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ABSTRACT

Methods for Reconstructing Networks with Incomplete Information

by

James Henderson

Chair: George Michailidis

Abstract

Network representations of complex systems are widespread and reconstructing

unknown networks from data has been the subject of intensive research in both sta-

tistical and scientific communities more broadly. Two primary challenges in network

reconstruction problems include having insufficient data to illuminate the full struc-

ture of the underlying network and the need to combine information from data of

different types. With these challenges in mind, this thesis contributes methodology

for network reconstruction problems in three main respects.

The first part of this thesis considers the problem of sequentially choosing inter-

ventions to discover the structure of unknown directed networks with a particular

focus on learning a partial order over the nodes. In Bayesian networks, data are

modeled as having a joint distribution in which the value of nodal variables depend

on the values of their parent nodes. Data arising from interventions such as gene

xiii



knockouts are then treated using graph mutilations and intervention calculus. How-

ever, our focus on learning partial orders leads to a new model for intervention data

under which the values of nodal variables depend on the lengths of paths separating

them from the intervention target rather than on parent sets. We take a Bayesian

approach to estimation, present priors based on partial orders, and develop a novel

Markov Chain Monte Carlo (MCMC) method for computing the posterior over the

space of directed acyclic graphs. The novelty and utility of the MCMC approach

come from designing proposals for the Metropolis algorithm that move locally among

partial orders while independently sampling graphs conditional on the partial order.

The resulting Markov Chains mix rapidly and are shown to be ergodic. Finally, an

existing information-theoretic strategy for active structure learning is adapted to the

partial-order setting and an efficient Monte Carlo procedure for estimating the result-

ing decision function is developed. The proposed methods are evaluated numerically

in simulations and using benchmark datasets for network reconstruction.

We next study penalized likelihood methods using incomplete order information.

The goal in this chapter is to make use of the sort of order information arising from

intervention data and studied in the chapter on active learning. To make the notion

of incomplete information precise we introduce and formally define incomplete partial

orders. This chapter subsumes as a special case existing work on estimating directed

acyclic graphs using penalized likelihoods when a total ordering of the nodes is known.

This special case is shown to lie along an information lattice and the reconstruction

performance of penalized likelihood methods is studied at different points along this

lattice.

In the final chapter, we present a method for ranking the potential edges in a

network using time-course data. The novelty of the method lies in the development

of a nonparametric gradient-matching estimation procedure and a related summary

statistic for measuring the strength of the relationship among the components of a

xiv



dynamic system. In simulation studies we demonstrate that given sufficient signal

moving from linear to additive approximations using our nonparametric gradient-

matching procedure leads to improved rankings of potential edges.
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CHAPTER I

Introduction

1.1 Network Models and Network Reconstruction

Network models are useful for encoding dependencies among variables in com-

plex systems because they represent these dependencies at an appropriate level of

abstraction [58]. For instance, gene regulatory networks are often used to describe

the functional relationships among a set of genes. Formally a gene regulatory net-

work can be viewed as a directed graph with nodes corresponding to genes and edges

indicating protein-mediated regulatory influences such as promotion or inhibition of

gene expression. Learning the structure of such networks from data is a challenging

problem and has been subject to intensive research [55, 15].

A number of formalisms have been proposed for learning networks from data [47,

55, 16]. Among these are: conditional independence models or Bayesian networks,

direct cause-effect methodologies, and regression-style formalisms including dynamic

systems models based on ordinary differential equations. In all cases, for biological ap-

plications nodes correspond to biochemical entities and edges to relationships among

them, but the meaning of an edge within the model depends on the mathematical

formalism employed.

As mentioned above, conditional independence models or Bayesian networks are a

popular model for directed networks [67, 41]. Such a network is formally represented
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as a directed acyclic graph (DAG) encoding conditional independence relationships

in a set of random variables represented as nodes. Edges then correspond to statis-

tical dependencies, while nodal variables not connected by an edge are conditionally

independent given their parents; i.e. expression levels for two genes are conditionally

independent given the expression levels of their direct regulators. As another exam-

ple, in a Bayesian network for a metabolic process, the concentrations of any two

metabolites might be independent given the concentrations of their direct precursors

and any enzymes facilitating the formation reaction.

There are two drawbacks to conditional independence models both stemming from

the fact that the network being estimated is represented as a DAG. First, being acyclic

DAGs cannot accommodate logically relevant cycles such as feedback loops [55]. Sec-

ond, the number of potential DAGs grows super-exponentially with the number of

nodes in the network necessitating approximate search strategies for even moderately

sized networks [80]. While the problem of cycles can be overcome with time-series

data by considering Dynamic Bayesian Networks [40, 65], this exacerbates the search

problem due to the computational complexity involved for evaluating each potential

network structure [80].

Nevertheless, conditional independence models are particularly well-suited for

learning from gene knockout experiments. Indeed, the Dialogue on Reverse Engineer-

ing and Assessment Methodologies (DREAM) competitions provide strong evidence

that knockouts are the most informative data type for reconstructing network topolo-

gies in biological applications [53]; see also discussion in [79]. However, in practice

a full suite of intervention experiments is unlikely to be available due to financial,

technical or ethical limitations. For instance, when reconstructing gene regulatory

networks, there are a number of reasons why certain knockouts may be infeasible

including lethality to the organism or the fact that, in many cases, how to do a par-

ticular knockout is unknown. In other biological applications where the nodes do not

2



represent genes, such as in metabolic pathways, there may be no logical equivalent to

a knockout experiment as one cannot, say, fix the concentration of an intermediary

metabolite to zero. Moreover, the most successful methods for knockout data in-

fer direct cause-effect relationships without necessarily making use of the conditional

independence formalism [93]. However such methods tend to have difficulty distin-

guishing direct (i→ k) and indirect regulation (i→ j → k) [69]. Consequently, these

methods perform well when the influence and adjacency matrices are similar, but

performance falls off when the adjacency matrix is much sparser than the influence

or disruption matrix; i.e. when the network contains many chains of length two or

more.

Another common set of methods take a regression-based approach to separately

estimate parents for each node in the network [64]. Methods in this vein are appeal-

ing for their conceptual simplicity, the ability to include cycles, and computational

tractability. The latter is especially important—by estimating the parent sets for

each node separately regression-style approaches decompose large and potentially in-

feasible network estimation problems into more manageable subproblems. As further

discussed in chapter IV, methods of this type are often cast in the context of dynamic

systems models. In such models the evolution of the nodal variables through time is

described by a system of equations expressing the rate of change for one variable in

terms of the values of the others.

1.2 Incomplete Information

The primary subject of this thesis is network reconstruction and each of the re-

maining chapters addresses a different topic within this general area. However, there

is also a common theme of incomplete information running throughout, further tying

the chapters together. This theme is most prominent in the second and third chap-

ters; in the former, we deal with choosing informative interventions having learned

3



an incomplete description of the network structure and in the latter formally define

a specific notion of incomplete information. The fourth and final chapter presents

a network reconstruction method for time-course data assumed to arise from an un-

derlying dynamic system for which the functional form of the governing equations is

unknown. The following paragraphs give a brief overview of each chapter and touch

on how they relate to this theme. More detailed descriptions including reviews of

relevant literature appear in the introductions to individual chapters.

1.2.1 Active Learning and Path-Length Models

An important class of methods for network reconstruction is based on inferring

direct-cause effect relationships using intervention data [93, 69]. Such methods are

appealing because they make limited assumptions about the data-generating process.

On the other hand, as previously discussed such methods are generally unable to

distinguish direct from indirect causation while also requiring a more or less complete

set of interventions to reconstruct the entire network. We take up some of these

concerns in the second chapter after presenting a model based on path-lengths for

inferring direct cause-effect relationships. Accepting that such models are ill-suited

to distinguish direct and indirect effects, we seek instead to infer the partial order

induced by the precedence relations of the underlying DAG. This provides a slightly

higher-level description of the network structures consistent with the data and serves

as a useful starting point for estimating the edgeset using refined models. Because

in practice a complete set of interventions may be beyond reach, we also present

an active learning strategy for economically choosing new interventions to further

elucidate this aspect of a network’s structure.

The active learning strategy uses a Bayesian approach and provides context for

the additional contributions of this chapter. First, new priors based on partial orders

are introduced and demonstrated to differ substantially from a uniform prior over
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DAGs. The focus on partial orders also motivates a novel proposal distribution for

use within the Metropolis-Hastings algorithm that allows the posterior to be sampled

efficiently without resort to advanced techniques for preventing local trapping. Fi-

nally, a highly parallel Monte Carlo procedure is developed for estimating the decision

function around which the active learning approach is based.

1.2.2 Using Incomplete Order Information

The third chapter explores incorporating the information gleaned from an in-

complete set of intervention experiments or other prior knowledge into penalized-

likelihood estimates of the edges in conditional independence networks. The chapter

begins by defining incomplete partial orders as a way to describe restrictions on the

precedence relations in the estimated graphs. The information content of an incom-

plete partial order can be viewed as varying along three axes in discrete steps. We

present a simple plot for visually comparing the location of incomplete partial or-

ders along the resulting information lattice. Incomplete partial orders generalize the

important special case where a linear ordering of the nodal variables is assumed.

Two methods for incorporating the information contained in incomplete partial

orders into estimates based on the Bayesian Information Criterion (BIC) are presented

and compared. The first uses a stochastic search over the space of partial orders

consistent with the incomplete information while the second uses an approach akin

to neighborhood selection [56]. An example is used to compare methods at different

locations along the lattice of incomplete order information.

1.2.3 A Nonparametric Method for Time-Course Data

The final chapter presents a regression-style network reconstruction method for

use with time-course data that is appropriate when the underlying mechanisms can

be modeled as a dynamic system governed by a collection of coupled differential
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equations. Dynamic systems models are frequently used for reconstructing biological

networks and most such approaches amount to performing model selection for linear

models [64]. Indeed, one of the more popular network reconstruction tools among

computational biologists uses linear differential equations with a familiar `1 penalty

[5, 49]. The novelty of our approach and its connection to the theme of incomplete

information comes from not assuming a parametric class for the underlying differential

equations but instead developing an additive nonparametric model using splines.

The resulting network reconstruction method estimates the system dynamics using

a nonparametric gradient-matching procedure pulling together ideas for estimating

parameters in parametric Ordinary Differential Equation (ODE) models [32] and

additive modeling techniques for random variables [74]. The fitted models express

the rate of change in nodal variables as a sum of univariate functions for other system

variables. As with other regression-style methods the goal in this chapter is not

to infer a single network but rather to produce a ranking of potential edges. To

produce a ranking from the estimated dynamics, we propose a modified L2 norm of

the estimated functions as a coupling metric for measuring the influence of one node

on another.

Working with simulated data from computational models for metabolic pathways

and gene regulatory networks, the quality of these rankings is compared to rankings

obtained from linear ODE models of various types. Linear ODE models provide a

useful reference point as they are often justified as first-order approximations to non-

linear models in settings where a parametric form for the latter is either unavailable

or too difficult to obtain estimates for. These simulations studies demonstrate that

the flexibility offered by a nonparametric approach results in improved network re-

construction performance provided the underlying time-series have sufficient signal.
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CHAPTER II

Path-Length Models for Active Structure Learning

2.1 Introduction

In this chapter, we consider the problem of sequentially choosing interventions

when attempting to recover the structure of unknown directed networks. While re-

covering the set of edges from the underlying DAG is of ultimate interest, here our

focus will be on learning a higher-level structural description. Specifically, we focus on

learning which pairs of nodes are connected by at least one directed path. Formally,

we want to learn a partial order over the nodes.

This focus on learning partial orders leads us to a model for intervention data

under which the values of the variables represented as nodes depend on the lengths

of paths separating them from the intervention target. Path-length models can be

contrasted with Bayesian networks modeling data as having a joint distribution having

a factorization in which the value of nodal variables depend only on the values of their

parents. Such models use graph mutilations and intervention calculus to describe data

arising from interventions such as gene knockouts. Whereas parent sets and thus edges

are of primary interest in a Bayesian network, the path-length models presented here

emphasize the presence or absence of connecting paths mirroring the shift in focus

from edges to partial orders.

In the active learning setting, we have the opportunity to choose a limited set of
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interventions sequentially with subsequent choices taking advantage of the structural

information gleaned from earlier interventions. Each intervention tells us something

about the network structure, but at a given stage the data from a limited set of

interventions will generally be consistent with many DAGs. Because of this, we natu-

rally take a Bayesian approach to estimation. As part of the estimation approach we

present prior distributions based on partial orders. We also develop a novel MCMC

method for sampling the posterior distribution over the space of DAGs. More pre-

cisely, we design proposals for the Metropolis algorithm based on partial orders which

allow the Markov chains over DAG to move locally among partial orders while inde-

pendently sampling graphs conditional on the partial order. The resulting Markov

chains are ergodic and mix rapidly compared to standard structure MCMC. The

overall active learning strategy used to choose interventions at each stage is similar

to an existing information-theoretic approach, but the decision function we use is

specifically adapted to the partial-order setting. In addition, we present an efficient

and highly parallel Monte Carlo procedure for its estimation.

2.1.1 Structure Learning with Intervention Data

In important applications such as gene regulatory networks, intervention data

are readily attainable and have been demonstrated to be of greater utility relative

to non-intervention data for de novo network reconstruction [53]. While techniques

for performing interventions in such applications are well established they require a

good deal of technical expertise making intervention data generally more expensive

to obtain than data from settings in which the network is not specifically perturbed.

This motivates a sequential approach for choosing interventions in order to make good

use of limited budgets.

Use of intervention data is necessary since, except in special cases [68], causal

models are identifiable only up to Markov equivalence classes from observational data

8



alone [67]. Even with high-quality intervention data, structure learning is challenging

because the complexity of the space of directed graphs is super-exponential in the

number of nodes. This makes it difficult to find ‘good’ models as determined by the

likelihood or posterior distribution. In a Bayesian setting this difficulty is exacerbated

by the need to average over all graphs to compute posterior probabilities of arbitrary

features. While this intractable summation can be addressed using MCMC [51, 18,

30], existing methods are practically applicable only for small networks. Even for

networks with tens of nodes, existing MCMC methods tend to suffer from slow-

mixing with chains starting from different initial graphs getting stuck exploring small

areas around local maxima in the posterior distribution. This has been attributed to

both the larger number of samples needed to explore a parameter space with super-

exponential complexity and the lack of smoothness in the posterior landscape owing

to the discrete nature of graphs [23].

One approach to handling the challenge of slow-mixing is order-MCMC due to

Friedman and Koller [23]. Drawing on optimization ideas from [9], order-MCMC

constructs a Markov chain over linear orders rather than DAGs. This is done using

the Metropolis-Hastings algorithm [36] and a trick that allows fast computation of

likelihoods for linear orders assuming a bound on the maximum in-degree of each node.

Friedman and Koller show that certain posterior features can be directly estimated

from order-MCMC samples and suggest estimating other features by sampling DAGs

from each order. In the latter case, order-MCMC introduces a bias because DAGs

with fewer edges are consistent with more orders and consequently overrepresented

in the sample. In theory, the bias can be corrected by counting the linear orders

consistent with each DAG [19]. Unfortunately, counting linear extensions is #P-

complete [6] though Niinimäki and Koivisto present a fast algorithm for doing so in

networks with up to about 40 nodes provided the number of ideals is relatively small

[62]. Another bias-correction approach studied by Ellis and Wong relies on sampling
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DAGs from each linear order until (1 − ε) of the conditional posterior is accounted

for and then weighting accordingly [19].

Order-MCMC is quite useful but far from a panacea. For one, it requires using

order-modular priors which have been criticized for distorting the resulting posterior

[30]. Moreover, it is limited to the specific context of Bayesian Networks. This is

undoubtedly a very large class of models, but far from the only context in which

one may wish to compute a posterior over DAGs. For instance, in this chapter

we directly model the effect of interventions based on path lengths instead of first

setting up a joint distribution and then treating interventions using graph mutilations

[67]. Such models do not admit a fast computation of the likelihood for a linear

order. Nevertheless, the general idea of order-MCMC—working in a smaller space

with smoother posterior landscape—can be adapted to construct improved proposal

distributions for structure-MCMC as described in section 2.3.

In section 2.3 we present a new approach to structure MCMC based on partial-

order proposals for use within the standard Metropolis-Hastings algorithm. The basic

idea is to move locally among partial orders while independently sampling DAGs con-

sistent with each partial order. The local moves through the space of partial orders

resemble standard structure MCMC and allow the resulting chains to move stochasti-

cally toward regions of high posterior probability in DAG-space while drawing DAGs

independently from each partial order helps to avoid local trapping and improve mix-

ing. Linear orders are not suitable for such an approach as they do not form a partition

of DAG-space as partial orders do. As also shown in section 2.3, the resulting chains

are ergodic and have the correct stationary distribution.

2.1.2 Active Structure Learning

Faced with limited budgets, an important question in network reconstruction prob-

lems is how to systematically choose which experiments to carry out [43, 85, 83, 39,

10



38, 59]. This chapter describes an approach for active learning of network structure

from intervention data such as ‘knockouts’ from gene-deletion mutants, ‘knockdowns’

via RNA-interference or other experimental techniques targeting a single node at a

time. By active learning we mean that data are obtained sequentially with the ex-

perimenter able to choose at each step from among a set of available interventions.

We build on the decision-theoretic approach for active structure learning in Bayesian

Networks of Tong and Koller [85]; for a slightly different but related approach see

also [60]. While using a similar framework for sequential decision making, we forgo

Bayesian Networks in favor of a likelihood directly modeling interventions in terms

of path-lengths.

Active learning algorithms for choosing interventions to orient edges in an undi-

rected network estimated from observational data were studied by He and Deng [39]

and later Hauser and Bühlman [38]. Our approach differs in that we do not begin

with this undirected skeleton, focusing instead on uncovering precedence relation-

ships—that is, learning a partial order on the nodal variables. In addition, our ap-

proach accounts for structural uncertainty after each stage of data collection whereas

the methods above rely on a point estimate of the Markov equivalence class without

regard to its uncertainty. Interesting approaches to sequentially choosing interven-

tions in other classes of models include [59, 83].

The focus on partial orders is motivated in part by the observation that the set

of potential interventions may be limited in practice due to the technical difficulty

or lethality of some interventions. With limited data there may be many DAGs that

describe the data well, making the presence or absence of particular edges sensitive

to the specific form of the likelihood. However, due to the inherent directionality

of intervention experiments the high-likelihood DAGs will often share a common set

of precedence relationships making inference for partial orders more robust to model

misspecification.
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2.1.3 Summary

The focus in this chapter is on actively learning the partial order induced by

the precedence relationships within a network represented as a directed graph. Our

approach is nominally Bayesian in that we begin with a prior over the space of DAGs

and that our loss function for selecting subsequent interventions is an expectation

with respect to the posterior distribution. As in Tong and Koller, our loss function

is a marginal posterior expected entropy though for a different set of marginals.

Specifically, we replace marginal probabilities of edges with marginal probabilities of

precedence relations so that the focus is on learning a partial order rather than a

DAG. We also introduce novel priors based on partial orders.

The remainder of this chapter is structured as follows. In section 2.2, we present

our model, fix notation, and outline an approach to actively choosing interventions. In

section 2.3 we present a novel MCMC algorithm for estimating posterior expectations

over graphs that is tailored to the path-length models used here. The approach is built

around a new proposal distribution based on partial orders that allow the resulting

Markov chains to mix rapidly. Sections 2.5 and 2.6, respectively, contain numeric work

demonstrating the utility of the proposed techniques and applications on benchmark

datasets. Finally, in section 2.7 we summarize our findings and point to interesting

avenues for further research.

2.2 Path-Length Model and Active Learning Framework

2.2.1 Notation and Mathematical Background

Let G = (V,E) be a DAG with |V | = d nodes and denote the number of node

pairs s = d(d − 1)/2 as our attention will often be focused on pairwise relations.

A (strict) partial order on V is a relation ≺ that is irreflexive, antisymmetric, and

transitive. There is a unique partial order on V induced by G, ΠG = {(i, j) ∈
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Active Learning

Stopping 
Criterion Met?No

Stop

Yes

Interventions target a single node and 
measurements are made on all nodes. !!
The likelihood depends on the underlying 
network through the shortest paths, if any, 
from interventions to other nodes.

Intervention Data

The utility of a potential intervention or ‘action’ 
is measured by a function, h(a), that can be 
viewed as an expected entropy following 
intervention.!!
For each action, a, the improvement function 
h(a) averages over the uncertainties in the 
network structure and the unseen data.

Choose 
Intervention

Posterior expectations over the space of directed 
acyclic graphs are estimated using a novel 
MCMC approach based on partial-order 
proposals.!!
Posterior expectations of pair-wise precedence 
relations, or ’π-marginals’, provide a useful 
summary of the structural information in the data.

Estimate Posterior

Figure 2.1: Schematic overview of the active learning framework. This section presents
a model for intervention data based on path-lengths and also outlines an ap-
proach to active structure learning.

V 2 : there is a path from i to j in G}. When (i, j) ∈ Π write i ≺Π j and if neither

(i, j), (j, i) ∈ Π write i ||Π j. For all i, j ∈ V we define γji as the length of the shortest

path from j to i in G. When no such paths exist, i.e. (j, i) 6∈ ΠG, set γji = 0. Note

that γji > 0 implies γij = 0. Partial orders Π and DAGs G will often be denoted in

pairwise formats, respectively π = (πk)
s
k=1, and γ = (γk)

s
k=1, with components,

πξ(i,j) =


−1, i < j, i ≺Π j

0, i 6≺Π j, j 6≺Π i,

1, i < j, j ≺Π i

γξ(i,j) =


−γij, i < j, i ≺Π(γ) j

0, i 6≺π j, j 6≺Π(γ) i

γji , i < j, j ≺Π(γ) i.

(2.1)

where ξ : V 2 → {1, ..., s} is an indexing (say lexicographical) of the node pairs. See

Figure 2.2 for an illustration on a toy example.

Functions Π(γ) (with range a set) or π(γ) (with range a vector) indicate the unique

13



Figure 2.2: Notation for a toy graph. On the left is a simple directed acyclic graph (DAG)
used here for illustrative purposes. The nodes labels v1, . . . , v4 are given the
natural canonical ordering. On the right is a table giving various pairwise
notations for this DAG. The first two columns list node pairs and the third
shows ξ which orders the pairs, in this case lexicographically. Partial Order:
The fourth column shows the partial order in pairwise format. In the first row,
πξ(1,2) = −1 because 2 precedes 1 in the graph but 1 < 2 in the canonical
ordering. Similarly, in row 5 πξ(2,4) = 1 because 2 precedes 4 in the graph
and 2 < 4 in the canonical ordering. Finally in row 3, πξ(1,4) = 0 because no
directed path exists between 1 and 4 in either direction. DAG: The fifth column
gives the pairwise representation of the DAG. The signs {-, 0, +} follow the
same rules as for the partial order. In row 1 the magnitude is different because
the shortest path from node 2 to node 1 contains two edges. The final two
columns give the length of the shortest path beginning at the node indicated
in the superscript and terminating at the node indicated in the subscript.
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partial order associated with DAG γ. Using this notation a positive γξ(i,j) gives the

length of the shortest path from the smaller of i, j to the larger while a negative

γξ(i,j) indicates the path goes in the reverse direction, i.e. from the larger of i, j to the

smaller. The function i(γ) ∈ {−1, 0, 1}s gives the location and direction of edges in

the corresponding DAG.

Next we provide notation for important sets. Let L be the set of all linear orders

on V . A linear order is a partial order in which all pairs are comparable and will

be represented as a permutation of the node labels, i.e. L = σ(V ). For L ∈ L,

ΠL = {Π : Li < Lj ∀(i, j) ∈ Π} is the set of all partial orders consistent with L.

Similarly LΠ = {L ∈ L : Li < Lj ∀(i, j) ∈ Π} is the set of linear extensions for Π also

denoted Lπ. Likewise Γπ = {γ : i(γ) = π} is the set of DAGs consistent with partial

order π.

Finally, we introduce the transitive reduction Π̌ (π̌) of partial order Π (π̌) which

plays an important role in the MCMC approach developed in section 2.3. The tran-

sitive reduction is formed by removing all relations (i, j) ∈ Π for which there exists

a mediating path m1, ...,m` ∈ V with (i,m1), (m1,m2), . . . , (m`, j) ∈ Π. For our pur-

poses, it is best viewed as the DAG in Γπ with the fewest possible edges; formed by

removing all feedforward edges from any DAG in this class. For example, consider the

DAG in Figure 2.2 which has edge set E = {(v2, v3), (V2, v4), (v3, v1)}. The partial

order induced by precedence relations is Π = E∪{(v2, v1)} and the additional relation

(v2, v1) is a feedforward motif since it is mediated by the path v2v3v1. Since this is

the only relation mediated by a path with more than two nodes, removing if from Π

gives the transitive reduction Π̌ = {(v2, v3), (V2, v4), (v3, v1)}; i.e. Π̌ = E.

2.2.2 Model

Next we describe a model for the observed effects Y α under intervention α. To

fix ideas, assume that interventions set the perturbed variable to zero much like a
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gene knockout. The observed effects are assumed to lie in [0, 1] and follow truncated

normal distributions with means {µαi } and known variance σ2. Each intervention

mean µαi is a function of a random sign ψαi determining the direction of the effect and

a scale factor βαi determining its relative position between a baseline value µ0
i and the

appropriate extremum. See Figure 2.3 for a graphical representation of the model,

represented symbolically below:

γ ∼ p(γ)

{βαi |γαi }
ind∼ Beta(2, 2 + cγαi )1[γαi 6= 0]

{ψαi }
iid∼ Binomial(.5) (2.2)

µαi = (µ0
i − µ0

iβ
α
i )1[ψαi = 1] + (µ0

i + (1− µ0
i )β

α
i )1[ψαi = −1]

Y α
ik |µ

ind∼ TN(µαi , σ
2; 0, 1); i = 1, ..., d; k = 1, ..., n.

Under this model, the relative magnitudes of indirect effects are stochastically

smaller than direct effects and also decrease as the number of mediators in the shortest

path grows. This allows for a situation frequently occurring in applications where

effects diminish as they propagate through the network due to redundancies and (un-

modeled) feedback mechanisms. The constant c allows for adjusting the rate at which

effect sizes diminish; in this work we take c = 1. Finally, we remark that without this

shrinking the likelihood would depend on γ only through the induced partial order.

Unlike methods for structure learning based on structural or differential equa-

tion models, we do not attempt to use the information content from the signs and

magnitudes of effects. Instead we take them to be independent in order to make

likelihood computations as efficient as possible. In fact, the signs and magnitudes

will be marginalized out altogether. In effect we are trading inferential efficiency for

computational efficiency while also guarding against model misspecification. Though

not pursued here, the signs could be retained with the inferential target becoming
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Figure 2.3: Graphical representation of the intervention model (Left). For each intervention
α, a set of intervention means µα are determined by the DAG γ and signs ψ.
The data Y α

k are noisy observations of µα, both d-dimensional vectors. Selected
prior distributions for µαi (Right). Conditional on signs ψα, components of µα

are given scaled and shifted Beta priors. The scaling and shifting are relative to
non-intervention, i.e. wild-type, means µ0, assumed known. The transformed
Beta random variables are taken to be independent given γ and place more
mass near µ0

i as the path-length γαi grows. Each panel on the right shows
the prior for minimum path-lengths 1-4 for different values of a parameter c,
controlling how quickly the prior concentrates near the µ0

i .

a DAG with signed edges. The same partial order framework would apply, but the

number of DAGs consistent with each would grow from 2||π−π̌||0 to 3||π−π̌||0 .

2.2.3 Prior Distributions

The standard non-informative prior is uniform over the space of DAGs, p(γ) ∝ 1.

While having the benefit of simplicity, this prior has the effect of giving larger weight

to partial orders containing more relations since these are consistent with a greater

number of DAGs. An alternative is to proscribe a prior that is uniform over partial
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p(γ) ∝ 1 p(π) ∝ 1
d -1 0 1 -1 0 1

10 0.44 0.12 0.44 0.25 0.50 0.25
15 0.46 0.08 0.46 0.23 0.54 0.23
20 0.47 0.06 0.47 0.22 0.57 0.22
25 0.48 0.05 0.48 0.21 0.59 0.21
30 0.48 0.04 0.48 0.20 0.60 0.20
50 0.49 0.03 0.49 0.20 0.60 0.20

Table 2.1: Comparing priors uniform over DAGs to priors uniform over partial orders.
This table compares the π-marginals under two different non-informative priors
for networks of various dimension d, corresponding to the number of nodes.
Values on the left correspond to a prior uniform on DAGs and values on the right
to a prior uniform on partial orders. Due to symmetry the prior π-marginals
are the same for all pairs νi, νj ∈ V . For i < j, the column labels −1, 0, and 1,
correspond to νj ≺π νi, νi||πνj , and νi ≺π νj , respectively. With a prior uniform
on DAGs a majority of mass is on the existence of a precedence relation and
this majority grows with the dimension d. In contrast, under a prior uniform
on partial orders the majority of mass is placed on no precedence relation and
this majority also increases with d. Values may not add to 1 due to rounding.

orders. A simple choice within this class is p(γ) ∝ |Γπ(γ)|−1 giving DAGs prior

probabilities that are uniform conditional on the associated partial order. That this

is a valid probability follows from the fact that partial orders partition the space of

DAGs. These priors are compared in Table 2.1. Values in the table were estimated

using 10 chains with 1e5 samples each following 1e3 burn-in samples using the MCMC

procedure described in section 2.3. Relying on symmetry, for any pair of nodes (i, j),

the probabilities p(πξ(i,j) = −1) and p(πξ(i,j) = 1) are estimated jointly and the

reported values are averaged across both chains and pairs. More generally, conditional

on the partial order one may prefer to give more weight to DAGs with fewer edges.

For any real-valued monotone function s this is achieved by using a prior of the form,

p(γ) ∝ s(||i(γ)− π̌(γ)||0)

|Γπ(γ)|
∑

γ′∈Γπ(γ)
s(||i(γ′)− π̌(γ)||0)

. (2.3)

A prior as in equation (2.3) can be seen as a formalization of the down-ranking pro-

cedure used by the top competitor in the DREAM 4 competition [69]. An advantage

18



of this form of sparsity over priors which directly penalize the number of edges is

that we avoid the odd situation in which the highest prior probability is placed on

the empty network. A disadvantage is the need to compute the normalizing constant∑
γ′∈Γπ

s(||i(γ′) − π̌||0). The sum is potentially intractable due to the large size of

|Γπ| for partial orders with many relations, but can be computed efficiently by ex-

ploiting the form of the summand. Letting R = ||π − π̌||0 be the maximum number

of ‘optional’ (feedforward) edges we can compute the normalizing constant efficiently

using, ∑
γ′∈Γπ

s(||i(γ′)− π̌||0) =
R∑
r=0

(
R

r

)
s(r). (2.4)

2.2.4 Active Learning Framework

The active learning framework described below is close to that of Tong and Koller

[85]. Briefly, we consider a sequence of intervention experiments (Et)t with Et =

(α, (Y α
i,k)

d,n
i=1,k=1) consisting of an intervention α and observations of the induced effects.

For simplicity, assume the number of technical replicates n to be fixed and let the

space of potential interventions be A = (1, . . . , d). For step t, denote the sequence of

observed interventions by At = (α1, . . . , αt) and define the action space At = A \ At

to consist of all remaining interventions.

We choose from among the potential actions At by finding an action that mini-

mizes the entropy of the π-marginals,

Hπ(Y α;D) = −
s∑
ξ=1

1∑
k=−1

p(πξ = k|Y α,D) log p(πξ = k|Y α,D). (2.5)

This differs from Tong and Koller who instead choose interventions to minimize the

entropy of the posterior edge probabilities; a related approach would be to minimize

the entropy of the posterior γ-marginals. As a function of yet-to-observe data Y α,

Hπ(α;D) is not directly computable. Instead, we will use an estimate of its expecta-
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tion,

h(α) = E[H(Y α,D)|D] = Eγ[EY α|γ[H(Y α,D)|γ]|D], (2.6)

averaging over both structural uncertainty and the distribution of Y α.

The choice to target interventions toward learning the partial order rather than

the graph itself is based on the following heuristics. First, we argue that single-

intervention experiments are inherently more informative for learning partial order

relations than for distinguishing direct and indirect effects. For the former, the model

need only adequately separate signal from noise, while for the latter it must discern

between competing explanations of the signal. Because of this, learning partial orders

is more robust against model misspecification than directly learning DAGs. Second,

the π-marginals are easier to estimate than the γ-marginals because the space of

partial orders, though still of super-exponential complexity, is smaller than the space

of DAGs and has a ‘smoother’ posterior landscape. For complexity comparisons see

entries A001035, for partial orders, and A003024 for DAGs in the Online Encyclopedia

for Integer Squeneces [81]. Indeed, there has been work suggesting MCMC over partial

orders improves mixing further than (linear) order-based sampling by cutting down

on multi-modality [63]. Final justification comes from observing that with known

partial order one can more efficiently estimate a DAG using a refined model. For

instance, with known partial orders, exact structure discovery in a Bayesian Network

can be done with time and space requirements of order O(2d) for moderately sized

problems [66]. It is also possible to adapt methods utilizing known causal orderings

to work with partial orderings, an idea developed further in chapter III [78].
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2.3 MCMC for Sampling the Posterior

2.3.1 Posterior Distribution

The posterior probability of a DAG γ given data D = (yαti )i,t is p(γ|D) =

p(D|γ)p(γ)/p(D). As shown below, efficiently computing the likelihood p(D|γ) and

prior p(γ) is straightforward. The difficulty lies in obtaining the normalizing constant

p(D) due to the super-exponential complexity of G. In this paper our primary use of

the posterior distribution is computing posterior π- or γ-marginals, both taking the

form of posterior expectations,

p(πξ(i,j) = k|D) =
∑
γ

1[πξ(i,j)(γ) = k]p(γ|D), k = −1, 0, 1, and (2.7a)

p(γξ(i,j) = k|D) =
∑
γ

1[γξ(i,j) = k]p(γ|D), k = −(d− 1), ...− 1, 0, 1, ..., (d− 1).

(2.7b)

Observe that the posterior probability of an edge is given by the γ-marginal for k = ±1

with the sign depending on the position of the node indices in the canonical ordering.

2.3.2 Likelihood Computations

Under the model presented here, the observations D = (yαti )i,t are conditionally

independent given γ. Thus, marginalizing over the sign and magnitude of effects, the

likelihood factors as

p(D|γ) =
T∏
t=1

∏
i 6=α

n∏
k=1

p(yαtik |γ) =
T∏
t=1

∏
i 6=α

∫ n∏
k=1

p(yαik|µαi (β, ψ))p(β|γ)p(ψ)d(β, ψ). (2.8)

Crucially, for each intervention α the dependence on γ is only through the shortest

path-length (if any) from node α to node i, i.e. p(βαi |γ) = p(βαi |γξ(i,α)), meaning that

computing p(yαi |γ) does not require integration for each γ. Instead d(d − 1) inte-

grations—one for each node at each possible level |γξ(i,α)|—can be precomputed and
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stored so that evaluating the log-likelihood log p(yαi |γ) reduces to a simple summation

of required terms.

2.3.3 MCMC with Partial-Order Proposals

2.3.3.1 Overview

Following standard practice, we use the Metropolis-Hastings algorithm to sample

the posterior distribution and form Monte Carlo estimates of the posterior expecta-

tions (2.7a) and (2.7b). Briefly, given an initial DAG γ0 and a proposal distribution

q(γ′|γ) a sample γ1 · · · γN is obtained as follows:

for n = 1, . . . , N do

1. Sample γ′ ∼ q(·|γn−1).

2. Compute α = 1 ∧ p(D|γ′)p(γ′)q(γ|γ′)
p(D|γ)p(γ)q(γ′|γ)

.

3. With probability α set γn = γ′ otherwise γn = γn−1.

end for

The novelty of our approach lies in a specification of the proposal q(γ′|γ) built on

partial orders.

As discussed in the introduction, the standard proposal γ′ is sampled uniformly

from the neighborhood of γ consisting of all DAGs differing from γ by the presence or

absence of a single edge. However, this approach quickly breaks down as the number

of nodes increases with the resulting Markov Chains typically exploring a small region

around a local maximum. This is often attributed to the topography of the posterior

landscape in which high probability graphs are separated by regions of much lower

probability. For observational data, proposals based on edge reversals help to alleviate

this issue by an allowing an edge connecting two nodes with high marginal correlation

to switch direction in a single step rather than by first being deleted and then added

in the reverse direction [27, 30].
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Edge reversals are useful because they are tailored to the conditional independence

relations encoded in Bayesian Networks. Likewise, we construct an efficient proposal

distribution by considering the structure of path-length models and the inherent di-

rectionality of intervention data. An important feature of the model presented here

is that DAGs inducing the same partial order have similar likelihoods, hence similar

posteriors. The reason for this is that, generally speaking, including or excluding a

path has a greater effect on the likelihood than changing its length. Since partial

orders partition the space of DAGs, another way to say this is that the likelihood

tends to vary more between elements of the partition than within them.

2.3.3.2 Partial-Order Proposals

What follows is a high-level overview of a proposal distribution that takes advan-

tage of the intimate relation between DAGs and partial orders. For further details,

including pseudocode, see Appendix A. In essence each proposal consists of three

steps: (1) deciding whether to resample the current partial order or propose a new

one; (2) proposing a new partial order when required; and (3) sampling a DAG from

the appropriate partial order. These steps constitute the basic algorithm below:

Algorithm 1 Partial-Order Proposals

1. With probability ρ2||π−π̌||0−(d−1)(d−2)/2 set π′ = π.
2. Otherwise, sample π′ ∼ q1(·|π).
3. Sample γ′ ∼ q2(·|π′).

In this way the proposal distribution decomposes as q(γ′|γ) = q2(γ′|π′)q1(π′|π(γ)).

Sampling a DAG γ′ from partial order π′ is straightforward as it only requires choosing

which feedforward edges to include. In particular, feedforward edges can be sampled

independently. A useful default is to independently include ‘optional’ feedforward

edges, in set notation (i, j) ∈ Π/Π̌, with probability 1
2

making q2(γ′|π′) = |Γπ′|−1; i.e.

uniform over the partial order. More sophisticated choices taking advantage of the

data or informative priors are also possible.
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Figure 2.4: Illustrations for partial-order proposals. A A partial order on 10 nodes is shown
here as its transitive reduction graph. The blue nodes are the ancestors of node
‘5’ and the orange nodes are its descendants. The nodes in grey have no prece-
dence relation to node ‘5’. B The legal moves involving edges emanating from
node ‘5’ begin by: adding edge (5, 3), adding edge (5, 8) removing edge (5, 4),
or removing edge (5, 2). C Adding edge (5, 8) causes edges (5, 4) and (5, 2)
to become feedforward motifs which are removed when forming the transitive
reduction. D The addition of (5, 8) and subsequent removal of (5, 4) and (5, 2)
is reversed by removing (5, 8) and restoring (5, 4) and (5, 2). This reversal has
nonzero probability since, when removing (5, 8), all severed paths—those me-
diated solely by (5, 8)—have the potential to be included through systematic
sampling.
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The portion of q(γ′|γ) corresponding to proposing a new partial order, q1(π′|π),

is best understood as operating on the associated transitive reductions as illustrated

in Figure 2.4. Viewing the transitive reduction, π̌, as a DAG with no feedforward

motifs, the proposed moves consist of familiar edge additions and deletions. Edge

additions are only allowed between node pairs (i, j) such that i ||π j; in Figure

2.4B possible edge additions emanating from node ‘5’ are shown in green and edges

eligible for removal are colored red. When (i, j) is added to π̌ we also remove from π̌

all edges that become feedforward motifs after the addition as illustrated in Figure

2.4C. For addition of (i, j) to be reversible by the corresponding deletion there must

be an opportunity for these removed edges to be restored concurrent to the deletion.

This is accomplished by randomized decisions to include (h, k) ∈ π̌′ when removal

of (i, j) severs all paths in π̌ from h to k. In Figure 2.4D all such pairs (h, k) are

indicated by green and grey dashed lines with the green edges indicating the set that

must be restored to return to the original partial order. These randomizations are

done in a systematic order to ensure there is a unique sequence of inclusions leading

from π̌ to π̌′ so that q1(π′|π) and q1(π|π′) can be efficiently computed.

The probability with which a severed path (h, k) is included in π̌ when sampled is

given by a control parameter, p ∈ (0, 1), that can be adjusted to improve mixing. The

other control parameter, ρ, is interpretable as the maximum probability of remaining

in the current partial order. The probability for doing so, ρ2||π−π̌||0−(d−1)(d−2)/2, scales

with the number of DAGs consistent with π relative to the maximum 2(d−1)(d−2)/2.

Intuitively, the idea is to spend more time exploring larger partial orders. We have

had success with ρ = .9 and p = .5 as defaults for these control parameters.

Though a detailed discussion is beyond the scope of this chapter, we note that

the partial-order proposals described above are likely to be useful beyond the class

of models considered here. For one, the scheme above can be used for sampling the

posterior of a Bayesian Network though it remains to be seen if the improvements

25



observed here will carry over. Furthermore, one can use the proposals above to develop

partial order MCMC in a manner analogous to order MCMC as the fast computation

for computing the posterior of a linear order based on limiting the in-degree of nodes

can be directly adapted to a partial-order setting. This idea was previously pursued

for a limited class of partial orders in [63].

2.3.3.3 Ergodicity

By construction, the Markov chains resulting from the procedure above are re-

versible, hence aperiodic, due to the correspondence between adding and deleting

edges from the transitive reduction. Moreover, through use of the Metropolis-Hastings

acceptance ratio they will satisfy detailed balance and have stationary distribution

p(γ|D) as desired. These facts constitute the following lemma.

Lemma 2.1. The Markov Chains generated by Algorithm 2 are reversible and have

stationary distribution p(γ|D).

That this stationary distribution is also the limiting distribution follows from

irreducibility which is clear given the non-zero probability of getting to the null partial

order through a series of removals and from there to any other partial order through

a series of additions. This is stated formally in the lemma below. See appendix A for

formal proofs of this and the preceding lemma.

Lemma 2.2. The Markov Chains generated by Algorithm 2 are irreducible.

Because the space of DAGs is finite, irreducibility implies all graphs are positive

recurrent. The facts above are quite standard but sufficient to ensure the distribution

of the process {γn}n≥1 converges to p(γ|D) in total variation and to provide a law

of large numbers. The theorem below follows from direct application of Theorem

14.2.53 in [10]; see also Theorem 10.6 in [45].
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Theorem 2.3. Let {γn}n≥1 be a sample obtained according to the Metropolis-Hasting

algorithm above. Then, for any real-valued function f : Γ→ R,

lim
n→∞

n−1

n∑
t=1

f(γt) =
∑
γ∈Γ

f(γ)p(γ|D) a.s..

2.4 Estimating the Entropy Under New Interventions

2.4.1 Decomposing the Improvement Function

Given data D from interventions α1:t we wish to measure the utility of potential

interventions α ∈ At for refining our knowledge of the underlying network structure.

In order to choose the next intervention α ∈ At, it is necessary to estimate the addi-

tional structural information contained in new data Y α. This structural information

is measured using the expected entropy of the π-marginals, h(α), defined in (2.5)

and (2.6) and henceforth called the improvement function. The expectation in the

definition of h(α) averages over both the structural uncertainty and the observational

uncertainty given the structure. This can be seen by writing,

h(α) = E[H(Y α,D)|D] = Eγ[EY α|γ[H(Y α,D)|γ]|D]. (2.9)

The decomposition above offers some insight into estimating h(α) by separating the

inner and outer expectations.

Provided we can estimate EY α|γ[H(Y α,D)|γ], the outer expectation is easily esti-

mated by sampling from the posterior p(γ|D) as described in the previous section. In

particular, we use a subsample drawn from the Monte Carlo sample used to estimate

the posterior marginals given D. The outer expectation can then be estimated using

a simple sample average of the estimated inner conditional expectations. Estimates
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for the inner expectations given a DAG γ are described below.

2.4.2 Monte Carlo Estimate of the Inner Expectation

For fixed γ, we will use a Monte Carlo estimate of the inner expectation E[H(Y α,D)|γ].

Specifically, we first simulate nmc draws of Y α|γ from the model (2.3) and use the

estimate,

ÊY α|γ[H(Y α,D)|γ] = nmc
−1

nmc∑
m=1

Ĥ(D?m) (2.10)

with D?m the data D augmented with the mth simulated observation Y α|γ and Ĥ

defined below. Computing Ĥ(D?) for each simulated Y α requires estimating new

posterior π-marginals, {p̂(πξ = k|D?)}ξ,k using the original Monte Carlo sample (γn)n

and forming the estimate,

Ĥ(D?; (γn)n) = −
s∑
ξ=1

1∑
k=−1

p̂(πξ = k|D?; (γn)n) log p̂(πξ = k|D?; (γn)n). (2.11)

It should be pointed out that Ĥ has a positive bias as an estimator of H due to

Jensen’s inequality since p log p is concave in p. By the continuity of p log p it never-

theless remains consistent as the size of the inner Monte Carlo sample grows. While

the bias may effect the action chosen, this action can be interpreted as minimizing

an approximate upper bound on the expected entropy of the posterior π-marginals,

h(α). If one is worried about the bias, its magnitude could always be estimated

by computing h(α) using a sequence of increasingly larger Monte Carlo samples for

estimating Ĥ and then applying a simulation-extrapolation-type procedure [14]. In

practice, however, it is usually sufficient that the chosen action be among the best as

opposed to optimal.

Drawing a new sample with stationary distribution p(γ|Y α,D) is computationally

infeasible since H(Y α,D) needs to be estimated |A||Γout|nmc times where Γout is the

set of DAGs used for estimating the outer expectation. Instead, we use (a subset of)
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the original sample from p(γ|D) as the instrumental distribution in a self-normalized

importance sample [10],

p̂(πξ = k|D?; (γn)n) =

∑N
n=1 1[πξ(γn) = k]p(Y α,D|γn)p(γn)/p(γn|D)∑N

n=1 p(Y
α,D|γn)p(γn)/p(γn|D)

=

∑N
n=1 1[πξ(γn) = k]p(Y α|γn)p(D|γn)p(γn)/(γn|D)∑N

n=1 p(Y
α|γn)p(D|γn)p(γn)/p(γn|D)

(2.12)

=

∑N
n=1 1[πξ(γn) = k]p(Y α|γn)∑N

n=1 p(Y
α|γn)

,

for each Monte Carlo draw in the inner expectation. This should provide good es-

timates since the high-probability region of p(γ|D?) is largely contained in that of

p(γ|D). The size of the subset used is denoted Nin.

Finally, we remark that the inner and outer expectations need not—in fact should

not—use the same subsamples. In particular, the reduced sample used to estimate

the inner expectation can be much larger as the only additional computational bur-

den is in the summation and indexing needed to compute updated likelihoods for

correctly weighting DAGs when computing the simulated entropies. The size of these

subsamples together with nmc can be balanced against the size of the action space |A|

and available computational resources when estimating the improvement function.

2.5 Numeric Work

This section presents selected simulation results demonstrating the utility of the

above active learning framework as well as practical aspects of its implementation.

While considering a variety of network structures, a common model will be used for

simulating intervention data. Namely, the intervention means are modeled determin-

istically as

µαi = µ0
i +

∑
j∈pai

β(µαj − µ0
j) (2.13)
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with µαα = 0 and pai the parents of node i. The observations follow a truncated

normal distribution on [0, 1],

Y α
i ∼ TN(µαi , σ

2; 0, 1). (2.14)

Except where specified otherwise, all wild-type means are µ0
i = .5, the noise variance

is σ = .05, there are n = 3 technical replicates for each intervention and β = .45.

While simulating from this model, computations are done under the model presented

in section 2.2 which can be viewed as a pseudo-likelihood.

2.5.1 Improved Mixing using Partial-Order Proposals

This section is intended to briefly demonstrate the improvement offered by MCMC

with partial-order proposals over classical structure MCMC. As previously discussed

in section 2.1, classical structure MCMC is notorious for local trapping and slow

mixing. As a result, it usually needs to be combined with computationally intensive

MCMC techniques like simulated annealing or equi-energy sampling. Without these

techniques situations like that in the bottom plot of Figure 2.5 are typical. On the

bottom of Figure 2.5 are chains using standard structure MCMC with proposals

based on adding or deleting a single edge. While rapidly leaving regions where the

likelihood is very small the chains eventually get stuck exploring regions around dif-

ferent local maxima despite early excursions near the global maximum. In contrast,

at the top of the figure are chains from the new approach which rapidly mix about this

global maximum. By global maximum we are referring to the likelihood as there are

potentially many DAGs with likelihoods at or near this maximum. Comparisons are

for the 10-node Ecoli 1 network from the DREAM 3 competition after interventions

at nodes 1,2,3, and 8 [70].
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Figure 2.5: MCMC with partial-order proposals improves mixing. Each plot in this figure
traces the (unnormalized) likelihood for five chains starting at random graphs.
Shown here are steps 1,000 to 200,000. On bottom are chains using standard
structure MCMC with proposals based on adding or deleting a single edge.
On top are chains from MCMC with partial-order proposals starting from the
same random graphs. While the former settle into local maxima away from
the highest regions of the likelihood the latter mix well in this region.
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2.5.2 Examples on 15- and 25-node Networks

In this section, we first illustrate the steps involved in the active learning frame-

work on a synthetic 25-node network. We assume the stopping criterion is a fixed

budget of ten interventions and that the initial intervention occurs at node ‘1’. The

DAG to be reconstructed is shown in Figure 2.6. The figure also indicates the lo-

cations of the first ten interventions, the final nine selected by active learning, using

square nodes with subscripts giving the timing of each intervention. Data is simulated

according to (2.13) and (2.14) with µ0
i = .5 for all nodes i, β = .65, σ = .05, and

n = 3. An example of what the simulated data looks like following an intervention

at node ‘3’ appears as Figure 2.7.

Following each intervention, the first step is to estimate the posterior π-marginals

using MCMC with partial-order proposals as discussed in section 2.3.3. In this ex-

ample we use three chains, ρ = .9, p = .5, and draw 2e5 samples discarding the first

half. The chains are given warm starts as follows. After the initial intervention we

compute z-scores zi = |Ȳ α1
i − µ0

i |/σ for each node and include (α1, i) in the initial

partial order if zi > 2. Following subsequent interventions chains are initialized us-

ing the final partial order sampled from a chain in the previous step. Convergence

is assessed by examining trace plots of the likelihood, monitoring acceptance rates,

and using the potential-scale reduction factor R̂ [26]. For the latter values near one

indicate convergence while numbers greater than one indicate the amount by which

the Monte Carlo variance could be reduced by running the chains longer. In this case,

after the third intervention the chains had acceptance rates of 17-18% and R̂ = 1.01

indicating good convergence. See Figure 2.8 for trace plots and Table 2.2 for the

posterior π-marginals of 10 pairs selected at random from the 300 total pairs.

Following estimation of the posterior π-marginals, the MCMC sample is used to

estimate the improvement function h(α) for all unseen interventions α. This is done

using the Monte Carlo procedure described in section 2.4. In brief, from each of
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Figure 2.6: Topology and first 10 interventions on a 25-node example. This figure shows
the (unknown) DAG to be reconstructed in the 25-node example. Square
nodes indicate the locations of the first ten interventions as selected by the
active learning framework given an initial intervention at node 1. The large-
type numbers are labels for the nodes while the subscripts indicate the step at
which each intervention was performed.

Figure 2.7: Simulated data following intervention to node ‘3’ in the 25-node example. The
wild-type means µ0

i are indicated with an ‘x’, grey numbers are individual
observations, and values in color are the observed means.
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Figure 2.8: Trace plots for three chains at step 3 on the 25-node example. Only the 1e5
samples following the burn-in period are shown. The chains have acceptance
rates from 17-18% and exhibit good mixing with R̂ = 1.01.

the three chains we select Nout = 100 DAGs for estimating the outer expectation

and Nin = 10, 000 DAGs for the inner expectation. For each DAG in the outer

expectation and each action α we simulate nmc = 10 Monte Carlo samples from the

model (2.3). Note that this is not the same as the (unknown) data-generating model

(2.13). For each Monte Carlo sample we estimate new posterior π-marginals using the

Nin samples according to (2.13) and then estimate the entropies as in (2.11). These

are combined using the sample average as in (2.10) and then averaged a final time

over all DAGs in the outer expectation to estimate h(α). In this way, an estimate

is obtained from each chain. Plots of these estimates as in Figure 2.9 can then

be examined to either choose the next intervention or choose actions for which to

obtain further Monte Carlo samples. In simulations the next action is simply chosen

to minimize the average across chains.

There is no debating that the procedure for estimating the expected marginal

entropies is computationally intensive. However, it admits a number of efficiencies the

most important of which is being highly and trivially parallelizable. With almost no

effort the procedure above can be parallelized over actions, chains, DAGs in the outer

expectation and simulation draws. Given enough processors the expected entropies
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i j P (vj ≺π vi|D) P (vi ||π vj|D) P (vi ≺π vj|D)
2 4 0.03 (0.02) 0.64 (0.11) 0.33 (0.11)
4 15 0.25 (0.12) 0.59 (0.12) 0.16 (0.06)
6 22 0.48 (0.08) 0.50 (0.08) 0.02 (0.03)
9 15 0.36 (0.14) 0.64 (0.14) 0.00 (0.00)
10 11 0.40 (0.03) 0.59 (0.04) 0.01 (0.01)
13 22 0.26 (0.01) 0.63 (0.04) 0.11 (0.04)
16 20 0.02 (0.01) 0.75 (0.05) 0.24 (0.06)
16 21 0.01 (0.00) 0.58 (0.06) 0.41 (0.06)
17 25 0.01 (0.01) 0.39 (0.03) 0.60 (0.04)
22 24 0.00 (0.00) 0.38 (0.17) 0.62 (0.17)

Table 2.2: Some posterior π-marginals for the 25-node example. The table shows ten of
the 300 posterior π-marginal following interventions to nodes ‘1’, ‘2’, and, ‘3’.
Values are given as mean (standard deviation) from three chains. Ten pairs
were selected at random for space considerations.

from this example could be computed in a manner of minutes with the primary

bottleneck being collation of the many samples. In practice, we parallelize over actions

and the outer expectation with chains and simulation draws run serially, the former

outside the parallelization and the latter within. Using 16 cores with shared memory

each chain in this example took a few hours. Further efficiency could be gleaned by

grouping nodes that are close to interchangeable given the available information and

considering actions as random draws from these groups. Another option would be to

use an adaptive strategy in which actions are repeatedly separated into ‘better’ and

‘worse’ using smaller Monte Carlo samples with only the ‘better’ actions investigated

in subsequent rounds.

As seen in Figure 2.9, for our example the next intervention is α4 =‘4’. While

this is intuitively appealing given that we know the DAG structure in the simulation

setting, it should also be noted that an intervention at node ‘4’ is not statistically

distinguishable from interventions at nodes ‘11’, ‘12’, ‘13’, ‘14’, ‘16’, ‘18’, or ‘19’

given the Monte Carlo variance. On the one hand this could be resolved by drawing

additional Monte Carlo samples. On the other, the important thing to notice is

that previous interventions at nodes ‘2’ and ‘3’ have created a loose partition of
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Figure 2.9: Estimates of h(α4) after step 3 of the 25-node example.

the nodes into descendants of ‘2’, descendants of ‘3’, and descendants of neither.

What the plotted entropies tell us is that it is best to choose the next intervention

from among this last set containing the descendants of neither. When only a few

interventions have been done, our knowledge of the underlying network structure is

highly incomplete as there are many DAGs that describe the data well. However,

even with incomplete information some actions will be better than others. Rather

than chasing small differences in search of an optimal intervention, the real utility of

an active learning approach lies in choosing from among the better actions.

The estimated entropy of the posterior π-marginals following each of the ten bud-

geted interventions is shown in Figure 2.10. It is compared to 100 random draws

over the nine interventions to follow α1 = 1 shown as a box plot at step 10. Similar

comparisons are made in Figure 2.11 for two 15-node networks extracted from the

50-node Ecoli 1 and Ecoli 2 networks of the DREAM 3 competition [70]. In these

two examples all setting were as before except the signal was reduced from β = .65 to

β = .45. These figures clearly demonstrate the utility of active learning which results

in a lower marginal entropy after ten steps in all but a few cases. Indeed, it can be

seen that active learning already matches or exceeds the median performance of ten
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Figure 2.10: Entropy after each step in the 25-node example. The squares connected with a
line show the entropy after each step. Numbers within squares indicate nodes
at which interventions occurred. The box plot at step 10 gives the entropies
from 100 random draws over interventions 2-10. The red circles at each step
show the estimated marginal entropies from three separate Markov chains.

random interventions after either four or six interventions depending on the network.

2.5.3 Active Learning Performance on 10-node Networks

We conclude this section by investigating the performance of the active learning

framework on the five 10-node networks from the DREAM 3 competition [70]. For

each network we first generate 10 intervention data sets and then apply the active

learning approach described in section (2.2) and illustrated in the previous subsection.

The active learning approach is applied for selected initial interventions using a fixed

37



● ●

●

●

●162 205

211

226

234

257

263

299 311033 34

37838

39

44

2 4 6 8 10
30

40
50

60
70

80
90

step

es
tim

at
ed

 m
ar

gi
na

l e
nt

ro
py

21

16
26

23

20

22
25

37

29
31

●

●

●

30
40

50
60

70
80

90

●● ● ● ●12

23

3

41

5 6 7

85 94106 119 1210

13

177298

2 4 6 8 10

30
40

50
60

70
80

90

es
tim

at
ed

 m
ar

gi
na

l e
nt

ro
py

4

1

2

9

8

10

17

29
11

12
●

●

●

●●

●

30
40

50
60

70
80

90

Figure 2.11: Entropy comparisons in two 15-node examples. On the left are two 15-node
networks with squares indicating interventions under active learning and sub-
scripts giving the timing of those interventions. On the right are the entropy
paths for the particular sequence of interventions indicated. For compari-
son, box plots at step 10 gives the entropies from 100 random draws over
interventions 2-10.
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budget of 5 interventions as a stopping criterion. The entropy of the posterior π-

marginals (see (2.7a)) after 5 interventions is used as an evaluation criterion. For

each network and initial intervention the entropy of the active learning approach is

compared to 100 entropies using randomly selected interventions, with 10 draws over

(α2, ..., α5) for each of the 10 data sets.

The results are compared using box plots in Figures 2.12, 2.13, 2.14, 2.15, 2.16,

for the Ecoli 1, Ecoli 2, Yeast 1, Yeast 2, and Yeast 3 networks, respectively. For

both cases the initial intervention is given by the label on the horizontal axis. For

each initial action, α1, the bar plots show how many times each possible intervention

occurred among the first five across the 10 data sets and indicate that the interventions

selected are fairly stable. All posteriors were estimated using MCMC with partial-

order proposals with 1e5 samples and a 1e5 burn-in period for each of 3 chains. For

the active learning approach interventions were chosen using Nout = 100, Nin = 1e4,

and nmc = 10.

Depending on the initial action, active learning is either significantly better or no

worse on average than choosing interventions randomly. The initial interventions for

which there is no clear improvement share the common trait of having all or most

other nodes as descendants. Such interventions are valuable for uncovering descendant

relations, but they tell us little about the possible relations between pairs of nodes

that do not include the intervention target. Similar behavior would be expected for

leaf nodes with no descendants, as neither type partitions the node set. However,

whereas after an initial intervention on a leaf node the next intervention is more or

less random, for an initial intervention on a source node the next intervention will

often target the node with the largest perturbation. The lack of improvement in some

cases can also be attributed in part to the relatively small number of interventions

available as there is insufficient time for information to accumulate and make active

learning beneficial.
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Figure 2.12: Active learning performance at step 5 on Ecoli 1. Top: Box plots compar-
ing the entropy of the posterior π-marginals after five steps on the 10-node
Ecoli 1 network. Each pair of box plots compare the active learning approach
described in section 2.4 (right) to randomly chosen interventions (left). The
label on the horizontal axis indicates the node targeted by the first interven-
tion. Bottom: For each initial action, α1, the bar plots show how many times
each possible intervention occurred among the first five across 10 simulated
data sets.
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Figure 2.13: Active learning performance at step 5 on Ecoli 2. Top: Box plots compar-
ing the entropy of the posterior π-marginals after five steps on the 10-node
Ecoli 2 network. Each pair of box plots compare the active learning approach
described in section 2.4 (right) to randomly chosen interventions (left). The
label on the horizontal axis indicates the node targeted by the first interven-
tion. Bottom: For each initial action, α1, the bar plots show how many times
each possible intervention occurred among the first five across 10 simulated
data sets.

41



●

●

●

●

●

●

●

●

15
20

25
30

Yeast 1, 10 nodes, 5 interventions

α1

en
tr

op
y 

of
 p

os
te

rio
r 

π−
m

ar
gi

na
ls

●

●

●

15
20

25
30

1 3 4 5 10

sequential (left)
random (right)

1 6

1

1 6

3

1 6

4

1 6

5

1 6

10

Figure 2.14: Active learning performance at step 5 on Yeast 1. Top: Box plots compar-
ing the entropy of the posterior π-marginals after five steps on the 10-node
Yeast 1 network. Each pair of box plots compare the active learning approach
described in section 2.4 (right) to randomly chosen interventions (left). The
label on the horizontal axis indicates the node targeted by the first interven-
tion. Bottom: For each initial action, α1, the bar plots show how many times
each possible intervention occurred among the first five across 10 simulated
data sets.
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Figure 2.15: Active learning performance at step 5 on Yeast 2. Top: Box plots compar-
ing the entropy of the posterior π-marginals after five steps on the 10-node
Yeast 2 network. Each pair of box plots compare the active learning approach
described in section 2.4 (right) to randomly chosen interventions (left). The
label on the horizontal axis indicates the node targeted by the first interven-
tion. Bottom: For each initial action, α1, the bar plots show how many times
each possible intervention occurred among the first five across 10 simulated
data sets.
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Figure 2.16: Active learning performance at step 5 on Yeast 3. Top: Box plots compar-
ing the entropy of the posterior π-marginals after five steps on the 10-node
Yeast 3 network. Each pair of box plots compare the active learning approach
described in section 2.4 (right) to randomly chosen interventions (left). The
label on the horizontal axis indicates the node targeted by the first interven-
tion. Bottom: For each initial action, α1, the bar plots show how many times
each possible intervention occurred among the first five across 10 simulated
data sets.
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2.6 Performance on Benchmark Data

The DREAM competitions provide useful benchmark data for assessing the per-

formance of network reconstruction methodologies [53, 52, 70]. In this section, we use

data from DREAM 3, challenge 4, to assess the network reconstruction performance

of the path-length model (2.3) when fit using the MCMC techniques of section 2.3.3.

There are five 10-node networks in this benchmark data with realistic topologies; two

extracted from the gene regulatory network of E. coli, labeled Ecoli 1 and Ecoli 2, and

three extracted from the gene regulatory network of S. cerevisiae, labeled Yeast 1-3.

The benchmark data is in silico but is simulated from a set of stochastic differential

equations based on thermodynamics modeling both gene transcription and protein

translation [53].

Datasets for each network in the DREAM 3 competition consist of a single ob-

servation per gene for wild-type, as well as all knockouts and all knockdowns. Using

the computational model discussed above, knockouts are simulated by setting the

expression level of the target gene to zero while knockdowns are simulated by halving

the target’s transcription rate. The datasets also contain time-course data not used

in this chapter.

The difference between the knockout and knockdown data is accounted for by

modifying the prior on the relative magnitude of effects given in (2.3). Recall that

the latent βαi determines the relative position of µαi between µ0
i and either zero or

one, depending on ψαi . For knockouts, the prior used is βαi ∼ Beta(2, 2 + γαi ). The

prior for knockdowns is set so that at γαi = 1, i.e. i a child of α, the expected value

of β is half what it is for a knockdown. This gives a prior of βαi ∼ Beta(2, 6 + 2γαi ).

The path-length model given in (2.3) assumes the noise variance σ2 and the wild-

type means µαi are known. Since these are unavailable in the competition datasets

the following plug-in estimates are used. First, the wild-type means for each gene are

estimated by:
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1. concatenating observations of that gene across all experiments in which it was

not the intervention target;

2. discarding those observations more than 1.5 times the inter-quartile range from

the median;

3. using the median of the remaining observations as the estimate.

Similarly, the standard deviation σ is estimated by:

1. concatenating the differences between the observed values and the observed

wild-types across all experiments in which a particular gene was not the target;

2. discarding those observations more than 1.5 times the inter-quartile range from

0;

3. taking one-half the difference between the sample quantiles at Φ(1) and Φ(−1)

as the estimate. Here Φ is the standard Normal cumulative distribution func-

tion.

Using these plug-in estimates, we draw 2e5 samples from the posterior given all

experiments of the path-length model using MCMC with partial-order proposals as

described in section 2.3.3 with ρ = .9 and p = .5. The first 1e5 samples are thrown

out and the remainder used to estimate the posterior π- and γ-marginals. As in

the competition, DAG reconstruction performance is evaluated using Area Under the

Reciever Operator Characteristic (AUC-ROC) and Area Under the Precision Recall

Curve (AUC-PR) with edges ranked using the appropriate posterior γ-marginal. Con-

sidering the focus in this chapter on partial orders we also compute AUC-ROC and

AUC-PR for precedence relations with relations ranked according to the posterior

π-marginals. Results for the 10-node networks are in Tables 2.3 and 2.4 and are

presented alongside the top two performers from the original competition. We present

results for the path-length model under two separate priors; one is uniform over DAGs
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the other over partial orders. Given the number of experiments available there are

only small performance differences between the two, though the partial-order prior

does perform marginally better. Based on these results and earlier simulation studies,

we suggest the partial-order prior be used as a default.

Ecoli 1 Ecoli 2 Yeast 1 Yeast 2 Yeast 3
Partial-Order Prior 0.989 0.998 0.974 0.835 0.648

DAG Prior 0.929 0.982 0.975 0.791 0.645
Partial-Order Prior 0.827 0.916 0.831 0.677 0.542

DAG Prior 0.699 0.868 0.812 0.649 0.534
Team 315 0.710 0.713 0.897 0.541 0.627
Team 291 0.544 0.748 0.771 0.352 0.493

Table 2.3: AUC-PR comparisons on the DREAM 3 10-node networks. The top two rows
are the performance of our model in reconstructing the partial order. The
bottom four rows are for reconstructing the DAG; the best performer among
these values is in bold.

Ecoli 1 Ecoli 2 Yeast 1 Yeast 2 Yeast 3
Partial-Order Prior 0.997 0.999 0.983 0.830 0.727

DAG Prior 0.981 0.992 0.984 0.784 0.711
Partial-Order Prior 0.963 0.979 0.941 0.788 0.672

DAG Prior 0.922 0.962 0.938 0.758 0.662
Team 315 0.928 0.912 0.949 0.747 0.714
Team 291 0.794 0.856 0.944 0.590 0.715

Table 2.4: AUC-ROC comparisons on the DREAM 3 10-node networks. The top two rows
are the performance of our model in reconstructing the partial order. The
bottom four rows are for reconstructing the DAG; the best performer among
these values is in bold.

2.7 Conclusion

This chapter makes a number of contributions to the network reconstruction lit-

erature. First, we introduce a new class of models for intervention data based on

path-lengths as an alternative to conditional independence models. Though the set

of all minimum path lengths uniquely determine the DAG, path-length models shift

focus from the existence of individual edges to the existence of precedence relation-
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ships. Whereas conditional independence models necessarily focus on parent-child

relationships, path-length models emphasize ancestor-descendent relations. While

such models lack the broad scope of conditional independence models and do not

offer the same seamless link between observational and intervention data, they have

the advantage of being well-suited to settings where available data is incomplete for

a full network reconstruction.

This shift in focus from edges to paths is further developed by the introduction

of novel prior distributions over the space of DAGs based on partial orders. While

still non-informative, specifying a prior uniform over partial orders instead of DAGs

results in more natural prior marginals which place greater and non-vanishing weight

on a given pair of nodes having no order relation. In benchmark datasets the new prior

resulted in better network reconstruction as measured by AUC-PR and AUC-ROC.

Another benefit to the new prior is that it allows for a different take on sparsity; that

is, sparsity in terms of feedforward network motifs rather than strictly in terms of

edges.

Continuing the theme, an active learning framework based on greedily minimizing

the average marginal entropy of edges was adapted to this chapter’s focus on partial

orders by instead greedily minimizing the marginal entropy of precedence relations.

While no direct comparisons between these two approaches are carried out the new

approach is better aligned to this chapter’s goals and focus. In addition, a flexible and

highly parallelizable Monte-Carlo scheme for estimating the proposed improvement

function is developed.

Moreover, active learning aside, in settings with incomplete data for which indi-

vidual edges are not well identified it can be argued that these posterior π-marginals

provide a better summary than the corresponding edge posteriors. By moving up one

level abstraction, the posterior π-marginals make it easier to see the structural infor-

mation contained in incomplete data. At the very least, such a structural summary
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provides a useful complement to finer grained edge summaries.

In order to estimate these posterior π-marginals or any other posterior summary it

is necessary that we be able to efficiently sample the posterior distribution. The com-

plexity and geometry of the space of DAGs make this a challenging problem and this

challenge is often a limiting factor in the applicability of Bayesian approaches to net-

work estimation. In settings with incomplete data the challenge is that much greater

as the posterior generally has multiple modes that, although structurally similar un-

der path-length models, are not ‘close’ in the geometry resulting from the standard

approach to sampling the posterior. This challenge is alleviated to some extent by the

introduction of a novel proposal distribution for use within the Metropolis-Hastings

algorithm. The new proposal is based on sampling DAGs according to the partition

induced by partial orders effectively altering the induced geometry to better match

the posteriors being sampled. The new proposal is shown to improve mixing com-

pared to the standard approach and allows for Bayesian estimation on somewhat

larger networks than is typically feasible.
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CHAPTER III

Penalized Likelihood Estimation for Directed

Acyclic Graphs with Incomplete Partial-Order

Information

3.1 Introduction

There is a large literature on using penalized likelihoods to estimate the structure

of graphs. This is especially true for undirected Gaussian graphical models in which

the nodal variables are assumed to follow a multivariate normal distribution. In this

setting, nodes not connected by an edge correspond to variables that are conditionally

independent given the others. In the multivariate normal distribution two variables

are conditionally independent if and only if the corresponding entry of the inverse

covariance, or precision, matrix is zero. Edges thus correspond to nonzero entries in

the inverse covariance matrix. Covariance estimation dates to Dempster [17] and has

grown into a well-developed field. In high-dimensional settings a regularized estimate

is often necessary. This is generally accomplished by assuming the precision matrix to

be sparse; that is to have few non-zero entries relative to the total number of entries

and the number of available samples. Some notable contributions to estimation of

sparse inverse covariance matrices using `1-regularized likelihood include the graphical

lasso [22], neighborhood selection [56], the consistency results in [75] and [46], and also
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[48, 94, 3, 42]. Of particular relevance are methods penalizing entries in the Cholesky

factor assuming a natural ordering of the variables [48, 42] as this chapter deals

with the incorporation of order information into the estimation of directed networks.

Penalties based on extensions of the BIC have also been studied [21, 25].

There is an important distinction between the approach taken in many of the

papers just cited and the neighborhood selection approach [56]. The former jointly

estimate the entries of the precision matrix while neighborhood selection estimates

the dependencies node by node using the lasso [84]. The latter is much simpler

computationally and remains consistent owing to the consistency of the individual

regressions. However, there is a loss in efficiency as neighborhood selection does not

make use of global properties such as the positive definiteness of the target covari-

ance matrix. This is a theme we will return to when considering different ways to

incorporate order information into estimates for directed graphs.

Turning to directed graphs, there is an equally substantial literature on estimating

their structure. One prominent approach based on conditional independence tests

is the PC-algorithm [82] shown to be consistent in an appropriate sense for high-

dimensional (p > n) multivariate Gaussian distributions in [44]. To be precise, they

show that the PC-algorithm consistently estimates the undirected skeleton provided

the maximum degree in the true graph is smaller than the sample size n. Other

approaches based on searching the space of DAGs to minimize a penalized likelihood

score such as BIC have also been shown to be consistent; for the low-dimensional

case with p fixed and n → ∞ in [12] and for the high-dimensional case by [86]. As

discussed in the previous chapter, there is also a wealth of literature on estimating

directed graphs, i.e. Bayesian networks, when the nodes of the network represent

discrete random variables.

These consistency results are not for the DAG itself, but for the Markov equiva-

lence class consisting of DAGs encoding the same set of conditional independence re-
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lations, hence the same statistical model [87]. Graphs in the same Markov equivalence

class have the same undirected skeleton and the same set of v-structures, i→ k ← j.

An equivalence class of this sort can be characterized by its essential graph, also called

a Completed Partially Directed Acyclic Graph (CPDAG), in which undirected edges

i − j indicate nodes for which i → j in some members of the equivalence class and

i← j in others [2, 37]. This concept has been extended to interventional equivalence

[37].

Even when excluding cyclic graphs, the space of DAGs has super-exponential com-

plexity. On account of this, much of the literature is devoted to search algorithms for

finding high scoring graphs. Of particular relevance are Greedy Equivalence Search

[12] and Greedy Interventional Equivalence Search [37] both of which search over

equivalence classes instead of DAGs. In general, node-wise approaches akin to neigh-

borhood selection are inappropriate as the estimated graph may not be acyclic even

after transforming bi-directed to undirected edges.

However, when the nodes are accompanied by a linear ordering both cycles and ob-

servational equivalence are avoided allowing the network to be built up from estimates

of the parents of each node. This approach is studied in [79] in which the authors

characterize the global optimization problem as a series of node-wise `1-penalized re-

gressions and prove consistency by adapting the ideas of [56] to the context of directed

networks. In simulations they show this method outperforms the PC-algorithm and

a näıve application of the graphical lasso. This raises the question of how other types

of order information can be brought to bear on estimation of directed networks.

To study this question, we first define so-called incomplete partial orders as a tool

for incorporating order information into penalized-likelihood estimates of directed

graphs. The main idea is to provide a framework for restricting the space of al-

lowable DAGs by joining restrictions on the space of potential node orderings with

information on the existence of (unknown) paths connecting pairs of nodes. Both
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types of restriction arise from interventions of the type studied in the previous chap-

ter and partial orders provide a natural description of such information. However,

knowledge of the partial order structure may be incomplete, whence the designation

incomplete partial orders. The information content of an incomplete partial order

lies along a three-dimensional lattice and we present plots for visually comparing the

available information of different incomplete partial orders. The special case of a

known linear order with no additional structural information comprises a corner in

this lattice.

After defining incomplete partial orders, two methods for incorporating this struc-

tural knowledge into BIC-penalized regression are considered. In the first, edges are

jointly estimated using the structural information of incomplete partial orders to re-

strict the search over the space of DAGs. The second method discards some of the

information content in order to simplify estimation using a neighborhood selection

approach. Comparisons are made between and within methods at different points in

the information lattice.

3.2 Incomplete Partial Orders

Let G = (V,E) be a DAG and Π the partial order induced by reachability. As

in previous chapters the edge set E is unknown. However we will assume incomplete

information on the relations in Π stemming from a previous set of intervention ex-

periments or other prior knowledge. We call this incomplete information rather than

partial information to avoid confusion with the concept of a partial ordering of the

nodes in V . To understand the difference, notice that for the complete partial order

induced by reachability, Π, we have E ⊂ Π so that the graph structure is known

up to the presence or absence of feedforward motifs where i → j → k and i → k.

When Π is known, a number of potential edges can be excluded as (i, j) 6∈ Π implies

(i, j) 6∈ E. Contrast this with the situation in which only a subset P ⊂ Π of the
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Figure 3.1: Examples for the sets P and N defining an incomplete partial order. In the
DAG shown here on the left an intervention at node ‘2’ may reveal that nodes
‘4’ and ‘5’ are descendants. This information is formally specified by setting
P = {(2, 4), (2, 5)}. The intervention may also further restrict the space of
DAGs by revealing that certain paths do not exist. Some possibilities for such
negative constraints are: N = {(4, 2), (5, 2)}, N ′ = N ∪ {(4, 1), (4, 3)}, and
N ′′ = N ′ ∪ {(2, 1), (2, 3), (4, 1), (4, 3), (5, 1), (5, 3)}. The pairs (P,N), (P,N ′)
and (P,N ′′) are all valid incomplete partial orders consistent with the DAG
on the left. On the right is the essential graph or CPDAG representing the
equivalence class to which the DAG on the left belongs.

precedence relationships are known so that (i, j) 6∈ P does not imply (i, j) 6∈ E. The

following notations will be used to define incomplete partial orders. First, there is a

set of known (positive) relations P ⊂ Π. There is also a set of relations, N ⊂ Πc,

known to be null and consisting of ordered pairs of nodes known not to be connected

by any directed path. Several examples of an incomplete partial order consistent

with a specific DAG are given in Figure 3.1. P is required to be a partial order

and its transitive reduction is denoted by P̌ . Moreover, since G and Π are acyclic,

we will require that relations (i, j) which would make P cyclic be included in N . For

instance, for any P we have (a, b) ∈ P implies (b, a) ∈ N and also (a, a) ∈ N for all

a ∈ V . Likewise, we require a sort of transitivity so that if (a, b) ∈ P and (a, c) ∈ N

then also (b, c) ∈ N so that there are no implicit restrictions on the associated partial

orders. These ideas are collected in the following definition.
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Definition 3.1. Let Π be a (strict) partial ordering of a set V . Then the ordered

double (P,N) is called an incomplete partial order with respect to Π if the following

conditions are satisfied:

1. P ⊂ Π and is itself a (strict) partial order; i.e. P is irreflexive, transitive, and

antisymmetric.

2. N ⊂ Πc and (i, j) ∈ N for any (i, j) ∈ V × V such that P ∪ {(i, j)} is not a

partial order.

3. If (h, i) ∈ P and (h, j) ∈ N then (i, j) ∈ N .

For the complete partial order Π induced by the precedence relationships in G =

(V,E) we know the transitive reduction Π̌ is a subset of the edge set E since these

relations are not mediated by other edges in E. Though the same cannot be said for

an incomplete partial order (P,N), there is an analogous statement. The key is that

there must be an edge from i to j for (i, j) ∈ P̌ if there are no potential mediators

among the unknown relations. Formally, for (P,N) an incomplete partial order with

respect to a Π, (i, j) ∈ P̌ implies (i, j) ∈ Π̌ if and only if for all k ∈ V , (i, k) ∈ N

or (k, j) ∈ N . Call the collection of all such relations mandatory and denote the set

of mandatory relations by M = M(P,N). Call (P,N) strong if M = P̌ and weak

otherwise.

A final bit of notation will be useful. For a ∈ V and an incomplete partial order

(P,N), let Pa = {b : (b, a) ∈ P} denote the known ancestors of a, Na = {b : (b, a) ∈

N} denote nodes which must not precede a, and Ma = {b : (b, a) ∈M} the mandatory

edges known to be in E.

3.3 Comparing Types of Order Information

As discussed in the introduction, previous work has considered penalized likelihood

estimation of DAGs given a known linear ordering of the nodes [78]. Observational
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Figure 3.2: Visualizing the lattice of order information. The information content of an
incomplete partial order (P,N) with respect to a complete partial order Π can
be summarized using |P |, |N |, and |N∗|. On the right four incomplete partial
orders labeled 1-4 are plotted in |P | − |N | space showing the relative size of
the known ancestral relations P and the forbidden ancestral relations N . The
red line is there as a reminder that |N | ≥ |P | in all cases. On the left, the
magnitude for the set of forbidden ancestral relations is split into |N∗|, the
number of pairs with at least one forbidden direction, and the remainder |N |−
|N∗| indicating the number of pairs not connected by a directed path in either
direction. Incomplete partial orders on the vertical line at s =

(
d
2

)
correspond

to DAGs completely determined by their skeletons. The plotted incomplete
partial orders are: 1. no information, (∅, ∅); 2. incomplete information; 3. a
linear ordering, P = ∅, N = Lc; and 4. the complete partial order, (Π,Πc).
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equivalence is no longer an issue in this setting as the direction of any edge is fixed

a priori so that the estimation task is significantly simplified. A known linear order

of the nodes is a special case of an incomplete partial order. Namely, if L is a linear

order then the corresponding incomplete partial order is (P,N) = (∅, Lc) where the

complement is with respect to V × V \ {(a, b) : a = b}. Notice that this places no

restriction on the undirected skeleton.

By expanding either P or N it is possible for an incomplete partial order to carry

more information than a linear order of this type by further restricting the space of

allowable DAGs. For instance, suppose two linear orders L1 and L2 are known to

be linear extensions of Π and take N = Lc1 ∪ Lc2. For a concrete example, consider

again the DAG in 3.1 and let σ1(V ) = 12345 be the identity permutation, σ−1(i)

indicate the location of node i in the permutation, and define L1 = {(i, j) : σ−1
1 (i) <

σ−1
1 (j)}. Likewise, if σ2 = 13245 then L2 = {(i, j) : σ−1

2 (i) < σ−1
2 (j)} is another

linear extension. In this case, we have L1∪L2 = L1∪{(3, 2)} = L2∪{(2, 3)} and any

incomplete partial order (·, Lc1 ∪ Lc2) disallows DAGs with a precedence relationship

between nodes ‘2’ and ‘3’. Moving in the opposite direction, an incomplete partial

order can also carry less information than a linear order with an extreme example

being (P,N) = (∅, ∅) where no order information is available. Useful summaries of the

information regime are given by the cardinalities of P and N . At the population level

these quantities are bounded by, 0 ≤ |P | ≤ |Π| and 0 ≤ |N | ≤ |Πc| = d(d−1)−|Π|. In

practice, |Π| is unknown but the above bounds are useful for understanding simulation

results.

Much of the appeal of working from a known linear order comes from the fact that

the direction of all edges is identifiable for any skeleton. Since L is a linear order, for

all a, b ∈ V either (a, b) ∈ L or (b, a) ∈ L and the same is true of the complement

N = Lc. For instance, consider the CPDAG on the right of Figure 3.1 which has

three edges whose directions are unidentifiable solely from conditional independence
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information. However, if an incomplete partial order (P,N) is such that (3, 1) ∈ N

then the direction of the edge connecting nodes ‘1’ and ’3’ becomes identified. When

L is a linear extension of the DAG and Lc ⊂ N , clearly the direction of all edges is

identified.

Defining the set of unordered pairs N∗ = {{a, b} : (a, b) ∈ N or (b, a) ∈ N}, for

any incomplete partial order (P,N) the condition |N∗| =
(
d
2

)
is clearly sufficient for

this sort of a priori identifiability as all possible edges are then limited to having

a single direction. Less clear is whether this condition is necessary; i.e. do there

exist (P,N) with |N∗| <
(
d
2

)
for which two distinct but observationally equivalent

DAGs are consistent with the order information? A partial answer is available when

P = ∅; in which case |N∗| =
(
d
2

)
is necessary for identifiability of any skeleton from

observational data alone.

Together the magnitudes |P |, |N |, and |N∗| summarize the different sorts of infor-

mation carried by an incomplete partial order (P,N). Since each of these quantities

has integer values the information content of (P,N) lies at some point in a finite

three-dimensional lattice. The locations of different partial orders in this lattice can

be compared using a pair of two-dimensional plots as in Figure 3.2. The figure on

the right shows the number of ordered pairs in P and N respectively. Since we always

have |N | ≥ |P | the region below the diagonal is empty. Similarly, in the figure on

the left relating the magnitudes of N and N∗ the vertical axis is rescaled to omit the

empty region where |N | < |N∗|. The vertical line at the rightmost extreme of this

plot indicates the plane in the lattice along which at least one linear ordering of the

nodes is known. See section 3.5 for a detailed description of the incomplete partial

orders 1-4 indicated in the figure.
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3.4 Penalized Likelihood Estimation

Consider data arising from a linear structural equation model consistent with a

DAG G,

Yi =
∑

j∈pai(G)

βijYj + εi (3.1)

with {εi} independent, E[εi] = 0, var(εi) = σ2 a known constant, and pai(G) the

parents of i in G. Form the vector Y = (Y1, . . . Yd)
′, let D = (Yk)

n
k=1 collect multiple

realizations over the noise, and denote the log-likelihood by `(β;D). In this setting,

the log-likelihood can be split into a summation over terms for each node,

`(β;D) =
d∑
i=1

`(βi;D). (3.2)

This is also the case with unknown variance provided var(εi) = σ2
i , i.e. each noise

variables has its own variance. In this setting we should replace βi with θ = (βi, σi)

and β with θ in the log-likelihood.

In order to respect the information given by the incomplete partial-order (P,N)

we need to restrict the allowed sparsity patterns of β = [βij]. For any (complete)

partial order Π, let

S(Π) = {β ∈ Rd×d : βij 6= 0 ⇐⇒ (j, i) ∈ Π}, (3.3a)

and

Si(Π) = {β ∈ Rd : βj 6= 0 ⇐⇒ (j, i) ∈ Π}. (3.3b)

The sets S(Π) and Si(Π) represent all real matrices/vectors whose nonzero entries

are restricted by the ancestral relations in Π. Other useful sets include the set of all

59



(complete) partial orders consistent with an incomplete partial order (P,N),

Π(P,N) = {Π ⊂ V × V a partial order : P ⊂ Π,Π ⊂ N c}, (3.4)

and the set of graphs with bounded in-degree,

Gk = {G = (V,E) a DAG : ∀ b ∈ V, |{a ∈ V : (a, b) ∈ E}| ≤ k}. (3.5)

Write Π(P,N, k) = {Π ∈ Π(P,N) : Π̌ ∈ Gk} for the set of all partial orders consistent

with (P,N) whose transitive reductions have maximum in-degree k. Similarly Si(Π, k)

and S(Π, k) bound the maximum number of nonzero entries for each βi·.

3.4.1 Using `0-penalties for graphs with bounded in-degree

Having defined the sets above a standard approach to model selection using BIC

[76] can be formulated as the following penalized-likelihood problem,

β̂ = arg min
π∈Π(P,N,k)

arg min
β∈S(π,k)

−2`(β;D) + ||β||0 log n. (3.6)

The problem above is equivalent to minimizing BIC over all DAGs in Gk consistent

with (P,N), but the decomposition into separate inner and outer optimizations offers

insight into how it will be carried out. Beginning with the inner optimization, observe

that because the likelihood and penalty split into separate sums for each node, the

optimization problem can be decomposed along the same lines. That is, if

β̂i· = arg min
β∈Si(π,k)

−2`(β;D) + ||βi·||0 log n (3.7)

then β̂ = [β̂i·].

By limiting the number of nonzero entries in each βi· to sufficiently small k, for

moderate network dimension d, the individual regressions (3.7) are solvable by ex-
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haustive search. Specifically, for each of
∑k

j=1

(
d
j

)
subsets, of crude order O(dk), the

most expensive operation in solving the relevant regressions is inverting a k × k or

smaller matrix. These can be precomputed and stored so that when performing the

outer optimization the scores can be found by looking for minima over appropriate

index sets.

While the inner optimization is solvable using standard methods, the outer prob-

lem is a difficult combinatorial optimization. We tackle it using a stochastic search

modeled on the MCMC procedure in section 2.3.3. The basic idea is to run the

Metropolis-Hastings algorithm outlined there with the likelihood replaced by −1

times the scores minimizing the inner optimization above. One difference is that

only partial orders are sampled while DAGs are determined by solving the individual

`0-penalized regressions as just discussed. Another difference is that we are using

Metropolis-Hastings for stochastic optimization rather than for sampling a posterior

so that while running the Markov chains the lowest scoring β’s are retained including

those among rejected proposals. The proposal distribution should also be adjusted so

that proposals are confined to Π(P,N, k) but for simplicty we assign an infinite score

to graphs outside this region.

3.4.2 Neighborhood Selection

A neighborhood-selection approach solves each of the single-node regressions (3.7)

over the space of vectors with less than k non-zero entries in N c
i ∪ {i}. This discards

all of the information in P . In general, it can also fail to prevent paths in N from

appearing in the estimate as this approach only uses N to restrict parent and not

ancestral sets. However, there are instances for which this is not a concern. One

class of such exceptions occurs when for all i, j ∈ Ni implies Ni ⊂ Nj. An example

from this class is given by the second incomplete partial order described in the next

section.
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Another important class of exceptions occurs when |N∗| =
(
d
2

)
so that at least one

linear ordering of the nodes is available and an estimated network is fully determined

by its skeleton. In these settings the global problem is solved by neighborhood selec-

tion making it preferable to stochastic or greedy search. Finally, in situations where

the Markov equivalence classes are non-trivial and contain more than one graph neigh-

borhood selection can still be used to estimate the skeleton. The following section

compares stochastic search and neighborhood selection under different incomplete

partial orders.

3.5 Numeric Work

In this section we evaluate the impact of incomplete partial order information on

network reconstruction performance. Specifically we will compare performance under

four information regimes: 1. no order information a la [56], 2. an incomplete partial

order (P,N) described below, 3. a linear order a la [78], specifically the canonical

order, and 4. the complete partial order Π. Comparisons are made on the fixed 25-

node DAG shown in Figure 3.3 using data simulated from the model (3.1) with εi
iid∼

N(0, 1) and ρij ∼ Uniform(.2, 1) following the setup in [44]. There are 50 simulation

runs with both ρ and ε redrawn in each run. Estimates using stochastic search take the

minimum BIC over a thousand steps in the Metropolis-Hastings algorithm and use p =

.5 for sampling severed paths. All chains in the stochastic search had acceptance rates

from 5-20%. For both the stochastic search and neighborhood selection approaches

the search is restricted to graphs with a maximum in-degree of three.

The second incomplete partial order (2) can be viewed as arising from interventions

to nodes 1 thru 4 at the population level, i.e. without sampling errors. The descendant

sets for these interventions are D1 = {2, . . . , 24}, D2 = {5, . . . , 10}, D3 = {23, 24, 25},
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Figure 3.3: 25-node network used to compare information regimes. Four information
regimes are specified on this network using incomplete partial orders. Edges
connect 32 of 300 pairs of nodes. The first incomplete partial order is empty
giving no information. The second arises from interventions to nodes 1-4 and
partitions the graph into descendants of nodes 2, 3, and 4. The edges 1 → 2,
1 → 3 and 1 → 4 are known a priori in this regime. The third gives a linear
ordering with no additional information. The fourth gives the complete partial
order under which all but the six feedforward edges are given.
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and D4 = {11, . . . , 22}. The incomplete partial order (P,N) is given by,

P =
4⊎

a=1

{(i, j) : j ∈ Da}, N =
4⊎

a=2

{(i, j) : i ∈ D̄a, j ∈ D̄c
a} (3.8)

where D̄c
a = {a} ∪Da.

In Table 3.1 for σ known and Table 3.2 for σ estimated we compare the infor-

mation regimes in terms of the True Discovery Rate (TDR) defined as the ratio of

correctly estimated (directed) edges to the total number of estimated edges. Under

incomplete partial orders 1 and 2 the directions of estimated edges are non-identified

when using the neighborhood selection approach; bi-directed are treated indepen-

dently so that edges in the true DAG but estimated as bi-directed are counted as one

true positive and one false positive. With σ estimated the direction of these edges

are also non-identified in the model. For these information regimes we also provide

the TDR for the skeleton as separate rows in the table; the skeleton is estimated

by including edges that appear in either or both directions. Incomplete partial or-

ders two and four have nonempty P of which 2 and 26 ordered pairs, respectively,

are ‘mandatory’ edges meaning they can be identified from (P,N) alone. Corrected

TDRs excluding these edges appear to the right of the overall TDRs.

Reconstruction performance under the four information regimes is further com-

pared in terms of precision and recall at the four different sample sizes in Figure

3.4 for σ known and Figure 3.5 for σ estimated. Precision is the same as the TDR

while recall is the ratio of true positives to both true and false positives. All values

are uncorrected for edges given a priori from the information regime and, as in the

tables, bi-directed edges from neighborhood selection are treated independently.

Looking at the tables, we see that under all information regimes performing a

search over partial orders is uniformly worse than the neighborhood selection ap-

proach. This is true for both the directed and undirected TDRs and holds whether σ
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is known or estimated. The difference is most pronounced in the case of no informa-

tion but is evident under regimes two and three as well and also increases somewhat

with sample size. The box plots in Figures 3.4 and 3.5 tell a similar story with the

exception that the skeletal recall under incomplete partial order two is marginally

better under stochastic search.

For a known linear order as under information regime three, the difference in per-

formance is to be expected as neighborhood selection solves the global optimization

problem in a single sweep. It is, however, surprising with no or incomplete order

information as under regimes two and three. In part this likely reflects a failure of

the stochastic search to find a global minimum. As evidence consider that neighbor-

hood selection improves more rapidly with increasing sample size than does stochastic

search as can be seen in the box plots. The difference in performance can also be

attributed in part to the fact that neighborhood selection is not restricted to estimat-

ing a DAG so that including an incorrectly oriented edge in the estimated edge set

does not preclude also including the correctly oriented edge. When the orientation of

edges is weakly or non-identified this provides a substantial advantage.

Turning to comparisons of the information regimes, for reconstructing the directed

network there is a clear ordering from 1 to 4 among the regimes as expected. The same

ordering applies in terms of recall when estimating the skeleton but is less pronounced.

Interestingly, the information regime corresponding to the second incomplete partial

order achieves greater skeletal precision than does the case of a known linear order.

This reflects the fact that the second incomplete partial order places more restrictions

on the space of allowed edges than does incomplete partial order four; i.e. N(2) >

N(4) despite the fact that N∗(2) < N∗(4) as indicated in Figure 3.2.
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Overall Corrected
n 20 25 50 100 20 25 50 100

1-search 0.20 0.22 0.24 0.25
2-search 0.44 0.47 0.46 0.48 0.39 0.42 0.41 0.44
3-search 0.46 0.49 0.59 0.67

4 0.86 0.88 0.92 0.94 0.45 0.50 0.65 0.76
1-NS 0.30 0.34 0.40 0.44
2-NS 0.47 0.50 0.53 0.55 0.42 0.45 0.49 0.52
3-NS 0.53 0.59 0.72 0.80

1-search (skeleton) 0.36 0.40 0.46 0.49
2-search (skeleton) 0.58 0.61 0.64 0.67 0.54 0.58 0.61 0.65

1-NS (skeleton) 0.47 0.52 0.66 0.76
2-NS (skeleton) 0.68 0.71 0.80 0.85 0.64 0.68 0.78 0.83

Table 3.1: Comparison of true discovery rates with known error variance. Average true
discovery rates over 50 samples for each of the four information regimes. On
the top are values from stochastic search using all order information while on
bottom are results from the neighborhood selection approach. In regimes 2 and
4, respectively, 3 and 26 edges can be determined from the order information
alone. Values excluding these are given as the corrected true discovery rate
on the right. The standard errors of most estimates are close to .01 while the
standard errors of the corrected TDR under the complete partial order (4) are
around .03.

Overall Corrected
n 20 25 50 100 20 25 50 100

1-search 0.18 0.19 0.23 0.28
2-search 0.37 0.40 0.43 0.50 0.32 0.35 0.39 0.46
3-search 0.42 0.45 0.56 0.65

4 0.83 0.87 0.88 0.92 0.41 0.49 0.57 0.69
1-NS 0.23 0.27 0.36 0.41
2-NS 0.40 0.43 0.50 0.53 0.36 0.39 0.47 0.50
3-NS 0.45 0.51 0.65 0.77

1-search (skeleton) 0.35 0.37 0.45 0.51
2-search (skeleton) 0.54 0.57 0.64 0.69 0.50 0.54 0.61 0.67

1-NS (skeleton) 0.35 0.41 0.57 0.69
2-NS (skeleton) 0.56 0.62 0.74 0.80 0.52 0.58 0.71 0.78

Table 3.2: Comparison of true discovery rates with estimated error variance. Average true
discovery rates over 50 samples for each of the four information regimes. On
the top are values from stochastic search using all order information while on
bottom are results from the neighborhood selection approach. In regimes 2 and
4, respectively, 3 and 26 edges can be determined from the order information
alone. Values excluding these are given as the corrected true discovery rate
on the right. The standard errors of most estimates are close to .01 while the
standard errors of the corrected TDR under the complete partial order (4) are
around .02.
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Figure 3.4: Precision and recall comparisons of the information regimes with known error
variance. Each panel in the figure compares the reconstruction performance of
the stochastic search and neighborhood selection approaches under the four in-
formation regimes. Each pair of box plots corresponds to an information regime
with neighborhood selection on the left in orange and stochastic search on the
right in blue. Each column corresponds to a sample size, n ∈ {20, 25, 50, 100}.
Each row corresponds to a performance measure; from top to bottom: directed
precision, directed recall, skeletal precision, and skeletal recall.
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Figure 3.5: Precision and recall comparisons of the information regimes with estimated
error variance.
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3.6 Discussion

In this chapter we defined incomplete partial orders as a means for incorporating

prior information on the ordering of variables when estimating the edge sets of DAGs.

Incomplete partial orders are formulated in terms of known ancestral relations P

and null relations N that restrict the space of DAGs over which penalized-likelihood

estimation is performed. The information content of an incomplete partial order

(P,N) lies along a three-dimensional lattice based on the magnitudes |P |, |N |, and

|N∗| where N∗ is N viewed as a set of unordered pairs. A simple visualization based on

a pair of two-dimensional plots allows the information content of different incomplete

partial orders to be compared.

Ignoring the information in P , we investigate a neighborhood selection approach

previously studied for estimating undirected graphical models and directed models

given a linear ordering of the variables though using the `0-based BIC in place of an

`1 lasso penalty. The reconstruction performance of this approach is compared under

a variety of information regimes encompassing known linear orders as well as both

weaker and stronger restrictions on the space of DAGs. Estimates using this approach

show improved reconstruction performance under additional order information.

A second approach incorporating all of the information in (P,N) but requiring

stochastic search over a restricted space of DAGs is also considered. While this ap-

proach has the advantage of using all available information and always returning a

DAG the stochastic search algorithm is expensive and can lead to instability in the

estimates. In a simulation study, this manifested as a failure to improve reconstruc-

tion performance relative to the neighborhood selection approach. Nevertheless this

approach has the desirable property that the estimate is itself a DAG and also demon-

strates improved performance with additional order information. Two directions for

improvement come to mind. First, incorporating the order information into a greedy

search over equivalence classes is likely to improve algorithmic and consequently esti-
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mation performance. A related direction for future research would be characterizing

how order information affects identifiability as the authors in [37] do when stochastic

interventions are directly available. Conceptually this is a simple matter of examining

which DAGs lie in the intersection of an equivalence classes and an incomplete partial

order (P,N). However, in practical terms it remains unclear how to characterize this

intersection.
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CHAPTER IV

Network Reconstruction Using Nonparametric

Additive ODE Models

4.1 Introduction

4.1.1 Chapter Summary

Despite their utility, network reconstruction methods relying on conditional inde-

pendence models or direct cause-effect methodologies have trouble with feedforward

motifs and are are also generally limited to acyclic networks. For this reason, there is

a need for approaches tailored to time-series data to augment those that rely on direct

intervention experiments, especially as the former are often more readily available in

some domains. In this chapter, we introduce an approach to reconstructing directed

networks based on dynamic systems models. Our approach generalizes commonly

used ODE models based on linear or nonlinear dynamics by extending the functional

class for the functions involved from parametric to nonparametric models. Concomi-

tantly we limit the complexity by imposing an additive structure on the estimated

slope functions. Thus the submodel associated with each node is a sum of univariate

functions. These univariate component functions form the basis for a novel coupling

metric that we define in order to quantify the strength of proposed relationships and

rank potential edges. We show the utility of the method by reconstructing networks
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using simulated data from computational models for the glycolytic pathway of Lac-

tocaccus Lactis and a gene network regulating the pluripotency of mouse embryonic

stem cells. For purposes of comparison, we also assess reconstruction performance

using gene networks from the DREAM challenges. We compare our method to those

that similarly rely on dynamic systems models and use the results to attempt to

disentangle the distinct roles of linearity, sparsity, and derivative estimation.

4.1.2 Network Reconstruction using Time Course Data

Network reconstruction methods utilizing time-course data have the potential to

avoid some of the limitations of both conditional independence models and direct

cause-effect methodologies. For the former, dynamic versions of conditional inde-

pendence models can accommodate feedback loops by allowing cycles to unfold over

time. For instance, reconstruction methods based on statistical time series models

such as (sparse) vector autoregression [77, 24] or state space models [92] fit into this

framework, although they are not usually viewed this way [80]. Time-course data can

also be used to orient edges after estimating an undirected network from perturba-

tion experiments [78]. Moreover, time-course experiments under global perturbations,

including environmental stressors such as heat shock, as well as changes in initial con-

centrations, are generally easier to carry out than knockouts and, though requiring a

greater number of measurements, have lower setup costs. Finally, time-course meth-

ods are potentially useful not only for network reconstruction, but also for predicting

the response of the system to yet to be observed perturbations.

Network formalisms for time-course data are closely related to regression-style

methods of network reconstruction in that both treat the latter as a feature selection

problem. In the generic case, regression-based formalisms seek models that express

the observations associated with each node in terms of functions of observed values

on other nodes. The edges of the network are determined by the variables these
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functions depend on. For time-course data, the regression model often take the form

of a dynamic system expressed using ordinary differential equations (ODEs),

ẋ(t) = f(x(t)), (4.1)

where the rate of change in system components ẋ(t) is a function, f , of the component

trajectories, x(t). In this case, network reconstruction is a matter of finding the

nonzero elements in the Jacobian J = [ ∂fi
∂xj

]. Depending on the parametric form

of f , finding the nonzero elements of J may reduce to finding nonzero parameters.

A similar formulation is possible when (4.1) is replaced with a stochastic differential

equation appropriate for single cell dynamics [64]. Though our focus is on time-course

experiments, for completeness we note that nonlinear ODE models can sometimes also

be fit by solving a related linear systems using data from perturbed steady states,

potentially reducing the number of measurements required [57]. In the following

subsection, we discuss ODE models for time-course data in greater detail.

4.1.3 Differential Equation Models

Due to their long history of successful application in modeling physical phenom-

ena, ODEs provide an attractive class of models for time-course data. There are three

main decisions to be made when developing and fitting an ODE model for network

reconstruction from time-course data: the model class, an approach to parameter esti-

mation, and finally a variable selection method for the actual network reconstruction.

For instance the well-known Inferelator tool employs linear models, uses a (modified)

gradient-matching approach, and in its original form employs `1 regularization for

variable selection [5, 50, 29].

The first decision in developing an ODE model for time-course data is its para-

metric form. Typically the right-hand-side function (also called the slope function) is
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taken to be linear [49] or sigmoidal [93]. Linear ODE models are attractive because

they allow one to use a number of specialized techniques, like the ability to combined

multiple time-series from different experimenters [90]. While linear models also of-

fer computational advantages and inferential simplicity, most biological processes are

highly nonlinear. Nevertheless, as first-order approximations, linear models offer some

protection against model misspecification. Alternatively, one can take a nonparamet-

ric approach in which the right-hand-side function is subject only to smoothness

conditions. This flexible approach guards against model misspecification while allow-

ing for nonlinearities. Other choices of models can be found in [13], though many of

these have not been specifically applied to the network reconstruction task.

Approaches to estimating parameters in ODE models fall into two broad cate-

gories: trajectory matching and gradient matching. These two approaches differ in

how they deal with the challenge of having equations describing the derivatives, but

observations on the trajectories. The trajectory-matching approach involves choosing

parameters minimizing some loss function, such as the sum of squared errors, measur-

ing the discrepancy between a computed trajectory and the observations. If the tra-

jectories—solutions to the initial value problem—are not available analytically, they

can be found using numerical integration. The other approach, gradient-matching,

instead first estimates the unobserved derivatives and then selects parameters mini-

mizing a loss function measuring the discrepancy between the estimated derivatives

and the right-hand-side function. An important feature of a gradient-matching proce-

dure is how the derivatives are estimated. While trajectory matching is known to be

statistically efficient [4] (the parameter estimates achieve a lower bound on the asymp-

totic variance) it can be computationally intractable for large networks. This often

remains true even after one takes advantage of techniques such as differential elimi-

nation [61] for reducing the dimensionality of the system. Consequently, most ODE

methods for network reconstruction employ a gradient-matching estimation scheme.
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Fortunately, recent statistical work shows some gradient-matching procedures are also

statistically efficient [73, 71] or nearly so [32].

The final and arguably most important decision in ODE-based network recon-

struction is feature (variable) selection. After all, feature selection—deciding which

components should appear in each of the right-hand-side functions—ultimately de-

termines the estimated network. Feature selection often begins with a prescreening

step in which the pool of potential regulators is reduced using an information mea-

sure [50, 29]. Others choose edges using a threshold on the minimum of the objective

function achieved at the parameter estimates [93]. Despite many practical successes,

statistical methodology for feature selection in ODE models is an underdeveloped

area. As a result, feature selection in ODE-based network reconstruction proceeds

through a mixture of experience, convenience, and analogy.

Our approach, which we call Network Reconstruction via Dyanmical Systems or

Network Reconstruction via Dynamic Systems (NeRDS), differs from existing ODE-

based methods in the following respects. To begin, we model the right-hand-side

function using nonparametric, additive models which are both flexible and data-

adaptive. Like other approaches, NeRDS employs a gradient-matching procedure,

but differs in that the derivatives are estimated using smoothing-splines rather than

finite differences. Finally, we define a novel coupling metric to measure the effect

of one component on another allowing us to rank potential edges based on their

estimated coupling.

The remainder of the chapter proceeds as follows. Section 4.2 provides both

an overview and details of our estimation procedure. Next, in section 4.3 we report

numerical results on in silico data comparing the NeRDS methodology to other ODE-

based methods for network reconstruction. In section 4.4, we synthesize the evidence

these performance comparisons provide on the distinct roles of linearity and sparsity,

discuss the tradeoffs that accompany the flexibility of the method presented, and
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point to directions for future work.

4.2 Methods

Estimated Trajectories

Estimated Derivatives
Fit Additive ODEs 

via Sparse Back�tting

Select Tuning 

Parameters by GCV

Estimated Additive 

Functions Mapping

Trajectories to Derivatives
Coupling Metrics

Time Series Data
Estimated Trajectories

Estimated Derivatives

Estimated Additive 

Functions Mapping

Trajectories to Derivatives

Ranked List of Edges

Normalize Smooth

Stage 1

Stage 2

Stage 3

Figure 4.1: Schematic overview of the NeRDS workflow. The workflow is split into three
stages. The first stage involves normalizing and smoothing the data to obtain
estimates of the trajectories and derivatives. In this stage each component
within each experimental run is smoothed separately. In the second stage,
for each component an additive model expressing the derivative function in
terms of the trajectory functions is fit using the first stage estimates. In the
second stage information is combined across experiments, but the models for
each component remain separate. Finally, the third stage computes pairwise
couplings between components to yield a single ranked list of potential edges.
Figure 4.2 provides a more detailed graphical overview, while the full details
of each stage can be found in the Methods section.

4.2.1 Overview

Consider time-course data (Y r(tk), k = 1, ..., n) from experiments r = 1, ..., R.

Suppose the system of interest has d components (metabolites/genes) so that there

are also d nodes in the network to be reconstructed. Thus, each Y r(tk) ∈ Rd is a

(random) vector of observations on these d components at time tk. The data are
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taken to be noisy observations of an underlying dynamic system,


ẋr(t) = f(xr(t)) + ur(t); xr(0) = xr0, Process Model

Y r(tk) = xr(tk) + εrk, Observation Model.

(4.2)

The (known) inputs ur(t) and the (possibly unknown) initial conditions xr0 are as-

sumed to vary across experiments so that each trajectory is independently informa-

tive of the underlying dynamics. Finally, the measurement errors {εrk; k = 1, ..., n; r =

1, ..., R} are assumed to be independent, but not (necessarily) identically distributed.

We take a nonparametric approach in which the right-hand-side function f is

subject only to smoothness conditions with f ∈ C2 and the second derivative hav-

ing bounded L2 norm (see below for additional details). In contrast, other ODE-

based methods treat f as known up to some parameters—often assuming a linear

or sigmoidal function. The authors in [1] also model f nonparametrically but their

approach differs from ours in other respects. Modeling f nonparametrically allows

the model to adapt to arbitrary (smooth) nonlinear functions and offers robustness

against model mis-specification. However, this also increases the difficulty of the

estimation problem. A useful compromise for managing this trade-off is to assume

that f is additive so that each component is decomposed as the sum of d univariate

functions,

fi(x) =
d∑
i=1

fij(xj). (4.3)

Since we do not expect the network to contain edges from all d nodes to node i,

the method allows for these additive models to be sparse in the sense that for each

i several of the fij may be equivalently zero. With the additive structure in place,

we can state the smoothness conditions precisely as follows. Each of the univariate

functions fij is assumed to belong to the Sobolev space W 2
2 [0, 1] consisting of twice

differentiable functions such that f and ḟ are continuous while
∫ 1

0
[f̈(x)]2dx <∞.
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A second feature of the NeRDS methodology is its use of a gradient-matching

approach for fitting an ODE to the data. This approach is a straightforward exten-

sion of the parametric methods in [32, 7]. One challenge in ODE estimation comes

from the fact that while the trajectories are directly observed with error, only indirect

information is available on the derivatives. Traditionally this has necessitated compu-

tationally expensive numerical integration at each step in the optimization procedure

used for parameter estimation.

Gradient-matching approaches avoid this difficulty by first estimating the deriva-

tives on the left-hand side of (4.2) and then using these plug-in estimates to sim-

plify the parameter estimation. This not only avoids costly numerical integration,

but also decouples the parameter estimation allowing each component in (4.2) to be

learned separately. While gradient-matching approaches have a long history in ap-

plied work [20, 13], theoretical guarantees on their performance are quite recent [32].

Most ODE approaches to reconstructing regulatory networks take a gradient-

matching approach in which the derivatives are estimated using finite difference ap-

proximations [5]. However, in the presence of measurement noise, derivative estimates

based on finite differences are inefficient compared to smoothing-based estimates.

Smoothing also allows us to estimate the entire derivative, making use of the implicit

information between the observation times [32]. Moreover, the additional assumption

of smoothness of the underlying trajectories (specifically the continuity of ẍ) is not

overly cumbersome considering the smoothness required of f , and hence of ẋ, needed

to ensure the existence of a unique solution to the initial value problem (4.2) [31].

By using smoothing splines, we improve on existing gradient-matching procedures

in the network reconstruction literature by leveraging smoothness to estimate the

derivatives more efficiently.

To summarize, NeRDS is a nonparametric gradient-matching procedure consisting

of three stages: normalize and smooth, fit an additive ODE, and estimate coupling
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metrics. Details of each stage appear below.

4.2.2 Details of the Estimation Procedure

In this section we supply details for a gradient-matching procedure for estimating

the right-hand-side function f nonparametrically and using this estimate for network

reconstruction. This procedure consists of three stages: 1) smoothing; 2) fitting and

additive ODE; and 3) using the estimated ODE to compute the coupling between each

pair of nodes. See Figure 4.1 for a schematic overview, Figure 4.2 for a graphical

overview, and Algorithm 8 for a high-level description in pseudo-code.

Briefly, the three stages are as follows. In the first stage, we normalize the data

and then smooth using splines to obtain estimates of the trajectories and derivatives.

Normalization is done within each component across experiments, while smoothing

treats each of the d components and R experiments separately so that there are dR

distinct smoothing problems to be solved. The second stage consists of solving d ad-

ditive regression problems treating the estimated derivatives ˆ̇xi as response variables

and the smoothed trajectories x̂i as predictors. As with other approaches based on

regression, this limits attention to marginal relationships to avoid the combinatorial

explosion that would otherwise occur as the number of system components d grows.

Finally, in the third stage we compute the pairwise couplings using a normalized ver-

sion of the L2 norm of the estimated functions. These couplings allow for ranking

potential edges or estimating a network using a threshold. Due to the modularity

of the algorithm, adjustments can be made to stage 1 to account for changes to the

measurement model without subsequently affecting stages 2 or 3.

4.2.2.1 Stage 1: Normalize and Smooth

Normalization. We begin by normalizing the data to ensure all components are

on the same scale. In standard nonparametric modeling, it is common to scale all
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Figure 4.2: Methodological overview. This panel illustrates the high-level steps in the

NeRDS methodology. Panel A shows (simulated) data (Y r
i (tk))

n
k=1 (filled cir-

cles) that are noisy measurements of the underlying trajectory (dashed black

line) for P3G (i=3) in experiment 2 (r=2). Step 1: Smooth the data to esti-

mate the trajectory (solid green line). Panel B Step 2: Estimate the deriva-

tive (dashed black line) using the derivative of the estimated trajectory (solid

green line). Step 3: Aggregating estimates across experiments, fit an addi-

tive nonparametric function (dot-dash orange line) expressing the estimated

derivative in terms of the estimated trajectories. Panel C shows the compo-

nents of the additive function, each of which is a univariate function of a single

trajectory. Specifically shown here are {f̂3j(x̂
2
j (t))}6j=1 plotted against time.

Panel D shows the component functions {f̂3j}xj=1 plotted over their domain

(i.e. [mint,r x
r
j(t),maxt,r x

r
j(t)]). Step 4: Estimate couplings using an L2 norm

of the estimated component functions. In panels C and D, solid lines inidcated

regulators of P3G in the underlying network and dashed lines non-regulators.
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variables to have standard deviation one. This makes the resulting models invariant

to scale and allows regularization to proceed without additional weighting schemes.

However, since our observations are functional, we scale instead by the maximum

observed value for each component across experiments. This serves a similar purpose

and is also the approach taken in the DREAM competitions [53].

Using smoothing to estimate the trajectories and derivatives. The purpose of the

first stage is to obtain estimated time derivatives, ˆ̇xi(t); smoothed trajectory estimates

x̂i(t) are a welcome byproduct. Beginning with the trajectories, for each component

i and experiment r the estimated trajectories satisfy,

x̂ri (t) = arg min
x∈W 2

2 [0,1]

n∑
k=1

[yri (tk)− x(tk)]
2 + λr0,i

1∫
0

[ẍ(t)]2dt, (4.4)

where yri (tk) is the (normalized) observation of component i at time tk in experiment r

and W 2
2 [0, 1] is the Sobolev space discussed in the overview. The solution is a natural

cubic spline with knots at the unique time points [28]. The estimated trajectories are

given by the basis function expansion x̂ri (t) = b(t)γ̂ri where b(t) = (b1(t), ..., bn(t)) is

the (row) vector of smoothing-spline basis functions evaluated at time t and γ̂ri are

the coefficients solving a finite-dimensional version of (4.4),

γ̂ri = arg min
γ∈Rn

n∑
k=1

[yri (tk)− b(tk)γ]2 + γ′Ωγ, Ω`m =

1∫
0

b̈`(t)b̈m(t)dt. (4.5)

Derivatives estimates are obtained by differentiating the estimated trajectories,

ˆ̇xri (t) =
d

dt
x̂ri (t) = ḃ(t)γ̂ri . (4.6)

Both the trajectories and derivatives are easily computed using standard software

which also allows for efficient estimation of tuning parameters {λri0; i = 1, ..., d; r =
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1, ..., R} by cross validation or generalized cross validation.

4.2.2.2 Stage 2: Fit an Additive ODE

The second stage involves finding an additive nonparametric model relating the

estimated derivatives ˆ̇x(t) to the estimated trajectories x̂(t). Specifically, if uri (t) = 0

the second stage minimizes,

M̂n,r(f) =

1∫
0

[
ˆ̇xri (t)−

d∑
j=1

fij(x̂
r
j(t))

]2

dt+ λ1i

d∑
j=1

∫
Rj

[f̈ij(x)]2dx, (4.7)

so that the estimator is,

f̂i = arg min
fi∈D

R−1

R∑
r=1

M̂n,r(f), (4.8)

with D = {f : f =
∑d

j=1 fj, fj ∈ W 2
2 [Rj]} and Rj = [mint,r x̂

r
j(t),maxt,r x̂

r
j(t)]

an interval covering the estimated range of component j over all experiments. If

uri (t) 6= 0 it should be subtracted from ˆ̇xi(t) before solving the optimization problem

above.

The objective function (4.7) is minimized using sparse backfitting [74], see Al-

gorithm S2. Backfitting is a technique for fitting nonparametric additive models

by iteratively applying univariate smoothers [35, 8]. In our case this involves first

centering the estimated derivatives about the component mean and then successively

solving univariate smoothing-spline problems. For instance, to update the jth com-

ponent in the ith model, solve,

f̆ij = arg min
f∈W 2

2 [Rj ]
R−1

R∑
r=1

1∫
0

[(
˜̇xri (t)−

∑
`6=j

f̃i`(x̂
r
`(t))

)
− f(x̂r`(t))

]2

dt+λi1

∫
Rj

[f̈(x)]2dx,

(4.9)

where f̃i` are the current estimates and ˜̇xri are the centered derivatives. In practice,
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the integrals are approximated using quadrature and the above can be accomplished

by premultiplying the residual vector by a smoothing matrix Sj. Although this is

a useful simplification, rather than premultiplying by Sj we solve the corresponding

linear system using a QR decomposition to obtain updated estimates of the basis

expansion coefficients γi. The f̆ij are next centered for identifiability. Finally, in order

to induce sparsity, a soft-threshold is applied after solving the smoothing problem, so

that the update is,

f̃ij = (1− λi2/||f̆ ||2)+f̆ij. (4.10)

4.2.2.3 Tuning the smoothing and sparsity parameters

The estimators f̂i from stage two depend on tuning parameters λi = (λi1, λi2).

These tuning parameters depend on i because each of the d submodels is fit separately.

The smoothing parameter could be allowed to vary by component, λi1 = (λi1j)
d
j=1,

but at the cost of greatly expanding the computational cost required for tuning. In

our experience this additional flexibility does not lead to significant improvement in

terms of network reconstruction. The smoothing parameter λi1 controls the roughness

of the individual functions fij while the sparsity parameter λi2 induces sparsity by

setting some of the fij to zero. These tuning parameters are selected by minimizing

the Generalized Cross Validation (GCV) score suggested by [74],

GCV (λi) =
(nR)−1

∑R
r=1

∑n
k=1[ˆ̇xri (tk)− f̂i(x̂r(tk);λi)]2

(1− df(λi)/n)2
, (4.11)

where df(λi) =
∑d

j=1 dfj(λi)1[fij 6= 0] and dfj(λi) = tr(Bj(B
′
jBj + λi1Ωj)

−1B′j) is

the trace of the hat matrix projecting onto the span of the b-spline basis for the jth

component.

While GCV allows for automatic selection of tuning parameters, overfitting—selecting

λ1 or λ2 too small so the resulting model is overly complex—is always a concern. In
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fact, it is our experience from simulation studies that overfitting is the norm when

using GCV with our methodology. As a first pass, one may choose to select λ1 fairly

large, say, λ1 = 1, or reduce the number of knots employed, so that the resulting

additive functions are nearly linear. One can then decrease λ1 toward the value se-

lected by GCV or increase the number of knots until an appropriate balance between

flexibility and complexity is achieved, with the ‘appropriate’ balance depending on

context.

Likewise, the search range for λ2 should be chosen large enough to ensure con-

vergence of sparse backfitting in a reasonable number of iterations, yet small enough

to ensure a meaningful model. Within this range GCV can serve as an objective

guideline from which to justify specific departures.

Model diagnostics are an important tool for balancing complexity and flexibil-

ity. Plots overlaying estimated derivatives with linear and selected additive fits can

be used to discover places where the additional flexibility is needed to achieve an

adequate fit or where the complexity can be restricted without undue loss of fit. In

section C, we illustrate use of these diagnostics for select terms from the mouse system

explored in section 4.3.

4.2.2.4 Identifiability Issues

Given the complexity of the model class, it is natural to wonder about the identi-

fiability of the additive model. To this end it is relevant to note that the smoothing

matrices, Sj used to solve (4.7), are symmetric linear smoothers with eigenvalues in

[0,1]. Hence, the backfitting procedure will converge to a minimizer of (4.7) (cf. [35],

pg. 122).

However, this minimizer need not be unique despite the identifiability require-

ment
∫
Rj f̂ij(x)dx = 1. The uniqueness will depend on the concurvity space of the

smoothers [35]. Namely, let M1(Sj) be the space spanned by the first eigenvector of
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Sj. Concurvity can be thought of as the functional analog to collinearity. Then the

concurvity space is,

M = {(g1, ..., gd) : gj ∈M1(Sj),
d∑
j=1

gj = 0, }/(0, ..., 0). (4.12)

If M is empty then the solution to (4.7) will be unique. If not, the backfitting

algorithm will still converge, but the solution will depend on the initial estimates of

the fij.

In practice, we computationally check the identifiability of our fitted model in

the following way. Since we always initialize at fij ≡ 0, the initial estimates of the

fij depend on the order in which the backfitting is carried out. Thus, to check for

identifiability we permute this order a number of times (say 10) and compute the

resulting backfitting estimators, f̂aij, a = 1, ..., 10. We then compute pairwise L∞

distances between the estimates,

dab = sup
x∈Rj
|faij(x)− f bij(x)|. (4.13)

When these distances are of the order of the threshold ε used to define convergence

we take this as evidence of identifiability. Otherwise, the larger these distances the

stronger the evidence against the uniqueness of each fit is. In practical terms, it also

helps to overlay plots of the resulting fits and observe the extent to which they agree.

Often, when the model is not identified, it is the result of the data being insufficient

for the complexity of the model fitted. Hence, reducing this complexity by increasing

λ1 or λ2 until the model becomes identified is an attractive option that we have had

success with. From extensive simulation studies we find that having R ≥ d, at least

as many experiments as system components, generally suffices for identifiability.
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4.2.3 Coupling Metrics

The process model in (4.2) is specified by a set of coupled ODEs. The link between

the dynamic system (4.2) and the target network is formalized by defining edges based

on the relevant variables in the right-hand-side function f . Specifically, component j

regulates component i if the ith component of f explicitly depends on xj,

j → i ⇐⇒ ∂fi
∂xj
6≡ 0. (4.14)

In the general case, the partial derivative ∂fi
∂xj

(x(t)) is a function of x(t)—the

concentrations of all components at time t. Since our working models are additive,

fi+ =
∑d

i=1 fij, the partial derivatives ∂fi+
∂xj

(xj) depend at most on xj. Moreover,

∂fi+
∂xj

(xj) = 0 ⇐⇒ fij ≡ 0, (4.15)

allowing us to use the coupling metric,

ρij :=

√√√√∫Rj [f̂ij(z)]2dz

|Rj|
, (4.16)

with Rj the observed range of xj and |Rj| its length.

The coupling metrics are used to rank potential edges based on the strength of

their regulatory influence. If desired, a single estimated network can be obtained by

choosing a threshold for the coupling; only edges with coupling above this threshold

are included in the estimated network. Strategies for choosing this threshold are a

subject of ongoing research.

For recovering signed edges—corresponding to, say, promotion and inhibition—we
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define signed coupling metrics,

ρ+
ij :=

√√√√∫Rj [( ˆ̇fij(z))+]2dz

|Rj|
, ρ−ij :=

√√√√∫Rj [( ˆ̇fij(z))−]2dz

|Rj|
, (4.17)

by taking the positive (·)+ = max{·, 0} and negative (·)− = min{·, 0} parts, respec-

tively.

4.3 Results

We evaluate the performance of our method in silico using simulated data from

a variety of computational models for real biological systems. In each case, the

computational model is specified by a highly nonlinear ODE with the collection of

systems chosen to reflect a representative cross-section of canonical functional forms.

Specifically, we choose examples from: the S-system formalism [88], sigmoidal dynam-

ics popular with computational modelers [11], as well as the thermodynamics-based

models used in the DREAM competitions [53].

Within each system, we apply the NeRDS methodology for estimating the coupling

by constructing a nonparametric additive ODE and compare it to three standard

parametric alternatives: linear ODEs, linear ODEs plus `1 regularization (Lasso), and

Inferelator 1.0 [5]. Inferelator 1.0 also employs linear ODEs and the Lasso, but takes

a slightly different approach to estimation. The key differences are: 1) estimation of

derivatives by finite differencing rather than smoothing splines; 2) construction of a

response variable for each node combining the estimated derivative and trajectory at

each time point; and 3) use of the raw observations rather than smoothed estimates of

trajectories as covariates. All methods in the comparisons employ gradient-matching

and use (misspecified) ODE models to estimate the network connections from time

course data.

The models resulting from each method are used to rank potential edges in terms of
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their coupling. For the linear models, the estimated coupling is simply the appropriate

coefficient in the transfer matrix. The methods’ utility for network reconstruction are

then compared in terms of AUC-ROC and AUC-PR. In sparse models the order of

potential edges at the bottom of the ranked lists (corresponding to zero estimated

coupling) is arbitrary. To account for this we approximate the expected AUC under

random orderings of the remaining edges.

4.3.1 Metabolic Pathway in Lactocaccus Lactis

Regulatory Network for Lactocaccus Lactis

G6P

FBP

P3G
PEP

Pyruvate

Lactate

Glucose
ATP

P

Figure 4.3: Network topology for the Lactocaccus Lactis system. The dark nodes with
light text (glucose, ATP, and phosphorus) correspond to offline variables not
explicitly modeled. We focus on reconstructing the subnetwork among the
online variables (light nodes with dark text). The (simulated) data consists
of vector-valued time-series of the metabolites represented by the nodes. The
network, computational model and data for offline variables are taken from [89].

We begin by evaluating our methodology on an S-system developed to describe the

conversion of glucose to lactate via an Embden-Meyerhof glycolytic pathway in the
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Lactocaccus Lactis bacterium [89]. The system consists of nine metabolites of which

three (glucose, ATP, and phosphate) are offline variables not explicitly modeled. See

Figure 4.3 for the network topology. For evaluation purposes we aim to reconstruct

only the subnetwork among the six online variables for which the network formalism

(4.14) makes sense.

Data for the reconstruction were obtained by simulating a suite of six experiments

using the model in [89]. This suite was designed to induce curvature in the trajecto-

ries sufficient to make the nonparametric additive model identifiable. Moreover, the

experiments compliment one another by ramping up the coupling among targeted

subsets of edges. Specifically, this was accomplished by altering the initial abundance

of each metabolite in turn,


xri (0) = x0i, i 6= r

xri (0) = Mx0i, i = r.

(4.18)

The magnitude, M , of the simulated perturbations is a simulation parameter loosely

corresponding to how substantially the six experiments differ from one another.

Noiseless trajectories for each simulated experiment were computed via numerical

integration. The trajectories were sampled at n = 100 times {tk = k−1
n

49, k = 1, ..., n}

with noise added to simulate measurement error,

Y r(tk) = xr(tk) + εrk, εrki
indp.∼ N(0, σxri (tk)). (4.19)

We carried out simulations for σ ∈ {.02, .05} and M ∈ {15, 10, 5, 2, 1.5} with

500 repetitions for each (σ,M) pair. The simulated data from each repetition were

normalized as described in the Methods section and then used as input to four network

reconstruction algorithms: 1) a NeRDS additive ODE with four interior knots, λ2 = 0

and λ1 selected by GCV searching over the grid {.05z, z = 1, ..., 10}; 2) a linear ODE
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fit by gradient matching; 3) a sparse linear ODE fit using gradient matching and

lars [34]; and 4) Inferelator 1.0 [5]. All simulations were done using R [72].

Each of the first three methods utilize smoothing splines to smooth the trajectories

and estimate the derivatives, as described in Methods. For the additive ODEs the

sparsity parameter λ2 was set to 0 due to the small size of the system while the

number of knots and search-range for λ1 were selected by examining diagnostic plots

as discussed in Methods. Moreover, following the estimation of ODE parameters

using each algorithm, we ranked potential edges using the coupling metric introduced

in Methods. For the three approaches employing linear ODEs, this reduces to ranking

edges by the magnitude of estimated entries in the transfer matrix.

The mean AUC-PR and AUC-ROC from the Lactocaccus simulations appear in

Table 4.1 and Table 4.3.1, respectively. The dispersion of these measures among

the 500 repetitions can be seen in the box plots of Figure 4.4. Additional results

using reduced sampling densities, n ∈ {25, 50, 75}, appear in Figure C.3. In terms of

AUC-ROC , the additive ODEs used by NeRDS outperformed the competitors with

the exception of low-signal (M = 2, 1.5) high-noise (σ = .05) settings. Evaluated on

the basis of precision-recall scores the additive ODEs performed best in high-signal

settings (M ≥ 5), but dropped off considerably under more modest perturbations.

Taken together, these results indicate that moving from linear to additive ODEs

takes better advantage of sufficiently strong signals. In low-signal settings (M ≤ 2)

focused on precision-recall, the sparse methods, linear ODEs + Lasso and Inferelator,

outperformed the methods not utilizing sparsity.

90



●●●●●●●●

●
●

●

●
●

●

●
●

●

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

M = 15

●●●

●

●
●

●
●

●

●

●

●

●●
●

●

●●
●●●

●

●

●

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

N
eR

D
S

LM

La
ss

o

In
fe

re
la

to
r

σ = .02
σ = .05 ●

●
●
●●●

●●
●
●●
●

●
●
●●●●●●

●

●●●

●

●
●

●

●●

●
●

●

●

●

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

M = 10

●●●
●●

●

●

●
●
●●

●

●

●

●

●
●

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

N
eR

D
S

LM

La
ss

o

In
fe

re
la

to
r

σ = .02
σ = .05

●

●●

●

●
●

●
●●

●

●●●●●●●

●

●
●●●●●●
●
●

●●
●
●●

●

●

●

●●

●

●
●

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

M = 5

●●
●
●●●
●●
●●
●●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●
●
●

●

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

N
eR

D
S

LM

La
ss

o

In
fe

re
la

to
r

σ = .02
σ = .05

●
●

●

●
●●●

●●

●●
●

●
●

●

●

●●
●

●
●●●●
●

●

●●

●

●●●
●●●

●
●

●●
●●

●

●●

●

●

●

●●●●●●

●

●

●

●●●
●
●
●

●

●

●●●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●●

●

●

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

M = 2

●

●

●

●

●

●
●●

●

●

●
●●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

N
eR

D
S

LM

La
ss

o

In
fe

re
la

to
r

σ = .02
σ = .05

●

●●●

●●

●

●

●

●
●

●
●
●

●

●●●

●●●●

●

●●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●●
●
●●●●●●●
●

●

●●●
●●●●●●●●
●●
●
●●●●
●
●●●●●●●●●●
●
●
●
●

●
●

●●

●

●

●
●●
●
●
●
●
●

●

●

●

●

●

●●●

●
●●

●

●

●

●

●●●

●●●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

M = 1.5

●●

●

●
●
●
●
●

●

●

●

●

●
●

●
●●

●

●●

●
●
●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●
●
●
●

●

●●

●
●
●

●

●
●
●

●

●

●
●

●
●

●●

●

●
●

●●

●

●

●

●●

●

●

●

●●
●

●

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

N
eR

D
S

LM

La
ss

o

In
fe

re
la

to
r

σ = .02
σ = .05

●

●●●●●●●●

●
●

●●
●

●

●

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

M = 15

●●

●●●

●

●●●

●
●

●
●

●

●

●

●

●●
●

●

●●
●●●

●

●

●●

●

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

N
eR

D
S

LM

La
ss

o

In
fe

re
la

to
r

σ = .02
σ = .05

●

●

●

●●

●

●

●

●●●●

●●

●

●●

●
●
●●

●●

●●●●●●

●●●●

●

●●
●

●

●

●

●

●●

●●

●

●●●●●

●

●●

●

●

●●

●

●●

●

●●●

●

●●●●●●●

●●

●

●●
●
●●
●

●
●
●●●●●●

●

●●

●

●
●
●

●
●

●

●

●●

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

M = 10

●●●●●●●

●
●

●●●●
●

●

●
●
●●

●
●

●

●

●

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

N
eR

D
S

LM

La
ss

o

In
fe

re
la

to
r

σ = .02
σ = .05

●

●●●●●

●

●
●●

●

●●

●●

●

●

●

●●

●

●
●●●●●●
●
●

●

●●
●

●●

●

●
●

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

M = 5

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●
●
● ●●

●●
●

●●●

●

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

N
eR

D
S

LM

La
ss

o

In
fe

re
la

to
r

σ = .02
σ = .05

●

●

●●●

●

●
●

●

●

●

● ●
●

●●
●●

●

●●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

M = 2

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●
●

●

●●

●

●

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

N
eR

D
S

LM

La
ss

o

In
fe

re
la

to
r

σ = .02
σ = .05

●

●

●

●●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●●
●
●●●●●●●
●

●

●●●
●●●●●●●●
●●
●
●●●●
●
●●●●●●●●●●
●
●
●
●

●

●●●●●

●
●
●

●

●

●

●

●
●
●

●

●●

●

●●

●

●

●

●

●●
●●

●

●

●

●

●

●

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

M = 1.5

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●●

●●●

●

●

●

●

●

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

N
eR

D
S

LM

La
ss

o

In
fe

re
la

to
r

σ = .02
σ = .05

Figure 4.4: Performance evaluation on the Lactocaccus Lactis system. Upper row: Box
Plots showing area under the precision-recall curves from 500 Monte Carlo
simulations reconstructing the Lactocaccus network. Bottom Row: Box Plots
showing area under the ROC curves. Each plot in the row corresponds to
a different value of the perturbation parameter M (high to low from left to
right). Within each plot, box plots are arranged according to reconstruction
method; from left to right these are: additive ODEs (NeRDS), linear ODEs
(LM), linear ODEs plus a Lasso penalty (Lasso), and Inferelator. For each
method a pair of box plots are presented corresponding to low noise (σ = 0.02,
left) and moderate noise (σ = .05, right).
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σ = .02 σ = .05
M=15, Additive ODE .87 (.865, .867) .88 (.881, .886)
M=15, Linear ODE .82 (.819, .821) .81 (.812, .815)

M=15, Linear ODE + Lasso .65 (.650, .659) .64 (.632, .642)
M=15, Inferelator 1.0 .76 (.761, .769) .73 (.722, .731)
M=10, Additive ODE .92 (.918, .920) .91 (.909, .912)
M=10, Linear ODE .84 (.840, .841) .83 (.832, .835)

M=10, Linear ODE + Lasso .65 (.650, .657) .67 (.669, .677)
M=10, Inferelator 1.0 .75 (.741, .750) .74 (.734, .741)
M=5, Additive ODE .88 (.881, .883) .86 (.859, .862)
M=5, Linear ODE .80 (.802, .804) .78 (.776, .781)

M=5, Linear ODE + Lasso .71 (.710, .715) .73 (.723, .729)
M=5, Inferelator 1.0 .78 (.778, .787) .77 (.764, .772)
M=2, Additive ODE .55 (.549, .553) .49 (.490, .498)
M=2, Linear ODE .57 (.567, .569) .57 (.567, .572)

M=2, Linear ODE + Lasso .56 (.556, .559) .61 (.605, .612)
M=2, Inferelator 1.0 .62 (.618, .624) .60 (.592, .599)

M=1.5, Additive ODE .43 (.426, .428) .41 (.403, .410)
M=1.5, Linear ODE .47 (.464, .466) .44 (.439, .445)

M=1.5, Linear ODE + Lasso .49 (.490, .493) .57 (.568, .572)
M=1.5, Inferelator 1.0 .57 (.563, .568) .56 (.556, .562)

Table 4.1: Area under the precision-recall curve for the Lactocaccus Lactis system. Per-
formance comparison in terms of area under the precision recall curve of four
methods for reconstructing the Lactocaccus network. The figures given are av-
erages from 500 Monte Carlo repetitions along with confidence intervals for the
mean. The parameter M corresponds to the size of the perturbation used in
generating the time series while the standard deviation of the noise is propor-
tional to σ. Six time series, each with n = 100 observations, are used in the
reconstruction.
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σ = .02 σ = .05
M=15, Additive ODE .86 (.863, .864) .88 (.874, .877)
M=15, Linear ODE .84 (.836, .838) .82 (.822, .825)

M=15, Linear ODE + Lasso .65 (.650, .659) .64 (.632, .642)
M=15, Inferelator 1.0 .76 (.755, .764) .72 (.716, .727)
M=10, Additive ODE .91 (.904, .906) .90 (.895, .897)
M=10, Linear ODE .83 (.826, .828) .82 (.815, .820)

M=10, Linear ODE + Lasso .65 (.650, .657) .67 (.669, .677)
M=10, Inferelator 1.0 .75 (.744, .753) .74 (.733, .742)
M=5, Additive ODE .87 (.871, .874) .85 (.852, .856)
M=5, Linear ODE .78 (.781, .783) .73 (.726, .731)

M=5, Linear ODE + Lasso .71 (.710, .715) .73 (.723, .729)
M=5, Inferelator 1.0 .77 (.764, .774) .76 (.751, .759)
M=2, Additive ODE .66 (.663, .666) .59 (.584, .591)
M=2, Linear ODE .57 (.572, .574) .54 (.537, .542)

M=2, Linear ODE + Lasso .56 (.556, .559) .61 (.605, .612)
M=2, Inferelator 1.0 .61 (.612, .618) .59 (.586, .597)

M=1.5, Additive ODE .60 (.596, .599) .50 (.499, .506)
M=1.5, Linear ODE .50 (.499, .502) .45 (.450, .457)

M=1.5, Linear ODE + Lasso .49 (.490, .493) .57 (.568, .572)
M=1.5, Inferelator 1.0 .56 (.552, .559) .54 (.531, .540)

Table 4.2: Area under the ROC curve for the Lactocaccus Lactis system. Performance
evaluation for the Lactocaccus network using area under the ROC curve.
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4.3.2 Gene Regulatory Network in Mouse Embryonic Stem Cells

Regulatory Network for MeBSC

Oct4

Sox2Nanog

CDX2

GCNF GATA6

Figure 4.5: Network topology for the mouse embryonic stem cell system. This six-gene
regulatory network consists of 14 edges (regulatory relationships) which we
wish to discover from time-series observations of the gene expressions. The
network and the computational model used to generate these observations are
taken from [11].

Our second example for evaluating the NeRDS methodology is a computational

model for a six-gene regulatory network developed to explain lineage determination

of embryonic stem cells in mice [11]. See Figure 4.5 for the network topology.

The system of ODEs describing the network is based on a thermodynamic model

for gene regulation resulting in sigmoidal functional forms involving two- and three-

way interaction terms. The setup for the simulations was nearly identical to that

used for the Lactocaccus system described previously, with the exception that the

n = 100 observation times {tk = k−1
n

30, k = 1, ..., n} span a lesser duration. While

the additive ODEs again used four interior knots and fixed λ2 = 0, λ1 was chosen
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by GCV searching over the grid {10z, z = −2,−1.5,−1}. The number of knots

and search range were selected to be as close to linear as possible while providing

adequate fit as assessed by examining diagnostic plots from a representative dataset.

See Figure C.1 for an example and section C for more on this point.

Simulation results for reconstructing the mouse network appear in Table 4.3.2

and Table 4.4, showing mean areas under, respectively, the precision recall and ROC

curves from 500 repetitions at a variety of settings. The results are also presented

graphically using box plots in Figure 4.6 giving a sense of each method’s variability.

Performance using reduced sampling densities, n ∈ {25, 50, 75}, can be found in

Figure C.4.

For this network, the additive and linear ODEs were clearly the best performers

overall. As with the Lactocaccus network, additive ODEs were the best performers in

high-signal settings (M ≥ 5). Linear ODEs had a slight advantage in low-signal (M ≤

2) high-noise (σ = .05) settings, while the two methods are virtually indistinguishable

in low-signal (M ≤ 2), low-noise (σ = .02) settings. Looking at the boxlots in Figure

4.6, we see that in low-signal (M ≤ 2), high-noise (σ = .05) settings additive and

linear ODEs both occasionally achieved perfect reconstructions, but that linear ODEs

performed slightly better on average due by having higher worst-case performance.

To some extent the lack of robustness displayed may be an artifact of the simula-

tion setting as the need to do 500 Monte Carlo repetitions precluded us from checking

the stability of each model as discussed in the section Identifiability Issues above. In

practice, these stability checks should suggest higher values of λ1 so that the additive

ODEs of NeRDS become more similar to their linear counterparts. This also suggests

that, all else equal, users of NeRDS should favor higher values of the smoothness

parameter λ1 and also consider using fewer knots; see the discussion section for more

on this point.

Both linear and additive ODEs outperformed Inferelator as did linear ODEs +
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Lasso implying that this difference can not be attributed solely to sparsity. The

observed differences between linear ODE + Lasso and Inferelator likely reflect the

additional stability of the former due to the way in which the derivatives are es-

timated; in most cases, smoothing splines provide better derivative estimates than

finite differencing. Nevertheless, sparsity clearly did play a role as the two methods

not employing sparsity (NeRDS and linear ODEs) performed better than those that

did (linear ODEs + Lasso and Inferelator). Note that NeRDS did not employ sparsity

because we fixed λ2 = 0.

σ = .02 σ = .05
M=15, Additive ODE .96 (.961, .962) .96 (.958, .960)
M=15, Linear ODE .96 (.959, .960) .95 (.944, .948)

M=15, Linear ODE + Lasso .74 (.742, .746) .74 (.739, .743)
M=15, Inferelator 1.0 .65 (.640, .654) .61 (.604, .618)
M=10, Additive ODE .98 (.980, .981) .98 (.977, .978)
M=10, Linear ODE .96 (.963, .963) .96 (.953, .957)

M=10, Linear ODE + Lasso .75 (.744, .746) .74 (.736, .741)
M=10, Inferelator 1.0 .66 (.655, .668) .62 (.615, .629)
M=5, Additive ODE .98 (.984, .985) .98 (.979, .981)
M=5, Linear ODE .97 (.969, .970) .96 (.963, .965)

M=5, Linear ODE + Lasso .75 (.751, .753) .74 (.740, .745)
M=5, Inferelator 1.0 .70 (.696, .708) .65 (.641, .656)
M=2, Additive ODE .98 (.977, .979) .94 (.935, .941)
M=2, Linear ODE .98 (.976, .978) .96 (.953, .958)

M=2, Linear ODE + Lasso .76 (.758, .762) .74 (.741, .748)
M=2, Inferelator 1.0 .70 (.700, .707) .61 (.601, .614)

M=1.5, Additive ODE .97 (.966, .970) .88 (.873, .883)
M=1.5, Linear ODE .97 (.971, .974) .90 (.899, .908)

M=1.5, Linear ODE + Lasso .76 (.757, .763) .73 (.730, .740)
M=1.5, Inferelator 1.0 .66 (.651, .661) .55 (.548, .562)

Table 4.3: Area under the precision-recall curve for the mouse system. Performance com-
parison using area under the precision-recall curve for reconstructing the mouse
network.
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Figure 4.6: Performance evaluation on the mouse embryonic stem cell system. Upper row:
Box Plots showing area under the precision recall curves from 500 Monte Carlo
simulations reconstructing the Mouse network. Bottom Row: Box Plots show-
ing area under the ROC curves. Each plot in the row corresponds to a different
value of the perturbation parameter M (high to low from left to right). Within
each plot, box plots are arranged according to reconstruction method; from left
to right these are: additive ODEs (NeRDS), linear ODEs (LM), linear ODEs
plus a lasso penalty (Lasso), and Inferelator. For each method a pair of box
plots are presented corresponding to low noise (σ = 0.02, left) and moderate
noise (σ = .05, right).
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σ = .02 σ = .05
M=15, Additive ODE .96 (.961, .962) .96 (.957, .959)
M=15, Linear ODE .93 (.929, .930) .92 (.914, .919)

M=15, Linear ODE + Lasso .74 (.742, .746) .74 (.739, .743)
M=15, Inferelator 1.0 .59 (.587, .600) .56 (.559, .570)
M=10, Additive ODE .98 (.979, .980) .98 (.974, .976)
M=10, Linear ODE .94 (.936, .938) .93 (.926, .930)

M=10, Linear ODE + Lasso .75 (.744, .746) .74 (.736, .741)
M=10, Inferelator 1.0 .60 (.598, .611) .57 (.567, .579)
M=5, Additive ODE .98 (.982, .983) .98 (.975, .977)
M=5, Linear ODE .96 (.956, .958) .95 (.946, .949)

M=5, Linear ODE + Lasso .75 (.751, .753) .74 (.740, .745)
M=5, Inferelator 1.0 .65 (.644, .655) .60 (.588, .602)
M=2, Additive ODE .97 (.969, .972) .93 (.925, .932)
M=2, Linear ODE .97 (.968, .971) .95 (.943, .949)

M=2, Linear ODE + Lasso .76 (.758, .762) .74 (.741, .748)
M=2, Inferelator 1.0 .66 (.658, .665) .58 (.577, .589)

M=1.5, Additive ODE .96 (.958, .962) .87 (.861, .872)
M=1.5, Linear ODE .96 (.962, .967) .89 (.886, .896)

M=1.5, Linear ODE + Lasso .76 (.757, .763) .73 (.730, .740)
M=1.5, Inferelator 1.0 .63 (.630, .638) .54 (.534, .547)

Table 4.4: Area under the ROC curve for the mouse system. Performance comparison
using area under the ROC curve for reconstructing the Mouse network.
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4.3.3 DREAM 3 10- and 100-Node Networks

In addition to the computational models described above, we also evaluated the

NeRDS methodology on the 10- and 100-node networks from DREAM 3, challenge

4 [53, 52, 70]. This provides performance comparisons on a premier evaluation model

and including the 100-node networks allows us to demonstrate that NeRDS is scalable

despite its complexity relative to parametric models.

While the DREAM 3 networks represent an important point of comparison an

observation is in order. Unlike the Lactocaccus and Mouse examples in which the

time evolution of the system is fully observed, the DREAM 3 dynamics are only

partially observed. This is due to the dynamic system generating the data involving

unobserved proteins. The presence of unobserved variables adds an additional layer of

approximation for the working models to accomodate. Including unobserved variables

in the generating model has the advantage of being more faithful to the underlying

science but makes de novo exploration more difficult. For this reason, we should not

expect general exploratory models, such as linear ODEs or the additive nonparametric

ODEs used by NeRDS, to perform as well as methods that take full advantage of prior

scientific knowledge.

We used GeneNetWeaver [52] to generate, respectively, 10 and 100 multifactorial

time series for each of the five DREAM 3 10- and 100-node networks. As discussed

in [53], GeneNetWeaver generates multifactorial time series by integrating the in silico

model from various initial conditions. These multifactorial time series are meant

to simulate the networks’ response to global perturbations. Here ‘global’ signifies

that the targets of the perturbations are unknown, so that one can neither employ

direct cause-effect methodologies, nor incorporate such cause-effect information into a

dynamic model. Similar to the competition settings, these time series were generated

using ODEs and adding Gaussian measurement error with standard deviation .025

to the n = 21 observation times on each time-series. As before, we applied each of
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the four methods under consideration to reconstruct these networks on the basis of

these time series. We look at mean performance in terms of AUC-PR and AUC-ROC

over 500 realizations of the measurement error for the 10-node networks, and 10

realizations of the noise for each 100-node network. The results, displayed in Table

4.5 and Table 4.6 indicate that the additive ODEs we employ compare favorably

with other methods.

For the additive ODEs on the 100-node networks, we first computed GCV over a

range of λ1 and λ2 values for a single repetition from the Ecoli1 100-node network with

knots at all unique data points. To improve stability and limit complexity, we fixed

λ1 = .1 and λ2 = .001 across all nodes in the 100-node networks because these values

most frequently minimized GCV on the network examined. This has the effect of

eliminating variability due to tuning parameter selection. For the 10-node networks,

we used 4 knots and fixed λ2 = 0, but allowed λ1 to be selected by GCV from the

sequence λ1 ∈ {10z, z = −1,−.8,−.6, ..., .6, .8, 1}.

Unlike the DREAM 3 competition, in the comparison just discussed we did not

assume access to any knockdown or knockout data in accordance with our goal of

improving methodology for time-course data. However, for the sake of completeness,

we also provide performance comparisons on the actual data from challenge 4 of

the DREAM 3 competition. Due to the small number of time series available (4

and 46, respectively, for the 10- and 100-node networks), methods not utilizing the

knockout data—known to be most informative [53]—will not be competitive. For a

fair comparison, we first used the knockout data to estimate an influence matrix for

each network. Using this estimated influence matrix, we limited the pool of potential

regulators for each submodel when fitting additive ODEs to the time series data. In

summary, we screened potential regulators using the knockout experiments, and then

ranked those remaining in terms of the estimated coupling.

Our approach to estimating the influence matrix was similar to that used by the

100



top performers in the competition for estimating the first batch of edges [93]. Briefly,

the idea is to use t-tests to determine which genes in a particular knockout strain

have expression levels significantly different from wild-type expression. The t-tests

rely on a pooled estimate of the standard deviation of the measurement noise as well

as estimates of the mean wild-type expression for each gene. To improve the power of

the tests, one iterates between estimating the downstream effects of each knockout and

updating the estimates of the means and standard deviation based until the influence

matrix is left unchanged. Means are initialized to the wild-type observations and the

standard deviation is initially based on all but the direct targets of each knockout.

After each update of the influence matrix, the means and standard deviation were

updated using the observations estimated to be unaffected by the knockouts.

Estimating the influence matrix using t-tests required specifying a nominal sig-

nificance level, α. To do so, we plotted the estimated number of potential regu-

lators for several values of α. We then chose α by looking for an ‘elbow’ where

the slope of the curve sharply increases; see Figure C.2. After choosing α, addi-

tive ODEs were fit to the time-series and used to rank the potential edges. We set

λ2 = 0 due to the sparsity already introduced using the knockouts and chose λ1 by

GCV, searching λ1 ∈ {10z, z = −2,−1.5,−1, ..., .5, 1} for the 100-node networks and

λ1 ∈ {10z, z = −2,−1.8,−1.6, ..., .8, 1} for the 10-node networks.

The results are in Table 4.7, and include comparisons to teams 315, 304, 256

from the competition for comparison. Again, the results compare favorably partic-

ularly considering we made no attempt to optimize the unranked edges eliminated

by the prescreening step. We present these comparisons because team 315 was the

top performer overall, while teams 304 and 256 were the top performers among those

whose methods primarily made use of dynamic models. For this subset of teams,

Team 304 was the top performer (fifth overall) on the 100-node networks and Team

256 was the best performer (third overall) on the 50-node networks. Team 304 in-
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cluded the developers of Inferelator, which was a primary component in their larger

network reconstruction pipeline [50]. Notably, Team 256 also took a nonparametric

approach and utilized ODEs albeit using Bayesian estimation and a different strategy

for reconstructing the network from the fitted model [1]. Despite these similarities,

our approach offers the advantage of being scalable.

Network Method AUC PR AUC ROC
Ecoli 1 Additive ODE 0.16 (0.154, 0.163) 0.53 (0.519, 0.532)
Ecoli 1 Linear ODE 0.20 (0.189, 0.200) 0.60 (0.594, 0.608)
Ecoli 1 Linear ODE + Lasso 0.15 (0.150, 0.159) 0.46 (0.449, 0.461)
Ecoli 1 Inferelator 1.0 0.15 (0.146, 0.154) 0.49 (0.480, 0.494)
Ecoli 2 Additive ODE 0.20 (0.197, 0.204) 0.54 (0.537, 0.549)
Ecoli 2 Linear ODE 0.25 (0.238, 0.253) 0.58 (0.569, 0.583)
Ecoli 2 Linear ODE + Lasso 0.23 (0.229, 0.238) 0.50 (0.498, 0.506)
Ecoli 2 Inferelator 1.0 0.21 (0.207, 0.213) 0.52 (0.511, 0.520)
Yeast 1 Additive ODE 0.10 (0.102, 0.106) 0.45 (0.445, 0.456)
Yeast 1 Linear ODE 0.11 (0.110, 0.115) 0.45 (0.442, 0.452)
Yeast 1 Linear ODE + Lasso 0.12 (0.114, 0.119) 0.44 (0.434, 0.446)
Yeast 1 Inferelator 1.0 0.22 (0.211, 0.220) 0.56 (0.554, 0.565)
Yeast 2 Additive ODE 0.31 (0.307, 0.314) 0.53 (0.526, 0.536)
Yeast 2 Linear ODE 0.36 (0.358, 0.367) 0.59 (0.583, 0.593)
Yeast 2 Linear ODE + Lasso 0.27 (0.270, 0.278) 0.40 (0.397, 0.405)
Yeast 2 Inferelator 1.0 0.33 (0.325, 0.330) 0.45 (0.446, 0.453)
Yeast 3 Additive ODE 0.23 (0.228, 0.234) 0.48 (0.470, 0.481)
Yeast 3 Linear ODE 0.31 (0.308, 0.319) 0.56 (0.558, 0.571)
Yeast 3 Linear ODE + Lasso 0.28 (0.271, 0.279) 0.47 (0.463, 0.473)
Yeast 3 Inferelator 1.0 0.29 (0.290, 0.300) 0.48 (0.472, 0.484)

Table 4.5: AUC-PR and AUC-ROC for DREAM 3 10-node networks. Performance com-
parisons are for a single dataset generated using GeneNetWeaver. The simulated
data set contains 10 multifactorial perturbations with 21 observed time points
on each. The trajectories were simulated using ODEs only. Gaussian noise
with standard deviation .025 was added prior to normalization. Figures shown
are means with 95% confidence intervals computed from 500 realizations of the
measurement noise.
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4.4 Discussion

This chapter introduces a novel technique, NeRDS, for reconstructing networks

from time-series data. Unlike other ODE-based approaches which assume a para-

metric model, we take a nonparametric approach utilizing additive rather than linear

approximations. We also introduce a coupling metric that can be used as a general

tool for measuring the direct influence of one component on another in nonlinear ODE

models. The flexibility of the nonparametric approach allows researchers to proceed

with minimal assumptions other than the underlying smoothness inherent to ODE

models.

While our approach is flexible, like any nonlinear approach it comes at the price

of large data requirements. Specifically, for NeRDS to perform well we require as

many time series as network components and that these time series be sufficiently

informative. At a minimum, the trajectories of each component must exhibit enough

curvature for its regulatory effects to be disambiguated from others on at least some

of the time-series experiments. However, in general the number and quality of the

time series is much more important than the frequency at which these time series

our sampled, provided the sampling is sufficient to capture the system dynamics and

maintain some signal amidst the noise. Moreover, time-series data tend to be more

readily available then the more informative direct perturbation experiments, such as

gene deletion.

Indeed, network reconstruction methods for time series currently lag techniques

based on direct perturbations experiments. However their ability to make use of

more readily available data is a major advantage, particularly in the early stages

of understanding a system—precisely when network reconstruction is most relevant.

Given the limitations of current time-series approaches, our method adds to the toolkit

for network reconstruction and system identification. No single reconstruction method

will be best in all cases. In fact, community network reconstructions that combine
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information from a variety of algorithms are often superior [54]. Further it expands

the class of models available for time-course data to include additive ODEs, thus

enriching the collection of methods available for community-based reconstructions.

The flexibility of our method must be balanced against both model and computa-

tional complexity. Central to managing these tradeoffs are the tuning parameters: λ1

for controlling the smoothness of the additive functions and λ2 for managing network-

level sparsity. Larger choices for these parameters lead to simpler models, smaller

choices to additional complexity. For instance, as λ1 → ∞ our additive model sub-

sumes a linear models as a special case. The model complexity can also be reduced

by limiting the number of interior knots in the basis expansions for the additive func-

tions. While the GCV criterion offers an option for automatic tuning, it tends to err

on the side of complexity. Diagnostic plots such as described in the supplement are

an invaluable tool in making these selections subjectively. In practice, especially in

an exploratory context, we recommend researchers start near the linear case and add

additional complexity by decreasing λ1 or adding knots as needed. Indeed, early sim-

ulation studies on the systems studied in this chapter demonstrated that allowing too

much complexity (using too many knots or allowing λ1 to be too small) significantly

reduced performance of the additive ODEs.

Despite the relative complexity of NeRDS we were able to scale to the 100-node

networks because the methodology is both modular and easily parallelized. A key

reason for the latter is the marginal nature of the reconstruction method. Regression-

based approaches such as the current one construct the network by combining the

incoming edges selected (ranked) for each node individually. For a network with d

nodes this allows the model fitting to be split into d separate tasks. Likewise, the

most computationally intensive portion of our methodology—selecting tuning param-

eters—is trivially parallelized by splitting along each value of the tuning parameter

considered in the grid search.
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Moreover, by employing basis expansions the nonparametric method allowed us to

expand the model class while still only needing to solve linear systems. In addition,

since the submodels for all d nodes share a single feature space we need to compute

only once the matrices defining these linear systems and the decompositions needed to

efficiently solve them. Thus while tens of thousands of linear systems were solved in

fitting our additive nonparametric models, only a few hundred matrix decompositions

were required (d = 100 for each value of the smoothing parameter λ1 considered).

In relatively small systems, such as the Mouse Embryonic Stem Cell and Lacto-

caccus Lactis systems serving as our primary examples, it appears preferable to fix

the sparsity parameter λ2 at zero in advance. In contrast, the role of sparsity be-

comes increasingly important as the number of network nodes grows into the tens

and beyond. Moreover, inducing sparsity through λ2 offers the potential to skirt the

requirement of as many time series as nodes but at the expense of discovering fewer

true edges.

Many of the tradeoffs discussed above are inherent in the problem of reconstructing

biological networks and are by no means unique to our method. Generally, there is a

continued need for theory to better understand the tradeoffs and how best to manage

them. Theory is needed not just for managing tradeoffs within a modeling paradigm,

but also for experimental design. Network reconstruction methods based on time

series offer two advantages in this regard. First, they rely on the easiest to obtain

data and so offering early insight on how to proceed with future experiments. Also,

time series methods yield dynamic models useful for estimating the likely information

gain from potential experiments.

In order to move toward genome-scale network reconstruction, further work will

also be needed to explore how the method presented here fits in with efforts toward

data integration. For instance, within the additive framework it is not obvious how to

combine multiple time-series datasets not emanating from a single-lab or experimental
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setup as has been done for linear systems [90]. Determining how to integrate sources of

data other than time series, including prior information, network motifs from homol-

ogous systems, and steady-state data from perturbation experiments, among others,

is a promising direction for further research [40, 91, 33].
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APPENDIX A

Algorithms for Chapter II

Overview

This appendix collects algorithms used for carrying out structure MCMC with

partial-order proposals over the space of DAGs. The main algorithm, Algorithm

2, appears with a detailed discussion of the partial order proposals in section A. For

expositional clarity key portions of this algorithm are given separately as Algorithm

3 for proposing a partial order by removing a relation and Algorithm 4 for sampling

relations formerly mediated by the one removed.

Section A presents Algorithm 5 for sampling partial orders from a linear order L.

This algorithm is used by the partial order proposals but may also be of independent

interest for attempting to do importance sampling over the space of graphs. A key

property of this algorithm is that it provides a 1-1 mapping between the sequence of

randomizations and the resulting partial order. Moreover, this mapping can be set up

so that the probability of obtaining a given partial order is the same for all of its linear

extensions. A formal statement and proof of this property is given in Proposition

1.1. In section A, we present Algorithm 6 which is used for sampling a DAG once

a partial order has been proposed.
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Recall the following notation: we are sampling the space of DAGs on a node set

V with |V | = d, s =
(
d
2

)
is the total number of pairs, and ξ : V 2 → {1, . . . , s} is an

indexing of node pairs.

Structure MCMC with Partial-Order Proposals

Algorithm 2 performs structure MCMC over the space of DAGs using Metropolis-

Hastings. However, in contrast to proposals based on moving to adjacent graphs

trough addition, removal, or reversal of edges, here DAGs are sampled uniformly

from a partial order. At each step the algorithm makes a randomized decision on

whether to sample the current partial order or a new one. The probability of doing

so depends on the size of the partial order, i.e. how many graphs it contains relative

to the maximum, and a control parameter ρ that determines the maximal probability

of sampling the current partial order.

The heart of the algorithm is the partial-order proposal distribution q1(π′|π) pre-

sented at a high-level in Algorithm 3. This algorithm can best be understood as

operating on the associated transitive reductions. Viewing the transitive reduction,

π̌, as a DAG with no feedforward motifs, the moves proposed consists of familiar

edge additions and deletions. Edge additions are only allowed between node pairs

(i, j) such that i ||π j. When forming π̌′ by adding (i, j) to π̌, we also add it to π′

and remove from π̌′ all edges that have become feedforward motifs after the addition.

However, so that addition of (i, j) will be reversible by deletion of (i, j), there must

be an opportunity for the removed edges to be restored as well. This is accomplished

by randomized decisions to include (h, k) ∈ π̌′ if removal of (i, j) severs the path in

π̌ from h to k. In other words, the algorithm samples to include (h, k) for all h ∈ Āi,

i and its ancestors, and k ∈ D̄j, j and its descendants. Of course, (i, j) is included

without sampling. Not all of these ‘severed’-relations are sampled for inclusion; in-

stead they are sampled in a specific order to ensure there is a unique sequence of
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randomizations leading from π̌ to π̌′ conditional on the removal of (i, j). The edges

that are sampled are done so with a fixed probability p ∈ (0, 1). Formally, define the

paths potentially severed by removing i, j as the set of pairs,

Si||j = {(h, k) 6= (i, j) : h ∈ Āi, k ∈ D̄j, |πξ(h,k)| > 0}.

The modifier potentially is necessary here since not all paths connecting h to k, for

(h, k) ∈ Si||j, must traverse the edge (i, j). Relations in S can be sampled using

Algorithm 4 which makes use of Algorithm 5 to ensure there is a unique sequence

of randomizations leading to the proposal π′. The structure of the algorithm is such

that (h, k) will always be included without sampling when there exists a path in π̌

from h to k that does not involve (i, j).

Algorithm 2 Structure MCMC with Partial-Order Proposals

1: Input: Initial structures γ0, π0, π̌0, control parameters ρ and p, sample size N
2: Set m = (d− 1)(d− 2)/2
3: for n=1:N do
4: Sample U1, U2 ∼ U(0, 1)
5: if U1 < ρ2||π

n−1−π̌n−1||0−m then
6: γ′ ∼ q2(·|π)
7: α← [p(D|γ′)p(γ′)]/[p(D|γ)p(γ)]
8: else
9: π′ ∼ q1(·|π; p)

10: γ′ ∼ q2(·|π′)
11: α← [p(D|γ′)p(γ′)q2(γ|π)q1(π|π′; p)]/[p(D|γ)p(γ)q2(γ′|π′)q1(π′|π; p)]
12: end if
13: if U2 < α then
14: γn ← γ′

15: else
16: γn ← γn−1

17: end if
18: πn ← π(γn)
19: π̌n ← π̌(πn)
20: end for
21: Output: A sample {γ1, ..., γN} from p(γ|D)
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Algorithm 3 Partial Order Proposals

1: Input: partial order π, transitive reduction π̌, and control parameter p ∈ (0, 1)
2: Initialize π′ ← π
3: Select a node i at random
4: Find J0(i) = {j : πξ(i,j) = 0} and J1(i) = {j : j ∈ chi(π̌)}.
5: if J0(i) ∪ J1(i) = ∅ then
6: return to beginning and pick a new node i
7: else
8: Select j from J0(i) ∪ J1(i) at random
9: end if

10: if j ∈ J0(i) then
11: Set π′ξ(i,j) ← 1[i < j]− 1[i > j] and form π̌′

12: else
13: Set π′ξ(i,j) ← 0 and π̌′ξ(i,j) ← 0
14: Update π′ and π̌′ by systematically sampling severed paths Si||j.
15: end if
16: Output: partial order proposal π′ and π̌′

Algorithm 4 removing (i, j) from π̌ and sampling severed paths

1: Input: π, π̌, L, (i, j) and p
2: Set phk ← 1[(h, k) ∈ Π̌(π)] for all pairs (h, k)
3: Set phk ← .5 for all (h, k) ∈ Si||j
4: Set pij ← 0
5: Sample π′ using algorithm 5 with preferences p
6: Output: π′, π̌′
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Proofs for Lemmas 2.1 and 2.2

Lemma 2.1 The Markov Chains generated by Algorithm 2 are reversible and

have stationary distribution p(γ|D).

Proof: Following Hastings [36], we will show that transition probabilities and

p(γ|D) satisfy detailed balance implying the statements above.

For γ 6= γ′ the transition probabilities are given by the product of the probabilities

for proposing a move and accepting the move,

κ(γ′|γ) = q2(γ′|π̌′)q1(π̌′|π̌)× α(γ′|γ), (A.1)

where the acceptance ratio is,

α(γ′|γ) =
p(γ′|D)q2(γ|π̌)q1(π̌|π̌′)
p(γ|D)q2(γ′|π̌′)q1(π̌′|π̌)

∧ 1. (A.2)

By the complement rule,

κ(γ|γ) = 1−
∑
γ′ 6=γ

q(γ′|γ)α(γ′|γ) (A.3)

which includes the probability that the proposal is in fact γ. Hence,

p(γ′|D)κ(γ|γ′) = p(γ′|D)× q2(γ|π̌)q1(π̌|π̌′)× p(γ|D)q2(γ′|π̌′)q1(π̌′|π̌)

p(γ′|D)q2(γ|π̌)q1(π̌|π̌′)

= p(γ|D)q2(γ′|π̌′)q1(π̌′|π̌) ∧ p(γ′|D)q2(γ|π̌)q1(π̌|π̌′), (A.4)

and by the symmetric argument,

p(γ|D)κ(γ′|γ) = p(γ′|D)q2(γ|π̌)q1(π̌|π̌′) ∧ p(γ|D)q2(γ′|π̌′)q1(π̌′|π̌). (A.5)
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Putting the two together we have the detailed balance condition,

p(γ′|D)κ(γ|γ′) = p(γ|D)κ(γ′|γ). (A.6)

�

Lemma 2.2 The Markov Chains generated by Algorithm 2 are irreducible.

Proof: Let γ, γ′ ∈ Γ be two distinct DAGs. It is required to show that the hitting

time for γ′ is finite with positive probability conditional on the chain having started

at γ; i.e. Pγ(σγ′ < ∞) > 0 where σγ = inf{n ≥ 0 : γn = γ}. This can be shown by

constructing an explicit sequence of moves leading from γ to γ′.

Let π̌ and π̌′ be the associated transitive reductions (viewed as sets) and ξ :

V × V →
(
d
2

)
an ordering on the nodes. Let R1, . . . , R|π̌| ∈ π̌ such that ξ(R1) <

· · · < ξ(Rn) order the relations in π̌. Define π̆0 = π̌ and π̆t = π̆t−1 \ Rt and observe

that π̆|π̌| = ∅ . Likewise, let R′1, . . . , R
′
|π̌′| ∈ π̌′ such that ξ(R′1) < · · · < ξ(R′n) order

the relation in π̌′ and define π̆′0 = ∅ and π̆′t = π̆t−1 ∪ Rt so that π̆′|π̌′| = π̌′. Finally,

choose arbitrary DAGs consistent with each partial order defined above, gt ∈ Γπ̆t and

g′s ∈ Γπ̆′s for t = 1, . . . , |π̌| and s = 1, . . . , |π̌′|. We have,

Pγ(σγ′ <∞) ≥ Pγ(σ∅ <∞)P∅(σγ′ <∞)

>

|π̌|∏
t=1

p(gt|D)q2(gt−1|π̆t−1)q1(π̆t−1|π̆t)
p(gt−1|D)q2(gt|π̆t−1)q1(π̆t|π̆t−1)

× (A.7)

|π̌′|∏
t=1

p(g′t|D)q2(g′t−1|π̆′t−1)q1(π̆′t−1|π̆′t)
p(g′t−1|D)q2(g′t|π̆′t−1)q1(π̆′t|π̆′t−1)

> 0

where the last inequality follows because each term in the product is positive. �
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Backward Partial Order Sampler

Algorithm 5 is a backward sampler for sampling a partial order π consistent

with a linear order, L. Aside from L, it takes as input a matrix of pairwise preferences,

p ∈ [0, 1]d×d, used to determine the probability a particular relation is included in

the partial order when this relation is sampled rather than required. We call it a

backward sampler because the outermost loop, indexed by i, begins with the last

but one element in the linear order and then proceeds backwards through the linear

order. In the inner loop, indexed by j, relations from Li to Lj are added according

to the following scheme. Whenever a relation is not required, it is included with

probability determined by the appropriate element in p; initially, no relations are

required. Each time a relation is added, we require all additional relations needed

to maintain transitivity. When a relation is added because it is required rather

than sampled, it does not contribute to the probability of drawing that particular

partial order. This is important because it means there is a unique sequence of

randomizations leading from L to π.

Recalling that Π̌ is the transitve reduction of Π, where Π is the partial order π

viewed as a set, the required relations are exactly those in Π \ Π̌. Using this notation,

the (log)-probability of sampling Π from L using Algorithm 5 is,

log q1(Π;L, p)

=
∑

1≤i<j≤d 1[(i, j) ∈ Πc ] Π̌]
{

1[(i, j) ∈ Π] log pLiLj+

1[(i, j) ∈ Πc] log(1− pLiLj)
}

=
∑

(i,j)∈Π̌ log pLiLj +
∑

(i,j)∈Πc log(1− pLiLj). (A.8)

Proposition 1.1. Let L and L′ be distinct linear extensions of a partial order π.

Under Algorithm 5, q1(π;L, p) = q1(π;L′, p) provided for all (i, j) 6∈ Π(π), pij =

pji.
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Proof: First observe that Π ⊂ L for all L ∈ Lπ. Hence, for all (i, j) ∈ Π we have

i <L j for all linear extensions L. If (i, j) ∈ Π̌ then Algorithm 5 includes (i, j) with

probability pij for all such L. If (i, j) ∈ Π/Π̌ the edge is included without sampling

under all linear extensions, since for any mediating path i ≺π m1 ≺π ... ≺π m` ≺π j

we have also i <L m1 <L ... <L m` <L j for all L ∈ Lπ. Thus the first sum in (A.8)

is equal for all L ∈ Lπ. It follows directly from the assumption that the second sum

is equal for all linear extensions. �

Remark 1.2. By the proposition above, if it is desired that all sampled π be equiprob-

able under all linear extensions, the preferences p must either equally prefer i ≺π j

and j ≺π i relative to i||πj or take one of pij, pji to be one and the other zero. This

is always the case when called by Algorithm 2.

Algorithm 5 Backward π-sampler: sample a partial order π from a linear order L
with preferences p

1: Input: linear order L ∈ σ(V ), preferences p ∈ [0, 1]d×d

2: Initialize: π = π̌ = (0, . . . , 0) ∈ Zs, r = (0, ..., 0) ∈ Ns, q = 0
3: for i = (d− 1) : 1 do
4: for j = (i+ 1) : d do
5: if rξ(Li,Lj) = 1 then πξ(Li,Lj) ← 1[Li < Lj]− 1[Li > Lj]
6: else sample u ∼ Uniform(0,1)
7: if u < pLiLj then
8: π̌ξ(Li,Lj), πξ(Li,Lj) ← 1[Li < Lj]− 1[Li > Lj]
9: and q ← q + log(pLiLj)

10: else q ← q + log(1− pLiLj)
11: end if
12: end if
13: end for
14: if j < d then
15: for k = (j + 1) : d do
16: if πξ(Lj ,Lk) 6= 0 then
17: rξ(Li,Lk) ← 1
18: end if
19: end for
20: end if
21: end for
22: Output: π ∈ {−1, 0, 1}s, transitive reduction π̌, and log probability q
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DAG-Sampler

Algorithm 6 is used to sample DAGs specified as shortest paths between pairs

in V . It takes as input a partial order π, any linear extension L, and a matrix

of probabilities D. Here Dij is the probability with which edge i → j is included

when sampled. Typically, D ≡ pγ for pγ ∈ (0, 1). However, unequal preferences are

equally valid and may be useful for improving acceptance rates in some settings. The

algorithm returns a DAG consistent with π by independently sampling feedforward

edges as they are encountered. Observe that for pγ = .5 the algorithm uniformly

selects a DAG from Γπ.

Algorithm 6 γ-sampler: sample a DAG from a partial order

1: Input: partial order π, linear extension L, probability matrix D ∈ [0, 1]d×d

2: Initialize: γ = (0, . . . , 0) ∈ Zs, q2 = 0
3: for i = (d− 1) : 1 do
4: for j = (i+ 1) : d do z ← ξ(Li, Lj)
5: if πz 6= 0 then
6: if j = i+ 1 then γz ← πz
7: else `← d
8: for k = (i+ 1) : (j − 1) do
9: if |γξ(Li,Lk)| = 1 and γξ(Lk,Lj) 6= 0 then `← |γξ(Lj ,Lk)|+ 1 ∧ `

10: end if
11: end for
12: if ` < d then sample u ∼ Uniform(0,1)
13: if u < Dz,` then γz ← `πz and q2 ← q2 + log(Dz,`)
14: else γz ← πz and q2 ← q2 + log(1−Dz,`)
15: end if
16: else γz ← πz
17: end if
18: end if
19: end if
20: end for
21: end for
22: Output: DAG γ ∈ {−(d− 1), . . . , (d− 1)}s and log probability q2
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APPENDIX B

Algorithms for Chapter IV

Sparse Backfitting

Algorithm 7 Sparse Backfitting

1: for i = 1 : d do
2: input Concatenated derivative estimates: ˆ̇xi = (ˆ̇x1

i (t1), ..., ˆ̇xRi (tn))′.
3: input Concatenated trajectory estimates: x̂j = (x̂1

j(t1), ..., x̂Rj (tn))′,
4: j = 1, ..., d.
5: input Smoothing parameter λ1i and sparsity parameter λ2i.
6: initialize fij ← 0 ∈ RN , for j = 1, ..., d, where N = nR.

7: compute α̂i ← N−1
∑N

k=1
ˆ̇xik.

8: repeat
9: Store starting values f ?i ← fi.

10: for j = 1 : d do
11: Compute residuals r ← ˆ̇xi − α̂i −

∑
`6=j fi`(x̂`)

12: Smooth fij ← Sj(λ1i)r

13: Estimate Norm s2 ←
(
N−1

∑N
k=1 f

2
ijk

) 1
2

14: Soft Threshold fij ← (1− λ2i/s
2)+fij

15: Center fij ← fij − f̄ij
16: end for
17: until Convergence supj=1,...,d supk=1,...,N |fijk − f ?ijk| < ε.
18: end for
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NeRDS Overview

Algorithm 8 NeRDS Workflow

1: Stage 1 - Normalize and Smooth the Data
2: for components i = 1 : d do
3: input time-course data (Y r

i (tk))
n,R
k=1,r=1

4: compute Mi = maxk,r(Y
r
i (tk))

n,R
k=1,r=1

5: compute (Ỹ r
i (tk))

n,R
k=1,r=1 = (Y r

i (tk)/Mi)
n,R
k=1,r=1

6: for experiments r = 1 : R do
7: input normalized time-course data (Ỹ r

i (tk))
n
k=1

8: compute the trajectory x̂ri (t) using smoothing splines
9: compute derivative ˆ̇xri (t) = d

dt
x̂ri (t)

10: end for
11: end for
12:

13: Stage 2 - Fit an Additive ODE
14: for components i = 1 : d do
15: input the derivatives (ˆ̇xri (t))

R
r=1 as response

16: input the trajectories {(x̂rj(t))Rr=1, j = 1, ..., d} as features
17: input parameters Λ1 (smoothing) and Λ2 (sparsity) to search
18:

19: Select Tuning Parameters
20: for λ = (λ1, λ2) ∈ Λ1 × Λ2 do
21: compute f̂i+(λ) using Sparse Backfitting [Algorithm S2]
22: compute GCV (λ) [equation (11)]
23: end for
24: set λi ← arg minλ∈Λ×Λ2 GCV (λ)
25:

26: output f̂i+(λi) =
∑d

j=1 f̂ij(x;λi)
27: end for
28:

29: Stage 3 - Compute Coupling
30: for i=1:d do
31: for j=1:d do
32: input f̂ij
33: input Rj = range(x̂j)

34: compute coupling ρ̂ij(f̂ij) =
√∫

Rj [f̂ij(x)]2dx/|Rj| [equation (16)]

35: end for
36: end for
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APPENDIX C

Diagnostics and Additional Results for Chapter IV

Diagnostics for tuning parameter selection

In order to fit an additive ODE to a collection of time series using NeRDS, four

types of tuning parameters need to be selected. These are: (1) λ0 controlling smooth-

ness in the first stage; (2) λ1 and the number of knots, controlling smoothness of the

additive functions in stage 2; and (3) λ2 controlling sparsity of the additive compo-

nents in stage 2.

In the first stage, smoothing splines are fit to each component (i = 1, ..., d) of each

time series (r = 1, ..., R) yielding estimates of the trajectories x̂ri (·) and derivatives

ˆ̇xri (·). The smoothness of these trajectories are determined by smoothing parameters

λri0 and can be efficiently selected by GCV (which we use) or even standard cross

validation. Once these estimates are obtained, it is useful to overlay plots of the

observations Y r
i (tk) and the estimated trajectories x̂ri (t) against time for each ex-

periment r. See Figure C.1, panel A for an example. If the any of the estimated

trajectories appear jagged, they may be over fit and λri0 should be adjusted upwards

to give a smoother estimate. This is of particular importance when the sampling

density is low relative to the amount of noise.
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For each submodel (i = 1, ..., d) in the second stage the smoothness of the additive

components (j = 1, ..., d) is determined by λi2 and the number of knots. As presented

in the paper, this smoothing parameter can also be selected by GCV though this

will often lead to overfitting due the noise in the derivatives ˆ̇xri (·). As before, over-

laying plots of the estimated derivatives and select additive fits versus time for each

experiment r is useful for appropriately balancing flexibility and complexity.

As an example Figure C.1 panel B shows such plots for submodel 3 (Nanog) from

the mouse system. Based on the smooths from the first stage (panel A), experiments

r = 4 and r = 5 appear relatively unimportant due to the small rate of change in the

trajectories of Nanog. For the remaning four experiments, r = 1, 2, 3, 6 we overlay

plots of the estimated derivatives (black, solid), the linear fit (red, dashed), and an

additive fit with 4 knots, λ2 = 0, and λ1 = .01 (cyan, dot-dash).

The additive model provides a better fit than the linear model while still being

smoother than the estimated derivative it approximates indicating an appropriate

balance between complexity and flexibility. If the fit is inadequate additional flexibil-

ity can be added by reducing λ1 or incorporating additional knots. In contrast, if a

similar fit can be achieved with larger λ1 or fewer knots the simpler model should be

preferred. In our simulations with the mouse system, we chose λ1 by GCV but set

the lowest value in the line search to .01 based on these plots. This served to prevent

overfitting while allowing GCV to choose still less complexity when warranted by the

data.

The final tuning parameter to be set is λ2 controlling sparsity of the additive fits

in stage 2. In settings where d is small, our experience in simulations has been that

setting λ2 = 0 or very small is best. However, for larger d, like in the DREAM 3

100-node networks, choosing λ2 > 0 not only induce sparsity in the fitted submodels

but also greatly speeds computation. When employing prescreening as we did with

the DREAM 3 competition data, it may be possible to choose λ2 = 0 as long as
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the number of potential regulators in each submodel is small. For λ2 large enough,

the null model with all the additive components identically zero will be returned. In

practice, one can examine the same plots as for λ1 to determine if a particular value

of the sparsity parameter λ2 allows adequate flexibility. One may wish to find a λ2

leading to the null model and then progressively decrease until either: (1) adequate

fit is seen in diagnostic plots; (2) the number of non-zero components is the additive

fits are sufficiently large relative to prior knowledge on the approximate in-degree; (3)

the computational burden becomes too much to decrease further. GCV remains an

option for jointly determining λ1 and λ2 when looking at plots is impractical.
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Figure C.1: Diagnostic plots for component 3 (Nanog) in the mouse system. Panel A:
Each plot show the normalized observations from one the six simulated exper-
iments as grey dots and the stage-1 smooth as a solid black line. Experiments
4 and 5 appear to carry minimal information for fitting a model to Nanog
and are not considered in stage-2 diagnostics. Panel B: For each of four rel-
evant experiments, the solid black line is the estimated derivative of Nanog,
the dashed red line the unregularized linear fit, and the dot-dash cyan line the
additive fit with λ1 = .01, λ2 = 0. The additive model provides a better fit on
the non-dominant experiments.
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Choosing α

Figure C.2: Plotting the number of potential edges versus α. For the DREAM 3, challenge
4, competition data we used knockout experiments to limit the number of po-
tential regulators. The algorithm used to do this relies on t-tests to determine
which gene expression levels in each gene deletion mutant significantly differ
from their wild-type expressions. The plots show the number of potential reg-
ulators versus the nominal significance level, α, used in these t-tests. We chose
α by looking for an ‘elbow’—a location where the slope of the curve sharply
increases. The locations indicated by the dashed vertical lines were used for
the results presented in Table 4.6; from left to right these are .03, .02, .015,
.025, .015 for the 10-node networks and 10z, z = −3,−3,−3.5,−2.5,−2.5 for
the 100-node networks. For the 100-node networks both the number of po-
tential regulators and α are on the log10 scale. Top Row: 10-node networks.
Bottom row: 100-node networks.
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Varying the Sample Size

Figure C.3: Reconstruction performance on the Lactocaccus Lactis network for varied sam-
ple size. Using the experimental setup for Lactocaccus described in the Results
section of the main paper, we repeated the simulations with reduced sampling
densities. The number of observations per time series, n, is on the horizontal
axis of each plot. Solid, black lines show the performance of the additive ODEs
introduced in the paper while dashed, red lines indicate the performance for
linear ODEs. The two noise levels, σ ∈ {.02, .05}, are respectively indicated by
round and square symbols. For n = 100 these are the same results presented
in Table 4.1 and Table 4.3.1.
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Figure C.4: Reconstruction performance on the mouse network for varied sample size. Us-
ing the experimental setup for the mouse network described in the Results sec-
tion, we repeated the simulations with reduced sampling densities indexed by
the number observations per time series, n, on the horizontal axes. Solid, black
lines indicate the performance of the additive ODEs while dashed, red lines
show the performance for linear ODEs. The two noise levels, σ ∈ {.02, .05},
are indicated by round and square symbols, respectively. For n = 100 these
are the same results presented in Table 4.3.2 and Table 4.4.
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