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SUMMARY

This paper addresses the problem of finding a stationary point of a nonlinear dynamical system whose state
variables are under inequality constraints. Systems of this type often arise from the discretization of PDEs
that model physical phenomena (e.g., fluid dynamics) in which the state variables are under realizability
constraints (e.g., positive pressure and density). We start from the popular pseudo-transient continuation
method and augment it with nonlinear inequality constraints. The constraint handling technique does not
help in situations where no steady-state solution exists, for example, because of an under-resolved discretiza-
tion of PDEs. However, an often overlooked situation is one in which the steady-state solution exists but
cannot be reached by the solver, which typically fails because of the violation of constraints, that is, a non-
physical state error during state iterations. This is the shortcoming that we address by incorporating physical
realizability constraints into the solution path from the initial condition to steady state. Although we focus
on the DG method applied to fluid dynamics, our technique relies only on implicit time marching and hence
can be extended to other spatial discretizations and other physics problems. We analyze the sensitivity of the
method to a range of input parameters and present results for compressible turbulent flows that show that the
constrained method is significantly more robust than a standard unconstrained method while on par in terms
of cost. Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Nonlinear dynamical systems of the type PU D F.U/; U.0/ D U0 often occur in computational
physics when one employs the method of lines to discretize a system of PDEs. When a steady solu-
tion is desired, one may remove the time dependence and use Newton’s method to solve F.U/ D 0.
However, for highly nonlinear problems, direct application of Newton’s method often fails by one
of the two modes: (i) it converges to a local minimum of jF.U/j2 or (ii) it violates physical bounds
on the state, for example, ones that state that pressure, density, or species concentrations must
remain positive. A popular choice for globalizing Newton’s method is pseudo-transient continua-
tion (PTC) [1–3], in which the time dependence is retained even when seeking steady state in order
to make the state follow a hopefully physically valid trajectory from initial condition to the final
state. The hope is founded in the argument that an exact unsteady solution to any physically valid
initial condition should remain physical, so that capturing these transients is a safeguard against
straying into possibly non-physical states. However, this argument assumes that the discretization
is a good approximation to the exact differential operator, and this may not be known a priori.
Furthermore, certain solution features such as shocks, expansions, and shear layers can occur during
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the pseudo-transient but not be present in the final converged solution. Depending on the discretiza-
tion scheme, those features can cause numerical oscillations, and resolving them temporally can
lead to the violation of physical constraints.

Dynamical systems of nonlinear equations resulting from high-order discretizations are generally
much more difficult to solve compared with those obtained from, for example, second-order finite
volume methods. Moreover, when high-order methods are used in combination with mesh adap-
tation [4–6], solutions are required on coarse, under-resolved initial meshes. In such cases, even
if a zero-residual solution exists, it may be very difficult to attain that converged solution using
existing solvers.

Remediation procedures for keeping the state iterates within their physical bounds often rely on
reducing the state update size. In addition to slowing down convergence, these procedures do not
avoid attractive regions of state space—valleys of jF.U/j2—that violate the physics constraints.
Other procedures such as locally modifying the state or the discrete residual operators are also used
in practice, but these methods are often specific to a single discretization scheme. One such example
is the use of well-established limiters in second-order finite volume methods, which substantially
increase the robustness of those solvers. However, the application of limiters to high-order dis-
cretizations such as DG has had mixed success, with particular difficulties on unstructured adapted
meshes. Problems include extension of the computational stencil, lack of robustness for high order,
and lack of a zero-residual solution. An alternative remedy is the introduction of artificial vis-
cosity [7, 8], which addresses many shortcomings of limiting, but which is not without its own
challenges, such as those concerning the amount of appropriate viscosity. Another alternative for
problems without steady-state discontinuous features is a more sophisticated Newton continuation
strategy, such as parameter/order/boundary-condition sequencing [9–12]. The challenge here is that
for under-resolved simulations, runs with different parameters or lower orders may not be any easier
to solve than the original problem [13]. Other approaches for mitigating the effects of under-resolved
features, specific to finite element discretizations, include Petrov–Galerkin formulations, in which
the test space can be tailored to improve stability in the presence of discontinuous features [14–16].

In the present work, we propose an alternative approach to improve solver robustness, one that
is often less invasive relative to limiting or even artificial viscosity and targets the root cause of
robustness breakdown—the violation of physics constraints. Keyes et al. [17] point out that meth-
ods for handling these constraints are generally ad hoc. Here, we embed the constraints in the PTC
solution path. The crux of the method is the incorporation of physics constraints in the form of resid-
ual penalties in the nonlinear system. These penalties are introduced multiplicatively so as to not
modify the final steady-state solution. Instead, the penalties serve to ‘steer’ the solution away from
non-physical states during the pseudo-transient integration, so as to prevent the solver from stag-
nating at or near these problematic states. This constrained version of PTC, CPTC, thus artificially
augments the inherent robustness of time-accurate integration that under-resolved discrete approx-
imations do not necessarily inherit. The penalties provide a natural mechanism for communicating
to the solver simple physical constraints that can have a significant impact on the solution trajectory.
We show through practical examples that these penalties can be formulated in a general manner that
minimizes tuning and user involvement, so that the solvers can be used in a ‘hands-off’ adaptive
solution framework.

The setting for our work is the DG discretization of the Reynolds-averaged compressible Navier–
Stokes (RANS) equations. DG is a finite element discretization that uses element-wise discontinuous
high-order trial and test functions. Although our presentation assumes DG and RANS, the ideas
presented in the paper can be extended to other discretizations and other equations. The outline for
the remainder of the paper is as follows. In Section 2, we review the DG spatial discretization of the
RANS equations and present the relevant physics constraints. In Section 3, we review PTC, and in
Section 4, we present the augmentation of PTC with constraints. Section 5 discusses the implemen-
tation considerations related to treatment of the solution update. We show results in Section 6, and
we finish with conclusions in Section 7.
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2. SPATIAL DISCRETIZATION

Consider the convection–diffusion source equation in compact, conservative form

@tus C @iCis.u/ � @iDis.u;ru/ D Ss.u/; (1)

where Cis and Dis are the convective and diffusive fluxes, respectively, Ss is a source term, i 2
Œ1; ::; dim� indexes the spatial dimensions, and s indexes the conservation equations. Here, we will
focus on the RANS equations with the Spalart–Allmaras (SA) turbulence model. We represent the
state by u D Œ�; �vi ; �E; � Q��T , where � is the density, vi are the spatial components of the velocity,
E is the specific total energy, and Q� is the working variable for the SA model.

The DG spatial discretization of the physics equations approximates the solution in a space VH;p
of piecewise polynomials of degree p with local support on each element �H 2 KH , where KH

is the set of elements resulting from a subdivision of the spatial domain. The resulting weak form
reads as follows:

.@tuH ;wH /CR.uH ;wH / D 0 8wH 2 VH;p; (2)

where .�; �/ denotes an inner product, and R.uH ;wH / is a weighted residual statement that includes
source, convective, and diffusive terms.

The Riemann flux involved in the convective term is approximated with Roe’s [18] solver in
which the SA working variable, Q�, is transported as a conserved scalar, � Q�. The diffusion term
is discretized using the second form of Bassi & Rebay [19] (BR2). We adopt modifications by
Allmaras et al. [20] to the original SA model [21] as these modifications ensure stability of the
model at negative Q�. Also, we discretize the SA equation in .� Q�/ form by combining it with the mass
conservation equation.

The discrete system is obtained by expanding the state uH in terms of the basis functions that
span VH;p and by using these basis functions as the test functions wH . The resulting discrete
system reads

M
dU
dt
D �R.U/; (3)

where U is the discrete state, R is the discrete residual operator, and M is the block diagonal
mass matrix that corresponds to the volume integral of basis function products on each element in
the mesh.

2.1. BR2 stabilization

The diffusive flux, Dis , can be written as

Dis.u/ D Aisjk.u/@j uk; (4)

where the tensor Aisjk is a nonlinear function of the state vector, i; j index the spatial dimensions,
and s indexes the state vector components. For simplified notation, we omit the dependence of Aisjk
on the state vector in the remainder of the text.

Discontinuous Galerkin requires flux evaluations at element interfaces, where the state approxi-
mation is generally discontinuous. In the BR2 [19] treatment, the diffusive flux is averaged across the
interface and augmented by a stabilization term that spreads (lifts) the interface state jumps across
the adjacent elements. A constant factor in front of this stabilization term dictates stability—a linear
analysis indicates that the minimum value for this factor is the maximum number of faces on the
two adjacent elements. However, for increased robustness, we scale this number by a ‘stabilization
augmentation factor’, �BR2 > 1.

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2015; 102:1683–1703
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2.2. Physics constraints

The state, uH , is subject to physics constraints that are not guaranteed to be satisfied as the dis-
cretized equations only enforce the conservation of state quantities and the entropy condition.
Thermodynamic realizability constraints ensure that the equation of state is valid. In the case of fluid
flow, these constraints are as follows:

ci
�
uH

�
x0q
��
D

8̂<
:̂
p.uH .t;x//

p1
> 0;

�.uH .t;x//
�1

> 0;

(5)

where p1 and �1 refer to free-stream pressure and density, respectively. These denominators are
included here only for non-dimensional convenience and they clearly do not alter the constraints.
Note that � is a conserved variable, and therefore, its extrema match the extrema of the correspond-
ing position in the conserved state uH . Pressure, as a nonlinear function of the state, does not have
this property, and only for a linear variation of states can one guarantee that the pressure constraint
will be violated at one of the end points as the interior extremum in this case can only be a maxi-
mum [22]. In this absence of a closed-form constraint condition for arbitrary state distributions on
the discrete state vector, Equation 5 is verified at a discrete set of points, which in this work are
the quadrature points used for the element and face integrals involved in the residual calculation.
Note, for Reynolds-averaged turbulent simulations, that intuition dictates that the eddy viscosity
should be constrained similarly to pressure and density, that is, �t > 0 and the modifications in [20]
impose this constraint by modifying the definition of �t .u/ from its original form in the baseline SA
model—hence, no additional constraints are imposed on �t .

3. PSEUDO-TRANSIENT CONTINUATION

Because we are interested in the steady-state solution of the physics equations, high accuracy is not
required for discretizing the unsteady term of Equation 3. Instead, stability is the main attribute,
which makes backward Euler an attractive choice. The fully discrete form of Equation 3 is then

Tn.UnC1 � Un/C R.UnC1/ D 0; (6)

where n indexes the time steps. Tn is a block diagonal matrix with elemental blocks given by

Tn
�H
DM�H

1

�tn
�H

; (7)

where M�H is an element’s mass matrix and �tn
�H

is the nth time step, defined later in this section.
For steady calculations, the residual at the future state in Equation 6 is expanded about the current

state, and the steps in the iterative procedure require linear solves for the update �Uk�
Tk C

@R
@U

ˇ̌̌
Uk

�
�Uk D �R.Uk/; (8)

where k is used for the nonlinear iteration number to distinguish the method from the backward
Euler case. Note that when �t�H ! 1 for all �H , the iterative procedure of Equation 8 reduces
to Newton’s root-finding method. In this work, a restarted generalized minimal residual (GMRES)
linear solver [23, 24], aided by an element line Jacobi preconditioner [12], solves the linear system
at each step to a relative tolerance, �l . Here, 10�8 6 �l 6 10�2 is the ratio between the final and
the initial linear residual norms

�l;i D

ˇ̌̌ �
Tk C @R

@U jUk
�
�Uki C R.Uk/

ˇ̌̌
2

jR.Uk/j2
; (9)
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where �Uki is the i-th GMRES iteration for Equation 8 at the k-th nonlinear iteration. Note that we
initialize the linear solves with �Uk0 D 0.

The DG discretization described in Section 2 produces a residual Jacobian that is block-sparse,
which means that DOFs in an element are coupled only to DOFs in the neighbor elements. Within
each block, sparsity may exist for certain choices of basis functions, but we do not take advantage
of such sparsity.

In the first stages of calculations initialized by states that do not satisfy all boundary conditions,
strong transients occur because of the propagation of boundary information into the domain. To
alleviate those transients and aid the linear solves, small time steps are used. This causes a diagonal
dominance in the coefficient matrix in Equation 8 and makes the calculation closer to time-accurate
if �t�H is the same for all elements. As an alternative to global time stepping, element-wise local
time steps can be used by setting a global CFL number and then calculating different time steps on
each element according to

�t�H D CFL
L�H

�max
�H

; (10)

where �max
�H

is the maximum wave speed in element �H , and L�H is a measure of the element’s size,
here taken as the hydraulic diameter.

At each iteration, k, the flow state vector Uk is updated with �Uk . For robustness purposes, an
under-relaxation parameter, !k , is used to ensure a physical solution at the next iteration

UkC1 D Uk C !k�Uk : (11)

The value of the under-relaxation parameter is typically set based on a user-prescribed maximum
allowable variation of the constrained physical quantities such as pressure and density. We discuss
how we set !k in Section 5.

Alternatively, PTC can be interpreted as a globalization strategy for Newton’s method [25] where
a series of problems defined by Equations 8 and 11 are solved for k D 1; 2; : : : ; until R.Uk/ D 0.
Its globalization character comes from the fact that jR.Uk/jL2 is not required to decrease at each
step, hence, it can escape from local minima.

3.1. CFL evolution strategy

In the PTC method, the continuation parameter is the CFL number. Hence, a strategy must be chosen
to evolve the CFL from its initial value to a large value such that Equation 8 becomes Newton’s
method, and the state approaches the steady solution.

Many strategies for evolving the CFL are available [1, 26]. Among them, a widely used strategy is
the switched evolution relaxation (SER) method proposed by Mulder and van Leer [27]. The general
idea of SER is to change the time step or the CFL number based on a measure of convergence
which is inferred from the relative reduction in the residualL2-norm between consecutive iterations.
Specifically, SER attempts to resolve transients by reducing the CFL number whenever the residual
increases and, conversely, increasing the CFL as the solution approaches the basin of attraction of
R.U/ D 0. Resolving transients, however, may require many iterations leading to slow convergence
or, sometimes, impeding convergence [22].

Alternatively, the CFL can evolve based on the value of the under-relaxation parameter. In this
strategy, the CFL increases by a factor ˇ > 1 if a full update (! D 1) happened in the previous step
of the solver. On the other hand, if the update had to be limited too much, ! < !min, the CFL is
reduced by multiplying it by � < 1 and the solver step is repeated. In summary,

CFLkC1 D

8̂<
:̂
ˇ � CFLk for ˇ > 1 if !k D 1

CFLk if !min < !
k < 1

� � CFLk for � < 1 if !k < !min

: (12)
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Here, we set the parameters to !min D 0:01, 1:05 6 ˇ 6 2:0, and � D 0:1.
This strategy accounts for the physical feasibility constraints for the state update. However, it is

an indirect way of avoiding non-physical states because the direction �Uk may still produce states
that are closer to becoming non-physical even at very small CFL. In particular, this is observed on
highly under-resolved meshes.

3.2. Optimization aspect of PTC

Assume that the matrix in front of �Uk in Equation 8 (call it A) is real and non-singular and that
the update direction �Uk is not zero. Multiplying the left-hand side of Equation 8 by its own
transpose gives

�Uk
T

AT
�

Tk C
@R
@U

ˇ̌̌
Uk

�
„ ƒ‚ …

A

�Uk D ��Uk
T

ATR.Uk/„ ƒ‚ …
@f

@U

ˇ̌̌
Uk

> 0; (13)

where the inequality arises from the fact that the left-hand side is the dot product of a nonzero vector
with itself, which is always positive. Therefore, �Uk is a descent direction for the scalar function
f . QU/ defined by its gradient in the right-hand side of Equation 13. This function is

f . QU/ D
1

2
jRt . QU/j2L2 D

1

2
Rt . QU/TRt . QU/: (14)

where the unsteady residual is defined by

Rt . QU/ � Tk. QU � Uk/C R. QU/; (15)

Consequently, there is a trial state QU along the direction �Uk such that f . QU/ < f .Uk/.

4. INCORPORATING CONSTRAINTS

The minimization character of the PTC method motivates the use of constraint handling techniques
from optimization to incorporate the physics constraints from Section 2.2 into the solution path
because non-physical states (e.g., negative pressure) can lead to instability [28]. Interior penalty
methods [29] are attractive because of their simplicity and efficiency in acknowledging feasibility
constraints. These methods augment a scalar objective function with a term—the penalty—that
tends to infinity as the solution path approaches a feasibility boundary, creating a repelling effect
with respect to prohibited regions of the domain.

A different approach for incorporating constraints into pseudo-transient methods is proposed by
Kelley et al. [3]. Their approach involves a step that projects the state into the feasible domain after
each nonlinear iteration and the fundamental difference between their method and the method we
propose here is that we incorporate the constraints when computing the solution update.

A simple way of incorporating the realizability constraints in the solution path is to formu-
late an optimization problem that minimizes jRt .U/j2L2 by varying U, subject to the constraints.
However, this least squares minimization problem gives an ill-conditioned (approximate) Hessian
matrix due to a squaring of the residual Jacobian matrix [13]. In addition, factorizing the Hessian
would generally require its explicit construction, which would be computationally intensive even
for small problems. For these reasons, the least-squares optimization approach is inadequate for any
realistic problem.

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2015; 102:1683–1703
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As an alternative to constrained least squares, we augment the residual with a penalty vector to
account for the constraints [13]. The augmented residual is

Rp.U/ � R.U/C P.U; 	P/; (16)

where 	P is a penalty factor. In order to have a repelling effect with respect to non-feasible regions
of the domain, the penalization vector P must have a positive projection on the direction of the
residual vector R. To satisfy this requirement, we define the penalization vector as

P.U; 	P/ � ˆ.U; 	P/ R.U/; (17)

where ˆ is a diagonal matrix of the same size as the residual Jacobian. Each sub matrix of ˆ
corresponding to an element �H is given by

ˆ�H .U�H ; 	P/ D 	P P�H .U�H / � I; (18)

where I is the identity matrix of the same size as the element’s mass matrix, and U�H is the piece
of the global discrete state vector corresponding to �H . The elemental penalty, P�H , is a barrier
function that imposes the constraints similar to interior penalty optimization methods. Here, we
consider an inverse barrier where the penalty function is the sum of inverses of the constraints, ci ,
from Equation 5. Because the constraints are applied to a functional representation of the state,
an integral of the inverse barrier would have to be evaluated in order to enforce the constraints
everywhere in the domain; we approximate this integral by using a quadrature rule, and the penalty
function is written as

P�H .U�H / D
NcX
i

N 0qX
q

w0q

ci .uH .x0q//
; (19)

where N 0q is the number of quadrature points x0q with weights w0q , and Nc is the number of con-
straints indexed by i . Note that P�H tends to infinity as the constraints approach zero from the
positive side.

Equation 19 involves a summation over quadrature points, x0q , that lie inside �H , with weights
w0q . This summation corresponds to integrating the inverse barrier function in a reference element.
The primed points and weights are determined by an enhanced quadrature rule used for integrating
the barrier function. That is, if the quadrature rule for the residual calculation as a function of the
polynomial order is QuadRule.q/, the rule used for the barrier is QuadRule.qC�q/, where�q D 4
for all cases presented in this article.

Note that the projection of P—as defined in Equation 17—onto the residual vector is always
positive for nonzero R because the elemental penalties are strictly positive in the feasible domain,
that is, the physical states.

Furthermore, a root of the residual operator corresponds to a root of Rp , so that the steady-state
solution is independent of the values of the elemental penalties. We emphasize that the objective
of this method is to change the path of the solution, not the solution itself. To derive the update
equation for CPTC, we apply Equation 8 to Rp and, for clarity, we switch to tensor notation, where
the subscripts index the tensor entries and the superscripts denote the iteration number

�
Tij C

@..ıil Cˆil/Rl/

@Uj

ˇ̌̌
Uk

�
�U kj D �.ıil Cˆ

k
il/Rl.U

k/; (20)

where ıil denotes the Kronecker’s delta. Multiplying Equation 20 by .ıil C ˆkil/
�1 and expanding

the derivatives give
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0
BBB@.ıil Cˆkil/�1Tij„ ƒ‚ …

globalization matrix

C
@Rl

@Uj

ˇ̌̌
Uk
C.ıil Cˆ

k
il/
�1

�
@ˆim

@Uj

ˇ̌̌
Uk
Rm.Uk/

�
„ ƒ‚ …

penalization matrix

1
CCCA�U kj D�Rl.Uk/: (21)

The term @ˆim
@Uj

is a 3rd-order tensor operator on the state vector U—see Appendix A for derivation.

At each step, this tensor is evaluated with the current state, Uk , and contracted by Rm.Uk/ resulting
in a matrix the same size as the residual Jacobian. Separating the terms such that the unpenalized
residual, R, is on the right-hand side adds the implementation convenience of simply adding entries
to the coefficient matrix of the linear systems solved at each step k.

The globalization and penalization terms are block diagonal for the DG method in this work.
In addition, the elemental CFL number gets amplified by .1 C 	P P�H / as I C ˆk is a diagonal
matrix. In the limit of an infinite time step, the solution path seeks a minimum of jRpjL2 . Similarly,
the globalization term vanishes locally at elements where the solution approaches a non-physical
region, whereas the penalization term does not vanish because the function value of inverse barrier
penalties (Equation 19) tends to infinity at a slower rate than the magnitude of its derivative. In the
remainder of the text, we will refer to the method in Equation 21 as CPTC.

The final value of	P is not specified a priori as it controls the effect of penalization with respect to
the globalization term. The choice of initial value for 	P balances the globalization and penalization
terms for the first nonlinear iteration. Assuming that the state is initialized by uniform free-stream
conditions, we can equate the coefficients multiplying the globalization and penalization matrices

1

.1C 	0PP0/ � CFL0
D

	0P

.1C 	0PP0/
) 	0P D

1

CFL0
: (22)

	P in the numerator of the right-hand side of Equation 22 comes from @ˆim=@Uj in Equation 21,
and CFL0 in the left-hand side is factored out of the elemental time step. As for PTC, in Equation 22,
we assume that the residuals are properly scaled so that a single-CFL time continuation globalizes
all of the equations.

As the solution evolves, the balance between penalization and globalization may change. This
balance should shift depending on how close the current state iterate is from being non-physical.
One possible strategy is a form of SER for 	P

	kC1P D 	kP
1C 	kP hP�H .U

k/i

1C 	k�1P hP�H .Uk�1/i
; (23)

where h�i indicates an average over all the elements. The evolution strategy in Equation 23 makes
the solver acknowledge the presence of a feasibility constraint by increasing its repelling effect as
the solution path goes toward a non-physical state. Conversely, if the solution path is moving away
from a feasibility boundary, the repelling effect decreases.

Note that in reference [22], we evolve 	P using SER based on the maximum elemental penalty.
Although successful in avoiding non-physical states in many difficult flow problems, that strategy
tends to produce ill-conditioned linear systems in the Newton steps that sometimes lead to GMRES
failure. Also, we found that varying 	P between nonlinear iterations is not strictly necessary, and
the method still attains satisfactory robustness with constant 	P. Section 6.1 compares the method’s
performance for these two strategies.

The CPTC method is summarized in Algorithm 1. The unconstrained PTC method follows a
similar algorithm, where the steps related to the penalty factor (steps 3 and 16) are ignored, and the
update direction (step 6) is computed using Equation 8. For all the cases presented here, the CFL is
reduced by a factor � D 0:1 when the under-relaxation factor is below !min D 0:01. At that point,
the state is reverted to a safe state, Usafe, stored when the last full update occurred.

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2015; 102:1683–1703
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5. SOLUTION UPDATE

In optimization problems, line searches are used to find a step size along a descent direction that
sufficiently reduces the value of the objective function and its gradient. These conditions are known
as the Wolfe conditions. When solving systems of nonlinear equations, line searches improve the
global convergence properties of Newton-based methods [30].

The line search described here uses two main ingredients. First, it requires interpolating the state
and its update at certain points, xm. This involves evaluating the basis functions at xm and using
the discrete vectors U and �U to yield the field representations, uH .x/ and �uH .x/. The second
ingredient is an update limiter that restricts the unsafe changes in the constrained variables (pressure
and density) to a maximum fraction, �max, of the current values. This procedure is described in
Algorithm 2.

Some clarifications are in order. First, the maximum fractional change is fixed at �max D 10%—
based on experimentation—for all cases presented in this work. Also, for the points xm, we reuse
the quadrature points from computing the interior and boundary integrals involved in the residual
calculation. Finally, the bisection method is used in step 13 of Algorithm 2 because pressure is a
nonlinear function of the state.

Note that Algorithm 2 is a limiting procedure for compressible flow, but the same idea
can be applied to other problems with either linear or nonlinear constraints—density and
pressure, respectively.

5.1. Line search

The line-search algorithm presented in this work is based on the work of Modisette [31], and it
relies on the optimization character of PTC (Section 3.2). In short, both algorithms satisfy Armijo’s
rule [32] by back-tracking from an initial step size until an update leads to a reduction in jRt j2L2 .
Here, we relax Armijo’s rule by a factor �LS > 1 and we select the initial step size as the minimum
!�H over all the elements. The effect of �LS is discussed in Section 6.2. Algorithm 3 summarizes
the line-search procedure.

Note that step 10 in Algorithm 3 checks if the trial state, QU, is physical. This check involves
verifying if the physics constraints are satisfied at the limit points. Also, when the line search is used
with CPTC, the residual operator is penalized according to Equation 16, and hence, R is replaced
by Rp .
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In references [22, 31, 33], the L2-norm in step 10 of Algorithm 3 is separated into residual
norms for each of the conservation equations, and a drop is required in each of those norms. This
improves robustness with respect to badly scaled discrete systems that cause the residual norm to be
dominated by the worst residual component. The poor scaling is frequently present in flow problems
involving turbulence models. Specifically, in the case of the SA model, a simple scalar scaling
[34, 35] of SA’s discrete equation is very effective in bringing the equation-specific residuals to
similar magnitudes. In such a case, requiring the reduction of individual residual norms restricts the
step sizes to small values thus requiring many iterations in the globalization phase. For this reason,
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we do not separate the residual norms in this work, and instead, we rescale the additional discrete
equation corresponding to the SA turbulence model.

5.1.1. Greedy algorithm. The physical update limiter in Algorithm 2 is heuristic and the line search
described earlier can prematurely exit with !k D !phys while !phys < 1. This can slow down
the convergence and increase the susceptibility to limit cycles. To address this possibility, a greedy
algorithm is introduced. This algorithm amplifies !k , while Armijo’s rule is satisfied or until a full
update is obtained, !k D 1. The algorithm is summarized as follows.

Because the greedy algorithm is an extension of the line search, the same remarks made earlier is
applied here. Specifically, the residual operator is penalized in step 9 when this algorithm is applied
to CPTC.

6. RESULTS

6.1. One-dimensional shock tube

The first test case is a flow problem that has a physical steady solution but in which a time-accurate
integration results in the violation of the physics constraints. It consists of a one-dimensional Euler
shock tube in the domain x D Œ�1; 1�, where the boundary conditions on both ends of the tube
are flows in the positive x-direction at a Mach number of M D 0:5 (Figure 1). We specify the full
boundary state in convenient units by setting the density and velocity to unity and by computing
momentum and total energy accordingly. Riemann solves the outer boundaries ensuring that the
problem is well-posed. Upon initializing the flow atM D 0:747 in the negative x-direction, a shock
occurs on the left end of the domain, and an expansion occurs on the right end. Eventually, if all go
well, the flow settles to a steady state equal to the boundary condition.

Figure 1. Setup for a shock-tube problem testing solver robustness.
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Figure 2. Pressure distributions for under-resolved, time-accurate shock-tube simulations: (a) Last p = 1
state before violating pressure positivity; (b) Last p = 2 state before violating pressure positivity; (c) p = 0
solution at approximatety the time of failure for p = 1; and (d) p = 0 solution at approximatety the time of

failure for p = 2;

Table I. One-dimensional shock tube: variable parameters.

Parameter Values

Number of elements 10, 20, 40, 80, 160
Approximation order p D 0; 1; 2; 3

CFL0 0:1; 0:5; 1; 5; 10
CFL growth factor ˇ D 1:05; 1:5; 2

To draw a parallel to PTC, we advance the discrete solution in time with the backward Euler
scheme with a domain-wide constant time step for which the maximum CFL is 0.1. Although the
piecewise constant (p D 0) spatial solution approximation has no problem reaching the expected
steady state, piecewise linear and quadratic (p D 1; 2) approximations violate the pressure con-
straint in their transients (Figure 2). These violations are caused by oscillations triggered by the
shock moving into the domain from the left side. The schemes’ intrinsic dissipation levels are
not enough to dampen those oscillations, and some form of explicit artificial dissipation should
be considered.

The purpose here is to assess the ability of PTC and CPTC to skip the non-physical transients
and to reach the steady state. The assessment considers a range of mesh resolutions, approximation
orders, initial CFL, and CFL growth factors (ˇ in Equation 12). Table I shows the values for the
parametric study, which consists of a total of 300 parameter combinations for each method. The
linear systems at each nonlinear step are solved to a relative tolerance of �l D 10�2, and Armijo’s
rule relaxation factor is �LS D 1:05 for all runs. The nonlinear residual convergence tolerance
is 10�8.
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Because the solution transient undergoes a shock, we compare the PTC methods for two forms
of the residual operator: one where the residual includes only the convection term from Euler’s
equation and another where the residual consists of both convection and artificial diffusion. We use
a method similar to Persson and Peraire’s [8] shock-capturing scheme for which solution regularity
is sensed by density changes between the current pth-order solution and its projection onto VH;p�1.
The artificial viscosity is computed from the regularity indicator via a nonlinear but smoothly vary-
ing switch and the diffusion term discretized with BR2 for which �BR2 D 1. Note that p D 0 runs
do not include any shock-capturing term.

We consider CPTC in two modes. One where the penalty factor, 	P, varies according to
Equation 23 and another where we keep its value constant. In both modes, we initialize	P according
to Equation 22. Table II compares the success rate—percentage of runs that reach steady state—
of CPTC and PTC. Note that the inclusion of physics constraints in the solution path significantly
improves the robustness in converging to steady state. Also, the simplification of holding	P constant
has a small impact (6 3%) on the method’s success rate.

From a robustness perspective, CPTC with variable penalty factor produces a better improvement
than the use of the artificial diffusion term. This observation, however, is reserved to cases where
a shock occurs only during the solution transient and is not present in the steady solution as CPTC
does not change the final steady solution. Furthermore, the inclusion of a diffusion term governed
by a regularity sensor in the residual operator produces nonlinear algebraic systems that are gener-
ally more difficult to solve. The latter point is supported by Table III, which shows that converged
runs with PTC take, on average, approximately three times more nonlinear iterations when the resid-
ual includes the artificial diffusion term. Conversely, CPTC’s negative impact is on the average cost
of the linear systems at each nonlinear step. This is measured by the average number of GMRES
iterations per nonlinear iteration. CPTC takes, on average, from 9% to 14% more GMRES itera-
tions than PTC at each nonlinear step for this shock-tube problem. Note that this negative impact is
compensated by fewer nonlinear iterations such that the total number of GMRES iterations is gen-
erally smaller than the same metric for PTC with the exception of CPTC with variable 	P without
artificial diffusion.

We now analyze the effect of the parameters in Table I on the success rate of the continuation
methods. For this, we compute marginal success rates, one for each parameter value within each

Table II. One-dimensional shock tube: success rate for PTC and CPTC over the 300
parameter combinations in Table I.

Description PTC (%) CPTC, variable 	P (%) CPTC, constant 	P (%)

Without artificial diffusion 66.33 91.67 88.67
With artificial diffusion 89.67 96.00 94.67

PTC, pseudo-transient continuation; CPTC, constrained pseudo-transient continuation.

Table III. One-dimensional shock tube: cost metrics for all converged runs normalized
by PTC’s performance (absolute values in parentheses).

Average cost PTC CPTC, variable 	P CPTC, const. 	P

Without artificial diffusion

Nonlinear iterations 1 (40.78) 0.95 0.84
GMRES iterations 1 (59.81) 1.02 0.92
GMRES iter. per nonlinear iter. 1 (1.67) 1.10 1.09

With artificial diffusion

Nonlinear iterations per run 1 (120.75) 0.61 0.64
GMRES iterations per run 1 (146.28) 0.69 0.71
GMRES iter. per nonlinear iter. 1 (1.59) 1.12 1.14

PTC, pseudo-transient continuation; CPTC, constrained pseudo-transient continuation;
GMRES, generalized minimal residual.
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class while marginalizing the other classes—for example, success of all runs with CFL0 D 1:0.
Note that the average of the success rates over all parameter values within a class recovers the global
success rate.

Figure 3 compares the marginal success rates for CPTC against PTC. Note that PTC suffers more
than CPTC from increasing approximation order regardless of the form of the residual operator. The
magnitude of the oscillations caused by the shock increases with the polynomial order, and these
oscillations are the root cause of violation of the physics constraints. Including these constraints
in the solution path improves the ability of the pseudo-time procedure to skip the non-physical
transients. Another mechanism that allows the pseudo-time procedure to skip transients is increasing
the CFL number. This is supported by Figure 3(d) and 3(c), which show, respectively, that PTC’s
success rate increases with the CFL growth factor, and PTC without artificial diffusion is more
successful with CFL0 > 1. Increasing the CFL, however, is not a selective mechanism as it washes
all transients and it can affect the globalization character of PTC.

Constrained PTC’s success without artificial diffusion decreases with increasing mesh resolution
for this flow problem (Figure 3(a)). The reason for this behavior is that the shock becomes steeper
as the mesh gets finer, and in the absence of the shock-capturing term, the pressure undershoots
to lower values making it harder to circumvent non-physical regions of the solution space. Note
that teaming CPTC with artificial diffusion practically eliminates the dependence of the marginal
success rates on mesh resolution.

6.2. Effect of �LS

We now analyze the effect of relaxing Armijo’s rule on the success rate of the solver. In order
to properly exercise both PTC and CPTC methods, we choose two turbulent flows in which DG

Figure 3. One-dimensional shock tube: success rates with varying parameters. Results are marginalized over
all other parameters in each case: (a) Run divided in different mesh resolution; (b) Run divided in different

p-orders; (c) Run divided in different CFL0; (d) Run divided in different CFL growth factors;
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methods typically use parameter continuation and order sequencing. The first case is transonic flow
at M1 D 0:734, ˛ D 2:79ı, and Re D 6:5 � 106 over the RAE 2822 airfoil. The steady solution
for this problem presents a shock on the upper surface of the airfoil, and hence, the residual operator
includes the artificial diffusion term of Persson and Peraire [8]. The main difficulty of this case is the
fast flow acceleration over the upper leading-edge region that causes the pressure to reach very low
values in the solution transient. The second case is turbulent flow at M1 D 0:2; ˛ D 16ı; Re D
9 � 106 over the MDA 30P30N high-lift configuration. Here, the residual operator does not include
the artificial diffusion term, and the main cause for difficulty is the high angle of attack which causes
the flow to experience strong shear while contouring the airfoil shape.

In both cases, we rescale the discrete SA equation to bring the nonlinear residuals to simi-
lar magnitudes [35], and we keep 	P constant as described in Section 6.1. We consider �LS D
¹0:9; 0:95; 1:0; 1:05; 1:1º, and we assign the remaining parameters to the values listed in Table IV.
In each run, the flow is initialized with the free-stream condition throughout the domain, and the
nonlinear residual is considered converged when jRj < 10�8.

The mesh chosen for the transonic case (Figure 4) is publicly provided by the high-order work-
shop committee [36]. Here, our purpose in choosing this mesh is to test the robustness of PTC
and CPTC on a reasonably—but not fully—resolved mesh instead of comparing the methods on an
inappropriately coarse mesh such that the flow features are not even representable. Each edge of the
mesh is a quartic polynomial, and the off-wall spacing is such that yCmax � 8 for both p D 1 and
p D 2. Note in Figure 4(b) the mesh clustering in the shock region.

Table V shows the success of both methods in reaching the steady solution for the transonic case.
First, we note that CPTC converges all cases but that the solver’s performance varies significantly
with the value of �LS—larger values require fewer nonlinear iterations. Within the PTC runs, strictly

Table IV. Fixed parameters for the �LS sensitivity study.

p-order �BR2 CFL0 ˇ �l GMRES vectors

RAE 2822, M1 D 0:734; ˛ D 2:79ı; Re D 6:5 � 106

p D 1 15.0 1.0 2.0 10�3 80
p D 2 10.0 1.0 2.0 10�3 80

MDA 30p30n, M1 D 0:2; ˛ D 16ı; Re D 9 � 106

p D 1 2.0 1.0 1.5 10�3 80
p D 2 2.0 1.0 1.5 10�8 100

GMRES, generalized minimal residual.

Figure 4. RAE 2822,M1 D 0:734; ˛ D 2:79ı; Re D 6:5�106: quartic mesh used for �LS study: (a) Global
view of the mesh mesh (2024 element); (b) Mach contours. Thick dashed line: p = 1; thick continuous lines:

p = 2.;
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Table V. RAE 2822,M1 D 0:734; ˛ D 2:79ı; Re D 6:5� 106: success of all
runs for various �LS.

�LS Success Nonlinear iterations GMRES iterations

p D 1 p D 2 p D 1 p D 2 p D 1 p D 2

PTC

0.9 NP C 279 499 1892 8128
0.95 NP NP 412 125 3287 861
1.0 C C 215 323 4734 8035
1.05 C C 116 345 2893 8709
1.1 C C 93 153 2153 3817

CPTC

0.9 C C 301 568 4231 9388
0.95 C C 209 571 3311 9405
1.0 C C 186 431 4692 10703
1.05 C C 197 184 4852 4946
1.1 C C 101 156 2399 4123

C, converged; LM, local minimum; NP, non-physical; GMRES, generalized min-
imal residual; PTC, pseudo-transient continuation; CPTC, constrained pseudo-
transient continuation.

Figure 5. RAE 2822, M1 D 0:734; ˛ D 2:79ı; Re D 6:5 � 106; p D 1; �LS D 0:95: PTC state iterate
that violates physics constraints: (a) Pressure distribution with location of constraint violation; (b) Zoom on

pressure constraint violation;

enforcing Armijo’s rule (�LS < 1:0) makes the solver resolve certain transients that lead to violating
physical realizability (Figure 5). The exception here is the p D 2, �LS D 0:9 run that converges
while its p D 1 counterpart does not. This an example where order continuation would fail with
PTC because the supposedly easier p D 1 solution is effectively harder to obtain.

Atkins and Pampell [28] examine an instability that occurs for DG when the pressure goes nega-
tive while solving the Euler equations. Here, we note a similar instability manifesting in the residual
norm (Figure 6(a)) when the minimum pressure and density become negative in the PTC run with
�LS D 0:95. Note in Figure 6(b) that the maximum penalty peaks in the transition from time con-
tinuation to the full Newton stage, when the CFL ramps from O.1/ to O.104/. The residual norm
at that point has already dropped two orders of magnitude (Figure 6(a)), which demonstrates that
non-physical states can occur not only during the initial transients but also at any point in the
solution path.

We now analyze the performance of the two methods in the high-lift case. The mesh used for
this case is shown in Figure 7 and it consists of 4070 quartic elements generated via structured
agglomeration of linear cells. The off-wall spacing, excluding the flap cove region, is such that
yCmax � 50 for p D 1 and p D 2. This mesh is publicly provided by the high-order workshop
committee [36].
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Figure 6. RAE 2822,M1 D 0:734; ˛ D 2:79ı; Re D 6:5�106; p D 1: PTC versus CPTC for �LS D 0:95:
(a) Residual histories; (b) Penalty and CFL histories for CPTC run;

Figure 7. MDA 30p30n, M1 D 0:2; ˛ D 16ı; Re D 9 � 106: quartic mesh used for �LS study: (a) Global
view of the mesh mesh (4070 element); (b) Mach contours. Thick dashed line: p = 1; thick continuous lines:

p = 2;

Table VI compares the success of PTC and CPTC for the high-lift case. First we remark that,
similar to the transonic case, the added spatial resolution of p D 2 reduces the number of non-
physical problems encountered by PTC. This is somewhat counter-intuitive as it opposes the idea
of order continuation which assumes that at higher approximation orders, the problem becomes
more difficult. In contrast to the transonic case, however, relaxing Armijo’s rule here makes PTC
violate the physical constraints for p D 1 as seen in Table VI and exemplified in Figure 8. CPTC,
on the other hand, is less sensitive to �LS as the constrained solver is successful with nearly all
of the values of �LS with the exception of �LS D 0:9 for p D 2, with which both methods fail
to converge.

Given that both methods are successful with �LS D 0:9 and p D 1 but not with p D 2, we
investigate if order continuation is successful in this condition. Figure 9 compares PTC and CPTC
starting from free stream and solving directly for p D 2 against order continuation. In the lat-
ter case, we initialize the solution with free-stream conditions and solve for a p D 1 solution,
then we use this solution as a starting point for a p D 2 calculation. For an appropriate com-
parison, we resolve the initial p D 1 flow using the same parameters used for direct p D 2

listed in Table IV. Note that both PTC and CPTC are successful with order continuation for
this case.

As noted in the transonic case, Figure 9(a) shows that violating the physics constraints with PTC
and direct p D 2 leads to the residual norm climbing several orders of magnitude. Note that because
Armijo’s rule is strictly enforced for the norm of the unsteady residual (Equation 15), the spatial
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Table VI. MDA 30p30n, M1 D 0:2; ˛ D 16ı; Re D 9 � 106: success of all
runs for various �LS.

�LS Success Nonlinear iterations GMRES iterations
p D 1 p D 2 p D 1 p D 2 p D 1 p D 2

PTC

0.9 C NP 158 179 3913 2387
0.95 C C 132 243 3453 40406
1.0 NP C 142 268 411 46494
1.05 NP C 198 287 1246 47205
1.1 NP C 271 153 4512 31670

CPTC

0.9 C LM 159 400 3748 59539
0.95 C C 148 238 3360 37822
1.0 C C 138 327 3640 53295
1.05 C C 114 244 3487 43110
1.1 C C 162 171 4353 35962

C, converged; LM, local minimum; NP, non-physical; GMRES, generalized min-
imal residual; PTC, pseudo-transient continuation; CPTC, constrained pseudo-
transient continuation.

Figure 8. MDA 30p30n, M1 D 0:2; ˛ D 16ı; Re D 9 � 106; p D 1; �LS D 1:05: PTC state iterate
that violates physics constraints: (a) Pressure distribution with location of constraint violation; (b) Zoom on

pressure constraint violation;

Figure 9. MDA 30p30n, M1 D 0:2; ˛ D 16ı; Re D 9 � 106; �LS D 0:90: order continuation for PTC and
CPTC: (a) Residual histories; (b) CFL histories;
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residual norm only climbs because the unsteady term dominates the unsteady residual as the CFL is
reduced (Figure 9(b)). Figure 9(a) also shows CPTC stagnating for direct p D 2 after the residual
norm drops approximately two orders of magnitude.

7. CONCLUSIONS

We augmented the PTC method with nonlinear inequality constraints that enforce physically valid
thermodynamic states. This augmentation is possible because the solution update direction at each
nonlinear step is a descent direction for the unsteady residual. The challenge, however, is to penalize
the residual in a computationally efficient manner. To this end, we use a vector penalization approach
that does not increase the memory footprint of the residual Jacobian. The latter point is due to the
local nature of the physics constraints.

We presented an example in which following the time-accurate path incurs negative pressure. The
residual penalties, as formulated here, are a natural mechanism to locally amplify the CFL and skip
the transients that lead to non-physical states. Because this mechanism is selective and local, it does
not affect the global convergence property of PTC.

The results show that CPTC’s success in reaching steady state is significantly less sensitive to
input parameters in comparison with its unconstrained counterpart. This property makes CPTC a
good candidate for ‘hands-off’ adaptive frameworks. The caveat is that the linear systems at each
nonlinear step are generally more expensive to solve for CPTC than for PTC. In some cases, this is
compensated by fewer nonlinear iterations.

We anticipate further improvements in the line-search algorithm, especially with regard to elim-
inating the �LS factor. Defining a general rule for relaxing Armijo’s condition is a difficult task
in nonlinear problems, and using gradient information in the line search would involve updating
the residual Jacobian which is computationally expensive. Our choice here leans toward simplicity
while maintaining reasonable robustness.

APPENDIX

A. DERIVATION OF THE PENALTY GRADIENT TENSOR

This appendix presents the derivation of the term @ˆij
@Uk

in Equation 21. For clarity, we use ten-
sor notation with Einstein’s convention in which the components of the discrete state vector are
represented as

Uk D
X

�H2KH

UsbV
�H

sbk ; (A.1)

where s and b index the conserved state components and basis functions, respectively. V �
H

sbk
is a

bookkeeping tensor that converts the Ns � Nb unknowns in element local numbering to the global
indexed by k. The element’s state is spatially represented via the basis functions 
H .x/ as follows

uHs .x/ D Usb

H
b .x/: (A.2)

The penalty matrix ˆ in tensor notation is written as

ˆij D
X

�H2KH

	PP�H ıfgW
�H

fgij ; (A.3)

where W �H

fgij
is another bookkeeping tensor that converts the element local indices f; g D 1 !

Ns � Nb into global numbering indices, i and j . The derivative of ˆij with respect to the discrete
state vector entries is expanded via chain rule using the definitions in Equations A.1 and A.2

@ˆij

@Uk
D

X
�H2KH

	PıfgW
�H

fgijV
�H

sbk

@P�H

@uHs

Hb .x/; (A.4)
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with the elemental penalty expressed as

@P�H

@uHs
D

NlX
l

N 0qX
q

�
w0q

cl.uH .x0q//2
@cl

@uHs

ˇ̌̌
x0q
; (A.5)

where l indexes the constraints and q indexes the enhanced quadrature points.
Now, we present the gradient of the constraints for the compressible flow of an ideal gas. For the

pressure constraint, the gradient is written as (assuming the conservative state vector presented in
Section 2)

@c1

@uHs
D
� � 1

p1
�

8̂̂
ˆ̂̂̂̂
<̂
ˆ̂̂̂̂
ˆ̂̂:

uH´ uH´

2uH1
2

for s D 1; ´ D 2! 1C dim

uHs
uH1

for s D 2! 1C dim

1 for s D 2C dim

; (A.6)

where � is the ratio of specific heats. The gradient of the density constraint is simply

@c2

@uHs
D
ı1s

�1
: (A.7)

The elemental penalties and their gradients are updated at each nonlinear iteration and stored as a
vector similar to the discrete state. The bookkeeping tensors are implicitly defined in the routines
that add the penalty terms into the coefficient matrix in Equation 21.
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