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Abstract

I present a production-based equilibrium model that jointly prices bond and stock
returns. The model produces time-varying correlation between stock and long-term
default-free real bond returns that changes in both magnitude and sign. The real term
premium is also time-varying and changes sign. To generate these results, the model
incorporates time-varying risk aversion within Epstein-Zin preferences and two physical
technologies with different cash-flow risk. Bonds hedge risk-aversion (discount-rate)
shocks and command negative term premium through this channel. Capital (cash-flow)
shocks produce co-movement of bond and stock returns and positive term premium.
Relative strength of these two mechanisms varies over time.
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1 Introduction

During the 2008 financial crisis US treasury bonds proved to be excellent hedges against
stock market risk. Frequent “flight-to-safety” episodes pushed stock prices and bond yields
down simultaneously. Bonds were thus particularly valuable and, according to standard
asset pricing theory, were likely to command low or even negative term premium. In 1990s,
however, bond and stock prices tended to co-move, making bonds risky and therefore term
premia were likely positive. Figure 1 shows that correlation of stock returns with real long-
term bond (TIPS) returns is variable and changes sign1. No existing general equilibrium
model, to my knowledge, is able to obtain this result through a purely “real” channel2.
In fact, in most of consumption-based, habit3, and long-run-risk model calibrations, the
correlation between real bond and stock returns and real bond term premium are always
negative and the real yield curve is always downward-sloping4. In this paper I present a
production-based general equilibrium model that produces time-varying correlation between
stock and real bond returns and real term premium that change in both magnitude and sign.

The model features two physical technologies with different amounts of capital risk and
adjustment costs to investment. Both technologies produce the same good, but differ in
their risk. One technology is more productive, but also has higher exposure to the capital
“obsolescence” shock. The two technologies are designed to model cross-sectional heterogene-
ity in cash-flow risk across firms (e.g., low-risk “utility” companies vs. high-risk innovative
“hi-tech” companies). When one technology has a good shock (more capital; constant pro-
ductivity), investors want to rebalance towards the other technology to diversify their capital

1Because reliable data on TIPS starts in early 2000s, it might not be evident that the correlation of stock
returns with TIPS can be positive in the data. To shed light on this issue I show similar evidence from the
UK in the Internet Appendix, Figure 14. Correlation between UK inflation-protected government bonds and
UK MSCI stock market index is positive before late 90s and negative since then.

2Bansal and Shaliastovich (2012); David and Veronesi (2009); Rudebusch and Swanson (2008) specify
models in which correlation between stock and nominal bond returns can change sign.

3Bekaert et al. (2010) and Wachter (2006) are exceptions. In these models consumption-smoothing effect
of habits dominate the precautionary-savings effect and results in an upward-sloping yield curve and positive
real bond risk premium. On the downside, however, these models counter-factually imply that interest rates
are high when surplus-consumption ratio is high (in recessions) and low otherwise.

4The intuition behind this result can be easily illustrated with a simple consumption-based model with log
utility. In such a model a one-period bond price is logP (1)

t = −Et [∆ct+1] and term premium on a two-year
bond is thus brx(2)

t = −covt

(
SDFt+1, logP (1)

t+1

)
= −covt (∆ct+1,Et+1 [∆ct+2]). When consumption growth

is positively auto-correlated (as in the data), bond risk premium is always negative.
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investment. However, they face adjustment costs, which drives up the price of the technol-
ogy with no shock. This mechanism, technology diversification, produces positive correlation
between returns on the two technologies, even when their cash flows are independent. Tech-
nology diversification also produces positive correlation between returns on real bonds and
stocks (total wealth) in the model. The mechanism is similar to “two trees” in Cochrane et al.
(2008) or two technologies in Wang and Eberly (2012) and operates through discount-rate
effects induced by general equilibrium market clearing.

The model also features changes in risk attitudes, generated by a time-varying risk-
aversion coefficient within Epstein-Zin preferences or, equivalently, by time-varying uncer-
tainty about model misspecification as in Drechsler (2013). When risk aversion rises, in-
vestors want to move from riskier to less risky assets, a flight-to-safety effect, which produces
a negative correlation between returns on real bonds and stocks.

Technology diversification and flight-to-safety together result in time-varying correlation
between returns on financial assets with different amounts of cash-flow risk even when their
cash flows are independent. When applied to price bonds and stocks, the model produces
time-varying correlation between stock and default-free real bond returns, that changes sign.
Further, the model produces a time-varying real term premium, which also changes sign.
When risk aversion is high, the flight-to-safety mechanism dominates and the return correla-
tion is negative. When risk aversion is low, the technology diversification mechanism results
in a positive correlation between bond and stock returns and a positive term premium.
Technology diversification relies on slow physical capital reallocation and thus drives low fre-
quency dynamics. Flight-to-safety operates at a higher frequency and is mostly responsible
for variation in financial variables in the model.

The structure of the production-based model allows us to learn about properties of the
implied consumption growth process that can be used in an endowment economy to replicate
the results of the paper. In the model, consumption growth is positively autocorrelated,
consistent with empirical evidence. However, analysis of the impulse response functions
reveals that in response to a negative capital shock, expected consumption growth is negative
in the short-run, but quickly reverts to being positive and stays positive for a long time. As
a result, the covariance of contemporaneous consumption growth with the infinite sum of
all future expected consumption growth is negative. This property, coupled with Epstein-
Zin preferences, tends to generate a positive component to real bond term premia and the
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Figure 1: Correlation between market excess return and 10-year bond return (weekly)
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Notes: Rolling 1 year correlation between weekly stock excess returns and 10-year bond
excess returns. The blue line depicts correlation of excess stock returns with nominal excess
returns on a 10-year bond. The red line depicts correlation of excess stock returns with real
returns on a 10-year TIPS.

correlation between returns on real bonds and stocks.
To study the model’s predictions, I calibrate the model and find the ICAPM representa-

tion of expected returns. This allows me to learn what fraction of the risk premium on any
asset comes from technology diversification and flight-to-safety mechanisms. The contribu-
tion of technology diversification is positive for all assets, resulting in a “common factor” in
returns. The contribution of the flight-to-safety mechanism is negative for bonds and posi-
tive for stocks. Bonds therefore hedge some stock market risk because they pay well when
market discount rates (risk aversion) increase. The relative magnitudes of the two com-
ponents change over time across all assets. When discount rates are high, flight-to-safety
dominates and we see high stock risk premium, negative bond risk premium, and negative
return correlations. The opposite holds when discount rates are low.
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2 Literature Review

The paper builds on several strands of existing literature. First, many papers analyze bond
and stock risk premia separately. Others find evidence linking both markets. Fama and
French (1993) note that the term spread predicts the stock market returns. Similarly,
Cochrane and Piazzesi (2005) find that a linear combination of forward rates, the “CP
factor”, is a good forecaster of government bond risk premia in the cross-section and time-
series, and also forecasts stock excess returns. Van Binsbergen et al. (2010) build a DSGE
model to jointly price bonds and stocks. Kozak and Santosh (2015) price a cross-section of
bond and stock returns within a three-factor empirical ICAPM specification. The last two
papers also show decompositions of bond risk premia by maturity.

The paper also relates to the literature that studies the correlation of bond and stock
returns. Campbell et al. (2012) explicitly embed time-varying bond-stock covariance in a
reduced-form model to explore the changes in risk of nominal government bonds over time.
Baele et al. (2010) design a dynamic factor model to analyze economic sources of bond-stock
comovement. Connolly et al. (2005) find a negative relation between implied volatility and
bond-stock correlation, which they attribute to flight-to-quality. Finally, Campbell et al.
(2012) describe a puzzle: “some papers have also modeled stock and bond prices jointly, but
no existing models allow bond-stock covariances to change signs”. In my model, bond-stock
covariances change signs endogenously, due to changing relative strength of two mechanisms,
rebalancing and flight-to-safety.

Many general equilibrium macroeconomic models produce a negative real bond risk pre-
mium and a negatively sloped real yield curve (and a negative correlation of bond and stock
returns). Some exceptions, such as Bekaert et al. (2010) and Wachter (2006), produce a
positively sloped yield curve within an external habit model by making the consumption
smoothing motive dominate the precautionary savings motive. These papers, however, im-
ply that the real short rate is high when the consumption-surplus ratio is low. Others (David
and Veronesi, 2009; Rudebusch and Swanson, 2008, 2012) have tried to use the dynamics
of inflation to reconcile the failure of standard models to produce a positive term premium.
Rich dynamics of inflation within a classical macroeconomic model that implies a negative
real term premium can potentially resolve some of the puzzles for nominal bonds. Although
inflation is an important determinant of prices of nominal bonds, I focus exclusively on real
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bond prices in this paper. Empirical evidence suggests the salient features of the dynamics
of real and nominal bond prices are similar.

On a more technical note, this paper’s two main mechanisms heavily depend on several
ingredients in the literature. First, the rebalancing mechanism, borrows a lot from Cochrane
et al. (2008), who show that having two technologies with infinite adjustment costs produces
a comovement, or a “common factor” in returns on assets with independent cash flows
in general equilibrium. Martin (2012) generalized this setup to multiple “trees”. My paper
differs from these by endogenizing the size of “trees” and modeling technologies with different
amounts of cash-flow risk. The latter feature leads to an endogenous time-varying quantity of
risk in the economy, which is essential for producing positive bond risk premia and a positive
correlation of bond and stock returns. Wang and Eberly (2012) while also endogenize the
size of “trees”, do not allow for this endogenous risk-taking. Nevertheless, I borrow a lot
from Wang and Eberly (2012) in terms of modeling two technologies and using similar
analytically tractable functional forms. None of the papers mentioned also allowed for an
exogenous variation in risk aversion.

Second, the flight-to-safety mechanism relies on the time variation in risk aversion. The
general idea goes back to Constantinides (1990) and Campbell and Cochrane (1999), who
studied models with internal and external habits, capable of generating endogenous fluctu-
ations in the curvature of the value function. In these papers, fluctuations in the curvature
come purely from the past consumption dynamics. Alternatively, Gârleanu and Panageas
(2008) show time-varying risk aversion naturally arises in a general equilibrium with het-
erogeneous agents. Menzly et al. (2004) specify a process for the consumption-surplus ratio
directly, which simplifies the modeling. Bekaert et al. (2010) goes further by allowing the
curvature of the value function depend also on exogenous shocks, producing essentially ex-
ogenous variation in risk aversion. Finally, Dew-Becker (2011) specify an exogenous process
for risk aversion directly, and is the closest setup to the way I model the flight-to-safety
mechanism in my paper.

Third, several papers (Rudebusch, 2010; Tallarini, 2000) pointed out that keeping the
elasticity of intertemporal substitution detached from risk aversion is important for fitting
both macro and financial moments in general equilibrium models. I therefore employ Epstein
and Zin (1989) preferences in continuous time, by borrowing from Duffie and Epstein (1992b)
and Duffie and Epstein (1992a). Although many papers employed the Duffie and Epstein
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(1992b) stochastic differential utility specification, I use an unnormalized aggregator of Duffie
and Epstein (1992b), which is relatively non-standard in the literature. The aggregator allows
me to preserve the homogeneity of the value function when risk aversion is stochastic. This
property delivers a more analytically tractable version of Dew-Becker (2011) setup.

Finally, I employ small-noise expansions to get approximate analytic solutions of the styl-
ized model in the paper. These expansions have been studied in the control-theory literature,
namely, Fleming (1971), Fleming and Yang (1994), and James and Campi (1996). Anderson
et al. (2012) and Kogan and Uppal (2001) have analyzed a similar type of expansions. These
expansions, however, differ from the ones typically used in economic literature where an
expansion takes place in the shock standard deviation and around some deterministic steady
state (imposing steady-state values of variables).

3 The Model

3.1 Setup

3.1.1 Production

There are two technologies indexed by n = {0, 1}. Production function takes a simple AK
form: Yn,t = AnKn,t, where Yn,t is the total output, An is a constant productivity multiplier,
and Kn,t is the equilibrium capital of technology n.

A process for evolution of capital features adjustment costs and is given by

dKn,t = φn (in,t)Kn,tdt+Kn,tσK,ndZK,t, (1)

where in,t = In,t
Kn,t

is the investment-capital ratio of each of two technologies, φn (in,t) ×Kn,t

is a concave in in,t installation function (so that an adjustment-cost function is convex),
which is homogeneous of degree one in capital, ZK,t is a capital shock, and σK,n is a constant
loading of technology n on the shock. I thus assume the capital shock is the same for two
technologies, which leads to a single source of cash-flow news in the model. The presence of
the shock in the capital-accumulation process of an AK-technology is identical to shocks to
production possibilities in Cox et al. (1985). These shocks can be interpreted as “obsoles-
cence” shocks: bad realization of a shock leads to the lower level of capital with no change
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in future productivity5.
Each unit of investment increases the capital stock by φ′n (in) and is valued at qn, the

Tobin’s (marginal) q. Competitive firms therefore optimally choose to equate φ′n (in) × qn
to unity, the cost of investment. The Tobin’s q is hence given by qn = Qn = 1

φ′n(in) . See
Appendix for a more formal argument.

For expositional purposes I assume that technology indexed by n = 0 has no cash-flow
risk exposure in the rest of the paper. This assumption does not change the main mechanisms
of the model but simplifies algebra and intuition significantly and amplifies the technology-
diversification effect.

Definition 3.1. The riskless technology has no risk in its capital accumulation process,
σK,0 = 0.

Although the capital-accumulation process contains no risk, returns on the “riskless”
technology are not instantaneously risk free and are exposed to the discount-rate risk due to
the built-in adjustment costs. With adjustment costs, the price of installed capital (Tobin’s
q) changes over time, affecting the overall value of the technology.

Definition 3.2. The risky technology has a non-zero loading on the capital shock, σK,1 ≡ ςK 6= 0.

In principle, both technologies can be risky. None of the mechanisms of the model requires
one technology to be riskless. I make this assumption for analytical convenience only. As
long as two technologies differ in their exposure to the capital shock (σK,1 > σK,0), the main
results and implications of the model continue to hold.

Finally, suppose there are two types of competitive firms and that each type can invest
in a single type of capital. Firms choose investment to maximize their value,

Pn,t ≡ pn,t ×Kn,t = sup
{in,t}

Et
ˆ ∞
t

Λt+τ

Λt

[AnKn,t+τ − in,t+τKn,t+τ ] dτ, (2)

where Λt is a stochastic discount factor (SDF) that is determined in equilibrium.
5The “Internet Crisis” of 2002 could be used as an example. During the crisis we learnt that the value of

existing “internet” capital is lower than it was previously hypothesized; yet, expectations of future innova-
tiveness and growth of the technology sector as a whole might have stayed constant.
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3.1.2 Preferences

I specify a stochastic differential utility of Duffie and Epstein (1992b). This utility is a
continuous-time version of Epstein-Zin discrete-time specification. Following Duffie and Ep-
stein (1992a) I define a stochastic differential utility by two primitive functions, f (Ct, Jt) :
R+ ×R→ R and A (Jt) : R→ R. For a given consumption process C, the utility process J
is a unique Ito process that satisfies a stochastic differential equation,

dJt =
[
−f (Ct, Jt)−

1
2A (Jt) ‖σJ,t‖2

]
dt+ σJ,tdZt, (3)

where σJ,t is an R2-valued square-integrable utility-”volatility” process, Jt is a continuation
utility for C at time t, conditional on current information, f (Ct, Jt) is the flow utility,
A (Jt) is a variance multiplier that penalizes the variance of the utility “volatility” ‖σJ,t‖,
and Zt ≡ (ZK , Zα)> is a vector of shocks. A pair (f, A) is called an aggregator. I use a
Kreps-Porteus (Epstein-Zin-Weil) aggregator, defined as

f (C, J) = δ

ρ

Cρ − Jρ

Jρ−1 = δ

ρ
J

[(
C

J

)ρ
− 1

]
(4)

A (J) = −α
J
, (5)

where ρ = 1− 1
ψ
and ψ is the elasticity of intertemporal substitution; δ is a subjective discount

factor, and α is the risk-aversion parameter. Duffie and Epstein (1992a,b) show finding an
ordinally equivalent aggregator

(
f̄ , Ā

)
is possible such that Ā = 0, a normalized aggregator.

Most papers that employ Epstein-Zin-Weil preferences use this type of aggregator.
I take a different approach and use an unnormalized aggregator as defined explicitly in

Eq. 4 and Eq. 5. Although such a representation requires computing an additional variance
term in Eq. 3, it allows me to separate the effect of elasticity of intertemporal substitution
(EIS) and risk aversion in the stochastic differential utility. In particular, the first term,
f (C, J), depends only on EIS, whereas the second term, 1

2
α
J
‖σJ,t‖2 depends only on risk

aversion and is linear in it (it might depend on the EIS indirectly through the σJ,t term,
however).

I further extend the utility specification when the risk-aversion parameter α is stochastic.
The specification results in stochastic differential utility being linear in risk aversion and
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therefore tractable. In particular, it preserves the homogeneity property of the value function
and thus allows me to scale everything with the level of total capital.

Finally, agents face a total wealth constraint, which is given by

dWt =
[
Wtθ

′

tλt +Wtrt − Ct
]
dt+Wtθ

′

tσRdZ, (6)

where W denotes total wealth, θ = (θ0, θ1)> denotes the vector of shares of wealth in assets
that span the market, λ denotes a 2 × 1 vector of risk premia on the two assets, rt is the
equilibrium risk-free rate, and σR is a 2× 2 covariance matrix of returns on the two assets.
The formulation in Eq. 3 and Eq. 6 describes a standard portfolio allocation problem of an
infinitely lived investor who can freely participate in complete financial markets.

3.1.3 State variables

Because of homogeneity of utility specification in Eq. 3, the use of the unnormalized aggre-
gator, and homogeneity of the capital accumulation processes in Eq. 1, I am able rescale all
variables by the total capital or total wealth. I establish this result in section 7.3.1. I need
therefore only two state variables: the share of capital in the risky technology, which I will
denote with x, and risk aversion, α.

The risk-aversion process The process for risk aversion αt is taken as exogenous,

dαt = φ (ᾱ− αt) dt+ αtσαdZt, (7)

where σα = (λςK , ςα)> is a vector of loadings on the capital and risk-aversion shocks Zt ≡
(ZK , Zα)> in the economy, λ, ςK , and ςα are constants, and λ 6 0 controls the strength of the
risk-aversion response to capital shocks. The volatility is scaled by αt for two reasons. First,
it guarantees, αt is always positive and hence the agents are always risk averse. Second, it
makes the size of shocks scale with current level of risk aversion. When αt is high, shocks to
risk aversion matter more than when αt is low. This assumption is standard in the literature.
Campbell and Cochrane (1999) and Bekaert et al. (2010), for example, specify the process for
the consumption surplus ratio and risk aversion in logs, which produces heteroskedasticity
of the same kind in levels.
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This parameter can be interpreted as either time-varying risk aversion (Campbell and
Cochrane, 1999; Dew-Becker, 2011) or time-varying ambiguity aversion with respect to model
specification (Drechsler, 2013; Hansen and Sargent, 2008)6.

The share of capital in the risky technology Let the share of risky capital to total
capital be x = K1

K0+K1
= K1

K
, where K ≡ K0 + K1 is total capital. With this specification

x ∈ [0, 1] with x = 0 corresponding to the case with only riskless technology and x =
1 corresponding to the case with only risky technology. Note x = 0 and x = 1 states
are absorbing: once one technology vanishes, it cannot be rebuilt, because loadings on
shocks as well as the drift (due to homogeneity of the adjustment-cost function) in Eq. 1 are
proportional to the stock of capital, which is zero.

I apply Ito’s lemma in Appendix to show that the share of risky technology x in equilib-
rium follows an endogenous stochastic process:

dxt = xt (1− xt)
[
φ1 (i1,t)− φ0 (i0,t)− xtς2

K

]
dt+ xt (1− xt) ςKdZK,t. (8)

3.1.4 Competitive equilibrium

Definition 3.3. Given the vector of state variables X = (x, α)>, the SDF process dΛ
Λ

and price functions {pn ≡ pn (X)}1
n=0, the total wealth of the representative agent W , the

vector of risk premia λ (X), the risk-free rate r (X), and the covariance matrix σR (X) of
returns on two assets that span the markets, a stochastic competitive equilibrium is a set of
allocations {C, θ, I0, I1, K0, K1}∞t=0 such that

(i) agents maximize utility given by the stochastic differential utility process in Eq. 3,
subject to their budget wealth evolution in Eq. 6, by choosing how much to consume,
C, and how much to invest in either of the two assets, θ;

(ii) firms solve an optimal investment problem in Eq. 2 subject to Eq. 1;

(iii) risk aversion follows an exogenous stochastic process given by Eq. 7;

(iv) capital accumulation grows according to Eq. 1;
6Variability in α generates time-varying prices of risk in the model. The main results survives if we

instead model time-varying quantity of risk (through time-varying volatility of consumption growth).
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(v) aggregate wealth evolves according to Eq. 6;

(vi) financial markets clear, θ =
(
pn(X)Kn

W

)>
, n = {0, 1}.

3.1.5 Solution

The first and the second Welfare Theorems hold in the model. I therefore start by solving
the planner’s problem and then decentralizing the economy to find prices.

The planner chooses investment and consumption to maximize the agent’s lifetime utility.
Due to homogeneity, I guess that the solution is linear in total capital: J (K0, K1, α) =
K × F (x, α). I establish the following result in Appendix, section 7.3.

Theorem 3.1. The solution to the planner’s problem is given by the system of a PDE,

δ

ρ

[(
c (x, α)
F (x, α)

)ρ
− 1

]
− 1

2α ‖σF‖
2 + (1− x)

(
1− Fx

F
x
)
φ0 (i0) + x

(
1 + Fx

F
(1− x)

)
φ1 (i1) (9)

+Fα
F
φ (ᾱ− α) + 1

2
Fxx
F

(1− x)2 x2ς2
K + 1

2
Fαα
F

α2 ‖σα‖2 +
[
Fα
F

+ Fxα
F

(1− x)
]
xαλς2

K = 0,

with boundary conditions listed in section 7.3.3, first-order conditions for optimal investment,

δ
(
c

F

)ρ−1
= (F − Fxx)φ′0 (i0) (10)

δ
(
c

F

)ρ−1
= (F + Fx (1− x))φ′1 (i1) , (11)

and the aggregate resource constraint

c = (A0 − i0) (1− x) + (A1 − i1)x, (12)

where Fx denotes a derivative of the rescaled value function w.r.t. x, σF =
(
1 + Fx

F
(1− x)

)
xσK+

Fα
F
ασα, and σK = (ςK , 0)>.

Proof. Appendix, section 7.3 provides the details and derivations.

Next, I decentralize the economy and solve a portfolio allocation problem, which is de-
tailed in section 7.2.2. The following theorem summarized the result for the SDF of the
economy.
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Theorem 3.2. The stochastic discount factor (SDF) of the economy is given by

dΛ
Λ = −r (X) dt+ L (dlnfC − αtdlnJ) dZ, (13)

where r (X) is the equilibrium interest rate, L (ds̃) denotes the vector of loadings on shocks
of a stochastic process ds̃, and fC is the derivative of the flow utility in Eq. 3 with respect to
consumption C.

Proof. See section 8.2 for the derivation.

3.1.6 Returns

I choose two assets that span the markets as follows. The first asset’s instantaneous total
return process is given by

dR0,t = A0 − i0,t
q0,t

dt+ φ0 (i0,t) dt+ dq0,t

q0,t
, (14)

where q0,t is the Tobin’s q of riskless technology. The expression gives the total return on
the riskless technology.

The second asset corresponds to the total return on the risky technology. The instanta-
neous return is given by

dR1,t = A1 − i1,t
q1,t

dt+ φ1 (i1,t) dt+ dq1,t

q1,t
+
(
dK1,t

K1,t
− E

dK1,t

K1,t

)
+
〈
dq1,t

q1,t
,
dK1,t

K1,t

〉
. (15)

The first component is the dividend-price ratio. The second is a capital increase due to new
investment. The third gives the change in the value per unit of installed capital. The fourth
is the change in the return due to the shock to the physical capital. The last component
reflects the Ito term due to changing total value.

The final step to complete the mapping to the competitive equilibrium in Definition 3.3 is
to compute the risk-free rate. Appendix, section 7.3.1 provides details on these calculations.
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3.1.7 Stylized Model

Unfortunately, the planner’s problem does not have an analytic solution in general. In
the Appendix, section 7.4 I show pseudo-analytic solutions to the stylized model in which
EIS is set to 1 and installation function φn (·) is the same for two technologies and takes
a log form. The solution relies on small-noise expansions (perturbations around the non-
stochastic steady state). It allows me to establish analytic propositions characterizing the
economy which I briefly summarize here:

1. Shocks to risk aversion that are orthogonal to shocks to the capital-accumulation pro-
cess move returns on risky and riskless technologies in opposite directions;

2. Shocks to the risky capital-accumulation process that are orthogonal to shocks to risk
aversion move returns on risky and riskless technologies in the same direction;

3. One can find a calibration of the model that produces a positive correlation between
returns on riskless and risky technologies for low levels of risk aversion and negative
correlation when risk aversion is high.

For more formal argument and proofs, refer to Appendix, section 7.4. In section 4 I will also
show evidence that these propositions work numerically in a calibration of the full model
that does not rely on the simplifying assumptions above.

3.2 Pricing Bonds and Stocks

The price of a real long-term bond of maturity T is given by

P
(T )
B,t = Et

[
ΛT

Λt

× 1
]
. (16)

In models of such complexity, analytical solutions for the term structure are typically unavail-
able. I therefore take a different approach that allows me to use pseudo-analytical solutions
for returns on the two technologies as good approximations of bond and stock prices.

The method relies on a specific choice of technologies I have made. The returns on the
riskless technology, given by Eq. 14, are similar to the returns on a perpetuity that pays
A0dt at each instant, which can be defined as dRc = A0

qc
dt + dqc

qc
. The difference lies in
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the investment adjustment,
[
− i0
q0

+ φ (i0)
]
dt, which reflects the fact that not all of the new

investment is installed at the marginal cost. In the formula for the riskless technology, the
“profits” due to this fact are split among all existing shareholders equally. In practice, the
adjustment turns out to be small and thus has little impact on the dynamics of returns
on the riskless technology. This allows me to use a solution for the returns on the riskless
technology as a good approximation of returns on a perpetuity that pays A0dt every instant.
In the empirical section of the paper, I further verify the dynamics of returns of the riskless
technology are indeed similar to those of a perpetuity, which in turn are similar to those of
a long-term real default-free bond, which I price in the model by explicitly computing the
expectation of the SDF in Eq. 16. I am therefore able to use an analytic solution for returns
on the riskless technology as a good approximation of the returns on a bond with some high
duration.

I define a stock as a leveraged claim to a portfolio of two technologies. I assume the
amount of leverage is time-varying and determined by the relative sizes of the two technolo-
gies (the Modigliani-Miller theorem holds in my model; therefore, any amount of leverage is
consistent with firms’ capital-structure decisions). As a consequence, the aggregate leverage
of the economy is pinned down by the aggregate risk-taking and general equilibrium, rather
than an individual firm’s decision. The asset being shorted in the leveraging process in this
case is a perpetuity (a claim on the riskless technology) rather than an instantaneously risk-
free bond. With this definition of the leveraging process, the returns on a stock are equal
to returns on the risky technology itself. To make this interpretation viable quantitatively,
I calibrate the process for capital accumulation in Eq. 1 and other parameters of the model
in such a way that the volatility and dynamics of returns and risk premium produced by
the risky technology closely resemble the respective dynamics generated by the stock market
index. With this interpretation, I can therefore use an analytical solution for returns on the
risky technology as a good approximation to returns on the stock market index.

Note, however, although the specific assumption on technologies made facilitates the
analysis and allows me to get approximate analytic formulas for bond and stock prices,
the mechanisms of the model do not require one technology to be riskless. As long as
two technologies differ in their exposure to the capital shock, the main results of the paper
continue to hold. In this case, I can numerically solve a model with two risky technologies that
differ in their amounts of cash-flow risk, and price long-term bonds by explicitly computing
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the expectation of the SDF in Eq. 16. Because the riskless and risky technologies differ in the
amounts of their cash-flow risk and returns on the technologies co-move more strongly with
returns on bonds and stocks respectively, changes in the relative sizes of the technologies
affect the prices of bonds and stocks (through an SDF).

3.3 Mechanisms

With this intuition in mind, I now use the analytical results summarized in section 3.1.7 and
formally derived in section 7.4, to revisit the main mechanisms of the model.

The technology diversification mechanism relies on having two technologies that differ
in their cash-flow risk, in positive supply, and adjustment costs to investment. With an
endogenous investment choice, a time-varying endogenous supply of risk emerges. When one
technology has a good shock, investors want to rebalance (diversify) to the other technology,
but face adjustment costs, which drives up the price of the other technology. Prices adjust
because quantities are fixed in the short run. In fact, I show in section 4 that the model
behaves as “two trees” of Cochrane et al. (2008) in the short run, when quantities are
essentially fixed, and as CIR-type model in the longer run, when quantities are free to adjust
and prices stay constant. Unlike “two trees,” however, the mechanism endogenizes the size
of technologies and the aggregate risk-taking decision. An endogenous size is important
for preserving the stationarity of the model and sustaining an equilibrium in which two
technologies persist. An endogenous risk-taking leads to an SDF that produces co-movement
of bond and stock returns in the model. It also produces realistic investment dynamics in
the model.

The “two trees” mechanism induces a co-movement of returns on any “trees”, whether
they are i.i.d. or different in some important dimension. I assume technologies differ in their
amounts of cash-flow risk, which leads to a co-movement of returns on low- and high-risk
technologies. Because a low-risk technology is more “bond-like” (has lower cash-flow risk),
its returns co-move much stronger with returns on a perpetuity (and hence with returns on
a long-term bond) than returns of a high-risk technology, which is more “stock-like”. This
built-in feature of the model design, delivers an SDF that generates co-movement of bond
and stock returns that are priced in the model using the SDF. With only the technology
diversification mechanism present, the model would always produce positive correlation of
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bond and stock returns, and always positive bond risk premia at all maturities.
The flight-to-safety mechanism relies on exogenous variation in risk aversion. When

risk aversion rises, investors want to move from the riskier to the less risky technology,
which produces a negative correlation between returns on the technologies. The mechanism
produces time-varying preference for risk. With only flight-to-safety mechanism present, the
model would always produce negative correlation of bond and stock returns, and always
negative bond risk premia at all maturities.

Time-variation and relative strength of the two mechanisms determines the overall corre-
lation between returns on risky and riskless securities as well as the sign of risk premium on
the riskless technology. When risk aversion is low, the technology diversification mechanism
dominates, producing a positive correlation between bond and stock returns on average.
During those times, bonds are exposed to the same discount-rate risk as stocks, and this
exposure is higher than opposing hedging motives. Riskless securities, therefore, tend to
command mildly positive term premium during tranquil times. On the other hand, when
risk aversion rises, the flight-to-safety mechanism becomes stronger and often overturns the
technology diversification mechanism, to produce a negative correlation between bond and
stock returns. During such times, bonds are typically perceived as good hedges against the
stock market risk and the hedging motive dominates the common exposure to a discount-rate
risk. Bonds thus command a negative risk premium.

The change in the relative importance of two mechanisms occurs because in response to
a capital shock, discount rates on the risky asset move in a way that dampens the cash-flow
effect on the asset. This dampening becomes stronger as risk aversion rises, leading to a
relatively weaker comovement of bond and stock returns. At the same time, an increase
in risk aversion leads to a stronger “decoupling” of bond and stock returns due to flight-
to-safety. As a result, the flight-to-quality mechanism starts dominating the technology
diversification mechanism at higher levels of risk aversion.

4 Dynamics

I now explore the dynamics the general model generates, and verify the results obtained are
in line with the intuition that we acquired by analyzing small-noise expansions of the stylized
model.
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Table 1: Calibration
Variable Value

Preferences
Time discouting δ 0.03
EIS ψ 2
Mean reversion of α φ 0.25
Mean of risk aversion ᾱ 25
Volatility of risk aversion ςα 0.17
Propagation of capital shocks λ 0

Technology
Volatility of capital ςK 0.062
MPK of bond technology A0 0.03
MPK of stock technology A1 0.085
Adjustment cost of riskless technology ξ0 0.03
Adjustment cost of risky technology ξ1 0.02

Notes: Parameters used in the calibration of the general model in section 3.1. All parameter values are
annualized.

4.1 Calibration

I calibrate the model to qualitatively match a set of stylized facts about the dynamics of real
and financial variables, such as the mean and standard deviations of consumption and output
growth, risk-free rate, equity mean return, standard deviation of equity return, Sharpe ratio,
and price-dividend ratio. Additionally, I compare moments for the consumption-to-wealth
ratio and total wealth excess returns implied by the model with the estimates by Lustig et al.
(2008). I also consider some conditional moments and implications the model produces (see
section 4.3). Because of the simplistic design of the model aimed at producing time-varying
correlation with as few ingredients as possible, some moments of the data, unsurprisingly,
cannot be exactly matched. In particular, I have difficulties matching high average volatility
of stock and long-term bonds, although the volatility in the model is highly time-varying and
occasionally does get high. One reason for this problem is that I do not have any permanent
productivity shocks in the model.
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I assume two shocks are uncorrelated. If anything, I found a non-zero correlation of
shocks makes returns more volatile and stocks more risky relative to bonds, which somewhat
improves the general fit. When the shocks are independent, on the other hand, we do not lose
a lot in terms of qualitative features of the fit, but gain much in terms of understanding the
impact of either of the two main mechanisms independently. This benefit will be most vivid
in section 4.3.3, where I study impulse responses to each of the shocks, and in section 4.3.2,
where I study policy functions.

Further, I specify an installation function for a technology n as φn (in) = ξn× ln
(
1 + in

ξn

)
.

Note that constants ξn are different for two technologies. I also considered different functional
forms of installation functions, quadratic and power. The latter gives more flexibility in
jointly matching investment and price dynamics, because it includes an additional parameter
that controls the elasticity of investment with respect to Tobin’s q. I chose to use the log
functional form to emphasize that results hold true even with the simplest specifications of
adjustment costs.

Calibrated values of parameters of the model are shown in Table 1. I set the time
discounting, δ to match the level of real bond yields, δ = 0.03 (annualized). The elasticity
of intertemporal substitution (EIS), ψ, is chosen to equal 2. This value is consistent with
the estimates in Van Binsbergen et al. (2010). Wide debate argues whether the EIS is less
than or higher than 1, but most of the recent asset-pricing literature lean towards the value
higher than 1, with some estimates being above 2 (Van Binsbergen et al. (2010) get an
estimate of ψ = 1.731 when using inflation data and ψ = 2.087 without it). I set φ = 0.25
to generate high-frequency variation of prices in the model. Campbell and Cochrane (1999)
use a much lower value to match high persistence of the price-dividend ratio. In my model,
high persistence is generated by an endogenous process for the share of two technologies,
x, whereas the risk-aversion process is mostly responsible for high-frequency movements.
I set ᾱ = 25 and ςα = 0.17 to target the Sharpe ratio and volatility of stock and bond
returns. Finally, I choose λ = 0 to make shocks uncorrelated for expository purposes. I also
considered calibrations with λ < 0, which do not change the qualitative pattern of the results
much. Calibrating λ < 0 makes risk aversion react negatively to direct shocks to capital.
This direct impact is often modeled in the literature under the guise of external habit as
in Campbell and Cochrane (1999). Direct shocks to risk aversion have been analyzed less
often, but are used by Bekaert et al. (2010) and Dew-Becker (2011).
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Table 2: Fitted moments
Data Model

Mean consumption growth 2% 1.8%
Standard deviation of consumption growth 1.9% 2.5%
Mean output growth 1.7% 1.7%
Standard deviation of output growth 3.7% 3.6%
Mean price-dividend ratio 26 20
Standard deviation of the log price-dividend ratio 0.29 0.26
Mean equity risk premium 6.4% 5.3%
Standard deviation of equity returns 17% 8.2%
Mean equity Sharpe ratio 0.32 0.61
Standard deviation of the equity Sharpe ratio 0.22 0.3
Mean risk-free rate 3% 3.4%
Standard deviation of the risk-free rate 2% 0.5%
Mean total wealth excess return 2.4% 1.7%
Mean wealth-consumption ratio 83 53

Notes: The Data column shows the empirical estimates of moments of interests in the data. The
Model column shows the values implied by the calibration of the model in Table 1. All moments are
annualized.

I calibrate the production side of the model to approximate real moments. The variance
of consumption growth is used to find the volatility of the stock technology, ςK = 0.062. I
choose A1 = 0.085 to match the variance of output growth and the level of the price-dividend
ratio. The productivity of bond technology, A0, is set to approximate the average yield on a
constant-maturity long-term real bond (30 years) traded at par with semi-annual coupons,
A0 = 0.03. Finally, the values for adjustment costs are set to match the mean of consumption
growth, standard deviation of investment, and distributions of means and volatilities of bond
and stock returns.

The calibration implies the mean value of risky capital x ≈ 0.32. This value is consistent
with the empirical findings of Lustig et al. (2008). In particular, they find the risk premium
on total wealth portfolio is about a third of the risk premium on stocks and the wealth-to-
consumption ratio of 83 (compared to 26 for the price-dividend ratio). The value of x in my
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model implies the sizes of estimates that are roughly similar to these moments. The mean
value of x is also roughly consistent with the amount of leverage that Bansal and Yaron
(2005) use to price stocks (φ = 3.0). Finally, in the empirical section of the paper, I will
show an empirical counterpart to the dynamics of x from the distribution of capital across
portfolios of less and more risky stocks.

Table 2 reports empirical and fitted values of a subset of moments I am considering.
Empirical estimates of mean and standard deviation of consumption growth and mean and
standard deviation of output growth are from Van Binsbergen et al. (2010). Sharpe ratio
estimates are taken from Dew-Becker (2011). All other empirical moments are from Lustig
et al. (2008). Overall, the model is able to fit the moments reported in Table 2 quite well, with
the exception of high volatilities of returns on stocks and long-term real bonds. Alvarez et al.
(2002) show bond risk premium relative to total risk premium tells us about the fraction
of the variance of the pricing kernel that arises from the martingale component. Koijen
et al. (2010) further point out the dynamics of the wealth-consumption ratio constitutes
an important empirical test of any model and is related to the fraction of transitory and
permanent shocks in the SDF. My model includes the moments of the wealth-consumption
ratio in the calibration and does a decent job fitting them.

4.2 Solution Method

I find a numerical solution to the system of equations in Theorem 3.1 using high-order
projection methods. I parametrize the value function and two investment functions as a
complete product of 20th order Chebyshev polynomials in two state variables, x and α. Next,
I evaluate the system of equations in Theorem 3.1 at 30×30 points on the state space. Points
are chosen as Chebyshev’s zeroes. I then search for coefficients of three policy functions to
minimize the L1-norm of PDE errors. In practice, the algorithm is iterative. I start by fitting
low order polynomials on the grid of 30× 30 Chebyshev zeroes and iteratively increase the
order of the fit until the desired precision is reached. I impose boundary conditions as given
in section 7.3.3. The resulting fit is the global solution on the entire state space.

The problem is therefore formulated as a sequence of standard constrained optimization
problems with thousands of constraints (one at each grid node) and thousands of unknowns
(Chebyshev coefficients). I use the GAMS modeling language together with CONOPT and
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Figure 2: Conditional distributions of state variables. interest rate, and correlation
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Notes: Conditional distributions of state variables, interest rate, and correlation in the simulated
economy. Disregarding the colors, each plot shows a histogram of a respective variable. Different
colors within each bar of a histogram show what fraction of observations that contributed to the
bar had risk aversion within a certain percentile. For example, yellow (bright) depicts observations
with risk aversion being in top 20 percentile. Because the sort is made on risk aversion, the first
histogram that shows the distribution of the risk-aversion parameter naturally changes color from
dark red to bright yellow as we move from left to right (overlapping colors within one bar in the
risk-aversion plot are due to the discrete width of bars).

SNOPT non-linear constrained optimizers to find a solution. Once the solution to the opti-
mization problem is found, I import the results in Matlab to perform simulations and report
the results.

Once the approximation to the value and investment functions is found, I can use them
to calculate the aggregates and prices in the model. Refer to section 7.3 for further details.
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4.3 Results

4.3.1 Conditional distributions of major moments

To construct conditional distributions, I perform Monte-Carlo simulations starting from a
steady state (unconditional means of state variables) and show histograms of variables of
interest. I show histograms for two reasons. First, they give a clear understanding of where
the economy “lives” in the state space and what is the distribution of variables of interests.
Second, because they are conditional histograms, we can gain insights about how the level
of risk aversion affects real and financial variables in the model. For example, we will see
risk premium on risky technology increases and risk premium on riskless technology falls as
risk aversion rises.

Figure 2 depicts conditional distribution of state variables, interest rate, and return cor-
relation of the economy. Disregarding the colors, each plot shows a histogram of a respective
variable. Different colors within each bar of a histogram show what fraction of observations
that contributed to the bar had risk aversion within a certain percentile. For example, yel-
low (bright) depicts observations with risk aversion being in top 20 percentile, whereas red
(dark) depicts observations with low risk aversion in bottom 20 percentile. Because the sort
is made on risk aversion, the first histogram that shows the distribution of the risk-aversion
parameter naturally changes color from dark red to bright yellow as we move from left to
right (overlapping colors within one bar in the risk-aversion plot are due to the discrete
width of bars). The second plot shows the distribution of a state variable x. We can see the
risky technology has a mean of about 32% of total capital.7 Unlike Cochrane et al. (2008),
the model therefore produces a stationary distribution of capital with both technologies co-
existing in equilibrium. The bottom-left figure shows real interest rate varies from around
1% to 4% annually. It is high when risk aversion is low, and low when risk aversion is high,
consistent with the empirical evidence. The bottom-right histogram depicts the distribution
of correlations between returns on risky and riskless technologies. It is highly time-varying,
changing signs, and is high and positive when risk aversion is low, and low and negative
when risk aversion is high.

7Lustig et al. (2008) find the return on total wealth behaves much more like a long-term bond rather than
the stock market. This finding is consistent with a relatively low share of risky capital in the total wealth
portfolio.
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Figure 3: Conditional distributions of financial variables
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Notes: Conditional distributions of financial variables in the simulated economy. Disregarding
the colors, each plot shows a histogram of a respective variable. Different colors within each bar
of a histogram show what fraction of observations that contributed to the bar had risk aversion
within a certain percentile. For example, yellow (bright) depicts observations with risk aversion
being in top 20 percentile.

Figure 3 shows distributions of volatility and risk premia on riskless and risky technolo-
gies. The risky technology is more volatile due to cash-flow shocks. Both technologies are
more volatile when risk aversion is high. Sharpe ratios (not shown), however, go in opposite
directions: the Sharpe ratio on risky technology is high when risk aversion is high, and is
low and negative on riskless technology. The risk premium on riskless technology varies from
around −2% to about +1% annually. It is negative when risk aversion is high and positive
otherwise. The risk premium on risky technology varies from 0% to about 25% annually. It
is high when risk aversion is high and low otherwise.
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Figure 4: Policy and transition functions
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4.3.2 Policy functions

I now discuss policy and transition functions as functions of two state variables, x and
α. Policy functions for consumption and investment in the two technologies are shown in
Figure 4. Warmer colors depict regions of the state space with higher probability density.

Investment in the riskless technology tends to increase when the share of risky capital x
becomes large, as the economy tries to sustain the stationary distribution of x. Similarly,
investment in the risky technology increases as x falls. These two forces generate a strong
drift toward the mean value of x (conditional on α) and are key for the existence of equilib-
rium in which two technologies survive. Cochrane et al. (2008) lack such a force in modeling
two technologies as trees and thus allowing for no endogenous investment. As a result, their
economy is not stationary and one tree always dominates the other. Stationarity in my
model is achieved precisely through endogenous capital reallocation (and high risk aversion,
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as opposed to log, which makes mean-reverting forces even stronger).
Investment in the riskless technology increases in risk aversion α while investment in the

risky technology falls in α. This pattern of investment is a manifestation of the flight-to-
safety mechanism. When risk aversion is high, people tend to reallocate from risky to riskless
assets, driving up the investment and prices on riskless technology.

Consumption is increasing in the share of risky technology x because of higher aggregate
productivity when the more productive technology is larger. Consumption is also increasing
in risk aversion α, rising slightly as risk aversion increases. With the EIS greater than one,
agents smooth out their consumption in time and consume relatively more per unit of capital
when risk aversion increases, contributing to a less volatile consumption path. This fact and
the aggregate resource constraint imply the aggregate investment per unit of capital must fall
as risk aversion rises. When the EIS is fixed at 1 (stylized model), consumption is completely
flat in risk aversion.

Finally, the correlation between returns on risky and riskless technology initially falls
steeply as risk aversion increases (and flattens out later). It is highly positive for low risk
aversion and becomes negative for higher values of risk aversion, consistent with Proposi-
tion 7.3. Correlation also decreases in x when α is low and increases in x for high levels
of α. When risk aversion α is low, the flight-to-safety mechanism is weak, especially when
we have relatively little risky capital. When risk aversion becomes high, however, flight-
to-safety becomes the dominant mechanism. As a result, when x is high, the fraction of
low-risk technology is low and thus the price impact on the technology in response to capital
shocks is magnified, causing the comovement of returns on two technologies increase, and
thus making the technology diversification mechanism stronger. Higher x also results in a
smaller discount-rate effect on the technology and weaker dampening of the cash-flow effect
(will be discussed later), further increasing the comovement of two technologies.

Figure 5 shows the excess returns, loadings of two technologies on two shocks, and prices
of risk as functions of risk aversion α for fixed values of x. Three different levels of x
are considered, each corresponding to a different line: the solid line corresponds to the
unconditional mean value of x, the dotted line corresponds to 10th percentile, and the dashed
line corresponds to the 90th percentile. The horizontal axis shows the level of risk aversion,
α, ranging from 0 to 40 in each plot. The risk premium on the riskless technology displays
a complex non-monotonic pattern. It starts from zero (at zero risk aversion, all risk premia
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Figure 5: Impact of risk aversion
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Notes: The figure shows the excess returns, loadings of two technologies on two shocks, and
prices of risk as functions of risk aversion α for fixed values of x. Three different levels of x are
considered, each corresponding to a different line: the solid line corresponds to the unconditional
mean value of x, the dotted line corresponds to 10th percentile, and the dashed line corresponds
to the 90th percentile. The horizontal axis shows the level of risk aversion, α, ranging from 0 to
80 in each plot. The vertical axis depicts the value of each variable, named in titles of each plot.

and risk prices have to be zero), increases mildly to positive values as risk aversion remains
relatively low, and then falls to the negative territory. It starts to rebound for very high
levels of risk aversion, but at these levels, the level of risky capital is typically smaller (both
due to endogenous investment and negative correlation of shocks) and the economy is much
better characterized by the dotted line on the plot, which is fairly flat at high levels of α.
An initially rising and then falling bond risk premium is reminiscent of initially high and
then low correlation of bond and stock returns, as can be seen on the top-right plot. The
excess return on the risky technology monotonically increases in risk aversion for all values
of x, consistent with Proposition 7.4. This result is key to using risk premium on stocks as
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an empirical proxy for unobserved risk aversion in the empirical section of the paper.
Prices of capital risk and risk-aversion risk are monotone in risk aversion. The price

of capital risk is increasing and always positive, whereas the price of risk-aversion risk is
decreasing and negative. Finally, loadings on the risk-aversion shock are non-monotone,
but always positive for riskless and always negative for risky technologies, consistent with
the results of Proposition 7.1 and the flight-to-safety mechanism. Likewise, loadings on the
capital shock are always positive for both technologies, consistent with Proposition 7.2 and
the technology diversification mechanism. Whereas the loadings of two technologies on a
risk-aversion shock mostly increase with risk aversion in absolute value and are of different
signs, the loading of risky technology on capital shock falls in the level of risk aversion,
because, in response to a capital shock, discount rates on the risky asset move in a way
that dampens the cash-flow effect on the asset. This dampening becomes stronger as risk
aversion rises, leading to a relatively weaker comovement of bond and stock returns. The
weaker comovement contributes to the technology-diversification effect becoming relatively
weaker than flight-to-safety for high levels of risk aversion. As a result, the correlation
between bond and stock returns becomes more negative as risk aversion rises.

4.3.3 Impulse response functions

I now analyze the dynamics of the model and response to shocks over time. For each variable
of interest, I construct an impulse response by hitting an economy with a contemporaneous
shock (1 s.d. in magnitude) and performing Monte-Carlo simulations of the economy 20
years forward to trace the impact of the shock. I then average all Monte-Carlo trajectories
to compute the expected conditional response to a shock at the unconditional mean values
of state variables conditional on a shock hitting at t = 0. I perform similar calculations for
the economy with no shock at t = 0 to compute the trajectory of the economy that was
not hit by the shock. The relative difference of two defines a non-linear impulse response.
Formally, for each variable of interest V , I compute an impulse response from t = 0 to T as

IRt→T (Xt) = Et [VT |Xt, Zn,t = 1]− Et [VT |Xt, Zn,t = 0]
Et [VT |Xt, Zn,t = 0] , (17)

where Xt is a vector of state variables and Zn,t denotes a realization of a shock at t = 0.
Because the model is non-linear, these impulse responses cannot be calculated by zeroing
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out future shocks, because in non-linear models, future shocks interact with future values of
state variables and these effects are important for studying the dynamics.

Figure 6 shows the responses of state variables and key quantities and prices of the
model in response to two shocks. A solid blue line shows a response to the capital shock.
The dashed red line shows an impulse response to a pure risk-aversion shock. I shock the
economy at its mean values of state8 variables and track responses forward for 20 years.

Let’s first focus on the risk aversion shock – the dashed red line. A positive risk aversion
shock has no contemporaneous effect on share of risky capital x, with small negative impact
in the following 20 years. The shock, however, has a strong effect on instantaneous returns
of two technologies: marginal q of riskless technology rises on impact, producing positive
realized returns while marginal q of risky technology falls, delivering negative realized returns.
Instantaneous risk premia on two technologies go in the opposite direction: they fall for
riskless technology and rise for risky technology (two bottom-left plots). This effect is a
manifestation of the flight-to-safety phenomena. Finally, both volatilities increase on impact,
and the risk-free rate and correlation of returns fall.

The blue solid line depicts the response to a capital shock. Risk aversion does not
respond on impact. Marginal q of the riskless technology falls, whereas that of the risky
technology rises. The loss of capital (cash-flow effect) negatively affects contemporaneous
returns on risky technology, however. To illustrate this effect, I plot an additional line
in the figure for marginal q of risky technology that shows the cumulative return on the
technology. It goes down on impact as a result of the loss of capital. Returns on both
technologies therefore co-move in response to a capital shock – the technology diversification
mechanism. The figure also shows that in response to capital shock, discount rates on the
risky asset move in a way that dampens the cash-flow effect on the asset (marginal q of
risky technology goes up, whereas the total return falls). This effect makes the flight-to-
quality mechanism dominate the technology diversification mechanism at higher levels of
risk aversion and therefore achieving the changing sign of correlation of bond and stock
returns.

Unlike the risk-aversion shock, the capital shock causes the risk-free rate to rise, both
volatilities to fall, and correlation to rise. Expected consumption growth at short horizons

8I also plotted impulse responses at many other points of the state space. Qualitatively, all of them look
similar to Figure 6.
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Figure 6: Impulse responses
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Notes: Each figure shows impulse responses (in percent) to a 1 s.d. shock that hits the economy
at its stochastic steady state (mean value of state variables). Responses to two orthogonal shocks
are analyzed. A solid blue line shows a response to the capital shock. The dashed red line shows an
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hits.
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is reduced in response to a negative shock but becomes positive quickly and stays positive
for more than 20 years. This persistently positive expected consumption growth leads to a
negative covariance of contemporaneous consumption growth and an infinite sum of all future
expected consumption growth. Coupled with Epstein-Zin preferences, which make agents
care about long-run future consumption growth, it tends to generate positive real bond risk
premia at long horizons. At short horizons, however, autocorrelation of consumption growth
in positive, consistent with empirical evidence.

I verify impulse responses of a 30-year zero-net-supply default-free real bond that I price
in the model using an SDF, are similar to impulse responses of the riskless technology’s price
(Tobin’s q). Two plots in the middle row (first and third) show both respond similarly to
either of the shocks. Similar responses to two shocks imply that the dynamics of returns on
two assets should be similar. I also verified the similarity of responses at different points
of the state space. Additionally, I find that the correlation between returns on the riskless
technology and a 30-year real bond (which I price numerically) in the simulated data is above
95%. These facts confirm the conjecture that I can use an analytic solution for returns on the
riskless technology as a good approximation for returns on actual long-term bonds, which
can be priced only numerically.

Impulse responses of risk premia in the bottom row show another interesting property
of the model. We can see that in response to shocks, instantaneous risk premia react sig-
nificantly on impact as the quantity of capital is fixed in the short run and prices adjust.
Responses of expected instantaneous risk premia at longer horizons, however, converge to
zero, because the capital is flexible in the long run and quantities adjust. This pattern sug-
gests that the model acts like the “two trees” model of Cochrane et al. (2008) in the short run
but behaves as a CIR-type model (Cox et al., 1985) in the long run due to its stationarity.

Finally, impulse responses of x and α show two variables have different persistence. Share
of risky capital x is highly persistent, with a half life of around 20 years. This variable drives
endogenous low-frequency variation in the model. Risk aversion α, on the other hand, is
much less persistent and drives mostly higher-frequency variation.

To study the effects of state dependence on impulse responses, I also looked at responses
to shocks away from the stochastic steady state. Qualitatively, the results seem similar to
those in Figure 6.

31



4.3.4 Risk Premia Decomposition

Theorem 4.1. The model has the following two-state variable ICAPM representation

µR − r = α× cov (dR, dRTW ) + λα × cov (dR, dα) + λx × cov (dR, dx) , (18)

where λα = (α− 1) Jα
J
, λx = (α− 1) Jx

J
, µR is a vector of conditional expected returns on

two assets, and RTW is the return on the total wealth portfolio.

Proof. Refer to Eq. 8.2.

Theorem 4.1 can be used to decompose the conditional bond risk premium into the three
components. Figure 7 performs such a decomposition for the riskless technology. The left-
top figure shows a conditional histogram of the total risk premium on the technology with no
capital risk. The other three figures show conditional histograms of three components of the
risk premium: a component due to covariance with the total wealth portfolio (CAPM term)
and two ICAPM hedging demands. Two plots on the left are conditional on the level of risk
aversion α (each color within a bar shows the fraction of observation that had a simulated
value of risk aversion within some percentile). Two plots on the right are conditional on
the share of capital in risky technology x (each color within a bar shows the fraction of
observation that had a simulated value of x within some percentile).

The covariance with total wealth portfolio is mostly positive and generates most of the
positive risk premium. This component is highly correlated with the share of risky capital x
(as can be seen from its conditional distribution), whereas the correlation with risk aversion
α is low. Most of the technology-diversification effect therefore manifests in the CAPM
component. The hedging demand with respect to risk aversion, on the other hand, generates
most of the negative risk premium on the riskless technology and is highly correlated with risk
aversion, which is a manifestation of the flight-to-safety mechanism. The hedging demand
with respect to state variable x partially offsets the risk premium generated by both the
CAPM term and the other hedging demand term (with respect to α), but not all of it,
because it is weaker.

Figure 8 shows the same decomposition for stock risk premia. It is primarily driven by the
first two components, whereas the contribution of the hedging demand with respect to x is
small. Hedging demand with respect to α produces most of the variation of stock risk premia
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Figure 7: ICAPM decomposition of bond risk premium
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Notes: Left-top figure shows a conditional histogram of the total risk premium on the technology
with no capital risk. The other three figures show conditional histograms of three components of
the risk premium: a component due to covariance with the total wealth portfolio (CAPM term)
and two ICAPM hedging demands. Two plots on the left are conditioned on the level of risk
aversion α (each color within a bar shows the fraction of observation that had a simulated value
of risk aversion within some percentile). Two plots on the right are conditioned on the share of
capital in risky technology x (each color within a bar shows the fraction of observation that had
a simulated value of x within some percentile).

and is the single most important component. Kozak and Santosh (2015) show an empirical
factor that proxies for this component captures most of the cross-sectional variation in stock
returns.

The value of the ICAPM decomposition is in showing how the two mechanisms work
dynamically, how they relate to classical portfolio theory, and how risk premia on different
assets are related at each point in time. Figure 7 and Figure 8, for example, suggest bond
and stock risk premia tend to be negatively correlated (both have low correlation with x;
therefore, dependence on α reveals the sign of correlation) and this negative correlation is
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Figure 8: ICAPM decomposition of stock risk premium
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Notes: Left-top figure shows a conditional histogram of the total risk premium on the risky
technology. The other three figures show conditional histograms of three components of the risk
premium: a component due to covariance with the total wealth portfolio (CAPM term) and two
ICAPM hedging demands. Different colors within each bar of a histogram show what fraction of
observations that contributed to the bar had risk aversion within a certain percentile.

due to flight-to-safety mechanism (hedging demand w.r.t. α). Theorem 4.1 also illustrates
the hedging demands with respect to risk aversion α is big and responsible for most of the
negative risk premium on bonds, and thus cannot be ignored. In fact, the hedging demand
is fully driving the flight-to-safety mechanism of this paper, which is similar in magnitude
to the technology diversification mechanism.

Figure 9 shows the decomposition of average excess returns on real default-free zero-
coupon bonds for maturities from three to 10 years. Each bond is priced by explicitly
calculating the expectation of the SDF at any given maturity. The plot shows the total excess
return on a bond increases with maturity. Similarly, both the CAPM component of the total
excess return and hedging demands increase with maturity. The CAPM component is always
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Figure 9: ICAPM decomposition of bond risk premium by maturity
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Notes: Decomposition of mean bond risk premia by maturity. Yellow bars show total bond risk
premia for each maturity from 1 to 10 years. Green bars (appropriately labeled) show contributions
of each of the three ICAPM components to the total bond risk premium of any given maturity.

positive, whereas the hedging demand with respect to risk aversion is always negative. The
hedging demand with respect to x is negative and relatively small compared to the other
two components.

Decomposition answers the question of what sources of risk compensation are embedded
in bond risk premia at various maturities. It shows two major components are the covariance
with total wealth, which is primarily driven by the technology diversification mechanism, and
the hedging demand with respect to risk aversion, which is reminiscent of the flight-to-safety
mechanism. Two mechanisms require compensation of different signs. Covariance with the
total wealth is a positively priced risk (as predicted by the CAPM), and the hedging demand
is a hedge (because bonds tend to increase in price in bad times) and thus is negatively priced.

In section 5.3, I construct an empirical counterpart to decomposition in Figure 9 using
the time-series of US government treasuries (nominal). I decompose empirical excess returns
on bonds of different maturities into two components: covariance with the return on the
total wealth portfolio and covariance with stock risk premium (proxy for risk aversion).
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Figure 10: ICAPM decomposition of conditional bond risk premium by maturity
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show total bond risk premia for each maturity from 1 to 7 years. Green bars (appropriately la-
beled) show contributions of each of the three ICAPM components to the total bond risk premium
of any given maturity.

The resulting empirical decomposition in Figure 13 closely mirrors the the unconditional
decomposition in section 5.

The model is particularly useful for analyzing conditional risk premia and their compo-
nents. Left and right panels of Figure 10 depict decompositions of excess returns conditional
on low risk aversion (bottom 20th percentile) and high risk aversion (top 20th percentile),
respectively. They show that when risk aversion is high, the flight-to-safety mechanism is
strong and dominates technology diversification at all maturities, which results in negative
conditional bond risk premia. Similarly, when risk aversion is low, the technology diversifi-
cation mechanism dominates, and conditional bond risk premia tend to be high.

5 Empirical Evidence

In this section I provide empirical evidence to justify the mechanisms of the model.
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5.1 Risk aversion

The model predicts that risk aversion is the main driver of variation in financial variables.
In particular, we saw in Figure 2 and Figure 3 that when risk aversion is high in the model,
correlation between bond and stock returns is low and stock volatility is high. It is informa-
tive to look at observable financial variables and see whether they behave in a way consistent
with model’s predictions.

In Figure 11 I show that, in line with model’s predictions, bond-stock correlation and
stock return volatility (as proxied by VIX) are indeed highly negatively correlated in the
data. The solid gray line shows the rescaled value of the smoothed VIX (1 month moving-
average). The blue and the red lines show rolling 1-year correlations between daily stock
excess returns and 10-year bond excess returns (nominal and real, respectively).

Additionally, I estimate a time-series regression RB,t = α+ βRM,t + δRM,t ×VIXt + εt+1

at the daily horizon, where RB and RM are returns on a 10-year nominal government bond
and the stock market index, respectively, and test H0 : δ = 0. I find that δ = −.027 with
a t-statistics of −4.44. Therefore, times when VIX is high are also times when correlation
between bond and stock returns is relatively low.

Risk aversion exhibits high-frequency movements in the model and in the data. In the
calibration of the model that I consider, risk aversion has relatively low persistence and
drives a lot of high-frequency dynamics.

5.2 Share of risky capital

The share of risky capital x drives low-frequency variation in the model. Recall that the
mechanism behind this variable, technology diversification, was responsible for comovement
of returns of bonds and stocks and positive real term premium. We would therefore expect
x to be high before 2000s – the period when correlation between bond and stock returns was
positive (see Figure 1).

I use high-risk and low-risk industries to construct an empirical counterpart to the dy-
namics of the state variable x in the data. I define low-risk industries as non-durables and
utilities, and high-risk industries as durables and manufacturing. Total capital is defined
as the sum of net PPE (property, plant, and equipment), non-tangible assets net of amor-
tization, and goodwill. With these definitions of low- and high-risk capital, I construct an
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Figure 11: Bond-stock correlation and VIX
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Notes: The solid gray line shows the rescaled value of the smoothed VIX (1 month MA).
The blue and the red lines show rolling 1-year correlations between daily stock excess returns
and 10-year bond excess returns (nominal and real, respectively).

empirical estimate of x as total capital in risky companies divided by the sum of two types
of capital. The corresponding dynamics are shown in Figure 12. Obviously, this measure
cannot serve as an estimate of the level of x because of an arbitrary split of quantity of
capital into low and high risk, but it can give us a sense of how x might be evolving in the
economy. Figure 12, in particular, shows x was high and increasing up until 2000 and fell
steeply afterward.

The dynamics of x reproduced from capital of high- and low-risk companies suggests
the state variable x should be persistent and drive low-frequency variation in the model
and in the data. I calibrated the model in a way that makes the process for x highly
persistent (endogenously), resulting in long swings of capital, investment, and correlations
in the model. In the data, the bond-stock correlations were high on average before 2000 and
then fell significantly. This evidence is in line with the estimate of x dynamics, which also
fell significantly after 2000. Low x coupled with high risk aversion contributed to negative
average correlation of bond and stock returns in the latter part of the sample. State variable
x therefore tends to drive low-frequency dynamics in the model and in the data, whereas α
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Figure 12: Estimate of share of risky capital x
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Notes: Estimate of the dynamics of the state variable x in the data. Low-risk (non-durables
and utilities) and high-risk (durables and manufacturing) industries are used to proxy for the
two types of capital in the model. Total capital is defined as the sum of net PPE (property,
plant, and equipment), non-tangible assets net of amortization, and goodwill. The estimate
of x is defined as total capital in high-risk industries divided by the sum of two types of
capital.

is mostly responsible for high-frequency variation.

5.3 Bond risk premia decomposition

I now turn to analyze the composition and dynamics of bond and stock risk premia the
model implies. In section 4.3.4 I showed that bond and stock risk premia are primarily
driven by two components: technology-diversification risk and flight-to-safety hedging. I
showed decomposition of bond risk premia on these two components by maturity, as implied
by the model. The model also suggests that assets with different amounts of cash-flow risk
load differentially on the underlying factors and the pattern of loadings determines the risk
premia. I now test these predictions empirically.

The exercise I perform here closely follows Kozak and Santosh (2015). In particular, in
that paper, they find that under some assumptions, a related ICAPM specification similar
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Figure 13: Decomposition of Bond Risk Premia
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Notes: Decomposition of bond risk premia into the technology-diversification component (co-
variance with total wealth) and the flight-to-safety component (hedging demand with respect to
the risk aversion). The other hedging demand is small. The covariance with the total wealth is
entirely driven by the covariance with returns on a long-term bond. Covariance with the stock
market return is small. The horizontal axis shows the maturity of each bond, from 3 to 7 years.
The vertical axis shows the fraction of expected returns that each component contributes.

to the one in Theorem 4.1 can be conditioned down to a model with three factors: excess
return on the stock market portfolio, excess return on a long-term bond, and future realized
returns on the market portfolio in the following year. The first two factors are components
of the total wealth portfolio and follow naturally from my derivation of the ICAPM. The
latter factor is an empirical unbiased proxy for market expectations of future stock returns
(stock risk premium) and proxies for unobserved risk aversion. This specification admittedly
ignores time-variation in the share of risky asset, x, which I found to be smaller and to
operate at a much lower frequency (see section 4.3.4). Santos and Veronesi (2006) however
finds the share of labor income in the total wealth portfolio does have an explanatory power
for the cross-section of stock returns.

Kozak and Santosh (2015) estimate the following three-factor ICAPM: E [Re
i ] = Ci,MδM+

Ci,λδλ + Ci,BδB, where Ci,n are covariances of test asset returns with excess stock market
returns Cov

[
rx

(i)
t+1, rxM,t+1

]
, future stock realized returns Cov

[
rx

(i)
t+1, Et

(
Σk
i rxM,t+i

)]
, and

40



long-term bond excess returns Cov
[
rx

(i)
t+1, (Et+1 − Et) rx(LT )

t+1

]
, respectively. δs give the cor-

responding prices of risk. I use this empirical specification to decompose the expected excess
return on the various bonds in Figure 13. The premium due to market risk, Ci,M , is ex-
cluded because it is negligible for bonds. Bonds earn a large premium for loading on the
total wealth risk (technology-diversification mechanism), whereas they command a large
negative premium for loading on the expected return factor. This pattern is consistent with
the flight-to-safety interpretation where investors’ appetite for risk falls and they attempt to
rebalance their portfolios toward safer securities. Because everyone cannot rebalance in this
way at the same time, prices adjust instead of quantities. The prices of “risky” assets fall
relative to the prices of “safer” assets.

Therefore, real bonds are good hedges against the stock market when risk aversion is
high (consistent with the flight-to-safety mechanism), which results in negative risk premia
on bonds. At the same time, real bonds load on the risk of the total wealth portfolio
(reminiscent of the technology-diversification mechanism), which contributes positively to
their risk premia. Relative magnitudes of each of these two contributions determine the
sign of bond risk premium. Risk premia on assets with different amounts of cash-flow
risk are determined by the assets’ respective loadings on the two risk factors (technology
diversification and flight-to-safety).

6 Conclusions

In this paper I develop a general equilibrium model capable of reconciling pervasive variation
in bond term premia and correlation between bond and stock returns, in both magnitude
and sign. The model explains: (i) how bond and stock returns and conditional risk premia
are linked: differences in exposure to the two sources of risk drive cross-sectional variation in
returns in the model; (ii) why correlation of bond and stock returns changed signs in early
2000s: the model predicts correlation is mostly positive when risky technology is relatively
large – consistent with empirical evidence on the relative sizes of high- and low-risk stock
market sectors around 2000s; (iii) provides theoretical decomposition of bond term premia
onto two components: compensations for the technology-diversification (“level”) risk and
the flight-to-safety (“discount-rate”) hedging – consistent with empirical evidence that the
ICAPM with news to discount rates as a factor, is able to jointly price cross-sections of bonds
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(by maturity) and standard portfolio sorts (value, size, momentum).
The model highlights two endogenous and competing mechanisms. The technology di-

versification mechanism requires modeling two technologies with different amounts of capital
risk. When one technology has a good shock, investors want to rebalance towards the other
technology. However, they face adjustment costs, which drives up the price of the technology
with no shock. In this setup, shocks directly affect the relative supply of risk in the economy
and propagate to prices in this way. A model that features only this mechanism produces an
SDF consistent with positive correlation between real bond and stock returns and positive
real bond risk premia.

The second mechanism, flight-to-safety, is generated by exogenously time-varying risk-
aversion coefficient within Epstein-Zin preferences. Shocks to risk aversion produce time-
varying preference for risk. When risk aversion rises, investors want to move from the riskier
to the less risky technology, which produces a negative correlation between returns. The
SDF of a model that embeds only this mechanism, delivers a negative correlation between
real bond and stock returns and negative real bond risk premia.

Together, technology diversification and flight-to-safety mechanisms result in time-varying
correlation between returns on assets with different amounts of cash-flow risk. This correla-
tion changes sign, even when the assets’ cash flows are independent. Similarly, term premia
on long-term real default-free bonds are also time-varying and change signs.

The fact that the correlation and bond risk premia switch signs is an important empir-
ical fact that constitutes a high hurdle for classical general equilibrium models. It reveals
important linkages between sources of financial risks in bond and stock markets and teaches
us about properties of the underlying consumption growth process which is taken as exoge-
nous by most models in the literature. I show that the model-implied consumption growth
is positively autocorrelated, consistent with empirical evidence. However, the covariance
of contemporaneous consumption growth with the infinite sum of all future expected con-
sumption growth is negative. This property, coupled with Epstein-Zin preferences, tends to
generate a positive component to real bond term premia and the correlation between returns
on real bonds and stocks.

42



References

Alvarez, F., A. Atkeson, and P. J. Kehoe (2002). Money, interest rates, and exchange rates
with endogenously segmented markets. Journal of Political Economy 110 (1), pp. 73–112.
21

Anderson, E., L. Hansen, and T. Sargent (2012). Small noise methods for risk-
sensitive/robust economies. Journal of Economic Dynamics and Control 36 (4), 468. 7,
56

Baele, L., G. Bekaert, and K. Inghelbrecht (2010). The determinants of stock and bond
return comovements. Review of Financial Studies 23, 2374–2428. 5

Bansal, R. and I. Shaliastovich (2012). A long-run risks explanation of predictability puzzles
in bond and currency markets. Review of Financial Studies, hhs108. 2

Bansal, R. and A. Yaron (2005). Risks for the long run: A potential resolution of asset
pricing puzzles. The Journal of Finance 59 (4), 1481–1509. 21

Bekaert, G., E. Engstrom, and S. Grenadier (2010). Stock and bond returns with moody
investors. Journal of Empirical Finance 17 (5), 867–894. 2, 5, 6, 10, 19

Bollerslev, T. and V. Todorov (2011). Tails, fears, and risk premia. The Journal of Fi-
nance 66 (6), 2165–2211. 69

Campbell, J., A. Sunderam, and L. Viceira (2012). Inflation bets or deflation hedges? the
changing risks of nominal bonds. 5

Campbell, J. Y. and J. H. Cochrane (1999). By Force of Habit: A Consumption Based
Explanation of Aggregate Stock Market Behavior. Journal of Political Economy 107 (2),
pp. 205–251. 6, 10, 11, 19

Cochrane, J., F. Longstaff, and P. Santa-Clara (2008). Two trees. Review of Financial
Studies 21 (1), 347–385. 3, 6, 16, 23, 25, 31

Cochrane, J. and M. Piazzesi (2005). Bond risk premia. American Economic Review, 138–
160. 5

43



Connolly, R., C. Stivers, and L. Sun (2005). Stock market uncertainty and the stock-bond
return relation. Journal of Financial and Quantitative Analysis 40 (1), 161–194. 5

Constantinides, G. (1990). Habit formation: A resolution of the equity premium puzzle.
Journal of political Economy, 519–543. 6

Cox, J., J. Ingersoll Jr, and S. Ross (1985). An intertemporal general equilibrium model of
asset prices. Econometrica: Journal of the Econometric Society, 363–384. 7, 31

Czyzyk, J., M. Mesnier, and J. Moré (1998). The neos server. Computational Science &
Engineering, IEEE 5 (3), 68–75. 59

David, A. and P. Veronesi (2009). What ties return volatilities to price valuations and
fundamentals? 2, 5

Dew-Becker, I. (2011). A model of time-varying risk premia with habits and production. 6,
7, 11, 19, 21

Drechsler, I. (2013). Uncertainty, time-varying fear, and asset prices. The Journal of Fi-
nance 68 (5), 1843–1889. 3, 11

Duffie, D. and L. Epstein (1992a). Asset pricing with stochastic differential utility. Review
of Financial Studies 5 (3), 411–436. 6, 9, 64

Duffie, D. and L. Epstein (1992b). Stochastic differential utility. Econometrica: Journal of
the Econometric Society, 353–394. 6, 7, 9, 48, 64

Epstein, L. and S. Zin (1989). Substitution, risk aversion, and the temporal behavior of
consumption and asset returns: A theoretical framework. Econometrica: Journal of the
Econometric Society, 937–969. 6

Fama, E. and K. French (1993). Common risk factors in the returns on stocks and bonds.
Journal of financial economics 33 (1), 3–56. 5

Fleming, W. (1971). Stochastic control for small noise intensities. SIAM Journal on Con-
trol 9, 473. 7, 55, 56

44



Fleming, W. and J. Yang (1994). Numerical methods for infinite horizon risk sensitive
stochastic control. In Decision and Control, 1994., Proceedings of the 33rd IEEE Confer-
ence on, Volume 2, pp. 1945–1949. IEEE. 7, 56

Gârleanu, N. and S. Panageas (2008). Young, old, conservative and bold: The implications
of heterogeneity and finite lives for asset pricing. 6

Hansen, L. P. and T. J. Sargent (2008). Robustness. Princeton university press. 11

James, M. and M. Campi (1996). Nonlinear discrete-time risk-sensitive optimal control.
International Journal of Robust and Nonlinear Control 6, 1–19. 7, 56

Judd, K. (1998). Numerical methods in economics. The MIT press. 55, 56, 58

Kogan, L. and R. Uppal (2001). Risk aversion and optimal portfolio policies in partial and
general equilibrium economies. 7, 56

Koijen, R., H. Lustig, S. Van Nieuwerburgh, and A. Verdelhan (2010). Long run risk, the
wealth-consumption ratio, and the temporal pricing of risk. 21

Kozak, S. and S. Santosh (2015). Linking cross-sectional and aggregate expected returns. 5,
33, 39, 40

Lustig, H., S. Nieuwerburgh, and A. Verdelhan (2008). The wealth-consumption ratio. NBER
Working Papers. 18, 20, 21, 23

Martin, I. (2012). What is the expected return on the market? 6

Menzly, L., T. Santos, and P. Veronesi (2004). Understanding predictability. Journal of
Political Economy 112 (1), 1–47. 6

Rudebusch, G. (2010). Macro-finance models of interest rates and the economy. The Manch-
ester School 78, 25–52. 6

Rudebusch, G. and E. Swanson (2008). Examining the bond premium puzzle with a dsge
model. Journal of Monetary Economics 55, S111–S126. 2, 5

Rudebusch, G. and E. Swanson (2012). The bond premium in a dsge model with long-run
real and nominal. American Economic Journal: Macroeconomics 4 (1), 105–143. 5

45



Santos, T. and P. Veronesi (2006). Labor income and predictable stock returns. Review of
Financial Studies 19 (1), 1–44. 40

Tallarini, T. (2000). Risk-sensitive real business cycles. Journal of Monetary Eco-
nomics 45 (3), 507–532. 6

Van Binsbergen, J., J. Fernández-Villaverde, R. Koijen, and J. Rubio-Ramirez (2010). The
term structure of interest rates in a dsge model with recursive preferences. 5, 19, 21

Wachter, J. (2006). A consumption-based model of the term structure of interest rates.
Journal of Financial economics 79 (2), 365–399. 2, 5

Wang, N. and J. Eberly (2012). Reallocating and pricing illiquid capital: Two productive
trees. 3, 6

46



7 Appendix
7.1 Portfolio Problem
Assume complete markets. A representative investor in this economy maximizes his utility over
consumption,

Jt = Et

(ˆ T

t

[
f (Cτ , Jτ ) + 1

2A (Jτ ) ‖ JX (Xτ , τ)σX (Xτ , Cτ , τ) ‖2
]
dτ

)
, (19)

subject to total wealth constraint

dWt =
[
Wtθ

′

tλt +Wtrt − Ct
]
dt+Wtθ

′

tσRdZ, (20)

where X (α,λ) is a vector of aggregate state variables that are taken by agent as given and evolve
according to

dX = µXdt+ σXdZ, (21)

and the vector of prices

dSt = (St · [rt + λt]−Dt) dt+ St · σRdZ. (22)

The flow utility function can be expressed as

U (Cτ ) = f (Cτ , Jτ )− 1
2
αt
Jt
‖JWWtθ

′

tσR + JXσX‖2. (23)

The first-order conditions are

fC = JW

0 = −α
J
σJσ

′

R + λ+ JWW

JW
WσRσ

′

Rθ + σRσ
′

X

JWX

JW
. (24)

7.2 SDF
7.2.1 Duffie-Epstein aggregators and the SDF when α is constant

Ordinally equivalent aggregator Define the change of variables

χ (J) ≡ J̄ = 1
1− αJ

1−α (25)

χ′ (J) = J−α

χ′′ (J) = −αJ−α−1.
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Duffie and Epstein (1992b) call two aggregators (f,A) and
(
f̄ , Ā

)
ordinally equivalent, if there is

a change of variable χ such that the following two conditions hold:

f (C, J) = f̄ (C,χ (J))
χ′ (J) (26)

A (J) = χ′ (J) Ā (χ (J)) + χ′′ (J)
χ′ (J) . (27)

We can now find an ordinally equivalent aggregator
(
f̄ , Ā

)
produced by the change of variables in

Eq. 25:

f̄ (C,χ (J)) = φ

ρ

Cρ −
(
(1− α) J̄

) ρ
1−α(

(1− α) J̄
) ρ

1−α−1 (28)

−α
J

= χ′′ (J)
χ′ (J) =⇒ Ā = 0.

Therefore two aggregators (f,A) and
(
f̄ , 0

)
are ordinally equivalent with a change of variables χ (J)

defined in Eq. 25. Furthermore, since Ā = 0, the aggregator
(
f̄ , 0

)
is a normalized aggregator with

f̄
(
C, J̄

)
given by Eq. 28.

We can now use the normalized aggregator to derive the SDF.

SDF The SDF is given by (Duffie and Epstein, 1992b):

dΛ
Λ ≡ f̄V

(
C, J̄

)
dt+

df̄C
(
C, J̄

)
f̄C
(
C, J̄

) . (29)

The loading on shocks, L
(
dΛ
Λ

)
is given by

L
(
dΛ
Λ

)
= L

(
dlnf̄C

(
C, J̄

))
(30)

= L (dlnfC (C, J)− αdlnJ) . (31)

Note this expression is a special case of the equivalent one in section 7.2.2 when α is constant.

7.2.2 SDF when α is time-varying

To find the SDF, I solve the portfolio problem. I assume that agents take the process for α as given
exogenously.
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Guess that the SDF is of the form

dΛ = −r (X) Λdt+ σΛdZ (32)
σΛ = Λ× L [dlnfC − αtdlnJ ] , (33)

where L (·) denotes the vector of loading on the shocks. Substitute the FOC to get

σΛ = Λ× L
[
JWW

JW
dW + JWX

JW
dX − α

J
σJdZ

]
(34)

σΛ = ΛJWW

JW
Wtθ

′

tσR + ΛJWX

JW
σX − Λα

J
σJ (35)

σRσ
′

Λ = −λΛ. (36)

Define Yt = StΛt. Net of dividends, it should be a martingale,

µY = −ΛtDt (37)
−ΛtStr + Λt (St · [r + λt]−D) + StσRσ

′

Λ = −ΛtDt (38)
−λtΛt = σRσ

′

Λ. (39)

Hence the guess was indeed correct. Therefore, the SDF is given by

dΛ
Λ = −r (X) dt+ L [dlnfC − αtdlnJ ] dZ. (40)

Note that if α is constant, Λ integrates to the usual expression, Λ = const×fCJ−α which is the
same as we get when using normalized aggregator (see section 7.2.1). If α is not constant, however,
the expression above does not integrate easily.

7.3 Planner’s Problem
7.3.1 Derivation of the PDE

Planner chooses investment and consumption in order to maximize agent’s lifetime utility in Eq. 3.

HJB equation Define the flow utility U (Cτ ) as by U (Cτ ) = f (Cτ , Jτ )+ 1
2A (Jτ )σJ,τσ

′
J,τ where

σJ = J1K1σK + Jασα, J = J(K0,K1, α; t) is a continuation value, and Jn denotes a derivative of
J with respect to Kn. The Hamilton-Jacobi-Bellman (HJB) equation for the planner’s problem is
given by

0 = sup{i0,i1}t
{
U (Ct) + J0E (dK0) /dt+ J1E (dK1) /dt+ JαE (dα) /dt (41)

+1
2J11E

(
dK2

1

)
/dt+ 1

2JααE
(
dα2

)
/dt+ J1αE (dK1dα) /dt

}
.
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Due to homogeneity, we can guess that solution is linear in K:

J(K0,K1, α; t) ≡ J (K0,K1, α) = K × F (x, α) . (42)

Value function guess Find a solution of the form

J(K0,K1, α; t) ≡ J (K0,K1, α) = K × F (x, α) (43)

KJ0/J = 1− Fx
F
x (44)

KJ1/J = 1 + Fx
F

(1− x) (45)

K2J11/J = Fxx
F

(1− x)2 (46)

Jα/J = Fα
F

(47)

Jαα/J = Fαα
F

(48)

KJ1α/J = Fα
F

+ Fxα
F

(1− x) . (49)

Volatility of the value function σJ is given by

J = K × F (x, α) (50)
σJ = F (x, α)KxσK +K × sd (dF ) (51)

σJ = JxσK + J
1
F
× sd (Fxdx+ Fαdα) (52)

σJ = JxσK + J
1
F

[Fxx (1− x)σK + Fαασα] (53)

σJ = J

[(
1 + Fx

F
(1− x)

)
xσK + Fα

F
ασα

]
(54)

≡ JσF . (55)

Solution to the problem above is given by a system of one second-order PDE in two state
variables, two first-order conditions for optimal investment, and the aggregate budget constraint

δ

ρ

[(
c (x, α)
F (x, α)

)ρ
− 1

]
− 1

2α ‖σF ‖
2 + (1− x)

(
1− Fx

F
x

)
φ0 (i0) + x

(
1 + Fx

F
(1− x)

)
φ1 (i1) (56)

+Fα
F
φ (ᾱ− α) + 1

2
Fxx
F

(1− x)2 x2ς2
K + 1

2
Fαα
F

α2 ‖σα‖2 +
[
Fα
F

+ Fxα
F

(1− x)
]
xαλς2

K = 0
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δ

(
c

F

)ρ−1
= (F − Fxx)φ′0 (i0) (57)

δ

(
c

F

)ρ−1
= (F + Fx (1− x))φ′1 (i1) (58)

c = (A0 − i0) (1− x) + (A1 − i1)x, (59)

that have to be solved jointly.

7.3.2 Asset Prices

Marginal q of technologies are

q0 = 1
δ

[1− ωx (x, α)x] c (60)

q1 = 1
δ

[1 + ωx (x, α) (1− x)] c (61)

where ωx (x, α) = Fx
F , and ωα (x, α) = Fα

F .
Realized returns on two assets are

dRn = An − in
qn

dt+ dqn
qn

+ dKn

Kn
+
〈
dqn
qn

,
dKn

Kn

〉
. (62)

The loadings of returns on shocks are given by L (dRn) = L
(
dKn
Kn

+ dqn
qn

)
and the excess returns

on two technologies, therefore, are

RXn =
(
Ā (1− x)xσK + αxσK + (α− 1)ωx (x, α)x (1− x)σK

+ (α− 1)ωα (x, α)ασα
)(

ln,k + ln,xx (1− x)σK + ln,αασα

)>
, (63)

where ln,x (x, α) ≡ qn,x
qn

and ln,α (x, α) ≡ qn,α
qn

are the loadings of dq
q on shocks (price effects),

l0,k = (0, 0) and l1,k = σK are the loadings of two technologies on capital shocks in their respective
capital-accumulation processes (“cash-flow” effects). The first term of the product above shows the
loadings of the SDF on shocks (prices of risk) and is derived using Theorem 3.2 in section 8.1.2.

The key to characterizing the excess returns and understanding the dynamics of prices is to de-
scribe how the functions ωx (x, α), ωα (x, α), ln,x (x, α), and ln,α (x, α) look like. Although obtaining
closed-form solutions for the unknown functions is impossible, Theorem 7.2 below and small-noise
expansions in section 7.4.2 deliver easy-to-analyze expressions that can be used to better understand
underlying mechanisms of the model.
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Expected return on risky asset Adjustment costs are given by

φ (i) = ξln

(
1 + i

θ

)
(64)

φ′ (i) = ξ

θ + i
. (65)

Marginal q evolves as follows

dq = d

[
θ + i

ξ

]
= di

ξ
(66)

dq

q
= (θ + i)−1 µidt+ (θ + i)−1 σidZ, (67)

where

µi = ixµx + igµg + 1
2 ixxσ

2
x + 1

2 iggσ
2
g + ixgσxσg (68)

σi = ixσx + igσg, (69)

and

µx = x (1− x)
[
φ1 (i1)− φ0 (i0)− xσ2

K

]
(70)

σx = x (1− x)σK . (71)

Expected return on risky asset,

1
dt
E (dRn) = An − in

qn
+ (θ + i)−1 µi + φn (in) + (θ + i)−1 σiσKn . (72)

Interest rate and excess return Using the previous two results, we can express the interest
rate as

r = 1
dt
E (dR)− rx, (73)

where rx is the excess return and is given by

rx = −E
[
dΛ
Λ
dP

P

]
(74)

= − 1
dt
〈dlnfC − αtdlnJ, θqσi + σKn〉 .
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7.3.3 Boundary conditions

x = 0 boundary FOC for i0 gives

Fφ
′
0 (i0) = δ

(
c

F

)ρ−1
, (75)

where c = A0 − i0. With only one shock, the economy is completely riskless, so risk aversion does
not matter, F (α) ≡ F . Solve for a constant F :

F =
(

δ

φ
′
0 (i0)

(A0 − i0)ρ−1
) 1
ρ

. (76)

Hamilton-Jacobi-Bellman equation:

δ

ρ

[(
c

F

)ρ
− 1

]
+ φ0 (i0) = 0 (77)

φ
′
0 (i0)
ρ

(A0 − i0)− δ

ρ
+ φ0 (i0) = 0. (78)

This gives i0 (0, α) = const. Set i1 (0, α) = 0.

x = 1 boundary This is the usual problem with one risky technology. Solve a corresponding
ODE for i1 (1, α).

7.4 Stylized model
Unfortunately, the planner’s problem does not have an analytic solution in general. To better
understand the mechanisms at work, specializing the general model above to the case when EIS is
equal to 1 and installation function φn (·) is the same for two technologies and takes a log form, is
therefore useful. After the discussion of the stylized model, I will solve numerically the full model,
free of the next two assumptions.

Assumption 1. Elasticity of intertemporal substitution (EIS) is equal to unity, ψ = 1.

Assumption 2. Installation function φ (in) is the same for two technologies and takes the log
form,

φn (in) = ξ × ln
(

1 + in
ξ

)
. (79)

The functional form in Assumption 2 is concave, ensuring high levels of investment or disin-
vestment is costly. It has a slope equal to one at in = 0, i.e., no adjustment costs on the margin at
zero investment. I also set depreciation equal to zero. A corresponding adjustment cost function is
ϕ (i) = i− ξln

(
1 + in

ξ

)
, which is a convex function.

Appendix, section 8.1 specializes the solution in Theorem 3.1 to the case when Assumption 1
and Assumption 2 hold.
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7.4.1 Aggregates

Assumption 1 and Assumption 2 deliver the following result.

Theorem 7.1. Aggregates in the stylized economy are given by

qt = At + ξ

ξ + δ
(80)

it = At − δ
ξ + δ

(81)

ct = δ
At + ξ

δ + ξ
, (82)

where qt = (1− xt) q0,t + xtq1,t is the aggregate Tobin’s q, it = (1− xt) i0,t + xti1,t is the ag-
gregate investment per unit of capital, ct is the aggregate consumption per unit of capital, and
At = (1− xt)A0 + xtA1 is the aggregate productivity.

Proof. Using the fact that qn = 1
φ′ (in) = ξ

ξ+in and expressions for investment in Eq. 90, we get
q = (1− x) q0 + xq1 = 1

δ c. Investment is i = (1− x) i0 + xi1 = ξ
δ c− ξ = ξq − ξ. Using the resource

constraint, we know i = A− c = A− δq. Equalizing both expressions gives q = A+ξ
ξ+δ .

Corollary 7.1. When elasticity of intertemporal substitution is equal to one, the aggregate consumption-
to-wealth ratio is constant, C

W ≡
c
q = δ.

The aggregates therefore vary in time only because the aggregate productivity, At, is time-
varying, At = (1− xt)A0 + xtA1. In fact, if technologies were identical and thus A0 = A1, all
aggregates relative to capital would be constant, and the only reason the levels of aggregate variables
vary is because the level of capital varies. This implication and Corollary 7.1, however, may be
viewed as benefits, because they allow us to consider the pricing implications for two technologies
independently of those of aggregate economy and to grasp additional economic insights about the
underlying mechanisms of the model. I will later solve the model numerically in section 4, without
relying on Assumption 1 and Assumption 2, and analyze the solution to better understand how
both aggregate and relative pricing mechanisms interact.

The Appendix, section 8.1.2 shows derivations of expressions for market risk premium and risk-
free rate in the economy. Finally, the following result is useful for future analysis.

Definition 7.1. A point of equal investment (PEQ) of the economy in section 7.4.1 is an equilibrium
in which the level of investment in risky and riskless technologies are equal for a given value of risk
aversion α, i0 (x∗ (α) , α) = i1 (x∗ (α) , α), where x∗ = x∗ (α) denotes a share of risky capital at a
PEQ. Two technologies grow at the same rate at a PEQ.

Theorem 7.2. Derivative of the value function ωx (x, α) = Fx
F is zero at a PEQ, above zero as x

approaches a PEQ from below, x↗ x∗ (α), and below zero for x↘ x∗ (α).
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Proof. When investments are equal, 1−x∗ F
∗
x
F ∗ = 1+(1− x∗) F

∗
x
F ∗ , which implies Fx (x∗ (α) , α) = 0 and

thus ωx (x, α) = 0. Next, ∂
∂x

[
Fx
F

]∣∣∣∣
x=x∗

= F ∗xx
F ∗ . Because no reallocation of capital optimally takes

place, the value function must be maximized with respect to x, implying Fxx (x∗ (α) , α) < 0.

Although obtaining closed-form solutions for asset prices is impossible in general, the small-
noise expansions in the following section deliver easy-to-analyze analytic approximations that can
be used to better understand underlying mechanisms of the model.

7.4.2 Small-noise expansions

Define a perturbation parameter ε ∈ [0, 1] such that when ε = 0, the economy is along its determin-
istic trajectory, and when ε = 1, the economy corresponds to the economy of interest. I perturb the
process for evolution of risky capital, productivity of risky technology, and risk aversion as follows:

dK1 = φ1 (i1)K1dt+K1
√
εσKdZ (83)

dα = φ (ᾱ− α) dt+
√
εσαdZ (84)

A1 (ε) = (1− ε)A0 + εA1. (85)

Assumption 1, Assumption 2, and Corollary 8.1 allow us to characterize the solution of the stylized
model in terms of a single PDE in Eq. 90. Moreover, at ε = 0, all derivatives of the value function F
are zero (in a deterministic steady state, risk aversion has no impact; x is indeterminate because two
technologies are riskless and have the same productivity). These two facts simplify computations of
expansions around the deterministic path substantially and make computing analytical small-noise
expansions feasible.

The perturbation of the productivity of riskless technology in Eq. 85 is needed because in the
steady state in which productivities of two technology are not equal and no uncertainty is present,
a technology with lower productivity will be completely dominated by the other technology and
thus x∗ will be either 0 or 1. Such a steady state might be a very bad point of expansion. Instead
of expanding around it, I will seek for expansions around some deterministic path on which the
productivities of two technologies are equal.

I therefore proceed with perturbations in three different directions as defined by the system
of equations (83) – (85). An advantage of perturbing around a non-stochastic path is that all
expansions of interest can be computed analytically. I first parametrize the value function by a
perturbation parameter ε, F (x, α; ε). In my notation, F (x, α; 0) corresponds to a deterministic
path with two equal productivities A0 = A1(ε)|ε=0, whereas F (x, α; 1) corresponds to the value
function in the economy of interest. I look for a first-order expansion9 of F (x, α; ε) as a power

9When ε 6= 0, Eq. 90 is a second-order partial differential equation, but when ε = 0, it reduces to a
first-order differential equation. This reduction in order induces a so-called “singular perturbation” to the
problem, which is often associated with substantial complications. However, as argued by Judd (1998) and
formally shown by Fleming (1971), the remarkable feature of stochastic control problems is that perturbation
ε can be analyzed as a regular perturbation when it enters as a square root above.
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series in ε:
F (x, α; ε) = F (x, α; 0) + Fε (x, α; 0) ε+ o

(
ε2
)
, (86)

where F (x, α; 0) gives the value of F at ε = 0 and Fε (x, α; ε) gives the derivative at ε = 0.
This derivative, as well as higher-order derivatives, can be computed analytically, which delivers
additional insights and characterizations of the behavior around the steady state. Moreover, Judd
(1998) emphasizes that whereas the low-order expansions describe the behavior only locally, as we
increase the order of expansions, a solution becomes global within the radius of convergence.

Small-noise expansions employed in my paper are closely related to expansions in control-theory
literature, namely, Fleming (1971), Fleming and Yang (1994), and James and Campi (1996). An-
derson et al. (2012) and Kogan and Uppal (2001) have analyzed a similar type of expansions. These
expansions differ from the one typically used in economic literature where expansion takes place in
the shock standard deviation and around some deterministic steady state (imposing steady-state
values of variables). I expand with respect to the shock variance and around common productivity
A0 without imposing steady-state values. The expansion therefore is around some deterministic
trajectory, rather than a steady state. Moreover, because I am expanding with respect to the shock
variance, my first-order expansions correspond to a second-order expansions used in economic liter-
ature and my second-order expansions correspond to the fourth-order expansions in the literature
(see Anderson et al., 2012).

I now proceed with summarizing some analytical results of first-order10 small-noise expansions.
All the major mechanisms of the model are operable in these expansions. Note analytical expansions
of any order can be derived with this method. Higher-order expansions, however, prove to be
difficult to analyze and understand, while providing no more of economic intuition.

Theorem 7.3. The value function F (x, α; ε) can be expressed as

F (x, α; ε) = f0 +
[
ζAxĀ−

1
2 (ζ0 + ζαα)x2ς2

K

]
f0ε+ o

(
ε2
)
, (87)

where f0 ≡ F (x, α; 0) is the value function evaluated at ε = 0, Ā is defined as Ā = A1−A0
A0+ξ ; ζA = δ+ξ

δ ,
ζ0 = φᾱ

δ(δ+φ) , and ζα = 1
δ+φ are constants. Small-noise expansion of the value function around a

deterministic trajectory is therefore linear in α and quadratic in x.

Proof. Refer to section 8.2 for further details.

To understand the pricing implications for two technologies in the model, I analyze small-noise
expansions for Tobin’s q’s of these technologies (which can be used to infer investment decision
rules in a straightforward fashion).

10It is often argued that at least second-order perturbations are needed to generate non-zero risk premium,
and at least third-order to generate time-variation in risk premium. Because I perturb variance, first order
perturbations of a system in Eq. 84 does generate non-zero risk premia, which also time-vary, due to an
exogenous specification of risk aversion.
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Theorem 7.4. Tobin q’s of riskless and risky technologies are given by

q0 (x, α; ε) = ζq0 + ζq0

[
−ξ
δ
xĀ+ (ζ0 + ζαα)x2ς2

K

]
ε+ o

(
ε2
)

(88)

q1 (x, α; ε) = ζq0 + ζq0

[(
1 + (1− x) ξ

δ

)
Ā− (ζ0 + ζαα)x (1− x) ς2

K

]
ε+ o

(
ε2
)
, (89)

where ζ0, ζα, ζq0 = A0+ξ
δ+ξ are constants. Expansions of Tobin q’s around a deterministic trajectory

are therefore linear in α and quadratic in x.

Proof. Refer to Eq. 8.2 for further details.

An important feature of small-noise expansions employed in Theorem 7.3 and Theorem 7.4 is
that the value function and prices directly depend on two state variables. We can therefore analyze
how shocks to state variables affect each quantity.

Note prices depend on risk aversion α. This dependence is an important feature of the model
that is not present in a single technology model with time-varying risk aversion. In such a model,
prices of risk depend on α, but the quantity of risk is constant. In the two-technology model,
both price and quantity of risk are time-varying for each technology, producing potentially signifi-
cant variation in price and risk premia of underlying technologies and generating interesting joint
dynamics.

I use the insights provided by small-noise expansions to establish Propositions 7.1 – 7.4 below.

Proposition 7.1. Around a non-stochastic trajectory of the model in section 7.4, shocks to risk
aversion that are orthogonal to shocks to the capital-accumulation process move returns on risky
and riskless technologies in opposite directions.

Proof. Direct shocks to risk aversion that are uncorrelated with the shock to capital accumulation of
risky technology, have only price impacts on the two technologies (via changes in q’s). Expressions
for prices in Theorem 7.4 imply that the price of the riskless technology increases in α, while the
price of the risky technology falls in α. Therefore, a positive shock to α (unexpected increase
in risk aversion) increases the contemporaneous return of the riskless technology and lowers the
contemporaneous return of the risky technology.

Proposition 7.2. Around a non-stochastic trajectory of the model in section 7.4 and for values
of x in

[
1
2

ξ
ξ+δx

∗, 1
]
, shocks to the risky capital-accumulation process that are orthogonal to shocks

to risk aversion move returns on risky and riskless technologies in the same direction. x∗ = x∗ (α)
denotes the value of x at the PEQ.

Proof (sketch). Intuitively, returns on risky technology respond positively to a capital shock. This
response is due to the direct loading on the capital shock, which dominates the pricing effect for a
broad range of parameter values. In Eq. 8.2 I show the returns on the riskless technology respond
positively to a capital shock when the share of risky capital x is in the range

[
1
2

ξ
ξ+δx

∗, 1
]
, where

x∗ = x∗ (α) is the value of x at the PEQ. The rebalancing mechanism drives this positive response.
Both returns therefore move in the same direction. Refer to Eq. 8.2 for a more formal argument.
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Proposition 7.3. Around a non-stochastic trajectory of the model in section 7.4, one can find a
calibration of the model that produces a positive correlation between returns on riskless and risky
technologies for low levels of risk aversion and negative correlation when risk aversion is high.

Proof (sketch). Proposition 7.1 and Proposition 7.2 establish that two shocks produce different
signs of correlation between bond and stock returns. Additionally, in response to a capital shock,
discount rates on the risky asset move in a way that dampens the cash-flow effect on the asset. This
dampening becomes stronger as risk aversion rises, leading to a relatively weaker comovement of
bond and stock returns. At the same time, an increase in risk aversion leads to a stronger “decou-
pling” of bond and stock returns. As a result, the flight-to-quality mechanism starts dominating
the rebalancing mechanism at higher levels of risk aversion. We can therefore select the variance
of risk-aversion shocks and parameter λ such that the capital effects are stronger for low levels of
α and get dominated for high levels of α and hence the proposition holds. Refer to Eq. 8.2 for a
more formal argument.

Proposition 7.4. When two shocks are uncorrelated, the risk premium on risky technology is
monotonically increasing in risk aversion for x ∈

[
0, min

(
x∗ + ξ

ξ+δ
1
Ā
x∗, 1

2

)]
, where x∗ = x∗ (α)

denotes the value of x at the PEQ.

Proof. Refer to Eq. 8.2 for more details.

The main purpose of small-noise expansions and the propositions in this section was to ana-
lytically characterize the main mechanisms at work and lay the ground for empirical hypotheses
I develop in section 5. Although small-noise expansions are valid only sufficiently close to a de-
terministic trajectory, I verify numerically that higher-order expansions do not overturn the main
qualitative results obtained in the section and that the approximation is sufficiently good on the
parts of a state space that are visited in equilibrium. Furthermore, I relax Assumption 1 and
Assumption 2 in section 4 and verify the qualitative results of this section are robust to such
modification.

7.5 Computational Details
7.5.1 Small-noise expansions

I use Mathematica to calculate analytical derivatives required by the small-noise expansions. First
order expansions are straightforward to derive as described in section 8.2. Expansions of higher
orders can be computed in a similar fashion. I computed expansions up to a third order (analyti-
cally) to verify that the directions of the main forces in the first order expansions are not overturn
by higher orders. I computed expansions up to the 10th order numerically (using high precision
arithmetic) as well.

7.5.2 Projections

I use high order projection methods described in Judd (1998) to solve the general model. In
particular, I parametrize the value function and two investment functions as a complete product of
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20th order Chebyshev polynomials in two state variables, x and α. Next, I evaluate the system of
equations in Theorem 3.1 at 30 × 30 points on the state space. Points are chosen as Chebyshev’s
zeroes. I then search for coefficients of three policy functions to minimize the L1 norm of PDE
errors. In practice the algorithm is iterative. I start by fitting low order polynomials on the grid
of 30× 30 Chebyshev zeroes and iteratively increase the order of the fit until the desired precision
is reached. I impose boundary conditions as given in section 7.3.3. The resulting fit is the global
solution on the entire state space.

The problem is therefore formulated as a sequence of standard constrained optimization prob-
lems with thousands of constraints (one at each grid node) and thousands of unknowns (Chebyshev
coefficients). I use the GAMS modeling language together with CONOPT and SNOPT non-linear
constrained optimizers to find a solution. Once the solution to the optimization problem is found,
I import the results in Matlab to perform 1,000,000 simulations and report the results. Most time-
sensitive parts of the code for simulations and impulse responses have been programmed in C++
for faster execution. As a result, it takes about a minute to perform 1,000,000 simulations of the
economy on a laptop (2GHZ CPU and 4GB of RAM).

To calibrate the model I estimated many individual calibrations. Each solution takes about
30− 60 minutes to compute (depending on the size of the grid and the order of approximation) on
a laptop. To facilitate computations of many calibrations, I used the NEOS server, described in
Czyzyk et al. (1998).

7.5.3 Impulse responses

I compute impulse responses by shocking the economy at its steady state (unconditional means
of state variables) and performing Monte-Carlo simulations for the following 20 × 12 months. I
simulate 10,000,000 Monte-Carlo trajectories for each shock and calculate the means of realizations
of moments of interest. The simulations were programmed in Matlab with C++ code inserts and
executed on Acropolis server at the University of Chicago. Execution time was less than an hour
(using 64 parallel threads). The high number of simulations is necessary due to high volatility of
the SDF and persistence in the state variables.

7.5.4 Term structure

To compute the term structure I calculate conditional expectations of the SDF at each horizon
iteratively starting from the end. This requires fitting the price of a bond as function of state vari-
ables at each iteration. I do so by evaluating the conditional expectation at each node (Chebyshev
zeroes) and then fitting a smooth function of two state variables to these points. The function is
constructed as a complete product of two 10 degree Chebyshev polynomials. The fitting requires
a search for the coefficients of this function (55 coefficients). I call GAMS within my Matlab code
to compute each fit. Finally, I use Gauss-Hermite quadrature to compute the required integrals
(conditional expectations).
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8 Internet Appendix
8.1 Stylized Model: Details
Corollary 8.1. When Assumption 1 and Assumption 2 hold, the solution to equation in Theo-
rem 3.1 specializes to

δ

[
ln (c)− ln (F )

]
− 1

2α ‖σF ‖
2 + (1− x)

(
1− Fx

F
x

)
φ0 (i0) + x

(
1 + Fx

F
(1− x)

)
φ1 (i1) (90)

+Fα
F
φ (ᾱ− α) + 1

2
Fαα
F

α ‖σα‖2 + 1
2
Fxx
F

(1− x)2 x2ς2
K +

[
Fα
F

+ Fxα
F

(1− x)
]
xαλς2

K = 0,

with investments determined by the first-order conditions,

i0 + ξ = ξ

δ

(
1− xFx

F

)
c (91)

i1 + ξ = ξ

δ

(
1 + (1− x) Fx

F

)
c, (92)

and the aggregate resource constraint

c = (A0 − i0) (1− x) + (A1 − i1)x. (93)

8.1.1 Expected returns on the market portfolio

Expected returns on the market portfolio can be readily analyzed in the stylized model,

E (dRM ) = A− i
q

dt+ E
dq

q
+ E

dK

K
+
〈
dq

q
,
dK

K

〉
(94)

= δ + φ (i1)︸ ︷︷ ︸
1-sector model’s ER

+ Ā
[
µx + (1− x)x2ς2

K

]
︸ ︷︷ ︸

ER due to time-varying productivity

, (95)

where Ā ≡ A1−A0
A+ξ . The first two terms correspond to a solution of one sector model, as was

shown in Example 8.1. It comprises of two components: time discounting δ and expected growth
of capital, φ (x). The last term is new and reflects the presence of time-varying productivity. If two
technologies were identical, the term would vanish. Otherwise, it adjusts for growth in the share
of risky technology x, as the economy endogenously reallocates towards its optimal mix of riskless
and risky capital via investment.
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8.1.2 Risk prices

Next, I derive the expression for an SDF of the model. Appendix, section 7.2.2 shows that risk
prices are given by

−L
(
dΛ
Λ

)
= −L [dlnfC − αtdlnJ ] = αdlnK + dlnÃ+ (α− 1) dlnF (96)

= αxσK︸ ︷︷ ︸
À

+ Ā (1− x)xσK︸ ︷︷ ︸
Á

+ (α− 1)ωx (x, α)x (1− x)σK︸ ︷︷ ︸
Â

+ (α− 1)ωα (x, α)ασα︸ ︷︷ ︸
Ã

,

where Ã = A+ ξ, ωx (x, α) = Fx
F , and ωα (x, α) = Fα

F .
The first term is the usual risk price which is also present in a model with one sector. It can be

easily seen by setting x = 1, Fx = 0. In this case the last three terms drop out (when risk aversion
is constant) and we end up with an expression for the price of capital risk in one sector economy
with constant risk aversion, rp = ασK . See Appendix, section 8.1.3 for more details. The second
term is a new risk price due to changing productivity. Productivity falls on capital shocks and thus
the price of risk is positive. This term is present only due to time-varying productivity; in case
when A0 = A1, it disappears.

The third piece reflects the presence of two distinct technologies. It is present even when
productivities of two technologies are equal. It depends on an unknown function ωx (x, α). One
can show that ωx (x, α) = 0 at the point where investments in two technologies are equal (PEQ; see
the definition below), ωx (x, α) > 0 when x is below this point, and ωx (x, α) < 0 when x is above
the PEQ. It is therefore positive when we have “too little” capital, and negative otherwise. Risk
prices therefore tend to fall as x falls due to direct effect of x, but tend to rise due to an increase
in ωx (x, α). It’s not clear which effect dominates.

When risk aversion is time-varying, the last component reflects the appropriate price of risk
due to this variation.

Example 8.1. Aggregates in one-sector economy.
Consider an economy that features only a risky sector and constant risk aversion α. Eq. 90

can be easily specialized to this case by setting x = 1, Fx = 0. For a more formal argument, see
Appendix, section 8.1.3. In such an economy, all aggregates relative to capital are constant. In
particular, c = δA+ξ

δ+ξ , q = A+ξ
ξ+δ , and i = ξA−δδ+ξ . Normalized aggregates in a one-sector and a two-

sector economies therefore differ only due to a persistent time-variation in aggregate productivity
in a two-sector economy. Appendix, section 8.1.3 also shows the expressions for expected market
returns, excess returns, and interest rate in a one-sector economy. In particular, I find expected
market return is given by 1

dtE [dR] = δ + φ (i), excess returns are rx = α× σ2
K (when risk-aversion

is constant), and the risk-free rate is r = δ + φ (i)− ασ2
K (when risk aversion is constant).

Example 8.2. Cox-Ingersoll-Ross (CIR) economy with constant risk aversion.
Consider a model with no adjustment cost, or, equivalently, ξ = ∞ in the setup above.

When adjusting capital is costless, the economy always supports a constant level of x ≡ x∗ =
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min

(
A1−A0
ασ2

K
, 1
)
. Value function and all aggregates are therefore constant, c = δ, i = A − δ.

Marginal q in such an economy is constant and equal to 1 (on aggregate and for each individual
technology). All the risk is thus cash-flow risk, 1

dtE [dR] = (A− i) + i = A, 1
dtE [dR0] = A0,

1
dtE [dR1] = A1, rxM = rx1 = αx∗σ2

K , rx0 = 0, and r = A − αx∗σ2
K . See Appendix, section 8.1.4

for derivations.

8.1.3 One sector model, EIS = 1, log adjustment costs, constant α

HJB equation:

δ

[
ln (c)− ln (F )

]
− 1

2α
(
σK + Fα

F
σα

)(
σK + Fα

F
σα

)′
(97)

+φ1 (i) + Fα
F
φ (ᾱ− α) + 1

2
Fαα
F

σασ
′
α + Fα

F
σKσ

′
α = 0.

Resource constraint:
c = A− i. (98)

Assume log installation function

φ1 (i) = ζ + ξ × ln
(

1 + i

ξ

)
. (99)

FOC:

δ
1
c

= ξ
1

ξ + i
(100)

c = δ

ξ
(ξ +A− c) (101)

c = A+ ξ

1 + ξ
δ

(102)

i = A+ ξ

1 + δ
ξ

− ξ (103)

q = 1
φ′ (i) = ξ + i

ξ
= A+ ξ

ξ + δ
. (104)

So all aggregates c, i, q (per unit of capital) are constant.
Assume σα is constant.
Risk premium on this technology can be derived by setting all Fx = 0, x = 1 in my general two

tree model,rx = ασ2
K . Expected returns are constant,

1
dt
E [dR] = A− i

q
+ E

dK

K
= δ + φ (i) . (105)
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Risk-free rate is given by
r = 1

dt
E [dR]− rx = δ + φ (i)− ασ2

K . (106)

So all the variation in risk premium is driven entirely by variation in the risk-free rate.

8.1.4 CIR Model

Assume constant risk aversion.

q = φ′ (i) = 1 (107)
F − Fxx = F + Fx (1− x) (108)

Fx = 0 (109)

So value function if flat wrt x, since the capital can be freely reallocated. It means that x is not
a state variable any more, rather it is a choice: there exists an optimal value x∗ which maximizes
utility.

HJB equation becomes
δ

ρ

[(
c

F

)ρ
− 1

]
− 1

2αx
2σ2
K + i = 0. (110)

FOC:

δ

(
c

F

)ρ−1
= F (111)

c = (δF ρ)
1
ρ−1 (112)

F =
[
(A− i)ρ−1 1

δ

] 1
ρ

. (113)

From HJB,

i = 1
2αx

2σ2
K −

δ

ρ

[(
F

δ

) ρ
ρ−1
− 1

]
(114)

c = A− i (115)

(δF ρ)
1
ρ−1 = A− 1

2αx
2σ2
K −

δ

ρ

[(
F

δ

) ρ
ρ−1
− 1

]
(116)

δ
1
ρ−1F

ρ
ρ−1

(
1− 1

ρ

)
= A− 1

2αx
2σ2
K + δ

ρ
. (117)

Hence,

F =
[(

(1− x)A0 + xA1 −
1
2αx

2σ2
K + δ

ρ

)
ρ

ρ− 1δ
− 1
ρ−1

] ρ−1
ρ

, (118)
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or for EIS=1 case,

F = exp

(1
δ

[
δlnδ − 1

2αx
2σ2
K − δ + (1− x)A0 + xA1

])
(119)

c = δ (120)
i = A− δ. (121)

Maximize either of these wrt x:

x∗ = min

(
A1 −A0
ασ2

K

, 1
)
. (122)

Marginal q in such economy is constant and equal 1 (on aggregate and for each individual technol-
ogy). All the risk is thus cash flow risk, 1

dtE [dR] = (A− i)+i = A, 1
dtE [dR0] = A0, 1

dtE [dR1] = A1,
rxM = rx1 = αx∗σ2

K , rx0 = 0, and r = A− αx∗σ2
K .

8.1.5 Two sector model, EIS = 1, log adjustment costs, time-varying α

SDF

f = δJ (lnC − lnJ) (123)

fC = δJ
1
C

= δF
1
c

(124)

dlnfC = dlnF − dlnc (125)
dlnJ = dlnK + dlnF (126)

−sd
(
dΛ
Λ

)
= dlnc− dlnF + α (dlnK + dlnF ) (127)

= dlnc+ αdlnK + (α− 1) dlnF. (128)

8.2 Proofs
Proof of Theorem 3.2. In section 7.2.1 I show simple manipulations of Duffie and Epstein (1992a,b)
formulas to get risk prices for the case when the risk aversion α is constant. In section 7.2.2 I derive
the expression for market prices of risk in the general case when α is time-varying.

Proof of Theorem 7.3. I look for a first-order expansion of F (x, α; ε) as a power series in ε:

F (x, α; ε) = F (x, α; 0) + Fε (x, α; 0) ε+ o
(
ε2
)
, (129)

where F (x, α; 0) gives the value of F at ε = 0 and Fε (x, α; ε) gives the derivative at ε = 0. To
compute the first-order functional perturbation of Eq. 87, I first evaluate the PDE in Eq. 90 at ε = 0
to find F (x, α; 0) = δ (A0 + ξ)1+ ξ

δ (δ + ξ)−1− ξ
δ . Next, I differentiate the PDE with respect to ε and
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drop all terms multiplying ε. I do so because these terms will always drop out in computations of
all derivatives ∂k+1F

∂ε∂xk

∣∣∣
ε=0

and ∂k+1F
∂ε∂αk

∣∣∣
ε=0

for any k > 0 and evaluating at ε = 0. Next, all ∂k+nF
∂xn∂αk

= 0
for any k and n such that k + n > 0. The resulting expression is:

− Ā(δ + ξ)x− 1
2αx

2ς2
K − δ

Fε
F

+ φ(ᾱ− α)Fεx
F

= 0. (130)

Solving for Fε and choosing a family of solutions in the space of real numbers delivers the expression
for F (x, α; ε) in Theorem 7.3. First order Taylor expansion of ωx (x, α; ε) ≡ Fx

F and ωα (x, α; ε) ≡ Fα
F

around ε = 0 gives the expressions for components of risk prices.

Proof of Theorem 7.4. Eq. 61 gives expressions of marginal q’s as function of ωx (x, α) which we
have already calculated in Theorem 7.3. Performing Taylor expansion of these expressions around
ε = 0 followed by a similar procedure discussed in the proof of Theorem 7.3 to find q (x, α; 0) and
qε (x, α; 0) delivers the expressions in the theorem. Loadings ln,x (x, α; ε) ≡ qn,x

qn
, ln,α (x, α; ε) ≡ qn,α

qn
are further calculated by Taylor-expanding the resulting expressions one more time.

Proof of Proposition 7.2. Unexpected returns of the riskless technology in response to an orthogo-
nal capital shock are given by (up to the first order in ε):

dR0 − EdR0 = l0,xx (1− x)σKdZ (131)

'
ε→0

{
−ξ
δ
Ā+ 2x (ζ0 + ζαα) ς2

K

}
x (1− x)

√
εσKdZ. (132)

According to Theorem 7.2, for x > x∗ sufficiently close to x∗, ωx = δ+ξ
δ Ā− (ζ0 + ζαα)xσ2

K < 0 and
ωx = 0 at x = x∗. Around the first order expansion in ε, Theorem 7.3 can be used to find that
Fxx = − (ζ0 + ζαα)σ2

K < 0 does not change sign and the above result therefore holds globally on
x ∈ [x∗, 1] (up to the first-order expansion in ε). Plugging this in the formula above implies that
the unexpected return on riskless technology is positive when x > x∗.

At x∗, (ζ0 + ζαα)x∗ς2
K = δ+ξ

δ Ā producing

L
(
dR0 − EdR0

∣∣∣
x=x∗

)
'
ε→0

(
2 + ξ

δ
Ā

)
x∗ (1− x∗) ςK , (133)

which is positive. Evaluating the unexpected return at x = k x∗ for any constant k < 1 gives

L
(
dR0 − EdR0

∣∣∣
x=kx∗

)
'
ε→0

[
−ξ
δ
Ā+ 2k

(
1 + ξ

δ

)
Ā

]
x∗ (1− x∗) ςK , (134)

which is positive when k > 1
2

ξ
ξ+δ .

Therefore on the range x ∈ [1
2

ξ
ξ+δx

∗, 1] unexpected returns on the riskless technology respond
positively to an orthogonal capital shock.

Unexpected returns of the risky technology in response to an orthogonal capital shock are given
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by (up to the first order in ε):

dR1 − EdR1 = [1 + l1,xx (1− x)]σKdZ (135)

'
ε→0

{
1− ξ

δ
Āx (1− x) + (2x− 1) (ζ0 + ζαα)x (1− x) ς2

K

}√
εσKdZ. (136)

I assume that the quantity in curly brackets is positive for any value of state variables (make
it a standalone assumption and solve for required parameter values!). The assumption is fairly
innocuous and holds for a wide range of plausible calibrations. It rules out the case when stock
prices rise on a negative capital shock. With this assumption, returns on the risky technology react
positively to an orthogonal capital shock.

Proof of Proposition 7.3. Consider the case of uncorrelated shocks, λ = 0. It is sufficient to show
that the proposition holds in this case. Unexpected returns of the riskless technology are given by
(up to the first order in ε)

dR0 − EdR0 = [l0,xx (1− x) + l0,ααλ]σKdZ + l0,ασαdZ, (137)

and unexpected returns of the risky technology by

dR1 − EdR1 = [1 + l1,xx (1− x) + l1,ααλ]σKdZ + l1,ασαdZ. (138)

When λ = 0 and up to a first order expansion in ε, covariance of two returns is given by

covt (dR0, dR1) = l0,xx (1− x) [1 + l1,xx (1− x)] ς2
K + l0,αl1,αα

2ς2
α. (139)

The last term is negative and quadratic in α. The first term is positive for x ∈ [1
2

ξ
ξ+δx

∗, 1] and
consist of two terms linear in α and one quadratic in α, 2x (2x− 1) (ζ0 + ζαα)2 x2 (1− x)2 ς6

K . The
quadratic term is decreasing in α for x < 1

2 . For high levels of α quadratic terms dominate and thus
the covariance between two returns becomes more negative. It is therefore possible to calibrate a
model in such a way that the covariance is positive for low levels of α (when −l0,αl1,αα2ς2

α is
relatively small and l0,xx (1− x) [1 + l1,xx (1− x)] ς2

K is positive and dominates) and negative when
α becomes high, as quadratic terms start dominating and l0,xx (1− x) [1 + l1,xx (1− x)] ς2

K becomes
small.

Proof of Proposition 7.4. When λ = 0, the unexpected returns of the risky technology are given by

dR1 − EdR1 '
ε→0

{
1− ξ

δ
Āx (1− x) + (2x− 1) (ζ0 + ζαα)x (1− x)σ2

K

}√
εσKdZ + l1,αασαdZ.

(140)
The loading on capital shock therefore increases in α when x < 1

2 . The loading on risk aversion
risk decreases in α since l1,α is negative and decreasing in α.
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The loading of the SDF on shocks is given by

L
(
−dΛ

Λ

)
= Ā (1− x)xσK +αxσK + (α− 1)ωx (x, α)x (1− x)σK + (α− 1)ωα (x, α)ασα. (141)

The price of the α-shock risk is therefore negative and decreasing in α (for α > 1), since ωα (x, α)
is negative. Since both the loading and the price of risk aversion risk are negative and decreasing
in α, the risk premium due to the risk aversion always increases in the level of α. The price of the
capital risk is given by[

Ā (1− x) + α+ (α− 1)ωx (x, α) (1− x) + (α− 1)ωα (x, α)αλ
]
xσK '

ε→0
(142)[

Ā (1− x) + 1 + (α− 1)
(
1 +

[
ζAĀ− (ζ0 + ζαα)xσ2

K

]
(1− x)

)]
xσK . (143)

By expressing x as x = k x∗, the last term can be rewritten as (α− 1)
(
1 + (1− k) δ+ξξ Ā (1− x)

)
.

When k < 1 + ξ
ξ+δ

1
Ā
, the price of capital risk is always positive and increasing in α and thus the

risk premium due to capital risk is also increasing in α. The overall risk premium then must be
monotonically increasing in α.

Proof of Theorem 4.1. Plug σJ inside Eq. 24,

0 = λ+
(
JWW

JW
− αJW

J

)
WσRσ

′

Rθ +
(
JWX

JW
− αJX

J

)
σRσ

′

X . (144)

The value function is homogeneous in wealth, J = W ×G (X). Then,

JWW = 0 (145)
WJW
J

= 1 (146)

JWX

JW
= JX

J
= G

′ (X)
G (X) . (147)

Plugging this in gives

λ = ασRσ
′

Rθ + (α− 1) JX
J
σXσ

′

R (148)

µR − r = α× cov (dR, dRTW ) + η × cov (dR, dX) , (149)

where η = (α− 1) JX
J , RTW is return on the total wealth portfolio, dX = (α, x)

′
.
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Figure 14: Correlation between market excess return and 10-year real UK bond return
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Notes: Rolling 1-year correlation between daily stock excess returns and 10-year UK real
bond returns. The dashed gray lines around zero show block-bootstrapped 2 s.d. error
bounds for the null of constant zero correlation.
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Figure 15: Bond-stock correlation and Investors Fear Index
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Notes: The solid gray line shows negative of the rescaled value of Investors Fear Index
from Bollerslev and Todorov (2011). The blue and the red lines show rolling 1-year correla-
tions between daily stock excess returns and 10-year bond excess returns (nominal and real,
respectively).
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Figure 16: Bond-stock correlation across countries

The Stock-Bond Relationship and Asset 
Allocation October 2009 

 
MSCI Barra Research 
© 2009 MSCI Barra. All rights reserved. 2 of 7 
Please refer to the disclaimer at the end of this document.   RV0809 

Figure 1: Stock-Bond Correlations in G5 Countries (24-month window) 

 

One such driver is the stock market cycle. Gulko (2002) has shown that stocks and treasuries 
tend to decouple during equity market crashes, while they are positively correlated during normal 
market conditions. In general, a bear market in equities is associated with a flight to quality and 
an increased demand for bonds, which leads to a decline in the correlation between equities and 
bonds. 

A second factor is the interest rate cycle, which directly affects the price of bonds and equities 
through changing their discount rates, causing bond and equity prices to be inversely related to 
interest rate changes. However, stock-bond correlation tends to be higher during a tightening 
cycle than during an easing one; the impact of changing interest rates on bonds is direct and 
immediate, but its effect on stocks tends to be quicker during tightening phases than easing 
periods. 

Notes: International evidence. 24 months window. Source: MSCI Barra Research Bulletin,
October 2009.
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