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Introduction

In the application of biostatistical methodology to cancer studies, there is a desire to use

methods with fewer or less restrictive assumptions, which often lead to more easily general-

izable conclusions. In this dissertation, we approach this problem from two basic angles: in

the first chapter, we make use of robust estimation procedures to reduce contamination of

a model fit due to model misspecification; in the second and third chapters, we apply semi-

parametric methods to allow for increased flexibility of model fitting with nonparametrically

estimated functions.

The first chapter deals with robust modeling of binary responses with the goal of improv-

ing classification at an arbitrary probability threshold dictated by the particular application.

Specifically, for the linear logistic model, we solve a set of locally weighted score equations,

using a kernel-like weight function centered at the threshold. The bandwidth for the weight

function is selected by cross validation of a novel hybrid loss function that combines clas-

sification error and a continuous measure of divergence between observed and fitted values;

other possible cross-validation functions based on more common binary classification metrics

are also examined. This work has much in common with robust estimation, but differs from

previous approaches in this area in its focus on prediction, specifically classification into

high- and low-risk groups. Simulation results are given showing the reduction in error rates

that can be obtained with this method when compared with maximum likelihood estimation,

especially under certain forms of model misspecification. Analysis of a melanoma data set

is presented to illustrate the use of the method in practice.

The second chapter addresses the difficulties inherent in investigating time to cancer
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onset when only time to diagnosis can be observed in population studies of cancer incidence.

In cancer research, interest frequently centers on factors influencing a latent event that

must precede a terminal event. In practice it is often impossible to observe the latent

event precisely, making inference about this process difficult. We propose a joint model

for the unobserved time to the latent and terminal events, with the two events linked by

the baseline hazard. Covariates enter the model parametrically as linear combinations that

multiply, respectively, the hazard for the latent event and the hazard for the terminal event

conditional on the latent one. We derive an EM algorithm for estimation of the baseline

hazard, which allows for closed-form Breslow-type estimators at each iteration, drastically

reducing computational time compared with maximizing the marginal likelihood directly.

The parametric part of the model is estimated by maximizing the profile likelihood. We

present simulation studies to illustrate the finite-sample properties of the method; its use in

practice is demonstrated in the analysis of a prostate cancer data set.

In the third chapter, we apply methodology originally used in survival analysis to model

semicontinuous data. Continuous outcome data with a proportion of observations equal to

zero arises frequently in biomedical studies. Typical approaches involve two-part models,

with one part a logistic model for the probability of observing a zero and some parametric

continuous distribution for modeling the positive part of the data. We propose a semi-

parametric model based on a biological system with competing damage manifestation and

resistance processes. This allows us to derive a partial likelihood based on the retro-hazard

function, leading to a flexible procedure for modeling continuous data with a point mass

at zero. A simulation study is presented to examine the properties of the method in finite

samples. We apply the method to a data set consisting of pulmonary capillary hemorrhage

area in laboratory rats subjected to diagnostic ultrasound.
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Chapter 1: Locally Weighted Score

Estimation for Quantile Classification

in Binary Regression Models

1.1 Introduction

This chapter develops a class of robust estimators in binary regression models with the goal

of increasing predictive accuracy at a given classification threshold. The motivation for this

work is a situation arising in the practice of oncology in which it must be decided on the

basis of some clinical variables whether or not to perform a sentinel lymph node biopsy in

melanoma patients (Mocellin et al., 2009). Given a classification threshold p∗ ∈ (0, 1), the

decision is made based on whether the predicted probability of metastasis in the lymph node

is greater than p∗ (perform biopsy) or less than p∗ (do not perform biopsy). There are two

types of errors possible in this setting: missing a metastatic cancer by not performing the

biopsy (false negative) or performing an unnecessary biopsy (false positive). We assume

throughout this chapter that the ultimate objective of the analysis is classification of future

subjects into high- and low-risk groups based on the threshold p∗, and that p∗ is dictated by

considerations specific to the application.
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1.1.1 Background

Although a great deal of research has been done on the problem of predicting future binary

outcomes in a population based on a sample from that population, most authors dealing

primarily with classification (as opposed to regression) have focused on median classification,

in which a positive response is predicted if the estimated response probability exceeds p∗ =

0.5. In one of the few articles dealing with general quantile classification, Mease et al.

(2007) propose an over- and undersampling method for boosted classification trees, where

the relative amount of over- or undersampling is determined by the classification threshold.

(It is from Mease et al., 2007, that we borrow the term “quantile” as used in this chapter.)

In other research, classification thresholds play a secondary role: Kordas (2006) discusses

the use of the smoothed maximum score estimator of Horowitz (1992) for the binary choice

model at quantiles other than the median; both authors assume a latent continuous response

variable that is dichotomized as the observed binary outcome. Wang et al. (2008) advocate

estimation using an asymmetric version of the hinge loss function (Hastie et al., 2009), for

which losses incurred by a false positive and false negative differ, in order to provide interval

estimates of response probabilities. Support vector machines (SVM) are also a popular

method for classification of binary responses; Dmochowski et al. (2010) point out that the

case of unequal costs for false negatives and false positives may be dealt with by assigning

class weights in the SVM procedure in accordance with these costs.

To introduce notation, suppose we observe a sample (yi,x
′
i), yi ∈ {0, 1}, i = 1, . . . , n, and

assume a model in which each response is related to a vector of covariates xi by P (Y =

1|xi) = G(x′iβ), P (Y = 0|xi) = 1−G(x′iβ) ≡ G(x′iβ), where G(·) is a known link function.

We want to find an estimate β̂ such that G
(
x′iβ̂
)

is most accurate for P (Y = 1|xi) near

p∗, but is not necessarily as accurate when P (Y = 1|xi) is not near p∗. In other words,

we sacrifice global goodness of fit for improved local goodness of fit around p∗, where “local

goodness of fit” is defined in equation (1.3) below.
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1.1.2 Locally weighted score equation approach

Since we are interested in robustness to model misspecification away from p∗, we propose

obtaining regression estimates by solving a set of locally weighted score equations, using

a kernel-like weight function centered about p∗. There has been some research on robust

estimation in binary models, but it has not generally focused on prediction. Pregibon (1982)

recommends maximizing a modified log-likelihood function that “tapers” contributions with

large deviance residuals (see McCullagh and Nelder, 1989, for a detailed discussion of resid-

uals in generalized linear models, including the logistic model). A thorough development of

M-estimation in the context of logistic regression is given by Carroll and Pederson (1993).

Ruckstuhl and Welsh (2001) analyze a form of misspecification familiar to the literature on

robust estimation for continuous responses, in which the assumed probability mass function

is “contaminated” by an unknown pmf with some probability.

We consider the following form of misspecification: we fit an assumed model

P (Y = 1|xi) = G(x′iβ), (1.1)

while the true model is instead

p(xi) ≡ P (Y = 1|xi) = G [x′iβ0 +Q(xi,β0)] (1.2)

where Q is an unknown function of the covariates and β0. We make two assumptions

regarding Q:

(i) Q(xi,β0) ≡ Qi = 0 when x′iβ0 = η∗, where η∗ = G−1 (p∗)

(ii) |Qi| is increasing in |x′iβ0 − η∗|.

In other words, we are supposing that at least around the threshold of interest, the assumed

model is correctly specified, while it may differ from the true model when the linear predictor

is not close to η∗.
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1.1.3 Metrics of local accuracy

We define a function that measures local accuracy,

ε(xi) = 1 [p(xi) ≥ G(η∗)]1
(
x′iβ̂ < η∗

)
+ 1 [p(xi) < G(η∗)]1

(
x′iβ̂ ≥ η∗

)
, (1.3)

and refer to E [ε(X)] as the local error rate (LER), where an error occurs if the underlying

true response probability p(xi) is not on the same side of p∗ that G
(
x′iβ̂
)

is. This does not

correspond to the expectation of any loss function, implying that it cannot be estimated in

practice, at least in our scenario with ungrouped binary data. It may be possible, however,

to estimate (1.3) in the setting of Ruckstuhl and Welsh (2001) with mi ≥ 2. In this case,

where Y |xi is distributed binomially with probability p(xi) and number of trials mi, we

would have two estimates of p(xi): yi/mi and G
(
x′iβ̂
)

. An estimate of E [ε(X)] could then

be constructed as

ε̂ =
1

n

n∑
i=1

{
1 [yi/mi ≥ G(η∗)]1

(
x′iβ̂ < η∗

)
+ 1 [yi/mi < G(η∗)]1

(
x′iβ̂ ≥ η∗

)}
. (1.4)

For this estimator to be sensible, we would need both n→∞ andmi →∞ for all i = 1, . . . , n.

The structure of this chapter is as follows. In Section 1.2, we describe the weighted score

estimator and some of its properties. In Section 1.3, we suggest a method for choosing the

degree of locality for the weight function. Section 1.4 presents a simulation study. Section

1.5 applies the method to a melanoma data set.
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1.2 Weighted score estimation

1.2.1 Estimating equations

As stated previously, we wish to find locally accurate estimates of β0. As in Carroll and

Pederson (1993), we obtain estimates of β by solving the weighted score equations

0 =
n∑
i=1

wh(x
′
iβ)xi [yi −G(x′iβ)] . (1.5)

Here, wh(·) is some unimodal function, symmetric about η∗, that attains a maximum of 1 at

η = η∗, as in Copas (1995). The parameter h determines the degree of locality of the model

fit, and may be thought of as a bandwidth parameter (see Kordas, 2006, for a closely related

use of the term “bandwidth”). We use the Gaussian kernel weight function

wh(η) = exp

[
−(η − η∗)2

2h2

]
. (1.6)

Define β̂h as the solution to equation (1.5), which may be obtained using the Newton-

Raphson algorithm. We refer to this as the weighted score estimator (WSE).

Intuitively, for an appropriate choice of h, the solution to equation (1.5) should be a

more accurate estimate of the true parameter vector under the misspecified model (1.2),

since for small values of h we will be downweighting the regions of the data that are not

reflective of the linear part of (1.2), x′iβ0. When h → ∞, the solution to equation (1.5)

corresponds to the maximum likelihood estimator (MLE) for the linear logistic model, since

in this case wh(η) → 1 for all η. The idea of downweighting observations inconsistent with

an assumed model is not new, and has been considered in the context of binary response

models by Pregibon (1982), Carroll and Pederson (1993), Copas (1988), and Ruckstuhl and

Welsh (2001). However, none of these articles has addressed the robustness issue from the

perspective of what we might call locally correct model specification, as measured by equation

(1.3).
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Supposing the model is correctly specified (i.e., Qi = 0 for all i), consistency follows

immediately for fixed h, as this estimator falls in the Mallows class (Carroll and Pederson,

1993) in which weights do not depend on the outcome. Moreover, we know from an appli-

cation of standard robust estimation theory given by Carroll and Pederson (1993) that the

asymptotic variance of the weighted score estimators is approximately

I−1
n (β0)Vn(β0)I−1

n (β0), (1.7)

where I(β) and V(β) are, respectively,

In(β) =
1

n

n∑
i=1

wh(x
′
iβ)xix

′
iG

(1)(x′iβ)

Vn(β) =
1

n

n∑
i=1

w2
h(x

′
iβ)xix

′
iG

(1)(x′iβ)

where a superscript (j) denotes the jth derivative of a function with respect to its argu-

ment. (See Appendix A for a development of the asymptotic distributions of the proposed

estimators when Qi 6= 0.)

1.2.2 Robustness and rationale of the method

Our method may be thought of as a generalization of the robust estimators of Carroll and

Pederson (1993) in that our weight function wh(·) depends on the classification threshold, al-

lowing for improved accuracy at any p∗, while the weighting schemes they consider implicitly

assume an interest in conventional median classification since they downweight observations

with very high or low fitted probabilities (i.e., probabilities far from p∗ = 0.5). We make

the weight a function of the linear predictor rather than of the predicted probability so as

to avoid issues regarding the restricted range of the mean of Y |xi, which for binary response

models is (0, 1).

The motivation for our specific approach comes from Copas (1995), who maximizes a

8



Figure 1.1. This figure depicts the contribution of a single observation to the implicit
objective functions used in weighted score estimation, scaled such that the loss is 1 at p∗ =
0.2, y = 1; specifically, the vertical axis is −l̃h (yi,x

′
iβ) / − l̃h (1, η∗). These are obtained by

numerical evaluation of equation (1.8). The x-axis of each panel corresponds to a predicted
probability for one observation; the curves shown represent the loss or cost associated with
that predicted probability for either y = 1 or y = 0 when using equation (1.5) to obtain
estimates of β.
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form of local likelihood for continuous models where locality is determined by proximity to

some value t in the outcome space. However, in our binary setting, this is not appropriate, as

it would result in only two weights, one for yi = 0 and another for yi = 1. Directly adapting

this method to weight individual contributions to the log-likelihood instead by some function

of x′iβ ∈ R is also problematic, as (combined with the requirement for consistency of the

resultant estimator) it leads to estimating equations formally identical to (1.5), but with a

weight function in (1.5) that may be negative and is not maximized at η∗ (see Appendix

B, where we show that the weighted likelihood with correction for bias in the estimating

equations turns out to be just a weighted score equation with an undesirable weight function).

Alternatively, we may think of the contribution of a single observation to the objective
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function implied by the weighted score (1.5), given by

l̃h (yi,x
′
iβ) =

∫ G(x′iβ)

yi

wh
(
G−1(π)

) yi − π
G(1) (G−1(π))

dπ, (1.8)

where G is assumed to be monotone, so that d
dπ
G−1(π) = 1/G(1) (G−1(π)). Minimization

of −
∑n

i=1 l̃h (yi,x
′
iβ) with respect to β results in the same estimators obtained by solving

(1.5). The gain in robustness due to the WSE approach is apparent from Figure 1.1, which

is a plot of −l̃h (yi,x
′
iβ) /− l̃h (1, η∗) versus G (x′iβ): in the usual maximum likelihood case

(h = ∞) the loss is unbounded. By contrast, we see from this figure that for h < ∞, the

maximum possible loss is finite. Furthermore,

lim
h→0

−l̃h (yi,x
′
iβ)

h
∝ yi 1(x′iβ < η∗) +

p∗

1− p∗
(1− yi)1(x′iβ ≥ η∗),

which is a weighted misclassification error. Thus the WSE is a compromise between the

efficiency of the MLE and the robustness of a classification approach.

The objective function corresponding to the smoothed maximum score estimator of

Horowitz (1992) and Kordas (2006) is shown in Figure 1.2 for purposes of comparison;

these authors use τ = 1− p∗ to define the quantile of interest. Their objective function is

1

n

n∑
i=1

(yi − p∗)K
(

x′iβ

σn

)
, (1.9)

where K(·) is an integrated kernel function (i.e., a cdf), σn ∼ n−1/5 is a bandwidth, and

the maximizer of (1.9) gives the smoothed binary regression quantile estimator. As Kordas

(2006) notes, maximizing (1.9) is equivalent to minimizing

1

n

n∑
i=1

ρp∗

(
yi −K

(
x′iβ

σn

))
, (1.10)

which is the loss depicted in Figure 1.2. Here, ρp∗(u) = [1(u ≥ 0)−p∗]u. To place this in our
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Figure 1.2. This figure depicts the objective functions of Kordas (2006) for τ = 1 − p∗ =
0.8. These curves correspond to equation (1.10) and are scaled such that the loss is 1 at
p∗ = 0.2, y = 1.
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context, this means that a false positive (x′iβ ≥ 0, yi = 0) implies a loss of approximately

p∗, while a false negative (x′iβ < 0, yi = 1) implies a loss of approximately 1 − p∗; the

approximation becomes exact as σn → 0. This can be seen in the relative heights of the

curves in Figure 1.2, which echo the patterns depicted for the objective functions associated

with the weighted score estimators in Figure 1.1.

We point out here that there is an interesting connection between our method and the

work of Kordas (2006), in which the objective function is smoothed by replacing an indicator

function with a cdf, given here in equations (1.9) and (1.10). Clearly, the corresponding

gradient will involve a pdf, which is identical in form to our weight functions apart from a

scaling factor. Specifically, to maximize equation (1.9) (using the normal cdf as the kernel

function K), we must solve

0 =
∂

∂β

1

n

n∑
i=1

(yi − p∗)Φ
(

x′iβ

σn

)
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=
1

nσn

n∑
i=1

φ

(
x′iβ

σn

)
xi(yi − p∗). (1.11)

Compare (1.11) with the weighted score equations (1.5), which we may rewrite as

0 =
√

2π
n∑
i=1

φ

(
x′iβ − η∗

h

)
xi [yi −G(x′iβ)] , (1.12)

since we are using the Gaussian kernel given by (1.6).

1.3 Selection of bandwidth

A key element of the proposed method is the value of the parameter h, which is similar to the

bandwidth of the smoothed indicator function in Kordas (2006) and Horowitz (1992). We

may think of the selection of the bandwidth as a way of dealing with model misspecification

locally: if, for a given threshold, the specified model is consistent with the truth globally,

then h should be large, as we will be able to gain information from all observations regardless

of distance from p∗. On the other hand, if the specified model is not consistent with the

truth everywhere, then h should be small, in order to minimize the contamination of the

model fit resulting from misspecification.

Likelihood cross validation is recommended by Eguchi and Copas (1998) as a way to

choose h in local likelihood estimation. However, in their setting, the outcome is continuous;

furthermore, their weights are a function of the outcome itself rather than a monotone

transformation of its estimated conditional mean (as in our case). Irizarry (2001) deals

with a similar issue, and bases his selection on modified information criteria, i.e., functions

that are based on the negative maximized log-likelihood plus a penalty term. However, his

weights are solely functions of the covariates, with the unknown parameter playing no role.

These methods are primarily aimed at assessing overall goodness of fit, as opposed to the

local goodness of fit in which we are interested. Although ideally we would like to select h

12



to minimize

1

n

n∑
i=1

ε(xi), (1.13)

where ε(xi) is defined as in equation (1.3), we have seen that this quantity is not estimable

from ungrouped binary data. Therefore, we shall attempt to minimize (1.13) indirectly.

To do this, we recommend minimizing a cross-validated version of a hybrid error rate (see

Wahba, 2002, for a discussion of a similar cost function designed to compromise between

SVM and logistic regression).

Defining β̂
(−i)
h as the estimate of β obtained by leaving out the ith observation and solving

(1.5), we choose h as

ĥ = arg min
h>0

− 2
n∑
i=1

[
yi logG

(
x′iβ̂

(−i)
h

)
1

(
x′iβ̂

(−i)
h < η∗

)
+ (1− yi) logG

(
x′iβ̂

(−i)
h

)
1

(
x′iβ̂

(−i)
h ≥ η∗

)]
. (1.14)

This error is a combination of classification error, from the terms 1

(
x′iβ̂

(−i)
h < η∗

)
and

1

(
x′iβ̂

(−i)
h ≥ η∗

)
; and deviance loss, from the terms logG

(
x′iβ̂

(−i)
h

)
and logG

(
x′iβ̂

(−i)
h

)
.

Note that this is equal to the deviance (or minus twice the log likelihood) for all subjects

with 1

(
x′iβ̂

(−i)
h ≥ η∗

)
6= yi. Due to the presence of indicators this will be a piecewise

constant function with jump discontinuities; however, as we will be using a grid search to

find the optimal value of h, these discontinuities will present no numerical problems.

The flexibility of the method is such that we might also choose h to optimize any desired

predictive metric, such as the negative predictive value (NPV):

ĥ = arg max
h>0

∑n
i=1(1− yi)1

(
x′iβ̂

(−i)
h < η∗

)
∑n

i=1 1

(
x′iβ̂

(−i)
h < η∗

) (1.15)

or specificity

ĥ = arg max
h>0

∑n
i=1(1− yi)1

(
x′iβ̂

(−i)
h < η∗

)
∑n

i=1(1− yi)
. (1.16)
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In particular applications, these may be of greater interest than the form of local accuracy

defined by (1.3).

1.4 Simulation study

1.4.1 Design

We examine the performance of the proposed method by generating data based on model

(1.2). First, Xi1, Xi2 are generated iid standard normal. Then we obtain Zi1, Zi2 as follows:

Zi1 =
Xi1√

2
− Xi2√

2
, Zi2 =

Xi1√
2

+
Xi2√

2
.

The linear predictor is

ηi = η∗ + ω2Zi2
[
1 + γ

(
e−ω1 sgn(Zi2)Zi1 − 1

)]
, (1.17)

the response is then generated as Bernoulli with mean eηi/(1+eηi). The parameter γ is used

to control the degree of departure from the linear logistic model outside of the region around

η∗, with larger values leading to more nonlinearity in the true model (see Figure 1.3). For

these simulations, γ ∈ {0, 0.1, 0.2, 0.3}, ω1 = 1, ω2 = 2.

This simulation design was chosen in part so that for a given p∗, changes in γ have

minimal effect on the marginal mean of the outcome. At the same time, we believe that the

resulting contours of constant probability shown in Figure 1.3 are realistic in the sense that

we might encounter shapes of this sort in real data.

Two sample sizes were examined, n ∈ {200, 500}. In each case, one sample was used for

fitting the weighted score models and selecting h, while a separate sample of the same size

was held out for calculation of error rates.

To find the optimal value of h for each data set, we use a grid search of (1.14), (1.15),

and (1.16) at 50 equally spaced points of h−1 ∈ [0, 2]; we expect these metrics to give
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Figure 1.3. Contours of constant probability for simulations, p∗ = 0.25. Solid lines are the
true model; dashed lines represent the linear logistic model for reference, although it is only
correct at the thick solid line, E(Y |xi) = p∗.
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better performance than the cross-validated deviance (which we also include for purposes of

comparison) because they explicitly depend on the threshold. Because of the computational

expense of true leave-one-out cross validation, we instead use 5-fold cross validation. To

further increase computational efficiency as well as numerical stability, when performing the

cross validation, we do not fit a full model for each fold, but rather use a one-step Newton

approximation.

We compare the proposed method with two existing methods which produce as fitted

values binary estimates of 1 [E(Y |xi) ≥ p∗]. The weighted SVM approach of Dmochowski

et al. (2010) assigns class weights as 1−p∗ for the yi = 1 class and p∗ for the yi = 0 class. We

refer to this method as the weighted SVM (wSVM) method. The smoothed binary regression

quantiles (SBRQ) method of Kordas (2006) with τ = 1 − p∗ is a semiparametric regression

procedure that makes minimal assumptions regarding the latent error distribution of the

responses. Both methods produce fitted values of either 1 or 0, corresponding to whether or

not the predicted probability exceeds p∗.

1.4.2 Results

Performance was evaluated by computing the error rate (1.13) on the validation samples for

h = ĥ and h = ∞, corresponding to the particular WSE model minimizing (1.14) and the

15



MLE, respectively. Their averages across 1000 simulated data sets for each γ are displayed

in Table 1.1.
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Table 1.1. Simulation results: LER (1.13) averaged over 1000 simulations; for a single
observation this is given by equation (1.3). With the exception of the column labeled Dev.,
which refers to likelihood cross validation, the cross-validation functions to choose h are
based on equations (1.14), or the hybrid error rate (HER); (1.15), the negative predictive
value (NPV); and (1.16), the specificity (Spec.).

CV functions (WSE)
n p∗ γ MLE Dev. HER NPV Spec. SBRQ wSVM

200 0.10 0.0 0.058 0.060 0.062 0.062 0.061 0.103 0.101
0.1 0.062 0.062 0.062 0.062 0.062 0.088 0.101
0.2 0.077 0.074 0.073 0.070 0.070 0.082 0.103
0.3 0.087 0.083 0.080 0.078 0.078 0.082 0.104

0.25 0.0 0.046 0.046 0.048 0.048 0.048 0.072 0.074
0.1 0.047 0.046 0.048 0.048 0.048 0.064 0.069
0.2 0.056 0.054 0.054 0.053 0.053 0.063 0.073
0.3 0.065 0.061 0.060 0.057 0.057 0.060 0.075

0.50 0.0 0.039 0.040 0.042 0.042 0.043 0.066 0.065
0.1 0.042 0.042 0.043 0.043 0.043 0.057 0.062
0.2 0.048 0.047 0.046 0.046 0.046 0.052 0.064
0.3 0.053 0.051 0.050 0.049 0.048 0.051 0.065

500 0.10 0.0 0.039 0.040 0.042 0.042 0.041 0.065 0.072
0.1 0.047 0.045 0.046 0.045 0.045 0.056 0.070
0.2 0.064 0.059 0.055 0.054 0.055 0.054 0.072
0.3 0.080 0.075 0.066 0.063 0.066 0.053 0.074

0.25 0.0 0.029 0.030 0.032 0.032 0.031 0.047 0.052
0.1 0.034 0.033 0.033 0.033 0.032 0.039 0.051
0.2 0.046 0.043 0.041 0.040 0.039 0.038 0.052
0.3 0.058 0.055 0.049 0.047 0.048 0.038 0.055

0.50 0.0 0.024 0.025 0.026 0.027 0.026 0.039 0.043
0.1 0.029 0.028 0.029 0.028 0.028 0.034 0.042
0.2 0.040 0.038 0.036 0.035 0.034 0.031 0.043
0.3 0.049 0.046 0.042 0.041 0.040 0.030 0.045
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Table 1.2. Simulation results: optimal bandwidths, the harmonic mean of the chosen h
across 1000 simulations. For the WSE method, each column heading indicates the cross-
validation function optimized to choose h: with the exception of the column labeled Dev.,
which refers to likelihood cross validation, the cross-validation functions to choose h are
based on equations (1.14), or the hybrid error rate (HER); (1.15), the negative predictive
value (NPV); and (1.16), the specificity (Spec.). For the SBRQ method, this is calculated
based on Theorem 2 in Horowitz (1992).

CV functions (WSE)
n p∗ γ Dev. HER NPV Spec. SBRQ

200 0.10 0.0 2.587 2.102 1.855 1.891 0.561
0.1 2.699 1.986 1.938 1.911 0.553
0.2 3.019 1.926 1.833 1.999 0.554
0.3 3.343 1.963 1.900 2.073 0.547

0.25 0.0 2.441 1.632 1.457 1.482 0.562
0.1 2.580 1.633 1.450 1.456 0.566
0.2 2.740 1.654 1.519 1.570 0.572
0.3 2.965 1.650 1.533 1.530 0.584

0.50 0.0 2.462 1.626 1.443 1.244 0.562
0.1 2.690 1.532 1.401 1.229 0.582
0.2 2.936 1.509 1.455 1.243 0.588
0.3 2.890 1.589 1.468 1.288 0.595

500 0.10 0.0 2.299 1.504 1.541 1.709 0.472
0.1 2.664 1.550 1.617 1.808 0.467
0.2 3.280 1.476 1.614 1.808 0.461
0.3 4.003 1.473 1.598 1.861 0.462

0.25 0.0 2.347 1.335 1.419 1.361 0.456
0.1 2.684 1.447 1.423 1.411 0.461
0.2 3.065 1.393 1.405 1.423 0.469
0.3 3.849 1.403 1.394 1.462 0.475

0.50 0.0 2.526 1.354 1.368 1.184 0.454
0.1 2.802 1.399 1.366 1.262 0.467
0.2 3.030 1.339 1.362 1.244 0.480
0.3 3.745 1.407 1.438 1.266 0.493
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We see from this table that using the hybrid error rate to select h leads to substantial im-

provement over the MLE in the LER, assuming that there is some degree of misspecification

(γ > 0). There is an even greater improvement in performance of the WSE method relative

to the wSVM, likely due to the fact that the true model is close to the specified parametric

model in this case. This implies that the hybrid error rate is a fair surrogate for the LER.

There is relatively little difference, indeed, between the LER for models obtained using

each of the CV functions we examined: use of the hybrid error rate, the NPV, or the

specificity seems to result in similar performance gains over the MLE, to the extent that no

single CV function can be recommended over the others. This points to another strength of

our method: the investigators may choose a cross-validation function that best reflects their

interests in a particular classification metric and expect to see substantial improvements in

the local error rate relative to competing methods. This is in contrast to using likelihood

cross validation to select the bandwidth, which clearly does not provide any advantage over

the MLE.

Also apparent from Table 1.1 is that for large degrees of misspecification, the SBRQ

method slightly outperforms the WSE method; this difference becomes more pronounced

with larger sample sizes. One possible explanation for its superior performance with larger

γ is that SBRQ makes fewer parametric assumptions about the data. The wSVM method,

by contrast, is always the worst performing of the methods we have examined, probably

because it makes even weaker assumptions regarding the data-generating mechanism.

Recall, however, that SBRQ and wSVM do not produce estimated probabilities, while the

WSE method does. This means that it is possible with our proposed method to examine how

close to the classification threshold any individual subject might be, ultimately providing

more information to the investigator than do the competing methods. Additionally, when

there is no misspecification, the SBRQ and wSVM methods perform very poorly relative to

the MLE, while the WSE method loses little in comparison. This is a further advantage of our

approach if we assume that in practice we are unlikely to encounter extremely misspecified
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models.

Table 1.2 gives a summary of the distribution of selected h values across the simulated

data sets. The harmonic mean is shown because h = ∞ has a nonzero probability of being

chosen. Using the cross-validated deviance to choose h leads to increasing choices of h with

increasing γ, regardless of the classification threshold, which is likely the explanation for its

failure to show improvement over the MLE in Table 1.1. This is in contrast to the case with

each of the metrics we recommend for the selection of h, which do not exhibit this pattern.

Similarly, the selected values of the bandwidth parameter for the method of Kordas (2006)

show little variability with respect to changes in γ.

Additionally, it is clear from Table 1.2 that for the CV functions given by equations

(1.14), (1.15), and (1.16), the chosen bandwidth is decreasing with sample size. This is a

desirable feature of the methodology, as with larger samples we are in effect able to focus on

a smaller region about the threshold, and thereby obtain larger gains in performance relative

to the MLE.

1.5 Melanoma data analysis

In order to illustrate the use of the proposed method in practice, we apply it to a melanoma

data set originally analyzed by Sabel et al. (2012). The data consist of the binary outcome

and covariate values on n = 2244 melanoma patients who had undergone a sentinel lymph

node biopsy (SLNB). The outcome is equal to 1 if metastasis was found on SLNB, 0 otherwise.

The covariates are age, mitotic rate, Breslow depth, ulceration, regression, and high Clark

level (defined as IV or V); the last three are binary, the first three continuous. Mitotic rate

and Breslow depth were log transformed prior to model fitting.

One of the principal goals of the original analysis was to evaluate the predictive models

of Mocellin et al. (2009). Two cutoff values were considered in Sabel et al. (2012) in the

application of the logistic regression model estimated by Mocellin et al. (2009) to classification
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on a new data set, p∗ = {0.1, 0.2}. In the current analysis, we apply the WSE methodology

to this data at these same two thresholds. We chose h−1 ∈ [0, 2] from a grid of 1000 equally

spaced points according to either (1.14), (1.15), or (1.16) with 10-fold cross validation. As a

computational note, using the one-step Newton approximation during cross validation results

in rapid execution of the entire WSE methodology: the total time to select the optimal

bandwidth for two thresholds and three CV functions was approximately five minutes.

Table 1.3 gives a summary of the chosen h values and the effect of the WSE method on

classification for this data set. We see improvements with the WSE fits versus the MLE in

each of the metrics for which we have conducted cross validation, especially in the case of

p∗ = 0.1, where we are able to improve the negative predictive value from 0.935 to 0.947 and

the specificity from 0.093 to 0.140. For p∗ = 0.2 we still see improvements over the MLE,

although the gains in this case are less pronounced.

Another aspect of the analysis in which we are able to improve on the simple logistic

fit is in the number of negative predictions (NNP), which Mocellin et al. (2009) cited as an

important part of the intended use of their predictive models; again, this seems to be much

more dramatic for p∗ = 0.1 than p∗ = 0.2. Of course, by itself, NNP is fairly useless as an

indicator of a model’s usefulness, but given that we are also improving on a certain predictive

metric simultaneously, an increase in NNP means fewer patients subjected to unnecessary

biopsies, which was one goal of the original analysis.

The NNP also suggests a reason for the difference in the analysis between the two thresh-

olds considered. Specifically, nearly half of the data is classified into the low-risk group at

this threshold regardless of fit (MLE or WSE). This indicates that the “center” of the data

in some sense lies in this region. Indeed, the marginal probability of a positive biopsy re-

sult for this data set is approximately 25%, so that the WSE methodology, when used with

thresholds in the neighborhood of 0.25, will not have much room for improvement over the

MLE.
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Table 1.3. This table summarizes the results of the WSE analysis of the melanoma data set.
The two values of p∗ given here correspond to the values considered by Sabel et al. (2012).
Three cross-validation functions were examined: the negative predictive value (NPV), speci-
ficity, and the hybrid error rate (although these results are not given in this table as h was
chosen to be ∞; that is for that metric, the MLE was deemed to be the best fitting model).
The table gives the value of each of these metrics for both the linear logistic model (h =∞)
as well as the optimal model (where h is given by the “Chosen bandwidth” column); the final
two columns give the number of negative predictions (NNP) associated with each model fit.

Chosen Metric NNP

CV function p∗ bandwidth h =∞ h = ĥ h =∞ h = ĥ
NPV 0.1 1.44 0.935 0.947 168 208

0.2 0.76 0.850 0.853 999 995

Specificity 0.1 1.07 0.093 0.140 168 252
0.2 1.13 0.505 0.512 999 1013

1.6 Discussion

In this chapter, we have developed the weighted score estimation framework, which con-

stitutes a robust estimation method drawing inspiration from the local likelihood approach

of Copas (1995), in order to improve quantile classification for parametric binary response

models. We have dealt theoretically with model misspecifcation of a particular type, namely

data generated according to (1.2) while fitting a model of form (1.1). This has allowed us

to demonstrate the ability of the method to reduce contamination of the model fit due to

deviations from the assumed model away from the threshold of interest p∗. We have also

proposed a novel loss function in equation (1.14) as a way to assess predictive accuracy when

interest is in classification at an arbitrary threshold p∗, and have shown through simulation

studies the increased accuracy with respect to the LER metric that is possible when an a

priori classification threshold is incorporated into the parameter estimation procedure.

It might not be immediately apparent why we are not bypassing the bandwidth selection

problem altogether and simply minimizing the hybrid error rate to estimate β. We have

instead suggested a two-stage procedure beginning with a localized extension of maximum

likelihood estimation because many loss functions commonly used in the estimation of binary
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response models result in predicted probabilities being forced to 0 or 1 when optimized

directly (Mease et al., 2007). The degree of locality for the WSE model is then chosen based

on a measure that more directly addresses our interest in classification. One advantage of

this approach is that virtually any measure of predictive accuracy can be used to select h, so

that, for example, a researcher interested in maximizing the NPV of a model (e.g., Mocellin

et al., 2009) may use that as the cross-validation function instead of the hybrid error rate

that we have introduced in this chapter.

Numerical instability occurring when attempting to fit WSE models with small h is one

possible avenue for future research. In many of the simulated data sets, the cross-validation

function was still decreasing at the smallest h for which the fitting algorithm converged.

This indicates that the chosen values of h might be biased upwards in some cases, and this

in turn could explain the lack of a decreasing trend in the chosen values of h with increasing

degrees of model misspecification. We have conjectured that some values of h for which the

model fitting procedure fails might correspond essentially to eliminating too much of the

data, so a weight function with heavier tails (such as the Cauchy kernel) could be helpful in

this regard.
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Appendices

A Asymptotic bias and variance under misspecification

In this section, we present a sketch of the derivation of the asymptotic distribution of the

WSE under this form of model misspecification. We assume the usual regularity conditions

involving existence of derivatives, expectations, and limits in probability (for details, see,

e.g., Lehmann, 2004).

Assume now that Qi 6= 0. An asymptotic theory for local likelihood estimators under a

similar form of model misspecification has been developed by Eguchi and Copas (1998), but

they are dealing with a continuous outcome and limit attention to misspecification that is

of order n−1/2. Furthermore, because in their setting the model is asymptotically correctly

specified, they assume that h → ∞ at some specified rate, whereas we hold h constant in

our analysis.

In order to render (1.2) easier to work with on the probability scale, we approximate

P (Y = 1|xi) by a Taylor expansion about the model we are fitting:

P (Y = 1|xi) = G (x′iβ0 +Qi)

= G(x′iβ0) +QiG
(1)(x′iβ0) + o

(
Q2
i

)
≈ G(x′iβ0) +QiG

(1)(x′iβ0). (A1)

The expectation of the score will not be 0 when Qi 6= 0 for all i, implying inconsistency of

the estimators.

After using a Taylor expansion about β0 to approximate the estimating equations, we

have

√
n
(
β̂n − β0

)
≈

[
− 1

n

∂

∂β

n∑
i=1

wh(x
′
iβ0)Ui(β0)

]−1 [
√
n

1

n

n∑
i=1

wh(x
′
iβ0)Ui(β0)

]
. (A2)
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We note that [
− 1

n

∂

∂β

n∑
i=1

wh(x
′
iβ0)Ui(β0)

]−1

p→ J −1(β0) (A3)

by the weak law of large numbers and continuous mapping;

J n(β) ≈ 1

n

n∑
i=1

xix
′
iG

(1)(x′iβ)
[
wh(x

′
iβ)−Qiw

(1)
h (x′iβ)

]

is the finite-sample analogue of J (β). Likewise, by the central limit theorem,

√
n

[
1

n

n∑
i=1

wh(x
′
iβ0)Ui(β0)− Sn(β0)

]
L→ N (0,T(β0)) , (A4)

where

Sn(β) ≈ 1

n

n∑
i=1

wh(x
′
iβ)xiQiG

(1)(x′iβ)
p→ S(β),

Tn(β) ≈ 1

n

n∑
i=1

w2
h(x

′
iβ)xix

′
i

[
G(1)(x′iβ) +QiG

(2)(x′iβ)
] p→ T(β).

Here we have made use of a further Taylor expansion to approximate the variance of Y |xi

under misspecification. Therefore, by Slutsky’s theorem, we have from (A3) and (A4) that

√
n
(
β̂n − β0

)
L→ N

(
J −1(β0)S(β0),J −1(β0)T(β0)J −1(β0)

)
. (A5)

Note that due to the approximation in (A1) as well as the further approximation for

Var(Y |xi), (A5) is also approximate, even asymptotically. The accuracy of these approxi-

mations of course depends on the magnitude of Qi; that is, on the degree to which the true

model deviates from the assumed model. The advantage to the use of these approxima-

tions is that they allow us to give very simple expressions for the quantities involved in the

asymptotic distribution of the WSEs under misspecification. Specifically, for example, the

approximations for J n(β) and Sn(β) show that the magnitude of the bias will depend on
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the proportion of observations with p(xi) near p∗: since we have assumed that |Qi| increases

with |x′iβ0− η∗|, the bias will be greater when the distribution of the covariates is such that

many observations have a true response probability far from p∗. This makes intuitive sense,

but these asymptotic formulae give analytical support to such intuition and provide explicit

quantitative descriptions of the local accuracy of the weighted score estimators.
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B Weight function from weighted likelihood

We show in this section that adapting the method of Copas (1995) to weight individual

contributions to the log-likelihood by some function of x′iβ ∈ R leads to estimating equa-

tions formally identical to (1.5), but with the addition of a multiplicative factor that yields

an undesirable weight function on the level of the score. This is due to the consistency

requirement that the estimating equations be unbiased at the correctly specified model.

Suppose, then, that we wish to maximize a weighted log-likelihood of the form

`h(β) =
n∑
i=1

[wh(x
′
iβ)li(β)−Mi(β)] , (B1)

where li(β) = log[G(x′iβ)yiG(x′iβ)1−yi ] is the binary likelihood. Following Copas (1995), the

correction term in (B1) is Mi(β), a function with gradient

∂Mi(β)

∂β
=
∂wh(x

′
iβ)

∂β
E [li(β)]

=
∂wh(x

′
iβ)

∂β
[G(x′iβ) logG(x′iβ) +G(x′iβ) logG(x′iβ)]. (B2)

This guarantees consistency of the resulting estimators, as the score will have expectation

0. To obtain the weighted maximum likelihood estimators, we then need to solve

∂`h(β)

∂β
=

n∑
i=1

[
∂wh(x

′
iβ)

∂β
li(β) + wh(x

′
iβ)

∂li(β)

∂β
− ∂Mi(β)

∂β

]
=

n∑
i=1

wh(x
′
iβ)

{
−xi

(
x′iβ − η∗

h2

)
li(β) +

∂li(β)

∂β

+ xi

(
x′iβ − η∗

h2

)
E [li(β)]

}
=

n∑
i=1

wh(x
′
iβ)

{
−xi

(
x′iβ − η∗

h2

)
(li(β)− E [li(β)]) +

∂li(β)

∂β

}
=

n∑
i=1

wh(x
′
iβ)

(
− 1

h2
(x′iβ)2 +

η∗

h2
x′iβ + 1

)
Ui(β)
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= 0.

We see from this that the estimating equations take the form of a weighted score function,

where the weight is no longer wh(x
′
iβ), but rather wh(x

′
iβ) [−h−2(x′iβ)2 + h−2η∗(x′iβ) + 1].

The requirement for consistency of the local likelihood estimators that we have unbiased

estimating equations has led us to a weight function on the level of the score that is not only

not maximized at η∗, but may in fact be negative as well.
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Chapter 2: Semiparametric

Time-to-Event Modeling in the

Presence of a Latent Progression

Event

2.1 Introduction

The analysis of time-to-event data in areas of biomedical research dealing with progressive

diseases is particularly challenging because a large part of the disease process is not observed.

For example, a disease is typically diagnosed only when symptoms reach the point where a

patient seeks medical attention, or the disease is detected through some screening program,

with the point of onset of detectable disease being unobserved. Another example, studied

in detail in this chapter, is metastatic progression in prostate cancer, where cancer-specific

death occurs due to metastasis, whose onset is unobserved. It is usually the case that we are

interested in the effect of covariates in time to onset of disease rather than time to diagnosis,

so we are confronted with a combination of the usual right censoring characteristic of survival

analysis generally (Kalbfleisch and Prentice, 2002) as well as left- or interval censoring due

to our particular application (Dejardin et al., 2010; Tsodikov et al., 1995).

To make these concepts concrete, assume a well defined starting point and let T1 denote
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the time to the terminal event, and let T0 denote the time to the latent event, which must

occur before T1. We assume that T1 is observed, but is subject to right censoring, which is

indicated by ∆ = 0; ∆ = 1 means that the terminal event occurs at time T1. The time T0,

by contrast, is never observed; therefore generally we must rely on T1 and the structure of

the model to inform us about the distribution of T0.

Our work draws on the literature of frailty models, which involve an unobserved random

variable that modifies the hazard of an event. Prior work on this subject dates back to

Vaupel et al. (1979), who introduced the concept of frailty variables in life-table analysis

and assumed a gamma distribution. A more general distribution for the frailty variable

is investigated in Hougaard (1986). Oakes (1989) gives a number of examples of different

possible frailty distributions while focusing on the dependence structure induced by such

models. Zeng and Lin (2007) provide a unifying theory for inference in semiparametric

survival models, but are interested primarily in shifting from the commonly used gamma

frailty to normally distributed random effects. Horowitz (1999) proposes a method for fully

nonparametric estimation of the baseline hazard and frailty distribution, but confines himself

mostly to uncensored data.

An important difference in our model, however, is that the frailty is no longer a random

variable but rather a stochastic process N0(t) that jumps from 0 to 1 at the time of the

latent event. While there has been some work done on such models (e.g., Gjessing et al.,

2003), the overwhelming body of research considers only frailties that are properly random

variables, that is, are fixed at time 0. Hu and Tsodikov (2014b) develop a similar model

for cancer progression that also makes use of a jump process as the frailty. However, they

did not devise an efficient EM approach, the key contribution of this chapter. Also, theirs

is a marked survival response model where the latent event does not necessarily precede the

terminal event.

The multi-state model proposed by Dejardin et al. (2010) with two events, progression

(of cancer) and death, is similar to ours in that it also assumes a (recurrent) ordering to
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the two events, with progression necessarily preceding death. However, they specify a para-

metric form for the baseline hazard, while we propose a method to estimate this function

nonparametrically. Frydman and Szarek (2009) also propose a multi-state Markov model

and derive nonparametric maximum likelihood estimators, but in their scenario there is no

natural ordering to the two events: one is assumed to be nonfatal but related to the disease

process, while the other is death. Lin et al. (1999) also deal with events that have a recur-

rent ordering in time with the goal of jointly modeling the gap time distribution between

serial events, the primary statistical problem being dependent censoring induced by the time

ordering of the events.

In each of these articles, all events are at least partially observable. In our model, by con-

trast, the latent event is by definition never observed. Another unique feature of our model is

that the frailty term is linked to the observed event process through the infinite-dimensional

common parameter, the baseline hazard. It is possible to maximize the marginal likelihood

directly, but computational issues resulting from the large number of parameters in semi-

parametric models make this option unattractive (Tsodikov, 2003). Instead we propose and

derive an EM algorithm for estimating the baseline hazard for this model. Inference for the

parametric part of the model is based on standard profile likelihood theory for semiparamet-

ric models (Murphy and van der Vaart, 2000; Tsodikov, 2003).

2.2 Model and likelihood

2.2.1 Data structure and notation

There are two events associated with our model, latent and terminal. The time to the latent

event is denoted as T0 and is never observed; time to the terminal event is T1. By definition,

the latent event must precede the terminal one: T0 ≤ T1. There is a censoring time C

that is (conditional on covariates) independent of T0 and T1. We observe (X,∆, z′), where

X = min{T1, C} and ∆ = 1(X = T1) and z is a vector of covariates; 1(·) is the indicator
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function, taking the value 1 if · is true and 0 otherwise. The maximum follow-up time is τ .

Note that if ∆ = 1, we must have T0 ≤ T1 ≤ C. However, if ∆ = 0, then either

(i) C ≤ T0 or

(ii) T0 ≤ C ≤ T1.

Thus, we are unable to tell from observed data whether or not the latent event has occurred

in the case of a censored observation.

2.2.2 Model

As in Dejardin et al. (2010), we formulate our model in two parts. The first is the marginal

hazard of the latent event dΛ0, and the second is the conditional hazard of the terminal

event given time to the latent event dΛ1.

dΛ0(t|z) = lim
h→0

P (T0 ∈ [t, t+ h)|T0 ≥ t, z)

h

= µ dH(t) (2.1)

dΛ1(t|T0 = t0, z) = lim
h→0

P (T1 ∈ [t, t+ h)|T1 ≥ t, T0 = t0, z)

h

= 1(t > t0)η dH(t). (2.2)

The latent and terminal events may be thought of as two events in a reccurent-events model:

when η = µ for a subject, these will be two events in a Poisson process. For η > µ, the

terminal event will be accelerated following the latent event (relative to such a Poisson

process), while for η < µ the reverse is true. The baseline hazard H(·) models the temporal

pattern of the disease progression (see Hu and Tsodikov, 2014b, for a mechanistic justification

and detailed discussion). Covariates z will enter the model through µ and η: specifically,

for β =
(
β0,β

′
η,β

′
µ

)′
, we have η = η(β) = eβ0+z′βη and µ = µ(β) = ez

′βµ . For notational

simplicity we refer to a single covariate vector z and assume that it contains all covariates
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relevant to the model, while noting that it would be possible to restrict some components of

either βη or βµ to be zero.

An interesting feature of this model is that when the parameters µ and η are specified

as exponential functions of linear combinations of the covariates, an identifiability problem

emerges. Specifically, when the model contains the same set of covariates in both µ and

η, for any given set of parameters (β0,β
′
η,β

′
µ)′, we have the same marginal distribution of

time to the observed event (integrating over the unobserved time to the latent event) with

(−β0,β
′
µ,β

′
η)
′. The source of the issue is the fact that summands are exchangeable while the

sum is fixed. External considerations are needed to fully identify the model.

The main methodological contribution of this chapter is the derivation of an EM algo-

rithm for estimation of the baseline hazard in this class of joint models, presented in Appendix

D, for which the non-terminal event is never observed and must precede the terminal event.

The model belongs to a class of dynamic stochastic process frailty models where the distri-

bution of the frailty process and the conditional model have a common infinite-dimensional

parameter. No EM solutions are available for this class of problems to the best of our knowl-

edge. As this is based on a full-likelihood approach, it is asymptotically fully efficient, in

contrast to Breslow estimators based on martingale estimating equations.

2.2.3 Likelihood

The likelihood for a single subject with observed data (X,∆) conditional on time to the

latent event T0 = t0 is

L0 = [1(t0 < X)η dH(X)]∆ e−1(t0<X)η[H(X)−H(t0)]. (2.3)
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The marginal survival function for the terminal event is the expectation of (2.3) over the

distribution of T0 for a censored observation:

G∗(X) =
1

η − µ
[
ηe−µH(X) − µe−ηH(X)

]
. (2.4)

The marginal density function is given by the expectation of (2.3) for a failed observation:

g∗(X) = ηµ
e−µH(X) − e−ηH(X)

η − µ
dH(X). (2.5)

The marginal hazard function is λ∗ = g∗/G∗. (See Appendix C for details.)

Using (2.4) and (2.5), we can write the marginal log-likelihood associated with this model

in counting process form:

` (H(t);β) =
n∑
i=1

`i (H(t);β)

=
n∑
i=1

∫ τ

0

{[log γi (H(t);β) + log dH(t)] dNi(t)− Yi(t)γi (H(t);β) dH(t)} ,

(2.6)

where

γi (H(t);β) = ηiµi
e−µiH(t) − e−ηiH(t)

ηie−µiH(t) − µie−ηiH(t)

and µi = ez
′
iβµ , ηi = eβ0+z′iβη . Note that the marginal hazard using this notation is

γi (H(t);β) dH(t).

We define the martingale dMi(t) based on observed counting processes Ni(t) with respect

to filtration F(t−) = σ{Ni(s), Yi(s), zi : s ∈ [0, t), i = 1, . . . , n} as

dMi(t) = dNi(t)− Yi(t)γi (H(t);β) dH(t),
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since

E[dNi(t)|Fi(t−)] = Yi(t)P [dNi(t) = 1|Yi(t) = 1]

= Yi(t)γi (H(t);β) dH(t)

by definition of the hazard rate under the true model. Note that Yi(t) = 1(Xi ≥ t) is the

at-risk function for subject i.

2.3 Nonparametric maximum likelihood estimation

2.3.1 Functional derivative and score equations

Define derivatives of γi with respect to H and β as

γ̇i,H (H(t);β) =
∂γi (H(t);β)

∂dH(t)
(2.7)

γ̇i,β (H(t);β) =
∂γi (H(t);β)

∂β
, (2.8)

respectively. The functional derivative (2.7) is as described in Hu and Tsodikov (2014a,

Section 3.2) and corresponds to taking the derivative with respect to a jump in H at time t

when H is a step function. Generally, for a linear functional of the form J(f) =
∫ t

0
ϕ(x) df(x),

the functional derivative is defined as

δsJ ≡
∂J

∂df(s)

=

∫ t

0

ϕ(x) d
∂(f + εg)

∂ε

∣∣∣∣
ε=0,g=1(x>s)

=

∫ t

0

ϕ(x) d1(x > s)

= ϕ(s)1(t ≥ s).
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Using this definition, we have

(i) δsH(t) = ∂H(t)
∂dH(s)

= 1(t ≥ s)

(ii) δs log dH(t) = ∂ log dH(t)
∂dH(s)

= 1
dH(t)

∂dH(t)
∂dH(s)

= 1
dH(t)

d1(t ≥ s).

To obtain the score equations, first we differentiate the log-likelihood with respect to the

infinite-dimensional parameter H(·), making use of the identity δsf(t) = f(t)δs log f(t) to

write in terms of the martingale dMi(t):

UdH(s) =
n∑
i=1

[∫ τ

s

γ̇i,H (H(t);β)

γi (H(t);β)
dMi(t) +

dMi(s)

dH(s)

]
. (2.9)

In order to facilitate the asymptotic analysis, we replace s by a dummy variable x and

integrate this expression to obtain the alternative form of the score:

UH(s) =
n∑
i=1

∫ τ

0

[
γ̇i,H (H(t);β)

γi (H(t);β)
H(s ∧ t) + 1(t < s)

]
dMi(t). (2.10)

Define εi(t, s;H,β) =
γ̇i,H(H(t);β)

γi(H(t);β)
H(s ∧ t) + 1(t < s). As shown in Hu and Tsodikov (2014a,

Supplementary Materials B), the linear transform
∫ τ

0
εi(t, s;H,β) dMi(t) is a martingale as

a process in s under the true model when εi(t, s;H,β) does not depend on s for t < s, as is

the case here.

The score function for the regression parameters β is

Uβ =
n∑
i=1

∫ τ

0

γ̇i,β (H(t);β)

γi (H(t);β)
dMi(t). (2.11)

2.3.2 EM algorithm

Using the relative expectation approach of Tsodikov (2003), we have derived the EM al-

gorithm for this problem; details are given in Appendix D. This results in the following

36



equation that defines iterations over k = 0, 1, 2, . . ., that converges dH(k) → d̂H as k →∞.

0 =
n∑
i=1

{
dNi(s)

dH(k+1)(s)
−Ψ

(k)
i (s) +

[
dH(k)(s)

dH(k+1)(s)
− 1

]
θ

(k)
i (s)

}
, (2.12)

where

Ψ
(k)
i (s) = Yi(s)

η1−∆iµe−µH
(k)(Xi) − ηµ1−∆ie−ηH

(k)(Xi)

η1−∆ie−µH(k)(Xi) − µ1−∆ie−ηH(k)(Xi)

and

θ
(k)
i (s) = (η − µ)µ1−∆i

Yi(s)e
−ηH(k)(Xi)+(η−µ)H(k)(s) + (1−∆i) [1− Yi(s)] e−µH

(k)(s)

η1−∆ie−µH(k)(Xi) − µ1−∆ie−ηH(k)(Xi)
.

Equation (2.12) constitutes a self-consistency equation (Tsodikov, 2003). Note that at the

solution, i.e., when dH(k) = dH(k+1) = d̂H, the second term in (2.12) disappears, leaving the

score equation corresponding to the marginal likelihood for the time to the terminal event.

Solving (2.12) for the next-iteration hazard, we obtain a Breslow-type expression

dH(k+1)(s) =

∑n
i=1 dNi(s) +

[∑n
i=1 θ

(k)
i (s)

]
dH(k)(s)∑n

i=1

[
Ψ

(k)
i (s) + θ

(k)
i (s)

] . (2.13)

The second term in the numerator may be thought of as the imputed
∑n

i=1 dN0i(s), while

the denominator could be called an effective imputed at-risk process for the combined latent

and terminal failures.

2.4 Simulation study

This section presents a simulation study to illustrate our method. The simulation settings

are as follows. The baseline hazard was H(x) = 1
4
x2. The true parameter vectors were

βη0 = (−1, 1,−2)′ and βµ0 = (2,−1)′. The censoring distribution was U(0, τ), τ = 7.

Because of the potential identifiability issue with this model, we chose two scenarios from
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Figure 2.1. Function estimates over 1000 simulated data sets for the identifiable scenario.
The solid black line is the mean of the estimated hazard functions, while the truth is given
as the dashed black line.
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which to simulate data:

Unidentifiable case For these simulations, the covariates were Z1 ∼ N(0, 1), Z2 ∼ B(0.25),

with log ηi = (1, z1i, z2i)
′βη0 and log µi = (z1i, z2i)

′βµ0. This gives rise to unidentifia-

bility in the model, as changing the sign of the intercept and exchanging the roles of

µ and η will result in an identical marginal distribution of time to the terminal event.

Identifiable case For these simulations, an additional covariate, Z3 ∼ B(0.5), was in-

cluded. The model for η is the same as in the unidentifiable case, but now log µi =

(z3i, z2i)
′βµ0. The model is now identifiable, and only one solution to the likelihood

equations exists.

We chose two sample sizes, n = 250 and n = 1000, to see the effects on estimation of a rela-

tively small and large sample, respectively. For each sample size in each of the two scenarios,

1000 data sets were generated. Initial values were chosen by fitting either one (unidentifiable
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Figure 2.2. Function estimates over 1000 simulated data sets for the unidentifiable scenario.
The solid black line is the mean of the estimated hazard functions, while the truth is given
as the dashed black line. For this scenario, a 0.5% trim was used with the mean due to the
presence of a few outlying function estimates.
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scenario) or two (identifiable scenario) Cox models. We used the R function optim() to max-

imize the profile likelihood function; the L-BFGS-B method (which allows box constraints

for restricting the intercept estimate to be negative) was used for the unidentifiable case,

while the BFGS method was used for the identifiable case. Standard errors were obtained

from the numerically evaluated Hessian matrix at the solution.

The results of the simulation study are summarized in Tables 2.1 and 2.2. Beginning

with Table 2.1, we see that bias for most parameters in the models decreases with increasing

sample size, although for the parameters associated with the continuous covariate Z1 the bias

seems to be negligible even for the smaller sample size. The bias for the intercept parameter,

however, seems to be markedly more persistent with increasing sample size, indicating the

difficulty in estimating this parameter when the model is unidentifiable.

As we noted a small number of outliers in the parameter estimates for some of the

simulated data sets, we chose to compare the estimated standard errors not only with the
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Table 2.1. Simulation results for the unidentifiable scenario. The empirical standard devi-
ation (SD), median absolute deviation (MAD), and average standard error of the estimates
are normalized by the true values of the parameters so as to provide a more equitable basis
for comparisons between them.

Avg. Emp. Emp. Avg.
n Model Covariates Truth est. SD MAD SE

250 η (Intercept) -1 -0.905 1.014 1.009 1.204
Z1 ∼ N(0, 1) 1 1.030 0.302 0.265 0.340
Z2 ∼ B(0.25) -2 -1.825 0.470 0.299 0.339

µ Z1 ∼ N(0, 1) 2 2.046 0.486 0.281 0.298
Z2 ∼ B(0.25) -1 -1.209 1.719 1.543 1.389

1000 η (Intercept) -1 -0.935 0.703 0.655 0.631
Z1 ∼ N(0, 1) 1 0.979 0.172 0.175 0.172
Z2 ∼ B(0.25) -2 -1.965 0.192 0.122 0.133

µ Z1 ∼ N(0, 1) 2 2.059 0.194 0.142 0.149
Z2 ∼ B(0.25) -1 -0.987 0.995 0.704 0.688

standard deviation (SD) but also the median absolute deviation (MAD), for which the scale

factor, 1/Φ−1(3/4) ≈ 1.483, was chosen to ensure consistency of the MAD for the standard

deviation of a normally distributed random variable (Rousseeuw and Croux, 1993). This is

appropriate since our estimators are asymptotically normal (by the results of Appendix F),

so that any outliers are simply due to numerical issues arising during the estimation process.

From this perspective, then, we may evaluate the agreement between the estimated stan-

dard errors and the true variability of the estimators. In general, the mean of the estimated

standard errors falls between the SD and the MAD of the estimated parameters. With the

larger sample size, we see much better agreement between the mean estimated SE and the

MAD in particular, suggesting that the asymptotic approximation of the covariance matrix

for the profile likelihood is good for samples of this size.

Table 2.2 exhibits much the same patterns, although in this case, we do not find difficulty

in estimating the intercept as we did in the unidentifiable scenario. However, we do see a

clearer trend in the variability of estimates in the η model as compared with the µ model: the

SD and MAD of the estimates (which generally agree closely with the mean SE estimates)

are substantially greater for the parameters in the µ part of the model. This is sensible,
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Table 2.2. Simulation results for the identifiable scenario. The empirical standard deviation
(SD), median absolute deviation (MAD), and average standard error of the estimates are
normalized by the true values of the parameters so as to provide a more equitable basis for
comparisons between them. Note that the only difference between the simulations for this
scenario and the unidentifiable scenario is one of the covariates in the µ part of the model.

Avg. Emp. Emp. Avg.
n Model Covariates Truth est. SD MAD SE

250 η (Intercept) -1 -0.900 0.513 0.460 0.487
Z1 ∼ N(0, 1) 1 1.066 0.179 0.155 0.160
Z2 ∼ B(0.25) -2 -1.849 0.394 0.276 0.289

µ Z3 ∼ B(0.5) 2 2.156 0.653 0.449 0.684
Z2 ∼ B(0.25) -1 -1.163 1.544 1.178 1.538

1000 η (Intercept) -1 -0.998 0.247 0.239 0.239
Z1 ∼ N(0, 1) 1 1.015 0.073 0.070 0.071
Z2 ∼ B(0.25) -2 -1.994 0.135 0.131 0.125

µ Z3 ∼ B(0.5) 2 2.138 0.348 0.257 0.316
Z2 ∼ B(0.25) -1 -0.981 0.660 0.566 0.582

as the µ part of the model corresponds to the latent event, which we are unable to observe

directly.

2.5 SEER prostate cancer data analysis

To illustrate the use of the proposed method on a real data set, we apply it to SEER registry

data on prostate cancer. We examined the survival data from the Detroit SEER registry

with year of diagnosis with prostate cancer between 1983 and 2003, which consisted of data

on 47,187 men. We included two binary covariates: race (0 if white or 1 if black) and a

dichotomized time of diagnosis (0 if pre- or 1 if post-1988, the year PSA screening was

introduced). Of these subjects, 26.2% were black and 89.4% were diagnosed in the PSA era

(1988 or later); 7.8% died of cancer during the follow-up period.

In prostate cancer, metastasis (the latent event) must occur prior to death due to cancer

(the terminal event); the time origin is the point of diagnosis with cancer. In SEER, no

detailed post-treatment followup is available, so the time at which the disease becomes

metastatic, even in the symptomatic sense, is unknown.
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Table 2.3. Parameter estimates (standard errors) from analysis of SEER prostate cancer
data. The Cox model estimates are shown for purposes of comparison with the estimates for
the η part of the joint model, which pertains to time to death due to cancer given metastasis.

Parameter Cox Joint
Death Intercept — 2.136 (0.233)

Black 0.338 (0.036) 0.301 (0.114)
Dx post-1988 -0.845 (0.038) -1.813 (0.381)

Onset Black — 0.137 (0.097)
Dx post-1988 — 0.401 (0.357)

The results of the conventional analysis (involving a simple Cox model fit) as well as the

proposed method are shown in Table 2.3. We display only the positive-intercept model, but

recall that due to the lack of identifiability of the sign of the intercept, we would obtain the

same fit to the data with a negative intercept of the same magnitude and an exchange of

the roles of η and µ. We emphasize that this choice of model is possible only through the

use of external information; no statistical justification can be made, as both models fit the

observed data equally well.

The rationale for our choice of the positive intercept model is that it results in the correct

sign for the effect of PSA screening on time to death. In the positive intercept model, this

coefficient estimate is negative, which agrees with the Cox model’s estimate in sign if not

magnitude. Moreover, it is an accepted scientific view that PSA screening prolongs time to

death, if only due to the artifact of lead-time bias.

The model allows us to make predictions of the distribution of the time to the latent

event, given observed data on a subject. Specifically, for the survival functions, we have (see

Appendix E for details)

G(t0|X,∆ = 0) =


ηe−µH(X) − µe−ηH(X)+(η−µ)H(t0)

ηe−µH(X) − µe−ηH(X)
, t0 < X

(η − µ)e−µH(t0)

ηe−µH(X) − µe−ηH(X)
, t0 ≥ X,

(2.14)
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for a censored subject, and

G(t0|X,∆ = 1) =


e(η−µ)H(X) − e(η−µ)H(t0)

e(η−µ)H(X) − 1
, t0 < X

0, t0 ≥ X.

(2.15)

for a failed subject (that is, a subject who has experienced the terminal event).

This model leads to the plots shown in Figure 2.3. These are the conditional survival

functions for onset of metastasis given time to death or censoring, shown in equations (2.14)

and (2.15) above. An immediately evident feature of these curves is their ordering, with

the PSA-screened population below the non-screened population, indicating an earlier onset

of metastasis for these subjects. This may be explained with reference to the selection

effect caused by screening (Zelen and Feinleib, 1969): under PSA screening, tumors are

detected earlier and treated, in some sense removing these cases from the population. Due

to the length bias, these tumors will be generally less aggressive, so the remainder (i.e., the

cases which would be depicted in these plots, conditioning on death) will be relatively more

agressive, with earlier metastasis.
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Figure 2.3. Conditional survival functions for onset of metastasis given observed data (time
to death and censoring indicator)—positive-intercept model. Top row is for a hypothetical
subject censored at the times indicated, while the bottom row is for a subject who dies at
these times. The x-axis of each panel is scaled in months since diagnosis.
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2.6 Discussion

In this chapter, we have presented a method for jointly modeling time to a latent event and

time to the terminal event, in a semiparametric framework, when the latent event is unob-

servable and must precede the terminal event. Our approach involves an EM algorithm for

estimating the baseline hazard, the derivation of which constitutes the chief methodological

contribution of our work. The method is generalizable, in the sense that it is not specific

to a certain data structure, but can instead be used with any survival data for which there

is interest in factors affecting time to an unobserved event which is known to precede an

observed event.

An alternative to our method is a weighted Breslow-type estimator (Chen, 2009) that is

also asymptotically fully efficient, although this estimator needs an extension to our class of
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problems. However, the weighted Breslow method does not enjoy the property of monotonic

convergence intrinsic to our EM approach. This property makes the EM approach a stable,

computationally efficient solution that handles the curse of dimensionality in a closed form.

In fact, EM will converge even in the unidentifiable case without restricting the sign of the

intercept term.

The latent frailty process considered in this chapter is rather primitive (one jump). A

generalization to other types of disease progression processes such as continous growth or

compartmental progression through stages is an interesting topic for future research. A

number of other extensions are possible as well. For example, in certain data sets, partial

information on the time to the latent event may be available. In such cases, it would be

possible to modify the likelihood function to account for this additional data; in so doing,

we would likely be able to substantially increase the precision of our estimates. As was seen

in our real data analysis, the parameters pertaining to the unobserved event (metastasis

of prostate cancer) were not found to be statistically significant, but if we were able to

augment our data set with patients for whom time to metastasis was observed, we would

perhaps reduce the estimated standard errors associated with these parameters.

Another important aspect of modeling not addressed in detail in this chapter is the issue

of model checking. One simple graphical check of the model fit would involve comparing the

marginal survival curves (obtained after getting estimates of the parameters in the model

as well as the baseline hazard) with Kaplan-Meier curves of the time to the terminal event.

These should be very similar to each other, so any differences could be evidence of problems

with the assumed model.

Relaxation of the common baseline hazard assumption would be useful as well. One sim-

ple approach would be to apply a monotone parametric transformation to the baseline cumu-

lative hazard in either the marginal hazard of the latent event or the conditional hazard of

the terminal event given the latent event. For example, instead of 1(t > t0)η [H(t)−H(t0)],

we might replace H by Hα, for some α > 0. This would allow for a wide range of alternative
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shapes in the hazard for the terminal event relative to the hazard for the latent event.
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Appendices

C Derivation of marginal survival and density functions

The marginal survival function for the terminal event is the expectation of (2.3) over the

distribution of T0 for a censored observation:

G∗(X) = E
[
e−1(T0<X)η[H(X)−H(T0)]

]
=

∫
e−1(t0<X)η[H(X)−H(t0)]µe−µH(t0) dH(t0)

=

∫ H(X)

0

µe−ηH(X)+(η−µ)H(t0) dH(t0) +

∫ ∞
H(X)

µe−µH(t0) dH(t0)

= e−ηH(X) µ

η − µ
[
e(η−µ)H(X) − 1

]
+ e−µH(X)

=
1

η − µ
[
ηe−µH(X) − µe−ηH(X)

]
.

The marginal density function is given by the expectation of (2.3) for a failed observation:

g∗(X) = E
[
1(T0 < X)η dH(t)e−1(T0<X)η[H(X)−H(T0)]

]
=

∫ H(X)

0

η dH(X)e−1(t0<X)η[H(X)−H(t0)]µe−µH(t0) dH(t0)

= ηµ dH(X)e−ηH(X)

∫ H(X)

0

e(η−µ)H(t0) dH(t0)

= ηµe−ηH(X) e
(η−µ)H(X) − 1

η − µ
dH(X)

= ηµ
e−µH(X) − e−ηH(X)

η − µ
dH(X).

Note that the presence of the term 1(T0 < X) outside of the exponential renders the inte-

grand zero for t0 ≥ X.
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D EM algorithm for estimation of baseline hazard

This section presents our derivation of the EM algorithm for our model, which is based on

the methods of Tsodikov (2003). Note that the functional derivative

U0(s) = δs logL0 + δs logP0

= δs log
{

[1(T0 < X)ηdH(X)]∆ e−1(T0<X)η[H(X)−H(T0)]
}

+ δs log
{
µdH(T0)e−µH(T0)

}
=
1(X = s)∆

dH(s)
− 1(T0 < X)η [1(X ≥ s)− 1(T0 ≥ s)]

+
1(T0 = s)

dH(s)
− µ1(T0 ≥ s)

=
dN(s)

dH(s)
− ηỸ (s) +

dN0(s)

dH(s)
− µY0(s) (D1)

is the conditional (on T0) score for a single observation. Here we define

Ỹ (s) = 1(T0 < X) [1(X ≥ s)− 1(T0 ≥ s)]

= 1(T0 ≤ s < X),

while Y0(s) = 1(T0 ≥ s) and dN0(s) = 1(T0 = s).

The rest of this section is organized as follows. First we derive the E step, for the censored

and failed cases respectively, then we derive the M step, which has a simple closed-form

expression reminiscent of the weighted Breslow-type estimators of Chen (2009).

E step

Consider first the case where ∆ = 0, that is, a censored observation at time X. The

unconditional score is

U(s) = E
[
−ηỸ (s)− µY0(s) +

dN0(s)

dH(k+1)(s)

∥∥∥∥L(k)
0

]
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= −
E
[
ηỸ (s)L

(k)
0

]
E
[
L

(k)
0

] −
E
[
µY0(s)L

(k)
0

]
E
[
L

(k)
0

] +
1

dH(k+1)(s)

E
[
dN0(s)L

(k)
0

]
E
[
L

(k)
0

] . (D2)

Since the index (k + 1) does not appear under the E operator in (D2), we drop iteration

indices for the calculation of the following expectations. Note that E [L0], appearing in all

denominators in (D2), is just the marginal survival function (2.4); denote this as S(t) =

E
[
e−1(T0<t)η[H(t)−H(T0)]

]
.

First we calculate E
[
Ỹ (s)L0

]
:

E
[
Ỹ (s)L0

]
=

∫
1(t0 < s < X)e−1(t0<X)η[H(X)−H(t0)]µe−µH(t0) dH(t0)

= 1(X > s)µ

∫ H(s)

0

e−ηH(X)+ηH(t0)−µH(t0) dH(t0)

= Y (s)
µ

η − µ
[
e−ηH(X)+(η−µ)H(s) − e−ηH(X)

]
. (D3)

Next we calculate E [Y0(s)L0]. To do this we must consider two cases: first, the case

where s ≤ X, and second, the case where s > X.

• s ≤ X

E [Y0(s)L0] = E
[
e−1(T0<X)η[H(X)−H(T0)]Y0(s)

]
=

∫
e−1(t0<X)η[H(X)−H(t0)]

1(t0 > s)µe−µH(t0) dH(t0)

= µe−ηH(X)

∫ H(X)

H(s)

e(η−µ)H(t0) dH(t0) +

∫ ∞
H(X)

µe−µH(t0) dH(t0)

=
µ

η − µ
e−ηH(X)

[
e(η−µ)H(X) − e(η−µ)H(s)

]
+ e−µH(X)

=
µ

η − µ
[
e−µH(X) − e−ηH(X)+(η−µ)H(s)

]
+ e−µH(X).

• s > X

E [Y0(s)L0] = E
[
e−1(T0<X)η[H(X)−H(T0)]Y0(s)

]
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=

∫
e−1(t0<X)η[H(X)−H(t0)]

1(t0 > s)µe−µH(t0) dH(t0)

=

∫ ∞
H(s)

µe−µH(t0) dH(t0)

= e−µH(s).

In a single expression, this is

E [Y0(s)L0] = Y (s)

{
µ

η − µ
[
e−µH(X) − e−ηH(X)+(η−µ)H(s)

]
+ e−µH(X)

}
+ [1− Y (s)]e−µH(s).

(D4)

Finally, we calculate E [dN0(s)L0]. This is simple since the integral is only positive at a

single point, t0 = s:

E [dN0(s)L0] =

∫
dN0(s)e−1(t0<X)η[H(X)−H(t0)]µe−µH(t0) dH(t0)

= e−1(s<X)η[H(X)−H(s)]µe−µH(s) dH(s)

= µ
{
Y (s)e−ηH(X)+(η−µ)H(s) + [1− Y (s)]e−µH(s)

}
dH(s). (D5)

Combining these results, when ∆ = 0 it may be shown that the unconditional score can

be written as

U(s) = −Y (s)
ηµe−µH(X) − ηµe−ηH(X)

ηe−µH(X) − µe−ηH(X)

+

[
dH(k)(s)

dH(k+1)(s)
− 1

]
(η − µ)

Y (s)µe−ηH(X)+(η−µ)H(s) + [1− Y (s)]µe−µH(s)

ηe−µH(X) − µe−ηH(X)
.

It is apparent from this that when dH(k) = dH(k+1), i.e., at convergence, the second term

disappears and we are left with the marginal score,

U(s) = −Y (s)
ηµe−µH(X) − ηµe−ηH(X)

ηe−µH(X) − µe−ηH(X)
.
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Now we turn to the case of ∆ = 1, an observation failed at time X. We begin with

U(s) = E
[

dN(s)

dH(k+1)(s)
− ηỸ (s)− µY0(s) +

dN0(s)

dH(k+1)(s)

∥∥∥∥L(k)
0

]

=
dN(s)

dH(k+1)(s)
−

E
[
ηỸ (s)L

(k)
0

]
E
[
L

(k)
0

] −
E
[
µY0(s)L

(k)
0

]
E
[
L

(k)
0

] +
1

dH(k+1)(s)

E
[
dN0(s)L

(k)
0

]
E
[
L

(k)
0

] . (D6)

Note that now

L0 = 1(T0 < X)ηdH(X)e−1(T0<X)η[H(X)−H(T0)].

Its expectation over the distribution of T0 is given by (2.5).

Now we proceed through the same steps as for the ∆ = 0 case. Some of the steps are

simplified due to the 1(T0 < X) term, since

1(T0 < X)Y0(s) = 1(T0 < X)1(T0 ≥ s)

= 1(s ≤ T0 < X).

First we calculate E
[
ηỸ (s)L0

]
. We may ignore the term 1(T0 < X) appearing in L0

since

1(T0 < X)Ỹ (s) = 1(T0 < X)2 [1(X ≥ s)− 1(T0 ≥ s)]

= 1(T0 < X) [1(X ≥ s)− 1(T0 ≥ s)]

= 1(T0 ≤ s < X).

Now we have

E
[
ηỸ (s)L0

]
= η

∫
1(t0 < s < X)ηdH(X)e−1(t0<X)η[H(X)−H(t0)]µe−µH(t0) dH(t0)

= η2µe−ηH(X)dH(X)Y (s)

∫ H(s)

0

e(η−µ)H(t0) dH(t0)

= Y (s)η2µ
e−ηH(X)+(η−µ)H(s) − e−ηH(X)

η − µ
dH(X). (D7)
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Now we calculate E [µY0(s)L0]:

E [µY0(s)L0] = E
[
µY0(s)1(T0 < X)ηdH(X)e−1(T0<X)η[H(X)−H(T0)]

]
= ηµ2e−ηH(X)dH(X)Y (s)

∫ H(X)

H(s)

e(η−µ)H(t0) dH(t0)

= Y (s)ηµ2 e
−µH(X) − e−ηH(X)+(η−µ)H(s)

η − µ
dH(X). (D8)

The calculation of E [dN0(s)L0] is very similar in the failed case to what it is in the

censored case. Note first that dN0(s)1(T0 < X) = 1(T0 = s)1(T0 < X) = 1(T0 = s)1(s <

X) = Y (s)1(T0 = s). Thus, we have

E [dN0(s)L0] = Y (s)ηdH(X)

∫
dN0(s)e−1(t0<X)η[H(X)−H(t0)]µe−µH(t0) dH(t0)

= Y (s)ηµdH(X)e−1(s<X)η[H(X)−H(s)]e−µH(s) dH(s)

= ηµdH(X)Y (s)
{
Y (s)e−ηH(X)+(η−µ)H(s) + [1− Y (s)]e−µH(s)

}
dH(s)

= ηµdH(X)Y (s)e−ηH(X)+(η−µ)H(s) dH(s). (D9)

Combining equations (D7), (D8), and (D9), we have for the unconditional score

U(s) =
dN(s)

dH(k+1)(s)
− Y (s)

µe−µH(X) − ηe−ηH(X)

e−µH(X) − e−ηH(X)

+

[
dH(k)(s)

dH(k+1)(s)
− 1

]
(η − µ)Y (s)e−ηH(X)+(η−µ)H(s)

e−µH(X) − e−ηH(X)
.

We see from this that if we are at a fixed point of the algorithm, so that dH(k) = dH(k+1),

the last term above disappears and we again obtain the marginal score,

U(s) =
dN(s)

dH(k+1)(s)
− Y (s)

µe−µH(X) − ηe−ηH(X)

e−µH(X) − e−ηH(X)
.

52



M step

Denote the marginal score, for ∆i ∈ {0, 1}, as

Ui(s) =
dNi(s)

dH(k+1)(s)
−Ψ

(k)
i (s), (D10)

where

Ψ
(k)
i (s) = Yi(s)

η1−∆iµe−µH
(k)(Xi) − ηµ1−∆ie−ηH

(k)(Xi)

η1−∆ie−µH(k)(Xi) − µ1−∆ie−ηH(k)(Xi)
.

Note that the scores derived above consist of the marginal score plus a “correction term,”

[
dH(k)(s)

dH(k+1)(s)
− 1

]
θ

(k)
i (s),

where θ
(k)
i (s) is given by

θ
(k)
i (s) = (η − µ)µ1−∆i

Yi(s)e
−ηH(k)(Xi)+(η−µ)H(k)(s) + (1−∆i) [1− Yi(s)] e−µH

(k)(s)

η1−∆ie−µH(k)(Xi) − µ1−∆ie−ηH(k)(Xi)
. (D11)

Now, we want to solve

0 =
n∑
i=1

{
dNi(s)

dH(k+1)(s)
−Ψ

(k)
i (s) +

[
dH(k)(s)

dH(k+1)(s)
− 1

]
θ

(k)
i (s)

}
,

which implies that the Breslow-type estimator is

dH(k+1)(s) =

∑n
i=1 dNi(s) +

[∑n
i=1 θ

(k)
i (s)

]
dH(k)(s)∑n

i=1

[
Ψ

(k)
i (s) + θ

(k)
i (s)

] . (D12)

This constitutes a self-consistency equation that is solved iteratively (Tsodikov, 2003).
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E Prediction of survival function for the latent event

Prediction of time to the latent event is an important goal of analysis using models of this

kind, as noted in Zeng and Lin (2006). This section presents the derivation of equations

(2.14) and (2.15). We are interested in the survival function for the latent event, given

observed data and estimates of η, µ,H:

G(t0|X,∆) =

∫∞
H(t0)

L0(u)µe−µH(u) dH(u)∫∞
0
L0(u)µe−µH(u) dH(u)

. (E1)

Consider first the case where ∆ = 0, that is, a censored observation at time X. Note

that the denominator of (E1) is the expectation of L0 with respect to the distribution of T0.

Now we calculate the numerator of (E1). Assuming first that t0 < X, we have

∫ ∞
H(t0)

L0(u)µe−µH(u) dH(u) =

∫ ∞
H(u)

e−1(u<X)η[H(X)−H(u)]µe−µH(u) dH(u)

=

∫ H(X)

H(t0)

µe−ηH(X)+(η−µ)H(u) dH(u) +

∫ ∞
H(X)

µe−µH(u) dH(u)

= e−ηH(X) µ

η − µ
[
e(η−µ)H(X) − e(η−µ)H(t0)

]
+ e−µH(X). (E2)

If, on the other hand, t0 ≥ X,

∫ ∞
H(t0)

L0(u)µe−µH(u) dH(u) = e−µH(t0). (E3)

Therefore, after some algebra we see that the conditional survival function for T0 given

observed X,∆ is

G(t0|X,∆ = 0) =


ηe−µH(X) − µe−ηH(X)+(η−µ)H(t0)

ηe−µH(X) − µe−ηH(X)
, t0 < X

(η − µ)e−µH(t0)

ηe−µH(X) − µe−ηH(X)
, t0 ≥ X.
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Now we turn to the case of ∆ = 1, an observation failed at time X. Note that now

L0(T0) = 1(T0 < X)ηdH(X)e−1(T0<X)η[H(X)−H(T0)].

Its expectation over the distribution of T0 is given by (2.5). Now we have for the numerator

of (E1)

∫ ∞
H(t0)

L0(u)µe−µH(u) dH(u) = ηµdH(X)e−ηH(X)

∫ H(X)

H(t0)

e(η−µ)H(u) dH(u)

= ηµe−ηH(X) e
(η−µ)H(X) − e(η−µ)H(t0)

η − µ
dH(X). (E4)

Because a failed subject at time X (i.e., ∆ = 1) implies that T0 < X, the integrand is only

nonzero on [0, H(X)]. The conditional survival function for the latent event in the case of a

failed observation at time X is thus

G(t0|X,∆ = 1) =


e(η−µ)H(X) − e(η−µ)H(t0)

e(η−µ)H(X) − 1
, t0 < X

0, t0 ≥ X.
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F Asymptotic properties

This section is adapted from Hu and Tsodikov (2014a, Supplementary Materials C). Let

Ω = (β′, {dH}); denote the dimension of β as p. Let ‖ · ‖∞ denote the supremum norm on

the interval [0, τ ]; let ‖w‖TV denote the total variation of w(t) on the interval [0, τ ].

Define Q = {w(t) : ‖w‖TV ≤ 1} such that Ĥ(t) may be regarded as a bounded linear

functional in L∞(Q), and {β̂ − β0, Ĥ(t)−H0(t)} as a random element in the metric space

Rp × L∞(Q). We denote H as the compact convex set in the metric space Rp × L∞(Q) in

which Ω0 is contained.

Conditions:

1. The true hazard H0 is strictly increasing and differentiable. Ω0 is in the interior of the

compact convex set H.

2. With probability 1, the covariate process z(t) is left continuous with bounded total

variation on [0, τ ]. Also, z(t) is linearly independent in the sense that if there exist

a(t), c such that a(t) + c′z(t) = 0 with probability 1, then a(t) = 0 and c = 0.

3. With probability 1, E [Y (τ)|z] > 0 and P (∆ = 0, T1 = τ |z) > 0. In other words, the

risk set will not shrink to zero at time τ .

4. The Hessian matrix In evaluated at β0, H0 is positive definite and converges in prob-

ability to I0, a deterministic and invertible operator.

5. Identifiability condition. The model is identifiable such that H = H0 uniformly over Ω

implies Ω = Ω0. This will ensure that for any sequence Ωn ∈ H,

lim inf
n→∞

`(Ωn) ≥ `(Ω0)⇒ ‖Ωn − Ω0‖ p→ 0.

6. Uniform convergence condition. For any sequence Ω ∈ H, we have uniform conver-
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gence, i.e.,

sup
Ω∈H
|`n(Ω)− `(Ω)| p→ 0.

Theorem 1. Assuming regularity conditions hold, with probability 1: β̂ converges to β0;

and Ĥ converges to H0 uniformly on the interval [0, τ ].

Proof. We need to prove consistency: ‖Ĥ(t) − H0(t)‖L∞(Q)
p→ 0 and |β̂ − β0| p→ 0. Since

`n(Ω̂) = supΩ∈H `n(Ω) + op(1), by Theorem 2.12 of Kosorok (2008), we have ‖Ω̂− Ω0‖ p→ 0.

As in Hu and Tsodikov (2014a, Supplementary Materials C.1), we verify conditions 5 and 6

in the following steps.

1. Convexity and unique maximum of the likelihood function. Recall that the marginal

hazard for the ith subject may be written as dΛ∗(t) = γ (Ω) dH(t). Note that this is a

functional that depends on the processes H(·), z(·) on the interval [0, t]. Let F (t) be

the cumulative incidence function for observed diagnosis events, and let R(t) be the

survival function for diagnosis subject to censoring. Note that dF (t) = R(t) dΛ∗(t).

Now we can write the “true” log-likelihood as

`(Ω,Ω0) = E
∫ τ

0

[
log dΛ∗(t) dF

0(t)−R0(t) dΛ∗(t)
]
, (F1)

where F 0, R0 denote the corresponding “true” quantities, respectively, and expectation

is taken with respect to the distribution of the covariate process z(t).

Now consider the negative “true” Kullback-Leibler distance:

D = `(Ω,Ω0)− `(Ω0,Ω0)

= E
∫ τ

0

[
log dΛ∗(t) dF

0(t)−R0(t) dΛ∗(t)− log dH0
∗ (t) dF

0(t) +R0(t) dH0
∗ (t)

]
= E

∫ τ

0

{
log

dΛ∗(t)

dH0
∗ (t)

dF 0(t) +R0(t)
[
dΛ0
∗(t)− dΛ∗(t)

]}
= E

∫ τ

0

{
log

dΛ∗(t)

dH0
∗ (t)

dF 0(t) +
dF 0(t)

dΛ0
∗(t)

[
dΛ0
∗(t)− dΛ∗(t)

]}
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= E
∫ τ

0

{
log

dΛ∗(t)

dH0
∗ (t)

dF 0(t) +

[
1− dΛ∗(t)

dΛ0
∗(t)

]
dF 0(t)

}
= E

∫ τ

0

v

(
dΛ∗(t)

dΛ0
∗(t)

)
dF 0(t),

where v(x) = log x+ 1− x is a convex non-positive function with a unique maximum

of 0 at x = 1. Therefore, D has a unique maximum when dΛ∗(t) = dH0
∗ (t) uniformly.

Under an identifiable model, this implies that the unique maximum of D occurs at Ω0.

2. Identifiability condition. Since Λ∗ is assumed to be a continuous and differentiable

functional of H, then so is the likelihood function `(Ω). Step 1 implies that Ω0 =

arg maxΩ∈H `(Ω) is unique. We assume our model is identifiable in the sense that

Λ∗ = Λ0
∗ uniformly over Ω implies Ω = Ω0 uniformly. Therefore, by Lemma 14.3 of

Kosorok (2008), lim infn→∞ `(Ωn) ≥ `(Ω0), i.e., the identifiability condition is satisfied.

3. Uniform convergence condition. Condition 1 implies that Ω is in the class of functions

of bounded variation with integrable envelope, which in turn implies that H(t) is

bounded. Therefore, H is a Glivenko-Cantelli class, whose ε-entropy with bracketing

number is bounded by A/ε, where A is some constant. Then by the assumption of

continuity of the functionals Λ∗ and `, and the integrability of the envelope of Ω, the

integrand in `(Ω) is also Glivenko-Cantelli by the preservation theorems. Therefore we

may apply the uniform law of large numbers to the empirical process counterparts of

D and `, i.e.,

Dn = `n(Ω,Ω0)− `n(Ω0,Ω0)

and

`n(Ω,Ω0) =
1

n

n∑
i=1

∫ τ

0

{[log γi (H(t);β) + log dH(t)] dNi(t)− Yi(t)γi (H(t);β) dH(t)}

such that

sup
Ω∈H
|Dn(Ω)−D(Ω)| p→ 0, sup

Ω∈H
|`n(Ω)− `(Ω)| p→ 0.
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Consider a linear functional

n1/2

[
a′
(
β̂ − β0

)
+

∫ τ

0

b(t) d
(
Ĥ(t)−H0(t)

)]
, (F2)

where a is a real vector and b(t) is a function with bounded total variation. Let B denote the

vector consisting of the values of b(t) evaluated at the observed failure times corresponding

to the set {dH}; let E ′ = (a′,B′).

Theorem 2. Assuming regularity conditions hold, n1/2

[(
β̂ − β0

)′
, Ĥ(t)−H0(t)

]′
con-

verges weakly to a zero-mean Gaussian process. In addition, nE ′I−1
n E converges in prob-

ability to the asymptotic covariance function of the linear functional (F2), where In is the

negative Hessian matrix of the observed log-likelihood function (2.6) with respect to Ω.

Proof. Our proof closely follows that of Hu and Tsodikov (2014a, Supplementary Materials

C.2). Let U(Ω) =
(
U ′β,UH(s)

)′
be the score, and the proposed NPMLE Ω̂ be the solution to

the equation U(Ω) = 0. Note that in our case this solution involves the profile likelihood for

β:

`pr(β) = sup
H
`(H(t);β),

where ` is defined in equation (2.6) and the estimate of H is obtained using the EM algorithm

we have derived. Asymptotically, this is equivalent to simply solving the marginal score,

which is what we work with here.

Now let Ω0 be the set of true parameters. Based on the martingale representation of

U(Ω0) and the fact that Ni(t), i = 1, . . . , n are orthogonal, it follows by the martingale

central limit theorem that n−1/2U(Ω0) converges weakly to U(t) =
(
U′β, UH(t)

)′
, where Uβ

is a mean-zero p-variate normal random variable and UH(t) is a mean-zero Gaussian process.

The variance-covariance function of U(t) is characterized by σ2
H(s, t;β0, H0), σ2

β(β0), and

σ2
H,β(t;β0, H0) as derived below.
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The predictable variation process for the score process UH(s) in (2.10) (scaled by n−1/2)

is

Var
(
n−1/2 UH(s)

∣∣Ft−) =
1

n
Var

[
n∑
i=1

∫ τ

0

εi(t, s;β, H) dMi(t)

∣∣∣∣∣Ft−
]

=
1

n

n∑
i=1

∫ τ

0

ε2
i (t, s;β, H) Var [dMi(t)|Ft− ]

=
1

n

n∑
i=1

∫ τ

0

ε2
i (t, s;β, H)Yi(t)γi (H(t);β) dH(t),

which converges weakly as n→∞ to a mean-zero Gaussian process with covariance function

σ2
H(s, t;β0, H0) =

∫ τ

0

ε(u, s;β, H)ε(u, t;β, H)P (X > u)γ (H(u);β) dH(u)

for s, t ∈ [0, τ ]. Similarly, n−1/2Uβ is a martingale and converges to a mean-zero Gaussian

process with covariance function

σ2
β(β0) =

∫ τ

0

γ̇2
β (H(u);β)

γ (H(u);β)
P (X > u) dH(u),

and n−1/2UH(s),β is a martingale that converges to a mean-zero Gaussian process with co-

variance function

σ2
H,β(s;β0, H0) =

∫ τ

0

ε(u, s;β, H)γ̇β(H(u);β)P (X > u) dH(u).

Now, let the limit in probability of the likelihood function (2.6), normalized as `/n, be

`0. Define a linear information operator as

I0(t, s) =
∂U0

∂Ω
= −

 ∂2`0
∂β∂β′

∂2`0
∂β∂dH(s)

∂2`0
∂dH(t)∂β′

∂2`0
∂dH(t)∂dH(s)


Ω=Ω0

,

where U0 =
(
∂`0
∂β′
, ∂`0
∂dH(t)

)′
. The operator I0 acts on an arbitrary vector function element
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Ωs = (β′, dH(s))′ as

I0(t, s)Ωs = −

 ∂2`0
∂β∂β′

β +
∫ τ

0
∂2`0

∂β∂dH(s)
dH(s)

∂2`0
∂β′∂dH(t)

β +
∫ τ

0
∂2`0

∂dH(t)∂dH(s)
dH(s)

 . (F3)

With this notation, expanding the score U(Ω̂) about the true parameter Ω0, we have

I0(t, s)n1/2
(

Ω̂s − Ω0
s

)
= U(t) + op(1). (F4)

Assuming that the Fredholm operator expressed by the kernel I0 of the Fredholm integral

equation (F4) of the first kind is square integrable, and that the equation I0Ω = 0 has only

the trivial solution Ω = 0, then equation (F4) has a unique solution. By Theorem 3.3.1 of

van der Vaart and Wellner (1996), there exists an inverse information operator I−1
0 (s, t) such

that

n1/2
(

Ω̂s − Ω0
s

)
= I−1

0 (s, t)U(t) + op(1).

Upon differentiation of the equation E [U(Ω0)] = 0 with respect to Ω at the truth Ω0, we

obtain the usual equivalence between I0 represented by second derivatives and

I0(t, s) =

 ∂`0
∂β

∂`0
∂β′

∂`0
∂β

∂`0
∂dH(s)

∂`0
∂β′

∂`0
∂dH(t)

∂`0
∂dH(t)

∂`0
∂dH(s)


Ω=Ω0

,

which represents the variance of the normalized score Gaussian process U(t). Also, by

the functional delta method (Kosorok, 2008, Section 2.2.4), for a differentiable functional

F (Ω), n1/2
[
F (Ω̂)− F (Ω0)

]
converges weakly to a mean-zero Gaussian process with variance-

covariance function Ḟ (Ω0)′I−1
0 Ḟ (Ω0), where Ḟ (Ω) = ∂F

∂Ω
and the operator products are de-

fined similarly to (F3). Applying this to (F2) and replacing operator products by matrix

algebra, and I0 by its consistent (matrix) estimator n−1În, we obtain the desired result.
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Chapter 3: Partial Likelihood

Estimation for Continuous Outcomes

with Excess Zeros in a

Random-threshold Damage-resistance

Model

3.1 Introduction

3.1.1 Modeling data with excess zeros in the outcome

The analysis of data for which the outcome exhibits a large number of zero values presents

problems for conventional statistical methods. For continuous outcomes, logic suggests that

no ties should occur, certainly not when they constitute a substantial proportion of the data

at a boundary of the outcome space. Even when the outcome is discrete (e.g., count data),

a Poisson model often is insufficient to account for the observed number of zeros.

One approach to this kind of data involves a two-part mixture model, in which one part

of the model deals with the probability of the outcome taking the value zero, while the other

is a conditional, generally parametrically specified, model for the strictly positive outcome
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values. Much of the zero-inflated models literature is focused on count data (e.g., Lambert,

1992). However, in one of the earliest articles on the topic, Aitchison (1955) defines a model

for the outcome X where

P (X = 0) = θ

P (X > 0) = 1− θ

P (x < X < x+ dx|X > 0) = g(x) dx,

which leads to the cdf

F (x) = θ + (1− θ)
∫ x

0

g(u) du.

Aitchison (1955) examines several examples, for both continuous and discrete models for the

positive part of the outcome distribution. This type of mixture model has seen a great deal

of use in environmental and bioassay applications: Moulton and Halsey (1995) and Taylor

et al. (2001) both use mixture models with a lognormal model for the positive values of the

outcome.

Work with this kind of model has not been limited to fully parametric specifications,

however. Polansky (2005) provides a nonparametric method for estimation of the distribution

function associated with a “nonstandard mixture” model (meaning a model with probability

mass at known discrete points) using a combination of an empirical distribution function

and a kernel estimate of a distribution function, but does not address regression modeling.

Zhou and Liang (2006) present a method for the analysis of skewed data with excess zeros

based on a two-part model, with the probability of a zero outcome being observed following a

logistic model and the continuous positive outcome’s conditional mean being modeled using

a nonparametrically estimated smooth link function.

Alternatively, some authors have devoted attention to specific parametric models (i.e.,

not based on a mixture). Siegel (1985) uses what amounts to a profile likelihood method

to obtain maximum likelihood estimates for the parameters of a noncentral chi-squared
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distribution with zero degrees of freedom (a distribution which contains a point mass at

zero). Foster and Bravington (2013) propose a model based on an extension of the Tweedie

generalized linear model.

3.1.2 Left censoring and the retro-hazard function

There is a degree of overlap between data with excess zeros and left-censored data: Moulton

and Halsey (1995) and Taylor et al. (2001), for example, extend the mixture model methods

described above to deal with left censoring due to detection limits. The overwhelming mass

of the literature on censored data, however, is in the context of survival analysis. Most of this

work is also very general, for the most part dealing with doubly- and/or interval-censored

data (Turnbull, 1974; Cai and Cheng, 2004; Goetghebeur and Ryan, 2000; Finkelstein, 1986),

and so cannot take advantage of the symmetry between purely left-censored data and purely

right-censored survival data.

Specifically, consider a random variable T taking values on the interval (0,∞). Tradi-

tionally, in survival analysis, the baseline cumulative hazard, H(t), is defined as H(t) =

− logS(t), where S(t) = P (T > t) is the survival function (Kalbfleisch and Prentice, 2002).

This works well for right-censored data, but this is an inconvenient way to formulate the

model for left-censored data.

Instead, we define

H∗(t) ≡ − logF (t), (3.1)

where F (t) = P (T ≤ t) is the cdf. Lagakos et al. (1988) introduced a similar function for

the analysis of right-truncated survival data, which they refer to as a “reverse-time hazard

function.” Gross and Huber-Carol (1992) further develop the ideas of the “retro-hazard,” but

are also primarily interested in dealing with right-truncated data. Throughout this chapter,

following Gross and Huber-Carol (1992), we refer to the function H∗ as the retro-hazard.

We also may write F (t) = e−H
∗(t), implying that the pdf of T under this formulation
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Figure 3.1. This figure depicts schematically the relationship between applied stress and
observed damage (left panel) and potential damage and observed damage (right panel) in
two alternative models. The left panel represents a model for which the threshold is on the
scale of some variable associated with the applied stress. The right panel shows the model
corresponding to the proposed method, for which observed damage is equal to zero up to
the threshold, from which point observed damage equals potential damage; in this case, the
threshold is measured on the scale of damage itself.
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is f(t) = −dH∗(t)
dt

e−H
∗(t). This corresponds to the Lehmann (1953) alternative, proposed in

the context of nonparametric testing of the equality of distribution functions: the cdf in a

regression model based on H∗ will be the baseline cdf e−H
∗(t) raised to the power ez

′
iβ. This

directly parallels the situation with the Cox proportional hazards model (Cox, 1972), with

the cdf replacing the survival function.

3.1.3 Damage manifestation and resistance processes

Our goal in this chapter is to semiparametrically model data where the outcome represents

some measure of damage to a biological system, in which two competing processes are at

work. On the one hand, we have the damage manifestation process, which leads to expression
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of the damage in some observable form; on the other, we have the damage resistance process,

which, up to a random, subject-specific threshold, may prevent the expression of the damage

entirely, leading to an observed outcome of zero (see the right panel of Figure 3.1). This

kind of data occurs in the context of experimental setups in which test animals are subjected

to external stress and a measure of the damage caused by such pressures is obtained as the

outcome (e.g., Miller, 2012).

We propose a two-part model based on the function H∗: if Di is the random variable

representing the damage expression and Ri the damage resistance capacity, then our observed

data is

Xi = Di 1(Di > Ri), (3.2)

i.e., we observe the damage Di if and only if it exceeds the resistance capacity of the organism

Ri; otherwise we observe 0 for the outcome. To be clear, Ri is never observed: the only

information we have on the damage resistance capacity is whether or not Ri is exceeded by

Di. The probability model for Di and Ri is

P (Ri ≤ r) = e−µiH
∗(r) (3.3)

P (Di ≤ d) = e−ηiH
∗(d). (3.4)

We refer to this as the competitive damage-resistance (CDR) model; dependence between

the observed damage X and the resistance capacity R is induced by equation (3.2).

The biological motivation for this model derives from the concept in cancer etiology

of growth-promoting and growth-inhibitory signals (Weinberg, 1991). On the one hand,

proto-oncogenes encourage cell proliferation, while on the other, tumor suppressor genes

actively inhibit such proliferation. The failure of these tumor suppressor genes can lead to

uncontrolled growth and ultimately to the development of a cancerous tumor, but in the

normal course of cell functioning, these genes prevent any cancer from manifesting. In the

context of our model, we may view the unobserved Ri as representative of the action of
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growth-inhibitory signals; Di, by contrast, corresponds to the action of growth-promoting

signals. The eventDi > Ri would then correspond to the point at which the tumor suppressor

genes have failed and allowed a tumor to develop due to runaway cell proliferation.

This type of model is reminiscent of the competing risks approach in the survival litera-

ture (Prentice et al., 1978), but also bears similarities to cure models (e.g., Farewell, 1982,

which is also a mixture model approach). Mechanistically, cumulative damage/shock models

(Ebrahimi, 1999; Esary and Marshall, 1973) are similar; however, these authors are inter-

ested in modeling the time to failure of some system rather than a direct measure of the

damage process itself.

Although not explicitly a dose-response model, our approach is similar to that of, e.g.,

Cox (1987) or Crump (1979). These authors, however, typically are focused on estimation

of the threshold, in contrast to our situation, where the threshold is random and dependent

on the subject; we are interested in estimation of the effect of covariates on the probability

of exceeding this threshold. One reference in which the threshold is random is Brockhoff and

Muller (1997), in which the authors make use of quasi-likelihood estimation in the analysis

of repeated measures data.

The remainder of this chapter is structured as follows: in Section 3.2, we lay out the details

of our model for the competing damage and resistance processes; in Section 3.3, we propose

an estimator for the parametric part of the model based on a partial likelihood defined using

the function H∗; Section 3.4 presents simulation results; and Section 3.5 describes the results

of the application of the proposed method to a study of pulmonary capillary hemorrhage in

rats exposed to diagnostic ultrasound.
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3.2 The competitive damage/resistance model

3.2.1 Specification of the model

We want the marginal distribution of X = D 1(D > R). Consider the transformation

(D,R) 7→ (X,R). This will only be one-to-one when D > R; for this set, the determinant

of the Jacobian of the inverse transformation is −1, implying a joint pdf of

ηµe−µH
∗(r)−ηH∗(x) dH∗(r) dH∗(x)1(x > r).

The marginal pdf of X will then be

f(x) =

∫
ηµe−µH

∗(r)−ηH∗(x) dH∗(r) dH∗(x)1(x > r) dr

=

∫ H∗(x)

∞
ηµe−µH

∗(r)−ηH∗(x) dH∗(r) dH∗(x)

= ηdH∗(x)e−ηH
∗(x)

∫ ∞
H∗(x)

−µe−µH∗(r) dH∗(r)

= ηdH∗(x)e−ηH
∗(x)
[
e−∞ − e−µH∗(x)

]
= −ηdH∗(x)e−(η+µ)H∗(x).

Note that {x > r} ⇔ {H∗(x) < H∗(r)}, which we have used in the above derivation; we

present this in full in order to illustrate integration with the function H∗. The marginal cdf

of X is

P (X ≤ x) =
ηe−(η+µ)H∗(x) + µ

η + µ
; (3.5)

see Appendix H for details of an alternative derivation of this marginal model. Note that

for x = 0, the marginal cdf is equal to µ/(η + µ). This corresponds to a point mass at 0 in

the marginal distribution of damage. The intuition behind this is in the relative magnitudes

of η and µ: the larger µ is relative to η, the greater the probability that no damage will be

observed because of an increased resistance to damage.
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When H∗ is not specified parametrically, as in our work, this model is similar to that of

Zhou and Liang (2006). Their model allows for easier interpretation of model parameters

(since it is a conditional mean model) but at the cost of a more involved estimation procedure,

including a bandwidth selection problem.

3.2.2 Rationale for use of the retro-hazard function

We begin this subsection with an outline of some of the properties of the retro-hazard

function. From the definition of the function H∗ in (3.1), it is apparent that dH∗(t) ≤

0, t ∈ (0,∞), so H∗ must be nonincreasing. Furthermore, we may deduce that (for a proper

distribution of T ) since F (0) = 0 and limt→∞ F (t) = 1, H∗(0) = ∞ and limt→∞H
∗(t) = 0.

The foregoing also implies that

H∗(t) =

∫ ∞
t

−dH∗(x). (3.6)

Apart from a sign change, dH∗ is equivalent to the function ρ introduced by Lagakos et al.

(1988). By analogy with the limit definition of the hazard rate for survival data, we may

also write

−dH∗(t) = lim
dt→0+

P (t− dt < T ≤ t|T ≤ t)

dt
.

The cumulative hazard function may be recovered using the equationH(t) = − log
[
1− e−H∗(t)

]
.

Some discussion of the interpretation of the function H∗ may be in order here. In contrast

to the hazard function, for which larger values of H are associated with smaller values of

the outcome variable, larger values of H∗ are associated with larger values of the outcome,

making this a more attractive function to work with when the outcome of interest is not

time-to-event. One of the problems presented by analyzing such data with conventional

survival methods and our competitive damage-resistance model is that under our model, the

damage outcome is subject to left censoring. Specifically, when resistance capacity exceeds

damage, the complete data will exhibit left censoring of the damage outcome, since we will
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know only that it was less than the resistance capacity.

Furthermore, it is difficult to formulate the model itself when using the traditional hazard

function, as the hazard would have to be infinite to correspond to an outcome “time” of zero.

Using H∗ instead allows for a more straightforward approach, as well as contributing to a

more easily interpretable set of parameter estimates when the model is used in a regression

framework (as described later in this chapter).

3.2.3 Parameterization

The parameters η and µ will incorporate covariates zi as follows:

ηi = ez
′
iβη , µi =

θi
1− θi

ηi, θi =
eβ0+z′iβθ

1 + eβ0+z′iβθ
, (3.7)

where zi is a p×1 vector. The parameter vectors βη,βθ are also each p×1 vectors, but may

have elements constrained to be 0 if the corresponding covariate is not wanted in that part

of the model.

This parameterization follows by defining

θi =
µi

ηi + µi
,

and then using a logistic link function to model θi. This allows for the interpretation of the

intercept parameter β0 as logP (D ≤ R)/P (D > R) for a subject with covariate vector of 0.

The derivation of the partial likelihood that follows in Section 3.3 retains the original

parameterization using only η and µ. This allows for simpler expressions throughout, but

for implementation of the method, we will use the parameterization with η and θ.
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3.3 Semiparametric estimation based on partial likeli-

hood

3.3.1 Counting process formulation

In the setting of left-censored data (see Appendix G), recall the counting process notation of

survival analysis, where N(t) denotes the counting process that takes value 0 until the event

occurs, then jumps to 1 (right continuous); and Y (t), which takes value 1 while the subject

is at risk of the event, and 0 otherwise (left continuous by convention; see Kalbfleisch and

Prentice, 2002, p. 25).

For our purposes, we will imagine a reversal of the time scale (similar to the approach of

Lagakos et al., 1988), and define new processes

N∗(t) = 1−N(t−) (3.8)

Y ∗(t) = 1− Y (t+). (3.9)

The process defined by (3.8) will be left continuous, while the process defined by (3.9) will be

right continuous (somewhat different from the definitions given by Gross and Huber-Carol,

1992, Sections 4.1–4.2).

3.3.2 Derivation of the partial likelihood

Based on the marginal cdf (3.5), we may now write the marginal likelihood for this data (see

Appendix H for details):

L(β;H∗) = e`1(β)+`2(β;H∗)

=
∏
i:Xi=0

µi
ηi + µi

∏
i:Xi>0

−ηie−(ηi+µi)H
∗(Xi) dH∗(Xi), (3.10)
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where

`1(β) =
∑
i:Xi=0

log
µi

ηi + µi
, `2(β;H∗) =

∑
i:Xi>0

log
[
−ηie−(ηi+µi)H

∗(Xi) dH∗(Xi)
]
.

We now consider the problem of estimating H∗, for which only the observations with Xi > 0

(that is, observations for which damage is observed) are relevant. The log-likelihood for

these observations may be written as

`2(β;H∗) =
∑
i:Xi>0

{∫ ∞
0

log [−ηi dH∗(t)] dN∗i (t)−
∫ ∞

0

(ηi + µi)Y
∗
i (t) dH∗(t)

}
(3.11)

using the counting processes defined by (3.8) and (3.9). By functional differentiation of

(3.10) with respect to H∗, we find that the score function is

U(s) = δs log

{ ∏
i:Xi>0

[
−ηie−(ηi+µi)H

∗(Xi) dH∗(Xi)
]}

= δs
∑
i:Xi>0

{log ηi + log [−dH∗(Xi)]− (ηi + µi)H
∗(Xi)}

=
∑
i:Xi>0

[
dN∗i (s)

dH∗(s)
− (ηi + µi) · −Y ∗i (s)

]
=
∑
i:Xi>0

dN∗i (s)

dH∗(s)
+
∑
i:Xi>0

(ηi + µi)Y
∗
i (s).

Note that we have used the identities (G2) and the fact that Y ∗i (s) = 1(Xi ≤ s). Further-

more, since for this model all observations greater than 0 are uncensored, dN∗i (s) = 1(Xi = s)

when Xi > 0. Setting U(s) = 0 implies a Breslow estimator of

d̂H∗(s) = −
∑

i:Xi>0 dN
∗
i (s)∑

i:Xi>0(ηi + µi)Y ∗i (s)
. (3.12)
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Substitution of (3.12) into the log-likelihood (3.11) yields

`2(β; Ĥ∗) =

∫ ∞
0

∑
i:Xi>0

log

[
ηi

∑
j:Xj>0 dN

∗
j (t)∑

j:Xj>0(ηj + µj)Y ∗j (t)

]
dN∗i (t)

+

∫ ∞
0

∑
i:Xi>0

(ηi + µi)Y
∗
i (t)

∑
j:Xj>0 dN

∗
j (t)∑

j:Xj>0(ηj + µj)Y ∗j (t)

=

∫ ∞
0

∑
i:Xi>0

log

[
ηi

∑
j:Xj>0 dN

∗
j (t)∑

j:Xj>0(ηj + µj)Y ∗j (t)

]
dN∗i (t) +

∫ ∞
0

∑
j:Xj>0

dN∗j (t)

= const. +
∑
i:Xi>0

∫ ∞
0

log ηi − log
∑
j:Xj>0

(ηj + µj)Y
∗
j (t)

 dN∗i (t),

where in the last line we have absorbed into the constant all terms not involving η or µ.

Returning to (3.10), we see that

L(β; Ĥ∗) = e`1(β)+`2(β;Ĥ∗)

∝
∏
i:Xi=0

µi
ηi + µi

∏
i:Xi>0

ηi∑
j:Xj>0(ηj + µj)Y ∗j (Xi)

=
∏
i:Xi=0

µi
ηi + µi

∏
i:Xi>0

ηi∑
j:0<Xj≤Xi(ηj + µj)

. (3.13)

This constitutes a “partial likelihood” for β, by which we mean simply that (3.13) is propor-

tional to the profile likelihood over H∗ (see Breslow’s contribution to the discussion of Cox,

1972, pp. 216–217). This implies that we may base our inferences about these parameters

on

`pr(β) =
∑
i:Xi=0

[log µi − log(ηi + µi)] +
∑
i:Xi>0

log ηi − log
∑

j:0<Xj≤Xi

(ηj + µj)

 . (3.14)
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Using the parameterization given by (3.7), we may rewrite (3.14) in the form we use for the

actual estimation procedure:

`pr(β) =
∑
i:Xi=0

[
β0 + z′iβθ − log

(
1 + eβ0+z′iβθ

)]

+
∑
i:Xi>0

z′iβη − log
∑

j:0<Xj≤Xi

ez
′
jβη
(

1 + eβ0+z′jβθ
) . (3.15)

The variance-covariance matrix of the parameter estimates may be estimated consistently

by I−1(β̂); see Appendix I for the derivation of I(β). A proof of the asymptotic normality

of a similar estimator is given by Gross and Huber-Carol (1992); only slight modifications

of their proof are necessary for our estimator.

Cook and Farewell (1999) give a similar example of the use of a partial likelihood in

the analysis of left-censored data, but it is based on the conventional hazard rather than

the retro-hazard. Our method can in fact be viewed as a generalization of theirs for a

random left-censoring point that varies by subject and is related in a specific way to the

outcome (in our case, by the proportionality of the retro-hazard functions). The authors do

not, however, provide much guidance as to interpretation of the model parameters. This is

further elaborated on in Farewell (1989), although the author simply changes the sign of the

original outcomes in order to make use of Kaplan–Meier methodology for estimation of the

cdf; the Lehmann family of alternatives is also mentioned (Farewell, 1989, pp. 288–289).

3.4 Simulation study

This section presents a simulation study to examine the finite-sample properties of the pro-

posed method. We simulated 1000 data sets for each of four sample sizes and three intercept

values; the intercept was varied in order to produce different proportions of observed zeros in

the response. A baseline retro hazard of H∗(t) = − log
(
1− e−t/10

)
was used, corresponding

to an exponential model. We simulated two covariates, both of which were included in each
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Table 3.1. Simulation results: logistic part of model. This table depicts the bias, empirical
standard deviation (ESD), and average standard error (ASE) of the parameter estimates
across all simulated data sets for the part of the model pertaining to the probability of
positive damage being observed.

β0 βθ1 = 2 βθ2 = −1
Prop. 0 n Bias ESD ASE Bias ESD ASE Bias ESD ASE

18% 50 -0.465 1.357 0.959 0.603 1.457 0.949 -0.180 1.389 1.122
100 -0.177 0.620 0.556 0.248 0.598 0.519 -0.136 0.784 0.693
250 -0.066 0.332 0.325 0.074 0.306 0.293 -0.020 0.412 0.405
500 -0.027 0.224 0.224 0.029 0.210 0.200 -0.004 0.279 0.281

43% 50 0.015 0.591 0.545 0.329 0.909 0.657 -0.144 0.868 0.796
100 -0.007 0.380 0.364 0.154 0.428 0.406 -0.070 0.528 0.522
250 -0.003 0.238 0.223 0.078 0.250 0.242 -0.014 0.333 0.318
500 -0.006 0.159 0.156 0.022 0.173 0.165 -0.002 0.220 0.222

71% 50 0.288 1.036 0.812 0.390 0.967 0.733 -0.154 1.040 0.904
100 0.167 0.576 0.512 0.184 0.501 0.448 -0.091 0.646 0.586
250 0.072 0.310 0.304 0.077 0.268 0.260 -0.033 0.361 0.352
500 0.027 0.212 0.210 0.036 0.178 0.179 -0.011 0.243 0.244

part of the model: Z1 ∼ N(0, 1) and Z2 ∼ B(1/2); the covariate vector is z = (Z1, Z2)′.

Then for each subject θ and η are as defined by equations (3.7).

For all simulations, βθ = (2,−1)′ and βη = (−1, 2)′; the intercept β0 was allowed to take

values −2, 0, and 2, corresponding to, respectively, approximately 18%, 43%, and 71% of

observations equal to 0.

The fact that the coefficients in the two parts of the model have opposite signs is inten-

tional. This is indicative of a particular mechanistic hypothesis about the data-generating

mechanism; specifically, that the covariates have the same direction of effect on both the

probability of exceeding the threshold as well as the amount of damage manifested given

threshold exceedance. For example, increasing values of Z1 will lead to decreasing amounts

of observed damage given that D > R, but also to a decreased probability of observing any

damage.

Due to numerical issues resulting from complete separation of data points for the logis-

tic part of the model with small sample sizes, a procedure based on Lesaffre and Albert
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(1989) was used to detect data sets for which this was a problem; these were then excluded.

Specifically, the function separation.detection() from the R package brglm was used,

with option nsteps = 10. This results in a matrix of ratios of standard error estimates for

each parameter by maximum iterations of the iteratively reweighted least squares fits for

the model: if any of these diverge to infinity, separation has occurred. For our purposes,

successive differences in the columns of this matrix were examined and the data set was

excluded if the final difference was greater than 2 for any parameter.

This seems to have been primarily a problem for the simulation scenarios where there

was either a large or a small proportion of observed zeros; the problem is most pronounced

when β0 = −2 (so that on average approximately 18% of observations were equal to 0).

Additional numerical problems (in the estimation of the positive or η part of the model)

were found to be due to an insufficiently large proportion of nonzero observations, particularly

in the case of the coefficient for the binary covariate. This is analogous to the situation in

classical Cox regression when one of two groups has no events: the MLE of the associated

coefficient is then ±∞ (Kalbfleisch and Prentice, 2002, p. 103). To address this, we excluded

data sets for which the information matrix at convergence had any diagonal elements less

than 10−3.

In our simulations, these two problems together resulted in the exclusion of 4.5–12.5%

of the data sets for n = 50; for n = 100, this range was reduced to 0.1–0.6%, while no data

sets were excluded for n ∈ {250, 500}. Although this is clearly only an issue with smaller

sample sizes, it could be dealt with using the general method proposed by Firth (1993) for

penalization of the likelihood function. This approach has been used for both separation in

logistic regression as well as monotone likelihood in Cox models.

The results of the simulation study for the logistic (θ) part of the model are displayed in

Table 3.1, which shows that bias and variance decrease with increasing sample size, as we

would expect. Bias of all parameter estimates also seems to be adversely affected by intercept

values differing from 0, however. We also see good agreement between the ESD and ASE
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Table 3.2. Simulation results: positive part of model. This table depicts the bias, empirical
standard deviation (ESD), and average standard error (ASE) of the parameter estimates
across all simulated data sets for the part of the model pertaining to the observed damage,
given that damage is greater than zero.

βη1 = −1 βη2 = 2
Prop. 0 n Bias ESD ASE Bias ESD ASE

18% 50 -0.035 0.258 0.245 0.093 0.507 0.464
100 -0.020 0.162 0.164 0.049 0.317 0.310
250 -0.006 0.099 0.099 0.025 0.193 0.190
500 -0.002 0.071 0.069 0.012 0.132 0.133

43% 50 -0.028 0.342 0.322 0.143 0.630 0.593
100 -0.016 0.225 0.210 0.073 0.394 0.389
250 -0.006 0.132 0.127 0.010 0.240 0.235
500 -0.001 0.089 0.088 0.013 0.166 0.164

71% 50 -0.026 0.697 0.557 0.110 1.010 0.964
100 -0.013 0.366 0.339 0.133 0.658 0.623
250 -0.012 0.195 0.193 0.059 0.372 0.360
500 -0.010 0.136 0.133 0.026 0.251 0.246

for moderate to large samples, although there does seem to be a slight underestimation of

the variance of the parameter estimates for smaller samples.

Table 3.2 shows the same summary of results as Table 3.1, but for the positive (η) part

of the model. In contrast to Table 3.1, it is clear that bias and variance of the parameter

estimates for the η part of the model monotonically increase with increasing proportions of

observed zeros, which is precisely what we would expect to occur, since this is effectively

decreasing the sample size available for estimation of this part of the model. We also observe

good agreement between the ESD and ASE for moderate to large samples, as was the case in

Table 3.1, which indicates the adequacy of the asymptotic approximations for the covariance

matrix of the parameter estimates.

We also compared our proposed method with standard methods (i.e., for which the model

for probability of observing damage is not linked with the model for positive damage itself)

of addressing the problem. Specifically, for each data set, we fit a standard logistic model,

with the outcome being 1(Xi = 0); this fit corresponds to the θ part of our model. For
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Table 3.3. Relative mean-square errors (MSE) for simulated data. This is computed as the
ratio of the MSE for the proposed method to the MSE for standard logistic (corresponding
to the θ part of the model) and to a separate Cox-type regression for only the outcomes
greater than 0 included (corresponding to the η part of the model).

n
Parameter 50 100 250 500
β0 = −2 1.066 0.970 0.930 0.917

βθ1 0.991 0.933 0.853 0.803
βθ2 0.884 0.877 0.854 0.798
βη1 0.752 0.474 0.221 0.122
βη2 1.079 1.013 0.898 0.676

β0 = 0 0.920 0.936 0.925 0.895
βθ1 0.911 0.858 0.860 0.815
βθ2 0.870 0.838 0.896 0.838
βη1 0.390 0.203 0.077 0.036
βη2 1.055 0.911 0.478 0.295

β0 = 2 1.091 0.950 0.895 0.893
βθ1 1.047 0.839 0.863 0.844
βθ2 1.009 0.937 0.892 0.867
βη1 0.426 0.154 0.050 0.025
βη2 0.994 0.875 0.438 0.225

the subset of observations greater than zero, we fit a simple retro-hazard Cox model, which

corresponds to the η part of our model. Specifically, we obtained these naive estimates as

β̂η = arg max
βη∈R2

∑
i:Xi>0

z′iβη − log
∑

j:0<Xj≤Xi

ez
′
jβη

 .

This objective function may be derived using arguments similar to those given in Section

3.3.

Note that standard logistic regression with 1(Xi = 0) as the outcome will be consistent

for the true (β0,β
′
θ)
′, as this is fully observed data. However, since this method ignores the

information available from the positive observations (quantified by the information matrix

component corresponding to the covariance between (β0,β
′
θ)
′ and βη; see Appendix I), we

will expect to see a loss in efficiency relative to our method. In the case of the positive part
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of the model, by contrast, we will not expect even consistency, as we are ignoring entirely

the observations with Xi = 0 with the simple retro-hazard Cox model.

Table 3.3 gives the ratio of the mean-square error of the parameter estimates for our

proposed method to these two comparison methods. We see that our intuition, as outlined

in the preceding paragraph, is borne out by the results: for β0,βθ, the ratio is almost always

less than 1. There is also a clear trend for all parameters and all scenarios of increasing MSE

of the standard methods relative to the proposed method with increasing sample size.

Focusing now on the largest sample size considered (n = 500), we find that for the

intercept β0, the loss in efficiency from use of the naive method seems to be about 10%

regardless of the proportion of observations for which no damage was observed. For βθ,

there is a larger loss of efficiency, ranging from approximately 15% when β0 = 2 to 20%

when β0 = −2. (We have used the term efficiency here because the bias component of the

MSE for the naive method here will be zero asymptotically.)

The increase in MSE for βη estimated by the naive method is much more pronounced,

reflecting the large bias resulting from the exclusion in the naive analysis of the information

contained in the observations with Xi = 0. The trend here is to increasing MSE of the naive

method relative to the proposed model with increasing proportion of observations equal to

zero. This is, again, what intuition leads us to expect, as the naive method is losing more

information relative to the proposed method when there are fewer positive observations.

3.5 Rat PCH data analysis

3.5.1 Data description and background

To evaluate the CDR model in practice, we applied it to a data set of 109 rats subjected to

diagnostic ultrasound. From previous studies, it is known that diagnostic ultrasound (DUS)

can induce pulmonary capillary hemorrhage (PCH) in rats (Miller, 2012). This is of clinical

relevance for human patients because it demonstrates the potential for pulmonary injury

79



Figure 3.2. Histogram and boxplot of the outcome for the rat PCH data, pulmonary
capillary hemorrhage area in mm2. Both are intended to give an idea of the “clumping” of
the data at 0, as well as the distribution of the positive values.
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following ultrasound examinations (for example, examinations to diagnose conditions such

as pulmonary edema, effusion, and embolism).

The rats in this study were evaluated at various combinations of ultrasonic frequencies

(1.5, 4.5, 7.6, and 12 MHz) and peak rarefactional pressure amplitude (PRPA, referred to

hereafter simply as amplitude). There was especial interest in thresholds for PCH expressed

in terms of the amplitude, which makes this data particularly suitable for our method, as we

explicitly model the probability of exceeding subject-specific damage thresholds as a function

of covariates.

The outcome was measured area of PCH for each rat, in mm2, obtained using photographs

from a stereomicroscope with digital camera. The marginal mean of the outcome for all rats

(including those with no damage) was 17.63 mm2; when restricted to those rats with positive

damage, the mean area was 26.69 mm2; 66.1% of rats were observed to have damage (that

is, PCH area > 0). It is clear from Figure 3.2, which gives some visualizations of the

outcome, that these data are heavily right skewed. Additionally, as 33.9% of rats exhibited

no hemorrhagic damage, there is a definite point mass at 0.
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Table 3.4. Parameter estimates for the rat PCH data. The final model was chosen on
the basis of visual fit to the observed data (see Figure 3.3). The column labeled “Model”
denotes the part of the model to which the covariates refer: θ is the logistic model for the
probability of not exceeding the resistance threshold, while η is the model for the positive
responses (i.e., observed damage > 0).

Model Covariate Est. SE p-value
θ (Intercept) 6.064 1.621 0.0002

Amplitude -7.696 1.658 0.0000
Frequency 0.356 0.101 0.0004

η Amplitude 8.290 1.009 0.0000
Frequency (1.5 MHz: ref.) 1.000 — —
Frequency (4.5 MHz) 2.632 1.271 0.0384
Frequency (7.6 MHz) 3.143 1.461 0.0314
Frequency (12 MHz) 2.230 3.209 0.4871
Amplitude × Frequency (4.5 MHz) -3.907 0.836 0.0000
Amplitude × Frequency (7.6 MHz) -4.420 1.020 0.0000
Amplitude × Frequency (12 MHz) -4.257 2.096 0.0423

3.5.2 Results

The results of applying our method to this data are displayed in Table 3.4 and Figure 3.3.

Two covariates (along with possible interactions) were considered in this analysis: frequency,

which takes only four possible values in this data set; and amplitude. It was found that

treating frequency as a categorical rather than a continuous variable in the η part of the

model provided a substantial improvement in fit to the data without sacrificing too much in

terms of efficiency (as measured by AIC; model comparisons not shown).

In Table 3.4, we see coefficient estimates for amplitude are large in magnitude but opposite

in sign in the two parts of the model: this is sensible, recalling that we are modeling the

probability of damage not being manifested with the θ part of the model; and that the η part

of the model essentially scales the cdf of observed positive damage, so that more positive

coefficient estimates indicate increased damage. The interpretation is that larger amplitudes

lead both to increased probability of exceeding the resistance threshold as well as to increased

damage once the threshold has been exceeded.

The interpretation of the effect of frequency on PCH area is somewhat more complicated,
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both because it is treated as continuous in the logistic (θ) part of the model and categorical

in the positive (η) part, as well as because of the inclusion of an interaction term in the

positive part. However, we can say that increasing frequency leads to decreasing probability

of exceeding the resistance threshold, since the coefficient estimate for this covariate in the

θ part of the model is positive. Although the coefficient estimates for the frequency terms

alone are all positive in the η part of the model, which would indicate an association of

increasing frequency with increasing damage (given exceedance of the threshold), note that

the interaction terms all have greater magnitude and negative sign. Therefore, as long as

amplitude is greater than zero, the net effect of frequency will be negative, which coincides

with what intuition suggests given the positive sign of this coefficient in the logistic part of

the model.

It is important to note here that the model is flexible enough to allow for a covariate to be

associated with an decreased chance of damage being observed, but also to contribute to an

increase in damage when it is observed, and vice versa. This situation would correspond to

the coefficient estimates for that covariate having the same sign in both parts of the model.

Turning now to Figure 3.3, we may observe the visual fit of the model to the data. This

figure was obtained by using the parameter estimates from Table 3.4 and the Breslow-type

estimator of the retro-hazard in equation (3.12). Then (3.5) gives the predicted cdf, which

will be a step function; the jump sizes in this estimated cdf will correspond to an estimate of

the density. If we denote this estimate as f̂i, then the fitted value (i.e., conditional expected

damage) for subject i will be
∑

j:Xj>0Xj f̂i(Xj). It is clear from this figure that the model

provides a good fit to the data for each frequency and across amplitudes. There may be slight

overestimation in the fitted values for the highest frequency, but overall we see precisely the

patterns in the observed data, with smooth curves rising from 0 (no damage observed) at

the lowest amplitudes.
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Figure 3.3. Observed and fitted values for the rat PCH data. Curves labeled “observed
data” are conditional means for the amplitude and frequency values depicted. Curves labeled
“fitted values” were obtained by fitting the CDR model using the partial likelihood technique
outlined in Section 3.3; the retro-hazard was then obtained using the estimation procedure
given in Appendix G; finally, these elements were combined to give an estimate of the
conditional density function, which was then used along with the observed damage values to
obtain expectations numerically.
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3.6 Discussion

In this chapter, we have proposed a model for competitive damage and damage-resistance

processes in a biological system, motivated by a data set consisting of test animals subjected

to an external stress expected to lead to injury. Our model, using the retro-hazard function

first proposed by Lagakos et al. (1988) and later elaborated upon by Gross and Huber-Carol

(1992), leads to an estimation procedure based on a partial likelihood. This procedure is

fast, efficient, and does not require any distributional assumptions on the observed damage

outcome.

There is, however, the issue of interpretation of the results. For the logistic part of the

model, this is a simple matter, as this is the probability of observing a zero for the outcome.

For the continuous part, on the other hand, interpretation is difficult: Gross and Huber-Carol

(1992) do offer some suggestions for intuition in a model using the retro-hazard, but they are

still in the setting of survival data, and their explanation involves a discussion of “reverse

time.” For this reason, we have proposed a simple procedure for obtaining fitted values (see

Section 3.5), which are directly interpretable as conditional means given covariates. We may

also think of the exponentiated coefficient estimates as “retro-hazard ratios.”

Additionally, the assumption of a common baseline retro-hazard for both the damage and

resistance systems could be questioned in a particular application. However, the inclusion

of covariates in each part of the model, which may of course take the same or opposite

signs, seems to allow sufficient flexibility in terms of the effect of a particular factor on the

observed outcome. Indeed, it is necessary to make this assumption in order for the model

to be identifiable. One justification we might suggest is that the damage and resistance

processes are reacting in parallel toward the same externally applied, damaging force, and

therefore should share the same retro-hazard.

Future research may examine the possibility of relaxing this assumption via inclusion

of shared variables, similar to frailties in survival analysis, between the two parts of the

model. Another possible direction for further study is explicit incorporation of a dose-
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response relationship in the model. Currently, our approach implicitly assumes that the

outcome is the response to some applied dose; however, a dynamic model for variable dose

over time could be quite interesting.
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Appendices

G Derivation of NPMLE of the retro-hazard

In this section, we derive the nonparametric maximum likelihood estimator (NPMLE) of H∗

under the general condition of left-censored data, of which the CDR model’s data structure

constitutes a special case. Suppose we have Xi = max{Ti, Ci},∆i = 1(Xi = Ti), i = 1, . . . n,

where Ti ∼ e−H
∗(t). The likelihood for this data is

L(H∗) =
n∏
i=1

[−dH∗(Xi)]
∆i e−H

∗(Xi). (G1)

Define differentiation of a linear functional J with respect to H∗ as (see Hu and Tsodikov,

2014a, Section 3.2)

δsJ =
∂J

∂dH∗(s)
.

Now, differentiation of the log-likelihood proceeds using the chain rule and definition (3.6):

δs logL(H∗) =
n∑
i=1

{∆iδs log [−dH∗(Xi)]− δsH∗(Xi)}

=
n∑
i=1

∆i
∂ log [−dH∗(Xi)]

∂dH∗(s)
−

n∑
i=1

∂H∗(Xi)

∂dH∗(s)

=
n∑
i=1

∆i

−dH∗(s)
· ∂

∂dH∗(s)
[−dH∗(Xi)]−

n∑
i=1

∂

∂dH∗(s)

∫ ∞
Xi

−dH∗(t)

=
n∑
i=1

∆i

−dH∗(s)
· −1(Xi = s)−

n∑
i=1

∫ ∞
0

−1(Xi ≤ t)
∂

∂dH∗(s)
dH∗(t)

=
n∑
i=1

∆i 1(Xi = s)

dH∗(s)
−

n∑
i=1

∫ ∞
0

−1(Xi ≤ t)1(t = s)

=
n∑
i=1

∆i 1(Xi = s)

dH∗(s)
−

n∑
i=1

−1(Xi ≤ s).
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The important identities established here are

δs log [−dH∗(t)] =
1(t = s)

dH∗(s)
, δsH

∗(t) = −1(Xi ≤ s). (G2)

Setting δs logL(H∗) = 0 implies a Nelson–Aalen estimator

d̂H∗(s) = −
∑n

i=1 ∆i 1(Xi = s)∑n
i=1 1(Xi ≤ s)

.

The negative sign of the estimator indicates that these will be decrements instead of the usual

increments in the classical Nelson–Aalen estimator. Otherwise, the form of the estimator

is identical, with the only difference being that the “risk set” at point s is composed of

observations with Xi ≤ s. Recalling the identity in equation (3.6), the estimate of H∗ is

Ĥ∗(t) = −
∫ ∞
t

d̂H∗(s).
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H Marginal model for observed damage

Alternatively to equations (3.3) and (3.4), the model may be defined by a conditional cdf

for X given R (in addition to the marginal definition of the resistance capacity itself):

P (Ri ≤ r) = e−µiH
∗(r) (H1)

P (Xi ≤ x|Ri = r) = e−ηiH
∗(r∨x). (H2)

Equation (H2) requires some justification. Specifically, we begin with a conditional hazard–

like entity which will only be positive when D > R, that is, when damage exceeds repair

capacity. We then make use of the identity (3.6) and the definition of H∗ (3.1):

P (X ≤ d|R = r) = exp

{
−
∫ ∞
d

−η dH∗(u)1(u > r)

}
= exp

{∫ ∞
r∨x

η dH∗(u)

}
= exp {η [0−H∗(r ∨ x)]}

= e−ηH
∗(r∨x).

(See Tsodikov et al., 2013, for details on stochastic process frailty models.) This allows us

to obtain the marginal cdf of X as the expectation of the conditional cdf given resistance

capacity R:

E
[
e−ηH

∗(R∨x)
]

=

∫
e−ηH

∗(r∨x) ·
[
−µ dH∗(r)e−µH∗(r)

]
=

∫ H∗(x)

∞
e−ηH

∗(x)−µH∗(r) · [−µ dH∗(r)] +

∫ 0

H∗(x)

e−(η+µ)H∗(r) · [−µ dH∗(r)]

= e−(η+µ)H∗(x) +

[
µ

η + µ
e−(η+µ)H∗(r)

]0

H∗(x)

= e−(η+µ)H∗(x) +
µ

η + µ

[
1− e−(η+µ)H∗(x)

]
=
ηe−(η+µ)H∗(x) + µ

η + µ
.
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Considering the complete-data problem, when D ≤ R (so that X = 0), we have left

censoring: the likelihood in this case will be e−ηH
∗(R). We may calculate its expected value

as

E
[
e−ηH

∗(R)
]

=

∫
e−ηH

∗(r) ·
[
−µ dH∗(r)e−µH∗(r)

]
=

∫ 0

∞
−µe−(η+µ)H∗(r) dH∗(r)

=

[
µ

η + µ
e−(η+µ)H∗(r)

]0

∞

=
µ

η + µ
, (H3)

which is equal to the marginal cdf at x = 0, i.e., the probability that D ≤ R. If, on

the other hand, we observe damage to the organism, then X > 0 and the likelihood is

−η dH∗(X)e−ηH
∗(X)

1(X > R). Since we know in this case that D = X > R, its expectation

is

E
[
−η dH∗(X)e−ηH

∗(X)
1(X > R)

]
=

∫ H∗(X)

∞
−η dH∗(X)e−ηH

∗(X) ·
[
−µ dH∗(r)e−µH∗(r)

]
= −η dH∗(X)e−ηH

∗(X)

∫ H∗(X)

∞
−µ dH∗(r)e−µH∗(r)

= −ηe−ηH∗(X)
[
e−µH

∗(r)
]H∗(X)

∞ dH∗(X)

= −ηe−(η+µ)H∗(X) dH∗(X). (H4)

By differentiation of (3.5), we note that (H4) is also the marginal density.
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I Score components and observed information matrix

The partial likelihood is given by equation (3.15).

Score components

In the interests of more compact notation, we hereafter adopt the convention that summa-

tions over j refer to the set {j : 0 < Xj ≤ Xi}. The score components are

U0 ≡
∂`pr(β)

∂β0

=
∑
i:Xi=0

1

1 + eβ0+z′iβθ
−
∑
i:Xi>0

∑
j e

β0+z′jβθ+z′jβη∑
j e

z′jβη
(

1 + eβ0+z′jβθ
)

Uθ ≡
∂`pr(β)

∂βθ
=
∑
i:Xi=0

zi

1 + eβ0+z′iβθ
−
∑
i:Xi>0

∑
j zje

β0+z′jβθ+z′jβη∑
j e

z′jβη
(

1 + eβ0+z′jβθ
)

Uη ≡
∂`pr(β)

∂βη
=
∑
i:Xi>0

zi −

∑
j zje

z′jβη
(

1 + eβ0+z′jβθ
)

∑
j e

z′jβη
(

1 + eβ0+z′jβθ
)
 .

The score vector is U(β) = (U0,U
′
θ,U

′
η)
′.

Observed information

The observed information matrix will be

I(β) =


I00 I ′θ0 I ′η0

Iθ0 Iθθ I ′ηθ

Iη0 Iηθ Iηη

 ,

with component matrices derived below. I00 is a scalar; Iθ0 and Iη0 are p× 1 vectors; and

Iθθ, Iηθ, and Iηη are p×p matrices. Clearly, then, I(β) will be a (2p+1)× (2p+1) matrix.

Below, we calculate the elements of this matrix.
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• Derivatives of the score with respect to β0:

I00 ≡ −
∂U0

∂β0

=
∑
i:Xi=0

eβ0+z′iβθ(
1 + eβ0+z′iβθ

)2 +
∑
i:Xi>0

[∑
j e

β0+z′jβθ+z′jβη
] [∑

j e
z′jβη
]

[∑
j e

z′jβη
(

1 + eβ0+z′jβθ
)]2

Iθ0 ≡ −
∂Uθ

∂β0

=
∑
i:Xi=0

zie
β0+z′iβθ(

1 + eβ0+z′iβθ
)2 +

∑
i:Xi>0

[∑
j zje

β0+z′jβθ+z′jβη
] [∑

j e
z′jβη
]

[∑
j e

z′jβη
(

1 + eβ0+z′jβθ
)]2

Iη0 ≡ −
∂Uη

∂β0

=
∑
i:Xi>0


[∑

j zje
β0+z′jβθ+z′jβη

] [∑
j e

z′jβη
(

1 + eβ0+z′jβθ
)]

[∑
j e

z′jβη
(

1 + eβ0+z′jβθ
)]2

−

[∑
j zje

z′jβη
(

1 + eβ0+z′jβθ
)] [∑

j e
β0+z′jβθ+z′jβη

]
[∑

j e
z′jβη

(
1 + eβ0+z′jβθ

)]2


• Derivatives of the score with respect to βθ:

Iθθ ≡ −
∂Uθ

∂βθ
=
∑
i:Xi=0

ziz
′
ie
β0+z′iβθ(

1 + eβ0+z′iβθ
)2

+
∑
i:Xi>0


[∑

j zjz
′
je
β0+z′jβθ+z′jβη

] [∑
j e

z′jβη
(

1 + eβ0+z′jβθ
)]

[∑
j e

z′jβη
(

1 + eβ0+z′jβθ
)]2

−

[∑
j zje

β0+z′jβθ+z′jβη
]⊗2

[∑
j e

z′jβη
(

1 + eβ0+z′jβθ
)]2


Iηθ ≡ −

∂Uη

∂βθ
=
∑
i:Xi>0


[∑

j zjz
′
je
β0+z′jβθ+z′jβη

] [∑
j e

z′jβη
(

1 + eβ0+z′jβθ
)]

[∑
j e

z′jβη
(

1 + eβ0+z′jβθ
)]2

−

[∑
j zje

z′jβη
(

1 + eβ0+z′jβθ
)] [∑

j zje
β0+z′jβθ+z′jβη

]′
[∑

j e
z′jβη

(
1 + eβ0+z′jβθ

)]2
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• Derivatives of the score with respect to βη:

Iηη ≡ −
∂Uη

∂βη
=
∑
i:Xi>0


[∑

j zjz
′
je

z′jβη
(

1 + eβ0+z′jβθ
)] [∑

j e
z′jβη

(
1 + eβ0+z′jβθ

)]
[∑

j e
z′jβη

(
1 + eβ0+z′jβθ

)]2

−

[∑
j zje

z′jβη
(

1 + eβ0+z′jβθ
)]⊗2

[∑
j e

z′jβη
(

1 + eβ0+z′jβθ
)]2
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Conclusion

This dissertation has covered a great deal of ground in terms of subfields of statistics: the

first chapter dealt with binary classification, the second with missing data in the context of

survival analysis, and the third with a partial likelihood for semicontinuous data. However,

each of these chapters represents a contribution to statistical methodology useful for cancer

research, specifically the relaxation of parametric assumptions in statistical models.

The first chapter, addressing a robust classification method for binary data, was moti-

vated by a melanoma study. The issue of whether or not to perform an invasive procedure,

such as the sentinel lymph node biopsies dealt with in that chapter, is certainly not limited to

melanoma. In the practice of oncology, the necessity to balance possible harms and benefits

is of particular importance because of the high stakes involved: not only are most cancers

deadly in their own right, but many treatments carry great risks as well. It is important for

clinicians to be able to make the best decisions for their patients based on what researchers

in their particular field deem to be the optimal p∗, that is, the best balance of risk and benefit

of a treatment or procedure. Chapter 1 provides a method by which they might incorporate

this balance into the estimation of logistic regression models, which are arguably among the

most familiar and easy-to-understand statistical tools for a majority of clinicians.

There are a number of possibilities in terms of future research in this direction. One

of these, as mentioned in Section 1.6, is the numerical stability of the method with small

values of h. Another area of interest is in potential ways to directly estimate the LER

with ungrouped binary data. A recent test for misspecification in binary response models
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is proposed by Esarey and Pierce (2012), which involves a nonparametrically smoothed

variation on the Hosmer–Lemeshow test statistic (Collett, 2003, p. 88). This approach is of

particular interest to us because it is explicitly a local test of misspecification, in that it allows

an investigator to see where precisely in the interval (0, 1) the model predictions G
(
x′iβ̂
)

deviate from the truth as measured by the empirical mean of the outcome conditional on the

predictions. It seems as if this could be used to develop an alternative method for choosing

the bandwidth that would more directly capture the essence of the LER.

The progression of cancer in a mechanistic sense is at the core of the second chapter. The

model we have developed there is general enough to be applied to any disease that exhibits

a cancer-like growth pattern. However, it is especially useful for cancer data, as the baseline

hazard shared between the latent and terminal event hazards can be viewed as a surrogate

for the tumor-growth process. The original formulation of this problem had onset of cancer

and diagnosis as the latent and terminal events, respectively; the assumption of common

hazards is particularly delicate in this scenario, because it could be argued that different

processes drive tumor initiation and tumor progression. To circumvent this issue, we have

defined “onset” as onset of detectable disease, which is to say that the tumor has already

begun growing by time T0.

Specific to our application for this chapter, which was prostate cancer (see Section 2.5),

the issue of PSA screening is of great interest for future research. We used a binary covari-

ate to incorporate screening into the model, but this is not the ideal solution: for cancers

diagnosed after 1988, our data set does not distinguish between cases that were clinically

detected and cases that were detected via screening. This means that subjects diagnosed in

the screening era are in fact a mixture of two populations, one with tumors more aggressive

(on average) than pre-screening cases and one with tumors less aggressive than pre-screening

cases (length bias: see Zelen and Feinleib, 1969).

One simple way to address this issue would be to find auxiliary data containing mode of

diagnosis, which could then be included as another covariate in the model. Indeed, another
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area of future research would be formally incorporating partial information on time to the

latent event into the model. Extensions of the model to deal with the screening problem as

a missing data issue would also be interesting and useful.

While motivated by the rat PCH data set studied in Section 3.5, the methodology intro-

duced in Chapter 3 was developed originally in the context of the stochastic process frailty

approach adopted in Chapter 2 (see Appendix H for this version of the development of the

model). It was found that in this case, however, EM was unnecessary, as there was a closed

form for the estimate of the retro-hazard, which led to the partial likelihood of Section 3.3.

The possible applications of this model to data on experiments with laboratory animals

in cancer should be readily apparent: tumorigenesis subsequent to application of radiation

or other external stressors, for example. Some animals would not exhibit tumors on sacrifice

and would therefore result in a clump of zero values for the outcome, while for those that

did, the size of the tumor would constitute positive values of the outcome variable.

However, use of this model need not be limited to experimental animal data. The method

could be applied, for example, to observational studies on environmental causes of cancer

in human subjects. This would be particularly interesting because cancers, especially of a

specific type that would be under investigation in a study such as this, are rare in the general

population, so a large majority of subjects would have an outcome value of zero. This should

not present a major problem with a large enough total sample size, as the simulations in

Section 3.4 demonstrate.

One extension of this work would be the incorporation of an explicit dose-response rela-

tionship. Typical dose-response studies involve a binary response (see, e.g., Cox, 1987), but

our model would allow for the inclusion of magnitude of response, which could lead to much

more detailed inferences regarding the effect of dose on the response variable.
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