
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many spurious minima that cause over-segmentation.

3.4 Position and orientation identification

Once the image segments are identified, we must compute their positions and orientations.

For anisotropic particles (without tetrahedral symmetry) we can compute the covariance ma-

trix M of the intensity of the segment and find the eigenvectors and eigenvalues to compute

the orientation and size of the segment. First we compute the center of intensity ~r0

~r0 =
1

Itot

∑
φ(ijk)=φ0

I(i, j, k)~r(i, j, k) (3.1)

where φ0 is the segment label of the current segment, ~r(i, j, k) = ix̂ + jŷ + kẑ and Itot =∑
φ(ijk)=φ0

I(i, j, k). We then compute the covariance matrix about the center of intensity

M0 =
1

Itot

∑
φ(i,j,k)=φ0

I(i, j, k) (~r(i, j, k)− ~r0)⊗ (~r(i, j, k)− ~r0) (3.2)

M is closely related to the inertial tensor (if intensity instead represented mass). If we

assume that ellipsoidal objects have an ellipsoidal Gaussian intensity profile

f(~x) = exp ((~x− ~x0)A(~x− ~x0)) (3.3)
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with

A−1 =

a2 0 0

0 b2 0

0 0 c2

, (3.4)

then M can be computed analytically

M=

a2/2 0 0

0 b2/2 0

0 0 c2/2

(3.5)

. Thus, M and A−1 are diagonal in the same basis and the associated eigenvalues of M

correspond to the extent of the ellipsoid. We comment that this feature is independent of

the shape of the image segment; this approach can be used to determine the orientation of

objects of any aspect ratio (Figure 3.6).

For the case of more symmetric bodies, the covariance matrix is proportional

to the identity matrix. In the detection of such particles a numerical optimization must be

performed to compute the orientation, as in Neudecker et al. [79]. We propose an efficient

method that uses a spherical harmonic expansion of the segment intensity distribution.

First we compute the angular intensity distribution ψ

ψ(θ, φ) =
∑

Φ(i,j,k)=Φ0

I(i, j, k) (~r(i, j, k)− ~r0) · r̂(θ, φ). (3.6)

We then compute the spherical harmonic expansion of ψ, and choose a value
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of l that identifies a particle symmetry (e.g. l = 4 for tetrahedral symmetry,

ψ(θ, φ) =
l∑

m=−l

clmY
m
l (θ, φ). (3.7)

.

We also compute the coefficients of such an expansion for a reference particle

for which we know the orientation, {c0
lm}. Next, we perform a steepest descent optimization

to minimize

∆ =
l∑

m=−l

|clm − c0
lm|. (3.8)

The numerical derivatives in θ, φ and ψ(third Euler angle) can be calculated by

applying rotation operations to the coefficients. For example, a rotation in φ of coefficient

clm corresponds to a multiplication by exp(iφ). Once this optimization is complete, the

orientation is known from θ, φ, and ψ.

3.5 Implementation and verification

These processing filters, along with an efficient blurring and thresholding filters have been

implemented in C++ and wrapped in a python interface that integrates with the standard

numerical processing library, numpy. A similar set of filters is available in the the open source

library scikit-image. Figure 3.3 compares the performance of this code and it is nearly twice

as fast on a single core and nearly an order of magnitude factor faster on 4 cores. This
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parallelized processing code could be run on even more cores and approach real-time particle

identification - even at four cores, the entire image processing pipeline takes fewer than 20

seconds to process a 512×512×256 image volume. This code is designed and documented so

that the addition of filters written in C++ or python is straightforward. It will be available

at http://github.com/benjaminaschultz.

A schematic of the entire processing pipeline is shown in Figure 3.5. Using

the filters described in the previous section, our pipeline consists of the following steps. The

original image volume is blurred by a Gaussian filter with a kernel of size σ = 1 pixel to

smooth CCD noise. Next, we threshold the images, applying a global threshold τglobal and

τlocal. Regions of image intensity < τglobal are set to 0. To compute the local threshold, a

Gaussian blur of width σ = 10 pixels is applied to the original image I to produce Ibackground;

pixels for which I < τlocalIbackground are discarded. The image is then inverted.

The inverted image Iinv is then pre-flooded by a depth d = 15 and a watershed

cut is performed. The mass and eccentricities of the segments are computed using the

covariance matrix as described in the previous section. We define acceptable ranges of

eccentricities ε0,min, ε0,max and ε1,min, ε1,max and of masses mmin, mmax. Segments that fall

within these bounds are identified as particles. Regions that are smaller than mmin are

merged with neighboring segments that are also undersized, and accepted as particles if they

now fall within the bounds. Each basin is attempted to be merged with a single neighboring

basin; the first merge that results in an acceptable particle is accepted. In regions for

which m ≥ mmax, the original image is pre-flooded by d = 0.8 d0, then segmented and this
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Number Position (‖ focal plane) Position (⊥ focal plane) Position (total) Orientation

±2% ±20nm ±39nm ±30nm ±3.0◦

Table 3.1: Standard deviations in particle number, positions and orientations from processing
an arrested volume of oblate PMMA spheroids

procedure is repeated until d = 1 or no new particles are identified.

We verified the performance of this code using the intended experimental sys-

tem of index of refraction and density matched oblate colloidal ellipsoids (described in chap-

ter 4). An arrested sample of oblate spheroids was imaged in triplicate and processed as

described above to identify particle position and orientation. The results of the variation in

particle number, position and orientation are summarized in Table 3.1. We report a devi-

ation in particle number of 2%, in particle position of 30nm and in particle orientation of

3◦.

To further characterize the accuracy of this method, we generated two syn-

thetic images volumes of ellipsoids at aspect ratios ε = 1
3

and 3 at a 30% volume fraction

by replacing each particle with an ellipsoidal Gaussian. For each case, we process the image

volume and compare the computed positions and orientations to the input values as we add

noise. The results are shown in Figure 3.4.

3.6 Conclusions

The particle identification methods described in this chapter represent a novel approach to

particle identification for anisotropic colloids in image volumes. The methods have been
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efficiently and extensibly implemented and verified. They are used to characterized the self-

assembly of oblate ellipsoids in the following chapter. Moving forward, we seek to continue

development, adding full support for particles with tetrahedral symmetry, additional filters

and temporal tracking.

Figure 3.1: Schematic of a confocal microscope. A light source (10) passes through an
aperature (14), then beam splitter angle at 45◦ (17) and is focuses into the sample(11). A
mirror (15) is placed at the focal plane, which the reflects light back to the beam-splitte
(17) and is focused the the lens(11) onto a detector(28). In a laser-scanning microscope, the
particles are fluorescent and a mirror is not placed at (15); instead, the particles fluoresce and
the particles at the focal plain are imaged. Public Domain image from US Patent 3.013.467.
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Figure 3.2: Example of the watershed cut with pre-flooding filter. 3.2a shows an example
noisy image, with two particles. 3.2b shows a watershed cut performed with no pre-flooding,
colored randomly by segment number. 3.2c shows a watershed cut performed after pre-
flooding all minima by 10. 3.2d schematic of the pre-flooding filter. The original function is
shown in black dotted lines; the color lines show successive iterations.
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a

b

Figure 3.3: Benchmarks of the Gaussian blur filter, compared to scikit-image. (a) shows
the performance of the 3-dimensional blurring filters, executing a blur with σ = 10 pixels.
(b) show the performance of the 2-dimensional blurring filter, executing a blur with σ = 10
pixels.
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Figure 3.4: Error magnitude as a function of noise for particle identification. Noise was
generated to a synthetically generated image volume. The RMS angular and translational
deviations are plotted against signal-to-noise ratio.
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Figure 3.5: Flow diagram of ellipsoid particle identification. Images are blurred, thresholded
and inverted. Minima are then backfilled by the maximum depth d. Segments size and
eccentricity is calculated, and regions outside an acceptable region are backfilled by an
amount 80% less deep and segmented. This process is repeated until all detectable ellipsoids
have been detected. Positions are computed as the center of intensity of each segment.
Orientations are computed from the eigenvectors of the covariance matrix computed about
the center of intensity. CLSM micrographs provided by Lilian Hsiao.
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Figure 3.6: Image processing of prolate and oblate spheroids. a i-iii) x-z, y-z, and x-y slices
of an oblate spheroid image volume. b i-iii) x-z, y-z, and x-y slices of a prolate spheroid
image volume. c) Oblate spheroids extracted from a). d) Prolate spheroids extracted from
b).
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Chapter 4

Self-assembly of depleted, oblate

colloidal ellipsoids

The text in this chapter is based on a manuscript in preparation, co-authored with Lilian

Hsiao, Jens Glaser, Michael Engel, Megan Szakasits, Sharon Glotzer and Michael Solomon.

All figure panels were jointly prepared by Lilian Hsiao, Benjamin Schultz, Sharon Glotzer and

Michael Solomon; specific contributions from Lilian Hsiao are attributed in figure captions.

4.1 Introduction

Helical structures are commonly encountered in nature in the form of proteins[82], viruses[83],

and DNA[84, 85]. Their ubiquity has inspired the development of man-made, macro-scale

and nanoscale helical structures, which show great potential as mechanical [86] and op-

toelectronic materials [87, 88, 89]. Nevertheless, these structures are difficult to achieve
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artificially without strong applied fields [90, 91, 92], extensive surface modification [15, 93],

or pre-fabricated templates [94, 95]. An excellent candidate for creating helical colloidal

microstructures with a simple, tunable attraction is the discotic (oblate) spheroid: the ax-

ial asymmetry of oblate spheroids promotes bottom-up self-assembly into tilted, columnar

arrangements for attractions with ranges that are a few factors larger than the particle dimen-

sions [96]. Thermodynamic simulations[97] and energy minimization calculations[98] show

that tilted stack configurations can be a favorable state for some models oblate spheroids,

resulting in twisted structures with long range orientational order.

Experiments to probe features of discotic assembly commonly utilize colloidal

clay suspensions consisting of nanometer-sized platelets as model systems, due to the ease

of synthesizing bulk quantities of these materials. Nematic ordering, in which platelets show

orientational but no positional order, are frequently observed even given the polydispersity

of these materials, suggesting that the axial anisotropy leads to strong face-to-face entropic

forces [99, 100]. Wax disks tend to arrange in columnar stacks even at dilute concentrations

[101]. The interaction anisotropy can also manifest as arrested liquids at exceedingly low

particle loading[102], and a house-of-cards stress-bearing structure has been previously ob-

served in shear flow [103]. Despite their scientific and technological importance, clay platelets

are challenging model systems due to their polydispersity[104]. Their entropic preference for

face-to-face ordering is eclipsed by the complex face-to-edge and face-to-face charged in-

teractions [102, 105, 106]. Yet, few experimental methods are capable of generating high

quality model colloidal oblate spheroids in bulk quantities; existing techniques utilize biaxial
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stretching[107] and blown films[108]. We show that uniaxial thermo-compression is a reliable

method to generate monodisperse colloidal PMMA oblate spheroids that can be suspended

in refractive index and density-matched solvents.

In this chapter, we study the self-assembly of these monodisperse colloids with

addition of polystyrene to suspensions of colloidal ellipsoids inducing a depletion attraction

of tunable strength and range. Our experiments and simulations, spanning a wide range of

packing fraction and attraction strength, show that aggregates with orientational order form

with strong attractions. Analysis of the phase behavior and the kinetics of self-assembly

(through quantification of aggregation and local ordering) shows that the development of

orientational order in systems driven by long-ranged depletion attraction is accompanied by

the arrested kinetics of phase separation. We further note the somewhat surprising lack of

chiral bundles in experiments and show how particle shape leads to the production of a large

population of achiral, single particle strands upon kinetic arrest.

4.2 Materials and methods

4.2.1 Colloidal synthesis, stability, and self-assembly of PMMA

oblate spheroids

Colloidal oblate spheroids are obtained by uniaxial compression of spherical particles. We

synthesize the precursor monodisperse poly(methyl methacrylate) (PMMA) spherical col-

loids (diameter 2a = 1.49µm ± 4%) stabilized by a grafted layer of poly(12-hydroxystearic
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acid) (PHSA) and cross-linked with ethylene glycol dimethacrylate (EGDM) at a 0.5 wt % ra-

tio to the monomer [109]. The steric layer has a thickness of 10 - 14 nm [110]. PMMA colloids

are dyed with fluorescent Nile Red to allow for direct visualization with confocal microscopy

[110]. The spheres are embedded at a 2.0 wt % concentration in a hydroxy-terminated

poly(dimethyl siloxane) (PDMS) (Mn ≈ 110, 000, viscosity ≈ 50, 000 cSt) matrix, in which

tin (II) ethylhexanoate and poly(dimethylsiloxane-co-methylhydrosiloxane) are added as a

catalyst and a cross-linker respectively (Figure 4.1(a)). The PDMS matrix is heated to a

temperature (T = 150◦C) above the glass transition temperature, Tg, of the PMMA. A uni-

axial compression is applied at a pressure of 1144 kPa (starting thickness of film = 2.6 mm,

final thickness = 0.6 mm, strain = 0.23) using two flat poly(tetrafluoroethylene) (PTFE)

plates (Figure 4.1(b), (c)) to generate oblate spheroids of aspect ratio, l = b/a = 0.46±0.09,

where a is the radius of the major axis and b is the radius of the minor axis. The thermome-

chanically pressed sample is allowed to cool under pressure to room temperature. A solution

consisting of 0.75 wt % sodium methoxide dissolved in isopropyl alcohol and hexane is used

to release the PMMA spheroids from the PDMS matrix. The complete removal of PDMS

is critical for self-assembly experiments. Because this degradation process also removes the

PHSA graft copolymer from the surface of the spheroid[111], we re-introduce the PHSA

steric layer onto the spheroids through a 72-hour covalent bonding reaction catalyzed by

0.24 vol % dimethylaminoethanol at T = 80◦C. The reaction is performed at T ¡ Tg to avoid

any change to the shape of the spheroids. The restabilized particles are cleaned by multiple

washings with pure hexane and passed through a 11.0µm nylon filter to remove residue.
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Figure 4.1(d) and (e) show representative scanning electron microscopy (SEM)

images of the precursor spheres and the oblate spheroids formed from thermomechanical

compression. The value of a is measured from SEM images of dilute samples in which

spheroids lie flat on the substrate and are far apart from each other. The value of b is obtained

from the conservation of volume of the starting sphere (Figure 4.1(d)), using the relation

b = R3

a2
[107]. These values are also independently verified during the image processing of

confocal microscopy images. For the spheroids used in this study, a = 1.07 ± 0.06µm and

b = 0.48± 0.083µm from SEM images.

Spheroids are suspended via solvent transfer in a refractive-index and density-

matched solvent at a volume fraction varying from φ = 0.003− 0.036. The solvent is washed

with deionized water and filtered prior to use, and consists of 81 vol % cyclohexylbromide

(CHB) and 19 vol % decalin with 1 vol % PHSA and 3 µM tetrabutylammonium chloride

(TBAC) to provide charge screening. From conductivity measurements, the Debye length

is κ−1 = 151 nm and the ζ potential is estimated to be ≤ 10 mV [21]. The solvent viscosity

(η = 2.5 × 10−3 Pa·s) is measured with a cone-and-plate geometry on a controlled stress

rheometer (TA Instruments, AR-G2).

Single-particle dynamics from particle tracking show that the PMMA spheroids

are stable in this solvent for approximately 4 days (Figure 4.1(f)). Specifically, the 1D mean-

squared displacement of the spheroids as a function of the delay time, 〈∆x2(∆t)〉 , show that

spheroids exhibit fully diffusive behavior where 〈∆x2(∆t)〉 ∝ ∆t for measurements conducted

at experimental wait times, tw ≤ 192 hours (Figure 4.6(a)). The measured orientationally-
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averaged translational diffusivity of the dilute suspension is DT = 0.08 ± 0.01µm2/s. This

value agrees with the theoretical prediction of the orientationally-averaged diffusivity calcu-

lated from parallel and perpendicular components of the Stokes-Einstein diffusivity, DT,‖ =

kBT/ηKs,‖ and DT,⊥ = kBT/ηKs,⊥, to a relative error of 15%. Ks,‖ and Ks,⊥ are material

constants that depend on the geometry of the oblate spheroids[112]. Here, DT,‖ = 0.10µm2/s

and DT,⊥ = 0.10µm2/s (the orientationally averaged value is plotted as a dashed line in Fig-

ure 4.6(a)). The self-part of the 1D time-dependent van Hove correlation function character-

izes the probability distribution of single-particle displacements. Figure 4.6(b) shows that

the spheroids exhibit a Gaussian distribution in the van Hove correlation that is character-

istic of a fluid suspension for tw ≤ 192 hours[113]. Non-Gaussian dynamics and aggregation

begin to set in thereafter, and is seen as a sharp peak in Figure 4.6 (open purple circles).

Self-assembly of the spheroids is induced by addition of a polystyrene standard

(molecular weight Mw = 2.1x107 g/mol, radius of gyration Rg = 194 nm determined through

static light scattering) at various concentrations (1.1 ≤ c/c? ≤ 5.3, where c* is the overlap

concentration of the polystyrene) to the suspension. The value of c? = 1.12 mg/ml for the

solvent mixture used in this study is determined using the relation c? = 3Mw

4πR3
GNA

, where Mw

is the molecular weight of the polymer and NA is Avogadro’s number[114]. The polystyrene

molecule acts as a depleting agent and generates a long-ranged attraction (polymer-colloid

size ratio, qa = Rg/a = 0.40, qb = Rg/b = 0.18) that favors phase separation and the

formation of fluid-fluid equilibrium structure [115].
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4.2.2 Confocal microscopy imaging

An inverted confocal microscope (Nikon A1Rsi) equipped with a resonant scanner head and

a high-speed piezo stage is used to capture the 3D structure of the self-assembled structures.

The spheroids are allowed to quiescently self-assemble for a minimum of tw = 120 min,

and images are captured at a distance of z = 10µm above the coverslip to avoid wall

interactions. The image dimensions are 63.5 × 63.5 × 30.0µm33, with voxel dimensions of

124 × 124 × 124 nm3. The acquisition time for each image volume is 17 s. Three image

volumes are obtained from independent locations within the same sample. In addition, we

collect 3D image volumes of two select cases (φ = 0.018, c/c? = 4.0; φ = 0.023, c/c? = 1.7)

at regular intervals from tw = 0 to 120 minutes to study the kinetics of self-assembly. We

collect images from three independently fabricated samples for these time series.

4.2.3 Image processing and quantification of cluster aggregation

and orientational order

From the confocal microscopy image volumes, we compute the positions and orientations of

the oblate spheroids with a watershed cut based algorithm described in the previous chapter.

This method extends the identification of particle centroids based on the local brightness

to arbitrary shapes [34, 76]. Briefly, images are segmented using watershed cuts, and the

eigenvectors and eigenvalues of a covariance matrix of each segment is used to compute the

shape and orientation of individual particles [116, 73]. Using the watershed-cut method,
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we find that the aspect ratio of the oblate spheroids used in the self-assembly studies is

l = 0.50 ± 0.01µm. This value is equivalent to the measurements obtained from scanning

electron microscopy, to within experimental error. A photopolymerized sample is used to

determine the static error in the particle positions and the orientational angle as described

in the previous chapter, resulting in positional uncertainties of ±30 nm (0.24 voxel size) and

angular uncertainties of ±3◦.

Particles are considered to be bonded when they are within a separation that

is equivalent to the first minimum of the radial surface distribution function, computed

using the elliptic contact function[117]. The fraction of particles in cluster aggregates is

fclust. Local orientation order is quantified using an additional angular criterion: particles

in contact are considered to be orientationally aggregated if the difference between their

orientational vectors and center-to-center separation vector, θ, is ≤ 45. This gives us the

fraction of particles in oriented clusters, fordered. We examine changes in fclust and fordered

as a function of the cumulative number of particles in clusters containing s particles. High

values of fclust indicate a large subpopulation of particles that reside within large clusters.

Assemblies with high degree of orientational ordering are expected to have higher values of

fordered compared to less oriented assemblies because of the existence of longer thread-like

structures within the sample.
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4.2.4 Monte Carlo simulations of depletion-induced aggregation

We also conduct Monte-Carlo (MC) simulations of hard ellipsoids using a plugin to HOOMD-

blue [118]. We use a penetrable-hard sphere model for the polystyrene depletant. In sim-

ulation units, the ellipsoidal colloids have a major axis of 1 and a minor axis of 0.5; the

depletant has a diameter of 0.2. We sample colloid volume fractions of 1%, 5% and 10% and

depletant concentrations of c/c? = 0.2 − 1.4 by increments of 0.2 to capture condensation

and c/c? = 1.4 − 4.0 by 0.35 increments to capture the arrested solid phase. We note the

depletant-colloid size ratio (q = 0.3) and high concentrations push the boundaries of the

validity of the Asakura-Oosaka model[32]. This simplified model will overestimate the net

attraction induced by the polymer depletants in this regime due to polymer self-exclusion[33].

Each MC sweep, colloids are either rotated or translated and the move is

accepted with the standard Metropolis acceptance probability

Pa→b = min{1, exp (−β (Ua − Ub))}. (4.1)

In this system of hard particles U, is either zero (no overlaps) or infinite (if there are any

overlaps between colloids with other colloids or depletants have been created by a trial move).

We leverage the idealized depletants to dramatically accelerate our MC sampling scheme.

Rather than explicitly tracking the positions of the depletants, we sample a grand-canonical

ensemble of the penetrable hard spheres (PHS) and place a decorrelated set of depletants in

the simulation during every colloid trial move[119].
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In the original configuration, there are no overlaps between colloids and de-

pletants. Upon moving a colloid, we check for new colloid - depletant overlaps by inserting

m depletants uniformly and randomly in a sphere of radius R = Rcol + Rdep centered on

the newly moved particle, where Rcol and Rdep are the circumsphere radii of the colloid and

depletant respectively. Depletant placements that overlap with the colloid in its original

position or other colloids are rejected. The number of depletants m is drawn from a Poisson

distribution

P (m,λ) =
λm

m!
exp (−λ) , (4.2)

with λ = 4πR3

3
ρdep, with ρdep as the depletant number density. This scheme samples an ideal

gas of depletants occupying the colloid system’s free volume. If any depletants overlap only

with a colloid in its new position, the trial colloid move is rejected. Colloid step sizes were

tuned for a 20% acceptance ratio.

4.2.5 Analytic ellipsoid-ellipsoid overlap check

The detection of ellipsoid overlaps and the computation of the distance of closest approach

is surprisingly difficult and has generate and interesting body of work. An efficient, analytic

scheme to detect ellipsoids in three dimensions follows, described in Wang et al. [120] and

in Alfano and Greer [121] (another, iterative algorithm is described in Zheng et al. [122]

is capable to detecting overlaps and computing the distance of closest approach). The

implementation described was originally implemented by Elizabeth Chen and Michael Engel,

and was numerically stabilized by the author. An ellipsoid of arbitrary orientation can be
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written Ax2 +By2 +Cz2 +Dxy+Eyz+Fxz+Gx+Hy+Jz+K = 0. This can be written

as a 4× 4 matrix equation ~xM~x,

(
x y z 1

)
1

2



2A D F G

D 2B E H

F E 2C J

G H J 2K





x

y

z

1


= 0. (4.3)

We can choose the origin to be at the center of ellipsoid A. Ellipsoid B is

translated a distance {x0, y0, z0}, by first computing the appropriate matrix M about its

center and translating it by multiplying by T defined as

T =



1 0 0 0

0 1 0 0

0 0 1 0

−x0 −y0 −z0 1


. (4.4)

Matrices for ellipsoids A and B are thus A = MA and B = TTMBT. To

detect separation between ellipsoids, one invokes the thereom proved by Wang et al. [120]

that the two ellipsoids overlap if and only if the f , defined as

f (λ) = det(λA + B) = 0, (4.5)
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has two positive roots. The number of roots of this equation is checked using Sturm’s theorem

[123]. The values in the Sturm chain can be directly calculated from the coefficients of f(λ)

- a direct implementation was numerically unstable due to round-off errors. By exploiting

the identity

det(λA + B) = λ−5 det(A + λB), (4.6)

we are able to compute the Sturm chain for both determinants efficiently and use the chain

with the smallest round-off errors to detect overlaps. The current implementation in HPMC,

the hard-particle Monte-Carlo plugin for HOOMD-blue, passes a stress test of over 100

pathological configurations.

4.3 Results

4.3.1 Phase behavior of self-assembled oblate spheroids

We perform a systematic study of the effect of c/c? and φ on the self-assembly behavior of

colloidal oblate spheroids (Figure 4.2). The clustering and orientational tendencies of the

self-assembled structures are visually apparent in the confocal microscopy images as shown

in Figure 4.1 (k) and (l). Figure 4.2 shows the assembly behavior of the spheroids as a

function of c/c? and φ. Figure 4.2a shows the fraction of particles in cluster that are larger

than 2 (fclust), for each simulation (triangle) and experiment (circles) performed. Both the

simulations and experimental data points were sampled in triplicate; horizontal error bars

are the standard deviation of the packing fraction. The black line connects the first sampled
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points for which fclust > 0.2; this delineates a region were phase separation of the colloids

and depletants occurs (roughly φ ≥ 0.01 and c/c? ≥≈ 0.6.

Figure 4.2b shows fordered as a function of c/c? and φ. We remark that fordered

lacks a sharp transition as observed for fclust. Instead we see a gradual increase of fordered

with c/c? for packing fractions larger than φ = 0.01. The nature of this gradual increase as

c/c? - and thus interaction strength - is increased, suggests that the observed configurations

are kinetically arrested.

Figures 4.2c-n shows simulation snapshots for c/c? and φ. The lowest c/c? =

0.2 shown at φ = 0.01, 0.05, 0.10 in Figures 4.2 l-n; the colloids never phase separate at

this depletant concentration. Figures 4.2 i-k show c/c? = 0.6 and 2.05 respectively for

the same values of φ. At these depletant concentrations, the colloids phase separate into

compact droplets. The smaller droplets at low concentrations would likely condense into

a single droplet for all φ if we ran the simulations for infinite MC sweeps and were fully

equilibrated. Large clusters with little orientational order are observed at highest φ probed

as well (φ = 0.038, fclust = 0.70, fordered = 0.04). This type of structure is reminiscent

of cluster-like gels formed with weak, short-ranged attractions [124, 114]. As the depletant

concentration increases, we note an increase in the local orientational order of the clusters,

as can be observed by the increasing fordered in Figure 4.2b.

Figure 4.2c-e show assemblies for φ = 0.01, 0.05 and 0.10 at c/c? = 4.0; these

structures are highly arrested and exhibit a high-degree of local ordering, with the highest

values fordered ≈ 0.6. The colloids tend to arrest in linear threads. These threads were also
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observed experimentally at c/c? = 4.0 (Figure 4.3a-f). We note the absence of large chiral

bundles of threads, as observed in Prybytak et al. [97]; in this system, threads only appear

when both the experiments and simulations under arrested into ≈ 1 particle wide threads.

4.3.2 Kinetics of orientational self-assembly

To better understand the relationship between orientational ordering and cluster aggregation,

we study the growth kinetics of systems for which a distinct transition from orientational to

non-orientational aggregation is observed as c/c? is reduced. Figure 4.3a-f show the time-

dependent evolution of assembled structures for a system a propensity to form sample with

local orientation (φ = 0.018, c/c? = 4.0, fclust = 0.89, fordered = 0.34). At tw = 5 min (Figure

4.3a), the system is comprised of mostly free, mobile spheroids along with short chains of

oriented fluid clusters. Between tw = 10 min (Figure 4.3b) and 30 min (Figure 4.3c), there is

an increase in the population of oriented clusters, which connect to form longer structures.

These structures continue to combine and grow in a linear manner until orientational order

(fordered = 0.34) is reached at tw = 120 min (Figure 4.3d-f). Figure 4.3g shows a close-up of

a representative oriented cluster of size s = 6 found at tw = 120 min.

In contrast, there is no sustained, long-ranged orientational assembly for a sim-

ilar system with reduced attraction strength. Figure 4.3h-m show the structural evolution for

a system with low orientational order (φ = 0.023, c/c? = 1.7, fclust = 0.95, fordered = 0.08).

Figure 4.3h shows that the structure initializes in a similar manner to Figure 4(a) at tw = 5

min. At tw = 10 min, Figure 4.3i shows that larger fluid clusters with reduced orientational
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order compared to Figure 4.3b begin to appear. At tw = 30 min, the clusters aggregate into

larger clusters in which little orientational order is observed (Figure 4.3j). From this point

onwards until tw = 120 min, the clusters coalesce continuously until heterogeneous regions

of dense clusters and large voids are formed (Figure 4.3k-m). Figure 4.3o shows a region in

which a high concentration of particles with little orientational order with respect to each

other are seen.

We observe similar qualitative trends in our simulations, although the ideal-

ized potential yields different plateau values. However, simulations provide a more detailed

picture of the particle dynamics than were captured experimentally. Figures 4.4a-c set of

particles that assemble into the same cluster after 40× 106 MC sweeps with c/c? = 0.8 and

φ = 0.05 at 1, 10 and 40 million MC sweeps. Between 4.4a and 4.4b, a majority of the

particles form an elongated thread-like cluster which then collapses into a compact droplet

in 4.4c. Figures 4.4d-f show snapshots from a cluster with c/c? = 4.0 and φ = 0.05 at 1, 10

and 40 million MC sweeps. As in Figure 4.4a-b, extended, thread-like structures form, but

now are metastable and persist for the duration of the simulation. This is clear evidence the

thread-like clusters are a result of kinetic arrest at high depletion concentration.

The absence of large chiral bundles from simulations and experiments begs

the question - in the absence of kinetic arrest, would we observe chiral bundles of oblate

spheroids? We initialized 3, 4 and 7 thread bundles; with each thread comprising 10 particles

each (Figures 4.4g-i. These bundles are obviously lower free energy than the configurations

assembled in simulation - adjacent threads open more free-volume to the depletant than
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isolated threads. These bundles are then relaxed for an additional 20 × 106 MC sweeps.

The results for c/c? = 4.0 are shown in Figures 4.4j-l. The 3- (Figure 4.4l) and 7- (Figure

4.4j) thread bundles both buckle into twisted bundles; the 4-thread bundle remains achiral.

At c/c? = 2.0, all the bundles buckle into chiral structures and continue to evolve toward

compact droplets with moderate orientational order; this process only proceeds faster at

lower c/c?. At high depletant concentrations, where threads are metastable, we observe some

chiral bundles; however, from random initial conditions the threads arrest before assembling

bundles. Our results at lower c/c? show that these chiral bundles are likely metastable

relative towards more compact droplet configurations.

4.4 Discussion

We note the onset of stable threads in our simulations and experiments is coincident with

kinetic arrest. The stabilization of these threads inhibits the assembly of the chiral bundles

discussed in the introduction. Even still, in systems with a balance of isotropic short-range

attraction and long-range repulsion (promoting growth of elongated aggregates) that undergo

kinetic arrest [125, 126] the particles form gels made of Bernal spirals, or tetrahelices. We

observe that the shape of our colloids yields mechanically stable clusters with only one bond

per particle, precluding the formation of spiral structures.

A pair of spheroids i and j have 4 degrees of freedom - |~rij|, r̂ij ·n̂i, r̂ij ·n̂j, n̂i ·n̂j.

As per Maxwell’s stability condition, in order to be mechanically stable a system needs to

have at least as many constraints as degrees of freedom. The effective interaction between
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a pair of colloids is computed in Figure 4.5. Figure 4.5a shows the stability of face-to-face

colloid minima with respect to |rij|, Figure 4.5b shows the stability relative to changes in

particle orientation. A single pair-bond thus provides four constraints corresponding to the

four scalars, thus a minimum of 1.25 bonds/particle are required for a mechanically stable

structure; in fact the cylindrical symmetry of a linear chain yields a mechanically stable min-

ima with a single bond/particle. In contrast, spherical particles need a minimum of 3 bonds

for mechanical stability - the radially symmetric interaction potential provides no dihedral

stiffness. As both systems undergo kinetic arrest, the system evolves to a mechanically sta-

ble minimum. For oblate spheroids, single particle strands can be present in these minima;

for spherical particles, tetrahelices are present in the mechanically stable, potential energy

minima with the fewest bonds[127].

We simulate a system of spheres with the same volume at identical depletant

concentrations to compare the structures assembled by spheres and spheroids. The valence,

or contact, distribution at c/c? = 4.0 is shown in Figure 4.4p. The ellipsoids have a markedly

lower valence, with particles with one or two bonds and a peak centered at 4 bonds. By

contrast, no spheres have fewer than 3 bonds, and there is a peak at 6 bonds, corresponding

to tetrahedrally coordinated structures. Figure 4.4q shows the dependence of the mean

valence for spheres and spheroids as a function of c/c?. Both systems condense at c/c?0.6

- in fact the spheres crystalize into FCC (with 12 contacts). As c/c? increases, the system

begins to arrest and the valence decreases. From c/c? = 0.8 − 2.5, the spheroids have a

larger valence than the spheres. Spheres have an geometric limit of twelve contacts, which
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spheroids can have more; in compact droplets spheroids have more contacts. As arrest sets

in, the sphere system approaches an average contact number of six, while the anisotropic

potential can support lower valence, tending toward an average valence of four as c/c? → 4.

In cases where we wish to capture the thermodynamic behavior of a system,

particularly systems in which particles interact via short-ranged, attractive potentials at low

densities, it is common to include cluster MC moves [128, 129, 130].

In this work, we use a single-particle-move MC algorithm and purposely sample

arrested configurations of colloids. We observe arrested states that are visually similar to

those observed in experiments (Figure 4.2 and Figure 4.3), and show how the form of the

potential stabilizes low-valence clusters like those observed experimentally. Our systems

are sufficiently dense that the observed arrest in our MC simulations proceeds similarly to

the physical kinetic arrest without cluster moves (at least locally), as both relax into the

configurations dominated by thread-like clusters. Furthermore, we conduct simulations in

which we initialize particle threads next to one another (in Figure 4.4 g-o), and confirm that

thermodynamically, these thread-like clusters are disfavored, as we observe threads collapsing

into more compact configurations that provide more free volume for the depletant.

The resulting gels and arrested clusters are similar to gels of shape-anisotropic

particles[131, 132] with a high degree of local orientational order. These arrested structures

result directly from the particle shape driving the formation of thread-like fibers upon arrest

into surprisingly low-valence structures. Assembling the chiral structures observed in Pryby-

tak et al. [97], for example, is preempted by kinetic arrest for ε = 0.5 aspect ratio spheroids
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with depletants. A potential with longer range, and more directionality (to promote the

hierarchical assembly of threads) is required - lower aspect ratio colloids with even larger

depletant may produce these desirable structures.
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Figure 4.1: Synthesis and stability of PMMA oblate spheroids. Monodisperse PMMA oblate
spheroids are generated by (a) embedding PMMA spherical colloids in a PDMS matrix,
(b) applying a uniaxial compression at T ¿ Tg, and (c) cooling under pressure to room
temperature. (d) Representative SEM image of the PMMA spheres prior to thermomechan-
ical compression and (e) representative SEM image of oblate spheroids used in this study,
with aspect ratio l = b/a = 0.46. (f) Representative confocal image of a dilute suspension
(φ = 0.010) of covalently stabilized spheroids (scale bar represents 15µm). (g) Schematic of
watershed-cut image processing particle shape identification method for oblate and prolate
spheroids. Performance of the image processing is demonstrated using: (h) a raw 3D con-
focal image volume for a sample at φ = 0.018, c/c? = 4.0 (scale bar represents 10µm); (i)
the same image after thresholding; (j) Renderings of the identified oblate spheroids overlaid
on the thresholded image. In (j), cluster are identified by surface-to-surface distance. (k,
l), Close-ups of self-assembled structures displaying high degree of orientational order (k)
and low degree of orientational order (l); scale bars represent 5µm. Particle fabrication, and
microscopy by Lilian Hsiao. Image analysis by Benjamin Schultz.

82



Figure 4.2: Phase behavior of colloidal oblate spheroids as a function of attraction strength
(c/c?) and packing fraction (φ). In (a), the degree of clustering based on surface-to-surface
separation in the self-assembled structures (quantified by fclust) is shown. In (b), the degree
of clustering based on an additional orientational order criterion (quantified by fordered) is
shown. In (a) and (b), the solid line demarcates samples with fclust < 0.2. Experimental
samples are marked as solid circles and simulated structures are marked as solid triangles.
Error bars on experimental samples represent standard deviation in φ. (c-n), Representative
renderings of simulated structures: (c) c/c? = 4.00, φ = 0.01, (d) c/c? = 4.00, φ = 0.05 (e)
c/c? = 4.00, φ = 0.10; (f) c/c? = 2.05, φ = 0.01, (g) c/c? = 2.05, φ = 0.05, (h) c/c? = 2.05,
φ = 0.10; (i) c/c? = 0.60, φ = 0.01, (j) c/c? = 0.60, φ = 0.05, (k) c/c? = 0.60, φ = 0.10; (l)
c/c? = 0.20, φ = 0.01, (m) c/c? = 0.20, φ = 0.05, and (n) c/c? = 0.20, φ = 0.10. Particles
are colored by clusters defined by their surface-to-surface separation. Assembly experiments
conducted by Lilian Hsiao. Simulations and image analysis conducted by Benjamin Schultz.
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Figure 4.3: Kinetics of oriented and non-oriented self-assembly. a-f) CLSM images of as-
sembly at c/c? = 4.0. h-f) CLSM images of assembly at c/c? = 1.7. Images are taken at
tw=0, 10, 30, 60, 90, 120. Scale bars are 10µm. g) fclust for s=2 (red), s=3 (orange), s=4
(green) and s=5(blue) at c/c? = 4.0. h) fclust for s=2 (red), s=3 (orange) at s=4 (green) at
c/c? = 1.7. Experiments and trajectory analysis performed by Lilian Hsiao. Image analysis
and trajectory analysis performed by Benjamin Schultz.
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Figure 4.4: Valence of spheres and ellipsoids suspensions in simulation. a-c) Simulation
snapshots of an extracted cluster at 1, 10, and 40 million MC sweeps for c/c? = 0.8. d-
f) Simulation snapshots of an extracted cluster at 1, 10, and 40 million MC sweeps for
c/c? = 4.0. g-i) Initial configurations for thread bundles. j-k) Thread bundles after 20 million
MC sweeps, c/c? = 4.0. m-o) Thread bundles after 20 million MC sweeps, c/c? = 0.8. p)
Contact distribution of a spheres and spheroids at c/c? = 4.0. q) Mean contact number for
spheres and spheroids as a function of c/c?.
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Figure 4.5: Effective interaction potential between two oblate ellipsoids. The potential is
plotted as a function of surface separation in (a) for face-face, edge-face, edge-edge and
crossed edge configurations. (b) shows the effective as a function of angle between the
particle centers while keeping the surfaces in contact. The magnitude of the potential is
shown for c/c? = 1.5
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Figure 4.6: Stability of colloidal oblate spheroids without added depletant. (a) The 1D
mean-squared displacement as a function of lag time and (b) the single-particle van Hove
correlation function for tw = 48 hours (red), 60 hours (orange), 96 hours (blue), and 168 hours
(purple). Dashed line in (a) represents the orientation-averaged Stokes Einstein translational
diffusivity. Both (a) and (b) are generated from the dilute suspension shown in Figure 1(f).
Experiments and particle tracking performed by Lilian Hsiao.
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Chapter 5

Actuation of shape-memory colloidal

fibers of Janus ellipsoids

The text in this chapter in drawn in large part from a manuscript co-authored with Aayush

Shah, Wenjia Zhang, Sharon Glotzer and Michael Solomon published in Nature Materials

[133]. All figure panels were jointly prepared by Aayush Shah, Benjamin Schultz, Sharon

Glotzer and Michael Solomon; specific contributions from Aayush Shah and Wenjia Zhang

are attributed in figure captions.

5.1 Introduction

The equilibrium self-assembly of patchy particles[93, 134, 135] with anisotropic interactions[14]

has shown great versatility in the assembly of structures useful for photonics[136], catalysis[37]

and drug delivery[7]. Recent studies have shown that the assembly of shape-anisotropic
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patchy particles can lead to the generation of liquid crystal phases with orientational order

[137, 78, 138]. We find that Janus ellipsoids, whose geometry is distinct from the more

commonly studied case of spherocylinders[139, 140], self-assemble into orientationally and

positionally ordered, one-dimensional, self-limiting fibers. The unique positional and orien-

tational order of the Janus ellipsoid self-assembly, a consequence of the curved, quadratic

surface of the ellipsoids, is instrumental in facilitating sliding motion upon actuation by AC

electric fields. AC electric fields have been widely used to create 1D chain-like structures and

close-packed 2D assemblies from simple colloidal particles[141, 142] as well as to assemble

patchy spherical colloids into staggered and zig-zag chain structures[40, 41]. AC electric fields

have also been used in conjunction with self-assembly to promote order-order martensitic re-

configuration of bulk colloidal crystals made from both spherical[143] and dumb-bell shaped

colloids[144]. Here, we show that application of AC electric fields to pre-self-assembled fibers

leads to reconfiguration of the ellipsoids through a sliding mechanism. The assemblies are

thus shape-memory [145] in the sense that the relaxed assembly, as produced by equilibrium

assembly, is deformed into an ordered, elongated structure by application of an external

stress, as produced by an AC electric field. When this elongation is reversed by release of

the AC electric field, the assemblies regain their original self-assembled ordering.

5.2 Janus ellipsoid self-assembly

Figure 5.1 reports the equilibrium assembly of Janus ellipsoids of aspect ratio (r) given by

major axis length (2a) / minor axis diameter (D) = 5.0 ± 0.4). The inset of Figure 5.1a
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shows the scanning electron microscopy (SEM) image of one such Janus ellipsoid. Figure

5.1a reports the ordered fiber (OrF) equilibrium phase of sulfate-stabilized Janus ellipsoids,

observed after 20 hours of self-assembly in a 5mM sodium chloride (NaCl) aqueous solution.

The particles were synthesized by the sequential deposition of 7.5 nm of chrome and 15 nm

of gold on a monolayer of ellipsoidal particles (see Methods)[78]. Two-channel reflection and

fluorescence confocal laser-scanning microscopy (CLSM) was used to identify each half of

the Janus particle in the assembled phases[78]. In Figure 5.1b-e, we show a close-up image

of one self-assembled fiber. Figure 5.1b shows the fluorescence channel (red) that identifies

the uncoated polymer half of the particle, and Figure 5.1c shows the reflection channel

(green) that identifies the metallic half of the particle. The composite image (Figure 5.1d)

as well as its rendering (Figure 5.1e) shows that the gold faces are preferentially bonded,

while the particles are aligned and offset due to the Janus balance and ellipsoidal shape of

the particle. We further discuss the positional and orientational symmetry of these fibers

in Figure 5.2. Figure 5.1 also shows that the structure of the self-assembled phase is a

sensitive function of the pair interactions between the Janus ellipsoids. In pure deionized

(DI) water, the Debye layer thickness and thus electrostatic repulsion is sufficiently large

that Janus ellipsoids are free particles due to minimal gold-gold binding (free particle (FP)

phase, Figure 5.1f). The inset images of Figure 5.1f show the fluorescence, reflection and

composite channel for one such particle. At low salt concentrations (1mM), there is sufficient

reduction in electrostatic repulsion that gold-gold binding leads to the assembly of Janus

ellipsoid clusters (called the close packed cluster (ClC) phase, Figure 5.1g). Janus ellipsoid
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clusters are predominantly trimers or tetramers for this specific aspect ratio (r = 5.0). The

inset image shows the fluorescence, reflection, and composite channel for one such tetramer.

At intermediate salt concentrations (2-5 mM), electrostatic repulsion is further reduced,

leading to an increased propensity for gold-gold binding. Resultant assemblies are fibers

that are positionally and orientationally ordered (OrF phase) as described earlier in Figure

5.1a-e. At even higher salt concentrations (10mM), assembled fibers have neither positional

nor orientational order (called the disordered fiber (DiF) phase) because the strong gold-

gold attractive force (≈ 30kBT , Figure 5.8) does not permit reorientation of Janus ellipsoid

particles on bonding. This kinetic trapping leads to numerous defects in the main chain.

There is therefore no internal order in the DiF phase and the DiF structure is likely a non-

equilibrium one. The inset images show a close-up view of the fluorescence, reflection and

composite channel of one such fiber. In Figure 5.1i, we plot the dimensionless fiber length

(l) (length of fiber (µm) / major axis length of Janus ellipsoid (µm)) as a function of the salt

concentration for r = 5.0. CLSM images of the assembly experiments are shown in Figure

5.11. Janus ellipsoids and observe that the longest fibers (l ≈ 9) are assembled at a salt

concentration of 5mM (as in Figure 5.1a-e). The standard deviations for l are large because

the fiber lengths are not uniform due to the stochastic mechanism of fiber formation, which

we address later. The OrF phase is unique to Janus ellipsoids and we focus on understanding

this phase and exploiting its properties in this chapter.
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5.3 Phase diagram and mechanism of Janus ellipsoid

self assembly

Figure 5.2a-c reports the OrF phase for aspect ratio r = 4.1, 5.0 and 6.8 respectively. As is

evident in the inset images, while the lattice constants of the ordered fibers are dependent

on the dimensions of the particle, the OrF symmetry is repeated along the fiber for different

aspect ratios. Figure 5.2d reports a phase diagram of the experimentally assembled phases

observed (FP, ClC, DiF and OrF phases) at different aspect ratios. We note that the OrF

phase is observed at different salt concentrations, but only for r > 3.5. Thus, this phase

seems to require shape anisotropy in addition to Janus functionality, an observation we next

investigate through simulations. We conducted molecular dynamics (MD) simulations for

r = 5.0 using HOOMD-Blue, a GPU accelerated MD code[118, 146]. We model the Janus

ellipsoids with ten overlapping beads packed inside an ellipsoidal shell. These beads inter-

act via three potentials: a shifted Weeks-Chandler-Andersen (WCA) potential to account for

volume exclusion, an angularly modulated, shifted Lennard-Jones potential to model the van

der Waals attraction between gold patches, and a Yukawa potential to model the screened

electrostatic repulsion between particles due to surface charges (Figures 5.6 and 5.7)). We

choose a rigid body comprised of beads because of its computational simplicity and the ease

with which we can model salt screening effects. Our simulations reproduce the observed

phases for Janus ellipsoids by varying the Debye layer thickness (κ−1) (equivalent to varying

salt concentrations in experiments). Figure 5.2e shows a snapshot of a 1000-ellipsoid simula-
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tion assembling from disordered initial conditions into the OrF phase. A fiber extracted from

this simulation is shown. Its detailed structure matches the ordering observed in the exper-

iments, as shown in Figure 5.2a-c. The simulations also reproduce the other experimentally

observed phases (FP, ClC and DiF phases) as shown in the Figure 5.13. Phase diagrams

are shown in for patch coverage in Figure 5.14 and patch sharpness in Figure 5.15. The

OrF phase consists of fibers that are composed of four strands of aligned particles, touching

end-to-end. The strands lie on the vertices of a rhomb with ellipsoids in adjacent strands

shifted by one half-particle length and rotated 90 degrees about the fiber axis (Figure 5.2f).

Figure 5.2f(ii,iii) shows the contact network of the ordered fibers. The blue ellipsoids lie on

the minor axis of this rhomb and have five contacts and ≈ 30kBT of bonding energy in our

simulations. The yellow ellipsoids lie on the major axis of the rhomb and have four con-

tacts. Unlike the blue ellipsoids they do not make contact with the partner ellipsoids across

the fiber. The yellow particles are bound by ≈ 20kBT in our simulations. Even with this

strong bonding, the strands can still slide along each other with just a small energy penalty

(≈ 3kBT , Figure 5.8); thus the amount of shift between adjacent strands can fluctuate signif-

icantly and particles are very mobile along the fiber axis. This energy landscape, generated

by the particle shape and Janus balance, is therefore the origin of the ability for reconfig-

uration. It contrasts with the assembly of cylindrical rod, for which ribbon-like assemblies

that grow perpendicular to the major axis are predicted[137]. The ellipsoid system therefore

differs in two respects - the potential favors alignment of the particles to maximize gold-gold

interactions, rather than just contact, and the tapered ends of the ellipsoids allow maximal
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contact area when the particles are in fibers rather than ribbons. While the OrF motif is

predominant, Figure 5.2g shows the two most common types of defects, observed in both

simulations and experiment. On the left, an extra particle is inserted into the four-particle

motif while on the right, a particle is missing from the four-particle motif. These defects

necessarily destroy the long-range order in the fibers. However, the fibers observed in experi-

ment and simulation has well defined ordered motifs that persist across many unit cells; fibers

rarely contain more than one defect. Figures 5.2h(i-iii) report the growth mechanism of an

ordered fiber. First, the particles form clusters containing between three and five particles.

These clusters diffuse and coalesce into larger clusters (Figure 5.2h(ii)). Clusters of more

than five particles are elongated, but do not possess the same four-particle motif observed in

the OrF structure due to end effects. The Janus particles try to maximize the contact area of

their gold patches; these elongated clusters tend to terminate in trimers rather than dimers.

These elongated clusters continue to diffuse and coalesce with other clusters when their ends,

which have the most exposed gold patch, come in contact (Figure 5.2h(ii)). Once the fibers

have reached an l greater than 4 (≈ 16 Janus ellipsoids in a fiber), the particles rearrange

into their equilibrium, OrF structure (Figure 5.2h(iii)). We attribute this ability to rear-

range to the low potential energy changes for sliding along the gold patches of neighboring

ellipsoids (< 3kBT ) relative to bonding strengths in the OrF structure (≈ 30kBT ) (Figure

5.6). We believe the growth of these fibers is comparable to a step-growth polymerization of

the four-particle unit cell components; however, the internal rearrangement of the unit cell

upon bonding complicates modeling of the average equilibrium length of the fibers[147]. Our
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simulations thus describe the self-limiting, one-dimensional growth mechanism of the OrF

structure and shows that the symmetry of this structure is a result of the particle geometry

and torsional potential.

5.4 Simulations of Janus ellipsoid equilibrium assem-

bly

We simulated the self-assembly of Janus ellipsoids using HOOMD-Blue Brownian dynamics

at constant volume and temperature. We present simulations representative of two salt

concentrations (1mM NaCl and 2.5mM NaCl) for Janus ellipsoids of an aspect ratio of 5.0

run for 500 million time steps. The rigid bodies are constructed from 10 overlapping spheres,

equally spaced along the major axis with diameters such that they touch the surface of the

ellipsoidal particles they represent. Acting at each sphere is a shifted, angularly modulated

Lennard Jones potential, a shifted WCA potential and a Yukawa potential.

Volume exclusion is modeled by a shifted WCA pair potential of the form

USWCA = −4ε

((
σ

r −∆

)6

−
(

σ

r −∆

)12
)

(5.1)

where σ = 1.0 is the scale of the repulsion, ε = 0.5 is the strength of the

repulsion and ∆ = 1 +
di+dj

2
(di is the diameter of bead i) is the shift parameter for beads

i and j. We truncate and shift the potential at r = δ + 2.01/6σ. We model the van der

Waals attraction between gold patches with an angularly modulated, shifted Lennard-Jones
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potential of the form

USAMJL = −4ε

((
σ

r −∆

)6

−
(

σ

r −∆

)12
)

Θ(w(n̂i · r̂ij − χ))Θ(w(n̂j · r̂ji − χ)) (5.2)

where n̂i and n̂j are the Janus patch unit directors of particles i and j, r̂ij is

the center-to-center separation unit vector, χ = 0 is the Janus balance, w = 3 is the angular

sharpness. Θ is a smoothed step function of the form

Θ(x) =
1

1 + exp(−x)
. (5.3)

χ = cos θ
2
, where θ is the angular coverage of the attractive patch and can

range from -1 (patch covers entire particle) to 1 (no patch). w can range from 0 (for which

there is no angle modulation) to infinity, where this potential is identical to the angular

modulation of the Kern-Frenkel potential. Finally we account for the particle charge and

electrostatic screening with a Yukawa potential of the form

Uyuk =
ε exp (−κr)

r
, (5.4)

where κ is the inverse Debye screening length. We obtained estimates of the parameters

for these potentials by conducting DVLO calculations for the gold patch. Parameters used

in the simulations are tabulated in 5.1. Simulations were run at a reduced temperature of
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AMSLJ: ε σ w χ SWCA: ε σ Y: ε κ

2.5 mM NaCl 0.5 1.0 3.0 0 0.5 1.0 50.0 0.15
1.0 mM NaCl 0.5 1.0 3.0 0 0.5 1.0 50.0 0.45

Table 5.1: Table of Janus ellipsoid potential parameters

T = 0.2111 and a density φ = 0.04. Figure 5.13a. shows a comparison the 2.5 mM and

the 1.0 mM potentials. The sphere bead diameters are the diameters in the shifted WCA

and Janus LJ potentials, not energy isosurfaces. The blue halo represents the strength of

the electrostatic repulsion from the Yukawa potential. The interaction energy between two

ellipsoids is plotted for two parallel ellipsoids as they move across one another. These plots

show that the potential is to several percent of kBT , despite the bumpy appearance of the

shifted-diameter bead representation. At 1.0 NaCl salt concentration, electrostatic repulsion

at the tips of the ellipsoid overwhelms the LJ attraction, focusing the attractive patch be the

ellipsoids around the center to the ellipsoids. At 2.5 mM NaCl, the LJ attraction overcomes

the electrostatic repulsion and the ellipsoids are attractive along the entirety of their patch.

Figure 5.13b. shows the fluctuation of the potential of a particle in the ordered

fiber configuration as it slides along the axis of the fiber. The total binding energy is

≈ 30kBT , but the energy to slide along the fiber axis is less than 2kBT ; the particle is very

mobile along the fiber axis enable equilibration of the 1D structure and reconfiguration.

5.4.0.1 Computational phase diagram: fluid and horizontal fiber phase

Fluid fibers occur in a region where attractions are weak, and the screening length is short;

the attractive interactions are not strong enough to drive ordering, but the clusters extend
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beyond just 3-5 particles clusters and are not ordered (Figure 5.13). They are distinct

from the disordered fibers, which have fallen out of equilibrium; these clusters break up and

re-form.

The horizontal fiber phase occurs at very low temperatures and moderate

screening lengths (Figure 5.13). The repulsion form the Yukawa potential overwhelms the

attraction at the ellipsoid ends. Instead of growing parallel to the long axis, the attractive

centers of the ellipsoids drive growth perpendicular to the director.

5.4.0.2 Janus balance and sharpness effects

In the phase diagram (Figure 5.14 and 5.15), we observe bilayer clusters when χ < −0.09

and w ≥ 7.37. These are essentially bilayer clusters with all of the ellipsoids aligned along

their major axis. The ordered fibers are described in the previous sections. The trimer fibers

(0.15 < χ < 0.21) result from shrinking the angle of the patch so that the bonds no longer

support the contact network of the OrF phase; as in previous work on spherocylinders[137]

the fibers in this narrower patch regime are disordered chains of bundles of 3 particles strands.

Above χ = 0.24, no elongated clusters or fibers form, only clusters. The narrow angular patch

coupled with the particles’ geometry prevents the growth of extended structures.
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5.5 Directed assembly of Janus ellipsoids by AC elec-

tric fields

Application of AC electric fields reconfigures the equilibrium assembly phases of the Janus

ellipsoids, as reported in Figures 5.3. Figures 5.3a shows a schematic of the coplanar AC

electric field device used for these experiments (see Methods). A constant root mean square

(RMS) voltage of 10 V and frequencies ranging from 1 kHz to 10 MHz were applied across the

1 mm gap and the resulting structures are visualized by CLSM. Figures 5.3b reports the phase

diagram of the assembly phases observed for Janus ellipsoids at different salt concentrations

and varying frequencies. At low frequencies, the main effect of the AC electric field is to

align the self-assembled Janus ellipsoid phases (see phase diagram, Figure 5.2) in the direction

of the electric field lines. Thus, as a function of salt concentration we observe aligned free

particle (AFP), aligned close packed cluster (AClC) and aligned ordered fiber (AOrF) phases

(Figure 5.12). At higher frequencies, however, additional ordered phases are observed. The

attractive force of the induced dipole causes the AFP and AClC phases to combine into

a staggered chain (SC) phase. This ordered phase, observed previously for Janus spheres

15, is shown in Figures 5.3d and, in close up, in Figures 5.3e. After image processing, the

coordinates of the chains are rendered as in Figures 5.3f. Janus ellipsoids are bonded by their

tips on the gold half of the particle to two other particles and the ball and stick diagram

shows the various bonds between the Janus ellipsoid particles in the SC configuration (Figures

5.3g). At salt concentrations at which the OrF phase arises, application of an AC electric
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field leads to generation of a new chain-link (CL) phase that resembles the symmetry of

common jewelry chains (Figure 5.3h). A close up view of the assembled fiber along with a

ball and stick diagram that depicts particle-particle contact bonds is shown in Figures 5.3i

(3D rendering, Figure 5.3j). The symmetry of the repeated unit cell of the CL phase is a

four-particle motif of two pairs of ellipsoids, with each pair oriented 180◦ relative to each

other. Each pair is connected at the tip to an adjacent pair oriented 90◦ relative to it. Thus,

each Janus ellipsoid in this assembly has four contact bonds with adjacent Janus ellipsoid

particles. This phase, a reconfiguration of the equilibrium OrF phase, has no analog in the

case of Janus spheres. The existence of the SC phase is expected for Janus particles[40]. In

the appropriate frequency ranges, the electric dipole moment of the Janus ellipsoid moves

away from the ellipsoid center of mass toward the extremities of the Janus gold half of the

particle (Figure 5.3c). These dipoles chains create a staggered chain to minimize electrostatic

energy. Simulations show that the SC structure is observed for particles that interact with

a pair potential that forms clusters at equilibrium when an additional field-induced dipole is

added at the ends of the gold half of the particle. This result is consistent with experimental

observations (c.f. Figures 5.3d). In contrast, the origin of the CL structure is an emergent,

unexpected outcome of the application of AC electric fields to Janus ellipsoids self-assembled

into OrF fibers. Often, AC electric field structures can be explained by treating each particle

as an individual, induced dipole. In that case, the CL structure would have pairs of dipoles

parallel to each other, which is energetically unfavorable. Hence, one would expect the CL

structure to be suppressed in favor of energetically favorable SC structures. However, the
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SC structure is not observed on application of an AC electric field to self-assembled Janus

ellipsoid particles. We note parallel pair configurations of elongated Janus particles in AC

electric fields have also been observed [148]. The mechanism driving the elongation of the

OrF structure into the CL structure is not fully understood. Previously, chaining in AC fields

has been modeled as the balance of a field-induced energy that favors extension and a surface

tension contribution that favors contraction[149]. Several microscopic mechanisms that may

drive the OrF to CL transition were furthermore evaluated . Competition between offset

induced dipole moments and the monopole moments of the Janus ellipsoids is a potential

mechanism for the reconfiguration. If the induced dipole moment is sufficiently offset and

small (Figure 5.10), we predict that the CL structure is stable relative to the SC structure

at high salt concentrations. Additionally, electrophoretic forces acting on separated charges

could drive the transition. Finally, constrictive inductive forces could contribute to fiber

elongation (Figure 5.9), but the required current may dissipate too much power given the

resistivity of thin-film gold. Resolving among these mechanisms with recently developed

methods [150] is a potential direction for future study.

5.5.1 Simulations of Janus ellipsoid configurations in AC field

We used COMSOL’s AC Field module to calculate behavior of a Janus ellipsoid in an AC

electric field. We divide our 3 dimensional domains into 4 regions and integrate the total

electromagnetic energy density[151]. The polystyrene ellipsoid is modeled as a permittivity

of 5.0. A 30 nm gold coating is modeled by a conducting shell using a floating potential
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boundary condition. We model the bulk ionic solution with permittivity ε = 78 and con-

ductivity σ = 10−2S/M and a place and 100nm double layer with permittivity ε = 78 and

conductivity σ = 0.2S/M around the entire ellipsoid. The qualitative results are insensitive

to changes to geometry and parameters. However, we were unsuccessful in finding the CL

structure as an energy minimizing structure, indicating additional physics may be required

to explain its formation.

5.6 Actuation of Janus ellipsoid fibers by AC electric

fields

The OrF phase can be rapidly and reversibly reconfigured into the CL phase upon the

application of an external AC field. Figure 5.4 reports the short-time actuation of one-

dimensional assemblies by switching between the self-assembled OrF phase and directed

assembly CL phase upon application of AC electric fields (10 Vrms, 1 MHz). Figure 5.4a

reports a close-up view of carboxylate-stabilized Janus ellipsoids self-assembled into an OrF

phase fiber (2 mM NaCl in DI water, see Methods). The AC electric field rapidly reconfigures

the OrF phase fiber into the CL phase (Figure 5.4b). This reconfiguration elongates the fiber

due to the difference in lattice parameter between the OrF and the CL phase. Elongation of

the fiber length is maintained as long as the AC electric field is applied, as shown in Figure

5.4c. Removal of the AC electric field leads to reconfiguration of the fibers from the CL

phase to the OrF phase, and a concomitant reduction in the length of the assembly (Figure
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5.4d). This structure is now identical to the initial, equilibrium assembly shown in Figure

5.4a (self-assembled OrF phase). This elongation in fiber length is quantified as a function

of time by processing CLSM images taken at a rate of 30 frames per second (fps, Figure

5.4e). The reconfiguration in fiber length is rapid: full extension of the fiber occurs within

1.5 seconds, while relaxation of the fiber occurs within 3.5 seconds. This process can be

reversibly repeated multiple times on switching the AC electric field as noted in Figure 5.4f.

The extension in fiber length is measured to be 36 ± 7% and we note that this extensional

strain is independent of the initial fiber length as shown in Figure 5.4g (based on analysis of

30 fibers). The assembly goes out of frame for certain time periods and hence Figure 5.4 e,f

do not show data points at all time intervals. We add a dotted line to the graph to show the

approximate fiber length for those time intervals. The amount of extension and contraction

induced by the reconfiguration is consistent with the self-assembled and emergent structures.

In the OrF phase, the unit cell has a rhombic cross-section comprised of four Janus ellipsoids,

only two of which are in contact (Figure 5.4h,i). The two ellipsoids not in contact slide until

they come into contact with each other due to both magnetic compression and electrostatic

extension (compare Figure 5.4i and Figure 5.4k). This leads to an extension of the fiber

into the CL phase (Figure 5.4j). These geometric considerations yield a net predicted strain

of 41.4% in the unit cell (Figure 5.4j). Accounting for the finite size of the fibers and the

average length of the fibers in our experimental measurements, we predict the strain to be

33.1% from geometric considerations, (Figure 5.4j) which is within the error bars of the 36%

strain amplitude measured experimentally for the shape-memory OrF to CL transition. The
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simulations furthermore suggest that the CL structure, although weak relative to biological

actuators, could support measurable forces. Specifically, a lower bound on the force to extend

from the OrF to CL conformation is estimated to be 0.1 pN/particle. Given that the average

chain contains about 50 particles (Figure 5.5f) and that the CL cross sectional area is 1

µm2, the force to extend is ≈ 5 pN and the force per unit area is ≈ 5 Pa. This force to

extend is comparable to the stall force of molecular motors[152]. The force per unit area is

much weaker than biological actuators such as myofibrils[153] and actin networks[154].

5.7 Control of Janus ellipsoid fiber length

Traditionally, external fields have been used to accelerate self-assembly[155, 156], but also

more rarely to create defect-free, higher quality assemblies[157]. Over long-time scales, the

unique, emergent response of the OrF phase on micro-actuation by the AC electric field

permits the formation of longer, more uniform fibers as reported in Figure 5.5. Figure 5.5a

shows the initial equilibrium phase of carboxylate-stabilized Janus ellipsoids (assembled at

2.5 mM salt). Application of a 10 Vrms 2 MHz AC square wave electric field leads to

reconfiguration of the OrF phase to the CL phase (c.f. Figures 5.3). The fiber ends of

assembled fibers in the CL phase are attractive due to dipoles induced by the AC electric

fields. A close-up view (Figure 5.5b,c) shows that smaller fibers not only combine to form

larger fibers (as depicted by arrows in Figure 5.5c), but also align in the direction of the

AC electric field. Subsequent removal of the AC electric field leads to reconfiguration of

the CL phase fibers back to self-assembled OrF phase fibers, but while still maintaining the
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length of the fibers achieved through application of the AC electric field. This change is

evident in the dramatic increase in fiber length of the self-assembled fibers immediately after

application of the AC electric field for 30 minutes (Figure 5.5d). The chains are thus not

self-limited in length in AC electric fields. We note that the fibers are not only longer but

also more uniformly ordered, consistent with results of simulations (Figure 5.2), which show

that long self-assembled Janus ellipsoid fibers promote internal particle motion that leads

to increased uniformity in self-assembled fibers. Thus, the application of AC electric fields

promotes ”annealing” of fibers and improves the uniformity of fibers. Over time, we note

that Brownian fluctuations cause the fibers to lose orientational alignment along the AC

field direction, break and attain their equilibrium length. However, there is a net increase

(Figure 5.5e) of a factor of 2.5 in the dimensionless fiber length (Figure 5.5f) at 24 hours

after removal of the AC electric field relative to the original self-assembly. This increase

in length occurs because at higher salt concentrations, fibers become kinetically trapped

during self-assembly. Application of AC electric fields permits the assembled fibers to escape

this kinetic trap and achieve an equilibrium fiber length, just as in the annealing of other

materials with slow kinetics. This net increase in fiber length is, however, not observed for

Janus ellipsoids assembled at 2mM salt concentration (Figure 5.5f) because at this lower

salt concentration, fibers were not kinetically trapped during self-assembly and hence the

equilibrium fiber lengths obtained after application of the AC electric field are similar to self-

assembled fiber length distribution. Thus, the AC electric fields, applied in the long term,

modify the kinetic pathways for assembly and can therefore be used as a tool to control the
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length of the shape-memory colloidal assemblies

5.8 Experimental methods

5.8.1 Janus ellipsoid synthesis

Janus ellipsoids were synthesized using methods described in Shah et al. [158]. Here, we

synthesize carboxylate stabilized ellipsoids (F-8820, Invitrogen Inc) as well as sulfate stabi-

lized ellipsoids (F-8851, Invitrogen Inc) using the same procedure. The zeta potential of the

ellipsoids in DI water is measured to be ≈ 38.2 mV. Briefly, 300µL of a 2-wt% PS spherical

particle solution is homogenized with 7.5 mL of a 10-wt% aqueous PVA solution. This so-

lution is poured into Omni trays. The solution is allowed to dry overnight to form uniform

≈ 40µm thick films. This film is then cut into strips and placed in a custom made uniaxial

mechanical stretching device built in an oven. The strips are first heated above the glass

transition temperature of PS (≈ 120◦C) and then uniaxially stretched using the stretching

device. The aspect ratio of the ellipsoidal particle can be controlled by the strain applied on

the PVA strips. The strips are then allowed to cool at room temperature and dissolved in

water. This step releases ellipsoidal particles that are centrifuged at 5000g and redispersed

in ultrapure deionized (DI) water (Life Technologies) at least five times. Next, we use spin

coating to create a monolayer of the ellipsoidal particles. A microscope glass slide (Fisher

Scientific) is first placed in a base bath (30-40 g potassium hydroxide pellets (Sigma Aldrich)

dissolved in 100mL water and 400mL isopropanol (Sigma Aldrich)) for ≈ 30 minutes. The
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glass slide is then thoroughly rinsed with water. The uniform ellipsoids synthesized earlier

are also redispersed in 300 uL of ethanol. This solution is then spin coated onto the treated

microscope glass slide to create a uniform monolayer of ellipsoidal particles. Finally, the glass

slide with the monolayer of ellipsoidal particles is placed in an e-beam evaporator. Vertical

deposition of 7.5 nm chrome and 15 nm gold onto the glass slide leads to preferential depo-

sition of chrome and gold on one half of the ellipsoids to create Janus ellipsoidal particles.

These Janus ellipsoidal particles are then swept off the substrate and dispersed in water.

These particles are then centrifuged (1000g) and redispersed in ultrapure DI water at least

5 times to remove impurities from the solution. Finally, the particles are dispersed in ≈ 2.5

mL of ultrapure DI water to create a stock solution.

5.8.2 Chamber for AC electric field device

Glass spacers are first created by drilling a 0.5 cm hole in a microscope glass slide and cutting

into 2 cm by 2 cm squares. The glass spacer is stuck to the coplanar electrode coverslip using

an imaging spacer (Grace Bio-Labs imaging spacers, GBL654002). We also drill 35 x 50 mm

coverslips with a 1 mm hole. This slide is attached to the glass spacer using another imaging

spacer. We ensure that the hole in the cover slip is positioned above the hole in the glass

spacer. This leads to the creation of a chamber with an inlet for the colloidal suspension.

The colloidal suspension is subsequently pipetted into the chamber and used for experiments.
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5.8.3 Synthesis of ellipsoids with varying aspect ratios

Ellipsoids are synthesized using methods described in the main text. The aspect ratio of

the colloidal particles is controlled by the strain applied during the uniaxial extension of the

PVA strips. We synthesize aspect ratio 2.1± 0.2, 3.2± 0.2, 5.0± 0.4 and 6.8± 0.9 ellipsoids

on application of strains of 0.45, 0.9, 1.4 and 4.2 respectively to the PVA strips using the

uniaxial stretching device.

5.8.4 Self-Assembly of Janus ellipsoids

A 2.5 mL stock solution of the Janus ellipsoid particles is created using methods described in

the previous section. The particles in the stock solution are dispersed using a horn sonicator

(Cole-Palmer Instruments) for 30 seconds. A variety of sodium chloride salt concentrations

are created in ultrapure DI water (1 mM to 10 mM). 300 µL of the stock solution is then

centrifuged and the supernatant is replaced by 300µL of the required salt concentration.

Janus ellipsoids in the salt solution are sonicated using the horn sonicator for 30 seconds

and placed in one of the wells of an 8-well Lab-Tek II chambered #1.5 German coverglass

system (Fisher Scientific). This holder was previously treated in the base bath for at least

two hours, and thoroughly rinsed with water before addition of the Janus ellipsoid solution.

The particles are then allowed to sediment and self-assemble for 20 hours before imaging

with a confocal laser-scanning microscope (CLSM, Nikon A1r).
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5.8.5 Self-assembly of carboxylate-stabilized Janus ellipsoid par-

ticles

Figure 5.1 reports the self-assembly of sulfate-stabilized Janus ellipsoids (aspect ratio) at dif-

ferent salt concentrations. We demonstrate the assembly of similar structures from particles

with different surface stabilizing groups. Here, we demonstrate the assembly of carboxylate-

stabilized Janus ellipsoid particles. Carboxylate-stabilized Janus ellipsoids are synthesized

from 1.1µm diameter spherical particles (F-8820, Invitrogen Inc) using methods described

in the main text. These particles are then self-assembled at different salt concentrations and

results are depicted in Figure SI-5. The free particles (FP) phase is observed at 0 mM salt.

Addition of 1 mM salt leads to formation of a cluster phase (ClC). Ordered fiber (OrF) phases

are observed at 2 mM and 2.5 mM. Disordered fiber (DiF) phases are observed at higher

salt concentrations (3 mM and 5 mM). We note that these phases are similar to the ones

observed for sulfate-stabilized Janus ellipsoid particles. However, ordered fibers are formed

at lower salt concentrations as compared to the sulfate-stabilized particles. The transition

between the OrF and DiF phase also occurs at lower salt concentrations. We attribute this

change to the variation in surface charge of the sulfate-stabilized and carboxylate-stabilized

particles. We however note that the assembly structures are similar to those observed for

the sulfate-stabilized Janus ellipsoidal particles (Figure 5.2 main text).
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5.8.6 AC field assembly of Janus ellipsoids

AC field assembly of Janus ellipsoids is performed in a device with coplanar electrodes for

easy visualization with a CLSM 13 15. Coplanar electrodes are created by depositing 7.5 nm

chrome and 15 nm gold on a coverslip (35 x 50 cm, Fisher Scientific) that has a 1mm thick

(50 cm long) masking tape placed in the center of the slide. After deposition of the metal,

the masking tape is removed to create a 1 mm gap between the two coplanar electrodes. This

coverslip with the coplanar electrodes is then placed in the base bath for ≈ 1 hour before

use. After thoroughly rinsing the coverslip with water, a chamber is constructed to hold the

colloidal suspension. T2 thermocouple wires (0.5 mm diameter, Goodfellow Inc) are glued to

each of the coplanar electrodes using silver epoxy (MG Chemicals). The colloidal suspension

is then allowed to sediment and self-assemble for ≈ 20 hours. The wires are subsequently

connected to an AC field generator (Rigol DG 1022). The AC field generator is used to

apply a 10 Vrms square waveform at different frequencies across the colloidal suspension.

5.9 Hypotheses: mechanisms driving elongation of chains

in AC flectric fields

We consider three potential mechanisms responsible for driving the transition from the Or-

dered fiber (OrF) to the Chain Link (CL) structures: the electrostatic energies of configura-

tions of the field induced dipoles and monopoles, electrophoretic forces acting on charges in

the fibers separated by the field and constrictive forces from currents running through the
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fibers.

5.9.1 Competition between induced dipoles and electrostatic monopoles

We consider the induced electric dipoles on the ellipsoids (q1) and the particle charge (q0)

(Figure 5.10). Simply replacing each particle with a dipole, the aligned pairs of particles

in the CL structure are energetically disfavored. However, if the dipoles are sufficiently

off center, such that the particle geometry results in an interaction strength of ε1 between

bonded particles in both the candidate CL and SC structures, then the CL structure may

be energetically stable (UCL ≈ 2ε0 − 2ε1 + ε2 and USC − ε1). For this mechanism to be

plausible the magnitude of the induced dipole must be as large as the particle charge, q1.

We estimate the total amount of charge q0 on the ellipsoids from the zeta-potential[159]

measurements of the uncoated ellipsoids and find that each ellipsoid contains a net −10−14C

of excess charge. To estimate an upper bound of the magnitude of q1 we compute the amount

of mobile charges on the gold patch of an ellipsoid. We find 4.3× 10−10C of mobile electrons

per ellipsoid, with each gold atom contributing 1 free election. Thus, the induced charge can

compete with monopole repulsion, and can dominate it.

The position of the particles’ net dipole could be shifted out from the particle

center of mass as a function of frequency and salt concentration due to double layer polariza-

tion being out of phase with the field [160]. In such a scenario, the dipole would be closer to

the center of mass at lower salt concentrations and stabilize the SC structure while a larger

double layer polarization could shift the dipole moment further off-center and stabilize the
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CL structure.

5.9.2 Force driven compression of Janus ellipsoid chains

We modeled the AC-field assembly behavior with Brownian dynamics by including coarse

grain terms to model proposed mechanisms for chain elongation. We apply an aligning torque

of 8.0 in reduced units to simulate the alignment of the ellipsoids with the external field. We

model the polarization of the Janus ellipsoids with two Gaussian patches of depth ε = 10. To

model magnetic compression, an ordered fiber is axially compressed by a force of magnitude

40 (2pN per particle), causing the chain to extend. To model the chain stretching by charge

accumulation at the ends of chains, an external force of magnitude 10pN is applied to each

ellipsoid at the end of the ordered fiber. Both the radial compression and axial stretching

induced actuation of OrF into CL structures at κ−1 = 0.15 and T = 0.211 (Figure 5.9). With

only field-dipole interactions and dipole-dipole interactions, we observed the SC structure to

be stable at κ−1 = 0.45 and T = 0.211.

5.9.2.1 Current induced compresive forces

We note that there exists a conducting channel through the center of the fibers in the self-

assembled OrF phase as all the gold patches are in contact. As the field oscillates, current

is driven through the experimental chamber and through the fibers. The current flowing

through the wire will constrict the fiber. An axial compression of roughly 2pN units applied

to each particle was sufficient to produce elongation in simulations. We approximate the
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order of magnitude of current required to produce this force by crudely modeling a 5-link

ordered fiber as two parallel wires, l = 15µm in length, and separated by d = 0.5µm. The

current required to produce a force F =10 pN between these two wires is

I = V
ρµFd

µ0L
(5.5)

yielding I ≈ 1mA. Within the experimental cell, the D-field is 10kV/m. We estimate

the potential difference across the wire as δφ = lD = 0.15V. Computing the resistance of

the fibers using the bulk conductivity of gold (σ = 2.44 × 10−8S/m) and the dimension of

the particle coatings (30nm X 0.5µm) we find that a 15µm fiber could carry a current of

≈ 1mA. Thus, it is plausible that the AC current running through the wire may contribute

to its elongation. However, estimates of the geometry of the gold coating and the interfaces

between ellipsoids may significantly affect the resistance36 and the amount of heat dissipated

make this an unlikely primary mechanism.

5.9.2.2 Electrophoretic forces of elongation

Finally, we estimate the magnitude of the electric charge excess that would be required to

elongate the fibers. In this scenario, we consider electrophoretic forces acting on the mobile

charges from the gold coating that separated along the length of fibers by the applied field.

From simulations, we know that adding a force of equivalent to 10 pN that pulls the fiber

ends is sufficient to elongate the fibers. We hypothesize that the chains reach their extended

length when the electrophoretic force acting on the surplus accumulated charge equals the
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restoring force. In a field of D=10kV/m, a force of this magnitude requires that 10−13C of

charge has accumulated on the end ellipsoids[159]. Each ellipsoid has the 4.3x10−10C that

can separate and is thus an upper bound on q1. Thus, this mechanism is a plausible in the

parameters of this experiment.

5.10 Outlook

The self-assembly of one-dimensional, ordered and self-limiting colloidal fibers from Janus

ellipsoid patchy particles that can be reconfigured rapidly on application of AC electric fields

thus results in the formation of functional shape-memory colloidal assemblies. Self-assembled

structures that can be actuated by external stimuli, such as shown here, could find use as

colloidal actuators with muscle-like function, for applications such as soft robotics. These

experiments also show the possibility of generating unique, functional structures in other

colloidal systems by exploiting the interplay between self-assembly forces and external fields

for a new set of functional colloidal materials.
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Figure 5.1: Janus ellipsoid self-assembly at different NaCl concentrations. a. CLSM image
of Janus ellipsoids (aspect ratio r = 5) suspended in 5 mM NaCl in DI water. Scale bar:
10µm. Inset scanning electron microscopy (SEM) of a Janus ellipsoid. Scale bar: 0.5µm.
b. Close-up of the fluorescence-imaging channel for one assembled Janus ellipsoid fiber.
c. Close-up of the reflection-imaging channel for one assembled Janus ellipsoid fiber. d.
Composite channel that combines both the fluorescence and reflection channels. Red is the
uncoated, fluorescent polymer half of the particle. Green is the gold and chrome coated
part of the particle. e. Computer generated rendering of Janus ellipsoid assembled fiber. f.
CLSM image of Janus ellipsoids (aspect ratio r = 5) suspended in DI water without salt.
Scale bar: 10µm. Inset shows the fluorescence, reflection and composite channels of one
such Janus ellipsoid. g. CLSM image of Janus ellipsoids (aspect ratio r = 5) suspended
in 1 mM NaCl salt in DI water. Scale bar: 10µm. Inset shows the fluorescence, reflection
and composite channels of one Janus ellipsoid cluster. h. CLSM image of Janus ellipsoids
(aspect ratio r = 5) suspended in 10 mM NaCl salt in DI water. Scale bar: 10µm. Inset
shows the fluorescence, reflection and composite channels of one such disordered fiber. i. The
dimensionless fiber length (l) as a function of salt concentration (csalt) is reported for Janus
ellipsoids (aspect ratio r = 5). Experiments, microscopy and image analysis conducted by
Aayush Shah and Wenjia Zhang; renderings and image analysis by Benjamin Schultz.
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Figure 5.2: Phase diagram of Janus self-ellipsoid assembly and mechanism of Janus ellipsoid
assembly. a., b., c. CLSM image of an ordered fiber (OrF) for aspect ratio r = 4.1, 5.0 and
6.8 Janus ellipsoids respectively. Scale bar: 10µm. Inset image reports the close-up view
of one such fiber. d. Phase diagram of assembled phases of Janus ellipsoids as a function
of their aspect ratio and salt concentrations. Disordered fibers (DiF) Close-packed cluster
(ClC), free particles (FP) and ordered fibers (OrF) e. Simulation study of the assembly
of 1000 ellipsoids into the OrF ordered phase. f. i) shows a close-up view of an ordered
fiber and its cross section. ii) and iii) show the contact network in this one dimensional
structure. g. Two primary defect types, including the addition of an extra particle and the
displacement of a particle from the unit cell are observed in experiments (CLSM images)
and simulations (renderings). h. Kinetics of fiber formation by the combination of clusters is
depicted through simulation snapshots. Experiments and microscopy conducted by Aayush
Shah and Wenjia Zhang. Simulations were conducted by Benjamin Schultz. Structural
analysis of experimental and simulation data by Benjamin Schultz and Aayush Shah.
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Figure 5.3: AC electric field assisted assembly of Janus ellipsoids. a. Schematic of AC electric
field device. b. Phase diagram of assembly phases of Janus ellipsoids upon application of
10 Vrms AC electric field as a function of salt concentration and frequency. c. COMSOL
simulations of a single Janus ellipsoid for polar angle φ and azimuthal angle θ, showing their
tendency to align with an external field. d. Zoomed-out CLSM image of staggered chain (SC)
assembly structure. Scale bar: 5µm. A close-up view of one of the chains (Scale bar: 3µm)
along with the corresponding rendering and the ball-stick bond diagram are also shown.
e. Zoomed-out CLSM image of stretched chain-link (CL) assembly structure. Scale bar:
5µm. A close-up view of one of the fibers (Scale bar: 3µm) along with the corresponding
rendering and the ball-stick bond diagram are also shown. Experiments, microscopy and
image analysis conducted by Aayush Shah and Wenjia Zhang; FEA calculations, renderings
and image analysis by Benjamin Schultz.
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Figure 5.4: Actuation of Janus ellipsoid fibers using AC electric fields. Close-up view of Janus
ellipsoid fibers a. Ordered fiber before application of AC electric field (Scale Bar: 3µm). b.,c.
Chain link (CL) structure upon during application of AC electric field. (10 Vrms, 1 MHz)
d. Ordered fiber after application of AC electric field. e. Dimensionless fiber length (l) as
a function of time on application of AC electric fields. f. Dimensionless fiber length (l) as a
function of time on switching the AC electric field on - off. g. Distribution of the strain in the
fiber length on application of AC electric fields for a number of fibers with varied lengths. h.-
i. Rendering of the OrF structure and its rhombic cross section respectively. j.-k. Rendering
of the CL structure and its square cross section respectively, showing the maximal strain
possible under geometric constraints. Experiments and microscopy conducted by Aayush
Shah and Wenjia Zhang; structural analysis by Benjamin Schultz.
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Figure 5.5: Changes in Janus fiber length by AC electric fields. a. CLSM image of Janus
ellipsoids of aspect ratio five suspended in 2.5 mM NaCl in DI water. Scale bar: 20µm. b.,
c. Close-up view of Janus ellipsoid assembly before and during application of AC electric
fields, respectively. d. CLSM image immediately after application of AC electric fields for 30
mins. e. CLSM image 24 hours after application of AC electric fields. f. Dimensionless fiber
length of Janus ellipsoid assemblies at 2 mM and 2.5 mM salt concentrations as a function
of time. Experiments and microscopy conducted by Aayush Shah and Wenjia Zhang.
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Figure 5.6: Plots of the anisotropic potential used for simulations at 1.0 mM NaCl.
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Figure 5.7: Plots of the anisotropic potential used for simulations at 2.5 mM NaCl.
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a.

b.

Figure 5.8: Plot of the interaction energies for (a.) parallel particles as a function of offset
angle and (b.) along the axis of an ordered fiber.
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Figure 5.9: a). An ordered fiber (OrF) structure stabilized without an external field. b)
Circle-link (CL) structure reconfigured from the OrF pictured in a) upon the application
of an external field. The field is simulated by adding an aligning torque to each particle
(field-dipole interaction), a magnetic compression (to simulate AC current along the fiber)
and positive and negative patches at the tips of the ellipsoids.
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Figure 5.10: Schematics of the electrostatic interactions in the CL and SC structures.
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Figure 5.11: CLSM images of carboxylate-stabilized ellipsoid (r = 5) self-assembly. Salt
concentrations (NaCl concentrations) are: a. 0 mM, b. 1mM, c. 2mM, d. 2.5mM, e. 3mM,
f. 5mM. Scale bars are 5µm. Experiments and microscopy conducted by Aayush Shah and
Wenjia Zhang

Figure 5.12: a. Aligned free particle phase (AFP) b. Aligned close packed cluster phase
(AClC) c. Aligned ordered fiber phase (AOrF). Scale Bars are 20µm. Experiments and
microscopy conducted by Aayush Shah and Wenjia Zhang
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Figure 5.13: Phase diagram in temperature and screening length. The observed phases
are free particles (FP), close-pack clusters (ClC), Fluid fibers (FlF), Ordered fibers (OrF),
Disordered fibers(DiF), and Horizontal fibers(HF). Clusters extracted from each phase are
pictured in the phase diagram. The phases observed in this diagram are the fluid fibers and
the horizontal fibers.
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Ordered Fibers

Figure 5.14: Phase diagram of model as a function of χ, which describes the Janus balance
of the particles. χ = 0 corresponds to particle with 50% Janus balance; half of their surface
area is covered by the patch. If χ < 0 more than half of the particle surface in covered by
the patch.
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Figure 5.15: Phase diagram of particle model as a function of w. w describes the steepness
of the sigmoidal angular modulation of the potential. For reference, a w=3.0 potential is
plotted in Figures 5.6 and 5.7. As w increases, the angular potential approaches a square
well. For w < 6.27, ordered fibers self-assemble. For w > 7.37, we find that adjacent
fibers coalesce into bilayer clusters, consistent with bilayer formation for perfect square well
potentials of Janus spheres[161] and spherocylinders[137]
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Chapter 6

Outlook

This work has described the role of particle shape in self-assembly of colloidal materials in

several example systems. Shape is just one of the many available anisotropy dimensions

that can be used for colloidal design[14]; understanding how it affects assembly on its own,

and in combination with interactions described by other anisotropy dimensions maximizes

its utility in the design of colloid particles.

In chapter 2, design limits with only entropic interactions were presented and

our understanding of how densest packing structures can differ from self-assembled ones[59]

is further refined. In particular, we identified several forms of entropy (arising from orien-

tational and occupational degeneracies) that stabilize non-densest packing structures under

thermodynamic self-assembly. By understanding the origin of the thermodynamic driving

forces behind the observed assemblies, we can employ negative design to engineer parti-

cles away from these structures by inhibiting these degeneracies. Alternately, one may
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exploit these entropic forces to design model systems of orientational (and occupational)

”glasses”[162].

The work shown in chapter 3 describes methods that are critical for connect-

ing experimental explorations of the shape anisotropy dimension to theoretical and compu-

tational ones (as in chapter 4). Theory and simulation can predict how particle shape can

influence thermodynamic and self-assembly behavior, but as is always the case, experiments

are the ultimate test. Thus, having a general purpose tool to extract arbitrarily shaped parti-

cles from confocal image volumes will be critical in refining our models of anisotropic colloids

and establishing a quantitative connection between experiments and simulations along the

shape anisotropy dimension.

This tool is first applied in chapter 4 to study the self-assembly of oblate

spheroids in solution with large polymer depletants. Several computational studies [97]

suggested that oblate spheroids with an aspect ration of 0.5 could self-assemble into chiral

bundles. We fabricated such spheroids, and studied their self-assembly under the closest

experimental conditions to these studies we were able to achieve, finding instead the particles

assembled into arrested thread-like clusters. We characterized the local clustering using

our particle identification codes, and show semi-quantitative agreement with new, idealized

MC simulations, both showing kinetic arrest into single-article wide fibers. We are able to

attribute this arrested structure to the form of the attractive, emergent interaction between

the colloids, dictated by particle shape. This understanding sets the stage for a modified

particle designed to assemble chiral bundles.
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In chapter 5, we discuss how, in a system dominated by anisotropic enthalpic

interaction, shape comes to play a critical role in its reconfigurability and thus utility as a

colloidal device. While recreating atomic crystal structures at the nano and colloid scale

has its set of interesting applications[136, 163], the large design space of colloids opens up

the possibility of active and functional materials [42, 41]. We fabricated and study the self-

assembly of prolate Janus spheroids, which form ordered, one-dimensional fibers that can

be actuated by the application of external electric field. The particle shape, coupled with

the electronic response to the field, permits the reversible reconfiguration. Actuation is a

critical element in designing functional colloidal devices; these fibers can find application as

a component of, for example, a swimming colloidal ”robot.” As the line between materials

and devices blurs, the role of the material building blocks’ arguably simplest characteristic -

their shape - remains critical in determining both its assembly’s structure and functionality.
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Appendix A

Thermodynamic integration of hard

anisotropic particles

A.1 Abstract

One frequent goal of running equilibrium thermodynamics simulations is to determine the

free-energy minimizing phase or structure at a given statement point. Often, the simulator

has limited knowledge about what structures their particles are capable of forming. In that

case, we are left to start our system in a disordered state and let the equilibrium state

self-assemble. In many cases, this is sufficient, but in others our system may fall out of

equilibrium or become non-ergodic (e.g., we want to know the stable phase of a system of

hard particles at a high packing fraction).

In such cases, we can often use techniques designed to directly compute the
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free-energy of a library of candidate structures and identify the thermodynamic state by

direct comparison of the relative free energies of these structures. This, of course, only

works if we have some idea of the structures or phases a particle may self-assemble. For hard

particles, such candidate structures can be generated from densest packings, constructed by

hand, or taken from equilibrium simulations at different state points.

In the following sections I will focus on Frenkel-Ladd integration for hard

particles, which is a particular type of thermodynamic integration suited for comparing

the relative free energies of different crystal structures. Like all thermodynamic integration

methods, it relies on computing a reversible path integral between two state points. The

value of this integral provides a relative free energy difference between the beginning state

and the end state.

A.2 Frenkel-Ladd thermodynamic integration for hard

spheres

The crux of Frenkel-Ladd integration is that we want to transform our system (a crystal

of truncated tetrahedra for example) into a reference system for which we can analytically

compute the free energy (a noninteracting set of harmonic oscillators)[13]. We can compare

the free energies of competing crystal structures by taking a path integral from each crystal

structure to a common reference state.

For hard spheres of diameter D, one may accomplish this by attaching a spring
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to each particle that tethers it to an arbitrary position. Our original Hamiltonian is

H ({~ri}) =
N∑
i=0

N∑
j=i+1

UHS (rij) (A.1)

where ~ri is the position of particle i, N is the number of particles, rij = |~ri − ~rj| and

UHS (r) =


∞ : r ≤ D

0 : r > D

We introduce a spring with a coupling constant γ that tethers particle i to ~ri,0. Our Hamil-

tonian becomes

H′ ({~ri}) =
N∑
i=0

[
γε

( |~ri − ~ri,0|
σ

)2

+
N∑

j=i+1

UHS (rij)

]
(A.2)

where γ is a unit-less constant, ε = 1 is a reduced energy unit and σ = 1 is the reduce

distance unit. For brevity, we define

UFL ≡
N∑
i=0

ε

( |~ri − ~ri,0|
σ

)2

. (A.3)

The set {~ri,0} are, in principle, arbitrary. Along our path of integration how-

ever, we will increase γ to ∞, so we require that the {~ri,0} describe a non-overlapping

configuration. From a practical standpoint, we always select the equilibrium crystal posi-

tions for {~ri,0}; this guarantees a non-overlapping configuration and a thermodynamic path
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that is easy for our simulation to follow.

With γ now introduced, we can take a reversible thermodynamic path from

our original system of hard spheres γ = 0 to a system of decoupled harmonic oscillators as

γ →∞ - the particles are bound so tightly to their lattice sites that they never venture far

enough to bump into each other. The difference in free energy of the Einstein crystal and

our target system is

FEinstein − F =

∞∫
0

dγ
∂F

∂γ

∣∣∣∣
N,V,T

(A.4)

This of course, begs the questions of how to compute ∂F
∂γ

∣∣∣
N,V,T

. With Z defined

as the canonical partition function, we note:

∂F

∂γ

∣∣∣∣
N,V,T

= −kBT
1

Z

∂Z

∂γ

∣∣∣∣
N,V,T

(A.5)

where

Z =

∫ N∏
i=0

dri
3dpi

3 exp (−βH ′) =

∫ N∏
i=0

dri
3dpi

3 exp (−β (H + γUFL))

∂Z

∂γ

∣∣∣∣
N,V,T

= −
∫ N∏

i=0

dri
3dpi

3βUFL exp (−βH ′)

∂F

∂γ

∣∣∣∣
N,V,T

=
1

Z

∫ N∏
i=0

dri
3dpi

3UFL exp (−βH ′) = 〈UFL〉|N,V,T,γ

(A.6)

Thus, we can compute ∂F
∂γ

by computing the ensemble average of UFL in our

simulations for γ = 0 to γ =∞ and integrate 〈UFL〉|N,V,T,γ.

In practice, we cannot evaluate γ = ∞; we run simulations for a range of γ
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and stop when 〈UFL〉 plateaus and obeys the equipartition thereom.

Frenkel-Ladd thermodynamic integration for hard particles with

shape

To extend the preceeeding framework to find the free energy of crystals made of hard shapes,

we introduce an additional spring to each particle in our harmonic potential[28]:

UFL =
N∑
i=0

γε

( |~ri − ~ri,0|
σ

)2

+ αε|~qi − ~qi,0|2 (A.7)

where ~qi are the orientations of each particle and ~qi,0 are the equilibrium ori-

entations of each particle. As α → ∞ and γ → ∞, we now have an Einstein crystal that

has up to six degrees of freedom. As before, we wish to reversibly transform our system to

this Einstein crystal and integrate to find the work required to perform this transformation,

which is equivalent to the free energy difference.

FEinstein − F =

∞∫
0

d~s(γ, α)
∂F

∂~s

∣∣∣∣
N,V,T

(A.8)

In practice, we choose a path ~s along which α = Cγ, where C is a constant (10 has worked

well in previous works[28]). This constant is chosen such that the transformation of hard

particle to harmonic oscillator happens for rotational and translational degree of freedom at

similar values of γ.

Now, if we wish to compare the free energy of a hard-particle crystal computed
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via Frenkel Ladd integration with the free energy some other method, or the free energy of

another shape we must compute the free energy of the Einstein crystal analytically as a

common reference for the free energy. See Frenkel and Smit [13] for the expression for

spherical particles and Haji-Akbari et al. [28] for the expression for non-spherical particles.

If a spring acting on quaternions is used, as described here, one must correct

for the degeneracy of the quaternion representation of rotations subtracting NkBT ln(2).

If the shape has a rotational symmetry of order NR, a similar shift to the free energy of

magnitude −NkBT ln(NR) must be added to account for the identical particle orientations.

Frenkel-Ladd integration with degenerate crystals

One case that requires special consideration is the comparison of a crystal with orienta-

tional degeneracy to one without orientational degeneracy. In a crystal with orientational

degeneracy, each particle can equivalently occupy its lattice site at one of NR orientations.

In practice, we choose one instance of the degenerate crystal and then introduce

terms in the Hamiltonian that depend on those particular particle orientations. Since we

have introduced terms in our Hamiltonian that now make certain states distinguishable from

those which would have been considered equivalent in our original system, we must introduce

a correction when we compute the free energy. Failing to do so, we would underestimate

the latent heat of melting from an orientationally ordered crystal at high density to an

orientationally degenerate crystal at lower density.

In the simplest of cases, each particle’s orientation is completely independent
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a.

b.

Truncation

(  )

Figure A.1: Family of singly and triply truncated triangles

of its neighbors and there are NNR instances of the orientationally degenerate crystal for

each instance of the orientationally ordered one; a net addition of N ln(NR) of entropy.

This entropy can be quite significant in stabilizing orientationally degenerate structures over

orientationally ordered ones. Figure 2.3 shows how orientational degeneracy stabilizes an

orientationally degenerate diamond crystal relative to a space-filling hexagonal diamond

configuration to a very high density of φp = 0.78.

Frenkel-Ladd calculations in shape ensembles

Considering the comparison of free energies between orientationally degenerate and orien-

tationally ordered crystals computed via Frenkel-Ladd integration gives us a good starting

point to consider the comparison of free energies of different shapes. Let us consider the

families of truncated triangles shown in Figure A.1. In A.1a, one corner of the triangle is

progressively truncated. In A.1b, all three corners to the triangle are symmetrically trun-

cated, preserving the three-fold symmetry of the original triangle; this truncation interpolates

between a triangle and hexagon (six-fold rotational symmetry).

In both families, there is one shape in the family with higher symmetry than
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the rest; the triangle and hexagons for a and b respectively. This is important to note,

because our Hamiltonian H has a one- and three-fold rotational symmetry, respectively.

H → H(t) (A.9)

where t is the degree of truncation on the specified vertex/vertices. We can define µs(t), a

conjugate variable to the particle truncation t[164]; we can think about taking a path along

µs to do thermodynamic work.

Moving on, we consider the crystal structures formed by the single truncation

particles, shown in Figure A.2. Hard triangles will fill space in a triangular tiling. If we

begin to truncate one of the tips, there are two options - an orientationally ordered, space

filling packing of trapezoids or a three-fold orientationally degenerate triangular tiling.

Now, at zero truncation, we notice that the orientationally degenerate struc-

ture and orientationally ordered structure are identical, if we ignore the yellow tips. It might

be tempting to wonder whether the orientations of the triangles are “distinguishable.” This

issue is closely related to the Gibbs paradox[165, 166]. As per Jaynes [165], the clearest way

around any confusion whether particle labels are distinguishable is to imagine extracting

work in a way in which the particle labels matter.

For triangles, we can imagine starting with highly truncated triangles in the

rotationally ordered crystals. As we decrease the truncation level, the penalty for packing in

the orientationally degenerate structure decreases, while the entropy gain remains the same -

there will eventually be a transition from one to the other. At fixed pressure, this transition
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a.

b.

Figure A.2: Singly truncated triangle crystals. a) Orientationally ordered(top) and de-
generate(bottom) crystals at zero-truncation. b) Orientationally order(top) and degener-
ate(bottom) crystals.
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a.

b.

Figure A.3: Triply truncation triangle crystal. a) Orientationally ordered(top) and de-
generate(bottom) crystals at zero-truncation. b) Orientationally order(top) and degener-
ate(bottom) crystals.
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Decrease truncation

Figure A.4: Extraction of work from changing particle truncation.
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Figure A.5: Valid thermodynamic integration paths for singly and triply truncated triangles

will result in a net volume gain due to packing inefficiencies (as in Figure A.4. Clearly in

this “shape ensemble,”[164] the actual orientation of the particles matters and affects the

work that can be extracted.

So, even in the perfect triangle limit, we must track the symmetric orienta-

tions as distinguishable because we can extract work from the system by manipulating the

particle shape in a way that depends on the precise orientation of the triangle. Appropriate

thermodynamic paths are illustrated in Figure A.5.

For the second family, we have an analogous situation for the hexagons. The

hexagons must be treated as three-fold symmetric shapes, rather than six fold if we wish to

compare the free energy of its crystals with crystals of other shapes in this family.

Alternately, we recognize the fact that the Hamiltonian has a one- and three-
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fold symmetry in these cases. Even though for certain values of this parameter t, the Hamil-

tonian might have higher symmetry, the symmetry of the Hamiltonian in a thermodynamic

ensemble in which we are allowing t to fluctuate is the lowest symmetry that can be achieved

for any value of t.

Frenkel Ladd calculations in mixtures

We may also be interested in computing the free energy of shape mixtures. One simple

example is that of an occupationally degenerate crystal, where the species at each lattice

site is completely random compared to a binary crystal with specified particle positions.

In this case, a membrane could be used to extract mechanical work. An occupationally

degenerate crystal has a term equivalent to lattice gas mixing entropy that would not be

sampled by Frenkel-Ladd integration and requires explicit addition.

Another system of interest is one comprised of complementarily shaped parti-

cles; polygons are split into halves with interlocking teeth, shown in Figure A.6. The premise

is that these particle halves will find each other and self-assemble into paired crystals. The

teeth on the particles can be described by a triangular wave of a certain frequency - at certain

frequencies, the particle halves are self-complementary. That means at certain frequencies

we have a single component system and at others we have a binary mixtures. We would like

to compare the relative free energies of shapes that are self-complementary and those that

are not.

The Hamiltonian for this family of particles depends on modifying the left and
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Wavenumber

Figure A.6: Family of complementary, hexagon-forming particles❌a.

b.

Figure A.7: Crystals formed by a) complementary and b) self-complementary particles

right halves of particles; the Hamiltonian dictates that we label particles “left” and “right”

even if they are identical for a particle wavenumber. Figure A.7 illustrates the types of

crystals that complementary and self-complementary shapes can form. There are a number

of degeneracies. Both A.7a and A.7b have a six-fold rotational degeneracy. Additionally, the

even-wavenumber particles in A.7 also have occupational degeneracy.

Moving forward, we count the number of ways to distribute labels to the

particles. For the complementary particles we must place a left and right particle at each

lattice site. For self-complementary particles, we can place one left and one right particle, or

two lefts or two rights, subject to the global constraint that there must be an equal number

of left and right particles.
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To count the number of ways to distribute the left and right particles, we

imagine placing N
2

left-particles on N lattice sites and filling in the rest with right particles.

The problem here is that the lattice sites with two left or two right only have a three-fold

rotational degeneracies. Like dealing with truncated triangles, the easiest way to proceed

is to select the lowest symmetry in the system. Before, we constrained by a parameterized

Hamiltonian of the shape. Here, we are constrained by the Frenkel Ladd Hamiltonian, which

contains information about the particle type - a paired crystal containing some sites with

only three-fold symmetry.

To proceed correctly, we select an instance of the three-fold degenerate crystal.

First we count the number of ways that left and right pairs can be placed on these lattice

sites - simply 2
N
2 . Then we count the number of ways to distribute N

2
particles onto N

lattice sites for the self-complementary case. There are
(
N
N
2

)
ways of doing this. Thus, the

net difference in entropy between these two states is

∆S = kb

(
ln

((
N
N
2

))
− ln

(
2

N
2

))
∆S =

NkB
2

ln(2) (A.10)

Perhaps the simplest way to think about this is to consider that the Hamilto-

nian we use to perform Frenkel Ladd integration has no notion of orientational degeneracy.

In this case we must consider that for the left and right paired crystal, there are 6
N
2 in-

stances for each Frenkel Ladd Hamiltonian. In the case of the left and right particles being

identical, we are reduced to 3
N
2 rotationally degenerate states for each of the

(
N
N
2

)
possible

pairings. This yields the exact same expression for the entropy difference and the approach
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Figure A.8: Thermodynamic integration path to compare complementary and self-
complementary particles

is illustrated in Figure A.8.
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Alexander Högele, Friedrich C Simmel, Alexander O Govorov, and Tim Liedl. DNA-
based self-assembly of chiral plasmonic nanostructures with tailored optical response.
Nature, 483(7389):311–4, March 2012. ISSN 1476-4687. doi: 10.1038/nature10889.

154



[95] R P Goodman, I A T Schaap, C F Tardin, C M Erben, R M Berry, C F Schmidt, and
A J Turberfield. Rapid chiral assembly of rigid DNA building blocks for molecular
nanofabrication. Science, 310(5754):1661–5, December 2005. ISSN 1095-9203. doi:
10.1126/science.1120367.

[96] Dwaipayan Chakrabarti and David Wales. Tilted and Helical Columnar Phases for an
Axially Symmetric Discoidal System. Physical Review Letters, 100(12):127801, March
2008. ISSN 0031-9007. doi: 10.1103/PhysRevLett.100.127801.

[97] P Prybytak, W J Frith, and D J Cleaver. Hierarchical self-assembly of chiral fibres
from achiral particles. Interface focus, 2(5):651–7, October 2012. ISSN 2042-8898. doi:
10.1098/rsfs.2011.0104.

[98] Szilard Fejer and David Wales. Helix Self-Assembly from Anisotropic Molecules.
Physical Review Letters, 99(8):086106, August 2007. ISSN 0031-9007. doi: 10.1103/
PhysRevLett.99.086106.

[99] Kun Zhao and Thomas Mason. Directing Colloidal Self-Assembly through Roughness-
Controlled Depletion Attractions. Physical Review Letters, 99(26):268301, December
2007. ISSN 0031-9007. doi: 10.1103/PhysRevLett.99.268301.

[100] Felix M. van der Kooij and Henk N. W. Lekkerkerker. Formation of Nematic Liquid
Crystals in Suspensions of Hard Colloidal Platelets. The Journal of Physical Chemistry
B, 102(40):7829–7832, October 1998. ISSN 1520-6106. doi: 10.1021/jp981534d.

[101] van der Kooij FM, K Kassapidou, and HN Lekkerkerker. Liquid crystal phase tran-
sitions in suspensions of polydisperse plate-like particles. Nature, 406(6798):868–71,
August 2000. ISSN 1476-4687. doi: 10.1038/35022535.

[102] Barbara Ruzicka, Emanuela Zaccarelli, Laura Zulian, Roberta Angelini, Michael Sz-
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[144] Ahmet Faik Demirörs, Patrick M Johnson, Carlos M van Kats, Alfons van Blaaderen,
and Arnout Imhof. Directed self-assembly of colloidal dumbbells with an elec-
tric field. Langmuir, 26(18):14466–71, September 2010. ISSN 1520-5827. doi:
10.1021/la102134w.

[145] David A. Porter and Kenneth E. Easterling. Phase Transformations in Metals and
Alloys, Third Edition (Revised Reprint). CRC Press, 1992. ISBN 0748757414.

[146] Trung Dac Nguyen, Carolyn L. Phillips, Joshua A. Anderson, and Sharon C. Glotzer.
Rigid body constraints realized in massively-parallel molecular dynamics on graphics
processing units. Computer Physics Communications, 182(11):2307–2313, November
2011. ISSN 00104655. doi: 10.1016/j.cpc.2011.06.005.

[147] Kun Liu, Zhihong Nie, Nana Zhao, Wei Li, Michael Rubinstein, and Eugenia Ku-
macheva. Step-growth polymerization of inorganic nanoparticles. Science, 329(5988):
197–200, July 2010. ISSN 1095-9203. doi: 10.1126/science.1189457.
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