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ABSTRACT

BACKGROUND AND PURPOSE: This study investigates 36 subjects aged 55-65 from the Alzheimer's Disease Neuroimag-
ing Initiative (ADNI) database to expand our knowledge of early-onset (EQ) Alzheimer's Disease (EO-AD) using neuroimaging
biomarkers.

METHODS: Nine of the subjects had EQ-AD, and 27 had EO mild cognitive impairment (EO-MCI). The structural ADNI data were
parcellated using BrainParser, and the 15 most discriminating neuroimaging markers between the two cohorts were extracted using
the Global Shape Analysis (GSA) Pipeline workflow. Then the Local Shape Analysis (LSA) Pipeline workflow was used to conduct
local (per-vertex) post-hoc statistical analyses of the shape differences based on the participants’ diagnoses (EO-MCI+EO-AD).
Tensor-based Morphometry (TBM) and multivariate regression models were used to identify the significance of the structural
brain differences based on the participants’ diagnoses.

RESULTS: The significant between-group regional differences using GSA were found in 15 neuroimaging markers. The results
of the LSA analysis workflow were based on the subject diagnosis, age, years of education, apolipoprotein E (¢4), Mini-Mental
State Examination, visiting times, and logical memory as regressors. All the variables had significant effects on the regional shape
measures. Some of these effects survived the false discovery rate (FDR) correction. Similarly, the TBM analysis showed significant
effects on the Jacobian displacement vector fields, but these effects were reduced after FDR correction.

CONCLUSIONS: These results may explain some of the differences between E0-AD and EO-MCI, and some of the characteristics
of the EO cognitive impairment subjects.
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Introduction

Alzheimer’s disease (AD) is the most common cause of neu-
rodegenerative dementia. It leads to irreversible neuronal loss
and progressive cognitive decline, and spreads from the mem-
ory to all other cognitive domains, eventually causing death.!
Advancing age is the single most important risk factor of AD;
and with life expectancy and population increases, its incidence
is expected to double in the next two decades.? AD prevalence
among individuals especially between 65 and 85 years of age is
exponentially increasing.? AD has a strong genetic component,
with up to 80% heritability, as estimated from twin-concordance
studies.>*

AD is divided into two main subtypes: early-onset AD
(EO-AD) and sporadic AD. EO dementia diagnosis is deter-
mined when the disease presentation begins before the age of
65. Researchers have discovered three genes associated with
EO-AD. These genes are APP,> which encodes amyloid pre-
cursor protein on chromosome 21; PS-1,° encoding presenilin

1 on chromosome 14; and PS-2,”® which encodes presenilin 2
on chromosome 1. However, these known genetic mutations
account for only 2% of all cases of EO-AD.? Sporadic AD is the
other group which is most commonly termed late-onset AD
(LO-AD). It is defined by the disease presentation after the age
of 65, and it is well-known that apolipoprotein E (APOE) ¢4
can influence it. However, according to the current viewpoint,
classifying AD into EO and LO is probably not useful from
a mechanistic point of view because mutations in APP, PS-1,
and PS-2 can be found in both EO and LO. Similarly, APOE
&4 increases the risk of AD in both EO-AD and LO-AD."
Recent proposed consensus criteria for AD have under-
lined the role played by neuroimaging phenotypes for the
disease diagnosis.!! Accordingly, magnetic resonance imaging
(MRI)-based measures of atrophy in several structures, includ-
ing the hippocampus,'>!” entorhinal cortex,'® and temporal
lobe volumes,'? as well as of ventricular enlargement!??
been claimed as the fingerprint of preclinical AD. Of all the

 have
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MRI markers of AD, hippocampal atrophy assessed on high-
resolution T1-weighted MRIs is perhaps the most significantly
established and validated.

However, despite the wide body of literature on the accu-
racy of neuroimaging markers in identifying subjects at risk
of developing AD, much less attention has been devoted
to EO-AD. There may be different reasons for this. First,
EO-AD is rarer disorder than LO-AD, and thus, it is difficult
to have a reasonable number of study subjects for it to achieve
reliable results. Second, in most cases, researchers, considering
EO-AD to be genetically based, give too much attention to ge-
netics determinants and less attention to biomarkers, including
neuroimaging.’!

It has been widely demonstrated that the cognitive pattern
of EO-AD differs from that of LO-AD, in that in the former,
the neocortical functions are more affected, which shows that
EO-AD and LO-AD differ in their typical topographic patterns
of brain atrophy.?>® Yet there have been few studies on the
differences between cohorts, including EO-AD and EO-mild
cognitive impairment (MCI) cohorts, or in some characteristics
of EO cognitive impairment subjects (EO-AD + EO-MCI), in
terms of neuroimaging, especially using volume- and shape-
based morphometrics.

This article investigates subjects aged 55-65 to broaden
our understanding the EO cognitive impairment, including
EO-AD and EO-MCI, in terms of neuroimaging. We em-
ploy the Global Shape Analysis (GSA), Local Shape Analy-
sis (LSA), and Tensor-based Morphometry (TBM) workflows
via the Pipeline workflow environment. Neuropsychology data
can be integrated in the imaging analysis of volume- and shape-
based measurements. We expect this neuroimaging study to
explain some of the differences between the two cohorts, and
some of the characteristics of EO cognitive impairment subjects
(EO-AD + EO-MCI) in terms of volume- and shape-based
morphometrics using GSA, LSA, and TBM under the LONI
Pipeline environment.

Methods
Alzheimer’s Disease Neuroimaging Initiative (ADNI) Data

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) was
funded in 2003 by the National Institute on Aging National
Institute on Aging (NIA), the National Institute of Biomedi-
cal Imaging and Bioengineering (NIBIB), the Food and Drug
Administration (FDA), private pharmaceutical companies and
nonprofit organizations, as a $60 million, 5-year public-private
partnership. Its primary goal to test whether serial MRI,
positron emission tomography, other biological markers, and
clinical and neuropsychological assessment can be combined
to measure the progression of MCI and early-stage AD. De-
termination of sensitive and specific markers of very early AD
progression is intended to aid researchers and clinicians to de-
velop new treatments and monitor their effectiveness, as well
as lessen the time and cost of clinical trials. Dr. Michael W.
Weiner, M.D., VA Medical Center and University of Califor-
nia San Francisco, is the Principle Investigator of this initia-
tive. Many co-investigators from a broad range of academic
institutions and private corporations, and subjects have been
recruited from over 50 sites across the U.S. and Canada. The
initial goal of ADNI was to recruit 800 adults, aged 55-90, to par-
ticipate in the research—approximately 200 cognitively normal

older individuals to be followed for 3 years, 400 people with
MCI to be followed for 3 years, and 200 people with early
AD to be followed for 2 years. For up-to-date information see
http://www.adni-info.org. Baseline and longitudinal structural
MRI scans are collected from the full sample every 6-12 months.

Study Participants

ADNI participants were screened, enrolled, and followed
up prospectively according to the ADNI study protocol de-
scribed in detail elsewhere.?® The degree of clinical severity
for each participant was evaluated with an annual semistruc-
tured interview. This interview generated an overall Clin-
ical Dementia Rating (CDR) score and the CDR Sum of
Boxes.?” The Mini-Mental State Examination (MMSE) for each
structural MRI scan was also conducted. The logical mem-
ory (LM) test is a modified version of the episodic mem-
ory assessment from the Wechsler Memory Scale-Revised
(WMS-R).?® The subjects were asked to recall a short story
with 25 pieces of information, both immediately after the story
was read to the subject, and after a 30-minute delay. The max-
imum score was 25, with each recalled piece of information
given 1 point. The LM test was done repeatedly with 12-month
intervals. APOE genotyping was determined using DNA ob-
tained from the subjects’ blood samples and was performed at
the University of Pennsylvania.

All participants were classified at the baseline as either (a)
asymptomatic controls (absence of significant levels of impair-
ment in other cognitive domains, essentially preserved activities
of daily living, absence of dementia at the time of the baseline
MRI scan, and with amnestic-type MCI based on the revised
MCI criteria), MCI patients (MMSE score between 24 and 29,
a subjective memory complaint verified by an informant, ob-
jective memory loss as measured by the Wechsler Memory
Scale-Revised, a CDR score of 0.5), or as AD patients (meeting
criteria for probable AD, CDR score of 1). The MCI subjects
were scanned at 0, 6, 12, 18, 24, and 36 months, and the MRI
scans for the AD subjects were collected at 0, 6, 12, and 24
months.

We included only the EO-MCI and EO-AD cohorts in the
GSA, LSA, and TBM analyses. Nine had EO-AD (male: 4 and
female: 5) and 27 had EO-MCI (male: 15 and female: 12). None
of the EO-AD subjects carried mutations of APP or PS-1 and
PS-2 genes. The selection of the thirty-size EO-MCI and EO-
AD subjects was based on early-onset ADNI-1 subjects, 55 <
age < 65, as of September 2010.

In this study, 106 MRI scans for 27 EO-MCI subjects and
28 MRI scans for EO-AD subjects were included in the GSA,
LSA, and TBM analyses. Some EO-MCI and EO-AD subjects
were scanned fully at all intervals, but other subjects dropped
out of the follow-up scans (Table 1). Our statistical analyses
used linear mixed effect models 2% where the random effect
of the scan time (eg, baseline, 12 month follow-up, etc.) were
accounted for to ensure that within subject dependences were
modeled appropriately and the model residuals contain only
random white noise.

Structural ADNI MRI Data

Using ADNI data (http://www.loni.usc.edu/ADNI) we down-
loaded structural MRI baseline and follow-up scans. These
images were acquired at multiple sites using the GE Health
Care (Buckinghamshire, England), Siemens Medical Solutions
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Table 1. Demographic Data and Scanning/Testing Frequency

Gender Education Imaging
N Age (Mean + SD) (M/F) (Years, Mean + SD) MMSE ApoE(&4) (+/-) Scans
MCI 27 61.2 + 2.87 15/12 16.226 + 2.764 26.745 + 2.342 14/13 106
AD 9 60.4 + 3.34 4/5 16.142 + 2.304 21.571 + 3.795 5/4 28
Pvalue - 0.0810 0.5630 0.8834 <0.0001 0.8471
Table 2. Intrinsic Geometric Cortical Features and Their Definitions tor function of the ROI (D),42 and S : 7 = r(u, v), (u, v), Q €is

Mathematical Formulas
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USA (Atlanta, Georgia), or Philips Electronics 1.5 T (Philips
Electronics North America; Sunnyvale, California) system.’!
The ADNI acquisition protocol uses two high-resolution T1-
weighted volumetric magnetization-prepared 180° radiofre-
quency pulses and rapid gradient-echo scans. The images were
collected from each subject and was normalized for intensity
in homogeneities, non-brain tissue was removed, and sub-
cortical white matter and deep gray matter volumetric struc-
tures were segmented.’>** We downloaded the raw Digital
Imaging and Communications in Medicine (DICOM) images
from the public ADNI site (http://ADNILloni.usc.edu). The
MRI volumes were preprocessed according to previously pub-
lished methods®** using the FreeSurfer V4 software package
(http://surfer.nmr.mgh.harvard.edu).?®

Pipeline Workflow Environment

The Pipeline graphical workflow environment®>*” enables the
design, execution, validation, and sharing of complex end-
to-end computational protocols. We employed the Pipeline
environment to examine the interrelations between clinical
phenotypes, genotypes, and biomedical imaging markers (e.g.,
volumetric and shape-based measures of brain morphometry).
The analysis protocol included automatic imaging feature ex-
traction, geometric modeling, and statistical analysis of various
global and regional anatomical measures.

The global shape analysis (GSA) Pipeline workflow®® is an
automated protocol for large scale data preprocessing includ-
ing skull-stripping,®”-*® brain anatomical parcellation,**’
extraction of shape and volume measures (average mean cur-
vature, surface area, volume, shape index, and curvedness).
These morphometric measures are used to tease out between-
group differences of regional shape differences. The output of
the GSA pipeline includes 3D scene files showing only local
anatomical differences that are statistically significant between
the EO-MCI and EO-AD cohorts.

Table 2 shows the definitions of the five intrinsic geometric
cortical measures used in this study, and the formulas used to
compute them. The principal curvatures (4, k) were computed
using triangulated surface models that represented the bound-
aries of different brain areas.*! I (x, 9, ) represents the indica-

and

the parametric surface representation of the region boundary.*3
In the LSA protocol, the structural attributes and cortical mea-
sures are calculated per-vertex in the specific shape regions that
are first coregistered across subjects to establish homologous
anatomical features before statistically analyzing them against
various subject demographic, clinical or phenotypic data.**

For each subject, the GSA pipeline workflow extracts 56 re-
gions of interest (ROIs), employing BrainParser,?**
putes 5 shape morphometry measures. Using all 280 metrics
we chose the fifteen most significant neuroimaging biomarkers
that provided the highest discrimination between the EO-MCI
and EO-AD groups using #tests with an a priori false-positive
rate of 0.05, p < 0.05. These derived neuroimaging biomarkers
are depicted in Table 3. Figure 1 shows the LPBA40 brain atlas,
an example of the 3D rendering of the BrainParser output for
one subject, and the nomenclature of the 56 regions of interests.
Figure 2 depicts a 3D scene file corresponding to the critical 15
ROI morphometry measures.

We used the LSA Pipeline workflow to conduct local (per-
vertex) post hoc statistical analyses of the shape differences
between the two cohorts in the left and right hippocampus, left
and right middle frontal gyri, and left and right middle tempo-
ral gyri. It is already known that the hippocampal brain volume
is reduced early in dementia patients.*>->" The temporal and
frontal lobes were also chosen because there is significant evi-
dence that the associative areas are involved in dementia.*’-!-3
Thus, we chose two middle gyri as representative samples of
these two lobes. After generating the localized neuroimaging
measures of the anatomy, we focused our attention bilaterally
on three regions. We used a design matrix that included diag-
nosis, age, APOE (g4), MMSE, years of education, number of
scanning repetition, and LM (immediate and delayed Recall)
as regressors. We used the statistical method of the multivariate
linear regression (MLR) model to conduct the LSA analysis us-
ing 106 EO-MCI scans and 28 EO-AD scans (for a total of total
134 scans), by doing eight independent analyses for the regres-
sors. Thus, we compared the cohorts of EO patients based on
the participant’s diagnosis (EO-MCI + EO-AD), with anatom-
ical morphometric measures as predictors of the diagnosis as
response variables.

In the LSA Pipeline workflow, the 3-D structural MIR data
are first preprocessed (skull-stripped, spatially normalized,
parcellated),’>* then shape models of 56 brain regions are
generated as genus-zero two-dimensional-manifolds.”** By
traversing the triangulated boundary manifolds (vertex-by
-vertex), statistical significance maps are obtained that represent
the group differences (EO-MCI vs. EO-AD) in two comple-
mentary shape metrics. The radial distance and displacement
vector field measures at each vertex encode the magnitude
and direction of local shape morphometry which quantify

and com-
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Table 3. Summary of the Most Significant Imaging Phenotypes—15 Derived-Bioimaging Markers (P < 0.05)

Neuroimaging Phenotypes Shape and Volume Measures P Value
L_hippocampus (Volume) Volume .00067
R_hippocampus (Volume) Volume .00539
L_gyrus_rectus (Surface area) Surface area .01728
L_middle_occipital _gyrus (Volume) Volume .01805
R_precuneus (Shape index) Shape index .03186
L_cingulate_gyrus (Average mean curvature) Average mean curvature .03350
R_superior_temporal_gyrus (Volume) Volume .03353
R_precentral_gyrus (Shape index) Shape index .03411
R_putamen (Curviness) Curvedness .03504
R_superior_frontal_gyrus (Volume) Volume .03706
L_precentral_gyrus (Volume) Volume 04125
R_cuneus (Surface area) Surface area .04203
L_cuneus (Shape index) Shape index .04952
Rinferior_occipital_gyrus (Curviness) Curvedness .05037
L_precuneus (Volume) Volume .05080

A Individual 3D brain parcellation B LPBA40 atlas

Index Volurr]e Ro1 Index Volume ROL
—— | Intensity Name — Intensity Name

1 21 L superior frontal gyrus 29 65 L inferior occipital gyrus
2 24 R middle frontal gyrus 30 164 R putamen

3 50 R precuneus 31 61 L superior occipital gyrus
4 181 cerebellum 32 30 R middle orbitofrontal gyrus
5 47 L angular gyrus 33 42 R postcentral gyrus

6 122 R cingulate gyrus 34 27 L precentral gyrus

7 83 L middle temporal gyrus 35 32 R lateral orbitofrontal gyrus
8 %0 R lingual gyrus 36 121 L cingulate gyrus

9 81 L superior temporal gyrus 37 31 L lateral orbitofrontal gyrus
10 91 L fusiform gyrus 38 92 R fusiform gyrus
11 49 R superior parietal gyrus 39 45 L supramarginal gyrus
12 66 R inferior occipital gyrus 40 88 R hij pal gyrus
13 87 L parahippocampal gyrus 41 22 R superior frontal gyrus
14 162 R caudate 42 29 L middle orbitofrontal gyrus
15 85 L inferior temporal gyrus 43 68 R cuneus
16 182 brainstem 44 62 R superior occipital gyrus
17 43 L superior parietal gyrus a5 33 L gyrus rectus
18 28 R precentral gyrus 46 48 Rangular gyrus
19 23 L middle frontal gyrus 47 64 R middle occipital gyrus
20 89 Llingual gyrus 48 84 R middle temporal gyrus
21 41 L postcentral gyrus 49 49 L precuneus
22 86 Rinferior temporal gyrus 50 67 L cuneus
23 163 P 51 161 L caudate
24 26 R inferior frontal gyrus 52 165 L hippocampus
25 102 R insular cortex 53 166 R hippocampus
26 25 L inferior frontal gyrus 54 82 R superior temporal gyrus
27 46 R supramarginal gyrus 55 63 L middle occipital gyrus
28 34 R gyrus rectus 56 101 Linsular cortex

C LONI Probabilistic Brain Atlas (LPBA) 56 ROIs (L=Left, R=Right)

Fig 1. Summary of the 56 regions of interest (ROIs) (A,C) extracted by the BrainParser software using the LPBA40 atlas (B).

the discrepancy between each subject that the “mean shape”
(boundary) for each of the 56 ROIs. Probability-values corre-
sponding to the test-statistics are overlaid on the mean boundary
shape for each region to illustrate the group differences.

TBM is a volumetric image analysis technique®®® that
produces 3-D volumetric maps of change. For instance, when

applied to structural brain data, TBM uses the deformation
of one brain to match another (typically a reference atlas like
ICBM® or a cohort-derived phantom atlas) to generate indi-
vidual maps of brain changes (Jacobian maps). These Jacobian
maps represent the magnitude of the localized displacement
vector field required to coregister the data into a template, eg,
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A 15 ROIs : ventral view

B 15 ROIs : lateral view

Fig 2. One example of a three-dimensional scene output file indicating statistically significant (P value < 0.05) volumetric differ-
ences in between the EO-AD and EO-MCI. Legend: Fifteen ROIs in the 3D scene: “L_hippocampus, R_hippocampus, R_precuneus,
L_precuneus, L_cingulate_gyrus, R_superior_temporal_gyrus, L_gyrus_rectus, L_middle_occipital_gyrus, R_precentral_gyrus, R_putamen,
R_superior_frontal_gyrus, L_precentral_gyrus, R_cuneus, L_cuneus, and R_inferior_occipital_gyrus.”

Table 4. Age Distribution for the EO-AD and EO-MCI

Cohort Gender N Total 55 56 57 58 59 60 61 62 63 64 65 66 Total

MCI M 15 27 2 1 1 3 4 3 1 15
F 12 2 1 2 2 1 3 1 12

AD M 4 9 1 1 2 4
F 5 1 2 1 1 5

an average group minimum distance template (MDT).®! In
our case, we used the MDT atlas that is derived as a canonical
phantom atlas representing a point of gravitational balance
for all scans in the study. TBM identifies regional structural
differences from the gradients of the nonlinear deformation
fields that align or warp images to a common anatomical
template. At each voxel, a color-coded Jacobian determinant
value indicates the local volume excess or deficit relative to the
corresponding anatomical structures in the template.%2-%¢

Similar to our prior LSA analysis, the TBM study used a
design matrix that included the diagnosis, age, APOE (¢4),
MMSE, years of education, number of scanning repetitions,
and LM (immediate and delayed recall) as regressors. However,
TBM analysis provided a wide range of regional assessments
through whole brain analysis in this study, unlike the LSA anal-
ysis. We used the MLR model to perform whole brain TBM
analytics using 106 EO-MCI scans and 28 EO-AD scans (for
a total of 134 scans), in the process performing eight indepen-
dent analyses for the regressors. The two cohorts of EO patients
were compared based on the participants’ diagnoses (EO-MCI
+ EO-AD).

Results
1. Demographic characteristics

The demographic and clinical data of the subjects at the
baseline are summarized in Table 1 (using chi-square and #test
analyses). In this study, we chose EO subjects (aged between 55
and 65 years) from the ADNI datasets. There was no statistically

significant difference in age between the EO-AD and EO-MCI
subjects. The age distribution of the EO subjects is shown in
Table 4.

2. Neuroimaging biomarker selection

The most significant 15 neuroimaging biomarkers were se-
lected (P < .05) from 56 ROIs and the 5 different volume- and
shape-based metrics, based on how well they discriminated be-
tween the 2 cohorts. They are shown in Table 3. The ROlIs
for the 15 neuroimaging biomarkers were the L_hippocampus,
R hippocampus, R_precuneus, L_precuneus, L_cingulate_
gyrus, R_superior_temporal_gyrus, L_gyrus_rectus, L_middle_
occipital_gyrus, R_precentral_gyrus, R_putamen, R_superior
_frontal_gyrus, L_precentral_gyrus, R_cuneus, L_cuneus, and
R_inferior_occipital_gyrus.

3. Local Shape Analysis

In the LSA analysis, we looked for regional effects (bilat-
erally in the hippocampus, middle frontal gyrus, and temporal
lobe) of different phenotypic variables, such as the diagnosis,
age, years of education, APOE (¢4), MMSE, and LM (immedi-
ate and delayed recall) as regressors for the MLR model on the
local shape-based registrations across subjects. Some results
survived the false discovery rate (FDR) correction.?*% Figure 3
illustrates the mean shapes, their poses, and 3-D spatial interre-
lations of the 3 regions that we studied in detail bilaterally—the
left and right hippocampi (labels 165-166), middle frontal gyri
(labels 23-24), and middle temporal gyri (labels 83-84). All the
results that survived the FDR correction are shown as P-value

732 Journal of Neuroimaging Vol 25 No 5 September/October 2015



Surface View ; ; ; ; ;
Orientation Left/Inferior/Anterior Right/Superior/Posterior
Axial
(Transverse)
Sagittal
(Lateral)
Coronal ‘ .
(Frontal) eg %

Fig 3. Mean geometric models of the left and right hippocampi (turquoise), middle frontal gyri (pink), and the middle temporal gyri (yellow).
The surface-based statistical maps are computed on each vertex of these atlas shapes.

Edu.yt radial distance_FOR Da displacement feature_FOR

Ldeitotal radial distance_FOR

L

Age radial distance_FOR
Edu.yr radial distance_FOR

P Map

A B

D E

Apo displacement feature_FDR Dx displacement feature_FOR

Edu.yr radial distance_FDR

Edu.yr radial distance_FOR Mmse radial distance_FOR

F G H 1 J

Fig 4. Statistical maps generated by the LSA workflow. Each insert image illustrates on the three-dimensional shapes the statistically
significant P values, which are generated by fitting linear models at each vertex on the triangulated shapes. The dependent variable was the
radial distance morphometry measure (deviation of individual shape model from mean shape atlas) and independent regressors including
diagnosis, age, education years, APOE (¢4), MMSE, visiting times, and logical memory (immediate and delayed recall). Legend: P-maps (A)
for Lt. hippocampus, P-maps (B,C) for Rt. Hippocampus, P-maps (D,E) for Lt. middle frontal gyrus, P-maps (F,G,H) for Rt. middle frontal gyrus,

P-maps (I, J) for Lt. middle temporal gyrus.

color maps in Figure 4 (A-T). In particular, the LM, including
immediate and delayed recall should be very sensitive to the
decline of the cognitive function.®

4. Tensor-Based Morphometry

The TBM pipeline workflow and the corresponding TBM
results (using the diagnosis, APOE (¢4) including the FDR
corrected results, MMSE, and delayed recall as predictors)
are shown in Figure 5. These results indicate an association
between the phenotypes (delayed recall) and the structural

neuroimaging data (the TBM anatomical maps) in the medial
temporal area (MTA), including the hippocampi, parahip-
pocampal gyri, and amygdala. Additional correlations between
the TBM and MMSE scores were observed in the frontal area
and the middle and medial temporal gyri, and a correlation
between TBM and the diagnosis was detected in the MTA, oc-
cipital area, visual cortex, insula, and ventricles. A correlation
between TBM and APOE (¢4) was further observed in the
frontal area, cingulated gyri, insular lobe, lateral sulci, occipital
area, and procuneus. Especially, the correlation between TBM
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C: TBM results for diagnosis.

D:2 . TBM results for APOE4 (FDR corrected)

0.01

P-value

0.0

P-value color map

Fig 5. TBM Results: Cross-sectional statistical maps delayed recall (A), MMSE (B), diagnosis (C), and APOE (D). The P value maps are
overlaid on the MDT brain atlas constructed using the structural imaging data for all (N = 36) subjects.

and APOE (¢4) survived the FDR correction in the left lateral
sulcus, insula, and precuneus.

Discussion
Global Shape Analysis

The left precuneus volume was significantly reduced in the
EO group, which supports the results of some previously men-
tioned studies and may explain why precuneal atrophy is more
prominent in patients with EO relative to LO.%% Both the left
and right hippocampal volumes were some of the most signif-
icant neuroimaging biomarkers, as we initially hypothesized.
We identified the “shape index” of the right precuneus and the
“average mean curvature” of the left cingulated gyrus and the
left superior temporal gyrus as significant covariates associated
with the dementia phenotypes (EO vs. LO Alzheimer’s). This
suggests that EO-AD differences may be related to atrophy
of the posterior cingulated cortex and temporal lobe.”’ Other
ROI-based shape measurements (eg, of the “surface area” and
“curviness”) were also associated with the group phenotype, but
we were not able to find previously published reports consistent
with this finding. Albeit, most prior studies relied on volumetric
measures, whereas we employ shape-morphometry metrics.

Local Shape Analysis

In this study, we investigated the sensitivity in the left and
right hippocampi, the middle frontal gyri, and the middle
temporal gyri. We selected these three bilateral ROIs because
we expected these ROIs to show us some of the differences
between the two cohorts, and some of the characteristics of the
EO cognitive impairment subjects (EO-MCI + EO-AD). We
chose both hippocampi to find out if their shape measures are
also associated with changes in various phenotypic variables
(regressors). The hippocampus is not a homogeneous structure
but consists of several subfields with distinct histological charac-

teristics: the subiculum, the three cornu ammonis sectors (CA1,
CA2 and CA3), and the dentate gyrus.”! The results shown in
Figure 4 illustrate the hippocampal radial distance association
with the years of education at the bottom of the left subiculum.
Hippocampal displacement feature atrophy associated with the
diagnosis was observed in the right bottom subiculum and the
top CA2 and CA3, and hippocampal radial distance atrophy
correlated with delayed recall was seen in the right bottom
subiculum and the top CA2 and CA3.

We found some significance with delayed recall but not for
immediate recall in both hippocampi. The lack of a significant
relationship between immediate recall and the hippocampal
volume is consistent with the results of some studies that the
hippocampal volume was more strongly related to delayed re-
call than immediate recall.”>”’* The shape-based LSA analysis
suggests that the left and right hippocampi are closely associated
with delayed recall of LM. This finding implies that the shape
morphometry may be coupled with diminishing logically asso-
ciated episodic memory performance, and is correlated more
with delayed recall than immediate recall. The middle frontal
gyrus radial distance atrophy in the left posterior inferior area
was found to be associated with age. A strong correlation be-
tween the middle frontal gyrus radial distance and the years of
education was observed in the left bottom anterior inferior and
top superior anterior areas. An association between the middle
frontal gyrus displacement feature and APOE (¢4) was detected
in the right bottom anterior inferior area. The middle frontal
gyrus radial distance atrophy in the right inferior area and supe-
rior posterior area was related to the years of education. Finally,
the years of education and the MMSE score were correlated to
the radial distance atrophy in the left middle temporal gyrus.
These results reflect significant effects that survived post hoc
FDR correction for multiple testing. Despite the small sample
size, some significant genotype effects (after the FDR correction)
on the shape metrics were observed, as shown in Figure 4(A-T).
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The TBM analysis used the MLR to study the multivariate re-
lations between anatomical morphometric measures (response
variables) and a diverse array of regressors (the diagnosis, age,
APOE (¢4), MMSE, number of scanning repetitions, and LM,
including the immediate and delayed recall). The MTA, in-
cluding the hippocampus, parahippocampus, and amygdale,
was significantly associated with the LM test scores for delayed
recall. Thus, MTA degeneration may be considered to be asso-
ciated with context-related episodic memory performance, es-
pecially with delayed recall. One possible explanation is that in
these areas, the brain atrophied over time and affected the LM
delayed recall for all the EO-AD and EO-MCI subjects. There
were some diagnosis effects such as ventricles expansion, which
indirectly implies gray matter atrophy in the surrounding tissue
(representing differences between the two cohorts). A correla-
tion between TBM and APOE (¢4) was observed in the frontal
area, cingulated gyri, insular lobe, lateral sulci, and procuneus.
However, these did not survive the rigorous post hoc FDR cor-
rection, except for the correlation between TBM and APOE
(¢4) in the left lateral sulcus, insula, and precuneus. The left lat-
eral sulcus and insula may be associated with the atrophy of the
left MTA, and precuneal atrophy can reflect the view in some
reports that disproportionate precuneus atrophy is more promi-
nent in patients with a younger age of onset as we discussed
earlier in this paper.?>%%% The precuneus is located in the me-
dial aspect of the posterior parietal lobe, and its borders are the
parieto-occipital sulcus posteriorly. Previous studies have also
shown that the precuneus might be functionally impaired in
younger patients with AD.”>7® All the results are shown as 3-D
images that represent the raw P-value maps in Figure 5.

Limitations

The sample size for this EO -AD study was rather small, due to
significant data stratification and lack of available data. EO-AD
is less prevalent than LO-MCI, which may have contributed
to the relative weakness of the statistical results. We did not
do the statistical analyses of individual APOE ¢2, £3, and ¢4
alleles because the sample size was insufficient. This prevented
us from analyzing the effects of the APOE ¢4 genotypes (¢3/¢4
and e4/¢4). This study did not include neuroimaging data from
asymptomatic normal controls (NC). Future studies may ex-
plore the underlying differences between NC and MCI or AD
and NC subjects, provided appropriate data is available.

Conclusions

In summary, even with the small number of EO subjects, we
were able to make several neuroimaging observations regarding
the EO-AD and EO-MCI cohorts using our GSA, LSA, and
TBM workflows. We developed a graphical pipeline protocol
for performing neuroimaging analysis using the LONI Pipeline
environment. The methodology presented here can be used as a
basis for future large-scale neuroimaging studies with hundreds
and thousands of subjects of varying phenotypes.
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