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ABSTRACT 

 Peroxisomes are small, membrane-bound organelles found in virtually all 

eukaryotic cells. They play an important role in breaking down hydrogen peroxide in the 

cell and in β-oxidation of fatty acids. Peroxisomal proteins are synthesized in the cytosol 

and post-translationally transported into the peroxisome. There are two peroxisomal 

targeting signals (PTS) that are known to aid in the transport of matrix proteins; the PTS1 

is located at the carboxyl terminus of the protein and the PTS2 is located at the amino 

terminus. Upon entry of the protein into the peroxisome, the PTS2 is typically cleaved off 

by the peroxisomal protease DEG15 (in plants) or by TYSND1 (in mammals). In this 

study, thiolase (THL) is examined in Arabidopsis thaliana (At) and Zea mays (Zm) to 

determine whether DEG15 processing is conserved across species. I used AtDEG15 and 

ZmDEG15 in protease assays with ZmTHL and AtTHL to determine whether the 

proteases had different efficiencies with different substrates and whether homologous 

enzyme/substrate pairs have higher processing levels. Protease assays performed in vitro 

demonstrated that ZmTHL and AtDEG15 seem to be the most efficient enzyme/substrate 

pair. There is a Cys in many PTS2 proteins that is thought to be required for processing. 

Site-directed mutagenesis of the Cys in ZmTHL showed that the removal of and the 

substitution of the Cys for Gly significantly decreased, and occasionally obliterated 

processing. These results indicate that the conserved Cys or the protein conformation 

around the conserved Cys is likely to play an important role in DEG15 recognition and 

processing. 
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INTRODUCTION 

 Peroxisomes are small, membrane-enclosed organelles found in virtually all 

eukaryotic cells. These organelles, which are approximately 1 µm in diameter, are visible 

under the electron microscope and are sometimes referred to as microbodies (Donaldson 

et al., 2001). As of today, not much research has been done on these organelles, although 

their functions are essential to the survival of cells. Peroxisomes contain at least 50 

different enzymes, which function in a variety of biochemical pathways in different types 

of cells. Originally, peroxisomes were defined as organelles that carry out oxidation 

reactions, leading to the production of hydrogen peroxide. Since hydrogen peroxide is 

harmful to the cell, peroxisomes contain the enzyme catalase, which decomposes 

hydrogen peroxide either by converting it to water or by using it to oxidize another 

compound. Many different substrates are catabolized by similar oxidative reactions in 

peroxisomes, including uric acid, amino acids, and fatty acids. Peroxisomes are 

responsible for the catabolism of very long-chain fatty acids through β-oxidation, which 

provides a major source of metabolic energy. In animal cells, fatty acids are oxidized in 

both peroxisomes and mitochondria, however, in some yeasts and plants, fatty acid 

oxidation is restricted to peroxisomes (Cooper, 2000). 

 Peroxisomes are also involved in lipid biosynthesis. In animal cells, cholesterol 

and dolichol are synthesized in the peroxisome and the endoplasmic reticulum (Cooper, 

2000). Peroxisomes aid in the synthesis of bile acids in the liver, which are derived from 

cholesterol. Peroxisomes also contain enzymes necessary for the synthesis of 

plasmologens, a family of phospholipids in which one of the hydrocarbon chains is joined 

to glycerol by an ether bond rather than an ester bond (Cooper, 2000).  
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 In higher plants, at least four classes of peroxisomes have been identified: leaf 

peroxisomes, glyoxysomes, root nodule peroxisomes, and unspecialized peroxisomes 

(Donaldson et al., 2001). All classes of peroxisomes have a single membrane and have a 

finely granular matrix. Leaf peroxisomes are involved in photorespiration, which serves 

to metabolize glycolate, a side product formed during photosynthesis (Hu et al., 2012). 

The first step of the Calvin cycle entails the addition of CO2 to ribulose-1,5-bisphosphate, 

yielding two molecules of 3-phosphoglycerate. The enzyme ribulose-1,5-bisphosphate 

carboxylase (Rubisco) sometimes catalyzes the addition of O2 instead of CO2, producing 

one molecule of 3-phosphoglycerate and one molecule of phosphoglycolate. 

Phosphoglycolate is first converted to glycolate and then transferred to peroxisomes, 

where it is oxidized and converted to glycine. Glycine is then transported to the 

mitochondria, where two molecules of glycine are converted to one molecule of serine, 

with the loss of CO2 and NH3. The serine returns to the peroxisome and is converted to 

glycerate. Finally, the glycerate is transported back to the chloroplasts where it reenters 

the Calvin cycle. Through photorespiration, peroxisomes play an important role by 

allowing most of the carbon in glycolate to be recovered and utilized (Hu et al., 2012). 

 Glyoxysomes are a particular type of peroxisome found only in plants, 

particularly in the fat storage tissues of germinating seeds. Glyoxysomes are responsible 

for the conversion of stored fatty acids to carbohydrates, which provides energy and raw 

materials for growth of the germinating plant. Glyoxysomes carry out these functions 

through the glyoxylate cycle (Hayashi et al., 2014). The glyoxylate cycle is an anabolic 

pathway converting acetyl-CoA into succinate, and is catalyzed by malate synthase, 

malate dehydrogenase, isocitrate lyase, citrate synthase, and aconitase (Hayashi et al., 
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2014). This process is one of the distinguishing factors between glyoxysomes and other 

peroxisomes. 

 Root nodule peroxisomes exist in the root nodules of certain legumes and are 

involved in nitrogen metabolism (Donaldson et al., 2001). In several tropical legumes, 

nitrogen is transported in the form of ureides, allantoin, and allantoic acid. Ureide 

biosynthesis takes place in several subcellular compartments. The conversion of urate to 

allantoin, one of the last steps of the biosynthesis pathway, is catalyzed by urate oxidase 

in the peroxisomes (Donaldson et al., 2001). 

 Finally, unspecialized peroxisomes exist in plant tissues that do not partake in 

photosynthesis and that lack storage of lipids, such as the roots of most plants. They tend 

to have a smaller size, lower frequency, and lower density compared to glyoxysomes and 

leaf-type peroxisomes (Donaldson et al., 2001). There is not much known about their 

specific role in cellular metabolism. 

 Proteins that control peroxisome assembly, division, and inheritance are named 

peroxins (encoded by PEX genes). Over a dozen peroxins are conserved from yeasts to 

mammals and are essential for normal human development (Ma et al., 2011). Many 

peroxisome biogenesis disorders (PBDs) in humans, including Zellweger syndrome 

spectrum (ZSS) and rhizomelic chondrodysplasia punctata (RCDP) type I, are caused by 

a loss of certain peroxins (Waterham and Ebberink, 2012). Mutations in the PEX7 gene 

are responsible for RCDP, whereas mutations in any one of the other PEX genes cause 

the ZSS disorders. Children born with ZSS lack functional peroxisomes and have a life 

expectancy of six to seven months (Crane et al., 2005).  
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 Unlike mitochondria and chloroplasts, peroxisomes lack their own DNA and 

ribosomes. Thus all peroxisomal proteins are encoded by nuclear genes, synthesized on 

ribosomes free in the cytosol, and then incorporated into pre-existing peroxisomes 

(Lodish et al., 2000). Two different peroxisomal targeting signals (PTSs) have been 

characterized in the trafficking of matrix proteins from the cytosol into the peroxisome. 

The PTS1 consists of a tripeptide located at the carboxyl terminus of the protein and the 

PTS2 is a nonapeptide located 20-30 residues from the amino terminus (Ma et al., 2011). 

 The PTS1 sequence closely approximates Ser-Lys-Leu-COO- or a similar 

sequence (Ma et al., 2011). PTS1-containing proteins in the cytoplasm are recognized 

posttranslationally by the receptor protein Pex5p and taken to the protein complex on the 

peroxisome (Figure 1). At this site, the PTS1 protein is given entry into the lumen of the 

peroxisome (Gatto et al., 2000). After the cargo protein has entered the peroxisome, 

Pex5p is recycled back into the cytosol to perform multiple rounds of entry into the 

peroxisome matrix (Dammai and Subramani, 2001). 

 The PTS2 constitutes a nonapeptide with the sequence (R/K)-(L/V/I/Q)-X-X-

(L/V/I/H/Q)-(L/S/G/A/K)-X-(H/Q)-(L/A/F) near the amino terminus of a protein (Ma et 

al., 2011).  Delivery of PTS2 proteins to peroxisomes requires the PTS2 receptor, Pex7p 

(Figure 1). Once in the peroxisome, proteolytic enzymes—DEG15 in plants and 

TYSND1 in mammals—in the matrix of the peroxisome cleave the targeting signal of 

many, but not all, PTS2 proteins (Helm et al., 2007; Kurochkin et al., 2007). Processing 

of the PTS2 upon protein import is conserved in higher eukaryotes (Schuhmann et al., 

2008). The cleavage site typically contains a cysteine (Schuhmann et al., 2008). 

However, in lower eukaryotes, such as yeasts, a PTS2 is present at the amino terminus of 
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many mature proteins (Schuhmann et al., 2008). Therefore, it is clear that processing is 

not conserved across all eukaryotes. 

 

 

 

 

 

 

 

 

 

 
 
Figure 1: Model for import of PTS1- and PTS2-containing proteins. PTS1-containing 
proteins are recognized by the receptor protein Pex5p, and PTS2-containing proteins 
interact with the receptor protein Pex7p. These protein complexes are then brought to the 
docking station on the membrane of the peroxisome, and the proteins are translocated 
into the matrix. Upon entry into the peroxisome, the PTS2 is removed proteolytically. 
Taken from Johnson and Olsen (2001). 
 

In higher plants, DEG15 is the proteolytic enzyme that cleaves the PTS2 pre-

sequence from the protein (Helm et al., 2007). Depending on Ca2+ addition, DEG15 can 

be either shifted to a 72 kDa monomer or a 144 kDa dimer. The dimer is responsible for 

removing the PTS2 pre-sequence, whereas the monomer is a general protease activated 

by denatured proteins (Helm et al., 2007). It has not yet been proven that the cysteine on 

the PTS2 protein is the recognition site for DEG15 to cleave the protein. The biological 

relevance of removing part of the protein has yet to be determined. Similarly, in 

mitochondria and chloroplasts, most proteins imported begin as precursors containing 
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amino acids at the amino terminus that are not present in the mature protein. These 

residues comprise one or more targeting sequences that direct the protein to its proper 

destination within the organelle. Except in the case of outer-membrane proteins, the 

targeting sequences are removed from the remainder of the polypeptide chain, leaving the 

mature protein sequence (Lodish et al., 2000).  

3-ketoacyl CoA thiolase (THL) is an enzyme involved in the mevalonate pathway 

as well as the β-oxidation of fatty acids (Figure 2). This protein catalyzes the final step of 

fatty acid oxidation in which acetyl-CoA is released and the CoA ester of a fatty acid two 

carbons shorter is formed. In Arabidopsis thaliana, expression of the thiolase gene is 

known to be required for the efficient mobilization of triacylglycerol during germination 

and seedling development (Footitt et al., 2007). The PTS2 of AtTHL is readily cleaved 

by AtDEG15 through in vitro protease assays (Olsen Lab, unpublished results). 
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Figure 2: Comparison of β-oxidation in animal mitochondria and in plant 
peroxisomes. Two major differences are highlighted in this diagram; the electrons from 
FADH2 are transferred directly to O2 in the peroxisome. Additionally, the NADH 
produced during β-oxidation cannot be oxidized and these reducing equivalents are 
exported out of the peroxisome to the cytosol. 3-ketoacyl-CoA thiolase is shown here to 
catalyze the last step of β-oxidation, producing acyl-CoA and acetyl-CoA. In 
mitochondria, acetyl-CoA is further oxidized in the citric acid cycle. In peroxisomes, 
acetyl-CoA is exported for reuse in biosynthetic reactions. Image adapted from Nelson et 
al., (2008). 
 

At present, there has been little work done to investigate processing of THL in 

Zea mays by AtDEG15 or ZmDEG15. It is unclear whether processing and DEG15 

recognition is conserved across various eukaryotic species. Additionally, little research 
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has been done to determine where exactly within the amino acid sequence of the PTS2 

protein is the site of recognition and cleavage by DEG15. The purpose of this study was 

to determine if AtDEG15 and ZmDEG15 in vitro could process ZmTHL and to 

determine, through site-directed mutagenesis, if the conserved Cys in ZmTHL could be 

involved in processing by DEG15. This information is useful to help understand 

peroxisomal biogenesis and functions, and help understand PTS2-specific diseases, such 

as rhizomelic chondrodysplasia punctata. 
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RESULTS 

Analysis of THL Peroxisomal Targeting Signal 

 To examine the amino acid sequences of AtTHL and ZmTHL near their 

processing sites, protein alignments were generated using Clustal Omega’s Multiple 

Sequence Alignment tool (https://www.ebi.ac.uk/Tools/msa/clustalo/). The purpose of 

these alignments was to determine which residues were conserved between different 

homologs of thiolase and to compare the amino acid sequences of various PTS2-

containing proteins. The proteins in Figure 3 were chosen to examine because of their 

PTS2 signals and conserved cysteines, which appeared to be conserved across different 

homologs of some proteins. Only a partial sequence alignment, which contains the PTS2 

signal and a conserved cysteine, is shown (Figure 3). From these alignments, it is 

apparent that the conserved cysteine is present in many PTS2-containing proteins. This 

observation led to the hypothesis that the cysteine might play a role in protein processing 

by DEG15. Both thiolase homologs contain the PTS2 signal, RQ-x5-HL, and have an 

overall alignment with 77% sequence identity (Figure S1).  

 

 

 

 

 

 

 

 

ZmTHL RQRVLLAHLLPSPSAA-SSQPQ----LAASACAAGDSAAYQRSSSFGDDVVVVAAYRT 
AtTHL RQRVLLEHLRPSSSSSHNYEAS----LSASACLAGDSAAYQRTSLYGDDVVIVAAHRT  
  
ZmPMDH    RMATLASHLRHPSVSHPQMEDVPLLRGSNCRAKGAAPGFKVAILGAAGG  
AtPMDH1   RIARISAHLNPPN-LHNQIADGSGLNRVACRAKGGSPGFKVAILGAAGG 
AtCSY2    RLAVLTAHLAVSDTVGLEQVLPAIAPWCTSAHITAAPHGSLKG 
AtACX3 RAHVLANHILQSNPPS-SNPSLSRELCL-QYSPPELNESYGFDVK 
AtLACS6  RIARISAHLNPPNLHNQIADGSGLNRVACRAKGGSPGFK 
Figure 3: Alignment of amino acid sequences near DEG15 processing sites using ClustalW. 
ZmTHL and AtTHL are shown to display conserved PTS2 signals and a conserved cysteine. 
Residues in green indicate PTS2 signals. Residues in red indicate putative conserved cysteines. 
ZmPMDH, Zea mays malate dehydrogenase; AtPMDH1, Arabidopsis thaliana malate 
dehydrogenase 1; CSY2, citrate synthase 2; ACX3, acyl-CoA oxidase 3; LACS6, long-chain acyl-
CoA synthetase. 
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Processing of AtTHL and ZmTHL by AtDEG15 and ZmDEG15 

 Thus, to investigate the processing of AtTHL and ZmTHL by AtDEG15 and 

ZmDEG15, standard protease assays were performed. It would be interesting to note 

whether the proteases had different efficiencies with different proteins, and whether or 

not homologous enzyme/substrate pairs have higher processing. Radioactively labeled 

AtTHL and ZmTHL were incubated with 10 µg of either AtDEG15 or ZmDEG15 in vitro 

at 37°C for 4 hours, separated by SDS-PAGE, and visualized by autoradiography (Figure 

4).  

 

 

 

 

 

Figure 4: Schematic of a DEG15 Protease Assay with PTS2 proteins. The protein is first 
synthesized with radioactively labeled 

35
S-methionine in a cell-free wheat germ extract. The 

radioactively labeled residues are represented by the yellow stars. The PTS2 signal is indicated 
near the N-terminus of the protein. The protein is then incubated either in the presence or absence 
of DEG15 for 4 hours at 37°C. In the presence of DEG15, the PTS2 signal should be cleaved. 
The results are analyzed by SDS-PAGE and quantified with a phosphor-screen using a Personal 
Molecular Imager

®
 FX and Quantity One Quantitation Software. 
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Processing was evident in all assay samples regardless of the substrate and 

protease homologs present (Figure 5). The processed, or mature band, in samples 

containing ZmTHL and AtTHL lanes (denoted mZmTHL and mAtTHL) appeared around 

44 kDa, just beneath that of the full-length proteins (48 kDa and 48.6 kDa respectively), 

as expected (Figure 5A). Overall, the processing of ZmTHL was strongest in the presence 

of AtDEG15 (Figure 5B). Quantification indicated 44% processing of ZmTHL by 

AtDEG15 (Figure 5B). Upon repeating this assay 3 times, the results consistently showed 

ZmTHL to be more efficiently processed than AtTHL, and AtDEG15 to be a more 

efficient protease (Figure 5B). Therefore, processing appears to occur similarly between 

enzymes and substrates of these two species. 
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Figure 5: (A) One of three protease assays of ZmTHL and AtTHL and (B) quantification of the 
results of all three assays. Protease assays were repeated three times with AtDEG15 and ZmDEG15 
under the same conditions: 10 µg DEG15 was incubated with 250,000 cpm radioactively labeled 
THL for 4 hours at 37°C; 50,000 cpm loaded per lane; 3-night exposure. Blue bars represent the 
averages of the three protease assays. Error bars represent the standard error from the three protease 
assays. Adjusted percent processing refers to the percent processing after subtracting the percent 
processing of the negative control. 

A 

B 

Protease:             -             +AtDEG15       +ZmDEG15            -             +AtDEG15     +ZmDEG15 
PTS2 protein: AtTHL          AtTHL          AtTHL            ZmTHL          ZmTHL          ZmTHL 
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Processing of ZmTHL Mutants by AtDEG15 

 Using the most efficient processing enzyme/substrate pair, the next question was 

whether the conserved cysteine of ZmTHL (indicated in Figure 3) is involved in DEG15 

recognition and processing. Site-directed mutagenesis was utilized to construct a 

substitution and a deletion mutant (Figure 6). The C33G mutant refers to a glycine being 

substituted for the conserved cysteine. The C33∆ mutant indicates the conserved cysteine 

has been deleted. ZmTHL wild type, ZmTHL C33G, and ZmTHL C33∆ were incubated 

with AtDEG15, in standard DEG15 protease assays. 

 

 

 

 

 

  

Overall, the processing of the mutants was weak compared to that of the wild-type 

protein. The processed band in ZmTHL wild type appeared at roughly 44 kDa, the 

expected size as the mature protein should be slightly smaller than the unprocessed band, 

reflecting cleavage of the PTS2 signal (Figure 7A). The processed bands in ZmTHL 

C33G and ZmTHL C33∆ were considerably lighter, however, they also appeared to be at 

the expected size. The quantitative data in Figure 7B is derived from the gel in Figure 7A, 

as processing for ZmTHL wild type was 19%, while processing of the mutants was 

considerably less. From these results, it can be noted that the cysteine is important and 

ZmTHL:      1- MEKAIDRQRVLLAHLLPSPSAASSQPQLAASACAAGDSAA -40 

ZmTHL C33G: 1- MEKAIDRQRVLLAHLLPSPSAASSQPQLAASAGAAGDSAA -40 

ZmTHL C33∆: 1- MEKAIDRQRVLLAHLLPSPSAASSQPQLAASA-AAGDSAA -40 

Figure 6: ZmTHL mutant constructs. The above constructs were made by site-directed 
mutagenesis. Red residues show the mutated cysteine residue; this conserved cysteine may be 
necessary for processing by DEG15. Green residues form the PTS2 signal. 
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necessary in DEG15 processing. By deleting the cysteine or mutating it to a glycine, 

processing was negatively impacted as compared to ZmTHL wild type (Figure 7B).  

 

 

 

 

 

 

 

 

 

 
 
 

 
 
Figure 7: (A) One of three protease assays with ZmTHL C33G, ZmTHL C33∆, and 
ZmTHL wild type (wt) and (B) quantification of the results of the three protease 
assays. Protease assays were repeated three times with AtDEG15 under the same 
conditions: 10 µg DEG15 was incubated with 250,000 cpm radioactively labeled THL for 
4 hours at 37°C; 50,000 cpm loaded per lane; 3-night exposure. (-) indicates samples 
incubated with glass-distilled water instead of AtDEG15. (+) indicates samples incubated 
with AtDEG15. Blue bars represent the averages of the three protease assays. Error bars 
represent the standard error from the three protease assays. Adjusted percent processing 
refers to the percent processing after subtracting the percent processing of the negative 
control. 

AtDEG15:           -                      +                       -                      +                       -                       + 
THL substrate: C33G           C33G               C33Δ               C33Δ                  wt                    wt 

A 

B 
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MATERIALS AND METHODS 

Insertion of ZmTHL into pCR®II-TOPO® 

Full-length ZmTHL cDNA, inserted in the EcoRV site of pCMV.SPORT-6.1, was 

obtained from the Arizona Genomics Institute (AGI). The ZmTHL cDNA was amplified 

by PCR and subsequently cloned using the TOPO TA Cloning® kit (Invitrogen). 

Transformants positive for gene insertion, as determined by blue-white screening, were 

grown in 3 mL of Luria broth containing kanomycin (1 µg/mL final). The plasmid DNA 

was isolated by a standard small-scale alkaline lysis protocol (Molecular Cloning). 

Finally, the correct construct, as determined by restriction digest screening and DNA 

sequencing, was purified by precipitation with PEG. 

Site-Directed Mutagenesis 

 ZmTHL mutant constructs were made using the QuikChange® Site-Directed 

Mutagenesis Kit 5 from Stratagene. This kit utilizes the high-fidelity PfuTurbo DNA 

polymerase. The primers are shown in the table below. ZmTHL C33G PCR amplification 

conditions were as follows: initial denaturation, 30 s, 95˚C; denaturation, 30 s, 95˚C; 

annealing, 1 min, primer Tm-7; extension, 6 min, 68˚C; final extension, 1 min, 68˚C. The 

PCR amplification conditions for ZmTHL C33∆ were consistent with those of ZmTHL 

C33G, however, the annealing temperatures for the deletion mutant ranged from primer 

Tm-5 to Tm-9. The denaturation, annealing, and extension steps were cycled 16 times. 

After amplification, the plasmids were digested with Dpn1, a methylation-specific 

restriction enzyme, at 37˚C for 1 hour to digest the template DNA.  
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Primer 5’-3’ Sequence 
ZmTHL C33G Forward GCGTCGGCGGGCGCGGCCGGG 
ZmTHL C33G Reverse CCCGGCCGCGCCCGCCGACGC 
ZmTHL C33∆ Forward CGGCGTCGGCGGCGGCCGGGG 
ZmTHL C33∆ Reverse CCCCGGCCGCCGCCGACGCCG 
Table 1: Primers used in site-directed mutagenesis of ZmTHL gene. Primer names are 
indicated in the left column, beside their corresponding 5’ to 3’ sequence in the right 
column. 
 
In vitro Transcriptions 

 Prior to transcription of RNA, 10 µL of plasmid DNA, diluted to 1mg/ml, was 

incubated with 20 units SpeI for 2 hours at 37˚C and purified by extraction with phenol-

chloroform. 10 µL of the resulting linear DNA product (20 µL) was then transcribed 

under RNase-free conditions using 1.2 µL (20 units/µL) of T7 RNA polymerase 

(Promega) in 10 µL Transcription Optimized Buffer (Promega), 2.5 µL 1 mg/mL BSA, 5 

µL 100 mM DTT, 10 µL 2.5 mM rNTPs, 3 µL 2.5 mM GTP, 5 µL 5 mM GpppG analog, 

and 0.5 µL 5 mM RNasin in a final volume of 50 µL. Transcriptions were incubated at 

37˚C for 90 minutes. The mRNA was purified by extraction with phenol-chloroform and 

chloroform:isoamyl alcohol (24:1), and resuspended in 50 µL 10 mM DTT + 0.1 U/µL 

RNasin. 

In vitro Translations 

 RNA was translated into protein using a cell-free lysate system wheat germ 

(Promega) containing 35S-methionine (specific activity 43.5 TBq mmol-1, MP 

Biochemicals). This mixture was incubated at room temperature for 90 minutes, after 

which 2.5 µL of unlabeled methionine were added to stop additional labeling of protein. 

Labeled protein was quantified by precipitation with TCA (trichloroacetic acid) using 

glass microfiber filters. An LS 6500 multi-purpose scintillation counter (Beckman) was 

used to determine the counts per minute (cpm) per µL. 
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Purification of AtDEG15 and ZmDEG15 

 Ali Dorchak purified Arabidopsis thaliana and Zea mays DEG15 by affinity 

chromatography with amylose resin. Protein concentration was determined by BCA 

protein assay in accordance with standard Olsen lab protocol. 

DEG15 protease assays 

 Radioactive ZmTHL and mutants were diluted to 25,000 cpm/µL and radioactive 

AtTHL was diluted to 5000 cpm/µL. AtTHL appeared to show a much stronger signal, 

and therefore needed to be diluted further in attempts to equalize their appearance on a 

gel. 10 µL of each substrate were incubated with or without 5 µL 2 µg/µL DEG15 

(protease species varied between experiments) in TYSND1 buffer (50 mM Hepes, pH 

8.0, 115 mM NaCl, 0.2 mM DTT; Olsen Lab protocol; Kurochkin et al., 2007). All 

protease assays were incubated for 4 hours at 37˚C. After the 4 hour incubation, 50 µL 2x 

SDS-PAGE sample buffer (20% glycerol, 10% β-mercapto-ethanol, 4% SDS) was added 

and the samples were boiled at 100˚C for 5 minutes. Proteins were resolved by 10% SDS-

PAGE and detected by x-ray film autoradiography. 

Protease Assay Quantification 

 A Personal Molecular Imager® FX with Quantity One Quantitation Software and 

a phospho-screen were used to quantify the radioactive proteins. The percent processing 

was determined by dividing the amount of protein processed by the total protein present. 

Adjusted percent processing was determined by subtracting the negative control’s percent 

processing from the percent processing of the samples with protease. 
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DISCUSSION 

 This study demonstrated that there is cross species enzyme activity. Although 

prior research had shown DEG15 processing of THL in Arabidopsis thaliana (Olsen lab 

unpublished results), these results indicate that processing occurs in Zea mays, as well. In 

fact, processing was most efficient when AtDEG15 and ZmTHL were incubated in vitro. 

These results support the conclusion that between these two species, ZmTHL is most 

efficiently processed and AtDEG15 is a more efficient protease. From these results, it can 

be gathered that homologous enzyme/substrate pairs are not necessary for efficient 

processing. On the contrary, this study showed that an Arabidopsis thaliana enzyme and 

a Zea mays substrate together had the highest levels of processing among the assay 

combinations. Therefore, DEG15 processing occurs across at least these two eukaryotic 

species. 

 According to the alignments of multiple PTS2-containing proteins, there is a 

conserved cysteine that could play a role in DEG15 recognition and PTS2 processing. In 

vitro protease assays that compared AtDEG15 processing of ZmTHL C33G and ZmTHL 

C33∆ revealed very little processing, if any. When the cysteine was mutated to a glycine, 

or deleted altogether, processing levels decreased significantly, indicating the PTS2 was 

not being cleaved. The results from this study support the hypothesis that the cysteine is a 

critical amino acid for DEG15 recognition and processing. 

 The amino acid sequence of ZmTHL was entered into the Protein 

Homology/analogy Recognition Engine V 2.0 (PHYRE2) to predict the three-

dimensional structure of the protein (Figure 8). The processing site and the PTS2 signal 

that DEG15 recognizes is in the red region. The termini most likely move freely away 
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from the central globular part of the protein, allowing DEG15 to interact with the 

substrate. Preliminary models of the ZmTHL mutants did not show clear differences 

when compared to the wild-type model. It should be noted that PHYRE2 prediction 

results are only estimates and should be interpreted with caution. 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 8: Three-dimensional structure of ZmTHL as predicted by PHYRE2 
(intensive; Kelley and Sternberg, 2009). The protein is in rainbow order going from red 
(amino terminus) to blue (carboxyl terminus). The PTS2 and processing site are 
contained within the red regions of the protein. 
 

With the conclusions from this study, it continues to be unclear whether DEG15 

simply recognizes the conserved cysteine, or whether it recognizes a structural 

conformation of the protein that takes place around where the cysteine lies. This could 

explain why when the cysteine was mutated to a glycine, processing decreased, but was 

still not obliterated. However, when the cysteine was deleted, probably causing a greater 

ZmTHL 



	
   23	
  

conformational change in the protein, processing levels decreased more noticeably. 

Conformational changes could affect the binding of the substrate to the enzyme, thereby 

decreasing processing by the protease. It would be interesting to alter the conformation of 

the substrate without mutating the cysteine to determine whether DEG15 recognizes 

conformational changes or the cysteine itself. If protease assays with a structurally 

modified ZmTHL wild type revealed decreased processing, it would appear that 

conformation plays a greater role in enzyme recognition than previously considered. By 

comparing processing levels of ZmTHL wild type and a ZmTHL wild-type sample that 

had a partially denatured conformation, this question could be addressed. 

 This study found that Zea mays thiolase, like Arabidopsis thaliana thiolase, is 

processed by DEG15. In future research, it would be interesting to see if PTS2 processing 

of thiolase is consistent across all higher eukaryotic species. Thiolase in Triticum 

aestivum, Brachypodium distachyon, or Setaria italica might be of interest in future 

research due to its sequence similarity to ZmTHL. If processing is indeed seen, it would 

be important to run a similar site-directed mutagenesis, as seen in this study, to determine 

whether the cysteine is consistently the site of DEG15 recognition. It would also be 

interesting to note whether AtDEG15 is more efficient than DEG15s of other species 

through various in vitro protease assays. 

 This project could be taken in another direction by examining the processing 

effects of DEG15 in vivo. Through confocal fluorescence microscopy in live plants, the 

process of protein localization into the peroxisome can be visualized. Furthermore, by 

fluorescently labeling the amino terminus without interfering with the PTS2 of thiolase, 

and also fluorescently labeling the carboxyl terminus of the protein, it can hopefully be 
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determined whether or not the PTS2 has been cleaved by DEG15 within the plant cell. 

With advanced technology, it could perhaps be noted that the two fluorescent labels on 

the protein separate upon entry into the peroxisome. Under this hypothesis, the 

fluorescent label on the carboxyl terminus would indicate the location of the mature 

protein, whereas the amino-terminal fluorescent label would portray the portion of the 

protein that has been proteolytically removed. This process would allow for comparison 

between the in vivo and in vitro techniques utilized. Using an in vivo approach would 

confirm DEG15 processing of thiolase actually occurs within various species and that in 

vitro protease assays reflect what happens physiologically within the plant. 

 The purpose of this study was to learn more about the peroxisome and add to the 

growing set of knowledge recently discovered about its functions. A better understanding 

of DEG15 recognition patterns in PTS2-containing proteins can help to further elucidate 

the biological role of processing of PTS2 proteins. The information gained from this 

study can hopefully serve as a stepping-stone for how to overcome peroxisomal 

disorders, especially those involving PTS2 proteins, in the future. 
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SUPPLEMENTARY INFORMATION 

ZmTHL      MEKAIDRQRVLLAHLLPSPSAAS-SQPQLAASACAAGDSAAYQRSSSFGDDVVVVAAYRT 59 
AtTHL      MEKAIERQRVLLEHLRPSSSSSHNYEASLSASACLAGDSAAYQRTSLYGDDVVIVAAHRT 60 
           *****:****** ** **.*::   :..*:**** *********:* :*****:***:** 
 
ZmTHL      PICKAKRGGFKDTYPEDLLTVVLKAVLDNTRINPADIGDIVVGTVLGPGSQRANECRMAA 119 
AtTHL      PLCKSKRGNFKDTYPDDLLAPVLRALIEKTNLNPSEVGDIVVGTVLAPGSQRASECRMAA 120 
           *:**:***.******:***: **:*::::*.:**:::*********.******.****** 
 
ZmTHL      LFAGFPETVPVRTVNRQCSSGLQAVADVAAAIKAGYYDIGIGAGLESMSINSIAWEGQVN 179 
AtTHL      FYAGFPETVAVRTVNRQCSSGLQAVADVAAAIKAGFYDIGIGAGLESMTTNPMAWEGSVN 180 
           ::*******.*************************:************: *.:****.** 
 
ZmTHL      PKISAFQKAQDCLLPMGITSENVAHRYGVTRQEQDQAAAESHRRAAAATASGKFKDEIVP 239 
AtTHL      PAVKKFAQAQNCLLPMGVTSENVAQRFGVSRQEQDQAAVDSHRKAAAATAAGKFKDEIIP 240 
           * :. * :**:******:******:*:**:********.:***:******:*******:* 
 
ZmTHL      VPTKIVDPKTGEEKEVVISVDDGIRPGTTASGLAKLKPVFKKDGTTTAGNSSQVSDGAGA 299 
AtTHL      VKTKLVDPKTGDEKPITVSVDDGIRPTTTLASLGKLKPVFKKDGTTTAGNSSQVSDGAGA 300 
           * **:******:** :.:******** ** :.*.************************** 
 
ZmTHL      VLLMKRSVALKKGLPILGVFRSFAAVGVDPAVMGVGPAVAIPAAVKSAGLEIGDIDLFEL 359 
AtTHL      VLLMKRSVAMQKGLPVLGVFRTFAAVGVDPAIMGIGPAVAIPAAVKAAGLELDDIDLFEI 360 
           *********::****:*****:*********:**:***********:****:.******: 
 
ZmTHL      NEAFASQFVYCCNKLGLDRSKVNVNGGAIALGHPLGATGARCVATLLNEMKRRGRDCRFG 419 
AtTHL      NEAFASQFVYCRNKLGLDPEKINVNGGAMAIGHPLGATGARCVATLLHEMKRRGKDCRFG 420 
           *********** ****** .*:******:*:****************:******:***** 
 
ZmTHL      VVTMCIGSGMGAAAVFERGDAVDGLSNVRDIQAHNFLSKDAK- 461 
AtTHL      VVSMCIGTGMGAAAVFERGDGVDELRNARKVEAQGLLSKDAR- 462 
           **:****:************.** * *.*.::*:.:*****:  

	
  
ZmTHL-AtTHL % IDENTITY: 77.44 

Figure S1: ClustalW alignment of full length ZmTHL and AtTHL. PTS2 is 
highlighted in green. Conserved cysteine is highlighted in red. Percent identity 
comparison is shown at bottom. 
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