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Abstract

Background: Despite significant advancement in alignment algorithms, the exponential growth of nucleotide
sequencing throughput threatens to outpace bioinformatic analysis. Computation may become the bottleneck of
genome analysis if growing alignment costs are not mitigated by further improvement in algorithms. Much gain
has been gleaned from indexing and compressing alignment databases, but many widely used alignment tools
process input reads sequentially and are oblivious to any underlying redundancy in the reads themselves.

Results: Here we present Oculus, a software package that attaches to standard aligners and exploits read
redundancy by performing streaming compression, alignment, and decompression of input sequences. This nearly
lossless process (> 99.9%) led to alignment speedups of up to 270% across a variety of data sets, while requiring a
modest amount of memory. We expect that streaming read compressors such as Oculus could become a standard
addition to existing RNA-Seq and ChIP-Seq alignment pipelines, and potentially other applications in the future
as throughput increases.

Conclusions: Oculus efficiently condenses redundant input reads and wraps existing aligners to provide nearly
identical SAM output in a fraction of the aligner runtime. It includes a number of useful features, such as tunable
performance and fidelity options, compatibility with FASTA or FASTQ files, and adherence to the SAM format. The
platform-independent C++ source code is freely available online, at http://code.google.com/p/oculus-bio.
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Background
Nucleic acid sequencing throughput has grown expo-
nentially for the past ten years, and is expected to con-
tinue to shatter Moore’s law [1]. Though the highly
anticipated onslaught of inexpensive sequencing empo-
wers exciting new biological studies, it also presents a
critical problem: the skyrocketing computational costs of
sequence analysis [2]. Computers may become the
bottleneck of genomics research if these growing proces-
sing demands are not mitigated by improvements in
software algorithms, especially in light of the sequencing
demands of personalized medicine.
Much intellectual effort has been invested in minimiz-

ing the time required to align a single read against an

indexed database. When performed sequentially, each
sequence in the input is processed individually, such that
the sum of the alignment times of the input sequences is
the total running time. Today’s fastest and most widely
used aligners, such as Bowtie [3], BWA [4], MAQ [5],
RazerS [6], and BLAST [7], process input reads sequen-
tially. These aligners can typically be configured to be
consistent and guarantee that identical copies of an input
sequence will produce identical alignment results. There-
fore, given a set of input reads with ample redundancy,
we envisioned that alignment time could be reduced
without compromising accuracy by distilling the unique
set of sequences and aligning them using a sequential
alignment tool.
Harnessing redundancy in sequence alignment input is

not a new concept. BLAST + gains a performance benefit
by saving alignments within batches [8]. Cloudburst and
CloudAligner use MapReduce, and feature a shuffle step
wherein seed sequences in the query and database are
brought together and combined [9,10]. SEAL also uses
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MapReduce; it effectively parallelizes BWA, and can
remove duplicate reads by comparing alignment position,
after aligning all of them [11]. Similarly, SlideSort sorts
together sequences with common substrings [12], and
mrsFast uses a sophisticated blocking map to identify
unique seeds before performing a direct map-to-map
comparison [13]. Finally, Fulcrum performs hashing on
seed sequences using MapReduce to conserve computa-
tion time in genome assembly [14]. While all of these are
excellent tools in their own application spaces, sequential
aligners such as Bowtie and BWA enjoy extensive sup-
port, remain popular for many applications, and can
benefit from the same approach. Furthermore, decoup-
ling the process of compressing input reads from the
alignment kernel itself could be productive, as improve-
ments to both algorithms can proceed independently. To
date, no application exists that performs streaming read
compression in a generalized way.

Methods
We explored the nature of read redundancy across thir-
teen publicly available next-generation nucleotide sequen-
cing datasets. In a series of experiments we measured the
contributions of the application (whole genome, targeted
exome capture, RNA-Seq, and ChIP-Seq), read length, and
sequencing depth to overall read redundancy, measured in
the percentage of unique reads. Using these observations,
we wrote the streaming read compression algorithm
Oculus and constructed a model to determine the value of
streaming read compression for a given dataset. Finally,
we benchmarked Oculus on full sequencing datasets.

Sequence data profiling
We evaluated thirteen publicly available datasets that were
representative of the major applications of high-
throughput sequencing, identified here by their NCBI Se-
quence Read Archive (SRA) accession numbers. There
were five RNA-Seq datasets (ERS025093 (pooled), and
SRR097790, SRR097792, SRR097786, and SRR097787
from the iDEA challenge), three genome datasets
(SRR097850 and SRR097852, also from the iDEA chal-
lenge, and ERR000589), three Exome sequencing datasets
(SRR098490, SRR098492, and SRR171306), and finally
two ChIP-Seq datasets: (SRR227346, and SRR299316 +
SRR299313 (pooled)). The ChIP-Seq data was downloaded
from the ENCODE Project [15], hosted on the UCSC
genome browser. Illumina, Inc. carried out the IDEA data-
set sequencing, first used by Sun et al. [16]. Additional
run metadata can be found in Additional file 1: Table S1.

Sequencing type
The sequencing datasets we selected varied widely in
their composition. We compared read redundancy be-
tween sequencing types by standardizing the number of

reads per dataset to 24 million with random subsetting,
and read length to 36 bases with 3’ end trimming (both
lowest common denominators). RNA-Seq had relatively
redundant reads; only 43% to 57% of each single-end
dataset was unique (Figure 1). In contrast, Exome and
Genome sequencing had very little read redundancy.
The two ChIP-Seq datasets had disparate content, va-
rying greatly in their % unique reads – without delving
into the specifics of those samples, we believe this may
reflect the wide variety of ChIP-Seq applications. As
expected, paired-end data compressed less well than
single-end, since paired-end compression requires iden-
tity on both reads.

Depth of coverage and read length
Given some fixed input DNA from which fragments are
sampled, each incremental read will be more likely to
duplicate previous reads. In particular, RNA-Seq reads
may disproportionately reflect highly expressed genes,
suggesting that higher sequencing coverage could have a
nonlinear effect on read redundancy [17]. Therefore, we
measured the impact of coverage depth/sequencing run
size (number of reads) and read length on the unique
read percentage of each dataset, treating reads indivi-
dually (single-end) or as pairs (paired-end) (Figure 2).
We fixed the read length for RNA-Seq runs and evaluated
% unique reads for a series of random fractions of the
original datasets. As predicted, larger sequencing runs
corresponded logarithmically to a lower unique fraction
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Figure 1 RNA-Seq compresses better than other sequencing
platforms. Each benchmark dataset was randomly subset to the
lowest common denominator number of reads (24 million) and read
length (36 bases). Subsequently, Oculus computed the unique read
fraction for each dataset using the reverse-complement option.
For data with paired-ends available, 12 million pairs were used to
computer %unique reads. RNA-Seq #1, Exome #1, and ChIP-Seq #1-2
did not have available paired-end data.
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of the datasets (Figure 2A). The unique read fraction va-
ried between 56-69% for 10 million reads, 32-49% for
25 million reads, and 28% for 385 million reads in
RNA-Seq dataset #1. The differences between datasets
likely relates to sample biology and preparation. Next,
we fixed coverage depth and evaluated the percentage
of unique reads for a series of read lengths (trimming
from the end) (Figure 2B). The impact of read length
on uniqueness appeared to be exponential in one case
(RNA-Seq #1, for which 100 bp reads were available)
and linear in the rest (RNA-Seq #2-5). It’s interesting to
note that some RNA-Seq algorithms, such as TopHat
[18], dice unmapped reads into segments and align each
piece individually. This might entail a ~3-fold alignment
speedup for RNA-Seq dataset #1 by use of 25 base seg-
ments, if further communication between a streaming
read compressor such as Oculus and Tophat’s core al-
gorithm could be engineered.

Implementation
The overall architecture of Oculus is shown in Figure 3.
Oculus reads FASTA or FASTQ input files, processes
sequences into a compressed form, and compares them
to a map containing all sequences it has seen before;
new sequences are passed into the aligner as FASTA,
while previously observed sequences increment counts
in the map. At the reconstitution step, sequences in the
SAM output file are then compared back against the
map and re-printed as many times as they appeared in
the input, correcting for alignment orientation. Paired-

end sequences are handled by concatenating the two
sequences to ensure the pair is unique. Oculus can wrap
any aligner capable of producing SAM-formatted output.
By design, Oculus sacrifices FASTQ quality scores,

read names beyond the first instance of the sequence,
and the original order of the reads in the output. Op-
tionally, users can direct Oculus to restore the original
read names and quality scores by writing them to an
intermediate file, sorting it, and reattaching them during
the reconstitution step. This option incurs additional
memory overhead, and additional time to sort the inter-
mediate file.

Data structures
Oculus uses hashmap data structures to store sequences
in memory. Users can either compile in standard library
(STL) hashmaps, or Google-SparseHash maps, which are
faster and require significantly less memory (2 bits of
overhead per entry) [19].
Optionally, users can direct Oculus at runtime to store

unique reads in a separate hashset, reducing the burden
on the hashmap to only redundant sequences. The effect
of this is to reduce lookup times in the reconstitution
step and total memory consumption, at the cost of more
operations in the compression step. Hashsets are
expected to be beneficial for lower redundancy input.
Oculus uses a modified version of MurmurHash2 to

hash binary sequence data [20]. It has a low incidence of
collision for binary data, and was recommended for use
with Google-SparseHash by its developer (C. Silverstein,
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Figure 2 Compression improves for larger sequencing runs and shorter read lengths. A) Each RNA-Seq dataset was trimmed to 50-base
reads, and %unique reads was computed for a series of simulated sequencing run sizes (between 10 million single-end or paired-end reads and
their original size). B) Each RNA-Seq dataset was randomly subset to 79 million single-end or paired-end reads, and %unique reads was
computed for a series of simulated read lengths by trimming from the end (between 20 bases and their original read size). 25 bases is a typical
sequence length that advanced RNA-Seq pipelines such as TopHat may use for segmented alignment.
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personal communication). To reduce collisions, the hash
algorithm operates only on the sequence field of the
compressed sequence objects.

Binary compression
Instead of storing sequences in memory as ASCII char-
acters, Oculus uses compressed sequence objects of our
own design (cseqs) (Figure 4). DNA sequences are dy-
namically compressed into 2 or 3 bits per base, depend-
ing on the presence of N nucleotides. Optionally, a 2-bit
encoding can be forced if the user wishes for N’s to be
evaluated as A’s. Each cseq has three fields: a representa-
tion bit indicating the nucleotide encoding, its size in
memory, and a variable-length compressed sequence.
Storing the size is necessary because null-termination is
obviated by the possibility of null bytes in the sequence
field.
The most obvious benefit of using cseqs is an approxi-

mate four-fold reduction in memory use. However, two
engineering benefits also arise for cseq string compari-
son, which help efficiently resolve map collisions.
Sequences with different lengths or representations can
be differentiated by comparing the first byte in constant
time (very quickly). Moreover, by comparing nucleotides
in blocks instead of individually, comparison time is
reduced four-fold. Memory for sequences is allocated in
large chunks (default: 10kB), which reduces overhead
greatly.

Reverse complements
Lastly, Oculus can be directed to compress together re-
verse complements in single-end data, or reversed read

order in forward-reverse oriented paired-end data, under
the presumption that they should align to the same place
in the database. This improves compression and there-
fore reduces aligner runtime. Using reverse comple-
ments is optional because BWA and Bowtie both use
left-end seed sequences, so the orientation of the read
can affect its alignment (though typically in a tiny
fraction of sequences).

Runtime model
We developed a model to predict the effectiveness of
Oculus for any given data set. Given Ni input reads that
compress to Nc sequences, and assuming sa and so are
the speeds of the aligner and Oculus, in reads/unit time,
the following equations give the expected benefit of
using Oculus as a fraction of the aligner’s run time.

Aligner Run Time ¼ Ni=sa
Oculus Run Time ¼ Ni=so

� �þ Nc=sa
� �

Run Time Ratio¼ Oculus=Alignerð Þ¼ sa=so
� �þ Nc=Nið Þ

The aligner’s run time is simply the total number of
input reads divided by the average alignment speed in
reads per unit time of the aligner. In the second case,
since Oculus passes some fraction Nc of Na into the
aligner, the aligner only has to do Nc/sa work. However,
there’s also an overhead for Oculus on the order of the
total number of input reads. The fractional benefit of
using Oculus is therefore related only to the compres-
sion achieved and Oculus’s speed relative to the aligner
it’s wrapping. We therefore derived processing rates in
reads per second for Oculus and each aligner, for both
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Figure 3 Flowchart depicting Oculus behavior with example sequences. As input is parsed, new sequences are passed into the aligner in
the order they are observed. The aligner then performs normally, mapping each passed read to the database. Downstream of the aligner, Oculus
expands the alignment file to reflect the count of each input sequence. Since compression and reconstitution are faster than alignment, there is
a net reduction in runtime. In reverse-complement mode (Section 2.4), Oculus would remove the read sequence TTTT, having already seen AAAA,
and print an additional alignment: chr-001 with reversed orientation. By default, Oculus treats AAAA and TTTT as distinct sequences – both would
be passed into the aligner.
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single-end and paired-end data, using experimental
results for the 50 and 51-mer datasets. Table 1 indicates
the calculated ratio of the speed of the aligners to
Oculus. Based on these parameters we predict that
Oculus will have a runtime benefit for sequence data
with greater than 10% redundant reads, and that benefits
would scale linearly with the unique read fraction. This
model discounts non-linear factors such as hash colli-
sions, read length, percent successful alignment, and po-
tentially, alignment location, and disk I/O will produce
noise, but it is an effective rule of thumb.

Benchmarking
We compared the performance of Oculus with BWA
(version 0.5.9-r16) and Bowtie 1 (version 0.12.7 64-bit)
by themselves. All alignment was performed against the
reference human genome GRCh37/hg19.
Every benchmarking test was run on the Flux super-

computing cluster maintained by the Center for Advanced
Computing at the University of Michigan, using single
CPU cores of 2.67 GHz Intel X5650 processors, with

64 GB of 1333 MHz DDR3 memory, and distributed ac-
cess disks. To reduce noise in runtime measurement from
disk I/O, each benchmark test was run three times, and
the average runtime is presented here. Memory consump-
tion was much less noisy, so similar averaging was un-
necessary in reporting memory use. Both aligners ran with
entirely default options, and Oculus used only the reverse
complement storage option, “–rc”.
To test consistency, we ran Bowtie using “-m 1” to

eliminate multi-mapping reads, for which Bowtie reports
one random alignment by default. We extracted align-
ment positions, sorted by read sequence (grouping to-
gether forward and reverse orientations), and counted
and classified alignment differences. BWA has no such
mono-mapping option, so we did not test Oculus’s wrap-
ping of BWA for consistency (BWA was still tested for
performance).

Results
Compression and performance
Oculus yielded performance benefits that strongly corre-
lated with the unique read fraction of each dataset
(Figure 5). Notably, the single-end RNA-Seq datasets
aligned in 49.7% as much time on average, i.e., they ran
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Figure 4 Compressed sequence object (cseq) diagrams.
Numbers below the data fields indicate the 0-based index in bits
from the left end. (A) The sequence ACGTAA contains no N’s, so its
encoding bit is 0, indicating 2 bits per base. By that encoding, two
bytes are required to store 6 nucleotides, so the size field is 2. The
sequence field is populated by A = 00, C = 01, G = 10, T = 11, etc., with
the right-most byte padded on the right by zeros. (B) Compression
proceeds as before, until the N nucleotide is encountered, at which
point the compression starts over and sets the encoding to 1,
indicating 3 bits per base. At that compression, now 3 bytes are
required to store 6 nucleotides, and the size field is updated
accordingly. The sequence field is populated by A = 000,
C = 001, G = 010, T = 011, N = 100, etc., and again the right-end is
padded with 0 s.

Table 1 Relative processing speeds of Bowtie and BWA to
Oculus, for single-end and paired-end data

SE PE

sa/so Bowtie 0.079 0.023

BWA 0.017 0.015

sa is the aligner’s speed, and so is Oculus's speed. Since speeds are measured
in reads aligned per second, these values indicate that Oculus runs faster than
the aligners, and relatively more fast for paired-end data than single-end data.
As expected, Bowtie was measured to be faster than BWA, particularly for
single-end data. Both aligners were run with default options.
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Figure 5 Oculus provides a speedup that correlates linearly
with % unique reads. % Runtime represents the ratio of the
runtime of Oculus, wrapping each aligner, to the runtime of the
aligner by itself (in CPU time). To best demonstrate fractional benefit,
Bowtie and BWA results are combined in this graph – individual run
data is available in Additional file 1: Table S1. Oculus provided a
speed benefit for points below the dashed line. These datasets span
a variety of sequencing types, read number, and read length, which
we hypothesized all contribute to the % unique reads for a
sequencing run. See Additional file 1: Table S1 for individual
sequencing run characteristics such as read number and read length.
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2.0 times as fast in Oculus compared with Bowtie and
BWA. The paired-end datasets compressed less well than
their single-end counterparts; on average, the paired-end
RNA-Seq datasets aligned 1.2x as fast. ChIP-Seq dataset
#1 received the greatest performance benefit: its single-
end Bowtie alignment ran 3.7x as fast. However, our
Genome and Exome datasets, and ChIP-Seq dataset #2,
were generally non-redundant and Oculus did not greatly
outperform either aligner. This was consistent with our
expectations - if reads are not redundant, they cannot be
compressed, and the aligner will receive nearly the
complete set of input reads. Since compressing and
decompressing incurs a small time overhead, it follows
that a nearly completely unique dataset might run more
slowly.
Though BWA was much slower than Bowtie for single-

end data, and somewhat slower for paired-end data,
Oculus produced similar fractional speed improvements
for the two aligners. Additionally, for the datasets tested,
Oculus’s hashset option did not yield a significant im-
provement. For sequencing run information and exact
CPU run times, see Additional file 1: Table S1.

Consistency
Oculus maintained high fidelity to original alignments
for every dataset. Defining accuracy as the percentage
of input reads that Oculus mapped to exactly the same
location as the aligners, on average Oculus was >99.9%
accurate, and in the worst case was 99.874% accurate.
For individual dataset accuracy, see Additional file 1:
Table S1.
Since they change the seed sequence used in align-

ment, the vast majority of the differences (inaccuracies)
produced were for reads that Oculus either reversed the
orientation of (88% of single-end differences), or order
of (67% of paired-end differences). Mostly these were
previously unaligned reads that aligned and vice versa,
but in some cases, an unambiguously mapped read actu-
ally changed alignment positions (single-end, 0.09% of
differences; paired-end, 10.15% of differences). Though
initially surprising, this can be explained by mismatches
in seed sequences. Bowtie is less permissive of mis-
matches in the seed than at the end of a read under the
assumption that read quality tends to be better toward 5’
end. Of two closely homologous regions of the genome,
one may count as the best hit in the forward orientation,
and the other in reverse orientation. For example:

CAGT - read
CATT – genome position 1
CCGT – genome position 2

In this case, if CA is the seed, position 1 would be the
optimal alignment and the third base would count as a

G-T mismatch. However, if the reverse-complement
were aligned, and the seed proceeded from the opposite
direction, position 2 would be optimal and the third base
would be recorded as a C-A mismatch.

Memory use
Oculus very consistently used (sequence length/4) +
20 bytes of memory per map entry. This 20-byte over-
head comes from the forward and reverse count integers
(4 each), the hash of the sequence (4), a pointer to the
sequence (up to 8 on a 64-bit OS), the size field (2),
and some heap memory structure overhead. Although
these sum to 22 bytes, hash values are not stored mul-
tiple times for hash collisions, and pointer memory use
varies by OS architecture, often using less than 8. This
20-byte overhead is halved for paired-end map entries,
because each pair is stored together. Using the hashset
option reduced memory use by about a third, by mitiga-
ting some of this overhead for unique reads.
Total memory use is therefore highly dependent on

the quantity and redundancy of input sequence, but in a
worst-case scenario (perfect non-redundancy), 100 mil-
lion single-end 80mers will use about 3.7 GB of memory,
on top of memory used by the aligner’s database. Redun-
dancy translates linearly to reduction in memory use – if
only half of those reads were unique, 1.85 GB would be
required instead.

Discussion
Our benchmarking tests suggest Oculus will generally
perform very well with RNA-Seq data and on a case-by-
case basis in other applications, particularly those with
low complexity libraries. The likely source of benefit to
RNA-Seq arises from highly expressed genes that are
sequenced at great depth and generate multitudes of du-
plicate reads.
Shorter read length and larger datasets both correlated

with higher redundancy in sequencing runs. The hidden
variable of actual biological redundancy remains at large
(particularly, the effects of PCR and the targeted scope
of sequencing), but those two metrics provide good
insight into the expected value of streaming read com-
pression for a given sequencing application. We noted
the added value Oculus provides for RNA-Seq applica-
tions that segment reads (Oculus can significantly bene-
fit the alignment of many 25mers), but Oculus may also
yield benefit to customized bioinformatics analyses that
take similar approaches. Also of note is that for highly-
sensitive but slow aligners such as BLAT [21] and
Smith-Waterman [22], Oculus’s relative runtime will be
insignificant (i.e., sa/so - > 0), so streaming read align-
ment will be of greater use to applications that require
such sensitivity. Perhaps most importantly, as sequen-
cing throughput increases so too will read redundancy
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and the marginal benefit of compressing input reads,
though this will be mitigated by longer read lengths and
paired-end reads.
To be effective, Oculus requires read redundancy and

an aligner that does not already exploit that redundancy.
To be consistent, Oculus requires the aligner to ignore
quality score and use parameters that guarantee deter-
ministic behavior. By default, Bowtie will report one
alignment at random for ambiguously mapping reads,
and Oculus by definition cannot produce multiple align-
ments for a single read sequence. The exception to this
is if the aligner is configured to report multiple align-
ments per read, either on single or multiple SAM lines,
in which case Oculus will reconstitute the reads aligning
to each location.
Since both Bowtie and BWA use left-end seeds, it makes

sense that Oculus may report different alignments for
reverse-complemented single-end reads. However, we
were surprised to find alignment differences for paired-
end reads with reversed order. Read order shouldn’t mat-
ter in paired-end alignment: since the read orientation
remains the same, so should the seeds. Developers who
wish to incorporate streaming read compression into their
aligners may be interested in exploring this phenomenon.
Another surprising result was that Oculus + Bowtie ac-

tually outperformed compression for the second ChIP-
Seq data set (it ran in 27.0% of the original time, on 35%
of the original data set). Stranger still, the runtime data
for that dataset was not noisy – each of the three tests
ran in < 28% of the original time. It is possible that
Oculus may have compressed a disproportionately large
number of slow-aligning reads – reads that take longer
to align to the human genome. Better understanding this
phenomenon may be a key to further alignment algo-
rithm improvements.
Though Oculus provides immediate benefit to RNA-

Seq alignment, further performance gains may be possible
by harnessing the idea of streaming read compression.
Although implemented here as a customizable “attach-
ment” to a sequential aligner, the streaming compression
algorithm could be integrated directly into alignment
kernels. One obvious benefit of this would be the ability
to store paired-end reads individually (with an extra bit
denoting the read number) thereby leveraging additional
redundancy (see Figure 1). A more nuanced logical con-
tinuation of this idea would be for aligners to use cache
objects that retain in memory the alignments of the
mostly commonly occurring reads. If present, a skew
toward very common reads away from reads with few
copies could create the perfect conditions for caching.
The combinatorics of sequence length suggests an even
greater benefit in storing and reusing alignments of
common seed sequences, either in a complete object or
a cache.

There are three limitations of Oculus’s current imple-
mentation of streaming read compression: FASTQ qua-
lity scores are lost, read names are lost beyond the first
instance of the sequence, and the order of the reads in
the output will not be consistent with normal aligner
output. Quality scores and read names can be restored
to the final output at the cost of computation time and
memory, which adds value for downstream analyses
such as SNP calling. However, the alignment itself is still
performed without quality scores, which can alter align-
ment results. In cases where little faith is placed in the
read quality scores this may be acceptable, but to miti-
gate this loss otherwise, we suggest the use of read filter-
ing or trimming as a preprocessing step.

Conclusion
Oculus provides a demonstrable speed improvement in
aligning redundant data, with high fidelity and low mem-
ory cost. Further, streaming read compression of redun-
dant reads is generally useful; aligning the unique set of
reads is faster than the full set since the overhead of
compression is sufficiently low. We expect streaming
read compression will play an important role in RNA-
Seq alignment and potentially other sequencing applica-
tions in the future as data grows and algorithms improve.

Availability and requirements
Project Name: Oculus
Project Home Page: http://code.google.com/p/oculus-bio
Operating system: Platform independent
Programming language: C++
Other requirements: Perl version 5 or higher (for config-
uration), g++ version 4.1.2 or higher (lower versions may
work but are untested), Bowtie or BWA (versions 0.12.7
or 0.5.9-r16, respectively), or another SAM-compatible
alignment algorithm
License: GNU GPL v3

Additional file

Additional file 1: Table S1. Oculus performance statistics. Detailed
benchmarking data used in generating runtime figures.
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