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ABSTRACT: Targeting of agricultural conservation practices to the most effective locations in a watershed can
promote wise use of conservation funds to protect surface waters from agricultural nonpoint source pollution. A
spatial optimization procedure using the Soil and Water Assessment Tool was used to target six widely used
conservation practices, namely no-tillage, cereal rye cover crops (CC), filter strips (FS), grassed waterways
(GW), created wetlands, and restored prairie habitats, in two west-central Indiana watersheds. These water-
sheds were small, fairly flat, extensively agricultural, and heavily subsurface tile-drained. The targeting
approach was also used to evaluate the model’s representation of conservation practices in cost and water qual-
ity improvement, defined as export of total nitrogen, total phosphorus, and sediment from cropped fields. FS,
GW, and habitats were the most effective at improving water quality, while CC and wetlands made the greatest
water quality improvement in lands with multiple existing conservation practices. Spatial optimization resulted
in similar cost-environmental benefit tradeoff curves for each watershed, with the greatest possible water qual-
ity improvement being a reduction in total pollutant loads by approximately 60%, with nitrogen reduced by
20-30%, phosphorus by 70%, and sediment by 80-90%.
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INTRODUCTION

Scientists and watershed managers have long
advocated a targeting approach to placement of con-
servation practices to protect surface waters from
agricultural pollution, and researchers continue to
refine these targeting approaches (e.g., Hession and
Shanholtz, 1988; Crumpton, 2001; Heathwaite et al.,
2005; Diebel et al., 2008, 2009; Tuppad et al., 2010).
Although widely recommended, targeting approaches

have rarely been used to allocate conservation funds
in the United States (U.S.).

Targeting of conservation has taken many forms,
from geospatial approaches to watershed-scale model-
ing. Generally the goal of individual targeting efforts
falls under one of three categories. First, targeting
“hotspots” in the watershed involves seeking to find
and protect with conservation the spatial locations
responsible for the greatest pollution. A second
approach is targeting certain conservation practices
to locations where a practice is most suitable. Finally,
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watershed modeling allows for targeting locations
that have the greatest potential for or efficiency of
water quality improvement. Past targeting studies
that used each of these approaches are summarized
below.

Many believe that water quality pollution is
derived from hotspots in the landscape due to a
combination of vulnerable lands and poor farm
management (Nowak et al., 2006). Targeting these
locations with conservation can protect farmland
and water quality. Targeting hotspots is not a new
idea; Hession and Shanholtz (1988) presented a tar-
geting method for limiting soil erosion from critical
source areas using a GIS methodology. More
recently, Tuppad et al. (2010) employed a watershed
modeling approach where subbasins with the great-
est sediment yield were prioritized for reduced till-
age, filter strips (FS), and terraces in a Kansas
watershed. Targeting conservation to hotspots is not
limited to water quality pollution, but rather can
extend to other conservation goals such as wildlife
habitat protection for species diversity (Brown
et al., 2009).

Many targeting efforts have started with a conser-
vation practice of interest and searched for the most
suitable locations for that practice. A good example of
this approach is locating suitable sites for wetland
creation. Numerous wetland targeting studies have
been conducted to strategically place constructed wet-
lands for greatest nitrate removal from agricultural
tile drainage (Crumpton, 2001; Tomer et al., 2003,
2013b; Kalcic et al., 2012). All have been geospatial
approaches, using data layers such as topography,
land use, and locations of drainage ditches to select
suitable wetland locations.

Watershed modeling combined with spatial opti-
mization is more complex than the other targeting
methods, but potentially capable of achieving the
most optimal conservation scenario for a watershed.
Veith et al. (2004) show that spatial optimization
can achieve lower cost scenarios than targeting.
Bekele and Nicklow (2005) performed a spatial opti-
mization of land use and tillage to minimize nitro-
gen, phosphorus, sediment, and cost. Their
optimization framework loosely coupled the Soil and
Water Assessment Tool (SWAT) (Arnold et al., 1998)
with Strength Pareto Evolutionary Algorithm 2
(SPEA2) (Zitzler et al., 2001), and had 12 land man-
agement options including no-tillage (NT) of corn
and soybeans, along with perennial crops of sor-
ghum, hay, pasture, and fescue grass. Many
researchers (Maringanti et al., 2009, 2011; Rodriguez
et al., 2011) have since employed spatial optimiza-
tion of conservation practices through the coupling
of SWAT and the nondominated sorting genetic algo-
rithm (NSGA-II) (Deb et al., 2002).

Spatial Optimization Using the SWAT

Interest has grown in spatial optimization of
numerous conservation practices using genetic algo-
rithms and SWAT (e.g., Bekele and Nicklow, 2005;
Maringanti et al., 2011) as greater computing
resources make such computationally intensive
approaches more feasible. SWAT is a watershed
model commonly used to simulate the impact of land
use and land management changes on water quantity
and water quality (Arnold et al., 1998). SWAT inputs
include soil types, land use data, elevation data, cli-
mate data, and land management data. Within the
model setup, a large watershed is delineated from
elevation data and optional locations of rivers and
streams. Several smaller subwatersheds are delin-
eated within the large watershed, and the smallest
spatial units are the hydrologic response units
(HRUs) within subwatersheds, which generally have
uniform soil type and land management.

Maringanti et al. (2009) further developed an opti-
mization method to identify locations for conservation
in agricultural lands. They optimized the locations of
FS, NT, and nutrient management in an Arkansas
watershed, minimizing cost as well as water quality
impairment through three separate indices for phos-
phorus, nitrogen, and sediment export from each
HRU. Maringanti et al. (2011) applied a similar
method to an Indiana watershed, and combined the
three water quality indices into one aggregate pollu-
tant value. Rodriguez et al. (2011) optimized the loca-
tions of pasture grazing practices, poultry litter
management, and FS in an Arkansas watershed.
These three studies used a best management practice
(BMP) tool to sever the dynamic linkage to the SWAT
model. The BMP tool uses SWAT runs to summarize
BMP effectiveness and cost by land use in a database
format. While this tool vastly decreases the computa-
tional time necessary for the optimization, it may not
lead to the most optimal solution at the watershed
scale. A dynamic linkage between SWAT and the
genetic algorithm would ensure the fitness of each
individual conservation placement scenario is calcu-
lated using SWAT.

Building Upon Current Approaches

Our approach builds upon these past studies in
four primary ways: (1) several conservation practices
are considered here that were not included in these
works, such as cover crops (CC) and constructed wet-
lands; (2) the dynamic linkage with the SWAT model
is retained so that cost and water quality are calcu-
lated directly from SWAT outputs, rather than BMP
tool estimates; (3) the HRUs are defined by field
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boundaries, which are more meaningful boundaries
for conservation programs; (4) SWAT’s new drainage
routine more accurately models the tile drainage com-
mon in Corn Belt watersheds. These distinctions are
detailed in the following sections.

Model Representation of Conservation Prac-
tices. SWAT is capable of simulating a wide range
of conservation practices commonly used in agricul-
tural lands, and methods for doing so are described
in Arabi et al. (2008) and Waidler et al. (2009). Simu-
lating these practices frequently requires adjusting
numerous parameters related to the design of a prac-
tice or its potential to impact hydrology and water
quality. However, parameterization of wetlands and
cereal rye CC, two common practices for water qual-
ity improvement in Indiana, were not discussed. This
study is the first we are aware of to include wetlands
and cereal rye in a spatial optimization using SWAT.

Estimating Costs of Conservation. Costs of
conservation are generally economic costs incurred by
the farmer for choosing to use conservation on his
land. These include the costs of practice installation
or initiation, annual maintenance, the opportunity
cost of lost agricultural land for structural practices,
and cost of foregone yield for field management prac-
tices. While costs can be calculated in several ways,
many spatial optimization approaches have estimated
the costs of conservation from Natural Resources
Conservation Service (NRCS) estimates and practice
standards (e.g., Maringanti et al., 2009; Rodriguez
et al., 2011). Costs are generally considered over
some practice lifetime, such as 5, 10, or 20 years.

Defining the HRU by Field Boundaries. In
the SWAT model, an HRU is a set of discrete land
areas with common land use, soil type, and slope
within a subwatershed. This method of HRU defini-
tion limits the applicability of the SWAT model to
optimization of conservation practices that are to be
placed within farm fields. Indeed, most conservation
efforts occur at the farm scale, as a result of a farm-
er’s and/or landowner’s decision. If optimization
results spread across multiple farm fields, multiple
farmers/landowners would need to agree to imple-
ment the practices in order to achieve an optimal
result. In our work HRUs are instead defined by field
boundaries (Kalcic et al., 2014). The primary advan-
tage of our approach is that conservation practices
are simulated to be implemented at the field scale, by
a single farmer, and results can be viewed at the field
scale for clarity in displaying results to farmers and
landowners as well. No other studies were found that
considered field boundaries in the placement of con-
servation practices for spatial optimization.

Accurately Modeling Tile-Drained Lands. Sub-
surface drainage is common in the poorly drained, fairly
flat farm fields that are characteristic of west-central
Indiana and much of the U.S. Corn Belt, and should be
included in watershed models and optimization on those
lands. Tiles permit drainage waters rich in nitrate to
flow rapidly toward drainage ditches and streams,
short-circuiting the biologically active upper soil layers,
and contributing considerable loads of nitrate to surface
waters (Hickey and Doran, 2004; Gentry et al., 2009).
Heavily tile-drained watersheds drastically alter
hydrology and nutrient export from agricultural lands.

It is critical to simulate tile drainage properly in
watersheds when estimating conservation practice
effectiveness. Many conservation practices will per-
form differently in tile-drained watersheds. Tile flows
will bypass filtering through vegetated buffer strips
and grassed waterways (GW), resulting in reduced
nitrate removal efficiencies. Wetlands are recom-
mended for placement in tile-drained watersheds as
one of the few practices capable of treating nitrate
from tile drains. Even the performance of NT and CC
may change as tiles allow for greater infiltration and
reduced surface runoff.

Moriasi et al. (2012, 2013) developed a physically
based method for simulating tile drainage in the
SWAT model. While simulating tile drainage had
been possible in SWAT previously using what we
refer to as the “original tile drainage routine” (Du
et al., 2005), this “new” method uses the Hooghoudt
and Kirkham tile drain equations that have been
used in the DRAINMOD model. Although expected to
be an improvement over the previous tile drain simu-
lation method, little research has been conducted to
evaluate the new method, and no other optimization
studies were found to consider it.

Goal of the Work

Our work serves to extend spatial optimization
with the SWAT model by including conservation
practices relevant to tile-drained agricultural lands,
defining HRUs by field boundaries, and simulta-
neously optimizing the placement of many conserva-
tion practices to determine the most efficient
conservation scenarios for two case study watersheds.

MATERIALS AND METHODS

Study Watersheds

Two watersheds in west-central Indiana, the Little
Pine (56 km2) and Little Wea Creek (45 km2) water-
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sheds, were used for this demonstration (Figure 1).
Land use is primarily agricultural in both water-
sheds, with 87-92% of the land maintained in corn
and soybean row crops, 5% in other agricultural
crops, and 3-7% is forested or low density urban.
Soils in both watersheds require artificial drainage
for optimal crop production; in Little Pine, 68% of
row crops have soils that are somewhat poorly,
poorly, or very poorly drained (majority in the some-
what poorly drained category), while in Little Wea
84% of row crops have poorly drained soils (majority
in the poorly drained category). Both watersheds are
flat or gently sloping, with an average slope of 1.2%
for Little Pine and 1.9% for Little Wea. Only 2% of
Little Pine’s lands and 8% of Little Wea’s exceed a
5% slope.

Model Setup. Tile drainage and HRU definition
were both notable deviations from most SWAT studies.
The SWAT model was set up using version 622, with
its new tile drainage routine activated. HRUs were
defined by field boundaries (Kalcic et al., 2014) so that
the optimization would consider each field separately

in placing conservation practices in the watershed.
Land use and soils were preprocessed in the shape of
farm fields, and a single slope class was used for slope
definition, so no threshold was used in SWAT HRU
definition. Instream water quality modeling, which is
based upon the QUAL2E model (Brown and Barnwell,
1987), was turned off for this modeling work, as many
others have done, though this had little effect on nutri-
ent and sediment loading.

Inputs to the SWAT model included a 10-m (one-
third arc second) resolution digital elevation model
(National Elevation Dataset, 2009), National Hydrogra-
phy Dataset high-resolution streams for burning in the
SWAT reach (National Hydrography Dataset, n.d.),
daily precipitation and minimum and maximum daily
temperatures (National Climate Data Center, n.d.),
land use data (National Agricultural Statistics Service
Cropland Data Layer, 2009), and soil data (Soil Survey
Geographic (SSURGO) Database, 2005). Watershed
delineation in the SWAT model resulted in fifteen sub-
watersheds in the Little Pine Creek watershed and
seven in the Little Wea Creek watershed. Dividing
HRUs by common land units resulted in 418 HRUs in
Little Pine, of which 320 were corn and soybean land
use, and 396 HRUs in Little Wea, of which 311 were
corn and soybeans.

Model Parameter Changes and Crop Manage-
ment. Crop management varies spatially based on
farm operator and land conditions, but in the absence
of field-scale information on crop management
assumptions must be made as to a generic crop man-
agement scheme in the study area. A management
file for agricultural lands planted in corn and soybean
was developed in conversation with farmers and local
agronomy experts, and is shown in Table 1.

Fertilizer application rates followed Extension rec-
ommendations (Vitosh et al., 1995) for the average
crop yields for Tippecanoe County, Indiana, during
the simulation dates of 2007-2012, which averaged
10.1 t/ha/yr (161 bu/acre/yr) for corn and 3.3 t/ha/yr
(49 bu/acre/yr) for soybeans (National Agricultural
Statistics Service County Level Data, n.d.). Extension
recommendations (Vitosh et al., 1995) for achieving
these crop yields resulted in an estimated application
rate of 181 kg/ha nitrogen and 49 kg/ha phosphorus.
The majority of nitrogen was assumed to be applied
primarily as anhydrous ammonia in the spring prior
to planting corn using injection beneath the soil sur-
face. Phosphorus fertilizer was applied broadcast and
subsequently incorporated into the soil once every
two years in the fall after soybean harvest. Common
forms of phosphorus fertilizer are DAP (di-ammonium
phosphate, 18-46-0), MAP (mono-ammonium phos-
phate, 11-52-0), or APP (ammonium polyphosphate,
11-37-0), which contain nitrogen meaning that addi-

FIGURE 1. Study Watersheds, Little Pine Creek Watershed (top),
and Little Wea Creek Watershed (bottom) Are Located
in West-Central Indiana. Watersheds are not located

as close together as shown.
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tional nitrogen was applied in the fall during phos-
phorus application.

Model Validation. After setting up the model
using local input information model parameters were
not calibrated because of the short period of record of
available measured data, which would not allow sepa-
rate calibration and validation periods. We used mea-
sured data to evaluate the fit of the model’s estimate of
streamflow and water quality. Streamflow data were
obtained from the U.S. Geological Survey (USGS,
2012) for two gaging stations, Little Pine Creek near
Montmorenci, Indiana (USGS 033356786) and Little
Wea Creek at South Raub, Indiana (USGS 03335673).
Weekly concentrations of nitrate, total phosphorus
(TP), and sediment were also gathered at the gaging
stations for a three-year period in 2009-2012 (Haas
et al., 2014a, b, c). Model simulation began with a
three-year warm-up period 2004-2006, followed by six
years simulation 2007-2012, chosen to cover 2009-

2012, the period for which measured water flow and
quality data were available (Haas et al., 2014a, b, c).

Hydrology was tested using standard statistics for
model fit, the correlation coefficient (R2) and the
Nash-Sutcliffe coefficient (ENS):

R2 ¼
Pn

i¼1ðOi � �OÞðPi � �PÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðOi � �OÞ2 Pn

i¼1ðPi � �PÞ2
q

2
64

3
75
2

ð1Þ

ENS ¼ 1�
Pn

i¼1ðOi � PiÞ2Pn
i¼1ðOi � �OÞ2 ð2Þ

In both equations, Oi is the observed value on a given
day (month for nitrate), Pi is the value predicted by
SWAT on a given day (month for nitrate), �O is the
average observed value, �P is the average predicted
value, and n is the number of days over which these

TABLE 1. Baseline Management and Parameters to Represent Watershed Characteristics.

Baseline Crop Management Operations Used for All Corn/Soybean HRUs (.mgt file)

Crop Date Operation Details

Corn October 10 prior to plant Phosphorus and associated nitrogen
application; broadcast and incorporated

49 kg P/ha from DAP/MAP/APP
15 kg N/ha from DAP/MAP/APP
100% applied to top 10 mm of soil

Corn October 14 prior to plant Chisel plow 30% mixing to a depth of 150 mm
Corn April 15 Offset disk plow 60% mixing to 100 mm depth
Corn April 22 Injected nitrogen application 181 kg N/ha from anhydrous ammonia

20% applied to top 10 mm of soil
Corn May 6 Planted
Corn October 14 Harvested
Soybean May 24 No-tillage planting 5% mixing to a depth of 25 mm
Soybean October 7 Harvested

Tile Drainage Parameters for All “Poorly Drained” Corn and Soybean HRUs (SSURGO Drainage Class “Very Poorly Drained,”
“Poorly Drained,” and “Somewhat Poorly Drained”)

Parameter Explanation Value

DDRAIN (mm) Drain depth; depth from soil surface to tile drains 1,000
GDRAIN (h) Drain tile lag time; time for water to travel from soil through drain to the reach 24
DEP_IMP for tile-drained (mm) Depth to impervious soil layer 1,200
ITDRN (flag) Flag to use new drainage routine 1
RE_BSN (mm) Effective drain radius 20
SDRAIN_BSN (mm) Distance between two tiles 20,000
DRAIN_CO_BSN (mm/day) Daily drainage coefficient 20
PC_BSN (mm/h) Pump capacity 0
LATKSATF_BSN Multiplication factor: ratio of lateral ksat to ksat from soils database 4
CN2 for tile-drained (value) Initial runoff curve number �20%

Other Parameters Altered to Better Represent Watershed Characteristics

Parameter Explanation Value

DEP_IMP for undrained (mm) Depth to impervious soil layer 3,000
SURLAG (days) Surface runoff lag coefficient 0.5

Note: HRUs, hydrologic response units; DAP, di-ammonium phosphate; MAP, mono-ammonium phosphate; APP, ammonium polyphosphate;
SSURGO, Soil Survey Geographic.
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values are compared. For both R2 and ENS, a value of
1 represents a perfect fit, and acceptable ranges for
these objective functions are R2 greater than 0.6, and
ENS greater than 0.50 (Engel et al., 2007). An annual
depth of flow was also used to determine how much
of the flow is simulated by the model.

Nitrate, TP, and sediment concentrations were
available on a near-weekly basis for the three-year
period of May 2009-2012, totaling 149-153 data points
for each analyte. Measured concentrations were con-
verted to loads using observed daily flows, and simu-
lated concentrations and loads were derived from
SWAT’s output.rch and output.hru output files. Daily
mean loads and standard deviations were calculated
at each watershed outlet, as well as monthly R2 and
ENS values. Instream water quality modeling was
turned on for a test, which showed that it made little
difference in daily loads, possibly because of the small
size of the watersheds and short length of reaches.

Implementing Conservation Practices in SWAT

Conservation practices were implemented in the
SWAT model based on existing guidance (Arabi et al.,
2008; Waidler et al., 2009). All conservation practice
parameters mentioned below are defined and
described in the SWAT model documentation (Neitsch
et al., 2009) as well as the Conservation Practice
Modeling Guide (Waidler et al., 2009).

Continuous NT. Continuous NT was imple-
mented in an HRU by removing the chisel plow and
disk plow before corn tillage operations and reducing
curve number by two points (Arabi et al., 2008). The
SWAT default NT operation has 5% mixing to a
25 mm depth at planting. Corn was NT planted on
May 6, and soybean management was unchanged.

Cover Crops. Cover crops were modeled as cereal
rye, a recommended CC for this region with parame-
ters available in the SWAT crop database. Cereal rye
was planted on October 15 after harvest of both corn
and soybean, and killed on April 15 prior to planting
corn or soybeans in the spring.

Filter Strips. Filter strips were installed at the
start of the warm-up period for the SWAT model runs
by setting the following in the .ops file: MGT_OP = 4
for FS, FILTER_I = 1 to flag on FS, FIL-
TER_RATIO = 40 to achieve 2.5% of field area, FIL-
TER_CON = 0.5 assuming 50% of the HRU drains to
the most concentrated 10% of the FS, and FIL-
TER_CH = 0 to indicate that none of the concen-
trated flow is fully channelized such that it would
bypass filtering effects of the FS.

Grassed Waterways. Grassed waterways were
installed at the start of the warm-up period. Parame-
ters that were altered in .ops and .mgt files included
MGT_OP = 7 to simulate GW in the HRU,
GWATI = 1 to flag on GW simulation, and GWATW =
10 to set the average width to 10 m.

Wetlands (W). In the SWAT model, headwater
wetlands are placed at the subwatershed scale, where
all those in a subwatershed are lumped into one wet-
land area, volume, and fraction of subwatershed’s
overland flows that are intercepted. However, the
spatial location of a wetland is within one or more
HRUs. Unlike the other practices, which can likely
be implemented in almost any cropped field, wetlands
may be limited in where they can be placed through-
out a watershed. For instance, they should be sized
according to their upland contributing areas, and a
crop field must be large enough to support a wetland
of that size. Topography to some extent dictates loca-
tions where they can be placed. Also, they should ide-
ally intercept significant flows, so that they remain
inundated throughout the year, to support wetland
vegetation as well as maximize nutrient removal.

The method for placing wetlands in the watersheds
loosely followed that of Kalcic et al. (2012). Potential
wetland outlets were identified using spatial layers of
flow accumulation (created during SWAT model
setup), locations of open streams (National Hydrogra-
phy Dataset, n.d.), HRU polygons (created during
SWAT setup), land use data (National Agricultural
Statistics Service Cropland Data Layer, 2009), and
orthophotography to further confirm what was
learned from the other layers (Indiana Framework
Data, 2015). Potential outlets satisfied the following
criteria: (1) they had large contributing areas
(roughly 0.2 km2 or greater, which is a tenth of the
criterion used by Kalcic et al., 2012), determined by
location along a major flow accumulation pathway in
the subwatershed; (2) they did not intercept an open
waterway; (3) wetlands would be located on cropland;
(4) wetlands would be sized at 1% of their contribut-
ing area; (5) surrounding buffers constituted an addi-
tional 3% of the contributing area.

To estimate the volume of each wetland, they
along with surrounding buffers were assumed to be
bowl-shaped. Wetlands were shaped as partial
spheres, with one meter depth and radius calculated
from a circular surface area with area 1% of the
upland contributing area. Surrounding buffers were
assumed to be partial cones, with the smaller radius
equivalent to that of the wetland, depth of 1.2 m, and
larger radius calculated from a circle with area 4% of
the upland contributing area.

Wetland creation was implemented in SWAT using
the .pnd files for each subwatershed where at least
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one was placed (Waidler et al., 2009). WET_FR, the
fraction of a subwatershed’s area that drains into
wetlands within that subwatershed, was calculated
as the wetland contributing area divided by the sub-
watershed area for each unique combination of wet-
lands in a subwatershed. WET_NSA, the normal
surface area of wetlands in a subwatershed, was the
sum of all wetland surface areas placed in a given
subwatershed. WET_NVOL, the volume of a wetland
filled to the normal level, was equal to the sum of the
volume of all wetlands placed in a subwatershed.
When wetlands are filled to maximum volumes, the
wetland surface area, WET_MXSA, and volume,
WET_MXVOL, were equal to the sum of wetland and
buffer surface areas and volumes, respectively.

The normal concentration of sediments in the
wetland, WET_NSED, was left at its default value.
Wetland hydraulic conductivity determines how
much seepage takes place in the wetland. Hydraulic
conductivities of all the soils in the watersheds
exceeded 2.6 mm/h, despite the presence of exten-
sive hydric soils, so this value was used as an
upper bound for wetland conductivity, WET_K, and
a final value of 2.0 mm/h was chosen. Phosphorus
settling rates, PSETLW, were not changed from
default values of 10 m/yr. Nitrogen settling rates,
NSETLW, however, were altered to 39 m/yr, based
on data analysis from a local wetland located
within the Little Pine watershed (McCahon, 2010).
Wetland nitrate removal was previously found to
compare fairly well to many Midwestern wetlands
and was the range of predictions from a model
developed by Crumpton et al. (2006) and used by
others (Kalcic et al., 2012; Tomer et al., 2013a) that
relates nitrate reductions to annual hydraulic load-
ing rates.

Habitats (H). Wildlife habitats were modeled
identically to FS, though they are assumed to be tall
grass prairie establishments located strategically to
intercept concentrated overland flows.

Objective Functions: Cost and Water Quality

Cost of conservation and associated water quality
improvement were used to compare conservation
practice scenarios against a baseline scenario and
as objective functions for the optimization. The
baseline scenario had the model parameter changes
and cropland management described above, but
included no additional conservation practices
because we had access to only a portion of existing
conservation practice data in the two watersheds,
which if used might have biased the optimization
results.

Cost of Conservation. Conservation practice
costs were estimated using cost data for FY2012 Indi-
ana Conservation Practices from the USDA NRCS
Field Office Technical Guide for the state of Indiana.
Conservation practice costs were calculated as a sum
of one-time costs, i.e., installation, annual costs, such
as maintenance, and foregone income due to yield
losses, as follows:

Cost
$

y

� �
¼Onetime costs $ð Þ

10y
þAnnual costs

$

y

� �

þForegone income
$

y

� � ð3Þ

Cost of foregone yield also utilized an estimate of
corn ($232/tonne) and soybean ($442/tonne) grain
price from Index Mundi commodity prices (http://
www.indexmundi.com) averaged over the five year
period 2008-2012. Average grain prices have risen
rapidly since 2007, and therefore, the cost of foregone
yield, while estimated from the most recent data, will
greatly overestimate the cost of conservation prior to
2007. Costs from the Field Office Technical Guide
and final costs used for each practice are summarized
in Table 2.

Water Quality Improvement. Three water qual-
ity indicators are particularly relevant to the inten-
sive agricultural land use in this region, as well as
the water quality goals for the Wabash River basin:
nitrogen, phosphorus, and sediment. Total nitrogen
(TN), TP, and sediment (Sed) loads can be calculated
using SWAT outputs at the HRU, subwatershed, and
basin scale. Because SWAT’s instream water quality
modeling was not used, and basin-level pollutant val-
ues closely matched HRU-level outputs, a Water
Quality Index was calculated at the watershed outlet.

The Water Quality Index was calculated as aver-
age, normalized water quality improvement over the
baseline scenario at the watershed outlet. Water
quality was calculated at the watershed outlet for
TN, TP, and Sed as a normalized value by dividing
by the pollutant load in the baseline simulation,
which had no conservation practices, over a period of
six years (2007-2012). Each water quality constituent
was given a weighting factor, W, where the sum of all
weights equals 1. These three weighted, normalized
values create the water quality index as follows:

WaterQualityIndex¼

WTN
TN

TNbaseline
þWTP

TP

TPbaseline
þWSed

Sed

Sedbaseline
ð4Þ

The index ranges from 0, indicating complete pol-
lutant removal in the watershed, to 1, indicating no
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water quality benefit from conservation. A value
greater than 1 would mean increased water quality
impairment. The baseline scenario would have a
Water Quality Index of 1, but other scenarios could
have values of 1 if they had no net improvement of
TN, TP, and Sed. In fact, many combinations of TN,
TP, and Sed could lead to similar Index values. We
chose to weight each constituent equally, so that
WTN ¼ WTP ¼ WSed ¼ 1

3, but a different weighting
approach could be used to focus the optimization
more on one or two of the factors.

Conservation Practice Scenarios

Conservation practice scenarios were used to eval-
uate the effectiveness of conservation practices in
the watershed, as well as initialize the first genera-
tion of the optimization. Many scenarios were con-
sidered, and two sets of scenarios were chosen:
one-at-a-time addition and one-at-a-time removal of
conservation practices. One-at-a-time addition was
chosen to rate the effectiveness of an individual con-
servation practice in the absence of any other con-
servation efforts. The best-performing single practice
should dominate optimization solutions seeking for
small water quality improvements at low cost, and
inclusion of these scenarios in the initial population
will allow the optimization to converge more quickly
on this “tail” of possible solutions. One-at-a-time
removal was chosen to identify the nutrient-reduc-
tion redundancy of a practice with other conserva-
tion practices. If one-at-a-time removal indicates
that a given practice is responsible for significant
nutrient or sediment reduction, even in the presence
of all other practices, that practice will likely be

present in high-cost and best water quality solu-
tions.

Each scenario for conservation in the watersheds
was run by setting all corn and soybean HRUs to one
conservation practice scheme and analyzing the out-
put at the scale of every HRU and each basin. One-
at-a-time addition for each conservation practice was
compared to a baseline scenario with no conservation
in any HRUs. One-at-a-time removal was compared
to a complete set of conservation practices in every
cropped HRU. All scenarios were compared based on
average annual pollutant loads, the Water Quality
Index, and cost over the baseline scenario. To test the
influence of tile drainage on conservation practice
effectiveness, all scenarios were run with the new tile
drainage approach, and also with the original tile
drainage approach and in the absence of tile drain-
age.

Genetic Algorithm Optimization Approach

Spatial optimization of conservation practices uti-
lized a genetic algorithm approach called the non-
dominated sorting genetic algorithm (NSGA II) (Deb
et al., 2002). The genetic algorithm seeks to deter-
mine the optimal tradeoff front that minimizes the
two objective functions. One-at-a-time addition and
removal scenarios were included in the initial popula-
tion in order to hasten the model convergence on the
optimal front. Each generation had 50 individual sce-
narios, which each had a genetic code of a set of con-
servation practices implemented in the watershed.
All six conservation practices could be placed simulta-
neously in each corn or soybean HRU, except for wet-
lands, which were only placed in allowable HRUs as

TABLE 2. Estimation of Costs Using the Field Office Technical Guide Itemized Costs for Conservation Practices,
Displayed as One-Time and Annual Costs over a 10-Year Period.

Category of Costs
Time-Scale
of Costs

No-Tillage Cover Crops Filter Strips Grassed Waterways Wetlands Habitats
$/ha $/ha $/ha $/ha $/ha $/ha

Materials One-time $0 $0 $356 $1,790 $1,048 $1,167
Annual $0 $109 $0 $0 $0 $0

Equipment,
installation and labor

One-time $271 $0 $59 $8,080 $5,977 $35
Annual $12 $54 $0 $0 $0 $0

Operation, maintenance
and replacement

Annual $0 $0 $12 $197 $0 $0

Acquisition of technical
knowledge

Annual $7 $0 $0 $0 $0 $0

Foregone income Annual Yield reduction was predicted by the SWAT model
Risk One-time $0 $0 $21 $0 $0 $60
Total One-time $271 $0 $415 $9,870 $7,024 $1,203

Annual $12 $163 $0 $0 $0 $0

Notes: SWAT, Soil and Water Assessment Tool.
*Costs that are crossed out were not considered to be calculated consistently across all practices and therefore were not used in the total costs
for the optimization.

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION JAWRA963

SPATIAL OPTIMIZATION OF SIX CONSERVATION PRACTICES USING SWAT IN TILE-DRAINED AGRICULTURAL WATERSHEDS



presented above. Scenarios that provided a better cost
and Water Quality Index than their peers were
selected to move to the next generation. Half of these
were crossed with each other, and similar to parents
creating offspring, a portion of their genetic code was
given to the offspring. All individual scenarios then
underwent mutation at low rates (0.001 chance of
mutation for each HRU). Spatial optimization took
place automatically through a code built in MATLAB
(The MathWorks Inc., 2012), using parallel comput-
ing to reduce the time of running the SWAT model
for each individual scenario. To plot final optimal
curves, 50 evenly spaced bins were created from high-
est cost to lowest cost solutions, and individuals with
the lowest Water Quality Index in each bin were
selected from all generations.

RESULTS AND DISCUSSION

Watershed Model Validation

Uncalibrated models have previously been shown
to have satisfactory hydrologic prediction (Srinivasan
et al., 2010), and this was the case in our work. Both
watersheds had fairly good prediction of daily flow at
the outlet for 2009-2012 period for which measured
data were available, especially considering the model
was not calibrated. Daily flows for Little Pine’s had
an R2 of 0.63 and ENS of 0.63, and for Little Wea had
an R2 of 0.60 and ENS of 0.56. Annual flow depth was
fairly close for both watersheds; Little Pine had
0.39 m/yr observed flow and 0.42 m/yr simulated,
while Little Wea’s annual flows were 0.45 m/yr
observed and 0.37 m/yr simulated. Tile drainage
accounted for 41% of annual flow in Little Pine and
55% of annual flow in Little Wea.

Average daily nitrate concentrations were within a
reasonable range, though somewhat elevated in Little
Wea and underpredicted in Little Pine (Table 3).
Model outputs showed that nitrate made up the
majority of TN in both model setups; in Little Pine,
95% of TN comes in the form of nitrate, while 88% of
TN in nitrate in Little Wea. Organic nitrogen made
up the remaining nitrogen loads. While most nitrogen
is transported in the nitrate form, tile drainage
serves as the conduit for the majority of nitrate: 91%
in Little Pine and 94% in Little Wea. Therefore, sim-
ulated nitrate loads are sensitive to drainage parame-
ters and the portion of flow traveling through tiles.
Standard deviations reveal that variation was greater
in the simulation than the measured samples
(Table 3), as the model tended to overestimate peak
nitrate loading. Gentry et al. (2009) demonstrated

that nitrate concentrations from heavily tile-drained
watersheds tended to decrease in peak flow events
through dilution with overland flow, and our mea-
sured data suggests the same, but at times our simu-
lation had elevated nitrate concentrations during
high flow events. We suspect the discrepancy may be
driven by the mineralization of nitrogen into nitrate
in SWAT.

Phosphorus and sediment loading were generally
reasonable (Table 3), although a higher than antici-
pated proportion of simulated sediment and phospho-
rus was delivered in lower flows. This meant average
concentrations were elevated for both watersheds
compared to measured data, especially sediment con-
centrations in Little Wea. Sediment loads in Little
Pine were underpredicted because the model missed
a couple of high peak flows, likely due to errors in
the climate data. Both phosphorus and Sed loads
were considerably decreased when tile drainage was
added to the model (data not shown). The latest ver-
sions of SWAT permit mineral phosphorus transport
through tile drains, and simulated mineral phospho-
rus loading was especially high in the Little Pine
watershed, where it contributed to 49% of TP during
the 2009-2012 period. Soluble phosphorus loading
made up 15% of TP in Little Wea for that same
three-year period.

Water quality evaluation for monthly average
nitrate, TP, and Sed loads demonstrated a reasonable
fit according to R2, but the overprediction of phospho-

TABLE 3. Comparison of Simulated and Observed Water Quality
to Assess Soil and Water Assessment Tool Model Performance in

Little Pine and Little Wea Watersheds, Shown with Daily Mean (l)
and Standard Deviation (r).

Little Pine Watershed Little Wea Watershed

Simulated
(n = 1,279)

Observed
(n = 153-155)

Simulated
(n = 1,279)

Observed
(n = 149-153)

Nitrate concentrations (mg/L)
l 3.2 6.6 4.5 4.5
r 5.1 4.0 7.3 2.7
Nitrate loading (kg/day)
l 520 560 570 370
r 1,800 1,000 2,000 780
Phosphorus concentrations (mg/L)
l 0.20 0.14 0.55 0.05
r 0.11 0.13 0.44 0.11
Phosphorus loading (kg/day)
l 11 13 22 10
r 16 44 40 52
Sediment concentrations (mg/L)
l 37 22 150 14
r 29 33 190 39
Sediment loading (kg/day)
l 2,700 4,200 7,600 5,100
r 5,400 22,000 20,000 33,000
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rus and sediment yielded poor fits for ENS (data not
shown). Monthly R2 values were generally 0.4-0.6,
but ENS values were at or below zero for all but
nitrate in Little Pine (ENS = 0.46). The relatively poor
monthly prediction of nutrient loading was due to
excessive soil erosion and high sediment concentra-
tions during low flow, as well as a difficulty in captur-
ing peak flow events with the new tile drainage
routine.

Finally, accurate simulation of crop yields is criti-
cal to ensure applied nutrients are being used by the
plant, as well as to ensure reasonable estimates of
foregone yield in the cost calculation of spatial opti-
mization. Actual crop yields were estimated using
data for Tippecanoe County, Indiana, which includes
the majority of both watersheds, during the simula-
tion period 2007-2012 (National Agricultural Statis-
tics Service County Level Data, n.d.). Measured crop
yields were estimated to be 10.1 t/ha/yr for corn and
3.3 t/ha/yr for soybeans during the simulation period.
These compare fairly well to simulated crop yields, as
the two watersheds had average corn yields of 10.3-
10.4 t/ha/yr and soybean yields of 2.8-2.9 t/ha/yr.
Corn yields were more variable than soybean yields,
and more sensitive to the parameter values used for
tile drainage and the curve number reduction. The
underprediction of soybean yields may influence
nutrient uptake and losses.

Conservation Practice Representation

This section outlines the representation of two con-
servation practices — wetlands and CC — that are
not frequently modeled with SWAT.

Potential Wetland Locations. We found 22
potential wetland locations in the Little Pine
watershed, averaging 16.5 ha including the surround-
ing buffer area, and 25 potential wetland locations
averaging 5.2 ha in size in the Little Wea watershed.
Wetlands in Little Pine intercepted flows from 66% of
the watershed, including five wetlands nested within
other wetland drainage areas, while Little Wea’s wet-
lands would intercept 58% of the watershed and con-
tained only one wetland nested within another
wetland’s drainage area.

Wetland representation in SWAT is limited in a
number of ways. First, SWAT does not provide a
framework for using wetlands at a scale smaller than
the subwatershed. A wetland with drainage area of
one-third of a subwatershed would not actually inter-
cept that third, but rather filter one-third of the over-
land flows coming from all HRUs in the entire
subwatershed. This limitation is inherent when using
SWAT to model wetlands, unless all possible wet-

lands are located at subwatershed outlets. Second,
wetlands implemented through the .pnd routine are
not modeled to intercept subsurface flows, so tile
drainage does not pass through them. This is a con-
siderable limitation in tile-drained watersheds, where
headwater wetlands are recommended to treat the
elevated levels of nitrate leaching through these
drains (Dinnes et al., 2002; Crumpton et al., 2006),
and should be addressed in future SWAT develop-
ment. Third, SWAT’s nutrient removal algorithms for
wetlands are fairly simplistic, and rely on annual
nitrogen and phosphorus settling rates, which were
difficult to estimate as they might fluctuate a great
deal from one wetland to another (McCahon, 2010).

Cover Crop Growth. Cover crop establishment
is a critical factor in their nutrient-cycling perfor-
mance, so it was important to confirm that SWAT-
simulated crop growth was within a reasonable
range. SWAT annual outputs at the HRU-level lump
all crop biomass within a year into one value, so CC
biomass could not be separated from the corn or soy-
bean crop that followed. Therefore, cereal rye biomass
was assumed to make up the difference between total
crop biomass in the CC scenario and the baseline sce-
nario, which is reasonable considering the simulated
corn and soybean yields were essentially unaffected
by the presence of a CC (data not shown). Simulated
growth of cereal rye indicated fairly good establish-
ment most years, with the average crop field attain-
ing a biomass of 1.5 t/ha by the time it was killed in
the spring. Although no measured data on CC bio-
mass were available for these watersheds, experi-
ments in Illinois found average annual biomass of
2.2-6.1 t/ha (Ruffo et al., 2004), which are likely a lit-
tle higher than expected in the simulation, because
the crop was killed at least two weeks later than
assumed in our simulations. The rye did not grow
much in the winter months, but grew rapidly in
March and April, and is sensitive to the precise kill
time in April. Maximum crop growth exceeded 4 t/ha
in some HRUs in spring of 2012, when temperatures
were much warmer than usual.

Conservation Practice Scenarios

Scenarios where only one or all but one conserva-
tion practice was applied in every corn and soybean
HRU allowed for simple comparison of conservation
practices as shown in Tables 4 and 5 for Little Wea
and Little Pine. These tables include information on
the average cost and Water Quality Index for each
scenario, along with loading of each water quality
constituent. Two additional nutrient forms commonly
exported through tile drainage — nitrate and mineral
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phosphorus — were also included to demonstrate the
ability of each conservation practice to intercept or
prevent nutrients from passing through tiles.

Our results show aggregated and averaged data
for hydrology and water quality. While Tables 4 and
5 present mean loading rates from the watershed, not
all constituents had normal distributions around
those means. Phosphorus and sediment loading were
more readily removed by most practices, but also had
strongly skewed distributions (data not shown) where
a small number of crop fields were responsible for a

disproportionate share of the watershed’s soil erosion,
a common finding (Nowak et al., 2006). Most of these
lands were classified in the SSURGO soils database
as highly erodible, and may already have conserva-
tion measures in place.

One-at-a-Time Addition and Conservation
Practice Effectiveness. The single conservation
practice scenarios (Tables 4 and 5) show the impact
of each practice on water quality and allow us to
evaluate their performance against the literature.

TABLE 4. Scenario Results for Six Years of Simulation in the Little Pine Watershed. One-at-a-time addition scenarios indicate placement
of zero or one conservation practice through all corn and soybean hydrologic response units, while one-at-a-time removal scenarios indicate
placement of all or all but one conservation practice. Cost is the mean (l) annual cost of conservation in cropland per hectare of watershed,

and nutrient and sediment export average annual (l) export at the watershed outlet per hectare of watershed.

Scenario

Cost of Scenario TN Export NO3 Export TP Export
Mineral P
Export Sed Export Water

Quality
Index

$/ha/yr kg N/ha/yr kg N/ha/yr kg P/ha/yr kg P/ha/yr t/ha/yr
l l l l l l

No conservation (None) $0 32.48 30.78 0.82 0.22 0.19 1.00
Habitats (H) $42 31.80 30.42 0.66 0.19 0.13 0.83
Wetlands (W) $68 30.94 29.88 0.51 0.16 0.08 0.66
Grassed waterways (GW) $52 32.06 30.71 0.68 0.21 0.13 0.84
Filter strips (FS) $41 31.80 30.42 0.66 0.19 0.13 0.83
Cover crops (CC) $116 24.40 23.58 0.49 0.22 0.09 0.61
No-tillage (NT) $57 32.75 31.12 1.36 0.49 0.16 1.18

All except no-tillage (- NT) $320 23.20 22.78 0.28 0.15 0.03 0.40
All except cover crops (- CC) $258 30.94 30.14 0.72 0.34 0.05 0.70
All except filter strips (- FS) $329 23.36 22.97 0.34 0.19 0.02 0.42
All except grassed waterways
(- GW)

$318 23.37 22.97 0.34 0.19 0.02 0.42

All except wetlands (- W) $302 24.54 23.91 0.57 0.31 0.05 0.58
All except habitats (- H) $327 23.36 22.97 0.34 0.19 0.02 0.42
All conservation practices (All) $370 23.55 23.16 0.37 0.22 0.02 0.43

TABLE 5. Scenario Results for Six Years of Simulation in the Little Wea Watershed. Cost is the mean (l) annual cost
of conservation in cropland per hectare of watershed, and nutrient and sediment export average annual (l) export

at the watershed outlet per hectare of watershed.

Scenario

Cost of Scenario TN Export NO3 Export TP Export
Mineral P
Export Sed Export Water

Quality
Index

$/ha/yr kg N/ha/yr kg N/ha/yr kg P/ha/yr kg P/ha/yr t/ha/yr
l l l l l l

No conservation (None) $0 45.63 40.39 1.89 0.13 0.61 1.00
Habitats (H) $45 44.00 40.12 1.38 0.11 0.32 0.74
Wetlands (W) $70 44.27 39.84 1.58 0.11 0.49 0.87
Grassed waterways (GW) $61 44.03 40.34 1.36 0.13 0.32 0.74
Filter strips (FS) $43 44.00 40.12 1.38 0.11 0.32 0.74
Cover crops (CC) $109 33.43 31.01 0.90 0.13 0.27 0.55
No-tillage (NT) $70 45.14 40.53 2.66 0.26 0.53 1.09

All except no-tillage (- NT) $329 31.93 30.51 0.54 0.10 0.11 0.39
All except cover crops (- CC) $287 42.65 39.93 1.58 0.21 0.22 0.71
All except filter strips (- FS) $339 31.93 30.65 0.63 0.12 0.09 0.39
All except grassed waterways
(- GW)

$321 32.02 30.64 0.65 0.12 0.09 0.40

All except wetlands (- W) $312 32.82 31.28 0.80 0.17 0.12 0.45
All except habitats (- H) $337 31.93 30.65 0.63 0.12 0.09 0.39
All conservation practices (All) $382 32.12 30.82 0.66 0.14 0.10 0.40
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Filter strips and habitats provided the most cost-
effective water quality benefit in the watershed, fol-
lowed by GW, which behaved similarly (Tables 4 and
5). These in-field and edge-of-field practices were sim-
ulated to treat 17-27% of phosphorus in the
watershed, but had very low nitrate reduction (0-1%)
for these edge-of-field practices. Nitrate reduction in
FS can be quite high (48-100%) in the absence of tile
drainage, but much reduced when bypassed by tile
drains (Dinnes et al., 2002). In Illinois, a field-scale
study on vegetated FS revealed that FS may have lit-
tle nitrogen or phosphorus reduction benefit in tile-
drained fields (Bhattarai et al., 2009). In Iowa, a
gamagrass strip placed over a tile drain, which is
similar to a GW, did not significantly alter tile drain-
age flows or nitrate loading (Kaspar et al., 2007).

Our wetland scenario was in the lower cost range
and somewhat effective at improving water quality,
but because of the model’s limitation they do not
intercept tile drainage and so their potential to
remove nitrogen is underestimated. Wetland nitrogen
removal rates of 2-4% of nitrate and 5-7% of TN were
not in the range of monitoring data from Ohio, Illi-
nois, and Iowa wetlands, which treated 35, 37, and
52% of inflow nitrate respectively (Kovacic et al.,
2000; Mitsch et al., 2005; Helmers et al., 2009). Our
simulated phosphorus removal rates of 28-57% may
be overestimated considering wetlands may not be a
significant source or sink of phosphorus (Kovacic
et al., 2000).

Our estimation of CC showed greater expense than
other practices, but also greater nitrate and phospho-
rus removal than most practices. Cereal rye simula-
tion reduced watershed scale loading of nitrate by
23% and phosphorus by 40-52%, and lowered flow
through tile drains by 4-5%. In the tile-drained Mid-
west, monitoring from field plots in Minnesota and
Iowa found cereal rye reduced nitrate loading from
tile drainage from 13%, when rye was applied only
after corn in a corn-soybean rotation (Strock et al.,
2004), to 48-61%, when applied every year after har-
vest of row crops (Kaspar et al., 2007, 2012).

Finally, NT did little to reduce simulated nitrogen
and phosphorus export from crop fields, as nitrate
still passed through tile drainage and phosphorus
was left on the soil surface where it was more avail-
able to runoff compared to the baseline scenario,
where tillage incorporated phosphorus into the soil
within days of fertilization. Previous modeling and
plot- and field-scale monitoring efforts show that NT
can increase nutrient losses in tile-drained conditions
over conventional tillage. A long-term field study on
continuous corn in Minnesota showed NT increased
tile flow by 12% and reduced nitrate losses by only
5% compared to conventional tillage (Randall and
Iragavarapu, 1995). In a field-scale experiment in

Southwestern Ontario, NT resulted in 45% more
drainage water volume and 26% greater nitrate
losses compared with conventional tillage (Tan et al.,
1998). Simulated rainfall experiments on corn and
soybean crops under various tillage regimes resulted
in significantly greater level of dissolved phosphorus
from NT than other treatments (McIsaac et al.,
1995).

One-at-a-Time Removal. When five of the six
practices were applied to every corn and soybean
HRU, the impact of removing the practice from a
suite of all practices was evident, referred to as the
one-at-a-time removal scenarios (Tables 4 and 5). If
removal of one practice resulted in worsening water
quality, that practice was influential in improving
water quality even under high conservation condi-
tions. FS and GW were no longer influential, while
CC and wetlands were capable of removing nutrients
and especially sediments that the other practices
could not intercept. FS and GW intercepted pollu-
tants in a similar way at the edge-of-field, while CC
were on the field and wetlands received runoff from
all overland flow in their contributing areas and were
therefore uniquely placed to intercept pollutants.
Therefore, CC and wetlands may be recommended in
regions where more conservation is already taking
place. In fact, using the current conservation practice
representation in these particular case study water-
sheds, CC were essential in the suite of practices to
reduce all water quality pollutants. CC were the most
effective practice at reducing nitrogen loading, likely
because they can process nutrients in the field before
nitrate passed into the tile and beyond the reach of
GW, FS, and habitats to remediate. Wetlands, when
placed most efficiently, could be highly effective as
well.

Influence of Tile Drainage. To analyze the
importance of tile drainage in this approach we ran
the same scenarios with the original tile drainage
routine and also with no tile drainage. The original
drainage routine provided similar results with
slightly less flow through tiles, which corresponded
with slightly lower nitrogen loading and greater
phosphorus and sediment loading. The Water Quality
Index was unchanged for each practice combination,
and costs were similar, except for CC which were
much less expensive ($24/ha/yr for Little Wea and
$58/ha/yr for Little Pine) due to a greater influence
on improving corn yields. Corn yield decreased by 10-
15% in all scenarios lacking CC using the original tile
drainage routine and by only 3-6% when CC were
applied.

Nutrient and sediment loading in the undrained
no conservation scenarios showed striking shifts to
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lower nitrogen loading (TN reduced by 58-66% and
nitrate by 80-85%) and much higher sediment and
phosphorus loading (130% increase in TP, 50-100%
increase in mineral phosphorus, and 100-140%
increase in sediment). When conservation practices
were applied in the absence of drainage, all practices
were more capable of reducing normalized TN load-
ing, as a greater portion of it was delivered in the
organic form through overland flow. Practices treated
greater phosphorus and Sed loads, but loading was so
high they could not treat a greater portion of these
constituents, and so the Water Quality Indices
decreased by up to 25% for one-at-a-time removal sce-
narios. These results show that not only is loading of
nutrients and sediments in the model quite sensitive
to the presence of tile drains, but conservation prac-
tice performance is affected as well. In intensively
drained parts of the Corn Belt we suggest that for
hydrology and water quality prediction it is critical to
incorporate appropriate tile drainage such that a con-
siderable portion of flow passes through tiles.

Wetland performance improved considerably in the
absence of tile drainage as wetlands were able to
intercept all flow from their contributing areas.
Under both tile drainage routines, wetlands scenarios
only removed an average 5-8% of TN losses in their
contributing areas. Without subsurface drainage,
they treated roughly twice the nitrogen load, and
because nitrogen loading was lower overall this
amounted to 24-39% of TN and 28-38% of all nitrate
exported in their contributing areas, bringing the
estimate in range of wetlands monitored in Ohio, Illi-
nois, and Iowa (Kovacic et al., 2000; Mitsch et al.,
2005; Crumpton et al., 2006; Helmers et al., 2009).
Phosphorus and sediment treatment in wetlands was
not nearly as affected by tile drainage because these
contaminants were primarily lost through overland
flow. Clearly this work underestimates the relative
effectiveness of wetlands compared to other practices
as the current wetland routine does not intercept tile-
drained flows.

Spatial Optimization of Conservation Scenarios

Spatial optimization converged upon a Pareto opti-
mal front (Deb, 2001) within roughly 100 generations
of 50 individuals, which was surprising as most opti-
mization studies run for thousands of generations
(Maringanti et al., 2009, 2011; Rodriguez et al.,
2011), although Bekele and Nicklow (2005) stopped
simulations after 50 generations. After 1,000 genera-
tions, evenly binned optimal solutions were selected
and plotted alongside the initial conservation scenar-
ios, which were present in the first generation, as
shown in Figure 2.

The optimal curve is expected to be truly near-opti-
mal, but this cannot be proven without running opti-
mizations using other algorithms and comparing
them. Following the curves in Figure 2 from lowest
cost solutions to highest cost solutions, it is clear that
water quality can be improved considerably, although
the rate of water quality improvement steepens dra-
matically on the left tail of the optimal curve. In both
watersheds, fairly low-cost solutions are capable of
removing up to approximately 50% of pollutants,
while cost increases more rapidly up to a pollutant
removal of 60%. The presence of a water quality
improvement threshold is expected for pollutant
removal, where the first portion of pollutants can be
removed readily but complete removal may be costly
or impossible as the hardest to reach pollutants per-
sist.

Initial conservation practice scenarios provide a
sense of which practices are present along the opti-
mal curves (Figure 2). It appears that FS, habitats,
and GW dominate in the right hand tail of lower cost
and smaller water quality improvement, while CC
account for much of the steeper, left tail of the curve.
This inference is not proven by Figure 2, but is sup-
ported by additional inspection not detailed here. It is
notable that the optimal curve lies quite near to these
initial scenarios, suggesting that a simple recommen-
dation for one practice in an entire watershed may be
able to achieve a near-optimal solution. If no conser-
vation was present in these watersheds, one could
simply recommend that all farms incorporate FS or
GW, and achieve a 15-25% improvement in water
quality. Conversely, if FS and GW are already preva-
lent in these lands, one might suggest CC or a few
targeted wetlands to achieve further water quality
improvement.

Sensitivity and Limitations of the
Approach. The outcome of this optimization
approach could be quite sensitive to the objective
functions chosen. Cost of conservation (Equation 3
and Table 2), the first objective function, depends on
assumptions made in determining cost of conserva-
tion practices. For instance, CC other than cereal rye
may have greater or lesser seed costs. NT costs
assumed a one-time transition cost for the procure-
ment of new equipment divided over an average farm
size, and yet once purchased by a farm the cost of
converting additional lands to NT should be lower.
Cost of foregone yield depends on the current grain
prices, which are subject to monthly and annual fluc-
tuations, and also on SWAT’s estimation of crop
yields. Crop yields were fairly steady throughout the
conservation scenarios, although they were influenced
by NT and a preceding CC. Annual corn yields were
slightly reduced (1-2%) by NT, while soybeans were
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unaffected. CC, on the other hand, led to a yield boost
of 2% for corn and 0-2% for soybeans. These yield
impacts were consistent when multiple practices were
used simultaneously, such that NT and CC counter-
acted one another. The modest yield reduction in NT
can be explained by the reduction in curve number,
which may have increased waterlogging in the soil.
CC may have increased crop yields somewhat either
through drying of the soil during the wet spring or
through pulling up nutrients that would have been
lost over the winter and providing them to the subse-
quent row crop.

The optimization approach may have also been
sensitive to the formulation of the second objective
function — the Water Quality Index (Equation 4) —
and particularly our decision to combine three
water quality constituents into one. While the
Water Quality Index reached 0.4 in the scenarios

with the highest implementation of conservation
practices, its three constituents — nitrogen, phos-
phorus, and sediment — were not all reduced by
the same percentage (Figure 3). Because sediment
and phosphorus were more readily intercepted by
conservation practices, the optimization was able to
find lower cost solutions for a particular value of
the Water Quality Index by reducing these pollu-
tants than reducing nitrogen. If one constituent was
more critical than the others, it could be weighted
more heavily in the Index to achieve results more
in line with that water quality goal. Alternatively,
the Index could be formulated without normalizing
to a baseline scenario, or a different baseline could
be chosen. The three pollutants all demonstrated
decision fronts that improved with more costly sce-
narios, and this is because the three were corre-
lated with one another (Figure 3). If the three were

FIGURE 2. Optimization Results for Conservation Practice Scenarios, Plotted Alongside Initial One-at-a-Time Addition and One-at-a-Time
Removal Conservation Scenarios, after 1,000 Generations for Conservation in the Little Pine (left) and Little Wea (right) Watersheds.

FIGURE 3. Water Quality Index (WQI) Plotted Alongside Each Normalized Water Quality Constituent for Optimal Conservation Scenarios
after 1,000 Generations in the Little Pine (left) and Little Wea (right) Watersheds. Despite uniform weighting in Equation (4),

the model predicted sediment and phosphorus were more readily reduced than nitrogen in these watersheds.
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in competition with one another we would expect to
see tradeoffs and the decision front may be less
smooth.

Many additional factors could contribute to opti-
mality, and we can examine differences in the optimi-
zation outcomes by comparing the two simulated
watersheds. CC had greater cost in Little Pine than
Little Wea, where they provided a larger boost to
corn yields. Better performance of wetlands in Little
Pine than Little Wea may be an artifact of the wet-
land locations manually chosen, but demonstrate the
importance of choosing suitable sites for wetland cre-
ation. Little Wea watershed was able to reach a
slightly better water quality improvement than Little
Pine, primarily due to its ability to reduce phospho-
rus loading more readily through conservation. Not
all watersheds would behave similarly to these, and
even between these two proximate watersheds we
have evidence of different conservation practice effec-
tiveness.

Ultimately the adoption of optimal conservation
practices would depend on decisions made by farmers
and landowners about private lands. The decision
maker installing the practice may have existing prac-
tices not known by the model, or preferences for
future conservation projects. Some practices may be
easier for a decision maker to adopt than others. For
instance, GW and FS require cooperation from both
farmers and landowners. CC may not require cooper-
ation from a landowner, and could be more suitable
for farms where landowners will not agree to take
land out of production. Wetlands, though costly and
large projects, are capable of intercepting pollutants
from sources far upstream and may not require coop-
eration with as many landowners to make a large
impact.

CONCLUSIONS

This study extended SWAT modeling through rep-
resentation of six conservation practices, and the spa-
tial optimization approach through definition of
HRUs by field boundaries and simultaneous simula-
tion of many conservation practices. FS, GW, and
strategically placed wildlife habitats would achieve
the most cost-effective reduction in all three water
quality pollutants on nearly all lands. CC may have
greater cost, and were not needed to reduce erosion
and phosphorus runoff, yet they provided the greatest
nitrate-leaching protection in these flat, extensively
tile-drained watersheds. Wetlands were sensitive to
location, had reduced efficiency when nested within
other wetlands’ drainage areas, and may provide

quite different results if nutrient and sediment
removal parameters were adjusted. Wetland nitrogen
removal was considerably underestimated in this
approach because the current SWAT routines for
ponds and wetlands permits tile drainage flows to
bypass wetland treatment. For the most part, NT
was ineffective at reducing all three of the water
quality pollutants of concern, because it left an
untouched soil surface with high concentrations of
phosphorus vulnerable to runoff through erosive
flows. In the baseline scenario, phosphorus was incor-
porated into the soil within days of application, where
it was not nearly as accessible to transport in runoff,
and so combining NT with banding of phosphorus
below the surface may improve phosphorus losses.
NT is also known to have long-term soil formation
benefits, not considered in this short-term modeling
exercise.

Spatial optimization revealed an opportunity to
apply lower cost solutions to reduce loading of nitro-
gen, phosphorus, and sediment by 50% at the
watershed scale. If greater reductions are required,
costs may increase exponentially to capture 60% of
pollutants in the watershed. Even greater reductions
may not be possible with the current set of conserva-
tion practices, particularly due to the lower bound on
nitrate removal caused by excessive nitrate flows
through subsurface tile drainage. However, formula-
tion of one Water Quality Index equally weighting
nitrogen, phosphorus, and sediment reductions
encouraged conservation practices capable of inter-
cepting sediment and phosphorus rather than nitro-
gen. Nitrogen reductions were more difficult to
achieve as most leaching came as nitrate through tile
drainage. In order to effectively treat these nitrate
losses, additional conservation practices such as
drainage water management, wetlands that intercept
tile drainage, or bioreactors may be needed.

While this work demonstrates that a fairly com-
plex, computationally intensive targeting can be
achieved, there is also hope that simpler targeting
efforts could be near-optimal — even some of the sim-
ple initial conservation practice scenarios appeared
near the Pareto optimal front, and it is not difficult to
imagine simple geospatial targeting by soil type, land
use, and slope could be quite effective. Other limita-
tions of our work include the water balance, nutrient,
and sediment performance of the uncalibrated SWAT
model in the Little Wea Creek watershed, the
unknown parameter values for many conservation
practices, estimations of cost, and of course the limi-
tations of the current SWAT model in representing
conservation practices. There is always an opportu-
nity to improve the representation of these practices
through measured data and calibration of practice
parameters, such as the wetland pollutant removal
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rates. We hope that simulation of wetlands in SWAT
will be improved to include denitrification rates and
permit wetlands to intercept tile drainage from their
contributing area. This modeling work may also be
used quite practically with policy makers, conserva-
tion planners, and even farmers or landowners, and
such an approach can be used adaptively through
interactions with these stakeholders.
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