
Computationally Efficient Steady–State Simulation Algorithms
for Finite–Element Models of Electric Machines

by

Jason Pries

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Electrical Engineering: Systems)
in the University of Michigan

2015

Doctoral Committee:

Associate Professor Heath Hofmann, Chair
Professor Ian Hiskens
Professor Eric Michielssen
Professor Jeffrey L. Stein

There is no place in this new kind of physics both for the field and matter, for the field is the

only reality [1].

–Albert Einstein

We are emphatically in sympathy with Einstein’s dictum that measurable reality is the only

reality, and feel that the word “real” has no applicability to results obtained by approximate

solution of an idealized mathematical model [2].

–M.V.K. Chari and P. Silvester

Table of Contents

List of Figures vi

List of Tables viii

List of Algorithms x

Del in Cartesian Coordinates xii

Chapter

1 Introduction 1

1.1 Motivation . 2

1.2 Thesis Outline . 4

1.3 Historical Overview of Steady-State Simulation Algorithms 6

1.3.1 Static Analysis . 6

1.3.2 Single Harmonic Approximation . 7

1.3.3 Transient Analysis I: Implicit–Euler 8

1.3.4 Time–Periodic Finite–Element Method 10

1.3.5 Harmonic Balance Method . 11

1.3.6 Shooting Newton and Explicit Error Correction Methods 13

1.3.7 Transient Analysis II: Runge–Kutta Methods 14

1.4 Major Contributions . 15

ii

2 Field Equations 18

2.1 Maxwell’s Equations . 19

2.2 Constitutive Equations . 20

2.3 Magnetoquasistatic Approximation . 24

2.4 Potential Formulation . 28

2.5 Cartesian Two-Dimensional Approximation 29

2.6 Boundary Conditions . 31

2.6.1 Periodic Boundary Conditions . 31

2.6.2 Magnetic Insulation (Dirchlet) Boundary Condition 33

2.6.3 Tangential Field (Neumann) Boundary Condition 33

2.7 Boundary Transfer Relationships . 34

2.7.1 Flux-Potential Transfer Relationships 34

2.7.2 Harmonic Expansion . 36

2.7.3 Rotational Motion . 38

3 Field–Circuit Coupling 40

3.1 Dynamic Field–Circuit Coupling . 41

3.1.1 Periodic and Antiperiodic Boundary Conditions 45

3.1.2 Macroscopic Strand Modeling . 46

3.2 Static Field–Circuit Coupling . 48

3.3 Field–Circuit Equations: Independent Excitation 50

3.3.1 Dynamic Simulation with Voltage Input 51

3.3.2 Dynamic Simulation with Current Input 51

3.3.3 Pseudostatic Simulation with Voltage Input 51

3.3.4 Static Simulation with Current Input 51

3.3.5 Summary . 51

3.4 Idealized Three-Phase Source Coupling . 52

3.4.1 Ungrounded–Wye Connected Load with Voltage Source Excitation . 53

iii

3.4.2 Ungrounded–Wye Connected Load with Current Source Excitation . 54

3.4.3 Delta Connected Load with Voltage Source Excitation 55

3.4.4 Delta Connected Load with Current Source Excitation 56

4 Finite-Element Analysis 57

4.1 Master and Mapped Elements . 58

4.2 Master Element Basis Functions . 60

4.3 Inter–Element Continuity . 61

4.4 Galerkin’s Method . 63

4.5 Finite–Element Analytic Equation Coupling 69

4.5.1 Small Angle Approximation . 71

4.5.2 Subspace Projections . 74

4.6 Finite-Element Field-Circuit Coupling . 77

4.7 Model Equation . 78

5 Time-Domain Numerical Integration 80

5.1 Explicit–Euler . 81

5.2 Index of the Model Equation . 83

5.3 Implicit–Euler . 85

5.4 Fully Implicit Runge–Kutta Methods . 86

5.5 Stability . 89

5.6 Order Conditions . 90

5.7 Runge–Kutta Methods with an Explicit First Stage 92

5.8 Diagonally Implicit Runge–Kutta Methods 96

5.9 Interpolation . 98

5.10 Error Estimation . 100

6 Steady-State Analysis Algorithms 104

6.1 Time–Domain Methods . 106

iv

6.1.1 Transient Analysis . 106

6.1.2 Single Shooting Method . 108

6.1.3 Multiple Shooting Method . 113

6.1.4 Adaptive Solution Refinement . 120

6.2 Harmonic Balance . 126

6.2.1 Linearization . 130

6.2.2 Preconditioners . 133

6.2.3 Error Estimation and Refinement . 139

7 Simulations 143

7.1 Surface–Mount Permanent Magnet Machine Model 143

7.2 Sinusoidal Voltage–Driven Problem . 149

7.2.1 Generating the Voltage Waveform . 149

7.2.2 Dynamic Simulation . 149

7.2.3 Estimating the Phase Voltage Waveform 152

7.3 Algorithm Efficiency . 158

7.3.1 Adaptive Versus Fixed . 159

7.3.2 Global Comparison . 160

7.3.3 Practical Accuracy Considerations 160

7.4 Factors Affecting Simulation Time . 165

7.4.1 Results . 167

7.4.2 Matrix Storage . 168

7.4.3 Initial Condition . 170

7.5 Conclusion . 171

7.6 Future Work . 172

Appendix A Generalized Minimum Residual Method 175

Bibliography 176

v

List of Figures

Figure

3.1 The depicted stator has two slots per phase, 4 turns per slot for a total of

8 turns per pole, and 6 strands per turn. The unique strands are labeled 1

through 6. The turns in these two slots are labeled 1 through 8. 41

4.1 Master triangular element (left) and an example transformed element (right). 59

6.1 Upper bound on the step size determined by the error indicators and the set

of step sizes generated by Algorithm 6.9. 122

7.1 Single pole model of an 18–pole surface mount permanent magnet machine. . 145

7.2 B–H curve of a nonlinear ferromagnetic material. 145

7.3 M–B curve of a nonlinear ferromagnetic material. 146

7.4 Mesh of the single pole model electric machine model in Fig. 7.1. 148

7.5 Open circuit flux linkage waveform calculated by performing magnetostatic

simulations. 150

7.6 Open circuit flux linkage harmonics calculated by performing magnetostatic

simulations. 150

7.7 Open circuit flux linkage waveform calculated by performing magnetostatic

simulations. 151

7.8 Open circuit flux linkage harmonics calculated by performing magnetostatic

simulations. 151

7.9 Line–to–neutral voltages from the sinusoidal voltage driven problem. 153

7.10 Line currents from the sinusoidal voltage driven problem. 153

vi

7.11 Torque waveform from the sinusoidal voltage driven problem. 154

7.12 Average loss density E · J over one period from the sinusoidal voltage driven

problem. 155

7.13 Close up of the average stator winding loss density from the sinusoidal voltage

driven problem.. 156

7.14 Line–to–neutral voltages predicted from the magnetostatic simulations. . . . 158

7.15 Simulation time as a function of discretization error for the voltage driven

problem. 162

7.16 Comparison of the simulation time for the adaptive (left) and non–adaptive

(right) algorithms as a function of discretization error for the voltage driven

problem. 163

7.17 Simulation time as a function of the error in the calculated stator and rotor

conduction losses. 164

7.18 Average loss density E · J over one period from the sinusoidal voltage driven

problem with solid rotor backiron. 166

vii

List of Tables

Table

2.1 Typical ranges of characteristic times in seconds 27

3.1 Summary of Simulation Models for Independent Bundle Excitation 52

5.1 Generalized Butcher tableau . 87

5.2 Butcher Tableau for the Explicit-Euler Method 87

5.3 Butcher Tableau for the Implicit-Euler Method 87

5.4 Butcher Tableau for the Two-Stage Gauss Method 88

5.5 Order conditions for the index–1 components 92

5.6 Additional order conditions for the index–2 components 92

5.7 Modified Butcher table for methods with an explicit first stage 93

5.8 Diagonally Implicit Runge–Kutta method of order 2/1 (ESDIRK2). 97

5.9 Diagonally Implicit Runge-Kutta method of order 3/2 (ESDIRK3). 97

5.10 Interpolation order conditions for the index–1 components 99

5.11 Additional order conditions for the index–2 components 99

5.12 ESDIRK2 Interpolation Coefficients . 100

5.13 ESDIRK3 Interpolation Coefficients . 100

5.14 ESDIRK2 auxiliary weight vector of order 1/1 101

5.15 ESDIRK3 auxiliary weight vector of order 2/1 102

7.1 M–B Curve Parameters . 146

7.2 Generalized Steinmetz Equation Parameters 146

7.3 Nonzero Conductivities . 147

viii

7.4 Mesh Size . 148

7.5 Stator and rotor losses for the sinusoidal voltage driven problem. 152

7.6 Incremental self and mutual inductances extracted from the magnetostatic

simulation. 157

7.7 Simulation Parameters . 159

7.8 Stator and rotor losses for the sinusoidal voltage driven problem with solid

rotor backiron. 165

7.9 Simulation time in minutes for various algorithmic configurations of the sinu-

soidal voltage driven problem. The discretization error threshold was chosen

as ε = 10−3. 167

7.10 Reported discretization error for various algorithmic configurations of the si-

nusoidal voltage driven problem. The discretization error threshold was chosen

as ε = 10−3. 168

7.11 Number of observed Newton iterations Nnewton for the non–adaptive steady–

state algorithms and number of simulated periods for transient analysis. . . . 169

7.12 Maximum number of GMRES iterations observed over all Newton iterations. 170

ix

List of Algorithms

Algorithm

5.1 Diagonally Implicit Runge-Kutta Newton Method 98

5.2 Runge-Kutta Interpolator . 100

5.3 Runge-Kutta Error Indicators . 102

6.1 Fixed Step-Size Transient Analysis . 107

6.2 One Period of DIRK Transient Analysis . 108

6.3 Fixed Step Size Single Shooting Method . 113

6.4 DIRK Single Shooting Jacobian Matrix–Vector Product 114

6.5 Fixed Step Size Multiple Shooting Method 117

6.6 DIRK Multiple Shooting Residual . 118

6.7 DIRK Multiple Shooting Matrix–Vector Product 119

6.8 DIRK Multiple Shooting Preconditioner . 119

6.9 Time-Axis Grid Refinement . 124

6.10 Generic Adaptive Steady-State Algorithm 126

6.11 Harmonic Balance Method . 131

6.12 Harmonic Balance Residual . 132

6.13 Harmonic Balance Matrix-Vector Product 132

6.14 Harmonic Balance Preconditioner . 133

6.15 Adaptive Harmonic Balance Method . 140

6.16 Adaptive Harmonic Error Estimate . 141

x

6.17 Harmonic Balance Grid Refinement . 142

xi

Del in Cartesian Coordinates

3 Dimensions

gradient ∇φ = ∂φ
∂x
x̂+ ∂φ

∂y
ŷ + ∂φ

∂z
ẑ

divergence ∇ ·A = ∂Ax

∂x
+ ∂Ay

∂y
+ ∂Az

∂x

curl ∇×A =
(

Az

∂y
− Ay

∂z

)

x̂+
(

Ax

∂z
− Az

∂x

)

ŷ +
(

Ay

∂x
− Ax

∂y

)

ẑ

scalar laplacian ∇2φ = ∂2φ
∂x2 +

∂2φ
∂y2

+ ∂2φ
∂z2

vector laplacian ∇2A = (∇2Ax) x̂+ (∇2Ay) ŷ + (∇2Az) ẑ

2 Dimensions

primal curl ∇× A = ∂A
∂y
x̂− ∂A

∂x
ŷ

dual curl ∇′ ×B = −∂Bx

∂y
+ ∂By

∂x

scalar laplacian ∇2A = ∂2A
∂x2 + ∂2A

∂y2

Relationships Among Operators

vector laplacian ∇2A = ∇ (∇ ·A)−∇×∇×A

scalar laplacian (3D) ∇2φ = ∇ · (∇φ)

scalar laplacian (2D) ∇2A = −∇′ ×∇× A

xii

Chapter 1

Introduction

This thesis concerns the development of time– and frequency–domain steady–state simulation

tools for electric machine design and analysis for which the underlying spatial discretization

method is based on the finite–element method. Our approach to algorithm development is

motivated by the desire to keep the spatial and temporal discretizations orthogonal. Our

model equation is expressed as a nonlinear time-varying differential algebraic equation with

no specific reference to the underlying spatial discretization. Only the general characteristics

of size and sparsity endowed to the matrices by the finite-element process must be kept in

mind. In this sense, the algorithms developed here may be more generally applicable than

our particular considerations suggest. Conversely, our focus on this particular application

domain allows us to examine some very practical issues.

The motivation for this work is described in Section 1.1 and focuses on two themes.

One is improved designs: better design tools allow one to produce better–designed machines

and have more confidence that the design will perform as expected. The other theme is

reduced costs. Obviously, one would consider the lower cost design of two machines with

equivalent performance as the better option. The nominal machine cost is not the only cost

consideration, however. An easily overlooked fact is the cost in human capital of the design

process, which can be reduced by a more computationally efficient design tool.

1

A general outline of this thesis is presented in Section 1.2. Along the way, we provide

some additional details of the various modeling tool choices that an electric machine designer

is confronted with on a day–to–day basis. In doing this, we hope to shine a light in the gap

between the two methods of analysis typically available; static (non–dynamic) analysis on

the one hand, and transient (dynamic) analysis on the other. Our work developing steady–

state analysis tools represents a tradeoff between the speed of the former method and the

detail of the later. The particular contributions of this thesis are detailed in Section 1.4.

1.1 Motivation

The trend toward vehicle electrification is placing increasingly stringent demands on electric

machines in terms of performance, cost, and reliability. The complex interplay between com-

ponents of an electrified powertrain (internal combustion engine, gear ratio, cooling system,

batteries) means that the electric machine cannot be designed in isolation if one is to realize

system–level optimal performance. Iterating over powertrain designs requires a commensu-

rate increase in the number of candidate electric machine designs considered for production.

In all likelihood, the majority of these candidates are simulated rather than built.

The raw number of simulations that must be run puts increasing demands on design tools

in terms of their computational efficiency. Faster simulation times result in faster turnaround

times, lower design costs, and the potential for better designs through a more thorough search

of the design space. There is a feedback loop between the design of the electric machine and

the rest of the powertrain wherein the accuracy of the electric machine characterization

affects the evolution of the entire powertrain design.

The importance of this feedback loop is more pronounced in electric vehicle applications

due to volume, mass, acoustic, and cost constraints (some fundamental, some consumer

driven). The simple open-loop design process of performing the electrical/magnetic design

and verifying that the thermal/mechanical performance meet some threshold requirements

2

is somewhat unsatisfactory. However, most simulation tools still reflect the requirements

placed on them by the open-loop design process. The development of simulation tools that

are oriented towards the modern closed-loop powertrain design process can benefit electric

vehicle manufactures in both obvious and subtle ways.

Cost is a preeminent concern among automobile manufactures. Reducing the cost of

producing an electric machine is one obvious way to reduce overall vehicle costs. Reducing

material costs is one way to effect this change. The high cost and price volatility of rare earth

permanent magnets is often cited as the prime motivation behind reducing total permanent

magnet content or moving away from rare earth permanent magnet machines altogether.1.

The assumptions and rules of thumb that have been “proven” to work for permanent magnet

machine simulations in the past may fail when moving to novel topologies, and must be

relaxed through the use of more robust tools.

A more subtle concern is cost in terms of the man–hours required to perform a simulation.

This is directly reflected in the computational efficiency of the simulation tools used. A tool

that is oriented toward the requirements of the closed–loop powertrain design process reduces

this cost. Ultimately, the reduction in cost per iteration will be reflected by some combination

in reduction of product cost and increase in product quality.

Increasing the accuracy of simulation tools can effect cost and performance indirectly by

decreasing modeling uncertainty. It is a fundamental tenet of feedback control that one must

make a compromise between performance on one hand and the ability to reject disturbances

and modeling errors on the other. One must also live with modeling uncertainty with an

electric machine design. The technical requirements of a machine (e.g. torque, speed, power)

can be roughly translated into lower bounds for machine size and cost assuming perfect

knowledge of factors that limit the machine performance. Coping with uncertainty necessarily

requires a design to be oversized relative to the ideal case. Therefore, a reduction in modeling

1The later point is belied by the dearth of non rare-earth permanent magnet machines seen in production
vehicles. This can partly be explained by the superiority of rare-earth permanent magnet machines when
compared to other machine topologies using similar control strategies

3

uncertainty can allow, to some extent, a reduction in machine size and cost. This benefit is

seemingly more difficult to quantify.

1.2 Thesis Outline

The main tools used for the analysis of electric machines, and the effects of machine ge-

ometry and material properties in particular, are based on Maxwell’s equations. Maxwell’s

equations in their entirety are rarely used for electric machine analysis; typically some sim-

plifying assumptions are made. Generally, the frequencies of interest in such simulations are

such that electromagnetic wave propagation does not play a significant role in the results.

Ultimately, this allows the effects of electric displacement currents to be ignored in Ampere’s

law. This results in the magneto–quasistatic approximation of Maxwell’s equations that, after

the introduction of additional potential fields, are combined into a single magnetic diffusion

equation. In addition, certain quantities of interest in electric machine analysis are insensi-

tive to the dynamics introduced by Faraday’s law. If, in addition to the displacement field,

Faraday’s law is also neglected, we arrive at the magnetostatic approximation of Maxwell’s

equations. These two approximations are the subject of Chapter 2.

Maxwell’s equations give us a view of an electric machine at a small scale. On the other

hand, the control and performance of electric machines are typically characterized using

large scale inputs such as voltage and current. It is necessary to have a robust and consistent

method of coupling the fields to these external circuit variables when performing a realistic

dynamic simulation. This issue is covered in Chapter 3.

Because of the complex geometries and nonlinear material properties inherent to electric

machine analysis, it is usually not possible to use analytical solutions to Maxwell’s equa-

tions without overly restrictive assumptions. Finite-element analysis is a general and robust

discretization scheme capable of handling these issues, and is the topic of Chapter 4. One

notable exception to the use of analytical solutions is in the airgap of electric machines,

4

which are well-modeled as a cylindrical annulus. A general method for coupling solutions on

discrete, unstructured grids to the analytic solution of Laplace’s equation on a cylindrical

annulus is also discussed here.

The discretization of electric machine models with nonlinear ferromagnetic materials and

rotating parts gives rise to a very general index–1 differential algebraic equation. When exter-

nal circuits are considered, the equations are generally of index–2. Because of the complicated

nature of these equations, it is necessary to use some form of numerical integration to solve

them in the temporal dimension. Chapter 5 presents the family of Runge–Kutta numerical

integration schemes along with conditions any method must satisfy to achieve a given order

of accuracy for our model problem. This chapter also presents a common framework on which

the time–domain steady–state analysis methods are based.

Chapter 6 presents the development of several steady–state simulation algorithms. Run-

ning transient analysis until convergence is historically the earliest and certainly the simplest

method for determining steady–state behavior. Alternative time domain methods are gener-

ally called the single–shooting method and direct multiple–shooting method. In the literature

on electric machine finite–element analysis, they will also be referred to as the shooting–

Newton and time–periodic finite–element method (TPFEM), respectively. All three of these

strategies are based on the Runge–Kutta numerical integration techniques of Chapter 5. The

harmonic balance method, a frequency domain approach to steady–state simulation, is also

presented in Chapter 6.

Until now there has not been a detailed and rigorous study comparing the efficacy of

these steady–state analysis algorithms. Chapter 7 is an attempt to fill this void by present-

ing a wide range of simulation results for several practical electric machine designs. After

the improvements proposed in this thesis, the algorithms tend to have surprisingly similar

performance with some methods being preferable under certain conditions.

5

1.3 Historical Overview of Steady-State Simulation

Algorithms

1.3.1 Static Analysis

Application of the finite–element method to electric machine analysis began in the 1970s

[3, 4, 2, 5, 6, 7, 8, 9, 10, 11, 12]. Until that time, either analytic equation modeling or

finite–difference techniques had been used to study electric machines. The finite–difference

approach has a serious drawback in that it is difficult to accurately capture the highly

irregular geometry of electric machines on a regular grid without extreme grid refinement in

areas with small aspect ratios.

Nonuniform meshes are better suited for discretizing irregular geometries, leading to a

reduced number of variables and faster computation times for the finite–element method.

In addition, the finite–element method is optimal in the sense that it minimizes a nonlinear

functional. Applications of the finite–element method to nonlinear magnetic devices initially

developed with a focus on areas that were difficult to model using analytic equations. Cal-

culating leakage flux – flux straying outside of the main path indicated by the ferrous core

– and analysis of permanent magnets with nonuniform fields are two such areas.

Because Faraday’s law is not considered in the partial differential equation, some as-

sumption must be made about the current density distribution. A uniform current density

minimizes the total losses when some total value of current is constrained to flow through a

fixed cross sectional area. Because the torque output of electric machines is mostly dependent

on the total current (and relatively insensitive to how the current is distributed in the stator

slots), and electric machines are designed to minimize losses by producing an approximately

uniform current distribution, this assumption is good for performing static analysis.

6

1.3.2 Single Harmonic Approximation

The next major advancement was the application of the finite–element method to the mag-

netic diffusion equation, commonly called the eddy current problem in the field of electric

machine analysis [13, 14, 15, 16, 17, 18, 19]. The magnetic diffusion equation generally cap-

tures nonuniform current distributions from the skin effect, proximity effect, and currents

induced by time varying fields, all due to Faraday’s law. Initially, dynamic simulations were

limited to the analysis of stationary problems where the time derivative could be replaced

with a single harmonic frequency domain approximation.

The single harmonic approximation operates under the assumption that the time vari-

ation of the magnetic vector potential can be described by a single complex exponential

function. Nonlinear effects are difficult to incorporate into this model since a sinusoidal in-

put to a nonlinear function does not produce a sinusoidal output. A special treatment of the

nonlinearity is required to capture the average effect of the nonlinearity over one period.

Analysis of eddy current problems using this approach is limited (with one trivial excep-

tion) to simulations without motion. In fact, incorporating motion is one of the most difficult

aspects of modeling electric machines using finite–elements. Some of the first attempts at

solving this problem employed a fixed finite–element mesh and an iterative approach to cor-

rect for the errors that occur because the superposition principle does not hold for nonlinear

magnetic problems [20]. This approach requires the moving piece to be homogeneous in the

direction of motion, implying the technique is limited to rotating cylinders. Otherwise, a

technique must be employed to distort the mesh, which may easily breakdown if the distor-

tions must occur over very large distances [21]. This occurs, for example, after a complete

revolution of the rotor. The fixed reference frame, or Eulerian approach, also requires the use

of special “upwind” discretization schemes in order to compensate for numerical instabilities

due to advective magnetic diffusion [22].

7

1.3.3 Transient Analysis I: Implicit–Euler

One of the greatest innovations for finite–element simulation of electric machines with ro-

tational effects was the idea of remeshing [23, 24]; at each rotor position, a new mesh is

generated in the airgap region to couple the stator and rotor domains. The difficulties as-

sociated with remeshing due to the poor aspect ratio of the airgap and numerical accuracy

issues associated with a discretization that appears to be time varying in the airgap are

manifold. However, modeling the rotor in a rotating reference frame removes many issues

associated with capturing the rotation of geometric configurations with nonhomogeneous

material properties. This motivated the development of several different approaches aimed

at coupling the finite–element solutions to the analytic solution of Laplace’s equation within

a cylindrical annulus inside of the airgap [25, 26, 27]. The motional information shows up in

terms of time varying boundary conditions imposed on the airgap by a pair of finite–element

models, one for the rotor and one for the stator. The problem of modeling unbounded do-

mains, which has a similar aspect ratio issue for the inverse reason, had already received

considerable attention [28, 29, 30, 31]. Many of the techniques are similar.

Because the underlying discretization becomes time varying and the motion of the rotor

will produce additional harmonics, all of these approaches to modeling rotational motion

are largely incompatible with the single harmonic approximation of the magnetic diffusion

equation. Numerical integration is required to marry these two ideas, but there was little

theoretical or application oriented work being done to apply numerical integration techniques

to any dynamic, nonlinear, magnetic field analysis problems. The first applications of time

domain numerical integration used the implicit–Euler method [32] and the Crank–Nicholson

method [33]. There was little interest in this approach until several years later [34, 35, 36,

37, 38]. This period coincides with the first analysis of a nonlinear, rotational, eddy current

problem appearing in the mid 1980s [39, 40].

Several properties of the semi–discrete magnetic diffusion equation affect the choice of

8

numerical integration method. Most prominently, because many of the materials are modeled

as perfect insulators, the conductivity matrix is singular. This the semi–discrete equation

is a differential–algebraic equation and cannot be transformed into an ordinary differential

equation in a simple way. The most immediate consequence is that implicit numerical in-

tegration methods must be used, necessitating the solution of a nonlinear equation at each

time step.

A more subtle issue arises because the steady–state solution is oscillatory. The numerical

properties of central difference schemes like the trapezoidal and Crank–Nicholson methods

lead to issues with high frequency numerical errors in the solution, which mostly negates any

theoretical accuracy benefits. Conversely, backward difference schemes, properly designed

for nonlinear differential–algebraic equations, will provide enough numerical damping to

expediently force the high frequency errors to zero. The implicit–Euler method is the simplest

method.

The almost total neglect of application oriented transient finite–element research com-

pared to the very early adoption of the single harmonic approximation of the magnetic dif-

fusion equation reflects the degree to which electric machine designers think of performance

in terms of steady–state behavior. At the time, even though it was possible to simulate the

general magnetic diffusion equation, it was probably viewed with limited utility since to

obtain the steady–state behavior, one had to perform transient analysis until the waveforms

converged to the steady–state behavior. In addition, the standard technique for coupling

the field equations to external circuits was based on expensive iterative schemes, furthering

increasing simulation time.

A major advancement came with the realization that the finite–element method could

be directly coupled to external circuits through simple integral formulas relating the field

and bulk parameter variables [41, 42, 43, 44, 45, 46, 47, 48]. This development was necessary

for simulating multi–path eddy current problems where the total current in a bundle of

wires is specified, but each individual wire may have a different total current and current

9

density distribution than the mean. The discrete form of field–current integral constraint,

along with any other circuit equations, can be incorporated directly into the semi–discrete

equations without changing the form of the model equation. This reduces the simulation

time of transient analysis by removing the outer loop of the previously used iterative scheme,

although there are other issues with transient analysis. There were some investigations of the

state of the art in eddy current modeling around this time that demonstrated an increasing

awareness of the inaccuracies inherent to the single harmonic approximation [49, 50, 51]. It

is probably not coincidental that the first nonlinear steady–state analysis algorithms began

appearing shortly thereafter.

1.3.4 Time–Periodic Finite–Element Method

The first direct steady–state simulation algorithm applied to the magnetic diffusion equation

capable of handling rotational motion and nonlinear materials in a general way was the

time–periodic finite–element method (TPFEM) [52]. The main idea behind TPFEM is to

simultaneously solve multiple coupled boundary value problems. The TPFEM strategy is a

specific version of a more general algorithm called the multiple shooting method.

Most of the techniques investigated for solving this type linear equation revolve around

relaxations schemes that exploit the block structure of the matrix [53, 54, 55, 56, 57]. For

example, the overall matrix has a nearly block–lower triangular form, and an efficient re-

laxation method can be developed around this structure. For linear problems, the matrix is

block-circulant. A useful property of circulant matrices is that they can be diagonalized by

a similarity transformation based on a discrete Fourier transform matrix. Likewise, block–

circulant matrices have the same property in a block–wise sense. In certain situations nearly

circulant matrices can also benefit from this property [58, 59]. Unfortunately for problems

with motion, essential information about the motion tends to be discarded whenever a circu-

lant approximation is made since the average coupling between two variables, one in a fixed

and another in a rotating reference frame, is zero.

10

There have been some improvements to the TPFEM algorithm since it first appeared,

but the core idea has remained unchanged. It may be known ahead of time that the steady-

state solution exhibits a different type of symmetry over an interval shorter than one period.

For example, if the periodic solution is known to exhibit half–wave symmetry, then this

condition can be used to close the problem and reduce the number of time points that

must be solved for by half. More generally, because of the nature of the three–phase winding

layouts typical to electric machines, the solution may exhibit a space–time symmetry relating

the value of the solution at two different space–time coordinates. This type of condition is

important for induction machines that have long fundamental periods but exhibit space–time

symmetries on a shorter time scale. These ideas were developed along with some investigation

of parallelization of the TPFEM algorithm [60, 61].

1.3.5 Harmonic Balance Method

The harmonic balance method refers to a class of algorithms that, in one way or another,

use an expansion of the solution in terms of sinusoidal basis functions. These algorithms

encompass the single harmonic approximation of Section 1.3.2 as a simplifying case. The main

difference is that their formulations are general with respect to the number of harmonics,

indicating they may obtain arbitrary accuracy for problems with periodic, but not necessarily

sinusoidal, solutions.

The first application of the harmonic balance method to the magnetic diffusion equation

appeared for stationary problems [62]. For stationary problems, the only coupling between

different frequencies components occurs due to the magnetic nonlinearity. In the first har-

monic balance algorithms, the magnetic nonlinearity was modeled as a power series so that

the harmonic coupling could be taken into account “exactly”. There are many problems with

this approach. First, exact calculation of the harmonic coupling coefficients requires the ma-

nipulation of many cumbersome equations and is not easily extended beyond polynomials of

relatively low degree. This is important because ferromagnetic saturation nonlinearities can-

11

not be represented well over a wide range with polynomials due to their asymptotic behavior.

Rather, rational or exponential functions are required to model a magnetic nonlinearity us-

ing a real analytic function. It is impossible to treat these types of nonlinearities exactly,

however, because the frequency response of a rational function to a sinusoidal input is not

band–limited.

None–the–less, this approach was used with a 9th order polynomial nonlinearity [63] and

specially extended to include a dc–bias component [64]. Polynomial modeling was also used

to approximate hysteresis effects by including a time derivative term in the nonlinearity

[65]. Due to the large size of the system matrix for harmonic balance problems, iterative

methods for solving the equations were investigated that were rather heuristic in nature and

dependent on assumptions about the number of harmonics modeled [66]. The method was

also extended to include external circuit coupling [67].

The limit of the applicability of exact treatment of multi–harmonic coupling is encoun-

tered when rotational motion is considered. Initially, the same unified reference frame ap-

proach employed in the single harmonic approximation was used within the harmonic balance

method [68]. Because the geometries are limited to those that are uniform in the θ direction,

no additional harmonic content is generated by the motion. However, any useful electrome-

chanical device has a rotor with nonuniform material properties. The rotation of an object

with material interfaces nonparallel to the direction of rotation modulates the fields setup

by the stationary part of the device, generating an infinite frequency response with low–

pass behavior. It is nearly impossible to exactly calculate the harmonic coupling due to this

phenomenon.

General methods to treat ferromagnetic materials appeared in the form of the colloca-

tion and Galerkin methods [69]. Both of these methods treat the problem by sampling the

nonlinearity in the time domain and are therefore agnostic to its functional form. Despite

the generality of these methods, they were ignored in subsequent work [70, 71, 72] and, ap-

parently, independently reinvented a decade later [73]. The properties of the collocation and

12

Galerkin harmonic balance methods allowing them to treat ferromagnetic materials in a gen-

eral way also provide a general method for treating rotational and more arbitrary periodic

motion [74, 75].

As with the time–periodic finite–element method, the most recent research into the har-

monic balance method has been focused on efficient methods for solving the large system of

equations. Because of the full block structure of the underlying matrices in these equations,

there are no obvious structural approximations that can be exploited. The most widely used

scheme is a relaxation method that chooses an optimal relaxation factor based on charac-

teristics of the nonlinearity [76, 77, 78, 79, 80]. There have also been some investigation into

alternative harmonic balance formulations and application oriented algorithms, but most lack

the generality and provide no obvious benefit beyond the collocation method described above

[81, 82, 83, 84, 85]. For problems without motion and mild nonlinearities, the magnitude of

the off–diagonal blocks may be relatively small compared to the diagonal components and

a block–diagonal approximation can work well. For problems with motion, however, the in-

formation about the motion is encoded on the off–diagonal blocks so simple block–diagonal

approximations tend to offer little benefit. Importantly, most of the previously described

relaxation methods have not been investigated in the context of problems with motion.

1.3.6 Shooting Newton and Explicit Error Correction Methods

The shooting Newton and explicit error correction methods are steady–state simulation

algorithms that embed an additional correction procedure within the transient simulation

process. The correction procedure forces the transient part of the solution to decay faster than

the natural time constants of the problem. There are potential benefits and drawbacks to

both the shooting Newton and EEC methods. Because the shooting Newton method is based

on the Newton–Raphson procedure, convergence of the iteration is guaranteed as long as the

initial guess is close enough to the true solution. Because of the complicated structure of the

shooting Newton Jacobian, an iterative method must be used to solve the linear equation

13

at each Newton iteration [86, 87]. The EEC method is more heuristic in nature, relying on

matrices constructed by certain weighted averages and projections [88, 89, 90, 91, 92, 60].

Therefore, there is no guarantee that the iterative procedure will converge. On the other

hand, the computation of the correction is much simpler for EEC than the shooting Newton

method and will be faster if both methods exhibit similar rates of convergence per iteration.

1.3.7 Transient Analysis II: Runge–Kutta Methods

Runge–Kutta methods are widely used for the numerical integration of ordinary differential

equations. Explicit methods are especially popular since they do not require solving nonlinear

equations. Unfortunately, explicit methods cannot be used for differential–algebraic equations

since they cannot be transformed into ODEs. It is known that, when applied to DAEs, some

implicit Runge–Kutta methods fail to achieve the same degree of accuracy observed when

applied to ODEs. This phenomenon is called “order reduction”. Further research revealed

that additional order conditions are required beyond those for ODEs to guarantee a given

order of accuracy for DAEs.

Runge–Kutta methods with full coefficient matrices have a disadvantage that the equa-

tions for each stage are coupled, requiring the solution of a nonlinear equation that is a

number of times larger than the underlying DAE. Because of this, the application of Runge–

Kutta methods to the analysis of magnetic devices is usually limited to diagonally–implicit

Runge–Kutta methods having lower–triangular coefficient matrices. Because of the structure

of these matrices, the stage–value equations can be solved sequentially [93, 94, 95].

The most obvious benefit of Runge–Kutta methods is that they are more accurate than

the implicit–Euler method for a given step size, permitting the use of a larger step size while

maintaining similar accuracy. Runge–Kutta methods also facilitate the use of adaptive time

stepping methods that coarsen and refine the step size as dictated by some estimate of the

solution error [96, 97, 98]. Related techniques can be used to extrapolate the solution to

generate initial conditions for the integration procedure in the next interval [99] and more

14

precisely determine switching events causing discontinuities in the solution or its derivatives

[100, 101, 102]. In terms of steady–state analysis, the use of Runge–Kutta methods, and

adaptive methods in particular, can be used to accelerate the transient analysis procedure

toward the periodic steady–state solution [103].

1.4 Major Contributions

The standard by which the computational efficiency and accuracy of electric machine sim-

ulations are judged is magnetostatic analysis. Because Faraday’s law is neglected, this is

certainly the fastest option for performing finite–element analysis when the quantities of

interest are reasonably independent of dynamic effects. For example, most electric machines

employ some variation of a current regulation control strategy which, because of the nature

of Ampere’s law and the general topology of electric machine windings, means that the flux

density in ferromagnetic materials and torque output of the machine depend primarily on

the total applied current and not on the particular current density distribution.

When dynamic effects are of interest, we must move beyond simple static simulations to

time–dependent analysis based on the magnetic diffusion equation. The simplest and most

popular approach to dynamic analysis is performed by running a time–marching algorithm

until the transient part of the solution has decayed sufficiently. The reason the steady–state

behavior is of prime importance is intimately related to the various time–scales represented

by the system in which the electric machine is embedded. Compared to the mechanical

and thermal time scales of interest, the electrical time scales are very short. On the longer

time–scales, the electrical transients can be considered to decay instantaneously, leaving us

with the steady–state behavior. This assumption becomes apparent when one considers the

most common metric of electric machine performance, the efficiency map, which is calcu-

lated using steady–state behavior. One can argue that the transient behavior is important

when transitioning between steady–state operating points. However, the optimization tar-

15

gets of maximizing efficiency and power density typically redound to limited flexibility when

attempting to affect transient performance. Usually the transient performance is implicitly

fixed by these other targets.

The popularity of the time–marching approach can probably be attributed to the wide

array of general academic research performed in the area of initial value problems that

can be easily translated into different application domains. Transient analysis has benefited

greatly from the robust literature on numerical integration methods and adaptive time–

step selection. There is also an existing body of literature focused specifically on solving the

steady–state simulation problem using shooting methods. However, it is much less developed

and there are significant areas of potential improvement. In particular, the shooting meth-

ods for solving the steady–state simulation problem have only been investigated using first

order numerical integration techniques. The major contribution of Chapter 5 is in demon-

strating how it is possible to transform the traditional statement of Runge–Kutta methods,

formulated in terms of the stage–derivatives, into one formulated purely in terms of the

stage–values. This transformation is necessary to imbue the shooting methods of Chapter

6 with several attractive computational properties that arise naturally when the algorithms

are formulated using the implicit–Euler method. This allows us to use Newton’s method to

solve the nonlinear equations and the generalized minimum residual method (GMRES) to

efficiently solve the linear equations at each Newton iteration.

The application of time domain adaptivity in this context is particularly interesting since

it can be modified to complement the peculiarities of steady state analysis. This results

in algorithms that have a flavor closer to spatially adaptive algorithms than to traditional

adaptive time–marching. Runge–Kutta methods provide a well understood framework for

performing error estimation and adaptation. A major contribution of Chapter 6 is the devel-

opment of an adaptive time step selection algorithm based on Runge–Kutta error indicators.

This algorithm is used to construct adaptive time domain steady–state analysis algorithms

by wrapping the existing fixed step size algorithms in an adaptation loop.

16

A common theme among all the algorithms in this thesis are block–wise decompositions.

The linear matrix equations that must be solved as part of the nonlinear iteration are the re-

sult of concatenating many time steps/samples (or frequency components) of the underlying

differential equation with appropriate time–derivative approximations. When compared to

the somewhat random nature of matrices arising from finite–element analysis on an unstruc-

tured grid, time domain concatenation leads to a very orderly structure when the matrix

is viewed block–wise. The essence of these algorithms is that linear iterative methods can

exploit the matrix structure by viewing it as a “matrix of matrices” instead of a monolith.

A major contribution of Chapter 6 with respect to the harmonic balance method is the

development of an “overlapping” time and frequency domain preconditioner that effectively

incorporates information about the time variation and dynamics of the problem. This is es-

sential to the efficiency of the algorithm, as the standard frequency domain block–diagonal

preconditioner is ineffective when used alone for problems with motion.

Some of this work is fairly general in nature, so that it could be applied to applications

other than electric machine analysis. The model equations we use in deriving the algorithms

are cast in a general form in order to emphasize this fact. On the other hand, from a practical

point of view, there are issues of algorithm selection and tuning that depends heavily on the

particular application. In the domain of electric machine analysis, algorithm performance

further depends on the type of machine under consideration and the modeling assumptions

made along the way. The nature of these effects is somewhat ambiguous and have not been

studied in a systematic way. A major contribution of this thesis in Chapter 7 is a direct

comparison of several different steady–state algorithms and the effects that various modeling

choices have on their relative performance.

17

Chapter 2

Field Equations

In this chapter, the partial differential equation that will be studied in the subsequent chap-

ters is derived. Section 2.1 presents Maxwell’s equations in their unadulterated form. Section

2.2 introduces the material–dependent relationships between certain fields, and discusses

the modeling assumptions that will be used throughout this thesis. Section 2.3 separates

the dominant and secondary effects captured by Maxwell’s equations in order to arrive at

a quasistatic approximation that simplifies the field models on the temporal and spatial

scales of interest for electric machine simulations. The magnetic vector potential and electric

scalar potential are introduced in Section 2.4, which further simplify the representation of

the quasistatic field equations. Section 2.5 introduces the field approximations used to derive

two–dimensional models of electric machines. Boundary conditions for the partial differential

equation based on periodicity and “magnetic insulation” are discussed in Section 2.6. Some-

what related to boundary conditions, Section 2.7 discusses the analytic solution to Laplace’s

equation in a cylindrical annulus. This result can be used to couple equations expressed

in two different references frames and provides an elegant method for modeling rotational

motion.

18

2.1 Maxwell’s Equations

The differential form of Maxwell’s equations are given below:

∇ ·D = ρ, (2.1)

∇ ·B = 0, (2.2)

∇× E = −∂B
∂t
, (2.3)

∇×H = J+
∂D

∂t
. (2.4)

Equation (2.1) is Gauss’s law relating the free charge density ρ and the electric flux density

D. Equation (2.2) is Gauss’s law for magnetism. It is qualitatively distinct from (2.1) in that

it states there are no magnetic monopoles; from any point in space, any line of magnetic

flux density B passing through the point under consideration can be traced back to it.

Faraday’s law in equation (2.3) relates a time–varying magnetic flux density to the electric

field E. Ampere’s law in (2.4) relates the magnetic field intensity H to the free charge current

density J and the time rate of change of the electric flux density.

Equations (2.2) and (2.3) are self-consistent in that taking the divergence of (2.3) and

substituting (2.2) yields a logical truth:

∇ · ∇ ×E = −∇ · ∂B
∂t

= −∂∇ ·B
∂t

= 0. (2.5)

Similarly, taking the divergence of (2.4) and substituting (2.1) produces the equation for

conservation of electric charge:

∇ · J = −∂ρ
∂t
. (2.6)

Note that the conservation of charge does not have to be assumed; (2.6) is a natural con-

sequence of Maxwell’s equations. However, consideration of (2.6) can provide some useful

insights so we shall carry it along with the rest of Maxwell’s equations for the remainder of

19

the chapter.

2.2 Constitutive Equations

At the scale that we are interested in modeling, only 2 of the 5 fields, along with the free

charge density, are unique. The non–unique fields are related through constitutive equations.

Because the constitutive equations are intended to capture relationships observable at the

macroscopic level, they are based on some material–dependent modeling assumptions. The

proper modeling assumptions are highly dependent on the effects that are required to be

captured accurately, and also on the time scale on which those effects occur.

In general, it will be assumed that the electric flux density and electric current density

are linearly and isotropically related to the electric field intensity:

D = ǫ0E+P, (2.7)

J = σE, (2.8)

where ǫ0 is the vacuum permittivity, P is the polarization of the material, and σ is the

electrical conductivity of the material. The polarization is generally some function of E, the

details of which turn out to be relatively unimportant for the applications we are interested

in. This will be evident after the discussion of the magnetoquasistatic approximation in

Section 2.3.

The modeled value of the conductivity σ can range from 0 for nonconducting materials

to values on the order of 107 for high quality conductors such as copper. Since material

conductivity is strongly dependent on temperature, some assumption on the temperature

distribution must be made in order to fix this value for each material. We will assume that

each material region is at a constant uniform temperature, although discrete jumps may occur

whenever material discontinuities are encountered. This is a fair assumption, as materials

with large electrical conductivities tend to have large thermal conductivities, resulting in a

20

feedback mechanism that prevents the generation of appreciable temperature gradients over

the spatial scales of interest when Joule heating is the dominant loss mechanism.

Several possible constitutive relationships exist between H and B. In nonmagnetic ma-

terials, the relationship is simply

H = νoB, (2.9)

where ν0 =
10−7

4π
is the vacuum reluctivity. Often magnetic materials are modeled using the

linear relationship

H = ν ·B (2.10)

where ν is the reluctivity tensor. A further simplification can be made if the material is

assumed to be isotropic. Then it is common to write

H = νB (2.11)

where ν is now a scalar. The reluctivity values can be normalized to the vacuum reluctivity

by introducing the relative reluctivity νr such that

ν = ν0νr (2.12)

It is also possible to write the linear B–H relationships using permeability properties, usually

denoted µ, that is inversely related to the reluctivity:

µ = ν−1 (2.13)

This is perhaps more common, but for our purposes the permittivity model turns out to be

more convenient.

No magnetic material is truly linear. While linear relationships are useful for analytical

calculations, an essential detail that must be captured when operating at high field levels

21

is the presence of magnetic saturation. A standard way of doing this is to assume ν is a

nonlinear function of B (or possibly H). Instead, the approach taken here is to start with a

cursory consideration of another important magnetic phenomenon, hysteresis, and simplify

it somewhat to obtain a logically equivalent model that somewhat better represents the

physical underpinnings of magnetism.

In ferromagnetic materials, the most general relationship between B and H is governed

by the evolution of the magnetic domains intrinsic to the material occurring on the mi-

crometer level [104, 105]. The details of the magnetic domains are mesoscopic effects, which

depend on defects in the crystal lattice structure and even local stresses and strains. This

is more appropriately the subject of micromagnetics, and is too detailed a consideration for

our purposes. If instead we consider the ensemble average effect of the individual magnetic

domains, a quite general macroscopic constitutive relationship can be posited:

B (t) = µ0 [H (t) +M (H (τ) ; τ ≤ t)] , (2.14)

where M is the (macroscopic) magnetization. The arguments of the magnetization indicate

that M may depend on the entire history of H.

The evolution of the magnetization is governed by the minimization of complex, non-

convex energy potentials that are determined by the coupling of various phenomena occurring

at disparate spatial scales. At the macroscopic level, this effect is apparent through the

observation of hysteresis loops in plots of |M| or |B| versus |H|. Magnetic hysteresis is

a significant loss mechanism in magnetic devices, and accurately capturing this effect is

essential to optimizing certain designs.

Hysteresis modeling is fraught with difficulties, due to a dearth of empirical data and the

lack of a clear theory for passing from first–principles micromagnetic models to the macro-

scopic scale. In order to simplify our modeling, we shall assume the following (instantaneous)

22

constitutive relationship holds:

H = ν0B−M (B) . (2.15)

Notice thatM is now considered as a function ofB, which will prove useful later on. Equation

(2.15) represents a general non–isotropic relationship where M and B do not necessarily

point in the same direction. Such a relationship is necessary for modeling materials that

demonstrate a strong “preferred” magnetization direction.

From (2.15), we make two more material dependent assumptions. First, for permanent

magnet materials, we assume an affine relationship holds:

H = ν0B−Mr, (2.16)

where Mr is the remanent magnetization. This relationship for the permanent magnets is

only valid below the Curie temperature and when the applied field opposing Mr is not too

large. For non–grain–oriented steels, we make the further simplifying assumption that

M = χB, (2.17)

where χ is the magnetic susceptibility; comparing (2.17) to (2.15), evidently

χ = (1− νr) =
|M|
|B| . (2.18)

Note that this definition of χ is somewhat different than the standard definition of magnetic

susceptibility as M = χH. Equation (2.18) demonstrates an equivalency between magne-

tization and reluctivity modeling under these assumptions. We will assume all nonlinear

magnetic materials are non–grain–oriented.

If we accept the fact that the effects of hysteresis are neglected, the preceding assumptions

are reasonable when simulating electric machines. Most electric machines use non–grain–

oriented steel as there is not a single preferred direction for the magnetic flux. Similarly, if

23

the field levels are high enough to appreciably demagnetize any permanent magnets, it is nec-

essary to include hysteretic effects in order to accurately capture this phenomenon. Further,

the demagnetization characteristics of hard magnetic materials are temperature dependent,

which adds additional complications beyond the inclusion of temperature–independent hys-

teresis effects.

Substituting these relationships into Equations (2.1)–(2.6) yields the following modified

Maxwell’s equations:

ǫ0∇ · E+∇ ·P = ρ, (2.19)

∇ ·B = 0, (2.20)

∇× E = −∂B
∂t
, (2.21)

ν0∇×B−∇×M = σE+ ǫ0
∂E

∂t
+
∂P

∂t
, (2.22)

∇ · (σE) = −∂ρ
∂t
. (2.23)

Notice that, because σ may contain finite discontinuous jumps at material interfaces, it is

not possible to use the linearity of the divergence to put (2.23) into a simpler form. The

magnetic nonlinearity is assumed to be included in M in the right hand side of (2.22) along

with the remanent magnetization of any permanent magnets.

2.3 Magnetoquasistatic Approximation

Equations (2.19)–(2.23) are quite general; they contain a menagerie of details that are often

irrelevant on the spatial and temporal scales of interest. In order to tease out the important

effects, they can be normalized by introducing a characteristic length λ, characteristic time τ ,

24

and characteristic flux density B [106]. The following change of variables is then performed:

t = τt

∇ =
1

λ
∇

B = BB

M = ν0BM

E =
λB
τ
E

P =
ǫ0λB
τ

P

ρ =
ǫ0B
τ
ρ

(2.24)

Making these substitutions into Equations (2.19)–(2.23) (and dropping the underbars for

convenience) gives the normalized equations:

∇ · E+∇ ·P = ρ, (2.25)

∇ ·B = 0, (2.26)

∇× E = −∂B
∂t
, (2.27)

∇×B−∇×M =
λ2σ

τν0
E+

λ2

ǫ0ν0τ 2

(

∂E

∂t
+
∂P

∂t

)

, (2.28)

∇ · (σE) = −λǫ0
τ

∂ρ

∂t
. (2.29)

The normalized Ampere’s law (2.28) and charge conservation law (2.29) can be simplified

by introducing three characteristics times related to the time–scales on which different phe-

nomena occur. The charge relaxation time, τe, given by

τe =
ε0

σ
, (2.30)

is related to the time it takes for a local charge density to dissipate in a conducting medium.

25

The magnetic diffusion time, τm, given by,

τm =
σλ2

ν0
, (2.31)

is related to the time required for magnetic fields to penetrate into a conducting medium at

the spatial scale of interest. Finally, the electromagnetic wave propagation time, τem, given

by

τem =

√

ǫ0

ν0
λ, (2.32)

is related to the time for an electromagnetic wave in the material to travel over the spatial

scale of interest. The wave propagation time is the geometric mean of τe and τm:

τem =
√
τeτm. (2.33)

In terms of these times, (2.28) and (2.29) become, respectively,

∇×B−∇×M =
τm

τ
E+

τ 2em
τ 2

(

∂E

∂t
+
∂P

∂t

)

, (2.34)

∇ · (σE) = −τe
τ

∂ρ

∂t
. (2.35)

The magnetoquasistatic approximation is based on the observation that, on the temporal

and spatial scales of interest, τm is O (τc) and τe ≪ τm. Further, as a consequence of (2.33),

τe ≪ τm implies τe ≪ τem ≪ τm. We arrive at the desired approximation by taking the limit

of (2.34) and (2.35) as τe → 0. In words, the limiting procedure implies that displacement

current effects are negligible and no significant charge accumulation occurs.

Some consideration of typical values for λ and τ is illuminating. The characteristic length

can range from 10−4 meters for the cross sections of small wires to 101 meters for the

circumference of generators for power systems. Characteristic times of interest are mostly

governed by excitation frequencies, and can range from 10−4 seconds at inverter switching

26

Table 2.1: Typical ranges of characteristic times in seconds

τe τem τm τ

10−19–10−15 10−12–10−8 10−5–101 10−4–10−1

frequencies up to 10−1 seconds at line frequencies.

Table 2.1 gives ranges for the characteristic times based on some typical material proper-

ties. It is evident that the magnetoquasistatic approximation is universally good at the scales

of interest. Only once the excitation reaches the megahertz frequency range does electromag-

netic wave propagation begin to have a significant effect. Magnetic diffusion is a different

matter; the range of τm overlaps broadly with the timescales of interest and will play a

significant role in many instances.

Reverting to the unnormalized equations, we apply this approximation and reorder the

equations by importance:

ν0∇×B−∇×M = σE, (2.36)

∇ ·B = 0, (2.37)

∇× E = −∂B
∂t
, (2.38)

∇ · (σE) = 0, (2.39)

ǫ0∇ · E+∇ ·P = ρ. (2.40)

Ampere’s law (2.36) and Gauss’s law for magnetism (2.37) govern the fundamental field

behavior, with dynamics entering through Faraday’s law (2.38). The charge conservation

equation (2.39) is instructive as to the type of boundary conditions that the current density

σEmust obey at material interfaces. The charge density is rarely of interest in such problems;

equation (2.40) can be regarded as determining ρ as an output of the magnetoquasistatic

system in those cases when it is of interest. From now on, (2.40) will be disregarded.

27

2.4 Potential Formulation

The three dominant equations of the magnetoquasistatic approximation can be combined

into a single equation using a potential formulation of Ampere’s law. This has the effect of

reducing the number of field components from 6, 3 for each of B and E, down to 4. The

charge conservation equation augments the potential form of Ampere’s law to provide the

appropriate number of degrees of freedom.

Because the flux density is solenoidal (2.37), B can be written in terms of the curl of the

magnetic vector potential A:

B = ∇×A. (2.41)

Substituting this into Faraday’s law (2.38), we find

∇×
(

E+
∂A

∂t

)

= 0. (2.42)

Because E + ∂A
∂t

is a conservative field, it can be written in terms of the gradient of the

electric scalar potential φ:

E = −∂A
∂t
−∇φ. (2.43)

Substituting (2.41) and (2.43) into Amperes’s law (2.36) and the charge conservation law

(2.39) gives the following equations:

σ
∂A

∂t
+ ν0∇×∇×A−∇×M+ σ∇φ = 0, (2.44)

∇ ·
(

σ
∂A

∂t
+ σ∇φ

)

= 0. (2.45)

A vector field can be completely specified by its curl and divergence. In this sense, there

is still an extra degree of freedom associated with divergence of A because only its curl has

been specified through (2.41). How this matter is addressed is an issue of great sensitivity

28

when considering problems with non–uniform magnetic properties. Often, the approach taken

depends on the method used to solve the equations and any simplifying assumptions that

are employed. For example, the issue disappears when the two–dimensional approximation

of Section 2.5 is applied.

2.5 Cartesian Two-Dimensional Approximation

Often, the geometry of certain problems is dominated by a single characteristic direction

or plane. The construction of radial–flux electric machines involves stacking ferromagnetic

laminations along the z–direction in a uniform or quasi–uniform way. Conductors run through

the laminations so that the dominant electric field and electric currents are in the z–direction

and produce magnetic fields that are confined primarily to the x–y plane. Because of (2.43),

the condition that E lies purely in the z–direction implies that

A =

0

0

Az

(2.46)

and

∇φ =

0

0

∂φ
∂z

. (2.47)

The condition that Ez is constant along the z–direction implies that both Az and ∂φ
∂z

are

constant as well. This situation models an infinitely long electric machine with uniform

properties in the axial direction. In two dimensions, the only essential characteristic of φ is

its partial derivative in the z–direction, which is interpreted as a voltage per unit length. For

29

notational convenience, we will write

Eφ =
∂φ

∂z
, (2.48)

that is, Eφ is the part of E = Ez produced by ∇φ. Because the two other components of

∇φ are zero, Eφ must be assumed to be constant in the x–y plane, with finite jumps only

occurring at material interfaces.

Substituting these assumptions into (2.44) gives the two–dimensional magnetoquasistatic

version of Ampere’s law:

σ
∂A

∂t
+ ν0∇′ ×∇×A−∇′ ×M+ σEφ = 0 (2.49)

where the subscript has been dropped from Az = A. Now, when we write

∇×A =
∂Az

∂y
x̂− ∂Az

∂x
ŷ (2.50)

it is understood to be the restriction to the part of the curl operator that acts on the z–

component of the input vector. Similarly, when we write

∇′ ×B = −∂Bx

∂y
+
∂By

∂x
(2.51)

it is understood to be the restriction to the part of the curl operator that produce a vector

pointing in the z-direction. Finally, we note that the current conservation equation (2.45)

is naturally satisfied under these assumptions, so only (2.49) is required to determine the

fields.

In (2.49), we could have used the fact that ∇′ ×∇× = −∇2 to write the problem using

the scalar Laplacian. For expository purposes, however, it conceptually useful to remain

with the curl–curl notation since it reminds us that the underlying problem we are solving is

30

fundamentally different from a scalar or vector Laplacian equation. This is important for two

reasons. First, the different underlying operator requires us to interpret boundary conditions

differently, as will be discussed in the next section. Second, even though the simplification

to the scalar Laplacian occurs in two dimensions without additional assumptions, this is not

the case for three–dimensional problems. In fact, it is common to see the assumption of the

Coulomb gauge (∇·A = 0) for two–dimensional problems even though it is not necessary. For

many years this assumption was also used in three–dimensional analysis, albeit with great

difficulty. It is now well known that three–dimensional curl–curl problems with general types

of material discontinuities must be treated with discretization schemes that are different

than those used for vector Laplacian problems. This occurs precisely because of different

requirements on field continuity and the types of singularities that occur at sharp corners.

Even though we will not be performing any three–dimensional analysis, we would like to

keep the two– and three– dimensional analogy as tight as possible.

2.6 Boundary Conditions

Two different types of boundary conditions are common for electric machines. The first arises

from θ–periodicity conditions, and the second from flux containment considerations. There

is a third type of boundary that arises when modeling rotational motion, which is discussed

in detail in Section 2.7.

2.6.1 Periodic Boundary Conditions

Radial flux–electric machines exhibit a special periodic structure in both their geometry and

excitation. This results in solutions that are periodic (in polar coordinates) with a certain

fraction fp =
p
Np

, p even, of the machine:

A (θ) = A (θ + 2πfpk) , (2.52)

31

Eφ (θ) = Eφ (θ + 2πfpk) , (2.53)

(2.54)

where Np is the number of machine poles and k is an arbitrary integer. When the solution

also exhibits half–wave symmetry, we can go one step further and choose an odd p such that

A (θ) = −A (θ + 2πfpk) , (2.55)

Eφ (θ) = −Eφ (θ + 2πfpk) , (2.56)

(2.57)

which is called antiperiodicity. When either (2.52) and (2.53), or (2.55) and (2.56) are satis-

fied, the continuum model can be restricted to a fraction fp of the machine. Thus, we require

the (anti)periodic condition

A [r, θ (r)] = spA [r, θ (r) + 2πfp] (2.58)

with

sp = 1− 2 modulo (p, 2) = ∓1 (2.59)

to be satisfied as part of the boundary conditions of the partial differential equation. A similar

condition is required on Eφ. However, since Eφ is piecewise constant in two–dimensions, care

can be taken to defined the boundary line (r, θ (r)) of the model around any regions associated

with constant Eφ and nonzero conductivity whenever possible. If the geometry dictates this

is not possible for a particular region, the antiperiodicity assumptions imply Eφ = 0 in this

area. Therefore, under the antiperiodicity assumptions we can always choose (r, θ (r)) to be

drawn through regions where Eφ = 0.

32

2.6.2 Magnetic Insulation (Dirchlet) Boundary Condition

Electric machines, and magnetic devices in general, are designed to have preferred magnetic

flux paths. Fringing fields occurring outside of these paths are generally regarded as unde-

sirable. Therefore, if the boundary of the partial differential equation is chosen suitably far

away from the fields of interest, it is natural to assume that no magnetic flux passes through

the boundary:

B · n = 0 on Γ0 (2.60)

where n is the unit vector normal to the boundary Γ0. Since B = ∇× A, (2.60) is satisfied

whenever A is constant on Γ0. If we also assume that the solution is antiperiodic, this implies

(2.60) is equivalent to

A = 0 on Γ0. (2.61)

When the solution is merely periodic, A can be any constant (the value of which is unim-

portant), so that (2.61) is uniformly valid.

2.6.3 Tangential Field (Neumann) Boundary Condition

It is the tangential part ofH that is continuous across material boundaries. Since the Dirchlet

boundary condition is equivalent to specifying the normal flux density B, Neumann boundary

conditions for magnetic field problems are properly described in terms of the tangential part

of magnetic field intensity H:

H× n = Ht on Γt. (2.62)

Neumann boundary conditions are seldom used in isolation for electric machine analysis.

More often they are used to couple solutions on independently modeled domains, as described

in the following section.

33

2.7 Boundary Transfer Relationships

It is usually possible to decompose an electric machine into regions with complex geometry

associated with the materials (laminations, windings, magnets) that are surrounded by free

space or gaps having simple shapes. For radial flux machines, the gaps are modeled as

cylindrical annuli and the fields obey Laplace’s equation

−ν0∇×∇× A = ν0∇2A = 0. (2.63)

This equation has a known analytical solution in terms of boundary harmonics. The ana-

lytical solution can be used to couple the solutions on disjoint subdomains with complex

geometries. The benefit of doing this is the ease with which the coupling framework allows

us to model rotational motion by a spatial phase shift corresponding to multiplication by a

diagonal matrix. The development in this section closely follows the presentation in [106].

2.7.1 Flux-Potential Transfer Relationships

Let Ω be a cylindrical domain with inner boundary Γβ with radius β and outer boundary

Γα with radius α. We assume that the magnetic vector potential on each boundary can be

decomposed into a sum of spatial harmonics in the θ direction:

A (α, θ) =
∑

k

Ãα
ke

jkθ (2.64)

A (β, θ) =
∑

k

Ã
β
ke

jkθ (2.65)

Because Laplace’s equation is linear, no harmonic mixing occurs and this decomposition

allows us to focus on the solution to (2.63) for a single spatial harmonic. We can assume the

34

solution to the equation takes the form

Ãk (r, θ) = Ãk (r) e
jkθ. (2.66)

Substitution into Laplace’s equations yields the following differential equation in a single

variable r,

∂2Ãk

∂r2
+

1

r

∂Ãk

∂r
− k2

r2
Ãk = 0, (2.67)

subject to the Dirchlet boundary conditions Ãk (α) = Ãα
k and Ãk (β) = Ã

β
k . The solution to

this problem can be written as a linear combination of the polynomials rk and r−k [106] in

the form

Ãk (r) = Ãα
kTk

(

β

r
,
β

α

)

+ Ã
β
kTk

(

r

α
,
β

α

)

, (2.68)

where T is given by

Tk (x, y) =
xk − x−k

yk − y−k
. (2.69)

The tangential field intensity, pointing in the θ–direction in cylindrical coordinates, for

each spatial harmonic H̃t,k is found by taking the derivative of (2.69) with respect to r:

H̃t,k = ν0
∂Ãk (r)

∂r
. (2.70)

Taking the derivative of Tk with respect to r and using the chain rule, we find the general

relationship

∂Tk (x, y)
∂x

∂x

∂r
=
kxk−1 + kx1−k

yk − y−k

∂x

∂r
. (2.71)

Of particular interest is the evaluation of this function at each boundary, r = α and r = β,

for each functional form of x. The four results display a certain degree of symmetry that can

be summarized in two functions capturing the effects of the tangential field intensity on the

“near” boundary, for which x = β
α
, and the “far” boundary, for which x = 1. We summarize

35

the near– and far–effects in the functions Fk and Gk:

Fk (x, y) = ν0
k

y

x
y
k + y

x
k

x
y
k − y

x
k
, (2.72)

Gk (x, y) = ν0
2k

x

1
x
y
k − y

x
k
. (2.73)

On the boundaries r = α and r = β, the tangential field intensity harmonics are written

using these functions as follows:

H̃α
t = Fk (β, α) Ã

α
k + Gk (α, β) Ãβ

k (2.74)

H̃
β
t = Gk (β, α) Ãα

k + Fk (α, β) Ã
β
k (2.75)

2.7.2 Harmonic Expansion

In order to couple the analytical solution in the airgap to the field equations in complex

domains less amenable to analytic treatment, it is necessary to represent the boundary values

of these domains in terms of spatial harmonics. This is conceptually straightforward since

the functions e−jkθ form an orthogonal basis for periodic functions on the one dimensional

manifold in cylindrical coordinates represented by constant r. The harmonic representation

is the spatial solution expressed in this basis, identified by the Fourier integrals:

Ãk (r) =
1

2π

∫ 2π

0

e−jkθA (r, θ) dθ (2.76)

This basis is countably infinite, which creates some difficulties in computer implementations

and will be dealt with later. In the mean–time, we can represent the calculation of the entire

set of harmonics through the operator D:

Ã = DA (2.77)

36

Likewise there is an inverse operator P (θ) that transforms the harmonic coefficients to the

value of A at angle θ in the physical space:

A (θ) = P (θ) Ã (2.78)

In the continuous case, there is no need to make distinctions between the projection D (or

P (θ)) occurring at different values of r since the circular boundaries are isometric with

respect to θ. The situation is different in implementation. In all likelihood, each circular

boundary will have a different discretization and require a different treatment in terms of

transforming between the spatial and harmonic representations. Again, this will be dealt

with later. For right now, we simply anticipate the need to distinguish transformations on

different boundaries by attaching subscripts to the D and P (θ) operators.

This allows us to write the tangential field intensity at r = α and r = β using only the

values of A:

Hα
t (θ) = Pα (θ)Fβ,αDαAα + Pα (θ)Gβ,αDβAβ on Γα, (2.79)

H
β
t (θ) = Pβ (θ)Gα,βDαAα + Pβ (θ)Fα,βDβAβ on Γβ, (2.80)

where F and G are diagonal scaling operators with values corresponding to the functions Fk

and Gk previously described:

{Fx,y}k,k = Fk (x, y) , (2.81)

{Gx,y}k,k = Gk (x, y) . (2.82)

These expressions can be used to couple two computational domains that are separated by

a cylindrical annulus. First, the equations are formulated separately in each domain with

Neumann boundary conditions, represented by equation (2.62), on the two boundaries of the

annulus. The previously developed expressions for the tangential field intensity in terms of

37

the magnetic vector potential are then substituted into these boundary conditions, resulting

in two Dirchlet-like conditions that must be satisfied simultaneously with the rest of the field

equations.

2.7.3 Rotational Motion

One interesting property of the coupling framework previously described is the ease of im-

plementing relative rotational motion between two domains described in different reference

frames. Consider a reference frame that is fixed in space. If a second reference frame is ro-

tating with respect to the first with a constant rotational velocity ωr, the difference between

an angle measured in the two reference frames is given by ωrt. In other words, angles in the

two reference frames are related by

θ = θ′ + ωrt. (2.83)

If instead of θ we use θ′ in (2.76), i.e. perform the change of basis in the rotating reference

frame, by substituting (2.83) and noting ∂θ′

∂θ
= 1, we find

Ã′
k =

1

2π

∫ 2π

0

e−jkθ′A′dθ′

=
1

2π

∫ 2π

0

e−jk(θ−ωrt)Adθ

=Ãke
jkωrt.

(2.84)

In words, harmonics in the two reference frames differ by a phase–shift of magnitude kωrt.

This is easily incorporated into the previously developed framework because a phase shift is

implemented by a complex diagonal scaling operation in the harmonic domain. To this end,

we can introduce a rotation operator R with nonzero “diagonal entries”

{R}k,k = ejkωrt (2.85)

38

and rewrite the relationship between Ht and A to take into account the fact that the variables

on the boundaries Γα and Γβ may be expressed in different frames of reference:

Hα
t (θ) = Pα (θ)Fβ,αDαAα + Pα (θ)Gβ,αRDβAβ on Γα, (2.86)

H
β
t (θ) = Pβ (θ)Gα,βRHDαAα + Pβ (θ)Fα,βDβAβ on Γβ. (2.87)

39

Chapter 3

Field–Circuit Coupling

Electric machines are constructed with many current–carrying conductors that are connected

in series and/or parallel. When a two–dimensional approximation of a machine is used for

simulations, only the cross sections of the conductors are modeled. This necessitates the use

of additional constraints between the currents and voltages due to the fact that a single

conductor intersects the modeled cross section multiple times. The most general coupling

method is based on field–current constraints and is discussed in Section 3.1. If certain con-

ditions are satisfied, voltage constraints may be utilized. The requirements for this type of

coupling are addressed in Section 3.2. Most of these techniques are scattered in various places

in the literature and this chapter represents an attempt to present them within a unified

framework [41, 42, 43, 44, 45, 46, 47, 48].

Even when the two–dimensional approximation is not used, field–current and field–

voltage constraints are necessary at the winding terminals in order to couple the field equa-

tions to any external circuits. The simplest case occurs when each terminal is excited inde-

pendently. The different types of configurations for independent excitation are discussed in

3.3. Of particular interest is the coupling equations for three–phase electric machines. Sec-

tion 3.4 develops the external circuit equations for delta– and wye–connected three–phase

machines.

40

0.098 0.1 0.102 0.104 0.106 0.108 0.11 0.112 0.114 0.116 0.118
0

0.002

0.004

0.006

0.008

0.01

0.012

X [m]

Y
 [m

]

2
6

6 2 2

1 2 3 4

5 6 7 8

3 5

42

1 1 3 5

64

1 3

62 4

5 1 3

4

5

6

5

2 4 6

1 3

64

31 5 3 5

4

1

2
1 3 5

642

Figure 3.1: The depicted stator has two slots per phase, 4 turns per slot for a total of 8 turns
per pole, and 6 strands per turn. The unique strands are labeled 1 through 6. The turns in
these two slots are labeled 1 through 8.

3.1 Dynamic Field–Circuit Coupling

The details of electric machine windings can be fairly complex. The two slots of a stator

depicted in Fig. 3.1 will help to clarify the terminology. Each winding can be composed of

several bundles of wires connected in parallel. The individual wires composing a bundle will

be referred to as strands. In the two–dimensional approximation, each bundle passes through

the modeled cross section multiple times. We will refer to each intersection of a bundle with

the cross section as a turn. The regions within each turn associated with the same strand

must carry the same total current. The sign of the current depends on the direction of the

strand through the machine.

Let us assume that there are 1 ≤ i ≤ Nb bundles, 1 ≤ j ≤ Ns (i) strands per bundle,

and Nt (i) turns per bundle. This means that there are 1 ≤ k ≤ Nc regions Ωk in the cross

41

section of the machine that conductors pass through, where

Nc =

Nb
∑

i=1

Ns (i)Nt (i) . (3.1)

The connectivity of strand (i, j) is defined by the subset of regions Ωk in the cross section

that the strand passes through. We introduce the path sets Pi,j that contain a set of tuples

(k, s) when strand (i, j) passes through region Ωk, with s = ±1 depending on the direction

of the strand through the machine.

With this notation, the total strand current is ii,j. The strand current constraints can be

written in terms of the field variables as

∫

Ωk

σ
∂A

∂t
dΩ + σ|Ωk|Eφ,k + sii,j = 0, ∀ (k, s) ∈ Pi,j, ∀i, j. (3.2)

Because the strands within each bundled are connected in parallel, the total voltage drop

across each strand is the same as the voltage drop across the bundle (vi,j = vi). To account

for the voltage drop experienced by the portion of the strand not in the cross section of

the machine, i.e. within the “end turns”, an external resistance Ri,j and inductance Li,j are

introduced.1 Therefore, we consider the following set of equations for the bundle voltages:

∑

Pi,j

sEφ,k +
Ri,j

ls
ii,j +

Li,j

ls

∂ii,j

∂t
+

1

ls
vi = 0, ∀j (3.3)

where Eφ,k is the voltage drop per unit length across the part of the strand associated with

region Ωk.The stack length ls corresponds to the part of the length of the machine in the z–

direction that is occupied by magnetic laminations. The total terminal current ii for bundle

i is the sum of the strand currents:
∑

j

ii,j = ii. (3.4)

1We could also consider mutual external inductances Mi,j that induces a voltage in strand i from a
time-varying current in strand j, but this is rarely done in practice.

42

Because there is a factor of 1
ls

multiplying vi in (3.3), we will also multiply the current

constraint (3.4) by the same constant:

1

ls

∑

j

ii,j =
1

ls
ii. (3.5)

The reason for doing so is that, once the equations are put into matrix form, this row

multiplication is necessary to produce a symmetric matrix representation of the system of

equations.

When only a fraction of the electric machine is modeled, the sum in (3.3) must be

expressed in terms of only the turns that have been modeled. This is complicated by the

fact that an individual strand may pass through a region of an adjacent pole that does

not correspond to a strict rotation from the original pole. Often, this is done on purpose;

certain clever choices of strand and turn paths can produce more desirable current density

and magnetic field distributions.

Assume that a fraction fp of the machine has been modeled and let the constant sp = ±1

be defined as in (2.59) where sp = 1 when periodic (p even) or sp = −1 when antiperiodic (p

odd) boundary conditions are assumed. We will call this pth of the machine the master model.

We will number Ωk in a uniform way, such that if Ωk is rotated by 2πfp, then the resulting

region is identical to Ωk+fpNc
. In terms of the fields, the (anti)periodicity assumption implies

that the fields in Ωk and Ωk+fpNc
are identical to within a change of sign. In terms of the

path sets Pi,j, the (anti)periodicity assumption implies that the tuple (k, s) can be mapped

to a tuple corresponding to a region contained in the master model as

(k, s)←
(

kf , s
ks
p s
)

, (3.6)

43

where

kf = modulo (k − 1, fpNc) + 1,

ks =

⌊

k − 1

fpNc

⌋

.

(3.7)

The value of kf accounts for the mapping of the region to the master model. The value of

ks accounts for the possibility of a difference in the polarity of the source and destination

region. We will write (k, s) ∈ P̂i,j to signify the (anti)periodic path sets obtained by applying

(3.6) to each tuple in Pi,j. Because different values of k and s can be mapped to the same

value of kp and ks, it is possible that the same value of k can appear multiple times in a

given P̂i,j and in multiple path sets with distinct j.

We introduce the region set Ri,m associated with the current ii,m and voltage drop per

unit length Eφ,m such that (k, s) appears in Ri,m once and only once if the region k carries

current ii,m. We also introduce the strand set Si,m such that j ∈ Si,m if there is some (k, s)

such that (k, s) ∈ P̂i,j and (k, s) ∈ P̂i,l for j 6= l. The (anti)periodicity assumption implies

that any pair of distinct strands containing the same region in their path set must carry

the same total current and must experience the same voltage drop per unit length within

that region. Therefore, if two distinct strands j and l are in the same strand set Si,m, the

corresponding region set Ri,m must contain all unique tuples (k, s) from both P̂i,j and P̂i,l.

The strand sets and the region sets are duals in the sense that Si,m indexes the strands and

Ri,m indexes the regions associated with the current ii,m. The number of region/strand sets

corresponds to the number of unique strand currents. Now the strand current constraints

are written in terms of the region sets:

∫

Ωk

σ
∂A

∂t
dΩ + σ|Ωk|Eφ,k + sii,m = 0, ∀ (k, s) ∈ Ri,m, ∀i,m. (3.8)

There are several ways to derive the bundle voltage drop. We write it in terms of the sum

of Eφ,m over the region sets Ri,m, which will realize a set of symmetric equations later on.

The sum of slsEφ,k over Ri,m corresponds to the voltage drop experienced by the bundle over

44

fp of the path, multiplied by the number of individual strands |Si,m| that carry the current

ii,m. Therefore, we must introduce the scaling factor |Si,m|fp to the bundle voltage equation:

∑

Ri,m

sEφ,k +
fp|Si,m|Ri,m

ls
ii,m +

fp|Si,m|Li,m

ls

∂ii,m

∂t
+
fp|Si,m|
ls

vi = 0, ∀i,m. (3.9)

Because of the (anti)periodicity constraints, we must have

Ri,m = Ri,j , Li,m = Li,j, ∀j ∈ Si,m. (3.10)

The terminal currents can be expressed as a sum of the strand sets Si,m after taking into

account their multiplicity:
∑

m

fp|Si,m|
ls

ii,m =
fp

ls
ii, ∀i, (3.11)

where we have introduce the factor fp for symmetry purposes.

3.1.1 Periodic and Antiperiodic Boundary Conditions

From a computational efficiency standpoint, we want to chose fp =
p
Np

as small as possible. In

the two–dimensional model, if the geometry and permanent magnet excitation alone allows

us to choose a value of p that corresponds to a valid mapping of the entire machine to the

master model, there is nothing inherent in the field structure that disallows the use of that

value of p and the corresponding (anti)periodic boundary conditions. The situation changes

slightly when we consider the effects of end turns. It is entirely possible, even likely, that

different strands in the same bundle have different lengths. The only way to capture this

effect in two dimensions is by choosing different external resistance and inductance values

Ri,j and Li,j for each strand. However, each p implicitly places constraints on the value of

the strand external impedance through (3.10). Therefore, if we have the geometry of the

problem and a set of external strand impedances at hand, the best choice of p that is strictly

valid is the smallest one dictated by the geometry that does not violate (3.10).

45

That being said, it is not an easy task to specify individual values for the strand impedances,

especially the value of the inductance. Further, the external impedance only comes into play

in the development of the bundle voltage due to end turn effects. For realistic impedance

values, the bundle voltage drop will be dominated by the contribution from Eφ,k and, in

particular, the non–resistive voltage drop due to Faraday’s law. Therefore, from a modeling

perspective, using a single mean value for the external impedance values may be acceptable.

From a computational efficiency standpoint, this is desirable as it allows us to model the

smallest part of the machine dictated by the geometry.

3.1.2 Macroscopic Strand Modeling

Often, the details of the strands are unimportant and modeling them can dramatically in-

crease the computational burden. If the characteristic time τ is much smaller than the mag-

netic diffusion time τm, with the diameter of the strand playing the role of the characteristic

length λ, then it may be reasonable to assume that Eφ,k is the same for each strand within

a turn and that the magnetic vector potential is nearly uniform across the turn. In this case

we may consider replacing the individual strands with one macroscopic strand so that each

bundle (and turn) is modeled with a single massive conductor occupying the domain Ωk̂.

The individual values of Eφ,k for each strand are replaced with a single value Eφ,k̂.

In order to accurately capture the mean strand behavior, the macroscopic domain Ωk̂

should be situation at some nominal center (x0, y0) of the strands and be roughly the same

shape as the arrangement of the individual strands. Two possible situations can arise. If the

strands are semi–regularly distributed so that the macroscopic strand may have a simple

geometry, we can require the area of Ωk̂ be equal to the total cross sectional area of the

strands in the bundle. As a result, approximately the same net current is calculated in the

macroscopic strand as in the original stranded bundle.

Because we are interested in capturing the mean turn behavior, another logical proposi-

tion is to require that Ωk ∈ Ω̂k̂ for each strand in the turn. This will almost surely result in

46

Ωk̂ having a cross sectional area that is greater than the sum of the individual turns, an effect

that must be compensated for in the current constraint equations. To do this, we assume

A ≈ A0 and introduce the factor fp,s so that the integral over the macroscopic strand and

the sum of the integrals over the individual strands vanish to 0th order:

∫

Ω
k̂

fp,sσ
∂A0

∂t
dΩ + fp,sσ|Ωk̂|Eφ,k̂ =

∑

k

[
∫

Ωk

σ
∂A0

∂t
dΩ+ σ|Ωk|Eφ,k

]

. (3.12)

Because A0 is spatially constant and we must have Eφ,k̂ = Eφ,k over the turn, fp,s must be

the ratio of the total strand area to the macroscopic strand area:

fp,s =

∑

k |Ωk|
|Ωk̂|

. (3.13)

A more subtle effect that must be considered is the change in characteristic magnetic

diffusion time associated with each turn. Calculating τm for a stranded turn is complicated

by the fact that the conductivity is discontinuous across the area of the turn. That is, σ = 0 in

the areas outside of the individual strands. Because τm = 0 in non–conductors, we can think

of replacing σ with an effective conductivity fp,sσ where fp,s is the fraction of conducting

material in the turn.

In the case where the macroscopic strand area is equal to the sum of the area of the

strands, we have fp,sλ
2
strand ≈ λ2macro and the magnetic diffusion times end up being roughly

equivalent. In the case where the turn and the macroscopic strand have the same character-

istic length, λstrand = λmacro. To adjust the diffusion time of the macroscopic strand, using

the value of fp,sσ as the conductivity will produce the same characteristic magnetic diffusion

time as the stranded turn. Evidently, after consideration of (3.12), it is simply a matter of

making the modification σ ← fp,sσ to realize a 0th order correction in the field and current

equations. From this point on, we will drop fp,s from the notation with the understand-

ing that modifications to the material conductivity are necessary in certain situations when

ignoring individual strand behavior.

47

3.2 Static Field–Circuit Coupling

It may happen that the characteristic length of a turn is small enough that the resulting

magnetic diffusion time is much shorter than the characteristic time of interest. When this

occurs, it can be useful to replace all of the turns in a localized area with a single massive

conductor and adjust the field constraints correspondingly. When this happened with the

individual strands in the turns, we found that the magnetic diffusion times τm were additive

since each strand was connected in parallel. Because the turns are connected in series, the

magnetic diffusion time associated with the bundle is the same as an individual turn. Sim-

ilarly, whereas each strand may carry a different current, each turn, being composed of the

individual strands, must carry the same current. The assumption that τm associated with

the turn is smaller than the characteristic time implies that no significant current redistribu-

tion occurs due to magnetic diffusion. Therefore, multiple turns carrying the same current

throughout a given region produce a roughly uniform current distribution.

To clarify this, we will retain the same bundle numbering 1 ≤ i ≤ Nb as in the previous

section. We will assume the turns within each bundle can be grouped into 1 ≤ j ≤ Nr (i)

regions. In analogy with the preceding section, we will denote each distinct region as Ωk.

Now we introduce turn–sets Ti that contains the tuple (k, s) when Ωk is a region containing

Nk turns of bundle i with s = ±1 depending on the direction of the turns. If the bundle is

modeled as a set of stranded conductors with more than one strand per bundle, Nk is taken

to be the number of strands per bundle, 1
Ns(i)

. The number of turns must satisfy

Nt (i) =
∑

Ti

Nk. (3.14)

In order to decouple Ampere’s law and Faraday’s law, the bundle current ii acts as an input

48

to field equations producing a spatially uniform current density in each region:

−σ∂A
∂t
− σEφ,k =

sNk

|Ωk|
ii, ∀ (s, k) ∈ Ti, ∀i. (3.15)

Using this expression for the current density gives us Ampere’s law for magnetostatics:

ν0∇′ ×∇×A−∇′ ×M = J, (3.16)

where

J =

sNk

|Ωk| ii, (s, k) ∈ Ti if (x, y) ∈ Ωk

0 otherwise

. (3.17)

Faraday’s law enters through the external circuit constraints where the voltage per unit

length is calculated from A and i. Even though the current density is constant, the value

of A calculated from (3.15) still varies spatially. Physically, the constant value taken by Eφ

should satisfy the constraints placed on the total current flowing through each Ωk as dictated

by (3.15). Mathematically, this results in an averaging equation that calculates Eφ,k to fulfill

this constraint:

Eφ,k = −
1

|Ωk|

∫

Ωk

∂A

∂t
dΩ− sNk

σ|Ωk|
ii, ∀(k, s) ∈ Ti, ∀i. (3.18)

The total bundle voltage is the sum of the Eφ,k associated with each bundle, multiplied by

the number of turns per region and the stack length, plus the sum of an external resistive

and inductive voltage drops due to the bundle current:

−
∑

Ti

sNkEφ,k +
Ri

ls
ii +

Li

ls

∂ii

∂t
+

1

ls
vi = 0. (3.19)

The difference between the sign of the Eφ,k component of (3.3) and (3.19) can be explained

in the following way. In (3.3), the voltage across the model is considered a reaction to the

49

applied voltage vi and the model acts as a load to the source. In (3.19), we have specified

the current density through (3.15) and the voltage drop across the model is a reaction to

the load attached to the terminals. That is to say, the model acts like a current source

attached to a load. The load itself may include additional independent sources. The passive

sign convention dictates that the polarity of the voltage must be defined so the current flows

into the positive terminal for (3.3) and into the negative terminal for (3.19). Because the

direction of the current is fixed in the positive z–direction for both cases, the polarity of the

voltage must be reversed between the two equations.

After substitution of the expression for Eφ,k, the bundle voltage equation becomes

−
∑

Ti

sNk

|Ωk|

∫

Ωk

∂A

∂t
dΩ−

∑

Ti

N2
k

σ|Ωk|
ii −

Ri

ls
ii −

Li

ls

∂ii

∂t
=

1

ls
vi, (3.20)

where we have multiplied through by −1 for symmetry. When only fp of a machine is

modeled, the sum over Ti represents only fp of the total voltage drop, and the equation must

be adjusted accordingly:

−
∑

Ti

sNk

|Ωk|

∫

Ωk

∂A

∂t
dΩ−

∑

Ti

N2
k

σ|Ωk|
ii −

fpRi

ls
ii −

fpLi

ls

∂ii

∂t
=
fp

ls
vi. (3.21)

3.3 Field–Circuit Equations: Independent Excitation

From the proceeding sections, we can identify four cases of interest divided by excitation

and constraint type. In this section, we summarize these cases when each bundle is excited

independently. The case where the bundle excitation is constrained by a three-phase external

circuit is discussed in the next section.

50

3.3.1 Dynamic Simulation with Voltage Input

This type of simulation includes the effects of magnetic diffusion using a stranded or macroscopic-

strand model. The inputs are the bundle voltages vi in (3.9). The field equations are coupled

through the strand current constraints in (3.8).

3.3.2 Dynamic Simulation with Current Input

Magnetic diffusion is included in this type of simulation as well. The inputs are the terminal

currents ii in (3.11). The bundle voltage and individual strand currents are determined

dynamically through (3.9). As in the voltage input case, the fields are coupled to the source

through the strand currents using (3.8).

3.3.3 Pseudostatic Simulation with Voltage Input

Magnetic diffusion is ignored in this type of simulation. Faraday’s law is introduce in order to

include the voltage induced by the time–varying flux coupling the turns. The field equations

are given by (3.16). The inputs from the source are the vi in equation (3.21).

3.3.4 Static Simulation with Current Input

Magnetic diffusion is ignored again using (3.16), and dynamics only enter into the picture

through the circuit variables. The terminal currents ii act as the inputs. In this case, the

fields represented by (3.16) can be simulated independently of the external circuits. Equation

(3.21) is used for an after–the–fact determination of the terminal voltages vi.

3.3.5 Summary

Table 3.1 summarizes the different types of simulation models that arise for different input

sources and assumptions on the effects of magnetic diffusion. Different bundles may employ

51

Table 3.1: Summary of Simulation Models for Independent Bundle Excitation

Simulation Type Field Equation Circuit Equations Input Unknowns

Dynamic, Voltage Driven (2.49) (3.8), (3.9) vi A, Eφ,m, ii,m

Dynamic, Current Driven (2.49) (3.8), (3.9), (3.11) ii A, Eφ,m, ii,m, vi

Pseudostatic, Voltage Driven (3.16) (3.21) vi A, ii

Static, Current Driven (3.16) ii A

different models, leading to a mixture of simulation types within a given model. The case of

static, current driven problems are special in that no dynamics are included in the simulation

at all.

3.4 Idealized Three-Phase Source Coupling

This section discusses the important case of machine windings excited by an ideal three–phase

voltage or current source. There are several ways of modeling this problem. In a physical

setting, the true source would likely be a voltage source inverter, which is most closely related

to three ideal voltage sources in a grounded–wye configuration. The voltage source inverter

is made to appear as a current source through feedback regulation, a configuration which

can be modeled as three ideal current sources, also in a grounded–wye configuration. This is

the approach we take.

There is not a unique way to couple the bundles to a given source. Our approach to

coupling is focused first on maintaining symmetry of the equations, and secondly on mod-

ularity. With respect to modularity, we would like to write the coupling equations in terms

of the bundle voltages vi and bundle currents ii. In this way, we decouple the modeling of

the bundles from modeling of the external circuits. This allows us to develop simpler and

more flexible software. The price paid is that the number of external circuit equations is

not necessarily minimum. These additional equations amount to a negligible increase when

considering the total number of equations resulting from the discretization of the partial

differential equation.

52

The three–phase voltage source will be modeled as three ideal voltage sources in a

grounded–wye configuration with identical R–L source impedances between an ideal source

and corresponding phase bundle. The three–phase current source will be modeled as three

ideal current sources in a grounded–wye configuration. It is common to see three-phase cur-

rent sources modeled as three ideal sources in a delta configuration due to the possibility of a

common mode current during unbalanced operation. In practice, feedback control is used to

endow the voltage source inverter with current source type behavior, so the wye configura-

tion seems more appropriate. It is for this reason that we ignore the source impedance of the

three–phase current source; it must only be considered if we are to work backward to find

the equivalent voltage source waveforms. We should take care to only specify balanced three-

phase currents when modeling the current source attached to an ungrounded–wye connected

load, lest Kirchoff’s current law is violated at the common node of the phases.

3.4.1 Ungrounded–Wye Connected Load with Voltage Source

Excitation

Consider three bundles in an ungrounded–wye configuration with phase voltages vi and line

currents ii. The input is specified as line–to–neutral voltages vs,i and the source currents

equal the bundle currents, ii = is,i. In the ungrounded configuration, we must allow for the

possibility of a common mode voltage v0 at the node shared by the bundles. The bundle

current equals the line current, so we can write the voltage equation using Kirchoff’s current

law once for each phase:

−vi +Rs,iii + Ls,i
∂ii

∂t
+ v0 = −vs,i. (3.22)

Because we have introduced an extra variable, v0, one extra equation is required. The cal-

culation of v0 enters through the constraint placed on the common mode current in the

53

ungrounded–wye configuration, namely

∑

i

ii = 0. (3.23)

Notice that v0 does not show up explicitly in (3.23). In fact, we could add an external

capacitance and resistance between the common node of the phases and the ground, which

would introduce additional current terms C0
∂v0
∂t

and v0
R0

on the right-hand side of (3.23).

If we ignore the effects of the common–mode capacitance, the external circuit parameters

naturally take the values of C0 = 0 and R0 =∞. Finally, we introduce the scaling factor fp
ls

for symmetry purposes, which leaves us with the final form of the equations:

−fp
ls
vi +

fp

ls
Rs,iii +

fp

ls
Ls,i

∂ii

∂t
− fp

ls
v0 = −

fp

ls
vs,i. (3.24)

−fp
ls

∑

i

ii = 0. (3.25)

To simulate ungrounded wye-connected phases with voltage source excitation, we append

equations (3.24) and (3.25) to those for the independently excited current models from

Section 3.3.2 for dynamic simulations. For pseudostatic simulations, we append them to the

equations of Section 3.3.3.

3.4.2 Ungrounded–Wye Connected Load with Current Source

Excitation

This is perhaps the simplest case. The current source specifies the line currents, which are

equal to the bundle currents when the phases are in a wye configuration. This is equivalent to

independent excitation of the bundles, with the caveat that the common mode current must

be zero. Therefore, this behavior is achieved using the same set of equations as in Section

3.3.2 for dynamic simulations or 3.3.4 for static simulations. The source impedance is only

necessary if an after the fact determination of the source voltage is desired.

54

3.4.3 Delta Connected Load with Voltage Source Excitation

In this instance, the bundle voltage drop is the difference between the corresponding source

line–to–neutral voltages:

−vi + vs,i − vs,i−1 = 0. (3.26)

The source line currents are the difference between the corresponding bundle currents:

ii − ii+1 − is,i = 0. (3.27)

Finally, the line–to–neutral voltages of the source can be expressed in terms of the terminal

voltages and the voltage drop due to the source impedance:

−vs,i +Rs,iis,i + Ls,i
∂is,i

∂t
= −vs,i. (3.28)

Notice that no constraints on the common mode current or voltage appear explicitly in the

above equations. In fact, there is no constraint on the common mode current for the bundle

loop. The constraint that the common mode voltage of the bundles must be zero is implied

by (3.26), which can be seen by taking the summation over i:

∑

i

vi = (vs,1 − vs,3) + (vs,2 − vs,1) + (vs,3 − vs,2) = 0. (3.29)

As always, the equations must be scaled for symmetry:

−fp
ls
vi +

fp

ls
vs,i −

fp

ls
vs,i−1 = 0, (3.30)

fp

ls
ii −

fp

ls
ii+1 −

fp

ls
is,i = 0, (3.31)

−fp
ls
vs,i +

fpRs,i

ls
is,i +

fpLs,i

ls

∂is,i

∂t
= −fp

ls
vs,i. (3.32)

55

To perform dynamic simulations of delta connected bundles with voltage source excitation,

equations (3.30)–(3.32) must be appended to those for the independently excited case in

Section 3.3.2. For pseudostatic simulations, as in the wye connected case, we append them

to the equations specified in Section 3.3.3.

3.4.4 Delta Connected Load with Current Source Excitation

In this case, the source line currents are specified. Because the phases are in a delta connec-

tion, the specified currents are not in unique correspondence with the bundle currents due

to the possibility of a common mode current. The phase currents, common mode currents,

and line currents are related through the following:

ii − i0 =
1

3
(is,i − is,i−1). (3.33)

When i0 = 0, the source currents uniquely determine the bundle currents. In fact, this

situation can be modeled by the equations for independent bundle excitation.

When the common mode current is not equal to zero, the phases cannot generally be

considered independently excited. The line currents do not uniquely specify the phase cur-

rents in this case. Instead, the line currents specify the difference between the currents of

adjacent phases. The common mode current is determined dynamically as the result of a

possible phase imbalance. Since we are mostly interested in balanced three-phase operation,

we will ignore this effect and model the phases as independently excited by setting

fp

ls
ii =

fp

3ls
(is,i − is,i−1) (3.34)

in the appropriate equations.

56

Chapter 4

Finite-Element Analysis

A general method for simulating electric machines must be capable of solving Maxwell’s

equations in their most general form including an accurate representation of the underly-

ing geometry. Finite–element analysis is one such technique. The finite–element method is

a general procedure for solving partial differential equations on geometrically complex do-

mains by approximating the solution in a vector space spanned by a particular set of basis

functions. In a mathematically rigorous treatment, the basis functions belong to a particular

Sobolev space, which is a Hilbert space equipped with an inner product dependent upon

the differential operator being analyzed [107]. In an intuitive sense, the basis functions in-

terpolate the field and potential variables over the computational domain while maintaining

essential continuity/discontinuity properties across material interfaces. The basis functions

are defined to have support on a small number of non-overlapping, connected sub–domains

contained within the overall computational domain. Each sub–domain is referred to as an

element, and the collection of elements is called a mesh or tessellation. These properties of

the elements and basis functions lead directly to many attractive computational properties

and usage of the term finite–element analysis.

Because the mesh may not (and usually does not) exactly match the underlying continu-

ous geometry, the discretization must be taken into account in all aspects of the problem. The

57

first difficulty is associated with modeling airgaps, as presented in Section 2.7, since the dis-

cretized boundaries are no longer perfectly cylindrical. The resolution of this problem using a

small–angle approximation and projection between subspaces spanned by finite–element ba-

sis functions and trigonometric basis functions is presented in Section 4.5.2. Because the field

equations are coupled through external circuits as described in Chapter 3, the discretization

process affects these relationships as well.

4.1 Master and Mapped Elements

There are different equivalent ways of thinking about discretizing a problem using finite–

elements. From a procedural point of view, the discretization process can be thought of as

constructing a tessellation of the underlying geometry using a set of elements that are topo-

logically equivalent to a very small set of simple shapes (triangles, quadrilaterals, etc). Unless

great care is taken, a mesh typically only approximates the underlying geometry wherever

there is a material discontinuity. The approximation of the geometry can be improved by

decreasing the size of the elements.

To describe mathematically what an element looks like, we typically assume that all of

the elements in a mesh can be written as a transformation of a limited set of master elements.

We will assume only one master element, the master triangle:

ΩT = {η s.t. 0 < η < 1, 0 < ζ < 1, 0 < η + ζ < 1}, (4.1)

where η = (η, ζ) is the coordinate vector in the master element space. For reference, see the

left side of Fig. 4.1. Given the master element, we assume each element Ωi in a mesh can be

written as

Ωi = fi (ΩT) = {x = fi (η) s.t. η ∈ ΩT } (4.2)

where x = (x, y) is the coordinate vector in the physical space. The function fi is a differ-

58

−0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

η

ζ
Master Element

−0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

x

y

Transformed Element

Figure 4.1: Master triangular element (left) and an example transformed element (right).

entiable mapping of the master element onto the transformed element with a nonsingular

Jacobian F̄i on ΩT , i.e.,

det F̄i 6= 0, ∀η ∈ ΩT , (4.3)

where

F̄i = ∇ηfi =

∂fx
∂η

∂fy
∂η

∂fx
∂ζ

∂fy
∂ζ

(4.4)

This is equivalent to requiring that the determinant of the Jacobian does not change sign

in ΩT . Intuitively, these requirements prevent the mapping from introducing “knots” into

the elements. An example of a transformed element is given on the right side Fig. 4.1. To

ease the notational burden, we drop the subscript i when there is no confusion in doing so,

understanding that f depends on the particular element under consideration.

59

4.2 Master Element Basis Functions

The choice of master element(s) and mappings f determine the approximation of the geometry

in the finite-element method. The choice of basis functions determine the approximation of

the solution of the partial differential equation on the approximated geometry. One of the

simplest procedures is to define a set of basis functions on each master element and use

the mappings f to define the corresponding basis functions on each element. On the master

triangle ΩT , the first-order Lagrangian basis functions are defined as

λ1 = 1− ζ − η

λ2 = ζ

λ3 = η

(4.5)

They are called Lagrangian basis functions because, when combined as a weighted-sum, the

weights represent an interpolation of the values occurring at the corners of the triangle.

Higher-order Lagrangian basis functions exist as well. For example, the second-order basis

functions can be written as follows:

λ1 = (1− ζ − η)(1− 2ζ − 2η) λ4 = 4ζη

λ2 = 4ζ(1− ζ − η) λ5 = η (2η − 1)

λ3 = ζ (2ζ − 1) λ6 = 4η(1− ζ − η).

(4.6)

There are different forms of basis functions that span the same space. For example, it is

possible to write a basis for the space spanned by the functions in (4.6) that includes the

60

basis for the subspace in (4.5):

λ1 = 1− ζ − η λ4 = ζ2

λ2 = ζ λ5 = η2

λ3 = η λ6 = ζη.

(4.7)

These are sometimes referred to as hierarchical basis functions and are used in polynomial

adaptive solution refinement.

For the most part, this work is not concerned with the basis functions per se, so we shall

assume the use of the first–order Lagrange elements when details about the basis functions

are necessary or an example is instructive. In all other places, we will attempt to make our

presentation as broadly applicable as possible. When referring to the basis functions in the

physical space, we will use an additional subscript to indicate the particular element under

consideration:

λi,j =

λj , x ∈ Ωi

0, x ∈ Ωk, k 6= i

(4.8)

4.3 Inter–Element Continuity

So far, the basis functions have been discussed disjointly for each element in the mesh.

The physics of the problem imply certain continuity conditions should be observed in a

reasonable solution. For example, the magnetic vector potentialA is know to be tangentially–

continuous at material interfaces. In the Cartesian 2-dimensional approximation where A =

Az is the unknown, the implied tangent is in the z–direction. Therefore, continuity of the

approximation of A should be preserved by its expansion in terms of the piecewise continuous

polynomial basis functions. This can be thought of as requiring a Dirchlet boundary condition

for an individual element to be satisfied by its neighboring elements.

For the Lagrangian basis functions, this process is straightforward. Each basis function

61

interpolates a unique point on the master element that corresponds to a point in physical

space determined by the mapping function for each element. These interpolatory points are

called nodes. The number of unique nodes determines the total number of degrees of freedom

in the finite–element approximation. Two basis functions sharing the same node are identified

with the same degree of freedom. Such a pair of basis functions are necessarily defined on

different elements, since all basis functions within an element are associated with different

nodes.

To make this precise, we assume the nodes of the tessellation are unique (and uniquely

numbered) ordered pairs (xi, yi) . Node i has associated with it a set of globally numbered

indices Ni corresponding to the basis functions that interpolate the solution at that particular

point:

Ni =

{

(j, k)

∣

∣

∣

∣

λj,k (xi, yi) = 1

}

(4.9)

It is also useful to define two functions, Lk(i) and Gk(j), where

Lk(i) = j, s.t. (j, k) ∈ Ni, (4.10)

and

Gk(j) = i, s.t. (j, k) ∈ Ni. (4.11)

In words, Lk(i) returns the local node number of Ni in element k while Gk(j) returns the

global node number of local node j in element k. These three constructs are mathematical

representations of common data structures used in finite–element implementations.1

We define the shape functions associated with each degree of freedom as a linear combi-

1Similar constructs are possible for other forms of the basis functions, but one generally has to consider
sets of basis functions that are equal when evaluated on element edges or facets in the physical space in order
to impose the exact continuity requirements. The interpolatory nature of the nodal basis functions makes
this procedure somewhat easier to understand.

62

nation of the interpolatory basis functions for a particular node.

ϕi =
∑

(j,k)∈Ni

λj,k (4.12)

The support of each shape function is the union of the support of the individual basis

functions in the sum of (4.12):

Ωϕ
i =

⋃

(j,k)∈Ni

Ωλ
k . (4.13)

We will denote the corresponding weights for each shape function as ai. Our discretized

approximation of the magnetic vector potential is given by

a (x) =
∑

i

aiϕi (x) . (4.14)

4.4 Galerkin’s Method

Multiplying by a weight function ψi, substitution of our discrete approximation of A, and

using integration by parts leads to the method of weighted residuals for solving (2.49). Each

weight function results in one equation. Therefore, we need an equal number of weight and

shape functions to produce an equal number of equations and variables. Choosing the weight

functions to be equal to the shape functions, ψi = ϕi, results in Galerkin’s Method.

Before integrating by parts, equation (2.49) becomes

∑

j

∫

Ω

ϕiϕjσ
∂aj

∂t
+ ϕiν0∇′ ×∇× ϕjaj − ϕi∇′ ×MdΩ +

∫

Ωi

ϕiσEφdΩ = 0, (4.15)

where we have considered Eφ as an input for now. The second two terms in the integral of

(4.15) can be integrated by parts, using a variation on Green’s first identity:

63

∫

Ω

ϕiν0∇′ ×∇× ϕjaj − ϕi∇′ ×MdΩ

=

∫

Ω

ν0∇× ϕi · ∇ × ϕjaj −∇× ϕi ·MdΩ−
∫

Γ

ϕi (ν0∇× ϕjaj −M)× ndΓ

(4.16)

The term ν0∇×ϕjaj−M appearing on the right hand side will be recognized as the discrete

2–dimensional approximation of the magnetic field intensity H. Using this relationship, the

boundary integral can be rewritten as the integral of the tangential component of the field

intensity:
∫

Γ

ϕi (ν0∇× ϕjaj −M)× ndΓ =

∫

Γ

ϕiHtdΓ. (4.17)

This term represents the natural Neumann boundary conditions for the problem. It is this

term that is used to couple the finite–element model to an analytical solution to Laplace’s

equation in a cylindrical annulus. Otherwise, this input to the discrete equation disappears

for boundaries where periodic or magnetic insulation boundary conditions are applied.

The discrete equation in terms of the shape functions then becomes the following:

∑

j

[
∫

Ω

σϕiϕjdΩ ·
∂aj

∂t
+

∫

Ω

ν0∇× ϕi · ∇ × ϕjdΩ · aj
]

+

∫

Ω

∇× ϕi ·MdΩ +

∫

Ω

ϕiσEφdΩ−
∫

Γ

ϕiHtdΓ = 0.

(4.18)

For evaluation, it necessary to expand (4.18) in terms of a summation over all elements and

basis functions in each element. Since each ϕ is defined as the union of several pair–wise

disjoint basis functions, it is much simpler to write the contribution in from the kth element

to the ith equation with local node number m = Gk(i) from the jth degree of freedom with

local node number n = Lk(j):

∫

Ωk

σλm,kλn,kdΩ ·
∂aj

∂t
+

∫

Ωk

ν0∇× λm,k · ∇ × λn,kdΩ · aj

+

∫

Ωk

∇× λm,k ·MdΩ +

∫

Ωk

λm,kσEφdΩ−
∫

Γk

λm,kHtdΓ = 0

(4.19)

64

Notice that the integrals in the first two terms of (4.19) depend only on the basis func-

tions. The integral in the third term depends on the nonlinear function M. In the special

case of first–order elements, the approximation of the flux density in an element is constant.

If the magnetization is modeled as a function of B, M will also be constant and can be

moved outside of the integral. In all other cases, it is not possible to simplify this expression

any further without great difficulty. These integrals also implicity depend on the domain

mapping functions f (ΩT), which make it difficult to evaluate them exactly unless all of the

f are limited to affine transformations.

The solution to this problem is the use numerical quadrature for evaluation of the inte-

grals. For polynomial basis functions and elements limited to affine transformations of the

master element, the minimum degree of the quadrature rule for computing the integrals of

the first two terms exactly is prescribed. The rules determined by this sort of analysis can

serve well in practice for more complex cases.

The quadrature rules consist of a set of points {pq} and weights {wq} defined on the

master element ΩT . The integrals in (4.19), written in terms of x coordinates in the physical

space, are transformed into integrals over ΩT in η coordinate space. The differential volume

element, when written in terms of the master element, depends on the determinant of the

Jacobian of the transformation function:

dΩx =
∣

∣det F̄ (pq)
∣

∣ dΩη. (4.20)

When derivatives are involved in the integral, it is necessary to express the derivatives in

terms of the η coordinates,

∇η × λ =

+∂λ
∂ζ

−∂λ
∂η

=

+∂λ
∂x

∂x
∂ζ

+ ∂λ
∂y

∂y
∂ζ

−∂λ
∂x

∂x
∂η
− ∂λ

∂y
∂y
∂η

=

+∂y
∂ζ
−∂x

∂ζ

−∂y
∂η

+∂x
∂η

+∂λ
∂y

−∂λ
∂x

= F̆ · ∇x × λ, (4.21)

which gives the following expression for the curl of the basis functions in the physical coor-

65

dinates:

∇x × λ = F̆−1 · (∇η × λ) . (4.22)

The matrices F̆ and F̄ are related by a 90 degree rotation:

F̆ = RT F̄R (4.23)

R =

0 −1

1 0

(4.24)

Approximation of the integrals in (4.19) using numerical quadrature and the previously

outlined transformations gives us the overall contribution to the finite–element matrices

from each pair of basis functions in each element. The first integral is related to the material

conductivity and dynamics of the problem, and the corresponding matrix will be called the

conductivity matrix with elemental contributions given by

Ck
i,j =

∑

q

wqσλm(pq)λn(pq)
∣

∣det F̄k (pq)
∣

∣ . (4.25)

The second integral is related to the reluctivity of free space and the corresponding matrix

will be called the reluctivity matrix K, with contributions given by

Kk
i,j = ν0

∑

q

wq

(

F̆−1
k · ∇ × λm(pq)

)

·
(

F̆−1
k · ∇ × λn(pq)

)

∣

∣det F̄k (pq)
∣

∣

= ν0
∑

q

wq

(

F̄−1
k · ∇λm(pq)

)

·
(

F̄−1
k · ∇λn(pq)

)
∣

∣det F̄k (pq)
∣

∣ .

(4.26)

In the second line of (4.26), we have used the unitary nature of R to remove it from the

vector dot–product. The third integral represents the nonlinearity, permanent magnets, and

any linear materials with relative permeability greater than one. Generally, we will refer to

66

g as the nonlinearity, with contributions given by:

gki =
∑

q

wq

(

F̆−1
k · ∇ × λm(pq)

)

·M
∣

∣det F̄k (pq)
∣

∣

=
∑

q

wq

(

F̄−1
k · ∇λm(pq)

)

×M
∣

∣det F̄k (pq)
∣

∣

(4.27)

In the second line of (4.27), we have used the fact that the dot–product with R results

in taking the cross product of the two vectors. The fourth integral represents the forced

conduction due to Eφ and will be called the forcing function:

fk
i =

∑

q

wqσλm(pq)Eφ

∣

∣det F̄k (pq)
∣

∣ . (4.28)

We leave the boundary integral term in its exact form since we will employ a different

approximation in the next section,

hki = −
∫

Γk

λm,kHtdΓ. (4.29)

The complete matrices and vectors are formed by summing up all the contributions. If we

consider each contribution as a matrix with one nonzero entry in the (i, j) position, then we

can write

C =
∑

k,m,n

Ck
i,j (4.30)

K =
∑

k,m,n

Kk
i,j (4.31)

g =
∑

k,m

gki (4.32)

f =
∑

k,m

fk
i (4.33)

h =
∑

k,m

hki (4.34)

67

and the unknown vector with components ai as simply a. The model equation is then written

as

C
∂a

∂t
+Ka + g (a) + h (t) = f (t) . (4.35)

To obtain a static (non–dynamic) model from (4.35), one simply sets C = 0.

Later, Newton’s method will be applied to (4.35) after it has been discretized in time

and will require the linearization of g. We will write this as the matrix G;

G =
∂g

∂a
. (4.36)

An elemental expression for G can be derived by calculating Gk
i,j =

∂gki
∂aj

using (4.27). Applying

the chain rule to M we find

∂M

∂aj
=
∂M

∂B
· ∂B
∂aj

=
∂M

∂B
·
(

F̆−1
k · ∇ × λn(pq)

)

(4.37)

where ∂M
∂B

is the matrix

∂M

∂B
=

∂Mx

∂Bx

∂Mx

∂By

∂My

∂Bx

∂My

∂By

(4.38)

evaluated at the quadrature point pq. The expression ∂B
∂aj

represents the contribution to the

flux density due to aj in element k at quadrature point pq. This gives the following value for

Gk
i,j,

Gk
i,j =

∑

q

wq

(

F̆−1
k · ∇ × λm(pq)

)

· ∂M
∂B
·
(

F̆−1
k · ∇ × λn(pq)

)

∣

∣det F̄k (pq)
∣

∣

=
∑

q

wq

(

F̄−1
k · ∇λm(pq)

)

× ∂M

∂B
×
(

F̄−1
k · ∇λn(pq)

)
∣

∣det F̄k (pq)
∣

∣ ,

(4.39)

and G,

G =
∑

k,m,n

Gk
i,j. (4.40)

68

On occasion, we will need to calculate the discrete approximation of the continuous L2

norm of the magnetic vector potential:

‖A (t) ‖2 =
(
∫

Ω

A2 (t) dΩ

)
1
2

. (4.41)

For the discrete problem, this can be written as

‖a (t) ‖Wa
=
(

aT ·Wa · a
)

1
2 . (4.42)

Wa is a weighting matrix with elemental components given by

W k
i,j =

∑

q

wqλm(pq)λn(pq)
∣

∣det F̄k (pq)
∣

∣ , (4.43)

and overall matrix

Wa =
∑

k,m,n

W k
i,j. (4.44)

Notice that, ultimately, the matrices can be equivalently expressed in terms of either the

gradient or the curl of the basis functions. This equivalence is limited to the two–dimensional

case since the magnetic vector potential (and basis functions) are scalars. In three dimensions,

the unknown is a vector field, requiring vector basis functions. The benefit of the preceding

analysis is that it is more closely related to the three–dimensional case and the weak-form

in (4.19) can be used with less severe modifications.

4.5 Finite–Element Analytic Equation Coupling

The previous sections have dealt with situations for which each component/material in the

physical domain Ω under consideration is stationary. For example, in a simple single stator

single rotor machine, the stator is modeled in a stationary reference frame and the rotor is

modeled in a reference frame that is rotating at its mechanical rotational velocity relative to

69

the stator. This is equivalent to saying that, in the rotating reference frame, the rotor appears

fixed and the stator appears to be rotating at the rotor mechanical speed with opposite sign.

One could also take an Eulerian approach, modeling the stator and rotor in the same reference

frame. This would introduce a velocity dependence into Maxwell’s equations due to the ∂B
∂t

term in Faraday’s law and can introduce numerical difficulties to the Péclet effect. This is a

common concern in computational fluid dynamics. This is sometimes cited as a reason for the

use of the previously described Lagrangian approach. However, the largest difficulty faced

when employing a single reference frame is modeling the underlying rotational geometry on

a fixed discretization. This is an impossible task in general, and could only be attempted if

the boundaries of the underlying geometry lay strictly along lines of constant r or constant

θ. These restrictions would severely limit modeling flexibility.

One of the most influential innovations for finite–element simulation of electric machines

with rotational effects was the idea of remeshing [23, 24]; at each rotor position, a new mesh

is generated in the airgap region to couple the stator and rotor domains. The difficulties

associated with remeshing are manifold. They are partly due to the poor aspect ratio of the

airgap and partly because of accuracy issues associated with a discretization that appears to

be time–varying. The numerical sensitivity of torque calculations has been well documented

[108, 109, 110].

However, the use of a rotating reference frame solves many issues associated with mod-

eling complex rotating geometric configurations. This motivated the development of several

different approaches aimed at coupling the finite–element solutions to the analytic solution

to Laplace’s equation within a cylindrical annulus inside the airgap [25, 26, 27]. The motional

information appears in terms of time–varying boundary conditions imposed on the airgap

by a pair of finite–element models, one for the rotor and one for the stator. The problem of

modeling unbounded domains, which has a similar aspect ratio issue for the inverse reason,

has also received considerable attention [28, 29, 30, 31]. Many of the techniques are similar.

Dealing with a nonuniform and nonconforming boundary discretization is the main dif-

70

ficulty of this approach, which we deal with in the next section. The main drawback of the

analytical solution coupling method is that it introduces dense submatrices into the erst-

while sparse finite–element formulation. This is not as bad as it first appears: a meshed

airgap requires a much finer discretization than the rest of the problem which effects similar

computational difficulties such as an increased number of matrix entries and factorization

fill in, even though the matrix is still “sparse” in the traditional sense.

4.5.1 Small Angle Approximation

When we introduced the analytical equation coupling method, we used the Fourier integrals

in Section 2.7.2 to represent the θ-dependence of A in terms of spatial harmonics. In con-

trast, the finite-element discretization introduced in this chapter are triangles with straight

boundaries. Obviously, it is impossible to represent a circular boundary exactly using a finite

number of triangles.2 In fact, an element “touching” the airgap only coincides with the exact

(r, θ) coordinates of the boundary at two corners.

For an element adjacent to the airgap, assume the edge of the master-element

Γk,α = {η s.t. 0 <= η <= 1, ζ = 0} (4.45)

is mapped by the transformation fk onto a subsegment of the boundary Γα in the sense that

fk (0, 0) = (rα, θ1) (4.46)

and

fk (1, 0) = (rα, θ2) (4.47)

where θ1 and θ2 are the θ coordinates of nodes Gk(1) and Gk(2), respectively. The labeling of

the η coordinates of the master element is arbitrary, so we can always reassign the coordinates

2A function mapping a triangular master element into an element in the physical space with a perfectly
circular arc as one boundary would necessarily be a rational transformation [111].

71

and rewrite fk using a series of linear transformations so that the η–axis corresponds to the

airgap edge approximation. The exact function describing the finite-element edge is given by

fk (η, 0) =

(

[

(x1(1− η) + x2η)
2 + (y1(1− η) + y2η)

2]
1
2 , tan−1

[

y1 (1− η) + y2η

x1 (1− η) + x2η

])

. (4.48)

where (x1, y1) and (x2, y2) are the coordinates of nodes Gk(1) and Gk(2), respectively. In

contrast, the exact edge is described by the following uniform parameterization:

(r, θ) = (rα, θ1 (1− η) + θ2η) (4.49)

We would like to use the exact parameterizations of the edge in the Fourier expansion in (2.76)

instead of the more complicated expression in (4.48), which would require reformulating the

harmonic expansion to account for the dependence on the r coordinate.

In terms of Cartesian distance, the maximum error between these two approximations

occurs at η = 1
2
. At this point, the error vector points in the r direction. If we normalize the

error to the radius rα, the relative error depends only on the angle tended by the edge:

ǫr = 1− cos
(

θ2 − θ1
2

)

(4.50)

The Taylor expansion of ǫr to second order is

ǫr ≈
1

4
(θ2 − θ1)2 . (4.51)

If we want to control the discretization error to 1%, an estimate of the maximum allowable

edge angle is

θmax = 0.04
1
2 = 0.2rad (4.52)

or a minimum of 2π
0.2
≈ 32 evenly spaced edges, which is an eminently reasonable requirement.

The other source of discretization error occurs because the parameterizations of θ for the

72

straight–edge triangle is nonuniform. The error in theta is given by

ǫθ = θ1 (1− η) + θ2η − tan−1

[

y1 (1− η) + y2η

x1 (1− η) + x2η

]

. (4.53)

The Taylor expansion to first order is

ǫθ ≈
(

x1y2 − x2y1
x21 + y21

− 1

)

η. (4.54)

Since the angle error goes to zero at η = 0, 1
2
, 1, we can approximate the maximum occurring

at η ≈ 1
4
. In addition, rewriting the Cartesian coordinates in terms of the polar coordinate

variables, we find

ǫθ ≈
1

4
(cos(θ1)sin(θ2)− cos(θ2)sin(θ1)) , (4.55)

or equivalently,

ǫθ ≈
1

4
sin(θ2 − θ1) ≈

1

4
(θ2 − θ1) (4.56)

and to achieve a 1% error the maximum tended angle would be limited to

θmax = 0.08π ≈ 0.25rad (4.57)

This corresponds to a minimum of 2π
0.25
≈ 25 evenly spaced edges, which is the same order of

magnitude as the previous approximation.

These estimates are very small compared to the number of edges found in a typical

electric machine discretization. Electric machines, and their stators in particular, have a

multi-toothed structure requiring at least two edges for each tooth. Usually many more are

required to accurately capture the significant spatial harmonics introduced by the slotted

nature of the stator. In typical cases, the extra discretization error introduced by a small

angle approximation can be considered negligible. Care must be taken when analyzing a

machine with a small number of teeth and in the discretization of components (e.g. rotors)

73

that do not exhibit the same extreme spatial variability in the θ direction. In these cases,

standard discretization algorithms may produce too few edges using default parameters.

4.5.2 Subspace Projections

The results of the previous section are used to approximate the magnetic vector potential A

on the boundary as

A (rα, θ) = A (rα, θ1 (1− η) + θ2η) = a1 (1− η) + a2η, (4.58)

where a1 and a2 are the interpolated values at nodes Gk(1) and Gk(2), respectively. This

approximation gives the partial contribution to the Fourier integrals in (2.76) from one edge

as

θ2 − θ1
2π

∫ 1

0

e−jp[θ1(1−η)+θ2η] [a1 (1− η) + a2η] dη (4.59)

The total expression for harmonic p is

Ãp (rα) =
∑

k

θm(k) − θn(k)
2π

∫ 1

0

e−jp[θm(k)(1−η)+θn(k)η]
[

am(k) (1− η) + an(k)η
]

dη (4.60)

where the sum over the elements k is restricted to those with edges on the boundary Γα. The

expressions n(k) = Gk(1) and m(k) = Gk(2) indicate the dependence of the node numbers

on the element in the summation. For a single p, (4.60) can be written as an inner product

with the entire a vector by using an appropriate zero–padding:

Ãp (rα) = dα,p · a. (4.61)

An obvious problem is that the number of harmonics that can be generated this way is

countably infinite. If we truncate the total number of harmonics so that |l| ≤ lmax, then the

74

linear operator Dα can be represented as a matrix in the form

Dα =

dα,−pmax

dα,−pmax+1

...

dα,pmax−1

dα,pmax

. (4.62)

The choice of pmax depends on a tradeoff between accuracy of the representation and stor-

age and computational costs on the other. For the transformation to be pseudo–invertible,

2pmax + 1 should be at least as large as the number of nodes on the boundary Γα. In prac-

tice, the spatial harmonics corresponding to some p are known to be zero due to symmetry

arguments and it is possible to select the expansion more carefully.3 Using at least 2pmax+1

nonzero harmonics will give better results. The mapping

Ãα = Dαa (4.63)

now expresses a relationship between the finite number of interpolated magnetic vector

potential values in a and a truncated set of harmonics Ãα. This represents a projection of

the interpolation onto a subspace spanned by the trigonometric basis functions. The diagonal

scaling operators F and G and the rotation operatorR of section 2.7.3 can now be represented

as simple diagonal matrices as well.

Finally, we must substitute the discrete approximation of Ht into the boundary integral

term of (4.19). In particular, we are interested in evaluating the term hki in Section 4.29.

Using our approximations, on a particular edge we find dΓ = rαdθ = rα (θm − θn) dη. When

3For example, using antiperiodic boundary conditions while modeling a single pole, only harmonics that
have a spatial frequencies at an odd integer multiple of

Np

2
are nonzero.

75

λm,k = 1− η we have

hki =

∫

Γk

λm,kHtdΓ =

∫ 1

0

rα (θm − θn)Ht (1− η) dη. (4.64)

A similar statement can be made for λn,k = η. When the expression for Pα (θ) is substituted

into 4.64, we find the integral takes the same form as the one found in (4.60), differing only

by a factor of 2πrα. In fact, after evaluating the summation over all hki , we find

hα = 2πrαDH
α Fβ,αDαaα + 2πrαDH

αRGβ,αDβaβ, (4.65)

hβ = 2πrβDH
β Gα,βRHDαaα + 2πrβDH

β Fα,βDβaβ . (4.66)

For two domains, the coupled finite–element equations become

Cα 0

0 Cβ

∂aα
∂t

∂aβ
∂t

+

Kα + 2πrαDH
α Fβ,αDα 2πrαDH

αRGβ,αDβ

2πrβDH
β Gα,βRHDα Kβ + 2πrβDH

β Fα,βDβ

aα

aβ

+

gα (aα)

gβ (aβ)

=

fα (t)

fβ (t)

.

(4.67)

This procedure can be followed recursively to couple more than two domains. To keep the

notation as simple as possible, we will rewrite the previous expression as

C
∂a

∂t
+K (t) a + g (a) = f (t) (4.68)

by concatenating the various matrix and vector components. Notice that K now depends on

time, which comes from the implicit time–dependence of the rotation matrix R due to the

fixed nonzero rotor velocity. A careful examination of the definition of G in (2.73) reveals

that

rαGβ,α = rβGα,β , (4.69)

76

which implies

2πrαDH
αRGβ,αDβ =

[

2πrβDH
β Gα,βRHDα

]H
. (4.70)

That is, the approximations we have employed in evaluating the boundary integral using

the analytical solution to Laplace’s equation has preserved the symmetry of the underlying

matrices.

4.6 Finite-Element Field-Circuit Coupling

Two changes occur in the field–circuit coupling equations after the domain is discretized.

First, the discretized domain shape is not that same as the continuous domain. In particular,

the cross sectional area of domain k, |Ωk|, is different. This term appears in several places

throughout Chapter 3. Because the underlying field equations are based on the shape of

the discrete domain, it is important to use the discrete area for this value in the equations.

Second, the integral of ∂A
∂t

over each Ωk must be converted into discrete form wherever it

occurs. This is accomplished in the same way as in Section 4.4. Chapter 3 lays out a very

general framework for coupling the field equations to external circuits. It would be tedious

and not very insightful to explicitly list all of the potential combinations of discrete equations

that are possible. Instead, we offer a prototype example which is typical after concatenation

of many variables and matrices. More details can be found in books on the subject [112, 113].

In the voltage–driven case, a typical formulation, ignoring airgap coupling, looks as fol-

lows:

Cf,f 0 0

Ci,f 0 0

0 0 Cv,v

a′

E ′
φ

i′

+

Kf,f Kf,i 0

0 Ki,i Ki,v

0 Kv,i Kv,v

a

Eφ

i

+

g (a)

0

0

=

0

0

v (t)

(4.71)

The first row of 4.71 represents the finite-element equations. When external circuits are

included, Eφ moves from an input in the forcing function to an unknown. The second row

77

of equations are the actual field-circuit coupling equations. The unknowns i represent the

currents, either strand currents or bundle currents depending on the model used. The final

row is a voltage equation, relating the voltage drop represented by Eφ and the resistive and

inductive drop of external circuit elements due to the currents i to the input voltage v (t).

Following the development of Chapter 3, the matrices are symmetric in the sense that the

diagonal blocks are symmetric and Kv,i = KT
i,v and Kf,i = CT

i,f .

4.7 Model Equation

To keep the notation as simple as possible, we will concatenate the results of this chapter

into a single equation:

Cx′ + g (t, x) = f (t) (4.72)

where we have combined the linear–time varying term K (t) and the nonlinearity g(x) into

a single term:

g (t, x) = K (t) x+ g (x) . (4.73)

We have changed the unknown vector from a to x to reflect the fact that the variables

represent more than just nodal magnetic vector potential values. This is the model equation

that will be studied in the remainder of this dissertation. It is composed of three parts:

1. Finite–element equations for each subdomain with airgap coupling terms for subdomain

pairs

2. Field–circuit coupling equations

3. Circuit (bulk parameter) equations

Newton’s method will be used to solve (4.72) after it has been discretized in time. This will

require calculating G (t, x) = ∂g(t,x)
∂x

, which is given by

G (t, x) = K (t) +
∂g (x)

∂x
, (4.74)

78

where ∂g(x)
∂x

has one nonzero block associated with the finite-element unknowns given by ∂g
∂a

as defined in (4.39),

∂g (x)

∂x
=

∂g
∂a

0 0

0 0 0

0 0 0

. (4.75)

The L2 norm of the magnetic vector potential will be written as

‖a‖Wa
= ‖x‖W =

(

xT ·W · x
)

1
2 (4.76)

where W is the matrix

W =

Wa 0 0

0 0 0

0 0 0

(4.77)

and ‖ · ‖W is the corresponding seminorm.

79

Chapter 5

Time-Domain Numerical Integration

The discretized electric machine model becomes time–varying when motion of the rotor is

considered. Some sort of numerical integration is required to capture the resulting rotational

motion. There was little theoretical– or application– oriented work being done to apply

numerical integration techniques to any dynamic, nonlinear, magnetic field analysis problems

during the early years of electric machine finite–element analysis. The first applications

of time-domain numerical integration used the implicit-Euler method [32] and the Crank-

Nicholson method [33]. There was little interest in this approach until several years later

[34, 35, 36, 37, 38]. This period coincides with the first analysis of a nonlinear, rotational,

eddy–current problem appearing in the mid 1980s [39, 40].

Runge–Kutta methods are widely used for the numerical integration of ordinary differ-

ential equations. The most obvious benefit of Runge–Kutta methods is that they are more

accurate than the implicit–Euler method for a given step–size. Runge–Kutta methods also

facilitate the use of adaptive step size selection methods, which coarsen and refine the step-

size as dictated by some estimate of the solution error [96, 97, 98]. Related techniques can be

used to extrapolate the solution to generate initial conditions for the integration procedure in

the next interval [99] and more precisely determine switching events causing discontinuities

in the solution or its derivatives [100, 101, 102]. In terms of steady–state analysis, the use of

80

Runge–Kutta methods, and adaptive methods in particular, can be used to accelerate the

transient–analysis procedure toward the steady–state solution [103].

In this chapter we introduce the numerical integration techniques that will be used in

three of the four steady–state simulation algorithms in this dissertation. We start by in-

troducing the explicit–Euler method and subsequently examine some key properties of the

model equation (4.72) that prevent us from using explicit techniques in general. We then

derive the implicit–Euler method as the simplest technique that can be successfully applied

to our problem. The idea of implicit integration is extended by introducing the family of

Runge–Kutta methods and the associated conditions required of the coefficients to achieve a

given order and certain stability properties. Finally, we discuss the special case of diagonally–

implicit Runge–Kutta (DIRK) methods, which is the family of techniques preferred in this

dissertation [93, 94, 95].

5.1 Explicit–Euler

Given an initial condition for (4.72) at time t0, we can find an approximate solution at time

t1 > t0 using numerical integration. In their simplest form, numerical integration techniques

are based on truncated Taylor series expansions: the higher the degree of the polynomial

approximation, the more accurate the solution for a given step size. By step size, we mean

the difference hk = tk − tk−1. The exact solution over the interval [tk−1, tk] can be written as

xk = xk−1 +

∫ tk

tk−1

x′dt (5.1)

where the subscript notation is used to indicate the sample time

xk = x (tk) . (5.2)

The most well known numerical integration technique is the explicit–Euler method. It is

81

derived by performing a first–order Taylor series expansion of x (t) at t = tk−1:

x (t) = xk−1 + x′k−1 (t− tk−1) . (5.3)

The value of xk is approximated by evaluating (5.3) at t = tk. We can solve for x′k−1 to find

x′k−1 =
xk − xk−1

tk − tk−1
, (5.4)

which is a simple finite–difference approximation of the time–derivative. These results can

be substituted into our model equation to find

C
xk − xk−1

hk
+ gk−1 = fk−1. (5.5)

Under certain conditions it is possible to determine xk as

xk = xk−1 + hkC
−1 [fk−1 − gk−1] . (5.6)

Comparing (5.6) to (5.1), we evidently have

∫ tk

tk−1

x′dt = hkC
−1 [ftk−1 − gk−1] . (5.7)

The same conclusion could have been reached by transforming (4.72) into the explicit form

x′ = C−1 [f (t)− g (t, x)] (5.8)

and using a one–point rectangular integration rule evaluated at t = tk−1 to approximate the

integral.

The form of (5.6) is attractive for several reasons. The bracketed portion on the right-

hand side is dependent only on information at t = tk−1, which means only one function

82

evaluation is required per time step. Furthermore, when the matrix C is linear and time–

invariant and C−1 exists, it can be calculated (or factored) once at the outset and that initial

cost is heavily amortized over many time steps.

5.2 Index of the Model Equation

What are the conditions under which it is valid to write (5.6)? A necessary condition is the

existence of C−1. Unfortunately, the matrix C is singular in general when simulating electric

machines. It was previously mentioned that C is dependent on the underlying material

conductivities. Whenever insulators, materials with zero or effectively zero conductivity, are

included in the problem domain, the corresponding rows and columns of C are zero. Air is

modeled with zero–conductivity and airgaps are necessary in electric machines for torque

production and to allow relative motion. Insulation between stranded conductors are also

modeled using a conductivity of zero. In two dimensions, steel laminations are modeled

using a conductivity of zero because, in a macroscopic sense, the net current conducted in

the z–direction is zero.

Because C is singular, our model equation (4.72) falls into a special class of differential

equations called differential–algebraic equations (DAEs). The terminology arises as follows. A

subset of the equations represented by (4.72) are “true” differential equations. If we consider

Eφ the input to the problem so that the vector of nodal magnetic vector potential values is

the only unknown, the number of pure differential equations are equal to the rank of Cf,f

in (4.71). The number of algebraic constraint is equal to the number of zero eigenvalues of

Cf,f , represented by the remaining equations. In this case, our model equation is an “easy”

DAE in the sense that it is trivial to put it into the semi–explicit form

I 0

0 0

a′d

a′a

+

C−1
f,fgd

ga

+

C−1
f,fKf,i

0

Eφ = 0 (5.9)

83

using a permutation. In this form, the nature of the algebraic constraints is readily apparent

since the second row of equations does not depend on a′a. Differentiating the second row of

equations with respect to t reveals that

∂ga

∂ad
a′d +

∂ga

∂aa
a′a = 0. (5.10)

When ∂ga
∂aa

is invertible, we can rearrange (5.10) and substitute a′d from (5.9) to find

a′a =
∂ga

∂aa

−1 ∂ga

∂ad
C−1

f,f [Kf,iEφ + gd] , (5.11)

giving us an explicit ODE governing the evolution of the algebraic variables aa. For two

dimensional problems, ∂ga
∂aa

is always invertible and (5.9) is an index–1 DAE.

Returning to (4.71), and now fixing i as the input, we can permute the equations into

the form

I 0 0

0 0 0

Ci,f 0 0

a′d

a′a

E ′
φ

+

C−1
f,fgd

ga

0

+

C−1
f,fKf,i

0

Ki,i

Eφ +

0

0

Ki,vi

= 0. (5.12)

By the same procedure, we can show that aa are index–1 variables under the previously

described conditions. If we substitute the value of a′d into the last equation and differentiate,

we find
[

Ki,i − Ci,fC
−1
f,fKf,i

]

E ′
φ = Ci,fC

−1
f,fg

′
d −Ki,vi

′. (5.13)

Now, Eφ is an index–1 variable only if the matrix Ki,i − Ci,fC
−1
f,fKf,i is invertible. In fact,

it turns out this matrix is the zero matrix. Because Cf,i is the result of integral constraints,

each row of Cf,i can be written as the sum of rows of Cf,f as

Ci,f = STCf,f (5.14)

where S is a matrix having orthogonal columns consisting of ones and zeros. Recalling from

84

the previous chapter that Ci,f = KT
f,i, we can then write

Ci,fC
−1
f,fKf,i = STCf,fS (5.15)

The matrix Ki,i is diagonal with entries equal to the material conductivity multiplied by the

conductor cross sectional area, which can also be written as Ki,i = STCf,fS.

Using the previously derived quantities, it is possible to show that g′d can be expressed

as

g′d =

[

∂gd

∂ad
a′d +

∂gd

∂aa
a′a

]

=

[

∂gd

∂ad
C−1

f,f (−Kf,iEφ − gd) +
∂gd

∂aa

∂ga

∂aa

−1 ∂ga

∂ad
C−1

f,f (Kf,iEφ + gd)

]

= −
[

∂gd

∂ad
− ∂gd

∂aa

∂ga

∂aa

−1 ∂ga

∂ad

]

C−1
f,f [Kf,iEφ + gd] .

(5.16)

This theoretically allows us to rewrite (5.13) in terms of Eφ. Proving that Eφ is an index–2

variable amounts to differentiating (5.13) once more, and showing that the coefficient matrix

of Eφ is invertible. This equivalent to showing that the matrix

Ci,fC
−1
f,f

[

∂gd

∂ad
− ∂gd

∂aa

∂ga

∂aa

−1 ∂ga

∂ad

]

C−1
f,fKf,i = ST

[

∂gd

∂ad
− ∂gd

∂aa

∂ga

∂aa

−1 ∂ga

∂ad

]

S (5.17)

is invertible. This is true in two–dimensions since the columns of S are orthogonal and the

matrix
[

∂gd
∂ad
− ∂gd

∂aa

∂ga
∂aa

−1 ∂ga
∂ad

]

is symmetric and positive–definite.

5.3 Implicit–Euler

The most well–known implicit numerical integration is the implicit-Euler method. It is de-

rived in a similar manner to the explicit-Euler method by performing a Taylor expansion of

x about tk:

x (t) = xk−1 + x′k (t− tk−1) . (5.18)

85

Evaluating (5.18) at tk and solving for x′k yields the finite-difference approximation

x′k =
xk − xk−1

tk − tk−1
. (5.19)

Substitution into (4.72) gives

1

hk
Cxk + gk = fk +

1

hk
Cxk−1. (5.20)

The form of (5.20) is materially different than the result of (5.6). Equation (5.20) is a non-

linear equation and evaluating the integral in (5.1) requires its solution. Unlike the explicit–

Euler case, it is not possible to write an explicit form for the integral in (5.1). The best we

can say is that, given xk−1,
∫ tk

tk−1

x′dt = xk − xk−1 (5.21)

where xk is the solution to (5.20).

5.4 Fully Implicit Runge–Kutta Methods

There are several approaches for developing higher–order numerical integration methods.

The family of linear multistep methods is one possibility. However, these methods have an

inherent drawback in that their order is limited to 2. We prefer to focus on the class of

Runge–Kutta methods, which are very flexible in terms of their design for stability and

accuracy.

Application of an s–stage Runge-Kutta method is performed by solving a set of equations

of the form

Cy′i,k + g

(

tk−1 + cihk, xk−1 + hk

s
∑

j=1

ai,jy
′
j,k

)

= f (tk−1 + cihk) . (5.22)

where the values y′i,k are called the stage–derivatives and the integration formula of (5.1) is

86

Table 5.1: Generalized Butcher tableau
{ci} {ai,j}

{bj}

Table 5.2: Butcher Tableau for the Explicit-Euler Method

0 0

1

approximated as

xk = xk−1 + hk

s
∑

j=1

bjy
′
j,k. (5.23)

To simplify the notation, we introduce the stage–values

yi,k = xk−1 + hk

s
∑

j=1

ai,jy
′
j,k, (5.24)

and stage–times

ti,k = tk−1 + cihk. (5.25)

where i is the stage index and k is the time index. An s–stage method is characterized set of

s2 + 2s coefficients {ai,j}, {bi}, and {cj}. Table 5.1 demonstrates how these coefficients are

concisely summarized using a Butcher tableau.

Both the explicit– and implicit–Euler methods fit within the Runge–Kutta framework

as single stage (s = 1) methods. Their Butcher tableaus are listed in Tables 5.2 and 5.3.

An example of a two–stage method is given in Table 5.4. The method in Table 5.4 is based

on the two–point Gaussian quadrature rule, where the ci correspond to the abscissae and bj

correspond to the quadrature weights for approximating an integral on the interval [0, 1].

The form of (5.22) and (5.23) give a very intuitive notion of the Runge–Kutta process:

Table 5.3: Butcher Tableau for the Implicit-Euler Method

1 1

1

87

Table 5.4: Butcher Tableau for the Two-Stage Gauss Method
1
2
−

√
3
6

1
4

1
4
−

√
3
6

1
2
+

√
3
6

1
4
+

√
3
6

1
4

1
2

1
2

generate approximations of x′ (the stage–derivatives) at several times and use an appropri-

ately weighted sum to estimate xk+1. The problem with (5.22) as written is that it depends

on both the stage–derivatives and the stage–values. Equation (5.24) reveals that the stage–

values and the stage–derivatives are affinely–dependent. It is possible to rewrite (5.24) as

y′i,k = −
pi

hk
xk +

1

hk

s
∑

j=1

di,jyj,k (5.26)

where {di,j} is the matrix defined by

{di,j} = {ai,j}−1 (5.27)

and {pi} is the vector defined by

pi =

s
∑

j=1

di,j. (5.28)

Substituting this relationship into (5.22) we arrive at an alternative representation that

depends only on the stage–values:

s
∑

j=1

di,j

hk
Cyj,k + g (ti,k, yi,k) = f (ti,k) +

pi

hk
Cxk. (5.29)

Even though Runge–Kutta methods generate approximations of x′ during the numeri-

cal integration processes, none of the stage–derivatives or any linear combinations there–of

necessarily approximate x′ consistently in the sense that the pair (xk, x
′
k) satisfies

Cx′k + g (tk, xk) = f (tk) . (5.30)

88

Having consistent derivative approximations is important when analyzing quantities such as

conduction losses, which depend on both the solution and its derivative. There is, however,

a subset of Runge–Kutta methods that will generate consistent derivative approximations.

If we restrict the coefficients so that

cs = 1

bj = as,j

(5.31)

then the final stage time is equal to the time at the end of the integration interval,

ts,k = tk (5.32)

and the final stage–value is equal to the solution output at the end of the interval,

ys,k = xk. (5.33)

Substituting these values into (5.22) for i = s we find

Cy′s,k + g (tk, xk) = f (tk) . (5.34)

Evidently, a Runge–Kutta method with these coefficient restrictions will produce a consistent

derivative approximation x′k = y′s,k as the final stage–derivative. We will limit ourselves to

methods obeying these restrictions for the remainder of this chapter.

5.5 Stability

The stability function of a Runge–Kutta method arises from its application to the scalar

equation

∂x

∂t
= λx. (5.35)

89

With step size h and initial value x0 at time t0, the solution x1 at time t1 = t0 + h can be

written as

x1 = R (hλ)x0 (5.36)

where the stability function R (z) is given by

R (z) =
det (I − z{a} + z1{b})

det (I − z{a}) (5.37)

and 1 is a vector of ones. The analytic solution to (5.35) is x (t) = x0e
λt and the stability

function is an approximation of the exponential function;

R (z) ≈ ez. (5.38)

The stability domain of a method is the set of all complex z such that |R (z) | ≤ 1. The

method is said to be A–stable if the stability domain includes the entire left–half plane. This

is equivalent to requiring that |R (iz) | ≤ 1 for all real z and that R (z) has no poles in the

left–half plane. A method is said to be L–stable if it is A–stable and limz→∞R (z) = 0. L–

stability implies that high–frequency oscillations relative to the step size are filtered out of the

numerical solution. This is a desirable property because oscillations occurring at frequencies

higher than the Nyquist rate implied by the step size may otherwise show up as spurious

oscillations. The trapezoidal method is A–stable but not L–stable and is known to cause

difficulties for stiff and algebraic differential equations because of this phenomenon [114].

5.6 Order Conditions

A Runge–Kutta method is said to be order p if the local error of the solution is O (hp+1).

More precisely, a method is order p if

‖x (tk + h)− xk‖ ≤ Khp+1 (5.39)

90

for some constant K and x (tk + h) represents the exact solution of (4.72) at t = tk+h using

xk as an initial condition at t = tk. There is a rich theory of order conditions for Runge–

Kutta methods providing sets of sufficient conditions in the form of algebraic constraints on

the coefficients that guarantee a method will achieve a given order. Generally, more complex

differential equations must satisfy more order conditions. For example, nonlinear ordinary

differential equations require more stringent conditions on the Runge–Kutta coefficients than

linear ODEs. By the same token, methods for DAEs require even more conditions than those

for nonlinear ODEs. The reason for this becomes apparent when one begins to perform Taylor

expansions of the solution. More general forms of differential equations lead to increasingly

complex Taylor series expansions and more conditions on the coefficients are required for the

exact and numerical solution to achieve agreement up to a given order.

A set of order conditions for index–2 DAEs was developed in [114]. In general, the method

must satisfy all the order conditions for an index–1 DAE in order for the differential and

algebraic variables to obtain a given order. Additional order conditions are required for the

index–2 variables to obtain a given order. The presentation in [114] gives order conditions for

methods obtaining order 3 in the index–1 components order 2 in the index–2 components.

In fact, because our problem is linear in x′, the number of order conditions that must be

satisfied are somewhat less than the full number of conditions derived therein. The necessary

conditions are repeated here in Tables 5.5 and 5.6 for the index–1 and index–2 components,

respectively.

In general, the index–2 components can only achieve an order one less than the index–1

components. In our case, this means the external circuit variables will obtain a reduced order

compared to the magnetic vector potential variables. This is somewhat intuitive, as current

and voltage are both directly affected by the time rate of change of the magnetic flux–density

through Faraday’s law.

91

Table 5.5: Order conditions for the index–1 components

Order Condition

1
∑

i bi = 1

2 2
∑

i bici = 1

2
∑

i bidi,jc
2
j = 1

3 3
∑

i,j bic
2
i = 1

3 6
∑

i,j biai,jcj = 1

3
∑

i,j bidi,jc
3
j = 1

3 2
∑

i,j,k bidi,jcjaj,kck = 1

Table 5.6: Additional order conditions for the index–2 components

Order Condition

1
∑

i,j,k bidi,jdj,kc
2
k = 2

2
∑

i,j,k bidi,jdj,kc
3
k = 3

2 2
∑

i,j,k,l bidi,jdj,kckak,lcl = 3

5.7 Runge–Kutta Methods with an Explicit First

Stage

An important class of implicit Runge–Kutta methods for index–2 DAEs are those having an

{ai,j} matrix with a1,j = 0, i.e., an explicit first stage, and having an invertible submatrix

âi,j = ai+1,j+1 for 1 ≤ i, j ≤ s− 1. In terms of the order conditions of the previous section,

this class of methods can be viewed has having an {ai,j} matrix with a1,1 = c1, a1,j = 0 for

j > 1, and satisfying the necessary order conditions in the limit as c1 → 0.

In this case, the stage–values are given by

y1,k = ys,k−1

yi,k = ys,k−1 + hkai,1y
′
s,k−1 + hk

s−1
∑

j=1

âi,jy
′
j+1,k.

(5.40)

92

Table 5.7: Modified Butcher table for methods with an explicit first stage

{ĉi} {q̂i} {âi,j}
b1 {b̂j}

The stage–derivatives can be written in terms of the stage–values as

y′1,k = y′s,k−1

y′i+1,k = −q̂iy′s,k−1 −
p̂i

hk
ys,k−1 +

1

hk

s−1
∑

j=1

d̂i,jyj+1,k,
(5.41)

where

{di,j} = {âi,j}−1 (5.42)

p̂i =
s−1
∑

j=1

d̂i,j (5.43)

q̂i =

s−1
∑

j=1

d̂i,jaj+1,1. (5.44)

An important consequence of L–Stability is that q̂s−1 = 0, implying that y′s,k can be calculated

independently of y′s,k−1.
1

Alternatively, we may describe methods satisfying these conditions using a modified set of

coefficients as in Table 5.7 where ĉi = ci+1 and b̂i = bi+1. Any standard Runge–Kutta method

can be expressed in this form with q̂i = 0 and b1 = 0. From now on, we assume all methods

have coefficients in the form of Table 5.7 and drop the “hats” from the coefficient matrices

and vectors for convenience. This is done with the understanding that when referring to an

“s–stage” method, s refers to the number of implicit stages in the standard form. The vector

{bi} is now considered to have length s+ 1.

1The trapezoidal method has qs−1 = 1, which goes some way in explaining the difficulty of the strategy
when applied to stiff problems.

93

It is now possible to rewrite (5.29) as

s
∑

j=1

di,j

hk
Cyj,k + g (ti,k, yi,k) = f (ti,k) +

pi

hk
Cys,k−1 + qiCy

′
s,k−1. (5.45)

Because the pair (ys,k−1, y
′
s,k−1) satisfies the DAE at time tk−1, we can write

Cy′s,k−1 = f (tk−1)− g (tk−1, ys,k−1) , (5.46)

which, after substitution into (5.45), yields an expression of (5.29) using only the stage–

values:

s
∑

j=1

di,j

hk
Cyj,k + g (ti,k, yi,k) = f (ti,k) +

pi

hk
Cys,k−1 + qi [f (tk−1)− g (tk−1, ys,k−1)] . (5.47)

The final issue that must be addressed is the interdependence of the stage–values. That is to

say, (5.47) actually represents a set of s equations, one for each stage. Each stage–equation

is dependent on all of the stage values, so they must be solved simultaneously. This can be

expressed in a single equation by concatenating the unknowns for all the stages as

1

hk
C̄dȳk + ḡk = f̄k +

1

hk
C̄pȳk−1 + Īq

[

f̄k−1 − ḡk−1

]

, (5.48)

where the overbars denote the one–dimensional (row–wise) concatenation of the vectors yi,k,

g (ti,k, yi,k), and f (ti,k):

{ȳk}i = yi,k (5.49)

{ḡk}i = g (ti,k, yi,k) (5.50)

{f̄k}i = f (ti,k) (5.51)

94

The matrices C̄p have entries given by

{C̄p}i,j =

piC j = s

0 j 6= s,

(5.52)

and

{Īq}i,j =

qiI j = s

0 j 6= s,

(5.53)

respectively. The fact that only the last columns of C̄p and Īq are nonzero is a direct conse-

quence of the coefficient restriction assumptions (5.31) and the resulting property of (5.33).

The matrix C̄d is constructed similarly, with entries obtained by taking the Kroenecker

product of {di,j} with C:

{C̄d}i,j = di,jC. (5.54)

When applying Newton’s method to solve (5.48), the gradient of ḡ will be written as Ḡ, and

is the block-diagonal matrix with nonzero entries given by

{Ḡk}i,i = G (ti,k, yi,k) . (5.55)

Historically, the standard statement of Runge–Kutta methods as presented in the begin-

ning of this section is motivated by their application to time–marching problems. We suspect

this bias in presentation poses some conceptual difficulties when attempting to apply these

numerical integration techniques to steady–state algorithms and have found no evidence of

any attempts to do so. The steps and assumptions required to move from (5.22) to (5.48)

represent part of this conceptual barrier. It should be now be evident, however, that higher–

order Runge–Kutta techniques are applicable wherever one can derive an implicit–Euler

based algorithm.

95

5.8 Diagonally Implicit Runge–Kutta Methods

One issue with fully–implicit Runge-Kutta methods is that they lead to a set of simultaneous

equations for each time–step. That is to say, all of the stage–values must be determined at

once. For scalar ODEs and small vector DAEs, this is may or may not be an issue. For prob-

lems arising from the discretization of nonlinear PDEs such as electric machine simulations,

the resulting DAE is quite large. The concatenation procedure previously outlined increases

the problem size linearly with the number of stages. It is well known, however, that the

computational expense of solving linear systems grows greater than linearly with problem

size, even for sparse problems. Added to this is the fact that most {ai,j} matrices are not

symmetric, which destroys a desirable property of the matrix equations once concatenated.

The family of diagonally–implicit Runge–Kutta (DIRK) methods offers a solution to this

problem. These methods are characterized by a lower–triangular matrix:

ai,j = 0, j > i. (5.56)

DIRK methods have the property that the ith stage–value yi,k depends only on previous

stage–values yj,k for j < i. This can be seen by rewriting (5.47) using (5.56) as

di,i

hk
Cyi,k + g (ti,k, yi,k) = f (ti,k) +

pi

hk
Cys,k−1 −

i−1
∑

j=1

di,j

hk
Cyj,k + qi [f (tk−1)− g (tk−1, ys,k−1)] .

(5.57)

The lower triangularity of {ai,j} means its inverse {di,j} is lower triangular as well. Using

a DIRK method, xk = ys,k can be calculated by sequentially solving (5.57) for i = 1, . . . , s.

Calculating each stage–value requires determining the solution to a nonlinear equation of

the same size and symmetry properties as the original problem. Therefore, the computation

time grows linearly with the number of stages. The tradeoff is that the order of a DIRK

method will generally be less than a fully–implicit method with the same number of stages.

96

Table 5.8: Diagonally Implicit Runge–Kutta method of order 2/1 (ESDIRK2).

0 0 0 0

2−
√
2 1−

√
2
2

1−
√
2
2

0

1
√
2
4

√
2
4

1−
√
2
2√

2
4

√
2
4

1−
√
2
2

Table 5.9: Diagonally Implicit Runge-Kutta method of order 3/2 (ESDIRK3).

0 0 0 0 0

2γ γ γ 0 0

c3 c3 − a3,2 − γ a3,2 γ 0

1 b1 b2 b3 γ

b1 b2 b3 γ

The ubiquitous implicit–Euler method is a 1 stage DIRK method.

For a DIRKmethod to satisfy any of the order conditions for index–2 DAEs, it is necessary

that the first row of the {ai,j} matrix be zero. For methods of orders 2/1 and 3/2, there end

up being 1 and 2 free parameters, respectively. A typical way of constraining the parameters

is to require the diagonal entries of {ai,j} to be equal. This gives the method of order 2/1

in Table 5.8 [115]. The method given in Table 5.9 is of order 3/2 [116]. The parameter γ is

the root of the polynomial

−γ3 + 3

2
γ2 − 1

2
γ +

1

24
= 0, (5.58)

in the interval
[

1
3
, 1
]

, and the remaining coefficients are given by

c3 =
2γ
(

γ − 1
4

)

(γ − 1)
(

γ − 1
2

)2 − 1
12

(5.59)

a3,2 =
c23 − 2c3γ

4γ
(5.60)

b1 =
1
6
+ γ2 − γ2c3 + 3

2
γc3 − γ − 1

4
c3

γc3
(5.61)

b2 =
1
3
− γ + 1

2
c3 + γc3

2γ (2γ − c3)
(5.62)

b3 =
1
3
− 2γ + 2γ2

c3 (c3 − 2γ)
. (5.63)

97

Algorithm 5.1 Diagonally Implicit Runge-Kutta Newton Method

1: function DIRKNewton({yi,k}, {y′i,k}, {tk}, i, k)
2: hk ← tk − tk−1

3: y′i,k ← −piys,k−1

4: for j = 1 : i− 1 do
5: y′i,k ← y′i,k + di,jyj,k
6: end for
7: y′i,k ← h−1

k y′i,k − qiy′s,k−1

8: fi,k ← f (ti,k)− Cy′i,k
9:

10: ri,k ← di,i
hi,k

Cyi,k + g (ti,k, yi,k)− fi,k
11: while ‖ri,k‖ > ‖fi,k‖ǫ do
12: Ji,k ← h−1

k di,iC +G (ti,k, yi,k)
13: yi,k ← yi,k − J−1

i,k ri,k

14: ri,k ← h−1
k di,iCyi,k + g (ti,k, yi,k)− fi,k

15: end while
16: y′i,k ← y′i,k + h−1

k di,iyi,k
17: return yi,k, y

′
i,k

18: end function

Both methods are L–stable.

Algorithm 5.1 presents Newton’s method for solving 5.48 when the Runge–Kutta method

is diagonally–implicit. In particular, it is a function for calculating the ith stage–value for

the kth time step. It is assumed that the stages j < i have already been determined along

with the solution for the previous time step ys,k−1.

5.9 Interpolation

The order conditions in Section 5.6 are normalized to the step–size hk. Letting u be a free

parameter, the requirements for an approximate solution at time t (u) = tk−1+uhk to obtain

a given order can be written as in Tables 5.10 and 5.11. Using these conditions, it is possible to

construct a parametric quadrature weight vector {b̄j (u)} which, given the stage–derivatives,

interpolates the solution over the interval [tk−1, tk]. If a method is of order p, it is generally

not possible to construct {b̄j (u)} to satisfy the same order conditions for all u. The goal,

then, is to satisfy as many possible order conditions for all u, starting with the lowest order

98

Table 5.10: Interpolation order conditions for the index–1 components

Order Condition

1
∑

i bi = u

2 2
∑

i bici = u2

2
∑

i bidi,jc
2
j = u2

3 3
∑

i,j bic
2
i = u3

3 6
∑

i,j biai,jcj = u3

3
∑

i,j bidi,jc
3
j = u3

3 2
∑

i,j,k bidi,jcjaj,kck = u3

Table 5.11: Additional order conditions for the index–2 components

Order Condition

1
∑

i,j,k bidi,jdj,kc
2
k = 2u

2
∑

i,j,k bidi,jdj,kc
3
k = 3u2

2 2
∑

i,j,k,l bidi,jdj,kckak,lcl = 3u2

and moving up from there.

We will write the value approximated by interpolation to time tk (u) = tk + uhk as

ŷ (tk−1 + uhk) = ys,k−1 + hk

n
∑

i=1

ui

[

b̄i,1y
′
s,k−1 +

s
∑

j=1

b̄i,j+1y
′
j,k

]

(5.64)

where the matrix {b̂i,j} is an n by s + 1 by matrix. Algorithm 5.2 contains a pseudo-code

implementation of the interpolation procedure for the solution over the interval [tk−1, tk]

to the time tk−1 + uhk. For the implicit–Euler method, the matrix is 2 by 1 with a single

non–zero entry b̄i,2 = u. For the ESDIRK2 method, it is actually possible to solve all the

conditions to achieve order 2/1 for arbitrary u. This results in the matrix of interpolation

coefficients given in Table 5.12.

For the ESDIRK3 method, it is not possible to satisfy all order conditions to obtain order

3/2 for all u. It is possible, however, to satisfy the conditions to obtain order 2/1 and the

first two conditions for order 3 list in Table 5.10. The two extra conditions were chosen to

be satisfied on the basis that they must necessarily be satisfied for ODEs (in addition to

99

Algorithm 5.2 Runge-Kutta Interpolator

1: function RKInterpolate({yi,k}, {y′i,k}, {tk}, k, u)
2: hk ← tk − tk−1

3: ŷ ← ys,k−1

4: for i = 1 : s + 1 do
5: ŷ ← ŷ + hku

ib̄i,1y
′
s,k−1

6: for j = 1 : s do
7: ŷ ← ŷ + hku

ib̄i,j+1y
′
j,k

8: end for
9: end for
10: return ŷ

11: end function

Table 5.12: ESDIRK2 Interpolation Coefficients

b̄:,1 b̄:,2 b̄:,3

b̄1,:
√
2
2

√
2
2

1−
√
2

b̄2,: −
√
2
4
−

√
2
4

√
2
2

DAEs). This gives the matrix of interpolation coefficient in Table 5.13, written in terms of

the parameter γ.

5.10 Error Estimation

The classical error estimation technique for Runge–Kutta methods employs an auxiliary

weight vector {b̂j} that gives a solution ŷs,k with order less than the solution obtained using

the weight vector from the method proper. If the less accurate method obtains order p− 1,

the difference between the two solutions ys,k − ŷs,k is O (hp). This gives an error estimate of

the lower order method. We focus on estimating the error of the index–1 components, that

Table 5.13: ESDIRK3 Interpolation Coefficients

b̄:,1 b̄:,2 b̄:,3 b̄:,4

b̄1,:
−24γ3+34γ2−18γ+3

4(3γ2−3γ+1)(2γ2−4γ+1)
6γ2−6γ+1
4γ2−8γ+2

− 6γ2−4γ+1)2

4(3γ2−3γ+1)(2γ2−4γ+1)
2γ2u

2γ2−4γ+1

b̄2,:
24γ4−28γ3+10γ2+2γ−1

8γ(3γ2−3γ+1)(2γ2−4γ+1)
− (6γ2−1)(γ−1)

2(2γ−1)(2γ2−4γ+1)
(2γ2−1)(6γ2−4γ+1)2

8γ(2γ−1)(3γ2−3γ+1)(2γ2−4γ+1)
− 2γ

2γ2−4γ+1

b̄3,:
−(3γ−1)(2γ2−2γ+1)

12γ(3γ2−3γ+1)(2γ2−4γ+1)
6γ2−10γ+3

6(2γ−1)(2γ2−4γ+1)
− (γ−1)(6γ2−4γ+1)2

12γ(2γ−1)(3γ2−3γ+1)(2γ2−4γ+1)
1

6γ2−12γ+3

100

Table 5.14: ESDIRK2 auxiliary weight vector of order 1/1

b̂1 b̂2 b̂3
√
2
2

√
2
2

1−
√
2

is, the magnetic vector potential variables, since they make up the majority of the unknowns

and are directly related to the loss calculations.

The notion that {b̂j} not satisfy as many order conditions as {bj} is somewhat vague.

There are many ways to fail to satisfy a set of order conditions that, for the purpose of

error estimation, are practically useless. This occurs, for example, when the coefficients just

barely fail to satisfy some conditions and thus give unreasonably small estimates. One choice

is to select {b̂j} such that the coefficient of zp is annihilated in the Taylor expansion of the

stability function;

R̂ (z) =
det
(

I − z{a} + z1{b̂}
)

det (I − z{a}) , (5.65)

resulting in a Taylor expansion equal to

R̂ (z) =

p−1
∑

m=0

zm

m!
+O

(

zp+1
)

. (5.66)

The difference between the stability functions R and R̂ for the method using b and b̂ will

be equal to 1
p!
zp + O (zp+1). This is actually equivalent to requiring that {b̂j} satisfy the

condition
s
∑

j=1

b̂jc
p−1
j = 0, (5.67)

which says that the quadrature formula with weights {b̂j} and abscissae {ci} will give a value

of zero when integrating the polynomial tp−1. The auxiliary vectors derived in this manner

for ESDIRK2 and ESDIRK3 are given in Tables 5.14 and 5.15 respectively.

Additionally, with this choice we can write the error estimate for the index–1 components

101

Table 5.15: ESDIRK3 auxiliary weight vector of order 2/1

b̂1 b̂2 b̂3 b̂4

− (2γ−1)2(6γ2−4γ+1)
8γ(3γ2−3γ+1)(2γ2−4γ+1)

3γ2−1/2
(2γ−1)(4γ2−8γ+2)

+ 3
4

(6γ2−4γ+1)2(γ2−γ+1/2)
4(2γ2−4γ+1)(−6γ4+9γ3−5γ2+γ)

2γ(γ−1)
2γ2−4γ+1

Algorithm 5.3 Runge-Kutta Error Indicators

1: function RKError({yi,k}, {y′i,k}, {tk})
2: κ← 0
3: for k = 1 : Nt do
4: hk ← tk − tk−1

5: ev ←
(

b1 − b̂1
)

y′s,k−1

6: for i = 1 : s do
7: ev ← ev +

(

bi+1 − b̂i+1

)

y′i,k
8: end for
9: ǫk ← hk‖ev‖W
10: κ← max (κ, ‖ev‖W)
11: end for
12: for k = 1 : Nt do
13: ǫk ← κ−1ǫk
14: end for
15: return {ǫk}
16: end function

as

ys,k − ŷs,k =
h
p−1
k

(p− 1)!
x(p−1) (tk) +O (hp) (5.68)

where x(p) is the pth derivative of the true solution at tk starting from x (tk−1) = ys,k−1. In

fact, the error estimate in and of itself is not of much interest. One is typically most interested

in the error relative to the solution. We will use the relative error ǫk as an indicator of the

local discretization error for time step k where,

ǫk =
‖ys,k − ŷs,k‖W
max

k
‖ys,k‖W

, (5.69)

and ‖ · ‖W is the seminorm described in Chapter 4. Algorithm 5.3 contains a pseudo–code

implementation for calculating the error indicators.

One issue with this scheme is that the error estimates are actually error estimates of

102

the lower order solution. In point of fact, the numerical integration procedure is nearly

always advanced using the higher order solution and the term “error estimate” is somewhat

of a misnomer in this context. The choice of continuing with the higher order solution is

sometimes referred to as local extrapolation. In this sense, the ǫk are not strictly related to

the error of the solution and are merely used to facilitate adaptive step size selection.

103

Chapter 6

Steady-State Analysis Algorithms

The general continuous time steady-state analysis problem can be stated in the following

form:

Solve Cx′ + g (t, x) = f (t) ,

until x (t) = x (t + T) .

(6.1)

We assume that f and g are periodic with period T and that a unique solution satisfying the

constraint x (t) = x (t+ T) exists independent of x (0). Under these conditions, the problem

statement of (6.1) is equivalent to the problem

Solve Cx′ + g (t, x) = f (t) ,

for t ∈ [0, T] ,

s.t. x (0) = x (T) .

(6.2)

The statement (6.1) views continuous periodicity as the fundamental characteristic of the

steady–state solution without regard to any fixed interval. For stable systems, this suggests

simulating an initial–value problem over a sufficiently long interval so that the contribution

of the transients to the solution is negligible. This is the approach taken by the transient

analysis algorithms in Section 6.1.1.

104

On the other hand, (6.2) is more closely related to a boundary–value problem. Shooting-

methods are general strategies for solving boundary value problems and are applicable

to problems like (6.2) having periodic boundary–value constraints. The shooting–Newton

method of Section 6.1.2 formulates the discrete problem in terms of a single nonlinear

boundary–value problem that is solved using Newton’s method. For this reason, the strategy

is sometimes referred to as the single shooting method. The direct multiple shooting method

of Section 6.1.3 introduces degrees of freedom in the interior of the interval [0, T] and solves

a system of coupled boundary–value problems.

Returning to (6.1), the periodicity constraint on the solution suggests an approach dif-

ferent to transient analysis. By assuming the solution can be expressed as a weighted sum

of sinusoidal basis functions, the periodicity of the solution can be satisfied a priori. The

problem then becomes one of finding weights that approximate the solution in some best

sense. This leads to the harmonic balance method of Section 6.2.

The order of presentation of the algorithms in this chapter has been chosen for a particular

reason. Transient analysis is the de facto standard for steady–state analysis because of the

ease of implementation and understanding, despite it being the least efficient of the methods.

The inefficiency of transient analysis is the result of simulation time increasing with the

ratio of excitation period to time–constant. Magnetic devices in particular are designed to

be excited with signals having periods much shorter than the natural time constants. This

implies that many periods of transient analysis are required to converge to the steady-state

solution.

Algorithmically, the single shooting method is very similar to transient analysis. The

main difference is that at the end of every transient analysis period a correction is made to

the solution based on the periodic boundary–value formulation of the problem. The multi-

ple shooting method takes the boundary–value view of the problem adopted by the single

shooting method and pushes it to the limit. The introduction of internal degrees of free-

dom removes the need to perform transient analysis all together. The tradeoff is that it

105

becomes necessary to deal with a much larger system of equations. Although perhaps not

obvious at first, the harmonic balance method is similar to the multiple shooting method

in most respects. Whereas the multiple shooting method uses numerical integration tech-

niques to approximate the solution derivatives, the harmonic balance method appeals to the

frequency–domain to perform derivative calculations. The frequency domain derivative ap-

proximation results in discrete solutions that are more accurate, but also endows the problem

with a much more difficult structure.

The unifying difference between transient analysis and the other steady–state algorithms

is that the later solved using Newton’s method. This requires the solution of a linear system

at each Newton iteration. Direct methods are generally unsuitable for the solution of these

problems. Therefore, we use the generalized minimum residual method (GMRES) to solve

linear equations resulting from the Newton iteration, which is briefly described in Appendix

A.

6.1 Time–Domain Methods

6.1.1 Transient Analysis

Transient analysis refers to the direct application of numerical integration techniques to

analyze (4.72) as an initial value problem with initial condition x (0). Transient analysis can

be used to determine the steady–state solution with arbitrary precision by letting t → ∞.

In reality, one monitors the norm of the error between the solution shifted in time by one

period, ‖x (t)−x (t− T) ‖, and terminates the analysis when this error falls below a threshold

ǫ. When n periods have been simulated, the approximate steady–state solution is taken to

be the solution over the last period, x (t) for t ∈ [nT − T, nT]. The tolerance ǫ determines

how close the approximate solution is to the true steady–state solution. The initial condition

x (0) is an input to the problem, ideally chosen as close as possible to the true steady–state

solution.

106

Algorithm 6.1 Fixed Step-Size Transient Analysis

1: function TAFixed(ys,0, {tk}, ǫ, Nmax)
2: {yi,k}, {y′i,k} ←TAPeriod({yi,k}, {y′i,k}, {tk})
3: Niter ← 1
4: while ‖ys,Nt

− ys,0‖ ≥ ǫ‖ys,Nt
‖ and Niter ≤ Nmax do

5: ys,0, y
′
s,0 ← ys,Nt

, y′s,Nt

6: {yi,k}, {y′i,k} ←TAPeriod({yi,k}, {y′i,k}, {tk})
7: Niter ← Niter + 1
8: end while
9: return {ys,k}, {y′s,k}
10: end function

The simplest method to solve (6.1) using numerical integration is to choose a fixed step-

size hk = T
Nt

based on Nt steps over one period. More generally, we will assume a fixed set

of Nt time-points {tk} are used to discretized the time axis with corresponding step sizes

{hk = tk − tk−1} and initial time t0. Given this set, a discrete time restatement of (6.2) is

simply a matter of employing the generic Runge–Kutta notation of (5.48):

Solve
1

hk
C̄dȳk + ḡk = f̄k +

1

hk
C̄pȳk−1 + Īq

(

f̄k−1 − ḡk−1

)

,

for tk ∈ [0, T] ,

s.t. ȳ0 = ȳNt
.

(6.3)

After one period of analysis, we set ȳ0 ← ȳNt
so that only one period of the solution must be

stored at a time. The discrete solution to (6.9) is formed by extracting the last stage–values

from each time step, x (tk) = ys,k.

One subtlety occurring here is the specification of the initial condition. Because we have

required the Runge–Kutta methods to satisfy bj = as,j, the numerical integration starting

from t0 only depends on ys,0 and not on the entire concatenated stage-value vector ȳ0. This

greatly simplifies matters, as it would otherwise be necessary, in effect, to specify a number

of initial conditions equal to the number of Runge–Kutta stages.

Algorithm 6.1 presents a pseudo–code implementation of the fixed step–size transient

analysis algorithm. We have separated the function for one period of transient analysis in

107

Algorithm 6.2 One Period of DIRK Transient Analysis

1: function TAPeriod({yi,k}, {y′i,k}, {tk})
2: for k = 1 : Nt do
3: for i = 1 : s do
4: yi,k ← ys,k−1 + cihky

′
s,k−1 ⊲ Initial guess based on linear extrapolation

5: yi,k, y
′
i,k ←DIRKNewton({yi,k}, {y′i,k}, {tk}, i, k)

6: end for
7: end for
8: return {yi,k}, {y′i,k}
9: end function

Algorithm 6.2 because it is reused elsewhere. Algorithm 6.2 is constructed using the Runge–

Kutta functions developed in Chapter 5 as building blocks.

6.1.2 Single Shooting Method

The single shooting method is a steady–state analysis algorithm closely related to transient

analysis. For problems with a natural steady–state trajectory, the quantity r (t) = x (t) −

x (t− T) represents a measure of the distance of x(t) from the steady-state solution. Forcing

r(t) to zero implies that x (t) = x (t− T). That is, x (t) is on the steady–state solution

manifold. The single shooting method is simply the application of Newton’s method to

r (T) with an unknown initial condition x (0) and x (T) implicitly defined by one period

of transient analysis. In other words, we are searching for a solution x (t) of (4.72) that

obeys the constraint x (0) = x (T). Whereas transient analysis is an initial value problem,

the single shooting method solves a two–point boundary value problem on the interval [0, T]

with periodic boundary conditions.

For an arbitrary initial condition, x (T) is implicitly a function of x (0) through (4.72).

For any two times t1 and t2, and a given solution value x (t1), we write the corresponding

value of the solution x (t2) as

x (t2) = Φ [t1, t2, x (t1)] = x (t1) +

∫ t2

t1

x′ (τ) dτ (6.4)

108

where the function Φ is referred to as the nonlinear state–transition function. The function

Φ outputs the solution to the initial value problem

Solve Cx′ + g (t, x) = f (t) ,

for x (t2) ,

given x (t1) .

(6.5)

One period of transient analysis over the interval [0, T] can be expressed as

x (T) = Φ [0, T, x (0)] . (6.6)

If we substitute the periodic boundary constraint x (T) = x (0) into (6.6), we arrive at a

nonlinear equation in x (0), which can be solved for the initial condition coincident with the

steady–state solution,

x (0) = Φ [0, T, x (0)] . (6.7)

Of course, Φ is not available explicitly. Using numerical integration to perform one period of

transient analysis implicitly defines a discrete approximation of Φ [0, T, x (0)].

For one step of numerical integration from tk−1 to tk, we will write the solution using the

nonlinear state–transition function as

ys,k = Φ [tk−1, tk, ys,k−1] = ys,k−1 + hkb1y
′
1,k−1 + hk

s
∑

j=1

bj+1y
′
j,k. (6.8)

In analogy with the continuous time statement, Φ is now defined as producing the output of

the initial–value problem

Solve
1

hk
C̄dȳk + ḡk = f̄k +

1

hk
C̄pys,k−1 + Īq

(

f̄k−1 − ḡk−1

)

,

for ys,k,

given ys,k−1.

(6.9)

109

The numerical integration procedure gives a piecewise definition of Φ over an arbitrary

interval spanned by multiple time steps by repeatedly composing (6.8). For example, over

the interval [tm, tn], the numerical integration procedure can be expanded recursively as

ys,n = Φ [tm, tn, ys,m]

= Φ [tn−1, tn,Φ [tm, tn−1, ys,m]]

= Φ [tn−1, tn,Φ [tn−2, tn−1, . . .Φ [tm, tm+1, ym,s]]] .

(6.10)

One period of numerical integration can be expressed in a similar manner to the continuous

case,

ys,Nt
= Φ [0, T, ys,0] , (6.11)

with the understanding that (6.11) masks the underlying recursive definition. The periodic-

boundary condition is incorporated into this problem by substituting ys,0 for ys,Nt
:

ys,0 = Φ [0, T, ys,0] . (6.12)

We propose solving (6.12) using Newton’s method. For an initial guess of ys,0, the residual

r is simply

r = ys,0 − Φ [0, T, ys,0] = ys,0 − ys,Nt
. (6.13)

With a slight abuse of notation, we conflate the exact solution of (6.12), ys,0, with an arbitrary

Newton iterate. The Jacobian for this problem is obtained by taking the partial derivative

of r with respect to ys,0,
∂r

∂ys,0
= I − ∂Φ [0, T, ys,0]

∂ys,0

= I − ∂ys,Nt

∂ys,0
.

(6.14)

110

The correction term δ is calculated as the solution to the equation

[

I − ∂ys,Nt

∂ys,0

]

δ = r. (6.15)

The term
∂ys,Nt

ys,0
can be expanded using the chain rule applied to the recursive definition of

Φ in (6.10):
∂Φ [0, T, ys,0]

∂ys,0
=
∂ys,Nt

∂ys,0

=
∂ys,Nt

∂ys,Nt−1

· ∂ys,Nt−1

∂ys,Nt−2

· · · ∂ys,1
∂ys,0

=

Nt
∏

k=1

∂ys,k

∂ys,k−1
.

(6.16)

The matrix
∂ys,k

∂ys,k−1
is implicitly defined by linearizing (5.48) around ys,k−1 for fully–implicit

methods,
[

1

hk
C̄d + Ḡk

]

∂ȳk

∂ys,k−1
=

[

1

hk
C̄p − ĪqḠk−1

]

∂ȳk−1

∂ys,k−1
, (6.17)

where

{

∂ȳk−1

∂ys,k−1

}

i

=

0 i < s

I i = s

(6.18)

or (5.57) for diagonally–implicit methods,

[

di,i

hk
C +G (ti,k, yi,k)

]

∂yi,k

∂ys,k−1

=
pi

hk
C − qiG (tk−1, ys,k−1)−

i−1
∑

j=1

di,j

hk
C

∂yj,k

∂ys,k−1

. (6.19)

The complex expressions for the single shooting Jacobian reveal a fundamental difficulty

of the method; explicitly calculating ∂r
∂ys,0

using the expression in (6.16) requires the solution

of s × Nt matrix–matrix equations. The cost of performing these calculations for even the

smallest Nt quickly makes this approach abysmally inefficient, even compared to transient

analysis. The key to resolving this issue is to use an iterative method such as GMRES that

only requires calculating matrix–vector products with the Jacobian.

111

Let zs,0 be an arbitrary vector of appropriate dimension. We are interested in calculating

matrix–vector products of zs,0 with the Jacobian as

∂r

∂ys,0
zs,0 = zs,0 −

∂ys,Nt

∂ys,0
zs,0

= zs,0 − zs,Nt
.

(6.20)

The vectors zi,k are defined recursively as

zi,k =
∂yi,k

∂ys,k−1

zs,k−1, (6.21)

which can be calculated for fully–implicit methods by solving

[

1

hk
C̄d + Ḡk

]

z̄k =

[

1

hk
C̄p − IqḠk−1

]

z̄k−1, (6.22)

or for diagonally–implicit methods by solving

[

di,i

hk
C +G (ti,k, yi,k)

]

zi,k =

[

pi

hk
C − qiG (tk, ys,k−1)

]

zs,k−1 −
i−1
∑

j=1

di,j

hk
Czj,k. (6.23)

Compared to explicitly forming the Jacobian, one matrix–vector product requires the solution

of s×Nt matrix–vector equations. The efficiency of the single shooting method depends on

the total number of matrix–vector products required for the iterative method to converge.

This number is quite small for many problems of interest.

Normally we would be concerned about the convergence rate of GMRES when applied

to a unpreconditioned system. However, the single shooting Jacobian has a structure that

typically results in fast GMRES convergence without preconditioning [86, 87, 117]. This can

be understood by reading the expression for the Jacobian in (6.14) as the identity matrix

plus a perturbation term. When the perturbation is small in the sense that its eigenvalues

have modulus less than and bounded away from 1, the Jacobian is close to the identity

112

Algorithm 6.3 Fixed Step Size Single Shooting Method

1: function SNFixed(ys,0, {tk}, ǫ, Nmax)
2: {yi,k}, {y′i,k} ←TAPeriod({yi,k}, {y′i,k}, {tk})
3: r ← ys,0 − ys,Nt

4: Niter ← 1
5: while ‖r‖ ≥ ǫ‖ys,Nt

‖ and Niter ≤ Nmax do

6: δ ←
[

I − ∂ys,Nt

∂ys,0

]−1

r ⊲ Solve using GMRES, SSMVP

7: ys,0 ← ys,0 − δ
8:

9: {yi,k}, {y′i,k} ←TAPeriod({yi,k}, {y′i,k}, {tk})
10: r ← ys,0 − ys,Nt

11: Niter ← Niter + 1
12: end while
13: return {ys,k}, {y′s,k}
14: end function

matrix and fast convergence can be expected without preconditioning.

Algorithm 6.3 is a pseudo–code implementation of the fixed step size single shooting

algorithm. Comparing Algorithm 6.3 and the fixed step size transient algorithm 6.1, it is

plain that they have a very similar structure. The main difference occurs in the update of

the initial condition ys,0 using Newton’s method.

Algorithm 6.4 is a pseudo–code implementation of the matrix-vector product procedure

required for solving (6.15) using GMRES. This algorithm is equivalent to performing one

period of transient analysis of a linear time–varying system starting with the initial con-

dition zs,0. The equivalent system is time–varying due to the dependence of the matrices

G (ti,k, yi,k).

6.1.3 Multiple Shooting Method

The first direct steady-state finite–element steady–state simulation algorithm applied to the

magnetic diffusion equation capable of handling rotational motion and nonlinear materials

in a general way was termed the the time–periodic finite–element method [52]. This strategy

for solving boundary–value problems is more generally known as the direct multiple shooting

method. In contrast to the single shooting method, the multiple shooting method searches

113

Algorithm 6.4 DIRK Single Shooting Jacobian Matrix–Vector Product

1: function SNMVP(zs,0, {yi,k}, {tk})
2: for k = 1 : Nt do
3: for i = 1 : s do
4: v ← pizs,k−1

5: for j = 1 : (i− 1) do
6: v ← v − zj,k
7: end for
8: v ← h−1

k Cv − qiG (tk, ys,k−1) zs,k−1

9: zi,k ←
[

h−1
k di,iC +G (ti,k, yi,k)

]−1
v

10: end for
11: end for
12: return zs,0 − zs,Nt

13: end function

simultaneously for the vectors ȳk satisfying (5.48) at all times, in addition to the two–point

boundary–value constraint ȳ0 = ȳNt
. The resulting system of equations can be viewed as

Nt coupled initial–value problems defined over the intervals [tk−1, tk]. The method becomes

time–periodic due to the periodicity constraint.

The distinct character of the multiple shooting method can be made more clear by con-

catenating all of the ȳk into a single vector ¯̄y where

{¯̄y}k = ȳk. (6.24)

Similar vectors ¯̄g and ¯̄f are constructed by concatenating the values of ḡk and f̄k, respectively,

where

{¯̄g}k = ḡk + Īqḡk−1, (6.25)

{ ¯̄f}k = f̄k + Īqf̄k−1. (6.26)

Now (6.3) implicitly defines a nonlinear vector equation

¯̄C ¯̄y + ¯̄g = ¯̄f (6.27)

114

where the nonzero matrix entries of ¯̄C are given by

{ ¯̄C}k,k =
1

hk
C̄d

{ ¯̄C}k,k−1 = −
1

hk
C̄p

(6.28)

and the subscript k − 1 is taken modulo Nt. In particular, this means

{ ¯̄C}1,Nt
= − 1

h1
C̄p (6.29)

due to the periodic boundary condition.

We solve (6.27) using Newton’s method. This results in the linear equation

[

¯̄C + ¯̄G
]

¯̄δ = ¯̄r (6.30)

where ¯̄G is a matrix resulting from the linearization of ¯̄g with nonzero entries

{ ¯̄G}k,k = Ḡk,

{ ¯̄G}k,k−1 = ĪqḠk−1

(6.31)

where k − 1 is taken modulo Nt and the residual ¯̄r is given by

¯̄r = ¯̄C ¯̄y + ¯̄g − ¯̄f. (6.32)

With a slight abuse of notation, we conflate the exact solution of (6.27) with an arbitrary

Newton iterate. The correction ¯̄δ is calculated by solving (6.30) and the solution is updated

as

¯̄y ← ¯̄y − ¯̄δ. (6.33)

A fundamental difficulty of solving (6.30) is the large number of equations: The unknown

vector ¯̄δ is Nt times larger than the unknown vector for a single time. Most of the techniques

115

investigated for solving this type linear equation revolve around relaxation schemes exploiting

the block–structure of the matrix [53, 54, 55, 56, 57]. For example, if the upper–right hand

block containing the matrix { ¯̄C+ ¯̄G}1,Nt
is set to zero, then the overall matrix has block–lower

triangular form. An efficient relaxation method can be developed around this structure.

Alternatively, if it happened to be the case that all of the diagonal blocks were the

same, Ḡ1 = Ḡ2 = · · · = ḠNt
, then the matrix would be block–circulant. A useful property

of circulant matrices is that they can be diagonalized by discrete Fourier transform matrix.

Another way of saying this is that anM dimensional circulant matrix has eigenvectors defined

by {vk}m = ejk
m−1
M . Block–circulant matrices have a similar property in a block–wise sense.

If the time variation in the G matrices are due to nonlinear materials and not motion, the

nearly–circulant property can be used effectively [58, 59]. Unfortunately for problems with

motion, essential information about the motion tends to be discarded whenever a circulant

approximation is made. This is because the average coupling between two variables, one in

a fixed and another in a rotating reference frame, is zero.

Instead of a relaxation scheme, we will use GMRES to solve (6.30). Unlike the sin-

gle shooting method, we will require a preconditioner in this case. Because we are primarily

interested in problems containing rotational motion, we adopt the block lower–triangular Ja-

cobian approximation as our preconditioner. In particular, the preconditioner ¯̄M has nonzero

entries given by

{ ¯̄M}i,j =

{ ¯̄C + ¯̄G}i,j, i ≤ j

0, j > i

(6.34)

Because the only entry in the blockwise upper–triangular part of the Jacobian occurs in the

(1, Nt) position, the preconditioner is obtained through a very minor structural modification.

Algorithm 6.5 contains a pseudo–code implementation of the fixed step size multiple

shooting method. The function is simply an implementation of Newton’s method applied

to (6.27). The function in Algorithm 6.6 calculates the residual for the method. The linear

equation on line 5 is solved using GMRES. The multiple shooting method avoids transient

116

Algorithm 6.5 Fixed Step Size Multiple Shooting Method

1: function MSFixed({yi,k}, {tk}, ǫ, Nmax)
2: {ri,k}, {y′i,k}, ε←MSResidual({yi,k}, {tk})
3: Niter ← 0
4: while ε > ǫ and Niter ≤ Nmax do

5: ¯̄δ ←
[

¯̄C + ¯̄G
]−1

¯̄r ⊲ Solve using GMRES, MSMVP, MSPC

6: ¯̄y ← ¯̄y − ¯̄δ
7: {ri,k}, {y′i,k}, ε←MSResidual({yi,k}, {tk})
8: Niter ← Niter + 1
9: end while
10: return {yi,k}, {y′i,k}
11: end function

analysis in calculating the residual so it is not possible to reuse any of the previously de-

veloped function in this implementation. Because transient analysis requires solving many

linear equations for each time step, it is reasonable to expect that the residual calculation

in Algorithm 6.6 is much faster than one period of transient analysis.

Algorithm 6.7 contains pseudo–code for calculating matrix-vector products with the ma-

trix ¯̄C+ ¯̄G for an input vector ¯̄z. Algorithm 6.8 contains pseudo–code for calculating applica-

tion of the preconditioner ¯̄M . It is worthwhile to compare Algorithm 6.8 to the matrix–vector

product code in Algorithm 6.4 for the single shooting method to understand how they are

similar in many respects. From a computational complexity standpoint, one application of

the preconditioner in Algorithm 6.8 is about as expensive as one matrix–vector product in

Algorithm 6.4. This can be understood by realizing that the main computational bottleneck

in both functions occur when solving linear equations with the matrices
di,i
hk
C +G (ti,k, yi,k).

Therefore, any differences in simulation time between the methods depend upon the total

number of Newton iterations, cost of the residual calculation, and total number of GM-

RES iterations. The difference does not depend on the complexity of the individual matrix–

vector products or preconditioner calculations when solving the linear equations for Newton’s

method.

117

Algorithm 6.6 DIRK Multiple Shooting Residual

1: function MSResidual({yi,k}, {tk})
2: α← 0
3: β ← 0
4: for k = 1 : Nt do
5: hk ← tk − tk−1

6: y′s,k ← −psys,k−1 ⊲ qs = 0 for L–Stable methods
7: for i = 1 : s do
8: y′s,k ← y′s,k + ds,iyi,k
9: ri,k ← g (ti,k, yi,k)− f (ti,k) + qi [g (tk−1, ys,k−1)− f (tk−1)]
10: for j = 1 : i do
11: ri,k ← ri,k +

di,j
hk
Cyj,k

12: end for
13: β ← β + ‖f (ti,k) ‖2
14: α← α + ‖ri,k‖2
15: end for
16: y′s,k ← h−1

k y′s,k
17: end for
18: for k = 1 : Nt do
19: hk ← tk − tk−1

20: for i = 1 : (s− 1) do
21: y′i,k ← −piys,k−1

22: for j = 1 : i do
23: y′i,k ← y′i,k + di,jyj,k
24: end for
25: y′i,k ← h−1

k y′i,k − qiy′s,k−1

26: end for
27: end for
28: ε← α−1β

29: ε← ε
1
2

30: return {ri,k}, {y′i,k}, ε
31: end function

118

Algorithm 6.7 DIRK Multiple Shooting Matrix–Vector Product

1: function MSMVP({zi,k}, {yi,k}, {tk})
2: for k = 1 : Nt do
3: hk ← tk − tk−1

4: for i = 1 : s do
5: ri,k ← −piCzs,k−1

6: for j = 1 : i do
7: ri,k ← ri,k + di,jCzj,k
8: end for
9: ri,k ← h−1

k ri,k + qiG (tk−1, ys,k−1) zs,k−1 +G (ti,k, yi,k) zi,k
10: end for
11: end for
12: return {ri,k}
13: end function

Algorithm 6.8 DIRK Multiple Shooting Preconditioner

1: function PC({zi,k}, {yi,k}, {tk})
2: k ← 1
3: hk ← tk − tk−1

4: for i = 1 : s do
5: zi,k ←

[

h−1
k di,iC +G (ti,k, yi,k)

]−1
zi,k

6: for j = (i+ 1) : s do
7: zj,k ← zj,k − h−1

k dj,iCzi,k
8: end for
9: end for
10:

11: for k = 2 : Nt do
12: hk ← tk − tk−1

13: for i = 1 : s do
14: zi,k ← zi,k + h−1

k piCzs,k−1 − qiG (tk−1, ys,k−1) zs,k−1

15: end for
16:

17: for i = 1 : s do
18: zi,k ←

[

h−1
k di,iC +G (ti,k, yi,k)

]−1
zi,k

19: for j = (i+ 1) : s do
20: zj,k ← zj,k − h−1

k dj,iCzi,k
21: end for
22: end for
23: end for
24:

25: return {zi,k}
26: end function

119

6.1.4 Adaptive Solution Refinement

A statement of the adaptive step size problem is similar to the fixed step size case except

the set of time points {tk} is not specified ahead of time. For true initial–value problems,

the standard method of adaptive time–marching is eminently reasonable. This is so because,

presumably, one is interested in the solution at every time in the simulation interval. Requir-

ing the solution to meet some local error estimate threshold at every time step is a sensible

way to control the local accuracy over the entire interval. It is certainly possible to näıvely

apply the classic adaptive time–marching algorithms to the steady–state simulation problem

as stated in (6.1).

When the steady–state part of the solution is the main item of interest, the initial value

problem is simply a means to an end. Requiring the solution to meet a uniform error estimate

threshold over the entire interval incurs an unnecessary high computational cost when the

transient part of the solution is non–negligible. This problem can be avoided by adopting a

multigrid–like approach to determining the solution within a given tolerance. Such a strategy

starts by solving the steady–state problem on a coarse discretization of the time axis. Local

error estimates are calculated and the grid is refined based on these indicators. The solution

from the coarse grid can be interpolated onto the refined grid to serve as a good initial

condition and the procedure continues iteratively.

The standard analysis of multigrid algorithms operates under three assumptions: (1) the

same number of “smoothing” iterations are performed on each grid; (2) the is solved exactly

on the coarsest grid with a negligible amount of work compared to the finest grid; and (3)

each refinement produces a grid with twice the number of variables. In this case, the total

work is approximately equal to twice the work done on the finest grid [118]. In our context, a

smoothing iteration corresponds to one period of transient analysis or one Newton iteration

for the shooting methods. Generally, on all but the coarsest grid, the maximum number of

smoothing iterations performed is small.1 The next section introduces a step size selection

1This is usually in the context of linear multigrid methods, where relaxation schemes are used whose

120

algorithm based on the error indicators of Chapter 5. The subsequent section discusses its

use in adaptively refining the solution in the manner previously described.

A Continuously Variable Step Size Selection Algorithm

Suppose after solving the steady–state problem on some fixed grid, we have some error

indicator ǫk for the interval [tk−1, tk]. For a method of order p, we have seen from Chapter 5

that, with an appropriate choice of lower order solution, the quantity (ys,k − ŷs,k) (p−1)!

hp−1
k

is an

O(hk) approximation of the (p− 1)th derivative of the solution over this interval. For small

enough step sizes, the quantity ǫkh
p−1
k will be approximately constant independent of hk.

Therefore, if we wish to select an interval [sl−1, sl] such that the local error is less than ε, we

can estimate the required interval length as satisfying the inequality

sl − sl−1 ≤ min
k∈K
Hk (ε) (6.35)

where

Hk (ε) = hk

[

ε

ǫk

]
1

p−1

(6.36)

and K is the set of all k satisfying sl−1 ≤ tk and tk−1 ≤ sl. That is, K is the smallest set of

integers such that tkmin
≤ sl−1 < sl ≤ tkmax

where kmin = minK and kmax = maxK.

If we fix, for example, s0 = 0, an entire set of new times {sl} can be chosen to satisfy

(6.35) inductively. If we regard H (tk) = Hk as a piecewise constant function of time, then

the local minima and maxima of the function govern the range of locally permissible step

sizes. Figure 6.1 gives an example of one such function. The set of step sizes satisfying this

upper bound was generated by Algorithm 6.9.

Algorithm 6.9 works by partitioning H (t) over intervals where it is either non–increasing

or non–decreasing. On each of these intervals, we start from the local maximum and construct

convergence rate slows quite dramatically after just a few iterations. In fact, transient analysis has much the
same problem. In the context of Newton’s method to solve either of the shooting problems, having a good
initial condition means that performing one or two iterations will produce a quite good approximation on
that grid.

121

0 0.2 0.4 0.6 0.8 1 1.2
0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time [ms]

S
te

p
S

iz
e

[µ
s]

Upper Bound
Step−Size

Figure 6.1: Upper bound on the step size determined by the error indicators and the set of
step sizes generated by Algorithm 6.9.

122

a sequence of times moving toward the local minimum such that (6.35) is satisfied. Once

the final new time generated in this manner falls outside the local partition, the sequence

of times is scaled so that the smallest and largest times coincide with the endpoints of the

partition.

A Generic Adaptive Framework

Implementing the standard approach of approximately doubling the number of grid points

every iteration is simply a matter of reducing the tolerance ε used to calculate Hk during

the grid refinement procedure by a factor of 21−p. The only remaining issue is how to pick

the initial value of ε. In fact, the coarsest grid will be fixed in advanced and the solution

on this grid will be determined to within a tolerance of ǫexact. From this solution, the initial

tolerance εinit that would have resulted in this set of time–steps can be estimated as the

average of the error indicators:

εinit =
1

Nt

Nt
∑

k=1

ǫk. (6.37)

In general, we may have in mind some tolerance εmax that we would like to bound all of the

error estimates on the finest grid. Assuming the total number of time steps doubles after

each refinement, the total number of grids Ng can be estimated as satisfying

εmax = εinit2
(Ng−1)(1−p), (6.38)

or

Ng =

⌊

log εmax − log εinit
(1− p) log 2

⌋

. (6.39)

Therefore, the tolerance for the first refinement should be set to εinit = εmax2
(Ng−1)(p−1).

In reality, it is possible we will just fail to satisfy the tolerance threshold on the N th
g grid,

so we multiply εinit by a safety factor of 0.5. The full adaptive procedure is represented in

Algorithm 6.10. The function FixedStepSizeAlgorithm is a generic placeholder for which

any of the previously developed time–domain steady–state algorithms can be substituted.

123

Algorithm 6.9 Time-Axis Grid Refinement

1: function RKRefine({εk},{tk},ε)
2: for k = 1 : Nt do

3: Hk ←
[

ε
εk

]
1

p−1
(tk − tk−1)

4: Hk+Nt ← Hk

5: end for
6: kmax ←FindMax({Hk},1)
7: kmin ←FindMin({Hk},kmax)
8: kmax ←FindMax({Hk},kmin)
9: {sl} ←RefinePartition(kmin, kmax, {Hk}, {tk})
10: while max

l
sl −min

l
sl < T do

11: if kmin < kmax then
12: kmin ←FindMin({Hk},kmax)
13: else
14: kmax ←FindMax({Hk},kmin)
15: end if
16: {sl} ← {sl}

⋃

RefinePartition(kmin, kmax, {Hk}, {tk})
17: end while
18: {sl} ←Modulo({sl}, T)
19: {sl} ←Sort({sl})
20: return {sl}
21: end function
22:

23: function FindMin({Hk},{tk},k)
24: while Hk ≥ Hk+1 do
25: k ← k + 1
26: end while
27: return k

28: end function
29:

30: function FindMax({Hk},{tk},k)
31: while Hk ≤ Hk+1 do
32: k ← k + 1
33: end while
34: return k

35: end function

124

36: function RefinePartition(kmin, kmax, {Hk}, {tk})
37: i← 1
38: si ← tkmax

39: k ← kmax

40: if kmax < kmin then
41: while si < tkmin

do
42: while tk − si < Hk do
43: k ← k + 1
44: end while
45: if tk−1 − si > Hk then
46: k ← k − 1
47: end if
48: si+1 ← si +Hk

49: i← i+ 1
50: end while
51: else
52: while si > tkmin

do
53: while si − tk−1 < Hk do
54: k ← k − 1
55: end while
56: if si − tk > Hk then
57: k ← k + 1
58: end if
59: si+1 ← si −Hk

60: i← i+ 1
61: end while
62: end if
63: for j = 1 : i do
64: sj ← (sj − tkmax

)
tkmax−tkmin

tkmax−si
+ tkmax

65: end forreturn {si}
66: end function

125

Algorithm 6.10 Generic Adaptive Steady-State Algorithm

1: function SSAdaptive({ys,k}, {tk}, εmax, ǫexact, ǫsmooth, Nsmooth)
2: {yi,k}, {y′i,k} ←FixedStepSizeAlgorithm({yi,k}, {tk}, ǫexact, ∞)
3: {εk} ←RKError({yi,k}, {y′i,k}, {tk})
4: ε← N−1

t

∑Nt

k=1 εk
5: Ng ←

⌊

([1− p] log 2)−1 (log εmax − log ε)
⌋

6: ε← 0.5εmax2
Ng(p−1)

7: while εmax > max
k

εk do

8: ε← ε21−p

9: {sk} ←RKRefine({εk}, {tk}, ε)
10: {yi,k} ←RKInterpolate({yi,k}, {y′i,k}, {tk}, {sk})
11: {tk} ← {sk}
12: {yi,k}, {y′i,k} ←FixedStepSizeAlgorithm({yi,k}, {tk}, ǫsmooth, Nsmooth)
13: {εk} ←RKError({yi,k}, {y′i,k}, {tk})
14: end while
15: end function

6.2 Harmonic Balance

The harmonic balance method solves (6.1) by expanding the solution as a weighted sum of

trigonometric basis functions. In this presentation, we will utilize complex–valued exponential

functions with harmonic weights x̃k to write the approximate solution. Using Nt = 2Nh basis

functions, the approximate solution can be written as

x =
1√
Nt

Nt
∑

j=1

j 6=Nh+1

x̃je
iωjt +

1√
Nt

x̃Nh+1 cos (Nhωet) (6.40)

with

ωj =

(j − 1)ωe : j < Nh + 1

0 : j = Nh + 1

(j − 1−Nh)ωe : j > Nh + 1

(6.41)

where i is the imaginary unit and ωe = 2π
T

is the fundamental electrical period of the

solution. The approximation of the solution in terms of these basis functions leads directly

126

to an approximation of the solution derivative:

x′ =
1√
Nt

Nt
∑

j=1

j 6=Nh+1

iωjx̃je
iωjt − Nhωe√

Nt

x̃Nh+1 sin (Nhωet) (6.42)

The use of an even number of basis functions is motivated by the fact that, later on, we

will present an adaptive harmonic balance algorithm by successively doubling the number

of sample points. Having an even number of samples, it becomes necessary to deal with the

so–called Nyquist element associated with the basis function cos (Nhωet). This is also behind

the peculiar definition of ωNh+1, which is explained below.

If we choose a set of Nt evenly spaced sample times tk = (k − 1)∆t, ∆t = T
Nt
, then the

harmonic coefficients x̃j can be put in one–to–one correspondence with samples of x (t) in

the time domain, denoted x̄k, where

x̄k =
1√
Nt

Nt
∑

i=1
j 6=Nh+1

x̃je
iωjtk +

1√
Nt

x̃Nh+1 cos (Nhωetk) . (6.43)

The derivative can be similarly sampled,

x̄′k =
1√
Nt

Nt
∑

j=1

iωj x̃je
iωjtk . (6.44)

The definition ωNh+1 = 0 stems from the fact that the derivative of the Nyquist basis function

is zero at the sample points. This choice eliminates special cases that must be dealt with

when writing algorithm loops.

The relationship between the harmonic coefficient and sample vectors can be written

more concisely by concatenating the sets into large vectors denoted x̃ and x̄ respectively,

where

{x̄}k = x̄k, (6.45)

{x̃}j = x̃j . (6.46)

127

The vectors x̃ and x̄ are related through a simple linear transformation,

x̄ = Γ̃H x̃. (6.47)

The matrix Γ̃ is a block–wise unitary discrete–Fourier transform matrix given by

Γ̃ = γ̃ ⊗ I (6.48)

where ⊗ is the Kronecker product operator, I is an identity matrix compatible with the size

of x, and γ̃ is the scalar DFT matrix with entries

{γ̃}j,k =
1√
Nt

e−iωjtk . (6.49)

Equation (6.47) is simply a restatement of (6.43). Similarly, the nonlinearity g (x, t) and

exogenous input f (t) can be evaluated in the time domain using the sample times and sample

solution values to produce sample vectors ḡk and f̄k. These vectors are also concatenated

into larger vectors ḡ and f̄ respectively:

{ḡ}k = ḡk = g (x̄k, tk) , (6.50)

{f̄}k = f̄k = f (tk) . (6.51)

In turn, the sample vectors implicitly define harmonic coefficient vectors through the block–

DFT:

{g̃}j = {ΓH ḡ}j = g̃j, (6.52)

{f̃}j = {ΓH f̄}j = f̃j . (6.53)

Substituting these relationships into (4.72), we arrive at a set of Nt equations, one for

128

each harmonic coefficient x̃j ,

iωjCx̃j + g̃j = f̃j , (6.54)

which can be more conveniently written in concatenated form as

C̃x̃+ g̃ = f̃ . (6.55)

The matrix C̃ is a block–diagonal matrix with nonzero entries given by

{C̃}j,j = iωjC. (6.56)

The block–DFT matrix Γ̃ can be used to transform (6.55) through change of variable x̃ = Γ̃x̄

and pre–multiplication by Γ̃H , into the following equation:

Γ̃HC̃Γ̃x̄+ ḡ = f̄ . (6.57)

Clearly, the solutions of (6.55) and (6.57) are related by the transformation Γ̃. In this sense,

they are equivalent statements of the harmonic balance problem. The difference is that

(6.55) is presented in the frequency domain in terms of harmonic coefficients, while (6.57) is

presented in the time domain in terms of solution samples.

Equation (6.57) shows that we have forced the harmonic expansion (6.40) of the solution

to solve (4.72) exactly at the sample times. This was effected by putting the harmonic

coefficients in one–to–one correspondence with the sample times. This form of the harmonic

balance method is a collocation method. This is in contradistinction to a Galerkin method

that would force the residual of the solution to be orthogonal to the subspace spanned by

the trigonometric basis functions, but would not necessarily solve (4.72) at any of the sample

times.

129

6.2.1 Linearization

Newton’s method can be used to solve the harmonic balance equations. It is easiest to start

with the time–domain statement of the problem to derive Newton’s method and subsequently

transform the equations into the frequency–domain. Proceeding along these lines, we employ

a slight abuse of notation and conflate x̄ with the true solution of (6.57) and an arbitrary

Newton iterate. Evaluating (6.57) at the approximate solution yields a residual r̄:

r̄ = Γ̃HC̃Γ̃x̄+ ḡ (x̄)− f̄ . (6.58)

The Jacobian for the problem can be thought of as a block matrix with entries defined by

{J̄}j,k =
∂r̄j

∂x̄k
. (6.59)

One part of the Jacobian is defined by the matrix ΓHC̃ΓH . The other part is due to the

Jacobian of the nonlinear function ḡ. Since the nonlinearity is assumed to be independent

for each time, its contribution to J̄ is nonzero only on the diagonal blocks. We define the

block–diagonal matrix Ḡ with nonzero entries given by

{Ḡ}k,k = Ḡk,k = G (x̄k, tk) . (6.60)

Now the Jacobian can be simply written as

J̄ = Γ̃HC̃Γ̃ + Ḡ. (6.61)

Using this notation, Newton’s method can be expressed in the time domain as solving the

equation

J̄ δ̄ = r̄, (6.62)

130

and updating the approximate solution as

x̄← x̄− δ̄. (6.63)

An equivalent statement of Newton’s method in the frequency domain can be obtained

using a similarity transformation, this time with the change of variable r̄ = Γ̃H r̃ and pre–

multiplication by Γ̃. The Jacobian in the frequency domain can be written as

J̃ = C̃ + Γ̃ḠΓ̃H . (6.64)

The linear equation to be solved is

J̃ δ̃ = r̃, (6.65)

and the approximate solution is updated as

x̃← x̃− δ̃. (6.66)

Algorithm 6.11 Harmonic Balance Method

1: function HBFixed({x̄k}, {tk}, ǫ, Nmax) ⊲ Solve (6.57)
2: {r̄k}, ε←HBRes({x̄k})
3: Niter ← 0
4: while ε > ǫ and Niter ≤ Nmax do ⊲ Solve (6.62)
5: δ̄ ← J̄−1r̄ ⊲ Use GMRES, HBMVP, HBPC
6: x̄← x̄− δ̄
7: {r̄k}, {x̄′k}, ε←HBRes({x̄k})
8: Niter ← Niter + 1
9: end while
10: return {x̄k}
11: end function

131

Algorithm 6.12 Harmonic Balance Residual

function HBRes({xj}) ⊲ Evaluate (6.58)
α← 0
β ← 0
{x̃j} ←FFT({xj})
for j = 1 : Nt do

r̃j ← iωjCx̃
′
j

end for

{r̄j} ←IFFT({r̃j})
for k = 1 : Nt do

r̄k ← r̄k + g (x̄k, tk)− f (tk)
β ← β + ‖f (tk) ‖2
α← α + ‖r̄k‖2

end for
ε← α−1β

ε← ε
1
2

return {x̄k}, ε
end function

Algorithm 6.13 Harmonic Balance Matrix-Vector Product

1: function HBMVP({z̄k}) ⊲ MVP used with GMRES
2: {z̃j} ←FFT({z̄k}) ⊲ λ̄ = J̄ z̄

3: for j = 1 : Nt do
4: λ̃j ← iωjCz̃j
5: end for
6: {λ̄k} ←IFFT({λ̃j})
7: for k = 1 : Nt do
8: λ̄k ← λ̄k + Ḡk,kz̄k
9: end for
10: return {λk}
11: end function

132

Algorithm 6.14 Harmonic Balance Preconditioner

function HBPC({z̄k}) ⊲ Preconditioner used with GMRES

for k = 1 : Nt do ⊲ λ̄ = ˜̄M−1z̄

λ̄k ←
[

NtT
−1C + Ḡk,k

]−1
z̄k

z̄k ← z̄k − Ḡk,kλ̄k
end for
{λ̃j} ←FFT({λ̄k})
{z̃j} ←FFT({z̄k})
for j = 1 : Nt do

z̃j ← z̃j − iωjCλ̃j

λ̃j ← λ̃j +
[

iωjC + G̃0

]−1

z̃j

end for
{λ̄k} ←IFFT({λ̃j})
return {λ̄k}

end function

6.2.2 Preconditioners

The main difficulty in the harmonic balance method is solving the large linear system of equa-

tions resulting from the application of Newton’s method. For all but the smallest number

of harmonics, applying a factorization algorithm to J̄ or J̃ is intractable. Therefore, itera-

tive methods are typically employed to solve (6.65). Since the Jacobian is nonsymmetric, a

nonsymmetric Krylov subspace method GMRES can be used for this purpose.

Frequency-Domain Block-Diagonal Preconditioner

A robust preconditioning strategy is necessary to avoid potentially slow convergence of GM-

RES. A popular type of preconditioner can be constructed by extracting the block diagonals

of J̃ from the frequency domain representation of Newton’s method. We will denote this

preconditioner by M̃f . The matrix C̃ is already a block–diagonal matrix, so it is completely

included in M̃f . The matrix Γ̃ḠΓ̃H has a constant block–diagonal G̃0, with values equation

to the average of the block–diagonal entries of Ḡ:

G̃0 =
1

Nt

Nt
∑

k=1

Ḡk,k. (6.67)

133

Combining these two expressions, the nonzero entries of M̃f are given by

{M̃f}j,j = C̃j,j + G̃0. (6.68)

The structure of this preconditioner is useful because problems of the form M̃f δ̃ = r̃ can

be solved for δ̃ by solving Nt smaller independent problems, each of which are the same size as

the underlying DAE. For problems without motion where the magnetic fields are not driven

too far into saturation, the actual time variation of the Ḡk,k will be small. In this case, the

average G̃0 does a good job representing the fundamental behavior of the linearization. As

the device is driven further into saturation, the time–variation of the Ḡk,k becomes stronger

as the incremental reluctivity begins to vary from its low–field value toward that of free–space

in the strong field–limit. In this case, G̃0 fails to capture the harmonic content generated by

the saturation nonlinearity.

For problems with motion, the problem is even more extreme. Each Ḡk,k can be permuted

into the following form,

Gk,k =

G
r,r
k,k G

r,s
k,k

G
s,r
k,k G

s,s
k,k

. (6.69)

where Gr,r
k,k and G

s,s
k,k represent matrices associated with the rotor and stator, respectively, and

G
r,s
k,k and Gs,r

k,k represent matrices coupling the rotor and stator through the airgap. Because

the rotor is assumed to be rotating at a constant velocity, these matrices are time–varying

with a mean–value of zero. In other words, G̃0, the average of the block-diagonals of Ḡ, can

be written as

G̃0 =

G̃
r,r
0 0

0 G̃
s,s
0

. (6.70)

This means that, in employing the frequency domain block–diagonal preconditioner, the

airgap between the stator and rotor is implicitly modeled as a perfect magnetic insulator.

134

Time-Domain Block-Diagonal Preconditioner

A similar approach to constructing a block–diagonal preconditioner can be taken starting

from the time–domain representation of Newton’s method by extracting the block-diagonals

of J̄ . Since Ḡ is block–diagonal, it would be included entirely within this matrix. The block–

diagonals of Γ̃HC̃Γ̃ are equal to the average of the block-diagonals of C̃. In fact, these blocks

are zero because
Nt
∑

j=1

ωj = 0. (6.71)

The result is that extracting the block-diagonals of J̄ leaves the matrix Ḡ. Therefore, a

preconditioner constructed this way exactly represents the part of the Jacobian due to the

magnetic nonlinearity and motion. However, it fails to capture any aspects of the time-

derivatives in the problem because all of that information is contained in the off–diagonal

blocks of Γ̃HC̃Γ̃. We could expect this preconditioner to work well at low frequencies. This is

a moot point since it would not be necessary to model the dynamics of such a low frequency

problem in the first place.

It would be beneficial to include some information about the conductivity in a time–

domain preconditioner. This can be accomplished by adding a positive scalar multiple of C

to each block on the diagonal of Ḡ. This approach can be motivated by considering what

a block–diagonal preconditioner would look like if (4.72) was discretized with the implicit–

Euler method instead of the harmonic expansion of (6.40).

The matrix Γ̃HC̃Γ̃ is the result of calculating the time–derivative in the frequency–

domain; it resembles what would occur if the time–derivatives were approximated using

a central finite–difference scheme. Central difference approximations necessarily result in ze-

ros on the diagonal of the derivative matrix. If we replace the derivative approximation in

the Jacobian J̄ with one based on the implicit–Euler method, (6.62) can be approximated

as

ˆ̄J ˆ̄δ = r̄ (6.72)

135

where the approximate Jacobian ˆ̄J is

ˆ̄J = C̄ + Ḡ, (6.73)

and the nonzero entries of C̄ are given by

C̄i,i =
Nt

T
C

C̄i,i−1 = −
Nt

T
C.

(6.74)

The matrix ˆ̄J has a similar structure to the multiple shooting method Jacobian using equally

spaced sample times and the implicit–Euler method as the numerical integration scheme.

Even though they have different structures, ˆ̄J approximates J̄ in the sense that the

solutions to (6.62) and (6.72) should be similar, i.e. ˆ̄δ ≈ δ̄, for an r̄ that is fixed between

problems. A time domain block–diagonal preconditioner M̄t for (6.62) can be constructed by

extracting the block–diagonals of ˆ̄J , which are given by

{M̄t}i,i =
Nt

T
C + Ḡi,i. (6.75)

The key difference between M̄t and a preconditioner constructed by simply extracting the

block-diagonals of J̄ is that the frequency–domain derivative calculation is replaced with the

backward–difference approximation in order to collect information about the conductivity

on the block–diagonal.

An Overlapping Time/Frequency Domain Preconditioner

We have seen in the previous section that the block–diagonals of the Jacobian capture dif-

ferent aspects of the problem depending on whether it is stated in the time domain or the

frequency domain. In the frequency domain, the block–diagonals of the Jacobian capture

the effects of magnetic diffusion and average effect of the nonlinearity, but discards all the

136

information about rotational motion. In the time domain, the block–diagonals of the ap-

proximated Jacobian capture the effects of rotational motion and time variation due to the

nonlinearity, but does not contain any information about how the fields are coupled in time

through the magnetic diffusion process. Clearly it would be useful to combine these two ideas.

In this section, we present a method for doing so based on a two step relaxation procedure.

First let us examine the preconditioned Richardson iteration for solving an equation of

the form My = b with preconditioner M̂ [119]. Starting from an approximation ŷ of y, the

preconditioned Richardson iteration updates ŷ using the following formula:

ŷ ← ŷ − M̂−1 [Mŷ − b] = M̂−1b+
[

I − M̂−1M
]

ŷ. (6.76)

This iterative method can be generalized to a sequence of m preconditioners M̂k that update

ŷ in a series of steps:

ŷ ← ŷ−M̂−1
1 [Mŷ − b]

...

ŷ ← ŷ−M̂−1
m [Mŷ − b] .

(6.77)

If we specialize this method for m = 2, it is possible to combine these two steps into a single

equation,

ŷ ← M̂−1
1,2 b+

[

I − M̂−1
1,2M

]

ŷ, (6.78)

where

M̂−1
1,2 = M̂−1

1 + M̂−1
2 − M̂−1

2 MM̂−1
1 . (6.79)

Comparing (6.76) and (6.78) reveals that the sequence of two preconditioners implicitly

defines a single preconditioner M̂1,2 whose inverse is given by (6.79).

A similar approach can be used to derive a mixed time/frequency domain preconditioner

using the previously described block–diagonal Jacobian approximations. Starting with the

137

time domain representation (6.62), apply the iteration with preconditioner Mt:

δ̄1 = δ̄ − M̄−1
t

[

J̄ δ̄ − r̄
]

. (6.80)

The approximation δ̄1 is then transformed into the frequency domain,

δ̃1 = Γδ̄1. (6.81)

Next, the relaxation iteration can be applied using the frequency domain representation

(6.65) and preconditioner M̃f :

δ̃2 = δ̃1 − M̃−1
f

[

J̃ δ̃1 − r̃
]

(6.82)

Finally, δ̄ is calculated by transforming δ̃2 back into the time domain,

δ̄ ← Γ̃H δ̃2. (6.83)

Combining the preceding steps reveals the following expression for the overlapping time/frequency

domain preconditioner ˜̄M :

˜̄M−1 = M̄−1
t + Γ̃HM̃−1

f Γ̃− Γ̃HM̃−1
f Γ̃J̄M̄−1

t (6.84)

This derivation of ˜̄M is based on the combination of two block–diagonal preconditioners

through a preconditioned Richardson iteration. However, the iterative method, even with the

preconditioner, may fail to converge quickly. In fact, it could diverge if the iteration matrix

I − ˜̄M−1J̄ has eigenvalues with modulus greater than one. The preconditioner can be used

with GMRES to guarantee convergence regardless of this fact.

138

6.2.3 Error Estimation and Refinement

The harmonic balance method is more constrained in the method of adaptive refinement

than time–domain methods based on Runge–Kutta numerical integration. The DFT matrix

Γ̃, as we have defined it, is orthonormal due to the equally spaced discretization of both

the time and frequency axes. In fact, it is possible to define other “discrete Fourier transfor-

mations” using arbitrary sample times and frequencies. The problem with doing so is that

the corresponding transformation matrix drifts further from orthonormality as the sampling

becomes increasingly nonuniform. The deviation from orthonormality severely degrades the

quality of the solution approximation and it becomes necessary to reinterpret the basis func-

tions in this context [120]. Therefore, when performing adaptive solution refinement within

the context of the HB method, we are limited to either increasing the number of sample

times and number of harmonics by an integer multiple, or accepting the current solution as

our final approximation.

The simplest method for estimating the error in the harmonic balance solution is to

create an error signal by setting to zero the lower half of the solution bandwidth. In the

time–domain, this results in the error vectors ēk, where

ēk =
1√
Nt

∑

j∈J
x̃je

iωjtk +
1√
Nt

x̃Nh+1 cos (Nhωetk) , (6.85)

and J = {j : |ωj| > Nh

2
ωe}. The error indicators for the solution are taken as the seminorm

of the error vectors, normalized to the actual solution:

εk =
‖ēk‖W

max
k
‖xk‖W

. (6.86)

This quantity is actually an estimation of the error in a solution approximation with about

half the bandwidth. A similar issue is encountered when estimating the local error in the

time–domain algorithms using a lower order quadrature weight vector.

139

Algorithm 6.15 Adaptive Harmonic Balance Method

1: function HBAdaptive({x̄k}, {tk}, εmax, ǫexact, ǫsmooth, Nsmooth) ⊲ Solve (6.57)
2: {x̄k} ←HBFixed({x̄k}, {tk}, ǫexact, ∞)
3: {εk} ←HBError({x̄k}, {tk})
4: while εmax > max

k
εk do

5: {x̄k}, {tk} ←HBRefine({x̄k}, {tk})
6: {x̄k} ←HBFixed({x̄k}, {tk}, ǫsmooth, Nsmooth)
7: {εk} ←HBError({x̄k}, {tk})
8: end while
9: return {x̄k}, {tk}
10: end function

Algorithm 6.15 is a pseudo–code implementation of the adaptive harmonic balance method

proposed here. The structure of the code is largely the same as the structure for the adaptive

time–domain framework in Algorithm 6.10. Algorithm 6.16 implements the previously dis-

cussed error estimation scheme. Algorithm 6.17 implements a simple equidistant grid division

scheme and interpolates the previous solution onto the next grid.

140

Algorithm 6.16 Adaptive Harmonic Error Estimate

1: function HBError({x̄k})
2: {Ẽj} ←FFT({x̄k})
3: Ẽ1 ← 0
4: for j = 2 :

⌈

Nh

2

⌉

do

5: Ẽj ← 0
6: ẼNt−j+1 ← 0
7: end for
8: {ēk} ←IFFT({Ẽj})
9: ǫ← 0
10: for k = 1 : Nt do
11: εk ← ‖ēk‖W
12: ǫ← max (ǫ, ‖x̄k‖W)
13: end for
14: for k = 1 : Nt do
15: εk ← ǫ−1εk
16: end for
17: return {εk}
18: end function

141

Algorithm 6.17 Harmonic Balance Grid Refinement

1: function HBRefine({x̄k}, {tk})
2: {x̃k} ←FFT({x̄k})
3: l ← 1
4: for k = 1 : Nh do
5: ỹk ← x̃l
6: l ← l + 1
7: end for
8:

9: ỹNh+1 ← 1
2
x̃l

10: for k = (Nh + 2) : (2Nt −Nh + 1) do
11: ỹk ← 0
12: end for
13: ỹ2Nt−Nh

← 1
2
x̃Nh+1

14:

15: for k = (2Nt −Nh + 2) : (2Nt) do
16: ỹk ← x̃l
17: l ← l + 1
18: end for
19: {x̄k} ←IFFT({ỹk})
20:

21: l ← 1
22: for k = 1 : (Nt − 1) do
23: sl ← tk
24: l ← l + 1
25: sl ← 1

2
(tk + tk+1)

26: l ← l + 1
27: end for
28: s2Nt−1 ← tNt

29: s2Nt
← tNt

+ T
2Nt

30: {tk} ← {sk}
31:

32: return {x̄k}, {tk}
33: end function

142

Chapter 7

Simulations

This Chapter presents a comparative study of the previously developed algorithms. Section

7.1 describes the surface–mount permanent magnet machine model that will be the focus

of the simulations. Sections 7.2 presents a simulation of this machine when the windings

are excited by a sinusoidal voltage waveforms. The efficiency of the algorithms applied to

this situation is examined in Section 7.3. In particular, we look at the simulation time as

a function of the discretization error threshold. Finally, we fix the discretization threshold

and examine several factors that may affect the simulation times in Section 7.4. All of the

simulations in this chapter are performed using a MATLAB toolbox developed by the author

[121].

7.1 Surface–Mount Permanent Magnet Machine

Model

A single pole of the machine model that will be used in the subsequent simulations is depicted

in Fig. 7.1. The length of the machine is assumed to be 95.26mm in the z–direction. The

blue regions are nonlinear ferromagnetic materials. The nonlinear B–H and corresponding

143

M–B curves for this material are shown in Figs. 7.2 and 7.3, respectively. The M–B curve is

modeled using the function

M (B) = C0 +
χ0

2

[

B − (B − Bs) erf (a [B − Bs])−
1

a
√
π
e−a2(B−Bs)

2

]

, (7.1)

where

C0 =
χ0

2

[

Bserf (aBs) +
1

a
√
π
e−a2B2

s

]

(7.2)

and the parameters Bs, χ0, and a are given in Table 7.1. The corresponding B–H curve is

given by

H (B) =
1

µ0

B −M (B) . (7.3)

Roughly speaking, Bs represents the saturation flux–density, χ0 represents the initial slope

of the M–B curve, and a controls the smoothness of the transition between the “linear”

region and “saturation” region. The value of χ0 in Table 7.1 corresponds to a linear relative

permeability of approximately 434. It should be noted that, while the value of Bs does

correspond well to the saturation region of the M–B curve, the slope of the B–H curve

flattens out at much lower flux densities. The relationship between Bs and the region of

diminishing returns in the B–H curve is a direct function of the transition parameter a.

The core loss density in the ferromagnetic material is estimated using the generalized

Steinmetz equation

pcore =
∑

k

α [kfe]
β [
B2

k,x +B2
k,y

]γ
, (7.4)

with the parameters α, β, and γ given in Table 7.2. The quantities Bk,x and Bk,y represent

the kth harmonics of the x– and y–components of the magnetic flux–density, respectively. In

the discrete problem, the harmonic decomposition is performed in each finite–element and

the total core losses are obtained by summing over all the elements.

Returning to Fig. 7.1, the magenta regions are permanent magnets modeled with a rem-

nant flux–density of 1.23T. The yellow regions represent copper stator windings. In addition

144

0.075 0.08 0.085 0.09 0.095 0.1 0.105 0.11 0.115 0.12 0.125
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

X [m]

Y
 [m

]

Figure 7.1: Single pole model of an 18–pole surface mount permanent magnet machine.

0 1000 2000 3000 4000 5000 6000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Field Intensity, H [A/m]

F
lu

x
D

en
si

ty
, B

 [T
]

Figure 7.2: B–H curve of a nonlinear ferromagnetic material.

145

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

10

12

14

16

18
x 10

5

Flux Density, B [T]

M
ag

ne
tiz

at
io

n,
 M

 [A
/m

]

Figure 7.3: M–B curve of a nonlinear ferromagnetic material.

Table 7.1: M–B Curve Parameters
Bs χ0 a

2.04 [T] 7.939× 105
[

A
m–T

]

4.95
[

1
T

]

Table 7.2: Generalized Steinmetz Equation Parameters

α β γ

40.0 1.30 0.90

146

Table 7.3: Nonzero Conductivities
Copper Permanent Magnet Unlaminated (Solid) Steel

5.24× 107 [S] 2.12× 106 [S] 6.67× 105 [S]

to the windings, the permanent magnets are also modeled with a nonzero conductivity. In

the base case simulation, the ferromagnetic regions are assumed to represent steel lamina-

tions and will be modeled with zero conductivity. In one variation, we will assume that the

rotor back–iron (the innermost blue region) will be modeled as a solid piece of ferromagnetic

steel with nonzero conductivity. The relevant nonzero conductivities are given in Table 7.3.

Finally, the white/transparent regions represent air, modeled using vacuum properties.

The three–phase stator windings are connected in an ungrounded wye–configuration.

A standard three–phase winding layout is assumed with 6 turns per slot and 2 slots per

phase. For each phase, 3 coils connect 6 different poles in series, and the coils themselves are

connected in parallel. This results in 46 variables related to the stator winding in a voltage

driven problem. Of these, 36 correspond to Eφ appearing in the field–current constraints,

3 correspond to the strand currents, 3 correspond to the phase–voltages, 3 correspond to

the bundle currents,1 and 1 corresponds to the common–mode voltage. The rotor has one

external circuit variable, Eφ, corresponding to the voltage drop across the permanent magnet.

The triangular mesh used to discretized the continuous problem is displayed in Fig 7.4.

First–order elements are used during the finite–element procedures. Table 7.4 gives the num-

ber of elements and nodes in the mesh. After the application of the anti–periodic boundary

condition and the inclusion of the circuit variables, there are a total of 2459 variables in the

spatially discretized problem.

1Because all of the strands are connected in series, in this, the strand currents equal the bundle currents.
The modeling software, however, is setup to handle more general situations than this. As a result, redundant
equations appear in degenerate cases.

147

Table 7.4: Mesh Size
Elements Nodes

Rotor 478 288

Stator 4164 2159

Total 4642 2447

Figure 7.4: Mesh of the single pole model electric machine model in Fig. 7.1.

148

7.2 Sinusoidal Voltage–Driven Problem

As our base case simulation, the machine is excited by a purely sinusoidal three–phase

voltage waveform. We assume the machine is operating at a mechanical angular velocity of

8000RPM, corresponding to an electrical frequency of 1200Hz. The amplitude of the applied

line–to–line voltages is 340V. The phase of the waveforms are chosen so that they are 90

degrees out of phase with the voltage induced by the permanent magnets during open circuit

operation. This results in a current waveform producing very close to the maximum torque

obtainable with this voltage constraint.

7.2.1 Generating the Voltage Waveform

The open circuit flux linkage can be calculated by performing magnetostatic finite–element

simulations using Nt evenly spaced time points. The flux linkage waveform is plotted in Fig.

7.5 using Nt = 18. The amplitudes of the harmonic content of this waveform are displayed

in Fig. 7.6. In addition to the fundamental component, there is a significant 3rd harmonic.

The open circuit phase voltages can be determined by differentiating the flux linkage

waveform in the frequency domain. The resulting waveform is plotted in Fig. 7.7. The wave-

form displays a distinct trapezoidal shape. The harmonic content of this waveform is dis-

played in Fig. 7.8. The third harmonic of this waveform has an amplitude of 85.5V .

Based on the phase voltages, the fundamental of the open circuit line–to–line voltages

have angles of φab = −120◦, φbc = 0◦, φca = 120◦. This result was effected deliberately by

choosing the initial mechanical angle of the rotor as φrotor = 10
3

◦
. The applied line–to–line

voltages have their phases shifted 90◦ relative to the open circuit voltages.

7.2.2 Dynamic Simulation

We have calculated an assumed “exact” solution of the dynamic voltage driven problem

using the adaptive harmonic balance method with a discretization error tolerance of 10−9.

149

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

Time [ms]

F
lu

x
Li

nk
ag

e
[V

−
s]

A
B
C

Figure 7.5: Open circuit flux linkage waveform calculated by performing magnetostatic sim-
ulations.

−1 0 1 2 3 4 5 6 7 8 9
0

0.02

0.04

0.06

0.08

F
lu

x
Li

nk
ag

e
[V

−
s]

Flux Linkage Magnitude

A
B
C

−1 0 1 2 3 4 5 6 7 8 9
−200

0

200

Harmonic Number [n]

Flux Linkage Phase

D
eg

re
es

Figure 7.6: Open circuit flux linkage harmonics calculated by performing magnetostatic sim-
ulations.

150

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

−400

−200

0

200

400

Time [ms]

V
ol

ta
ge

 [V
]

A
B
C

Figure 7.7: Open circuit flux linkage waveform calculated by performing magnetostatic sim-
ulations.

−1 0 1 2 3 4 5 6 7 8 9
0

200

400

600

V
ol

ta
ge

 [V
]

Voltage Magnitude

A
B
C

−1 0 1 2 3 4 5 6 7 8 9
−100

0

100

200

Harmonic Number [n]

Voltage Phase

D
eg

re
es

Figure 7.8: Open circuit flux linkage harmonics calculated by performing magnetostatic sim-
ulations.

151

Table 7.5: Stator and rotor losses for the sinusoidal voltage driven problem.

Rotor Stator

Conduction 213W 12.8kW

Core 15.7W 581W

The resulting line–to–neutral voltages and line currents from this simulation are shown

in Figs. 7.9 and 7.10. A significant 3rd harmonic exists in the phase–voltage waveforms

due to the permanent magnets as predicted in the previous section. The line currents are

almost perfectly sinusoidal; the 1st and 5th harmonics have amplitudes of 554.3A and 3.1A,

respectively.

The torque waveform determined from this simulation is shown in Fig. 7.11. The average

torque over one period is 170N–m, giving an average output power of 142kW. The ripple

torque has a peak–to–peak amplitude of about 34.4N–m. This is mostly due to the 6th and

12th harmonics of amplitudes 5.5N–m and 13.4N-m, respectively.

The loss density for this problem, averaged over one period, is shown in Fig. 7.12. The

total losses calculated from this simulation were 13.6kW, giving an efficiency of 91.3%.2 Table

7.5 separates the stator and rotor losses, and the conduction and core losses. The majority of

the losses occur due to conduction in the stator. By way of comparison, a simple calculation

of the i2R losses based on the DC winding resistance would predict stator conduction losses

of 6.94kW, 46% less than the 12.8kW calculated through the steady–state finite–element

simulation. A close–up of the stator winding loss–density is shown in Fig. 7.13 demonstrating

how the losses increase due to current redistribution in the windings along the length of the

slot.

7.2.3 Estimating the Phase Voltage Waveform

With a fixed line–to–line voltage waveform, magnetostatic simulations can also be used to

estimate the resulting line–current and phase voltage waveforms in the dynamic simulation

2Excluding end–turn effects

152

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−300

−200

−100

0

100

200

300

Time [ms]

V
ol

ta
ge

 [V
]

A
B
C

Figure 7.9: Line–to–neutral voltages from the sinusoidal voltage driven problem.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−600

−400

−200

0

200

400

600

Time [ms]

C
ur

re
nt

 [A
]

A
B
C

Figure 7.10: Line currents from the sinusoidal voltage driven problem.

153

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

20

40

60

80

100

120

140

160

180

200

Time [ms]

T
or

qu
e

[N
−

m
]

Figure 7.11: Torque waveform from the sinusoidal voltage driven problem.

if there is an equivalent external circuit model of the machine available. If we focus on

calculating the fundamental harmonic of the current waveform, we can model the relationship

between the voltage and current as

v = Ri+
∂λ (i)

∂t
(7.5)

where v is a vector of applied line–to–neutral voltages, R is a diagonal matrix of resistances,

and λ is a vector of nonlinear flux linkages. We assume that v and i can be written as

v = ṽ−1e
−jωet + ṽ1e

jωet, (7.6)

and

i = ĩ−1e
−jωet + ĩ1e

jωet, (7.7)

154

0.08 0.09 0.1 0.11 0.12
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

X [m]

Y
 [m

]

lo
g 10

(W
/m

3)

2

3

4

5

6

7

8

9

Figure 7.12: Average loss density E · J over one period from the sinusoidal voltage driven
problem.

155

0.102 0.104 0.106 0.108 0.11 0.112 0.114 0.116

2

4

6

8

10

12
x 10

−3

X [m]

Y
 [m

]

lo
g 10

(W
/m

3)

7

7.5

8

8.5

9

Figure 7.13: Close up of the average stator winding loss density from the sinusoidal voltage
driven problem..

respectively. We search for in, n = ±1 that solves (7.5) in a weak sense3 by requiring the

residuals rm,

rm =
1

T

∫ T

0

e−jmωet

(

Ri+
∂λ (i)

∂t
− V

)

dt,

= Rim + vλ,m − vm
(7.8)

vanish, where m = ±1 and

vλ,m =
1

T

∫ T

0

e−jmωet
∂λ (i)

∂t
dt. (7.9)

Newton’s method can be applied to solve this equation with Jacobian given by

∂rm

∂in
= R +

1

T

∫ T

0

ej(n−m)ωet

[

∂L (i)

∂t
+ jnωeL (i)

]

dt (7.10)

3This is essentially a single frequency Galerkin type harmonic balance problem.

156

Table 7.6: Incremental self and mutual inductances extracted from the magnetostatic simu-
lation.

Incremental Self Inductance Incremental Mutual Inductance

0th harmonic 117µH 21.4µH

2nd harmonic 12.1µH 1.17µH

where

L (i) =
∂λ (i)

∂i
(7.11)

is the nonlinear incremental inductance matrix. These inductances can also be extracted

from the magnetostatic simulations. Since we have restricted m,n = ±1, it is sufficient to

assume that L takes the form

L (i) = L0 + L−2e
−j2ωet + L2e

j2ωet, (7.12)

in which case the Jacobian can be written as

{

∂rm

∂in

}

=

R− jωeL0 −j2ωeL−2

j2ωeL2 R + jωeL0

. (7.13)

We have run this iterative procedure four times, once under open circuit operation condi-

tions and twice more to correct the initial current predication. The line currents are estimated

to have amplitudes of 553.6A. This is very close to fundamental current harmonic amplitude

calculated from the dynamic simulation of the previous section. The amplitudes of the self

and mutual inductances calculated from the last magnetostatic simulation are given in Table

7.6. The phase voltage waveforms estimated from the magnetostatic simulations are shown

in Fig. 7.14. All of these results can be combined to produce a good initial condition for

dynamic simulations.

157

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−300

−200

−100

0

100

200

300

Time [ms]

V
ol

ta
ge

 [V
]

A
B
C

Figure 7.14: Line–to–neutral voltages predicted from the magnetostatic simulations.

7.3 Algorithm Efficiency

We now attempt to answer the question “which algorithm is fastest?” In order to do this,

we have run both the dynamic voltage driven problem with varying accuracy thresholds

and recorded the resulting simulation times. First, we ran the adaptive algorithms until a

desired threshold for the estimated discretization error was achieved. The number of time

steps/sample times from each adaptive simulation was used to choose a corresponding step

size for the non–adaptive algorithms. In the following, the harmonic balance method is

denoted HBA and HBF for the adaptive and fixed (non–adaptive) algorithms, respectively.

The adaptive and fixed step size transient, single shooting, and multiple shooting methods are

similarly denoted TRAx, TRFx, SSAx, SSFx, MSAx, and MSFx, respectively. The numeral

x indicates the numerical integration technique used, with x = 1 for the implicit–Euler

method and x = 2, 3 for the ESDIRK2 and ESDIRK3 methods of Chapter 5, respectively.

The tolerances and parameters used for the simulations are given in Table 7.7. The

non–adaptive algorithms are solved using ǫexact for the Newton tolerance. In the following

158

Table 7.7: Simulation Parameters
ǫexact ǫsmooth Nsmooth ǫgmres

10−6 10−2 10 10−3

simulations, whenever a matrix appears in any of the algorithms of Chapter 6, it has been

constructed and stored. If a matrix inverse appears in any of the algorithms, the correspond-

ing matrix has been factored and stored in advanced for use within the GMRES iteration.

The matrix construction and factorization time is included in the overall simulation time.

The case where the matrices are not stored, i.e. constructed and factored on demand, is ad-

dressed in the sequel. In all cases, the zero–vector is used as an initial condition. The effect

of using a more accurate initial condition as described in Section 7.2.3 is also addressed in

the sequel.

7.3.1 Adaptive Versus Fixed

The resulting data for the sine wave voltage simulation are plotted in Fig. 7.15, separated by

discretization method. In general, we see the adaptive algorithms outperform the fixed step

size algorithms by between a factor of 2× to 3×. The speedup achievable moving from a fixed

to an adaptive algorithm is limited by the number of “outer” iterations. This corresponds

to the number of Newton iteration for the steady–state methods and number of simulated

periods for transient analysis.

It appears that the adaptive transient algorithms achieve much greater speedup that the

other methods. This is because: (1) transient analysis takes many more outer iterations to

solve the equations to the same accuracy on a fixed grid of time points; and (2) we have

limited the number of smoothing iterations. A small number of smoothing iterations is suffi-

cient for the algorithms using Newton’s method because of the fast convergence afforded by

the root finding method. The larger smoothing tolerance typically limits the total number of

iterations to 2 or less. The convergence of transient analysis is quite slow by comparison, and

the same number of smoothing iterations does not reduce the residual of the discrete problem

159

by nearly the same amount after the grid is refined. Even with this optimistic estimation

of the transient analysis simulation times, the single and multiple shooting algorithms still

outperform at practical accuracy levels of interest.

7.3.2 Global Comparison

The results of the adaptive and fixed step size algorithms have been collected in Fig. 7.16

to facilitate a visual comparison. The adaptive harmonic balance algorithm reports smaller

simulation times over all error levels. Among the time domain methods, transient analysis is

generally the slowest while the shooting methods are fairly competitive with each other. The

adaptive multiple shooting methods outperform the adaptive single shooting methods. The

fixed step size single shooting methods tend to be better than the fixed step size multiple

shooting algorithms, although the difference is small. Asymptotically, the methods using

ESDIRK3 are best as expected, but the results are much closer for intermediate accuracy

levels.

In particular, the results are quite striking if one focuses on the comparing the “typi-

cal” method of performing steady–state analysis, transient analysis using the implicit–Euler

method (TRA1 and TRF1), with the other algorithms. At modest accuracy levels, we gen-

erally see at least an order of magnitude improvement in simulation time. The adaptive

harmonic balance method HBA1 shows more than two orders of magnitude improvement

over the fixed step size transient analysis algorithm TRF1.

7.3.3 Practical Accuracy Considerations

We are not necessarily interested in the accuracy of the solution in and of itself, but rather

a few quantities derived from the solution such as torque and losses. Since the losses depend

on the derivative of the solution and the torque does not, it is generally safe to assume that

the accuracy of the torque calculation is higher than the accuracy of the loss calculation. The

simulation time as a function of the error in the stator and rotor conduction losses calculations

160

is plotted in Fig. 7.17. The convergence demonstrated in these plots are considerably more

noisy than plots of the discretization error because the losses are a nonlinear function of

both the solution and its derivative, but some general trends can be observed.

Since the bulk of the losses are due to conduction in the stator windings, the accuracy of

this number is most important for efficiency calculations. The algorithms using the implicit–

Euler method are noticeably less accurate than the harmonic balance methods and the

time domain algorithms using the higher order Runge–Kutta methods. The rotor losses

are important when the effects of rotor heating are being examined. The harmonic balance

method shows a clear advantage for this calculation. Compared to implicit–Euler based

transient analysis, the more advanced steady–state analysis algorithms show a significant

improvement in terms of both speed and accuracy for both calculations.

There is some difference observed in the loss errors between the adaptive and fixed step

size algorithms. This is mostly due to differences in time step selection. In some cases, the

adaptive algorithms are not being solved to the same accuracy as the fixed step size al-

gorithms on the finest grid due to the limited number of smoothing iterations. Practically

speaking, these differences are not very important with some notable exception in the rotor

loss calculations: The implicit–Euler and fixed step size transient analysis methods demon-

strate very poor accuracy on this score.

161

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Discretization Error

S
im

ul
at

io
n

T
im

e
[s

]

HBA
HBF

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Discretization Error

S
im

ul
at

io
n

T
im

e
[s

]

SSA1
SSF1
MSA1
MSF1
TRA1
TRF1

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Discretization Error

S
im

ul
at

io
n

T
im

e
[s

]

SSA2
SSF2
MSA2
MSF2
TRA2
TRF2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Discretization Error

S
im

ul
at

io
n

T
im

e
[s

]

SSA3
SSF3
MSA3
MSF3
TRA3
TRF3

Figure 7.15: Simulation time as a function of discretization error for the voltage driven problem.

162

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Discretization Error

S
im

ul
at

io
n

T
im

e[
s]

HBA
SSA1
SSA2
SSA3
MSA1
MSA2
MSA3
TRA1
TRA2
TRA3

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Discretization Error

S
im

ul
at

io
n

T
im

e[
s]

HBF
SSF1
SSF2
SSF3
MSF1
MSF2
MSF3
TRF1
TRF2
TRF3

Figure 7.16: Comparison of the simulation time for the adaptive (left) and non–adaptive (right) algorithms as a function of
discretization error for the voltage driven problem.

163

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Rotor Conduction Loss Error

S
im

ul
at

io
n

T
im

e

HBA SSA1 SSA2 SSA3 MSA1 MSA2 MSA3 TRA1 TRA2 TRA3

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Stator Conduction Loss Error

S
im

ul
at

io
n

T
im

e

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Rotor Conduction Loss Error

S
im

ul
at

io
n

T
im

e

HBF SSF1 SSF2 SSF3 MSF1 MSF2 MSF3 TRF1 TRF2 TRF3

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Stator Conduction Loss Error

S
im

ul
at

io
n

T
im

e

Figure 7.17: Simulation time as a function of the error in the calculated stator and rotor conduction losses.

164

Table 7.8: Stator and rotor losses for the sinusoidal voltage driven problem with solid rotor
backiron.

Rotor Stator

Conduction 192W 12.8kW

Core 14.7W 580W

7.4 Factors Affecting Simulation Time

We now examine several different factors influencing the simulation times of the algorithms.

The first is the effect of storing all of the necessary matrices and factorizations for use in

calculating the residuals, matrix–vector products, and preconditioners within the GMRES

process. Storing these matrices reduces computation time but drastically increases memory

requirements. For large problems, especially in three dimensions, this may be impractical.

Therefore, examining algorithm performance when all matrices are constructed on demand

will give a good indication of what can be expected for three dimensional problems.

A second factor influencing simulation time are the time constants of the machine under

consideration. Larger time constants generally correspond to longer simulation times, but

the effect is not uniform across the algorithms. Electric machines with solid rotor backiron

will exhibit larger time constants due to magnetic diffusion occurring across the conductive

ferromagnetic region. This is a situation of practical interest because solid rotors are simpler

to manufacture but may suffer from increased losses and heating. A plot of the average loss

density calculated for this situation using the sinusoidal voltage configuration is shown in Fig.

7.18. Compared to Fig. 7.12, Fig. 7.18 demonstrates increased losses in the rotor backiron

near the permanent magnets due to eddy current conduction. The eddy current conduction

decreases the amplitudes of the oscillating fields away from the permanent magnets and so

reduces the core losses in these areas.

Third, the ability to generate an accurate initial condition can reduce the number of

Newton iterations and overall simulation time if it can be done cheaply. For many practical

165

0.08 0.09 0.1 0.11 0.12
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

X [m]

Y
 [m

]

lo
g 10

(W
/m

3)
−1

0

1

2

3

4

5

6

7

8

9

Figure 7.18: Average loss density E · J over one period from the sinusoidal voltage driven
problem with solid rotor backiron.

166

Table 7.9: Simulation time in minutes for various algorithmic configurations of the sinusoidal
voltage driven problem. The discretization error threshold was chosen as ε = 10−3.

Rotor Backiron Laminated Solid

Initial Condition No Yes No Yes

Store Decompositions Yes No Yes No Yes No Yes No

HBA 0.35 2.06 0.42 2.05 0.35 2.02 0.42 1.98

HBF 0.93 6.71 0.59 4.30 0.94 7.03 0.57 3.82

SSA3 1.87 2.77 1.94 2.76 1.81 3.38 1.70 2.52

SSF3 2.00 4.83 2.03 3.58 3.97 15.18 2.09 7.34

MSA3 1.28 4.23 1.38 4.61 1.44 8.72 1.49 7.67

MSF3 2.43 11.77 1.86 9.18 4.71 56.38 2.55 21.98

TRA3 8.71 6.50 12.16 6.06

TRF3 60.80 41.09 95.15 36.34

problems, there is an intuitive way to generate an initial condition using bulk parameter

circuit models to estimate the winding currents as described in Section 7.2.3. From a software

implementation standpoint, this can be cumbersome to automate as it requires the ability

to translate different quantities of the solution between three different models. Therefore, it

is useful to investigate whether or not there is any benefit to be gained by developing such

a framework.

7.4.1 Results

In the following simulations, a discretization error tolerance of ε = 10−3 was used for the

adaptive algorithms. As in the last section, the number of time steps/samples from the

adaptive algorithms are used to choose a number of equally spaced times in the non–adaptive

algorithms. For the time domain algorithms, ESDIRK3 is used as the numerical integration

method.

Table 7.9 reports the simulation time in minutes for the various algorithmic configurations

for the sinusoidal voltage driven problem. The adaptive harmonic balance method tends to

167

Table 7.10: Reported discretization error for various algorithmic configurations of the sinu-
soidal voltage driven problem. The discretization error threshold was chosen as ε = 10−3.

Rotor Backiron Laminated Solid

HBA 0.13× 10−3 0.12× 10−3

HBF 0.15× 10−3 0.15× 10−3

SSA3 0.55× 10−3 0.53× 10−3

SSF3 0.80× 10−3 0.70× 10−3

MSA3 0.50× 10−3 0.39× 10−3

MSF3 0.80× 10−3 0.46× 10−3

TRA3 0.55× 10−3 0.53× 10−3

TRF3 0.80× 10−3 0.70× 10−3

be the fastest algorithm, although for each configuration there is typically another algorithm

that is within roughly a factor of 4 and sometimes much closer. The single shooting method

becomes more competitive with the harmonic balance method when when no matrices are

stored. In each situation, the fastest steady–state method is faster than all of the transient

analysis algorithms, with the fixed step size algorithms being consistently worst.

Some care must be taken when comparing the simulation time numbers since they reflect

simulation results with only approximately equal accuracy. The discretization errors reported

at the end of each simulation are given in Table 7.10. The harmonic balance methods actually

report slightly better discretization errors than the time–domain methods.

7.4.2 Matrix Storage

The trends in these results can be understood by considering the number of Newton itera-

tions, GMRES iterations, and the cost of each under the various configurations. Storing the

matrix decompositions makes the GMRES iterations cheap and doing so tends to improve

the methods with expensive matrix–vector products and preconditioners the most. This fa-

vors the algorithm with the cheapest Newton iteration in terms of cost of calculating the

residual, number of iterations, and number of factorization performed to prepare the matrix–

168

Table 7.11: Number of observed Newton iterations Nnewton for the non–adaptive steady–state
algorithms and number of simulated periods for transient analysis.

Rotor Backiron Laminated Solid

Initial Condition No Yes No Yes

HBF 8 4 8 4

SSF3 4 4 8 4

MSF3 10 7 10 7

TRF3 111 74 173 65

vector product and preconditioner subroutines. The cost of evaluating the single shooting

residual is one period of transient analysis, and is much more expensive than evaluating the

residual for any of the harmonic balance or multiple shooting algorithms. The latter two

algorithms are much closer to parity on the other factors. The number of observed Newton

iterations NNewton for the non–adaptive algorithms applied to the sinusoidal voltage prob-

lem are reported in Table 7.11. The simulation time for the adaptive algorithms depend on

the number of Newton iterations performed on the initial grid, as well as the number of

smoothing iterations performed on each refined grid. Much of the improvement of HBA over

MSA3 stems from the accuracy of the frequency domain interpolation onto the refined grid,

reducing the number of smoothing iterations performed.

The number of Newton iterations necessary for the non–adaptive algorithms is also essen-

tial to understanding the theoretical maximum speedup that can be obtained when moving to

an adaptive algorithm. For very small discretization error tolerances the number of smooth-

ing iterations on each grid reduces to 1 as the interpolation error decreases as at least O (h),

and the total simulation time is approximately twice the simulation time on the finest grid.

Therefore, the maximum speedup obtainable by an adaptive algorithm is approximately

NNewton

2
. This means the maximum speedup for the single shooting method is about 2×,

while it is closer to 4× for the harmonic balance method and 5× for the multiple shooting

method when the rotor is laminated. The chosen tolerance of 10−3 is hardly small enough to

169

Table 7.12: Maximum number of GMRES iterations observed over all Newton iterations.

Rotor Backiron Laminated Solid

Initial Condition No Yes No Yes

HB 5 6 5 5

SS 3 3 8 11

MS 4 4 27 13

come close to these asymptotic estimates, however, and we generally observe speedup of less

than the maximum. Similar arguments show that there is a limit to the speedup obtainable

through the use of a non–zero initial condition.

The circumstances change somewhat when the matrix decompositions are not stored. In

this case, the total number of GMRES iterations is a much more important contributor to

the overall simulation time. The maximum number of GMRES iterations observed over all

Newton iterations for the laminated and solid rotor backiron simulations are presented in

Table 7.12. When the rotor backiron is laminated, all of the methods require a very small

number of GMRES iterations. The number of iterations increase for all methods when the

rotor backiron is solid. However, the time domain methods show much more sensitivity to

the increased time constants produced by the solid rotor backiron than the harmonic balance

methods. By way of comparison, the number of GMRES iterations for the harmonic balance

method increases from approximately 5 to more than 50 when only the standard block–

diagonal frequency domain preconditioner is used. That is greater than a ten–fold decrease in

the number of GMRES iterations achieved by employing the novel preconditioning technique

developed in Section 6.2.

7.4.3 Initial Condition

Starting from the fixed step size algorithms with a zero initial condition, moving to an

adaptive version of the algorithm with a zero initial condition or generating an accurate initial

170

condition for the non–adaptive version both tend to improve simulation time. The move from

the fixed to the adaptive algorithm tends to be more beneficial than the move from zero initial

condition to accurate initial condition. Asymptotically, an accurate initial condition does not

improve the performance of the adaptive algorithms. If an adaptive algorithm is already quite

fast, the time taken to generate the initial condition can outweigh any benefit.

The non–asymptotic results of Table 7.9 demonstrate that the slower adaptive methods

do realize some benefit from the initial condition, while the fastest methods generally do not.

One interesting result is the maximum number of GMRES iterations decreases significantly

for the multiple shooting method in the solid rotor case with an initial condition. This

indicates that the initial condition accelerates the simulation of the magnetic diffusion process

in such a way that the Newton correction terms are better approximated in small dimensional

Krylov subspaces generated by the residual and preconditioned Jacobian.

7.5 Conclusion

From the previous section, we can draw a few conclusions. Generally speaking, the adaptive

methods are superior to the non–adaptive methods. The steady–state analysis algorithms

using Newton’s method are vastly superior to running transient analysis until convergence.

The implicit–Euler method demonstrates deficiencies when considering the accuracy of loss

calculations. The higher order Runge–Kutta methods ESDIRK2 and ESDIRK3 produce

much better results.

Due to the sensitivity of the time domain methods to large time constants, the harmonic

balance method is expected to perform best in these situations. When the time constants are

small, usually we can find a time domain method coming within a factor of 4 of the harmonic

balance method in terms of simulation time. In particular, when problem size and memory

constraints dictate that all the necessary matrices and their factorizations cannot be stored,

the single shooting method might be considered as it typically gives the fastest convergence

171

in terms of number of number of Newton iterations and total number of GMRES iterations.

7.6 Future Work

Throughout this thesis, we have used a few common simplifying assumptions that have

allowed us to better focus on a few particular issues. Several issues remain unexplored.

Relaxing these assumptions and resolving the remaining issues is necessary to realize a fully

capable steady–state analysis tool.

The main topic of this thesis is broad enough in scope that many issues relevant to the

design and simulation of electric machines have been set aside through some standard simpli-

fying assumptions in order to focus on the steady–state simulation issue. The first simplifica-

tion occurs by assuming two–dimensional electric machine models. The model equations we

use to develop the algorithms in this thesis are valid for two and three dimensional models.

However, in non–dynamic finite–element analysis of electric machines, the methods used for

solving two dimensional problems are different than those used to solve three dimensional

problems owing to the difference in size and basis functions used for the discretization pro-

cess. Because of the strategies employed in the algorithms developed in this thesis, a similar

change must be made when moving from two– to three–dimensional steady–state analysis.

Ultimately, the full development of three dimensional steady–state algorithms would result

in an additional inner iterative loop with its own associated tolerances and parameters to

tune.

To a first approximation, the inner–most loop in a three dimensional steady–state sim-

ulation can be regarded as orthogonal to the outer loops common to both two– and three–

dimensional problems. In this respect, this thesis can be regarded as a large initial step

towards a complete theory of steady–state analysis in both two and three dimensions. On

the other hand, the richer structure of the matrices in the three–dimensional case may pro-

vide additional opportunities to improve these algorithms beyond the simple translation of

172

the two dimensional algorithms suggested here.

The other major assumption in this thesis is that the effects of magnetic hysteresis are

ignored. This is a difficult problem in itself and is a major source of modeling error in

electric machine simulations, especially when trying to calculate losses. From experimental

results, we know that the hysteresis loop of periodically excited ferromagnetic samples will

converge to a multi–valued hysteresis curve. Specialized algorithms may be able to assist in

calculating steady–state electric machine behavior using hysteretic magnetization models.

The main difficulty lies in choosing a hysteresis model that is amenable to a reformulation

in terms of a periodic solution. Even though this issue is not dealt with here directly, the

somewhat non–standard treatment of non–hysteretic nonlinear magnetic materials in this

dissertation may be considered an attempt to make plain where the necessary modification

to the steady–state theory must be made to incorporate hysteresis.

We have also ignored the effects of invert switching harmonics in the voltage driven

problem. This is perhaps one of the more interest applications of steady–state analysis.

For the time–domain algorithms, it becomes necessary to deal with discontinuities in the

solution, but there are techniques available to solve this problem. For the harmonic balance

method, the analysis of switching harmonics requires the inclusion of a large number of basis

functions and degrades the speed of this strategy. It may be possible to use the time–mapping

technique [120] to improve the efficiency of the harmonic balance method for this type of

problem.

Our main focus has been on the simulation of synchronous machines. Asynchronous

(induction) machines are a natural candidate for simulation using steady–state methods

since the rotor currents are necessarily determined dynamically. The main issue is dealing

with the incommensurate slip and excitation frequencies. For the time–domain methods, the

true period of the solution is equal to the least common multiple of the slip period and

excitation period and can lead to unnecessarily long simulation times unless proper care is

taken. This has been dealt with in other situations by using a poly–phase periodic boundary

173

condition in the time domain [61]. For the harmonic balance method, it may be possible to

deal with this issue by approaching it using either a two dimensional Fourier transform or

the previously mentioned time–mapping technique.

The increasing reliance of chip manufactures on increased core count to improve processor

capabilities means that algorithms must be readily parallelized if they are to benefit from

future advances in processor technology. Time stepping is an inherently serial process. The

typical method of parallelizing such algorithms is through a spatial partitioning. Higher

degrees of parallelization come at the expense of reduced convergence rates, so one generally

observes less than the optimal linear speedup (even ignoring communication overhead). The

situation is much different for steady–state analysis. High performance serial algorithms

resemble spatial problems where the time axis appears as an extra dimension. It turns out

most of these algorithms are parallelizable by a natural partition of the time axis and can

be expected to demonstrate optimal speedup, less communication overhead. The “matrix of

matrices” view produces partitions where each is as large as the entire spatial part of the

domain, and are therefore relatively large when compared to the spatial partition approach

offered by time marching.

174

Appendix A

Generalized Minimum Residual

Method

The generalized minimum residual method (GMRES) is an iterative algorithm which ap-

proximates the solution to the equation Ax = b by minimizing the norm of the residual

r = Ax̂− b for x̂ in the m–dimensional Krylov subspace [122, 123],

Km (b) = span{b, Ab, A2b, . . . , Am−1b}. (A.1)

Ideally, an acceptable approximation to the true solution can be found when m is much

smaller than the size of A. Given zm = Am−1b, a key step in the algorithm involves computing

zm+1 = Azm. If A is available explicitly, zm+1 can be computed in the usual way. Often,

however, A is only available through a function which evaluates matrix-vector products,

e.g. zm+1 = A (zm). This gives rise to the term “matrix-free” in conjunction with iterative

methods which only require A to be available through the computation of matrix-vector

products. This fact is used extensively in the development of the steady–state algorithms in

Chapter 6. Similar statements hold for solving the preconditioned system AM−1y = b.

175

Bibliography

[1] M. Capek, The Philosophical Impact of Contemporary Physics. Literary Licensing,

LLC, 2011.

[2] M. Chari and P. Silvester, “Finite-element analysis of magnetically saturated d-c ma-

chines,” Power Apparatus and Systems, IEEE Transactions on, vol. PAS-90, no. 5, pp.

2362–2372, Sept 1971.

[3] P. Silvester and M. Chari, “Finite element solution of saturable magnetic field prob-

lems,” Power Apparatus and Systems, IEEE Transactions on, vol. PAS-89, no. 7, pp.

1642–1651, Sept 1970.

[4] M. Chari and P. Silvester, “Analysis of turboalternator magnetic fields by finite ele-

ments,” Power Apparatus and Systems, IEEE Transactions on, vol. PAS-90, no. 2, pp.

454–464, March 1971.

[5] A. Wexler, “Finite-element field analysis of an inhomogeneous, anisotropic, reluctance

machine rotor,” Power Apparatus and Systems, IEEE Transactions on, vol. PAS-92,

no. 1, pp. 145–149, Jan 1973.

[6] P. Silvester, H. Cabayan, and B. Browne, “Efficient techniques for finite element anal-

ysis of electric machines,” Power Apparatus and Systems, IEEE Transactions on, vol.

PAS-92, no. 4, pp. 1274–1281, July 1973.

176

[7] P. Unterweger, “Computation of magnetic fields in electrical apparatus,” Power Ap-

paratus and Systems, IEEE Transactions on, vol. PAS-93, no. 3, pp. 991–1002, May

1974.

[8] M. Chari, “Nonlinear finite element solution of electrical machines under no-load and

full-load conditions,” Magnetics, IEEE Transactions on, vol. 10, no. 3, pp. 686–689,

Sep 1974.

[9] K. Binns, M. Jabbar, and W. Barnard, “A rapid method of computation of the mag-

netic field of permanent magnets,” Magnetics, IEEE Transactions on, vol. 11, no. 5,

pp. 1538–1540, Sep 1975.

[10] P. Silvester and P. Rafinejad, “Curvilinear finite elements for two-dimensional saturable

magnetic fields,” Power Apparatus and Systems, IEEE Transactions on, vol. PAS-93,

no. 6, pp. 1861–1870, Nov 1974.

[11] P. Rafinejad and J.-C. Sabonnadiere, “Finite element computer programs in design of

electromagnetic devices,” Magnetics, IEEE Transactions on, vol. 12, no. 5, pp. 575–

578, Sep 1976.

[12] N. Demerdash and T. Nehl, “Flexibility and economics of implementation of the fi-

nite element and difference techniques in nonlinear magnetic fields of power devices,”

Magnetics, IEEE Transactions on, vol. 12, no. 6, pp. 1036–1038, Nov 1976.

[13] P. SILVESTER and C. R. S. HASLAM, “Magnetotelluric modelling by the finite

element method*,” Geophysical Prospecting, vol. 20, no. 4, pp. 872–891, 1972. [Online].

Available: http://dx.doi.org/10.1111/j.1365-2478.1972.tb00672.x

[14] M. Chari, “Finite-element solution of the eddy-current problem in magnetic struc-

tures,” Power Apparatus and Systems, IEEE Transactions on, vol. PAS-93, no. 1, pp.

62–72, Jan 1974.

177

[15] M. Chari and Z. Csendes, “Finite element analysis of the skin effect in current carrying

conductors,”Magnetics, IEEE Transactions on, vol. 13, no. 5, pp. 1125–1127, Sep 1977.

[16] N. Demerdash and T. Nehl, “An evaluation of the methods of finite elements and finite

differences in the solution of nonlinear electromagnetic fields in electrical machines,”

Power Apparatus and Systems, IEEE Transactions on, vol. PAS-98, no. 1, pp. 74–87,

Jan 1979.

[17] M. Chari, “Finite element analysis of electrical machinery and devices,” Magnetics,

IEEE Transactions on, vol. 16, no. 5, pp. 1014–1019, Sep 1980.

[18] S. H. Minnich, “Incremental permeabilities for transient analysis of large turbine gen-

erators by the finite-element method,” Journal of Applied Physics, vol. 52, no. 3, 1981.

[19] N. Demerdash, T. Nehl, O. Mohammed, R. Miller, and F. Fouad, “Solution of eddy

current problems using three dimensional finite element complex magnetic vector po-

tential,” Power Apparatus and Systems, IEEE Transactions on, vol. PAS-101, no. 11,

pp. 4222–4229, Nov 1982.

[20] J. Hwang and W. Lord, “Finite element analysis of the magnetic field distribution

inside a rotating ferromagnetic bar,” Magnetics, IEEE Transactions on, vol. 10, no. 4,

pp. 1113–1118, Dec 1974.

[21] N. Burais, A. Foggia, A. Nicolas, J. Pascal, and J.-C. Sabonnadiere, “Numerical solu-

tion of eddy currents problems including moving conducting parts,” Magnetics, IEEE

Transactions on, vol. 20, no. 5, pp. 1995–1997, Sep 1984.

[22] J. Bigeon, J.-C. Sabonnadiere, and J. L. Coulomb, “Finite element analysis of an

electromagnetic brake,” Magnetics, IEEE Transactions on, vol. 19, no. 6, pp. 2632–

2634, Nov 1983.

178

[23] F. Fouad, T. Nehl, and N. Demerdash, “Magnetic field modeling of permanent mag-

net type electronically operated synchronous machines using finite elements,” Power

Apparatus and Systems, IEEE Transactions on, vol. PAS-100, no. 9, pp. 4125–4135,

Sept 1981.

[24] S. Ratnajeevan and H. Hoole, “Rotor motion in the dynamic finite element analysis

of rotating electrical machinery,” Magnetics, IEEE Transactions on, vol. 21, no. 6, pp.

2292–2295, Nov 1985.

[25] A. Abdel-Razek, J. L. Coulomb, M. Feliachi, and J.-C. Sabonnadiere, “Conception

of an air-gap element for the dynamic analysis of the electromagnetic field in electric

machines,” Magnetics, IEEE Transactions on, vol. 18, no. 2, pp. 655–659, Mar 1982.

[26] S. Cristina and A. Di Napoli, “Combination of finite and boundary elements for mag-

netic field analysis,” Magnetics, IEEE Transactions on, vol. 19, no. 6, pp. 2337–2339,

Nov 1983.

[27] M. Feliachi, J. L. Coulomb, and H. Mansir, “Second order air-gap element for the dy-

namic finite-element analysis of the electromagnetic field in electric machines,” Mag-

netics, IEEE Transactions on, vol. 19, no. 6, pp. 2300–2303, Nov 1983.

[28] P. Silvester and M.-S. Hsieh, “Finite-element solution of 2-dimensional exterior-field

problems,” Electrical Engineers, Proceedings of the Institution of, vol. 118, no. 12, pp.

1743–1747, December 1971.

[29] B. McDonald and A. Wexler, “Finite-element solution of unbounded field problems,”

Microwave Theory and Techniques, IEEE Transactions on, vol. 20, no. 12, pp. 841–847,

Dec 1972.

[30] P. Silvester, D. Lowther, C. Carpenter, and E. Wyatt, “Exterior finite elements for

2-dimensional field problems with open boundaries,” Electrical Engineers, Proceedings

of the Institution of, vol. 124, no. 12, pp. 1267–1270, December 1977.

179

[31] D. Lowther, C. Rajanathan, and P. Silvester, “A finite element technique for solving

2-d open boundary problems,” Magnetics, IEEE Transactions on, vol. 14, no. 5, pp.

467–469, Sep 1978.

[32] A. Foggia, J. Sabonnadiere, and P. Silvester, “Finite element solution of saturated

travelling magnetic field problems,” Power Apparatus and Systems, IEEE Transactions

on, vol. 94, no. 3, pp. 866–871, May 1975.

[33] A. Hannalla and D. MacDonald, “Numerical analysis of transient field problems in

electrical machines,” Electrical Engineers, Proceedings of the Institution of, vol. 123,

no. 9, pp. 893–898, September 1976.

[34] J. MacBain, “A numerical analysis of time-dependent two-dimensional magnetic

fields,” Magnetics, IEEE Transactions on, vol. 17, no. 6, pp. 3259–3261, Nov 1981.

[35] N. Burais and G. Grellet, “Numerical modelling of iron losses in ferromagnetic steel

plate,” Magnetics, IEEE Transactions on, vol. 18, no. 2, pp. 558–562, Mar 1982.

[36] U. Jeske, “Eddy current calculation in 3d using the finite element method,” Magnetics,

IEEE Transactions on, vol. 18, no. 2, pp. 426–430, Mar 1982.

[37] S. Tandon, A. Armor, and M. Chari, “Nonlinear transient finite element field com-

putation for electrical machines and devices,” Power Apparatus and Systems, IEEE

Transactions on, vol. PAS-102, no. 5, pp. 1089–1096, May 1983.

[38] A. Kamar, “Solution of nonlinear eddy current problems using residual finite element

method for space and time discretization,” Magnetics, IEEE Transactions on, vol. 19,

no. 5, pp. 2204–2206, Sep 1983.

[39] F. Bouillault and A. Razek, “Dynamic model for eddy current calculation in saturated

electric machines,” Magnetics, IEEE Transactions on, vol. 19, no. 6, pp. 2639–2642,

Nov 1983.

180

[40] ——, “Eddy currents due to stator teeth in synchronous machine rotors,” Magnetics,

IEEE Transactions on, vol. 20, no. 5, pp. 1939–1941, Sep 1984.

[41] A. Hannalla, “Analysis of transient field problems in electrical machines allowing for

end leakage and external reactances,” Magnetics, IEEE Transactions on, vol. 17, no. 2,

pp. 1240–1243, Mar 1981.

[42] A. Konrad, “The numerical solution of steady-state skin effect problems–an integrod-

ifferential approach,” Magnetics, IEEE Transactions on, vol. 17, no. 1, pp. 1148–1152,

Jan 1981.

[43] T. Nakata and N. Takahashi, “Direct finite element analysis of flux and current distri-

butions under specified conditions,” Magnetics, IEEE Transactions on, vol. 18, no. 2,

pp. 325–330, Mar 1982.

[44] J. Weiss and Z. Cendes, “Efficient finite element solution of multipath eddy current

problems,” Magnetics, IEEE Transactions on, vol. 18, no. 6, pp. 1710–1712, Nov 1982.

[45] A. Konrad, “Integrodifferential finite element formulation of two-dimensional steady-

state skin effect problems,” Magnetics, IEEE Transactions on, vol. 18, no. 1, pp. 284–

292, Jan 1982.

[46] D. Shen, G. Meunier, J. L. Coulomb, and J.-C. Sabonnadiere, “Solution of magnetic

fields and electrical circuits combined problems,” Magnetics, IEEE Transactions on,

vol. 21, no. 6, pp. 2288–2291, Nov 1985.

[47] S. Zhi-ming, X. De-xin, and H. Cheng-qian, “The finite element solution of transient

axisymmetrical nonlinear eddy-current field problems,” Magnetics, IEEE Transactions

on, vol. 21, no. 6, pp. 2303–2306, Nov 1985.

181

[48] E. Strangas, “Coupling the circuit equations to the non-linear time dependent field so-

lution in inverter driven induction motors,” Magnetics, IEEE Transactions on, vol. 21,

no. 6, pp. 2408–2411, Nov 1985.

[49] S. Minnich, S. Tandon, and D. Atkinson, “Comparison of two methods for modeling

large-signal alternating magnetic fields using finite-elements,” Power Apparatus and

Systems, IEEE Transactions on, vol. PAS-103, no. 10, pp. 2952–2960, Oct 1984.

[50] B. Luetke-Daldrup, “Comparison of exact and approximate finite-element solution of

the two-dimensional nonlinear eddy-current problem with measurements,” Magnetics,

IEEE Transactions on, vol. 20, no. 5, pp. 1936–1938, Sep 1984.

[51] A. Konrad, “Eddy currents and modelling,” Magnetics, IEEE Transactions on, vol. 21,

no. 5, pp. 1805–1810, Sep 1985.

[52] T. Hara, T. Naito, and J. Umoto, “Time-periodic finite element method for nonlinear

diffusion equations,” Magnetics, IEEE Transactions on, vol. 21, no. 6, pp. 2261–2264,

Nov 1985.

[53] T. Nakata, N. Takahashi, K. Fujiwara, and A. Ahagon, “3-d non-linear eddy current

analysis using the time-periodic finite element method,”Magnetics, IEEE Transactions

on, vol. 25, no. 5, pp. 4150–4152, Sep 1989.

[54] T. Nakata, N. Takahashi, K. Fujiwara, K. Muramatsu, H. Ohashi, and H. L. Zhu,

“Practical analysis of 3-d dynamic nonlinear magnetic field using time-periodic finite

element method,” Magnetics, IEEE Transactions on, vol. 31, no. 3, pp. 1416–1419,

May 1995.

[55] K. Muramatsu, N. Takahashi, T. Nakata, M. Nakano, Y. Ejiri, and J. Takehara, “3-d

time-periodic finite element analysis of magnetic field in non-oriented materials taking

into account hysteresis characteristics,” Magnetics, IEEE Transactions on, vol. 33,

no. 2, pp. 1584–1587, Mar 1997.

182

[56] T. Matsuo and M. Shimasaki, “Time-periodic finite-element method for hysteretic

eddy-current analysis,” Magnetics, IEEE Transactions on, vol. 38, no. 2, pp. 549–552,

Mar 2002.

[57] X. Wang and D. Xie, “Analysis of induction motor using field-circuit coupled time-

periodic finite element method taking account of hysteresis,” Magnetics, IEEE Trans-

actions on, vol. 45, no. 3, pp. 1740–1743, March 2009.

[58] O. Biro and K. Preis, “An efficient time domain method for nonlinear periodic eddy

current problems,” Magnetics, IEEE Transactions on, vol. 42, no. 4, pp. 695–698, April

2006.

[59] O. Biro, G. Koczka, and K. Preis, “Fast time-domain finite element analysis of 3-d

nonlinear time-periodic eddy current problems with T, φ−φ formulation,” Magnetics,

IEEE Transactions on, vol. 47, no. 5, pp. 1170–1173, May 2011.

[60] Y. Takahashi, T. Iwashita, H. Nakashima, T. Tokumasu, M. Fujita, S. Wakao, K. Fu-

jiwara, and Y. Ishihara, “Parallel time-periodic finite-element method for steady-state

analysis of rotating machines,” Magnetics, IEEE Transactions on, vol. 48, no. 2, pp.

1019–1022, Feb 2012.

[61] Y. Takahashi, T. Tokumasu, M. Fujita, T. Iwashita, H. Nakashima, S. Wakao, and

K. Fujiwara, “Time-domain parallel finite-element method for fast magnetic field anal-

ysis of induction motors,” Magnetics, IEEE Transactions on, vol. 49, no. 5, pp. 2413–

2416, May 2013.

[62] S. Yamada and K. Bessho, “Harmonic field calculation by the combination of finite

element analysis and harmonic balance method,” Magnetics, IEEE Transactions on,

vol. 24, no. 6, pp. 2588–2590, Nov 1988.

183

[63] S. Yamada, K. Bessho, and J. Lu, “Harmonic balance finite element method applied

to nonlinear ac magnetic analysis,” Magnetics, IEEE Transactions on, vol. 25, no. 4,

pp. 2971–2973, Jul 1989.

[64] S. Yamada, P. Biringer, K. Hirano, and K. Bessho, “Finite element analysis of nonlinear

dynamic magnetic field with dc component in the harmonic domain,” Magnetics, IEEE

Transactions on, vol. 26, no. 5, pp. 2199–2201, Sep 1990.

[65] J. Lu, S. Yamada, and K. Bessho, “Time-periodic magnetic field analysis with sat-

uration and hysteresis characteristics by harmonic balance finite element method,”

Magnetics, IEEE Transactions on, vol. 26, no. 2, pp. 995–998, Mar 1990.

[66] S. Yamada, P. Biringer, and K. Bessho, “Calculation of nonlinear eddy-current prob-

lems by the harmonic balance finite element method,” Magnetics, IEEE Transactions

on, vol. 27, no. 5, pp. 4122–4125, Sep 1991.

[67] S. Yamada, K. Bessho, and M. Kitagawa, “Finite element analysis of nonlinear mag-

netic devices combined with circuit equations by tableau approach,” Magnetics, IEEE

Transactions on, vol. 28, no. 5, pp. 2256–2258, Sep 1992.

[68] J. Lu, S. Yamada, and K. Bessho, “Harmonic balance finite element method taking

account of external circuits and motion,” Magnetics, IEEE Transactions on, vol. 27,

no. 5, pp. 4024–4027, Sep 1991.

[69] R. Albanese, E. Coccorese, R. Martone, G. Miano, and G. Rubinacci, “Periodic solu-

tions of nonlinear eddy current problems in three-dimensional geometries,” Magnetics,

IEEE Transactions on, vol. 28, no. 2, pp. 1118–1121, Mar 1992.

[70] H. Hedia, J. Remacle, P. Dular, A. Nicolet, A. Genon, and W. Legros, “A sinusoidal

magnetic field computation in nonlinear materials,” Magnetics, IEEE Transactions on,

vol. 31, no. 6, pp. 3527–3529, Nov 1995.

184

[71] J. W. Lu, S. Yamada, and H. Harrison, “Application of harmonic balance-finite element

method (hbfem) in the design of switching power supplies,” Power Electronics, IEEE

Transactions on, vol. 11, no. 2, pp. 347–355, Mar 1996.

[72] G. Paoli, O. Biro, and G. Buchgraber, “Complex representation in nonlinear time

harmonic eddy current problems,” Magnetics, IEEE Transactions on, vol. 34, no. 5,

pp. 2625–2628, Sep 1998.

[73] J. Gyselinck, P. Dular, C. Geuzaine, and W. Legros, “Harmonic-balance finite-element

modeling of electromagnetic devices: a novel approach,”Magnetics, IEEE Transactions

on, vol. 38, no. 2, pp. 521–524, Mar 2002.

[74] J. Gyselinck, L. Vandevelde, P. Dular, C. Geuzaine, and W. Legros, “A general method

for the frequency domain fe modeling of rotating electromagnetic devices,” Magnetics,

IEEE Transactions on, vol. 39, no. 3, pp. 1147–1150, May 2003.

[75] R. Pascal, P. Conraux, and J.-M. Bergheau, “Coupling between finite elements and

boundary elements for the numerical simulation of induction heating processes using

a harmonic balance method,” Magnetics, IEEE Transactions on, vol. 39, no. 3, pp.

1535–1538, May 2003.

[76] S. Ausserhofer, O. Biro, and K. Preis, “An efficient harmonic balance method for

nonlinear eddy-current problems,” Magnetics, IEEE Transactions on, vol. 43, no. 4,

pp. 1229–1232, April 2007.

[77] G. Koczka, S. Auberhofer, O. Biro, and K. Preis, “Optimal convergence of the fixed-

point method for nonlinear eddy current problems,” Magnetics, IEEE Transactions

on, vol. 45, no. 3, pp. 948–951, March 2009.

[78] X. Zhao, J. Lu, L. Li, H. Li, Z. Cheng, and T. Lu, “Fixed-point harmonic-balanced

method for dc-biasing hysteresis analysis using the neural network and consuming

function,” Magnetics, IEEE Transactions on, vol. 48, no. 11, pp. 3356–3359, Nov 2012.

185

[79] X. Zhao, L. Li, J. Lu, Z. Cheng, and T. Lu, “Characteristics analysis of the square

laminated core under dc-biased magnetization by the fixed-point harmonic-balanced

fem,” Magnetics, IEEE Transactions on, vol. 48, no. 2, pp. 747–750, Feb 2012.

[80] O. Biro, G. Koczka, G. Leber, K. Preis, and B. Wagner, “Finite element analysis of

three-phase three-limb power transformers under dc bias,” Magnetics, IEEE Transac-

tions on, vol. 50, no. 2, pp. 565–568, Feb 2014.

[81] H. Sande, F. Henrotte, H. De Gersem, and K. Hameyer, “An effective reluctivity model

for nonlinear and anisotropic materials in time-harmonic finite element computations,”

Magnetics, IEEE Transactions on, vol. 41, no. 5, pp. 1508–1511, May 2005.

[82] O. Deblecker and J. Lobry, “A new efficient technique for harmonic-balance finite-

element analysis of saturated electromagnetic devices,” Magnetics, IEEE Transactions

on, vol. 42, no. 4, pp. 535–538, April 2006.

[83] I. Ciric and F. Hantila, “An efficient harmonic method for solving nonlinear time-

periodic eddy-current problems,” Magnetics, IEEE Transactions on, vol. 43, no. 4, pp.

1185–1188, April 2007.

[84] H. Igarashi and K. Watanabe, “Complex adjoint variable method for finite-element

analysis of eddy current problems,” Magnetics, IEEE Transactions on, vol. 46, no. 8,

pp. 2739–2742, Aug 2010.

[85] X. Zhao, J. Lu, L. Li, Z. Cheng, and T. Lu, “Analysis of the dc bias phenomenon by

the harmonic balance finite-element method,” Power Delivery, IEEE Transactions on,

vol. 26, no. 1, pp. 475–485, Jan 2011.

[86] S. Li and H. Hofmann, “Numerically efficient steady-state finite-element analysis of

magnetically saturated electromechanical devices,” Magnetics, IEEE Transactions on,

vol. 39, no. 6, pp. 3481–3485, Nov 2003.

186

[87] D. Zhong and H. Hofmann, “Steady-state finite-element solver for rotor eddy currents

in permanent-magnet machines using a shooting-newton/gmres approach,” Magnetics,

IEEE Transactions on, vol. 40, no. 5, pp. 3249–3253, Sept 2004.

[88] Y. Takahashi, T. Tokumasu, A. Kameari, H. Kaimori, M. Fujita, T. Iwashita, and

S. Wakao, “Convergence acceleration of time-periodic electromagnetic field analysis

by the singularity decomposition-explicit error correction method,” Magnetics, IEEE

Transactions on, vol. 46, no. 8, pp. 2947–2950, Aug 2010.

[89] H. Katagiri, Y. Kawase, T. Yamaguchi, T. Tsuji, and Y. Shibayama, “Improvement of

convergence characteristics for steady-state analysis of motors with simplified singu-

larity decomposition-explicit error correction method,” Magnetics, IEEE Transactions

on, vol. 47, no. 5, pp. 1458–1461, May 2011.

[90] Y. Takahashi, H. Kaimori, A. Kameari, T. Tokumasu, M. Fujita, S. Wakao, T. Iwashita,

K. Fujiwara, and Y. Ishihara, “Convergence acceleration in steady state analysis of syn-

chronous machines using time-periodic explicit error correction method,” Magnetics,

IEEE Transactions on, vol. 47, no. 5, pp. 1422–1425, May 2011.

[91] H. Katagiri, Y. Kawase, T. Yamaguchi, T. Tsuji, and Y. Shibayama, “Improvement of

convergence characteristics for steady-state analysis of motors with simplified singular-

ity decomposition-explicit error correction method*,” Magnetics, IEEE Transactions

on, vol. 47, no. 6, pp. 1786–1789, June 2011.

[92] H. Igarashi, Y. Watanabe, and Y. Ito, “Why error correction methods realize fast

computations,” Magnetics, IEEE Transactions on, vol. 48, no. 2, pp. 415–418, Feb

2012.

[93] A. Nicolet and F. Delince, “Implicit runge-kutta methods for transient magnetic field

computation,” Magnetics, IEEE Transactions on, vol. 32, no. 3, pp. 1405–1408, May

1996.

187

[94] T. Noda, K. Takenaka, and T. Inoue, “Numerical integration by the 2-stage diago-

nally implicit runge-kutta method for electromagnetic transient simulations,” Power

Delivery, IEEE Transactions on, vol. 24, no. 1, pp. 390–399, Jan 2009.

[95] H. Li, S. Ho, and W. Fu, “Application of multi-stage diagonally-implicit runge-kutta

algorithm to transient magnetic field computation using finite element method,” Mag-

netics, IEEE Transactions on, vol. 48, no. 2, pp. 279–282, Feb 2012.

[96] F. Cameron, R. Piche, and K. Forsman, “Variable step size time integration methods

for transient eddy current problems,” Magnetics, IEEE Transactions on, vol. 34, no. 5,

pp. 3319–3322, Sep 1998.

[97] H. Wang, S. Taylor, J. Simkin, C. Biddlecombe, and B. Trowbridge, “An adaptive-

step time integration method applied to transient magnetic field problems,” Magnetics,

IEEE Transactions on, vol. 37, no. 5, pp. 3478–3481, Sep 2001.

[98] G. Benderskaya, W. Ackermann, H. De Gersem, and T. Weiland, “Adaptive time step-

ping for electromagnetic models with sinusoidal dynamics,” Magnetics, IEEE Trans-

actions on, vol. 44, no. 6, pp. 1262–1265, June 2008.

[99] M. Clemens, M. Wilke, and T. Weiland, “Extrapolation strategies in numerical schemes

for transient magnetic field simulations,” Magnetics, IEEE Transactions on, vol. 39,

no. 3, pp. 1171–1174, May 2003.

[100] G. Benderskaya, M. Clemens, H. De Gersem, and T. Weiland, “Embedded runge-kutta

methods for field-circuit coupled problems with switching elements,” Magnetics, IEEE

Transactions on, vol. 41, no. 5, pp. 1612–1615, May 2005.

[101] G. Benderskaya, H. De Gersem, and T. Weiland, “Integration over discontinuities in

field-circuit coupled simulations with switching elements,” Magnetics, IEEE Transac-

tions on, vol. 42, no. 4, pp. 1031–1034, April 2006.

188

[102] K. Geldhof, T. Vyncke, F. De Belie, L. Vandevelde, J. Melkebeek, and R. Boel, “Em-

bedded runge-kutta methods for the integration of a current control loop in an srm

dynamic finite element model,” Science, Measurement Technology, IET, vol. 1, no. 1,

pp. 17–20, January 2007.

[103] W. Fu, S. Ho, and P. Zhou, “Reduction of computing time for steady-state solutions of

magnetic field and circuit coupled problems using time-domain finite-element method,”

Magnetics, IEEE Transactions on, vol. 48, no. 11, pp. 3363–3366, Nov 2012.

[104] G. Bertotti, Hysteresis in Magnetism: For Physicists, Materials Scientists, and Engi-

neers, ser. Electromagnetism. Academic Press.

[105] A. Hubert and R. Schafer, Magnetic Domains: The Analysis of Magnetic Microstruc-

tures. Springer-Verlag, 2008.

[106] J. R. Melcher, Continuum Electromechanics. Cambridge, MA: MIT Press,

1981. [Online]. Available: http://ocw.mit.edu/ans7870/resources/melcher/originals/

cem 100.pdf

[107] J. Oden and J. Reddy, An Introduction to the Mathematical Theory of Finite Elements,

ser. Dover Books on Engineering. Dover Publications, Mar. 2011.

[108] J. Mizia, K. Adamiak, A. Eastham, and G. Dawson, “Finite element force calcula-

tion: comparison of methods for electric machines,” Magnetics, IEEE Transactions

on, vol. 24, no. 1, pp. 447–450, Jan 1988.

[109] Z. Ren, “Comparison of different force calculation methods in 3d finite element mod-

elling,” Magnetics, IEEE Transactions on, vol. 30, no. 5, pp. 3471–3474, Sep 1994.

[110] S. Salon, S. Bhatia, and D. Burow, “Some aspects of torque calculations in electrical

machines,” Magnetics, IEEE Transactions on, vol. 33, no. 2, pp. 2018–2021, Mar 1997.

189

[111] L. A. Piegel, The NURBS Book, ser. Monographs in Visual Communication. Springer-

Verlag.

[112] S. J. Salon, Finite Element Analysis of Electrical Machines. Norwell, MA: Kluwer

Academic Publishers, 1995.

[113] N. Bianchi, Electrical Machine Analysis Using Finite Elements. Boca Raton, FL:

CRC Press, 2005.

[114] E. Hairer and W. Gerhard, Solving Ordinary Differential Equations II: Stiff and

Differential-Algebraic Problems, ser. Springer Series in Computational Mathematics.

Springer-Verlag.

[115] F. Cameron, “A class of low order dirk methods for a class of daes,” Applied

Numerical Mathematics, vol. 31, no. 1, pp. 1 – 16, 1999. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0168927498001238

[116] R. Williams, K. Burrage, I. Cameron, and M. Kerr, “A four-stage index 2 diagonally

implicit runge–kutta method,” Applied Numerical Mathematics, vol. 40, no. 3, pp.

415 – 432, 2002. [Online]. Available: http://www.sciencedirect.com/science/article/

pii/S0168927401000903

[117] J. Pries and H. Hofmann, “Steady-state algorithms for nonlinear time-periodic mag-

netic diffusion problems using diagonally-implicit runge-kutta methods,” Magnetics,

IEEE Transactions on, vol. PP, no. 99, pp. 1–1, 2014.

[118] U. Trottenberg, C. Oosterlee, and A. Schüller, Multigrd. Academic Press, 2001.

[119] J. P. Boyd, Chebyshev and Fourier Spectral Methods. Dover Publications, 2001.

[120] O. Nastov and J. White, “Time-mapped harmonic balance,” in Design Automation

Conference, 1999. Proceedings. 36th, 1999, pp. 641–646.

190

[121] “Motorproto: Electric machine simulation toolbox in matlab,” https://github.com/

MPEL/MotorProto.

[122] Y. Saad and M. Schultz, “Gmres: A generalized minimal residual algorithm for solving

nonsymmetric linear systems,” SIAM Journal on Scientific and Statistical Computing,

vol. 7, no. 3, pp. 856–869, 1986.

[123] Y. Saad, Iterative Methods for Sparse Linear Systems. Society for Industrial and

Applied Mathematics, 2003.

[124] L. Skvortsov, “Diagonally implicit rungekutta methods for differential algebraic

equations of indices two and three,” Computational Mathematics and Mathematical

Physics, vol. 50, no. 6, pp. 993–1005, 2010. [Online]. Available: http://dx.doi.org/10.

1134/S0965542510060072

[125] D. Dyck and P. Weicker, “Periodic steady-state solution of voltage-driven magnetic

devices,” Magnetics, IEEE Transactions on, vol. 43, no. 4, pp. 1533–1536, April 2007.

[126] A. Kvaern, “Runge-kutta methods applied to fully implicit differential-algebraic equa-

tions of index 1,” Mathematics of Computation, vol. 54, no. 190, pp. pp. 583–625,

1990.

191

