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Analysis of accelerated failure time
data with dependent censoring using
auxiliary variables via nonparametric
multiple imputation

Chiu-Hsieh Hsu,>**" Jeremy M. G. Taylor® and Chengcheng Hu?’

We consider the situation of estimating the marginal survival distribution from censored data subject to
dependent censoring using auxiliary variables. We had previously developed a nonparametric multiple imputa-
tion approach. The method used two working proportional hazards (PH) models, one for the event times and
the other for the censoring times, to define a nearest neighbor imputing risk set. This risk set was then used to
impute failure times for censored observations. Here, we adapt the method to the situation where the event and
censoring times follow accelerated failure time models and propose to use the Buckley—James estimator as the
two working models. Besides studying the performances of the proposed method, we also compare the proposed
method with two popular methods for handling dependent censoring through the use of auxiliary variables,
inverse probability of censoring weighted and parametric multiple imputation methods, to shed light on the use
of them. In a simulation study with time-independent auxiliary variables, we show that all approaches can reduce
bias due to dependent censoring. The proposed method is robust to misspecification of either one of the two
working models and their link function. This indicates that a working proportional hazards model is preferred
because it is more cumbersome to fit an accelerated failure time model. In contrast, the inverse probability of
censoring weighted method is not robust to misspecification of the link function of the censoring time model. The
parametric imputation methods rely on the specification of the event time model. The approaches are applied to
a prostate cancer dataset. Copyright © 2015 John Wiley & Sons, Ltd.

Keywords: accelerated failure time; auxiliary variables; Buckley—James estimator; Cox proportional hazards
model; multiple imputation; nearest neighbor
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1. Introduction

The event times for censored observations can be regarded as missing data [1]. Missing data methods such
as the data augmentation algorithm [2] and multiple imputation [3] have been proposed to handle censored
observations to recover lost information due to censoring [4—6] or to simplify doubly censored data into
right censored data [7]. Not only does censoring result in a loss of efficiency of estimators but also a
potential for bias too if the censoring mechanism is not independent of the event time mechanism. In many
studies, auxiliary variables predictive of the failure time often are also available, for example, Gleason
score and prostate-specific antigen (PSA) level in studies of prostate cancer. In this paper, our interest is
in estimating the marginal survival distribution when the data are subject to dependent censoring; thus,
the auxiliary variables will only be used to provide some additional information on endpoint occurrence
times for censored observations.

Incorporating auxiliary variables has the potential to reduce bias due to dependent censoring in esti-
mating the marginal survival distribution. A few statistical approaches have been proposed to handle
dependent censoring through the use of auxiliary variables. Of the existing approaches, the inverse prob-
ability of censoring weighted (IPCW) method [8], where the weight is derived from a model for the
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censoring times with auxiliary variables as the covariates, and parametric multiple imputation (PMI)
method, where a specific parametric model is used to impute event times for censored observations,
are two popular methods. Both approaches use a model to directly incorporate auxiliary variables into
estimation of the marginal survival function. To weaken the reliance on the model, we previously devel-
oped a nonparametric multiple imputation approach using auxiliary variables to recover information for
censored observations. The approach uses two working semiparametric models to indirectly incorporate
auxiliary variables into estimation of the marginal survival function. Specifically, we use two working Cox
proportional hazards (PH) models, one for the failure time and one for the censoring time. The parameter
estimates from these models are then used to give two risk scores for each subject, defined as the linear
combination of covariates. The method then selects an imputing risk set of observations for each censored
observation [9], which consists of subjects who survive longer than the censored subject and have simi-
lar risk scores as the censored subject. Then the event time was drawn from a nonparametric distribution
derived from this imputing risk set. The idea is similar to predictive mean matching [10] and propensity
score matching [11] in the missing data literature. By incorporating predictive auxiliary variables into
the multiple imputation method, one can both increase efficiency and reduce bias due to dependent cen-
soring. We also showed that conditions under which the nonparametric imputation enhanced estimate is
consistent and reproduces the weighted Kaplan—Meier estimator, a method for incorporating categorical
auxiliary variables. This approach has nice properties; however, the two working models assume that the
hazards are proportional.

When the PH assumption is questionable, the accelerated failure time (AFT) model is an alternative
to the Cox PH model. It is often characterized by specifying that the logarithm of a failure time be lin-
early related with covariates. In that sense, the AFT model is more appealing and easier to interpret than
the PH model because of its quite direct physical interpretation [12]. Based on how the AFT model is
often characterized, one would use conventional linear regression methods to perform estimation. How-
ever, often, there are censored observations, which complicate the estimation. One popular approach to
deal with censored observations in estimation of the AFT model is the Buckley—James method [13, 14],
which is an iterative method based on the expectation-maximization (EM) algorithm. The estimation of
the Buckley—James method can be highly unstable, especially in a situation with a small sample size.
Also, the estimation of its variance involves the density and the derivative of the density of an unknown
distribution [14].

In this paper, we adapt our nonparametric multiple imputation approach to handle the case of the data
from an AFT model when the goal is estimating the marginal survival function. Specifically, we propose
to use two Buckley—James estimators, one for the failure time and one for the censoring time, to derive
two risk scores to select an imputing risk set for each censored observation. The two Buckley—James
estimators are only used to derive two risk scores to select an imputing risk set. Hence, the approach
is expected to be less affected by unstable estimation, and it is not required to estimate the variance of
the Buckley—James estimator. In this paper, not only will we study the performances of the proposed
multiple imputation approaches but also will compare their performances with these two existing popular
approaches, [IPCW and PMI, and, furthermore, shed light on the use of IPCW and PMI approaches when
the true model for the event time is from an AFT model.

This paper is organized as follows. In Section 2, we review estimation for the AFT model and the rela-
tionship between PH and AFT models. In Section 3, we briefly describe the IPCW and the PMI methods.
In Section 4, we describe multiple imputation procedures and discuss their properties. In Section 5, we
apply the techniques to data from a prostate cancer study. In Section 6, we give results from a simulation
study. A discussion follows in Section 7.

2. Estimation for the accelerated failure time model

Let T denote the failure time, C denote the censoring time, X = min(T,C),6 = I(T < C), and 7T =
(Z,,Z,, ...,Z)) denote the time-independent auxiliary variables. Assume that there are n independent
observations of X, 6, and Z.

2.1. Buckley—James estimator

Under the AFT model, one can specify log(T) = ay+a’ Z+cW to study the relationship between T and Z,
where a” = (ay, ..., a,), o > 0 are unknown parameters and W has density f(w) and distribution function
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F(w). Without censoring, the ordinary least square (OLS) method can be performed on the logarithm of
T to estimate a; and a by minimizing n~' ¥ [log(T}) — (ay + ocTZ)]2 with respect to a, and a. With
censoring, the OLS method cannot be performed directly because log(T) is unobserved for censored
observations. The Buckley—James estimator [13, 14] has been proposed to handle censored observations
by adapting the OLS method. The method iterates between replacing each censored log(T) with the
expected value of log(T) conditional on the current parameter estimate, censoring indicator, and Z (i.e.,
the E step) and then performing the OLS method on the ‘complete’ data (i.e., the M step). It has been
shown that it is difficult to derive the variance of the Buckley—James estimator, and the estimation can
be unstable. However, we only use the Buckley—James estimator to derive risk scores (defined as a’Z)
to select an imputing set for each censored observation, therefore, we do not need to derive the variance.
Specifically, in this paper, we propose to use two Buckley—James estimators, one for the failure time and
one for the censoring time, only to summarize the auxiliary variables into two risk scores.

2.2. Relationship between Cox proportional hazards and accelerated failure time models

In practice, often, people use a PH model to study the relationship between 7" and Z regardless of the
underlying distribution of 7. In other words, the hazard function given Z is specified as A(t; Z) = lo(t)eﬂTZ ,
where g7 = (B, ..., B,) is a vector of regression coefficients and 4,(¢) is the unspecified baseline hazard
function. The regression coefficients f can be estimated based on the partial likelihood. There are some
known relationships between the AFT and PH models. Specifically, when the AFT model has the extreme
value distribution, the partial likelihood of the PH model estimates the parameter f = ¢~ . In addition,
based on first-order approximations, several studies [15—17] have shown that the relative importance of
the covariates derived from the PH model remains unchanged approximately when the true model is an
AFT model. The relative importance of the covariates is measured using the ratios of the estimated regres-
sion coefficients to the estimated regression coefficient of a reference covariate. This is equivalent to the
coefficients from the two models being the same up to an unknown scale factor. In symbols, the prop-
erty is that a;/||a|| = B;/|||l.j = 1,...,p. A consequence of this property is that the rank order of the
estimated regression coefficients from a PH model should be the same as the rank order of the estimated
regression coefficients of the AFT model. In practice, with finite samples that introduce uncertainty in to
the estimates, and because the result is based on an approximation, the relative importance from the two
estimated models will not be exactly the same, but it can be expected to be similar. Because on this prop-
erty of preserving the relative importance, PH models can be expected to produce good estimates of the
risk scores even if the true models are AFT models. Thus, if two subjects have similar risk scores under
one model, they will very likely have similar risk scores under the other model. Therefore, the nonpara-
metric multiple imputation approach based on two working PH models is expected to produce similar
survival estimates as the imputation method based on the two working Buckley—James estimators when
the true models are the AFT models.

3. Alternative methods

3.1. Inverse probability of censoring weighted method

In survival analysis, the IPCW method [8] is a popular way to correct potential bias due to dependent
censoring. Specifically, the IPCW method uses the auxiliary variables Z to derive censoring weights and
then incorporates the weights into estimation. The weights are derived from a regression model for the
censoring time. Once the weights are estimated, the expression of the point estimator for the marginal
6iWi(Xi)
T oW )
where Y(u) = I(X > u) is the at-risk indicator and Wi(Xi) = k?(Xi) / IA(iZ(Xi) is the subject-specific weight
at time X; for subject i. k? (X;) 1s the usual Kaplan—Meier estimator of the probability being uncensored by
time X, and IA(ZZ (X;) is the conditional probability of being uncensored by time X; given Z; derived from a
model for censoring time using the auxiliary variables Z as the covariates. When a Cox PH model is used
for the censoring time, the expressions for the standard errors of the IPCW method involve complicated
formulas and can be found in the appendix of [8]. Besides using a PH model to derive the censoring
weights (denoted as IPCW ), we will also use a specific parametric AFT model (a lognormal (denoted
as IPCW . 0,.0ma) OF log-logistic (denoted as IPCW ,,,.;.-) model) to derive the censoring weights. The
standard error formulas in [8] are only for the censoring weights derived from a PH model. When the

survival rate at time ¢ [8, Equation 10] can be specified as follows: S‘(t) =11 (i X,<1)
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censoring weights are derived from an AFT model, the estimate of the standard error is derived from 500
bootstrap samples. When the censoring time model is indeed an AFT model, then IPCW using the AFT
model to derive the weights is expected to perform well. In this paper, we will study their performances
and compare them with the proposed imputation methods in simulation when the true censoring time
model is from an AFT model.

3.2. Parametric multiple imputation

In this method, a parametric AFT model is fit to a bootstrap sample of the event time data, with the
auxiliary variables as covariates. Based on the parameter estimates derived from the bootstrap sample,
the residual time distribution is calculated for each censored observation in the original sample. An event
time is then imputed for each censored case in the original sample by drawing from this residual time
distribution [18]. The procedure is repeated M times. A Kaplan—Meier estimator is obtained from each
completed dataset. The final estimates and standard errors are obtained from the results of the M analyses
using the standard combining rules for multiple imputation.

4. Nonparametric multiple imputation

To conduct nonparametric multiple imputation, for each censored observation, we seek an imputing risk
set consisting of subjects who survive longer than the censored subject and have similar risk scores as
the censored subject. We describe the imputation procedures in the following four steps.

4.1. Imputation procedures

Step 1. Estimate the two risk scores on a bootstrap sample
To define each imputing risk set, we first reduce the auxiliary variables to two scalar indices (risk
scores), which provide an indicator of an individual’s risk of failure and censoring. This strategy
summarizes the multidimensional structure of the auxiliary variables into a two-dimensional sum-
mary. The hope is that this two-dimensional summary contains most, if not all, of the information
about the future event and censoring times. Here, we assume that the data arise from an AFT model.
Hence, we propose to use two Buckley—James estimators, one for the failure time and one for the
censoring time, to derive two risk scores, summarizing the associations between the auxiliary vari-
ables and the failure and censoring times. Two Buckley—James estimators will be derived on a
nonparametric bootstrap sample [19] of the original dataset to incorporate the uncertainty of param-
eter estimates from the working models. This step results in proper multiple imputation ([20] and
references therein). More specifically, let (X2, 52, ZB) denote the bootstrap sample. Two Buckley—
James estimators are conducted on the bootstrap sample to calculate two risk scores, Sf) =78 &f

(failure) and Sgg) =278 &g (censoring), for each individual in the bootstrap sample. We further stan-
dardize these scores by subtracting their sample mean and dividing by their standard deviation and
denote the standardized scores by S;(B) and SCC(B), respectively.

Combinations of these two risk scores will be studied to see to what extent a double robustness
property for model misspecification can be established [21]. In addition, two working PH models
will also be fit to the bootstrap sample to calculate the two risk scores to study whether a robust-
ness property for link function misspecification can be established for the nonparametric multiple
imputation method [15-17].

Step 2. Calculate the distance between subjects
For a censored subject j in the original dataset with covariate values Z;, two risk scores are derived
using the regression coefficient estimates obtained from the bootstrap sample (i.e., S;(j) = Zj&?
and S-() = Zjag) and then standardized by subtracting the sample mean of the correspond-
ing bootstrap sample risk scores and dividing by the standard deviation of the corresponding
bootstrap sample risk scores, respectively (denoted as S7.(j) and S¢.(j)). The distance between sub-

ject j in the original dataset and subject k in the bootstrap sample is then defined as d(j,k) =

\/ Wy [SCT(]') — S;(k)]2 +w, [SCC(]') - S‘é(k)]z, where w; and w, are non-negative weights that sum
to 1. Non-zero weights for w, may be useful in reducing the bias resulting from model misspeci-
fication. Specifically, a small weight w, (e.g., 0.2) will result in incorporating the risk scores from
the censoring time model into defining a set of nearest neighbors for censored subjects. Based on
our previous study [9], we found that w; = 0.8 and w, = 0.2 gave reasonable results even when
the working failure time model is misspecified. Hence, we set w; = 0.8 and w, = 0.2 in this paper.
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Step 3. Define the imputing risk set
For each censored subject j, the distance derived in step 2 is then employed to define a set of nearest
neighbors. This neighborhood, R(j*, NN), consists of NN subjects who have longer survival time
than the censoring time of subject j and a small distance from the censored subject j. For example,
R(j*, NN = 10) consists of 10 subjects, including both censored and uncensored subjects, with the
10 nearest distances from subject j among those who have longer survival time than the censoring
time for subject j. When the number of individuals still at risk is less than NN, then they are all
included in the imputing risk set. We previously studied NN in the range of 5 to 50 and found that
NN = 10 gave the most reasonable results in terms of having the minimum mean square error [9].
Hence, in this paper, we set NN = 10.

Step 4. Impute a value from the imputing risk set
After the imputing risk set R(j*, NN) is defined, the Kaplan—-Meier imputation (KMI) scheme devel-
oped in [6] and briefly described in the succeeding text can be easily used. The KMI method draws
an event time from a KM estimator of the distribution of failure times based on the imputing risk
set. Thus, the procedure imputes only observed failure times unless the longest time in the imputing
risk set is censored, in which case, some imputed times may include this censored time. Specifi-
cally, for each censored time f,a survival curve, 3' i+ (1), is estimated from among those individuals in
R(j*, NN). Then the KMI method imputes a value t]’.‘ by drawing at random from the corresponding

estimated distribution function 1 — S’j+ (t). The KMI method using two Buckley—James estimators
to derive the risk scores is denoted as KMI;. The KMI method using two PH models to derive the
risk scores is denoted as KMIp;.
Step 5. Repeat steps 1 to 4 independently M times

Each of the M imputed datasets is based on a different bootstrap samples. Once the M multi-
ply imputed datasets are obtained, we carry out the multiple imputation (MI) analysis procedure
established in [3]. Specifically, for our purposes, Kaplan—-Meier estimation of the marginal sur-
vival distribution is performed on the M imputed datasets. The final estimate of S(f) (denoted as
SM(1))is the average of the M Kaplan—Meier estimates (i.e., S(1)), and the final variance (denoted as
var[S™ (1)) is the sum of the sample variance (denoted as B) of the M Kaplan—Meier estimates and
the average (denoted as U) of the M variance estimates of the Kaplan—Meier estimator. The quan-

tity [S(r) — S()1/ \/ var[8M(r)] approximately follows a 7 distribution with a degree of freedom
v=M—1)%[1+{U % M/(M+ 1)}/B]? [3]. We use a value of 10 or higher for M.

4.2. Properties of the proposed multiple imputation approach

We have previously shown in large samples that by conditioning on the two risk scores, a situation of
independent censoring can be induced within each imputing risk set if one of the two working models is
correctly specified [9]. Based on this property, we have further shown that the proposed KMI approach has
a double robustness property: if one of the two working models is correctly specified, then the estimate
derived from the multiple imputation method is consistent. In addition, based on the relationship between
PH and AFT models, we expect that the KMI method has a second robustness property. Specifically, if
one of the two true models is from the AFT model family, then fitting two PH models still gives good
estimates of the regression coefficients [15-17]. Because it is only the regression coefficients, and not the
link function that is used in defining the imputing risk set, the KMI method is robust to misspecification of
the link function. The aforementioned properties of the KMI method apply in large sample conditions. In
small sample size situations, this nearest-neighborhood approach could produce biased survival estimates
due to the lack of availability of suitable donor observations even if one of the two working models is
correctly specified, especially when the failure time model is misspecified.

5. Illustration of the method on a prostate cancer dataset

We demonstrate the nonparametric multiple imputation approach using auxiliary variables on a prostate
cancer dataset, which consists of 503 patients with localized prostate cancer treated with external-beam
radiation therapy at the University of Michigan and affiliated institutions between July 1987 and Febru-
ary 2000. This dataset has been previously used to develop individualized prediction models of disease
progression using serial PSA [22-24] and to develop a weighted Kaplan—Meier approach to adjust for
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dependent censoring using linear combinations of prognostic variables where the linear combination is
categorized to define risk groups, and the final Kaplan—Meier estimate is the weighted average of the
Kaplan—-Meier estimates from all of the risk groups [25].

There are several variables collected at baseline, including age, Gleason score, PSA, T stage, and
total radiation dose. T stage, PSA, and Gleason score are well-known prognostic variables of prostate
cancer. In addition, age and total radiation dose are expected to be predictive of the patient’s survival or
censoring time. In this paper, we treat those five variables as the auxiliary variables for estimating the
distribution of recurrence/prostate cancer-free survival. To assess the PH assumption, time-dependent
variables consisting of an interaction between the auxiliary variables and log(time) are included. Non-PH
are detected for age and Gleason score with a p-value of 0.04 and 0.02, respectively.

To demonstrate the MI approach when potential non-PH exist, baseline PSA value, age, Gleason
score, total radiation dose, and T stage are treated as time-independent covariates in the two working
Buckley—James estimators and two working PH models. The results for estimation of the two working
Buckley—James estimators and PH models are provided in Table I. Based on the two working Buckley—
James estimators, all of the five auxiliary variables are significantly associated with failure time. Age,
Gleason score, T stage, and total radiation dose are significantly associated with censoring time. Based
on the two working PH models, Gleason score, T stage, and total radiation dose are significantly associ-
ated with failure time. All of the five auxiliary variables are significantly associated with censoring time.
Even though the Buckley—James estimators pick up the significant covariates slightly different from the
PH models (this could be due to unstable estimates of the standard errors for Buckley—James estimators),
they show similar relative importance of the covariates as the PH models, as shown in the relative impor-
tance columns in the table. Specifically, negative/positive estimates (shorter/longer survival time) of the
regression coefficients for Buckley—James estimators always correspond to positive/negative estimates
(higher/lower hazard) of the regression coefficients for the PH models, the rank order of the estimated
regression coefficient remains unchanged, and the ratio of regression coefficients is quite similar.

The risk scores derived from the two working Buckley—James estimators and the two working PH
models, respectively, are used to calculate the distance between subjects and then to select the imputing
risk set for each censored observation. The two risk scores derived from the two Buckley—James estima-
tors are highly correlated with a Spearman correlation coefficient of —0.59. The two risk scores derived
from the two PH models are also highly correlated with a Spearman correlation coefficient of —0.77.
Based on principal component analysis, about 90% of variation of the two risk scores derived from both
the Buckley—James estimators and the PH models is explained by the first principal component.

The results for estimating the recurrence-free probability are provided in Table II and Figure 1. Table IT
displays selected estimates from the partially observed (PO) analysis, which is the Kaplan—Meier esti-
mation based on the observed censored event time data, IPCW pyy, IPCW 010,00, KMIg;, and KM,

Table I. Data analysis: estimation of two working Cox PH models.
Failure time model Censoring time model
Covariates  Estimate SE p-value  Rel-Import Estimate SE p-value  Rel-Import
Cox PH model
Age -0.024  0.0170 0.15 -0.02 0.031  0.0078 <0.01 —-0.05
Log(PSA) 0.173  0.1267 0.17 0.13 -0.115  0.0536 0.03 0.17
Gleason 0.405  0.1037 <0.001 0.30 0.092  0.0494 0.06 -0.14
T stage 1.355 0.2184 <0.001 1.00 -0.679  0.0849 <0.001 1.00
Total dose  —0.111  0.0300 <0.001 —0.08 0.176  0.0141 <0.001 -0.26
Buckley—James estimators

Age 0.024 0.012 0.05 -0.02 —0.011 0.004  <0.01 —-0.03
Log(PSA) —-0.198  0.090 0.03 0.20 0.015 0.030 0.61 0.05
Gleason -0.360  0.083 <0.001 0.34 —0.066 0.025 0.01 -0.23
T stage -1.062  0.198 <0.001 1.00 0.286 0.047  <0.001 1.00
Total dose 0.050 0.022 0.02 —-0.05 —-0.073 0.006  <0.001 —-0.26

Rel-Import denotes coefficient estimate relative to T stage coefficient.
PH, proportional hazards; PSA, prostate-specific antigen; SE, standard error.

Copyright © 2015 John Wiley & Sons, Ltd.
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Table II. Data analysis: estimation of recurrence-free probability at 5 and 10 years.
t =5 years t =10 years

Method" S SE® S SE®

PO 0.852 0.018 0.742 0.029
KMlI,, 0.863 0.017 0.766 0.030
KMlI, 0.863 0.016 0.766 0.029
IPCW o 0.869 0.013 0.763 0.023
IPCW,y, 0.868 0.016 0.770 0.028
PML,0ma1 0.866 0.016 0.748 0.027
PMI,,. 0.864 0.016 0.769 0.024

IPCW (Lognormal): a lognormal model is fitted to derive the censoring weights.
IPCW(PH): a PH model is fitted to derive the censoring weights.

PMI(Lognormal): a lognormal model is fitted to impute residual lifetime.

PMI(Weibull): a Weibull model is fitted to impute residual lifetime.

KMI(BJ): two Buckley—James estimators are used to define imputing risk sets.

KMI(PH): two PH models are fitted to define imputing risk sets.

PO, partially observed; KMI, Kaplan—Meier imputation; IPCW, inverse probability of cen-
soring weighted; PMI, parametric multiple imputation.

*Estimated standard error.

"PO: KM estimates derived from the observed censored data.
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Figure 1. Prostate cancer study: recurrence-free curves derived from the methods considered in this paper. PO:

KM estimates are derived from the observed censored data. IPCW (Lognormal): a lognormal model is fitted to

derive the censoring weights. [IPCW(PH): a PH model is fitted to derive the censoring weights. PMI(Lognormal):

alognormal model is fitted to impute residual lifetime. PMI(Weibull): a Weibull model is fitted to impute residual

lifetime. KMI(BJ): two Buckley—James estimators are derived to define imputing risk sets. KMI(PH): two PH
models are fitted to define imputing risk sets.

methods. In addition, two PMI methods (PMI,,,,0ma @nd PMIy,.,.,,), Where a parametric model (log-
normal or Weibull model) is fitted to the observed data to impute residual life times for each censored
observation, are also performed. KMI; and KMI,; methods, as well as both PMIs and both IPCW
methods, produce slightly higher estimated survival at both 5 and 10 years and slightly lower associated
estimated standard errors than the PO analysis at 5 years. Both IPCW methods produce slightly greater
survival estimates than the two KMI methods especially at the tail. KMI; and KMI, produce almost
identical results for both survival and associated standard error estimates. Figure 1 displays the estimated
survival curves for all of the aforementioned methods. The PMI,,,,.0,ma1s PMIyeip, IPCW, KM, and
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KMI,; methods consistently produce slightly higher estimated survival compared with the PO analysis,
especially the [IPCW methods. This indicates that the [PCW and KMI methods both have potential to
reduce bias due to dependent censoring.

6. Simulation study

We perform several simulation studies to investigate the properties of the KMI, IPCW, and PMI methods
when failure and censoring times are from AFT models, and the quantity of interest is the marginal
survival distribution of the event time. We consider a situation with multiple time-independent prognostic
covariates and dependent censoring. We investigate the effects of the magnitude of dependent censoring,
which is measured by Spearman correlation coefficient (p) between failure and censoring times, sample
size, misspecification of one of the two working models, and misspecification of the two link functions.
The simulation program is written in R and is available upon request.

For each of the 500 independent simulated datasets, there are five hypothetical auxiliary variables
(Z,, ..., Zs) independently generated from a U(0, 1) distribution. The true failure and censoring time mod-
els are from an AFT family, the failure time T is generated from a hypothetical AFT model conditional
on auxiliary variables, where log(T) = 0.10 — 2Z, + 0.5Z, — 2Z; + 2Z, + 2Z5 + residual. The censoring
time C is generated from a hypothetical AFT model, as well, where log(C) = 0.08 — 2.5Z, + 0.5Z, —
275 + 27, + 2Z5 + residual. The regression coefficients and residual distributions are selected to give
a censoring rate of approximately 50%. The residuals for log(T) and log(C) are generated either from
a Normal(0, 6%), where o is selected to control the correlation between failure and censoring times, or
from a logistic(0, 1) distribution.

For the ‘fully observed’ (FO) analysis, treated as the gold standard, we derive KM estimates for each
simulated dataset before any censoring is applied. For the ‘partially observed’ (PO) analysis, we derive
KM estimates from the observed censored data. The estimate of the standard error for both FO and PO
analyses is based on Greenwood’s formula. For the IPCW methods, all five auxiliary variables (Z,, ..., Zs)
are included in the PH and AFT models for the censoring time to derive the weights. For the PMI methods
(.., PMI00mmas PM Ly and PMI 0., an AFT model (lognormal/Weibull/log-logistic) with the
five auxiliary variables as covariates is fitted to each of the M bootstrap samples and then used to impute
residual times for each censored observation. For the KMI;; method, when both working Buckley—
James estimators are correctly specified (i.e., including all five auxiliary variables in both estimators), it
is denoted by KMl ;55. When the working Buckley—James estimator for failure time is correctly speci-
fied and the working Buckley—James estimator for censoring time is misspecified (i.e., by only including
Z,,Z, and Z; in the model), it is denoted by KMI,s;. When the working Buckley—James estimator for
failure time is misspecified and the working Buckley—James estimator for censoring time is correctly
specified, it is denoted by KMI;55. For the KMI,,;; method, the same inclusion of covariates as for KMI;
is considered, and is denoted by KMIpy;s5, KMIpy 55, and KMIpg35. All three KMIp,; estimators are con-
sidered as misspecified even if both working PH models include all five auxiliary variables in the models
(i.e., KMIpys5) because the true models are not PH models.

The results are provided in Tables III-V. The FO analysis, which is the gold standard method, targets
the true values in all situations and produces coverage rates comparable with the nominal level, 95%. The
PO analysis as expected produces biased survival estimates in all situations and has a lower coverage rate.

In all situations, both KMI; and KMI,; methods produce reasonable survival estimates and coverage
rates, for KMIp;ss and KMIpyss, that is, when both working models include all five auxiliary vari-
ables, and adequate performance if covariates are omitted. For both weak (Tables III and V) and strong
(Table IV ) dependent censoring, when the working Buckley—James estimator or PH model for the failure
time only includes the first three auxiliary variables (i.e., KMl ;35 and KMIp35), the KMI methods have
a larger bias. KMI; and KMI,, methods produce almost identical survival estimates and the associated
standard error estimates. Their bias increases with the correlation between the failure and censoring times
but decreases with sample size in all situations.

The performance of the IPCW method depends on whether a correct model is used to derive the censor-
ing weights and the correlation between the failure and censoring times (i.e., the magnitude of dependent
censoring). In all situations, when a correct censoring time model is used to derive the weights (i.e.,
IPCW | enormar 10 Tables 1T and IV and IPCW /54,5 in Table V), IPCW produces survival estimates
almost identical to the FO analysis and the coverage rates comparable with the nominal level. When a
wrong censoring time model is used to derive the weights (i.e., IPCW ) and the correlation between fail-
ure and censoring times is weak (Tables III and V), IPCW produces survival estimates very close to the
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Table III. Monte Carlo results for the marginal survival estimate at the median and 75th percentile survival
times, where log(T) = 0.10 — 2Z, + 0.5Z, — 27, + 27, + 2Zs + Normal(0, 2%) and log(C) = 0.08 — 2.5Z, +
0.5Z, — 2Z; + 2Z, + 2Z5 + Normal(0, 2).
S(1) =0.50 S =0.25
Method® Est? Bias SDY SE° CR¢ Est Bias SD SE CR
N =200
FO 0.5035  0.0035 0.0367 0.0353 92.6 0.2510 0.0010 0.0288 0.0306 94.4
PO 0.5482  0.0482  0.0432 0.0420 78.4 0.3049 0.0549 0.0480 0.0475 78.8
KMlgss 0.5078  0.0078  0.0460 0.0446 93.2 0.2606 0.0106 0.0472 0.0464 94.8
KMlI,yss 0.5075  0.0075 0.0463 0.0446 944 0.2601 0.0101 0.0474 0.0461 934
KMl 53 0.5088  0.0088  0.0447 0.0438 934 0.2621 0.0121 0.0481 0.0459 942
KMl 53 0.5076  0.0076  0.0452 0.0441 93.0 0.2600 0.0100 0.0481 0.0458 93.8
KMl 35 0.5149  0.0149  0.0450 0.0442 91.8 0.2681 0.0181 0.0487 0.0463 934
KMl 35 0.5152 0.0152 0.0458 0.0440 91.8 0.2684 0.0184 0.0476 0.0465 92.6
IPCW e 05029 0.0029  0.0479  0.0445 922 02505  0.0005 0.0522 0.0505 93.0
IPCW,y, 0.5036  0.0036  0.0554 0.0440 894 0.2413 -0.0087 0.0663 0.0420 78.0
PMIoma 05014 00014 00380 0.0418 97.4 02490 —0.0010 0.0345 0.0404 97.0
PMIy,..0 0.5028  0.0028  0.0395 0.0423 964 0.2308 -0.0192 0.0349 0.0395 922
N =400

FO 0.5000 0.0000 0.0243 0.0250 96.2 0.2487 -0.0013 0.0218 0.0216 93.2
PO 0.5454 0.0454 0.0285 0.0298 68.0 0.3052 0.0552 0.0337 0.0337 62.6
KMl 55 0.5037 0.0037 0.0304 0.0315 96.8 0.2578 0.0078 0.0335 0.0329 944
KMl,yss 0.5035 0.0035 0.0309 0.0314 96.2 0.2574 0.0074  0.0333 0.0327 934
KMl 53 0.5050 0.0050 0.0307 0.0314 954 0.2587 0.0087 0.0338 0.0326 93.8
KMl,53 0.5045 0.0045 0.0304 0.0314 958 0.2575 0.0075 0.0335 0.0325 94.0
KMl 35 0.5086 0.0086 0.0309 0.0312 95.8 0.2623 0.0123  0.0343 0.0328 93.6
KMl 35 0.5088 0.0088 0.0305 0.0312 96.2 0.2623 0.0123  0.0338 0.0326 94.4
IPCW, e 05005 0.0005  0.0324 00321 958 02499 —0.0001 0.0365 0.0355 94.2
IPCW,y, 0.5016 0.0016 0.0376  0.0324 92.6 0.2393 -0.0107 0.0528 0.0333 79.0
PMIpoma 04999 —0.0001 0.0256 0.0296 97.6 02492 —0.0008 0.0249 0.0282 96.6
PMIy, .. 0.5019 0.0019  0.027 0.0299 97.6 0.2311 -0.0189 0.0264 0.0276 89.0

Censoring rate = 50%, the Spearman correlation coefficient between T and C (i.e.,p) = 0.27.

FO, fully observed; PO, partially observed; KMI, Kaplan—-Meier imputation; IPCW, inverse probability of censoring
weighted; PMI, parametric multiple imputation.

*Average of 500 point estimates.

"Empirical standard deviation.

¢Average estimated standard error.

dCoverage rate of 500 95% confidence intervals.

¢Subscripts BJ(PH) that indicate Buckley—James (PH) are used for the two working models. Subscripts n, m indicate
that n covariates are used in the working failure time model, and m covariates are used in the working censoring
time model.

FO analysis, and the bias decreases with sample size. However, when the correlation is strong (Table IV),
IPCW using a wrong censoring time model produces biased survival estimates, and the bias increases
with sample size. In all situations, when a wrong censoring time model is used, IPCW’s standard errors
tend to underestimate the variability of its survival estimates, and the underestimate is substantial when
the correlation between the failure and censoring times is strong. As a result, [IPCW’s coverage rates are
lower than the nominal level even when the correlation between the failure and censoring times is weak.
When the correlation between the failure and censoring times is weak (Tables III and V), [IPCW methods
have a bias slightly smaller than KMI methods. However, when the correlation between the failure and
censoring times is strong (Table IV), KMI methods have a bias smaller than IPCW. The KMI methods
are more efficient than the IPCW method as seen by the smaller SD and MSE values. In some scenarios,
the difference superiority of KMI over IPCW in efficiency is substantial.

The performance of the PMI method depends on whether a correct model is used to impute residual
times for each censored observation. In all situations, when a correct residual time model is used for
imputation (i.e., PMI, e in Tables Il and IV and PMI, ;i in Table V), PMI produces survival
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Table IV. Monte Carlo results for the marginal survival estimate at the median and 75th percentile survival
times, where log(T) = 0.10 — 2Z, + 0.5Z, — 27, + 27, + 2Zs + Normal(0, 0.8%) and log(C) = 0.08 — 2.5Z, +
0.5Z, — 2Z; + 2Z, + 2Z5 + Normal(0, 0.8?).
S(1) =0.50 S =0.25
Method Est? Bias SD SE° CR¢ Est Bias SD SE CR
N =200
FO 0.5033 0.0033  0.0347 0.0353 94.8 0.2518 0.0018 0.0296 0.0306 94.2
PO 0.6291 0.1291 0.0408 0.0397 13.6 0.3984 0.1484 0.0463 0.0464 112
KMl 55 0.5256 0.0256  0.0461 0.0441 90.6 0.2823 0.0323  0.0426 0.0426 91.2
KMlI,yss 0.5246 0.0246  0.0461 0.0442 90.8 0.2808 0.0308 0.0429 0.0424 91.0
KMl 53 0.5288 0.0288 0.0460 0.0436 894 0.2847 0.0347 0.0435 0.0425 884
KMl 53 0.5279 0.0279 0.0462 0.0435 89.6 0.2830 0.0330 0.0429 0.0419 88.8
KMl 35 0.5441 0.0441 0.0445 0.0430 81.0 0.3014 0.0514 0.0443 0.0429 804
KMl 35 0.5440 0.0440 0.0451 0.0433 814 0.3012 0.0512 0.0441 0.0432 80.6
IPCW, e 05060 0.0060 0.0587  0.0515 924 02599  0.0099 0.0516 0.0505 94.4
IPCW,y, 0.4850 —0.0150 0.0979 0.0436 70.8 0.2311 -0.0189 0.0795 0.0371 62.8
PMLoma 05023 0.0023  0.0355 0.0398 97.6 02519  0.0019 0.0302 0.0354 97.8
PMIy,. 0.4958 —0.0042 0.0362 0.0394 968 02397 —0.0103 0.0297 0.0340 96.6
N =400

FO 0.5003 0.0003 0.0255 0.0250 94.8 0.2490 -0.0010 0.0217 0.0216 93.8
PO 0.6275 0.1275 0.0284 0.0282 0.8  0.3958 0.1458 0.0321 0.0329 0.2
KMlss 0.5202 0.0202 0.0315 0.0315 89.6 0.2767 0.0267 0.0287 0.0304 89.8
KMlI,yss 0.5199 0.0199 0.0317 0.0317 90.2 0.2764 0.0264 0.0287 0.0305 89.8
KMl 53 0.5229 0.0229 0.0315 0.0313 88.2 0.2790 0.0290 0.0283 0.0302 88.2
KMl,s53 0.5226 0.0226  0.0318 0.0311 88.6 0.2779 0.0279  0.0284 0.0300 88.6
KMl 35 0.5324 0.0324 0.0315 0.0309 81.8 0.2895 0.0395 0.0294 0.0305 78.0
KMl 35 0.5329 0.0329 0.0317 0.0309 81.6 0.2895 0.0395 0.0295 0.0303 76.6
IPCW e 05029 0.0029  0.0409 0.0388 93.6 02529  0.0029 0.0384 0.0366 94.2
IPCW,, 0.4699 —0.0301 0.0953 0.0353 694 02071 -0.0429 0.0813 0.0283 55.8
PMLoma 05005 0.0004 0.0250 0.0281 97.6 02498 —0.0002 0.0219 0.0250 98.0
PMIy,.0.0 0.4941 —0.0059 0.0261 0.0277 94.6 0.2381 —-0.0119 0.0218 0.0241 942

Censoring rate = 51%, the Spearman correlation coefficient between 7 and C (i.e.,p) = 0.69.

FO, fully observed; PO, partially observed; KMI, Kaplan—-Meier imputation; IPCW, inverse probability of censoring
weighted; PMI, parametric multiple imputation.

*Average of 500 point estimates.

"Empirical standard deviation.

¢Average estimated standard error.

dCoverage rate of 500 95% confidence intervals.

estimates almost identical to the FO analysis. The coverage rates are slightly higher than the nominal
level due to over-estimation of the variability of its survival estimates. In all situations, when a wrong
residual time model is used for imputation (i.e., PMIy,;,,,,), PMI produces survival estimates very close
to the FO analysis at the median survival time. However, PMI produces biased survival estimates at
the 75th percentile survival time. When the correlation between the failure and censoring times is high
(Table IV), PMI methods have a bias smaller than KMI methods at both median and 75th percentile
survival times. When the correlation between the failure and censoring times is weak (Tables III and V),
PMI methods using a wrong residual time model could produce a bias slightly larger but comparable
with KMI methods at the 75th percentile survival time, especially when the sample size is equal to 400.
In all situations, PMI methods have a smaller mean squared error estimate than KMI methods.

In simulation results not shown, we assessed the properties of the [IPCW and PMI methods, which only
used the first three auxiliary variables. We found that this substantially increased the bias, and that the
standard error estimates were poor for the IPCW method.

In summary, all methods reduced the bias of the standard PO analysis, but the amount of the remain-
ing bias, the efficiency, and the validity of the estimated standard errors varied between methods. The
performance of the IPCW method depends on whether a correct censoring time model is used to derive
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Table V. Monte Carlo results for Monte Carlo results for the marginal survival estimate at the median and
75™ percentile survival times, where log(T) = 0.10 — 2Z, + 0.5Z, — 2Z; + 2Z, + 2Z5 + logistic(0, 1) and
log(C) = 0.08 —2.5Z, + 0.5Z, — 2Z; + 2Z, + 2Z5 + logistic(0, 1).
S() =0.50 S() =0.25

Method Est? Bias SDP SE° CR¢ Est Bias SD SE CR

N =200
FO 0.5011 0.0011 0.0360 0.0353 934 0.2529 0.0029 0.0314 0.0306 92.6
PO 0.5594  0.0594 0.0422 0.0416 70.6 0.3222 0.0722  0.0499 0.0472 68.6
KMl 55 0.5092  0.0092 0.0449 0.0443 924 0.2658 0.0158 0.0488 0.0460 91.8
KMlI,s5 0.5085  0.0085 0.0445 0.0447 944 0.2642 0.0142  0.0479 0.0460 92.2
KMlIs3 0.5113 0.0113 0.0443 0.0441 93.0 0.2676 0.0176  0.0487 0.0461 91.6
KMl 53 0.5099  0.0099  0.0447 0.0442 92.8 0.2649 0.0149  0.0490 0.0455 91.8
KMl 5 0.5171 0.0171 0.0448 0.0440 89.8 0.2743 0.0243  0.0488 0.0458 90.6
KMlI,35 0.5173 0.0173 0.0445 0.0437 91.8 0.2742 0.0242  0.0489 0.0458 89.0
IPCW e 05020 0.0020  0.0475 00452 924 02579  0.0079 0.0536 0.0498 92.8
IPCW 0.5030  0.0030 0.0532 0.0440 87.4 0.2508 0.0008 0.0695 0.0418 77.4
PMI,, e 0-5013  0.0013  0.0372 0.0417 96.6 02526  0.0026 0.0355 0.0396 96.6
PMIy,000 0.5023  0.0023  0.0391 0.0418 95.8 0.2361 -0.0139 0.0372 0.0389 93.6

N =400
FO 0.5003 0.0003 0.0244 0.0250 95.8 0.2505 0.0005 0.0208 0.0216 95.8
PO 0.5571 0.0571 0.0286 0.0295 51.2 0.3168 0.0668 0.0323 0.0334 48.0
KMl 55 0.5037 0.0037 0.0310 0.0317 94.6 0.2588 0.0088 0.0307 0.0323 954
KMl,s5 0.5029 0.0029 0.0310 0.0317 95.2 0.2578 0.0078  0.0309 0.0320 95.0
KMlIgs; 0.5048 0.0048 0.0310 0.0315 954 0.2595 0.0095 0.0308 0.0319 94.8
KMlI, 53 0.5036 0.0036 0.0310 0.0314 944 0.2583 0.0083  0.0309 0.0316 95.8
KMl 5 0.5092 0.0092 0.0308 0.0312 93.6 0.2642 0.0142  0.0315 0.0317 94.2
KMlI,35 0.5096 0.0096 0.0304 0.0312 944 0.2643 0.0143 0.0314 0.0321 92.8
IPCW e 04994 —0.0006  0.0328  0.0327 942 02501  0.0001 0.0339 0.0355 94.8
IPCW,, 0.5005 0.0005 0.0390 0.0328 904 0.2389 -0.0111 0.0557 0.0332 784
PMI,,peic 04988  —0.0012  0.0249 0.0293 98.8 02486 —0.0014 0.0225 0.0278 97.6
PMIy, .. 0.5008 0.0008 0.0265 0.0297 974 02336 -0.0164 0.0246 0.0275 924

Censoring rate = 50%, the Spearman correlation coefficient between T and C (i.e.,p) = 0.32.

FO, fully observed; PO, partially observed; KMI, Kaplan—-Meier imputation; IPCW, inverse probability of censoring
weighted; PMI, parametric multiple imputation.

*Average of 500 point estimates.

"Empirical standard deviation.

¢Average estimated standard error.

dCoverage rate of 500 95% confidence intervals.

the weights, especially when the dependent censoring is strong. In contrast, the KMI methods in which
two risk scores are derived from either two working Buckley—James estimators or two working PH
models can provide reasonable survival estimates for both weak and strong dependent censoring and is
robust to misspecification of either one of the two working models and is robust to misspecification of
the link functions in the failure time and censoring time models. The performance of the PMI approach
depends on whether a correct residual time model is used for imputation, especially in the tail area of the
survival curve.

7. Discussion

In this paper, we adapt the nonparametric multiple imputation approach we previously proposed to
recover information for censored observations and compare it with the two existing popular approaches
when the data are from AFT models. Based on the simulation results, the performance of the PMI method
depends on whether the failure time model is correctly specified, especially in the tail area. The perfor-
mance of the [IPCW method depends on whether the censoring time model is correctly specified. This
indicates that while performing the PMI and IPCW methods, one has to be sure that the correspond-
ing model is correct, and specifically requires all aspects of the models including the link functions and
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choice of covariates to be correct. In contrast, for the nonparametric multiple imputation approach, the
two working Buckley—James estimators or PH model estimators are only used to derive two risk scores to
select imputing risk sets for censored observations. Once the imputing risk sets are selected, nonparamet-
ric multiple imputation procedures are conducted on the risk sets. Therefore, this approach is expected
to have weak reliance on the two working models compared with the IPCW method. As expected, the
simulation study shows that the multiple imputation approaches based on two working Buckley—James
estimators and two working PH models produce similar results for both point survival estimates and the
associated standard error estimates when the data are from AFT models. This is because the PH model
preserves the relative importance of the covariates in the AFT model. This indicates that the multiple
imputation approach [9] we previously proposed is robust to misspecification of the link functions of
the two working PH models when the data are from AFT models. In other words, the multiple imputa-
tion approach in [9] has good properties even when the true model is from an AFT family. In addition,
the multiple imputation approach based on the two working Buckley—James estimators is also robust to
misspecification of either one of the two working estimators when the data are from AFT models. Even
though both the nonparametric multiple imputation approaches are robust to misspecification of either
one of the two working models and misspecification of the link functions, the nonparametric multiple
imputation approach based on two working PH models is preferred because in general, the estimation of
a PH model is easier and more stable.

Although the double robustness property of the KMI methods is attractive, simulation results do show
that in a situation with a finite sample size when the working Buckley—James or PH model estimators for
the failure time are misspecified, the bias is greater than when it is correctly specified. This suggests that
it is more important to try to find a reasonable working model for the failure time than the censoring time
because the main interest is in estimating the survival function for the failure time, not for the censoring
time. Hence, it is important to identify all of the prognostic variables for the failure time and evaluate
how prognostic they are.

The performances of the proposed nonparametric multiple imputation method will depend on the cen-
soring rate. Specifically, the censoring rate will affect the number of available ‘donors’ for each censored
observation, especially at the tail of the survival function. In a situation with a high censoring rate, say,
0.90, a much larger sample size is required for the proposed method to perform well, than a situation
with a low censoring rate.

In this paper, we assume that censoring only depends on the observed auxiliary variables. This assump-
tion is untestable. It is possible that censoring also depends on some unobserved auxiliary variables. This
indicates that informative censoring may still remain even conditioning on all of the observed auxiliary
variables. Sensitivity analysis [26, 27] would be a possible way to evaluate the impact of unobserved
auxiliary variables on the proposed multiple imputation approaches.
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