

Supporting Information

Regiodivergent and Stereoselective Hydrosilylation of 1,3-Disubstituted Allenes**

Zachary D. Miller, Ruth Dorel, and John Montgomery*

anie_201503521_sm_miscellaneous_information.pdf

Supporting Information

All reagents were used as received unless otherwise noted. Solvents were purified under nitrogen using a solvent purification system (Innovative Technology, Inc. Model # SPS-400-3 and PS-400-3). Tris(dibenzylideneacetone)-dipalladium (Pd₂dba₃) was purchased from Sigma Aldrich and was stored in a glovebox and on the benchtop. All reactions were conducted under an atmosphere of nitrogen with magnetic stirring in flame-dried or oven-dried (120 °C) glassware. All acyclic allenes were made according to literature precedent from the terminal alkyne and aldehyde.¹ Cyclic allenes were made according to literature precedent from the respective ketone.² Ligand 6 (IPr^{*OMe}) was purchased from Strem and was stored in a glovebox. NHC Ligands 4 (IMes·HCl) and 5 (IPr·HCl) were purchased from Sigma-Aldrich and stored and weighed in a glovebox. Ligand DP-IPr according to literature procedure.³ Dimethylphenylsilane was prepared and dimethylbenzylsilane (purchased from Sigma-Aldrich) were used as received. A solution of tetra-*n*-butylammonium (TBAF, 1.0 M in THF) was purchased from Sigma-Aldrich and used as received. Cyclohexylallene, propylsilane, and d-triethylsilane (97% d-purity) were purchased from Sigma-Aldrich and were used as received. 4'-Iodoacetophenone and *N*-iodosuccinimide were purchased from Sigma-Aldrich and used as received. ¹H and ¹³C NMR spectra were obtained in CDCl₃ at rt (25 °C), unless otherwise noted, on a Varian Mercury 400 MHz instrument, Varian Unity 500 MHz instrument, or Varian Unity 700 MHz instrument. Chemical shifts of ¹H NMR spectra were recorded in parts per million (ppm) on the δ scale from an internal standard of residual chloroform (7.24 ppm). Chemical shifts of ¹³C NMR spectra were recorded in ppm from the central peak of CDCl₃ (77.0 ppm) on the δ scale. High-resolution mass spectra (HRMS) were obtained on a VG-70-250-s spectrometer manufactured by Micromass Corp. (Manchester UK) at the University of Michigan Mass Spectrometry Laboratory. Regioisomeric ratios were determined on crude reaction mixtures using NMR or GC. GC analyses were carried out on an HP 6980 Series GC System with HP-5MS column (30 m x 0.252 mm x 0.25 µm). When noted, a Biotage purification system (model # SP1) was utilized with SNAP (10 g) silica columns. Reported regioselectivities were determined by GCMS analysis and confirmed by ¹H NMR analysis by comparing the ratios of detectable alkenyl protons of the major and minor regioisomers in the crude reaction mixture. In cases where >98:2 regio- or stereoselectivity is reported, minor isomers were not detected by either GCMS or NMR based methods.

General Procedure I for the Ni(COD)₂/IPr*^{OMe} – promoted hydrosilylation of 1,3disubstituted allenes:

THF (1.0 mL) was added to a solid mixture of IPr*OMe **6** (0.05 mmol) and Ni(COD)₂ (0.05 mmol) at rt. After stirring for 10 min at rt the silane (0.5 mmol) was added. The reaction mixture was stirred for 10 min at rt followed by the addition of allene (0.5 mmol) in THF (3.0 mL) over 1 h by syringe pump. The reaction mixture was stirred at rt until TLC analysis indicated disappearance of the allene. The reaction mixture was filtered through silica gel eluting with 50% v/v EtOAc/hexanes. The solvent was removed *in vacuo*, and the crude residue was purified via flash column chromatography on silica gel to afford the desired product.

The alkene configuration of representative alkenylsilanes was determined by 1D NOE, where alkenyl protons for major isomers were determined to have the following observable correlation (confirming *Z* stereochemistry):

General Procedure II for the Pd₂dba₃/ IPr·HCl – promoted hydrosilylation of 1,3-disubstituted allenes

THF (1.0 mL) was added to a solid mixture of IPr·HCl **5** (0.025 mmol), *t*-BuOK (0.025 mmol), and Pd₂dba₃ (0.0125 mmol) at rt. After stirring for 10 min at rt, the reaction mixture turned dark red and the silane (0.5 mmol) was added. The reaction mixture was stirred for 10 min at rt followed by addition of the allene (0.5 mmol) neat by syringe. The reaction mixture was stirred at rt for 2 h. The reaction mixture was filtered through silica gel eluting with 50% v/v EtOAc/hexanes. The solvent was removed *in vacuo*, and the crude residue was purified via flash column chromatography on silica gel to afford the desired product. Product stereochemistry is confirmed via determination of ³J(H-H) coupling across the alkene.

General procedure III for the Ni(COD)₂/DP-IPr-promoted hydrosilylation of monosubstituted allenes affording alkenylsilane authentic standards:

THF (1.0 mL) was added to a solid mixture of DP-IPr·HBF₄ (0.03 mmol), *t*-BuOK (0.03 mmol), and Ni(COD)₂ (0.03 mmol) at rt. After stirring for 10 min at rt, the silane (0.3 mmol) was added. The reaction mixture was stirred for 10 min at rt followed by the addition of allene (0.3 mmol) in THF (4.0 mL) over 2 h by syringe pump. The reaction mixture was stirred at rt until TLC analysis indicated disappearance of the allene. The reaction mixture was filtered through silica gel eluting with 50% v/v EtOAc/hexanes. The solvent was removed *in vacuo*, and the crude residue was purified via flash column chromatography on silica gel to afford the desired product.

General procedure IV for the Pd₂dba₃/ IMes –promoted hydrosilylation of monosubstituted allenes affording allylsilane authentic standards:

THF (1.0 mL) was added to a solid mixture of IMes·HCl 4 (0.03 mmol), KO-*t*-Bu (0.03 mmol), and Pd₂dba₃ (0.015 mmol) at rt. After stirring for 10 min at rt, the reaction mixture turned bright red and triethylsilane (0.3 mmol) was added. The reaction mixture was stirred for 10 min at rt followed by dilution with THF (4.0 mL) and addition of the allene (0.3 mmol) neat by syringe. The reaction mixture was stirred at rt for 2 h. The

reaction mixture was filtered through silica gel eluting with 50% v/v EtOAc/hexanes. The solvent was removed *in vacuo*, and the crude residue was purified via flash column chromatography on silica gel to afford the desired product.

General procedure V for the Ni(COD)₂/DP-IPr-promoted hydrosilylation crossover experiment:

THF (1.0 mL) was added to a solid mixture of DP-IPr·HBF₄ (0.03 mmol), KO-t-Bu (0.03 mmol) and Ni(COD)₂ (0.03 mmol) at rt. After stirring for 10 min at rt, the Et₃SiD (0.3 mmol) and *n*-Pr₃SiH (0.3 mmol) and cyclohexylallene (0.3 mmol) were added in THF (4.0 mL) over 2 h by syringe pump. The reaction mixture was filtered through silica gel eluting with 50% v/v EtOAc/hexanes. The solvent was removed *in vacuo*, and the crude residue was directly analyzed by GCMS and GCFID.

General procedure VI for the Pd₂dba₃/ IMes –promoted hydrosilylation crossover experiment:

THF (1.0 mL) was added to a solid mixture of IMes·HCl 4 (0.03 mmol), and Pd₂dba₃ (0.015 mmol) at rt. Then n-BuLi (0.0.3 mmol) was slowly added to the stirring solution. After stirring for 10 min at rt, the Et₃SiD (0.3 mmol) and *n*-Pr₃SiH (0.3 mmol) addition of cyclohexylallene (0.3 mmol) in THF (4.0 mL) over 2 h by syringe pump. The reaction mixture was filtered through silica gel eluting with 50% v/v EtOAc/hexanes. The solvent was removed *in vacuo*, and the crude residue was directly analyzed by GCMS and GCFID.

(E)-Benzyldimethyl(pentadec-8-en-7-yl)silane (2a) (Table 2, Entry 1)

General procedure II was followed with Pd₂dba₃ (11.4 mg, 0.0125 mmol), IPr·HCl salt **5** (10.6 mg, 0.025 mmol), *t*-BuOK (2.8 mg, 0.025 mmol), benzyldimethylsilane (79 µL, 0.5 mmol), and pentadeca-1,7-diene (104 mg, 0.5 mmol). The crude residue was purified by flash chromatography (100% hexanes) affording a clear oil (135 mg, 75 % yield) (in >98:2 regiosel, >98:2 d.r.). ¹H NMR (400 MHz, CDCl₃): 7.19 (t, J = 7.6 Hz, 2H), 7.04 (t, J = 6.8 Hz, 1H), 6.98 (t, J = 7.6 Hz, 2H), 5.22 (dt, J = 15.5, 6.8 Hz, 1H), 5.14 (dd, J = 15.5, 8.8 Hz, 1H), 2.07 (s, 2H), 1.98 (q, J = 7.0 Hz, 2H), 1.36 – 1.48 (m, 3H), 1.14 – 1.34 (m, 17H), 0.87 (t, J = 6.6 Hz, 6H), -0.10 (s, 3H), -0.11 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 140.5, 131.0, 129.0, 128.2, 128.1, 123.8, 32.9, 31.9, 31.8, 31.7, 30.0, 29.2, 29.2, 28.9, 28.7, 23.9, 22.7, 14.1, -5.10, -5.15; IR (thin film): v 2954.8, 2924.4, 2856.0, 1703.5, 1600.0, 1493, 1452, 1057, 827.8, 697.7 cm⁻¹; HRMS (EI⁺) (m/z): [M]⁺ calc for C₂₄H₄₂Si, 358.3056; found, 358.3068.

(E)-Dimethyl(pentadec-8-en-7-yl)(phenyl)silane (2b) (Table 2, Entry 2)

General procedure II was followed with Pd₂dba₃ (11.4 mg, 0.0125 mmol), IPr·HCl salt **5** (10.6 mg, 0.025 mmol), *t*-BuOK (2.8 mg, 0.025 mmol), dimethylphenylsilane (77 µL, 0.5 mmol), and pentadeca-1,7-diene (104 mg, 0.5 mmol). The crude residue was purified by flash chromatography (100% hexanes) affording a clear oil (151 mg, 84 % yield) (in >98:2 regiosel., >98:2 d.r.). ¹H NMR (500 MHz, CDCl₃): δ 7.46 (m, 2H), 7.32 (m, 3H), 5.17 (dt, *J* = 15.9, 6.2 Hz, 1H), 5.11 (dd, *J* = 15.9, 6.2 Hz, 1H), 1.95 (q, *J* = 6.5 Hz, 2H), 1.60 (t, *J* = 11.7 Hz, 1H), 1.10 – 1.39 (m, 21H), 0.87 (t, *J* = 6.8 Hz, 3H), 0.83 (t, *J* = 6.8 Hz, 3H), 0.22 (s, 3H), 0.21 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 138.4, 134.1, 130.9, 129.0, 128.7, 127.5, 32.9, 32.4, 31.83, 31.80, 30.0, 29.2, 29.0, 28.9, 28.8, 22.70, 22.68, 14.12, 14.10, -4.25, -5.10; IR (thin film): v 2954.0, 2925.1, 2857, 1709.7, 1465.4, 1427.5, 1249.4, 1117.7, 829.3, 698.2 cm⁻¹; HRMS (EI⁺) (m/z): [M]⁺ calc for C₂₃H₄₀Si, 344.2899; found, 344.2907.

(E)-(1,3-Dicyclohexylallyl)dimethyl(phenyl)silane. (2c) (Table 2, Entry 3)

General procedure II was followed with Pd₂dba₃ (13.7 mg, 0.015 mmol), IPr·HCl salt **5** (12.8 mg, 0.03 mmol), *t*-BuOK (3.6 mg, 0.03 mmol), dimethylphenylsilane (46 µL, 0.3 mmol), and 1,3-dicyclohexylpropa-1,2-diene (61 mg, 0.3 mmol). The crude residue was purified by flash chromatography (100% hexanes) affording a clear oil (98.7 mg, 58 % yield) (in >98:2 regiosel., >98:2 d.r.). ¹H NMR (400 MHz, CDCl₃): δ 7.54 – 7.46 (m, 2H), 7.37 – 7.29 (m, 3H), 5.31 – 5.21 (m, 1H), 5.13 (dd, *J* = 15.2, 6.7 Hz, 1H), 1.93 (m, *J* = 10.6, 7.0 Hz, 1H), 1.76 – 1.56 (m, 11H), 1.50 – 1.38 (m, 2H), 1.33 – 0.90 (m, 11H), 0.30 (d, *J* = 2.0 Hz, 3H), 0.27 (d, *J* = 2.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 139.43, 136.25, 133.96, 128.50, 127.43, 125.88, 41.11, 40.14, 38.69, 34.08, 33.64, 33.48, 31.48, 26.77, 26.74, 26.32, 26.26, 26.14, -2.64, -3.37; IR (thin film): v 2917.9, 2847.5, 1446.9, 1426.0, 1245.3, 1109.7, 997.9, 966.1, 891.9, 851.1, 811.4, 767.3, 732.3, 697.5, 641.7 cm⁻¹; HRMS (EI⁺) (m/z): [M⁺] calc for C₂₃H₃₆Si, 340.2586; found, 340.2589.

(*E*)-8-(dimethyl(phenyl)silyl)-2,2,3,3,11,11,12,12-octamethyl-4,10-dioxa-3,11disilatridec-6-ene (2d) (Table 2, Entry 4)

General procedure II was followed with Pd_2dba_3 (4.8 mg, 0.0052 mmol), IPr·HCl salt **5** (4.5 mg, 0.0105 mmol), *t*-BuOK (1.2 mg, 0.0105 mmol), dimethylphenylsilane (32 μ L, 0.21 mmol), and 2,2,3,3,11,11,12,12-octamethyl-4,10-dioxa-3,11-disilatrideca-6,7-diene

(70 mg, 0.21 mmol). The crude residue was purified by flash chromatography (10% EtOAc:hexanes) affording a clear oil (60 mg, 64 % yield). ¹H NMR (500 MHz, CDCl₃): δ 7.52 (m, 2H), 7.35 (m, 3H), 5.63 (dd, *J* = 15.0, 9.0 Hz, 1H), 5.40 (dt, *J* = 15.0, 6.1 Hz, 1H), 4.12 (d, J = 5.8 Hz, 2H), 3.73 (m, 2H), 2.00 (m, 1H), 0.912 (s, 9H), 0.872 (s, 9H), 0.322 (s, 3H), 0.309 (s, 3H),0.063 (s, 6H), -0.0047 (s, 3H), -0.014 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 134.0, 133.0, 130.0, 128.8, 128.4, 127.5, 64.2, 63.9, 36.6, 26.0, 18.3, -3.7, -4.0, -5.11, -5.14, -5.40, -5.43; IR (thin film): v 2953.5, 2926.2, 1704.1, 1462.4, 1250.7, 1089.8, 831.8 cm⁻¹; HRMS (ESI⁺) (m/z): [M+Na]⁺ calc for C₂₅H₄₈O₂Si₃, 487.2854; found, 487, 2851.

(Z)-Benzyldimethyl(tetradec-7-en-7-yl)silane (3a) (Table 2, Entry 5)

General procedure I was followed with Ni(COD)₂ (13.8 mg, 0.05 mmol), IPr*OMe **6** (47.2 mg, 0.05 mmol), benzyldimethylsilane (79 µL, 0.5 mmol), and pentadeca-1,7-diene (104 mg, 0.5 mmol). The crude residue was purified by flash chromatography (100% hexanes) affording a clear oil (159 mg, 89% yield) (in >98:2 regiosel.; >98:2 d.r.). ¹H NMR (400 MHz, CDCl₃): δ 7.19 (t, *J* = 7.8 Hz, 2H), 7.05 (m, 1H), 7.00 (m, 2H), 5.97 (t, *J* = 7.2 Hz, 1H), 2.20 (s, 2H), 2.01 – 2.08 (m, 2H), 1.93 – 1.99 (m, 3H), 1.15 – 1.36 (m, 18H), 0.88 (m, 6H), 0.080 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 144.0, 140.3, 137.4, 128.32, 128.27, 128.0, 123.9, 38.4, 32.3, 31.9, 31.8, 30.0, 29.4, 29.2, 29.1, 28.5, 26.7, 22.7, 22.6, 14.1, -1.7; IR (thin film): v 2953.5, 2923.7, 2853.6, 1716.2, 1600.8, 1493.2, 1452.2, 1377.5, 1248.7, 1056.5, 826.3 cm⁻¹; HRMS (EI⁺) (m/z): [M⁺] calc for C₂₄H₄₂Si, 358.3056; found, 358.3066.

(Z)-Dimethyl(phenyl)(tetradec-7-en-7-yl)silane (3b) (Table 2, Entry 6)

General procedure I was followed with Ni(COD)₂ (13.8 mg, 0.05 mmol), IPr*OMe **6** (47.2 mg, 0.05 mmol), dimethylphenylsilane (77 µL, 0.5 mmol), and pentadeca-1,7-diene (104 mg, 0.5 mmol). The crude residue was purified by flash chromatography (100% hexanes) affording a clear oil (147 mg, 85 % yield) (in >98:2 regosel, >98:2 d.r.). ¹H NMR (400 MHz, CDCl₃): δ 7.52 (m, 2H), 7.33 (m, 3H), 6.04 (t, *J* = 7.2 Hz, 2H), 1.08-1.36 (m, 18H), 0.87 (t, J = 8.0 Hz, 3H), 0.83 (t, J = 8.0 Hz, 3H), 0.369 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 144.8, 140.2, 136.9, 133.8, 128.6, 127.6, 38.6, 32.5, 31.9, 31.7, 31.0, 29.8, 29.4, 29.2, 28.9, 22.7, 22.6, 14.12, 14.06, -0.83; IR (thin film): 2954.0, 2923.6, 2855.0, 1708.5, 1610.1, 1465.0, 1427.5, 1248.5, 1110.7, 831.2 cm-1; HRMS (EI+) (m/z): [M-CH₃]+ calc for C₂₂H₃₇Si, 329.2665; found, 329.2669.

(Z)-(1,3-Dicyclohexylprop-1-en-2-yl)dimethyl(phenyl)silane (3c) (Table 2, Entry 7)

General procedure I was followed with Ni(COD)₂ (13.8 mg, 0.05 mmol), IPr*OMe **6** (47.2 mg, 0.05 mmol), dimethylphenylsilane (77 µL, 0.5 mmol), and 1,3-dicyclohexylpropa-1,2-diene (102 mg, 0.5 mmol). The crude residue was purified by flash chromatography (100% hexanes) affording a clear oil (110.7 mg, 65%) (in >98:2 regiosel., 96:4 d.r.). ¹H NMR (500 MHz, CDCl₃): δ 7.50 - 7.57 (m, 2H), 7.30 - 7.36 (m, 3H), 5.75 (d, *J* = 10.4 Hz, 1H), 5.70 (d, J = 10.4 Hz, 0.06H, minor *E*-isomer), 1.99 - 2.05 (m, 1H), 1.97 (dd, *J* = 6.8, 0.6 Hz, 2H), 1.63 - 1.71 (m, 5H), 1.50 - 1.60 (m, 4H), 1.41 - 1.36 (m, 2H), 1.11 - 1.22 (m, 4H), 0.91 - 1.01 (m, 4H), 0.74 - 0.84 (m, 2H), 0.38 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 151.72, 140.51, 133.70, 132.89, 128.48, 127.50, 46.62, 41.24, 37.65, 33.11, 32.95, 26.77, 26.49, 25.92, 25.65, -0.81; IR (thin film): v 2918.4, 2846.8, 1609.5, 1446.8, 1426.3, 1245.8, 1108.6, 903.4, 830.3, 812.1, 768.4, 727.2, 698.0, 675.0 cm⁻¹; HRMS (EI⁺) (m/z): [M⁺] calc for C₂₃H₃₆Si, 340.2586; found, 340.2585.

(Z)-7-(benzyldimethylsilyl)-2,2,3,3,11,11,12,12-octamethyl-4,10-dioxa-3,11disilatridec-6-ene (3d) (Table 2, Entry 8)

General procedure I was followed with Ni(COD)₂ (2.9 mg, 0.00105 mmol), IPr*OMe **6** (9.8 mg, 0.00105 mmol), benzyldimethylsilane (33 µL, 0.21 mmol), and 2,2,3,3,11,11,12,12-octamethyl-4,10-dioxa-3,11-disilatrideca-6,7-diene (70 mg, 0.21 mmol). The crude residue was purified by flash column chromatography (10% EtOAc: hexanes) affording a clear oil (75 mg, 75 % yield) (in >98:2 regiosel., 85:15 d.r.). ¹H NMR (500 MHz): δ 7.18 (t, *J* = 9.0 Hz, 2H), 7.05 (t, *J* = 9.0 Hz, 1H), 6.97 (d, J = 9.0 Hz, 2H), 6.13 (t, *J* = 7.4, 1 H, major isomer), 5.90 (t, *J* = 7.4 Hz, 0.1H, minor *E*-isomer), 4.04 (d, *J* = 9.4 Hz, 2H), 3.42 (t, *J* = 8.5 Hz, 2H), 2.23 (t, *J* = 7.4 Hz, 2H), 2.16 (s, 2H), 0.88 (s, 10H), 0.86 (s, 10H), 0.098 (s, 6H), 0.035 (s, 6H), 0.0093 (s, 6H); ¹³C NMR (125 MHz, CDCl₃): δ 145.4, 143.9 (minor), 139.6, 139.4 (minor), 135.3, 128.3, 128.1, 124.2, 124.0 (minor), 63.9, 62.7, 40.9, 26.5, 26.02, 26.00, 18.4, -0.09, -1.9, -5.1, -5.2; IR (thin film): v 2953.5, 2926.2, 2856.6, 1704.1, 1601.0, 1462.4, 1250.7, 1089.8, 831.8, 697.8 cm⁻¹; HRMS (ESI⁺) (m/z): [M+Na]⁺ calc for C₂₆H₅₀S₃O₂, 501.3011; found, 501.3009.

(Z)-Benzyl(cyclopentadec-1-en-1-yl)dimethylsilane (8) (Scheme 1)

General procedure I was followed with Ni(COD)₂ (6.6 mg, 0.024 mmol), IPr*OMe **6** (22.7 mg, 0.024 mmol), benzyldimethylsilane (37.9 µL, 0.24 mmol), and cyclopentadeca-1,2-diene (50 mg, 0.24 mmol). The crude residue was purified by flash chromatography (100% hexanes) affording a clear oil (61 mg, 71% yield) (in >98:2 regiosel., >98:2 d.r.). ¹H NMR (500 MHz, CDCl₃): δ 7.18 (t, *J* = 9.9 Hz, 2H), 7.04 (t, *J* = 9.9 Hz, 1H), 7.00 (d, *J* = 9.9 Hz, 2H), 5.94 (t, *J* = 8.6 Hz, 1H), 2.21 (s, 2H), 2.17 (m, 2H), 2.07 (m, 2H), 1.39 – 1.47 (m, 2H), 1.16 – 1.38 (m, 20H), 0.069 (s, 6H); ¹³C NMR (175 MHz, CDCl₃): 145.2, 140.3, 137.3, 128.3, 128.0, 123.9, 37.6, 31.2, 29.4, 29.0, 27.7, 27.6, 27.25, 27.20, 27.1, 26.9, 26.8, 26.7, 26.5, 26.0, -1.7; IR (thin film): v 2925.9, 2855.4, 1493.2, 1451.4, 1248.6, 1151.4, 828.7 cm⁻¹; HRMS (EI⁺) (m/z): [M]⁺ calc for C₂₄H₄₀Si, 356.2899; found, 356.2901.

(E)-Benzyl(cyclopentadec-2-en-1-yl)dimethylsilane (9) (Scheme 1)

General procedure II was followed with Pd₂dba₃ (5.5 mg, 0.006 mmol), IPr·HCl salt **5** (5.1 mg, 0.012 mmol), *t*-BuOK (1.3 mg, 0.012 mmol), benzyldimethylsilane (37.9 μ L, 0.24 mmol), and cyclopentadeca-1,2-diene (50 mg, 0.24 mmol). The crude residue was purified by flash chromatography (100% hexanes) affording a clear oil (57 mg, 66 % yield) (in >98:2 regiosel., >98:2 d.r.). ¹H NMR (700 MHz, CDCl₃): δ 7.19 (t, *J* = 7.5 Hz, 2H), 7.05 (t, *J* = 7.5 Hz, 1H), 6.98 (d, *J* = 7.5, 2H), 5.15 (m, 2H), 2.15 (m, 1H), 2.07 (s, 2H), 1.96 (m, 1H), 1.09 – 1.5 (m, 26H), -0.103 (s, 3H), -0.118 (s, 3H). ¹H NMR (700 MHz, C₆D₆): 7.21 (m, 2H (overlapping signals)), 7.03-7.10 (m, 3H), 5.20 (dd, *J* = 15.8, 10.2 Hz, 1H), 5.15 (ddd, J = 15.8, 10.2, 4.0 Hz, 1H), 2.21 (m, 1H), 2.10 (s, 2H), 2.04 (m, 1H), 1.25 – 1.52 (m, 26H), -0.0039 (s, 6H); ¹³C NMR (175 MHz, CDCl₃): δ 140.5, 131.7, 129.1, 128.2, 128.1, 123.8, 31.9, 31.5, 29.0, 28.7, 28.2, 27.2, 27.1, 26.9, 26.8, 26.7, 25.4, 23.8, -5.2, -5.3; IR (thin film): v 2926.0, 2856.4, 1599.8, 1451.8, 1257.8, 1152.4, 826.8 cm⁻¹; HRMS (EI⁺) (m/z): [M]⁺ calc for C₂₄H₄₀Si, 356.2899; found, 356.2902.

(*E*)-(1-Cyclohexylnon-2-en-1-yl)dimethyl(phenyl)silane and (*E*)-(1-cyclohexylnon-1en-3-yl)dimethyl(phenyl)silane (10a & 11a) (Scheme 2)

General procedure II was followed with Pd_2dba_3 (22.9 mg, 0.025 mmol), IPr·HCl salt **5** (21.3 mg, 0.05 mmol), *t*-BuOK (5.6 mg, 0.05 mmol), dimethylphenylsilane (77 µL, 0.5 mmol), and nona-1,2-dien-1-ylcyclohexane (103.2 mg, 0.5 mmol). The crude residue was purified by flash chromatography (100% hexanes) affording a clear oil (137 mg, 80 %

yield) (in 60:40 regiosel. **10a** & **11a**). ¹H NMR (500 MHz, CDCl₃): δ 7.53 (m, 4 H), 7.37 (m, 6H), 5.33 (dd, *J* = 15.7, 10.8 Hz, 1H), 5.21 (dt, *J* = 16, 11 Hz, 1H), 5.19 (dd, *J* = 16, 11 Hz, 0.7 Hz), 5.14 (dd, *J* = 16, 9.2 Hz, 0.7H), 2.02 (m, 2H), 1.94 (m, 1H), 1.57 – 1.76 (m, 11H), 1.10 – 1.38 (m, 26H), 0.936 (t, *J* = 10 Hz, 3H), 0.90 (t, *J* = 10 Hz, 3H), 0.33 (s, 3H), 0.30 (s, 3H), 0.29 (2H), 0.278 (s, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 139.5, 138.4, 135.1, 134.2, 134.0, 130.3, 128.7, 128.60, 128.55, 128.2, 127.5, 41.1, 40.3, 38.8, 34.2, 33.7, 33.6, 32.9, 32.4, 31.9, 31.8, 31.5, 30.0, 29.10, 29.06, 28.9, 28.8, 26.82, 26.80, 26.4, 26.2, 22.74, 22.71, 14.2, 14.1, -2.6, -3.3, -4.3, -5.1; IR (thin film); v 2925.4, 2852.1, 1725.7, 1448.5, 1427.5, 1249.4, 1117.9, 1061.8, 971.7, 828.9, 698.7, 418.6 cm⁻¹; HRMS (EI⁺) (m/z): [M]⁺ calc for C₂₃H₃₈Si, 342.2743; found, 342.2749.

(Z)-Benzyldimethyl(2-methyldodec-5-en-5-yl)silane and (Z)-benzyldimethyl(2-methyldodec-4-en-5-yl)silane (12a & 13a) (Table 3, Entry 1)

SiMe₂Bn SiMe₂Bn *i*-Bu *n*-Hex *i*-Bu *n*-Hex

General procedure I was followed with Ni(COD)₂ (13.8 mg, 0.05 mmol), IPr*OMe **6** (47.2 mg, 0.05 mmol), benzyldimethylsilane (79 μ L, 0.5 mmol), and 2-methyldodeca-14,5-diene (90.2 mg, 0.5 mmol). The crude residue was purified by flash chromatography (100% hexanes) affording a clear oil (114 mg, 69% yield) (in 50:50 rr, of **12a:13a**, 91:9 allyl:vinyl regiosel). ¹H NMR (400 MHz, CDCl₃): δ 7.21 (t, *J* = 8.0 Hz, 4H), 7.07 (t, *J* = 8.0 Hz, 2H), 7.01 (d, *J* = 7.1 Hz, 4H), 6.02 (t, *J* = 8.0 Hz, 1H), 5.99 (t, *J* = 8.0 Hz, 1H), 5.09 (m, 0.19H (minor allyl isomer)), 2.22 (s, 4H), 2.13 (m, 1H), 1.94 -2.09 (m, 9H), 1.61 (m, 1H), 1.48 (m, 2H), 1.20 – 1.39 (m, 25H), 1.05 – 1.12 (m, 2H), 0.88 – 0.94 (m, 15H), 0.87 (s, 4H), 0.85 (s, 3H), 0.10 (s, 4H), 0.097 (s, 4H), 0.07 (s, 2H); ¹³C NMR (100 MHz, CDCl₃, major signals from the 3 isomers are listed): δ 146.2, 143.9, 142.9 140.4, 140.29, 140.27, 139.7, 134.9, 128.3, 128.0, 125.1, 123.9, 123.8, 45.3, 41.1, 40.5, 38.6, 37.2, 36.3, 32.3, 31.9, 31.8, 31.02, 30.1, 29.6, 29.4, 29.2, 29.1, 29.0, 28.3, 27.9, 26.8, 26.7, 26.5, 22.64, 22.60, 22.46, 14.1, -1.64, -1.7, -1.9; IR (thin film): v 2952.9, 2924.8, 1600.8, 1493.1, 1465.3, 1248.1, 1205.2, 1153.5, 1055.9 826.1 cm⁻¹; HRMS (EI⁺) (m/z): [M]⁺ calc for C₂₂H₃₈Si, 330.2743; found, 330.2739.

(Z)-Benzyldimethyl(2-methylundec-4-en-4-yl)silane (12b) (Table 3, Entry 2).

General procedure I was followed with Ni(COD)₂ (13.8 mg, 0.05 mmol), IPr*OMe **6** (47.2 mg, 0.05 mmol), benzyldimethylsilane (79 µL, 0.5 mmol), and 2-methylundeca-3,4-diene (83.2 mg, 0.5 mmol). The crude residue was purified by flash chromatography (100% hexanes) affording a clear oil (101.3 mg, 64%) (in 98:2 regiosel., >98:2 d.r.). ¹H NMR (500 MHz, CDCl₃): δ 7.27 – 7.22 (m, 2H), 7.11 (t, *J* = 7.4 Hz, 1H), 7.08 – 7.05 (m, 2H), 5.99 (t, *J* = 7.5 Hz, 1H), 2.27 (s, 2H), 2.15 (q, *J* = 7.3 Hz, 2H), 1.94 (d, *J* = 6.9 Hz, 2H), 1.55 – 1.45 (m, 1H), 1.43 – 1.30 (m, 8H), 0.95 (t, *J* = 7.0 Hz, 3H), 0.88 (d, *J* = 6.6 Hz, 6H), 0.14 (s, *J* = 12.2 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃): δ 145.62, 140.29, 136.17, 128.29, 128.07, 123.96, 48.37, 32.48, 31.88, 30.17, 29.21, 28.18, 26.77, 22.69, 22.34, 14.12, -1.70. IR (cm⁻¹): v 2951.5, 2921.7, 2851.0, 1601.2, 1492.6, 1461.3, 1451.2, 1363.5, 1247.3, 1204.7, 1153.3, 1055.9, 901.0, 825.2, 789.5, 759.3, 696.5 cm⁻¹; HRMS (EI⁺) (m/z): $[M^+]$ calc for C₂₁H₃₆Si, 316.2586; found, 316.2590.

(Z)-(1-Cyclohexylnon-2-en-2-yl)dimethyl(phenyl)silane (12c) (Table 3, Entry 3)

SiMe₂Ph Cy______n-Hex

General procedure I was followed with Ni(COD)₂ (13.8 mg, 0.05 mmol), IPr*OMe **6** (47.2 mg, 0.05 mmol), dimethylphenylsilane (77 μ L, 0.5 mmol), and nona-1,2-dien-1-ylcyclohexane (103 mg, 0.5 mmol). The crude residue was purified by flash chromatography (100% hexanes) affording a clear oil (87.3 mg, 51%) (in >98:2 regiosel, >98:2 d.r.). ¹H NMR (500 MHz, CDCl₃): δ 7.57 – 7.52 (m, 2H), 7.37 – 7.32 (m, 3H), 6.00 (t, *J* = 7.5 Hz, 1H), 2.01 (d, *J* = 6.8 Hz, 2H), 1.96 (q, *J* = 7.4 Hz, 2H), 1.74 – 1.67 (m, 4H), 1.67 – 1.62 (m, 1H), 1.28 – 1.11 (m, 12H), 0.93 – 0.77 (m, 2H), 0.86 (t, *J* = 7.3 Hz, 3H), 0.40 (s, 6H); ¹³C NMR (125 MHz, CDCl₃): δ 146.12, 140.23, 134.89, 133.73, 128.52, 127.58, 46.90, 37.72, 33.19, 32.54, 31.70, 29.81, 28.96, 26.75, 26.47, 22.58, 14.05, -0.84; IR (thin film): v 2918.3, 2848.9, 1609.0, 1447.8, 1426.7, 1246.4, 1109.0, 831.0, 812.4, 769.2, 726.6, 698.3, 669.5 cm⁻¹; HRMS (EI⁺) (m/z): [M⁺] calc for C₂₃H₃₈Si, 342.2743; found 342.2740.

(Z)-Benzyl(1-cyclohexylnon-2-en-2-yl)dimethylsilane (12d) (Table 3, Entry 4)

SiMe₂Bn Cy ________n-Hex

General procedure I was followed with Ni(COD)₂ (13.8 mg, 0.05 mmol), IPr*OMe **6** (47.2 mg, 0.05 mmol), benzyldimethylsilane (79 μ L, 0.5 mmol), and nona-1,2-dien-1ylcyclohexane (103 mg, 0.5 mmol). The crude residue was purified by flash chromatography (100% hexanes) affording a clear oil (125 mg, 70 %) (in >98:2 regiosel., >98:2 d.r.). ¹H NMR (500 MHz, CDCl₃): δ 7.25 – 7.19 (m, 2H), 7.09 (t, *J* = 7.4 Hz, 1H), 7.05 – 7.01 (m, 2H), 5.93 (t, *J* = 7.5 Hz, 1H), 2.23 (s, 2H), 2.11 (q, *J* = 7.4 Hz, 2H), 1.90 (d, *J* = 6.8 Hz, 2H), 1.73 – 1.63 (m, 5H), 1.41 – 1.27 (m, 8H), 1.21 – 1.12 (m, 3H), 1.11 – 1.04 (m, 1H), 0.92 (t, *J* = 7.0 Hz, 3H), 0.86 – 0.74 (m, 2H), 0.10 (s, *J* = 2.7 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃): δ 145.51, 140.29, 135.36, 128.24, 128.05, 123.92, 46.79, 37.67, 33.21, 32.43, 31.82, 30.14, 29.18, 26.76, 26.74, 26.47, 22.66, 14.09, -1.70; IR (thin film): v 2918.5, 2849.2, 1600.9, 1492.4, 1448.8, 1246.7, 1205.0, 1153.4, 1055.7, 900.8, 826.8, 789.5, 759.1, 696.3 cm⁻¹; HRMS (EI⁺) (m/z): [M⁺] calc for C₂₄H₄₀Si, 356.2899; found, 356.2894.

(Z)-Benzyl(2,2-dimethylundec-4-en-4-yl)dimethylsilane (12e) (Table 3, Entry 5)

General procedure I was followed with Ni(COD)₂ (13.8 mg, 0.05 mmol), IPr*OMe **6** (47.2 mg, 0.05 mmol), benzyldimethylsilane (79 µL, 0.5 mmol), and 2,2-dimethylundeca-3,4-diene (90.2 mg, 0.5 mmol). The crude residue was purified by flash chromatography (100% hexanes) affording a clear oil (86.0 mg, 52%) (in >98:2 regiosel., >98:2 d.r.). ¹H NMR (500 MHz, CDCl₃): δ 7.22 (t, *J* = 7.6 Hz, 2H), 7.08 (t, *J* = 7.4 Hz, 1H), 7.05 – 7.01 (m, 2H), 6.05 (t, *J* = 7.6 Hz, 1H), 2.26 (s, 2H), 2.17 (d, *J* = 7.6 Hz, 2H), 1.97 (s, 2H), 1.45 – 1.38 (m, 2H), 1.37 – 1.28 (m, 6H), 0.92 (t, *J* = 7.0 Hz, 3H), 0.87 (s, 9H), 0.10 (s, *J* = 4.4 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃): δ 148.74, 140.56, 134.38, 128.32, 128.05, 123.90, 49.36, 32.99, 32.04, 31.85, 30.14, 29.87, 29.25, 26.90, 22.66, 14.11, -1.18. IR (cm⁻¹): v 2949.6, 2853.0, 1600.2, 1492.4, 1451.1, 1361.0, 1247.7, 1203.8, 1153.8, 1056.5, 826.5, 790.3, 759.8, 696.5; HRMS (EI⁺) (m/z): [M⁺] calc for C₂₂H₃₈Si [M-H]⁺ 315.2508, found 315.2508.

(Z)-Benzyl(1-cyclohexyl-5-phenylpent-2-en-2-yl)dimethylsilane (12f) (Table 3, Entry 6)

General procedure I was followed with Ni(COD)₂ (13.8 mg, mmol), IPr*OMe **6** (16.3 mg, 0.03 mmol), benzyldimethylsilanesilane (79 μ L, 0.5 mmol), and (5-cyclohexylpenta-3,4-dien-1-yl)benzene (113 mg, 0.5 mmol). The crude residue was purified by flash chromatography (100% hexanes) affording a clear oil (141 mg, 71 % yield) (in 95:5 d.r., >98:2 regiosel.). ¹H NMR (400 MHz, CDCl₃): δ 7.27 (m, 2H), 7.16 (m, 4H), 7.04 (m, 1H), 6.95 (m, 3H), 5.93 (t, *J* = 7.3 Hz, 1H), 5.80 (t, *J* = 7.3 Hz, 0.05H), 2.65 (t, *J* = 8.0 Hz, 2H), 2.15 (s, 2H), 2.04 (s, 2H), 1.86 (d, *J* = 7.1 Hz, 2H), 1.56 – 1.70 (m, 9H), 1.04 – 1.23 (m, 6H), 0.732 (m, 3H), 0.043 (s, 6H); ¹³C NMR (175 MHz, CDCl₃): δ 144.0, 141.9, 140.1, 136.5, 128.5, 128.3, 128.2, 128.1, 125.8, 124.0, 46.7, 37.6, 36.4, 34.3, 33.2, 26.7, 26.6, 26.4, -1.74; IR (thin film): v 2361.1, 2339.1, 2177.6, 1134.0, 667.9, 437.8 cm⁻¹; HRMS (EI⁺) (m/z): [M-Me]⁺ calc for C₂₅H₃₃Si, 261.2352; found, 361.2359.

(Z)-Benzyl(4-(benzyloxy)-1-cyclohexylbut-2-en-2-yl)dimethylsilane (12g) (Table 3, Entry 7)

General procedure I was followed with Ni(COD)₂ (13.8 mg, 0.05 mmol), IPr*OMe **6** (47.2 mg, 0.05 mmol), benzyldimethylsilane (79 mL, 0.5 mmol), and (((4-cyclohexylbuta-2,3-dien-1-yl)oxy)methyl)benzene (121 mg, 0.5 mmol). The crude residue was purified by flash chromatography (5 % EtOAc: hexanes) affording a clear oil

(130 mg, 66 % yield) (in >98:2 regosel., 90:10 d.r.). ¹H NMR (400 MHz, CDCl₃): 7.32 (d, J = 4.5 Hz, 4H), 7.27 (m, 1H), 7.17 (t, J = 7.4 Hz, 2H), 7.05 (t, J = 7.4 Hz, 1H), 6.93 (d, J = 7.4 Hz, 2H), 6.09 (t, J = 6.9 Hz, 1H), 4.46 (s, 2H), 3.93 (d, J = 6.9 Hz, 2H), 2.12 (s, 2H), 1.93 (d, J = 6.5 Hz, 2H), 1.56 – 1.70 (m, 6H), 1.11 (m, 4H), 0.796 (m, 2H), 0.030 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 140.9, 140.5, 139.7, 138.2, 128.4, 128.3, 128.1, 128.0, 127.7, 124.1, 72.5, 69.4, 46.6, 37.3, 33.2, 26.6, 26.4, -1.8; IR (thin film): 2920.1, 2849.3, 1599.7, 1493.4, 1449.7, 1248.7, 1096.0, 1027.8 cm⁻¹; HRMS (APCI) (m/z): [M+H]⁺ calc for C₂₃H₃₆OSi, 393.2608; found, 393.2627.

(1-Cyclohexylallyl-2-d)triethylsilane (14) (Scheme 3)

General procedure IV was followed with Pd₂dba₃ (13.7 mg, 0.015 mmol), IMes·HCl salt **4** (10.2 mg, 0.03 mmol), *n*-BuLi (12 mL, 0.03 mmol, 2.5 M in hexanes), triethylsilane (47.7 μ L, 0.3 mmol), and cyclohexylallene (36.6 mg, 0.3 mmol). The crude residue was purified by flash chromatography (100% hexanes) affording a clear oil (50 mg, 70 % yield) (in >98:2 regiosel.). ¹H NMR (700 MHz, CDCl₃): δ 4.83 (s, 1H), 4.77 (s, 1H), 1.65 – 1.74 (m, 3H), 1.44 – 1.63 (m, 2H), 0.986 – 1.27 (m, 6H), 0.93 (t, *J* = 8.9 Hz, 9H), 0.561 (q, *J* = 8.9 Hz, 6H); ¹³C NMR (174 MHz, CDCl₃): d 112.6, 39.8, 38.3, 34.3, 31.6, 26.90, 26.89, 26.3, 7.7, 3.3; IR (thin film): n 2922.1, 1259.9, 1088.6, 799.9 cm⁻¹; HRMS (EI⁺) (m/z): [M]+ calc for C₁₅H₂₉DSi, 239.2180; found, 239.2185.

[3-(Triethylsilyl)-2-propen-1-yl]-cyclohexane (15) (Scheme 3)

General procedure IV was followed with Pd_2dba_3 (13.7 mg, 0.015 mmol), IMes·HCl salt **4** (10.2 mg, 0.03 mmol), *t*-BuOK (3.4 mg, 0.03 mmol), triethylsilane (48 µL, 0.3 mmol), and cyclohexylallene (36.6 mg, 0.3 mmol). The crude residue was purified by flash chromatography (100% hexanes) affording a clear oil (57 mg, 80% yield) (in >98:2 regiosel.). Spectral data matched that previously reported.⁴

(1-Cyclohexylallyl)tripropylsilane (16) (Scheme 3)

General procedure IV was followed with Pd₂dba₃ (13.7 mg, 0.015 mmol), IMes·HCl salt 4 (10.2 mg, 0.03 mmol), *t*-BuOK (3.4 mg, 0.03 mmol), triethylsilane (48 µL, 0.3 mmol),

and cyclohexylallene (36.6 mg, 0.3 mmol). The crude residue was purified by flash chromatography (100% hexanes) affording a clear oil (49 mg, 58 56 % yield) (in >98:2 regiosel.). ¹H NMR (700 MHz, CDCl₃): 5.69 (dt, J = 17.2, 9.5 Hz, 1H), 4.83 (dd, J = 10.5, 2.7 Hz, 1H), 4.77 (dd, J = 17.2, 2.3 Hz, 1H), 1.66 (m, 3H), 1.58 - 1.60 (m, 1H), 1.50 - 1.57 (m, 3H), 1.41 - 1.48 (m, 1H), 1.27 - 1.37 (m, 6 H), 1.00 - 1.22 (m, 1H), 0.935 (t, J = 8.0 Hz, 9H), 0.513 - 0.569 (m, 6H); ¹³C NMR (175 MHz, CDCl₃): 138.6, 112.8, 40.5, 38.4, 34.3, 31.6, 26.9, 26.3, 18.8, 17.7, 15.3; IR (thin film): n 3073.1, 2954.5, 2924.1, 2867.7, 2661.8, 1623.3, 1450.1, 1331.9, 1203.2, 1067.5, 998.8, 894.7, 740.4 cm⁻¹; HRMS (EI⁺) (m/z): [M]⁺ calc for C₁₈H₃₆Si, 280.2586; found, 280.2588.

(3-Cyclohexylprop-1-en-2-yl-3-d)triethylsilane (18) (Scheme 3)

General procedure III was followed with Ni(COD)₂ (8.25 mg, 0.03 mmol), DP-IPr·HBF₄ (18.9 mg, 0.03 mmol), *n*-BuLi (12 mL, 0.03 mmol, 2.5 M in hexanes), *d*-triethylsilane (47.7 μ L, 0.3 mmol), and cyclohexylallene (36.6 mg, 0.3 mmol). The crude residue was purified by flash chromatography (100% hexanes) affording a clear oil (60 mg, 83 % yield) (in >98:2 regiosel.). ¹H NMR (700 MHz, CDCl₃): d 5.56 (dd, *J* = 3.3, 1.1 Hz, 1H), 5.31 (d, *J* = 3.3 Hz, 1H), 1.94 (d, *J* = 7 Hz, 1H), 1.64 – 1.72 (m, 5H), 1.11-1.20 (m, 4H), 0.91 (t, *J* = 8.0 Hz, 9H), 0.77 – 0.83 (m, 2H), 0.58 (q, *J* = 8.0 Hz, 6H); ¹³C NMR (175 MHz, CDCl₃): d 147.3, 126.5, 36.3, 33.43, 33.41, 26.7, 26.4, 7.3, 3.0; IR (thin film): n 2922.3, 2874.8, 2850.5, 1447.7, 1415.9, 1348.1, 1261.0 1236.3, 1012.0, 923.5, 892.9 cm⁻¹; HRMS (EI) (m/z): [M]⁺ calc for C₁₃H₂₄DSi, 210.1788; found, 210.1789.

[2-(Triethylsilyl)-2-propen-1-yl]-cyclohexane (19) (Scheme 3)

General procedure III was followed with Ni(COD)₂ (8.25 mg, 0.03 mmol), DP-IPr·HBF₄ (18.9 mg, 0.03 mmol), KO-*t*-Bu (3.4 mg, 0.03 mmol), triethylsilane (48 μ L, 0.3 mmol), and cyclohexylallene (36.6 mg, 0.3 mmol). The crude residue was purified by flash chromatography (100% hexanes) affording a clear oil (60 mg, 84 % yield) (in >98:2 regiosel.). Spectral data matched that previously reported.⁴

(3-Cyclohexylprop-1-en-2-yl)tripropylsilane (20) (Scheme 3)

General procedure III was followed with Ni(COD)₂ (8.25 mg, 0.03 mmol), DP-IPr·HBF₄ (18.9 mg, 0.03 mmol), *t*-BuOK (3.4 mg, 0.03 mmol), tripropysilane (μ L, 0.3 mmol), and cyclohexylallene (36.6 mg, 0.3 mmol). The crude residue was purified by flash chromatography (100% hexanes) affording a clear oil (47 mg, 56 % yield) (in >98:2 regiosel.). ¹H NMR (700 MHz, CDCl₃): d 5.54 (m, 1H), 5.30 (d, *J* = 3.4 Hz, 1H), 1.96 (d, *J* = 5.9 Hz, 2H), 1.60-1.71 (m, 6H), 1.25-1.32 (m, 6H), 1.10-1.22 (m, 3H), 0.943 (t, *J* = 8.0 Hz, 9 H), 0.77 – 0.84 (m, 2H), 0.55 (m, 6H); ¹³C NMR (175 MHz, CDCl₃): d 148.0, 126.2, 45.1, 36.4, 33.5, 26.7, 26.4, 18.6, 17.4, 15.0; IR (thin film): n 2922.4, 2954.2, 2867.7, 1449.6, 10654, 923, 806.5 cm⁻¹; HRMS (EI⁺) (m/z): [M-propyl]⁺ calc for C₁₅H₂₉Si, 237.2039; found, 237.2041.

Synthetic Manipulations of Alkenylsilane 12d:

(E)-Non-2-en-1-ylcyclohexane (28) (Scheme 4)

Alkenylsilane **12d** (70 mg, 0.196 mmol) in DMSO (50 µL) was added to a 6 mL dram vial with sir bar. TBAF (1.96 mL, 1.96 mmol, 1.0 M in THF) was then slowly added and the vessel was subsequently heated at 50 °C for 6 h when the reaction was judged complete by TLC analysis. The solvent was removed *in vacuo* and the crude material was purified by flash column chromatography (100 % hexanes) affording a clear oil (35.2 mg, 86 %) (in >98:2 regiosel, >98:2 d.r.). ¹H NMR (500 MHz, CDCl₃): δ 5.38 (m, 2H), 1.98 (m, 2 H), 1.88 (m, 2H), 1.614-1.78 (m, 6H), 1.14 – 1.42 (m, 15H), 0.894 (t, *J* = 8.7 Hz, 6H); ¹³C NMR (175 MHz, CDCl₃): δ 131.4, 128.7, 40.7, 38.1, 33.1, 32.6, 31.7, 29.6, 28.8, 26.6, 26.3, 22.6, 14.1; IR (thin film): v 2920.3, 2851.3, 1707.9, 1448.0, 1259.5, 966.2 cm⁻¹; HRMS (EI⁺) (m/z): [M]⁺ calc for C₁₅H₂₉, 208.2191; found, 208.2189.

(Z)-(2-Iodonon-2-en-1-yl)cyclohexane (29) (Scheme 4)

Alkenylsilane **12d** (70 mg, 0.196 mmol) in CH₃CN (1 mL) was added to a 6 mL dram vial equipped with a stir bar. The reaction vessel was cooled in an ice bath to 0 °C and then NIS (110 mg, 0.491 mmol) was added. The reaction was then removed from the ice bath and warmed to RT. After 12 h the reaction was judged complete by TLC analysis and sodium thiosulfate was added (2 mL) to quench the reaction. The solution was then extracted with EtOAc (3 X 2 mL) and washed with water (3 X 3 mL) and subsequently dried over anhydrous MgSO₄. The solvent was then removed in vacuo and the crude material was purified by flash column chromatography (100 % hexanes) affording a clear oil (50 mg, 77 %) (in >98:2 regiosel., 98:2 d.r.). ¹H NMR (500 MHz, CDCl₃): δ 6.23 (t, *J* = 8.0 Hz , 0.2H, minor *E*-isomer), 5.43 (t, *J* = 7.2 Hz, 1H), 2.32 (d, *J* = 7.5 Hz, 2H), 2.26 (d, *J* = 7.0 Hz , 0.14H, minor *E*-isomer), 2.09 – 2.16 (m, 2H), 2.04 (q, *J* = 7.0 Hz, 0.18H), 1.60 – 1.75 (m, 8H), 1.22 – 1.46 (m, 12H), 1.10-1.19 (m, 1H), 0.90 (t, J = 7.2 Hz, 3H),

0.84 - 0.88 (m, 2H); ¹³C NMR ((175 MHz, CDCl₃): δ 135.8, 108.2, 52.6, 36.4, 36.3, 32.6, 31.7, 28.8, 28.4, 26.5, 26.2, 26.1, 22.6, 14.0; IR (thin film): v 2925.6, 2852.2, 1972.0, 1718.2, 1449.4, 1249.4, 1118.1, 827.3, 698.5 cm⁻¹; HRMS (EI⁺) (m/z): [M]⁺ calc for C₁₅H₂₇I, 334.1158; found, 334.1161.

(Z)-1-(4-(1-Cyclohexylnon-2-en-2-yl)phenyl)ethan-1-one (30) (Scheme 4)

Alkenylsilane **12d** (125 mg, 0.7 mmol) in THF (1 mL) was added to a flame-dried 6 mL dram vial with a stir bar. TBAF (2.1 mL, 2.1 mmol, 1.0 M in THF) was then slowly added followed by addition of 4'-iodoacetophenone (172 mg, 0.7 mmol) and Pd₂dba₃ (16 mg, 0.0175 mmol). The reaction vessel was then heated at 50 °C for 30 min when the reaction was judged complete by TLC analysis. DCM (1 mL) was added to the vial and the solution was filtered with 50 % EtOAc:hexanes and the solvent was removed *in vacuo*. The crude material was purified by flash column chromatography (5 – 15% EtOAc:hexanes) affording a clear oil (180 mg, 79 %) (in >98:2 regiosel., >98:2 d.r.). ¹H NMR (500 MHz, CDCl₃): δ 7.90 (d, *J* = 8.2, 2H), 7.21 (d, *J* = 8.2 2H), 5.43 (t, *J* = 7.2 Hz, 1H), 2.59 (s, 3H), 2.31 (d, *J* = 7.5 Hz, 2H), 1.89 (q, *J* = 7.0 Hz, 2H), 1.54 – 1.67 (m, 6H), 1.14 – 1.34 (m, 10H), 1.00 – 1.11 (m, 5H), 0.824 (t, *J* = 7.5 Hz, 5H); ¹³C NMR (175 MHz, CDCl₃): δ 197.9, 147.0, 138.3, 135.2, 130.0, 128.6, 128.1, 47.2, 35.4, 33.1, 31.6, 30.0, 28.9, 28.9, 26.6, 26.1, 22.6, 14.0; IR (thin film): v 2925.3, 1682.0, 1604.1, 1358.0, 1263.3, 1120.1, 833.1 cm⁻¹; HRMS (ESI⁺) (m/z): [M+H]⁺ calc for C₂₃H₃₄O, 327.2682; found, 327.2682.

Analysis of the crossover experiment:

For detailed experimental crossover studies including an excel spreadsheet for calculating ratios of isotopic products, please see Montgomery *et. al.* 2014 (reference 5). Pure samples of products derived from Et₃SiH (MW 238), Et₃SiD (MW 239), and Pr₃SiH (MW 280) were independently prepared and GCMS analysis was performed. Based on the similarity of the molecular ion minus ethyl regions (M-Et = 209) of the Et₃SiH and Et₃SiD derived product, the molecular ion region of the Pr₃SiD derived product was assumed to appear as the molecular ion (M = 280) region of the Pr₃SiH-derived product, shifted by one mass unit. Relative peak heights in the molecular ion minus ethyl region of the spectra of each pure compound were normalized, with a value of 1 assigned to the base peak. In the crude product of an experiment that employed 0.5 equiv each of Et₃SiD and Pr₃SiH, the ratio of Et₃Si products to Pr₃Si products was determined by GC. From the crude GCMS, the relative intensity of the products were normalized, with the value of 1 assigned to the value of 1 assigned to the base peak. The ratio of the products were normalized, with product by GC. From the crude GCMS, the relative intensity of the products were normalized, with the value of 1 assigned to the value of 1 assigned to the base peak. The ratio of the products were normalized, with the value of 1 assigned to the value of 1 assigned to the base peak. The ratio of the products were normalized, with the value of 1 assigned to the base peak. The ratio of the Et₃Si-(H) product to Et₃Si-(D) product was

determined as follows:

intensity of 209 peak in crossover experiment

intensity of 210 peak in crossover experiment

- $= \frac{[X][\text{ rel. height of 209 peak for Et_3Si-(H) product] + [Y]}{[\text{ rel. height of 209 peak for Et_3Si-(D) product]}$
- [X] [rel. height of 210 peak for Et₃Si-(H) product] + [Y] [rel. height of 210 peak for Et₃Si-(D) product]

 $\begin{array}{l} X=1/100 \ x \ relative \ \% \ of \ Et_3Si-(H) \ product \\ Y=1/100 \ x \ relative \ \% \ of \ Et_3Si-(D) \ product = 1-X \end{array}$

In the above equation, after substitution of [1-X] for [Y], the experimental values were inserted and the equation was solved for [X]. The ratio of Pr_3Si -(H) product to the intensity of 280 peak in crossover experiment and Pr_3Si -(D) products was determined in a similar fashion. Merging the GCFID ratios of Et_3Si products to Pr_3Si products with the data calculated from the above equation, an overall ratio of the products were obtained.

Triethylsilyl : tripropylsilyl product ratios were determined by GC-FID detection and are corrected for molecular weight to provide molar ratios. GCMS chromatograms and MS spectra for authentic samples and crossover experiments are included as pages S17-S26.

Ratio of Ethyl:Propyl products (nickel crossover): [72:28] Ratio of Ethyl:Propyl products (palladium crossover): [38:62]

	X	//								
	Cy S	SiEt ₃	Ni crossov	ver experime	ent					
Authentic	H Sample	Authentic	D Sample	Crossover	Experiment	Calculatio	n Results			
lon 209	lon 210	lon 209	lon 210	lon 209	lon 210	% H:	% D:			
1654272	378496	117712	2918912	72912	1783296	0 %	100 %			
	X 	,								
	Cy 🔨									
		Si(<i>n</i> -Pr) ₃	NI Crosso	over experin	nent					
Authenti	c H Sample	Authent	ic D Sample	e Crossove	r Experiment	calculati	on Results			
lon 280	lon 281	lon 280	lon 281	lon 280	lon 281	% H:	% D:			
2186	710	0	2186	276	100	96 %	4 %			
	SiE	t ₃								
	Cv 🔨									
X Pd crossover experiment										
Authentic	H Sample	Authentic	D Sample	Crossover	Experiment	Calculatio	n Results			
Authentic Ion 209	H Sample	Authentic Ion 209	D Sample Ion 210	Crossover lon 209	Experiment lon 210	Calculatio % H:	n Results % D:			

lon 280 lon 281 lon 280 lon 281 lon 280 lon 281 % H: % D	Authentic H Sample		Authentic D Sample		Crossover Experiment		Calculation Results	
	lon 280	lon 281	lon 280	lon 281	lon 280	lon 281	% H:	% D:
55264 12224 154 55264 7555 1956 96% 4%	53264	12224	154	53264	7333	1956	96 %	4 %

Authentic Standards Chromatograms:

S17

m/z-->

0 m/z--> 279.70 279.80 279.90 280.00 280.10 280.20 280.30 280.40 280.50 280.60 280.70 280.80 280.90 281.00 281.10 281.20

Nickel Crossover Experiment:

Nickel Crossover Experiment:

Palladium Crossover Experiment:

S25

Palladium Crossover Experiment:

References:

- 1. M. L. Hossain; F. Ye; Y. Zhang; J. Wang, J. Org. Chem. 2013, 78, 1236.
- 2. K. M. Brummond; E. A. Dingess; J. L. Kent, J. Org. Chem. 1996, 61, 6096.
- 3. H. A. Malik; G. J. Sormunen; J. Montgomery, J. Am. Chem. Soc. 2010, 132, 6304.
- 4. Z. D. Miller; W. Li; T. R. Belderrain; J. Montgomery, J. Am. Chem. Soc. 2013, 135, 15282.
- 5. M. T. Haynes; P. Liu; R. D. Baxter; A. J. Nett; K. N. Houk; J. Montgomery, J. Am. Chem. Soc. 2014, 136, 17495-17504.

S32

S33

(inclusion)

ppm

S43

12e, Table 3, Entry 5

12f, Table 3, Entry 6

12f, Table 3, Entry 6

28, Scheme 4

