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Abstract

Background: Research into great ape genomes has revealed widely divergent activity levels over time for Alu
elements. However, the diversity of this mobile element family in the genome of the western lowland gorilla has
previously been uncharacterized. Alu elements are primate-specific short interspersed elements that have been used
as phylogenetic and population genetic markers for more than two decades. Alu elements are present at high copy
number in the genomes of all primates surveyed thus far. The AluY subfamily and its derivatives have been recognized
as the evolutionarily youngest Alu subfamily in the Old World primate lineage.

Results: Here we use a combination of computational and wet-bench laboratory methods to assess and catalog AluY
subfamily activity level and composition in the western lowland gorilla genome (gorGor3.1). A total of 1,075 independent
AluY insertions were identified and computationally divided into 10 subfamilies, with the largest number of gorilla-specific
elements assigned to the canonical AluY subfamily.

Conclusions: The retrotransposition activity level appears to be significantly lower than that seen in the human and
chimpanzee lineages, while higher than that seen in orangutan genomes, indicative of differential Alu amplification in the
western lowland gorilla lineage as compared to other Homininae.
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Background
Alu elements are a family of primate-specific SINEs
(Short INterspersed Elements) of approximately 300
base pairs (bp) long and present in the genomes of all
living primates [1-3]. Alu elements were derived from
7SL RNA, the RNA component of the signal recognition
particle, in the common ancestor of all living primates
[4]. In the past approximately 65 million years Alu
elements have become widely distributed in primate
genomes [1,5]. Alu elements are now present at copy
numbers of >1,000,000 in all surveyed great ape genomes
(Additional file 1) [1]. Despite their high copy number
the majority of Alu elements are genomic fossils,
non-propagating relics passed down over millions of
years after earlier periods of replicative activity [1,6].
It is hypothesized that a relatively small number of

‘master’ elements are responsible for the continued
spread of all active subfamilies [7,8].
As non-autonomous retrotransposons, Alu elements

do not encode the enzymatic machinery necessary for
self-propagation [1,2]. This is accomplished by appropriating
the replication machinery [2,9] of a much larger, autonomous
retrotransposon called LINE1 (L1) via a process termed
target-primed reverse transcription (TPRT) [10-13].
The effective use of SINEs as phylogenetic markers

was first demonstrated in 1993 in a study seeking to
resolve relationships between Pacific salmonid species
[14]. Subsequent to this study, SINE-based phylogenetic
methods have been applied across a wide range of species
to determine evolutionary relationships [15,16]. In
particular, Alu elements have proven to be extremely
useful tools for elucidating evolutionary relationships
between primate species [1,17]. The essentially homoplasy
free presence of an Alu element of the same subfamily at a
given locus between two or more primate species is
almost always definitive evidence of shared ancestry [18].
The possibility of confounding events is very small, and
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easily resolved by the sequencing and examining of the
element in question [1,18]. In the past 15 years Alu-based
phylogenetic methods have been used with great success
to resolve evolutionary relationships among the Tarsiers
[19,20], New World [21] and Old World monkeys [22-24],
gibbons [25], lemurs [26,27], and great apes [28].
In addition to phylogenetic applications Alu elements also

function as effective markers for the study of population
genetics via examination of polymorphic elements between
members of the same species [2,29,30]. Alu elements are
also linked to numerous genetic diseases, and the insertion
of an element at an importune genomic location can have
grave consequences for the individual involved [3,31,32].
Additionally, Alu elements are thought to be a causal factor
in genomic instability [33-36].
Alu elements are classified in multiple major subfamilies

and numerous smaller, derivative subfamilies based on
specific sequence mutations [37-40]. All extant primates
share older elements, while all primate lineages examined
also have younger, lineage-specific subfamilies [41]. Alu
subfamily evolution is parallel, not linear, and various
subfamilies have been found to be actively retrotransposing
at the same time in all primate genomes surveyed; each
primate lineage thus possesses its own Alu subfamilies
[1,42,43].
The AluJ subfamily is the most ancient Alu lineage,

and was largely active from approximately 65 million
years ago to approximately 55 million years ago, at which
point AluS evolved and supplanted AluJ as the predominant
active subfamily [37,41]. Due to the antiquity of the lineage,
AluJ subfamilies are present in all extant primates, including
Strepsirrhines [27,44]. AluS, on the other hand, evolved
from AluJ after the Strepsirrhine-Haplorrhine diver-
gence, and so is only found in New World and Old
World primates [2,37,45]. The AluY subfamily subse-
quently evolved from AluS in the Old World primate
lineage, and remains the predominant active subfamily
in catarrhines [1,41,45].
A number of AluY-derived subfamilies continue to be

active in great apes [1], and polymorphic lineage-specific
Alu elements have been well documented between existing
human populations [2], indicating a continued activity level
for these mobile elements. A rate of one new element in
every approximately 20 live births has been proposed
as the current rate of Alu element activity in the extant
human population, but the large size of this population
coupled with human generation time would make it very
difficult for new elements to come to fixation outside of
small population groups [46,47]. Research into Alu
element activity in Sumatran and Bornean orangutans
has indicated a comparatively low-level of continued
retrotransposition activity in these apes [48], suggesting
some alteration of the propagation of Alu within this
lineage [49].

The western lowland gorilla (Gorilla gorilla gorilla), a
subspecies of the western gorilla (Gorilla gorilla), is a
critically endangered great ape endemic to the forests
and lowland swamps of central Africa [50,51]. Western
lowland gorillas are gregarious, living in family groups
comprised of a dominant male, multiple females, subadult
males, and juvenile offspring [52]. Western lowland gorillas
are in danger of extinction due to human activity. Their
wild population size is shrinking in the face of anthropo-
genic pressure and diseases such as Ebola [50]. Gorillas are
a close evolutionary relative of humans and the Pan lineage
of chimpanzees and bonobos, with the most widely
accepted date for a common ancestor 6 to 9 million
years ago [28,53-55], though a date as early as 10 million
years ago has been recently proposed [56].
The genome of ‘Kamilah’, a female western lowland

gorilla living at the San Diego Zoo, was initially assembled
from 5.4 Gbp of capillary sequence and 166.8 Gbp of
Illumina read pairs, and further refined using bacterial
artificial chromosome (BAC) and fosmid end pair
capillary technology [57]. This sequence is available from
the Wellcome Trust-Sanger Institute.
Previous analyses of Alu elements in gorillas have been

limited to analysis in the context of wider research
projects [28,58-61] and have not focused specifically
on subfamily analysis. Here we examine the western
lowland gorilla genome (build gorGor3.1) [57] to identify
gorilla-specific AluY subfamilies and assess the activity
levels, copy number, and age of these subfamilies. Our
final analysis resulted in the identification of 1,075 Gorilla
specific Alu element insertions.

Results and discussion
Computational examination of the western lowland
gorilla genome
A total of 1,085,174 Alu elements were identified in the
genome of the western lowland gorilla (Additional file 1).
Of these, 286,801 were identified as belonging to the
ancient AluJ subfamily, and 599,237 were identified as
members of the AluS subfamily. A total of 57,427 elements
were too degraded or incompletely sequenced to be assigned
a subfamily designation by RepeatMasker, and were simply
identified as ‘Alu’. We identified 141,709 members of the
AluY subfamily. This subfamily is of particular interest due to
its relatively young age and known continued mobility in
other great ape genomes [1,62]. Approximately one-third
(57,458) of these putative AluY elements were >250 bp in
length. Gorilla-specific elements were subsequently identified
by comparison of orthologous loci in the genomes of
human, common chimpanzee, and orangutan [63]. Puta-
tive unique, gorilla-specific AluY insertions were estimated
at 4,127 copies. This number is similar (96.5%) to the 4,274
gorilla-specific Alu elements identified using other ap-
proaches [58]. Individual examination demonstrated that
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the majority of our 4,127 loci were in fact shared insertions.
These loci were manually examined for gorilla specificity
using BLAT [64]. This manual examination excluded 2,858
loci from further analysis due to the presence of shared
insertions missed by Lift Over (2,626 insertions) or the lack
of orthologous flanking regions in the genomes of other
species that preclude PCR verification (232 insertions). This
resulted in a total of 1,269 likely gorilla-specific Alu
insertion loci for inclusion in subfamily structure analysis.
These 1,269 loci were analyzed for subfamily structure

using the COSEG program. COSEG removed 194 probable
gorilla-specific Alu insertions from the dataset due to the
presence of truncations or deletions in diagnostic regions of
the element, leaving 1,075 probable gorilla-specific Alu
insertion loci for further analysis Additional file 2. COSEG
then divided the loci into 10 subfamilies based on
diagnostic mutations in the sequence of the individual
Alu elements and provided subfamily consensus sequences
(Figure 1) [43]. The consensus sequences were then
aligned with known human AluY subfamilies from the
RepBase database of repetitive elements [65] (Figure 2). A
gorilla-specific nomenclature system was created to desig-
nate subfamilies using the suffix ‘Gorilla’ preceded by the
subfamily affiliation based on a comparison to identified
human subfamilies (for example, ‘AluYc5a1_Gorilla’).
Subfamilies were named in accordance with established
practice for Alu subfamily nomenclature [41]. The first
identified AluYc5-derived subfamily was, for example,
designated AluYc5a3_Gorilla. The ‘a’ denotes the fact that
this is the first Yc5-derived subfamily identified. The ‘3’
denotes the number of diagnostic mutations by which this
gorilla-specific subfamily differs from the human AluYc5
consensus sequence [41]. Subfamily age estimates were
calculated using the BEAST (Bayesian Evolutionary
Analysis by Sampling Trees) program [66].

AluY subfamily activity in the western lowland gorilla
genome
Computational and PCR analysis of the western lowland
gorilla genome has identified 1,075 independent, gorilla-
specific AluY insertion loci. Computational analysis of this
dataset indicates the presence of 10 distinct subfamilies
identifiable by the presence of diagnostic mutations specific
to each lineage. The 1,075 elements identified in our study
almost certainly do not represent the total number of AluY
specific to western lowland gorilla genome. Any loci under
our arbitrary length of >250 were excluded from our data-
set. It is also likely that a number of AluY loci are located in
portions of the genome where sequence data is incomplete;
within repeat regions, for example. Additionally, some AluY
loci were excluded when no orthologous genomic region
was present in the species being used for comparison.
The largest newly identified gorilla-specific Alu sub-

family was designated as AluY_Gorilla. This designation

was established via computational evaluation and manual
alignment of the 759 elements assigned to this subfamily.
The consensus sequence for these elements was
found to be 100% identical to the canonical AluY hu-
man consensus sequence (Figure 2). This subset of
classic AluY elements continued to propagate in the
Gorilla lineage after the divergence from the shared
common ancestor with the Homo-Pan lineage. We assayed
and verified a total of 135 loci from this subfamily via PCR
(18%). The 43 elements belonging to the AluYa1_Gorilla
subfamily differ from the AluY consensus sequence by one
diagnostic mutation at nucleotide position 133. We assayed
and verified via PCR 21 elements in this subfamily (49%).
This sequence should not be confused with the Homo-Pan
AluYa subfamily.
The AluYa1b4 subfamily is derived from AluYa1_Gorilla

and is a small and very likely young subfamily of 13
elements that shared the diagnostic mutation at position
133 of Ya1 but has also accrued four additional diagnostic
mutations. We assayed and verified via PCR seven elements
in this subfamily (54%). A second identified AluY lineage in
gorilla is the AluYc3_Gorilla subfamily. We assayed and
verified via PCR 20 of the 69 elements in this subfamily
(29%). The consensus sequence for the 69 members identi-
fied in this subfamily is a 100% match to the human AluYc3
subfamily consensus sequence (Figure 2).
Two additional gorilla-specific AluYc-derived subfam-

ilies share the characteristic 12 bp deletion at positions
87–98 that is a hallmark of human AluYc5. These two
subfamilies possess independent diagnostic mutations that
make them distinct from the AluYc5 consensus sequence.
These two subfamilies are designated as AluYc5a3_Gorilla
(55 elements identified) and AluYc5b2_Gorilla (46 elements
identified). AluYc5a3_Gorilla has three additional diagnostic
mutations differentiating it from the AluYc5 consensus as a
mark of identification. In keeping with Alu subfamily
naming convention this subfamily has thus been deemed
‘Yc5a3’, ‘a’ as the first Yc5-like subfamily identified in the
gorilla genome and ‘3’ for the three diagnostic mutations
differentiating it from the canonical Yc5 consensus. We
assayed and verified 27 members of this subfamily via
PCR (49%). AluYc5b2 also shares the characteristic 12 bp
deletion of the human AluYc5, but has two independent
diagnostic mutations (Figure 2). We assayed and verified
via PCR 19 members of this subfamily (41%). It is
probable that AluYc5a3_Gorilla and AluYc5b2_Gorilla
derived from AluYc5 around the time of the Homo/
Pan-Gorilla speciation event.
A third lineage nearly identical to human AluYb3a2 was

identified as AluYb3a2b2_Gorilla (25 elements identified).
This Alu subfamily contains two additional diagnostic
mutations. Termed AluYb3a2b2_Gorilla, this lineage is an
independent evolution in the Gorilla gorilla gorilla genome
and not a derivative of the human-specific AluYb3a2. The
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Figure 1 (See legend on next page.)
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AluYb lineage is human specific, meaning any identical or
apparently derived Alu lineages in other primate ge-
nomes must be examples of independent evolution
[67]. This is confirmed by the lack of orthologs at the
same location in the human genome. We assayed and
verified 14 members of this subfamily via PCR (56%).
An additional subfamily present at only 17 copies and
derived from AluYb3a2b2_Gorilla was identified and
termed AluYb3a2b2a2_Gorilla, due to two diagnostic
mutations separating these otherwise identical subfamilies.
We assayed and verified via PCR nine elements in this sub-
family (53%). The low copy number of these subfamilies
coupled with their lack of impairing point mutations, even
with the caveat that some subfamily members may have
been overlooked, leads us to posit that they are among the
youngest and potentially still active subfamilies in the
western lowland gorilla genome.
Two additional subfamilies were identified that, while

clearly AluY derived, do not follow the consensus sequences
of established subfamilies available via RepBase. The first,
termed AluY16_Gorilla is identified clearly by the presence
of an A-rich insert at position 219 followed by a 16 bp dele-
tion, and is present in 30 copies. We assayed and verified
via PCR 10 members of this subfamily (33%). The second
subfamily, apparently derived from the first and designated
AluY16a4_Gorilla, is present in 18 copies and can be distin-
guished from AluY16_Gorilla by a 20 bp deletion occurring
after the A-rich region at position 219. Seventeen elements
from this subfamily were assayed via PCR (94%), with 100%
of these 17 being verified as gorilla-specific. One locus
(gorGor3.1 chrX:74544052–74544324) lacked sufficient
orthologous 5′ sequence in non-gorilla outgroups to suc-
cessfully design a working primer, but was included in
the total count based on computational verification.
The accumulation of non-diagnostic mutations in these
two subfamilies may indicate that they are more ancient.
Approximately 25% of the 1,075 gorilla-specific AluY

elements computationally identified in this study were
verified by PCR, with the remaining approximately 75%
verified by manual examination of computational data. It
is important to note that we had no false positives in this
study, and 100% of the elements computationally identified
as gorilla-specific that were subsequently assayed via PCR
were confirmed to be, in fact, gorilla-specific.
One means of identifying potential master elements

[7] is to look for subfamily members with mutation-free

polyA-tails [68]. A possible source element for the
AluY_Gorilla subfamily, for instance, was identified on
chrX:5135584–5135921, with a mutation-free 30 bp
polyA-tail and intact promoter region. A posited source
element for the AluYc5b2 subfamily was identified on
chr9:17925753–17926051, also with a mutation-free 30 bp
polyA-tail and intact promoter region.
AluY retrotransposition rates appear to be lower in the

western lowland gorilla genome than in the human or
chimpanzee genomes [69], while higher than that seen
in the orangutan genome [48,49]. Factors influencing rates
of retrotransposition are myriad [1,46]. Active retrotranspo-
sons are frequently polymorphic within a population, and
are easily lost during events like speciation or population
bottlenecks [70,71]. The number of active elements, and
the amplification rate of elements surviving such an event,
can vary greatly and impact overall retrotransposition
activity in the host genome.
A possible explanation for this lower activity level include

inhibition of retrotransposition in the Gorilla lineage by the
interaction of host factors such as members of the APOBEC
family of proteins with the enzymatic machinery of L1 [1,72].
Interference with L1 and Alu retrotransposition by APOBEC
has been documented [72-74]. Analysis of the activity level
of Gorilla-specific L1 elements could elucidate this, but has
not yet been done. Additionally, environmental stress factors
may impact retrotransposition rates [75]. It is possible that
one or a combination of these retrotransposition-inhibiting
factors could be responsible for the lower level of AluY
activity in the western lowland gorilla genome.
A median joining tree of relationships between gorilla-

specific AluY subfamilies was generated from a stepwise
alignment [76] using the Network program (Figure 1)
[42,77]. The tree generated supports the divergence of all
gorilla-specific subfamilies from the AluY_Gorilla subfamily,
and analysis of subfamily ages using BEAST places the date
for this subfamily divergence at the stem of the Gorilla
lineage. Initial divergence of gorilla-specific subfamilies oc-
curred shortly after the speciation event separating the
Gorilla lineage from the Homo-Pan lineage 6 to 9 million
years ago [28,53-55], and master elements have continued to
produce copies of each subfamily at varying rates since [7].

Divergence dates of gorilla-specific AluY subfamilies
BEAST analysis of individual subfamily ages suggests no
delay or change in transposon activity in western

(See figure on previous page.)
Figure 1 Analysis of gorilla-specific Alu subfamilies. (A) A schematic diagram of a tree of evolutionary relationships of the four genera in
Family Hominidae (great apes) based on divergence dates of 6 to 9 million years ago for the Gorilla-Homo/Pan speciation event [28,53-55].
(B) A pie chart showing a color-coded distribution of Gorilla-specific AluY subfamilies. AluY_Gorilla is the largest subfamily, representing slightly
less than three-fourths of the total copy number identified. (C) A stepwise analysis of the relationships between Gorilla-specific AluY subfamilies
generated from a Network analysis of the consensus sequences for each subfamily. The color of the dots representing each subfamily are correlated
with the colors in the pie chart in Figure 1B.
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lowland gorilla following the divergence of the Gorilla
and Homo-Pan lineages. The age of the gorilla-specific
lineages ranges from 6.5-6.71 million years ago based on
a baseline divergence of 7 million years ago for the most
recent common ancestor of Gorilla and Homo-Pan. This
indicates that all of the identified subfamilies originated
around the time of the speciation event that separated
these two lineages. This result is consistent with the ongoing
propagation of these subfamilies before, during, and after the
speciation event at a relatively constant rate. This indicates
that the ‘master genes’ [7] from which these subfamilies are
derived already existed and were retrotranspositionally active
prior to the aforementioned speciation event, and have
remained active subsequently. Examination of Alu elements
indicates retrotranspositionally active elements are relatively
rare, and that most Alu activity is the result of a small num-
ber of ‘master’ copies engaging in retrotranspositional activity
over time [7]. Our results suggest that the 10 gorilla-specific
AluY subfamilies identified in this study diverged and are still
diverging from master elements already present in the gen-
ome of the common ancestor of the Gorilla and Homo-Pan
lineages. A table listing each subfamily, the ‘master gene’ or
ancestral Alu subfamily from which it was likely derived, the
% divergence from the consensus sequence of the master
element, copy number, and suggested age of the most recent
common ancestral element are available in the Additional
files section of this paper as Additional file 3.

Conclusions
AluY subfamily activity appears to be greatly reduced in
the western lowland gorilla genome when compared to

the human and chimpanzee genomes. The level of
activity seen, while not as low as that observed in the
genome of the orangutan, is consistent with a change
in host surveillance or intrinsic retrotransposition capacity.
Alu subfamily age estimates provide further support for the
master gene model of Alu retrotransposition with a rela-
tively low number of ancient lineages responsible for on-
going retrotranspositional activity. The 1,075 lineage specific
AluY insertion loci and the 10 subfamilies identified should
provide future researchers with a rich source of genetic
systems for conservation biology and evolutionary genetics.

Methods
Computational methodology
The genome of the Western lowland gorilla (Gorilla
gorilla gorilla) was downloaded and analyzed for the
presence of Alu elements using an in-house installation of
the RepeatMasker program [62]. The Gorilla gorilla gorilla
genome is available for download and analysis via the
website of the Wellcome Trust-Sanger Institute [78]. The
resulting dataset was parsed into separate files based on
the Alu subfamily designations assigned by RepeatMasker.
The file containing elements designated as members of
the AluY subfamily was then further parsed to remove
84,251 elements under the length of 250 bp using the
estimation that shorter elements were likely to be older
elements present in multiple species and therefore not
useful for our analysis. The ‘Fetch Sequences’ function
from the online version of the Galaxy suite of programs
[63,79-81] was then used to retrieve the individual DNA
sequence present at each of these loci using the gorilla

Figure 2 Alu sequence alignment. The consensus sequence for the AluY subfamily is shown at the top, with western lowland gorilla-specific
Alu subfamilies listed below. The dots below the consensus denote the same base with insertions and deletions noted by dashes and mutations
with the appropriate bases. The consensus sequences for the AluYa1, AluYc1, and AluYc5 subfamilies included for comparative purposes.
Subfamily-specific diagnostic mutations are highlighted in yellow. Lineage-specific deletions are highlighted in red. AluY_Gorilla is 100% identical
to the AluY consensus sequence. The shared 12-bp deletion identifying the AluYc5-derived Gorilla subfamilies is located at position 86. The 16-bp
and 20-bp deletions identifying the AluY16_Gorilla and AluY16a4_Gorilla subfamilies are visible at positions 228 and 232.
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genome build gorGor3.1, and the Lift Over function was
used to examine these loci for gorilla lineage specificity by
comparison to the closely related genomes of human
(Homo sapiens; hg19), chimpanzee (Pan troglodytes; pan-
Tro2), and Sumatran orangutan (Pongo pygmaeus abelii;
ponAbe2). An additional 200 bp of flanking sequence on
each side of the loci assayed was included in this analysis
for validation of orthologous loci between the nine
primate species considered in this study (Table 1).

Loci selected for verification were examined for fur-
ther evidence of gorilla-specificity using the BLAST-Like
Alignment Tool (BLAT) available at the UCSC Genome
Browser website [82]. Putative gorilla-specific loci were
compared to the available genomes of three other primate
species, human (hg19), chimpanzee (panTro2), and orang-
utan (ponAbe2) [64,83]. Elements found to be absent in
these species and with sufficient orthologous flanking
across species were marked for PCR primer design and
experimental validation. Loci determined to be shared
insertions, as well as those lacking sufficient orthologous
flanking for effective primer design, were removed from
further consideration [64].
The COSEG program [84], designed to identify repeat

subfamilies using significant co-segregating mutations, was
then run on the remaining putative gorilla-specific inser-
tions to identify and group specific subfamilies together.
COSEG ignores non-diagnostic mutations during ana-
lysis, providing an accurate representation of relation-
ships between subfamilies of elements by ignoring
potentially misleading mutational events [43]. COSEG
uses a minimum subfamily size of 50 elements as the
default setting. We arbitrarily defined subfamilies as
groups of >10 elements to increase the detail of sub-
family structure resolved. A subset of a minimum of
10% of each identified subfamily was then chosen for
verification using locus-specific PCR, with a total of
279 loci assayed and verified (Figure 1).
A multi-species alignment comprised of the species

listed above was created for each locus using BioEdit
[85]. Oligonucleotide primers for the PCR assays were
designed in shared regions flanking each putative gorilla-
specific element chosen for experimental verification using
the Primer3Plus program [86]. These primers were then
tested computationally against available primate genomes
using the in-silico PCR tool on the UCSC Genome
Bioinformatics website [83].

Table 1 DNA sample data of all species examined in this study

Taxonomic name Common name Origin ID number

Gorilla gorilla gorilla Western lowland gorilla Coriell1 AG05251

Homo sapiens Human, HeLa ATCC2 HeLa CCL-2

Pan troglodytes Common chimpanzee IPBIR3 NS06006

Pan paniscus Bonobo IPBIR3 PR00661

Pongo pygmaeus Bornean orangutan Coriell1 AG05252A

Pongo abelii Sumartran orangutan Coriell1 GM06213A

Nomascus leucogenys Northern white-cheeked gibbon Carbone Lab4 NLL606

Macaca mulatta Rhesus macaque Coriell1 NG07098

Chlorocebus aethiops African green monkey ATCC2 CCL70
1Coriell Institute for Medical Research, 403 Haddon Avenue, Camden, NJ 08103, USA.
2From cell lines provided by American Type Culture Collection (ATCC), P.O. Box 1549, Manassas, VA 20108, USA.
3Integrated Primate Biomaterials and Information Resource (IPBIR), http://ccr.coriell.org/Sections/Collections/.
4Laboratory of Dr. Lucia Carbone, Oregon Health & Science University, Beaverton, Oregon, http://carbonelab.com/.

Figure 3 Phylogenetic assay of a western lowland gorilla-specific
Alu insertion (Primer Pair Gor112). An agarose gel chromatograph of
the gorilla specific Alu insertion Gor112. The filled site is approximately
550 bp (lane 7) and the empty site is 250 bp (lanes 3 to 6 and 8 to 11).
Lanes (1) 100 bp DNA ladder; (2) negative control; (3) human; (4)
bonobo; (5) common chimpanzee; (6) northern white-cheeked gibbon;
(7) western lowland gorilla; (8) Sumatran orangutan; (9) Bornean
orangutan; (10) Rhesus macaque; (11) green monkey; (12) empty;
(13) 100 bp DNA ladder.
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Subfamily age estimates were calculated using the BEAST
program [66,87]. BEAST has previously been used to esti-
mate dates of divergence using transposon data [88]. For
each subclade, the consensus sequence for each subfamily
was determined from the COSEG output [43]. The progeni-
tor element was determined by RepeatMasker analysis of
each consensus sequence. Elements were aligned using the
SeaView software program and MUSCLE algorithm [76,89].
The progenitor element was then used as an out-group to
root the tree of each subclade. BEAST was calibrated with a
baseline divergence date of 7 million years ago for the split
between the Gorilla and Homo-Pan lineages. A divergence
date of 7 million years ago is within the generally accepted
6 to 9 million years ago range for this divergence
[28,53-55]. BEAST was run with the following parameters:
Site Heterogeneity = ‘gamma’; Clock = ‘strict clock’; Species
Tree Prior = ‘birth death process’; Prior for Time of Most
Recent Common Ancestor (tmrca) = ‘Normal distribution’
with mean of 7.0 million years and 1.0 standard deviation’;
ucld.mean = ‘uniform model’ with initial rate set at 0.033;
Length of Chain = ‘10,000,000’; all other parameters were
left at default settings.
The Network program [90] was run on gorilla-specific

AluY subfamily consensus sequences to generate a stepwise
tree of relationships between identified subfamilies [42,77].
The consensus sequences for the gorilla-specific AluY
subfamilies were aligned using the MUSCLE algorithm [76]
and converted to the .rdf file format using the DNAsp
program [91]. The .rdf file was then imported to Network,
and a median-joining analysis was run. The resulting
output file demonstrating evolutionary relationships
between subfamilies is presented in Figure 1C.

PCR and DNA sequencing
To verify gorilla-specificity, locus specific PCR was
performed with a nine-species primate panel comprised of
DNA samples from the following species: Western lowland
gorilla (Gorilla gorilla gorilla); Human HeLa (Homo sapiens);
Common chimpanzee (Pan troglodytes); Bonobo (Pan
paniscus); Bornean orangutan (Pongo pygmaeus); Sumatran
orangutan (Pongo abelii); Northern white-cheeked gibbon
(Nomascus leucogenys); Rhesus macaque (Macaca mulatta);
African green monkey (Chlorocebus aethiops). Information
on all DNA samples used in PCR analysis is listed in Table 1.
PCR amplification of each locus was performed in

25 μL reactions using 15 ng of template DNA, 200 nM
of each primer, 200 μM dNTPs in 50 mM KCl, 1.5 mM
MgCl2, 10 mM Tris–HCl (pH 8.4), and 2 units of Taq
DNA polymerase. PCR reaction conditions were as
follows: an initial denaturation at 95°C for 1 min, followed
by 32 cycles of denaturation at 95°C, annealing at the
previously determined optimal annealing temperature
(60°C with some exceptions), and extension at 72°C
for 30 s each, followed by a final extension of 72°C

for 1 min. PCR products were analyzed to confirm
gorilla specificity of all loci on 2% agarose gels
stained with 0.25 ug ethidium bromide and visualized
with UV fluorescence (Figure 3). A list of all 279 assayed
loci, corresponding primer pairs, and optimal annealing
temperatures for each are available as Additional file 4 in
the Additional files for this study. Additionally, all PCR
tested loci containing unidentified bases in the original
sequence data were subjected to chain-termination
sequencing to verify bp composition [92]. Sequence
data generated from this project for gorilla-specific
AluY subfamilies has been deposited in GenBank
under the accession numbers (KF668269-KF668278).

Additional files

Additional file 1: Enumeration of Alu elements in ape genomes. The
RepeatMasker program was run on the ape genomes currently available
for download via Genbank. An in-house Perl script was then used to tally
Alu elements by total copy number, and total copy number per each of
the three major subfamilies.

Additional file 2: A complete listing of all 1,075 verified gorilla-specific
AluY insertions.

Additional file 3: Estimated age of gorilla-specific Alu subfamilies
based on BEAST analysis. The BEAST program was run on each
gorilla-specific subfamily with a baseline divergence age of 7 million years
ago to determine the age of the subfamilies, the most likely progenitor or
ancestral element, and the % divergence from the consensus sequence of
the ancestral subfamily.

Additional file 4: All primer pairs used in this study listed with
chromosomal location of the locus assayed and optimal annealing
temperature.
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