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Abstract: Diagnostics for heteroscedasticity in linear regression models have been intensively investigated
in the literature. However, limited attention has been paid on how to identify covariates associated with
heteroscedastic error variances. This problem is critical in correctly modelling the variance structure in
weighted least squares estimation, which leads to improved estimation efficiency. We propose covariate-
specific statistics based on information ratios formed as comparisons between the model-based and sandwich
variance estimators. A two-step diagnostic procedure is established, first to detect heteroscedasticity in error
variances, and then to identify covariates the error variance structure might depend on. This proposed
method is generalized to accommodate practical complications, such as when covariates associated with the
heteroscedastic variances might not be associated with the mean structure of the response variable, or when
strong correlation is present amongst covariates. The performance of the proposed method is assessed via
a simulation study and is illustrated through a data analysis in which we show the importance of correct
identification of covariates associated with the variance structure in estimation and inference. The Canadian
Journal of Statistics 43: 358–377; 2015 © 2015 Statistical Society of Canada

Résumé: Les outils de diagnostic pour l’hétéroscédasticité dans les modèles de régression linéaire sont
largement étudiés dans la littérature. Toutefois, l’identification des covariables associées aux variances
hétéroscédastiques n’a suscité que peu d’intérêt. Ce problème joue pourtant un rôle clé pour l’estimation par
les moindres carrés pondérés, puisque la modélisation correcte de la structure de variance accroı̂t l’efficacité
de l’estimation. Les auteurs proposent des statistiques spécifiques aux covariables fondées sur un ratio
d’information comparant l’estimateur de la variance basé sur le modèle à l’estimateur sandwich de la vari-
ance. Ils développent une procédure diagnostique en deux étapes, détectant d’abord l’hétéroscédasticité et
identifiant ensuite les covariables dont peut dépendre la structure de variance. Ils généralisent la méthode
proposée afin d’accommoder des complications pratiques telles que l’absence de lien entre la structure de
la moyenne et une covariable associée avec l’hétéroscédasticité, ou la forte corrélation des covariables. Les
auteurs évaluent la performance de la méthode proposée à l’aide d’une étude de simulation et l’illustrent en
analysant un jeu de données montrant l’importance d’identifier correctement les covariables associées avec la
structure de variance pour l’estimation et l’inférence. La revue canadienne de statistique 43: 358–377; 2015
© 2015 Société statistique du Canada

1. INTRODUCTION

A standard assumption in linear regression models (LM) is homogeneity of error variances, also
known as homoscedasticity. However, we often encounter violations to this assumption where
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2015 PROFILING HETEROSCEDASTICITY IN LINEAR REGRESSION MODELS 359

error variances differ across subjects, and in some situations, are functions of one or multiple
explanatory variables. Such violations are referred to as heteroscedasticity in the literature. In the
presence of heteroscedasticity, ordinary least squares (OLS) estimation might be problematic.
One of the problems is that the classic so-called “model-based” covariance matrix estimators
are not consistent estimators for the variances of regression coefficient estimators; the resulting
confidence intervals would not attain the nominal level of coverage. White (1980) proposed a
consistent covariance matrix estimator, the “sandwich estimator” (Kauermann & Carroll, 2001),
which is robust against heteroscedasticity. However, even with such heteroscedasticity-consistent
covariance estimators, OLS estimation can still lead to loss of efficiency or low power in hypothesis
testing.

Weighted least squares (WLS) estimation offers a remedy, where the weights incorporate
the information about the error variances. Since the variance structure is usually unknown in
practice, several iterative WLS estimation procedures were proposed where error variances were
modelled as functions of covariates using parametric or nonparametric methods Harvey, 1976;
Carroll & Ruppert, 1982, 1988; Müller & Stadtmuller, 1987; Mak, 1992; Verbyla, 1993; Müller
& Zhao, 1995; Ruppert et al., 1997; Kuk, 1999. If the variance function is correctly modelled,
the resulting iterative WLS estimators of regression coefficients will be asymptotically equiva-
lent to the WLS estimators with known optimal weights (Mak, 1992). The first and critical step
towards successful modelling of the error variance is to correctly identify which covariate or
which set of covariates the variance function depends on. Some graphical procedures have been
suggested, for example, plotting the OLS residuals against fitted values or against a covariate
(Cook & Weisberg, 1982). However, visual judgement is mostly subjective and may work only
for simple patterns. Numerous diagnostic tests for heteroscedasticity have been proposed in the
literature (Anscombe, 1961; Goldfeld & Quandt, 1965; Park, 1966; Glejser, 1969; Bickel, 1978;
Breusch & Pagan, 1979; White, 1980; Cook & Weisberg, 1983; Diblasi & Bowman, 1997; Zhou,
Song, & Thompson, 2012). Some of these tests could be modified to detect covariates associ-
ated with variations in the error variance. However, most of the tests rely on specific functional
forms for how the error variance depends on the covariates. In this paper, we provide a reliable
diagnostic tool to identify the direction in the covariate space that allows for differences in the
variance of response variable across subjects. We propose a two-step procedure for profiling
heteroscedasticity: in the first step, we test whether the error variances are homogeneous, and
if heteroscedasticity is detected, in the second step, we identify covariates on which the error
variance function might depend. This construction is based on so-called information ratio (IR)
statistics which are defined via comparisons between the model-based and sandwich estimators
of the variances of individual regression coefficient estimators. The resulting statistics are called
covariate-specific IR statistics. Compared with the existing approaches, this new method is advan-
tageous in two aspects: (i) it does not depend on the underlying distribution of the error variables;
and (ii) it does not require any specific forms of error variance functions. In addition, the pro-
posed method can be easily implemented with low computational burden. Through simulation
studies, we compare our method with some of the existing tests including White’s test, Goldfeld–
Quandt test and Breusch–Pagan–Godfrey test (Gujarati & Porter , 2009). The results show that our
method outperforms these competitive methods in terms of controlling type I error and having high
sensitivity.

The rest of the paper is organized as follows. In Section 2, we introduce covariate-specific
IR statistics, and present a two-step procedure for examining the homoscedasticity assumption
and further identifying covariates associated with the heteroscedastic variances. Several gener-
alizations of our method are presented in Section 3. A simulation study and application of our
method to a real data analysis are illustrated in Section 4. Section 5 includes concluding remarks
and discussions. All technical details are included in the Appendix.
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2. METHOD

Consider the following linear model: Y = β0 + XTβ + e where Y is the response variable, X =
(X1, . . . , Xp)T is a p × 1 random vector of covariates with a compact support �X ⊂ Rp, β =
(β1, . . . , βp)T is a p × 1 vector of regression coefficients, and e is a random variable with mean 0
which is uncorrelated with X. Let EY |X (or VarY |X) denote expectations (or variances) with respect to
(w.r.t.) the conditional distribution of Y given X, let EX denote expectations w.r.t. the distribution
of X, and let E(Y,X) (or Var(Y,X)) denote expectations (or variances) w.r.t. the joint distribution of
(Y, X).

In this section, we propose a two-step procedure: in the first step, we test the null hypothesis
of homogeneity of error variances, namely

H0 : Var(e | X = x) = Var(Y | X = x) is constant for any x ∈ �X. (1)

If the null hypothesis H0 is rejected, in the second step, we detect which covariate Var(e | X = x)
might depend on. The test statistics are constructed under the homoscedasticity assumption based
on comparisons between sandwich and model-based estimators for the variances of individual
regression coefficient estimators. First, we present these two different types of variance estimator.

2.1. Sandwich and Model-Based Variance Estimators Under Homoscedasticity
Denote a data set byD = {(Yi, Xi), i = 1, . . . , n} consisting of n independent replicates of (Y, X).
To simplify the formulae, we consider the situation where the covariates have expectation 0 and
there is no intercept in the model, so that the LM becomes Yi = XT

i β + ei. In implementing the
procedures, we centre the responses and covariates at their sample means, so

∑n
i=1 Yi = 0 and∑n

i=1 Xij = 0 for j = 1, . . . , p. To estimate β, we solve the following OLS estimating equation:

n∑
i=1

�i(β) =
n∑

i=1

Xi(Yi − XT
i β)

σ2 = 0, (2)

where σ2 > 0 is an arbitrary constant. This estimating equation, Equation (2), essentially involves
only the conditional mean and variance of Yi given Xi, EY |X(Yi) = XT

i β and VarY |X(Yi) = σ2,
instead of any fully specified distributions of Yi conditional on Xi. Let β̂ be the OLS estimator of
β, which is the solution to the Equation (2). We assume (A1) β̂ is consistent in the sense that β̂

converges in probability to a vector β∗ which is the solution to EY |X {�i(β)} = 0. If conditional
mean structure EY |X(Yi) = XT

i β is correctly specified, β∗ is the true value of β.
Now we present the sandwich and model-based estimators of the asymptotic variance of√

n(β̂ − β∗). LetXbe ann × pmatrix with XT
i as its ith row. The estimator

√
n(β̂ − β∗) converges

in distribution to a normal random variable with mean 0, and its asymptotic covariance matrix
can be estimated by the so-called “heteroscedasticity-consistent” covariance matrix estimator
proposed by White (1980),

S
β̂

= S−1
n VnS−1

n , Sn = n−1XTX, Vn = n−1XTRX, (3)

where R = diag{r2
1, . . . , r

2
n} with residuals ri = Yi − XT

i β̂. This is also called “sandwich” co-
variance matrix estimator. On the other hand, under the null hypothesis of homoscedasticity, the
asymptotic variance of

√
n(β̂ − β∗) is estimated byM

β̂
= σ2{n−1XTX}−1, the so-called “model-

based” estimator. In practice, the unknown parameter σ2 may be replaced with a consistent
estimator, for example, σ̂2 = n−1 ∑n

i=1 r2
i . Thus, the model-based covariance matrix estimator
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with estimated σ2 is given by

M
β̂

= σ̂2{n−1XTX}−1. (4)

The diagonal elements ofS
β̂

andM
β̂
, denoted byVs

j andVm
j , are the sandwich and model-based es-

timators for the variance of individual regression coefficient estimator
√

n(β̂j − β∗
j ), respectively,

j = 1, . . . , p. If the homoscedasticity assumption is true, the model-based estimator is asymptoti-
cally equivalent to the sandwich estimator; otherwise, there exist discrepancies between these two
types of variance estimators. In the next subsection, we propose covariate-specific IR statistics
by comparing Vs

j with Vm
j , j = 1, . . . , p.

In addition to the assumption (A1), we also need to make the following assumptions: (A2)
Xi1, . . . , Xip are uncorrelated, (A3) EX(X2

ij | Xik, k �= j) = E(X2
ij) for all j = 1, . . . , p, that is,

the variance of each covariate does not depend on other covariates, (A4) EY |X(Y4
i ) is bounded.

2.2. Covariate-Specific IR Statistics
Define Xj-specific IR statistic as IRj = Vs

j/Vm
j with Vm

j �= 0. In Lemma 1, we show that this IR

statistic can be expressed as a weighted quadratic form in residuals ri. Let H = X
(
XTX

)−1 XT,

and H(−j) = X(−j)

(
XT

(−j)X(−j)

)−1 XT
(−j), where X(−j) is the matrix resulting from deleting the jth

column of the matrix X.

Lemma 1. For j = 1, . . . , p, the Xj-specific IR statistic can be expressed as follows:

IRj =
n∑

i=1

w
(j)
i r2

i

σ̂2 ,

where w
(j)
i = hii − h

(−j)
ii , hii is the ith diagonal element of H, and h

(−j)
ii is the ith diagonal element

of H(−j).

Note that
∑n

i=1 w
(j)
i = 1. The proof of Lemma 1 is given in the Appendix. In the following lemma,

we establish that the weights are stochastically equivalent to a quantity which depends only on
Xij .

Lemma 2. Let Aj = EX(X2
ij) > 0 and w̄

(j)
i = n−1X2

ij/Aj . Then for each j, supi |w(j)
i − w̄

(j)
i | =

op(n−1), where w
(j)
i is given in Lemma 1.

The proof of Lemma 2 is given in the Appendix. In the following Theorem 1, we establish the
asymptotic distribution of the covariate-specific IR statistics under the null hypothesis, Equation
(1). Let us introduce some notation.

Let ei = Yi − XT
i β∗. Under the assumption (A1), EY |X(ei) = 0. Let ν2 = E(Y,X)(e2

i ) and ν2
j =

E(Y,X)(e2
i X

2
ij)/Aj . Note that neither ν2 nor ν2

j depends on i through the operation of expectation
w.r.t. the joint distribution of (Yi, Xi). In the Appendix, we also show that Wj = √

n(IRj − 1) =√
n(νj/ν − 1) + n−1/2 ∑n

i=1 Rij + op(1) where Rij are i.i.d. random variables with mean 0.
Suppose that a general form of the conditional variance of Yi given Xi is given by

VarY |X(Yi) = EY |X(e2
i ) = κ2V (Xi), (5)

where κ2 is an arbitrary constant and V (·) is a certain smooth function. Under the null hypothesis,
Equation (1), V (Xi) ≡ 1 and ν2

j = ν2 = κ2, implying E(Wj) = o(1). The asymptotic distribution
of Wj under the null hypothesis is given in the following.
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Theorem 1. Suppose that Assumptions (A1)–(A4) are satisfied. Under the null hypothesis,
Equation (1), for all j = 1, . . . , p, the transformed Xj-specific IR test statisticWj = √

n(IRj − 1)
converges in distribution to a Gaussian random variable with mean 0 and variance

�j = E(Y,X)

⎡⎣{(
X2

ij

Aj

− ν2
j

ν2

) (
e2
i

ν2 − 1

)
−

(
ν2
j

ν2 − 1

)}2
⎤⎦. (6)

The proof of Theorem 1 is given in the Appendix. It is worth pointing out that the asymptotic
variance, Equation (6), is obtained under a general variance structure given in Equation (5).
However, its analytic closed form is not available because of the involvement of the fourth
moment EY |X(Y4

i ). The explicit form of this fourth moment, in general, is unknown. Following
Zhou, Song, & Thompson (2012), we suggested a perturbation resampling method to obtain
�j numerically. Such a perturbation method, similar to the so-called wild bootstrap (Wu, 1986;
Mammen, 1992), has been widely used in survival analysis (see, e.g., Park & Wei, 2003; Cai, Tian,
& Wei, 2005) in a situation where the asymptotic variances are difficult to calculate. Specifically,
in the implementation, we define the perturbed counterpart of the test statistic Wj as

W∗
j = √

n

n∑
i=1

{(
w

(j)
i − 1

n
ĨRj

) (
r2
i

σ̂2 − 1

)
− 1

n

(
ĨRj − 1

)}
ξi, (7)

where ĨRj is the observed value of the statistic IRj given the data setD = {(Yi, Xi), i = 1, . . . , n},
and 	 = {ξ1, . . . , ξn} is a set of i.i.d. random variables with mean 0 and variance 1, for example,
random variables from a standard normal distribution. In addition. 	 is independent of D. Con-
ditional on the data D, every term in Equation (7) is fixed except that 	 are random variables,
and consequently, E(W∗

j | D) = 0 and

Var(W∗
j | D) = 1

n

n∑
i=1

{(
nw

(j)
i − ĨRj

) (
r2
i

σ̂2 − 1

)
−

(
ĨRj − 1

)}2

.

According to Lemma 2, supi

∣∣∣w(j)
i − n−1X2

ij/Aj

∣∣∣ = op(n−1), and executing similar arguments in
the proof of Theorem 1, we can show that Var(W∗

j | D) converges in probability to �j as n → ∞.
With B perturbed samples of Wj , denoted by {W∗

j
(b), b = 1, . . . , B}, the empirical Xj-specific

P-value, denoted by PXj
, is B−1 ∑B

b=1 I{W∗
j

(b) ≥ W̃j}, where W̃j is the observed statistic Wj

based on the actual data.
When using these covariate-specific IR test statistics together to test the null hypothesis H0,

Equation (1), to control overall type I error, a Bonferroni correction may be adopted to adjust for
multiplicity of the testing. Specifically, given a significance level α, the rejection rule is

CXj
: the null hypothesis is rejected if Pmin,X = min{PX1 , . . . ,PXp} ≤ α/p. (8)

2.3. Pooled IR Statistics
The asymptotic equivalence between the sandwich and model-based variance estimators can
be explained by the information unbiasedness in the theory of estimating functions. Given the
estimating function �i(β) in Equation (2), limn→∞ Sn = Eθ∗{−∂�i(β)/∂β} and limn→∞ Vn =
Covθ∗{�i(β)} are called the sensitivity and variability information matrices associated with the
parameter β, respectively. When the conditional mean and variance of the response variable in
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the estimating function are correctly specified, the sensitivity matrix is equal to the variability
matrix. This equality is referred to as information equivalence (White, 1982) or information
unbiasedness (Lindsay, 1982). Zhou, Song, & Thompson (2012) proposed an IR statistic based
on a multiplicative comparison between the sensitivity matrix and variability matrix, given as

IRpool = tr{S−1
n Vn}
p

=
tr{M−1

β̂
S

β̂
}

p
, (9)

where tr(·) is the trace of a matrix. Equation (9) is in fact equivalent to a comparison between the
sandwich and model-based covariance matrix estimators. This IR statistic can also be written as
a weighted quadratic form in residuals ri, namely IRpool = ∑n

i=1 r2
i w

pool
i /σ̂2, where w

pool
i = hii/p

contains the information pooled from all the covariates, and so it is called the pooled IR statistic.
Under homogeneity of error variances, Zhou, Song, & Thompson (2012) showed that the IR
statistic

√
n(IRpool − 1) is asymptotically distributed as a normal random variable with mean 0,

and its asymptotic variance can be numerically approximated using perturbation resampling. Let
Ppool be the P-value of the pooled IR test, and the rejection rule for testing the null hypothesis
H0, Equation (1), using the pooled IR test alone is

Cpool : the null hypothesis is rejected if Ppool ≤ α. (10)

This method has been shown to have greater test power than both the information matrix test of
White (1980) and the “in-and-out-of-sample” likelihood ratio test of Presnell & Boos (2004), in
addition to a satisfactory type-I error control.

2.4. Two-Step Procedure of Profiling Heteroscedasticity
The purpose of the first step is to detect any form of heteroscedasticity, and either covariate-
specific IR tests with Bonferroni adjustment, Equation (8), or the pooled IR test, Equation (10),
can serve for this purpose. Some numeric evidence in the simulation study in Section 4.1 suggested
that if the error variances depend on only one covariate, the covariate-specific IR tests appeared
more sensitive to detect heteroscedasticity than the pooled IR test; on the other hand, if the error
variances depend on more than one covariate, the pooled IR test appeared to perform better.
In practice, given the fact that the form of the error variance is never known, it seems natural
to combine these two tests to reach a compromise. This combination results in a “hybrid” test,
denoted by Chybrid. Specifically, define a P-value Phybrid = 2 min{Ppool, pPmin,X}, and the rejection
rule is

Chybrid : the null hypothesis is rejected if Phybrid ≤ α. (11)

This hybrid strategy helps to control overall type I error. This is because under the null hy-
pothesis, Pr(Phybrid ≤ α) ≤ Pr(Ppool ≤ α/2) + Pr

{
Pmin,X ≤ (α/2)/p

} ≤ α/2 + α/2 = α, mean-
ing that the probability of type I error is bounded by α.

If the null hypothesis is rejected, the second step needs to be carried out to identify covariates
associated with the heteroscedasticity. Adjusting for multiple testing, the covariates with corre-
sponding covariate-specific IR P-values less than α/p can be regarded as the covariates associated
with error variances. This can be justified by the asymptotic distribution of the covariate-specific
IR statistics under heteroscedastic variance structures. Consider the variance structure Equation
(5) depending on Zi, a sub-vector of Xi, say Z = (Xi,j1 , . . . , Xi,jq ), where J = {j1, . . . , jq} ⊂
{1, . . . , p}. This leads to ν2 = κ2EX {V (Zi)} and ν2

j = κ2EX

{
V (Zi)X2

ij

}
/Aj . If the covariate

Xij is not included in Zi, that is, j /∈ J, due to Assumption (A3) EX(X2
ij | Xik, k �= j) = EX(X2

ij),
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EX

{
V (Zi)X2

ij

}
/Aj = EX {V (Zi)} EX(X2

ij)/Aj = EX {V (Zi)}, and consequently, ν2
j = ν2. The

Xj-specific IR test statistic Wj converges in distribution to a Gaussian random variable with
mean 0. Given a significance level α, the false positive rate for individual covariate, that is, the
probability of wrongly identifying Xij as the covariate associated with error variances is at most
α/p. If the covariate Xij is included in Zi, that is, j ∈ J, the statistic IRj − 1 converges in dis-
tribution to a random variable with mean ν2

j /ν
2 − 1. This leads to a high probability that Xij is

chosen. Larger sample sizes and/or larger distance of ν2
j /ν

2 from 1 leads to higher sensitivity.
Note that when the covariates are approximately normally distributed, Assumption (A2) would
imply Assumption (A3). However, for other situations, violation of Assumption (A3) might lead
to a false positive identification. For example, if the variance of Xij outside Zi depends on some
component in Zi, the Xj-specific IR test statistic might converge in distribution to a Gaussian
random variable with a nonzero mean, which might lead to a small P-value, even though Xij is
not associated with the variance structure. Thus we recommend to check Assumption (A3) only
on the covariates which are identified as associated with the variance structure.

3. GENERALIZATIONS OF COVARIATE-SPECIFIC IR STATISTICS

In some applications, some covariates may explain the differences in the variance of the response
variable across subjects rather than the differences in the mean of the response variable (Zalesny
& Farace , 1986). Our method may be extended to a more general situation where a set of m

explanatory variables Ci = (Ci1, . . . , Cim)T are considered as candidate covariates for the error
variances, and variables in Ci are possibly not in Xi. Let C be an n × m matrix with CT

i as the
ith row, and let ri be the OLS residuals from regressing Yi on Xi. Based on this candidate set, the
pooled IR statistic and covariate-specific IR statistics are given as

IRpool =
n∑

i=1

r2
i w

pool
i /σ̂2 and IRj =

n∑
i=1

r2
i w

(j)
i /σ̂2, (12)

where w
pool
i = cii/m with cii being the diagonal elements of C

(
C

T
C

)−1
C, and w

(j)
i = cii − c

(−j)
ii

with c
(−j)
ii being the diagonal element of C(−j)

(
C

T
(−j)C(−j)

)−1
C(−j) and C(−j) being the matrix

resulting from deleting the jth column from the matrixC. Note that if Ci ≡ Xi, these IR statistics
in Equation (12) are the same as those in Lemma 1 and Equation (9). Details on the derivation of
Equation (12) are provided in the Appendix.

The covariate-specific IR statistics may be extended to covariate-set-specific statistics. Specif-
ically, consider an index setJk ⊂ {1, . . . , p} with dimension lk. Let Ci,Jk

= {Cij : j ∈ Jk} denote
an lk-dimensional sub-vector of Ci and let Ci,(−Jk ) = {Cij : j /∈ Jk}. The covariate set Ci,Jk

-specific
IR statistic is given as IRJk

= ∑n
i=1 r2

i w
(Jk )
i /σ̂2, w(Jk )

i = cii − c
(−Jk )
ii where c

(−Jk )
ii are the diagonal

elements ofC(−Jk )

(
C

T
(−Jk )C(−Jk )

)−1
C(−Jk ) withC(−Jk ) being the resulting matrix with the column

set Jk deleted from C. If any element in Ci,Jk
is uncorrelated with any element in Ci,(−Jk ), the

weights w
(Jk )
i are stochastically equivalent to n−1Ci,Jk

TA−1
Jk

Ci,Jk
where AJk

= E
(
Ci,Jk

Ci,Jk

T
)
.

In practice, under the assumption (A2) that Xi1, . . ., Xip are uncorrelated, is a strong as-
sumption. For experimental data, the covariate space could be designed as orthogonal, and the
proposed procedure can be applied directly. For observational data, the correlation structure
amongst covariates could be learned from the data, such as a sample correlation matrix. The pro-
posed procedure might work adequately for the situations when the sample correlation between
covariates is modest. However, in situations where strong correlation is present, the weight w(j)

i of
the Cj-specific IR statistic would converge to a quantity which does not depend on Cij alone. In
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using the covariate-specific IR statistics, the true dependence of error variances on some covari-
ates might be masked or weakened by other covariates which are correlated with these covariates
truly associated with the error variances. We suggest a screening mechanism which successively
examines each covariate Cj = (C1j, . . . , Cnj)T, j = 1, . . . , p as the “target” covariate. Starting
with C1, we transform C to C† = (C1, 
) where 
 is an n × (m − 1) matrix whose column
vectors are perpendicular toC1. This can be done by regressing each of the column vectors of the
matrix C(−1) on C1, and taking the resulting residuals, say {δj, j = 2, . . . , m}, to form the matrix

. Based on the new design matrix C†, we construct the C1-specific IR statistic. Note that IRpool

based on C† is same as the one based on C. Similarly, we obtain the P-values for the Cj-specific
IR tests for j = 2, . . . , m. This algorithm allows the true relationship of each covariate with the
error variances to be singled out.

4. NUMERICAL ILLUSTRATION

4.1. Simulation Study
Consider the model: Yi = 1 + Xi1 + Xi2 + Xi3 + ei where the variance σ2

i of ei takes the form
of g(σ2

i ) = φ0 + WT
i φ, where g(·) is a known smooth function, Wi is a q × 1 vector function

of a subset of {Xi1, Xi2, Xi3}, and φ is a q × 1 vector. Two families of error variance functions
considered in Cook & Weisberg (1983) are examples of these forms: log(σ2

i ) = ∑
j φjXij and

log(σ2
i ) = ∑

j φj log(Xij) assuming Xij > 0. Both the variability of covariates and the magnitude
of φ affect heterogeneity across σ2

i , where φ is called the effect size. For simplicity, we generate
uncorrelated covariates with variance 1 and vary the values of φ. Specifically, we generate three
independent sets (X̃1j, . . . , X̃nj), j = 1, 2, 3, of random variables from a uniform distribution be-
tween 0 and 1. Let x̄j and sj be the sample mean and sample standard deviation of {X̃1j, . . . , X̃nj},
respectively, and let Xij = (X̃ij − x̄j)/sj . The covariates Xi = (Xi1, Xi2, Xi3) are used to gener-
ate the responses Yi. In the simulation, we generate the errors ei from a normal distribution with
mean 0 and homogeneous error variance H0 : σ2

i = 1 as well as the following heteroscedastic
variance structures σ2

i = V (Xi):

(i) σ2
i depends on Xi1 only: 1 + X2

i1 and 1 + 3X2
i1;

(ii) σ2
i depends on both Xi1 and Xi2: 1 + 3X2

i1 + X2
i2 and 1 + 3X2

i1 + 3X2
i2;

(iii) σ2
i depends on all the covariates: 1 + 3X2

i1 + 3X2
i2 + 3X2

i3;
(iv) σ2

i depends on covariates in an exponential functional form: exp(3Xi1) and exp(3Xi1 + 3Xi2).

The sample size is set to be 200 and 400. All the simulation results are obtained based on 10,000
replications for each variance structure and each sample size; to implement the perturbation
resampling method, 1,000 perturbed resamples are generated from each data set and we generate
ξi from a standard Normal distribution.

We investigate three tests: (i) the pooled IR test alone, which is based on Cpool in Equation
(10); (ii) covariate-specific IR tests with Bonferroni adjustment, which is based onCXj

in Equation
(8); and (iii) the hybrid test, which is based on Chybrid in Equation (11). The empirical frequencies
of rejecting the null hypothesis using these three tests at the significance level α = 0.05 under
each of the variance structures are reported in Tables 1 and 2. First, under the null hypothesis, by
McNemar’s test, we confirm that the empirical type I errors of the hybrid test are significantly
different from those of the other two tests since the P-values of the McNemar’s test are all less
than 0.001. The empirical type I errors of Cpool are generally inflated whilest those of CXj

are
conservative with type I error rate less than α. The empirical type I errors of Chybrid are closer to
the nominal level compared with Cpool and CXj

. Secondly, when the error variances depend on
only one covariate, for example σ2

i = 1 + X2
i1, the rejection criterion CXj

is more powerful than
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Table 1: Empirical relative frequencies (multiplied by 100) of rejecting the null hypothesis amongst
10,000 replicates under various variance structures when the sample size is 200.

Cpool CXj
Chybrid White GQ BPG

H0 6.3 3.9 5.0 3.4 14.0 4.7

1 + X2
i1 60.6 95.2 91.9 76.8 19.6 18.1

1 + 3X2
i1 89.4 100.0 99.9 98.7 25.2 30.0

exp(3Xi1) 89.5 100.0 100.0 100.0 46.4 100.0

1 + 3X2
i1 + X2

i2 95.3 99.3 99.2 94.2 22.3 26.0

1 + 3X2
i1 + 3X2

i2 97.9 97.7 98.3 92.8 21.5 26.0

exp(3Xi1 + 3Xi2) 98.8 98.3 99.3 100.0 38.6 100.0

1 + 3X2
i1 + 3X2

i2 + 3X2
i3 99.2 89.2 98.5 84.8 19.7 23.5

Cpool represents the pooled IR test alone;CXj
represents the covariate-specific IR tests with the Bonferroni correction;

Chybrid represents the hybrid test. “White” represents the White’s test; “GQ” represents the Goldfeld–Quandt test;
“BPG” represents the Breusch–Pagan–Godfrey test.

the criterion Cpool despite of being conservative. When the error variances depend on more than
one covariate, the rejection criterion Cpool appears more powerful but may be due to its inflated
type I errors. In both of these two scenarios, our proposed hybrid test Chybrid in most of the cases
outperforms the other two criteria Cpool and CXj

. Thirdly, the test power based on all the three
criteria increases for the larger sample size.

To compare our method with some of the existing methods, we modify the White’s test,
Goldfeld–Quand (GQ) test, and Breusch–Pagan–Godfrey (BPG) test suitable to test for ho-
moscedasticity and to identify the covariates associated with the error variances. The details
of these three tests can be found in the Appendix, and their empirical frequencies of rejecting the
null hypothesis are also listed in Tables 1 and 2. The results show that amongst these three tests,
the empirical type I errors of the BPG test are closest to the nominal level. Compared with the

Table 2: Empirical relative frequencies (multiplied by 100) of rejecting the null hypothesis amongst
10,000 replicates under various variance structures when the sample size is 400.

Cpool CXj
Chybrid White GQ BPG

H0 5.7 3.8 4.5 3.2 14.7 5.0

1 + X2
i1 90.5 100.0 99.9 99.0 20.5 18.9

1 + 3X2
i1 99.6 100.0 100.0 100.0 25.9 30.8

exp(3Xi1) 99.3 100.0 100.0 100.0 46.4 100.0

1 + 3X2
i1 + X2

i2 100.0 100.0 100.0 100.0 23.2 27.0

1 + 3X2
i1 + 3X2

i2 100.0 100.0 100.0 100.0 22.0 26.8

exp(3Xi1 + 3Xi2) 100.0 100.0 100.0 100.0 38.5 100.0

1 + 3X2
i1 + 3X2

i2 + 3X2
i3 100.0 99.8 100.0 99.6 20.3 24.0

Cpool represents the pooled IR test alone;CXj
represents the covariate-specific IR tests with the Bonferroni correction;

Chybrid represents the hybrid test. “White” represents the White’s test; “GQ” represents the Goldfeld–Quandt test;
“BPG” represents the Breusch–Pagan–Godfrey test.
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Table 3: Empirical relative frequencies (multiplied by 100) of identifying each of the covariates as a
covariate associated with the error variances when the sample size is 200.

X1 X2 X3

IR White BPG IR White BPG IR White BPG

1 + X2
i1 91.5 6.2 19.0 1.4 1.4 8.4 1.3 1.5 8.4

1 + 3X2
i1 99.9 8.3 28.0 1.4 1.4 12.8 1.3 1.4 12.3

exp(3Xi1) 99.9 100.0 100.0 2.3 1.1 44.3 2.1 1.0 44.5

1 + 3X2
i1 + X2

i2 98.6 7.2 23.2 21.6 2.7 14.2 1.4 1.4 10.2

1 + 3X2
i1 + 3X2

i2 79.2 4.9 18.7 80.1 5.0 18.8 1.4 1.4 9.7

exp(3Xi1 + 3Xi2) 87.6 86.6 100.0 88.7 86.8 100.0 6.9 0.4 66.5

1 + 3X2
i1 + 3X2

i2 + 3X2
i3 48.9 3.4 14.3 50.2 3.9 14.8 49.5 4.0 15.1

“White” represents the White’s test; “BPG” represents the Breusch–Pagan–Godfrey test.

BPG test, the empirical test size of the White’s test is generally smaller than the nominal level,
but that of the GQ test is seriously inflated.

Tables 3 and 4 summarize the empirical frequencies of identifying each of the covariates
{Xi1, Xi2, Xi3} as one associated with the error variances under each of the heteroscedastic vari-
ance structures. Firstly, our method has high sensitivity, which increases as the sample size
increases. For example, under the error variance σ2

i = 1 + X2
i1, for sample size 200, with 91.5%

success rate, Xi1 is identified as the covariate associated with the variance amongst the 10,000
replicates; for the sample size 400, the sensitivity increases to 99.9%. Secondly, the results show
high specificity. For example, under the error variance σ2

i = 1 + X2
i1, for sample size 200, with

98.6% success rate, X2 is correctly identified as covariate not associated with the variance. How-
ever, we observe that the specificity for Xi3 under variance structures of exponential form are
relatively lower, that is, the false positive rates appear inflated. Further investigation is required.

Table 4: Empirical relative frequencies (multiplied by 100) of identifying each of the covariates as a
covariate associated with the error variances when the sample size is 400.

X1 X2 X3

IR White BPG IR White BPG IR White BPG

1 + X2
i1 99.9 6.6 19.5 1.4 1.4 8.8 1.1 1.4 8.3

1 + 3X2
i1 100.0 8.6 28.5 1.4 1.3 13.2 1.2 1.3 12.7

exp(3Xi1) 100.0 100.0 100.0 1.5 1.3 45.7 1.8 1.2 44.8

1 + 3X2
i1 + X2

i2 100.0 7.2 23.8 43.2 2.8 14.9 1.1 1.4 10.6

1 + 3X2
i1 + 3X2

i2 98.7 5.1 19.8 98.7 5.3 20.1 1.2 1.4 10.1

exp(3Xi1 + 3Xi2) 98.4 98.0 100.0 98.5 98.1 100.0 4.7 0.8 70.3

1 + 3X2
i1 + 3X2

i2 + 3X2
i3 83.0 3.8 15.1 83.4 4.0 15.7 82.7 4.2 15.5

“White” represents the White’s test; “BPG” represents the Breusch–Pagan–Godfrey test.
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Thirdly, we observe that the sensitivity depends on the effect size of the covariate on the
error variances. We focus on the scenarios with the sample size 200. The variance functions
σ2

i = 1 + X2
i1 and σ2

i = 1 + 3X2
i2 are in the form of σ2

i = 1 + φX2
i1, and the parameter φ charac-

terizes the effect size. The results in Table 3 show that the true positive rate of Xi1 is 91.5% with
φ = 1, and it increases to 99.9% with φ = 3. Comparing the three variance structures with the same
effect sizes of Xi1: σ2

i = 1 + 3X2
i1, σ2

i = 1 + 3X2
i1 + 3X2

i2 and σ2
i = 1 + 3X2

i1 + 3X2
i2 + 3X2

i3,
their empirical true positive rates of Xi1 are 99.9%, 79.2%, and 48.9%, respectively. Even though
the effect sizes of Xi1 are the same across these three variance functions, their true positive rates
differ. This is because the effect size does not fully characterize the marginal contribution of the
corresponding covariate to the error variances in the presence of other covariates. For a better mea-
sure, we define covariate-specific standardized variance functions. Take Xi1 as an example. Let
Ṽ (Xi1) = EX(−1){V (Xi)|Xi1}/EX{V (Xi)} where EX(−1) denotes the expectation w.r.t. the distribu-
tion of X(−1), a sub-vector of X deleting its first element; call Ṽ (Xi1) the X1-specific standardized
variance function. The X1-specific standardized functions of 1 + 3X2

i1, 1 + 3X2
i1 + 3X2

i2, and
1 + 3X2

i1 + 3X2
i2 + 3X2

i3 are (1/4) + (3/4)X2
i1, and (1/7) + (3/7)X2

i1, and (1/10) + (3/10)X2
i1,

where the marginal effect sizes of Xi1 are 3/4, 3/7 and 3/10, respectively. Corresponding to
these decreasing marginal effect sizes, the empirical true positive rates decrease, 99.9%, 79.2%
and 48.9%. Thus, the sensitivity increases with increasing marginal effect sizes in the covariate-
specific standardized variance functions. These marginal effect sizes are able to better capture
the marginal contributions of the corresponding covariates, compared with the effect sizes in the
original variance functions.

Fourthly, it appears that the covariate-specific IR statistics are powerful to detect covariates
associated with heteroscedastic variance structures in a variety of forms. This is because that our
method does not require any explicit form of the error variance functions.

Finally, the empirical identification frequencies of Xi1, Xi2 and Xi3 via the White’s test and the
BPG test are also reported in Tables 3 and 4. Compared with these two tests, our method performs
better in general. Specifically, both White’s test and the BPG test have higher sensitivity in
identifying the true dependant covariates for variance functions in an exponential form. However,
neither of these two tests performs well for the variance functions in quadratic forms.

4.2. Data Analysis
To illustrate the effectiveness of our method, we analyze a data set collected from a retrospective
study of inpatients who underwent initiation of renal replacement therapy for a diagnosis of acute
kidney injury (AKI) during the period of November, 2007 to October, 2008 (Heung et al. , 2012).
This was the first study ever that collected biomarker data from patients with severe AKI who were
treated by dialysis. This data consists of 170 patients with several baseline characteristics including
age, gender (96 males and 74 females), baseline weight, and three important clinical measures to
reflect profiles of renal function: baseline serum creatinine (mg/dL), albumin at admission (g/dL),
and haemoglobin at admission (mg/dL). Note that the baseline weight used in the analysis is
defined as the average outpatient weight recorded within 3 months preceding hospitalization.

One aim of this analysis was to characterize one baseline renal function outcome of hospital-
ized AKI patients with the other two lab measurements related to renal functions, adjusting for
confounding covariates (age, gender and baseline weight). Such relationship has not been well
studied in the literature for severe inpatient AKI patients. Amongst these associations, it is of great
interest to investigate the relationship of creatinine with albumin and haemoglobin, adjusting for
age, gender and baseline weight. This is because creatinine is a primary clinical variable used in
the estimation of glomerular filtration rate, the most widely used outcome for renal function.

Prior to the analysis, a log transformation was applied to the baseline weight and creatinine.
Figure 1 shows the histograms and pairwise scatter plots as well as pairwise correlations of the
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Figure 1: Acute kidney injury data: Histograms of log baseline serum creatinine (logBaseCr), age (Age),
log baseline weight (logWeight), albumin at admission (Albumin), and haemoglobin at admission (Hgb) as
well as their pairwise scatter plots and pairwise correlations. [Color figure can be seen in the online version

of this article, available at http://wileyonlinelibrary.com/journal/cjs]

continuous variables used in the analysis. We regress the log baseline serum creatinine on age,
gender, log baseline weight, albumin and haemoglobin. The OLS estimates of the regression
coefficients as well as the model-based and sandwich estimates of the standard errors (SE) are
reported in Table 5. The results show that age, log baseline weight and haemoglobin are significant
factors. The model-based and sandwich SE estimates appear different on some variables such as
albumin, which might be an indirect indication of heteroscedasticity.

Table 5: The OLS and WLS estimates of the regression coefficients and their associated standard errors.

OLS WLS

Est SEm(SEs) P-value Est SE P-value

Age 0.0070 0.0022 (0.0019) <0.01 0.0054 0.0020 <0.01

Gender 0.1130 0.0731 (0.0752) 0.133 0.1398 0.0659 0.036

logWeight 0.2578 0.1207 (0.1099) 0.019 0.2790 0.1072 0.010

Albumin 0.0755 0.0539 (0.0429) 0.079 0.0889 0.0432 0.041

Hgb −0.0421 0.0155 (0.0152) <0.01 −0.0466 0.0139 <0.01

AIC 207.1 185.2

BIC 229.0 207.1

For the OLS estimation, the model-based estimates SEm and sandwich estimates SEs of the standard errors are
reported. The P-values are obtained using the sandwich standard error estimtes.

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique



370 ZHOU, SONG AND THOMPSON Vol. 43, No. 3

20 40 60 80

−
0.

5
0.

0
0.

5
1.

0

Age

re
si

du
al

s

4.0 4.5 5.0

−
0.

5
0.

0
0.

5
1.

0

logWeight

re
si

du
al

s

1.5 2.0 2.5 3.0 3.5 4.0 4.5

−
0.

5
0.

0
0.

5
1.

0

Albumin

re
si

du
al

s

6 8 10 12 14 16

−
0.

5
0.

0
0.

5
1.

0

Hgb

re
si

du
al

s

Female Male

−
0.

5
0.

0
0.

5
1.

0

Figure 2: Acute kidney injury data: Residual plots versus age, log baseline weight (logWeight), albumin,
haemoglobin (Hgb) and gender.

Figure 2 comprises the residual plots against the five covariates. Some patterns of association
could be observed between the error variances and age, log baseline weight and albumin, but
the patterns do not appear very strong. We applied the proposed two-step procedure to examine
these patterns rigorously. The P-value for the pooled IR test was 0.0018. Figure 1 shows weak
correlations amongst the covariates, and thus it seems reasonable to use the covariate-specific
IR tests without running the covariate-wise screening algorithm described in Section 3. The
covariate-specific P-values were found to be 0.086, 0.25, 0.25, 0.0004 and 0.93 for age, gender,
log baseline weight, albumin and haemoglobin, respectively. The hybrid P-value was 0.0036.
Given the significance level 0.05, the null hypothesis of homoscedasticity was rejected. The
variable albumin has been identified as a covariate associated with the error variances, which
agreed with the result in Table 5 that the discrepancy between the two SE estimates for the
variable albumin was the largest amongst the five covariates.

Next we investigated the influence of incorporating heteroscedasticity in the estimation of
the regression coefficients. Since the relationship of the error variances with albumin appeared
nonlinear in the residual plot, we obtained the nonparametric estimates of the error variances via
kernel smoothing (Wand & Jones , 1995). The plot of the estimated error variances as a function
of albumin is shown in Figure 3, and this plot also confirms the nonlinear relationship of the error
variances with albumin. Note that the kernel estimates of the error variances was obtained using
the ksmooth function in R, with the bandwith chosen by using the np.gcv funtion in R. In addition,
to investigate the influence of the endpoints on the estimated variance, we fit the nonparametric
models using the observations of albumin with different proportions of endpoints deleted. The
resulting estimated variances appear similar. Thus, removing various proportions of endpoints
has little influence on the estimated variance structure.

The estimated error variances σ̂2
i were used as the weights in the WLS estimation, and the

resulting estimates with estimated standard errors (e.s.e.) were reported in Table 5. In contrast
to the homoscedastic model, the magnitudes of the coefficients estimates were slightly different
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Figure 3: Acute kidney injury data: Plot of the nonparametric estimates of the error variances via the kernel
smoothing versus albumin.

in the heteroscedastic model, and the e.s.e.’s tended to be smaller. Two variables, gender and
albumin, were significant when accounting for the heteroscedasticity in the LM, but they were
insignificant in the homoscedastic model. In addition, the AIC and BIC of the heteroscedastic
model were smaller than those given by the homoscedastic model. These results all indicated that
correctly identifying the dependence of error variances on covariates is critically important to
yield appropriate estimation and inference in the regression analysis.

5. CONCLUDING REMARKS

We have proposed a powerful screening procedure to detect the presence and sources of variance
heterogeneity in LMs. The proposed procedure is constructed based on two types of IR statistics,
both relying on comparisons between sandwich and model-based covariance matrices of regres-
sion coefficients estimators. Compared with existing tests for heteroscedasticity, the novelty of
our methods lies in the fact that they do not need to assume any specific models for the error
variances. Thus, our method is flexible to deal with general heteroscedastic variance structures.
This is illustrated through the simulation studies, in which we also show that the proposed testing
procedure can control the type I error and produce high sensitivity.

We note that the finite sample performance of our proposed method might not be stable since
the asymptotic distribution might not be a good approximation to the finite sample distribution of
the covariate-specific IR statistics. Further investigation is desirable. In addition, the covariate-
specific IR statistics are not invariant to different linear transformations on the design matrix.
Wrongly chosen transformations can give misleading results, but, on the other hand, the method
permits a transformation that is closely pertinent to a relevant space for better understanding of
heteroscedasticity profiles. The covariate-wise screening algorithm proposed in Section 3 provides
one approach to basing the profiling on the covariate space. In another context, one may perform
a singular value decomposition on the design matrix to extract principal components that align
with differences in the variance. The problem of optimal rotation on covariates deserves future
research.

Other future work includes extending the proposed method to profiling heterogeneity in vari-
ances across different subjects in longitudinal data using a linear mixed-effects model (LMM)
Yi = β0 + Xiβ + Zibi + ei where bi’s are random effects, typically assumed to be random
with zero mean and covariance matrix �b. This LMM leads to the conditional variance of Yi:
Cov(Yi | Zi) = σ2 + Zi�bZ

T
i , which depends on Zi, the covariates associated with random ef-

fects. The model could be generalized to the form Yi = β0 + Xiβ + h(Zi; bi) + ei, where h(·)
is an arbitrary smooth function. Misspecification of the random effects structures may affect the
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estimation efficiency of the fixed effects. A key component of correct specification of the random
effects structure is correct identification of elements in the covariates which are associated with
the random effects. The proposed procedure can be extended to detect covariates associated with
the random effects in mixed effects models.

APPENDIX

Proof of Lemma 1. By the QR decomposition (Golub & Van Loan, 1996), the matrix X can
be decomposed into a product X = QR of an orthogonal n × p matrix Q and a p × p upper
triangular matrix R. Let U = R−1 which is also an upper triangular matrix. The sandwich and
model-based covariance matrix estimators of

√
n(β̂ − β∗), Equations (3) and (4), can be expressed

as S
β̂

= nU
(
QTRQ

)
UT andM

β̂
= nσ̂2UUT.

Let us start with the sandwich and model-based estimators of the variance of
√

n(β̂p − β∗
p).

Re-express the matrix Q = (
Q(−p), Qp

)
, where Q(−p) is an n × (p − 1) matrix consisting of the

first p − 1 columns of Q (equivalently deleting the pth column), and Qp = (Q1,p, . . . , Qn,p)T is
the last column. Note that Q(−p) is also an orthogonal matrix. Then, we re-partition the matrix

U =
(

U11 U12

0T
p−1 u22

)
, where U11 is a (p − 1) × (p − 1) upper triangular matrix, U12 is a (p − 1) × 1

vector, and u22 is a scalar. Consequently, the sandwich and model-based variance estimators of√
n(β̂p − β∗

p) can be written as Vs
p = nu2

22
∑n

i=1 QT
pRQp and Vm

p = nσ̂2u2
22. The Xp-specific IR

statistic is given by

IRp = Vs
p/Vm

p =
n∑

i=1

Q2
i,p

r2
i /σ̂

2.

Next, we prove that Q2
i,p = hii − h

(−p)
ii , where hii and h

(−p)
ii are the diagonal elements of the

hat matrices H and H(−p). To this end, we note that H = QQT = Q(−p)QT
(−p) + QpQT

p
, where

the ith diagonal element of QpQT
p

is Q2
i,p. In addition, the QR decomposition of X leads to

X(−p) = Q(−p)U−1
11 , and consequently H(−p) = Q(−p)QT

(−p). Thus, hii − h
(−p)
ii = Q2

ip.
For j = 1, . . . , p − 1, switching βj with βp leads to the switch between the jth and pth column

in X as well as the switch between the jth and pth diagonal elements ofS
β̂

andM
β̂
. In addition,

the hat matrix H and the residuals ri’s remain the same during the permutation. Thus, the results
for IRp can be generalized to IRj , for j = 1, . . . , p − 1. �

Proof of Lemma 2. Let Xi,(−j) denote the subvector of Xi with the jth element deleted.
Let Aj = EX(X2

ij), for j = 1, . . . , p. Due to EX(Xij) = 0 and Assumption (A2) Xi1, . . . , Xip

are uncorrelated, we can show that EX(XiXT
i ) = diag{Aj, j = 1, . . . , p} and EX(Xi,(−j)XT

i,(−j)) =
diag{A′

j, j
′ = 1, . . . , p, j′ �= j}. Let A = EX(XiXT

i ) and A(−j) = EX(Xi,(−j)XT
i,(−j)).

Let An = n−1 ∑n
i=1 XiXT

i and A(−j),n = n−1 ∑n
i=1 Xi,(−j)XT

i,(−j). The quantities hii and h
(−j)
ii

can be written as, respectively, hii = n−1XT
i A−1

n Xi and h
(−j)
ii = n−1XT

i,(−j)A
−1
(−j),nXi,(−j). Let h̄ii =

n−1XT
i A−1Xi and h̄

(−j)
ii = n−1XT

i,(−j)A
−1
(−j)Xi,(−j). By the Central Limit Theorem (CLT), we have

|n−1 ∑n
i=1 XijXik − EX(XijXik)| = Op(n−1/2) for j, k = 1, . . . , p. Consequently, we can show

that supi |hii − h̄ii| = Op(n−3/2) = op(n−1) and supi |h(−j)
ii − h̄

(−j)
ii | = Op(n−3/2) = op(n−1).

Note that h̄ii = n−1 ∑p
j=1 X2

ij/Aj and h̄
(−j)
ii = n−1 ∑

j′=1,...,p,j′ �=j X2
ij′/Aj′ . Thus, w̄(j)

i = h̄ii −
h̄

(−j)
ii = n−1X2

ij/Aj . We can show that supi |w(j)
i − w̄

(j)
i | ≤ supi |hii − h̄ii| + supi |h(−j)

ii − h̄
(−j)
ii | =

Op(n−3/2) = op(n−1). �
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Proof of Theorem 1. First, we show the following results: (R1) supi |w(j)
i | = Op(n−1) and

supi |w̄(j)
i | = Op(n−1); (R2) r2

i = e2
i + Ciei + Op(n−1), where Ci is Op(n−1/2). To prove the

result (R1), we first can show supi |w̄(j)
i | = Op(n−1) using the result w̄

(j)
i = n−1X2

ij/Aj in the
proof of Lemma 2 and the assumption that the support �X of Xi is compact. Using the re-
sult of Lemma 2, supi |w(j)

i − w̄
(j)
i | = op(n−1), we can prove supi |w(j)

i | ≤ supi |w(j)
i − w̄

(j)
i | +

supi |w̄(j)
i | = Op(n−1). To prove the result (R2), since ri = ei − XT

i (β̂ − β∗) and β̂ − β∗ =
Op(n−1/2), we can write ri = ei + Oi, whereOi = Op(n−1/2). Thus, r2

i = e2
i + Ciei + Op(n−1),

where Ci = 2Oi = Op(n−1/2).
Let Q1 = ∑n

i=1 w
(j)
i r2

i and Q2 = n−1 ∑n
i=1 r2

i denote the numerator and denominator of the
Xj-specific IR statistic. Let Q̄1 = ∑n

i=1 w̄
(j)
i e2

i = n−1 ∑n
i=1 X2

ije
2
i /Aj and Q̄2 = n−1 ∑n

i=1 e2
i .

Next we show the result (R3) |√n(Q1 − Q̄1)| = Op(1) and |√n(Q2 − Q̄2)| = Op(1). To this
end, first of all, using the result (R2) above, we can show that

√
n(Q2 − Q̄2) = n−1/2 ∑n

i=1 Ciei +
Op(n−1/2). Note that n−1/2 ∑n

i=1 Ciei is bounded by a constant multiplied by n−1 ∑n
i=1 ei =

Op(n−1/2). Thus, |√n(Q2 − Q̄2)| = Op(1). Using the result (R1) and similar arguments, we can
show that |√n(Q1 − Q̄1)| = Op(1).

By the Taylor expansion of IRj = Q1/Q2, we have
√

n(IRj − 1) = √
n(ν2

j /ν
2 − 1) + T1 +

T2 where

T1 = √
n

{
1
ν2 (Q1 − ν2

j ) − ν2
j

(ν2)2 (Q2 − ν2)

}
, (A.1)

T2 = op(
√

n|Q1 − ν2
j | + √

n|Q2 − ν2|). (A.2)

We can show that the term in Equation (A.2) is T2 = op(
√

n|Q1 − Q̄1| + √
n|Q2 − Q̄2| +√

n|Q̄1 − ν2
j | + √

n|Q̄2 − ν2|) = op(1) by the result (R3) and the facts that
√

n(Q̄1 − ν2
j ) =

Op(1) and
√

n(Q̄2 − ν2) = Op(1) by CLT. Using the similar arguments in proving the result
(R3) and

∑n
i=1 w

(j)

i = 1, we can show that the term in Equation (A.1) is

T1 = √
n

(
n∑

i=1

w
(j)

i

e2
i

ν2 − ν2
j

ν2
1
n

n∑
i=1

e2
i

ν2

)
+ op(1)

= √
n

n∑
i=1

{(
w

(j)

i − ν2
j

ν2
1
n

) (
e2
i

ν2 − 1

)
− 1

n

(
ν2
j

ν2 − 1

)}
+ op(1).

Further using the result (R1), we can show

T1 = √
n

n∑
i=1

{(
w̄

(j)

i − ν2
j

ν2
1
n

) (
e2
i

ν2 − 1

)
− 1

n

(
ν2
j

ν2 − 1

)}
+ op(1)

= 1√
n

n∑
i=1

{(
X2

ij

Aj

− ν2
j

ν2

) (
e2
i

ν2 − 1

)
−

(
ν2
j

ν2 − 1

)}
+ op(1).

Let Rij = ((X2
ij)/(Aj) − (ν2

j )/(ν2))((e2
i )/(ν2) − 1) − ((ν2

j )/(ν2) − 1). Note that {Rij, i =
1, . . . , n} are independent random variables with E(Y,X)(Rij) = 0 and �j = Var(Y,X)(Rij) =
E(Y,X)(R2

ij). Under the null hypothesis, corresponding to V (Xi) ≡ 1 in the general variance struc-
ture Equation (5), EY |X(e2

i ) = κ2 and EY |X(e2
i X

2
ij)/Aj = κ2X2

ij/Aj . Thus, we have ν2 = ν2
j = κ2,

and the test statistic
√

n(IRj − 1) = n−1/2 ∑n
i=1 Rij + op(1). By the central limit theorem,
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√
n(IRj − 1) converges in distribution to a Gaussian random variable with mean 0 and variance

�j . �

Derivation of Equation (12). The statistics in Equation (12) are essentially derived from the
following procedure. First we consider an estimating function of the form

n∑
i=1

1
σ2 Ci(ei − CT

i γ) = 0, (A.3)

where ei = Yi − XT
i β∗ and γ is an m-dimensional vector of coefficients. Let γ̂ be the solution to

the estimating equation, Equation (A.3), and the resulting residuals are r̃i = ei − CT
i γ̂ , and the

variance parameter estimate is ̂̃σ2 = n−1 ∑n
i=1 r̃2

i . Applying our method given in Section 2, based
on Equation (A.3), we can have

IRpool =
∑n

i=1 r̃2
i w

pool
î̃σ2 and IRj =

∑n
i=1 r̃2

i w
(j)
î̃σ2 . (A.4)

With the mean structure EY |X(Yi) = XT
i β correctly specified, we expect that γ̂ converges in prob-

ability to 0. This implies that the residuals r̃i and ̂̃σ2
are stochastically equivalent to the residuals

ri and σ̂2, respectively. Moreover, the IR statistics in Equation (A.4) are stochastically equivalent
to the statistics in Equation (12). In the literature, several methods have been suggested to test for
the adequacy of the mean structure with no need of correctly specifying the variance structure
(Hansen, 1982). �

White’s test, Goldfeld–Quandt test and Breusch–Pagan–Godfrey test. Consider model: Yi =
β0 + β1Xi1 + · · · + βpXip + ei, i = 1, . . . , n. According to the description in Gujarati & Porter
(2009), we present the details of the White’s general heteroscedasticity test, Goldfeld–Quandt

test and Breusch–Pagan–Godfrey test.

White’s general heteroscedasticity test.

Step 1. Given the data, we obtain the OLS estimates of β0, β1, . . . , βp and the residuals r1, . . . , rn.
Step 2. We then run the following (auxiliary) regression:

r2
i = α0 +

p∑
j=1

αjXij +
p∑

j=1

α(j,j)X
2
ij +

∑
j1 �=j2

α(j1,j2)Xi,j1Xi,j2 + ei.

Step 3. Define the test statistic T = n × R2 where R2 is the coefficient of determination for the
auxiliary regression model. Under the null hypothesis of homoscedasticity, T converges
in distribution to a chi-square distributed random variable with 2p + p(p − 1)/2 degrees
of freedom (d.f.).

Step 4. If the calculated value of the test statistic exceeds the critical chi-square value at the chosen
level of significance, the null hypothesis is rejected.

To detect the covariates associated with the error variances, we modify the White’s test described
above. For each j = 1, . . . , p, we run the auxiliary regression:

r2
i = α0 + αjXij + α(j,j)X

2
ij + ei,
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and calculate the value of the test statistic T. If this value exceeds the critical value of a chi-square
random variable with 2 d.f., the conclusion is that the heteroscedastic error variances depend on
Xij .

Goldfeld–Quandt test. This test is applicable if one assumes that the heteroscedastic variance
σ2

i is positively related to one of the explanatory variables in the regression models. For each
covariate Xij , j = 1, . . . , p:

Step 1. order or rank the observations according to the values of Xij , beginning with the lowest
Xij value.

Step 2. Omit c middle observations, where c is specified a priori, and divide the (n − c) obser-
vations into two groups, each of (n − c)/2 observations. In the simulation study of this
paper, we omit 20% of all the observations.

Step 3. Fit separate OLS regressions with an intercept and all the covariates Xi1, . . . , Xip to the
first (n − c)/2 observations and the last (n − c)/2 observations, and obtain the respective
residual sums of squares RSS1 and RSS2. These two RSS’s each have ν = (n − c)/2 −
(p + 1) d.f.

Step 4. Compute the ratio λ = (RSS1/ν)/(RSS2/ν). If we assume ei are normally distributed,
and if the assumption of homoscedasticity is valid, then λ follows the F distribution with
numerator and denominator d.f. each of (n − c)/2 − (p + 1). If the computed λ is greater
than the critical value of F distribution at the level of significance, we can conclude that
there is evidence that the error variances depend on Xij .

This test is conducted for each covariate. If the test results show that the error variances depend
on one or multiple covariates, we reject the hypothesis of homoscedasticity.

Breusch–Pagan–Godfrey test.

Step 1. Estimate β0, β1, . . . , βp by OLS and obtain the residuals r1, . . . , rn.
Step 2. Obtain σ̂2 = ∑n

i=1 r2
i /n.

Step 3. Construct pi defined as pi = r2
i /σ̂

2.
Step 4. Regress pi on Xi1, . . . , Xip as

pi = α0 + α1Xi1 + . . . + αpXip + ei.

Step 5. Obtain the explained sum of squares from the regression in Step 4 and define � = ESS/2.
Assuming the ei are normally distributed, one can show that if homoscedasticity is true,
the statistic � converges in distribution to a chi-square random variable with p d.f. If the
computed value of � is greater than the critical value of a χ2

p random variable at the level
of significance, we reject the null hypothesis of homoscedasticity.

To detect the covariates the error variances might depend on, we modify the Breusch–Pagan–
Godfrey test described above. For each covariate Xij , j = 1, . . . , p, we run the regression of
pi:

pi = α0 + α1Xij + ei,

and compute the value of the test statistic �. If this value exceeds the critical value of a χ2
1, the

conclusion is that the heteroscedastic error variances depend on Xij . �
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