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“There is nothing like looking, if you want to find something. You certainly usually find
something, if you look, but it is not always quite the something you were after.”

– J. R. R. Tolkien, The Hobbit
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ABSTRACT

Observations of molecules in planet-forming circumstellar disks are powerful diagnostic

tools, enabling characterization of both gas composition and underlying physical conditions

using molecular excitation. My thesis has primarily focused on the role of disk structure and

ionization for the chemistry of disks and the corresponding submillimeter emission. Changes

in the overall morphology of disks, including inner holes or gaps, significantly alters the

stellar irradiation of the disk, which will a↵ect the disk heating, especially at the walls of

an inner hole (Chapter 2). I have modeled the 3D chemistry of gapped disks, carved out

by planets, including for the first time heating by a luminous protoplanet. The planet sub-

limates ices beyond expected disk “snow-lines” leading to observable signatures detectable

with ALMA (Chapter 3). Regarding ionization, I have studied disk ionization by cosmic

rays (Chapter 4), short-lived radionuclides (Chapter 5), and X-rays from the central star

(Chapter 6). In Chapter 6, I investigated the molecular dependence on each of these pro-

cesses and made testable predictions for sensitive submillimeter observations to map out disk

ionization, which I applied to the TW Hya disk, finding a substantially lower than interstel-

lar cosmic ray rate (Chapter 7). One of the major implications of this work is related to

the formation chemistry of water, which requires ionization to proceed. In the absence of

water-formation in the solar nebula protoplanetary disk, this work demonstrates that there

must be a substantial inheritance of water from earlier evolutionary stages, pre-dating the

Sun’s formation (Chapter 8). Together, these projects have also enabled the development

of a comprehensive 2D and 3D disk modeling framework, useful for parameter space studies

and source-targeted modeling.
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CHAPTER I

Introduction

Protoplanetary disks around newly formed Sun-like stars are an agglomeration of dust,

ice and gas. These materials have a number of potential fates: falling onto the star, ejection

as winds or jets, dispersal outward as the disk spreads, or growing/accumulating into plan-

etesimal bodies. Disks are the subject of this thesis, specifically illuminating the chemical

composition of protoplanetary disks and how the composition is a↵ected by disks’ physical

nature. Furthermore, we explore how these factors a↵ect the resulting planetary systems

and identify ways to detect signatures of recently formed planets in situ.

In the present body of work, I focus on protoplanetary disks around low-to-intermediate

mass stars with masses typically ranging from a few tenths of a solar mass up to ⇠ 2 solar-

mass stars, i.e., potential mirror systems of our own Solar System’s formation. Such systems

are commonly termed “T Tauri” disks after the prototypical star and disk system T Tau1

(Rydgren et al., 1976). To place our solar system’s formation into context, we use detailed

theoretical models of the disk environment, astronomical data from both ground and space-

based observatories of young, currently star-forming regions, and data from our own Solar

System’s record to piece together aspects of our own history. This work aims to shed light

on the conditions that arose to form planets – along with at least one habitable planet – and

1Though later reclassification as a stellar triple system of a primary star and an embedded binary seem-
ingly makes T Tau not very prototypical at all (e.g., Dyck et al., 1982; Koresko, 2000; Duchêne et al., 2006).
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to reveal how common such a phenomenon is throughout the local universe.

1.1 Protoplanetary Disks, a Historical Perspective

Humankind has contemplated its origins for millennia. The pursuit spans nearly all dis-

ciplines, philosophy, religion, physics, biology, geology, planetary science, and, of course,

astronomy. Understanding our Solar System’s origins, though somewhat younger conceptu-

ally, also has a rich history spanning back over two centuries.

The foundations of the modernly accepted formation scenario, i.e., formation from a

nebular disk, are most commonly attributed to the original “nebular hypothesis” envisioned

independently by Immanuel Kant and Pierre-Simon Laplace. Immanuel Kant’s perspective,

as described in the Universal Natural History and Theory of the Heavens (1755), begins with

the initial gravitational collapse of some type of interstellar medium, or as he calls it “ele-

mentary basic material at the beginning of all things, [that] occupied the entire space of the

universe. ... Nature as it bordered directly on creation, was as raw, as unformed as possible”

(I-263). It should be noted that this supposition predates both the direct observation and

confirmation of the di↵use interstellar medium, which would follow more than one hundred

and fifty years later (Hartmann, 1904), and the detection of the emissive molecular inter-

stellar medium by more than two centuries (Penzias et al., 1971, 1972). This picture was

instead inspired by observations of nebular astronomical objects whose filamentary structure

had been recorded for nearly a century prior.

Upon the initial collapse of the nebula, Kant goes on to describe that once the central

body has become massive enough, “it attracts the particles from great distances, is bent

sideways by the weak degrees of repulsion by which the particles hinder each other, and

changes into sideways motions that are capable of encompassing the central body in a circle

through centrifugal force” (Section I-265). This is the stage in which Kant invokes the

formation of a disk-like geometry. Kant argues that the motions of the “floating elements”

naturally head towards a state of minimal hindrance, one where the particles move in the
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same direction, and particles with vertical motions are drawn to the center of mass, i.e., the

disk. Particles that are not coaxed into regular orbits “bring about their ultimate fall to the

Sun by bumping into the elements floating around,” i.e., are accreted onto their parent star.

Once this ideal configuration has been achieved, Kant explains that the floating elements

“would always remain in that state, if the attraction of these particles of the basic material

among each other did not begin to have its e↵ect and bring about new formations which are

the seeds of planets that are to come into being.”

Eventually though, the planetary bodies must form from this initial nebular disk, which

he explains must occur through the growth of massive “lumps” in the disk. However, in a

rather forward-thinking footnote he elaborates that Newtonian gravity alone will not work,

and that “the first formation would occur through the flowing together of some elements

which unite according to the ordinary laws of combination” – a realization not dissimilar to

(relatively) modern theories of the coagulation and assembly of planetesimals (Safronov and

Zvjagina, 1969; Goldreich and Ward , 1973).

Independently, Pierre-Simon Laplace developed his own version of the nebular hypothesis,

explained in detail in Exposition du systeme du monde (1796). Essentially, Laplace proposed

that the solar system formed from a unified solar atmosphere where, in its earliest phases,

“must have embraced [the planets] all within the sphere of its action; and considering the

immense distance which intervenes between them, nothing could have e↵ected this but a fluid

of almost indefinite extent.” He continues, “from a consideration of the planetary motions,

we are therefore brought to the conclusion, that in consequence of an excessive heat, the

solar atmosphere originally extended beyond the orbits of all the planets, and that it has

successively contracted itself within its present limits.” By this time, the Messier catalogue

along with William Herschel’s observations of the Orion Nebula Cluster were more widely

known, and Laplace goes on to draw direct parallels between the primitive young sun’s

nebulous-state and that of the known nebulae.

Laplace puzzles intensely over the formation and survival of the planets and, in particular,
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what sets their orbital motions and locations. He proposes that “the planets were formed

at its successive limits, by the condensation of zones of vapours, which it must, while it was

cooling, have abandoned in the plane of its equator.” Conceptually, this proposition draws

interesting parallels with modern theories of planet formation and their potential association

with condensation fronts, i.e., “snow lines” (Stevenson and Lunine, 1988; Lecar et al., 2006),

which are discussed further below (Section 1.4).

However, predating both theories, one lesser-known Emmanuel Swedenborg had sketched

out his own vision for the Solar System’s formation two decades prior to Kant in his 1734

Opera Philosophica et Mineralia. Swedenborg’s theory focused on the concept of vortices

arising within an initially spherical circumstellar nebula. Furthermore, Swedenborg included

illustrative figures with his theories, something neither Kant nor Laplace ventured to incor-

porate. Figure 1.1 shows just a sample of Swedenborg’s sketches, illustrating his picture of

the planetary formation process. Swedenborg begins with a crustal sphere encompassing the

star (top-left), that expands forth radially from the surface of the star. As this material

expands, Swedenborg explains that it “can no longer contiguously cohere but bursts in some

part or other.” He elaborates that this expansion “incessantly acts upon the walls and bar-

riers of its prison that the crustaceous expanse or volume which is perpetually circumfluent

tends by its centrifugal force to a farther distance...” (The Principia, vol. ii. p. 261), see

Figure 1.1 top-right. Once the crustal sphere has burst, the volume “collapses upon itself;

and this toward the zodiacal circle of the vortex, or conformably to the situation and motion

of the elementary particles; so that it surrounds the sun like a belt or broad circle...” He

proposes that the belt self-similarly bursts to form “larger and smaller globes; that is to say

forms planets and satellites of various dimensions, but of a spherical figure.”

These theories collectively explain the remarkably planar configuration of our own solar

system and the similar direction of the orbits, and that which is now being observed in nu-

merous other exoplanetary systems. However, all three philosophers struggled with comets.

Their highly eccentric orbits proved challenging to fit into the original nebular hypotheses.
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Figure 1.1 The solar system’s formation as depicted in Emanuel Swedenborg’s Opera Philo-
sophica et Mineralia (1736)

Kant was unable to reconcile what he called the “lawless freedom of the comets,” while

Laplace went as far as to suggest that the comets represented independent condensations

from the nebular medium independent of the Sun and solar system’s formation, “wandering

from one solar system to another.”
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Many other theories came and went over the centuries (including a particularly interesting

theory by Georges-Louis Leclerc De Bu↵on invoking stellar or cometary fly-bys tearing away

stellar material to form the planets also in the 1700’s), but the original nebular theory

remained the dominant hypothesis until it was updated in Victor Safronov’s 1969 seminal

work, where our generally accepted picture of the “solar nebula” was born.

Beyond the original concept of planet formation via a nebular disk, most of our knowledge

of bulk disk properties has come about relatively recently. Advances in observations include

identification of excess dust emission over the stellar photosphere at infrared wavelengths and

beyond, suggesting a warm, dusty disk (Mendoza V., 1966, 1968; Hartmann and Kenyon,

1985; Rucinski , 1985); images of distributed haloes of dusty-scattered light (Beckwith et al.,

1984); large-scale millimeter and submillimeter (Weintraub et al., 1989a; Beckwith et al.,

1990) wavelength observations of glowing large grains, corresponding molecular emission

from the cool gas disk (Weintraub et al., 1987, 1989b; Koerner and Sargent , 1995); and

finally, as made possible with the Hubble Space Telescope, direct imaging of dark dusty lanes

occulting the central star in optical light (McCaughrean and O’Dell , 1996). Observations

such as these, combined with advances in theory, have helped clarify the structure and

composition of protoplanetary disks (Protostars & Planets VI provides a number of insightful

reviews of the subject; Beuther et al., 2014). We are now at the precipice of detecting and

quantifying young planetary systems embedded in their parent disks, moving us closer to a

complete picture of planet-formation nearly three centuries after Emmanuel Swedenborg’s

original vision.

1.2 Disk Formation

The modern picture of the star formation process is not too dissimilar from that of the

initial stages of either Immanuel Kant or Pierre Laplace’s theories. It is now well established

that such molecular “nebulae” or as they are now termed, clouds, are the primary sites of

star formation (see Figure 1.2, top-left). Giant molecular cloud (GMC) complexes contain
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⇠ 105 � 106 solar masses of material, and can span many tens of parsecs, with typical

temperatures of 10 K and densities of ⇠ 102 cm�3 (e.g., Blitz , 1993). These structures

Stellar/Planetary System

Interstellar Medium,
Molecular Cloud Protostar

Protoplanetary Disk

Cloud Collapse

Stellar 
Death

Envelope 
Dissipation

Planet-formation,
Disk Dissipation

Figure 1.2 Illustration of the cycle of star-formation. The dense molecular interstellar
medium (top-left) collapses to form a young protostar, embedded in its envelope (top-right),
which dissipates to leave a star/disk system (bottom-right), from which the planets form
(bottom-left). The cycle continues with each generation of stars, which replenishes the in-
terstellar medium with heavy elements, the future building blocks of planets.

are self-gravitating and are thought to be partially supported by internal magnetic pressure

and/or turbulence. These lower density molecular cloud complexes were known to contain
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denser substructure, with subunits termed “clumps” (nH2 ⇠ 102 � 104 cm�3) and at even

smaller scales, “cores” (nH2 ⇠ 104�106 cm�3; see review of Williams et al., 2000). However,

relatively recent results from Herschel has revealed an even more complex structure, where it

appears that molecular clouds ubiquitously are broken up into intricate filamentary structure

(e.g., Ward-Thompson et al., 2010). Filaments have long been recognized; i.e., the “integral

shaped” filament of Orion, among others (Barnard , 1907; Schneider and Elmegreen, 1979;

Myers , 2009); yet Herschel revealed filaments to be a common feature of the star formation

process (see also André et al., 2014, for a discussion of filament properties). Embedded

within filaments are dense cores with typical densities of 105 cm�3 and lifetimes of ⇠ 105 �

106 years (Lee and Myers , 1999; Jessop and Ward-Thompson, 2000). Eventually these dense

structures, “pre-stellar cores,” with typical size scales of 0.01�0.1 pc, will collapse, signaling

the onset of future star (or multiple star) formation.

Prior to the collapse process, the core carries some degree of initial rotation. This rota-

tion, in concert with the need to conserve angular momentum, causes the collapsing system

to naturally form a disk. Material infalling along the rotation axis lands more-or-less di-

rectly onto the center of the system, i.e., the stellar position, while material with more

angular momentum ends up at larger disk radii. During the earliest phases, the system

contains a central protostar of mass 0.1-1 M� that typically drives a high-powered jet, a

natal disk/toroidal structure with 0.01-0.1 M� whose motions are simultaneously driven by

rotation and infall, and a large scale envelope, approximately 0.1 pc in size. The envelope

continues to fall on the disk, fueling intermittent rapid accretion of gas onto the central

protostar (Ṁ = 10�4
� 10�6 M� year�1; Zhu et al., 2010; Kratter et al., 2010), leveling to

Ṁ ⇠ 10�7 M� year�1 at “quiescence.” The protostellar phase (Figure 1.2, top-right) is

expected to last between 105 to 106 years (see review of Dunham et al., 2014, and refer-

ences therein), at which point the envelope is dissipated and a young star (or stars) and a

circumstellar disk remain.

By this point, the star has built up its mass in near entirety, and the remaining proto-
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planetary disk (Figure 1.2, bottom-right) contains between 1-10% of the mass of the parent

star. For a solar mass star, the disk thus contains enough material to form up to 10-100

Jupiters, in competition with various disk mass loss processes such as accretion or photo-

evaporative flows/winds. The median inner disk lifetime as traced by infrared dust mea-

surements typically spans a few Myr (Skrutskie et al., 1990; Cieza et al., 2007; Hernández

et al., 2007), while the cold molecular outer disk may have lifetimes of 1-10 Myr (Mamajek ,

2009). The discrepancy has been referred to as the two-time-scale problem and may indicate

that the disk clears out from the inside-out, e.g., by stellar photoevaporation (see discussion

of Williams and Cieza, 2011a). Nonetheless, these timescales set the clock for giant planet

formation, whether via bottom-up channels such as the core accretion scenario (Goldreich

and Ward , 1973), or top-down through gravitational collapse of an unstable protoplanetary

disk (Cameron, 1978; Boss , 1997). The end of the isolated protoplanetary disk phase is

marked by the cessation of accretion onto the star and the dispersal of the molecular gas. It

should be noted that terrestrial planet formation likely continues on even after the dispersal

of the gas disk, where terrestrial planets continue to “feed” from the planetesimal disk for

many tens of Myr post dispersal (see discussion in Morbidelli et al., 2012).

Then begins the onset of the main sequence phase, the longest stretch of a solar-mass

star’s lifetime (Figure 1.2, bottom-left). At the end of the main sequence, depending on

the stellar mass and its companionship (multiplicity), the dying star will replenish the ISM

by shedding its envelope, thus enriching the next generation of star formation. For more

massive stars with shorter evolution times less than the lifetime of the GMC complex, the

lifecycle of such stars may even fundamentally trigger the onset of another generation of star-

formation through interactions with the cloud (Blaauw , 1964; Elmegreen and Lada, 1977;

Blaauw , 1991).
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1.3 Physical Properties and Disk Structure

The physical environment of protoplanetary disks is highly complex and in-homogenous

(see the reviews of Bergin et al., 2007; Calvet and D’Alessio, 2011; Dutrey et al., 2014).

Typical densities span between 1015 cm�3 at the inner disk midplane (the geometrical center

of the disk in the orbital plane) to 105 cm�3 in the outer disk surface layers, ten orders

of magnitude in variation. Temperatures range from 10 K in the outer disk midplane to

thousands of Kelvin at the super-heated tenuous disk surface or at the inner edge of the disk

itself itself where even dust is sublimated (D’Alessio et al., 1998). In addition to the optical

heating irradiation, the central star emits high energy photons at both ultraviolet (Yang

et al., 2012, and references therein) and X-ray wavelengths (e.g., Ku and Chanan, 1979;

Feigelson and Decampli , 1981a; Montmerle et al., 1983), which induce strong ionization

gradients from the surface down to the shielded midplane (e.g., Glassgold et al., 1997; Igea

and Glassgold , 1999). These factors and others directly influence the formation process and

final properties of young planets, and combined advances in both theory and observations

have significantly improved our characterization of this dynamic environment. In the present

section we summarize recent results on disk structure. Figure 1.3 illustrates the important

physical processes discussed in more detail below.

1.3.1 Disk Thermal Structure

Disks have thermal gradients in both the radial and vertical direction, which are broadly

determined by stellar properties, dust properties and chemical structure. The star directly

heats the upper layers of the circumstellar dust, which re-radiate in the infrared and indirectly

heat the otherwise optically-shielded dust disk deeper in (Calvet et al., 1991; D’Alessio et al.,

1998). Near the midplane, the gas thermal properties are fully coupled with that of the dust

where densities are high enough for e�cient collisional transfer of energy. In terms of visual

extinction, these regions typically have extremely high dust attenuation, AV � 10 (Gorti

and Hollenbach, 2008). Moving upward, closer to the disk surface, between AV = 1 � 10,
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Figure 1.3 Schematic of important disk physical processes. The left half emphasizes stellar
radiation processes including stellar UV and X-rays and kinematic processes, including ac-
cretion and winds/jets. Regions shielded from X-ray irradiation have low ion-fractions and
may sustain a turbulence-free “dead zone.” External UV from the interstellar radiation field
is important, especially in star clusters. On the right, dust processes are emphasized, includ-
ing dust growth via coagulation, the inward radial drift due to gas drag, and the depletion
of dust grains from the surface due to settling. Magnetic fields play a role in the inner disk,
funneling accretion onto the star and in the outer disk as primordial fields frozen in from
the initial formation of the disk, twisted due to bulk gas disk motions. The upper layers of
the disk are super heated over local dust temperatures due to high radiation levels from the
star. High energy galactic protons, or cosmic rays may also bombard the disk, enhancing
ionization, though their distribution is strongly influenced by magnetic fields and winds.

high energy stellar UV and X-ray photons penetrate the disk, providing additional heating

through energetic electrons produced by the photoelectric e↵ect, resulting in elevated gas

temperatures (e.g., Glassgold et al., 2004; Woitke et al., 2009; Bruderer et al., 2012). The

magnitude of this e↵ect corresponds to a ⇠ 25% increase in gas temperature over dust
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temperature at an AV ⇠ 1 based on the comprehensive thermochemical models of Gorti and

Hollenbach (2008). According to the same models, above AV > 1, in the low density upper

layers of the disk, gas and dust collisions are increasingly less frequent and the dominant

gas coolant is instead emission from lines, primarily [O I] and CO, at which point the gas

temperatures exceed the dust temperatures by an order of magnitude or more and are fully

decoupled.

Another important source of heating at the inner disk is accretion. At radii R < 1 AU,

the mechanical transfer of material inward through accretion provides an additional source

of energy that goes into heating the disk, increasing the midplane temperature by a factor

of ⇠ 5 depending upon dust properties for typical accretion rates of Ṁ = 10�8 M� year�1

(e.g., D’Alessio et al., 1998; Espaillat , 2009, PhD Thesis). In this instance the midplane

temperature in the inner disk can be greater than that of the directly stellar-irradiated

surface for accretion rates exceeding Ṁ � 10�8 M� year�1.

1.3.2 High Energy Processes and Ionization

High energy stellar photons also play an important role in both the disk physical and

chemical structure. T Tauri stars exhibit a strong far-UV (FUV) excess arising from the

accretion shock on the stellar surface where material is being funneled from the disk onto

the star along magnetic field lines (e.g., Uchida and Shibata, 1985; Shu et al., 1994; Calvet

et al., 2004). The FUV radiation field sets the ionization structure in the upper layers of

the disk, where species such as atomic carbon and sulfur, with their low ionization potential,

are readily ionized. An important feature of the stellar FUV spectrum in T Tauri stars is

strong, broad Lyman-↵ emission, which accounts for 80-90% of the total FUV luminosity

(Herczeg et al., 2002, 2004). Lyman-↵ has unique scattering properties, mainly that it

undergoes resonant scattering o↵ atomic hydrogen atoms in the surface layers of the disk,

which redistributes the radiation isotropically, sending some fraction of photons directly into

the disk (Bethell and Bergin, 2011a), greatly increasing their penetration power.
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In addition to the central star, the interstellar radiation field (ISRF) provides an im-

portant isotropic UV source incident on the disk, where the typical strength of the ISRF

as measured in G0 is 1 to 1.7 Habing which is equal to 1.2 ⇥ 10�4 erg cm�2 s�1 sr�1. For

comparison, the stellar UV at the disk surface at a distance of 100 AU is typically a few

hundred Habing (Bergin et al., 2004), and thus the ISRF is expected to be mainly important

well beyond these radii for isolated systems. However, in cluster environments, especially

massive star-forming regions where the ISRF can be elevated to hundreds or thousands of

Habing (Fatuzzo and Adams , 2008), the ISRF plays a much larger role.

While UV photons are a powerful source of ionization, they are extremely well attenuated

by small dust grains and are largely restricted to the disk surface. As a result, the dense

gas ionization is dominated primarily by stellar X-rays, cosmic rays (CRs) and the decay of

short-lived radionuclides (SLRs). Stellar X-ray radiation provides a central ionizing source

that, while powerful, is obstructed by the high density inner disk, with relatively modest

attenuation depths corresponding to gas column densities of ⌃XR ⇠ 0.01 g cm�2 for a mixture

of gas and dust of 100:1 (Bethell and Bergin, 2011b). For comparison, CRs permeate the

galaxy mostly isotropically, giving them an advantageous incidence angle for outer disk

ionization. CRs additionally have a considerably larger stopping distance than X-rays, where

⌃CR ⇠ 100 g cm�2 (Umebayashi and Nakano, 1981). However, they are e�ciently stopped by

stellar winds and/or background magnetic fields. As a result, circumstellar CR particle fluxes

may be reduced by > 1� 5 orders of magnitude below the interstellar rate (see Chapter 3 of

this thesis). SLRs, known to be over-abundant in the young Solar System, may contribute

to ionization by radiating from the midplane outward; however, their exact nature is highly

uncertain, with unknown “typical” abundances and inherent time evolution. In addition to

age and abundance, a large fraction of ionizing SLR decay-products are expected to escape

from the tenuous outer disk prior to depositing all of their energy (see Chapter 4 of this

thesis). Consequently there is significant ionization structure throughout the disk, which

has important consequences for the chemistry of the bulk molecular disk (see Section 1.4
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and Chapter 6 of this thesis).

1.3.3 Gas Kinematics

The disk gas has simultaneously a very complex and a very simple velocity structure.

The bulk disk motion is simple, where the gas follows roughly Keplerian orbits around the

star. Observations of spectrally resolved molecular emission lines feature this simple velocity

field through typical “double-horned” profiles or butterfly patterns when the emission is

spatially resolved on the sky (e.g., Beckwith and Sargent , 1993). However, beyond this

simple bulk motion the velocity field becomes more complicated. First, the gas velocities

are not exactly Keplerian. The gas in the disk is partially pressure supported, and, as a

result, the disk is expected to orbit at slightly sub-Keplerian speeds. Future observations at

extremely high spectral resolution with ALMA will be able to measure these e↵ects directly

(Rosenfeld et al., 2013). Disk accretion physically transports material from the outer disk

inward, where the typical mass flow rate is Ṁ ⇠ 10�9
�10�8 M� year�1 (Gullbring et al., 1998;

Hartmann et al., 1998; Ingleby et al., 2013). Simultaneously, to conserve angular momentum,

the inward accretion-driven transport must be compensated by outward motions, either by

viscous spreading (Hartmann et al., 1998; Hughes et al., 2008), ejecting winds from the

surface of the disk, or launching a jet (e.g., Hartigan et al., 1995). Compounded on the bulk

orbital motion and inward/outward motions, there will also be some degree of disk turbulence

mixing the material on small scales. It is unclear what role mixing plays at present. Sensitive,

high spectral resolution observations with the SMA of the face-on TW Hya disk indicate that

turbulent motions in the vertical direction are small, vturb < 50 m s�1 (Hughes et al., 2008).

Increasingly sensitive observations with ALMA with tracers of multiple vertical layers will

shed additional light on this puzzle. However, some amount of small grains undoubtedly are

maintained at high disk latitudes as evidenced by the presence of 10µm and 20µm silicate

features in emission, and, with a relatively short settling times (⇠ 104 years for 0.1 µm-sized

grains to fall below ⌧ = 1; Dullemond and Dominik , 2004), the presence of these grains
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will require some type of turbulent stirring (Dullemond and Dominik , 2004; Dullemond and

Dominik , 2005) or buoyant magnetic forces (Turner et al., 2014a) to maintain their present

vertical distribution.

1.3.4 The Dusty Disk

While dust constitutes just 1% of the overall disk mass, it forms the foundation of the

terrestrial planets and gas giant cores. Initially the dust that fills GMCs are typically small,

sub-micron sized grains, primarily silicate and carbonaceous in composition, which is the

starting condition of the dusty component of the disk beyond ⇠ 1 AU. The high densities

present in disks facilitate rapid dust growth, growing from micron to millimeter-sized dust

grains. These dust grains are no longer easily lofted by turbulent motions in the disk as

compared to the smaller particles, and so they naturally settle-out to the midplane (Wei-

denschilling and Cuzzi , 1993; D’Alessio et al., 2006). The observation of disks with depleted

dust in the surface layers naturally bear out this expectation (Furlan et al., 2006). The set-

tled grains continue to grow at the midplane; however, they experience significant barriers

on their way to building planets. One such barrier is the fragmentation barrier, where cen-

timeter sized bodies and larger are theoretically expected to fragment upon collision (Brauer

et al., 2008). In addition, meter-sized bodies experience strong headwinds against the gas,

which moves at slightly sub-Keplerian speeds (with smaller bodies a↵ected at larger radial

distances). The latter process results in a phenomenon known as radial drift, where dust

moves inward, and if unimpeded, will fall onto the central star itself (Weidenschilling , 1977;

Nakagawa et al., 1986). This process is rapid, and thus provides a timing challenge for the

formation of planets if it is not physically overcome by, e.g., pressure bumps halting inward

migration (see also the review by Testi et al., 2014). With high spatial resolutions a↵orded

by interferometers such as the Submillimeter Array (SMA), Plateau de Burre Interferometer

(PdBI) and most recently the Atacama Large Millimeter/Submillimeter Array (ALMA), the

hallmarks of radial drift are now being directly observed as strong inner concentrations of
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large millimeter-sized grains relative to the small micron-sized grains and gas. For the case

of our nearest disk neighbor, TW Hya, the gas and small grains trace over 200 AU radial

scales, while the large mm-grains only extend to a 60 AU radius (Andrews et al., 2012).

1.4 Disk Volatile Composition and Chemistry

The composition of disks is 99% gas by mass, primarily in the form of H2 and helium.

At typical disk densities (pressures), H2 and helium do not freeze-out onto cold dust grains

until temperatures of ⇠ 7 K (Allamandola et al., 1993) and ⇠ 3 K (Tielens and Hagen,

1982), respectively, and thus are both in the gas phase throughout many hundreds of AU.

Of the more trace constituents, oxygen is mainly in H2O ice, with some in CO. Nitrogen is

likely primarily in N2, however like H2, this molecule lacks a permanent dipole moment and

is correspondingly not directly observable for the bulk disk reservoir, and thus the nitrogen

reservoir is less well constrained. Carbon is expected to be mainly in CO – at least in the very

early stages of disk evolution – though it is quickly chemically converted into other species

over the disk lifetime, including CO2, H2CO, CH3OH and organics (Aikawa et al., 1996;

Garrod and Pauly , 2011; Bergin et al., 2014). Further evidence of such processing exists in

at least one system where there is measured substantial CO depletion in warm gas (Favre

et al., 2013, Chapter 7) supported by an independent gas mass measurement (Bergin et al.,

2013). Regarding sulfur and even rarer species, the total volatile abundances are unknown,

where volatile sulfur in particular is known to be already depleted in the dense ISM, perhaps

converted into a “sulfur-rich residuum” (Grim and Greenberg , 1987; Wakelam et al., 2004;

Chen et al., 2015). Detailed observations of increasingly rarified species with ALMA in the

coming years will provide a necessary more complete census of disk chemistry.

Figure 1.4 highlights major features of the overall chemical structure of disks. The

left-hand side of the figure outlines the typical distribution of the major “heavy” volatile

reservoirs (excluding H2 and helium). The structure is much like a wedge-shaped photon-

dissociated region, or PDR, where the extinction of radiation sets the layered composition of
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the disk (see Bergin et al., 2007, for a review). The surface layers are dominated by atomic

ions, mainly C+ given its low ionization potential, though other ions exist via subsequent

charge exchange. As AV approaches ⇠ 1 the chemistry quickly transitions to primarily

neutrals and molecules, where ion recombination becomes more e�cient and molecules are

shielded from the photodissociating stellar radiation. The layer where CO is present, the so-

called “warm molecular layer” (Aikawa et al., 2002) is also coincident with other abundant,

observable molecular species including HCN, CS, H2CO and HCO+. CO, N2 and H2 have

much thicker “molecular layers” owing to fact that these species are dissociated via line

processes rather than continuum photons. As a result these molecules “self-shield” and

are able to substantially reduce the photodissociation rate with su�cient protective column

density of itself (e.g., van Dishoeck and Black , 1988; Lee et al., 1996; Li et al., 2013). Deeper

in the disk, well below the UV photodissociation layer, the overall temperatures steadily drop

and eventually the chemistry of the disk becomes dominated by the adsorption of volatiles

onto dust grains as ices.

On the right hand side of Figure 1.4 we highlight the expected distribution of the phases

of water in disks. Water, with its relatively high binding energy, is in the ice-phase for

the majority of the disk where temperatures are well below its desorption temperature of

⇠ 100 K. Only inside of ⇠ 1 AU is water able to sublimate and become present as vapor in

abundance, confirmed by bright water line observations with Spitzer (e.g. Carr and Najita,

2008). Water vapor is also observed well beyond 1 AU, and its presence is attributed to the

UV photodesorption of icy dust grains near the surface of the cold outer disk (Hogerheijde

et al., 2011). UV photodesorption is only one type of non-thermal desorption, however.

X-ray photons and cosmic rays can induce spot heating of dust grains (Leger et al., 1985;

Najita et al., 2001), locally sublimating ices in regions deeper in the disk than UV penetrates,

especially for species with desorption temperatures below 70 K (Bringa and Johnson, 2004).

All of these non-thermal desorption mechanisms are able to sustain a low level of gas-phase

molecules even in the regime where freeze-out is expected to dominate, thus providing a
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glimpse into the composition of ices.
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Figure 1.4 Left: Stratification of the chemical structure for species other than H2 and helium.
Right: Phases of water and the primary physical cause of phase changes locally. A similar
plot can be made for all species, where the relative locations shift based upon the properties
of the molecule in question.

Even in the presence of non-thermal desorption mechanisms, thermal desorption/adsorption

by-and-large dominates the disk chemical structure, especially in the midplane. Due to disks’

decreasing temperature with radius, at certain radial locations the dust temperature crosses

the condensation temperature of di↵erent molecular species, such as H2O, CO, and CH4.

At these locations, the molecule under goes a transition from being primarily gas to pri-

marily ice, and thus these points are termed “snow lines” or “frost lines.” In reality, the

combination of the radial temperature gradient (decreasing with radius) and vertical tem-

perature gradient (decreasing with depth) result in a “snow surface,” which was recently

directly imaged by Rosenfeld et al. (2013) using extremely high spectral and spatial ALMA

science verification data of the HD163296 system. Snow lines are of particular interest in

the context of planet formation as these locations naturally cause a dramatic increase in
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the solid-mass surface density through the addition of ices, especially at the H2O and CO

snow lines. The enhanced surface density of solids is thought to facilitate more e�cient giant

planet formation (Stevenson and Lunine, 1988; Lecar et al., 2006).

In addition to the overall phase changes between solids and gas and photo-destruction

and shielding, the disk also undergoes chemical reactions that lead to the formation (and de-

struction) of more complex species. Henning and Semenov (2013) provide a comprehensive

overview of relevant chemical reactions in protoplanetary disks, and I will only outline the

most important aspects. The chemistry of the disk can be generalized into inner disk chem-

istry, where the temperatures exceed hundreds of Kelvin, and outer disk chemistry, where

temperatures are below 100 K. The inner disk is characterized by high densities and high

temperatures, which together enable two-body (and perhaps three-body) neutral-neutral re-

actions to form more complex species, even if they are exceptionally endothermic. One such

example is the direct formation of H2O in the gas from H2 + OH ! H2O + H. At low

temperatures as are present in the outer disk (R > 1 AU), this reaction is entirely ine�cient,

but in the inner disk it proceeds rapidly. The outer disk chemistry is markedly di↵erent. The

most e�cient reactive channels are ion-neutral reactions, which are rapid at low tempera-

tures. Water, by comparison, forms in the gas starting with H+
3 , which reacts with oxygen or

oxygen bearing species to form H3O+ that, upon recombination with electrons or negatively

charged grains, forms water. The second important type of reaction for the outer disk are

grain surface reactions. Simple species freeze-out onto the surface of cold dust grains, but

are still somewhat mobile, and are able to hop across the surface (Tielens and Hagen, 1982;

Hasegawa et al., 1992a). When these simple species find a suitable reaction partner, they will

bond to form a more complex species, with the excess energy of formation most frequently

absorbed into the grain lattice, but for some small fraction of the time, 1-10%, desorbs the

product itself, though these values are highly uncertain (Garrod et al., 2007). Water will

form as an ice by the sequential hydrogenation of oxygen atoms on dust grains in this way.

Similarly NH3, CH4 and CH3OH can be formed by hydrogenation of N, C and CO. These
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processes are only e�cient at low temperatures, however (T < 50 K), when the intermediate

products are able to spend a su�cient amount of time on grains to be fully hydrogenated.

Isotopes are also an important facet of disk chemistry. The self-shielding e↵ects described

above for CO and N2 manifest themselves in the isotopes through selective self-shielding,

where the less abundant isotopologues are unable to self-shield until deeper into the disk,

and as a consequence the upper layers of the disk can have abundant CO with very low

amounts of 13CO (70⇥ less abundant) and C18O (500⇥ less abundant) due to these e↵ects

(van Dishoeck and Black , 1988; Visser et al., 2009a). As described in Lyons and Young

(2005), selective destruction of the isotope-bearing molecules releases these into the gas to

participate in the chemistry, thereby elevating the 18O/16O ratios in other species (see also

Heays et al., 2014, for the case of N2). The alteration of isotope ratios, or fractionation,

can also occur chemically. The di↵erence in mass between the isotopes can lead to mass-

dependent fractionation e↵ects as the lighter isotope moves faster and forms weaker bonds.

The changes are more substantial for isotopes with larger mass di↵erences. For the case of

deuterium, i.e., hydrogen with an additional neutron, the mass di↵erence is the largest, a

factor of two. Molecules formed with a deuterium atom substituted for hydrogen, such as

HDO, are more energetically favorable (i.e., have a lower zero point energy) than the lighter

isotope. Thus at low temperatures, where the energy di↵erence between the lighter and

heavier isotope is comparable or greater than that of the environment, reactions will tend to

over produce deuterated isotopes. The same will happen for isotopes of oxygen and carbon

but to a far lesser extent given the small mass di↵erence. The application to deuterium

fractionation in water is discussed in more detail in Chapter 8.

One of the biggest questions in our understanding of disk chemistry is the question of

primordial inheritance versus disk chemical processing. As outlined in Section 1.2, the star-

disk system forms from dense concentrations within a giant, cold molecular cloud. The

molecular core is already quite chemically rich as determined from observations of the local

environment of young protostars, where the star provides a background candle revealing
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an environment rich in water, organics, and many simple molecular species in absorption

(e.g., Boogert et al., 2000; Boogert et al., 2002). Observationally, it is unknown how much of

this chemically rich material survives the formation of a star and disk. Theoretical models

presented in Visser et al. (2009b) demonstrate that during the initial collapse of the rotating

cloud, parcels of infalling material that come to rest at beyond an orbital radius of 20 AU

(their standard model) stay below temperatures of 100 K for their entire trajectory, implying

that their water ice remains adsorbed on grains beyond this radius. CO ice, on the other

hand, with its far lower binding energy, sublimates at least once during its trajectory inward

at all radii inside of R < 2000 AU. These findings imply that species with relatively high

freeze-out temperatures, higher than & 60 K, were delivered in a pristine state beyond

R > 50 AU. Within this range, potential inherited species include SO2, CH3OH, CH3CN

and potentially NH3. More volatile ices like CO can be delivered as well, however they would

need to be trapped within the water ice matrix (Sandford and Allamandola, 1990, 1993;

Ayotte et al., 2001; Horimoto et al., 2002; Collings et al., 2003, 2004). How primordial ices

survive beyond this stage, however, will fundamentally depend upon mixing and accretion,

and the rate of chemical reprocessing in the disk.

1.5 Observational Characterization of the Gas Reservoir

Beyond molecular accounting and measuring abundances, molecular emission is a pow-

erful tool in determining physical conditions in the disk. It was recognized early on that

symmetric rotors provide interstellar “thermometers” (Solomon et al., 1973; Ho and Townes ,

1983). Multiple lines within the same K-ladder of symmetric rotors such as CH3CN, NH3

and CH3CCH are readily observable simultaneously, and by using Boltzmann plots, the tem-

perature is determined from the slope of the log of the upper state column density versus

upper state energy. In high density environments such as disks, other molecular species can

be used as temperature probes by measuring multiple lines of the same species with large

upper state energy di↵erences. The density requirement is set by the critical density of a par-
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ticular line, which corresponds to the ratio of the spontaneous de-excitation versus collisional

de-excitation. For environments with densities exceeding the critical density of a particular

line, the rotational level population will be set by the Boltzmann distribution (and is said to

be in local-thermodynamic equilibrium, or LTE) and thus is set by the local temperature.

By measuring multiple rotational lines of optically thin tracers, such as C18O in the J = 6�5

and J = 3 � 2 lines, the line ratio should encode temperature information. However, this

technique is somewhat less e�cient than using symmetric rotors given that these lines must

be observed individually due to the large frequency spacing between them and optical depth

e↵ects. Table 1.1 provides critical densities for commonly observed lines in disks as well as

important water lines. HCN, CO, N2H+ and many other simple molecules have low critical

densities compared to typical disk densities, which typically exceed 108 cm�3. Water lines,

on the other hand, have relatively high critical densities, and will only be in LTE in the

inner dense disk, or the outer disk if the photodesorbed layer originates from deeper in than

the surface. Given the wide range of critical densities across observable lines, local density

information will also be folded into the disk emission signatures. By studying multiple lines

with very di↵erent critical densities, one can also potentially constrain the local density of

the emitting medium.

Molecule Line Frequency Critical Density
CO 3� 2 345.796 GHz 1.1⇥ 104 cm�3

N2H+ 4� 3 372.673 GHz 2.2⇥ 106 cm�3

HCO+ 3� 2 267.558 GHz 1.1⇥ 106 cm�3

o-H2CO 515 � 414 351.769 GHz 2.2⇥ 106 cm�3

HCN 4� 3 354.505 GHz 1.1⇥ 107 cm�3

o-H2O 110 � 101 556.936 GHz 7.3⇥ 107 cm�3

p-H2O 111 � 000 1113.343 GHz 3.2⇥ 108 cm�3

o-H2O 312 � 221 1153.127 GHz 2.8⇥ 108 cm�3

o-H2O 312 � 303 1097.365 GHz 5.0⇥ 109 cm�3

Table 1.1 Critical densities for lines of interest at T = 50 K.

Beyond density and temperature, molecular emission carries substantial information

about other physical parameters of the system. High spectral and spatial resolution will
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provide kinematic information in the disk, which has been used to but limits on disk turbu-

lence (Hughes et al., 2011) and dynamical information, including discovering a warp in the

inner disk of TW Hya (Rosenfeld et al., 2012). The relative abundances of ions compared

to neutrals provides critical information about the high energy ionizing radiation incident

on the disk (see Chapter 5). High spatial resolution observations can furthermore isolate

the location of various “snow lines” in the disk, providing information simultaneously about

temperature and molecular properties, including binding energies (with independent deter-

minations of the dust temperature) and information about the ice-substrate (Collings et al.,

2004). Molecules with hyperfine structure, such as N2H+, can directly elucidate opacity

information for the species of interest given the wide range of line intensities across the hy-

perfine components. Thus molecular emission is a powerful tool to understand a wide range

of aspects regarding the physical nature of the major mass reservoir in protoplanetary disks.

One of the strongest observational limitations in determining chemical abundances from

molecular emission is the general lack of a direct mass tracer. Submillimeter and millimeter

dust emission is often used to measure mass, assuming a dust-to-gas mass conversion factor

of 1:100 (e.g., Adams et al., 1990). Regarding gas tracers, CO is the second most abundant

molecule after H2, and correspondingly is a commonly used tracer of warm gas mass – i.e.,

without dust (e.g., van Zadelho↵ et al., 2001; Thi et al., 2001). By assuming an abundance

conversion from CO to H2, typically 1:104 in gas above 17 K (the freeze-out temperature

of CO; Öberg et al., 2005), one can obtain a gas mass. However, CO unlike H2 undergoes

rapid freeze-out at temperatures below 17 K, and thus will inherently miss cold mass in the

outer disk (see discussion of van Zadelho↵ et al., 2001). In addition to freeze-out related

depletion, CO’s active role in the chemistry can cause it to become similarly chemically

depleted as well, especially in regions above 17 K (Aikawa et al., 1996; Bergin et al., 2014).

Thus the CO-derived mass provides mainly a lower limit, and indeed, CO-derived masses

are typically far smaller than those derived from submillimeter dust measurements (e.g.,

Thi et al., 2001; Bergin et al., 2013, and Chapter 7 of this thesis). For at least one disk
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system, the Herschel Space Observatory detected the HD isotopologue of H2. HD indicated

a far larger mass in TW Hya’s gas disk than derived from CO, and one more in line with

that derived by the dust (Bergin et al., 2013), not inconsistent with an interstellar gas-to-

dust mass ratio of 100. Based upon this important constraint, TW Hya is the only disk

where we can measure the CO abundance, where Favre et al. (2013) found it was 1 � 2

orders of magnitude lower in the warm gas than expected. However, it should be noted that

CO selective self-shielding discussed above can reduce the apparent abundance of CO and

needs to be considered via multi-isotopologue observations when measuring CO abundances

(Miotello et al., 2014). These considerations emphasize the importance of HD as a mass

tracer. Furthermore, it stresses the importance of relative abundance measurements rather

than absolute values when studying these actively chemically evolving systems.

1.6 Overview of the Dissertation

In this thesis I present a theoretical and observational approach to characterize aspects

of planet detection in disks and physical/chemical properties of the disk itself. The thesis

has two general parts described in more detail below. The first half (Chapters 2 and 3) is

concerned with identifying signatures of planet formation, first through a theoretical chem-

ical study of disks with large inner holes cleared out by a nascent planetary system and

second via local sublimation of ices near a singular warm embedded planet. The second part

of this thesis (Chapters 4-8) is concerned with characterizing the contribution of di↵erent

disk ionizing sources, how these are observationally distinguished, and how they impact the

chemistry at large.

In Chapter 2, we explore models of protoplanetary disks which contain a large inner

cavity approximately the size of Pluto’s orbit. Observations of similar cavities have been

attributed to either inner disk photoevaporation or clearing by a multiple planet system. We

examine how the removal of the inner disk and the presence of the gap changes the disk’s

thermal structure and as a result, the chemical structure of the outer disk. The addition of
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direct stellar heating at the midplane provides a unique opportunity to study an otherwise

hidden reservoir of ices, freshly sublimated by direct stellar irradiation.

In Chapter 3, we move toward the more localized phenomenon of planet formation,

where young, self-luminous gas giants embedded in the cold molecular disk are predicted to

produce observable signatures that will be detectable with ALMA. The heating due to the

planet will locally sublimate ices in the midplane that are otherwise fully frozen-out onto

dust grains, creating a unique gas phase signature. Due to the rapid timescales for freeze-out

and desorption, the gas-phase enhancement near the planet will follow the planet closely,

which o↵ers the possibility of repeat measurements to confirm orbital motion.

In Chapter 4, we transition to topics relating to the high energy radiation field incident

on disks. Given the importance of ion-neutral chemistry outlined above, it has long been

assumed that the active chemistry of the cold outer disk is powered by cosmic ray ionization of

H2. However, in the context of our own solar system, it has long been recognized that cosmic

rays are e�ciently deflected by winds and/or magnetic fields. The possibility of a cosmic

ray starved environment has been considered in previous work (Gammie, 1996; Turner and

Drake, 2009), however we build upon this and examine varying degrees of modulated CR

flux as would be expected if CRs are driven out by winds or fields. We include self-consistent

energy propagation and calculate the ionization rate as a function of depth. We estimate

disk ionization fractions, and based upon this calculation, estimate the size of the region in

the disk where the ionization fraction is low enough that it becomes decoupled from any type

of magnetic turbulence. These regions, termed dead zones (Gammie, 1996), are posited as

favorable for planet growth (e.g., Matsumura and Pudritz , 2006). We find that the size of

the dead zone is extremely sensitive to the assumed cosmic ray flux and its distribution.

In Chapter 5, motivated by our work on CR ionization, we study the next most important

ionizing source for the midplane, the decay of short lived radionuclides. The most important

contributors are 26Al, 60Fe and 36Cl. Each of these species has di↵erent daughter products,

each of which has di↵erent propagation depths. Previous work had taken into account the
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di↵ering energy range of daughter products produced (e.g., Umebayashi and Nakano, 1981;

Finocchi and Gail , 1997; Umebayashi and Nakano, 2009; Umebayashi et al., 2013), however

no previous work had included the energy losses by the escape of decay products, including

� particles and �-rays. Losses substantially reduce the energy available for disk ionization,

and are an important factor when considering the overall ionization state of the disk.

In Chapter 6, we combine our knowledge of CR and SLR ionization with an expanded

treatment of X-ray ionization, and examine how the chemical abundances in disks are (or are

not) sensitive to various ionizing agents. The motivating factor of this work is to determine

how sensitive ALMA observations will be in the future to changes in the ionization rate.

We find that HCO+ isotopologue emission is mainly sensitive to stellar X-rays, while N2H+

traces both cosmic ray and X-ray ionization. Furthermore, by taking into account time-decay

in the short-lived radionuclide ionization rate, we find that the SLR rate becomes negligible

at a few millions years, and thus the disks we observe today will have mainly X-ray and also

cosmic ray driven ionization structures when the latter are present.

In Chapter 7, we apply the results of the theoretical study presented in Chapter 6 to

the case of the nearest protoplanetary disk, TW Hya. Combining new observations taken

with the SMA as part of my PhD with archival observations and ALMA science verification

observations, we put constraints on the disk ionization rate in addition to the CO abundance

and nitrogen abundances. We find that in TW Hya, the maximum ionization rate in the

midplane is < 10�19 s�1 per H2, two orders of magnitude below the expected rate due to

CRs alone. Thus this is the first empirical determination of a low CR ionization rate in

disks. The low rate can be due to one of two factors, a jumbled magnetic field in the local

environment or within the disk itself (Dolginov and Stepinski , 1994), or repulsion by a stellar

and/or disk wind. If the exclusion is wind-related, this would be the first direct evidence

of an extra-solar heliosphere analogue, i.e., an “astrosphere” forming a bubble of reduced

galactic CR flux around the disk. Whether disk magnetic fields are able to provide similar

levels of exclusion remains to be tested. Taking our best fit model, we compute the size of
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the dead zone in TW Hya and find that it coincides with a region of large grain concentration

inside of 60 AU. In the light of previous theories which suggest dead zones promote grain

growth, we may be seeing this process in action in the TW Hya disk.

Finally, in Chapter 8, we explore the chemical consequences of a lower than average

cosmic ray rate. In a wide range of solar system bodies the measured D/H ratio in water is

substantially elevated over the atomic D/H level, including in Earth’s oceans. This feature

is a signature of chemistry occurring in cold environments, as discussion in Section 1.4. The

two possible environments where this may have occurred are in the interstellar molecular

cloud core, prior to the Sun’s formation, or in the outer disk. For the relevant reactions to

proceed in the disk, a source of ionization is necessary. We explored models of the formation

of water in the absence of CR ionization and discovered that the formation of excess HDO

relative to H2O is inhibited in the outer disk due to the ine�ciency of both gas phase and

grain surface reaction pathways. The direct implications of this work were that the disk is

not a viable source for water in the solar system, and that a substantial fraction of ices must

have been inherited from an earlier stage, prior to the Sun’s birth. The results of this work

have important broader implications for the chemistry of all planet-forming disks around

Sun-like and low-mass stars, i.e., that a chemistry rich in the ingredients necessary for life is

widely available to all protoplanetary disks.
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CHAPTER II

Transition disk chemistry and future prospects with

ALMA

2.1 Preface

The following work appears in the Astrophysical Journal Letters, Volume 743, L2, 6

pp. (2011). The work is co-authored by Edwin A. Bergin,1 Thomas J. Bethell,1 Nuria

Calvet,1 Je↵rey K. J. Fogel,1 Jürgen Sauter,2 and Sebastian Wolf.2 The paper is copyright

2011, the American Astronomical Society, reproduced here under the non-exclusive right of

republication granted by the AAS to the author(s) of the paper.

2.2 Abstract

We explore the chemical structure of a disk that contains a large central gap of R ⇠ 45

AU, as is commonly seen in transitional disk systems. In our chemical model of a disk with

a cleared inner void, the midplane becomes revealed to the central star so that it is directly

irradiated. The midplane material at the truncation radius is exposed to reprocessed optical

heating radiation, but opaque to the photo-dissociating ultraviolet, creating an environment

1Department of Astronomy, University of Michigan, 825 Dennison Building, 500 Church St, Ann Arbor,
MI 48109

2Christian-Albrechts-Universität zu Kiel, Institut für Theoretische Physik und Astrophysik, Leibnizstr.
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abundant in gas-phase molecules. Thus the disk midplane, which would otherwise for a full

disk be dominated by near complete heavy element freeze-out, should become observable in

molecular emission. If this prediction is correct this has exciting prospects for observations

with the Atacama Large Millimeter/Submillimeter Array (ALMA), as the inner transition

region should thus be readily detected and resolved, especially using high-J rotational tran-

sitions excited in the high density midplane gas. Therefore such observations will potentially

provide us with a direct probe of the physics and chemistry at this actively evolving interface.

2.3 Introduction

Over the last thirty years, our knowledge of pre-main sequence evolution has undergone

significant advances. Observations of the full spectral energy distribution (SED) from disks

around young stars have shown that not all are alike, with the striking discovery of a subset

of disks with optically thin inner “holes” devoid of small grains, surrounded by optically

thick outer disks (e.g. Strom et al., 1989; Calvet et al., 2005; Cieza et al., 2010; Espaillat

et al., 2010). This inner void was later confirmed by resolved sub-mm interferometry (e.g.

Piétu et al., 2006; Brown et al., 2008; Hughes et al., 2009; Andrews et al., 2009, 2011) and was

interpreted as an intermediate stage between primordial and debris disks, coined “transition

disks” (Strom et al., 1989).

In this work we adopt the physical definition of “transition disk” as an optically thick

disk truncated within some inner radius within which there has either been substantial grain

growth or removal. Such objects are of particular interest, as the presence of a gap has been

attributed to clearing by young protoplanets (e.g. Skrutskie et al., 1990; Bryden et al., 1999;

Rice et al., 2003) or tidal interactions with young stellar companions (e.g. Dutrey et al.,

1994).

Dullemond et al. (2001) investigated the physical structure of Herbig Ae/Be disks that

15, 24098 Kiel, Germany
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possess large inner radii similar to those seen in low mass transition disks. In this work it

was found that at the inner rim, the normal incidence angle of the stellar irradiation causes

the disk rim to be much hotter than it would otherwise be for a classical flared disk, where

the radiation arrives at a glancing angle. Further observational evidence for the directly

irradiated wall was later seen both in studies of the SED (e.g., Espaillat et al., 2007) as well

as through scattered light imaging (Brown et al., 2008).

ALMA will readily resolve such inner gaps and voids in the dust disk (e.g., Wolf et al.,

2002; Wolf and D’Angelo, 2005); however, here we seek to make predictions regarding the

significant gas reservoir in transition disks. In particular, one interesting aspect of disk chem-

istry that has yet to be explored is the potential that this warm UV irradiated inner rim

should have unique chemical properties. This has important implications since it is possible

that the physical and chemical conditions of the previously hidden, but now exposed, mid-

plane will be revealed and potentially detectable with high spatial resolution observations,

such as those anticipated by ALMA. Here we present a chemical model of a protoplanetary

disk with a large inner gap similar to those seen in classical transition disks (e.g. Hughes

et al., 2009; Espaillat et al., 2010) as a prospective study of observability with ALMA.

2.4 Chemical Modeling

2.4.1 Disk Framework

For our model we adopt the comprehensive disk structure from Sauter et al. (2009),

originally purposed for CB26 and constrained by a large set of observations: the SED from

nanometer to millimeter wavelengths, near-infrared scattered light images, and resolved mil-

limeter images. For the central star, the model of Sauter et al. (2009) assumes standard T

Tauri values of M = 0.5 M� and L = 0.9 L�. The disk density profile is given by:

⇢ = ⇢0
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Using this model and temperatures derived with MC3D (Wolf et al., 1999), Sauter et al.

(2009) successfully reproduced the full set of observations with the following best-fit model

parameters: r0 = 100 AU, h0 = 10 AU, ↵ = 2.2, � = 1.4, Router = 200 AU and Rinner = 45

AU. The measured size of the hole is typical of that seen in resolved millimeter observations

and SED modeling of transition disks, which range from a few AU to upwards of 70 AU (An-

drews et al., 2011; Espaillat et al., 2007). The inner disk irradiation substantially increases

the disk temperature at the wall, reaching ⇠ 50 K, as compared to a typical midplane tem-

perature of ⇠ 15 K as seen at larger radii. We note that this model is taken as a “snapshot”

and any subsequent disk physical evolution is beyond the scope of this work.

For the gas density we assume a standard ISM gas-to-dust mass ratio of fg = 100 and

that the dust and gas are co-spatial. The gas temperature is taken to be equal to Tdust, which

holds true near the dense midplane (Jonkheid et al., 2004). We furthermore note Tdust was

originally derived assuming passive heating by the central star, with accretion heating treated

as negligible (Sauter et al., 2009). The e↵ects of inclusion of accretion heating are discussed

in Section 2.6.1. The model physical structure is shown in Fig. 2.1.

For the opacities we adopt Weingartner and Draine (2001) for a blend of astronomical

silicates and carbonaceous grains with RV = 5.5. We also assume an unsettled disk and

uniform dust composition for simplicity. Deviations from these assumptions, such as the

a↵ect of vertical settling of small grains and grain-growth, are discussed in Section 2.6.2.

2.4.2 Radiation Field

Both the ultraviolet and X-ray radiation field are believed to be dominant factors driving

the chemistry in disks (Glassgold et al., 1997, 2004; van Zadelho↵ et al., 2003). While low

mass young stars peak in the optical regime with negligible chromospheric contribution to

the FUV, the accretion shock at the central star provides a significant source of both FUV
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Figure 2.1 Left: Plot of the transition disk model with the central star at the origin. Panels:
a) gas density b) temperature c) FUV radiation field at 1600 Å. Right: Vertical cuts of the
same quantities taken at R = 45, 50 and 100 AU.

and soft X-ray flux (e.g., Günther et al., 2007). We neglect external contribution from

the ISRF since the stellar FUV will dominate external sources by orders of magnitude in

the inner disk (Bergin et al., 2003), though its import may lie in understanding the outer

disk chemistry (Öberg et al., 2010). Due to the geometry of the star-disk system it is then

necessary to properly treat the radiative transfer into the disk (Willacy and Langer , 2000; van

Zadelho↵ et al., 2003; Fogel et al., 2011). This is especially true in transition disks, where

voids and gaps can allow photons to propagate more freely into the outer disk material.

Possible implications of the presence of a small amount of undetected dust within the gap

are discussed in Section 2.6.3.
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2.4.2.1 Continuum Radiative Transfer

We assume the FUV continuum opacity is dominated by the dust, and consequently

the UV field is dependent on settling of small grains, opacities assumed, and disk geometry.

Using the measured FUV spectrum of TW Hydra (Herczeg et al., 2002, 2004) binned down to

nine discrete wavelengths between 950-2000 Å, we calculate the continuum radiative transfer

into the disk using the method of Bethell and Bergin (2011a), implementing the opacities

described in Section 2.4.1. The choice of nine wavelengths was motivated by the need to

su�ciently capture the shape of the FUV continuum, to be insensitive to individual weak

emission lines, and to also remain computationally e�cient.

2.4.2.2 Lyman-↵ Radiative Transfer

While many individual lines in the observed TW Hydra spectrum are weak, the Lyman-↵

line alone carries ⇠ 85% of the total FUV flux (Herczeg et al., 2004; Bergin et al., 2003).

This line is furthermore expected to play a significant chemical role as a number of molecular

species have photodissociation cross sections near 1216Å (Fogel et al., 2011). In addition

to dust scattering, Lyman-↵ undergoes isotropic scattering o↵ hydrogen atoms (Bethell and

Bergin, 2011a), which in principle requires an iterative and computationally expensive cal-

culation between the radiation field and the chemistry.

In this work, we incorporate the e↵ects of Lyman-↵ using an approximate treatment

motivated by Bethell and Bergin (2011a). The procedure is illustrated in Fig. 2.2. If one

assumes a priori that there is an optically thick layer of atomic hydrogen on the disk surface

located at ⌧FUV = 1 as defined by the dust (Fig. 2.2: Region II), the Lyman-↵ photons

will first encounter this isotropic H-scattering layer. A fraction of the radiation will be lost

to space (. 50%, Region I: wavy arrows), with the surviving Lyman-↵ photons di↵usively

propagating through the H-layer. Below the atomic layer, the hydrogen is predominantly H2

and the Lyman-↵ photons proceed as continuum photons scattering o↵ only the dust grains

(Fig. 2.2: Region III). Thus, at the base of the hydrogen scattering layer (II!III), the
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I.

II.

III.

Figure 2.2 Ly↵ schematic illustration. (I.) “Free-streaming” region above ⌧radial ⇠ 1 surface;
half of the Ly↵ radiation escapes the disk. (II.) H-scattering layer with a vertical depth of
⌧vertical ⇠ 1. Remaining photons di↵use downward until they escape the atomic region. (III.)
Region where H is predominantly H2. Dust now becomes the dominant source of opacity
to Ly↵ photons, and the Ly↵ radiation now behaves as vertically attenuated continuum
photons, which significantly enhances its penetrating power. The (I.) ! (II.) interface
illustrates the ⌧ ⇠ 1 surface for continuum photons, whereas the (II.) ! (III.) interface is
e↵ectively the ⌧ ⇠ 1 surface for Ly↵ photons.
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photons e↵ectively form a layer of isotropically emitting point sources, which together create

a planar source of radiation that shines at a nearly normal angle to the midplane. Therefore

even though a significant fraction of Lyman-↵ photons are lost to space, the remaining

photons will have greater vertical penetration power into the disk and can propagate many

AU deeper than the UV continuum radiation. On the front edge of the disk, at the dense

inner rim, Lyman-↵ is similarly “stopped” as was seen for the continuum photons. (cf. Fig.

2.1 (c)). We discuss the implications of an inner void that is not empty of gas on Lyman-↵

transfer in Section 2.6.4.

2.4.3 Reaction Network

Combining the model detailed in Section 2.4.1 and the radiation field in Section 2.4.2,

the resultant chemistry is calculated using Fogel et al. (2011)’s comprehensive disk chemical

model, based on the Ohio State University Astrophysical Chemistry Group’s gas-phase net-

work (Smith et al., 2004). The reaction types include photo-desorption, photo-dissociation,

freeze-out, grain surface reactions, ion and electron reactions, cosmic-ray and stellar X-ray

ionization, and radiative reactions. In total, the network encompasses 5910 reactions and 639

reacting species, including some time-dependent reactions, encompassing the main species

of astrochemical importance, and described in detail in Fogel et al. (2011).

The model initially assumes uniform molecular cloud chemical abundances Aikawa and

Herbst (1999a) and follows the chemical evolution for 3 Myr. In this work we take the

abundances at 1 Myr, which is long enough such that the chemistry has “relaxed” but not

so long that the disk would likely have physically evolved away from this state.

Furthermore, we assume a typical integrated T Tauri star X-ray luminosity of 1030 erg

s�1 and a thermal X-ray spectrum between 1-10 keV (Glassgold et al., 1997, and references

therein). The model of Fogel et al. (2011) incorporates the method of Aikawa et al. (2001)

for X-ray propagation. For cosmic rays we adopt a typical cosmic ray ionization rate of 1.3 ⇥

10�17 s�1 per H, with an attenuation column of 96 g cm�2 (Umebayashi and Nakano, 1981).
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2.5 Results

2.5.1 Disk Chemistry

The resultant chemical abundances (relative to nH = nHI + 2nH2) for six observed gas-

phase species are shown in Fig. 2.3. Molecules such as CO, H2CO, and N2H+ show an

enhanced gas-phase abundance at the wall. For comparison, in an untruncated disk model,

all neutral species plotted in Fig. 2.3 would be otherwise frozen onto grains at the midplane

at Rwall = 45 AU. The two ions shown, N2H+ and HCO+, would also not be present in an

untruncated disk, as their chemical precursors, N2 and CO, would be frozen out, inhibiting

the formation of these two species. Consequently the gas-phase enhancement at the trunca-

tion radius shown for all species plotted here, besides H2O, would not exist if it were not for

the large inner gap.

Water, with a freeze-out temperature of ⇠ 100 K, is frozen onto grains at the ⇠ 50 K

transition region. One could however envision a disk with a wall closer to the central star

and thus warmer, such that water would sublimate from grains and be observable. Thus

the specific species present are not necessarily the most important result, but that the star

can e�ciently heat the wall, warming it above the sublimation temperature of a variety of

species, potentially allowing us to observationally probe disk physics as well as evolutionary

state. Therefore the existence of a cleared inner gap should produce unique chemical features

in the outer disk not present in full classical disks.

2.5.2 Observables

If such an enhancement is present it is of interest to determine observability. While

previous observations reveal a diverse chemistry (e.g., Dutrey et al., 1997; Öberg et al.,

2010), the sensitivity and resolving power of ALMA is required to fully understand the

detailed structure of these systems.

We adopt a disk inclination of 60� and calculate the resulting emission for rotational
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Figure 2.3 Chemical model results, plotted as abundance relative to the total number of
hydrogen atoms. Shown are common species of astrophysical interest: (a) CO, (b) HCO+,
(c) H2CO, (d) H2O, (e) N2H+, (f) HCN.
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Figure 2.4 Simulated ALMA observations (computed with one hour integration time) of
13CO and H2CO for a disk at 140 pc, at di↵erent rotational transitions with increasing J.
This demonstrates the increasing contrast between the inner transition region and outer disk
emission for higher J, along with ALMA’s future capabilities at these frequencies.
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transitions of 13CO and o-H2CO as would be seen at a distance of 140 pc using the non-

LTE line radiation transfer code, LIME (Brinch and Hogerheijde, 2010). These species

have been chosen as both are commonly observed towards disks around low mass T Tauri

stars (e.g., Öberg et al., 2010, 2011c). The densities reached at the frontally illuminated

midplane preferentially excite high-J rotational transitions, and therefore transition disks

should uniquely exhibit high-J bright molecular rings at the wall when resolved by sub-mm

observations with ALMA. Using this calculated line emission, we then use the SIMDATA

package in CASA to calculate the ALMA visibilities and reconstruct the image from the UV

coverage of the full ALMA array. Fig. 2.4 shows the simulated observations for these lines

as seen by ALMA for an antenna configuration with ⇠ 0.100 resolution at 672 GHz, chosen

to provide adequate resolution and sensitivity assuming typical thermal noise.

2.6 Further Considerations

In this work we propose the presence of gas-phase molecules at the inner edge of tran-

sition disks. This e↵ect could however be erased if either the dust at the inner edge is not

su�ciently heated or if the wall becomes permissive to molecule destroying UV radiation.

In the following we discuss potential caveats of the model and how these would alter the

results presented here.

2.6.1 Accretion Heating

The original model was computed assuming passive heating by the central star and

heating due to disk accretion was treated as negligible. Accretion heating, however, pre-

dominantly increases the midplane temperature (D’Alessio et al., 1998), and, if significant,

will increase the thermal desorption of molecules from grains, enhancing the predicted ef-

fect. Details of the dynamical transport of gas and dust and their e↵ects on the chemistry,

however, are beyond the scope of this Letter.
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2.6.2 Dust Settling and Grain Coagulation

For this model we have assumed an unsettled outer disk with grains of ISM abundance.

In our analysis we have also explored a model that includes mixed grain growth of dust

particles of up to 1 mm in size, without vertical settling. This lowers the UV opacity (cm2

g�1) by ⇠ 2 orders of magnitude, which is a direct consequence of the fact that large grains

contribute significantly to the mass but little to the UV opacity. The high model densities

at the inner edge (⇢dust ⇠ 10�14g cm3), however, are still of su�cient magnitude such that

the wall remains optically thick to UV radiation for a model with mixed grain growth alone.

Strong settling or removal of small grains can also make the disk more permeable to the

UV radiation. We can ask how much dust would need to be removed/settled to allow the

UV photons to penetrate and photodissociate the enhanced abundance of molecules present

at the wall. To approximate this, the unsettled wall density is ⇢dust ⇠ 10�14 g cm3 and the

UV dust opacity is ⇠ 5⇥ 104 cm2 g�1 at 1000 Å (Weingartner and Draine, 2001). Based on

the thermal model, the thickness of the “warm” inner edge is ⇠ 5 AU at R = 45 AU. For the

UV to penetrate the inner 5 AU, the disk would need contain < 0.1% of the original amount

of dust present to erase the e↵ect seen here. We note however that settling will also increase

the depth of the heating, which will in principle thicken the extent of the wall further.

2.6.3 Dust in the Inner Gap

An underlying feature of the disk model is the presence of a large inner “void” which

allows the outer disk to be heated directly by the star. One possible explanation for such

a void is grain growth into rocky planetesimals (e.g. Skrutskie et al., 1990). Thus one

could postulate the existence of a small amount of undetected dust inside the gap. Indeed

some models infer the presence of some moderate mass of silicates in the inner disk (e.g.

Calvet et al., 2002, 2005; Espaillat et al., 2007). This material has the ability to shadow the

outer disk from being directly heated by the star, thus inhibiting the presence of the warm

molecular interface presented here.
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First, one can ask how much dust would be required to cause the gap to become opaque

(⌧ ⇠ 10) to optical radiation peaking at � = 0.7 µm as is the case for a T = 4000 K star.

If we assume that the inner disk follows the outer disk profile (Section 2.4.1), a total mass

in dust of Mdust = 10�3 MMoon inside 45 AU would be su�cient for the midplane to become

optically thick to the optical heating radiation. While this is an extremely small amount of

dust, one must also consider the scale height of the material: h ⇠ 3.3 AU at R = 45 AU.

Therefore, this cross-section is very small, and would not strongly shadow the outer disk

and would not significantly alter the heating and UV irradiation except at the very central

midplane region. Furthermore, because the original model from Sauter et al. (2009) included

scattered light images, the presence of small grains at or above the disk scale height would

significantly contribute to the amount of scattered light and not match observations for the

model presented here.

2.6.4 Gas in the Inner Gap

By assuming gas and dust are co-spatial we intrinsically assume the gap is empty of gas.

Gas within the gap would not alter the original optical heating calculation of the outer disk

or the propagation of UV continuum photons, both of which have dust-dominated opacities.

However, the presence of gas would strongly a↵ect the propagation of Lyman-↵ as gas within

the gap would likely be predominantly atomic. The presence of hydrogen within the gap

would cause a net reduction in the Lyman-↵ flux reaching the outer disk. This would either

not change or marginally enhance the abundance of gas phase molecules at the truncation

radius since the amount of photo-dissociating radiation is reduced.

2.7 Conclusions

We have investigated the chemistry of a transition disk employing the model structure of

Sauter et al. (2009) and have shown that a disk with a 45 AU inner void depleted of dust and

gas should have unique chemical properties. At the truncation radius, the midplane is both
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heated by optical photons and irradiated by the stellar UV and X-rays. The net e↵ect is

that the previously hidden midplane is revealed as a region rich in gas-phase molecules, that

should be readily observable by ALMA. For comparison, in a full untruncated disk model,

the midplane is normally cold and shielded from the central star, resulting in substantial

freeze-out of gas onto grains, preventing direct observation. While this analysis focuses on

a specific disk model, these first results provide insight into our ability to directly probe

the unique chemistry of transition disks. The rich chemistry at the transition region will

allow us to probe the physical conditions, such as density, temperature and kinematics. It is

important to note that this model provides one possibility, which can be readily tested with

ALMA. We will be exploring a suite of disk models with a variety of geometric frameworks

both in dust and gas content in future work, to further explore the full parameter space of

transition disks, with the aim of pioneering future observational campaigns with ALMA to

explore these exciting objects.
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CHAPTER III

Indirect Detection of Forming Protoplanets via

Chemical Asymmetries in Disks

3.1 Preface

The following work has been submitted to the Astrophysical Journal (January 2015).

The work is co-authored by Edwin A. Bergin1 and Tim Harries2.

3.2 Abstract

We examine changes in the molecular abundances resulting from increased heating due

to a self-luminous planetary companion embedded within a narrow circumstellar disk gap.

Using 3D models that include stellar and planetary irradiation, we find that luminous young

planets locally heat up the parent circumstellar disk by many tens of Kelvin, resulting

in e�cient thermal desorption of molecular species that are otherwise locally frozen out.

Furthermore, the heating is deposited over large regions of the disk, ±5 AU radially and

spanning . 60� azimuthally. From the 3D chemical models, we compute rotational line

emission models and full ALMA simulations, and find that the chemical signatures of the

1Department of Astronomy, University of Michigan, 1085 South University Avenue, Ann Arbor, MI 48109
2School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL
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young planet are detectable as chemical asymmetries in ⇠ 10h observations. HCN and its

isotopologues are particularly clear tracers of planetary heating for the models considered

here, and emission from multiple transitions of the same species is detectable, which encodes

temperature information in addition to possible velocity information from the spectra itself.

We find submillimeter molecular emission will be a useful tool to study gas giant planet

formation in situ, especially beyond R & 10 AU.

3.3 Introduction

Planetary systems form from the accretion disks encircling young stars. The composition

of ice, gas and dust within the disk sets the initial chemical conditions of the planets and

also regulates the physical conditions under which planets form. The properties of the pre-

planetary materials can then be compared to the composition of the present day solar system

(e.g. Öberg et al., 2011b) and even that of extrasolar planetary atmospheres (Madhusudhan,

2012; Teske et al., 2013). Nonetheless, there is a missing link between these two stages,

separated in time by billions of years. It is essential to observationally capture a forming

young planet in situ to put together a complete chemical (and physical) history of planet

formation.

The upcoming capabilities of the Atacama Large Millimeter Array (ALMA) will provide

extremely high sensitivity and spatially resolved observations of disks (up to 0.00700 at 650

GHz, or 0.7 AU at distances of d = 100 pc). At these scales, detailed disk structure will

be readily revealed, and observations of the local environment near forming protoplanets

should be accessible. Young proto-Jupiters are expected to be intrinsically hot as they

accrete matter through their circumplanetary disk and liberate gravitational potential energy,

thereby generating substantial accretion luminosity, Lacc. Theoretical models of early-stage

circumplanetary disks find typical “quiescent” accretion levels between Ṁ = 10�10 M� year�1

and 10�8 M� year�1 (Ayli↵e and Bate, 2009; Lubow and Martin, 2012). Periodically, the

circumplanetary disk is theorized to undergo accretion outbursts similar to those seen in FU
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Ori objects (Hartmann and Kenyon, 1985; Zhu et al., 2009), where the planet’s accretion

rate jumps to Ṁ = (1 � 10) ⇥ 10�5 M� year�1. Accretion rates can be translated into

accretion luminosities,

Lacc =
GMpṀp

2Rin
(3.1)

(Pringle, 1981), where Mp and Ṁp are the planet’s mass and accretion rate, and Rin is

the inner radius of the circumplanetary disk, which is something like the radius of the

planet. Assuming a Jupiter-mass planet and Rin = 3 RJup, the quiescent accretion levels

translate to Lacc = (3 � 300) ⇥ 10�5 L�. During an accretion burst, however, the planet

can outshine even the star in bolometric luminosity, where the accretion luminosity due to

the planet can be as high as Lacc ⇠ 15 L� but for less than 0.1% of the planet’s formation

time (Lubow and Martin, 2012). Kraus and Ireland (2012) reported the detection of a

possible embedded protoplanet companion in LkCa 15 for which they estimated a substantial

accretion luminosity of Lacc= 10�3 L�. Planets with similar accretion luminosities will heat

the nearby circumstellar dust disk and may give rise to detectable signatures with sensitive

submillimeter continuum observations, though detecting the circumplanetary disk itself will

be challenging (Wolf and D’Angelo, 2005).

In addition to the thermal e↵ects on the dust, the planetary accretion heating will have

a substantial impact on the chemical structure in the vicinity of the young planet. In the

present work, we explore local heating due to a single massive protoplanet (a gas giant

precursor) on the three-dimensional chemistry of the surrounding circumstellar disk. We do

not calculate the chemistry of the hot, young circumplanetary disk, but focus instead on the

larger scale e↵ects on the cold, molecular disk within which the planet is entrenched. We vary

the planet’s orbital location from the star for a fixed accretion rate of Ṁ = 10�8 M� year�1,

where the physical and thermal structure are described in §3.4. On this model, we calculate

the time-dependent chemistry in 2D slices over the 3D model, focusing the calculations on

the region near the planet and opposite the planet (§3.5.1). For species that are particularly

sensitive to the presence of the planet and have strong submillimeter transitions, we identify
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submillimeter emission line tracers and compute the emission based on the three-dimensional

structure to determine detectability (§3.5.2). Finally, in §3.5, we summarize our findings and

discuss their implications.

3.4 Physical Model

3.4.1 Axisymmetric Structure

3.4.1.1 Density Model

The background disk density is described by a simple power law in surface density,

⌃g / R�1 and vertically gaussian with a scale height of h / 12.5 (r/100 AU)� AU, � = 1.1.

The gas and dust are uniformly mixed with a gas-to-dust mass ratio of 100, and the disk

gas mass contains Mg = 0.01 M�. The dust is a simple MRN distribution in grain size

(agr / r�3.5
gr ; Mathis et al., 1977) with minimum size of 0.005 µm and maximum size of

1 µm. The dust composition is assumed to be Draine and Lee astrosilicates (Draine and

Lee, 1984). We fix the central star to have a mass of M⇤ = 0.5 M�, an e↵ective temperature

of Te↵ = 4000 K and R⇤ = 2.0 R�, characteristic of low mass T Tauri stars. We consider

four planet locations, dp = 5 AU, 10 AU, 20 AU, and 30 AU. For each location, we simply

“cut out” a vertical gap in the disk corresponding to the Hill radius of a Mp = 1 MJup planet

as consistent with theoretical models, which find massive planets open gaps comparable to

the size of their Hill sphere (e.g., Lin and Papaloizou, 1986, 1993; Bryden et al., 1999; Lubow

et al., 1999). The gap radii (half the gap-width) for the planet models at dp = 5 AU, 10 AU,

20 AU, and 30 AU are 0.4 AU, 0.9 AU, 1.7 AU, and 2.6 AU, respectively. The density of the

gap is taken to be a factor of 106 lower than the density of the disk, and is – for the purposes

of the heating calculations – optically thin at infrared wavelengths. We emphasize that these

models are designed to understand and isolate the local e↵ects of planetary heating, and that

we do not include variations in the 3D density structure near the planet, either excess flaring

near the edges of the gap (e.g., Jang-Condell , 2009), or accretion streams, both of which
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will alter the vertical and radial disk structure and should be examined in future work. The

density structure of the bulk disk is shown in Figure 3.1a.

Figure 3.1 Circumstellar disk properties shown for the planet at dp = 20 AU. Disk properties
away from the gap are similar for the dp = 5 AU and dp = 10 AU. The central star is located
at R=0 and Z=0 and the plot is made for an azimuthal angle of � = 270� (opposite the
location of planet).

3.4.1.2 High-energy Stellar Irradiation Field

We calculate the UV and X-ray radiation field from the central star for each of the four

planet locations, dp, from a single 2D slice and assume the high energy stellar radiation field is

otherwise azimuthally symmetric. The procedure for calculating the 2D X-ray and FUV field

are the same as described in Chapters 4 and 6, using the Monte Carlo radiative transfer code

of Bethell and Bergin (2011a). The FUV radiation is used to estimate the gas temperatures
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(S. Bruderer, in private communication), which are coupled to the dust temperatures in the

region where the planet’s impact is the greatest, and as such, our results do not depend on

the gas temperature in the upper layers where the gas and dust temperatures are decoupled.

The disk is quite opaque to the FUV stellar photons (wavelengths between 930 � 2000 Å,

including that of Lyman-↵) due to our use of an unsettled disk model. A substantial amount

of FUV continuum and line (Lyman-↵) radiation is down-scattered into the gap, aided by

the UV-exposed, optically thick outer gap edge, which tends to deflect photons both into

the gap and away from the disk. However, the scattered continuum and line photons within

the gap do not penetrate far into the gap edges and do not have a substantial impact on the

chemistry beyond the illuminated wall. The integrated FUV field between � = 930�2000 Å

is shown in Figure 3.1b.

The X-ray radiation field is computed using the same transfer code as the UV with the

combined gas and dust X-ray absorption cross sections of Bethell and Bergin (2011b) and

Thompson scattering. Because the X-ray photons are stopped at larger column densities

much further into the disk, the presence of the gap does not have as significant of an e↵ect

as it does for the FUV (Figure 3.1c). The gap exposes more of the disk to X-ray photons,

but the overall X-ray field is much more sensitive to distribution of disk mass rather than

the specific gap location; these Hill radius-sized gaps are relatively narrow compared to the

path length of an X-ray photon at ⇠ 5 keV. For cosmic ray ionization, we use the model

presented in Chapter 4 for the cosmic ray ionization rate at solar maximum for the present

day Sun (⇣CR ⇠ 2 ⇥ 10�19 s�1 per H2) as an upper limit to the contribution from cosmic

rays, consistent with the upper limit determined from observations of the TW Hya disk

(Chapter 7).

3.4.2 3D Thermal Structure

We calculate the thermal structure of the disk assuming two passive radiation sources: the

self-luminous central star the protoplanet shining due to its accretion luminosity. We assume
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a circumplanetary accretion rate of Ṁ = 10�8 M� year�1 on anMp = 1MJup andRp = 3 RJup

planet, corresponding to an accretion luminosity of Lacc = 5⇥10�4 L�. In this simple picture,

the planet is treated as a spherical, 1500 K blackbody that heats its self-carved gap from the

inside. The dust temperatures are calculated using the code TORUS (Harries , 2000; Harries

et al., 2004; Kurosawa et al., 2004; Pinte et al., 2009) assuming radiative equilibrium with

the Lucy method (Lucy , 1999). We note that we do not include the di↵erential rotation of

the circumstellar disk in the dust temperature calculation because radiative equilibrium at

⇠ 50 K is quickly attained within minutes to hours (Woitke, 1999). For a planet at 10 AU,

this timespan is negligible compared to the ⇠ 30 year period of the planet’s orbit, thus

planetary heating of the disk is expected to remain a local phenomena and will not become

highly sheared out by di↵erential rotation. The thermal structure for the bulk circumstellar

disk (away from the planet) is shown in Figure 3.1d for the planet at dp = 20 AU. The

large-scale physical properties are largely similar for all four planet locations in our models

(i.e., the presence of the gap does not significantly change the thermal/irradiation structure

away from the gap). All four models have an outer disk radius of 50 AU and an inner disk

radius of 0.2 AU.

The additional heating by the planetary companion primarily results in an azimuthally

extended (�� ⇠ ±30�) but somewhat thin (R . 5 AU) swath of material along the gap

edges, centered on the planet itself. The temperature structures in the midplane and for

a vertical slice centered on the planet’s location are shown in Figure 3.2. The contours

highlight the change in temperature due to the presence of the planet. The planet increases

the temperature by greater than 10% within about �R ⇠ 1.1 AU, 1.6 AU, 2.7 AU, and

4 AU from the edge of the gap for the 5, 10, 20, and 30 AU orbital radius, respectively. The

absolute change in temperature at the gap edges closest to the planet (. 0.5 AU from the

wall) due to the additional heating corresponds to an increase from 42 K to 60 K (dp = 5 AU),

35 K to 47 K (dp = 10 AU), 27 K to 34 K (dp = 20 AU), and 24 K to 31 K (dp = 30 AU)

for both gas and dust temperatures. These substantial ⇠ 10 � 20 K changes in cold, dense
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molecular gas will substantially alter the local chemistry close to the planet.

3.4.3 Chemical Model

From the physical structure outlined above, we can estimate molecular abundances as a

function of 3D position throughout the disk. The disk chemical code used for the calculations

is presented in Fogel et al. (2011) and further expanded in Chapter 6. The chemical code

itself is inherently 1+1D, and so to address this limitation we extract 2D azimuthal cuts

from full 3D model to compute the abundances, and reconstruct the full disk profile from

the individual 2D calculations. We consider ten 2D slices at 3� intervals in azimuth ranging

from the planet’s location to 30� away from the planet, and assume that the planet is

symmetric upon reflection. For the rest of the disk beyond 30�, we calculate the chemistry

based upon one 2D slice on the opposite side of the disk from the planet, i.e. the “anti-

planet” side. Di↵erential rotation is not included in the present models but will be explored

in future work (see further discussion below). The 1+1D Fogel et al. (2011) code calculates

the time-dependent abundances relative to hydrogen as a function of radius and height from

the midplane based on a fixed grid of temperature, density, and radiation field conditions.

The chemical reaction network is based on the OSU gas-phase chemical network (Smith

et al., 2004), expanded to include grain-surface chemistry in the method of Hasegawa et al.

(1992b), where the grain-surface reactants “sweep-out” the surface at a rate related to the

binding energy and mass of the reactant. We treat the hydrogen binding energy in the

method in Chapter 8, where we assume that the binding energy for desorption processes is

the chemisorbed value such that H2 can form even at high temperatures, while the binding

energy adopted for the rate of hydrogenation reactions on the surfaces of cold dust grains

is assumed to be the lower, physisorbed value, or Eb(H) = 450 K, such that the H-atoms

are highly mobile across the ice mantle. The reaction network has a total of 6292 reactions,

including both chemical reactions and physical processes (i.e., ionization, desorption, etc.)

and 697 species. All chemical calculations are examined after 1 Myr of chemical evolution.
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Figure 3.2 Thermal structure in the region near the planet. Left column shows the midplane
temperature over radius and azimuth (planet is located at 90� in all cases). Right column
shows the vertical temperature structure centered on the planet. The thin (thick) contour
line highlights the region of the disk where the planet increases the local temperature by
> 10% (> 30%). Top, middle and bottom rows are models for planets at 5 AU, 10 AU,
20 AU and 30 AU, respectively.
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3.5 Results

In the following section, we present chemical abundance signatures due to the additional

heating from a planetary companion as calculated over the disk. We then simulate the

emergent line emission for the fully 3D physical and chemical model. Based upon these

emission models we generate ALMA simulations of planets embedded in disks.

3.5.1 Chemical Abundance Results

The most important chemical e↵ect from the planet is the thermal desorption of molecular

species that are otherwise frozen out as ices in the midplane at the orbital distance of the

planet, which we term “primary tracers.” As discussed in Section 3.4.2, the dust temperature

rapidly equilibrates to the local irradiation conditions. To assess whether the simplification

of neglecting di↵erential rotation is important for the chemical structure, we must compare

the chemical timescales for adsorption/sublimation to the orbital time. If the chemical

timescales are longer than the orbital time, the chemical e↵ects of the planetary heating

within the gap will become sheared out over azimuth. In contrast, short chemical timescales

relative to the planet’s orbital time indicate the relevant chemistry is able to adjust quickly,

and thus “follow” the planet.

In our model, the midplane at d = 10 AU has a density of approximately nH2 ⇠ 1010 cm�3

and a temperature of ⇠ 50 � 60 K near the planet. The timescale for freeze-out of a

molecule is related to the surface area of grains per unit volume, or n(�gr) cm2 cm�3, as

well as the thermal speed of the molecule in the gas phase, vX, such that molecule X freezes

out in a characteristic time tfo(X) = (n(�gr)vX)
�1. At gas densities of nH = 1010 cm�3,

a typical grain surface area density is n(�gr) ⇠ 10�11 cm2 cm�3 (i.e., 0.1 µm-sized grains

at an abundance relative to H-atoms of 6 ⇥ 10�12), an H2CO molecule (for example) with

mass of 30 amu, will collide with a grain on average every ⇠ 0.3 years, which is roughly

the time for circumstellar disk chemistry to reset when not directly heated by the planet.

The corresponding timescale for thermal evaporation of an H2CO molecule (assuming a
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Figure 3.3 Vertically integrated column densities of select molecular species (labeled in the
lower right corner) after 1 Myr of chemical evolution for the planet at dp = 5 AU with an
accretion luminosity of Lacc = 5⇥ 10�4 L�. The column density at the disk azimuthal angle
centered on the planet (90� in Figure 3.2) is shown in magenta, where the points correspond
to the specific radii calculated in the chemical models. The chemistry of the disk near the
gap in the absence of the planet is shown in cyan, i.e., at the ‘anti-planet’ side of the disk.

desorption temperature of Td ⇠ 2050 K; Garrod and Herbst , 2006) on a 50 K dust grain

based on the Polyani-Wigner relation (see Fogel et al., 2011) is 0.02 years (the timescale for

molecules to evaporate when exposed to the planet’s heating). Both of these timescales are

su�ciently rapid compared to the orbital time around a 1 M� star for the planets considered

here (about 11, 32, and 89 years) and therefore we expect the chemistry of the primary tracers

to follow the planet and not experience strong azimuthal shear. It is important to note that

the relevant timescales will increase with height; however, in all cases, the chemical e↵ect of

Figure 3.4 Vertically integrated column density of select species for the planet at dp = 10 AU.
Figure as described in Figure 3.3.
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Figure 3.5 Vertically integrated column density of select species for the planet at dp = 20 AU.
Figure as described in Figure 3.3.

Figure 3.6 Vertically integrated column density of select species for the planet at dp = 30 AU.
Figure as described in Figure 3.3.

the planet is limited to a narrow vertical region close to the midplane where z/r < 0.1, over

which the density only decreases by ⇠ 30%.

Molecules that form via gas-phase or grain-surface chemistry as a direct result of pri-

mary species desorption are “second-order” chemical e↵ects – i.e., secondary tracers. The

timescales for secondary species formed from primaries to return to the low-temperature

state will depend on the particular formation pathways for the secondary species and the

availability of He+ ions to break up newly formed molecules that would otherwise not be

present without the planet (e.g., Bergin et al., 2014; Furuya and Aikawa, 2014). In this case,

the distribution of secondary species formed due to the planet are more likely to be a↵ected

by shear (see discussion below).

Given the size of the chemical network, we took an unbiased approach to search for

promising chemical tracers of planetary heating, both primary and secondary. We calculate

the vertical column density of every species in the network versus radius, and filter out

species with low column density near the planet, NX  1010 cm�2, since these will be the
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most di�cult to detect. We then calculate the fractional di↵erence between the column

densities, �NX(R), at the azimuthal location of the planet and the anti-planet side, and

integrate this quantity over radius to get an estimate for the total fractional change due to

the planet. We then sort by the fractional change to identify which species are most a↵ected

by the additional heating. The results of this “blind search” for gas-phase tracers are shown

in Figures 3.3 (dp = 5 AU), 3.4 (dp = 10 AU), 3.5 (dp = 20 AU), and 3.6 (dp = 30 AU).

For certain species, the additional heating changes the vertical column density at the

edges of the gap by many orders of magnitude. For most “signpost” molecules, the heating

from the planet lifts the local dust temperature at the midplane from below the particular

species desorption temperature to above, causing a large enhancement in the column density

at the edges of the gap. Two species stand out from this trend for the planet at 5 AU, where

CS and CH4 instead exhibit large deficits. The assumed binding energies of CS and CH4 are

Eb = 2000 K and Eb = 1330 K, respectively. In the case of CS, the 5 AU planet causes an

initial, fast desorption of CS (and higher column density), but the heating simultaneously

increases the abundance of gas-phase oxygen bearing molecules. Over⇠ 2000 year timescales,

the chemical network converts the CS to OCS ice, resulting in the net chemical deficit plotted

in Figure 3.3. The orbital time at 5 AU is clearly much shorter than the chemical timescale

for this process to occur, and so in this case, the conversion from CS to OCS (and the

corresponding CS-deficit) is over-predicted in our simplified models. To properly model the

planet’s e↵ects on the CS chemistry in the inner disk requires models that include di↵erential

velocity shear to address these second-order time-dependent e↵ects. However, for planets

located further out in the disk, CS shows simple net desorption behavior without further

chemical processing for the more distant, 10 and 20 AU planets. The change in chemical

behavior arises because the chemistry leading to OCS is not as e�cient radially further out

where the gas-phase oxygen is depleted. As a result, CS becomes a “primary” planet tracer

for the planets located further out. Thus using thermal desorption as a search tool for planets

is more reliable in the more chemically inactive outer disk.
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For CH4, this species’ low binding energy (Td ⇠ 27 K) allows for it to be in the gas phase

regardless of the planet’s location. The deficit in CH4 is purely a second-order e↵ect, where

the CH4 at 5 AU primarily forms via gas-phase channels originating from CH+
5 . The presence

of additional, sublimated gas-phase species that are also able to react with CH+
5 will form

other molecules besides CH4. These additional pathways stymy the formation e�ciency of

CH4 and leads to the CH4 deficit in Fig. 3.3 of about a factor of three in column density.

This process likewise occurs over much longer timescales than the planets’ orbital times and

should be studied in further detail including disk di↵erential rotation to fully characterize

the CH4 chemistry in the presence of the planet.

There is some variation of the radial extent of the region a↵ected by the planet as seen in

the column density plots. For example, as seen in Figures 3.5 and 3.6, the 20 AU and 30 AU

planets exhibit enhanced HCN confined to a narrow region close the gap edges (. 0.6 AU),

while CH4 is enhanced over a much wider region, . 1.5 AU. The main factors that determine

the chemically a↵ected region are the gap size (i.e., a larger gap reduces the amount of heating

at the wall’s interface; Chapter 2) and the binding energy of the species in question. CH4

is more weakly bound to the grain surface, EB ⇠ 1360 K, compared to HCN, EB ⇠ 1760 K

(Hasegawa and Herbst , 1993), and so the region near the planet is only su�ciently hot to

evaporate HCN close to the gap walls.

In addition to HCN and CH4, NH3 is also enhanced in the presence of the 30 AU planet

(see Fig. 3.6). This behavior is a feature of the relatively low NH3 binding energy used in the

present models, Eb = 1100 K (Hasegawa and Herbst , 1993), corresponding to a desorption

temperature of Td ⇠ 28 K. Alternatively, NH3 deposited on a H2O ice surface has a much

higher binding energy, Eb 3200 K (Collings et al., 2004), or Td ⇠ 90 K. Thus if the higher

desorption temperature applies, NH3 evaporation may be a more useful tracer of planets in

the inner few AU of a cool protoplanetary disk, or further out for warmer disks like those

around Herbig Ae/Be stars. In summary, the ideal chemical tracer for identifying planets is

fundamentally a balance of the appropriate chemical binding energies and the disk thermal
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structure.

From the 2D chemical model slices we reconstruct the 3D abundance profiles. We plot

the abundance structure for particularly promising species for the four planet locations in

Figures 3.7, 3.8, 3.9, and 3.10. From these plots, it is clear that the chemical e↵ects extend

over a larger azimuthal range than radial range for most cases. The abundance enhancement

furthermore spans the full wall height until the abundance profile merges into that set by

the surface chemistry, as driven by the central star. However, the vertical density structure

is such that the densities are highest closest to the midplane and most tenuous near the

surface. Thus the midplane heating by the planet can have a large e↵ect on the total,

integrated column density, similar to the direct midplane illumination of transition disks by

the central star(see Chapter 1).

Of all the species considered here, HCN is a particularly robust tracer with a simple

midplane chemistry, such that the thermal e↵ects from the planet are primarily its desorption.

The binding energy of HCN in our models is set to 1,760 K (Hasegawa and Herbst , 1993),

i.e, a characteristic desorption temperature of ⇠ 44 K . For the planets beyond 10 AU,

HCN should otherwise be frozen-out in the midplane for the majority of the disk. Even at

5 AU (midplane temperature of ⇠ 40 K), HCN is just beginning to freeze-out in the absence

of the planet. Thus HCN should be an excellent tracer of planets at orbital distance of

dp > 5 AU from the central star. Even if the particular HCN binding energy is revised, the

location HCN as a planet-tracer will scale accordingly based upon the midplane temperature

profile of the disk and the molecules’ binding energy to the grain. Furthermore, if the HCN

binding energy varies with the properties of the substrate (e.g., Collings et al., 2004), the

azimuthal region away from the planet can be used as a baseline against which the HCN

enhancement can be compared independent of the specific binding energy assumed. For all

four models, the enhancement in HCN is typically an order of magnitude in column density

due to the planetary heating. In the absence of the planet’s e↵ects, the baseline HCN column

density on the opposite side of the disk is NHCN ⇠ 1016 cm�2 for the planet at 30 AU and
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Figure 3.7 Chemical abundances for species that are sensitive to the planet’s additional
heating. The left column shows the abundances in the disk midplane, while the right column
shows the vertical abundances centered on the planet. Chemical models are shown for the
planet at dp = 5 AU.
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Figure 3.8 Chemical models for the planet at dp = 10 AU. Panels are the same as for
Figure 3.7.

NHCN ⇠ 1018 cm�2 for the planet at 5 AU. The column of HCN in the absence of the planet

arises almost entirely from the HCN present at the warm disk surface.

3.5.2 Line Emission

Many of these “signpost” molecular species have strong rotational transitions that can

be used to observationally identify and characterize the local physical conditions near the

planet. Because of its simple interpretation and large column density, we focus on HCN

emission as a tracer in the present Chapter, but emphasize that other, perhaps stronger

tracers may exist, and the particular tracer will depend on the luminosity of the central star,

which will set the thermal structure of the midplane at the disk radii probed by ALMA.

We use the flexible line modeling code LIME (Brinch and Hogerheijde, 2010) to simulate

the emergent line emission from the full disk, oriented face-on at a distance of d = 100 pc.

We assume the bulk motion of the protoplanetary disk gas is Keplerian about the central

star and add a thermal broadening component of 100 m s�1 on top of the Keplerian velocity
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Figure 3.9 Chemical models for the planet at dp = 20 AU. Panels are the same as for
Figure 3.7.
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Figure 3.10 Chemical models for the planet at dp = 30 AU. Panels are the same as for
Figure 3.7.

for simplicity. We present HCN emission results for the planets at dp = 10 AU, 20 AU and

30 AU as the HCN signature for the 5 AU planet was not detectable or distinguishable from

the background disk in any of the models considered. Because LIME samples the model’s

native grid by selecting random points and accepting/rejecting them based upon particular

criteria (in our case, normalized density and HCN abundance), the code can potentially not

adequately sample relatively small scale local features in the disk when considering the full

3D volume of the disk. Arbitrarily increasing the point number, however, will add more

points into the inner, high density regions of the disk that are already well-sampled. To

address this issue, we cast two grids of points, a large grid over the full disk range (including

the planet), and a refined spherical grid centered on the planet that contains 5% of the total

number points (⇠300,000) used to sample the model. This insures that a su�cient number

of points encompass both the disk and the region near the planet. We furthermore tested

this technique for a model without any planet (but still with the refined local grid) to confirm

that the refined grid does not introduce emission signatures. Such sub-grids will be useful
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in modeling all types of substructure with LIME.

Because HCN is fairly optically thick at the surface, we model both the HCN and H13CN

isotopologue assuming an isotope ratio of 12C/13C = 60. We emphasize that at the high

densities where the planet is depositing its heating that selective photodissociation e↵ects

on N2 relating to HCN chemistry (Heays et al., 2014) are not expected to play a major

role. For the emission calculations, we consider the J = 4 � 3 and J = 8 � 7 rotational

transitions for both species, which we identify as likely strong transitions accessible with

ALMA using preliminary RADEX3 models (RADEX is a statistical equilibrium solver under

the assumption of the large velocity gradient approximation; van der Tak et al., 2007). Using

LIME, we calculate the line optical depth for the four transitions considered. For both HCN

lines, the disk is optically thick (⌧ > 100) at all positions at the line center. However, in

the line wings at velocities �v > 0.3 km s �1, the circumstellar disk is optically thin for both

transitions, while the emission near the planet is thick. Thus these lines will be useful for

constraining the temperature of the emitting circumplanetary medium. The H13CN J = 4�3

line is also thick at line center across the disk (⌧ 15 � 50), but becomes thin and the lines,

and has an optical depth of ⌧ ⇠ 1 near the planet. H13CN J = 8� 7 is marginally optically

thick at line center (⌧ ⇠ 10), and thin at all locations in the wings.

The LIME models represent “perfect” images of the emission lines without any thermal

noise or beam-convolution (besides the inherent limitations of the pixel size, which is 0.000025

per pixel or 0.25 AU in our models). To create more realistic emission models, we take

the LIME output and, using the simulation capabilities of CASA4 we compute simulated

ALMA observations in the same method in Chapter 6. The alma.out13 antenna configu-

ration is used for the dp = 10 AU simulation of both J = 4 � 3 lines and the alma.out10

antenna configuration was used for the J = 7 � 6. For the planet at dp = 20 AU (30 AU),

alma.out16 (alma.out14) was used for J = 4�3 and alma.out.11 (alma.out09) for J = 7�6.

3http://home.strw.leidenuniv.nl/ moldata/radex.html
4http://casa.nrao.edu/
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Configurations were chosen to provide optimal sensitivity and signal-to-noise to detect the

planet. We add realistic thermal noise with 0.25 mm precipitable water vapor, and then

reconstruct the image using CLEAN applied with natural weighting. The synthesized beam

of the simulated observations is typically between 0.001 and 0.002. The results of the simulated

line observations (with noise) are shown in Figure 3.11 for the dp = 10 AU planet, Figure 3.12

for the dp = 20 AU planet, and Figure 3.13 for the dp = 30 AU planet.

In most cases, the emission from the planet is di�cult to disentangle from the emission

originating from the disk. However, the planet’s sublimation e↵ects are confined to a ±30�

azimuthal extent, which leaves the remaining ⇠ 300� as a counterpoint against which we

can compare. To better isolate the signature of the planet (without making use of a priori

knowledge of the planet’s location), we average the emission from the entire disk in annuli to

estimate the radial line emission profile of the circumstellar disk (Figure 3.11, 3.12, and 3.13,

middle row). Then, using the average disk profile, we subtract o↵ the smooth background

component from the simulated observation and examine the residual features. This technique

will only work if the asymmetric feature is small and/or weak relative to the disk’s emission,

otherwise a median or averaging azimuthally restricted annuli (to mask out the feature)

should be used instead. Though this system is face-on, the technique would similarly work

for systems that are not face-on if the inclination is known, i.e., by taking a projected annular

average.

The bottom row of Figures 3.11, 3.12, and 3.13 shows the residual emission, where the

planets location is circled in all of the panels. Without the additional knowledge of the

planet’s location, the signature in the J = 4 � 3 is not strong enough to identify emission

from the noise for the planet, primarily because of the high opacity of this line, which

partially hides the deep emission from the midplane. The lower opacity for J = 8 � 7 for

both isotopologues, however, makes for a substantially stronger signal from the planet, even

though the noise is substantially higher at these frequencies. The main limitation is the

extremely high sensitivity required to measure the small fractional change in the emission
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Figure 3.11 Select emission lines for the planet at dp = 10 AU. The top row shows 10h sim-
ulated observations of the indicated species as velocity integrated line emission. The middle
row plots the annular averaged emission profile, that is representative of the background
disk. The bottom row shows the residual between the full disk simulation (top) and the
averaged profile (middle), highlighting the asymmetric emission. Contours for the residual
plots are 3� and 5� (where applicable). The magenta circle highlights the location of the
planet.
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Figure 3.12 Select emission lines for the planet at dp = 20 AU. Panels are the same as for
Figure 3.11.
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Figure 3.13 Select emission lines for the planet at dp = 30 AU. Panels are the same as for
Figure 3.11.
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signature from the bright circumstellar disk emission.

Because in our models the HCN abundance is highest along the walls of the gap near

the planet, the face-on inclination provides the largest column density due to the planet.

However, if a more inclined viewing geometry may allow direct imaging of the gap wall

depending on the overall scale height of the disk. We examined emission simulations of a

disk oriented at 60� with the planet at 90� from the projected rotation axis (in the gap

corner), and were unable to recover any emission from the planet. If the planet is on the

far-edge of the disk such that the outer gap wall is more directly viewable, and the emission

signature may be observable but only for a fraction of the orbit. Thus low inclination (face-

on) disks are favorable for planet searches with chemistry.

3.6 Discussion & Conclusions

We have examined the chemical structure of simple toy models of a protoplanetary disk

heated by two sources, the central star and an embedded, luminous young proto-Jupiter

accreting at Ṁ = 10�8 M� year�1. Chemical species with intermediate freeze-out tem-

peratures, around ⇠ 40 K, will be particularly useful tracers of the additional planetary

heating, as the midplane will be colder than 40 K outside of R & 5 AU. A planet in a

Hill-radius sized gap will heat the gap edges by ⇠ 10 � 20 K, which will sublimate certain

species and greatly enhance the column density of these species locally. These changes in

column density will translate to observable signatures in the circumstellar disk emission,

which will appear as emission line asymmetries. Such asymmetries can be highlighted by

subtracting o↵ the azimuthally averaged line brightness profile of the circumstellar disk. We

found that HCN isotopologues are a particularly robust tracer of the heating e↵ects of the

planet. Additionally, multiple lines of HCN should be detectable, which will provide addi-

tional physical information (temperature) about the planet’s local environment. In addition

to the excitation information a↵orded by molecular line observations, the use of gas tracers

(as opposed to continuum) will also provide spectral information that can be used to look
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for velocity substructure near the planet. This technique is most useful for planets between

R ⇠ 10�30 AU, where the inner disk is innately too warm to provide su�cient temperature

contrast, and planets in the outer disk are expected to carve larger gaps (have larger RHill),

and as a direct consequence the planet’s heating of the disk is more diluted at larger radii.

The assumed accretion rate is on the high end of the range for quiescent planetary

accretion as predicted by models, Ṁ = 10�10
�10�8 M� year�1. The corresponding accretion

luminosity, Lacc = 5⇥ 10�4 L�, however, is similar to that observed for the tentative LkCa

15 planet. Furthermore, if young planets undergo frequent accretion outbursts (increasing

the planet’s luminosity by many orders of magnitude, see Lubow and Martin, 2012) and the

cadence of such outbursts is competitive with the chemical timescales, the region a↵ected

by the planet might be much larger and more easily detectable.

One simplification in the present models is the use of a constant gas-to-dust mass ratio of

100. Disks are observed to have a deficit of small dust grains in their upper layers, attributed

to the settling of grains from the surface into the midplane (Furlan et al., 2006). One of

the overall e↵ects of settling is to create a warmer disk, where stellar radiation penetrates

deeper. If the disk becomes too warm, ice sublimation due to the planet may be less e↵ective

and one would have to i) observe gas-phase tracers with relatively higher binding energies

to achieve the same contrast between the planet and the background disk or ii) look for

planets at larger radii where the circumstellar disk is cooler. The addition of dust mass (in

particular dust grain surface area) in the midplane will also increase the rate of absorption

onto grains (i.e., decrease the freeze-out time) and as a consequence, this may help reduce

the e↵ects of shear by disk rotation. On the other hand, if small grains are quickly converted

to large grains with low surface area to mass ratios, then the freeze-out time will increase,

and there may be a lag in the removal of planet-desorbed molecules from the gas phase thus

spreading out the thermal e↵ect of the planet over a larger area (see below).

We have also used a simplified density model in the present calculations. Massive planets

will gravitationally interact with the circumstellar disk, generating density waves that can
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form spiral arms, changing the disk’s radial and azimuthal density structure (see the review

of Kley and Nelson, 2012). Planets can also excite vortices, creating large azimuthal pressure

traps, observationally seen as asymmetries in the dust distribution (as seen in IRS 48; van

der Marel et al., 2013). Furthermore, the presence of the gap exposes the top of the outer

gap edge to direct stellar irradiation, which enhances heating near the gap at the disk

surface (Jang-Condell and Turner , 2012). While the latter e↵ect is azimuthally symmetric,

the heating can be locally exacerbated by the presence of a massive planet perturbing the

vertical disk structure, creating local hot/cold spots near the stellar-irradiated surface at

the planet’s location (Jang-Condell , 2009). We emphasize that all of these planet induced

structures/physical e↵ects can happen in concert with planet-heating and ice-desorption

in the midplane. The presence of spiral arms can be potentially confirmed as planetary

in origin if associated with a warm accreting source. Furthermore, the gap-edge heating

occurs primarily at the surface of the disk, away from the planet’s primary e↵ects near the

midplane, for which the use of spectral lines with high critical densities can help mitigate.

Finally, the concentration of dust in pressure bumps can alter the chemical timescales such

as the freeze-out time, though it should be noted that the small grains (which dominate the

freeze-out given their high surface area to mass ratio) are still azimuthally distributed in

IRS 48, providing a substrate for freeze-out. Thus ideally one would find evidence of planets

through multiple signatures, both chemical and physical.

Finally, we have assumed very simple adsorption/desorption physics, with a single HCN

binding energy. However, in reality, the HCN ice is expected to be mixed with less volatile

ices, such as H2O or CH3OH. Trapping can thus increase the desorption temperature to

that of the strongly bound ice, ⇠ 5000 K (e.g., Sandford and Allamandola, 1990; Collings

et al., 2004), reducing the e↵ects predicted in this Chapter. How trapping mediates the e↵ect

will essentially depend on how ices were initially deposited on the grain surface substrate,

whether simultaneously or sequentially.

Finally, the primary (sublimated) species can trigger additional chemical processing, cre-
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ating so-called “secondary” planet tracers. These secondary products may be even brighter

than the primary products; however, to fully characterize them we must take into account

the di↵erential rotation of the disk, which is beyond the scope of the present Chapter. If the

timescales for secondary product formation are a substantial fraction of the orbital time, the

local e↵ects may be sheared out over a large azimuthal range, i.e., as an “arc.” If the rele-

vant chemical timescales are much longer than the orbital time, the emission signature of the

planet will become a ring (or double ring) at the gap edges. However, in the simple case of

rapid sublimation/condensation, the chemical signature is predicted to “follow” the planet,

implying that we will be able to re-observe and confirm that the emission is associated with

the planet as it traverses its orbit. Furthermore, we can look for additional signatures of the

presence of the young planet, including continuum emission from the circumplanetary disk

itself (Zhu, 2015).
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CHAPTER IV

Exclusion of Cosmic Rays in Protoplanetary Disks:

Stellar and Magnetic E↵ects

4.1 Preface

The following work appears in the Astrophysical Journal, Volume 772, 5, 20 pp. (2013).

The work is co-authored by Fred C. Adams1 and Edwin A. Bergin2. The paper is copyright

2013, the American Astronomical Society, reproduced here under the non-exclusive right of

republication granted by the AAS to the author(s) of the paper.

4.2 Abstract

Cosmic rays (CRs) are thought to provide an important source of ionization in the out-

ermost and densest regions of protoplanetary disks; however, it is unknown to what degree

they are physically present. As is observed in the Solar System, stellar winds can inhibit the

propagation of cosmic rays within the circumstellar environment and subsequently into the

disk. In this work, we explore the hitherto neglected e↵ects of cosmic ray modulation by both

stellar winds and magnetic field structures and study how these processes act to reduce disk

1Department of Physics, University of Michigan, 450 Church St, Ann Arbor, MI 48109
2Department of Astronomy, University of Michigan, 500 Church St, Ann Arbor, MI 48109
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ionization rates. We construct a two-dimensional protoplanetary disk model of a T-Tauri

star system, focusing on ionization from stellar and interstellar FUV, stellar X-ray photons,

and cosmic rays. We show that stellar winds can power a Heliosphere-like analogue, i.e., a

“T-Tauriosphere,” diminishing cosmic ray ionization rates by several orders of magnitude at

low to moderate CR energies (ECR  1 GeV). We explore models of both the observed solar

wind cosmic ray modulation and a highly simplified estimate for “elevated” cosmic ray mod-

ulation as would be expected from a young T-Tauri star. In the former (solar analogue) case,

we estimate the ionization rate from galactic cosmic rays to be ⇣CR ⇠ (0.23�1.4)⇥10�18 s�1.

This range of values, which we consider to be the maximum CR ionization rate for the disk,

is more than an order of magnitude lower than what is generally assumed in current models

for disk chemistry and physics. In the latter elevated case, i.e., for a “T-Tauriosphere,” the

ionization rate by cosmic rays is ⇣CR . 10�20 s�1, which is 1000 times smaller than the

interstellar value. We discuss the implications of a diminished cosmic ray ionization rate on

the gas physics by estimating the size of the resulting MRI dead zones. Indeed, if winds

are as e�cient at cosmic ray modulation as predicted here, short-lived radionuclides (now

extinct) would have provided the major source of ionization (⇣RN ⇠ 7.3 ⇥ 10�19 s�1) in the

planet-forming zone of the young Solar Nebula.

4.3 Introduction

Ionization is one of the most fundamental processes that drives the physics and chemistry

of young protoplanetary disks. From the physical perspective, processes such as accretion and

planet formation depend crucially on the ability of the disk to transport angular momentum.

The primary mechanisms posited for transport are gravitational instability (Cameron, 1978;

Boss , 1997) and the magnetorotational instability (MRI; Velikhov , 1959; Chandrasekhar ,

1960; Balbus and Hawley , 1991). For disks with masses similar to that of the minimum mass

Solar Nebula (Md . 0.05M�;Weidenschilling , 1977) gravitational instability is not expected

to be e�cient and thus MRI is thought to drive angular momentum transfer. However,
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for MRI to operate, the predominantly neutral disk must be su�ciently coupled to the

magnetic fields through frequent ion–neutral collisions. Therefore ions are essential in setting

the kinematic and turbulent properties of the disk, in turn impacting important physical

processes such as accretion onto the star and planet formation. Indeed, it has been suggested

that low-ionization MRI-inactive regions of the disk, a.k.a. “dead zones” (Gammie, 1996;

Matsumura and Pudritz , 2003), provide a favorable safe haven for planetesimal formation

from dust coagulation (Gressel et al., 2012).

Futhermore, ionization plays an important role in the heating of circumstellar gas. Mod-

els of ionization by cosmic rays and X-rays have shown that the primary and secondary

electrons generated in these processes can be a significant source of heating through inelastic

collisions with gas molecules (Glassgold and Najita, 2001; Glassgold et al., 2004; Nomura

et al., 2007; Glassgold et al., 2012). This additional heating source can significantly raise

gas temperatures in the innermost radii and the tenuous surface layers of the disk, thereby

influencing the strength and opacity of the observed emission lines.

Finally, ions are critical for powering gas-phase chemistry, which proceeds predominantly

through ion-neutral reactions – the main chemical pathways in the interstellar medium. At

low temperatures (T < 50 K), ion–neutral reactions typically have reaction rates orders

of magnitude faster than neutral–neutral reactions (Watson, 1976), and therefore are the

dominant drivers towards gas-phase complexity and enhancing deuteration, e.g., though

reactions with H2D+.

The circumstellar molecular reservoir of the disk will eventually provide the material

that will feed young proto-Jupiters, thereby setting the initial chemical composition of the

gas-giants. The turbulent properties of the disk also a↵ects the e�ciency with which the disk

forms rocky planets and gas-giant cores (e.g., Gressel et al., 2012), impacting the formation

of smaller, Earth-like planets. As a result, ions, through dynamical, thermal, and chemical

mechanisms, influence all aspects of planet formation.

The primary sources of ionization present in the disk environment include stellar and
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interstellar UV radiation, stellar X-rays, decay of short-lived radionuclides, cosmic rays (CR),

and thermal ionization. In the surface layers and close to the star (R . 0.5 AU), stellar UV

and X-ray photons are the dominant ionizing agents. At large radii (R & 100 AU) and in the

dense disk midplane where the optical depth to stellar and interstellar radiation is extremely

large, it is often assumed that cosmic rays permeate material with column densities ⌃g . 100

g cm�2 (Umebayashi and Nakano, 1981), providing a base level of ionization and permitting

MRI driven turbulence in the outer disk (e.g., Gammie, 1996; Perez-Becker and Chiang ,

2011a).

The need for CR ionization presents an interesting question. First, it is seen that within

the Solar System the solar wind modulates CR protons with energies below ⇠ 1 GeV (Gleeson

and Axford , 1967, 1968; Webber and Lezniak , 1974) within a region called the Heliosphere

(Davis , 1955; Axford et al., 1963). Results from the Voyager spacecraft show the Heliosphere

extends out to distances of at least 121 AU (Krimigis et al., 2011; Decker et al., 2012), with

the true boundary yet to be crossed. Young stellar objects are intrinsically magnetically

active with significant mass-loss rates, and therefore it would be unsurprising for a young

star to produce an analogous region of decreased CR flux, i.e., a “T–Tauriosphere.” It is

important to note that the background CR flux in massive star-forming regions can have an

elevated CR flux, amplified by supernova interactions with nearby molecular clouds (Fatuzzo

et al., 2006).

Second, the star formation process is seen to reshape the magnetic environment (e.g.,

Girart et al., 2006), and as a result the presence of magnetic structure can also modify

cosmic ray propagation (Padovani and Galli , 2011; Rimmer et al., 2012). Therefore it is not

clear that cosmic rays are indeed present at rates predicted for the di↵use ISM (⇣CR ⇠ 10�16

s�1; McCall et al., 2003; Indriolo et al., 2007; Neufeld et al., 2010) or even at the levels

predicted for dense molecular clouds (e.g., ⇣CR ⇠ 3� 7⇥ 10�17 s�1; Black et al., 1990). It is

the latter rate that is typically adopted in simulations of MRI turbulence and circumstellar

chemistry.
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For the first time, this work explores the potential for stellar winds and magnetic fields

to exclude CRs from the protoplanetary disk environment. Although this e↵ect is extraor-

dinarily well-studied within our own Heliosphere, it is typically neglected in modeling of

circumstellar disks. Turner and Drake (2009) were the first to attempt to account for this

reduction by integrating the ISM cosmic ray spectrum above ECR � 100 MeV. As this

current Chapter shows, however, the exclusion of cosmic rays should be significantly more

e�cient and will reduce cosmic ray fluxes at all energies ECR. Here we examine how both

wind and magnetic processes modify the ionization rate in the deep planet-forming layers of

the disk and show how this shielding, in turn, can a↵ect the size of dead zones. This Chap-

ter is only the first step toward a full understanding of these processes. In Chapter 6, we

examine the e↵ects of cosmic ray exclusion on molecular ion chemistry and make predictions

for observable tests by the Atacama Large Millimeter/Submillimeter Array (ALMA).

The current Chapter is laid out as follows. In Section 4.4, we motivate the physical model

and discuss the sources of ionizing radiation present in the disk. In Sections 4.5 and 4.6,

we discuss the impact of stellar winds and magnetic fields on the cosmic ray ionization rate,

respectively. In Section 4.7, we examine the e↵ects of low ionization rates in the context of

dead zones. In Section 4.8, we discuss the possibility of additional ionization from the decay

of radionuclides. Finally, in Section 4.9, we summarize our results.

4.4 The Model

4.4.1 Physical Parameters

Physical models of the dust and gas in protoplanetary disks have become increasingly

complex (e.g., D’Alessio et al., 1998; Woitke et al., 2009; Fogel et al., 2011). However, in

this work we aim to isolate and demonstrate the e↵ects of modifications to the cosmic ray

flux and energy spectrum. To do this, we have created a generic model of a T-Tauri disk

and have altered the incident cosmic ray flux. While the structure will depend in detail
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Figure 4.1 Model a) gas density, b) dust density, c) dust temperature, d) gas temperature,
and e) integrated X-ray- and f) UV-radiation fields. The UV flux is integrated between 930
– 2000 Å and has a spectral shape of TW Hydra (Herczeg et al., 2002, 2004). The model
X-ray flux has a total luminosity of LXR = 1029.5 erg s�1 between 0.1 – 10 keV.
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on the assumptions made for this incident flux (e.g., additional gas heating produced from

secondary electrons), we have set out to understand the scope and intensity of cosmic rays

throughout the disk in the context of ionization.

With that established, we have created a 2D azimuthally symmetric model of a disk with

the radiation transfer capabilities of the TORUS code (Harries , 2000; Harries et al., 2004;

Kurosawa et al., 2004; Pinte et al., 2009). The 2D model structure and dust composition is

fixed and then passively irradiated by the central star as described in detail below. For our

fixed density structure we have implemented a simple disk model of the form presented in

Andrews et al. (2011):
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The first equation describes the radial surface density, a power-law with an exponential

taper, where ⌃c and Rc are the characteristic surface density and radius of the profile,

respectively. In this simple model, we mandate that both the gas and dust follow the same

radial surface density profile, with the critical dust surface density equal to ⌃d = ⌃g/100 as

per the standard ISM ratio. The values for the parameters used are outlined in Table 4.1

and are fixed unless otherwise noted.

Motivated by the Spitzer inference that small grains are not present in the upper layers of

protoplanetary disks, i.e., are settled (Furlan et al., 2006), we have incorporated the UV and

X-ray optical e↵ects of dust settling into our model. Following the prescription described in
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Andrews et al. (2011), we have used an approximation to include vertical size segregation

of dust grains by defining two distinct grain populations: one distribution corresponding

to large, settled millimeter-sized grains and a second corresponding to a small micron-sized

grain population, e.g., the “atmosphere.” Both the micron-sized grains and gas are dis-

tributed with a Gaussian profile of scale height h(R) given by Equation (4.2) where hc is the

characteristic scale height of the model and  is the power law dependence of the scale height

versus radial distance. The large grains are distributed over a smaller scale height �h. The

value of � < 1 is fixed to 0.2, or, equivalently, large grains are distributed over 20% of the

scale height of small grains. While the vertically integrated gas mass to dust mass ratio is set

to be 100, the gas to dust mass ratio is much larger in the surface layers and much smaller

in the midplane. This geometry is expected due to grains preferentially settling out from

the surface and increasing the mass of dust in the midplane, while simultaneously depleting

the surface of dust.

For the dust chemical composition, we implement a blend of 80% astronomical silicates

(Draine and Lee, 1984) and 20% graphite; the mix is not varied between di↵erent size

populations. Both dust populations (atmosphere and midplane) are described by an MRN

distribution (Mathis et al., 1977), e.g., n(a) / a�p where p = 3.5, and have a characteristic

minimum and maximum size amin and amax. The minimum size is furthermore fixed to be

amin = 0.005 µm across all populations. The small grains are broken up into two subsets,

one with amax = 1 µm corresponding to 15% small grains by mass and a second with

amax = 10 µm accounting for 85% of the mass in small grains. The large grains are a single

population with amax = 1 mm. We have mandated that the mass in large grains, f , is 85%

of the total dust mass, see Equations (4.3) and (4.4).

On this fixed model, TORUS solves for the dust thermal radiative equilibrium using

the Lucy method (Lucy 1999). For the central star, we adopt the following parameters:

M = 1.06 M�, R = 1.83 R�, and Te↵ = 4300 K. Furthermore, the dust temperatures

computed by TORUS are assumed to be equal to the gas temperatures. We find that this
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Table 4.1. Stellar and disk model parameters.

Stellar Model

Stellar Mass 1.06 M�
Stellar Radius 1.83 R�
Stellar Te↵ 4300 K
LUV 2.9 ⇥1031 erg s�1 a

LXR 1029.5 erg s�1

Disk Model

Rinner 0.1 AU
Router 400 AU
Mdust 3.9 ⇥10�4 M�
Mgas 0.039 M�
amax [atm.] 1µm (15%)

10µm (85%)
amax [midplane] 1 mm
amin 0.005 µm
f 0.85
� 0.2
 0.3
⌃c 3.1 g cm�2

Rc 135 AU
hc 12 AU

aAs computed from the observed FUV
spectrum of TW Hya integrated be-
tween 930 and 2000 Å (Herczeg et al.,
2002, 2004).
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assumption is acceptable as the bulk mass of the disk beyond R = 0.5 AU is well below

the temperature threshold for thermal ionization (T >1000 K; Fromang et al., 2002). To

check this assumption, we have computed a simple equilibrium gas temperature by balancing

heating from stellar X-rays against grain–gas collisional cooling (Glassgold and Najita, 2001;

Glassgold et al., 2004; Qi et al., 2006) and find that the majority of the disk is below the

thermal ionization threshold. For completeness, we show the calculated gas temperature

in Figure 4.1d., but emphasize that only the dust temperatures are used in the following

calculations as this work focuses on ionization in the densest material where the dust and

gas are thermally coupled. The density and thermal structure of the disk model are plotted

in Figure 4.1.

4.4.2 Disk Ionization Processes

4.4.2.1 Stellar Ionization

It is well known that young T-Tauri stars are bright X-ray and UV emitters (Feigelson

and Montmerle, 1999). This emission irradiates the circumstellar environment and drives

chemical, ionizing, and thermal physics. The radiation from the star reaches the flared disk

surface at a predominantly glancing angle and is scattered and absorbed by the circumstellar

dust and gas. While the tenuous disk atmosphere is bathed completely by stellar UV and X-

ray radiation, the large line-of-sight optical depths to the midplane hinder ionizing photons

reaching the very densest outer regions (Figure 4.1). It is thus important to model the

propagation of radiation in the disk as accurately as possible to determine the volume of

disk gas that is exposed to the stellar ionizing photons (e.g., Glassgold et al., 1997; Igea and

Glassgold , 1999). In this section we quantitatively show the relative contribution from each

of the dominant sources of ionization for our prototypical disk model.

To determine the position dependent UV and X-ray fields, we employ a Monte Carlo

radiative transfer code as described in Bethell and Bergin (2011a,b). For the input stellar

UV field, we adopt the observed spectrum of TW Hya (Figure 4.2; Herczeg et al., 2002,
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2004). The continuum opacity is set by the position dependent dust model and is computed

via the Monte Carlo code at eight discrete wavelengths and interpolated between the range

930-2000 Å. In addition to these continuum points, we include the Monte Carlo radiative

transfer of Lyman-↵ photons as described in Bethell and Bergin (2011a). In addition to

dust scattering, Lyman-↵ photons undergo resonant isotropic scattering o↵ hydrogen atoms,

and therefore to determine the location of this hydrogen scattering layer the equilibrium H

and H2 abundances are computed using the method of Spaans and Neufeld (1997) and H2

self-shielding functions of Tielens and Hollenbach (1985).

The methodology of the X-ray radiative transfer is similar to that of the UV and incorpo-

rates both absorption and scattering of the X-ray photons. We have used the updated X-ray

cross sections of Bethell and Bergin (2011b) that incorporate the recently updated solar

abundances of Asplund et al. (2009). Bethell and Bergin (2011b) found that even in the case

of a fully dust-settled disk there exists an X-ray opacity “floor” from the gas. Therefore,

while settling does decrease the X-ray opacity, it is reduced by at most a factor of two at ⇠

1 keV.

The input X-ray spectra were generated using the MEKAL model (Liedahl et al., 1995)

included in XSPEC (Arnaud , 1996) and correspond to a two-temperature optically thin

thermal plasma. In Figure 4.2, the black line corresponds to a “characteristic” T-Tauri X-

ray spectrum as measured at the stellar surface with temperature components corresponding

to T = 9 MK and 30 MK respectively (Getman et al., 2005; Preibisch et al., 2005). On the

same plot, the light grey line corresponds to the spectral shape typical of a T-Tauri in a

X-ray high-flaring state (Getman et al., 2008), normalized to the same luminosity as the

quiescent spectrum with temperature components of T = 12 MK and 100 MK respectively.

The second spectrum is characteristic of T-Tauri stars with high X-ray luminosities

(LXR & 1031 erg s�1) and is thought to be the result of high stellar X-ray flare activity.

Observations of X-ray flaring sources show that during this period the X-ray spectrum fur-

thermore becomes characteristically harder (Getman et al., 2008). In the following calcula-
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Figure 4.2 Model UV and X-ray spectra from the central star taken at the stellar surface.
Top: Observed FUV spectrum of TW Hya (Herczeg et al., 2002, 2004); note the strong Ly-↵
emission at 1216 Å. Bottom: Model X-ray spectra as described in Section 4.4.2.1. The black
line shows a “characteristic” T-Tauri X-ray spectrum and the grey line corresponds to a
highly flaring T-Tauri star. Both spectra are normalized to LXR = 1029.5 erg s�1. We note
that both models rise below E ⇠ 1 keV because we do not a include foreground absorption
component in the model, typically required to reproduce observed foreground-extincted X-
ray spectra.
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tions we consider the “characteristic” (Fig. 4.2, black line) X-ray spectrum in our benchmark

model, but in Section 4.7.3 we consider the implications for an enhanced LXR and harder

X-ray spectrum.

The photon propagation is treated using the Monte Carlo code of Bethell and Bergin

(2011b), where X-ray photons originate from the central star and then scatter/absorb as

they propagate through the disk. The radiative transfer is computed at energies ranging

E = 1 – 20 keV in 1 keV intervals. We note that some previous papers have adopted

the assumption that X-rays are generated in accretion streams originating high above the

stellar surface and therefore are able to “shine down” onto the disk. For example, Igea and

Glassgold (1999) assume X-rays originate at a height of z ⇡ 10 R� above the midplane.

However, even if this is the case, beyond 1 AU the di↵erence in incidence angle between

photons coming from the stellar surface and from an accretion stream would be . 3�; thus,

the approximation of a point source origin is satisfactory beyond 1 AU. The results of the

UV and X-ray transfer are shown in Figure 4.1 (e and f).

Ultraviolet ionization (with rate ⇣UV) acts largely on carbon in the upper atmosphere

of the disk. As an upper limit we assume all carbon is in C or CO with �C = 1.4 ⇥ 10�4

and approximate the C–CO transition layer by balancing CO photodissociation with CO

formation (Nelson and Langer , 1997). The UV volumetric ionization rate (⇣UV multiplied

by the number density of carbon atoms), in units of s�1 cm�3, is shown in Figure 4.3 (a).

The volumetric ionization rate is a rough proxy for the electron production rate per unit

volume (as opposed to comparing the less intuitive ionization rate per C against X-rays or

cosmic rays per H2).

X-ray photons have a higher penetration column compared to UV and can ionize denser

regions, acting primarily on H2 and He. We note that while gas and metals in the dust

provide an important source of X-ray photon extinction, the ionization of H2 produces the

bulk of the electron/ion abundance, along with He to a lesser extent. In Figure 4.3 (b) we

plot the volumetric ionization rate due to X-ray ionization of H2 using the X-ray ionization

83



100 200 300

R (AU)

0

50

100

150

200

Z
(
A

U
)

G0

=
1

G0

= 3000

a) Stellar Ultraviolet

100 200 300

R (AU)

b) Stellar X-rays

100 200 300

R (AU)

c) Cosmic Rays

-14.2

-13.2

-12.1

-11.1

-10.1

-9.1

-8.1

-7.0

-6.0

-5.0

l
o
g
(
I
o
n

i
z
a
t
i
o
n

s
[s
�
1
cm

�
3
])

Figure 4.3 Relative contribution of stellar UV, X-rays, and cosmic rays to the total ion-
ization rate. Colored contours show the volumetric ionization rate due to each source
on the same scale. Hatched region delineates region of the disk where each respective
source of ionization provides > 30% of the total ionizations per unit time per unit vol-
ume. The filled contours are a) FUV ionization of C, nC⇣UV; b) X-ray ionization of H2,
nH2⇣XR; c) cosmic ray ionization of H2, nH2⇣CR, for a standard ISM cosmic ray ionization
rate ⇣CR = 5⇥ 10�17 exp [�⌃/(96 g cm�2)]. See Fig. 4.4 for details of the G0 contours (thick
purple lines).

cross sections of Igea and Glassgold (1999) for the case of a settled (segregated) disk and

assume an energy �✏ = 37 eV is necessary to produce an ion pair (Shull and van Steenberg ,

1985; Voit , 1991; Igea and Glassgold , 1999), as a result, a 1 keV X-ray photon produces ⇠

27 ion pairs.

Taking the TW Hydra FUV field, LXR = 1029.5 erg s�1, ⇣CR = 5 ⇥ 10�17 s�1 H�1

and ⌃CR = 96 g/cm2 (see Section 4.4.2.3 regarding CR parameters), we plot the volumetric

ionization rate from each major ionization source on the same scale (Figure 4.3). The surface

is clearly dominated by UV ionization of carbon (left panel), while at a deeper intermediate

layer X-rays dominate (center panel). The black hatched regions indicate where each source

provides at least 30% of the total ionizations respectively.

84



4.4.2.2 Interstellar Ultraviolet Ionization

In addition to ultraviolet irradiation from the central star, the interstellar radiation field

(ISRF) provides an external source of UV ionization. For an isolated disk or low mass star

forming region the interstellar field provides an omnidirectional incident UV flux
R
F⌫d⌫ =

1.6 ⇥ 10�3 erg cm�2 s�1 between 912 – 2000 Å, corresponding to G0 = 1 (Habing , 1968). For

comparison, the integrated flux from the star at a distance of 100 AU has typical values of

G0 = 240 – 1500 (Bergin et al., 2004), dropping o↵ as / r�2. However, for a disk in a stellar

cluster G0 can be much higher, with values ranging from 300 – 30,000, with a typical value of

3000 (Fatuzzo and Adams , 2008). As a result, the interstellar field in a cluster can rival the

stellar FUV radiation in the outermost regions of the disk. This complication will certainly

have important chemical implications but in this section we focus on the implications for

outer disk ionization.

To address this problem we took a subsample of points throughout the disk and computed

a weighted optical depth evenly spaced over 4⇡ steradians. The details of this approach are

discussed in Appendix A. Unlike the case of stellar FUV ionization, it is not carbon, but

rather sulfur that feels the interstellar UV ionization in the outer disk edge. This di↵erence

arises because in the outer disk, CO self-shielding severely limits the thickness of the CII

ionization front. Sulfur self-shields as well, but at a much less e�cient rate (Perez-Becker and

Chiang , 2011b), and therefore the thickness of the SII front is set instead by dust attenuation.

Combining the stellar and interstellar UV fields, we compute a simple equilibrium sulfur

chemistry (see Appendix B) to determine the volumetric ionization rate arising from the

ISRF.

We re-plot the combined fractional contribution from stellar FUV and interstellar FUV

in Figure 4.4 (see also Figure 4.3 (a), purple lines). We consider both an interstellar average

case G0 = 1 and an enhanced external field, G0 = 3000. The G0 = 1 case is very similar

to the star alone, while the G0 = 3000 case shows that for an elevated interstellar flux

the ionization from the FUV can become significant. We note the exact location of the
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ISRF boundary depends on one’s assumptions, namely the sulfur chemistry, which we have

significantly simplified. Nonetheless, the interstellar radiation field, especially in the cluster

environment, can create a thin ionized layer on the disk exterior and enhance the surface

ionization (Figure 4.4, bottom panel) and can even become the dominant source of ionization

in the absence of cosmic rays.

4.4.2.3 Cosmic Ray Ionization

Galactic cosmic rays are high energy atomic nuclei, largely protons (87%) with 12% alpha

particles and the remaining ⇠ 1% as heavier atoms. In our Solar System, galactic CRs are

strongly modulated by the solar wind making direct measurements of CR spectrum di�cult,

especially at low energies (see also Nath et al., 2012). The extrasolar ISM CR ionization

rate ⇣CR has been studied using various observational and theoretical techniques (e.g., using

molecular ion emission such as HCO+ and H+
3 , see discussion and references in Indriolo and

McCall , 2012) as well as towards sources spanning vastly di↵erent physical environments.

Values as high as ⇣CR ⇠ 10�15 s�1 have been measured for di↵use cloud sources (McCall et al.,

2003; Shaw et al., 2008) while values as low as ⇣CR ⇠ 1 ⇥ 10�17 s�1 have been derived for

dense cores (e.g., Caselli et al., 1998). In Figure 4.3, we use typical values ⇣CR = 5⇥ 10�17

s�1 H�1 and ⌃CR = 96 g/cm2 (Umebayashi and Nakano, 1981). It is important to point

out that this attenuation column is significantly higher than both FUV photons (10�3 g

cm�2) and 1 keV X-rays (0.5 g cm�2), allowing only cosmic rays to penetrate the densest

gas. Furthermore, the disk is isotropically bombarded by cosmic ray particles, causing a

greater volume of gas to be more readily ionized by cosmic rays (see Figure 4.3). We note

that recent measurements and models have revised both the value of the CR ionization rate

and functional form of ⇣CR(NH2) (discussed below), but for the purposes of illustration in

Figure 4.3 we adopt the standard Umebayashi and Nakano (1981) values.

One explanation for the range in measured cosmic ray ionization rates is variations in

the local supernova frequency and proximity, as well as magnetically controlled propagation
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Figure 4.4 Volumetric ionization rate (filled color contours) from stellar FUV and interstellar
FUV combined for the cases of: a) a typical external field, G0 = 1, and b) an elevated cluster-
like field, G0 = 3000. The black hatched lines denote the region where the total (stellar plus
external) FUV flux provides > 30% of the ionizing radiation. The G0 = 1 case is similar to
the star-only, while the cluster scenario provides a significant source of ionization both at
the surface and outer edge of the disk.
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within molecular clouds (Fatuzzo et al., 2006). Padovani et al. (2009) proposed that the range

in measured rates across di↵erent types of sources can be reconciled by accounting for the low

energy cosmic rays (ECR < 100 MeV) and their attenuation with column density. At high

densities, Umebayashi and Nakano (1981) find that cosmic rays attenuate exponentially with

a critical mass column of 96 g cm�2. To reproduce observations in both low density (di↵use

clouds) and high density regimes (cores), Padovani et al. (2009) found a better fit to their

numerical calculations by using combined power law and exponential terms with relative

contributions depending upon choice of incident spectrum, JCR,0(E). The full functional

form of this expression is given by :

⇣CR =
⇣pow,0 ⇥ ⇣exp,0

⇣exp,0

⇣
N(H2)

1020cm�2

⌘↵
+ ⇣pow,0

h
exp

⇣
⌃
⌃0

⌘
� 1
i , (4.5)

which reproduces the power law behavior at low densities and exponential behavior at high

densities (Padovani et al., 2013). The relation between surface and column density is given

by ⌃ = µmpN(H2) where mp is the proton mass and µ = 2.36.

There are four parameters in this fitting function: ⇣pow,0, ⇣exp,0, ↵ and ⌃0. For a given

incident CR spectrum, these parameters describe the shape of the integrated CR ionization

rate ⇣(NH2) =
R
4⇡�ionJ(E)dE. Because the cosmic ray energy spectrum is only marginally

constrained at low energies, Padovani et al. (2009) consider two possible extremes for the

local interstellar cosmic ray spectra (LIS) shown in Figure 4.5. The first of these is the

LIS spectrum determined by Webber (1998) [W98] derived from extrapolated Voyager and

Pioneer measurements up to 60 AU – generally considered to be the absolute minimum case.

The second spectrum is from Moskalenko et al. (2002) [M02], which reproduces a large span

of supplementary data including the proton, antiproton, and alpha particle spectra as well

as the di↵use �-ray background. We note that both spectra have been extrapolated at low

energies, ECR . 10 MeV, by Padovani et al. (2009) from the original published calculations

in the spirit of providing benchmark values for the incident cosmic ray spectra on a molecular

88



cloud.

For each of these LIS spectra (solid and dot-dash magenta lines, Fig. 4.5) Padovani et al.

(2009) then numerically compute and fit ⇣CR(NH2) using the function provided in Equa-

tion (4.5). Table 4.2 lists the fitting coe�cients for each LIS spectrum (see also Figure 4.5).

We note that these values have been updated and refit from the original Padovani et al.

(2009) values (see Padovani et al., 2013).

The ISM value of ⇣CR is, however, likely not appropriate for the circumstellar disk en-

vironment. Winds from young stars will be able to shield the disk from cosmic rays at

magnitudes that will likely far exceed that of the solar wind due to rapid stellar rotation

and strong stellar magnetic fields (Svensmark , 2006; Cohen et al., 2012). In the following

section we apply the results of Padovani et al. (2009) to compute ⇣CR(NH2) incident on the

circumstellar disk for various degrees of wind-modulation e�ciency, both at solar and more

extreme levels.

4.5 Exclusion of Cosmic Rays by Stellar Winds

4.5.1 Modulation By the Solar Wind

As described in Section 4.4.2.3, our solar wind drives out low energy (E . 1 GeV) cosmic

rays within a region called the Heliosphere, the very CRs responsible for the bulk ionization

of H2 in the ISM. Furthermore, the degree of modulation by the solar wind varies over the

solar magnetic activity cycle by an order of magnitude at energies below ECR < 100 MeV

(Figure 4.5). Understanding the detailed physics of cosmic ray modulation is still an open

question (see review by Florinski et al., 2011). To leading order, the dense slow solar wind

originates from the hot (⇠ 1 – 2 MK) solar corona and travels at the Sun’s escape velocity,

carrying with it magnetized plasma frozen-in from the surface of the Sun. The density of

the wind and magnetic field strength decrease with distance from the Sun until the point

at which pressure from the ISM overcomes that of the expanding solar wind. It is here
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the solar wind is compressed resulting in a magnetic “pile-up,” forming a barrier which

prevents low energy CRs from freely streaming through the Solar System (Weymann, 1960;

Burlaga et al., 2005; Opher et al., 2011). Young, magnetically active rotating T-Tauri stars

are likewise expected to have stellar winds (Guenther and Emerson, 1997; Vidotto et al.,

2009) in addition to disk winds (Hollenbach et al., 2000) or X-winds (Shu et al., 1994), and

therefore it would be unsurprising for T-Tauri stars to similarly drive out low energy cosmic

rays within an analogue “T-Tauriosphere.” Previous papers have examined reductions in the

cosmic ray flux for the early Sun in context of the young, . 2 Gyr-old Earth (Svensmark ,

2006; Cohen et al., 2012) and find that even at this relatively late stage their models predict

substantial reduction in cosmic ray flux.

It is important to note that even though the mechanism by which the magnetic field is

generated on the surface of a T-Tauri star is di↵erent from a main sequence dwarf like our

Sun, the ability to drive and the properties of a stellar wind simply depends on the presence

of a corona, the mass of the star, stellar rotation, and the general magnetic topology on

the surface. Bright X-ray emission from T-Tauri stars is thought to arise from both the

stellar corona as well as an accretion shock (Kastner et al., 2002; Brickhouse et al., 2010).

From X-ray measurements, typical temperatures for T-Tauri star’s coronas can exceed 10

MK (Feigelson and Kriss , 1981; Preibisch et al., 2005; Flaccomio et al., 2012) compared to

the relatively cooler 1-2 MK solar corona. Such hot coronae are thought to be “enhanced”

versions of the Sun’s corona (Feigelson and Kriss , 1981; Feigelson and Montmerle, 1999;

Favata and Micela, 2003). A detailed discussion of the physics behind the link between the

solar corona and generation of the solar wind can be found in Gombosi (2004); but in brief,

the single most predictive factor of the e�ciency of cosmic ray modulation by the solar wind

is the magnitude of the magnetic activity at the solar surface. Between solar minimum and

maximum, the cosmic ray flux observed at Earth varies by over an order of magnitude (see

Figure 4.5). Additional parameters, like the solar wind speed, the degree of spiral wrapping

in the wind, and mass loss rate (Ṁ), are, to leading order, set by the escape velocity of the
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star, the stellar rotation rate and surface magnetic topology (e.g., Cohen, 2011).

By using our knowledge of how cosmic ray modulation by winds operates in our only

measured example, the Solar System, we can begin to learn something about how stellar

wind modulation may operate and impact the circumstellar environment in other systems.

In the following section we use the results of Usoskin et al. (2005) to make simple predictions

for scaled-up degrees of cosmic ray modulation. To determine ⇣CR(NH2) in the extreme case

of a T-Tauri star, we compare solar cosmic ray modulation against various cyclical solar pa-

rameters relating to the solar magnetic activity. We then extrapolate these results to obtain

a starting point estimate for the degree to wind modulation of cosmic rays operates in the

environment of a T-Tauri star. Such approximations will help illuminate our understanding

and interpretation of ionization measurements in disks, which with existing limits on H2D+

towards disks already point to ionization rates lower than ISM (Chapillon et al., 2011).

4.5.2 The Cosmic Ray Spectrum in a T-Tauriosphere

While the details of the mechanisms of cosmic ray exclusion are still an active area of

research, there is fortunately abundant time-resolved data of the Sun. Sunspots have been

monitored since the time of Galileo, and the Wilcox Solar Observatory has conducted daily

observations of the Sun’s global magnetic field since 19753. Space weather is monitored

on the timescale of minutes and cosmic ray rates have been monitored hourly (or more

frequently) since 19644. Such a wealth of time sequence data is useful because properties

of the solar wind – the excluder – are set largely by the Sun. The winding of the field is

determined by solar rotation; the magnetic field is for the most part frozen in from the Sun’s

surface. The magnetic activity cycles on the Sun are imprinted on the solar wind, and in

turn directly impact the CR-modulating ability of the wind.

To empirically relate solar activity and the strength of cosmic ray modulation by stellar

3http://wso.stanford.edu/
4http://cosmicrays.oulu.fi
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winds we use a parametric form of the di↵erential energy spectrum of cosmic rays JCR(E)

at 1 AU. The expression below is commonly known as the “force-field” approximation, and

it provides a very useful way to describe the observed shape of the cosmic ray spectrum

throughout the solar cycle using a single parameter, the modulation potential � (Usoskin

et al., 2005) with good astrophysical agreement at heliocentric distances, D, near D = 1 AU

(e.g. Caballero-Lopez and Moraal , 2004; Usoskin et al., 2005). Caveats of this approximation

are discussed later in this section. The modulated cosmic ray proton spectrum JCR(E) in

units of cm�2 s�1 sr�1 eV/nucleon�1 is:

JCR(E,�) = JLIS,CR(E + �)
E(E + 2Er)

(E + �)(E + �+ 2Er)
, (4.6)

where

JLIS,CR(E) =
1.9⇥ 10�9 P (E)�2.78

1 + 0.4866 P (E)�2.51
, (4.7)

with P (E) =
p

E(E + 2Er) and the proton rest mass energy Er = 0.938 GeV. In Equa-

tions (4.6) and (4.7), E is in GeV per nucleon and the modulation potential � is in GeV. We

note that values of the modulation potential � in the literature and in this work are most

frequently given in MeV, but in the commonly used functional form reproduced in Equa-

tion (4.7) energy must be provided in GeV. The LIS spectrum assumed by Burger et al.

(2000) [B00], given in Equation (4.7), is typically used and is shown in Figure 4.5. Since

this function is used to fit cosmic ray data, we stress that the specific assumption for JLIS

does not matter so long as the fit is accurate and it is not changed (it acts as a normalizing

factor). Indeed, according to Usoskin et al. (2005) di↵erent definitions for � have led to

confusion in the literature, and in that work the authors attempt to reconcile this confusion

and reconstruct a large time baseline of � values, looking at the longterm variations in �

over roughly five solar cycles (see Fig. 7 of that work).

In addition to variations over the solar cycle, the modulation e�ciency of the wind varies

with heliocentric distance. For example, the cosmic ray flux at ECR = 300 MeV varies
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from D = 1 AU to D = 80 AU by a factor of ⇠ 6 (Caballero-Lopez and Moraal , 2004).

We emphasize that the force field approximation is indeed a simple approximation, which

tends to over predict the cosmic ray flux at low energies at large heliocentric distances. For

example, at D = 60 AU, the force field approximation over predicts the 20 MeV CR proton

flux by a factor of ⇠ 4.2⇥ as compared to a full numerical model of the one-dimensional

cosmic ray transport equation (see Fig. 2 of Caballero-Lopez and Moraal , 2004). For energies

above ECR & 80 MeV, however, the approximation improves significantly and the predicted

di↵erential cosmic ray fluxes are in agreement with the full numerical model to better than

20% accuracy. For our simple models we assume a constant modulated spectrum incident

on the disk as computed at D = 1 AU without radial variation; however, in Section 4.7.2,

we consider the e↵ect of a positive cosmic ray flux gradient on disk ionization.

To attempt to extrapolate the magnitude of modulation from solar values to the case of

a more magnetically active T-Tauri star, we have correlated the time aggregated values of

the modulation potential �(t) (Usoskin et al., 2005) against other time-resolved measured

solar quantities, including mean magnetic field strength on the Sun from the Wilcox Solar

Observatory data, number of sunspots from the SPIDR5 database (O’Loughlin, 1997), and

fractional area coverage of sunspots (Balmaceda et al., 2009) shown in Figure 4.6. Because

the mass loss rate in the solar wind is related to the coverage of open magnetic field line

regions (Cohen, 2011), tracing the correlation between � and the magnitude of the open |B|-

field component via solar coronal hole measurements would prove the most useful. Coronal

holes reveal regions where plasma can freely escape along open field lines, in contrast to

X-ray bright regions where the hot plasma is trapped. The time coverage of coronal hole

observations, however, cover just over one solar cycle (Insley et al., 1997), and therefore the

correlation cannot be accurately determined without a longer baseline of data. In Figure 4.6

we plot the solar mean magnetic field amplitude, the number of spots and the area of spot

5http://spidr.ngdc.noaa.gov/spidr/
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Figure 4.6 Time correlation of the cosmic ray modulation parameter � (Usoskin et al., 2005)
with other solar quantities: a) solar mean magnetic field from the Wilcox Solar Observatory,
b) number of sunspots (SPIDR; O’Loughlin, 1997), c) fractional area covered by sunspots in
millionths of the solar surface area (Balmaceda et al., 2009), and d) the correlation between
spot area and modulation parameter with a linear fit. Fit parameters listed at the bottom
right.
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coverage alongside � (blue curve in panels a, b, and c) as a function of time. By linking the

state of the solar magnetic activity with the modulation parameter, �, we can extrapolate �

to make a simple prediction for the degree of cosmic ray modulation for a more magnetically

active young star.

These quantities are convenient as they can be measured for other stars, specifically

magnetic field strength and spot coverage. Number of spots is less meaningful as T-Tauri

stars are suggested to have single spots covering large areas (Donati et al., 2007, 2011a,b,

2012). The magnetic field strengths on T-Tauri stars are complex, multicomponent and

span a large range in magnitude (see the overview in Johns-Krull , 2007). Recent work to

map photospheric magnetic topology on a handful of objects using spectropolarimetry (e.g.,

Donati , 2003; Donati et al., 2007) may allow us in the future to link coronal hole coverage to

radial field components on T-Tauri stars. For the time being, we are left with spot coverage

area as the proxy for magnetic activity and cosmic ray exclusion.

Fractional coverage by spots ranges from 3% to 17% and is time variable (Bouvier and

Bertout , 1989). Extrapolating the results in Figure 4.6 (d) yields cosmic ray modulation

parameter values of � = 4800 MeV, 9200 MeV, and 18,000 MeV for 2%, 4% and 8% spot

coverage respectively. Under the force-field approximation, these modulation parameters,

�, fully describe the shape of the di↵erential cosmic ray energy spectrum, JCR(E,�), given

in Equation (4.6). For spot coverage � 10% and a stellar X-ray luminosity LXR � 1029

erg s�1, the cosmic ray flux falls below the ionizing X-ray flux from the star and can be

neglected throughout the disk (see also Figure 4.3). Figure 4.7 shows the incident di↵erential

cosmic ray spectra JCR(E,�) from Equation (4.6) with the caveats outlined in Section 4.5.2

for modulation at solar minimum, solar maximum, T-Tauri minimum (2%), and T-Tauri

maximum (8%).

Using this simple empirical estimate, we find similar magnitudes of CR exclusion as the

theoretical models of Cohen et al. (2012) [C12] and Svensmark (2006) [S06], which predict

reduced cosmic ray fluxes at Earth under the conditions present for the young Sun (Y.S.), at
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Table 4.2. ⇣CR fitting parameters for di↵erent incident spectra shown in Figure 4.7, see
Eq. (4.5).

Model ⇣pow,0 ↵ ⇣exp,0 ⌃0

[s�1] [s�1] [g cm�2]

ISM M02 6.8⇥10�16 0.423 3.7 ⇥10�18 210
ISM W98 2.0 ⇥10�17 0.021 9.4 ⇥10�19 260
Solar Min 1.3 ⇥10�18 0.00 3 ⇥10�18 190
Solar Max 2 ⇥10�19 -0.01 8 ⇥10�19 230
T-Tauri Min 1 ⇥10�20 -0.03 2 ⇥10�19 270
T-Tauri Max 3 ⇥10�22 -0.03 2 ⇥10�19 270

age t = 0.8 Gyr. We fit and extrapolate their results using Equation (4.6) and show these fits

in Figure 4.7 (Y.S., dark pink lines) for comparison. While the specific flux of cosmic rays

entering a T-Tauriosphere depends on either simplifying assumptions, i.e., our “scaled-up”

Heliosphere approach, or the specifics of the detailed models, it is clear that cosmic rays are

likely excluded at a substantial degree, at least ⇠ 3 orders of magnitude below solar levels

for 1 MeV cosmic rays, and equivalently & 6 orders of magnitude below the inferred ISM

CR flux.

4.5.3 Extent of the T-Tauriosphere

How large do we expect the T-Tauriosphere, i.e., the circumstellar region of reduced

cosmic ray flux, to be? The Sun’s Heliosphere, for example, extends out to at least R ⇠ 120

AU. The boundary of the Heliosphere, called the Heliopause, is set roughly by the balance

of the outward magnetic and ram pressure from the solar wind and the external pressure

from the surrounding ISM. If the T-Tauriosphere only encompasses the inner regions of the

disk, the outer disk would be left fully exposed to galactic cosmic rays.

The external pressure from the ISM in the solar neighborhood is approximately PISM ⇠

B2
ISM/8⇡, where BISM ⇠ 3 – 10 µG. To estimate the outward pressure from a T-Tauri star’s

stellar wind we must make a few assumptions. For the internal magnetic and ram pressure

Pmag and Pram we must assume a wind flow velocity v, mass-loss rate Ṁ , and magnetic field
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results of Cohen et al. (2012) (� = 3500 MeV) and Svensmark (2006) (� = 17,500 MeV)
both for the 800 Myr-old Sun.
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dependence Bw. The flow velocity is typically of order the star’s escape velocity, and the

wind’s magnetic pressure is typically negligible at all radii compared to the ram pressure

(see below). The mass-loss rate is a bit more complicated and depends on whether the wind

is a stellar or disk wind. How a disk wind would interact with the T-Tauriosphere would

require a full MHD treatment and is thus beyond the scope of this Chapter. However, this

interaction could be important and could lead to more confined regions of CR exclusion or

potentially enhance the ability of winds (star and disk-driven) to modulate the CR flux.

The outward pressure can be written as Pwind = Pmag + Pram = Bw(R)2/8⇡ + Ṁv/4⇡R2.

The radial dependence of the magnetic field term depends on how tightly wound the wind

is; for example, a perfectly radially outward flowing wind would drop as B ⇠ R�2, but more

circumferentially wrapped wind would drop as only R�1, causing Pmag to drop as R�4 and

R�2 respectively. Moreover, such a highly wrapped wind would exclude galactic cosmic rays

even more e�ciently, therefore leading to even more severe modulation not considered here.

Sterenborg et al. (2011) created a grid of solar wind models to study the physical properties

of the stellar wind when the Sun was ⇠ 1 Gyr-old. That work found that the stellar wind

was typically slower, had higher mass-loss rates and was stronger magnetically than at the

present day, with typical values of v = 266 km/s, B = 0.25 mG, and Ṁ = 1.42⇥ 10�12 M�

yr�1 taken at ⇠ 1 AU respectively. At 1 AU the contribution from each pressure component

is Pmag = 2.3 ⇥ 10�9 dyne cm�2 and Pram = 8.4 ⇥ 10�7 dyne cm�2; as a result, for either

radial or tightly would wind magnetic fields, Pram always exceeds Pmag outside of & 0.1 AU.

Therefore, using the simple equality PISM = Pwind ! B2
ISM/8⇡ = Ṁv/4⇡R2, we can solve

for the radius at which the external ISM pressure and outward wind pressure balance. Given

the wind values above, the boundary occurs at 1540 AU and 460 AU for BISM = 3 µG and

10 µG respectively. The values of the parameters discussed above are applicable for a very

young Sun, but are old compared to the age of a T-Tauri star, 1-10 Myr. Youthful T-Tauri

stars are even more magnetically active and likely have elevated coronal activity, resulting in

much higher stellar-wind mass loss. Furthermore, rapid rotation characteristic of the first ⇠
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30 - 50 Myr will strongly enhance the stellar wind’s ability to modulate the cosmic ray flux

(see Fig. 2 of Cohen et al., 2012). This can operate in tandem with mass loss from a disk

wind, creating substantially higher mass loss rates Ṁ . Based upon observed T-Tauri X-ray

fluxes, Decampli (1981) predict that a T-Tauri star’s hot coronal gas has su�cient pressure

to power mass loss rates via a stellar wind of up to Ṁ ⇠ 10�9M� yr�1. With all other

parameters held constant, this would correspond to an R ⇠ 12,000 AU-sized T-Tauriosphere

for a BISM = 10 µG background magnetic field, much larger than typical disk sizes of a few

hundred AU. At this point the outer boundary could instead be set by intervening remnants

of the parent molecular cloud.

How the disk and environment would interact with the solar wind “fluid” however is

beyond the scope of this Chapter, e.g., is the T-Tauriosphere doubly-lobed or does it flow

over the disk producing wind eddies and vortices? How do the magnetic fields contained

in the stellar winds and disk winds connect with external magnetic fields at an analog “T-

Tauriopause?” Nonetheless, as we have demonstrated, the region of cosmic ray exclusion

likely extends over a large region and it would not be unreasonable for it to fully enclose

the disk, even for massive disks hundreds of astronomical units in radius, and therefore for

the remainder of this Chapter we consider the incident cosmic ray spectra to be uniformly

modulated over the entire disk.

4.5.4 Cosmic Ray Attenuation

From these cosmic ray spectra JCR(E) described in Section 4.5.2 we can now determine

the integrated ionization rate as a function of H2 column density. The study of cosmic ray

penetration clouds and circumstellar disks has an extensive history (e.g. Hayakawa et al.,

1961; Cesarsky and Volk , 1978; Umebayashi and Nakano, 1981; Padovani et al., 2009) The

interaction and attenuation of a cosmic ray in molecular matter critically depends on its

initial energy. As a result the shape and energy range of the incident CR intensity spectrum

directly determines the integrated ionization rate ⇣ =
R
4⇡�ion(E)J0(E)dE, where J0(E) is
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the di↵erential cosmic ray spectrum (from now on simply spectrum) at the disk surface (see

Fig. 4.7) and �ion(E) is the energy dependent ionization cross section of H2.

Here we compute the ionization rate ⇣CR as a function of depth, given a “heliospheric”

incident CR proton spectrum on a disk. In general, the decay of cosmic ray flux with column

density can be thought of as an energy reprocessing of CR particles with column density.

To compute the density evolution of the cosmic ray flux, we follow the “continuous slowing

down approximation” method of Padovani et al. (2009) (hereafter P09). Ionization processes

included are ionizations of H2 and He by protons and electrons, electron capture, dissocia-

tive ionization, double-ionization, and a correction for ionization by secondary particles. We

consistently solve for the particle travel range, Equation (21) of that work, the energy loss in-

curred, and subsequent particle energy reprocessing, see Equation (25) of P09. Furthermore,

we include a correction for secondary ionizations following Glassgold and Langer (1973) with

a logarithmic extrapolation at high energies as was done in P09. In Figure 4.8 we show the

resulting spectra for the case of solar maximum wind modulation (� = 1350 MeV) at the

indicated log column densities. This can be directly compared with the column density

evolution presented in Figures 9 and 10 of P09 for the M02 and W98 incident spectra. We

note that from this point, we adopt the M02 spectra as our “true” interstellar spectrum and

compare our modulated results to this.

Finally, each di↵erential energy curve J(ECR) is then integrated between ECR = I(H2)

and 100 GeV to produce a total ionization rate per H2: ⇣(NH2) =
R
4⇡�ion(E)J(E)dE s�1,

where �ion is the CR ionization cross section provided by P09. These results are shown

in Figure 4.9 (squares). These points are then fit (solid lines) using the function provided

in Equation (4.5) and the corresponding coe�cients are listed in Table 4.2. For the most

severely modulated T-Tauri models there is a small rise in the ionization rate at high column

density that results from particle conservation of the reprocessed high energy particles. This

e↵ect is otherwise hidden in the models that have more initial cosmic rays energies below

ECR < 100 MeV. We do not fit the bump using the simple parameterization as it only
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Figure 4.8 Cosmic ray spectra as a function of column density NH2 cm�2 for the case of a
solar maximum incident spectrum � = 1350 MeV. Note the initial rise at low energies due to
the reprocessing of high energy cosmic rays. Box-labels denote log(NH2/cm

�2), the dashed
green line is the incident spectrum, and the W98 spectrum is shown in red for comparison.

deviates from the otherwise good fit by less than a factor of ⇠ 2.

As can be seen, modulation of cosmic rays even by a solar-like wind has a significant

e↵ect on the integrated cosmic ray ionization rate, ⇣CR. While the LIS ionization rates vary

between ⇣CR ⇠ 10�15
� 10�17 s�1, the e↵ect of solar minimum modulation on ⇣CR is more

than an order of magnitude below the LIS values, and the unattenuated incident CR rates

from our simple extrapolation model for the 2% and 8% spot-covered T-Tauri stars are just

⇣CR ⇠ 10�20 s�1 and ⇠ 3 ⇥ 10�22 s�1, respectively. Below these values, scattered stellar

X-ray ionization of H2 begins to dominate the weak cosmic ray field. Indeed, the cosmic

ray flux in these cases is so low that, if present, ionization by decay products of short-lived

radionuclides (⇣RN = 7.3 ⇥ 10�19 s�1) as inferred from the early Solar Nebula (Umebayashi

and Nakano, 2009) can readily dominate the cosmic ray and X-ray ionizing flux in the disk

midplane (dashed black line, Figure 4.9); see also Section 4.8.1 for further discussion.
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4.6 Exclusion of Cosmic Rays by Large Scale Magnetic Fields

Cosmic rays are intrinsically high velocity ions and as such their trajectory will be shaped

by the presence of a magnetic field. In the protoplanetary disk environment magnetic struc-

ture may originate from the central star and/or remain from earlier stages in protostellar

development, i.e., from the collapse of the parent cloud. The CR’s motion will be directed by

the field lines so long as the gyroradius, rg, of the ion is less than the relevant scales consid-

ered, where the smallest scale of interest is ⇠ Rdisk. For a cosmic ray proton of energy Ep = 1

TeV and a magnetic field strength B = 10µG, the gyroradius rg = �mv?c/(ZeB) ⇠ 0.02

AU, much smaller than Rdisk ⇠ 100 – 1000 AU. Given that the field strength is expected to

be generally higher than this value and the energy of cosmic rays lower, we are safely within

the bounds of this criterion for all particles considered.

In the following sections we introduce the magnetic topologies considered, how mirroring

and funneling modulate the propagation of galactic cosmic rays, and how this modulation

impacts the disk ionization state.

4.6.1 Environmental Magnetic Fields

Dust polarimetric observations of young protostars in some instances exhibit large scale

magnetic field structure in what has been described to resemble the shape of an hourglass

(e.g., Girart et al., 2006), thought to arise from the gravitational collapse of a magnetized

molecular cloud (see review by Crutcher , 2012). The large scale magnetic structure sur-

rounding a T-Tauri star is di�cult to constrain, however. T-Tauri stars are known to be

strongly magnetized (e.g., Basri et al., 1992; Johns-Krull et al., 1999; Yang et al., 2005);

how and if the stellar fields couple to a large scale background is unknown. However, by

necessity the disk must be magnetized for MRI to initiate, and while deep within the disk

the magnetic fields may be randomized by turbulent motions, at large scales the imprint of

a protostellar field may still exist.

For the case of an hourglass-like background magnetic fields, we have solved the semi-
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Table 4.3. Hourglass Magnetic Field Parameters.

H0 � Bz,100AU [G]

2.50e-05 852.52 7.76e-06
1.25e-04 387.29 1.63e-05
2.50e-04 270.26 2.42e-05
1.25e-03 121.21 5.25e-05
6.25e-02 13.58 3.86e-04
5.00e-01 2.66 1.43e-03

Note. — Col. (1): Dimensionless
parameter representing the degree
of pinching at the waist of a mag-
netic flux tube. Col. (2): Tabulated
mass to flux ratio contained in a
flux tube � where � = M(�)/�.
See Li and Shu (1996) for further
details regarding these parameters.
Col. (4): Vertical magnetic field
strength at R = 100 AU in the mid-
plane.

analytical magnetized singular isothermal toroid models of Li and Shu (1996) for a range of

mass to flux ratios (i.e., degrees of pinching at the waist of the hourglass), � = M/�. These

types of models are representative of the magnetic field of a protostar, and thus provide a

first approximation for the “fossil” background remnant field near a very young T-Tauri star.

We treat the field as temporally static, with the waist of the magnetic field tied to the disk

and at large stellar distances tied to the natal cloud.

Each model is formally characterized by a parameter H0 (see Li and Shu, 1996), which

in practice sets the enhanced magnetic field density in the midplane relative to the cloud.

In Table 4.3 we provide H0, mass to flux ratios, and the vertical magnetic field strength Bz

in the disk midplane at R = 100 AU for each field model. We note that these mass to flux

ratios are related to masses of natal core material over the magnetic flux contained in the

core, and not disk masses.
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4.6.2 Stellar Magnetic Fields

Zeeman broadening observations of young T-Tauri stars have revealed strong magnetic

fields at the stellar surface with magnitudes of order 100 G - 1.6 kG (e.g., Johns-Krull , 2007).

The magnetic topology as determined by sensitive spectro-polarimetric measurements is a

complex superposition of octupolar, dipolar and split-monopolar magnetic fields (Donati

et al., 2011a,b, 2012). Higher order field components drop o↵ rapidly at large distances from

the star; for example, the dipolar field drops o↵ as Bdip / r�3, and therefore its influence in

determining the fate of CRs would only matter very close to the star. Some fraction of the

field lines are opened up by the stellar wind to form a split-monopolar configuration, forming

an approximately radial field component and hence dropping less steeply as Bmono / r�2.

As a result, the stellar field component that matters most in magnetically directing cosmic

ray motion is that contained within the split-monopole component.

For the stellar field we set the total magnetic field strength at the surface of the star to

be Bsurf = 3 kG and assign a fraction � to be in the radial component. We then vary the

strength of the split-monopolar field as a fraction of the total field. In Equation (4.9) we

can simply replace Bdisk with B(R) = �Btot(R/Rstar)�2 where � is the fraction of the stellar

magnetic field contained within the split-monopole.

4.6.3 Cosmic Ray Exclusion by Magnetic Mirroring

The shape of the environmental magnetic field can modulate the propagation of cosmic

rays through a process known as magnetic mirroring. The basic principle of mirroring is

described as follows (see also Desch et al., 2004). Charged particles gyrating about magnetic

field lines will conserve their total kinetic energy / v2k + v2? and magnetic moment / v2?/B.

As the particle enters an area of high magnetic field density it must increase its perpendicular

velocity. As v? increases, vk must decrease to keep the total kinetic energy constant. If the

field is pinched to su�ciently high magnetic field strengths, the particle’s parallel velocity

can be halted (vk = 0) and reversed, thus driving the cosmic ray in the opposite direction
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Figure 4.10 Illustration of cosmic ray exclusion by magnetic mirroring. Dashed lines de-
note background hourglass-shaped magnetic field and the hatched region indicates the disk,
viewed edge on. Cosmic ray (zig-zag arrow) enters along the magnetic field line but is repelled
before reaching the surface of the disk.

along the field line. The cosmic ray thus reflects o↵ of the region of large magnetic field

strength (hence the term mirroring).

If ↵ISM is the initial pitch angle between a CR’s velocity vector and the magnetic field,

cosmic rays with small ↵ISM will tend not to mirror (whereas cosmic rays with initial pitch

angle ↵ISM = 90 degrees would gyrate around the field, although that case represents a set

of measure zero). The pitch angle ↵ of a cosmic ray starting with BISM and ↵ISM at any

given point along the field line is given by

sin2 ↵

sin2 ↵ISM
=

B

BISM
= �. (4.8)

For a disk threaded with a field of magnitude Bdisk, there is a critical initial pitch angle such

that cosmic rays with ↵ > ↵crit will be repelled before reaching the disk surface; in other

words, particles attain ↵ = 90� at B = Bdisk and reverse course. For particles arriving on
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one side of the disk, this condition corresponds to a fractional reduction of cosmic rays by

mirroring fmirror =
p
1� [Bism/Bdisk]2.

However, simultaneously the open magnetic field lines tend to draw in a larger number

of cosmic rays via funneling, enhancing the cosmic ray flux proportionally to the increase

in field line density, or ffunnel = BISM/Bdisk. In general mirroring dominates over funneling

(Desch et al., 2004; Padovani and Galli , 2011), but the e↵ects are of similar magnitude. The

combined fractional removal of cosmic rays as given by Desch et al. (2004) is:

fCR,net =
h
��

�
�2

� �
�1/2i

, (4.9)

where � is given by Equation (4.8). In the limit that the magnetic field in Bdisk � BISM,

then the net fraction of cosmic rays removed is fCR,net = 0.5.

For completeness we note that mirroring is only important when the change in pitch

angle due to magnetic field variations is greater than that due to scattering. The T Tauri

systems of interest here are expected to have large gradients in magnetic field strength, so

that mirroring can be important. Nonetheless, scattering e↵ects should be considered in

future work.

In Figure 4.11, the results for the environmental hourglass model are shown in solid

lines and the results for the stellar split-monopolar field are shown in dashed lines. Stellar

magnetic e↵ects are only able to modulate cosmic rays relatively near (R < 100 AU) the

star. Examples of observed split-monopolar field strengths are 4–5 kG (GQ Lup; Donati

et al., 2012), 170 G (V4046 Sgr; Donati et al., 2011b), and thus we expect stellar magnetic

fields to modulate cosmic ray propagation within 96 AU and 20 AU respectively. Hourglass

magnetic fields can, however, reduce incident cosmic ray fluxes on the scale of hundreds of

AU. For fields that are only moderately pinched at H0 � 0.0625 the entire cosmic ray rate

would be reduced by a factor of two. Such a field configuration corresponds to Bz = 0.9 mG

at 100 AU in the midplane (see Table 4.3).
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Figure 4.11 Fraction of cosmic rays removed versus disk radius for both the stellar split-
monopole models (left, dashed lines) and hourglass models (right, solid lines).

While the magnitude of magnetic modulation is far smaller than the orders of magnitude

achieved by a stellar wind, the e↵ect of mirroring more importantly is that this fraction

will radially vary from fCR,net = 0.5 in the inner disk to 1 in the outer disk. As described

in Section 4.5.2 the cosmic ray fluxes will formally experience an energy dependent radial

gradient in wind modulation e�ciency that can vary by a factor of a few between distances

of D = 1 AU to 80 AU (Caballero-Lopez and Moraal , 2004; Langner and Potgieter , 2005;

Manuel et al., 2011; Manuel , 2011), see also Section 4.7.2. Therefore looking for radial

gradients in the disks of T-Tauri stars to learn about extrasolar Heliospheres may be confused

observationally with magnetic e↵ects from the star or environment, especially if they are of

the same magnitude (i.e., a factor of two).

4.7 Cosmic Ray Exclusion and Dead Zones

The magnitude of cosmic ray exclusion by stellar winds and magnetic fields presented

here will have significant implications for the ionization state in the disk. This in turn will

have important implications for the size of the region in disks that is dead to MRI as well
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as chemical implications to be discussed in Chapter 6. In this section we use criteria from

simulations of MRI in the literature to compute the size of the active and turbulence-dead

regions of the disk and explore how they depend on the cosmic ray ionization rate.

4.7.1 Ionization: Active Disk Criteria

From these ionization rates, ⇣, we can determine the electron abundance, which is used

to identify the turbulence dead versus active regions. To determine the electron abundance

�e we use the steady state expression

�e =

r
⇣H2

n↵
, (4.10)

where ↵ = 2 ⇥ 10�6 T�1/2 cm3 s�1 is the rate coe�cient for recombination with molecular

ions (Glassgold et al., 1997). This is of course a simple estimate for the ionization state in

the gas and does not, for example, include the possibility of charged dust grains. A more

detailed estimate of the ionization fraction including chemistry and charge exchange will be

addressed in Chapter 6. For the disk to be MRI active, the ions must first be well-coupled

to the neutral gas and must have a su�ciently high magnetic Reynolds number, Re, given

by

Re ⌘
csh

D
⇡ 1

⇣ �e

10�13

⌘✓ T

100K

◆1/2 ⇣ a

AU

⌘3/2
(4.11)

where cs is the sound speed, h is the disk scale height, and D is the magnetic di↵usivity

(Perez-Becker and Chiang , 2011a). Recent models by Flock et al. (2012) indicate that values

of Re ⇠ 3300�5000 are required for sustained turbulence, with a critical value Recrit ⇠ 3000.

We adopt this critical value for the minimum Re > Recrit required for the disk to be MRI

active.

The second criterion for the disk to be unstable to MRI is that there must be frequent ion–

neutral collisions for the ions to transfer turbulent motions to the largely neutral disk. This
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condition is determined by the ion-neutral collision rate normalized to the orbital frequency,

Am ⌘

�inH2�in
⌦

⇡ 1
⇣ �i

10�8

⌘⇣ nH2

1010cm�3

⌘⇣ a

AU

⌘3/2
, (4.12)

(Perez-Becker and Chiang , 2011a). Simulations by Hawley and Stone (1998) find that Am ⇠

102 is required for su�cient coupling. However, even in the case of our most strongly ionized

models we reach values of at most . 3. Similarly, Perez-Becker and Chiang (2011a) found

even in their most MRI favorable model they could only attain Am . 10 (see §4 of that

work). In the weakly ionized limit, Bai and Stone (2011) show that a disk can become

MRI unstable at any value of Am, as long as the disk is weakly magnetic. The maximum

magnetic field strength such that Am is not a limiting factor is dependent on the ratio of

the gas pressure to magnetic pressure, �. To be in this regime, � must be larger than �min

(see Eq. (26) of Bai and Stone (2011)). For our disk model this condition is equivalent to

|Bmax(50AU)| ⇠ 0.3 mG – 5 mG for our most weakly and most strongly ionized models,

respectively.

The magnetic field strength in disks is observationally unknown, however. Zeeman mea-

surements of molecular clouds give us a “starting value” with line of sight estimates of 0.1-1

mG (Crutcher et al., 2010; Falgarone et al., 2008). The fields in disks may be further am-

plified by the collapse of the cloud during formation of a protostar, though di↵usion and

magnetic reconnection may likely reduce the role of magnetic fields. Therefore, the Am

criterion may still be important due to the inferred relatively high magnetic field strengths.

In this work we take Am > 0.1 as the critical value for su�cient ion–neutral collisional fre-

quency (Bai and Stone, 2011). For completeness, however, in the dead zone plots presented,

we indicate both the region that satisfies simultaneously Am and Re (white cross hatched

= active) as well as the region that satisfies Re only (outside of orange contour = active);

see, for example, Figure 4.12.
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4.7.2 T-Tauriospheric Dead Zones

As can be seen in Figures 4.7 and 4.9 the presence of a T-Tauriosphere plays an important

role in determining the ionization rate from cosmic rays. This ionization rate will in turn

impact the steady state electron abundances (see Equation (4.10)) and thus the region of

the disk that is dead to MRI turbulence. In Figure 4.12 we plot the results for our standard

model, varying the cosmic ray flux for each spectrum considered. In these models we assume

the cosmic rays come from both sides of the disk and therefore reduce the cosmic ray con-

tribution per side by half. We integrate the column of material from the surface downward

and bottom upward and sum the contributions from both sides of the disk.

The contour plot in the left column shows the total H2 ionization rate from cosmic rays

and X-rays combined. The second column shows contour plots of the critical magnetic field,

which sets the relative importance of the Am parameter in determining the disk’s dead

region. The third column shows the net result, with the Am and Re active region hatched

in white, while the region enclosed by the orange curve is dead according to the Re criterion

alone. In the “TT Max” plot on the bottom, it can be seen that nearly the entire bulk mass

of the disk is dead based upon Re and Am, while the Re-only dead region spans just the

central ⇠ 100 AU. The Re-only region can thus be thought of as the minimum size of the dead

region, depending upon the importance of Am. We compute the mass contained in the dead

zone for each of these scenarios (see Table 4.4). Recall that the disk mass Md = 0.039M�,

so that the dead zone represents ⇠ 1/8 of the disk (for ISM and solar models) to ⇠ 3/4 of

the disk (for the maximum TT model).

The size of the dead zone depends directly on the mass of the disk, which sets the vertical

column density of gas normal to the plane of the disk. A denser (and thus more massive)

disk of the same size would thus be less permeable to cosmic rays and have a larger (more

massive) dead zone. Our disk within 400 AU contains 0.039 M� of gas and therefore is on

the more massive end of the typical range of disk masses. If we reduce the disk mass by

a factor of two, the dead zone shrinks radially by approximately 15% for the ISM through
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Figure 4.12 H2 ionization ⇣tot = ⇣CR+⇣XR s�1 and MRI-active regions. a) Uniformly reduced
CRs. Left: total H2 ionization rate from X-rays and CR for LXR = 10�29.5 erg s�1 and CR
rate as labeled. Center: critical B-field for Am criterion. Magenta, blue and red lines denote
1 mG, 100 µG, and 10 µG. Right: MRI-active regions. Regions of the disk that satisfy both
Re and Am criteria are indicated by the white crosshatching. The minimum region of the
disk inactive to MRI, i.e., satisfies Re but not Am, is orange. b) Quantities same as above,
now including a 2%/AU positive radial gradient in CR flux.
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Table 4.4. Mass contained in dead zones for the di↵erent cosmic ray models without
radionuclide ionization, see Fig. 4.12.

Model Mdead: Re & Am Mdead: Re-only
[M�] [M�]

ISM M02 0.0038 0.0038
Solar Min 0.0051 0.0051
Solar Max 0.0065 0.0065
T-Tauri Min 0.0268 0.0085
T-Tauri Max 0.0279 0.0093

solar cosmic ray models, but has only a minuscule e↵ect on the extensive dead regions in the

T-Tauri models, flattening them in vertical extent by no more than a few AU at R = 100

AU.

In all of the models discussed above, the cosmic ray rate is uniformly reduced throughout

the disk. As discussed in Section 4.5.2, however, there is an observed radial gradient in

the cosmic ray flux, which is both strongly energy and distance dependent. For example, a

ECR ⇠ 20 MeV cosmic ray at R = 10 AU varies by ⇠ 0.8%/AU while the same cosmic ray at

R = 70 AU has an intensity gradient of ⇠ 9%/AU (Caballero-Lopez and Moraal , 2004). This

is compared to a ⇠ 1 GeV CR proton, which has uniform gradient of ⇠ 1%/AU throughout

the Heliosphere. To approximate this in our current framework, we have taken the T-Tauri

(max)imum extrapolation model and applied a uniformly increasing 2%/AU radial gradient

in the cosmic ray ionization rate, shown in Figure 4.12b. The gradient is incorporated with

the expression ⇣CR(RAU) = ⇣CR(1 AU)⇥(1+p)RAU�1, where ⇣CR(1 AU) is the wind-modulated

cosmic ray ionization rate at R = 1 AU (see Section 4.5.4), p is the fractional cosmic ray

increase per AU (thus p = 0.02 corresponds to 2%/AU) and RAU is the distance from the

central star in AU. Since the T-Tauri-modulated cosmic ray spectra peak at around ECR ⇠

1 GeV where the gradient in the Solar System is closer to 1%/AU – 1.5%/AU, this may

over estimate the magnitude of the gradient but nevertheless demonstrates that a modest

gradient can allow the outer disk (R > 250 AU) to be su�ciently ionized for MRI turbulence
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even with a strongly modulated cosmic ray intensity.

4.7.3 Dead Zone Dependence on the Stellar X-ray Luminosity

T-Tauri stars are both X-ray luminous and highly variable (Feigelson and Decampli ,

1981b; Feigelson et al., 1993; Neuhaeuser et al., 1995; Telleschi et al., 2007). Furthermore,

it has been observed that objects with high stellar X-ray luminosity (LXR & 1031 erg s�1)

typically have harder X-ray spectra at energies exceeding 2 keV, characteristic of emission

contribution from stellar flares (Carkner et al., 1996; Imanishi et al., 2001; Wolk et al., 2005;

Preibisch et al., 2005). Figure 4.13 demonstrates the e↵ect of an enhanced X-ray luminosity

on the ionization rates and the resulting size of dead zones. The filled color contours show

the ionization rates per H2 for three purely X-ray models (no cosmic rays) with the following

X-ray luminosities: LXR = 1028, 1029.5, and 1031 erg s�1. In this plot, the crosshatching

follows the same convention as Figure 4.12.

For the stellar sources with LXR = 1028 and 1029.5 erg s�1, we adopt the “characteristic”

spectral template shown in black in Figure 4.2, and for the LXR = 1031 erg s�1 we adopt the

“flaring” spectral template shown in the same figure in grey to simulate the X-ray hardening

with increasing luminosity. Hard X-ray photons (E > 2 keV) are able to penetrate dense

gas more readily than their soft X-ray counterparts, allowing flaring stars to ionize a larger

fraction of the disk mass.

For our prototypical model, LXR = 1029.5 erg s�1, the disk midplane is largely dead to

MRI without inclusion of cosmic ray ionization. Even in the highly X-ray irradiated case,

there are two dead midplane regions, one extending out to R ⇠ 25 AU (see Fig. 4.13 c, inset)

and one in the outer disk beyond R ⇠ 200 AU. This structure is a result of the Am criterion

depending on both density and ionization; in the inner dense disk the ionizing radiation

cannot penetrate and in the outer low density disk ion-neutral collisions are not frequent

enough.

This large dead region is contrary to the results of Igea and Glassgold (1999) [IG99], who
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found that incorporation of stellar X-ray scattering into the radiative transfer permitted the

entire disk beyond 5 AU to support MRI even in the absence of cosmic rays. The di↵erence

between their results and ours is readily explained by di↵erent assumptions for an active disk.

In IG99 the critical electron fraction depends on the viscous disk parameter as xcr / ↵�1/2,

where ↵ was originally taken to be unity (see Equations 22 and 23 of that work). Under

the same assumptions with LXR = 1029 erg s�1, our model finds a similarly-sized dead zone,

extending out to 5.5 AU in the midplane. A lower value of ↵ ' 0.01 causes MRI to be

less e�cient at viscously stirring the disk, and therefore the electron fraction required to be

turbulent is subsequently higher, creating a substantially larger dead region.

We note that a more dust-settled disk would also change the size of the dead zone by

reducing the X-ray opacity due to dust by up to a factor of two (Bethell and Bergin, 2011b).

Reducing the X-ray opacity causes deeper layers in the disk to see X-ray photons having

a similar e↵ect to increasing the X-ray luminosity. This would vertically flatten the MRI

inactive region but not reduce the radial extent of the dead zone in the midplane.

4.8 Further Considerations

4.8.1 Radionuclide Ionization in the Midplane

An important source of ionization we have neglected thus far is the decay of short-lived

radionuclides (RNs). Species such as 26Al and 60Fe have relatively short half-lives, ⌧1/2 <

10 Myr, and therefore their presence in the early Solar System is inferred by measurements

of the decay products in meteorites (Gray , 1974; MacPherson et al., 1995, and others).

While the net ionization rate from RN depends on assumptions regarding their distribution

and abundances, typical values estimated for the Solar Nebula from 26Al decay lie near

⇣RN = (7.3� 10)⇥ 10�19 s�1 (Umebayashi and Nakano, 2009). Thus ⇣RN in the early Solar

System likely rivals or even exceeds ⇣CR by orders of magnitude for nearly all of the wind-

modulation models considered here. Even the unattenuated solar maximum cosmic ray rate
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Figure 4.13 Plots of the X-ray only ionization rate throughout the disk per H2, varying the
stellar X-ray luminosity: LXR = a) 1028 erg s�1 b) 1029.5 erg s�1 c) 1031 erg s�1. Filled
contours show the X-ray ionization rate, ⇣XR s�1. Hatched region and contour lines are the
same as for Figure 4.12. The right panel, LXR = 1031 erg s�1, has a harder X-ray spectrum
characteristic of flaring T-Tauri stars, see Sections 4.4.2.1 and 4.7.3.

117



0 100 200 300 400

R (AU)

0

50

100

150

Z
(
A

U
)

TT Max

+ RN

log(⇣) [s

�1
]

-20.6

-18.1

-15.7

-13.3

0 100 200 300 400

R (AU)

log(Bcrit) [G]

-5.6

-4.6

-3.6

-2.7

0 100 200 300 400

R (AU)

Active Region,�e

-10.7

-9.2

-7.7

-6.2

0 10 20 30

0

2

4

Figure 4.14 Quantities same as Fig. 4.12, now including uniform ionization from decay of
short-lived radionuclides, ⇣RN = 7.3⇥ 10�19 s�1. The total ionization rate of H2 is given by
⇣tot = ⇣RN + ⇣CR + ⇣XR.

with a uniform 1.5%/AU CR gradient (Section 4.7.2) has ⇣CR(R) . ⇣RN within R  100 AU,

assuming the Solar Nebula value of ⇣RN (see Figure 4.9 dashed black line).

Consequently, short-lived radionuclides such as 26Al may become the dominant source

of ionization if they are indeed present in an isolated (G0 ⇠ 1) protoplanetary disk. To

demonstrate the e↵ect of the addition of ionization by radionuclide decay at levels inferred

in the early Solar System, we have recreated the bottom panel (TT Max) of Figure 4.12 to

include contribution from decay of 26Al by treating it as a uniformly well-mixed ionization

source throughout the disk with a magnitude of ⇣RN = 7.3 ⇥ 10�19 s�1 (Figure 4.14). In

this case the midplane ionization is clearly dominated by ionization as a result of the local

radionuclide decay. For comparison, the presence of radionuclides has little e↵ect on the size

of dead zones for the ISM models and moderately restricts the extent of the dead zone to

R ⇠ 20 – 30 AU for the Solar System-like cosmic ray models. For the TT Max case, the

dead region encompasses the inner R . 30 AU and contains 0.015 M� of material in the

dead zone.

Unfortunately, the ionization contribution from radionuclides in a “typical” disk however

is entirely unknown. Indeed, there is evidence for an enhanced abundance of short-lived RN in

the early Solar System. However, the source of this enhancement is exceedingly controversial,

typically falling into two categories: stellar spallation (internal) (e.g., Lee et al., 1998; Shu
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et al., 2001) or enrichment of the parent molecular cloud from supernovae or Wolf-Rayet

stars (external) (Wasserburg et al., 2006; Gounelle et al., 2009; Gaidos et al., 2009; Makide

et al., 2011; Gounelle and Meynet , 2012). While 26Al can be explained both by internal

and external mechanisms, the presence of 60Fe is solely a stellar nucleosythensis product

and thus is external in origin. Indeed, an inferred enhanced abundance of 60Fe found in

chondrites was originally attributed to a nearby type II supernova during the formation

of the Solar System (Tachibana et al., 2006); however, this result has come under intense

scrutiny with later works claiming no such enhancement (Moynier et al., 2011; Dauphas and

Chaussidon, 2011; Tang and Dauphas , 2012). In summary, the relative contribution from

external versus internal processes is still unclear (for an extensive discussion see Adams ,

2010, and references therein), but we know that the early Solar System was to some degree

enriched by external sources. In Figure 4.9 we include the radionuclide ionization rate as

is computed from the mean interstellar abundance of 26Al derived from �-ray observations

of 26Al decay in the Milky Way, (see discussion in Umebayashi and Nakano, 2009). This

rate is a factor of ⇠ 8 below the Solar Nebula value, lending credence to the hypothesis

that the Solar System formed in an enriched environment. Furthermore Diehl et al. (2006)

find the 26Al abundance to be anisotropic throughout the galaxy, concentrated near massive

star-forming regions. Therefore this enhanced radionuclide abundance may be typical of

protoplanetary disks formed in massive clusters.

4.9 Conclusions

In this work we have explored several mechanisms that act to reduce the cosmic ray flux

incident on protoplanetary disk surfaces. The first mechanism, exclusion by a magnetized

wind, actively operates within the Solar System and excludes cosmic rays at high e�ciency,

especially at low ECR. We have extrapolated the magnitude of cosmic ray exclusion using

spot coverage as a tracer of solar magnetic activity to T-Tauri stars with spot coverages of

2% and 8%, and have examined the e↵ects on the cosmic ray energy spectrum J(E). For
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our extrapolated modulation models we find good agreement with numerical and analytical

models of Svensmark (2006) and Cohen et al. (2012) for their models of the young Sun

(Y.S.), where we have extrapolated their results at energies < 10 MeV. If this reduction in

the cosmic ray flux is real, the incident cosmic ray flux should be reduced by at least ten orders

of magnitude for 1 MeV cosmic rays and five orders of magnitude at 1 GeV. In the analysis

of Turner and Drake (2009), the authors attempt to account for cosmic ray modulation by

considering only cosmic rays with energy above 100 MeV, where solar modulation is small.

It can be seen, however, from our results as well as the young Sun models that cosmic ray

modulation operates at all energies when wind exclusion is significant (see Fig. 4.7).

Using the results of the cosmic ray propagation models of Padovani et al. (2009) we

reconstruct the ionization rate versus depth into a molecular slab (disk surface) for the

wind-modulated cosmic ray spectra (Fig. 4.9). We provide numerical fits for the integrated

cosmic ray ionization rate ⇣CR(NH2) s�1 for a range of modulation strengths. At the low

ionization rates inferred, cosmic rays do not contribute significantly to the ionization rate in

the outer disk. Indeed, the calculated CR rates are many orders of magnitude lower than

the ionization rates inferred from decay of short-radionuclides in the early Solar System,

though to what degree radionuclides contribute to other systems is unknown. Regardless, in

our simple prediction for wind modulation in a T-Tauri star system we find that the cosmic

ray ionization rate is more than an order of magnitude below the interstellar averaged 26Al

ionization rate, ⇣RN = 9.2⇥ 10�20 s�1 (Umebayashi and Nakano, 2009). Therefore, it is this

value that we recommend as a minimum H2 ionization rate in disks, though there may be

some variation with galactic location (e.g. Diehl et al., 2006) and with disk evolution, i.e.

enhancement via dust settling (Umebayashi et al., 2013).

Furthermore, external radiation fields can contribute to the SII ion abundance in the

outer disk, but its contribution is limited by dust extinction if some amount of small dust

is present. Elevated external FUV fields present in stellar clusters, however, can dominate

cosmic rays, X-rays and radionuclides at the outermost surface of the disk if the cosmic
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ray rate is reduced (Fig. 4.4). In the absence of cosmic rays, a strong external field, and

radionuclides, the scattered stellar X-rays dominate the H2 ionization in the outer regions of

the disk.

In summary, we draw the following conclusions from our models:

1. Modulation by stellar winds can reduce the cosmic ray flux in the circumstellar envi-

ronment by many orders of magnitude, resulting in cosmic ray ionization rates sub-

stantially lower (⇣CR . 10�20 s�1) than typically assumed in models of MRI turbulence

and circumstellar chemistry. At the low CR rates inferred, the dominant source of ion-

ization at the midplane throughout the disk can become short-lived radionuclides, if

present.

2. If a T-Tauri star drives a Heliosphere-like region of cosmic ray exclusion, the cosmic

ray ionization rate should be no higher than ⇣CR . 1.4⇥ 10�18 s�1, the solar minimum

modulation rate. This CR upper limit, however, is likely much too high given the more

extreme wind and magnetic properties of T-Tauri stars compared to the Sun, thus we

expect ⇣CR << 10�18 s�1. At the lower end, however, decay by short-lived radioactive

particles should provide a floor to the H2 ionization rate set by 26Al decay, ⇣RN &

9.2 ⇥ 10�20 s�1 at the mean interstellar 26Al abundance (Umebayashi and Nakano,

2009). As a result, we recommend the inferred 26Al radionuclide ionization rate in

the Solar Nebula for the H2 ionization rate throughout protoplanetary disks, ⇣RN =

(7.3� 10)⇥ 10�19 s�1 (Umebayashi and Nakano, 2009) within a T-Tauriosphere. This

is of course in addition to X-ray ionization from the central star. Outside of the T-

Tauriosphere the cosmic ray rate should be that of the ISM, and here we suggests

ionization rates in the range of the W98 and M02 models (Sections 4.4.2.3 and 4.5.4).

3. These rates can and will be tested with spatially and spectrally resolved observations of

molecular ions with ALMA, at which point more complex models of a T-Tauriospheric

cosmic ray modulation will certainly be of interest. We defer predictions for chemical
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e↵ects until Chapter 6.

4. Based on our models we provide fits to the ionization rate ⇣CR(NH2) predicted for T-

Tauri stars assuming: 1. extrapolated interstellar CR fluxes (i.e., unmodulated), 2.

solar wind modulated CR fluxes, and 3. T-Tauri-like wind modulated CR fluxes. The

analytical fits are in the same form as provided by Padovani et al. (2009, 2013) and

are made for ease in use in a variety of physical and chemical simulations.

5. Global magnetic fields can modulate the cosmic ray flux impacting the disk through

the competing processes of mirroring and funneling. The e↵ect is limited to a net 50%

reduction in addition to any wind exclusion but will imprint a 50% radial gradient in

the CR ionization rate. The possibility of such an e↵ect will need to be considered when

modeling “T-Tauriospheres” around other stars, as they too will imprint gradients in

the cosmic ray flux.

6. Under these low cosmic ray conditions, large regions of the disk will be unable to sustain

MRI turbulence. Radionuclides can “reactivate” MRI turbulence in the midplane

outside of ⇠ 25 AU if they are present at the enhanced rates inferred for the Solar

Nebula. Furthermore, an enhanced external FUV radiation field can create an active

“shell” of material on the disk’s outermost surface.

This Chapter represents only the first step in assessing the exclusionary e↵ects of winds

and magnetic fields in T-Tauri systems. Our work to date utilizes simple, but physically

motivated, models. More sophisticated theoretical work should thus be carried out as our

understanding of the problem increases. Moreover, the e↵ects explored in this Chapter will

have clear chemical implications that can be readily observed in the near future. As one

example, recent studies have sought to measure the degree of turbulence in protoplanetary

disks by observing line broadening of strong gas emission lines (e.g., Hughes et al., 2011;

Guilloteau et al., 2012). While we expect vertical stratification between the active surface

and dead midplane, it would not be unexpected to find additional radial variations in, for
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example, turbulent line broadening and coagulative dust growth. In general, protoplanetary

disks will be a↵ected by a diversity of ionization sources: stellar UV photons in the inner

disk, X-rays in the molecular layer, external radiation ionizing the outer “skin” of the disk,

and (potentially) both short-lived radionuclides and cosmic rays in the deep planet-forming

midplane. Furthermore, all of these ionization sources are likely to vary — perhaps substan-

tially — from system to system. As a result, the determination of the diverse ion chemistry

of these disks, as well as the turbulent kinematic properties, will be fertile ground for future

ALMA observations.
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CHAPTER V

Radionuclide Ionization in Protoplanetary Disks:

Calculations of Decay Product Radiative Transfer

5.1 Preface

The following work appears in the Astrophysical Journal, Volume 777, 28, 6 pp. (2013).

The work is co-authored by Fred C. Adams1 and Edwin A. Bergin2. The paper is copyright

2013, the American Astronomical Society, reproduced here under the non-exclusive right of

republication granted by the AAS to the author(s) of the paper.

5.2 Abstract

We present simple analytic solutions for the ionization rate ⇣SLR arising from the decay

of short-lived radionuclides (SLRs) within protoplanetary disks. We solve the radiative

transfer problem for the decay products within the disk, and thereby allow for the loss of

radiation at low disk surface densities; energy loss becomes important outside R & 30 AU

for typical disk masses Mg = 0.04 M�. Previous studies of chemistry/physics in these

disks have neglected the impact of ionization by SLRs, and often consider only cosmic rays

1Department of Physics, University of Michigan, 450 Church St, Ann Arbor, MI 48109
2Department of Astronomy, University of Michigan, 500 Church St, Ann Arbor, MI 48109
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(CRs), because of the high CR-rate present in the ISM. However, recent work suggests that

the flux of CRs present in the circumstellar environment could be substantially reduced by

relatively modest stellar winds, resulting in severely modulated CR ionization rates, ⇣CR,

equal to or substantially below that of SLRs (⇣SLR . 10�18 s�1). We compute the net

ionizing particle fluxes and corresponding ionization rates as a function of position within

the disk for a variety of disk models. The resulting expressions are especially simple for the

case of vertically gaussian disks (frequently assumed in the literature). Finally, we provide a

power-law fit to the ionization rate in the midplane as a function of gas disk surface density

and time. Depending on location in the disk, the ionization rates by SLRs are typically in

the range ⇣SLR ⇠ (1� 10)⇥ 10�19 s�1.

5.3 Introduction

Ionization plays an important role in setting thermal, dynamical, and chemical properties

of protoplanetary disks. The dominant ionization processes thought to be active in such

disks include photoionization from stellar and interstellar UV and X-ray radiation, thermal

ionization, ionization by the decay products of short-lived radionuclides (SLRs), and cosmic

ray (CR) ionization (e.g., Glassgold et al., 1997; Finocchi and Gail , 1997; Glassgold and

Najita, 2001; Walsh et al., 2012). Of these sources, only CR and SLR-decay are able to

provide ionization in the densest and coldest layers of the disk where UV and X-ray photons

are highly attenuated. However, the importance of CR ionization is highly uncertain, and

position dependent, due to stellar-wind modulation from the central star (see Chapter 4).

With the substantially reduced CR rates expected for these disk systems, SLR-decay is left as

the dominant midplane ionization contributor at distances beyond the hard X-ray dominated

region, R & 10 AU from the central star.

Indeed, the Solar System’s meteoritic record points to an early enhancement (⇠ 10 times

the mean ISM abundance; Umebayashi and Nakano, 2009) of 26Al, the most chemically

significant of the SLRs, indicating an enrichment of massive star byproducts in the Solar
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birth cluster (Adams , 2010). Furthermore, maps of 1.808 MeV �-rays resulting from 26Al

decay confirm an enhancement of SLRs near major star-forming regions (Diehl et al., 2006).

While the ubiquitous presence of SLRs during star-formation and subsequent disk-formation

is expected, the degree to which their energetic decay products contribute to the ionization

rate remains uncertain. For example, there is inherent time evolution in both the total mass

of SLRs (set by their respective half-lives where t = 0 corresponds to the time of formation

of CAIs; MacPherson et al., 1995) and the spatial distribution of dust particles that carry

the SLRs, which tend to settle towards the midplane with time (Umebayashi et al., 2013).

Furthermore, the diversity of original sources of radioactive particles, including supernovae

(Cameron and Truran, 1977), Wolf-Rayet winds (Arnould et al., 1997; Gaidos et al., 2009),

and stellar spallation (Lee et al., 1998; Shang et al., 2000), adds further complexity to charac-

terizing the initial abundances of SLRs present at the time of disk-formation (see also Adams ,

2010). Nevertheless, the meteoritic record provides clues regarding which species were once

present in one particular protoplanetary disk, our Solar Nebula, and the abundances therein

(e.g., Gounelle and Meynet , 2012).

A number of studies have quantified the ionization of molecular gas by energetic particles

resulting from SLR decay (e.g., Umebayashi and Nakano, 1981; Finocchi and Gail , 1997;

Umebayashi and Nakano, 2009). For a disk with an incident CR flux at ISM levels, previous

work predicts that ionization by CRs should exceed that of SLRs in regions where the gas

surface density ⌃g < 1000 g cm�2 (Umebayashi and Nakano, 1981, 2009). However, under

the influence of a wind-reduced CR flux (Chapter 4), even a modest “present-day” solar

wind reduces the CR ionization rate to values rivaling or substantially below that of SLRs

(⇣CR . 10�18 s�1) throughout the disk. Careful treatment of ionization by SLRs is thus

necessary for models of disk chemistry and physics. Furthermore, previous studies of disk

ionization by SLRs did not take into account the escape of the decay products, which becomes

important when the surface density drops below ⌃g . 10 g cm�2.

In the present Chapter we develop easy-to-use approximations to implement position-
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dependent SLR ionization rates in protoplanetary disks, ⇣SLR(r, z), for use in chemical models

and/or studies of the magnetorotational instability (Balbus and Hawley , 1991). Section 5.4.1

calculates the ionization rate using a plane-parallel approximation for the radiative transfer,

which explicitly includes the escape of decay products from the disk. Although this Chapter

focuses on the dominant ionizing source, 26Al, we examine the e↵ects of including other

SLR species, 60Fe and 36Cl, on the estimated ionization rates. Section 5.4.2 generalizes the

calculation to include the e↵ects of dust settling on the ionization rates. Finally, Section 5.4.3

considers the time evolution of the ionization rates.

5.4 Transfer of Short-Lived Radionuclide Decay Products

For a given parent SLR, the decay process can result in the emission of E ⇠ 1 MeV

photons, positrons, electrons and ↵-particles, whose energy goes into ionization, excitation,

and heating of the surrounding gas via secondary electrons (see Umebayashi and Nakano,

1981; Dalgarno et al., 1999; Glassgold et al., 2012). Because the SLR mass reservoir in the

disk is finite, the half-life thalf , in addition to the mass/abundance of parent SLRs, is vital,

as it sets both the total duration and occurrence rate of the decays. A short half-life results

in frequent decays (high ionization rates), but lasts for a potentially negligible fraction of the

disk lifetime. From the ionizing secondary electrons, the energy required to create a single

ion-pair from H2 gas is WH2 = 36 eV, where only ⇠47% of the energy goes into ionization

(Dalgarno et al., 1999; Glassgold et al., 2012). As the decay products propagate through

the gas disk, the main source of opacity for E ⇠ 1 MeV photons is Compton scattering and

for positrons/electrons is collisional ionization. As a result, the decay products have finite,

energy-dependent ranges. The branching ratios, ranges and decay sequences of the SLR

parents considered in this work are shown in Table 5.1. In the following section we compute

H2 ionization rates; however, these results can be extended to include helium ionization,

where ⇣He ⇡ 0.84⇣H2 (Umebayashi and Nakano, 2009).

The problem of interest is essentially a classical radiative transfer problem where the
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Table 5.1. Selected SLR Data.

Parent SLR thalf Decay Product 
log10(n�/nH2

) (Myr) Mode (MeV) (cm2/g)

26Al (-9.378) 0.74 �+ 82% e+ (0.473) 11.76
� (2⇥ 0.511) 0.148
� (1.808) 0.080

E.C.3 18% � (1.808) 0.080
60Fe (-10.270) 1.5 �� ⇥60Co

⇤
e�(0.184) 52.63
� (0.0586) 0.282

�� ⇥60Ni
⇤
4 e�(0.315) 21.74

� (1.173) 0.101
� (1.332) 0.094

36Cl (-10.367) 0.30 ��5 e�(0.7093) 7.541

distribution of emitters follows the refractory material (assuming that most of the radioactive

metals are carried by dust grains). Furthermore, we assume that the decay products escape

the dust grains from which they are emitted, which is appropriate for dust grains sizes

a  10 cm for E ⇠ 1 MeV photons and a  0.1 cm for positrons (Umebayashi et al.,

2013). The absorption is due to energy losses in the gas, and the resulting equation for the

frequency-averaged particle/photon intensity, I, has the general form

ŝ ·rI = ⇢g

✓
100

fg

◆
J

4⇡
� ⇢gI, (5.1)

where J is the emissivity from the production of photons/positrons/electrons due to radioac-

tive decay,  is the mass absorption coe�cient, ⇢g is the gas density, and fg is the gas-to-dust

mass fraction (fg = 100 for uniformly distributed gas and dust).

To start, we neglect energy/frequency evolution of the decay product cross sections (see

Section 5.5). To specify J , we consider decay product (k) from a single radioactive species

(p). If Ek is the energy of the decay product and !p = log 2/thalf is the decay rate, then

Ek!p is the energy generated by k per second per parent SLR p. Let �p be the abundance

of the parent species relative to H2 and let hmi = µmH denote the mean molecular weight
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of gas (where µ ⇡ 2.36). We thus expect the emissivity Jk to have the form

Jk =
Ek!p�p

hmi

⇥
erg s�1g�1

⇤
. (5.2)

In the regime where all decay products are trapped, the ionization rate per H2 is given by the

usual expression ⇣kH2
= Ek!p�p/WH2 s

�1 (e.g., Umebayashi and Nakano, 1981). This exercise

can be extended over all parent SLRs p, and decay products k, within a decay series, thus

obtaining:

⇣totH2
(r, z) =

X

p

X

k

⇣p,kH2
(r, z) . (5.3)

While the following section provides ionization prescriptions that apply to general disk

models, the plots are calculated using our model from Chapter 4. The gas and dust densities

are described by a power-law with an exponential taper at the outer-edge (Andrews et al.,

2011) with a total disk gas mass of M = 0.04 M�. Formally, the vertical dust profile is

described by two gaussians for millimeter- (midplane) and micron-sized (atmospheric) grains.

For our well-mixed calculation in Section 5.4.1, we assume instead that the dust follows

the gas with a uniform gas-to-dust mass ratio fg = 100. For the settled disk discussed

in Section 5.4.2, we compare di↵erent methods by which to approximate ⇣SLR with more

sophisticated dust profiles.

5.4.1 Plane-Parallel Approximation

For disks where the radial variation in density is much slower than variations with height

z, we can treat the disk as essentially an “infinite slab.” We thus carry out a plane-parallel

radiative transfer calculation where intensity I is a function of height z above the midplane,

and one direction variable. The ray direction is determined by the angle ✓ with respect to

the z-direction, or, equivalently, µ = cos ✓. The validity of this approximation requires that

the disk scale height H ⌧ r.
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Figure 5.1 H2 ionization rate as a function of normalized height (z/r) and at specified disk
radii (indicated by line color). Top panel: 26Al ionization broken into photon (dashed) and
particle processes (dot-dash); solid line represents the total ionization rate. Bottom panel:
Total ionization from 26Al, 60Fe, and 36Cl; individual contributions indicated by dashed,
dot-dash, and dotted lines, respectively.
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In the well-mixed case, the radiative transfer equation (5.1) has the formal solution:

I(z, µ) =
1

4⇡

1Z

0

⇢J exp[�⌧(z, µ; s)]ds

=
1

4⇡

⌧µ(z)Z

0

J


exp[�⌧(z, µ; s)]d⌧, (5.4)

where the optical depth along a ray in the µ-direction is

⌧(z, µ; s) =

sZ

0

⇢(s0)ds0. (5.5)

Equation (5.4) allows both the emissivity J and the opacity  to vary with position. In

many applications, however, these quantities are constant. In general, we want to evaluate

the intensity I at a given height z and for a given ray direction specified by µ. Along the

ray, the cylindrical height z0 is given by

z0 = z � µs . (5.6)

Given the optical depth expression (5.5), and the substitution dz0 = �µds, we can write the

optical depth ⌧µ(z) in the µ-direction in terms of the vertical optical depth ⌧±,

⌧µ(z) = �

1

µ

±1Z

z

⇢(z0)dz0 ⌘
1

|µ|
⌧±(z) . (5.7)

By separating out the angular dependence from the optical depth, we only need to calculate

the ⌧± integrals once for a given location. Accordingly, the specific intensity is given by

I(z, µ) =
J

4⇡

�
1� exp

⇥
�⌧µ(z)

⇤�

=
J

4⇡

✓
1� exp


�

1

|µ|
⌧±(z)

�◆
. (5.8)
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We integrate (5.8) over solid angle to determine the total energy density in ionizing decay

photons/particles E(z):

cE(z) =

Z
I(z, µ)d⌦ = 2⇡

1Z

�1

I(z, µ)dµ

= 2⇡

1Z

�1

J

4⇡

✓
1� exp


�

1

µ
⌧±(z)

�◆
dµ. (5.9)

Substituting t = 1/|µ|, we can evaluate this expression in terms of exponential integrals of

order two (Abramowitz and Stegun, 1972),

cE(z) =
J

2

8
<

:2�

1Z

1

1

t2
exp [�t⌧+(z)]dt

�

1Z

1

1

t2
exp [�t⌧�(z)]dt

9
=

;

=
J

2
{2� E2 [⌧+(z)]� E2 [⌧�(z)]} . (5.10)

The ionization rate is then given by

⇣kH2
(z) =

cE(z)hmi

WH2

(5.11)

=
1

2

Ek!p

WH2

{2� E2 [⌧+(z)]� E2 [⌧�(z)]} (5.12)

Equation (5.12) provides the general solution for the ionization rate due to decay product k

for a well-mixed disk. This expression can be readily evaluated with knowledge of the disk’s

opacity in the z-direction. Note that the functions E2(z) are standard (e.g., Abramowitz and

Stegun 1972, or the Python library SciPy).

For a vertically gaussian disk of the form ⇢g(z) = ⇢0 exp [�1/2 (z/H)2], we can solve
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Figure 5.2 Line-styles as indicated in Figure 5.1 for 26Al ionization only: a) infinite slab
calculation for the original model dust profile; b) infinite slab calculation for a uniform
density dust layer in the midplane; c) hybrid model of uniform dust layer combined with a
small-grain gaussian distribution; and d) original density profile with decay product escape
restricted to the z-direction.

exactly for ⌧±,

⌧±(z) = ⌧0

⇢
1⌥ erf


z

p

2H

��
, (5.13)

where we have defined

⌧0 = ⇢0H

r
⇡

2
=
⌃g

2
. (5.14)

Note that ⌧± must be computed for each type of decay product k where the decay ranges

are provided in Table 5.1. Nonetheless, Equation (5.13) allows the ionization rate to be

calculated – easily and exactly – from Equation (5.12) at any point (r, z) in the disk.

Figure 5.1 presents the results from Equations (5.12,5.13) for our standard disk model.

Of the various SLR parent bodies, 26Al dominates the ionization rate ⇣SLR at early times, as

demonstrated in the bottom panel where we include ionization contributions from 26Al, 60Fe,

and 36Cl decay, which together increase ⇣SLR by ⇠ 13%. Among the 26Al decay products,

within R < 100 AU the more energetic �-rays play the largest role, while outside of this

region the more readily stopped positrons carry the ionization (see Figure 5.1, dashed and

dot-dash lines, respectively).
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5.4.2 Dust Settling

As dust settles towards the midplane, the sources of emissivity (SLRs in the dust) and

the absorbers (gas) are no longer well-mixed. In our settled disk model (Chapter 4), the

large grains have a smaller scale-height h than the gas and small grains, H, where both dust

reservoirs are described by a gaussian profile and where h/H = 0.2. This section provides

two methods to approximate this more complicated radiative transfer problem.

The original integral for the energy density can be written in the form

cE(z) =
J

2

1Z

�1

dµ

1Z

0

⇢g(s)
100

fg(s)
exp [�⌧(s)]ds, (5.15)

from which ⇣SLR can be directly computed via Equation (5.11). Using the plane-parallel

approximation in conjunction with fg(s) = ⇢g(s)/⇢d(s), we can solve Equation (5.15), as

was done for the well-mixed case (Section 5.4.1). In general, this integral must be carried

out numerically and is moderately computationally expensive, but it provides an accurate

treatment of the problem. We use this numerical result (see Figure 5.2a) to benchmark the

approximations derived below.

5.4.2.1 Uniform Thin Dust Layer

Our first approximation considers the case where the radioactive elements have settled

into a thin layer with scale height h ⌧ H. We can write the density distribution with the

limiting form

⇢d(z) = ⌃d�(z), (5.16)

where �(z) is the Dirac delta function and ⌃d = ⌃g/100 is the total dust surface density.

With this substitution, the solution to the integral in Equation (5.4) for a gaussian disk is

I(z � h;µ) =
J⌃g

4⇡µ
exp


�

⌧0
|µ|

erf

✓
z

p

2H

◆�
, (5.17)
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which is valid for µ � 0. In the limit where all SLRs are concentrated at the midplane, I = 0

for µ < 0, i.e., nothing is emitted from above. The term in brackets is the optical depth

from the midplane to height z (divided by µ), and can be calculated for a general disk. The

corresponding energy density has the form

cE(z) = 2⇡

1Z

0

I(z, µ)dµ =
J⌃g

2
E1


⌧0 erf

✓
z

p

2H

◆�
, (5.18)

where E1(⌧) is the exponential integral of order one. In the limit ⌧ ! 0, E1(⌧) ! 1 as a

natural consequence of the �-function. To evaluate the ionization rate near the midplane,

we now consider the density distribution to have finite thickness

⇢d(z) =
⌃d

2
p

2h
for |z| 

p

2h, (5.19)

where ⇢d(z) = 0 for |z| >
p

2h. With this specification, the specific intensity has the form

I(z;µ) =
J

4⇡

⌃g

2
p

2h

1Z

0

⇥(z0) exp[�⌧(s)]ds, (5.20)

where ⇥(z0) = 1 for �
p

2h  z0 
p

2h and is zero otherwise. If z >
p

2h, then only rays

with µ > 0 result in nonzero I. Next we define t ⌘ z0/
p

2H such that

⌧(t) =
⌧0
|µ|

����erf
✓

z
p

2H

◆
� erf(t)

���� . (5.21)

For z <
p

2h, the specific intensity becomes

I(z < h;µ > 0) =
J

4⇡

⌃g

µ

H

2h

z/HZ

�h/H

exp [�⌧(t)] dt, (5.22)

I(z < h;µ < 0) =
J

4⇡

⌃g

|µ|

H

2h

h/HZ

z/H

exp [�⌧(t)] dt. (5.23)
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In the limit z ! 0, the specific intensity becomes

I(z ! 0, µ) =
J

4⇡

⌃g

2h

H

|µ|

h/HZ

0

exp


�

⌧0
|µ|

erf(t)

�
dt, (5.24)

where we have used Equation (5.21). Next we evaluate the specific intensity in the limit

h ⌧ H where we can approximate erf(t) ⇡ 2t/
p

⇡, which implies

I(z ! 0, µ) =
J

4⇡

p

⇡H

2h

⇢
1� exp


�

⌧0
|µ|

2h
p

⇡H

��
. (5.25)

Defining a “dust-compactness” parameter

� ⌘

2h
p

⇡H
, (5.26)

the corresponding energy density at z ! 0 is given by

cE0 =
J



1

�

8
<

:1�

1Z

1

exp [�⌧0�x]

x2
dx

9
=

;

=
J



1

�
{1� E2 [⌧0�]} . (5.27)

Equations (5.18) and (5.27) give the ionization rate ⇣H2 in the limits z � h and z ! 0,

respectively. To provide a continuous expression for ⇣H2 , we smoothly connect the two

limiting forms,

⇣H2(z) = (1� f(z))

⇢
J⌃g

2
E1


⌧0 erf

✓
z

p

2H

◆��

+f(z)

⇢
J



1

�
{1� E2 [⌧0�]}

�
, (5.28)

where f is a continuous function, e.g., f = exp[�z2/2h2]. In the limit �! 0, Equation (5.28)

provides the solution for a disk model where all of the dust has settled to the midplane. In
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limit �! 1, we recover the solution for the well-mixed disk (Section 5.4.1).

Figure 5.2 (b) shows the ionization rate due to mm-grains (containing 85% of the dust

mass) approximated as a thin slab from Equation (5.28). In panel (c) we combine the results

in (b) with the well-mixed calculation for small grains (15% of all dust mass) following

Section 5.4.1, thereby producing a “hybrid” model. At large heights and large radii, the

thin-slab solution reproduces the full solution (a) quite well, though slightly overestimates

(⇠ 30� 60%) the ionization inside R < 50 AU near the midplane.

5.4.2.2 Bidirectional Escape Approximation

As an alternate approach, we consider only the vertical column of emitters/absorbers,

essentially assuming that radiation travels only in the z-direction. This simplification pro-

vides the solution after evaluating only one integral in addition to ⌧ , and thus allows us

to consider more complex/non-analytic dust and gas distributions. In this “bidirectional

escape” approximation, the ionization rate has the form

⇣H2(z) =
J

2

hmi

WH2

8
<

:

1Z

0

⇢g(z)

✓
100

fg(z)

◆
exp [�⌧(z)]dz

+

�1Z

0

⇢g(z)

✓
100

fg(z)

◆
exp [�⌧(z)]dz

9
=

; . (5.29)

where ⌧± are given by Equation (5.13). Although this approximation is somewhat crude, the

solution can be readily evaluated via numerical integration, where the emissivity J is given

by Equation (5.2). Figure 5.2 (d) compares this bidirectional approximation to the plane-

parallel calculation for the same dust density profile. In general, the bidirectional calculation

underestimates the ionization rate by a factor of ⇠ 1.5, with the discrepancy growing to a

factor of ⇠ 2 for R � 300 AU.
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Figure 5.3 Same as Figure 5.1, at the indicated time after t = 0 such that the ionizing
reservoir has been partially exhausted. For t < 5 Myr, the ionization rate is set by 26Al-
decay. At later times (right, t = 10 Myr) the longer-lived 60Fe provides the ionization,
although at a reduced rate due to its lower abundance and longer decay time.

5.4.3 Time Dependence

Technically, the abundances of the SLRs evolve with time, with half-lives thalf ⇠ 1 Myr,

comparable to disk evolution timescales. We have calculated the ionization rates for the

unsettled disk at t = 1, 5 and 10 Myr, to compare with the t = 0 calculations from Section 5.4

(Figure 5.1); these results are presented in Figure 5.3. At early times, 26Al and 36Cl are the

dominant ionizing agents; after ⇠ 5 Myr, however, the longer-lived though less abundant

60Fe determines the ionization rate ⇣SLR. At even longer times, long-lived radionuclides such

as 40K (thalf ⇠ 1.28 Gyr; Umebayashi et al., 2013) provide the largest contribution. However,

because the ionization rate is inversely proportional to thalf , long-lived radionuclides only

produce ionization rates of order ⇣H2 . 10�22 s�1.

Figure 5.4 plots the ionization rate ⇣SLR calculated at the disk midplane (z = 0) versus

vertical disk surface density at several times. We have fitted power-laws (shown in gray in

Figure 5.4) to the ionization rates from all three SLR species to facilitate their use. For the

well-mixed disk, the rate ⇣H2 , as a function of disk surface density and time, is given by

⇣H2(r) =
�
2.5⇥ 10�19 s�1

�✓1

2

◆1.04t✓ ⌃(r)

g cm�2

◆�0.27

, (5.30)

where time, t, is given in Myr.
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Figure 5.4 Ionization rate per H2 in the midplane as a function of disk surface density at
the indicated times. We fit these results using a simple power-law versus surface density,
normalized with to a time-dependent constant (gray lines), see Equation (5.30).
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5.5 Discussion

This work has made two simplifying assumptions that warrant further consideration.

First, we have used a single opacity to simplify the calculations. In reality, the photons

and particles will have their energies degraded as they collide with the gas. For Compton-

scattered photons, the change in �-ray energy for E� < mec
2 is approximately �E / E�

2

(Rybicki and Lightman, 1979). This energy degradation results in an energy spectrum of

the form I(E�) ⇡ E� dN/dE ⇡ E�/�E / 1/E�, from which we may compute a weighted

opacity for photons that lose all of their energy through scattering in the disk,

hi ⌘

R Ei

0 (E�)IdER Ei

0 IdE
. (5.31)

At su�ciently low energies, below E� < 30 keV, the dominant absorption mechanism be-

comes photoabsorption, at which point the photon has lost nearly all of its initial energy

Ei ⇠ 1 MeV. The Compton-weighted opacity for a 1.808 MeV photon is hi ⇠ 0.19 cm2 g�1,

larger than its initial cross section, i ⇠ 0.08 cm2 g�1, which increases the derived ionization

rate by factors of 4% (12%) at r = 10 AU (400 AU).

Another major simplification comes from our treatment of the positrons in 26Al decay.

Currently we assume that all energetic particles are emitted locally and can then escape.

According to Umebayashi et al. (2013), the positron will first lose its energy to primarily

collisional ionization until it comes to rest, at which point it will annihilate with an electron

and produce two 0.511 MeV �-rays. However, the cross section for absorption of the �-

rays is less than that of the original positrons. For disk regions where positrons escape

in our simplified treatment, these �-rays escape even more readily, and thus make smaller

contributions to the ionization rate.
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5.6 Conclusion

This Chapter carries out radiative transfer calculations for the decay products of short-

lived radionuclides in circumstellar disks. These SLRs provide an important contribution

to the ionization rates, which in turn a↵ect disk chemistry and physics. We provide simple

analytic expressions for the ionization rates due to SLR decay. For well-mixed disks, the

ionization rate ⇣SLR(r, z) can be found analytically and is given by Equation (5.12). The

radial dependence is controlled by the surface density profile, which determines the optical

depths through Equations (5.13) and (5.14). Complications arise as disks evolve, including

dust settling and a decrease in the SLR abundances. We provide two approximations for

disks with settled dust layers: The first treatment considers the dust as a thin uniform layer;

the ionization rate is given by Equation (5.28), where the dust-compactness parameter �

determines the degree of settling (Equation (5.26)). This approximation scheme is accurate

to tens of percent, and becomes exact for a well-mixed disk. For completeness, we develop

a simpler approximation that considers radiation propagation in the vertical directions only

(Section 5.4.2.2), as is commonly done for calculations of CR ionization rates. Finally, we

provide a fit to the midplane ionization rates as a function of surface density and time

(Equation (5.30)). While this function can be applied over the entire vertical structure, it

formally overestimates ⇣SLRH2
at the disk surface. In this regime, however, other ionization

sources (e.g., stellar X-ray photoionization of H2) will dominate, so that our approximation

remains satisfactory.

A full treatment of this problem requires Monte Carlo or other numerical methods, in-

cluding energy losses, angle-dependent scattering, energy-dependent radiative transfer, and

more sophisticated density distributions. Although these generalizations should be incor-

porated in future work, the analytic expressions derived herein provide useful and accurate

estimates for the ionization rates due to SLR decay, and can thus be used in a wide variety

of physical and chemical disk models.
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CHAPTER VI

Exclusion of Cosmic Rays in Protoplanetary Disks. II.

Chemical Gradients and Observational Signatures

6.1 Preface

The following work appears in the Astrophysical Journal, Volume 794, 123, 23 pp. (2014).

The work is co-authored by Edwin A. Bergin1 and Fred C. Adams2. The paper is copyright

2014, the American Astronomical Society, reproduced here under the non-exclusive right of

republication granted by the AAS to the author(s) of the paper.

6.2 Abstract

The chemical properties of protoplanetary disks are especially sensitive to their ionization

environment. Sources of molecular gas ionization include cosmic rays, stellar X-rays and

short-lived radionuclides, each of which varies with location in the disk. This behavior

leads to a significant amount of chemical structure, especially in molecular ion abundances,

which is imprinted in their submillimeter rotational line emission. Using an observationally

motivated disk model, we make predictions for the dependence of chemical abundances

1Department of Astronomy, University of Michigan, 500 Church St, Ann Arbor, MI 48109
2Department of Physics, University of Michigan, 450 Church St, Ann Arbor, MI 48109
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on the assumed properties of the ionizing field. We calculate the emergent line intensity

for abundant molecular ions and simulate sensitive observations with the Atacama Large

Millimeter/Sub-millimeter Array (ALMA) for a disk at D = 100 pc. The models readily

distinguish between high ionization rates (⇣ & 10�17 s�1 per H2) and below, but it becomes

di�cult to distinguish between low ionization models when ⇣ . 10�19 s�1. We find that

H2D+ emission is not detectable for sub-interstellar CR rates with ALMA (6h integration),

and that N2D+ emission may be a more sensitive tracer of midplane ionization. HCO+ traces

X-rays and high CR rates (⇣CR & 10�17 s�1), and provides a handle on the warm molecular

ionization properties where CO is present in the gas. Furthermore, species like HCO+, which

emits from a wide radial region and samples a large gradient in temperature, can exhibit

ring-like emission as a consequence of low-lying rotational level de-excitation near the star.

This finding highlights a scenario where rings are not necessarily structural or chemical in

nature, but simply a result of the underlying line excitation properties.

6.3 Introduction

Ionization plays an important role in setting thermal (e.g., Glassgold et al., 2004), dy-

namical (Balbus and Hawley , 1991; Gammie, 1996; Matsumura and Pudritz , 2003), and

chemical (e.g., Semenov et al., 2004; Öberg et al., 2011d) properties of protoplanetary disks.

The chemistry occurring in the bulk mass of disks is especially sensitive to ionization for

two reasons: (i) in the cold gas, ion-neutral reactions are the most e�cient means towards

chemical complexity, and (ii) in the ices, the crucial hydrogenation reactions (Tielens and

Hagen, 1982; Hasegawa et al., 1992a) are fueled by hydrogen atoms that are extracted by

ionization of molecular H2. The dominant ionization processes in disks are photoionization

from stellar and interstellar UV and X-ray radiation, thermal ionization, ionization by the

decay products of short-lived radionuclides (SLRs), and cosmic ray (CR) ionization. Addi-

tionally, the cluster environment can provide a source of ionization on the outer surface of the

disk from interstellar FUV, which can exceed that of the galactic average interstellar FUV
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by a factor of & 3000 (Fatuzzo and Adams , 2008). Of these sources, CRs and potentially

SLR decay provide ionization in the densest and coldest layers of the disk, where UV and

X-rays are highly attenuated. However, it is unclear as to whether or not CRs are actually

present at rates derived for the interstellar medium (ISM), i.e., ⇣CR ⇠ (1� 5)⇥ 10�17 s�1 in

dense gas and ⇣CR ⇠ (1� 8)⇥ 10�16 s�1 in the di↵use ISM (Dalgarno, 2006, and references

therein). Modulation of the CR flux can occur as a result of exclusion by natal stellar winds

as explored in detail in Chapter 4 and discussed in Glassgold (1999); Aikawa and Herbst

(1999a) and Fromang et al. (2002), in addition to exclusion by magnetic fields (Dolginov and

Stepinski , 1994; Padovani and Galli , 2011; Fatuzzo and Adams , 2014). At these reduced

levels, the ionization from SLR decay products becomes as important, and perhaps even

more so, than that of CRs.

In the present work, we set out to determine the chemical imprint of individual ionization

processes in a generic protoplanetary disk model. We outline how observations of molecular

species can be used as a blueprint to constrain the underlying ionization properties of the

disk’s dense molecular gas. More specifically, we focus on the impact of the assumed CR

flux on molecular abundances in tandem with a detailed treatment of ionization by SLRs

and stellar X-rays, including a Monte Carlo treatment of the scattered X-ray radiation field.

We extend these results to make testable predictions for future sensitive observations with

the Atacama Large Millimeter/Submillimeter Array (ALMA) of molecular ion emission in

protoplanetary disks. Such predictions will help more accurately determine not only the

ionization fraction in disks, which is important for constraining models of turbulence and

chemistry, but also the source of ionization traced by a given molecular ion and transition.

Current detections of molecular ions in disks include N2H+, HCO+, and DCO+ (e.g.,

Dutrey et al., 1997; van Dishoeck et al., 2003; Thi et al., 2004; Öberg et al., 2010, 2011c).

The elusive H2D+ has yet to be detected in a disk, with reported detections of the (110�111)

line towards DM Tau and TW Hya (Ceccarelli et al., 2004) not confirmed by reanalysis or

more sensitive observations (Guilloteau et al., 2006; Qi et al., 2008; Chapillon et al., 2011).
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The H2D+ upper limits nonetheless provide some constraints on the midplane ionization rate.

Chapillon et al. (2011) investigated chemical models incorporating deuterium chemistry and

find models with midplane ionization rates below ⇣total < 3⇥10�17 s�1 are required to explain

the line’s non-detection. Strictly speaking, CRs are the primary midplane ionizing agent

considered by Chapillon et al. (2011), though we note this value more generally provides a

limit on the total ionization rate, which is expected to be primarily due to SLRs and CRs

in the H2D+ emitting gas, discussed in more detail below. We note that the deuterium

chemistry of H2D+, specifically the reactions leading back to H+
3 , are sensitive to the ortho-

to-para ratio of both H+
3 and H2 (Chapillon et al., 2011; Hugo et al., 2009; Albertsson et al.,

2014), which we include in this work (see §6.6.1). Furthermore, H2D+ can undergo deuterium

substitution towards the fully substituted and unobservable D+
3 (Walmsley et al., 2004),

which complicates the interpretation of H2D+ measurements in determining ionization from

H2D+. Such progressive D-substitution may point towards future di�culty in detection

experiments of what would otherwise be a useful tracer of ionization and cold chemistry. This

point further emphasizes the utility of chemical models in the interpretation of molecular

ion emission as a proxy for measuring disk ionization rates.

The Chapter is structured as follows: In Sections §6.4 and §6.5, we review the physical

model and the sources of ionization considered. In Section §6.6.1 we describe the updated

chemical reaction network used to predict the molecular abundances, and Section §6.6.2

examines the chemical abundance variations between the di↵erent ionization models. Sec-

tion §6.7 makes predictions for sensitive, high-spatial resolution submillimeter observations

that can be used to determine and to distinguish between the important ionization mecha-

nisms. In Section §6.8, we discuss the e↵ects of a more X-ray luminous source, time-decay

of radionuclides, disk gas mass, and the impact of disk magnetic fields. In Section §6.9, we

summarize our results and discuss their implications.
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Figure 6.1 Disk model used for the chemical calculations. Top row, left to right: i) gas density,
ii) settled dust density, iii) dust temperature. Bottom row, left to right: i) gas temperature,
ii) integrated X-ray radiation field and iii) FUV radiation field from the central star. The
FUV flux is integrated between 930� 2000 Å using the observed TW Hydra FUV spectrum
(Herczeg et al., 2002, 2004), including Ly-↵. The X-ray luminosity is LXR = 1029.5 erg s�1

integrated between EXR = 0.1� 10 keV.

6.4 The Physical Model

We refer the reader to a detailed description of the disk model parameters in Chapter 4,

and review only the main aspects of the model below. The fiducial disk mass isMd ⇠ 0.04 M�

within a Rd = 400 AU radius, where the vertical structure and geometrical parameters (i.e.

flaring) are typical of observed protoplanetary disks (Andrews et al., 2011). The gas and

dust surface densities follow a power law with an exponential taper at the outer edge (Hughes

et al., 2008; Andrews et al., 2011) and the dust is heated via passive irradiation from the

central K5V star with Te↵ = 4300 K with the code TORUS (Harries , 2000; Harries et al.,

2004; Kurosawa et al., 2004; Pinte et al., 2009). The gas temperature is calculated from

a fitting function calibrated to detailed thermochemical models of disks heated by FUV

photons from the central star (Simon Bruderer in private communication, 2013). In the

heating calculation, we consider only the central star’s FUV field (described in §6.5.1). The
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Table 6.1. Stellar and disk model parameters.

Stellar Model

Stellar Mass 1.06 M�
Stellar Radius 1.83 R�
Stellar Te↵ 4300 K
LUV 2.9 ⇥1031 erg/s a

LXR 1029.5 erg/s

Disk Model

Rinner 0.1 AU
Router 400 AU
Mdust 3.9 ⇥10�4 M�
Mgas 0.039 M�

aAs computed from the observed
FUV spectrum of TW Hya integrated
between 930 and 2000 Å (Herczeg
et al., 2002, 2004).

vertical distribution of dust is broken up into two populations to simulate grain growth,

with a population of large millimeter grains concentrated at the geometrical center of the

disk (the midplane) and a population of “atmosphere” micron-sized grains distributed over

larger scale heights. The gas and small micron-sized grains follow the same scale height

(see Chapter 4 for details, as well as the dust optical properties). Figure 6.1 shows the

disk density, thermal and stellar radiation fields, and Table 6.1 outlines the main physical

parameters of our model.

6.5 Ionization Sources

Star/disk systems are subject to a variety of ionization sources, including FUV and X-

ray radiation from the central stars, short-lived radionuclides, and CRs. These ionization

sources are not constant in time or in space. Instead, they are expected to vary with the

local environment, from system to system, and display time dependence. Some environ-

ments include ionizing radiation from nearby (more massive) stars (see the review of Adams ,
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2010), although this complication is left for future work. This section outlines the physical

mechanisms that contribute to the disk ionization rate and the ranges of values considered

at present.

6.5.1 Stellar Photoionization

T Tauri stars are known to be X-ray luminous with X-ray luminosities typically ranging

LXR ⇠ 1029 � 1031 erg s�1 (e.g., Feigelson and Decampli , 1981a; Feigelson et al., 1993;

Telleschi et al., 2007). Consequently, the disk’s X-ray ionization properties are perhaps the

best (observationally) constrained ionization agent present in the disk molecular gas. That

said, the permeability of the disk gas to X-rays is unknown owing to uncertainties in the disk

mass (the column density) and composition (opacity) of the absorbing materials. The biggest

uncertainty in the X-ray opacity is in the time-dependent e↵ects of dust settling, which

redistributes and removes the absorbing material from the upper layers. More specifically,

by removing dust mass from the upper layers the opacity shifts from a well-mixed gas and

dust regime to a gas-dominated opacity. For Asplund et al. (2009) abundances, the change in

opacity corresponds to a factor of two decrease in absorption cross section between the well-

mixed and fully settled cases at EXR = 1 keV (Bethell and Bergin, 2011b). However, with

knowledge of the star’s X-ray luminosity, it may be possible to shed light on the permeability

of the disk atmosphere to X-rays with the proposed molecular tracers in this work (see §6.6.2).

We calculate the stellar FUV and X-ray radiation fields as a function of position and

wavelength within the disk using a Monte Carlo treatment described in Bethell and Bergin

(2011a). For FUV transfer, we consider the dust model’s position-dependent opacities and

compute the absorption and scattering on dust grains. In addition to the radiative transfer

through the dust, we calculate the Lyman-↵ line transfer, where photons scatter isotropically

o↵ atomic hydrogen present at the disk surface. Treatment of Lyman-↵ is important as this

line has been observed to carry ⇠ 80 � 90% of the total FUV flux (Herczeg et al., 2004;

Schindhelm et al., 2012; France et al., 2014); as a consequence of its scattering properties,
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the Lyman-↵ photons are able to penetrate deeper into the disk gas than the rest of the

primarily dust-scattered FUV photons (Bethell and Bergin, 2011a). Because the present

Chapter is mainly focused on understanding the ionization properties of the dense molecular

gas, we hold the FUV radiation field constant in the models presented here since FUV

mainly contributes to the ionization in the lower density surface layers where, for example,

C+ emission originates. The assumed incident FUV spectrum is that of TW Hydra (Herczeg

et al., 2002, 2004), the closest and least extincted T Tauri star along the line of sight,

d = 55 pc (Perryman et al., 1997). In this work, we do not include the interstellar FUV

radiation field as a source of ionization in the dense gas, but it is expected to play a role in

the cluster environment where the external FUV field can be many thousands of G0 (Fatuzzo

and Adams , 2008), where G0 is the mean value for the ISM (Habing , 1968; Draine, 1978).

A G0=1 has a less significant e↵ect on the chemistry since a small amount of UV opacity

from small grains restricts the UV penetration to an outer shell on the disk surface, which is

dwarfed by scattered UV from star itself (see Fig. 3 of Chapter 4). A similar ionization study

should be carried out for more extreme cluster environments, where the high UV field will

be accompanied by a higher SLR abundance and potentially CR abundance in the vicinity

of massive stars.

The specific (energy-dependent) X-ray fluxes are calculated using the same code as was

used for the FUV (Bethell and Bergin, 2011a) where we instead adopt the updated X-ray

absorption gas and dust opacities of Bethell and Bergin (2011b). We note that the model

has been updated since Chapter 4, where the dust-reduced opacity in the upper layers (90%

reduction in dust, or “e0p1”) was originally assumed to be uniform throughout the disk.

We have since updated this calculation to take into account our knowledge of the local gas-

to-dust mass ratio. We determine the absorption opacity due to gas and dust individually

at each location in the disk from the Bethell and Bergin (2011b) cross sections. The X-ray

scattering is dominated by Thomson scattering and approximately isotropic (i.e., photons

are scattered equally in the backwards and forwards directions). For the primary model,
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we assume a characteristic T Tauri star X-ray luminosity of LXR = 1029.5 erg s�1 with the

quiescent X-ray spectral template given in Chapter 4.
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Figure 6.2 Sources of H2 ionization present in the midplane as a function of disk radius.
The orange points are the result of our Monte Carlo calculation and are dominated by
intermediate energy X-ray photons, typically 5 � 7 keV. The solid blue-green line is the
cosmic ray ionization rate including the modulation of stellar winds for the present-day Sun
at solar maximum. The CR value typically assumed for disk chemical models is shown in
dashed blue-green for comparison. The yellow line shows the initial contribution from short-
lived radionuclide ionization, predominantly 26Al. The radial decrease in SLR ionization is
due to losses of SLR decay products, which escape the disk. The e↵ective half-life of the
SLR curve is thalf ⇠ 1 Myr.

The most abundant low energy X-rays (E ⇠ 1 keV) are also the most easily attenuated,

and consequently do not contribute to the dense midplane ionization. The most important

X-rays in the densest gas are typically of intermediate energies, between 5 � 7 keV, which

are less numerous but can more readily penetrate the gas and dust. We emphasize that a

detailed treatment of X-ray scattering is crucial in understanding disk ionization, otherwise

there would be no X-ray photons in the midplane (Igea and Glassgold , 1999; Ercolano and
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Glassgold , 2013, Chapter 4). Correspondingly, the scattered X-ray radiation field provides

the absolute floor to the midplane ionization rate in the absence of CRs and SLRs (see

Figure 6.2). In the Figure, the initial rise in midplane X-ray intensity occurs as the disk

surface density drops (becomes more optically thin), while the fall-o↵ beyond R ⇠ 50 AU is

simply geometrical dilution. The X-ray ionization floor falls in the range ⇣XR ⇠ (1 � 10) ⇥

10�21 s�1. For a more massive or denser disk than the one considered here, the role of X-rays

can be diminished in the midplane by more extreme gas extinction. On the other hand, a

star with higher X-ray luminosity would have a proportionally higher ⇣XR depending upon

the shape of the stellar X-ray spectrum (see also §6.8.1).

6.5.2 Short-Lived Radionuclide Ionization

The disk ionization contribution from the decay of SLRs has been studied extensively

(Consolmagno and Jokipii , 1978; Umebayashi and Nakano, 1981; Finocchi and Gail , 1997;

Umebayashi and Nakano, 2009; Umebayashi et al., 2013, see also Chapter 4). The initial

abundances of radioactive species within a typical protoplanetary disk are uncertain but can

be estimated for the case of the protosolar disk from isotopic abundance measurements in

meteorites (e.g., Wasserburg et al., 2006, and references therein). Whether these values are

representative of all disks is unknown; however, the frequency of di↵erentiated extrasolar

asteroids seem to indicate that the young Solar System was at least not atypical in its SLR

content (Jura et al., 2013), a hypothesis which models successfully reproduce (Vasileiadis

et al., 2013). Moreover, recent work indicates that both direct (disk) SLR injection in clusters

and distributed SLR enrichment in molecular clouds can produce abundances comparable

to those inferred for the early Solar Nebula (Adams et al., 2014).

Time evolution of abundances adds further uncertainty in estimating the SLR contri-

bution to the ionization budget in disks. The characteristic half-life of the ensemble of

important SLRs, primarily 26Al (thalf = 0.74 Myr; Schramm, 1971; MacPherson et al., 1995;
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Umebayashi and Nakano, 2009) and 60Fe (thalf = 2.6 Myr3; Rugel et al., 2009) corresponds

to approximately thalf ⇠ 1.2 Myr (Appendix A). This implies that for disks aged 5 Myr,

the contribution from SLRs is reduced by nearly 80%, and consequently scattered X-rays

and SLRs would contribute to the midplane ionization at a similar magnitude outside of

R > 50 AU (Fig. 6.2). Inside this radius, the SLR contribution exceeds that of X-rays due

to the high attenuation of X-ray photons in the inner disk midplane.

Another complication is that a substantial fraction of the SLR decay products, e.g., beta

particles and �-rays, escape the disk prior to ionizing the gas when surface densities drop

below ⌃g ⇠ 1 � 10 g cm�2 so that not all of the available energy is deposited locally. The

present model incorporates the e↵ects of �-ray, �+ and �� loss in the outer disk (described

in Chapter 5) for the settled disk slab model. We note that the main chemical model results

presented in §6.6.2 assume the SLR ionization rate is constant with time, which is acceptable

for disks with t < 1 Myr or less. We relax this requirement in §6.8.2 where we consider SLR

time evolution within the chemical calculation itself.

6.5.3 Cosmic Ray Ionization

Ionization by cosmic rays at the interstellar rate (1 � 5 ⇥ 10�17 s�1) is a commonly

assumed ingredient in models of disk chemistry and physics. However, detection limits

of H2D+ emission suggest that the ionization rate is actually lower than expected for the

dense ISM, pointing to some variety of additional attenuation. One possible explanation

is CR exclusion by natal stellar winds, i.e, an analogue to the modern day “Heliosphere.”

Within the Heliosphere, the solar wind strongly modulates CRs, especially those below

ECR ⇠ 100 MeV. Pre-main-sequence stars such as T Tauri stars are significantly more

3We note that in Chapter 5, the value assumed for the 60Fe half-life predates Rugel et al. (2009), where
the original value of thalf = 1.5 Myr used in Chapter 4 originates from Kutschera et al. (1984). Once the
26Al has been depleted after approximately t > 5 Myr, 60Fe is the primary contributor to SLR ionization.
However at this epoch, the ionization attributed to scattered stellar X-rays begins to exceed that of the SLR
contribution (see Fig 6.2), and correspondingly the change in chemical properties or ionization fractions are
not expected to be large for the updated half-life. Nonetheless, we have included an updated Figure 4 from
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magnetically active, have high rotation rates, and high mass loss rates, all of which may drive

high levels of CR exclusion at all particle energies. Models of the Gyr-old Sun show significant

modulation even at late times (Svensmark , 2006; Cohen et al., 2012), corresponding to

incident CR ionization rates in the range ⇣CR ⇠ (3 � 100) ⇥ 10�22 s�1. In Chapter 4, we

present a simple model of a scaled-up Heliosphere, i.e. a “T-Tauriosphere,” to estimate the

degree to which a T Tauri star could potentially exclude CRs with winds, and how this

exclusion is imprinted on the ionization state of the disk. In the instance of relatively mild

modern-day solar winds at solar minimum, the ionization rate by CRs at the disk surface

is reduced to just ⇣CR . 10�18 s�1. This value is already over an order of magnitude below

the typically assumed (dense gas) interstellar rate. At solar maximum, the ionization rate

at the disk surface is reduced to ⇣CR ⇠ 10�19 s�1 (see Figure 6.2). If young, energetic stellar

winds are even more e�cient at sweeping away CRs, the CR ionization rate will drop below

the solar maximum value at which point SLRs now become the primary midplane ionization

contributor, where ⇣SLR ⇠ (1� 10)⇥ 10�19 s�1 for t < 1 Myr.

While the “T-Tauriosphere” models explored in Chapter 4 were simple scaled up versions

of the modern day solar wind, the spectra reflect the general behavior we expect under

more extreme stellar wind conditions such as those explored in Cohen et al. (2012), where

low energy CRs are excluded most severely, and high energy CRs (E > 1 GeV) are only

weakly modulated. Here we explore two wind-modulated CR ionization models, including the

present-day Sun (Solar System Maximum: SSX) and a scaled-up exclusion model (T Tauri

Maximum: TTX) as presented in Chapter 4. These models provide a realistic framework that

allows us to quantify how the chemistry is a↵ected by modulated incident CR fluxes. We note

that the wind modulation a↵ects the incident spectrum and consequently the ionization rate

at the disk surface, in addition to attenuation by the disk gas, where the typical attenuating

surface density is ⌃g ⇠ 100 g cm�2 (Umebayashi and Nakano, 1981). Additional opacity

can arise from magnetic mirroring and magnetic irregularities in the disk, which we discuss

154



Table 6.2. CR model ionization rates for N(H2)  1025 cm�2.

Model ID ⇣CR

Moskalenko et al. (2002) M02 6.8⇥ 10�16 s�1

Webber (1998) W98 2⇥ 10�17 s�1

Solar System Maximum SSX 1.6⇥ 10�19 s�1

T Tauri Maximum TTX 1.1⇥ 10�22 s�1

further in §6.9 (see also Dolginov and Stepinski , 1994; Padovani and Galli , 2011; Fatuzzo

and Adams , 2014).

For the scaled up (TTX) CR model discussed in Chapter 4, the ionization rate due to

CR drops below that of X-rays at all radii, and the TTX models correspond to a purely

X-ray dominated disk for models without SLR ionization. Table 6.2 provides characteristic

rates in the disk surface layers for the di↵erent CR wind modulation models considered

in this work. In addition to the wind modulated SSX and TTX spectra, we examine two

“ISM-like” models, M02 (Moskalenko et al., 2002) and W98 (Webber , 1998). W98 is the

closest model to what is typically assumed in models of disk chemistry, ⇣CR ⇠ 2⇥ 10�17 s�1,

while the M02 ionization rate is characteristic of CR ionization rates measured from H+
3 in

the di↵use ISM (Indriolo and McCall , 2012), which are unattenuated. For disks without a

significant amount of surrounding nebulous gas, such as TW Hya, the M02 model may be

more representative of the interstellar (completely unmodulated) CR rate.

6.6 The Chemical Network

The chemical nature of a parcel of interstellar gas and ice is highly sensitive to the prop-

erties of its environment. These properties include the radiation field intensity, grain size

and volume density (regulating freeze-out and desorption), gas/dust temperatures and den-

sities. In cold gas (T < 100 K), the gas-phase chemistry is particularly sensitive to the gas

Chapter 5 and new fits to the midplane ionization rate in Appendix A of this manuscript.
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ionization fraction, as ion-neutral reactions are the most important (i.e., quickest) gas phase

reactions that take place (Herbst and Klemperer , 1973). The geometry of disks, ranging

between lower density, warm ionized surfaces to predominantly neutral, cold midplanes pro-

vides a diversity of physical conditions, which are directly translated into a rich chemical

environment. Conversely, observations of the chemical composition of disks provide clues

into the underlying physical environment and therefore are a powerful observational tool to

help understand the important physics governing these systems. In the following section we

examine how the chemical properties of disks, particularly the molecular ions, react to dif-

ferent assumptions regarding ionization processes, and how they may be used as diagnostic

tools.

6.6.1 Chemical Model

The physical model and stellar UV and X-ray radiation fields provide the backbone on

which we solve for the time-dependent chemical abundances with the Fogel et al. (2011) disk

chemistry code. This chemical reaction network is based upon the OSU gas-phase network

(Smith et al., 2004), where Fogel et al. (2011) substantially expanded the network to include

important processes such as thermal and non-thermal sublimation, photodissociation, freeze-

out onto grains, CO and H2 (and isotopologues) self-shielding, and stellar and non-stellar

ionization of H2 and helium. The code is calculated as 1+1D, where di↵erent disk radii are

treated independently and self-shielding is considered in the vertical direction. The code is

run in parallel with the publicly available GNU Parallel software (Tange, 2011). We note

that in the calculation of the temperature structure and UV transfer, we consider the spatial

dependence of the grain size populations in detail. The grain-surface chemistry, however,

is fixed to a single “typical” grain-size of rg = 0.1µm, where the underlying assumption is

that the small grains dominate the surface area and are most important for the chemistry.

Because the gas and small grains are uniformly distributed, this approximation is justified in

the present work; however, we would nonetheless be “missing” surface area in the midplane
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where the 1mm grains are concentrated. We note, though, that this correction should be

small considering that small grains are present throughout the disk at all scale-heights.

We furthermore note that the physical size of rg is not the important quantity, but rather

this number translates into an e↵ective grain surface area per unit volume in the chemical

code (e.g., 7.5 ⇥ 10�3 µm2 cm�3 at nH2 = 1010 cm�3). Nonetheless, future work should

explore more than two size populations, including their vertical distribution in the disk (for

example, in the formalism of Dullemond and Dominik , 2004) and how these will a↵ect the

grain-chemistry.

In order to make predictions for deuterated molecular ions, we have added to the Fogel

et al. (2011) network a simple deuterium chemistry to predict the abundances of H2D+ and

N2D+, which become enriched relative to the main isotopologue due to a chemical favorability

towards the heavier isotopologue at low (T < 50 K) temperatures (Millar et al., 1989). Even

though DCO+ is part of the network through the H2D++ CO formation pathway, we do not

make predictions for the DCO+ abundances in the present work; the chemistry of DCO+

depends sensitively on the deuterated carbon chemistry, for which we have not included a

complete network. Instead, the network is designed to reliably predict the relatively simpler

H2D+ and closely related N2D+ chemistry. An important facet of the H2D+ chemistry is

that the reaction rates depend strongly on the ortho-to-para ratio of the reactants, H2 and

H+
3 , and their isotopologues (Pagani et al., 2009; Hugo et al., 2009; Chapillon et al., 2011).

We approximate this behavior by assuming that the ortho-to-para ratio is locally thermal

for H2D+ and include the ortho-to-para fraction as weights on the net reaction rate. In the

following prescription we designate f 1
o (f 1

p ) as the fraction of H2 in the ortho (para) state,

and f 2
o (f 2

p ) as the fraction of H2D+ in the ortho (para) state. The weighted reaction rate

coe�cients for (o)rtho and (p)ara H2 and H2D+ is:

R(T ) =Roo(T )f 1
o (T )f

2
o (T )+

Rop(T )f 1
o (T )f

2
p(T ) + ..., (6.1)
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where f 1
o + f 1

p = 1, f 2
o + f 2

p = 1, and Roo(T ) is the reaction rate coe�cient for reactions

between o-H2 and o-H2D+, for example. The o/p ratio of H2 is given by

o/pH2
(Tgas) =5.3534⇥ 10�3+

(3.0346� 5.3534⇥ 10�3)

[1 + (96.5330/Tgas)3.5096]
, (6.2)

for gas at temperatures above Tg � 80 K and for temperatures below that value,

o/pH2
(Tgas) = 9 exp (�170.5/Tgas). (6.3)

Flower et al. (2006) finds that at very low temperatures (Tg . 10 K) the ortho-to-para ratio

of H2 exceeds the Boltzmann value, and to approximate this behavior we set a floor to the

o/p ratio of H2 at 10�3 that limits Eq. (6.3) from dropping below this value. The o/p ratio

of H2D+ is given by

o/pH2D+(Tgas) =� 1.6977⇥ 10�2+

(3.0375 + 1.6977⇥ 10�2)

[1 + (47.9640/Tgas)3.0692]
, (6.4)

where both o/p formalisms in Eqs. (6.2) and (6.4) are from Lee and Bergin (2014), submitted.

In the chemical network, the deuterium extension to the reaction set – for the most

part – mirrors the main isotopologues, and we assume statistical branching ratios where

necessary. While the ionization of H2 and helium are the first step towards the molecular

ion chemistry, we do allow for HD and D2 to be directly ionized by X-rays, CRs and SLRs,

assuming the same cross sections as for H2. The self-shielding functions for HD and D2

are from Wolcott-Green and Haiman (2011). For the reactions where rates are known for

the deuterated isotopologue, we incorporate values from the literature for H2D+ electron

recombination and reactions with atomic H (Roberts et al., 2004), H+ and D+ reactions

with atomic/molecular hydrogen/deuterium, DCO+, N2D+ reactions with H (Roberts and
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Millar , 2000), and neutral-neutral warm water-formation deuterium reactions including their

significant barriers (Bergin et al., 1999). While we include the spin information for the

H2 + H2D+ reaction rates, the endothermicity of the back reactions for the overall less

abundant heavier isotopologues, HD+
2 and D+

3 are taken to be a single value in the network,

187 K and 341 K, respectively (Roberts et al., 2004). In addition to the standard set of

gas-phase reactions in the original network, we include a simple grain-surface chemistry

allowing for H2/HD/D2, H2O/HDO, and H2CO/HDCO formation on grain surfaces through

hydrogenation (Hasegawa et al., 1992a) and CO2 formation through reactions of CO with

OH and O with barriers (Garrod and Pauly , 2011). In total, the full network spans over

⇠ 6200 reactions and ⇠ 600 species.

The initial chemical abundances are listed in Table 6.3 and are for the most part adopted

from Fogel et al. (2011) based upon the dark cloud model of Aikawa and Herbst (1999b).

The abundances of CS and SO have been adjusted to the observationally derived abundances

of the TMC-1 dark cloud from Bachiller et al. (1990) originally compiled in Guelin (1988)

and Rydbeck et al. (1980). Together, CS and SO constitute the main sulfur reservoir with

an abundance relative to hydrogen number totaling ⇠ 10�8. The atomic (ionized) sulfur,

S+, is reduced to a low value, where we assume 10�11. The motivation behind the total

reduced sulfur abundance, ⇠ 10�8 rather than the di↵use ISM value of ⇠ 10�6, comes

from the observation that the volatile sulfur abundance in dense clouds is far lower than

that of the di↵use ISM (Joseph et al., 1986; Tieftrunk et al., 1994). These findings were

confirmed by observations of molecular sulfur-bearing species including CS and SO (e.g.,

Langer et al., 1996; Wakelam et al., 2004) where the molecular abundances measured in

dense clouds are far less than those predicted by chemical calculations for a di↵use ISM

sulfur abundance (Hatchell et al., 1998; Wakelam et al., 2004). In particular, Wakelam et al.

(2011) find that based upon chemical modeling of dense (high mass) cores, the volatile sulfur

abundance is found to be even further substantially reduced, where the observations account

for an abundance of sulfur totaling 2 ⇥ 10�9
� 5 ⇥ 10�8 relative to hydrogen across four

159



sources. The interpretation is that the sulfur has been converted into a more refractory

form, i.e., a “sulfur-rich residuum” (Wakelam et al., 2004), and is not chemically available

to produce volatile sulfur-bearing molecules. Evidence of high levels of atomic sulfur in

shocked gas near Class 0 protostars further supports this scenario, where in one explanation

the observed sulfur atoms are sputtered from the sulfur-rich residuum (Anderson et al.,

2013). Likewise, the ionized metal abundances of Si+, Mg+, and Fe+ have been reduced

to low levels (10�11) based upon the chemical modeling results of Maret and Bergin (2007)

for the B68 pre-stellar core. The HD abundance is based upon the protosolar bulk value,

where D/H in HD is 2.0 ± 0.35 ⇥ 10�5 (Geiss and Gloeckler , 2003). The H2D+, HD+
2 , and

D+
3 abundances are estimated from Walmsley et al. (2004) for the small (0.025 µm) grain

case at high (nH2 = 107 cm�3) density. Regarding the nitrogen abundances, we note that

in these models, the initial abundance of nitrogen is primary atomic. Had we begun with

a larger fraction molecular nitrogen, the overall N2H+ abundance would increase but the

shape of the column density profile remains largely unchanged (Schwarz and Bergin, 2014,

and Chapter 7 of this thesis). Starting o↵ with a larger fraction of ammonia, for example,

tends to reduce the overall N2H+ abundance across the bulk disk (outside of the ammonia

snowline) by removing nitrogen from the gas-phase. Consequently, the shape of the column

density profile of N2H+ is still sensitive to the CR ionization rate even without additional

information on the disk nitrogen abundances.

6.6.2 Chemical Abundance Results

In this model framework, we compute the time-dependent chemistry as a function of

radial and vertical position within the disk. The molecular abundances for a select set of

ALMA observable molecular ions and of CO after t = 1 Myr of chemical evolution are

shown in Figure 6.3. The column headings indicate the underlying CR ionization model as

described in §6.5.3 (see also Table 6.2) with the X-ray luminosity fixed (LXR = 1029.5 erg s�1).

In addition to the abundances as a function of spatial position, we provide the vertically
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Table 6.3. Initial chemical abundances, �.

Species log(�) Species log(�)

H2 5.00⇥ 10�1 H2O(gr) 2.50⇥ 10�4

He 1.40⇥ 10�1 N 2.25⇥ 10�5

CN 6.00⇥ 10�8 H+
3 1.00⇥ 10�8

CS 4.00⇥ 10�9 SO 5.00⇥ 10�9

Si+ 1.00⇥ 10�11 S+ 1.00⇥ 10�11

Mg+ 1.00⇥ 10�11 Fe+ 1.00⇥ 10�11

C+ 1.00⇥ 10�9 CO 1.00⇥ 10�4

N2 1.00⇥ 10�6 C 7.00⇥ 10�7

NH3 8.00⇥ 10�8 HCN 2.00⇥ 10�8

HCO+ 9.00⇥ 10�9 H2CO 8.00⇥ 10�9

HD 2.00⇥ 10�5 H2D+ 1.30⇥ 10�10

HD2
+ 1.00⇥ 10�10 D3

+ 2.00⇥ 10�10

C2H 8.00⇥ 10�9

integrated column density, shown in Figure 6.4.

In general, for decreasing CR ionization, the midplane ion abundances drop precipitously

while the X-ray dominated surface layers are unchanged across CR models. For example,

the important dense ionization tracers, H2D+ and N2D+, are highly abundant (� ⇠ 10�11

relative to H2) in the midplane for CR ionization rates exceeding ⇣CR & 10�17 s�1, but drop

in abundance by more than three orders of magnitude for SSX modulated rates and below.

It is important to point out that the TTX model provides a unique chemical picture of

a purely X-ray dominated disk. In the instance of a modulated CR rate and either (i) a lack

of abundant SLRs or (ii) an old (> 5 Myr) disk in which the initial reservoir of SLRs has

decayed away (< 3% remaining), the scattered intermediate energy (5�7 keV) X-ray photons

set the absolute floor to the ionization rate, with magnitude ⇣XR ⇠ (1 � 10) ⇥ 10�21 s�1

for a stellar X-ray luminosity of LXR = 1029.5 erg s�1. In the TTX model, the midplane

abundances of molecular ions are at their minimum (see especially H2D+, HD+
2 , and N2D+in

Figure 6.4). Correspondingly, H2D+ and HD+
2 have column densities typically three orders

of magnitude less than if CRs are present at ISM levels and will unfortunately be di�cult

to detect observationally.
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Figure 6.3 Disk chemical abundances relative to H2 as a function of radius and height, where
R,Z = (0,0) AU is the location of the central star. Abundances are shown at time t = 1 Myr
of chemical evolution. Columns correspond to di↵erent CR/SLR ionization models for a fixed
X-ray luminosity, and rows are di↵erent molecular abundances as labeled on the leftmost
column. Specific CR and/or SLR ionization model is indicated at the top of each column.
The two rightmost columns include contribution from the decay of short-lived radionuclides
adding at most ⇣SLR ⇠ 1018 s�1 to the total H2 ionization (see Figure 6.2). Their inclusion
provides a floor for the molecular ion abundance (see especially N2H+).

In the rightmost two columns of Figure 6.3, we include (static) contribution from SLR

ionization, which provides an ionization rate floor of magnitude ⇣SLR ⇠ (1� 10)⇥ 10�19 s�1
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for fixed initial solar nebula-like SLR abundances (Finocchi and Gail , 1997) of 26Al, 36Cl,

and 60Fe. The vertical and radial profile of the SLR ionization rate is taken from the settled

disk model presented in Chapter 5 (hybrid dust slab, see Chapter 5 Figure 2 as well as

Figure 6.2 in the present chapter). For the case of SSX+SLR, the two sources contribute

similarly to the total H2 and helium ionization, so chemically there is little change with the

inclusion of SLRs, especially in the inner disk. The TTX+SLR model, however, increases

the total ionization such that the molecular ion abundances resemble the SSX runs inside of

R ⇠ 200 AU. Consequently, distinguishing between a SLR and CR driven chemistry will be

challenging. Outside of R ⇠ 200 AU, however, the SLR losses become important and the

TTX+SLR model drops o↵ more steeply than the SSX model, such as can be seen in H2D+.

Focusing now on the individual ions, the column density of HCO+ changes by an order

of magnitude between the high (⇣CR & 10�17 s�1) and low CR models. The low CR models

pile up at a constant HCO+ column, which physically corresponds to the minimum amount

of HCO+ provided by X-ray ionization in this model. In the absence of interstellar CR, the

bulk of the HCO+ column is therefore sensitive to only the stellar X-ray ionizing radiation

(see §6.8.1). A second layer of HCO+ forms at z/r ⇠ 0.2, above the vertical CO freeze-out

region, when CRs are present (models W98 and M02). This layer all but disappears for the

SSX and TTX models, pointing to the potential utility of disk vertical structure observations

in understanding the underlying ionization environment. It is important to note that even

though we do not vary the stellar UV field in this work, for very high UV fields the CO that

would otherwise form HCO+ can be photo-dissociated and photo-ionized, thus forming C+

in abundance. Thus the HCO+ will be indirectly UV sensitive, particularly for UV luminous

Herbig Ae/Be stars (Jonkheid et al., 2007), which can be orders of magnitude brighter than

T Tauri stars, or in the case of extremely externally irradiated disks. Nonetheless, the

general trends over di↵erent ionization models should still hold, albeit with a lower overall

HCO+ column. Moreover, while the HCO+ column can provide constraints on the ionization

rates exceeding ⇣CR & 10�17 s�1, the HCO+ is not very sensitive to lower CR rates due to
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its precursor, CO, freezing out in the CR dominated region. Moreover, the HCO+ column

densities for the W98 and M02 models have a second peak in column density at R ⇠ 200 AU

not seen for the low CR models. The second peak is actually a consequence of a deficit of

CO at R ⇠ 50 AU, seen in the same plot. Because HCO+ forms directly from CO, it is

sensitive to the CO chemistry, both freeze-out and CO chemical processing as is the case for

the W98 and M02 models.

The N2H+ column shows a three order of magnitude spread between a high CR rate (M02)

and an X-ray only disk (TTX), with one order of magnitude variation between the di↵erent

low CR models (SSX and TTX) and is a potential candidate as a midplane ionization tracer.

One caveat in using N2H+ is that a tenuous (� ⇠ 10�11) surface layer of N2H+ is sustained

from the high X-ray photon flux (see Figure 6.3) even in the presence of CO, which is the

major reactant of N2H+. For more X-ray luminous stars, the surface N2H+ may contribute

more to total column and mask the midplane abundances. Alternatively, the contribution

from the surface N2H+ can be reduced if the N2 binding energy is higher than 855 K, i.e.,

the N2 value when CO and N2 ice are well-mixed where the CO binding energy is the same,

855 K (Öberg et al., 2005). Such is the case for an N2 ice layered on an H2O ice substrate

(Collings et al., 2004), but this surface N2H+ is never completely absent in any of our models.

The deuterated molecular ions considered here, H2D+, N2D+ and HD+
2 , show a promising

sensitivity to the low ionization models, spanning many orders of magnitude in their column

densities. Observations of these species will be essential for measuring midplane ionization,

especially in the absence of CRs. This result is a natural consequence of the pathways towards

deuterated isotopologues being favored at low temperatures, resulting in their overabundance

relative to the main isotopologue in cold (T < 50 K) gas. Naturally, the same gas is also the

least a↵ected by X-ray ionization, and therefore these species allow us to peer through the

X-ray dominated upper layers directly to the midplane.

In addition to the ions, we plot the CO abundance and column density (Figures 6.3 and

6.4). CO is a commonly used tracer of gas mass assuming an ISM conversion factor of CO
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to hydrogen mass of 10�4 and is frequently used to determine chemical abundances per H2

from an observed column of optically thin gas. There is evidence, however, that the CO

abundance may be lower, and hence gas masses from CO may be underestimated (Favre

et al., 2013). A possible reason for the low observed abundance is that CO is chemically

eroded over time by reactions with He+. The majority of the carbon returns back to CO

eventually, but some non-zero fraction of the carbon is recycled into other carbon-bearing

molecules, reducing the CO abundance over time (Bergin et al., 2014; Furuya and Aikawa,

2014). For the highly ionized CR models W98 and M02, the abundance of CO is visibly

reduced near the inner disk midplane at around R ⇠ 100 AU due to an increased abundance

of He+ and consequently a speed-up of the CO erosion process. The column density plot

(Figure 6.4) also reflects this behavior in the M02 and W98 models and is an example of

how ions can have a long-lasting e↵ect even on abundant neutral species. We emphasize

that the layered structure of CO induced by the ionization-chemistry in the abundance plot

(Fig. 6.3) may be smeared out in the presence of turbulent motions of the gas (Semenov and

Wiebe, 2011; Furuya and Aikawa, 2014), which is beyond the scope of the current Chapter

but should be explored in future work.

6.7 Line Emission Modeling

The chemical models demonstrate a sensitive link between abundances (and column den-

sities) and ionization properties of the disk. For example, the HCO+ and N2H+ column

densities typically are sensitive to stellar X-rays, though not exclusively for high interstellar

CR ionization rates. The deuterated ions trace deeper gas, and probe ionization proper-

ties near the midplane, tracing ionization due to CRs and SLRs. In this section we show

how these e↵ects are imprinted on the molecular emission and how excitation e↵ects and

opacity can “mask” the molecular column densities that allow us to discriminate between

models. From these emission models, we simulate realistic ALMA observations to determine

the utility of emission line tracers as probes of individual ionizing agents.
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6.7.1 Line Radiative Transfer

For our molecular ion abundance results (§6.6.1), we have simulated observations of the

ground-accessible submillimeter transitions of each species considered here. The strength of

the line emission depends on both the total column of material as well as the temperature of

the emissive gas within the column. To simplify the problem, we have simulated the emergent

line intensity assuming the disk is observed face-on at a distance of D = 100 pc. The line

radiation transfer is carried out with LIME (Brinch and Hogerheijde, 2010) where we create

simulated “perfect” images of the line emission in 100 m s�1 channels in pixels of size 0.0200

(2 AU), which is much smaller than our desired resolution in the ALMA simulations. For

gas motions, we assume the gas is in Keplerian rotation about the star, and we include

a turbulent doppler B-parameter of vdop = 100 m s�1, as observations indicate that the

turbulent broadening in disks is small (Hughes et al., 2011).

For the HCO+ and N2H+ emission models, we calculate the level populations in non-

LTE with the collision rates of Flower (1999) as compiled in the Leiden LAMDA database

(Schöier et al., 2005). For the latter we do not separate out the hyperfine structure lines,

and hence refer to the transitions by their rotational-J states. Given that the collisional

rates for N2D+ are unknown, we treat the N2D+ level populations as in local thermodynamic

equilibrium (LTE), which is a satisfactory approximation as the critical density of the (3�2)

and (4 � 3) transitions are ncrit ⇠ 2 ⇥ 105 cm�3 and ⇠ 8 ⇥ 105 cm�3, respectively, as

estimated from the Flower (1999) collision rates for HCO+ and line parameters (Einstein

A-coe�cients, frequencies, statistical weights) from the JPL Database4 (Pickett et al., 1998),

originally measured in Anderson et al. (1977); Sastry et al. (1981). We note that Hugo et al.

(2009) provide inelastic collisional rates for the excitation of H2D+; however, to simplify

the calculations we assume the H2D+ level populations are also in LTE. This assumption

is appropriate as the H2D+ emission originates from dense gas exceeding nH2 > 108 cm�3,

4http://spec.jpl.nasa.gov/
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much larger than the critical density for o-H2D+ (110 � 111), ncrit ⇠ 105 cm�3 (Hugo et al.,

2009).

For the carbon and oxygen isotopes, we adopt 16O/18O = 500 (Kahane et al., 1992;

Prantzos et al., 1996) and 12C/13C = 60 (Keene et al., 1998). The deuterium isotopologues

of the molecular ions are calculated within the code where the main gas reservoir (molecular

hydrogen) has initially D/H = 2 ⇥ 10�5 (see §6.6.1). Leiden LAMDA formatted H2D+ and

N2D+ input files were compiled from the CDMS database5 (Müller et al., 2001, 2005) and

from the JPL database, where the primary literature regarding the line parameters can be

found in Saito et al. (1985); Amano and Hirao (2005); Yonezu et al. (2009) for H2D+. All

simulations are carried out using the same dust distribution and opacities from the physical

structure model, where the continuum is subsequently subtracted from the resulting line

emission profiles.

6.7.1.1 Line Opacity

The LIME code is capable of providing physical line intensities, e.g., Jansky/pixel and

Kelvin, as well as the line optical depth, ⌧⌫ . In Figure 6.5, we show the line-center, vertical

optical depth ⌧0 through the disk of the simulated transitions (direct from the emission model,

i.e., no beam convolution) as a function of cylindrical disk radius. The HCO+ isotopologues

are for the most part thin (⌧0 < 1), while N2H+ (4� 3) and (3� 2) reach ⌧0 ⇠ 5 just beyond

the CO snowline for the W98 and M02 CR models. Observations of H13CO+ (3-2) and

HCO+ (3-2) are reported in Öberg et al. (2011d) towards DM Tau. The disk integrated flux

ratio of the (3-2) transition for the 12C/13C isotopologues is ⇠ 7.6, and assuming a respective

isotope ratio of 60 (Keene et al., 1998), corresponds to an H13CO+ (3-2) optical depth of

⌧ = 0.14. Though this value is optically thin, it is nonetheless higher than the values from

our models. Potential explanations include a potentially higher X-ray luminosity from the

5http://www.astro.uni-koeln.de/cdms/catalog
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star, which is unknown, or that the 19 AU inner cavity (Calvet et al., 2005; Andrews et al.,

2011) may permit the X-rays to more directly ionize the outer disk gas. The N2D+ and

H2D+ lines are thin throughout the disk for all models. C18O is thick, with ⌧0 & 1 at all

radii, though the CO opacity drops slightly near the star where high CR+X-ray ionization

chemically destroys CO with He+ more quickly than it is replenished. We emphasize that

the molecular ion opacities may be higher for higher ionization rates or if the column of gas

is larger for a more massive disk, and vice versa for lower mass models (see discussion in

§6.8.3).

The HCO+ isotopologues show a peak in their opacity o↵set from the radial center of

the disk, where the column is highest (see Fig. 6.4). The relative height between the central

peak and the outer broad 100� 300 AU peak is due to a combination of column density and

excitation. The ring-like feature is exaggerated for low rotational J lines such as the (3� 2)

transition where depopulation becomes important towards hotter inner disk gas, whereas

H13CO+ (5� 4) appears more centrally peaked.

The N2H+ lines have two main emission features, where the inner ring is caused by a

contribution of stellar X-rays and CR ionization in tandem with the CO condensation front,

while the outer tail at R ⇠ 300 AU is fueled by primarily CR ionization. The H2D+ optical

depth also peaks in this same outer region in the models where CR ionization is active.

The N2D+ has a somewhat complicated ⌧0 profile, which is reflected in the N2D+ column

densities (Fig 6.4). The high CR ionization models sustain N2D+ co-spatial with N2H+ and,

when combined with warm temperatures close to the upper-state excitation temperatures

(Eu = 22.2 K and 37.0 K for J = 3 and J = 4 rotational levels, respectively), leads to N2D+

emission inside of R < 100 AU.

6.7.2 Simulated ALMA Observations

From the LIME emission models described in §6.7.1, we simulate full-science ALMA

observations for the ground-based accessible transitions of HC18O+, H13CO+, N2H+, N2D+,
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Table 6.4. CASA Simulation Parameters.

Emission 12-m Configuration6 Sensitivity7

Line (12-m + 7-m Beam) (mJy)

HC18O+ (3� 2) 03 (1.2800) 1.0
HC18O+ (4� 3) 03 (0.9600) 1.4
H13CO+ (3� 2) 10 (0.3300) 0.97
H13CO+ (4� 3) 10 (0.2500) 1.4
H13CO+ (5� 4) 10 (0.2000) 3.6
N2H+ (3� 2) 10 (0.3100) 1.3
N2H+ (4� 3) 10 (0.2400) 2.6
N2D+ (3� 2) 01 (1.5500) 1.3
N2D+ (4� 3) 01 (1.1600) 1.3

o-H2D+(110 � 111) 01 (0.9600) 2.5

.

ahttp://casaguides.nrao.edu/index.php?title=Antenna List
Beam averaged over major and minor axes from the com-
bined 12-m and ACA observations.

b6.1h in 0.2 km/s bins from the ALMA Sensitivity Cal-
culator.

and H2D+. The full set of emission lines considered at present are listed in Table 6.4. We note

there are additional lines that are accessible by ALMA that we chose not to include, such

as N2D+ (5-4) and HD+
2 (110 � 101), because these lines were unobservable for all emission

models considered. The full-science array is comprised of fifty 12-m antennas, twelve 7-m

antennas, and four 12-m antennas, i.e., the total power (TP) array, where the 7-m and TP

arrays are referred to as the Atacama Compact Array (ACA). For each of the line models

we assume the same set of simulated observing parameters, and note that in some instances

there are more e�cient (i.e., less ALMA time) means to achieve the same goals. The specific

settings for actual observations should be tailored to the specific target and specific line

being studied.

6.7.2.1 Observational Parameters

The simulations presented here reflect 6h of total on-sky time with one of the 12-m array

configurations and an ACA 7-m observation. While the choice of 6h is somewhat arbitrary,
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it represents a relatively “deep” observation, and ideally one would target more than one

emission line towards a given source in the same proposal. Thus this length of time may

be somewhat optimistic, but is designed to detect the lines with high signal-to-noise. Some

of the lines are undetectable for low ionization models as is the case for H2D+, and thus

deeper observations would be needed to detect the line if that specific model reflects the

true properties of the disk. In that case, going to a di↵erent tracer such as N2D+ may be

a better choice than a deeper observation of a weak line. Furthermore, these results can be

approximately scaled for sources at di↵erent distances and the estimated signal-to-noise can

be adjusted for di↵erent observation times.

Regarding antenna configurations, for stronger emission lines, such as H13CO+, and

N2H+, we choose somewhat more extended 12-m configurations (see Table 6.4), while for

weaker lines, we simulate the most extended configuration that still provides high signal-to-

noise if possible, which in some instances is the most compact, least-resolved full-operations

configuration, denoted 01. We include ACA 7-m observations because the maximum scale

of the R = 400 AU disk at d = 100 pc on the sky is 800, and for the higher frequency

(⌫ > 300 GHz) lines considered here, the 7-m array recovers the flux at all scales without

the need for the TP array. At lower frequencies, a second 12-m configuration can be used

instead to recover all of the flux in significantly less time than for the 7-m observations, which

is clearly the better – and default – option for on-sky ALMA observations. Additionally,

the long duration of the simulated observations fills out the UV coverage and, due to sky-

projection e↵ects, can decrease the minimum baseline, allowing for slightly larger maximum

recoverable scales.

In summary, the simulations presented here are designed to show the sensitivity of the

emission line observations to chemical signatures of ionization processes in disks. These

results provide a primer to aid in quantifying the contribution of di↵erent physical processes

to disk ionization, a crucial ingredient in models of disk chemistry. We note that the specific

choice of observing parameters will depend upon properties of the source, the ALMA cycle,
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which determines the available antenna configurations, and the lines targeted. Figure 6.6

illustrates the full process beginning with LIME emission models to creating ALMA on-

sky simulations for two example emission lines. Rather than showing images or channel

maps for every emission line/model considered both in model emission (§6.7.1) and CASA

simulations, we instead present our results as circularly averaged visibility amplitudes and

circularly averaged integrated line intensity cuts in sky coordinates, which facilitates easy

comparison between observations of di↵erent ionization models for a given emission line.

6.7.2.2 ALMA Sensitivity Calculation

To calculate the uncertainty on the ALMA measurements, we use the uncertainties from

the ALMA sensitivity calculator8, which set the width of the shaded regions in the im-

age plots (rightmost column of Figures 6.7 and 6.8). We do not simulate thermal noise

within the CASA simulations themselves to save computational time. To estimate the er-

ror on individual baselines at each time sampling (defined by integration time, which was

tint = 1000s for the simulations), we scale the sensitivity calculator’s uncertainty �0 by

�i = �0
p

NA(NA � 1)
p

Ntime

p
Npol, where NA is the number of antennas (50 for the 12-m

array and 12 for the 7-m array), Ntime is the number of time samplings during the course

of the simulated observation’s integration time (e.g., tobs = 22000s = 6.1h on the 12-m ar-

ray such that Ntime=22) and Npol = 2 is the number of polarizations, where the emission

is unpolarized. We note that if we had chosen a smaller (larger) sampling time within a

factor of a few, we would have correspondingly more (less) points to bin over, and the final

error on the binned measurement is not very sensitive to the choice of sampling time. From

the full measurement set, we bin the velocity-integrated visibility amplitudes by projected

UV distance. The uncertainty on the binned value (the mean) is taken to be the error on

the individual measurements divided by the number of points within the UV distance bin,

8https://almascience.nrao.edu/proposing/sensitivity-calculator
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�A = �i/
p

Nbin, where Nbin is typically & 100.

6.7.2.3 Emission Model Results

We present the primary results of the ALMA simulated observations in Figures 6.7 and

6.8. The CR ionization models described in §6.5.3 are indicated by line color, where purple

represents the highest, di↵use ISM CR rate, while the blue curve is representative of an

X-ray dominated chemistry. The identifier of the full-operations array used to simulate each

set of data is indicated in parenthesis next to the name of the species (see Table 6.4 for

equivalent angular resolution). The left and right columns are di↵erent representations of

the same simulated data. The left column shows the visibility amplitudes integrated over

the line (Jy km s�1) where the quantity “integrated amplitude” corresponds to the fact that

we have integrated over the channels that contain line flux rather than averaging, which

is often done for continuum amplitudes. The visibility amplitude plots are labeled with

a dashed green vertical line indicating the maximum recoverable scale for the 12-m array

observations alone. The dashed red vertical line indicates the minimum scale sampled by

the 7-m array. We note that the minimum baseline indicated by the green line may be less

than what would be predicted for the same array based upon the physical baselines due to

sky-projection e↵ects mentioned previously. The right column shows the brightness profile

of the reconstructed (cleaned) images on the sky, where ✓ is relative to the position of the

central star and 100 = 100 AU. To create the profiles, we average ten radial slices across the

face of the disk. The noise reflects the sensitivity on a single cut, but in practice averaging

over slices can further reduce the noise on the profile.

The HCO+ isotopologues’ line emission (Figure 6.7) is sensitive to both the stellar X-rays

and the high CR ionization models (M02 and W98 in purple and yellow respectively). This

behavior is reflected in the column densities (Figure 6.4) and in the simulated observations,

both in the visibilities and reconstructed images. The line intensity is indistinguishable for

lower CR rates for models TTX and SSX, green and blue, where stellar X-rays – and not
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CRs – set the minimum HCO+ abundance in this particular model. The high M02 CR

rates form a clear emission ring (i.e. the HCO+ emission peaks o↵set from the star) for the

(3� 2) transition, less prominently seen in the (4� 3). The reason that the (3� 2) emission

is brightest away from the column density peak is due to excitation of the line, which has

an upper state energy of Eu ⇠ 25 K. The abundant HCO+ gas inside of R . 50 AU

has temperatures typically exceeding 100 K. At this point, higher J-states of H13CO+ and

HC18O+ become more populated, thereby de-populating the J = 3 levels and decreasing the

column of emissive gas, behavior reflected in the line optical depths (Figure 6.5) and emission

plots (Figure 6.7). For higher rotational transitions of H13CO+, (4 � 3) and (5 � 4), there

is an inner (✓ < 0.500) peak in the simulated observations (Figure 6.7) due to a confluence of

high X-ray rates and abundant gas-phase CO. This feature is also present in the underlying

HC18O+ abundances, but the lower spatial resolution simulations adopted for HC18O+ (see

Table 6.4) do not resolve the inner 50 AU. In summary, the HCO+ emission sensitively

traces i) stellar X-ray processes and ii) high CR fluxes, but is limited in its capacity as

a midplane tracer due to CO freeze-out in the outer disk. Furthermore, the low-J HCO+

behavior highlights a situation in which observations of emission rings are excitation e↵ects,

rather than chemical or physical structure, such as a planet or a snowline.

N2H+ is expected to arise from cold gas where its destroyer, CO, is frozen out at tem-

peratures below T < 20 K (Aikawa et al., 2001; Bergin et al., 2002; Jørgensen et al., 2004).

Nevertheless, in the strongly irradiated X-ray layers we find that some N2H+ is sustained

even in the presence of CO. Consequently, its strength as a diagnostic tool of midplane

ionization is somewhat decreased by potential confusion with surface N2H+ emission. As

shown in Figure 6.8, the high ionization and low ionization models are clearly discernible,

while the SSX and TTX models are – in a relative sense – far more di�cult to tell apart.

We note N2H+ may nonetheless have utility as a midplane ionization tracer, and that the

SSX and TTX models are both observable and di↵er by a factor of ⇠ 7 in brightness (see

the zoom-in in Figure 6.9), but detailed modeling may be required to estimate the potential
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X-ray contribution to the N2H+ column density. An additional caveat in using N2H+ as

an ionization tracer is that its emission can be partially optically thick (if not completely,

⌧ ⇠ 5; Fig. 6.5). Indeed, the high interstellar CR models, M02 and W98, have similar emis-

sion line strengths because the column densities are quite large, and the correspondingly

thick emission lines are no longer sensitive to column density. Therefore, in this model,

N2H+ observations would help distinguish between disks where CRs are present or where

they are excluded, e.g., by winds, however it is perhaps not a precise tool for determining

CR rates below ⇣CR ⇠ 10�19 s�1 for this particular disk structure. In Figure 6.8, we note

that even though the SSX model emission is substantially lower than that of the W98 and

M02 models, it nonetheless is still detectable. The width of the radial profile corresponds

to the ALMA sensitivity, and thus disks with SSX-level of CR ionization are detectable at

the 3� and 6� level for the (4� 3) and (3� 2) transitions of N2H+, respectively. Given the

N2H+abundance’s concurrent chemical dependence on temperature, a warmer disk where

the N2H+ abundance peaks further from the X-ray bright star may allow N2H+ to be a more

sensitive tracer of non-stellar ionizing processes and be less optically thick at the emission

peak due to lower outer disk gas densities.

N2D+ shows interesting emission behavior such that the M02 models show less N2D+

emission than the more weakly CR-ionized W98 models (Figure 6.8). This behavior is

reflected in the column densities (Fig. 6.4) and the abundances (Fig. 6.3). More specifically,

the M02 N2D+ models show a deficit in abundance relative to the W98 models centered

at R ⇠ 200 AU. The inner N2D+ gas is co-spatial with the high N2H+ (fueled by X-ray

flux) and with the boundary of the H2D+ abundant region (T < 50 K), creating an N2D+

layer. This layer is reflected in the W98 models as well. At intermediate distance radii

R ⇠ 150�300 AU, the M02 models show an N2D+ deficit as a direct consequence of the high

degree of CR ionization in the presence of cold gas where freeze-out becomes important. The

combination of ionization and cold gas drives important non-equilibrium chemistry. More

specifically, the nitrogen is not being recycled back into N2H+ but instead sequestered into
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nitrogen bearing ices like NH3, HCN and NO, and therefore is not available as N2 in the gas

to reform N2H+ and N2D+. This process is an analogue to a similar sequence that may occur

for CO (Bergin et al., 2014). In the M02 model, these pathways are specifically triggered

by M02’s high CR flux, but a factor of ⇠ 10 brighter X-ray luminosity would have a similar

e↵ect (see §6.8.1).

The true utility of N2D+ is highlighted at low CR ionization rates. The SSX models are

clearly distinguishable from the TTX models, which is reflected in the emission plane for

both (3 � 2) and (4 � 3) and in the column density plane. N2D+ emission is always very

optically thin, making it a direct tracer of column regardless of CR rate. The di↵erence

between the SSX and TTX line intensities is a factor of about ⇠ 20, more than double that

of N2H+, allowing these CR models to be more easily disentangled than with N2H+.

Finally, H2D+ is a commonly used cold ionization tracer. However, as can be seen in

Figure 6.8, its emission is only detectable for interstellar CR rates or higher, owing to its

weak line strength. For ionization rates at or below ⇣CR . 10�19 s�1, the H2D+ (110 � 111)

is undetectable even for full ALMA operations, and therefore it is only a useful tracer of

interstellar CR rates, if they are present. These results are consistent with existing limits on

the observed H2D+ column towards the TW Hya protoplanetary disk (Chapillon et al., 2011;

Qi et al., 2008); however, such limits are much higher than all of the line strengths predicted

here and thus more sensitive observations are required to determine if CRs are present with

H2D+ as a tracer. The utility of H2D+ is highlighted when used in tandem with N2D+.

As mentioned above, N2D+ decreases in brightness for both high ionization rates (when the

precursors of N2D+ are chemically destroyed) and low ionization rates (when N2D+ is not

produced). Observations of H2D+ in conjunction with N2D+ would allow one to break the

degeneracy between these scenarios.

In Figure 6.9, we show simulated ALMA observations for the models including SLRs (no

time decay) for the SSX and TTX models. The N2H+ and N2D+ lines are the only tracers

for which there may be a measurable di↵erence for the low ionization models. From these
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plots it is apparent that distinguishing between CR fueled chemistry and SLR chemistry is

extremely di�cult. Additional factors such as – highly uncertain – disk ages will be necessary

to determine fractional contributions. Alternatively, if an otherwise unexpected “jump” in

ionization is seen, e.g., at the boundary of a T-Tauriosphere, then the contribution from

each component can be determined unambiguously. Without this additional information,

however, measurements of dense gas ionization using emission line tracers will most likely

reflect a combination of both CR and SLR e↵ects.

6.8 Further Considerations

In this section, we relax certain assumptions of our model and explore how our model

results depend upon these additional parameters, including X-ray luminosity, temporal decay

of SLRs, and the assumed mass of the disk.

6.8.1 Higher X-ray Luminosity

The results presented in Figures 6.7–6.9 consider a single X-ray luminosity, LXR =

1029.5 erg s�1. To understand the sensitivity of the lines to X-ray ionization, we have com-

puted an additional chemical model for a ten-fold increase in X-ray luminosity for three

spectral shapes: (1) the same “quiescent” spectral shape for the baseline model, solid line;

(2) a harder X-ray spectrum as was used in Chapter 4, with the same normalized luminosity

as model (1), dashed line; and (3) the hard X-ray spectrum normalized to have the same

X-ray flux at 1 keV as model (1), dotted line. The results of these higher X-ray luminosity

models are shown in Figure 6.10, where the standard model is shown as the gray solid line

and the elevated models are shown in black.

The high X-ray ionization rate changes the HCO+ column density most significantly in

the inner R < 100 AU for the M02 and W98 models; for the outer disk there is a reduced

e↵ect as the contribution by CRs is more important. For the reduced CR models, the HCO+

column density is enhanced throughout the disk by a factor of 3-4. This trend is explained
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by the balance between ionization and recombination, such that the steady state abundance

of ions (or electrons) is proportional to /

p
⇣/(↵nH2), where ↵ is the recombination rate

and nH2 is the number density of H2. With everything else constant, a factor of ten increase

in ionization results in a factor of
p

10 ⇡ 3 increase in the abundance and consequently

column density. Consequently, owing to the sensitivity of HCO+ to the X-ray ionization

field, observations of optically thin isotopologues of HCO+ may help put constraints on

the permeability (optical depth) of the disk gas and dust to X-ray photoionization if the

stellar X-ray luminosity is known. Furthermore, additional constraints on the disk gas mass

combined with X-ray measurements would provide an approximate measure of the opacity

due to dust and gas in the X-ray irradiated layers. Variations induced by the di↵erence

in spectral templates (black lines) are smaller, typically a factor of 1.2-1.8 in the TTX

models. The hard X-ray spectrum considered in (2) (dashed line) even has a slightly lower

molecular ion column density compared to the softer X-ray spectrum of (1) owing to the

initial destruction of CO and N2 by hard X-ray generated He+. Model (3), i.e., the spectrum

normalized at 1 keV with model (1), has a slightly higher energy integrated luminosity,

1.7 times that of models (1) and (2), at which point production overtakes the destruction

of precursors. The N2H+, N2D+, and H2D+ column densities do not become sensitive to

variations in the X-ray luminosity and spectrum until very low CR rates, primarily TTX,

where most of the ionization in these cases comes from stellar X-rays. The flat increase in

ionization for the TTX models is a consequence of high X-ray ionization rates near the star

and slow recombination at large radii, where the drop in density (recombination) balances

the decrease in X-ray flux with distance from the star.

6.8.2 Short-Lived Radionuclide Time Decay

Another simplifying assumption made in the chemical abundance calculations in Fig-

ures 6.3 and 6.4 was the use of a constant, non-decaying SLR ionization rate for the models

including radionuclide ionization sources. From the results presented in Chapter 5 (see also
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Appendix A), the ensemble of short-lived radionuclides that dominate the ionization, namely

26Al and 60Fe, have an e↵ective net half-life of approximately thalf ⇠ 1.2 Myr (see §6.5.2 for

further details). For disk lifetimes up to 1 Myr, the change in ionization rate is correspond-

ingly less than a factor of two, but can become significant for older disks (> 3 Myr). To

simulate the decay of ionizing SLRs with time within the disk chemistry code, we have cre-

ated a model where the SLR ionization rate is now time-dependent internal to the chemical

calculations and the total (ensemble) rate decays with a 1.2 Myr half-life (Appendix A), as

a simple first order approximation. In reality, the specific radionuclide decay products (i.e.,

�-rays, �+ particles, etc.) will evolve as each parent nuclide decays, i.e., 26Al versus 60Fe

and will result in di↵erent amounts of energy deposited or lost depending upon the ioniza-

tion cross sections and the decay rate of the parent nuclide. The changeover from a 26Al

dominated SLR rate to 60Fe rate happens at around 5 Myr, and so strictly speaking a more

detailed treatment that is beyond the scope of this Chapter would separate the individual

contributions. We note that in addition to time variation, there will be variation between

the starting abundances of SLRs between disks. In this analysis we assume solar nebula-like

abundances from Chapter 5.

Figure 6.11 shows the e↵ect of time-decaying SLRs on molecular column densities for the

two lowest CR ionization models, SSX and TTX, where the change is most significant. The

Figure 6.11 column densities are shown at t = 3 Myr of time evolution instead of 1 Myr,

which corresponds to a decrease of nearly an order of magnitude in the SLR ionization

rate. We show the model for fixed initial SLR abundances (blue), for CR only (orange),

and a time-decaying SLR ionization rate (magenta). The inclusion of time-dependence for

the SLRs does not sensitively a↵ect the SSX model, which carries similar contribution from

both CR and SLR ionization (at t = 0 Myr). In other words, in the absence of SLRs, the

CRs provide similar levels of ionization in the SSX case. The CR “absent” TTX models

(Figure 6.11, right) are far more sensitive to the change in SLR rate, where the time decay

changes the column densities of N2D+, H2D+, and HD+
2 by at least an order of magnitude.
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Note the HCO+ column is insensitive to di↵erences in the SLR model assumptions, regardless

of CR rate, as is expected by an X-ray dominated chemistry.

6.8.3 Dependence on Disk Mass

The results of our study are for a particular disk model (§6.4) and disk mass (Mg =

0.04 M�). Observed protoplanetary disks show significant diversity in mass, diameter, stellar

properties and environment (Williams and Cieza, 2011b). It is therefore interesting to

quantify the sensitivity of these results to the specific choice of disk mass. To test this

scenario, we take our standard model and find the chemical signatures for a disk of half mass

(Mg = 0.02 M�) and double mass (Mg = 0.08 M�). To facilitate a simple comparison, we do

not change the UV radiation field or temperature structure, but we do recompute the X-ray

and CR ionization field. In reality, an increase or decrease by a factor of ⇠ 2 in density would

change the disk opacity and would result in a correspondingly cooler (warmer) disk by . 10%

in dust temperature. In the present section we focus on the abundances determined from

the column densities; however, we note that the emission line ratios for a particular species

will also reflect the change in local temperature due to the mass change. Furthermore, a

larger (smaller) mass also would make for a more (less) UV/X-ray shielded disk. However, by

changing a single parameter we may investigate, in this case, the role of more or less e�cient

ion-recombination and how this e↵ect plays into the measured abundances (see §6.8.4 for

temperature dependence). We leave the geometrical parameters of the disk unchanged such

that the disk density scales with the change in mass. CRs are slightly more excluded by

the higher gas column (not a large overall e↵ect) and we do not consider SLRs here. A

higher disk mass will trap more SLR decay products prior to loss but it is only a small e↵ect

(⇠ 1.2⇥ more ionization; see Chapter 5).

In Figure 6.12, we show the column of the indicated molecular ion, Ni, normalized to the

column of model CO, NCO, which acts as our observable mass-reference. Observations of

optically thin lines provide their respective total (line-of-sight integrated) column densities.
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However, when one wants to determine relative abundances, typically to H2, a normalization

quantity is required. The total gas mass can be inferred from millimeter dust emission or

from molecular gas traced by CO, in both cases requiring a calibrated conversion factor.

Both methods have substantial caveats. The millimeter-wave dust emission evolves as the

underlying population of dust evolves via grain growth, making the dust-to-gas conversion

factor a time-dependent quantity. The CO abundance relative to H2 likewise can be unre-

liable, both owing to freeze-out at low temperatures and chemical processing initiated by

ionization (Bergin et al., 2014), though this process may be slowed by vertical mixing (Fu-

ruya and Aikawa, 2014) and by grain growth through decreased surface area for freeze-out

(Bergin et al., 2014). Ideally a less chemically reactive mass tracer like HD should be used

for normalization, if available (Bergin et al., 2013). Nonetheless, given limited data on HD

in protoplanetary disks, we provide column densities relative to the CO traced gas column,

a far more widely available gas mass probe. In practice, CO column densities are extracted

from optically thin isotopologues such as C18O, however we emphasize that even C18O has

a minimum optical depth of ⌧ ⇠ 1 at line center in this particular model (see Fig. 6.5).

To determine the CO column observationally, one must consider either i) more rarified CO

isotopes than C18O or ii) emission restricted to the line-wings to ensure the line is thin. In

this analysis, the column densities of both the ions and of CO are taken directly from the

chemical models.

In general, for the intermediate ionization rate models, W98 and SSX, the molecular

ion abundance is not very sensitive to changes in the disk mass (formally density). Most

importantly, the abundances are far more sensitive to the CR ionization rate than they

are to the disk mass. Nonetheless, some variation does exist, where in Figure 6.12 the

line thickness increases for increasing disk mass. HCO+ in particular shows a decrease in

abundance with disk mass across all CR models. These results can be understood by the

same relation discussed in §6.8.1, where the ion abundance is proportional to
p
⇣/(↵nH2).

In terms of column densities, the ratio of the ion-species to CO is then approximately given
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by Ni/NCO ⇠ �iNH2/�CONH2 = �i/�CO = ��1
CO

p
⇣/(↵nH2). For a more massive disk, ⇣XR

decreases due to increased gas opacity, and nH2 increases as the mass increases. Thus the

quantity ⇣/nH2 will decrease for increasing mass, reducing the ion abundance, explaining the

general trend for all of the molecular ions considered here.

Two special cases are the high M02 CR rate (leftmost column) and the low TTX CR rate

(rightmost column). Generally speaking, the M02 CR models tend to damp out the change

in X-ray ionization, ⇣XR, leaving
q

n�1
H2

as the dominant term. M02 shows substantially more

variation than can be attributed to changes in nH2 or in X-ray flux, otherwise the variation

would be seen in W98 as well. This behavior can be understood by looking towards the

denominator of the abundance ratio: �CO. As seen in the column density plots in Figure 6.4,

the CO abundance is decreased due to chemical processing, and this deficit is reflected in

the column integrated abundance, especially for H2D+ and HD+
2 , which are far more spread

out in abundance than the W98 and SSX models in Figure 6.12.

TTX is also a special case because the molecular ion abundances are very sensitive to the

X-ray ionization rate, its only ionizing source. Thus TTX is far more sensitive to the mass

of the disk because Ni/NCO depends sensitively on both ⇣XR and nH2 . Regardless, we note

that the abundance spread over di↵erent mass models – even for the TTX case – is far less

than the spread resulting from di↵erent ionization rates. We thus conclude that ionization

(X-ray, CR and SLRs) is the more important quantity regulating ion abundances, not disk

gas mass.

6.8.4 Dependence on Stellar Spectral Type

The chemical properties of disks are especially sensitive to the dust and gas temperatures,

which are set by irradiation from the central star at radii beyond the inner R ⇠ 1 AU, i.e., the

region where accretion heating becomes significant. The temperature in the warm molecular

layer is especially important in regulating the observable gas-phase chemistry (Aikawa et al.,

2002). To explore the chemical dependence on the temperature of the central star, we
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recompute our baseline chemical model for a central star with Te↵ = 6000 K, where all

other structural parameters are held fixed. At R = 15 AU, the disk surface (z/r = 0.3)

temperature increases substantially from Td ⇠ 100 K to ⇠ 140 K. The warm molecular layer

(z/r = 0.1) increases from Td = 40 K to 55 K, and the midplane increases by �Td = 10 K

from 30 K to 40 K. This substantial increase in temperature has a sizable e↵ect on the

abundance profiles as shown in Figure 6.13. Specifically, the increase in disk temperature

pushes out the CO snow line, resulting in a larger abundance of CO in the inner disk, and a

thicker layer of CO radially across the entire disk. The HCO+ column densities in Figure 6.13

for the M02 and W98 (high CR flux) cases reflect the enhanced HCO+ production from the

additional CO. However, the e↵ect is mediated by the same chemical processing of CO as

discussed in §6.6.2 and §6.8.3, where for the warmer star, CO processing occurs deeper in

the dense layers of the disk, closer to the midplane, and thereby has a larger e↵ect on the

total column of CO than for the cooler star. HCO+ for the low CR-ionization cases, SSX and

TTX, shows a decrease in the outer disk, beyond R > 250 AU, due to the combination of CO

reprocessing happening deeper in the warmer disk and the simultaneous loss of non-thermal

CR desorption, enabling rapid carbon sequestration from CO into other ices.

For all CR-ionization models, the column density of N2H+ shows a decrease in the inner

R < 100 AU and a surplus beyond R > 150 AU in the cold versus warm disk model.

The inner deficit is a direct result of the enhanced inner disk CO abundance and increased

destruction rate. The outer enhancement follows from the increased gas-phase N2 abundance

in the warmer disk model where it would otherwise freeze out, thereby enabling N2H+

formation. This process operates in tandem with the loss of CO in the dense gas due

to reprocessing, reducing one of the primary destruction agents of N2H+. The N2D+ column

density shows similar morphological changes as N2H+ where it is pushed further out radially;

however, its abundance is simultaneously a↵ected by the net reduction in deuterium-bearing

species in the warm gas and the immediate loss of H2D+ relative to H+
3 . The H2D+ column

density has the same drop in the inner disk due to the increased CO abundance and overall
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warmer gas temperatures, though the change is less severe in the outer disk mainly because

its precursor, H2, does not freeze-out in either model.

The warmer disk model not only changes the chemical properties of the disk, but also the

observational strategy necessary to experimentally determine the disk ionization processes,

especially that of CRs. In the cold disk case, all molecular ions considered here were able

to distinguish between high (M02 and W98) and low (SSX and below) CR fluxes outside of

R > 50 AU; however, the column density of these species are less sensitive to changes at lower

ionization rates due to freeze-out of CO and N2. For the warm disk, the CO freeze-out region

is pushed further out radially and the HCO+ column density becomes more sensitive to the

CR ionization rate outside of the X-ray dominated region (R > 50 AU). At R ⇠ 175 AU,

the SSX and TTX CR ionization rates are indistinguishable for the cold disk model because

of CO freeze-out, but in the warm disk case, there is a ⇠ 60% di↵erence between the SSX

and TTX models. While this di↵erence is not su�cient to measure the ionization rate to

great accuracy for this particular model, a warm disk around a more X-ray faint star (or

a less X-ray permeable disk) may engender conditions favorable for optically thin HCO+

isotopologue emission tracing CR-dominated layers down to low CR flux-levels. N2H+ and

N2D+ remain sensitive observational tracers of the CR ionization rate at both high and low

CR fluxes beyond R > 100 AU, where the warm disk acts to increase the “dynamic range”

between the model column densities due to the reduced N2 freeze-out. For example, the

variation in N2H+ column density between SSX and TTX models was approximately one

order of magnitude or less in the fiducial cold disk (see Figure 6.4). The warm disk increases

the fractional di↵erence to over two orders of magnitude in N2H+ and the same behavior

holds true for N2D+. Thus warmer disks may allow us to estimate more precisely the CR

ionization rate by mediating the e↵ects of freeze-out and increasing the overall column. One

potential caveat is that the radially larger “snowline” makes for a higher disk-averaged CO

column and disk-integrated CO opacity compared to a cooler disk. In this case, even rarer

CO isotopes than C18O may be necessary to interpret the HCO+ column densities or to
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use as a proxy for gas mass. It is also important to point out that the emission is not

only sensitive to the column but also the emitting temperature, and therefore the particular

transition or transitions targeted should also take into account the inherent temperature of

the disk as estimated by the stellar luminosity.

6.8.5 Disk Magnetic “Opacity” to Cosmic Ray Ionization

The CR contribution to disk ionization in both magnitude and scope is the least observa-

tionally constrained parameter in disks. A cosmic ray ionization rate of ⇣CR & 3⇥10�17 s�1,

consistent with dense ISM values, was ruled out by Chapillon et al. (2011) using observations

of H2D+. There are a few possible explanations for the low CR rates inferred. The present

work focuses on the possibility of wind-modulated incident CR ionization rates due to the

presence of an analogue to the Solar System’s heliosphere. Within this paradigm we have

ignored radial variations in the GCR rate that may include (i) a gradual increase (1%/AU) in

the CR rate with radius where modulation is weaker further out in the disk (Chapter 4) and

(ii) an edge to the region of CR-modulation, i.e, a Heliopause. As compared to the negative

ionization gradient expected for SLR ionization, (i) would create a positive ionization gradi-

ent, though the two e↵ects are similar (⇠ 1 order of magnitude) and may conspire to cancel

each other out. The other important radial e↵ect is the extent of the wind-modulation zone,

the “T-Tauriosphere.” We have assumed the disk is fully enclosed, but if winds can only

punch out the inner tens of AU, perhaps by magnetic trapping of the winds (Turner et al.,

2014b), the region of exclusion may be much smaller. Alternatively, if the winds dominate,

they could perhaps encircle a much larger region, hundreds to thousands of AU in size due

to the high gas densities (and correspondingly higher ram pressures) of early stellar winds.

Magnetic fields provide an additional source of “opacity” to CRs in two ways: (i) for

funnel-shaped magnetic field configurations seen in protostars (e.g., Girart et al., 2006),

the magnetic field can mirror at most 50% of the CRs away (see also Padovani and Galli ,

2011) and (ii) the presence of magnetic irregularities with size scales near the CR gyro-
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radius can scatter CRs (Cesarsky and Volk , 1978). Both e↵ects can act in tandem, where

magnetic irregularities on an hourglass magnetic field configuration can further enhance the

fraction of mirrored particles (Fatuzzo and Adams , 2014). The role of CR exclusion by

magnetic irregularities induced by disk gas turbulence has been explored in Dolginov and

Stepinski (1994). It was found that modest magnetic field strengths with imposed turbulent

irregularities significantly impeded the CR rate in the disk, such that only 20� 30% of CRs

reach depths corresponding to the disk scale height at all radii beyond the inner few AU.

Including irregularities causes the CR ionization rate to decay very quickly with vertical

depth towards the midplane (see Eq. (9) of Dolginov and Stepinski , 1994), thus removing

CRs entirely by the midplane. Plugging in the numbers typical of our own disk model, we

find that magnetic irregularities act to reduce the CR rate at the midplane by six orders of

magnitude at 100 AU compared to the CR rate at the disk surface. Furthermore, both winds

and magnetic e↵ects can operate simultaneously, such that the winds reduce the incident

CR ionization rate and disk magnetic irregularities substantially curtail the CR propagation

internal to the disk, much faster the classically assumed penetration depth of 100 g cm�2

(Umebayashi and Nakano, 1981).

The two scenarios, winds and “magnetic opacity,” act similarly to reduce the CR flux in

the disk’s midplane but where they di↵er is in the surface. While we have touted the HCO+

isotopologue emission as an excellent X-ray tracer, it is still sensitive to the higher CR

ionization rate models considered here (with ⇣CR & 10�17 s�1, i.e., M02 and W98). If winds

are modulating the CR ionization, we would expect the HCO+ emission to reflect a uniformly

low CR rate regardless of height. If magnetic irregularities dominate the attenuation of

CRs, then the CR ionization rate should be normal in the HCO+ traced upper layers and

absent in the midplane. To conduct such an experiment however, requires reasonably good

constraints on the stellar X-ray luminosity and distributions of density and temperature

in the disk, as both of these are expected to a↵ect the HCO+ emission (§6.8.1 and §6.8.3,

respectively). Alternatively, if neither of these e↵ects are important, wind modulation nor
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magnetic e↵ects, then the ionization should be ⇣CR & 10�17 s�1 in the outer disk and the

more weakly emissive, di�cult species to observe, like H2D+, can help provide constraints

on midplane ionization.

6.9 Discussion and Conclusions

Using a generic, observationally motivated model of a T Tauri protoplanetary disk, we

present chemical abundance models and simulated submillimeter emission line observations

that can be used as a blueprint to constrain the detailed ionization environment within the

gas disk. In particular, sensitive (⇠ 6h) ALMA observations of nearby protoplanetary disks

(D ⇠ 100 pc) will readily be able to distinguish between systems with high, interstellar CR

ionization levels (⇣CR & 10�17 s�1) and those with low (sub-interstellar) ionization levels,

though determining very low CR rates (⇣CR . 10�20 s�1) will be made di�cult by weak

emission from molecular tracers and X-rays providing a lower ionization limit that may hide

the e↵ects of CRs. We emphasize that the chemical results presented here demonstrate

relative trends across di↵erent ionization models and that the physical structure of the disk

and properties of the star will determine how the chemical abundances measured directly

map to ionization properties of the disk in an absolute sense. Consequently, creating detailed

models of particular sources with as many observational constraints as possible will be crucial

to mapping out the ionization in detail for any particular system.

We highlight the molecular ions that are useful tracers of specific ionizing agents in dense

gas, e.g., the warm, X-ray irradiated molecular surface through HCO+ or the cold, dense

SLR and/or CR dominated midplane through N2D+ and H2D+. Moreover, by isolating

individual ionization sources, whether by central stellar processes or otherwise, we can use

these results to observationally quantify the relative importance of each ionizing agent to

the total ionization state of the disk gas. Better constraints on the underlying ionization

environment inform models of turbulence via the ionization-dependent magneto-rotational

instability (Balbus and Hawley , 1991) and models of disk chemistry via ion-neutral and grain
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surface reactions. In other words, dense gas ionization drives both the fundamental processes

that govern both the formation (by potentially regulating turbulence-free “dead zones”) and

chemical make-up of planetary systems.

In particular, the least observationally constrained ionizing agents present in disks are

those which dominate the midplane ionization – CRs and SLRs. More specifically, the CR

rate incident on a protoplanetary disk is unknown and may be strongly modulated by winds

and/or magnetic fields. Without CRs, the total midplane ionization rate is reduced by at

least one to two orders of magnitude depending upon radial location and the degree to which

SLR ionization contributes, which becomes the primary midplane ionization source in the

absence of CRs (see also Chapter 4). High spatial resolution observations may furthermore

reveal radial structure (e.g., gradients) in the CR rate with distance from the star, poten-

tially belying the presence of an analogue heliosphere to that of the Solar System. The

molecular tracers outlined in this Chapter thus provide signposts of the presence or absence

of important physical processes related to disk ionization. In summary, the main results of

this work are:

1. Chemical abundances of di↵erent molecular ions trace di↵erent ionizing agents (and

regions) in our fiducial disk model. The abundance variation is born out in their

submillimeter emission, and thus the lines discussed here can be used as diagnostic

observational tools of disk ionization.

2. Optically thin isotopes of HCO+ trace primarily the incident X-ray ionizing flux, in

particular X-rays with energies EXR ⇠ 5 � 7 keV. For a generally warmer disk, the

CO snow line may exist further out, and in this scenario, radially extended (resolved)

HCO+ emission may be sensitive to midplane ionization sources, i.e., CRs and SLRs.

3. N2H+ is sensitive to both cold ionization processes (CRs and SLRs) and warm (T >

20 K) gas ionization via stellar X-rays and is likely moderately optically thick inside

R . 200 AU (⌧ of a few). This behavior makes for somewhat di�cult direct interpre-
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tation, requiring detailed chemical/line emission models and multiple transitions.

4. We find that the cold gas ionization tracer H2D+ becomes undetectable in a 6h full

ALMA observation at D = 100 pc for CR ionization rates below solar maximum

(SSX models). To detect the amount of H2D+ present in our models at the level of

⇣CR ⇠ 10�19 s�1, at least an order of magnitude more sensitive observations would be

required, or a less distant disk such as TW Hya.

5. N2D+, rather than H2D+ is a more sensitive tracer of midplane ionization due to CRs

and SLRs and the least sensitive to stellar X-rays. N2D+ can be used to measure

ionization levels even at low CR rates (⇣CR . 10�19 s�1) and should be detectable with

ALMA in a reasonable amount of time (< 10h).

6. Cosmic rays may be excluded by wind processes or internal/external magnetic pro-

cesses (or both), but combined observations of surface ionization tracers such as HCO+

isotopologues and midplane tracers like N2D+ will help illuminate the CR-exclusion

mechanism that dominates (see §6.8.5).

7. Short-lived radionuclides are an important contributor to the ionization in disks, ex-

ceeding that of scattered stellar X-rays within the first few Myr. If CRs are not present,

N2D+ should still be detectable for young disks due to the SLR contribution, but its

emission will fade over the disk lifetime.

8. It will be very di�cult to tell apart SLR ionization from CR ionization for measured

midplane ionization rates of ⇣ ⇠ (1 � 10) ⇥ 10�19 s�1. A negative ionization gradient

with radius would indicate a SLR dominated chemistry (SLRs can escape the tenuous

outer disk radii), while a flat or positive gradient (if the inner disk is very dense with

⌃g > 100 g cm�2) may point to a CR dominated chemistry.

9. The mass-normalized column density of ions (with respect to HD, CO, or dust) is far

more sensitive to the CR ionization rate than to the mass of the disk itself, where we
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have considered disk masses spanning the range Mg = 0.02� 0.08 M�.

10. Not all emission “rings” trace physical deficits in abundance or structure. Large tem-

perature gradients present in disks can result in low-J rotational lines peaking o↵set

from the star due to de-excitation in warm gas, such as can happen with HCO+ for

high CR rates.

This Chapter provides a viable starting point to study the ionization sources acting in

circumstellar disks and their corresponding chemical signatures. However, this work must be

carried forward in several ways. First, the ionization models used here are preliminary. We

need to construct more detailed models for how CRs are suppressed by both T Tauri winds

and magnetic field fluctuations; we also need improved assessments of the ionization rates

provided by background cluster environments. On another front, both existing and upcoming

submillimeter facilities will provide important constraints on the actual ionization levels

realized in these systems and will determine which molecules provide the most information.

With improved theoretical and observational input, the chemical signatures considered here

can then be revisited. In the end, we will thus obtain a good working understanding of

both the relevant ionization processes and the chemical structure of planet forming disks.

This information, in turn, can then be used to constrain disk evolution. More specifically,

the chemical structure of the disk determines the locations of both the dead zones (where

MRI cannot operate) and chemical gradients in the gas and ice, and these structures greatly

influence the accompanying processes of disk accretion and planet formation.
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Figure 6.4 Vertically integrated column densities (cm�2) of the indicated species as dependent
upon the magnitude of non-stellar ionization sources. Line color indicates CR/SLR ionization
model with the approximate ⇣H2 s�1 value for the incident CR ionization rates (plus SLR,
if applicable), where the X-ray luminosity is fixed as LXR = 1029.5 erg s�1. HCO+ and
N2H+ reach a “floor” in their column density from a stellar X-ray ionization baseline. X-
rays contribute less to N2D+, H2D+, and HD+

2 and so their column density is more sensitive
to both the high and low (⇣CR . 10�19 s�1) ionization models. CO column densities are
provided in the lower right, and at high cosmic ray ionization rates the CO abundance is
eroded by reactions with He+.
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Figure 6.5 Face-on line center optical depth (⌧0) of the labeled emission lines as a function of
radial distance from the star. The y-axis values are to be multiplied by the value in the lower
left corner of each plot. The emission lines for the most part are optically thin except in the
case of N2H+ (4� 3) and (3� 2), which reaches ⌧0 of a few inside of R < 200 AU. C18O, a
commonly used tracer of gas-mass, is optically thick for most of the disk, and therefore either
a more optically thin isotopologue is needed or sensitive observations of the line wings where
the gas may become thin to use C18O as a potential mass normalizer. Colors correspond to
M02: purple, W98: yellow, SSX: blue, and TTX: green.
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Figure 6.6 Schematic illustrating the calculation of simulated observations. Top: The face-
on line emission models calculated from the chemical abundance models (Fig. 6.3) using the
radiative transfer code LIME (Brinch and Hogerheijde, 2010) in non-LTE where available.
Line emission models are in units of µJy/pixel and are observed at a distance of d = 100 pc.
Middle: Using CASA’s simobserve task, we simulate observations with the full 12m ALMA
array plus the 7m ACA array. UV-binned visibility amplitudes integrated over velocity and
on-sky emission shown, 100 = 100 AU. Bottom: Cuts across the on-sky emission from the
cleaned simulated observations, see text for details. Error bars (sensitivity) are estimated
from the ALMA sensitivity calculator values assuming a 6.1h observation in 100 km/s chan-
nels. Average beam size is 0.3300 and 0.2400 for the left and right plots, respectively.
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Figure 6.7 ALMA simulations for the observable transitions of the indicated molecular ions.
Line color represents di↵erent CR ionization models: M02 (purple), W98 (yellow), SSX
(cyan), and TTX (blue). The simulated antenna configuration used in CASA’s simobserve
task is indicated in parenthesis (## + 7m). Left: Velocity-integrated visibility amplitudes.
The dashed vertical green line corresponds to the minimum baseline from the 12-m observa-
tions, which can be less than the physical separation of the antennas due to sky projection.
The red dashed line is the maximum baseline sampled by the 7-m observations. Right: re-
constructed image profiles in sky-coordinates integrated over velocity. Synthesized beam
indicated by the black bar. Width of the lines corresponds to the sensitivity of the simulated
observations.
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Figure 6.8 The same as Fig. 6.7, for “cold gas” ions typically tracing gas below T . 50 K.
H2D+ is unobservable for our models with ionization rates of ⇣CR . 2 ⇥ 10�18 s�1. Con-
sequently, N2D+ is the only molecular ion which allows for some di↵erentiation between
ionization rates below ⇣CR . 10�18 s�1, as seen clearly in the visibilities, especially for the
N2D+ (4-3) transition. The high CR ionization rate models overlap for N2H+ because the
line becomes very optically thick. We note, that while weak, the SSX model is detectable
in both the (4� 3) and (3� 2) transitions of N2H+ at the 3 and 6� levels, respectively. See
also Figure 6.9 for a zoom-in on the low ionization models.
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Figure 6.9 ALMA simulations of the low CR ionization rate models with and without a
constant SLR ionization rate. Only the low ionization models are shown for clarity. Figure
quantities are the same as Figure 6.7. The CR-only models are shown as TTX: blue and SSX:
cyan. The same CR models now including SLR ionization are shown in green and purple,
respectively. As can be seen from both visibility curves and sky-emission, the inclusion of
SLR ionization does not significantly change the profile or intensity of the lines shown. A
TTX model with SLR ionization (purple) would be di�cult to distinguish from an SSX
model without SLRs (cyan).
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Figure 6.10 Chemical models for LXR = 1029.5 erg s�1 (gray solid lines) and enhanced to
LXR = 1030.5 erg s�1 (black lines). Rows correspond to the indicated molecules on the left,
and columns correspond to the CR models as labeled at the top of the figure. For the
enhanced models, the three line styles correspond to di↵erent X-ray spectra. The solid black
line holds the spectral shape fixed and increases the overall luminosity by a factor of 10.
The dashed black line corresponds to a harder X-ray spectrum with the same normalized
luminosity as the solid line. The dotted line is a model with the same 1 keV flux as the solid
black line, but with a hard spectral template increasing LXR by 1.7.
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Figure 6.11 Column density dependence on SLR ionization with time dependence. All curves
are shown at t = 3 Myr of chemical evolution. The blue line shows a model with CRs and a
fixed SLR ionization rate set by the initial value, no time decay included. Magenta curves
include a decay on the SLR ionization rate with a half-life of thalf ⇠ 1.2 Myr (Chapter 5).
The yellow line shows the column density in the absence of SLR ionization.
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Figure 6.12 Column-derived abundances of the indicated molecular ions, normalized to CO
as a function of disk radius. Colors represent disk mass, where yellow, blue and magenta
correspond to 0.5⇥, 1⇥, and 2⇥ disk gas mass models. CR models are as indicated in the
column headings. Changes in the normalized column densities of a given molecular ion for
di↵erent disk masses are, in general, far smaller than changes across di↵erent CR ionization
rates. Ionization decreases as one goes from left to right. See text for details and discussion.
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Figure 6.13 Vertical column densities of select species as a function of stellar spectral type.
Solid lines correspond to the fiducial disk model with stellar e↵ective temperature of Te↵ =
4300 K. Dashed lines show column densities for the warmer (more luminous) central star,
Te↵ = 6000 K. See discussion in §6.8.4 for details.

199



CHAPTER VII

Constraining the X-ray and Cosmic Ray Ionization

Chemistry of the TW Hya Protoplanetary Disk:

Evidence for a Sub-interstellar Cosmic Ray Rate

7.1 Preface

The following work appears in the Astrophysical Journal, Volume 799, 204, 18 pp. (2015).

The work is co-authored by Edwin A. Bergin,1 Chunhua Qi,2 Fred C. Adams,3, and Karin I.

Öberg,4 The paper is copyright 2015, the American Astronomical Society, reproduced here

under the non-exclusive right of republication granted by the AAS to the author(s) of the

paper.

7.2 Abstract

We present an observational and theoretical study of the primary ionizing agents (cosmic

rays and X-rays) in the TW Hya protoplanetary disk. We use a set of resolved and unresolved

observations of molecular ions and other molecular species, encompassing eleven lines total,

1Department of Astronomy, University of Michigan, 1085 S. University Ave., Ann Arbor, MI 48109
2Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138
3Department of Physics, University of Michigan, 450 Church St, Ann Arbor, MI 48109
4Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138
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in concert with a grid of disk chemistry models. The molecular ion constraints comprise new

data from the Submillimeter Array on HCO+, acquired at unprecedented spatial resolution,

and data from the literature, including ALMA observations of N2H+. We vary the model

incident CR flux and stellar X-ray spectra and find that TW Hya’s HCO+ and N2H+ emission

are best fit by a moderately hard X-ray spectra, as would be expected during the “flaring”

state of the star, and a low CR ionization rate, ⇣CR . 10�19 s�1. This low CR rate is the first

indication of the presence of CR exclusion by winds and/or magnetic fields in an actively

accreting T Tauri disk system. With this new constraint, our best fit ionization structure

predicts a low turbulence “dead-zone” extending from the inner edge of the disk out to

50� 65 AU. This region coincides with an observed concentration of millimeter grains, and

we propose that the inner region of TW Hya is a dust (and possibly planet) growth factory

as predicted by previous theoretical work.

7.3 Introduction

Gas-rich circumstellar disks around young stars are the formation sites of planetary sys-

tems. The physical conditions of this circumstellar material, including density, temperature,

and ionization, all play an important role in setting the dynamical and chemical properties of

the disk. In particular, ionization has a central role in governing disk turbulence and chem-

istry within the cold (T < 100 K) planet-forming gas. The turbulence of disks with masses

comparable to our own minimum mass solar nebula (. 0.05 M�; Weidenschilling , 1977) is

thought to be driven by the magnetorotational instability (MRI; e.g., Velikhov , 1959; Balbus

and Hawley , 1991; Stone et al., 1996; Wardle, 1999; Sano et al., 2000; Sano and Stone,

2002; Fleming and Stone, 2003; Bai and Stone, 2011). MRI requires the disk to be su�-

ciently ionized such that the bulk, predominantly neutral gas can couple to the magnetic

field lines, thereby “stirring” the gas. Regions of the disk quiescent to such turbulence, i.e.,

“dead-zones,” have been posited as safe-havens for e�cient planetesimal formation (Gressel

et al., 2012), as well as an e�cient “stopping mechanism” against Type I and II migration
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(e.g., Matsumura and Pudritz , 2005; Matsumura et al., 2007). With regards to molecular

composition, ionization drives the most e�cient chemical processes in the cold, dense regions

of disks, both in the gas by ion-neutral chemical pathways (Herbst and Klemperer , 1973) and

through ionization-derived hydrogenation reactions on ice-coated grain surfaces (Tielens and

Hagen, 1982; Hasegawa et al., 1992a; Garrod et al., 2008). For the same reason, ionization

plays a pivotal role in facilitating (or hindering) deuterium fractionation reactions in the gas

or on cold grain surfaces (Aikawa and Herbst , 1999a, Chapter 8). Consequently, ionization is

central to the chemical and physical fate of protoplanetary disks and ultimately the planets

they form.

The primary sources of dense gas ionization in disks are X-rays, cosmic rays (CRs) and the

decay of short-lived radionuclides (SLRs). Classical T Tauri (CTT) stars are exceptionally

X-ray bright (1028 erg s�1 cm�2 . LXR . 1034 erg s�1 cm�2; Feigelson et al., 2002) and often

time-variable sources. X-ray flaring activity in CTTs is commonly associated with an overall

hardening of the X-ray spectrum, where relatively more energy is output at EXR & 2 keV

(Skinner et al., 1997). These harder X-ray photons are particularly important in setting the

disk ionization as they are not easily impeded by intervening material between the star and

the disk (i.e., by a stellar/disk wind) and are not as e�ciently stopped within the disk itself

compared to less-energetic EXR ⇠ 1 keV photons (Glassgold et al., 1997).

In very dense gas (nH2 & 109 cm�3), where X-rays are strongly attenuated, the primary

sources of ionization available are external galactic CRs and the internal decay of short-lived

radionuclides (SLRs). In the dense interstellar medium, CRs ionize at a rate exceeding a

few times 10�17 s�1 and perhaps an order of magnitude or more higher in the di↵use gas

(Indriolo and McCall , 2012). However, in the presence of stellar winds and/or magnetic

fields, the incident CR rate can be substantially reduced by orders of magnitude (Dolginov

and Stepinski , 1994; Padovani et al., 2013; Fatuzzo and Adams , 2014, and Chapter 4 of this

thesis).

SLRs are provided by massive stars that enrich the dense molecular gas from which young
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stars (and disks) form. In addition, certain species including 36Cl and, to some extent, 26Al

(e.g., Gounelle et al., 2001) can be provided by grain-surface spallation via energetic particles

from the central star; however, the dominant species at 1 Myr, 26Al, is primarily formed by

external sources (see reviews by Adams , 2010; Dauphas and Chaussidon, 2011, and references

therein). The presence of SLRs in the young Solar Nebula is inferred from the Solar System’s

meteoritic record, but the contribution towards disk ionization from SLR decay is uncertain,

owing to unknown initial abundances, inherent time-decay over the lifetime of the disk,

and an uncertain “injection” point prior to or after disk formation, or perhaps both (e.g.,

Ouellette et al., 2007, 2010; Adams et al., 2014). SLR ionization may also be reduced by the

escape of ionizing agents, i.e., the decay products, from the tenuous outer disk (Chapter 5).

All of these e↵ects act together to make a rich ionization environment with substantial

spatial variation. The individual importance of each of these physical processes has been

debated for decades (Gammie, 1996; Igea and Glassgold , 1999). For the gas thermal structure

in the upper layers, understanding the heating contribution by X-rays, UV irradiation and

to a lesser extent the CR flux is necessary (e.g. Glassgold et al., 2004; Jonkheid et al., 2004;

Kamp and Dullemond , 2004; Gorti and Hollenbach, 2009; Glassgold et al., 2012; Bruderer

et al., 2012). In determining the extent of the disk that is unstable to MRI (i.e., is turbulent),

the question is often what minimum ionization fraction is required. CRs, given their ability

to penetrate disk gas down to . 100 g cm�2, were the original focus of Gammie (1996) in

determining the thickness of the MRI active layer. However, given the intensity of the young

star as an X-ray source and including the important e↵ects of X-ray scattering, Igea and

Glassgold (1999) argued that the disk could be turbulent everywhere beyond 5 AU (inside

of which X-rays are too highly attenuated) even in the absence of CRs. With the arrival

of spatially and spectrally resolved high signal-to-noise data on molecular ions, many of

these questions should be possible to resolve through the coupling of detailed models and

observations.

In Chapter 6, we explored the sensitivity of disk ion chemistry to di↵erent ionization
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scenarios using a generic T Tauri disk model. In the present Chapter, we apply these results

to a particular protoplanetary disk, TW Hya. TW Hya’s proximity (d = 55 ± 9 pc; Webb

et al., 1999; van Leeuwen, 2007), face-on inclination (i ⇠ 7 ± 1�; Qi et al., 2004), and

general isolation from ambient molecular gas (Rucinski and Krautter , 1983; Feigelson, 1996;

Ho↵ et al., 1998; Tachihara et al., 2009), together provide a clear view into the chemical and

physical properties of TW Hya’s circumstellar material. This favorable orientation combined

with a rich observed gas-phase chemistry (CN, HCN, DCN, H2O, HD, and H2CO; Kastner

et al., 1997; van Zadelho↵ et al., 2001; Qi et al., 2008; Hogerheijde et al., 2011; Öberg et al.,

2012; Bergin et al., 2013; Qi et al., 2013a) and numerous detections of molecular ion emission

(N2H+ HCO+, H13CO+, and DCO+; Kastner et al., 1997; van Zadelho↵ et al., 2001; Wilner

et al., 2003; van Dishoeck et al., 2003; Qi et al., 2008, 2013a) make for fertile ground to study

the disk’s ionization chemistry. In this work, we combine new and archival data with detailed

theoretical simulations of disk ionization chemistry to unravel the origin of the molecular ion

emission along with its distribution within the TW Hya protoplanetary disk.

In §7.4, we present the observational constraints, including new data from the Submil-

limeter Array (SMA). We describe the gas and dust physical model along with the chemical

code in §7.5. In §7.5.3 we outline the grid of ionization parameters, where we specifically

vary the shape of the incident X-ray spectrum and incident CR ionization rate. We calcu-

late chemical models across the grid and perform simulated observations (§7.5.4) for direct

comparison to the data. We present our findings in §7.6, discuss their implications for the

TW Hya disk structure in §7.7 and summarize in §7.8.

7.4 Observations

7.4.1 Submillimeter Array Data

The HCO+ (3-2) observations of TW Hydra were made with the SMA (Ho et al., 2004)

located atop Mauna Kea on April 12, 2012 in the very extended (VEX) configuration with 7
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antennas under excellent sky conditions, ⌧225GHz . 0.04. Titan was used for flux calibration,

the quasars J1147-382 and J1037-295 were used for gain calibration and 3C279 for passband

calibration. The line was observed with 256 channels in chunk s04, where the chunk width is

104 MHz, corresponding to a velocity resolution of �v = 0.46 km s�1. All data were phase-

and amplitude-calibrated using the MIR software package5. All continuum and spectral

line maps were then generated and CLEANed using the MIRIAD software package with

natural weighting. The synthesized VEX beam for the HCO+ observation is (✓maj ⇥ ✓min) =

(0.6400 ⇥ 0.3600) with a position angle PA = 17.3�, where the RMS noise on the line is

85 mJy/beam. We have also combined the new VEX HCO+ track with shorter spacing

data from compact and extended tracks (Qi et al., 2008, observed between 2005-2006) to

improve the imaging fidelity. The synthesized beam for the combined measurement set is

0.6900 ⇥ 0.3900, PA = 16.9�, with an RMS of 60 mJy/beam. The 1� continuum sensitivity at

267 GHz is 1.6 mJy beam�1 (0.6300⇥ 0.3500 beam) and 2.3 mJy beam�1 (0.6500⇥ 0.3700 beam)

beam in the VEX-only and combined observations, respectively. The decrease in sensitivity

in the latter is a result of poorer atmospheric conditions for the extended and compact tracks.

Figure 7.1 shows the velocity integrated line flux for the combined and VEX-only data sets.

Observations of the H13CO+ (3�2) line were made on 2014 April 8 using six out of eight

6-m antennas of the SMA in the extended configuration with projected baselines ranging

from 8 to 165 meters. The tuning was centered on the H13CO+ (3 � 2) line at 260.255339

GHz in chunk S23. The observing loops used J1037-295 as the gain calibrator. The bandpass

response was calibrated using observations of 3C279. Flux calibration was done using obser-

vations of Titan and Callisto. The derived flux of J1037-295 at the time of the observations

was 0.70 Jy. The spatially integrated H13CO+ (3� 2) and HCO+ (3� 2) spectra are shown

in Figure 7.2.

5http://www.cfa.harvard.edu/⇠cqi/mircook.html
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Figure 7.1 TW Hya velocity integrated HCO+ (3�2) (top) and 1.1 mm continuum (bottom)
observations. The combined SMA very-extended, extended and compact array data in panels
(a) and (c) show the almost symmetric large scale structure of the HCO+ emission, while the
very-extended data in panels (b) and (d) show the small-scale deviation from axis-symmetry
in HCO+. White crosshairs mark the continuum phase center and overlaid white contours
trace the continuum contours. Black contours mark 3�, 5� and 7� in the HCO+ panels with
1�=60 mJy beam�1 km s�1 (left) and 85 mJy beam�1 km s�1 (right). Continuum contours
are 3�, 10� and 30�, where 1� = 2.3 mJy beam�1 (left) and 1� = 1.6 mJy beam�1 (right).
The beam is shown in the lower-left of each panel.
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Figure 7.2 Spatially integrated spectra over an 800 region, where the vertical red line indicates
TW Hya’s intrinsic velocity VLSR=2.86 km s�1. Top: HCO+ (3 � 2) from the combined
(V+E+C) data set. Bottom: H13CO+ (3� 2) from the extended configuration observations.
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7.4.2 Archival Data

In addition to the new HCO+ (3 � 2) and H13CO+ (3 � 2) data, we have compiled

molecular ion emission line observations from archives and the literature (Table 7.1). HCO+

(1 � 0) and (4 � 3) line data was extracted from ALMA Science Verification observations.

The HCO+ (1� 0) line was observed in Band 3 on May 13-14, 2011 with ten 12-m antennas

for a total of 3.7 hours. Titan, 3C279, and J1037-295 were used for flux, gain and phase

calibration, respectively. The HCO+ (4� 3) line was observed in Band 7 on April 22, 2011

in three scheduling blocks for a total of 4.5 hours. Nine 12-m antennas were available during

the observations; however, one antenna had to be flagged. The same calibrators were used

as in the HCO+ (1 � 0) observations. Further information regarding the observations is

provided at the ALMA Science Verification website6. From the publicly available calibrated

data, we extract the flux from an 800 region for both lines.

H13CO+ (4�3), N2H+ (3�2) and (4�3) have been observed with the SMA and ALMA,

respectively (Qi et al., 2008, 2013a,b). Integrated line fluxes were extracted from the spectral

image cubes using an 8” box to be consistent with the new and archival HCO+ data. In

addition to these molecular line data, we have made use of the published HD, CO and HCN

fluxes listed in in Table 7.1 to calibrate and verify the developed TW Hya disk chemistry

model.

All reported noise in Table 7.1 combines in quadrature the random noise on the data and

an absolute flux uncertainty of 15%. We note that as a result the detections are individually

more significant, i.e., have higher signal to noise as determined from random noise, than

the table implies. See section §7.5.4 for a detailed discussion regarding the “Recover All?”

column.

6https://almascience.nrao.edu/alma-data/science-verification
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Table 7.1. Spectrally integrated TW Hya line fluxes used to constrain the physical model.
Reported uncertainties on the molecular ions include statistical errors and a 15%

systematic uncertainty in the absolute flux scale.

Line Integrated Beam Reference Recover
Line Flux (maj ⇥ min, PA) all?
(Jy km/s)

HCO+ (1� 0) 0.85± 0.14 (4.200 ⇥ 2.900, 72�) ALMA 2011.0.00001.SV. Y
HCO+ (3� 2) 12.9± 2.12 (0.6900 ⇥ 0.3900, 16.9�) This work. Y
HCO+ (4� 3) 23.3± 3.5 (1.700 ⇥ 1.600, 18�) ALMA 2011.0.00001.SV. N
H13CO+ (3� 2) 0.7± 0.18 (1.8100 ⇥ 0.9000, 15.6�) This work Y
H13CO+ (4� 3) 1.1± 0.41 (4.100 ⇥ 1.800, 3.3�) Qi et al. (2008) N
N2H+ (3� 2) 2.2± 0.46 (3.500 ⇥ 2.000, 10�) Qi et al. (2013a) Y
N2H+ (4� 3) 4.6± 0.7 (0.6300 ⇥ 0.5900, �18�) Qi et al. (2013b) N
HD (1� 0) 70.6± 7.8 (9.400 ⇥ 9.400) Bergin et al. (2013) Y
C18O (2� 1) 0.68± 0.18 (2.800 ⇥ 1.900, �1.3�) Favre et al. (2013) Y

Qi et al. (2013b) Y
13CO (2� 1) 2.76± 0.18 (2.700 ⇥ 1.800, �3�) Favre et al. (2013) Y

Qi et al. (2013b) Y
HCN (3� 2) 8.5± 1.7 (1.600 ⇥ 1.100, �0.5�) Qi et al. (2008) Y

7.5 Modeling

To evaluate what constraints the molecular ion observations provide on the ionization

agents active in the TW Hya disk requires 1) a physical model of the TW Hya protoplanetary

disk, 2) a disk chemistry code, and 3) the application of this code to the physical model under

a range of ionizing conditions. Informed by previous model e↵orts (e.g., Calvet et al., 2002;

Thi et al., 2010b; Gorti et al., 2011; Andrews et al., 2012; Menu et al., 2014) and directly

building on Bergin et al. (2013), we have constructed a new physical model of the TW Hya

disk, which focuses on the aspects of most importance to the molecular ion chemistry, i.e.

the distribution of cold gas and small dust grains. The details of the modeling process are

described in Appendix D as well as the sensitivity of our conclusion on the chosen disk

structure, and we review only the main features of the model here.

209



7.5.1 Physical Structure

The dust structure is derived from fitting the spectral energy distribution, where we

include settling by defining two dust populations of small (atmosphere) and large (midplane)

grains, with the latter concentrated near the midplane, i.e. it is parameterized as having a

smaller scale height. The outer disk radius of our full model is taken to be Rout = 200 AU as

determined from the CO gas disk and scattered light images tracing the small dust (Andrews

et al., 2012; Krist et al., 2000; Trilling et al., 2001; Weinberger et al., 2002; Roberge et al.,

2005; Debes et al., 2013). We do not account for the observed radial variation between the

two dust populations, i.e., the concentration of large grains inside of R ⇠ 60 AU (Andrews

et al., 2012), since the explored chemistry depends mainly on the small dust grain population,

which dominate the total surface area of grains (see §7.5.2).

We assume the gas is co-distributed with the small grains following a power-law with

an exponential taper beyond R > 150 AU (see Appendix F for structure dependence) and

cut o↵ at an outer disk radius of 200 AU. We estimate the total mass in gas from the

Herschel detection of HD (Bergin et al., 2013), by varying the disk-integrated gas-to-dust

mass ratio, i.e., the gas-to-dust ratio calculated from the column density is constant, but

the local gas-to-dust ratio varies with height (due to settling). The resulting disk gas mass

in our model is Mg = 0.04 M� with an uncertainty of 0.02 M� (see Appendix D). The gas

temperatures are estimated from the UV radiation field throughout the disk (S. Bruderer,

in private communication and Appendix D). The gas and dust distributions of our physical

models are shown in Figure 7.3.

7.5.2 Disk Chemistry

We employ a time-dependent chemical code specifically tailored to the disk chemical en-

vironment (Fogel et al., 2011). The code solves the input reaction network based on the

input disk physical parameters and initial chemical abundances. The baseline chemical re-

action network of Fogel et al. (2011) is built from the OSU gas-phase network (Smith et al.,
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Figure 7.3 TW Hya physical model constrained from the SED and HD observations (see
Appendix F). The filled contours in panels a) and b) are the gas density and temperature,
respectively. The overlaid contour lines in a) and b) show the corresponding dust density
and temperature. Panel c) plots the integrated X-ray flux between 1-20 keV with lines of
wavelength integrated optical depth over plotted. Similarly, panel d) shows the wavelength
integrated UV flux along with corresponding UV optical depth.
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2004) and includes neutral-neutral, ion-neutral, ion recombination with grains/electrons,

freeze-out, thermal and non-thermal desorption via UV photons and CRs, photodissocia-

tion, photoionization, X-ray induced UV, self-shielding of CO and H2, and water and H2

grain-surface formation. The expanded network (Chapter 6) also includes simple deuterium

reactions to form H2D+ and HDO, and self-shielding of HD and D2. The grain-surface for-

mation reactions are also extended in the present work to include additional pathways for

grain surface chemistry in the formalism of Hasegawa et al. (1992a) for a small subset of

species (77 reactions total), forming H2/HD/D2, H2O/HDO, H2CO, CH3OH, CH4, CO2,

N2, N2H2, HNO, NH3, HCN, OCN, and H2CN. The total network includes 6284 reactions

and 665 species. The initial chemical abundances input into our model are discussed in

Appendix E (see Table E.1).

We constrain the CO and nitrogen abundances using observations of CO and HCN (see

Appendix E for more details). Regarding CO, motivated by the results of Favre et al. (2013)

where CO is highly depleted in � 20 K gas by 1 � 2 orders of magnitude, we manually

change (reduce) the initial CO abundance until our models reproduce the CO isotopologue

observations after 1 Myr of chemical evolution. Chemical processes within the disk naturally

remove CO from the gas over time by converting CO into more complex carbon-bearing

ices (Bergin et al., 2014); however, we find that starting with a “normal” CO abundance of

�(CO) = 10�4 and allowing the chemistry to evolve over 3�10 Myr does not alone su�ciently

reduce the CO abundance to match the observed C18O and 13CO observations. This finding

implies that some type of additional CO depletion is necessary. Possible mechanisms include

CO chemical conversion to organic ices at even earlier stages, prior to disk formation (i.e.,

the disk does not start out with �(CO) = 10�4) or, alternatively, freeze-out of CO-derived

ices in the disk combined with rapid settling of large, ice-coated grains to the midplane,

which can remove carbon and oxygen from the upper layers of the disk. With our present

simple reduction models, we confirm the low gas-phase CO abundance posited in Favre et al.

(2013), where we derive a CO abundance of �(CO) = 10�6 relative to H2 (traced by HD).
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The chemical calculations are explicitly non-equilibrium, and as such, there is some uncer-

tainty on what “chemical time” to adopt when comparing model results with observations.

Time “zero” in the chemical code corresponds to a fixed physical structure with uniform

input abundances set by Table E.1 at every location in the disk. As time progresses there is

a net gas-phase depletion because there are several “sinks” in the network, where energetic

He+ atoms break molecular bonds and gradually form more complex species with higher

grain-surface binding energies than the parent molecule (for the case of CO, see Bergin

et al., 2014, and §E.1).

The time for this sequestration process is related to the freeze-out time, which is directly

proportional to the typical size of grains assuming a constant gas-to-dust mass ratio (e.g.,

Aikawa et al., 1996). Specifically, larger grains have less surface area per unit volume of gas

than smaller grains, i.e., the total surface area per unit volume is �g(r)ng(rg) / r2gr
�3.5
g =

r�1.5
g , where ng is the volume number density of grains and �g is the surface area of a single

grain. Therefore, as grains grow larger, the surface area of grains drops and molecule colli-

sions with grains are less frequent, slowing down the chemical time for freeze-out. Likewise,

settling removes some fraction of the dust mass from the upper layers and correspondingly,

dust surface area, also slowing down the rate of subsequent freeze-out. Grain growth and

settling therefore slow the chemistry’s natural tendency to sequester volatiles into more com-

plex ices, and an old disk with large grains can look like a young disk with small grains.

Thus grain growth can reduce the “chemical age” as compared to the physical (stellar) age.

In the present model, owing to the settled nature of the disk, we reduce the “chemically

active” surface area of grains to 3% of its standard value, i.e., compared to a uniform gas-

to-dust mixture (mass ratio of 100) and grains typically rg = 0.1 µm in size, the default

assumption of the Fogel et al. (2011) model. Because the typical grain surface area is a

single parameter in the model, we cannot increase the surface area in the midplane where

the larger (� 1mm) grains will collect. However, these larger grains contribute negligibly

to the surface area compared to the small grains, which are also present throughout the
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midplane (e.g., Dullemond and Dominik , 2004). This change in grain surface area increases

the time-scale for freeze-out by a factor of ⇠ 30.

Taking these factors into consideration and the unknown age of the TW Hya star and disk

system of ⇠ 3� 10 Myr (Barrado Y Navascués , 2006; Vacca and Sandell , 2011), we opt to

examine the time-evolved chemical abundances at 1 Myr, when the ion-chemistry has leveled

to an approximate steady-state. Because we cannot take into account the time-evolving

grain size and its changing spatial distribution simultaneously with the time evolution of the

chemistry along with uncertainties in stellar ages, calibrating the chemical evolution using

molecular line observations is a better approach to assessing the current evolutionary state

of the TW Hya molecular gas disk. In this light, the present model is verified as appropriate

to the current chemical evolutionary stage of TW Hya using neutral gas constraints, CO and

HCN, as described in Appendix E.

7.5.3 Ionization

The primary sources of ionization considered in this work are X-rays, CRs, and UV

photoionization. X-rays and CRs are the most important for the ionization of the dense

molecular gas, where both are capable of ionizing H2 and helium. Both the incident CR

flux and the implementation of X-rays (motivated by X-ray observations of the source) are

the primary free parameters of our modeling e↵orts and are described in detail below. We

do not include the ionization contribution from the decay of SLRs, owing to the advanced

age of TW Hya (3-12 Myr; Webb et al., 1999; Barrado Y Navascués , 2006; Mentuch et al.,

2008; Vacca and Sandell , 2011; Weinberger et al., 2013) and its relative isolation from recent

massive star formation, though see §7.6.3 for additional discussion.

7.5.3.1 CR Ionization

The CR ionization rate, ⇣CR, is a free parameter in the present study, where we have

adopted the results of Chapter 4 to construct five input cosmic ray models. These models

214



Table 7.2. Incident CR model ionization rates, ⇣CR.

Model ID ⇣CR

Moskalenko et al. (2002) M02 6.8⇥ 10�16 s�1

Webber (1998) W98 2⇥ 10�17 s�1

Solar System Minimum SSM 1.1 ⇥10�18 s�1

Solar System Maximum SSX 1.6⇥ 10�19 s�1

T Tauri Minimum TTM 7.0 ⇥10�21 s�1

consist of empirically motivated CR particle spectra and include self-consistent energy decay

with depth (i.e., surface density). The CR attenuation is taken in the vertical direction for

ease of calculation in the chemical models. In Table 7.2 we provide the incident CR ionization

rate at the surface of the disk (prior to attenuation by the gas itself). Details regarding

the calculation of ⇣CR and the functional form of the decay with surface density can be found

in Chapter 4. In summary, the Moskalenko et al. (2002) (M02) ionization rate is similar to

that determined for the di↵use ISM, the Webber (1998) (W98) rate is consistent with values

for the dense, molecular ISM, and Solar SystemMinimum (SSM) and Solar SystemMaximum

(SSX) are the present day CR fluxes at 1 AU. T Tauri Minimum is an “extreme” modulation

case, extrapolated from the solar values.

7.5.3.2 X-ray Ionization

The e�ciency of X-rays to ionize a disk depends both on the total flux and the hard-

ness of the spectra. TW Hya has a substantial measured X-ray luminosity of LXR ⇠

2 ⇥ 1030 erg cm�2 s�1 (e.g., Kastner et al., 1999; Raassen, 2009; Brickhouse et al., 2010),

assuming a distance of d = 55 pc. This flux has been observed to double or triple during

X-ray flares over periods of hours (Kastner et al., 2002; Brickhouse et al., 2010) at a cadence

of less than a day (Kastner et al., 1999).

The quiescent state X-ray spectrum is well-fit by a two temperature plasma model with

characteristic temperatures of 2� 3 MK and 10� 12 MK (Kastner et al., 1999; Brickhouse
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et al., 2010), which are associated with X-ray emission from the accretion shock (Calvet and

Gullbring , 1998; Kastner et al., 1999, 2002; Stelzer and Schmitt , 2004; Brickhouse et al.,

2010; Dupree et al., 2012), and coronal emission from hot plasma (e.g., Lamzin, 1999; Güdel

and Telleschi , 2007; Brickhouse et al., 2010), respectively. During flares, hints of a hard X-

ray excess have been observed by Kastner et al. (1999). Kastner et al. (2002) and Brickhouse

et al. (2010) also found that during independent flaring events, harder energy bands and high

temperature diagnostics were a↵ected by the flare while the soft component was not.

Despite the exquisite data available on X-ray fluxes and spectra toward TW Hya, its

impact on ionization and chemistry is highly uncertain. First, the shape of the spectrum

beyond EXR ⇠ 3 keV (the very photons that ionize the bulk gas) in both the quiescent and

flaring states is not directly known. Second, the variability of the X-ray flux and possibly

spectrum occurs on small enough time scales that the chemistry may not be able to reset

between flares, and may thus reflect the flared state of TW Hya dependent on the relevant

timescales. For ion chemistry the relevant time scale is the electron recombination rate.

The typical electron recombination rate coe�cient is of order ↵rec ⇠ 1 ⇥ 10�7 cm3 s�1.

The electron density at the inner disk surface, R = 30 AU, Z = 12 AU (i.e., above the

⌧XR ⇠ 1; Figure 7.3), is approximately ne ⇠ 10 cm�3, resulting in a recombination time of

trec ⇠ (↵recne)
�1 = 12 days. Therefore, if the flaring time scale is on the order of days, the

chemistry may not have time to “reset” between flares.

To address this issue, we treat the X-ray flux and spectrum as a free parameter in our

model. We construct four low-resolution X-ray templates with XSPEC7, where the baseline

“quiescent” X-ray model is the two component plasma model (raymond) derived by Kastner

et al. (1999), with 1.7 MK and 9.7 MK components (these components are similar to those

found in the detailed spectroscopic study of Brickhouse et al. (2010)). The luminosity in the

quiescent template is LXR = 1.5⇥1030 erg cm�2 s�1. To approximate the X-ray flaring state,

7http://heasarc.gsfc.nasa.gov/xanadu/xspec/.
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Figure 7.4 Template X-ray spectra for the ionization model grid, where the softest X-ray
spectrum (i.e., the quiescent template), HR = �0.8, is motivated by the observations of
Kastner et al. (1999, 2002), while the other spectra are artificially hardened to simulate
di↵erent degrees of “flaring” spectral states.

on top of the quiescent spectrum we add an artificial hard component at 4 keV, changing

the relative amounts of hard-to-soft X-rays and thus decreasing the overall spectral slope

(Figure 7.4).

We fix the soft X-ray flux at 1 keV across the four spectra based upon the results that

the low temperature, softer X-ray component is una↵ected by the observed flares. Between

the four spectra considered here, the integrated X-ray luminosity changes by a factor of just

⇠ 3 (see Figure 7.4 legend); however, the specific flux at the hard X-ray tail (EXR & 5 keV)

changes by an order of magnitude. All but the highest energy flaring spectrum are consistent

within the error bars of the data presented in Kastner et al. (1999). We identify the four mod-

els by their X-ray hardness ratio, which is defined as the ratio (Lsoft � Lhard) / (Lsoft + Lhard)

where Lsoft is the X-ray luminosity between 0.5� 2.0 keV in erg s�1 and Lhard is the equiv-

alent between 2.0 � 10 keV. More negative numbers are soft X-ray dominated, while more

positive numbers are hard X-ray dominated.

We calculate the X-ray propagation throughout the disk for energies of EXR = 1 �
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20 keV in 1 keV intervals as described in Chapter 4 with the Monte Carlo code presented

in Bethell and Bergin (2011a). The absorption cross-sections are provided in Bethell and

Bergin (2011b) and the X-ray scattering is dominated by Thompson scattering. Next, we

apply the template spectra in Figure 7.4 to determine the X-ray radiation field as a function

of energy and position within the disk, which is the input for the chemical calculations. The

X-rays primarily ionize H2 and He, where we adopt the ionization cross-sections provided in

Yan et al. (1998), integrated over the local X-ray spectrum. The same Bethell and Bergin

(2011a) code is also used for the UV calculations (see Chapter 6 for our treatment of the

Lyman-↵ transfer and §D.2). The energy-integrated X-ray and UV field (930� 2000 Å) are

shown in Figure 7.3c and 7.3d, respectively, along with their total optical depth.

7.5.4 Line Radiative Transfer and Synthetic Observations

The set of five CR models (§7.5.3.1) and four X-ray models (§7.5.3.2) forms a grid of

twenty di↵erent ionization profiles for a fixed physical (density and temperature) structure

(Appendix D). For each model, we calculate the time-dependent chemistry as described in

§7.5.2. To enable model-data comparison, we then calculate the emergent line emission from

the abundances and model physical conditions assuming a distance of d = 55 pc and, for

cases where spatial filtering cannot be excluded, we also simulate the particular observations.

The line radiative transfer is computed using the LIME code (Brinch and Hogerheijde,

2010) in non-LTE where available8. We consider two components to the gas velocity: i)

Keplerian rotation around the star based on the stellar mass and viewing geometry (i ⇠ 7�)

and ii) the gas turbulent velocity, i.e., the doppler-B parameter. We adopt a turbulent

velocity of 40 m s�1 based on the observed upper limit from Hughes et al. (2011). The

end product of the LIME simulations are data cubes, i.e., two dimensions on the plane of

the sky and a third in velocity. Since carbon and oxygen isotopologues are not considered

8Collisional rates for HCO+, H13CO+ and N2H+ are compiled at the Leiden LAMDA database (Schöier
et al., 2005), where the primary literature for the spectroscopic data is Anderson et al. (1977); Sastry et al.
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Figure 7.5 H2 ionization rate in the midplane (z = 0 AU) due to X-rays (XR), cosmic rays
(CR) and short-lived radionuclides (SLR). Incident (unattenuated) CR fluxes are listed in
Table 7.2. X-rays are labeled by their hardness ratio (see also Figure 7.4 for the incident
spectra). SLR rates are determined from the initial solar nebular abundances with the
indicated decay time (and no late stage injection).
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independently in the chemical network, their abundances are calculated based on the main

isotopologues using a fixed ratio of 12C/13C = 70 ± 10 and 18O/16O = 540 ± 30 (Henkel

et al., 1994; Prantzos et al., 1996) appropriate for the local ISM. For all lines, we simulate

the line and continuum emission simultaneously with the dust and gas co-spatial within

the framework of the physical model. We then use self-consistent dust opacities from the

radiative transfer and UV modeling, and then subtract o↵ the continuum emission when

comparing the line fluxes.

The calculated line emission fluxes are compared to observations to determine the good-

ness of fit of the chemical simulations. This can be done directly using the LIME output

for lines observed for the observations that have su�cient short spacings to not have any

flux resolved out, marked as ‘Recover all?’=’yes’ in Table 7.1. Exceptions to this are the

(4 � 3) rotational lines of HCO+, H13CO+, and N2H+. For these lines, we make synthetic

observations using the simobserve task in CASA9 and the specific array configurations

used for these SMA and ALMA observations. The HCO+ (4 � 3) and N2H+ (4 � 3) were

both observed as part of ALMA Early Science operations, where the former was a Science

Verification target and the latter was reported in Qi et al. (2013b). Because the array con-

figurations during these observations were non-standard, we used the original data to create

the observation specific array configurations for the simobserve task. From the simulated

visibilities we reconstruct the on-sky image using clean with natural weighting. The sim-

ulated beam from the reconstructed images is (4.100 ⇥ 1.9700) and (0.6600 ⇥ 0.5600) for HCO+

(4�3) and N2H+ (4�3), respectively, which are in good agreement with the beams from the

observations (see Table 7.1). Likewise, the CASA simulations for the SMA H13CO+ (4� 3)

with a beam of (4.100 ⇥ 1.9700) reasonably agrees with the observed beam.

For all lines except HCO+ (3�2) and N2H+ (4�3), we only compare spatially/spectrally

integrated line fluxes. To determine quality of fit, we combine the uncertainties on the

(1981); Botschwina et al. (1993); Flower (1999).
9http://casa.nrao.edu/
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original observations in quadrature with a 10% uncertainty from the stochastic point-casting

uncertainty of the LIME code (Brinch and Hogerheijde, 2010). For the uncertainty of the

two H13CO+ rotational lines, we also include a 14.3% uncertainty for the isotopologue ratio

of 12C/13C= 70± 10.

For the best spatially resolved data, HCO+ (3�2) and N2H+ (4�3), we directly compare

the observed emission profile on the plane of the sky to the model emission profile. To assess

the fit to the model emission profiles, we measure the di↵erence between the model and

observed line fluxes in units of the integrated � (Jy/beam km s�1) over the angular extent of

the disk. From this di↵erence, we determine the radial di↵erence in units of the uncertainty

on the line flux, �(R). From this profile, we determine a disk-averaged � between the model

and observation by integrating over the disk area,
R
2⇡��(✓)✓d✓/

R
2⇡✓d✓, which implicitly

weights towards the outer disk because it covers more of the total emission area. For both

HCO+ (3 � 2) and N2H+ (4 � 3) we integrate out to �✓ = 300 from the stellar position,

beyond which the emission drops o↵ substantially.

7.6 Results

7.6.1 HCO+ Spatial Distribution

The HCO+ (3�2) velocity integrated line emission for the combined data set and the VEX

data set are shown in Figure 7.1 together with the simultaneously observed continuum data.

The VEX data clearly deviates from axisymmetry, and while less pronounced, this deviation

is also recovered in the combined image. The VEX emission excess is separated from the

phase center by the size of the ⇠25 AU beam and seems to be unresolved. In the combined

image, the feature shows up as a 3� enhancement as compared to the emission profile across

the rest of the disk at the same radial distance. The emission contributes approximately

⇠ 15� 20% of the overall disk-integrated HCO+ (3� 2) flux, which is a substantial amount

of the total emission confined to a very small region. The possible origin of this asymmetry is
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discussed in §7.7.3. While the asymmetry is not the focus of the present Chapter, equipped

with this additional spatial information, we are able to exclude the southwest quadrant from

the ionization fitting as it does not reflect the majority of the disk properties. The three

other quadrants are assumed to be representative of the axisymmetric HCO+ (3�2) emission

profile. The remaining HCO+ lines, (1� 0), (4� 3) and the isotopologues, were observed at

lower spatial resolution (see Table 7.1, and as a result, we are unable to correct their emission

for such an asymmetry if it is a long-lived feature. These observations highlight the utility

of high spatial resolution observations even for the study of bulk gas chemical properties.

7.6.2 Model Grid Results

The contribution of the di↵erent X-ray and cosmic ray models to the disk midplane ion-

ization level is shown in Figure 7.5. We also plot the contribution from two SLR realizations

assuming an age of 3 Myr and 10 Myr with Solar System-like initial SLR abundances (see

Chapter 5 for details). The relative importance of CR and X-rays for H2 ionization clearly

depends both on the CR attenuation and the X-ray hardness. In its quiescent state, even the

most attenuated cosmic rays dominate the X-ray ionization level throughout the disk. Mod-

erate hardening/flaring of the X-ray spectra results in an X-ray dominated ionization profile

in the inner disk, and for the hardest X-ray spectra, X-rays drive ionization throughout the

disk for all cases with any CR attenuation. SLRs only contribute to the ionization level if

the CRs are extremely attenuated and the star displays no X-ray flaring activity, justifying

their exclusion from the model calculations.

Figure 7.6 shows the chemistry model results in terms of HCO+ and N2H+ radial column

density profiles for the full grid of models i.e. the grid of 4 ⇥ 5 X-ray and cosmic ray flux

levels. Increasing X-ray hardness generally increases the HCO+ and N2H+ column densities.

CR ionization does not strongly a↵ect the HCO+ column profile but does change the shape of

N2H+, going from more centrally peaked column densities to radially flatter with increasing

CR flux, similar to what was seen in the parameter study in Chapter 6 for a generic T Tauri
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disk model.

7.6.3 Constraints on Ionizing Agents

From the chemical models discussed in the previous section and the emission line anal-

ysis detailed in §7.6.2, we can now compare the observations in Table 7.1 to the simulated

molecular emission. The agreement between models and observed data is evaluated based

on disk integrated fluxes for all lines except HCO+ (3 � 2) and N2H+ (4 � 3), where the

latter are fit based upon their radial emission profile (§7.5.4). The results of this comparison

are presented in Figure 7.7. For each considered emission line, agreement is classified as

within 1�, 2�, 3� or as a poor fit between the observation and model. We also classify the

overall quality of fit to each model in terms of 1) midplane ionization as probed by N2H+

lines and 2) surface ionization tracers, i.e. HCO+ lines. Finally, the total quality of fit is

determined based on the fit to midplane and surface ionization levels weighted equally, which

implies that individual N2H+ lines are weighted more heavily than individual HCO+ lines

for the final metric. Based upon these numbers, the best fit and acceptable fit models to

both surface and midplane tracers are boxed in Figure 7.7.

Interestingly, all of the acceptable models have sub-interstellar CR ionization rates, ⇣CR .

10�18 s�1. The best fit models, SSX and TTM, have ⇣CR . 10�19 s�1. Additionally, these

two models also have an X-ray spectral hardness ratio of �0.4, which is harder than TW

Hya’s quiescent X-ray state, �0.8, from the modelled observations of Kastner et al. (1999).

This result implies that the chemistry seems to reflect an elevated X-ray ionization state

perhaps as a result of the well-characterized frequent flaring behavior of the star (Kastner

et al., 2002; Brickhouse et al., 2010).

The quality of fit is especially apparent in the emission profile fitting of HCO+ (3 � 2)

and N2H+ (4 � 3), shown in Figures 7.8 and 7.9 and described in §7.5.4. To evaluate the

model goodness of fit for the relevant wedges in Figure 7.7, the HCO+ (3� 2) emission line

models are convolved with a (0.6900 ⇥ 0.3900) Gaussian beam, while the N2H+ (4� 3) profile
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Figure 7.6 Vertically integrated column densities of HCO+ (left) and N2H+ (right) versus
disk radius. Individual panels show increasing CR ionization rates from top to bottom.
In each panel, variations due to changes in the X-ray spectral hardness are shown by the
di↵erent lines as labeled in the top right panel. The dashed lines indicate hard X-ray spectra,
0.0 and 0.3, while the solid lines are the softer X-ray spectra, �0.8 and �0.4.
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is measured from the CASA simulations discussed above. Both the observations and models

are averaged over deprojected annuli assuming an inclination of i = 7�. The HCO+ (3� 2)

profile excludes the southwest quadrant from the annular averaging, along with the inner

0.300, due to the significant asymmetry present there.

Most models reproduce the radial distribution of HCO+ (3� 2), while the N2H+ (4� 3)

spatial structure is more discriminatory between models. Specifically, Figure 7.9 shows that

the N2H+ (4 � 3) ring discovered by Qi et al. (2013b) is narrow and the emission drops o↵

steeply beyond the peak at ✓ ⇠ 0.700. These observed features are only reproduced by low,

modulated CR models and moderately hardened X-ray spectra. The broad N2H+ emission

extending to large angular scales in the high CR case is due to non-thermal desorption of

N2 ice coupled with slower outer disk freeze-out times in the presence of CR ionization of

H2. This exclusion of high CR models is independent of the specifics of the assumed disk

density and temperature profile (Appendix F). There is thus very good agreement between

the best-fit model derived from line flux comparisons and the spatial profiles of individual

lines.

It is apparent from Figure 7.7 that the best fit models reproduce the N2H+ emission

better than the HCO+ emission on the whole. The HCO+ lines other than (3�2) are better

fit by very hard X-ray spectra (HR: 0.3) or a high CR rate and HR of 0.0 or 0.3, and the

models generally under predict the HCO+ emission for all lines except the (3�2) transition.

Some of this under prediction may be explained by the observed asymmetric excess in the

(3 � 2) image (Fig. 7.1), which we were able to remove from the HCO+ (3 � 2) flux before

model-data comparison, but may contribute significantly to the other line fluxes. A second

source of error is the uniform reduction of the CO abundance (see Appendix E.1). There

could be substantial spatial structure in the gas-phase CO abundance distribution, which

is the precursor for HCO+ formation. A third source of error is probably the details of the

temperature structure, since the optically thin H13CO+ lines, which should trace the column

well, are better reproduced by the model than the optically thick low-spatial resolution lines,
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which should trace the disk (surface) temperature. There is clearly a need for future detailed

thermal structure modeling using more higher resolution HCO+ and CO data that can be

used to optimize the temperature and chemical/physical structure simultaneously.

7.7 Discussion

7.7.1 The Ionization Environment of TW Hya

From the emission modeling, we find that the CR ionization rate is substantially sup-

pressed at all disk radii, with especially strong limits on the outer disk. One possible expla-

nation is exclusion by young stellar winds as an analogue to the Solar System’s heliosphere,

i.e., a T-Tauriosphere. As was shown in Chapter 4 as well as Svensmark (2006); Cohen

et al. (2012), winds from young stars should be e�cient CR excluders if they operate over a

large enough region of the disk. Alternatively, if such winds are highly collimated by, e.g.,

magnetic fields, their covering fraction may be too small to shield the disk. Whether disk

winds are also capable of excluding CRs should be explored in future work. If stellar or

disk winds are the primary exclusion mechanism, they must operate well beyond the outer

200 AU gas disk radius, and the corresponding T-Tauriosphere, must be at least this large

(see discussion in Chapter 4).

CRs can also be repelled by mirroring via external magnetic fields linking the disk to

the parent cloud, especially if there are irregularities in the field lines (Padovani et al.,

2013; Fatuzzo and Adams , 2014). Given TW Hya’s relative isolation from molecular cloud

material, it is uncertain whether such a large-scale environmental magnetic field exists.

Turbulent magnetic fields within the disk can also act as an additional source of energy loss

for the CR particles if they are present (Dolginov and Stepinski , 1994); however, the disk

must be su�ciently turbulent (and thus MRI-active) to support such a configuration.

The ionization rate derived for the midplane gas, ⇣CR . 10�19 s�1, is, strictly speaking,

a limit on all sources of ionization, including that due to SLRs and the scattered X-ray field
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in the midplane. If TW Hya had similar SLR abundances to the Solar Nebula and without

significant additional late-stage SLR pollution by massive stars (Adams et al., 2014), the

contribution from SLR ionization in TW Hya falls below the X-ray ionization rate in the

midplane, or ⇣XR = (2.3� 10)⇥ 10�20 s�1, at & 3 Myr. For our best fit model, the scattered

X-rays alone exceed the contribution from SLR ionization; thus further constraining the

ionization rate due to SLR ionization will be di�cult. Ionization tracers of the inner disk

(R < 10 AU) midplane may help put more stringent limits on the dense gas ionization in

the region where X-rays are highly attenuated and SLRs may dominate. Such small scales

will be readily accessible by ALMA in the near future either with direct imaging or by using

velocity information to spectrally resolve the inner disk.

The overall picture of TW Hya’s relatively high surface ionization rate and ion-poor

midplane is consistent with previous theoretical (e.g. Gammie, 1996; Glassgold et al., 1997;

Igea and Glassgold , 1999; Semenov et al., 2004; Semenov , 2010; Semenov and Wiebe, 2011)

and observational (Kastner et al., 1997; Qi et al., 2003; Dutrey et al., 2007; Öberg et al.,

2011d) studies of disk ionization. With the IRAM Plateau de Bure Interferometry, Dutrey

et al. (2007) conducted a search for N2H+ and HCO+ (and isotopologues) to measure the

ionization state of three protoplanetary disks in a similar manner to the present Chapter.

While the PdBI data had lower resolution and lower signal-to-noise, the N2H+ observations

of the three disks indicate a distinct drop at large radii, similar to what was found in the

resolved TW Hya N2H+ (4� 3) observations (see Fig. 7.9). Similar to our own findings (c.f.

Chapter 6), the Dutrey et al. (2007) chemical models with CRs show a rise in N2H+ column

in the outer disk that is not present in the data (see their Figure 6). We attribute this rise

in the models to outer disk CR ionization and decreased ion-recombination e�ciency. While

the lower signal-to-noise data presented in Dutrey et al. (2007) cannot definitively point to

a CR-poor environment, these observations may hint that TW Hya’s low CR environment

is a common feature of protoplanetary disks.
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7.7.2 Dead-zones, Dust Growth and Accretion

From our best fit ionization models we can estimate the size of the magneto-rotational

instability (MRI) “dead” regions in the disk in a similar fashion to Chapter 4. In contrast to

Chapter 4, we directly measure the ionization fraction from the chemical models, where the

electron abundance is exactly equal to the ion abundance for a charge neutral disk. From the

spatial ion abundances (equivalently the ion fraction), we estimate the magnetic Reynolds

number, Re, and ambipolar di↵usion coe�cient, Am, to determine the approximate location

of the MRI active versus dead layers. In Figure 7.10, we plot the electron abundance as filled

contours.

We note that the electron abundance is slightly higher at the outer disk midplane in the

present models than the steady-state estimate, �e =
p
⇣↵n(H2), predicts because of the low

densities and correspondingly longer recombination time-scales in the outer disk. We choose

a critical Re for the disk to be dead as Re  3300 (where MRI active lies outside of the area

inclosed by the thick purple line), but we also show Re = 1000 and Re = 5000 on the same

plot, demonstrating that the Re-determined dead-zone is not very sensitive to this choice.

Critical Am < 0.1 (below which the disk is stable against the MRI) is indicated by the

region inside of the orange lines, and is mainly confined to a layer between the highly ionized

surface and the outer disk midplane outside of R > 100 AU (see grey contours of Fig. 7.10).

Formally the disk must satisfy both Am > 0.1 and Re > 3300 to be active; however, the

importance of the Am criteria is a↵ected by the strength and direction of the disk magnetic

field, which is unconstrained here. Therefore we focus on Re to approximately estimate the

minimum region where the disk is dead versus active.

For the two best fit models, SSX and TTM (HR = �0.4), the Re criteria results in a

MRI dead region that extends from the inner disk out to 50 AU and 65 AU in the midplane

(see Figure 7.10). This specific zone is of particular significance as it coincides with a region

of concentrated large (mm/cm-sized) grains. Wilner et al. (2000) reported observations of

TW Hya with the Very Large Array (VLA) where 7 mm continuum emission was found
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to be concentrated within a R ⇠ 50 AU radius along with an unresolved 3.6 cm detection

within a ⇠ 1.1200⇥0.9300 (62⇥51 AU) beam. Wilner et al. (2005) reported 3.6 cm continuum

observations at higher spatial (0.1500) resolution and found that the emission was concentrated

in a region of tens of AU in size. Deep 870 µm observations with the Submillimeter Array

(SMA) show similar morphology, where grains are concentrated within R ⇠ 60 AU of the

parent star (Andrews et al., 2012), also seen in CARMA 1.3 mm observations where Isella

et al. (2009) find a disk radius of ⇠ 73 AU.

The co-spatial location of the dead-zone with the large grains is perhaps not coincidental.

Gressel et al. (2012) argue that the decrease in turbulent activity within a dead-zone leads

to the survival and growth embedded planetesimals, and thus may facilitate the growth of

planets. Additionally Matsumura and Pudritz (2005) and Matsumura et al. (2007) argue

that the presence of dead-zones may also halt rapid inward migration, leading to long-

term survival of the planetesimal bodies. We note there are certainly other explanations

for the dust concentration and the sharpness of the mm-grain outer edge, in particular as

a natural outcome of the velocity dependence of radial drift (c.f., Birnstiel and Andrews ,

2014); however, a change in the disk turbulent properties resulting from a dead-zone may

facilitate further dust growth via sticking collisions within this region.

If such substantial dead-zone exists, it may also pose a problem for disk accretion onto the

central star. TW Hya is a relatively low accretor (⇠ 10�9 M� yr�1; Alencar and Batalha,

2002; Herczeg et al., 2004; Ingleby et al., 2013) supporting the continued existence of its

gas-disk at a relatively old age; however, accretion must nonetheless proceed. Gammie

(1996) found that accretion can be sustained within a layer closer to the disk surface (⌃g <

100 g cm�2, limited by CR penetration) and in this case, estimate an accretion rate of

Ṁ ⇠ 10�8 M� yr�1. Parts of the dead-zone can also potentially become “undead” when

reactivated by adjacent turbulent gas (Turner and Sano, 2008), in which case the accretion

flow in these regions is reduced compared to the active zone but is not zero. Lesur et al.

(2014) found inclusion of the Hall e↵ect in MHD shearing box simulations can support
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e�cient accretion onto the star Ṁ . 10�7 M� yr�1, even for poorly ionized disks, with

laminar flow through the dead zone, supporting the hypothesis that dead-zones may be

beneficial to dust growth and planetesimal formation. Thus the dead-zone may not entirely

inhibit disk accretion, though the relationship between massive, extended dead-zones and

mass/angular momentum transfer should be studied further.

7.7.3 HCO+ Asymmetry

Our new SMA observations reveals a significant small-scale asymmetric emission excess

of HCO+. While a detailed analysis of this particular feature is left to future work, there

are a few plausible explanations for its origin. The enhancement may be related to a local

change in vertical structure, either due to a asymmetric pressure bump or the crest of a spiral

arm. The local increase in scale-height increases the surface area over which the disk can

intercept stellar irradiation (Jang-Condell , 2008, 2009) including that of X-rays, leading to a

local over-production of HCO+. This scenario would also explain why the same feature does

not appear in N2H+, which originates deeper in the disk, hidden from surface irregularities.

Alternatively, the presence of an accreting protoplanet still embedded within the disk might

locally heat the gas, increasing the local CO abundance near the midplane and produce deep

HCO+; however, the (3 � 2) transition is likely optically thick and does not directly trace

the dense gas where planets are expected to form. The feature may also be temporal in

nature, where the same stellar X-ray flares that are known to occur with some frequency

may also be related to energetic expulsions from the central star, i.e., coronal mass ejections,

that may impinge upon and ionize disk gas directly. All of these scenarios are worth further

explanation are beyond the scope of this Chapter, but hint at interesting chemical structure

in the TW Hya disk that should be followed up with high resolution observations.
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7.8 Conclusions

We have constrained the ionization environment of the TW Hya disk using molecular

ion observations and a calibrated physical model of the TW Hya dust and gas circumstellar

disk, on which we vary the incident ionizing flux of X-rays and CRs. We find that the

ionization rate due to CRs is quite low (⇣H2 . 10�19 s�1), and that the X-ray flares seem to

have a lasting chemical e↵ect on the disk. We note that the limit for the CR rate is more

than two orders of magnitude less than that derived for the dense interstellar medium. We

emphasize that the particular mechanism via which CR exclusion happens does not matter,

but that the chemistry indicates that the CR flux is significantly lower than the canonical

values throughout the full radial extent of the disk. The main results of this Chapter are

summarized as follows:

1. The total outer disk ionization rate in the disk midplane is below ⇣H2 . 10�19 s�1.

This values formally puts limits on the combined CR, SLR and X-ray ionization rate

throughout the disk midplane. X-rays at the ⇣XR ⇠ 10�19 s�1 level likely dominate the

inner disk midplane and perhaps the outer disk at 2.3 ⇥ 10�20 s�1. Due to the likely

dominant contribution from scattered stellar X-rays at the midplane, it will be di�cult

to measure the CR and SLR ionization rate in the TW Hya disk directly. This limit

implies that the CR ionization rate in the outer disk is at least two orders of magnitude

below that of the ISM.

2. The HCO+ traces a slightly flared state of TW Hya (HR: �0.4) rather than the quies-

cent X-ray spectrum (HR:�0.8). Additional detailed modeling of the thermal structure

with resolved CO observations will help improve the fit to the optically thick HCO+

lines, including the (1� 0) rotational transitions.

3. We make the first observational prediction of the dead-zone size, and based on the

magnetic Reynolds’ number, the expected dead-zone coincides with a region of known

large grain concentration in the disk out to 60 AU. A dead-zone of this size is consistent
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with the long lifetime of the gas disk in this system.

4. The HCO+ (3� 2) emission reveals slight asymmetry, which alone contributes ⇠ 20%

of the overall flux. Resolved observations, where available, are thus extremely helpful

when trying to understand the bulk disk properties.

In closing, we note that this study provides the strongest constraints to date on the

sources of ionization in protoplanetary disks (at least for those constraints derived from

imaging observations of ionized molecular species). A wide variety of ionization sources are

thought to contribute, including stellar X-rays, SLRs, CRs, and ionizing radiation from the

background star-forming environment. This work shows observationally that CRs can indeed

be excluded from disks, as proposed previously on theoretical grounds (see, e.g., Padovani

et al., 2013; Fatuzzo and Adams , 2014), and provides an estimate for the extent of the dead

zone (compare Gammie (1996) with Igea and Glassgold (1999)). Given the availability of

new instruments and facilities, this study marks only the beginning of an important research

program that will provide future observational constraints on disk physics.
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Figure 7.7 Ionization model goodness-of-fit for the lines indicated in the key (top-left). The
size of the wedge indicates how closely the model matches the data, where the largest wedge
matches within 1� (i.e., the best), the second and third smaller wedges indicate the model
matches the data within 2� and 3� of the observations, respectively. No wedge implies the
model and data do not match within 3�. The wedges that are boxed in black in the key
indicate lines that are fit by their emission profile rather than their integrated line flux.
Columns are X-ray ionization increasing from left to right (see Fig. 7.4), while rows are CR
ionization decreasing from the top down (see Table 7.2). The two numbers under each pie
chart measure the goodness of fit to HCO+ and N2H+ line fluxes, respectively. We box in
orange the best fit models, where the darkest orange corresponds to the best-fit model.
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Figure 7.8 Integrated line intensity profile of HCO+ (3 � 2) versus angular distance from
the star for the ionization models (colored lines) and the observed profile (solid black line).
We have divided the models into low, modulated CR ionization rate models (top) and high,
interstellar CR ionization rate models (bottom). The line style indicates the X-ray spectral
hardness ratio (Fig. 7.4) where the two softer X-ray spectra are shown on the left panels:
dotted (�0.8) and dashed (�0.4); and the two harder X-ray spectra are shown on the right:
solid (0.0) and dot-dashed (0.3). The inner vertical region hatched in gray in the HCO+

profiles designates the part of the disk that is contaminated by the asymmetric feature
(shown as the solid gray profile), which is excluded from the fitting.
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Figure 7.9 Integrated line intensity profile of N2H+ (4� 3) versus angular distance from the
star for the ionization models (colored lines) and the observed profile (solid black line). The
panels are divided up as in Figure 7.8. The low CR models (top) are generally a better fit
to the observed N2H+ (4 � 3) profile in tandem with a slightly harder X-ray profile, where
the dashed line (top left panel, �0.4) or the solid line (top right panel, 0.0) provide a good
fit.
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Figure 7.10 Estimates of the dead-zone size as determined from the chemical calculations
(the electron abundances at 1 Myr; see Section 7.5.2). The MRI-dead region is determined
from the Reynolds number (Re < 3000, dark purple) and from the ambipolar di↵usion
parameter (Am < 0.1, orange) following Perez-Becker and Chiang (2011a) and Chapter 4
of this thesis. The ambipolar di↵usion criteria formally depends upon the strength of the
magnetic field, which is unconstrained here, and so we emphasize that the Reynolds number
(purple) provides the minimum predicted dead-zone size in this formalism. For the best fit
models, the dead-zone extends to R = 50 AU and R = 65 AU for the SSX and TTM models
(black-boxed panels).
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CHAPTER VIII

The ancient heritage of water ice in the solar system

8.1 Preface

The following work appears in Science, Volume 345, Issue 6204, pp. 1590-1593 (2014).

The work is co-authored by Edwin A. Bergin,1 Conel M. O’D. Alexander,2 Fujun Du,3 Dawn

Graninger,4 Karin I. Öberg,5 and Tim Harries.6 The paper is copyright 2015, the AAAS,

reproduced here under the non-exclusive right of republication for the use of this thesis

granted to the author of the paper.

8.2 Abstract

Identifying the source of Earth’s water is central to understanding the origins of life-

fostering environments and to assessing the prevalence of such environments in space. Water

throughout the solar system exhibits deuterium-to-hydrogen enrichments, a fossil relic of low-

temperature, ion-derived chemistry within either (i) the parent molecular cloud or (ii) the

solar nebula protoplanetary disk. Utilizing a comprehensive treatment of disk ionization, we

1Department of Astronomy, University of Michigan, 1085 S. University Ave., Ann Arbor, MI 48109
2DTM, Carnegie Institution of Washington, Washington, DC 20015
3Department of Astronomy, University of Michigan, 1085 S. University Ave., Ann Arbor, MI 48109
4Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138
5Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138
6Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter, EX4 4QL, UK
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find that ion-driven deuterium pathways are ine�cient, curtailing the disk’s deuterated water

formation and its viability as the sole source for the solar system’s water. This finding implies

that if the solar system’s formation was typical, abundant interstellar ices are available to

all nascent planetary systems.

8.3 Introduction

Water is ubiquitous across the solar system, in cometary ices, terrestrial oceans, the

icy moons of the giant planets, and in the shadowed basins of Mercury (Encrenaz , 2008;

Lawrence et al., 2013). Water has left its mark in hydrated minerals in meteorites, in lunar

basalts (Barnes et al., 2014) and in martian melt-inclusions (Usui et al., 2012). The presence

of liquid water facilitated the emergence of life on Earth, and thus understanding the origin(s)

of water throughout the solar system is a key goal of astrobiology. Comets and asteroids

(traced by meteorites) remain the most primitive objects, providing a natural “time capsule”

of the conditions present during the epoch of planet formation. Their compositions reflect

those of the gas, dust, and – most importantly – ices encircling the Sun at its birth, i.e., the

solar nebula protoplanetary disk. There remains an open question, however, as to when and

where these ices formed, whether they i) originated in the dense interstellar medium (ISM) in

the cold molecular cloud core prior to the Sun’s formation, or ii) are products of reprocessing

within the solar nebula (Robert et al., 2000; Ceccarelli et al., 2014; van Dishoeck et al., 2014).

Scenario i) would imply that abundant interstellar ices, including water and presolar organic

material, are incorporated into all planet-forming disks. By contrast, local formation within

the solar nebula in scenario ii) would potentially result in large water abundance variations

from stellar system to system, dependent upon the properties of the star and disk.

In this work, we aim to constrain the formation environment of the solar system’s water

using deuterium fractionation as our chemical tracer. Water is enriched in deuterium relative

to hydrogen (D/H) compared to the initial bulk solar composition across a wide range of

solar system bodies, including comets, (Bockelée-Morvan et al., 1998; Eberhardt et al., 1995),
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terrestrial and ancient Martian water (Usui et al., 2012), and hydrated minerals in meteorites

(Alexander et al., 2012). The amount of deuterium relative to hydrogen of a molecule depends

on its formation environment, and thus the D/H fraction in water, [D/H]H2O
, can be used

to di↵erentiate between the proposed source environments. Interstellar ices, as revealed by

sublimation in close proximity to forming young stars, also exhibit high degrees of deuterium-

enrichment, ⇠ 2 � 30⇥ that of terrestrial water (Dartois et al., 2003; Coutens et al., 2012;

Persson et al., 2012, 2014). It is unknown to what extent these extremely deuterated,

interstellar ices are incorporated into planetesimals or if instead the interstellar chemical

record is erased by reprocessing during the formation of the disk (Visser et al., 2009b; Yang

et al., 2013). Owing to its high binding energy to grain surfaces, theoretical models predict

that water is delivered from the dense molecular cloud to the disk primarily as ice with

some fraction sublimated at the accretion shock in the inner tens of astronomical units

(AU) (Visser et al., 2009b). If a substantial fraction of the interstellar water is thermally

reprocessed, the interstellar deuterated record could then be erased. In this instance, the disk

is left as primary source for (re-)creating the deuterium-enriched water present throughout

our solar system.

The key ingredients necessary to form water with high D/H are cold temperatures, oxy-

gen, and a molecular hydrogen (H2) ionization source. The two primary chemical path-

ways for making deuterated water are: (i) gas-phase ion-neutral reactions primarily through

H2D+, and (ii) grain-surface formation (ices) from ionization-generated hydrogen and deu-

terium atoms from H2. Both reaction pathways depend critically on the formation of H2D+.

In particular, the gas-phase channel (i) involves the reaction of H2D+ ions with atomic oxy-

gen or OH through a sequence of steps to form H2DO+, which recombines to form a water

molecule. The grain-surface channel (ii) is powered by H2D+ recombination with electrons or

grains, which liberates hydrogen and deuterium atoms that react with oxygen atoms on cold

dust grains. H2D+ becomes enriched relative to H+
3 due to the deuterated-isotopologue being

energetically favored at low temperatures. There is an energy barrier �E1 to return to H+
3 ,
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i.e., H+
3 +HD ⌦ H2D+ +H2 +�E1, where �E1 ⇠ 124 K, though the precise value depends

upon the nuclear spin of the reactants and products (see Appendix G). The relatively mod-

est value of �E1 restricts deuterium enrichments in H3
+ to the coldest gas, T . 50 K. Thus,

deuterium-enriched water formation requires the right mix of environmental conditions: cold

gas, gas-phase oxygen and ionization.

The conditions in the dense interstellar medium, i.e., the cloud core, readily satisfy these

requirements, where temperatures are typically T ⇠ 10 K and ionization is provided via

galactic cosmic rays (GCRs). In this regard, the conditions in the core and in the outermost

regions of the solar nebula are often thought of as analogous (Aikawa and Herbst , 1999a).

This is because the outskirts of protoplanetary disks typically contain the coldest (T . 30 K),

lowest density gas, and are often assumed to be fully permeated by GCRs. However, the

e�cacy of GCRs as ionizing sources in protoplanetary disks has been called into question due

to the deflection of GCRs by the stellar winds produced by young stars (Chapter 4). Even

the mild, modern-day solar wind reduces the GCR ionization rate, ⇣GCR, by a factor of ⇠ 100

below that of the unshielded ISM. Limits on protoplanetary disks’ molecular ion emission

indicate low GCR ionization rates, ⇣GCR  3 ⇥ 10�17 s�1 (Chapillon et al., 2011). In the

absence of GCRs, disk midplane ionization is instead provided by scattered X-ray photons

from the central star and the decay of short-lived radionuclides (SLRs), where the latter’s

influence decreases with time (Umebayashi et al., 2013). In addition, the core-disk analogy

breaks down with regard to gas density. At the outermost radius of the protosolar gaseous

disk, Rout ⇠ 50�80 AU (Appendix G), the typical disk density is n ⇠ 1010 cm�3. This value

is approximately five orders-of-magnitude higher than typical values within the interstellar

molecular core (Minamidani et al., 2011). The steady state ion abundance is proportional

to
p
⇣/n, where ⇣ is the ionization rate and n is the volumetric gas (hydrogen) density.

For a constant ionization rate, a density increase of 105 corresponds to �i being a factor

of ⇠ 300 below that expected in the ISM. Thus, wind or magnetically driven deflection of

ionizing GCRs, coupled with high gas densities will strongly inhibit the disk from generating
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deuterium enrichments through the standard cold chemical reactions (i) and (ii), described

above.

To test the disk hypothesis, we explore whether ionization-driven chemistry within the

disk alone is capable of producing the deuterium-enriched water that was present in the

early solar system. We have constructed a comprehensive model of disk ionization, includ-

ing detailed radiative transfer, reduced GCR ionization and SLR decay. To simulate the

“reset” scenario, i.e., all interstellar deuterium enhancement is initially lost, we start with

unenriched water with bulk solar D/H composition, [D/H]H2
= 2.0 ± 0.35 ⇥ 10�5 (Geiss

and Gloeckler , 2003), and quantify the maximum amount of deuterated water produced by

chemical processes in a static protoplanetary disk over 1 Myr of evolution. The goal is to de-

termine whether or not the conditions present in the solar nebula were capable of producing

at minimum the measured isotopically enriched water in meteorites, ocean water (VSMOW),

and comets (see Figure 8.3). We do not attempt to address the eventual fate of this water

by additional processing, i.e., by radial or vertical mixing, which tends to reduce the bulk

D/H ratio in water (Willacy and Woods , 2009; Albertsson et al., 2014).

Instead, our emphasis is on the physical mechanism necessary for D/H enrichment: ion-

ization. We illustrate the suite of ionization processes considered in the traditional picture

of disk ionization (Figure 8.3a) alongside a schematic for our new model (Figure fig:8n2b).

More specifically, we include “solar-maximum” levels of GCR wind-modulation for the inci-

dent GCR rate, a factor of ⇠ 300 below that of the ISM, Monte Carlo propagation of X-ray

photoabsorption and scattering, and ionization by SLR decay products, including losses in

the low density (⌃gas . 10 g cm�2) regions of the disk (Appendix G). The total H2 ionization

rate is shown in Figures 8.3c and 8.3d. It can be seen that while the warm surface layers

(⌃gas . 1 g cm�2) are strongly ionized by stellar X-rays, ⇣XR & 10�15 s�1, the midplane is

comparatively devoid of ionization due to the modulation of incident GCRs (Figure 8.3d).

To compute molecular abundances, we compile a simplified deuterium reaction network

designed to robustly predict the D/H in water resulting from gas-phase and grain-surface
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Figure 8.1 Atomic D/H ratios in solar system (purple) and interstellar (yellow) sources
separated into bulk H2 and water. Points indicate single measurements, bars without points
are ranges over multiple measurements, and arrows correspond to limits. D/H in the bulk
gas (i.e., solar) is indicated as a horizontal blue bar. References are provided in Appendix
G, Table G.4.

chemistry (Appendix G). We include both ion-neutral and the hot-phase neutral-neutral

water chemistry (Bergin et al., 1995), as well as self-shielding by HD and D2, in addition

to the standard chemical network (Appendix G). We include an updated treatment of the

inherently surface-dependent CO freeze-out process motivated by new laboratory data on

CO ice binding energies (Appendix G). CO freeze-out is important for the present study as

CO regulates the amount of oxygen present in gas above T > 17 K and available for new

water formation. We place the majority of volatile carbon in CO and the rest of the oxygen

not in CO in water ice (Visser et al., 2009b) (see Appendix G for additional runs). We

examine the final D/H of water ice after 1 Myr of chemical evolution, i.e., the approximate

lifetime of the gas-rich disk and, correspondingly, the duration over which the disk is able

to build up deuterated water (see Figure 8.3). The ions are most abundant in the upper,

X-ray-dominated surface layers, whose temperatures are too warm for significant deuterium

enrichment in [D/H]H+
3
. The bulk ice mass is closest to the cold midplane, where only a
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Figure 8.2 Schematic of energetic disk ionization sources (top row) and the calculated total
H2 ionization rate (bottom row). Panels are: (a) a “standard” disk ionization model driven
by X-rays and GCRs; (b) ionization conditions under the influence of a Sun-like wind at
solar maximum, now dominated by X-rays in the surface and SLRs in the midplane; (c)
calculated H2 ionization rates for the scenario depicted in Panel (a); and (d) calculated H2

ionization rates from the scenario depicted in Panel (b) and that used within the present
Chapter.

meager amount (per unit volume) of H+
3 and H2D+ remain in the gas, a consequence of low

ionization rates and high densities.

In addition to spatial abundances, we provide ratios of the vertically integrated column

densities of both ions and ices (Figure 8.3, bottom). The choice of VSMOW as a benchmark

is somewhat arbitrary considering that comets exceed [D/H] in VSMOW by factors of 1-3⇥

and meteorites have typically lower values, a factor ⇠ 2 less (Figure 8.3). The column-

derived [D/H]H+
3
approaches – but does not reach – VSMOW after 1 Myr at the outer edge

of the disk. Moreover, most of the molecules that contribute to the column density ratio of
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[D/H]H+
3
arise in an intermediate layer of cold (Tgas ⇠ 30� 40 K) gas where X-ray photons

are still present. However, it is readily apparent that this enrichment does not translate

into [D/H]H2O
. The most deuterium-enriched water, [D/H]H2O

= 3 ⇥ 10�5, is co-located

with the enriched layer of [D/H]H+
3
; however, the water is considerably less enriched than

the ions. Over the lifetime of the disk, the gas-phase and grain-surface chemical pathways

do not produce deuterated water ices in significant quantities. The low water production is

due to a combination of (i) a lack of su�cient ionization to maintain significant amounts of

H2D+ in the gas, and (ii) a lack of atomic oxygen in the gas, locked up in ices. We do find

a super-deuterated layer of water at the disk surface ([D/H]H2O
= 5 ⇥ 10�3). This layer is

a direct consequence of selective self-shielding of HD relative to H2, which leads to an over

abundance of atomic D relative to H. Selective self-shielding is also the cause of [D/H]H+
3

falling below the initial bulk gas value inside of R < 40 AU. This layer does not, however,

contribute significantly to the vertically integrated [D/H]H2O (bottom panels in Figure 8.3).

In summary, using a detailed physical ionization model, updated treatment of oxygen-

bearing (CO) ice chemistry, and a simplified deuterium chemical network, we find that

chemical processes in disks are not e�cient at producing significant levels of highly deuter-

ated water. Our model predicts that disk chemistry can only produce a volume-integrated

[D/H]H2O
. 2.1⇥ 10�5, which is only slightly enriched from the bulk solar value (2⇥ 10�5).

In terms of column density, we find that even in the most radially distant (coldest) re-

gions water only attains [D/H]H2O
. 2.5 ⇥ 10�5. This finding implies that ion-chemistry

within the disk cannot create the deuterium-enriched water present during the epoch of

planet formation. When we begin our models with interstellar [D/H]H2O
⇠ 10�3, however,

it is hard to “erase” D/H ratios with low-temperature disk chemistry alone. A number of

studies have invoked turbulent mixing of gas in the radial and/or vertical directions, which

can reduce inner-disk deuterium enrichments in water (Willacy and Woods , 2009; Furuya

et al., 2013; Albertsson et al., 2014). Moreover, a common feature of such models is that

they begin with high levels of deuterated water, as high as [D/H]H2O
⇠ 10�2. In general,
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Figure 8.3 Chemical abundances and column densities for the drivers of the deuterium
enrichment, the ions; and the corresponding products, the ices. Volume densities (cm�3)
of all labeled isotopologues for H+

3 (left) and water (right) in filled purple contours. Solid
contour lines indicate local D/H and are as labeled. The color scale applies to both the left
and right halves of the plot. Insets zoom-in on the inner disk with the same axes units.
Bottom panel plots show the vertically integrated D/H ratio of column densities versus
radius. The bulk gas (protosolar) value is labeled by the red dashed line, and the Earth’s
ocean value (VSMOW) is labeled with the black dotted line.

mixing in the vertical direction transports highly deuterium-enriched ices from the shielded

midplane into the X-ray and UV irradiated warm surface layers (Ciesla and Sandford , 2012;

Ciesla, 2014) where they can be reprocessed to lower D/H. Ices transported radially in-

ward, either entrained by gas accretion or subjected to radial migration, evaporate in the
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warm and dense inner disk and isotopically reequilibrate with H2 or ion-neutral chemistry

in hot (T > 100 K) gas. With our updated disk ionization model, we can now exclude

chemical processes within the disk as an enrichment source term and conclude that the so-

lar nebula accreted and retained some amount of pristine interstellar ices. One potential

explanation is that during the formation of the disk, there was an early high temperature

episode followed by continued infall from deuterium-enriched interstellar ices (Yang et al.,

2013). If we ignore the negligible contribution to deuterated water formation from the disk,

we can estimate the fraction of water in a particular solar system body, X, that is pre-

solar, fISM = (D/HX �D/H�) / (D/HISM �D/H�), where D/HX refers to [D/H]H2O
in X

and D/H� = 2 ⇥ 10�5. Water in the ISM ranges from a limit of [D/H]H2O
< 2 ⇥ 10�3 in

interstellar ice (Dartois et al., 2003) to [D/H]H2O
= (3 � 5) ⇥ 10�4 for low-mass protostars,

i.e., analogs to the Sun’s formation environment (Persson et al., 2014). If the former, higher

value reflects the ices accreted by the solar nebular disk, then at the very least, terrestrial

oceans and comets should contain & 7% and & 14% interstellar water, respectively. If the

low-mass protostellar values are representative, the numbers become 30�50% for terrestrial

oceans and 60 � 100% for comets. Thus a significant fraction of the solar system’s water

predates the Sun. These findings imply that some amount of interstellar ice survived the

formation of the solar system and was incorporated into planetesimal bodies. Consequently,

if the formation of the solar nebula was typical, our work implies that interstellar ices from

the parent molecular cloud core, including the most fundamental life-fostering ingredient,

water, are widely available to all young planetary systems.
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CHAPTER IX

In Conclusion

When I began graduate school in the Fall of 2009, it was an exciting and eventful time

both within the Bergin research group (the “nerd club”) and for protoplanetary disk sci-

ence at large. During this time a senior graduate student in the group, Je↵rey Fogel, was

completing a major e↵ort to develop a detailed chemical model tailored to the disk envi-

ronment (Fogel , 2011). Simultaneously, a former postdoctoral researcher, Thomas Bethell,

was working on developing an important Monte Carlo X-ray and UV radiative transfer code

to calculate the high energy radiation field propagation throughout the disk (Bethell and

Bergin, 2011a). Overlapping with these excellent researchers allowed me to learn firsthand

the inner workings of these codes from their authors, an invaluable experience during these

first few years. Their instruction has enabled me to further develop and improve the codes’

utility, for which this very thesis is a testament. In addition, I have had the pleasure of

passing along the codes and associated knowledge to fellow graduate students at University

of Michigan and other institutions, to further their use, development, and impact.

Simultaneously during this time, excitement was building across the field as the Atacama

Large Millimeter Array (ALMA) approached its inaugural early science phase, where the

first open call for proposals was made in 2011. During the years leading up to ALMA Cycle

0 (and even after the fact), research talks would routinely end with the claim “... and

all of these questions will be answered with ALMA.” With ALMA would come orders of
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magnitude increases in sensitivity, spatial resolution, and spectral resolution; it was (and is)

an exhilarating time. With every new data set, there are new questions, new things to find.

The recent image of the dust disk of HL Tau released in November 2014 was no exception,

with sharply ringed dust lanes centered on the young star (see Figure IX and the subsequent

analysis presented in The ALMA Partnership et al., 2015).

Figure 9.1 Band 6 (1.3 mm) image of HL Tau as taken with ALMA during the long base-
line commissioning campaign. One potential interpretation of the rings’ origin is sculpt-
ing/shepherding by newly formed planets.

The work presented in this thesis is a culmination of the e↵orts of many people, together

developing very powerful theoretical tools that in concert provide a nearly complete frame-

work to study the physical and chemical properties of protoplanetary disks. With these tools,

we have made realistic theoretical predictions for future ALMA observations, and we have

applied the modeling techniques to ground- and space-based data from the SMA, Herschel,

and ALMA, among others, as reported in this thesis. Below we summarize the main findings
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of this body of work (Section 9.1) and highlight future areas of study (Section 9.2).

9.1 Summary of Findings

9.1.1 Chemistry in the Presence of Planetary Sculpting

The first part of this thesis focuses on the chemical impact of local, planet-induced

structure in the disk. In particular, I have made theoretical predictions of signatures of

transition disk chemistry (Chapter 2), which are being independently confirmed with very

high resolution sub-mm observations (e.g., Brown et al., 2012; van der Marel et al., 2014).

More recently, I have completed a pilot study of the fully 3D chemical e↵ects of heating from

an embedded, luminous protoplanet within a disk gap (Chapter 3). The planet directly heats

the otherwise cold icy disk midplane, sublimating ices and creating a gas-phase signature.

The planet has the strongest e↵ect on ices with 30-40 K sublimation temperatures, especially

HCN. We found that the sublimation due to a luminous planet would be a detectable e↵ect

in less than 10 hours of ALMA time with lines of HCN and H13CN (J = 8� 7 at 690 GHz).

9.1.2 Ionization Processes in Planet-Forming Disks

The observable molecular abundances and physical properties of the disk (i.e., turbulence,

accretion, heating) sensitively depend on the environmental conditions, including density, UV

irradiation, and energetic ionization. As part of this thesis, I have focused on the role of

high energy ionizing agents (E > 13.6 eV) in regulating disk chemistry and gas ionization

fraction. The primary sources of disk ionization include X-rays, cosmic rays (CRs) and

short-lived radionuclides (SLRs). X-rays from the central star mainly ionize the surface but

can penetrate deeper regions in the disk during energetic flares. Cosmic rays are thought

to dominate the outer disk ionization budget especially at the midplane; however, they

are e�ciently stopped by stellar or disk winds along with background magnetic fields. To

estimate the cosmic ray ionization rate under the influence of winds, I developed template
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“extreme” wind-modulated CR spectra based on solar system data along with self-consistent

energy losses as CRs propagate through the molecular gas disk (Chapter 4). In the absence of

CRs, SLRs sustain low-level ionization in the midplane, initially ⇣SLR ⇠ 1�10⇥10�19 s�1 per

H2, decaying in strength with an ensemble half-life of approximately ⇠ 1.2 Myr. Moreover,

taking into account the propagation of SLR decay products (⇠Mev-energy �-rays, �±), SLR

ionization su↵ers substantial losses in the lower density outer disk where decay products

readily escape (Chapter 5).

We applied these findings to a parameter space study of disk chemistry under a wide

range of ionization scenarios as described in Chapter 6 and examined how the molecular

ion abundances change under di↵erent ionization source assumptions. We made testable

predictions for high resolution observations with ALMA to use as a blueprint for mapping

the spatial structure of ionizing agents. For example, midplane ionization due to SLRs will

fall o↵ with radial distance, owing to outer-disk losses. Conversely, midplane ionization by

CRs (if present) will have the opposite behavior, where they are unattenuated by the outer

disk but are stopped by high gas surface densities (& 100 g cm�2; Umebayashi and Nakano,

1981) in the inner disk. These are testable implications for which I was awarded ALMA Cycle

2 time as principle investigator (in-progress; 30% completion) with Swift X-ray monitoring

to study ionization at high spatial resolution (see future work below).

9.1.3 Ionization in the TW Hya Disk: Tentative First Detection an Extrasolar

Heliosphere?

Some of the theoretical predictions made in Chapter 4 are within reach of current submil-

limeter facilities. I was awarded time on the Submillimeter Array atop Mauna Kea to study

the ionization chemistry at high resolution (⇠ 0.005 in the array’s very-extended configuration)

in the molecular layer of the TW Hya disk. I complemented these observations with existing

submillimeter observations, for a total of 11 molecular line constraints. I explored a total of

20 di↵erent ionization models (4 stellar X-ray models based on observations and 5 cosmic
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ray models) and found that the low CR models systematically fit the data better than the

high, ISM-like CR rates, i.e., ⇣CR � 10�17 s�1 per H2. Specifically, ISM CR models were too

“chemically destructive” in the inner disk, and produced ion-fractions that were too high in

the outer disk to match observations.

There are two potential explanations for the low measured CR rate: (1) exclusion by

stellar or disk winds or (2) deflection by turbulent magnetic fields embedded in the disk

(Dolginov and Stepinski , 1994). While the viability of each of these mechanisms remains to

be tested, the recent discovery of highly ordered, strong mm-polarization by Stephens et al.

(2014) in HL Tau may suggest that disk magnetic fields are not entirely turbulent/random

as required for (2). If winds (1) are confirmed to be the primary driver of the CR exclusion,

this would be the first detection of an extrasolar heliosphere analogue.

9.1.4 Water in Protoplanetary Disks

One of the most interesting molecules from an astrobiological perspective is water. The

chemistry of water is intimately tied with ionization, where its formation in cold gas and

on grain surfaces both hinge on the presence of ions. I led a modeling e↵ort described in

Chapter 8 to shed light on the origins of water, specifically heavy water, in the solar system.

Solar system bodies are well-known to be characteristically enriched in HDO/H2O, and there

is a longstanding debate as to whether this feature is inherited from deuterium-enriched

interstellar gas or a product of synthesis in the disk after a “chemical reset” upon disk

formation. We took a di↵erent approach to the problem and asked the first-order question:

how much heavy water does disk chemistry alone produce, starting with no initial deuterium

enrichment? I applied the detailed disk ionization model presented in Chapter 3 and found

that disk chemistry was unable to reproduce HDO/H2O in solar system bodies. This result

implies that some degree of deuterated interstellar ices, including water, were inherited (and

preserved) from the parent molecular cloud during the solar system’s formation. These

results have interesting astrobiological consequences, namely that interstellar water ice may
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be ubiquitously available to all forming planetary systems.

9.2 Future Directions

Looking ahead, there are many avenues to build on the present work. Regarding ioniza-

tion, higher resolution studies are necessary, with more ion line observations in more disk

systems needed to understand what the typical ionization properties of a disk are. We have

an active ALMA program to map the ionization across a massive younger disk, IM Lupi,

which we have combined with a Swift space telescope program to monitor the stellar X-ray

activity. The data for this project are currently being taken and are scheduled for completion

by the end of September. In addition, I will carry out a larger survey of disk ionization to

gather better statistics on disk ionization properties at di↵erent evolutionary stages and in

di↵erent stellar environments. I also plan to push forward on time domain chemistry, where

the time-variable energetic stellar properties, especially in the X-rays, may cause a lasting

e↵ect on the chemistry as we found for TW Hya (Chapter 7).

I am currently applying a similar time-domain chemical analysis to expand upon the

models of disk chemistry under the influence of a planet (Chapter 3), now including the

e↵ects of di↵erential rotation. This work will confirm whether or not our basic assumption

of rapid chemical adjustment by freeze-out and adsorption hold with more complex models.

These models will also allow us to look at longer term chemical a↵ects where the products

created by the planet are not destroyed rapidly, potentially resulting in molecular rings or

arcs.

I will also apply our theoretical findings for the chemistry of embedded protoplanets to use

ALMA to search for planets embedded in their parent disks. Molecular line observations of

planets in disks will allow us to obtain critical information about the local physical conditions

near the planet, including temperature and velocity. Likewise, we will be able to characterize

the local chemistry of the region from which the planet is accreting, where the heating may,

for example, alter C/O ratios in the gas versus the ice, fundamentally changing important
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physical properties about the resulting planet itself (Madhusudhan, 2012).

Finally, we will expand our work on deuterium enrichment of water in disks to explore

similar consequences for the organic deuterium chemistry. While deuterium enrichment

of water is driven primarily by H2D+, the ion CH2D+ is instead responsible for setting the

organic deuterium enrichment. This distinction is important as the CH2D+/CH+
3 can become

highly enriched, even in warm gas, due to the di↵erent in zero point energies compared to

H2D+/H+
3 (Roue↵ et al., 2013). Furthermore, I am part of multiple e↵orts to directly detect

HDO in a disk for the first time using ALMA. This measurement would put important

constraints on the D/H ratio in water in the cold photodesorbed layers of the disk, and

would finally connect our knowledge of the D/H ratio in water in the interstellar medium to

that within the solar system.

Together these studies will enable us to get a better handle on important disk physical

processes and the underlying chemistry of disks, to put together a more complete picture of

the planet formation process.
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APPENDIX A

Approximation for the Interstellar Radiation Field

To determine the extent of the ionization contribution from the ISRF we take a “brute-

force” approach and coarsely sample our model on a cartesian grid. From each point in

this subsample, we integrate outward along lines of sight evenly spaced over 4⇡ steradians

assuming azimuthal disk symmetry. To sample 4⇡ steradians uniformly is not trivial, and we

adopt here the “spiral-point technique,” see Sa↵ and Kuijlaars (1997) for further details and

specifically their Equation 8. From these Na sampled rays we compute a weighted e↵ective

optical depth due to extinction by dust,

⌧e↵ = � ln

"
NaX

a

1

Na

exp (�⌧a)

#
, (A.1)

in all directions. The resulting flux is then simply FISRF = 1.6⇥ 10�3 G0 exp (�⌧e↵) erg s�1

cm�2. The expression above yields a scalar measure of the interstellar UV absorption by

dust from all directions to a given point in the disk. Note that this method includes only

1D absorption in a given direction and neglects dust scattering.
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APPENDIX B

Sulfur Chemistry

Even though sulfur is less abundant than carbon, it less e↵ectively self-shields and there-

fore sees the interstellar FUV field deeper in the disk than carbon. At the temperatures

present in the outer disk, Tg . 20 K, most of the S will be locked up in SO and CS on

grains and carbon in CO ice. Visualizing the outer disk as an irradiated slab, there are two

dominant ionization fronts: the CO(gr) ! CO ! C ! C+ and CS/SO(gr) ! CS/SO !

S ! S+. The location of the ion–neutral transition depends on the intensity of the pho-

todesorbing and photodissociating FUV flux and the recombination rates. For continuum

photo-processes, the determining factor is dust attenuation in the outer disk if small grains

are present. Because CO is very e�cient at self shielding, the carbon ionization front traces

a thin “onion-layer” of C+ near the disk surface. While sulfur is less abundant than carbon,

it does not self-shield as e�ciently (in fact, small grains are more e�cient, see Perez-Becker

and Chiang , 2011b), and as a result, sulfur can be ionized at higher column densities than

carbon, setting the deep ionization-front at the UV dust-attenuation limit. Thus, while stel-

lar FUV photoionization of carbon dominates the surface layers and the inner disk, sulfur

supplies the FUV-derived ions in the outer disk.

Carbon is ionized by FUV photons with 912–1109 Å, while sulfur is ionized for photons

of � 912–1198 Å, which is equivalent to 7% and 10% of the interstellar FUV flux between
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Table B.1. Reduced sulfur network adapted from the OSU gas-phase chemical network
(March 2008; Smith et al., 2004).

Reactants Products Rate  (cm3 s�1 unless noted)

H+
3 +CO �! HCO+ +H2 1 = 1.61⇥ 10�9

H+
3 +O �! H3O

+ 2 = 8.00⇥ 10�10

S + OH �! SO + H 3 = 6.60⇥ 10�11

H+
3 + e� �! H2 +H or 3H ↵1 = 6.70⇥ 10�8

h
Tg

300 K

i�0.52

H3O
+ + e� �! OH+H2 ↵2 = 2

3 ⇥ 2.60⇥ 10�7
h

Tg

300 K

i�0.5

SII + e� �! S ↵3 = 3.90⇥ 10�12
h

Tg

300 K

i�0.63

SO + gr �! SO(gr) + gr f1 = 3.14⇥ 10�10
h

8kTg

⇡mSO

i0.5

S + gr �! S(gr) + gr f2 = 3.14⇥ 10�10
h
8kTg

⇡mS

i0.5

SO(gr) + T �! SO R1 = 1.32⇥ 1012⇥

exp
h
�3.34⇥103 K

Td

i
s�1

S(gr) + T �! S R2 = 9.29⇥ 1011⇥

exp
h
�1.10⇥103 K

Td

i
s�1

SO(gr) + �UV �! SO �D1 = 10�3�g/Nsites s�1

S(gr) + �UV �! S �D2 = 10�3�g/Nsites s�1

SO + �UV �! S + O �SO = 3.30⇥ 10�10G0 s�1

OH+ �UV �! O+H �OH = 1.68⇥ 10�10G0 s�1

S + �UV �! SII + e� �PI = 7.20⇥ 10�10G0 s�1

257



912 – 2000 Å, respectively. Combining the stellar and interstellar UV fields, we then solve

for the steady-state S+ abundance taking into account the pathways and rates listed in

Table B.1 (from the OSU gas-grain network; Smith et al., 2004), as well as the total sulfur

abundance: Stot = S + SII + SO + SO(gr) + S(gr). To simplify the problem the electron

abundance is computed from Eq. (4.10), which intrinsically assumes most electrons come

from ionization of H2, and we furthermore set the oxygen abundance to be �O = 10�10,

consistent with the outer disk where most oxygen is in molecular gas or ice (Fogel et al.,

2011). We tested values ranging between �O = 10�9
�10�12 and find that the result does not

depend strongly on the assumed oxygen abundance. Additionally, we set the CO abundance

to be �CO = �C ⌘ 1.4 ⇥ 10�4. In the following equations, number density (cm�3) of a

particular species is denoted by brackets around the species name, e.g., [CO]. First, we

compute directly the steady state abundances of H+
3 and H3O+:

⇥
H+

3

⇤
=

⇣H2 [H2]

1[CO] + ↵1[e�] + 2[O]
,

⇥
H3O

+
⇤
=
2[H

+
3 ][O]

↵2[e�]
.

In steady state, the S+ number density can be rearranged into a quadratic form, A [S+]2 +

B [S+] + C = 0, where the coe�cients are defined as follows:

A = �

3↵3[e�]

�PI

✓
1 + E

↵3[e�]

�PI

◆
,

B =


3↵3[e�][Stot]

�PI
�

✓
1 + E

↵3[e�]

�PI

◆
�OH �D

↵2↵33 [H3O+] [e�]2

�PI�SO

�
, and

C = �OH[Stot];
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with D and E defined as:

D =


1 +

f1[gr]

�D1 +R1

�
and

E =


1 +

f2[gr]

�D2 +R2

�
.

Upon solving the quadratic equation for [S+], the corresponding abundances of the other

species can be computed straightforwardly:

[S] =
↵3[S+][e�]

�PI
,

[OH] =
↵2[H3O+][e�]

3[S] + �OH
,

[SO] =
3[OH][S]

�SO
,

[SO(gr)] =
f1[SO][gr]

�D1 +R1
, and

[S(gr)] =
f2[S][gr]

�D2 +R2
.

In this treatment, we have significantly simplified the sulfur chemistry by excluding the

formation of other S-bearing species such as CS. In general, by allowing sulfur to take other

pathways to form species such as CS, more sulfur will be tied up in gas or ice phase molecules

and will be less available for photoionization, pushing the ion-front closer to the disk sur-

face. For a detailed treatment of this problem, both the chemistry and multidirectional

self-shielding of molecules such as CO and sulfur need to be considered in detail. This ap-

proximation, however, gives a simple expression for the ionization contribution from S+ in

the outer irradiated region in the disk.
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APPENDIX C

Updated Short-Lived Radionuclide Rates

We provide fits to the midplane ionization rate in Chapter 5 as a function of vertical

surface density and time. We note, however, that the previous work assumed a somewhat

short half-life for 60Fe, thalf = 1.49± 0.27 Myr from Kutschera et al. (1984). This value was

revised in Rugel et al. (2009) to be thalf = 2.62±0.04 for a larger 60Fe sample. In the present

work we recalculate the SLR ionization rate in the same method as described in Chapter 5

adopting the revised 60Fe half-life. The e↵ect only becomes important after a disk life-time

of 5 Myr. At this evolutionary time, the scattered stellar X-rays begin to dominate over the

SLR contribution. Consequently, the net disk ionization properties should not be strongly

sensitive to the specific 60Fe half-life used.

Nevertheless, in the interest of completeness, we provide updated SLR ionization rate

calculations versus disk surface density in Figure C.1. Colors indicate the time from “disk

formation,” i.e., the epoch when the initial measured SLR abundances were set. We re-fit

the ionization rate curves using a power law (grey lines), which are described by

⇣H2(r) =
�
2.1⇥ 10�19 s�1

�✓1

2

◆t/1.2✓ ⌃(r)

g cm�2

◆0.26

, (C.1)

where time, t, is given in Myr. This equation is an updated version of Equation (30) in

Chapter 5. The change in the half-life of the SLR ensemble increases from ⇠ 1 Myr to
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Figure C.1 Same as Fig. 4 of Chapter 5. Short-lived radionuclide H2 ionization rate in the
disk midplane as a function of vertical gas surface density and time (from the initial event
suppling the SLR abundances, approximately the formation time of the disk). Grey lines
indicate the new fits to the values provided by Eq. (C.1).

1.2 Myr, meaning that SLRs can play an important role in the absence of CRs for a slightly

longer span of the disk’s lifetime. We emphasize that the abundances of SLRs will vary from

source to source. This variation will change the leading coe�cient of Eq. (C.1 by at least of

factor of two in both directions.
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APPENDIX D

Physical Structure

D.1 Dust Model

We calibrate the disk physical density and temperature structure by fitting TW Hya’s

spectral energy distribution (SED). References for the SED photometry are provided in

the Figure D.2 caption, originally compiled by Andrews et al. (2012). We adopt the same

parametric density profile presented in Chapter 4 Eqs. (1-4), adapted from Andrews et al.

(2011). In essence, the gas and dust surface densities, ⌃g,d, are described by radial power-

laws with an exponential taper, while the density, ⇢g,d, is taken to be vertically Gaussian.

Moreover, we break the dust into two populations, one of small “atmosphere” grains with

radii rg = 0.005� 1µm distributed over the full (gas) scale height of the disk, and a second

of larger midplane grains, rg = 0.005 � 1mm, concentrated near the midplane. The former

contains 10% of the total dust mass, while the latter contains the remaining 90%. This

larger population is designed to simulate the e↵ects of settling due to grain-growth, a feature

common of observed protoplanetary disks (Furlan et al., 2006). Both large and small dust

populations have an MRN size distribution (Mathis et al., 1977), where the number of grains

scales with the size of grain as ng / r�3.5
g . We assume a mixed dust composition with
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Figure D.1 Dust opacities for the two dust populations used in our SED model. Small grains
(atmosphere) have a maximum grain size of 1 µm, while the large grain population has a
maximum wavelength of 1 mm. Opacities are plotted as a cross section per unit dust mass
in grams.

80% astronomical silicates and 20% graphite by mass. The model opacities are shown in

Figure D.1. Similar to Eqs. (1-4) of Chapter 4, our best fit model has a total dust surface

density of

⌃d(R) = 0.04 g cm�2

✓
R

Rc

◆�1

exp


�

R

Rc

�
, (D.1)

and a scale height for small grains (and gas) following

h(R) = 15 AU

 
R

Rc

!0.3

, (D.2)

where the critical radius is Rc = 150 AU. The density of the small and large grain populations

are described by

⇢s(R,Z) =
(1� f)⌃d
p

2⇡Rh
exp

"
�

1

2

✓
Z

h

◆2
#
, (D.3)

and

⇢l(R,Z) =
f⌃d

p

2⇡R�h
exp

"
�

1

2

✓
Z

�h

◆2
#
, (D.4)

respectively, where the fraction of mass in large grains is f = 0.9 and the large grains

concentrated over � = 0.2 the scale height of the small grains, h. Z corresponds to the

vertical distance from the midplane where R and Z are in cylindrical coordinates.
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Figure D.2 Our best fit spectral energy distribution (blue line) from the combined star and
disk of TW Hya. Black points (with error bars) are individual photometric measurements
taken from the literature (Weintraub et al., 2000; Mekkaden, 1998; Cutri et al., 2003; Hart-
mann et al., 2005; Low et al., 2005; Thi et al., 2010b; Andrews et al., 2012; Weintraub
et al., 1989a; Qi et al., 2004; Wilner et al., 2003, 2000). TW Hya’s Spitzer IRS spectrum is
over-plotted in orange (Uchida et al., 2004).

We use the radiative transfer code TORUS (Harries , 2000; Harries et al., 2004; Kurosawa

et al., 2004; Pinte et al., 2009) to calculate the dust temperatures and emergent SED as-

suming dust radiative equilibrium where heating is dominated by the central star. We adopt

the following stellar parameters for TW Hya: Te↵ = 4110 K, M⇤ = 0.8 M�, R⇤ = 1.04 R�

(Andrews et al., 2012). The total mass of dust with grain sizes up to 1 mm in our best fit

model is Md = 4 ⇥ 10�4 M�. There may certainly be larger “pebbles,” boulders, or even

planetesimals; however, the SED modeling is not sensitive to these. We present the best

fit SED model in Figure D.2. The corresponding dust density and temperature models are

shown as solid contour lines in Figures 7.3a and 7.3b.

D.2 Gas Model

The SED fitting formally constrains the distribution of dust grains. To constrain the total

gas mass in the TW Hya protoplanetary disk, we use the Herschel detection of hydrogen

deuteride, HD, to directly probe the gas reservoir (Bergin et al., 2013). This is especially

crucial for TW Hya’s disk, as the more widely used molecular gas probe, CO, is measured

to be depleted in warm gas, i.e., in addition to CO freeze-out (Favre et al., 2013, see also

264



Sec. E.1). Because HD does not freeze-out and the HD to H2 ratio is approximately constant

and well constrained within the local bubble (HD/H2 = 3 ± 0.2 ⇥ 10�5; Linsky , 1998), HD

is a chemically “simple” species, di↵ering mainly from H2 with regards to UV self-shielding.

To calibrate our model’s gas mass using HD, we start from the dust-derived physical

structure and assume the gas density and small grains are distributed over the same scale

height and are vertically Gaussian (filled contours in Fig. 7.3a). Furthermore, we must

assume a gas-to-dust mass conversion factor where, because gas and dust are not uniformly

vertically distributed due to settling, we compare the vertically integrated quantities, fg =

⌃g/⌃d, with fg = 100 for dense interstellar gas.

To calculate the HD emission, we must also estimate the gas temperature and dust opacity

at 112 µ. HD is particularly sensitive to the gas temperature due to the high upper state

energy of the J = 1 rotational level. In the upper layers of the disk, the gas temperature

can exceed the dust temperature, i.e., become “decoupled” due to less e�cient gas cooling.

We estimate the gas temperature by using a fitting function calibrated to thermochemical

models of FUV heating from the central star (S. Bruderer, in private communication 2013).

Based on a grid of physical structures and FUV field strengths, the detailed heating and

cooling balance was solved (e.g., Bruderer , 2013) to determine the gas thermal decoupling

from the dust in the disk atmosphere where AV = 1�3. Based on these models, S. Bruderer

estimates a parameterized fit to the gas temperature based on the local FUV strength and

gas density. We emphasize that the main results of this Chapter, the ions, are not sensitive

to the gas temperatures as most of the molecular ion emission comes from deeper layers

and, correspondingly, higher AV . To determine the FUV radiation field throughout the disk,

we use a Monte Carlo technique to calculate the wavelength-dependent UV field including

both absorption and scattering on dust, in addition to the transfer of Lyman-↵ photons

(Bethell and Bergin, 2011a). Special treatment of Lyman-↵ radiative transfer is important

as these photons will resonantly scatter on atomic hydrogen atoms, greatly enhancing the

scattered radiation field deep in the disk compared to the primarily forward-scattering dust.
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Furthermore, Lyman-↵ carries ⇠ 85% of the FUV flux below 2000 Å (Herczeg et al., 2004).

The UV optical properties are taken from the dust model described in §7.7.2, and we use

the measured TW Hya FUV fluxes from Herczeg et al. (2002, 2004) assuming a distance

of d = 55 pc. The calculated FUV radiation field integrated over wavelength is shown in

Figure 7.3d, and the resulting gas temperature structure is shown in Figure 7.3b as filled

color contours. For the most part Tg = Td (see contour lines), however the gas temperature

becomes decoupled from the dust by more than �T > 10 K in the layer where z/r & 0.4.

In addition to the gas temperature, the HD emission is sensitive to the vertical structure

of the dust as the dust disk becomes optically thick at 112 µm. Consequently, the HD

emission is sensitive to the specific dust opacity for which we must assume a single value.

The weighted average of the two large and small populations corresponds to an opacity per

gram of dust of mix(112 µm) = 30 cm2 g�1.

From the gas and dust density and temperature model, we compute the baseline chemistry

for HD (see details of the chemical code in §7.5.2) to primarily determine how much HD

is dissociated in the upper layers before self-shielding takes hold. Because HD does not

freeze-out, the HD abundance is e↵ectively constant throughout the disk below the UV

self shielding layer (z/r ⇠ 0.4). From the calculated HD abundances, we then compute

the emergent HD (1 � 0) line intensity assuming the emission is in LTE (see §7.5.4 for

details on the radiative transfer). We then adjust the gas-to-dust ratio, fg, until we find

agreement with the observed HD flux,
R
FHDdv = 70.6 ± 7.8 Jy km s�1 (Bergin et al.,

2013). With a vertically integrated gas-to-dust mass ratio of fg = ⌃g/⌃d = 75 � 100

(Mg = 0.03�0.04 M�), we find good agreement with the observed value, where our 0.04 M�

model predicts
R
FHDdv = 76.6 Jy km s�1. We note, however, that slightly less massive

(Mg = 0.02 M�) but warmer disk or perhaps a more massive (Mg = 0.05 M�) but cooler

disk can also reproduce the observations, so in the present framework, we find that TW Hya’s

gas mass is Mg = 0.04±0.02 M�. This value can be further refined with better observational

constraints on the overall vertical density and thermal structure. The gas mass derived here

266



is slightly less than the mass provided by Bergin et al. (2013), Mg > 0.05 M�, and is chiefly

due to di↵erences in the gas temperature calculation and underlying disk model assumed.
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APPENDIX E

Neutral Gas Constraints

E.1 Neutral Gas Constraints: CO

In the ISM, CO is the second-most abundant gas phase molecule after H2. In the ISM, CO

has an abundance of �(CO) = 10�4 and participates in a wide range of chemical reactions.

However, recent observations indicate that CO is substantially reduced in warm (T & 20 K)

gas where the CO abundance relative to H2 was found to be �(CO) = (1 � 10) ⇥ 10�6

(Andrews et al., 2012; Favre et al., 2013). Williams and Best (2014) indirectly confirm this

finding by deriving a gas mass from CO isotopologue observations of Mg = 5⇥10�4, a factor

of ⇠ 100 less than the HD derived gas mass. One potential explanation for this large CO

deficit is through CO dissociation by He+, where some fraction of the carbon from CO to

be put into other neutral species with higher grain-surface binding energies than that of

CO. This process can happen at early stages prior to the formation of the disk, activated

by CR ionization, or at later stages in the disk’s warm molecular layer initiated by stellar

X-ray ionization (Semenov et al., 2004; Bergin et al., 2013). To robustly make predictions

for HCO+ abundances, which forms from CO via

H+
3 + CO ! HCO+ +H2, (E.1)
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we must include the CO deficit in our model. We initially ran models where the initial

(input) CO abundance is set at �(CO) = 1 ⇥ 10�6, and the rest of the carbon is put into

strongly bound, carbon-bearing ices, e.g., methanol. However, even in this instance the

carbon in methanol ice was recycled back into gas phase CO in less than 1 Myr in the layers

where UV photons are present. Even when we artificially increased the binding energy of

methanol, the carbon nevertheless made its way back into gas phase CO, and over-produced

the observed CO emission (i.e., the CO abundance after 1 Myr was far too high to explain

the observations).

In the end, we found that the only way to reproduce the low CO abundance was to

reduce the CO abundance and explicitly not put it into one of the existing network species,

thereby net reducing the amount of reactive carbon. The physical interpretation behind this

finding is that the carbon no longer in gaseous CO has gone on to form something similar to

macromolecular organic ices. In the presence of UV irradiation, such material is less likely to

non-thermally desorb, and are more likely to break up into radical ices, where the products

remain on the grains (and are not returned to the gas) and are thought to be key to forming

important biogenic organic material.

Taking two models with di↵erent CR ionization rates (SSX and W98, §7.5.3.1), we i) vary

the initial CO abundance, ii) calculate the final CO abundance after 1 Myr, and iii) compute

the 13CO and C18O emergent line emission (see §7.5.4). We compare these values to the

observations (Favre et al., 2013, see also Table 7.1). Figure E.1 shows the ratio of the observed

flux to the model flux for di↵erent CO initial conditions. The model which simultaneously

best fits 13CO and C18O is one where �(CO) = 1 ⇥ 10�6, though CO abundances between

�(CO) = (5 � 20) ⇥ 10�7 can fit either 13CO or C18O. The main di↵erences between the

present work and Favre et al. (2013) is that we are using a new model and a di↵erent

method to calculate gas temperature. We confirm the Favre et al. (2013) result that the

CO abundance is substantially lower than the canonical �(CO) = 10�4 in the warm gas by

approximately a factor of ⇠ 100.
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Figure E.1 Comparison between the simulated C18O (2-1) and 13CO (2-1) line intensities and
the observed values (see Table 7.1) for di↵erent gas-phase CO abundances. The canonical
CO abundance, �(CO) = 10�4 over predicts the observed fluxes by approximately an order
of magnitude and is also optically thick – inconsistent with the observations. A gas-phase
CO abundance of �(CO) = 10�6 or perhaps lower is a better match to the data, in agreement
with the findings of Andrews et al. (2012) and Favre et al. (2013).

E.2 Neutral Gas Constraints: HCN

Motivated by the work of Schwarz and Bergin (2014, submitted), the initial abundances

of nitrogen also play an important role in the chemical outcome of nitrogen bearing species,

including HCN, NH3 and N2H+. Because N2H+ is simultaneously a↵ected by ionization and

CO abundance, the neutral species provide a cleaner test of the initial nitrogen abundances

in this model. Described in more detail in Schwarz and Bergin (2014, submitted), the final

nitrogen molecular abundances are most sensitive to the following broad groupings of initial

nitrogen reservoirs, namely the amount of NH3 ice, N2, and N and/or single-N containing

molecules. The species HCN has been previously detected in the TW Hya disk, and thus we

use this molecule as a probe of the initial nitrogen portioning in the disk; however, we note

that this is only one line and that future more detailed modeling and additional observations

will greatly help but additional constraints on the nitrogen assay in disks.

In the midplane, since we use a static disk model, the chemistry is such that the abun-

dance of NH3 ice in the midplane is often very similar to that which was assumed initially,
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Figure E.2 The dependence on di↵erent initial nitrogen conditions of the HCN abundance
after 1 Myr of chemical evolution. The initial abundances relative to total H of major
nitrogen-bearing species (with abundance � � 10�7) are as follows. Model A: �(NH3

ice) = 9.16 ⇥ 10�6, �(N2) = 2.5 ⇥ 10�6, and �(N) = 5.1 ⇥ 10�6. Model B: �(NH3

ice) = 7.91 ⇥ 10�6, �(N2) = 5.7 ⇥ 10�6, and �(N) = 1 ⇥ 10�7. Variations between ini-
tial nitrogen abundances exceed variations due to di↵erent assumed ionization rates (dotted
lines, Model A). See Section E.2 for details.

i.e., the ices are not rapidly reprocessed. In this light, we can look to cometary NH3/H2O

ratios to put an upper limit on the NH3 ice abundance. Typical ammonia abundances for

comets have percentages of 0.1�1.5% relative to water (Bockelée-Morvan et al., 2004; Biver

et al., 2012). Evidence from protostellar NH3 ice abundances, typically ⇠ 3% (Öberg et al.,

2011a) and comets gives an approximate range for the amount of nitrogen locked up in ices

and thus provides a crude handle on the nitrogen partitioning in the disk. In Figure E.2 we

show two models considered where Model A has more ammonia ice (less reactive nitrogen)

The initial N2 abundance directly a↵ects N2H+; however, its e↵ect is predictable. The

overall column density profile may shift up or down, but the shape of the N2H+ column

density versus radius stays the same. The N2 and NH3 binding energies assumed in the

model are 1220 K and 3080 K, respectively. The final nitrogen abundances determined from

the HCN emission are listed in Table E.1.
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Table E.1. Chemical model initial abundances relative to total number of H-atoms.

Species � Species �

H2 5.00⇥ 10�1 H2O(gr) 2.50⇥ 10�4

HDO(gr) 1.00⇥ 10�8 He 1.40⇥ 10�1

CN 6.60⇥ 10�8 HCN 1.00⇥ 10�8

N 5.10⇥ 10�6 NH3(gr) 9.90⇥ 10�6

N2 1.00⇥ 10�6 H+
3 1.00⇥ 10�8

CS 4.00⇥ 10�9 SO 5.00⇥ 10�9

Si+ 1.00⇥ 10�11 S+ 1.00⇥ 10�11

Mg+ 1.00⇥ 10�11 Fe+ 1.00⇥ 10�11

C+ 1.00⇥ 10�9 CH4 1.00⇥ 10�7

Grain 6.00⇥ 10�12 CO 1.00⇥ 10�6

C 7.00⇥ 10�7 HCO+ 9.00⇥ 10�9

HD 1.50⇥ 10�5 H2D+ 1.30⇥ 10�10

HD+
2 1.00⇥ 10�10 D+

3 2.00⇥ 10�10

C2H 8.00⇥ 10�9
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APPENDIX F

Model Comparison

It is important to quantify the model dependency of the results of Chapter 7. To deter-

mine how our results depend on the disk physical structure, we repeat our experiment using

the detailed model of Andrews et al. (2012). The Andrews et al. (2012) model fits the dust

distribution in detail, and fits the CO (3 � 2) profile. Because CO (3 � 2) is thick, the gas

model primarily reflects the disk temperature profile versus radius. However, the best fit

model in that work found a significantly smaller taper radius for the gas disk, i.e., the critical

radius, where rc = 35 AU for the sA model, which could still fit the distributed CO gas out

to 200 AU. The model in the present work, for comparison, has a taper at rc = 150 AU,

dropping o↵ instead at the edge of the CO and scattered light disk.

Consequently, there is a substantial di↵erence in the mass distribution between the two

models, and the disk mass itself (which is an order of magnitude smaller for the Andrews

et al. (2012) model). The mass/density di↵erence is most pronounced at the outer disk, at

the same radii where N2H+ (4�3) is dropping o↵. By comparing the two models, we can test

whether or not the N2H+ distribution is a mass e↵ect or an ionization e↵ect. In Figure F.1,

we show the normalized N2H+ column density for the outer disk (Fig. F.1a) and the column

density of the population of N2H+ in the J = 4 upper state (which is more closely related

to the line emissivity). We have normalized the columns because we have not done any
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additional chemical calibration or mass calibration for the Andrews et al. (2011) model as

were done in the main text, and so there is an overall o↵set between the two models. From

these tests we find that the overall slope of the N2H+ column density and emissive column

density agree well with the results of the main text for the SSX (reduced CR ionization

model), and that even with the reduced outer disk mass in the Andrews et al. (2011) model,

the N2H+ emission distribution is too flat to explain the observations. This behavior is a

natural consequence of the drop in outer disk density, where the loss of mass acts to reduce

the recombination e�ciency of ions, and thus there is higher fractional abundance of ions,

including N2H+, than in our model, which has higher outer disk recombination due to the

higher outer disk mass in the present Chapter. Thus the N2H+ profile cannot be attributed

to a mass e↵ect, and that a reduced CR ionization rate does a better job of explaining the

emission distribution for both physical structures.

Figure F.1 Chemical model comparison between the disk model assumed in this work (labeled
just SSX) and the results for a di↵erent underlying disk model from Andrews et al. (2012)
(lines labeled A12). We find good agreement in the overall slope of the column densities for
the low CR ionization model and can exclude the high CR ionization model, W98, which
over predicts the outer disk by over an order of magnitude.

274



APPENDIX G

Physical Model and Supplementary Data

G.1 Physical Model

The disk physical structure adopted for the modeling presented in Chapter 8 is based upon

a previously published model of a dust-settled disk (see Chapter 4) with typical geometric and

settling structural parameters reflecting a sample of modeled dust continuum observations

(Andrews et al., 2011). The model has been truncated from its original outer radius of

R = 400 AU to have an outer radius of R = 80 AU, which reflects the maximal radius of

the protosolar disk as determined from dynamical models of the lack of planetesimals on

high inclination orbits (Kretke et al., 2012). This corresponds to a modified disk gas mass of

Mgas = 0.008 M� from its original value of Mgas = 0.039 M�, which is still above the total

mass in the Solar System’s planets (0.002 M�) but slightly less than the classical minimum

mass solar nebula (MMSN), derived from integrating an assumed gas surface density profile,

MMMSN = 0.01 M� (Weidenschilling , 1977). If the disk is more radially compact, e.g.,

R ⇠ 30�50 AU (Hersant et al., 2001; Adams , 2010; Kretke et al., 2012), the disk integrated

D/H ratio would be lower as a direct consequence of removing mass where the gas is coldest.

In this instance, disk chemical processes, as determined by our model, could provide up to

< 1% of D/H in VSMOW for an outer disk radius of R = 50 AU.
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We emphasize that we have not attempted to recreate a classical MMSN model but have

opted instead to utilize a generic model based upon observations of protoplanetary disks in

situ. Two important points regarding the model are as follows. First, the choice of a dust-

settled model, chosen based upon the observational inference of a reduction of small grains

from the upper layers of planet-forming disks (Furlan et al., 2006), results in the disk being

more permeable to X-rays, which are scattered by gas and dust, and thus the model adopted

at present is more favorable towards deuterium fractionation than a well-mixed (uniform

gas-to-dust ratio) disk model. Second, because the mass of the disk is slightly lower than the

typical MMSN, the average gas density would also be slightly lower than a MMSN model.

Thus ion-recombination is proportionally less e�cient in a lower mass model, making for a

higher steady state abundance of ions present for fractionation. Both of these e↵ects would

lead to our fiducial model predicting higher D/H ratios than expected, and therefore our

D/H results are likely to be upper limits, i.e., the total fractionation of water in the disk

may be lower, and consequently requiring more water to be interstellar in nature. To test the

latter scenario, we re-ran all of our chemical models (described in detail below) with a factor

of ten reduction in density and all other parameters held constant. There was no significant

change in the abundances relative to hydrogen calculated for the low-density model and so

the net e↵ect of the disk mass on the chemical results is small.

The dust temperatures are calculated using the radiative transfer code TORUS (Harries ,

2000; Harries et al., 2004; Kurosawa et al., 2004; Pinte et al., 2009) where we have assumed

stellar parameters typical of the Sun at 1 � 3 Myr as described in the main text. The gas

temperatures are computed using a fitting function relating the local strength of the FUV

field and disk gas density (Bruderer et al., 2012). The stellar FUV and X-ray radiative

transfer is calculated using a 2D Monte Carlo treatment (Bethell and Bergin, 2011a,b). For

the FUV radiation field we include absorption and scattering from dust in the continuum

calculation, as well as resonant scattering o↵ atomic hydrogen for Lyman-↵ propagation

(Bethell and Bergin, 2011a). The X-ray treatment includes both photo-absorption and scat-
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tering by dust grains and gas (Bethell and Bergin, 2011b), which is essential as scattered

X-ray photons provide the baseline midplane ionization in the absence of cosmic rays and

radionuclide decay. The physical model and radiation fields are shown in Figure G.1.
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Figure G.1 Disk model assumed. Panels are: a) gas density, b) dust density, c) dust tem-
perature, d) gas temperature, e) spectrally integrated X-ray flux, f) spectrally integrated
continuum far UV flux. In panels c) and d) red and white lines delineate T = 100 K and
T = 17 K respectively.

G.2 Non-Stellar Ionization Processes

In addition to X-ray photoionization, our model includes non-stellar ionization from

external galactic cosmic rays (GCR) and internal short-lived radionuclide decay. In the

Solar System, the solar wind is observed to e�ciently modulate the GCR flux within a region

known as the Heliosphere, especially at low GCR energies. The net result is over a factor

of & 10 reduction in the GCR ionization rate under present day solar minimum conditions.

T Tauri stars likewise drive stellar and disk winds, and thus it would not be unexpected

for this mechanism to operate at equal or perhaps higher e�ciency in the circumstellar

environment of a T Tauri star. The GCR ionization rate present in a disk has not yet

been directly measured, but limits on the GCR ionization rate from H2D+ non-detections
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indicate that the GCR rate is sub-interstellar (Chapillon et al., 2011). Because the ionization

rate is unknown in the young circumstellar environment, we assume an unattenuated GCR

ionization rate of ⇣GCR = 2⇥10�19 s�1, commensurate with the GCR rate under modern day

solar maximum conditions (Chapter 4). From the specific solar maximum GCR spectrum

we self-consistently vertically propagate GCR protons, including energy dependent losses

through the gas disk, thus providing a comprehensive treatment of GCR ionization under

the influence of wind modulation. We emphasize that the GCR rate may be lower if winds are

even more e�cient at excluding cosmic rays from the natal environment, and thus deuterium

fractionation powered by GCR ionization may be further hindered.

Within the disk, near the geometrical midplane, contributions from the decay of radioac-

tive particles become another important source of ionization, especially under the instance of

GCR modulation. The decay products, primarily �-rays, positrons and electrons, originate

from the decay of 26Al, 36Cl and 60Fe embedded in the refractory (dust) component. For

pebbles less than agr  1 cm in size, the decay products can escape the pre-planetesimal

prior to losing all of there energy (Umebayashi and Nakano, 2009). In the present model,

we have included grain-growth up to agr = 1 mm in the dust opacities, and thus we assume

that all decay products escape the dust particles and are available for ionization, and the

SLR abundances are taken to be the initial abundances present in the protosolar nebula

(Chapter 5). Depending on location in the disk and the type of decay product considered,

particles can be lost from the gas disk prior to losing all energy to ionization. For example,

26Al �-decay results in the emission of a positron (⌃ ⇠ 0.1 g cm�2) and energetic MeV

photons (⌃ ⇠ 12 g cm�2), which are each trapped at di↵erent disk surface densities and

thus di↵erent radial locations in the disk. Thus treatment of the losses of the radionuclide

decay products is important in a complete picture of disk ionization, especially in the outer

(R > 30 AU) disk. Furthermore, because our disk is settled, i.e., the dust and gas are no

longer uniformly distributed, we calculate the vertical and radial position-dependent decay

product losses, treating each decay product individually with regards to the relevant energy
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loss mechanism (Chapter 5). We note that if decay products are either trapped within dust

particles or if the abundance of SLRs is lower than the protosolar value, the corresponding

ionization rate due SLR decay would also be lower, further hindering D-fractionation. In

Chapter 8, Figure 8.3 we show both the standard, fully present GCR ionization structure

(left) next to our fiducial ionization model adopted in the main text (right), incorporat-

ing a mildly wind-excluded incident GCR ionization rate and detailed radionuclide transfer

through the gas and dust disk, as described above.

G.3 Chemical Reaction Network

We calculate time-dependent chemical abundances as a function of position throughout

the disk utilizing a comprehensive disk chemistry code (Fogel et al., 2011). The backbone of

the chemical network is based upon the Ohio State University’s gas-phase reaction network

(Smith et al., 2004), which has been substantially expanded to include a host of chemical pro-

cesses important in disks, including photodissociation, freeze-out, thermal and non-thermal

sublimation, CO and H2/HD/D2 self-shielding (Wolcott-Green and Haiman, 2011), stellar

and non-stellar ionization of H2 and Helium (Fogel et al., 2011). In addition to the standard

set, which encompasses 5912 reactions and 550 unique species, we have further expanded the

network for the present study to include the essential deuterium fractionation reactions sur-

rounding H2D+ chemistry, along with HDO. We have also expanded the set to include simple,

primarily hydrogenation-based grain surface chemistry (Hasegawa et al., 1992a), which forms

HDO/H2O, HDCO/H2CO, H2, HD and D2. It has been shown that deuterium enrichments

are e�cient in the gas phase (Millar et al., 1989) and in ices on dust grains (Tielens , 1983).

An additional fifty species are included in the expanded network, and the full set of reactions

totals 6268. The initial abundances in our model relative to total number of hydrogen atoms

are listed in Table G.1.

Unless otherwise specified, the majority of the deuterated isotopologue reactions mirror

those for the main isotopologues, where we have assumed the same reaction rate coe�-
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Table G.1. Log of the initial chemical abundances, �, per total number of hydrogen atoms.

Species log(�) Species log(�)

H2 -0.30 H2O ice -3.60
HDO ice -8.00 He -0.85
N -4.65 CN -7.22
H3

+ -8.00 CS -8.40
SO -8.30 Si+ -11.00
S+ -11.00 Mg+ -11.00
Fe+ -11.00 C+ -9.00
CO -4.00 N2 -6.00
C -6.15 NH3 -7.10
HCN -7.70 HCO+ -8.05
HD -4.70 H2D+ -9.89
HD2

+ -10.00 D3
+ -9.70

C2H -8.10

cients for both, and statistical branching ratios where appropriate. In addition to H2, HD

and D2 are directly ionized by X-rays, GCRs and SLRs. Specific reaction rates are taken

from the literature for the deuterated versions of the following reaction types: (i) H+
3 +H2,

H+
3 electron recombination and H+

3 +H (Roberts et al., 2004); (ii) reactions with H+ and

atomic/molecular hydrogen, reactions with deuterated HCO+, N2H+ and atomic hydrogen

(Roberts and Millar , 2000); and (iii) neutral-neutral warm deuterium reactions with barriers

(Thi et al., 2010a).

There is one important exception in reaction set (i) regarding H2D+ +H2, where we take

into account the ortho- and para- spins of both reactants (Hugo et al., 2009). The ortho- and

para- forms are not treated as distinct species but we instead assume that they are present

with a thermal abundance ratio following the methods described in Chapter 8. Including

the spin information is important, as the energy barrier depends strongly on spin, with the

reaction being barrierless if both reactants are ortho-type and �E1 = 226 K if both are

para-type, for example. Thus we calculate the local energy barrier for this reaction as a

weighted mean of the ortho/para types in our determination of the reaction rate. Finally,
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inclusion of the warm fractionation reactions in (iii) did not change our results.

To keep the network relatively chemically simple and transparent, we set out to form

only singly deuterated water, HDO. In the gas phase, deuterium enrichments are driven

by ion-neutral reactions with H2D+, where H2D+ reacts with oxygen, eventually leading to

H2DO+, which can recombine with charged grains and electrons ⇠ 25% of the time to form

water (the rest of the time it goes to OH and either H or H2). On the grain surfaces, HDO

forms by subsequent hydrogenation of oxygen ice (Tielens and Hagen, 1982; Hasegawa et al.,

1992a). Oxygen does not need to be “permanently” bound to the surface but simply needs

to stay on the surface long enough for a hydrogen to adhere to a grain, sweep out the grain

surface, and react with the heavier molecule (in this case, oxygen), which remains largely

stationary.

G.4 Binding Energies

For most species, we assume the same binding energies for deuterated and main isotopo-

logues. One exception is that we assume the surface binding energy of physisorbed deuterium

is slightly higher (21 K) than hydrogen, Eb(D) = 471 K and Eb(H) = 450 K (Caselli et al.,

2002). The distinction of physisorbed hydrogen stems from the observed fact that hydrogen

has two main types of bonds on a substrate. Physisorbed hydrogen weakly adheres to a

surface by van der Waals forces with binding energies of around Eb(H) = 450 K. The second

type is a far stronger chemical bond, called chemisorption, and has binding energies typically

of order a few eV. Formally each of these bonds corresponds to a di↵erent state of hydrogen

on the grain surface, but because we do not track individual atoms we approximate this

behavior by adopting a significantly higher chemisorption binding energy (Eb = 3000 K)

with respect to thermal and non-thermal desorption processes but adopt the physisorption

energy when calculating the rate of hydrogen grain surface reactions, which proceed through

the more mobile atoms.

Another grain-surface facet of this study is a new treatment of the CO binding energy.
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CO is the second most abundance molecular volatile after H2, and has been well studied in

its binding properties on various substrates (Öberg et al., 2005; Collings et al., 2004; Bergin

et al., 1995). The specific binding energy of CO to a substrate depends on the surface

composition, namely if it is coated in water, CO, or CO2 ices, or bare. The CO on CO

binding energy was determined to be Eb = 855 K (Öberg et al., 2005), corresponding to

a dust temperature of Td ⇠ 17 K. However, in regions of the disk close to and above this

temperature, the surface seen by freshly adsorbed CO molecules will be predominantly non-

CO by construction. Again, because we do not track individual ice mantles nor their multi-

layered structure, we approximate the binding surface based upon the local temperature. At

dust temperatures below Td < 25 K, the ice will be primarily CO-dominated, and thus we

adopt a binding energy of Eb = 855 K. Between Td = 25�50 K, approximately corresponding

to temperatures between the freeze-out temperature of CO2 down to that of CO, the ice

mantle will be primarily CO2. CO2 is a gas- and grain-surface product that readily proceeds

in our chemical models in the presence of free oxygen or hydroxyl radicals. At temperatures

exceeding the freeze-out temperature of CO2, Td > 50 K, the mantle will be primarily water

ice, and above the water ice freeze-out temperature of T ⇠ 100 K, the grains will be mostly

bare. The increased binding energy for CO on H2O has been previously recognized (Collings

et al., 2004; Bergin et al., 1995), however the consideration of CO2 on CO is a new facet in

the present study.

The relative binding energies of pure CO, CO on CO2 ice and CO on H2O ice were

explored using temperature programmed desorption experiments of pure CO ice and thin

CO layers on top of CO2 and H2O ices. Previous experiments have demonstrated that

CO-CO and CO-H2O binding energies di↵er substantially (Collings et al., 2003), but less is

known about the CO-CO2 interaction.

The experiments were carried out in a new ultrahigh vacuum (UHV) chamber (custom-

made, Pfei↵er Vacuum), evacuated by a Pfei↵er Turbo HiPace 400 pump backed by a DUO

10M rotary vane pump to a base pressure of ⇠ 10 mbar at room temperature. Ices are
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grown on a 2 mm thick IR transparent CsI substrate mounted on an optical ring sample

holder through. The sample holder is connected to the cold tip of a closed cycle He cryostat

(Model CS204B, Advanced Research Systems, Inc.) capable of cooling the CsI substrate

down to 11 K. The cryostat is mounted on the top port of the chamber via a di↵erentially

pumped UHV rotary seal (Thermionics RNN-400) that allows 360 degree rotation of the CsI

substrate inside the chamber without breaking the vacuum during the experiment. The CsI

substrate is mounted onto the nickel-plated OHFC copper sample holder using silver gaskets

for good thermal contact. A 50 ohm thermofoil heater is connected to the cryocooler tip so

that the temperature of the substrate can be varied between 12�350 K. The temperature of

the substrate is controlled and monitored by a cryogenic temperature controller (Lake Shore

Model 335) using two calibrated silicon diode sensors (accuracy of ±0.1 K), one connected

directly to the sample holder and the other near the heater element. During heating, the

temperature is increased using a linear heating ramp controlled by a positive feedback loop

set using the Lake Shore 335 temperature controller.

Ices were grown onto the sample window using vapor deposition along the surface normal

using de-ionized and freeze-thaw purified water, and high-purity CO and CO2 gas (> 99%

purity guaranteed, which was confirmed by mass spectrometric measurements). The indi-

vidual ice layer thicknesses were estimated from the deposition time and pressure and then

quantified using transmission infrared spectroscopy using a Vertex 70v spectrometer with a

liquid nitrogen cooled MCT detector and literature absorption coe�cients (Gerakines et al.,

1996). In the presented experiments the pure CO ice is 16 monolayers (ML), the layered

CO/CO2 ice is 2/51 ML and the layered CO/H2O ice is 3/46 ML. That is, in each exper-

iment the ice thickness is su�cient to ensure that the underlying substrate is not a↵ecting

the desorption energies, and the top CO layers are thin enough that interactions with the

underlying CO2 and H2O ices should dominate the desorption temperature of CO.

Following deposition, the ices were heated up using a linear 1 K/min heating ramp and

the desorption rate of CO was monitored using a Pfei↵er quadrupole mass spectrometer
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(QMG 220M1, mass range 1-100 amu) positioned 40 mm of the CsI substrate. The resulting

Temperature Programmed Desorption spectra are shown in Figure G.2. Qualitatively, the

Figure G.2 Temperature programmed desorption spectra of pure CO, CO desorbing o↵ a
CO2 ice, and CO desorbing of an amorphous H2O ice. The desorption rates have been scaled
to a unity peak desorption rate for visibility.

desorption peaks of pure CO, CO2 and H2O are clearly separated. The desorption rate of

CO peaks at 28.5 K, the CO/CO2 rate at 37 K, and the CO/H2O at 44 K. The pure CO and

CO/H2O desorption behavior is consistent with previous studies (Öberg et al., 2005; Collings

et al., 2003). The binding energy in Kelvin can be estimated from the peak position (Attard

and Barnes , 1998), by multiplying the peak desorption rate temperature by 30. This yields

binding energies of 855, 1110, and 1320 K for CO-CO, CO-CO2 and CO-H2O, respectively.

Observe that this is a rather crude estimate and should mainly be used to constrain the

relative binding energies of these three systems, while more experiments and more detailed

modeling is required to set the absolute scale.
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Table G.2. Physical parameters for the chemical model comparison points in the
midplane at the specified radii.

R nH Tg Td ⌃ (⇣H2) A⇤
V

(AU) (cm�3) (K) (K) (s�1) (mag)

1 40 3.6⇥ 1010 21.6 21.6 1.1⇥ 10�18 > 20
2 3 1.8⇥ 1013 56.7 56.7 1.5⇥ 10�18 > 20

G.5 Chemical Model Tests

In our use of simplified deuterium network, there is concern that we may miss essential

low-lying reactions that contribute over the duration of the chemical calculations or act in

combination with a handful of other slow reactions that may impact our results. To test this

hypothesis, we have extracted the physical parameters (Table G.2) at a representative point

at the outer disk midplane (R = 40 AU) and the inner disk midplane (R = 3 AU) from our

disk model and have calculated the corresponding abundances using a more advanced general

deuterium chemical network (Du, 2012, PhD). The D/H values from our calculations (A)

and the point-wise large scale network (B) are shown in Table G.3, where both models start

with the same set of initial conditions (Table G.1). For the most part the models are in good

agreement, especially regarding the low D/H predicted for water, though some di↵erences do

exist. The disparity in H2D+/H+
3 is a consequence of di↵erent assumptions for the reaction

rates, where we have included the ortho-to-para spin information in the calculation of the

rate coe�cients (Hugo et al., 2009). In the B-model, Eb = 124 K is assumed at both points.

The H2D+/H+
3 ratio in both cases is not directly imprinted into the water as a consequence

of the oxygen being trapped in water, CO, and CO2 ices and not available for new water

chemistry, and thus the conclusion of little deuteration of water holds.
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Table G.3. Independent chemical model comparison results. Table values given with
respect to D/H in H2, i.e. f [R] = R/4⇥ 10�5. A = chemical model presented in the main

text; B = complex gas-grain deuterium chemical model (Du, 2012, PhD).

1 2

Ratio A B A/B A B A/B

f [H2D+/H+
3 ] 115 230 0.5 1.5 6.7 0.2

f [HDO/H2O] 1.0 1.1 0.9 1.0 1.1 0.9

G.6 Further Considerations

In the present section we compare how our choice of model parameters impacts the pri-

mary results of Chapter 8. To compare the main results of Chapter 8 to a model with GCRs

fully present (unmodulated), we have recomputed our chemical models assuming a typical

GCR rate (model type W98; Chapter 4). The results are shown in Figure G.3 The HDO/H2O

ratio in ices is elevated from the main result. The layer of water ice where the D/H ratio is en-

riched is larger but remains centered on the warm molecular layer. The maximum vertically

integrated column of HDO/H2O in ices approaches HDO/H2O ⇠ 10�4 at the disk outer edge

(R ⇠ 80 AU), which is still below VSMOW (HDO/H2O ⇠ 3⇥ 10�4 = 2⇥ [D/H]VSMOW).

Recent models which include mixing have found that under a fully present GCR ionization

rate, the D/H in water approaches [D/H]H2O
= 2⇥10�3 after 1 Myr regardless of initial con-

ditions and thus would allow for the D/H ratio to be mixed up from the molecular hydrogen

value (Furuya et al., 2013). Because we do not include mixing we cannot compare with this

claim directly, but in the instance of a low GCR ionization rate the e�cacy of this process

will be significantly curtailed. In their models, oxygen is transported into the deuterium

rich midplane to reform water. The timescales for this process in the gas phase are too long

compared to the freeze out time for oxygen onto grain surfaces regardless of ionization rate,

so water reformation would have to be grain-surface chemistry driven. However, given the
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Figure G.3 Abundance and D-fractionation results for a standard ISM GCR rate. The H+
3

abundance is significantly elevated in the midplane compared to the fiducial model, and
thus the vertically integrated D/H in H2D+ is substantially higher owing to the cold gas
contribution to the column. The D/H in water remains low, however, due to a lack of freely
available oxygen for water reformation. Plot labels are the same as for Figure 8.3.

low abundance of hydrogen atoms to fuel hydrogenation (�[H] ⇠ 10�13 and �[D] ⇠ 10�17),

grain surface reformation of water would not be e�cient, and it is instead more favorable

for the oxygen (or OH) to react with CO ices abundantly present on the grains to form CO2

prior to getting doubly hydrogenated to make water, even though to CO reactions have a

weak barrier, Eb ⇠ 80 K (Garrod and Pauly , 2011).
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Another component of our study was that we initiated the chemistry with all oxygen as

gas-phase CO and water ice (Table G.1). One could alternatively begin with nearly all oxygen

in atomic form, i.e., fully available for chemical processing. We computed a second model

assuming the initial abundance of oxygen was �(O) = 2⇥ 10�4 and �(H2O ice) = 5⇥ 10�5

with HDO ice scaled appropriately to the protostellar molecular hydrogen D/H value. The

results are shown in Figure G.4. As can be seen, the HDO/H2O ratio is slightly higher but

Figure G.4 Test case model where we began initially with most of the oxygen (that is not
in CO) in gas-phase atomic O, rather than water ice. Water D/H in ices remains low, even
when we begin with atomic oxygen due to a lack of ionization. Thus the models are not
strongly sensitive to the initial conditions of the oxygen. Plot labels are the same as for
Figure 8.3.
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still well below VSMOW, and thus our results regarding D/H in water do not depend strongly

on where the oxygen is initially. Furthermore, the model that begins with a substantial

fraction of oxygen in atomic form rather than water only increases its water ice abundance

by 0.2% at 30 AU in the midplane after 1 Myr. The lack of ionization not only hinders the

formation of deuterated water (whose reactants are less abundant an take longer chemical

times), but also the formation of the main isotopologue, H2O, at the midplane. Based

on the knowledge that comets are comprised of a significant fraction of water by mass,

approximately ⇠ 30% (Greenberg and Li , 1999) where silicates and refractory carbonaceous

material comprise the rest, it seems unlikely that the disk formed from an initially primarily

oxygen state, otherwise comets would be CO2 “snowballs” rather than water “snowballs.”

Above the midplane, where z/r & 0.15, the disk is able to convert the oxygen to water

where there is su�cient ionization. Nonetheless, the water formed in this gas still has just

[D/H]H2O
= 5.3⇥ 10�5 after 1 Myr, more than a factor of 3 below VSMOW.

Thus we find that regardless of initial oxygen abundances, chemical model assumed, and

density structure, it is very di�cult for disk chemistry alone to produce a significant amount

of deuterated water ice (or perhaps any water ice) in the bulk gas at the outer disk, even at

the VSMOW level, and thus the deuterium in water must have an interstellar heritage that

has been since mixed down with warm deuterium-poor water to the values measured today.

Consequently, the survival of deuterium enrichments originating from interstellar ices will

depend upon processing during the initial disk formation (Visser et al., 2009b; Yang et al.,

2013) and the e�ciency of mixing in the solar nebula between the active surface and the

inert midplane, in addition to radial mixing with the warm inner (. 3 AU) disk.
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Table G.4. D/H values and references from Figure 8.3.

Label Value Type Reference

H2

Protosun (2.00± 0.35)⇥ 10�5 Value Geiss and Gloeckler (2003)
Jupiter (2.60± 0.70)⇥ 10�5 Value Maha↵y et al. (1998)
Uranus (4.40± 0.40)⇥ 10�5 Value Feuchtgruber et al. (2013)
Water
Lunar Apatite (1.12� 1.52)⇥ 10�5 Range Barnes et al. (2014)
Martian melt inc.  1.99⇥ 10�4 Upp. Lim. Usui et al. (2012)
Semarkona Phyl. (7.70± 1.00)⇥ 10�4 Value Deloule and Robert (1995)
CI (sub) (6.43� 9.77)⇥ 10�4 Range Alexander et al. (2012)
CM (sub) (8.29� 9.01)⇥ 10�4 Range Alexander et al. (2012)
Tagish Lake (sub) (5.00� 7.24)⇥ 10�4 Range Alexander et al. (2012)
Semarkona (sub) (2.80� 3.44)⇥ 10�4 Range Alexander et al. (2012)
J.F. Comet (1.61± 0.24)⇥ 10�4 Value Hartogh et al. (2011)
P/Halley (3.02± 0.07)⇥ 10�4 Value Eberhardt et al. (1995)
Hyakutake (2.90± 1.00)⇥ 10�4 Value Bockelée-Morvan et al. (1998)
Hale-Bopp (3.30± 0.80)⇥ 10�4 Value Meier et al. (1998)
Interstellar H2O (2.95� 9.50)⇥ 10�4 Range Persson et al. (2014)
IRAS 16293 9.20+2.00

�2.60 ⇥ 10�4 Value Persson et al. (2012)
IRAS 16293 Env. (6.00± 5.00)⇥ 10�3 Value Coutens et al. (2012)
Interstellar Ices  1.70⇥ 10�2 Upp. Lim. Parise et al. (2003)
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