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Abstract 

Modulating the Single-Molecule Magnet, Magnetocaloric and Luminescent 

Behavior in Metallacrowns 

By 

Chun Y. Chow 

Chair: Vincent L. Pecoraro 

  

 The first part of this thesis focuses on the study of single-molecule magnets (SMMs), 

which have potential uses in high-density magnetic data storage. A new family of [M4Ln2(shi
3-

)4(Hshi
2-

)2(H2shi
-
)2(C5H5N)4(CH3OH)x(H2O)x] complexes (M = Ga

III
, Fe

III
; Ln = Gd

III
, Tb

III
, 

Dy
III

, Er
III

, Y
III

0.9Dy
III

0.1) were prepared in order to investigate the effect of 3d and 4f magnetic 

interactions on slow magnetic relaxation behavior. It was found the antiferromagnetic 3d-4f 

coupling had adverse effects on slow magnetic relaxation.  Furthermore, the dynamic magnetic 

behavior in the Ga4Dy2 analogue was elucidated, with two relaxation processes being attributed 

to the decoupled and excited ferromagnetic states. 

 The magnetocaloric effect (MCE) is a phenomenon which holds promise for low-

temperature refrigeration applications. Iron(III), an inexpensive, isotropic S = 5/2 ion, was 

selected to develop efficient low-temperature magnetic refrigerants. An investigation of 

Fe
III

(X)3[9-MCFeIIIN(shi)-3] compounds (X = acetate or benzoate) revealed that inter- and 

intramolecular magnetic interactions could be tuned to achieve greater MCE behavior. The 



xx 
 

acetate complex exhibited a -ΔSm value of -15.4 J kg
-1 

K
-1

 (T = 3 K, ΔH = 7 T), which is 

comparable to higher nuclearity Fe
III 

clusters. Extensive antiferromagnetic intermolecular 

interactions resulted in a smaller MCE in the benzoate derivative and an analogous 

Fe
III

2(isopthalate)3[9-MCFeIIIN(shi)-3]2 dimer compound. These studies show that rational design 

and control of magnetic interactions may be employed to develop high performance MCE 

materials. 

 Ln
III

(benzoate)4[12-MCGaIIIN(shi)-4](pyridinium
+
) complexes (Ln

III
 = Sm

III
, Eu

III
, Gd

III
, 

Tb
III

, Dy
III

, Ho
III

, Er
III

, Tm
III

, Yb
III

) were found to be capable of sensitizing both visible and NIR 

emitting Ln
III

 ions. Efficient energy transfer from the ligand T1 state to the emitting state on the 

Ln
III

 led to the observation of remarkable luminescent behavior. In particular, solid state quantum 

yields for the Yb
III

 and Er
III

 analogues (5.88% and 4.4·10
-2

%, respectively) are greater than any 

reported in the literature. This system presents a highly efficient and modular platform on which 

to develop practical bio-imaging agents.  

 The work presented in this thesis demonstrates that physical properties can be tuned 

through systematic ligand and metal substitution in metallacrown coordination complexes. These 

results have given new insight towards the understanding of single-molecule magnets, MCE 

materials and luminescent lanthanide complexes.   
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Chapter I 

General Introduction 

1.1 Metallacrowns: Design and Synthetic Considerations  

The design and synthesis of multi-metallic coordination complexes poses a unique 

challenge in chemistry, as one must consider many variables including the size and reactivity of 

the chosen metal, geometric considerations for the organic ligand, as well as reaction conditions. 

Nevertheless, complex polymetallic structures may be designed through adherence to principles 

of coordination chemistry. As eloquently stated by Saalfrank, “the synergistic effect of 

serendipity and rational design” dictates the structural assembly of supramolecular complexes.
1
 

Inspired by organic crown ethers and rationalized by the tenets of coordination chemistry, 

metallacrowns (MCs) are a class of complexes which offer a high degree of geometric and 

structural control. Selection of the appropriate ligands lead to the MC topology which often 

affords the archetypal regular polygon shaped ringed structures, such as the 9-MC-3, 12-MC-4 

and 15-MC-5. However, the inherent flexibility of these ligands also allows for unique structures 

to be synthesized by varying reaction conditions.   

First recognized in 1989,
2
 MCs rely on a multidentate ligand to coordinate more than one 

metal ion, thereby producing a macrocyclic structure. When using a hydroxamic acid as a ligand, 

an [M-N-O] repeat unit is formed where the O-atoms face toward the center of the ring and are 

capable of accommodating a central metal ion. MCs bear their name due to this similarity to the 

classical crown ether using the following nomenclature: MCX[ring size-MCMRZ(L)-ring 



2 
 

oxygens]Y, where MC = central metal, X = bound anion, MR = ring metal, Z = third heteroatom 

of ring, L = organic ligand and Y = unbound anion. As an example, the homometallic MC in 

Figure 1.1 would be named Mn
II
(O2CCH3)2[12-MCMnIIIN(shi)-4], where Mn

II
 is the central metal, 

the ring is comprised of twelve total atoms with four repeating units, the ring metal is Mn
III

, and 

the organic backbone is made up of the salicylhydroxamic acid (H3shi) ligand. For the sake of 

simplicity, the nomenclature used in this thesis may omit bound and unbound anions or cations 

which are not critical in describing the structure. The basic MC structure type has been varied by 

substituting the oxygen atom for nitrogen (aza-MCs).
3-6

 In addition, so called “inverse 

metallacrowns” occur when the ring metal faces the cavity allowing for anion recognition.
7
 Thus, 

a wide variety of structures are possible depending on the chosen metal and ligand and this 

structural versatility has recently been reviewed.
8
  

The two most common MCs are of the 12-MC-4 and 15-MC-5 type (Figure 1.2). 

However, under the right reaction conditions and using the correct choice of metal, a distorted 9- 

 

Figure 1.1. Crystal structure of Mn
II
(O2CCH3)2[12-MCMnIIIN(shi)-4]. Color scheme: blue spheres – Ho

III
, 

orange spheres – Mn
III

, red tube – oxygen, and blue tubes - nitrogen. Reprinted with permission from 

reference 9. Copyright 2011 American Chemical Society. 
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-MC-3 structure can also be achieved. It should be noted that Figure 1.2 represents the idealized 

planar structures, X-ray crystallography reveals that actual structures may deviate in angles and 

planarity. By following the simple design principles, many hydroxamic acid-based ligands have 

been used to generate various MC complexes. For instance, the ligand H3shi has the correct 

ligand geometry to prefer the 12-MC-4 topology (Figure 1.2). These ligands form a subunit with  

 

Figure 1.2 Diagram of the metallacrown design strategy based on chelate ring geometry. a) The square 

shaped 12-MC-4 is generated from ligands which form a 90° internal angle between the lines bisecting 

the alternating 5- and 6- membered rings. The deprotonated form of salicylhydroxamic acid (H3shi) is 

pictured. b) The pentagonal 15-MC-5 is generated from ligands which form a 108° internal angle between 

the lines bisecting the fused 5- membered rings. The deprotonated form of picoline hydroxamic acid 

(H2picHA) is pictured. The metallacrown ring structure is highlighted in bold. Note that the 12-MC-4 

structure can be synthesized with H2picHA and Zn
II 

ions, see references 10, 11 and 12 for details.  
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an idealized 90° internal angle between the lines bisecting the alternating 5- and 6- membered 

fused chelate rings, which repeat four times to form the square 12-MC-4 structure. 

Correspondingly, ligands such as H2picHA prefer the 15-MC-5 structure type by forming 

subunits with idealized 108° internal angles that propagate five times to form the pentagonal 

structure (Figure 1.2). Due to the structural adaptability of these ligands and the capacity of 

lanthanides to serve as ring metals, other complex structure types can be achieved. For instance, 

with H3shi, alternative motifs deviating from the 12-MC-4 structure type such as the 9-MC-3,
13,

 

14-MC-5
14

 and 15-MC-5
15

 structures can also be synthesized depending on choice of metal and 

reaction conditions.  

The synthesis of MCs requires considerations of several aspects including choice of 

ligand, metal, solvent, counter-ion, stoichiometry, and crystallization conditions. The discovery 

of new MC materials may often involve the ‘shake and bake, mix and wait’ strategy often 

employed in MOF research
16

 to yield serendipitous and unpredictable structures; however, with 

careful attention to synthetic conditions, MC synthesis can attain a high degree of predictable 

geometric control over the molecular structure that is rarely achieved in self-assembly reactions. 

It often is prudent to choose ring metals with the correct valency to match the protonation 

state of the chosen ligand. For triprotic ligands such as H3shi, trivalent transition metal ions such 

as Ga
III

, Mn
III

 or Fe
III 

are
 
suitable to provide charge balance in the MC ring. On the other hand, 

the diprotic ligands like H2picHA or H2quinHA prefer divalent metals such as Zn
II
, Ni

II 
or Cu

II
. 

Nevertheless, ligand/ring metal combinations with differing valencies may form MCs; several 

Cu
II
[12-MCCuIIN(shi)-4]

2-
 complexes have been synthesized where Cu

II
 is a divalent ion and H3shi

 

is a triprotic ligand.
17

 In these cases a suitable counteraction such as trimethylammonium must 

be used in the reaction. One must also consider the electronic structure of the ring metal.  Metal 
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ions that are diamagnetic and have isotropic electron configurations such as Zn
II
, Ga

III
 and Fe

III
 

do not lead to a Jahn-Teller distortion, whereas Mn
III

 and Cu
II 

may show significant elongation 

along the z-axis. The presence (or lack thereof) of the distortion axis can lead to differences in 

the axially coordinated solvent/ligands, and may even generate different structures all together. 

In particular, much work has been done with H2picHA and H2quinHA with the divalent ring 

metal Zn
II
, which has been shown to support numerous structure types. Perhaps the most 

interesting stoichiometric variations are mixed ligand/mixed metal metallacrowns as exemplified 

by the collapsed metallacrown, which includes 2 pko
-1

 ligands (di-2-pyridyl ketone oximate) and 

two shi
3-

 ligands while complexing two Mn
III

 ions and two Ni
II
 ions.

18
 

Lanthanide choice can be an important factor in MC synthesis and design. In the 15-MC-

5 motif, the central cavity coordinates lanthanide ions equatorially through five planar oxime 

oxygen atoms in a pentagonal arrangement. The larger crystal radius of the lanthanide ions is 

capable of accommodating five donor atoms in one plane.  The apical positions can be 

coordinated by solvent or counter-anions such as nitrates or carboxylates to yield 8-coordinate 

lanthanide centers, though 9-coordinate geometries have been observed in lanthanides with 

larger ionic radii than Pr
III

. Previously, in a detailed structural examination, it has been observed 

that the Ln
III

[15-MCCuIIN(S-pheHA)-5]
3+ 

systems can support lanthanides with crystal radii ranging 

from 1.07 Å for Tm
III

 to 1.24 Å for La
III

.
19

 A linear increase in the cavity radii commensurate 

with lanthanide crystal radii leads to an increase in Cu
II
-Cu

II
 distances. This expansion of the 

cavity results in a subsequent increase in the overall planarity of the MC complex.  

Whereas the 15-MC-5 structure has large cavities which can bind central Ln
III

 ions, the 

12-MC-4 structure has a smaller cavity size, which forces the Ln
III

 above the oxygen plane and 

may often require bridging carboxylate anions such as acetate.
20

 For these types of complexes, 
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the four bridging carboxylates are required to satisfy the ligand field requirements of the Ln
III

 

ion. Thus, the metallacrown moiety has a charge of -1 and requires a counter-cation, which can 

be alkali metal ions such as Na
+
 or K

+
 that coordinate to the opposite face of the metallacrown. 

Sodium acetate is often utilized as a base and as a source for the bridging carboxylate and 

counter-cation.  However, this is not always the case for all 12-MC-4 complexes; Ln
III

[12-

MCZnIIN(quinHA)-4](DMF)4(NO3)3 complexes have been synthesized where the central Ln
III

 ion has 

been coordinated by four DMF molecules and is charge balanced by three lattice nitrates.
12

 

Finally, solvent choice is another important factor in the formation of MCs. The most 

commonly used solvents are methanol, DMF, water and pyridine. In general, the reaction 

components of the metallacrown assembly are stirred in the selected solvent(s) and subsequent 

slow evaporation of the solvent leads to crystallization of the complex. Often, diffusion of a 

volatile nonpolar solvent such as diethyl ether may also lead to crystallization of the MC product. 

The choice of solvent must be able to dissolve the reaction components, yet must not too 

strongly solvate the formed metallacrown as to inhibit crystallization. Furthermore, the solubility 

of side products such as salts must be accounted for to ensure the crystallization of pure material.  

The challenges involved in synthesizing crystalline metallacrowns suitable for single 

crystal X-ray diffraction have been briefly mentioned above. Although careful consideration of 

the factors influencing metallacrown formation may offer some degree of control of the 

molecular species formed, control of other design aspects such as crystal packing, which 

influence physical properties, and exact ligand field geometry still pose a considerable challenge. 

Nevertheless, metallacrown complexes with interesting structural features and physical 

properties have been synthesized using these design principles. The research discussed in this 
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thesis involves the synthesis and characterization of MCs to study their magnetic and 

luminescent properties. 

1.2 A Brief History of Magnetism 

 According to legend, in the 6
th

 century BCE, the Greek philosopher Thales of Miletus 

observed that lodestones (magnetite) were attracted to iron and other lodestones; the term magnet 

was later used to describe the iron ore found in the Greek city of Magnesia.
21

 The remarkable 

physical properties of this material were soon put to use as the first compass was invented during 

the 3
rd

 and 4
th

 century BCE during the Han Dynasty in China.
22

 Although the use of magnetic 

compasses were further refined during the following centuries, the physical origins of magnetism 

was not understood until the early 17
th

 century, when English scientist William Gilbert noted in 

his work, De Magnete, that the earth behaved as a giant magnet.
22

 Subsequent research in the 

18
th

 and 19
th

 centuries by luminaries including Coulomb, Volta, Oersted, Biot, Faraday and 

Gauss further established fundamental physical laws of electricity and magnetism.
22

  

 In 1873, James Clerk Maxwell’s unified theory of electromagnetism in his seminal work, 

Treatise on Electricity and Magnetism would provide a mathematical basis for the 

electromagnetic phenomena.
23

 The Maxwell’s equations would have a lasting impact on 

scientific research and has implications on the work presented in this thesis. The discovery of the 

electron in 1897 by J. J. Thomson
24

 and the ensuing refinement of the theory through quantum 

mechanics would usher in a new era of scientific discovery in the 20
th

 century. Key discoveries 

range from the advent of magnetic refrigeration
25

 to superparamagnetism
26

 to high temperature 

superconductors.
27

 

With the improvement of structural and magnetic characterization techniques, 

coordination chemists began to study magnetic properties of compounds and gave rise to the 
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field of molecular magnetism. Indeed, Prussian blue, one of the very first synthetic pigments, 

behaves as a ferromagnet below 5.6 K.
28

 Olivier Kahn is considered by many to be the father of 

molecular magnetism, and has been crucial in the understanding of inter- and intramolecular 

magnetic interactions in coordination complexes.
29

  

Molecule-based materials have several advantages over their solid state counter-parts, 

including controllability of the structure, solubility, and in the case of single-molecule magnets, 

size. Molecular magnets, whose metal-metal interactions mediated through bridging ligands, are 

governed by the Goodenough-Kanamori rule of superexchange.
30-31

 Thus, through careful 

consideration of molecular structure, it is possible to engineer materials to be suitable for various 

applications in magnetochemisty. In particular, the magnetism portion of my thesis research is 

focused on single-molecule magnets (SMMs) and paramagnetic refrigerants based on the 

magnetocaloric effect (MCE).  

1.3 Magnetic Interactions 

Before diving into molecule-based SMMs and MCE materials, it is essential to first 

discuss the fundamental theory behind magnetic interactions. For an in-depth examination of 

theory of molecular magnetism, the reader is referred to several books on the topic.
29, 32-33

 

Magnetic moments arising from atoms or molecules are derived from the spin and orbital angular 

momentum of unpaired electrons. The Hamiltonian describing the energy of a d
n 

atom or ion due 

to various electronic and nuclear interactions is shown in Figure 1.3.
34

 The magnitude of the 

energies of these interactions range from 10
4
 – 10

5 
cm

-1
 for the electronic and crystal field 

interactions
34

 down to 10
-7 

cm
-1 

for nuclear quadrupole resonances.
35

 Thus, the study of these 

effects requires analytical techniques of varying sensitivity. In this thesis, we are primarily 

interested in magnetic and electronic interactions of intermediate magnitude, namely spin-orbit  
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Figure 1.3. The Hamiltonian describing the energy of a d
n
 transition metal. Brackets indicate the 

spectroscopic techniques used to characterize the various interactions. ĤEL = electronic energy and 

electron repulsion energy; ĤCF = crystal field; ĤLS = spin-orbit coupling; ĤSS = spin-spin interaction; ĤZE 

= electronic Zeeman effect; ĤHF = hyperfine interaction; ĤZN = nuclear Zeeman effect; ĤII = internuclear 

interaction; ĤQ = nuclear quadrupole effect.  

 

coupling (0 – 10
2
 cm

-1 
for transition metals/10

3
 cm

-1
 for lanthanides), spin-spin interactions (0 – 

10
2 

cm
-1

) and the Zeeman effect (0 – 1 cm
-1

). These three interactions will be discussed below to 

lay the foundation for the discussion of SMMs and MCE materials. 

Spin-Orbit Coupling: Zero-Field Splitting and Magnetic Anisotropy 

At the atomic level, the angular momentum of unpaired electrons, which is comprised of 

the spin and orbital angular momenta, creates a magnetic moment.
36

 For lighter transition metals, 

especially those with isotropic electronic distributions (such as Fe
III

 or Mn
II
), the spin angular 

momentum is the dominant contribution to the magnetic moment, with the coupling between the 

spin and orbital components being weak. Under these conditions, the electronic structure can be 

described by the Russell-Saunders treatment. At high temperatures, 3d based complexes may be 

adequately described by a spin-only approximation. However, in the heavier elements such as 

the 4f lanthanides, there is significant spin-orbit coupling, which can be described by j-j 

coupling.
37-38

 Spin-orbit coupling in both 3d and 4f ions leads to a splitting of the spin state 
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levels, known as zero-field splitting (ZFS), which causes magnetic anisotropy and has profound 

effects on the magnetic properties. 

ZFS in transition metals contain an axial (D) and rhombic (E) component. For odd-

electron ions, the spin microstates are split by the D component to form Kramer’s doublets; the E 

component is manifested by shifting the energies of the various Kramer’s doublets without 

further splitting. In even-electron systems, the D component also removes the microstate 

degeneracy by forming non-Kramer’s doublets, however, in this case, the E component further 

splits the +ms and –ms components of the doublet. As the metallacrown structural analogy tends 

to form very axial ligand fields around the transition metals, the E component is negligible and 

will be disregarded for the remainder of the discussion. 

In transition metals, spin-orbit coupling may be either first- or second-order depending on 

the symmetry of the ground state. For 3d ions with orbital T states, a stronger first-order spin 

order coupling is operative, whereas those with E ground states are split by second-order spin-

orbit coupling.
32

 Isotropic ions (such as Fe
III

) with A ground states have negligible spin-orbit 

coupling and zero-field splitting. The effect of the D parameter on ZFS is shown in Figure 1.4. 

When D = 0, the ms sublevels of the ground spin state are degenerate in energy. When D < 0, the 

largest ms state is lowest and energy; the opposite is true when D > 0.   

For 4f lanthanides, spin-orbit coupling is stronger than crystal field splitting. In atomic 

spectroscopy, the four models of coupling are Russell-Saunders coupling, jj coupling, Racah 

coupling and intermediate coupling.
39

 For simplicity, the Russell-Saunders coupling approach is 

most commonly used to describe the energy levels of free lanthanide ions.
40

 These energy levels 

are then further split by the crystal field. The cumulative effect of spin-orbit coupling and 

crystal-field splitting for a Dy
III

 ion is shown in Figure 1.5. 
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Figure 1.4. Depiction of the ms sublevels of the ground spin state of an S = 2 ion with D = 0 

(paramagnetic), D < 0 and D > 0.  

 

  

 

Figure 1.5. The low energy electronic structure for a Dy
III

 ion. The nine f-electrons are first split by 

electron-electron repulsion, followed by spin-orbit coupling and finally, crystal field splitting. Reprinted 

with permission from reference 41. Copyright 2011 Royal Society of Chemistry. 
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Magnetic Coupling 

 In polynuclear systems, there is a magnetic interaction between neighboring metal atoms 

known as magnetic coupling, which is described as the parameter, J. The magnitude of J is 

usually on the order of 0-100 cm
-1

, whereas covalent bond strengths are on the order of tens of 

thousands of wavenumbers. The coupling between two metal atoms can be ferromagnetic (J > 0), 

where the electron spins are aligned, or antiferromagnetic (J < 0), where the spins are oriented 

antiparallel. The sign and strength of the J coupling parameter is governed by the Goodenough-

Kanamori rule of superexchange;
30-31

 they are dependent on the overlap of the magnetic 

orbitals.
42

 In the case of lanthanides, which have contracted f-orbitals,
43

 magnetic coupling is 

generally very weak (< 1 cm
-1

); these weak interactions play a role in both the properties of both 

SMM and MCE materials.   

Zeeman Effect 

 The Zeeman effect describes the removal of the degeneracy of energies of electrons in an 

applied field.
44

 For an S = ½ metal ion in an applied magnetic field, the energy of the ms = -½ 

state is stabilized, whereas the energy of the ms = +½ state is destabilized. The energy difference 

of the two ms states is  

ΔE = gβSH                                                                       (1.1) 

Where g is the Landé factor, β is the Bohr magneton, S is the spin state and H is the magnetic 

field. As will be described later, in magnetic susceptibility measurements, the applied field, H is 

small, and thus the Zeeman splitting will be weak (< 1 cm
-1

). On the other hand, in magnetization 

experiments, H is large and Zeeman splitting will have a pronounced effect on the magnetic 

properties. 
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Total Spin Hamiltonian 

 The total spin Hamiltonian describing magnetic coupling (J), zero-field splitting (D and E 

terms) and the Zeeman effect of a dimer of spins, S1 and S2 is: 

Ĥ = -J12Ŝ1·Ŝ2 + D[Ŝz
2
- ST(ST+1/3)] + E(Ŝx

2
-Ŝy

2
) +  gβŜuHu              (1.2) 

where J12 is the exchange parameter between S1 and S2; Ŝ1 and Ŝ2 are the spin operators 

corresponding to spins S1 and S2; ST is the total ground spin state; Ŝx, Ŝy, Ŝz and Ŝu are the spin 

operators corresponding to the directions x, y, z and u = x, y, z; H is the magnetic field along 

direction u = x, y, z. The splitting of the ms states in Equation 1.2 is visually depicted in Figure 

1.6 for a Cu
II
-Cu

II
 dimer, where each Cu

II
 has S = ½. The population of the ms states is 

temperature-dependent and follows Boltzmann statistics. Values for J, D and E and g can be 

obtained by fitting the magnetic susceptibility data by incorporating the eigenvalues of Equation 

1.2 into a modified van Vleck equation (Equation 1.8, described in the next section) or by use of 

programs such as MAGPACK,
45

 which utilizes matrix-diagonalization routines. 

 

Figure 1.6. Heuristic depiction of the magnetic states of a Cu
II
-Cu

II
 dimer system, where S1 = S2 = ½. The 

two spins are first exchange coupled, with J > 0 (ferromagnetic). Zero-field splitting then splits the S 

states, with D > 0 and E = 0. Finally the Zeeman effect in the presence of a magnetic field further splits 

the ms states.   
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 It is easy to see that the complexity of the spin states will drastically increase for larger 

polynuclear systems with larger S. For certain symetric polynuclear systems, the energy levels of 

the spin states may be evaluated using the Kambe coupling scheme.
46

 Furthermore, the fitting of 

the magnetic susceptibility data can be simplified by the use of isotropic metal ions such as Fe
III

 

and Gd
III

, whose negligible anisotropy makes it possible to neglect the D and E terms.  

Magnetic Measurements and Data Analysis 

 The current state-of-the-art in magnetometry is the Superconducting Quantum 

Interference Device (SQUID). This instrument can measure the magnetic moment of a powdered 

sample down to 2 K. By varying experimental parameters, one can obtain valuable information 

on the magnetic properties of a material.  

Magnetization experiments are the isothermal application of an external field.  The molar 

magnetization is the Boltzmann average of the magnetic moments:
42

 

M = NA

∑ (-∂E𝑛/∂H)e-En/kBT
n

∑ e−𝐸𝑛 𝑘𝐵𝑇⁄
n

                                               (1.3) 

where M is the magnetization, NA is Avogadro’s number, En is the energy of quantum state |n>, H 

= magnetic field, kB is the Boltzmann constant (1.380658 × 10
-23

 J K
-1

 or 0.69503877 cm
-1

). 

Equation 1.3 is considered the fundamental equation of molecular magnetism, as it does not rely 

on any approximations.
29

 Use of this expression requires knowledge of how En changes with 

applied field, H for all thermally populated states. To simplify the use of this equation, many of 

the equations described below are derived from Equation 1.3 based on various assumptions and 

approximations.
29

 

 For single-spin, paramagnetic compounds with no zero-field splitting, Equation 1.3 can 

be approximated as the Brillouin function:
29
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M = NAgβSBS(x)                                                          (1.4) 

𝐵𝑆(𝑥) =
2𝑆+1

2𝑆
coth (

2𝑆+1

2𝑆
𝑥) −

1

2𝑆
coth (

𝑥

2
)                                        (1.5) 

where g is the Landé factor, β is the Bohr magneton, S is the spin state and BS(x) is the Brillouin 

function where 𝑥 =
𝑔𝛽𝑆𝐻

𝑘𝐵𝑇
. Simple paramagnetic compounds can be fit with Equations 1.4 and 1.5 

to determine the ground S state. For molecules with complex and non-negligible coupling, these 

equations cannot be used. However, at high magnetic fields and low temperatures, the 

magnetization can be simplified to:
34

 

M = NAgβS                                                                    (1.6) 

which corresponds to magnetic saturation (where the magnetization has flat lined). This equation 

can be used in magnetization experiments at low temperature and high fields, and can be used to 

determine the ground S state for molecular complexes. 

 In dc susceptibility measurements, a small magnetic field is applied (usually 1000 or 

2000 Oe) and the temperature is varied. At low magnetic field and high temperatures, the 

magnetic properties can be described by the simplified van Vleck equation:
34

  

χ𝑚 =
𝑁𝐴𝑔2𝛽2

3𝑘𝐵𝑇
𝑆(𝑆 + 1)                                                                                    (1.7) 

In general, Equation 1.7 can be used to describe the dc susceptibility data for well isolated 

single-spin paramagnets or for polynuclear complexes at high temperatures. 

 Through the use of perturbation theory, van Vleck was able to derive a more precise 

approximation for the molar magnetic susceptibility:
29, 34

 

χ𝑚 =  
𝑁𝐴𝑔2𝛽2

3𝑘𝐵𝑇

∑ 𝑆𝑆 (𝑆+1)(2𝑆+1)𝑒−𝐸𝑆/𝑘𝐵𝑇

∑ (2𝑆+1)𝑒−𝐸𝑆/𝑘𝐵𝑇
𝑆

                                               (1.8) 
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where ES is the energy of spin state, S. For certain symmetrical compounds, ES can be obtained 

from the spin Hamiltonian (Equation 1.2) using the Kambe method
46

 as a function of the 

coupling parameter(s), J; the ZFS parameters D and E; and the Landé factor, g. It is important to 

note that the susceptibility is usually plotted as χmT vs T, as it can visually give more information 

about the magnetic interactions.
42

 

 In general, magnetization measurements are at the low temperature, high field limit, 

which may allow for the evaluation of ground spin states for strongly coupled, low anisotropy 

polynuclear complexes. Susceptibility measurements are performed at low magnetic fields and 

can more accurately be used to determine the magnetic exchange  parameter J.  

1.4 Superparamagnetism in Single-Molecule Magnets and Single-Ion Magnets   

 Elemental iron and nickel are two metals which can display permanent ferromagnetic 

behavior.
47

 In these metallic 3d network solids, magnetic domains are formed in order to 

minimize magnetic energy. Individual magnetic domains are separated by Bloch walls, whose 

thickness is dependent on the exchange coupling constants and magnetic anisotropy.
48

 In the 

lowest energetic state, different magnetic domains are oriented in every direction, such that the 

material behaves as a paramagnet. When a large enough field is applied to magnetize the 

domains to point in the same direction, they remain locked in place even after the field is 

removed due to defects in the structure which causes domain wall pinning.
49

  

It was found that when the particle size of Ni and Fe was shrunk to small enough sizes, 

single-domain magnetic behavior was observed.
26

 These single-domain magnetic particles 

exhibit superparamagnetic behavior, where there is an energy barrier between the two lowest 

energy directions of magnetization, which leads to slow relaxation of the magnetization.
32

 In 

1993, a single-domain molecular compound, Mn12(OAc), was reported by Sessoli and 
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coworkers.
50-51

 This led to the emergence of the field of single-molecule magnets (SMMs). At 

low temperatures, these molecules retain their magnetization due to an energy barrier separating 

the two directions of their Ising type ground states. Due to their small size, SMMs are potentially 

useful in magnetic data storage, with storage densities up to 200,000 Gbits/in
2
 for a molecule that 

is 1-2 nm in diameter.
52

 Furthermore, due to the quantum effects that are prevalent in these 

molecules, another potential application is quantum computing.
53-54

 The major issues regarding 

the use of SMMs are (1) increasing the energy barrier, (2) eliminating quantum tunneling which 

leads to demagnetization and (3) achieving large coercive fields at high temperatures in the 

magnetic hysteresis experiments. 

 Mn
III

8Mn
IV

4O12(O2C2H3)16(H2O)4, commonly called Mn12(OAc) was first synthesized by 

Lis in 1980 (Figure 1.7).
55

 In this molecule, the eight Mn
III

 were ferromagnetically coupled to 

each other and antiferromagnetically coupled to the four ferromagnetically coupled Mn
IV

 ions to 

give a ground spin state of S = 10.
56

 The single-ion magnetic anisotropy of each Mn
III/IV

 

combines to give an axial zero-field splitting parameter, D = -0.50 cm
-1

, giving rise to the 

splitting in the ground spin state seen in Figure 1.7.
56

 The barrier between the +Ms and –Ms 

ground sublevels is related to the ground spin state, S, and the parameter D: 

 Ueff = S
2
|D| (integer spin)                                                   (1.9) 

 Ueff = (S
2
-1/4)|D| (half-integer spin)                                                    (1.10) 

For SMM behavior, D must be negative in order for the largest Ms sublevel to be the lowest 

energy. For Mn12(OAc), the theoretical energy barrier is thus: Ueff = 10
2
|-0.5 cm

-1
| = 50 cm

-1
. It is 

clear from Equations 1.9 and 1.10 that S and D must be large in order to get a large barrier 

height.   

It was found that Mn12(OAc) displayed maxima in the out-of-phase ac susceptibility 
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Figure 1.7. Crystal structure of Mn
III

8Mn
IV

4O12(O2C2H3)16(H2O)4. Color scheme: purple spheres – Mn
III

, 

green spheres – Mn
IV

. This figure was reproduced from a crystal structure from reference 55. 

 

(explained in the next section), to yield an experimental barrier of 42 cm
-1

.
52

 The experimentally 

determined energy barrier does not quite reach the theoretical limit (50 cm
-1

) due to quantum 

tunneling of the magnetization (QTM). This phenomenon is a common occurrence in SMMs and 

is due to the superposition of the two Ms states that are of degenerate energy (Figure 1.8).
57-58

 

QTM may be reduced upon application of a magnetic field, which removes the degeneracy of 

spin sublevels (Figure 1.9). For a more thorough mathematical description of tunneling, the 

reader is referred to several references.
32, 57-59

 Common strategies to reduce quantum tunneling 

include limiting rhombic anisotropy
52

 and increasing the strength of magnetic coupling.
60-62

 

For 4f lanthanide-based SMMs, the magnetic anisotropy comes from the crystal-field 

splitting of the ground J state. The spin-orbit coupling in lanthanides is very strong relative to the 

strength of their magnetic interactions, whereas the opposite is true for 3d transition metals. 

Hence, lanthanides are at the weak exchange limit.
63

 Nevertheless, the design principles involved 

in lanthanide-based SMMs are similar to transition metals. For all SMMs, strong ferromagnetic  
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Figure 1.8. (top) The allowed quantized Ms states of the spin vector of Mn12(OAc). (bottom) The ‘spin 

double-well’ for Mn12(OAc) depicting the relative energies of each Ms sublevel of the ground S =10 spin 

state as a function of the axial zero-field splitting parameter, D. Reprinted with permission from reference 

64. Copyright 2009 Royal Society of Chemistry. 

 

interactions are preferred and the ligand field around the metal ions should be very axial in order 

to limit QTM. Related to SMMs are single-ion magnets (SIMs), whose slow magnetic relaxation 

is derived from a single-magnetic center; and single-chain magnets (SCMs), where slow 

magnetic relaxation comes from strong magnetic coupling in a 1D chain of magnetic centers. 

Characterization of SMMs 

 Alternating Current (ac) magnetic susceptibility is the main characterization technique 

used to study the dynamic magnetic properties of SMMs. In this experiment, a small (~3 Oe) 

oscillating magnetic field is applied on the sample. In this experiment, the susceptibility, χ, is 

related to the in-phase (“real”) ac susceptibility, χ’, and the out-of-phase (“imaginary”) ac 

susceptibility, χ’’ by Equation 1.11. 
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Figure 1.9. The ‘spin double-well’ under various applied fields. At H = 0, QTM occurs between Ms levels 

of degenerate energy. At H ≠ 0, QTM is quenched. Finally, at certain magnetic field strengths, resonant 

magnetization tunneling occurs when the Ms levels are aligned. Reprinted with permission from reference 

56. Copyright 2000 Materials Research Society. 

 

χ = χ' + iχ''                                                                   (1.11) 

For paramagnetic materials, the magnetic moment of sample follows the oscillating magnetic 

field. However, in superparamagnetic materials such as SMMs, at low enough temperatures and 

high enough frequencies, the magnetic moment of the sample lags behind the ac drive field, 

which is measured as the phase shift, φ. The in-phase and out-of-phase susceptibilities are related 

to the phase shift by the following:
65

 

χ' = χcosφ                                                                         (1.12) 

χ'' = χsinφ                                                                         (1.13) 

A more detailed explanation of the theory can be read in references 66 and 67. 

 The presence of an out-of-phase, χ'' signal is a strong indicator of superparamagnetic 

behavior. When the frequency of the ac drive field matches the frequency of the magnetic 

relaxation, a maximum occurs in the χ'' vs T plot. The energy barrier, Ueff, of an SMM follows an 
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Arrhenius relationship: 

 𝜏 =  𝜏0𝑒(𝑈𝑒𝑓𝑓/𝑘𝐵𝑇)                                                              (1.14) 

where τ is the relaxation time (inverse frequency) and τ0 is a preexponential factor.
52

 Thus, a plot 

of ln τ vs 1/T should be linear; fitting the slope and intercept would give values for Ueff and τ0. It 

should be noted that for many SMMs, QTM is prevalent at low temperatures; therefore, the 

barrier is often extracted from the high temperature regime. Figure 1.10 shows the plot of χ'' vs. 

T for Mn12(OAc), by fitting the data to Equation 1.14, an experimental energy of 42 cm
-1

 was 

observed. 

 

Figure 1.10. The out-of-phase ac magnetic susceptibility for Mn
III

8Mn
IV

4O12(O2C2H3)16(H2O)4. Reprinted 

with permission from reference 52. Copyright 1993 American Chemical Society. 

 

 

 In 1941, Cole and Cole described a relaxation model for dielectrics;
68

 later, Mydosh and 

coworkers applied this theory to the relaxation of magnetic complexes.
69

 The in-phase and out-

of-phase ac susceptibility can be fit simultaneously with a generalized Debye model:
70-71

 

χ′(ν𝑎𝑐) = χ𝑆 +
(χ𝑇−χ𝑆)[1+(2πν𝑎𝑐𝜏)1−𝛼 sin(

𝛼𝜋

2
)]

1+2(2πν𝑎𝑐𝜏)1−𝛼 sin(
𝛼𝜋

2
)+(2πν𝑎𝑐𝜏)2(1−𝛼)

                                        (1.15) 

and 
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χ′′(ν𝑎𝑐) =
(χ𝑇−χ𝑆)[1+(2πν𝑎𝑐𝜏)1−𝛼 cos(

𝛼𝜋

2
)]

1+2(2πν𝑎𝑐𝜏)1−𝛼 sin(
𝛼𝜋

2
)+(2πν𝑎𝑐𝜏)2(1−𝛼)

                                           (1.16) 

where χs is the adiabatic susceptibility, χT is the isothermal susceptibility, νac is the ac frequency, 

τ is the magnetization relaxation time, and α is a value between 0 and 1 which is a measure of the 

distribution of relaxation processes. When α is zero, then there is a single relaxation process 

(Debye process).
72

 When there are multiple relaxation processes, α becomes larger. 

 A plot of χ'' vs χ' is known as a Cole-Cole or Argand plot and forms a semi-circular 

shape. Figure 1.11 shows a Cole-Cole plot for the molecule (PPh4)[Mn12O12(O2CEt)16(H2O)4], an 

analogue of Mn12(OAc).
71

 When there is a distribution of single-relaxation processes (α > 0), the 

semicircle becomes flattened. Furthermore, complex systems with more than one relaxation 

process with largely different relaxation times (τ), multiple semi-circles may be present in the 

Argand plot.
72

 

 Another important characterization technique is measurement of magnetic hysteresis. In 

these experiments a magnetic field is applied in one direction to a magnetic sample. The field is 

increased along this direction and the magnetization of the sample will increase with the field  

 

Figure 1.11. Cole-Cole plot for (PPh4)[Mn12O12(O2CEt)16(H2O)4]. The solid line represents a least-

squares fit of the data to the generalized Debye model. The dotted line represents a fit of the data to a 

single relaxation process. Reprinted with permission from reference 71. Copyright 1999 American 

Chemical Society. 
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until it reaches saturation. After it reaches this point, the magnetic field is reversed and swept in 

the opposite direction. At low enough temperatures, SMMs, which have large enough energy 

barriers will resist the change in magnetic field and an opening of the hysteresis loop will occur. 

Paramagnetic materials, however, will not display hysteretic behavior. 

 These hysteresis experiments may be performed on a powdered sample in a SQUID 

magnetometer, or more elegantly on a single crystal using a micro-SQUID.
73

 Micro-SQUID 

analysis is useful because it allows for independent measurement of the magnetic properties 

along the easy-axis and hard plane of anisotropy. A molecule showing true SMM behavior 

would display hysteresis only along the easy-axis of magnetization.
32

  

Important SMMs  

 Many SMMs have been investigated since the report of the first SMM, Mn12(OAc). For 

an extensive overview of the field, the reader is referred to several reviews.
74-79

 Here, I discuss 

some recent advances in the SMM literature. 

[[[(Me3Si)2N2Ln(THF)]2(μ-η
2
:η

2
-N2)]

- 

 In 2011, Long and coworkers reported a family of N2
3-

 radical bridged 

[[[(Me3Si)2N2Ln(THF)]2(μ-η
2
:η

2
-N2)]

- 
complexes (Ln = Gd, Dy, Tb, Ho and Er) which exhibited 

high temperature magnetic hysteresis behavior (Figure 1.12).
60-61

 The radical character of the 

N2
3-

 bridging ligand led to large Ln-Ln magnetic coupling. In the [[[(Me3Si)2N2Gd(THF)]2(μ-

η
2
:η

2
-N2)]

-
 complex, the Gd-Gd exchange coupling was determined to be -27 cm

-1
, which is the 

largest found in lanthanide containing complexes.
61

 Both the Dy and Tb derivatives were 

observed to display strong magnetic coupling. The Dy complex exhibited a barrier of 123 cm
-1

 

and displayed hysteresis behavior at temperatures up to 8 K. For the Tb derivative, the energy 

barrier was determined to be 227 cm
-1 

and exhibited magnetic hysteresis at a record temperature 
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of 14 K (Figure 1.13). This remarkable behavior is thought to be the consequence of the 

quenching of quantum tunneling due to strong Ln-Ln magnetic interactions. 

 

 

Figure 1.12. Structure of [[[(Me3Si)2N2Gd(THF)]2(μ-η
2
:η

2
-N2)]

-
. Color scheme: orange spheres – Gd, 

green spheres – Si, blue spheres – N, red spheres – O, gray spheres – C. Reprinted with permission from 

reference 61. Copyright 2011 Nature Publishing Group. 

 

 

 

Figure 1.13. Magnetic hysteresis plot for [[[(Me3Si)2N2Tb(THF)]2(μ-η
2
:η

2
-N2)]

-
 at a sweep rate of 0.9 T/s. 

Reprinted with permission from reference 60. Copyright 2011 American Chemical Society. 
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[Fe
II

2Dy
III

(L)2(H2O)]ClO4·2H2O 

 Recently, Liu and coworkers synthesized a [Fe2Dy(L)2(H2O)]ClO4·2H2O [L = 2,2’,2’’-

(((nitrilotris(ethane-2,1-diyl))tris(azanediyl))tris(methylene))tris(4-chlorophenol)] complex 

(Figure 1.14), which exhibits an energy barrier of 319 cm
-1 

(Figure 1.15), which is the largest 

observed for a 3d-4f complex.
80

 It was found through magnetic measurements and DFT 

calculations that the Fe
II
-Dy

III
-Fe

II 
system was ferromagnetically coupled. Analysis through 

Mössbauer spectroscopy showed that at low temperatures, the frozen magnetic moment of the 

Dy
III

 ion slowed down the individual moments of the Fe
II

 ions. 

 In comparison, an analogous [Zn
II

2Dy
III

2(L)2(MeOH)]NO3·3MeOH·H2O [(L = 2,2’,2’’-

(((nitrilotris(ethane-2,1-diyl))tris(azanediyl))tris(methylene))tris-(4-bromophenol)] complex 

exhibited an energy barrier of 305 cm
-1

.
81

 The larger barrier for the Fe
II
 derivative over the Zn

II
 

derivatives was attributed to a stronger axial ligand field around the Dy
III

 for the former.
80

 

 

Figure 1.14. Structure of the [Fe2Dy(L)2(H2O)]ClO4·2H2O complex (top) and the structural motif of the 

Fe
II
-Dy

III
-Fe

II
 cores (bottom). Reprinted with permission from reference 80. Copyright 2014 Wiley-VCH 

Verlag GmbH & Co. KGaA.   
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Figure 1.15. Plot of the ac magnetic susceptibility of [Fe2Dy(L)2(H2O)]ClO4·2H2O. Inset: Arrhenius plot 

of the ac data. The linear fit at the high temperature region corresponds to a barrier of 319 cm
-1

. Reprinted 

with permission from reference 80. Copyright 2014 Wiley-VCH Verlag GmbH & Co. KGaA.   

 

Metallacrown SMMs 

Ln
III

6Mn
III

4Mn
IV

2 

The field of SMMs was heavily influenced by manganese chemistry as the first SMM is a 

Mn12OAc complex described previously, and metallacrown chemistry has a long history of using 

manganese to form MCs.
8
 The first MC-based SMM was reported by Zaleski and coworkers and 

had the formula  Dy
III

6Mn
III

4Mn
IV

2(H2shi)4(Hshi)2(shi)10(CH3OH)10(H2O)2 (Figure 1.16).
82

 This 

complex was the first 3d-4f SMM with manganese, and just the second overall 3d-4f SMM.
 
Of 

the three different Ln
III

 versions of this molecule reported, only the 

Dy
III

6Mn
III

4Mn
IV

2(H2shi)4(Hshi)2(shi)10(CH3OH)10(H2O)2 molecule possessed SMM behavior 

near 4 K; however, the blocking temperatures is below 2 K (Figure 1.17).  Thus, the source of 

the SMM behavior is not totally reliant on the manganese ions, but the identity of the lanthanide 

ion is critical. 
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Figure 1.16. Single-crystal X-ray structure of Dy
III

6Mn
III

4Mn
IV

2(H2shi)4(Hshi)2(shi)10(CH3OH)10(H2O)2 

with Dy(12-MCMnIII2MnIVDyIII-4) units highlighted in bold.   Color scheme: green spheres – Dy
III

, blue 

spheres – Mn
III

, and gold spheres – Mn
IV

. Reprinted with permission from reference 82. Copyright 2004 

Wiley-VCH Verlag GmbH & Co. KGaA.   

 

 

Figure 1.17. In-phase magnetic susceptibility of Dy
III

6Mn
III

4Mn
IV

2(H2shi)4(Hshi)2(shi)10(CH3OH)10(H2O)2.  

Inset: Out-of-phase magnetic susceptibility. (▲1000 Hz, ■100 Hz, ♦10 Hz). Reprinted with permission 

from reference 82. Copyright 2004 Wiley-VCH Verlag GmbH & Co. KGaA.   

 

Ln
III

4Mn
III

6 

  Figure 1.18 shows Ln
III

4Mn
III

6(H2shi)2(shi)6(sal)2(OAc)4(OH)2(CH3OH)8 (Ln
III

 = Dy
III

 

and Ho
III

) molecules that were also observed to display SMM behavior.
83

  In the solid phase, 

both the Ho
III

 and Dy
III

 analogues displayed a frequency-dependent out-of-phase magnetic 
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susceptibility signal near 4 K; however, the blocking temperatures are below 2 K and the signal 

of the Ho
III

 version is much weaker than that of the Dy
III

 version.  To investigate the behavior of 

these molecules further, frozen solutions of both molecules were prepared in DMF.  For the 

frozen solutions, the Ho
III

 analogue no longer possessed a frequency-dependent out-of-phase 

signal, while for the frozen Dy
III

 analogue, the frequency-dependent out-of-phase magnetic 

susceptibility signal remained and in fact the blocking temperature at 1000 Hz is above 2 K 

(Figure 1.19).  In the solid state, the blocking temperature of the Dy
III

 analogue could not be 

observed; however, by isolating the molecule in solution, the molecular magnetic behavior can 

be observed without complications from intermolecular interactions.  For the Ho
III

 analogue it is 

suspected that a hydrogen-bonding network may mediate short-range magnetic ordering or 

glassy behavior and give rise to the solid-state results.  For the Dy
III

 analogue a similar network 

likely complicates the magnetic measurements and partially masks the SMM behavior.  For the 

Dy
III

 analogue, the effective energy barrier for the reorientation of the magnetization is 11 cm
-1

, 

and the magnetic relaxation time is estimated to be 26 s at 1 K.   

 

Figure 1.18. Single-crystal X-ray structure of Ho
III

4Mn
III

6(H2shi)2(shi)6(sal)2(OAc)4(OH)2(CH3OH)8.  

Color scheme: blue spheres – Ho
III

, orange spheres – Mn
III

, red tube – oxygen, and blue tubes - nitrogen. 

The figure is reproduced from a crystal structure in reference 83. 
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Figure 1.19. Out-of-phase magnetic susceptibility of a frozen DMF solution of 

Dy
III

4Mn
III

6(H2shi)2(shi)6(sal)2(OAc)4(OH)2(CH3OH)8. (●1000 Hz, ■500 Hz, ♦100 Hz, ▲10 Hz). 

Reprinted with permission from reference 83. Copyright 2007 American Chemical Society. 

 

Ln
III

(O2CCH3)(NO3)2[14-MCMnIIILnIII(μ
3

-O)(μ-OH)N(shi)-5] 

Planar Ln
III

(O2CCH3)(NO3)2[14-MCMnIIILnIII(μ
3

-O)(μ-OH)N(shi)-5] complexes, where Ln
III

= 

Y
III

, Gd
III

, Tb
III

, Dy
III

, and Ho
III

) were reported in 2010 by Boron and coworkers (Figure 1.20).
14

 

This planar arrangement provides a pathway to potentially greater magnetoanisotropy.  The Tb
III

, 

Dy
III

, and Ho
III

 versions of this molecule displayed a frequency dependent out-of-phase magnetic 

susceptibility signal (Figure 1.21).  For the Dy
III

 analogue, a blocking temperature is observed 

above 2 K, and the effective energy barrier for the reorientation of the magnetization was 

determined to be 16.7 K. For the Tb
III

 and Ho
III

 versions the blocking temperature is below 2 K.   

Magnetic Compton scattering (MCP) was used to investigate the Y
III

, Gd
III

, and Dy
III

 

analogues.
84

  In the Y
III

 derivative, the magnetic moment is mainly due to the spin angular 

momentum and there is only a small orbital angular momentum contribution, indicating that the 

total molecular anisotropy is small.  This implies that even though the Mn
III

 are in the same 

plane, the Ising-type anisotropy is not additive in this case.  In the Gd
III

 and Dy
III

 complexes the 

spin of the central lanthanide ion was determined to be aligned parallel to the spin of the Mn
III
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Figure 1.20. Single-crystal X-ray structure of Dy
III

(OAc)2(NO3)2[14-MCMnIIILnIII(μ3-O)(μ-OH)N(shi)-5] with  the 

thermal ellipsoid plot at 50% probability.  Color scheme: purple – Dy
III

, green – Mn
III

, red – oxygen, blue 

– nitrogen, gray – carbon. The figure was produced from a crystal structure in reference 14.  

 

 

Figure 1.21. Out-of-phase magnetic susceptibility signal of Dy
III

(O2CCH3)(NO3)2[14-MCMnIIILnIII(μ
3
-O)(μ-

OH)N(shi)-5].  Inset: In-phase magnetic susceptibility signal.  Reprinted with permission from reference 14. 

Copyright 2010 American Chemical Society. 

 

ions.  However, for the Gd
III

 molecule again there is little to no orbital angular momentum 

contribution to the overall magnetic moment of the complex and a SMM is not produced.  In the 

Dy
III

 complex, the total magnetic moment is larger than the spin-only moment due to significant 

orbital angular momentum contributions by the Dy
III

 ions to the total magnetic moment, which 
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likely gives rise to the SMM behavior in this complex.  The MCP experiments again illustrate 

that the nature of the Ln
III

 is crucial to the observed magnetic properties.  

Ln
III

(NO3)3[15-MCCuIIN(S-pheHA)-5] 

In 2006, Zaleski and coworkers investigated the magnetic properties of a dimer and 

helical polymorph of Ln
III

(NO3)3-x(OH)x[15-MCCuIIN(S-pheHA)-5], where Ln
III 

= Dy
III

, Ho
III

 amd 

H2S-pheHA = phenylalanine hydroxamic acid (Figure 1.22).
85-86

  The ground spin states for these 

molecules could not be determined, likely due to magnetic field-induced level crossing and/or 

population of low-lying excited states and the highly magnetoanisotropic Ln
III

 ions.  In the solid 

state, both the dimer and helical versions of the Dy
III

 and Ho
III

 MCs displayed a frequency-

dependent out-of-phase magnetic susceptibility signal below 5 K. To understand the source of 

the out-of-phase magnetic behavior better, the compounds were dissolved in methanol and the 

out-of-phase magnetic susceptibility was recorded for the frozen solutions.  In this case, the 

frequency dependent out-of-phase behavior only remained for the Dy
III

 dimer and helical 

versions below 5 K; however, the blocking temperatures are below 2 K (Figure 1.23).  This 

suggests that the Dy
III

 analogues are SMMs in the solid state since glassy behavior and magnetic 

ordering cannot persist in the solution state where the molecules are isolated from each other. 

It is not believed that the helical Dy
III

 polymorph is an example of a SCM, but is better 

described as a chain of SMMs.  The nature of the polymorph does not appear to affect the SMM 

properties of the molecules, as the ac magnetic susceptibility of both the dimer and helical 

polymorphs is similar down to 2 K.  The onset temperature of the frequency-dependent behavior 

is nearly the same for the two polymorphs, and the magnitude of the out-of-phase signal is 

similar for all frequencies at 2 K.  Thus, the helix may be described as a chain of SMMs, and the 

SMM behavior is a result of the identity of the lanthanide ion and not the polymorph.  Lastly, 
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these Dy
III

(NO3)3-x(OH)x[15-MCCuIIN(S-pheHA)-5] molecules also serve as examples of chiral 

SMMs; however, the molecules do not display magnetochiral effects above 2 K, which is not 

surprising since the blocking temperatures of the molecules are below 2 K.   

 

 

Figure 1.22. Crystal structures of a) the dimer and b) the helix polymorphs of Ln
III

(NO3)3-x(OH)x[15-

MCCuIIN(S-pheHA)-5]. Reprinted with permission from reference 86. Copyright 2007 American Chemical 

Society. 

 

 

 

Figure 1.23. Out-of-phase magnetic susceptibility signal for a frozen methanol solution of Dy(NO3)3[15-

MCCuIIN(S-pheHA)-5] (●1000 Hz, ■500 Hz, ♦100 Hz, ▲10 Hz). Reprinted with permission from reference 

85. Copyright 2006 American Chemical Society.   
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1.5 Magnetocaloric Effect 

 Sub-Kelvin refrigeration is critical in many applications and experimental techniques in 

chemistry and condensed matter physics. Currently, 
3
He-

4
He dilution refrigeration is the only 

method of continuous refrigeration below 0.3 K and can continuously cool to temperatures as 

low as 2 mK.
87

 However, a drawback to this technique is the prohibitive cost of isotopic helium. 

Other refrigeration methods include adiabatic nuclear demagnetization
88

 and adiabatic 

demagnetization of a paramagnetic salt,
89

 the latter of which is the phenomenon that will be 

discussed in this section.    

In the mid-1920s, Debye and Giauque proposed adiabatic demagnetization as a method 

of reaching sub-Kelvin temperatures.
25, 90

 In the coming decade, Giauque successfully attained a 

temperature of 0.25 K through the demagnetization of Gd2(SO4)3·8H2O.
91

 Since then, magnetic 

refrigeration has been a standard technique in low-temperature refrigeration, relevant materials 

include Ce2Mg3(NO3)12·24H2O (CMN),
92-93

 and gadolinium gallium garnet (GGG, Gd3Ga5O12), 

which is the commercial standard in magnetic refrigerators and has been used in the liquefying 

helium.
94

 Due to the “one-shot” nature of magnetic refrigeration (refrigerant warms up after the 

end of demagnetization), it has fallen out of favor to the aforementioned 
3
He-

4
He

 
dilution 

continuous refrigeration technique.
89

   

Recently, new advances in adiabatic demagnetization refrigerators may allow for 

continuous cooling with paramagnetic materials, with potential implications in small-scale 

laboratory and space-borne applications.
95-97

 Consequently, high performance molecule-based 

materials have become an area of focus in magnetochemistry.
89, 98-99

   

Magnetic refrigeration with paramagnetic materials is based on the magnetocaloric effect 

(MCE).
99

 This phenomenon relies on the field-temperature and entropy change of a 
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paramagnetic material. According to Equation 1.17, in a magnetorefrigerant, the total entropy of 

the system is the sum of the field- and temperature-dependent magnetic entropy, SM, and the 

temperature-dependent lattice entropy, SLatt (electronic entropy is negligible): 

STotal(T, H) = SM(T, H) + SLatt(T, H)           (1.17) 

It should be noted that SLatt dominates at high temperatures and SM at lower temperatures.  

In the magnetic refrigeration process, the MCE material is first brought to the starting 

temperature (T) through a precooling bath. A magnetic field, H, is applied to isothermally 

magnetize the material; the heat of magnetization (Q = TΔS) is absorbed by the precooling bath. 

In this first step, the magnetic entropy during isothermal magnetization is lowered due to the 

ordering of the electronic spin. Since in an isothermal process ΔSLatt = 0, then according to 

Equation 1.17, ΔSM = ΔSTotal < 0. This is represented by the process A → C in Figure 1.24. 

Conversely, during isothermal demagnetization ΔSM  > 0.  

In the second step of the magnetic refrigeration cycle, the material is isolated from the 

precooling bath and adiabatically demagnetized (ΔSTotal = 0). Here, the spins becomes disordered 

and ΔSM > 0. To compensate for this, there must be a decrease in the lattice entropy (ΔSLatt < 0) 

which comes with a commensurate decrease in temperature of the material (ΔTad < 0). The 

reverse process, adiabatic magnetization, where ΔSM < 0 and ΔTad > 0, is represented by the 

process A → B in Figure 1.24. Finally, the refrigerant will warm up along the entropy curve of 

the final magnetic field, absorbing heat until it reaches the intial T and STotal, hence, the cooling 

power of the material is related to the entropy change during isothermal magnetization, ΔSM. 

Continuous cooling can be achieved through reversible magneto-thermal cycles.
89, 100

 

Experimentally, the two most important parameters for MCE materials are the 

temperature during adiabatic magnetization, ΔTad, and magnetic entropy change during  
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Figure 1.24. Entropy vs. temperature plot showing adiabatic magnetization (process A → B) and 

isothermal magnetization (process A → C). Reprinted with permission from reference 100. Copyright 

2014 Elsevier. 

 

isothermal magnetization, ΔSM. ΔTad, which is related to the total entropy, STotal (Equation 1.17), 

must be measured by direct methods,
101

 or more commonly, indirectly through heat capacity 

measurements through the thermodynamic expression, 

∆𝑇𝑎𝑑(𝑇, ∆𝐻) =  − ∫ (
𝑇

𝐶(𝑇,𝐻)
)

𝐻
(

𝜕𝑀(𝑇,𝐻)

𝜕𝑇
)

𝐻
d𝐻

𝐻𝑓

𝐻𝑖
                                        (1.18) 

where H = magnetic field (f = final, I = intial) and C = heat capacity.
99, 102

 The magnetic entropy 

change, ΔSM, can also be determined through heat capacity measurements through application of  

∆𝑆𝑀(𝑇, 𝐻) = ∫
𝐶𝑀(𝑇,𝐻)−𝐶𝑀(𝑇,0)

𝑇
d𝑇

𝑇

0
                                                 (1.19) 
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Figure 1.25. The influence on the axial ZFS parameter, D, on the –ΔSM vs. T plot for a Kramers (S = 3/2) 

system (left) and a non-Kramers (S = 2) system (right). Note that these values are for a powdered sample. 

Reprinted with permission from reference 100. Copyright 2014 Elsevier. 

 

where CM(T, H) and CM(T, 0) are the magnetic heat capacities in a field H and in zero field, 

respectively.
99, 103-104

 Furthermore, ΔSM may be evaluated through magnetization experiments 

using the Maxell equation for magnetic entropy, 

𝛥𝑆𝑀(𝑇, ∆𝐻) =  ∫ (
𝜕𝑀(𝑇,𝐻)

𝜕𝑇
)

𝐻
d𝐻

𝐻𝑓

𝐻𝑖
                             (1.20) 

where M = magnetization.
104

 One of the goals of this thesis is to influence ΔSM by modulating 

inter- and intramolecular magnetic interaction. 

 The total available magnetic entropy in a material is associated with the total magnetic 

degrees of freedom at T = ∞ and is equal to: 

SM = Rln(2S+1)                                           (1.21) 

where R = the gas constant (8.3144621 J K
-1

 mol
-1

) and S = spin. When a magnetic field is 

applied to magnetically order a material, fewer spin states are populated and the magnetic 

entropy decreases.  Unlike SMMs, MCE materials require isotropic metal ions with minimal 

zero-field splitting. It can be seen in Figure 1.25 that the presence of magnetic anisotropy (the 

zero-field splitting parameter, D) reduces the total available magnetic entropy regardless of the  
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Figure 1.26. The influence of magnetic exchange coupling (J) of an S1 = S2 = 7/2 dimer on the (left) 

temperature-dependent and (right) field-dependent magnetic entropy change, –ΔSM. Reprinted with 

permission from reference 100. Copyright 2014 Elsevier. 

 

sign of D. Therefore, isotropic metal ions such as Fe
III

, Mn
II 

and Gd
III

 are best suited for use in 

MCE materials. Additionally, the presence of magnetic coupling may lower the total available 

magnetic entropy. As shown in Figure 1.26., for a simple dimer system where S1 = S2 = 7/2, both 

ferromagnetic and antiferromagnetic coupling reduces the temperature-dependent magnetic 

entropy change of the system.
104

 However, weak ferromagnetic coupling may be necessary in 

order to achieve large ΔSM values at lower fields.
103, 105

 From Figure 1.26, for the same S1 = S2 = 

7/2 system, ΔSM is actually higher for weak ferromagnetic coupling than for the uncoupled dimer 

at lower fields. This is important because the use of cost effective electromagnets will limit the 

field to 2 T or less.
102

 

 In summary, the strategies to develop high performance MCE materials involve the use 

of isotropic, large spin metal ions to limit zero-field splitting. Weak ferromagnetic interactions 

are preferable as to develop materials for use in low magnetic fields. Finally, for potential space-

based applications, weight is an issue as the cost of launching a payload into space is 

approximately $10,000/pound.
106

 Consequently, the focus of MCE research is to improve the 
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magnetic entropy change per unit weight (J kg
-1

 K
-1

). Thus, it is prudent to maximize the metal : 

ligand weight ratio. This thesis will examine the first metallacrown-based MCE material based 

on Fe
III

. 

 

Key Molecule-Based MCE Materials 

 Interest in molecular MCE materials began in the early 2000s with the characterization of 

Mn12 and Fe8 complexes.
107

 Since then, there have been numerous studies involving 3d-, 4f- and 

mixed 3d/4f MCE molecular clusters. Below, we will examine a few of the most important 

magnetic refrigerants. 

[Fe
III

14O6(L)6(OMe)18Cl6] Complexes 

 A large solvothermally synthesized [Fe
III

14O6(bta)6(OMe)18Cl6]·2MeCO2H·4H2O (btaH = 

benzotriazole) cluster (Figure 1.27) was characterized to have a ground spin state of S = 23, 

which was among the largest at the time.
108

 Later, more accurate measurements revealed that the 

actual ground state was S = 25 due to twelve ferromagnetically coupled Fe
III

 ions, with the 

remaining two Fe
III

 antiferromagnetically coupled.
109-110

 This complex exhibited large MCE 

properties as determined through heat capacity and magnetic measurements, with –ΔSM = 5.0 R = 

17.3 J kg
-1

 K
-1

 and ΔTad = 5.8 K at T = 6 K and H = 7 T (Figure 1.28). The value of for the molar 

magnetic entropy change (5.0 R) is larger than the maximum allowed entropy for a S = 25 system 

(Rln(2S+1) = 3.9 R). This was attributed to the presence of excited states close in energy to the 

ground S = 25 state. Later, an isostructural complex [Fe
III

14O6(ta)6(OMe)18Cl6]·4.5 MeOH (taH = 

1,2,3-triazole) shown in Figure 1.29, exhibited a similar S = 25 ground state, but had a larger –

ΔSM = 20.3 J kg
-1

 K
-1

 at T = 6 K and H = 7 T. This increase in –ΔSM was ascribed to differences 

in intramolecular coupling, leading to a higher density of excited states, which is observed by the 

differences of the χ’T maxima (Figure 1.30).
111
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Figure 1.27. Crystal structure of [Fe
III

14O6(bta)6(OMe)18Cl6]·2MeCO2H·4H2O. Color scheme: yellow 

spheres – Fe
III

; green – Cl; red – O; blue – N; gray – C. Reprinted with permission from reference 108. 

Copyright 2003 Wiley-VCH Verlag GmbH & Co. KGaA.   

 

 

 

Figure 1.28. (Top) Temperature-dependence of ΔSm of [Fe
III

14O6(bta)6(OMe)18Cl6] obtained from specific 

heat measurements (filled dots and bars) and magnetization data (empty dots). (Bottom) Temperature 

dependence of the adiabatic temperature change, ΔTad obtained from specific heat measurements (filled 

dots and bars). Reprinted with permission from reference 110. Copyright 2005 Elsevier. 
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Figure 1.29. Structure of [Fe
III

14O6(ta)6(OMe)18Cl6]·4.5 MeOH. Color Scheme: orange spheres - Fe
III

; 

green – Cl; red – O; blue – N; black – C. Reprinted with permission from reference 111. Copyright 2007 

American Chemical Society. 

 

 

 

 

Figure 1.30. Temperature dependence of the χ’T vs T product for [Fe
III

14O6(bta)6(OMe)18Cl6] and 

[Fe
III

14O6(ta)6(OMe)18Cl6]. Reprinted with permission from reference 111. Copyright 2007 American 

Chemical Society. 
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[Mn
II
(glc)2]n vs. [Mn

II
(glc)2(H2O)2] 

 Tong and coworkers reported the MCE behavior of a 3d coordination polymer 

[Mn
II
(glc)2]n (Figure 1.31) and its discrete monomer counterpart, [Mn

II
(glc)2(H2O)2] (Figure 

1.32), where Hglc = glycolic acid.
112

 In the coordination polymer [Mn
II
(glc)2]n exhibited long-

range antiferromagnetic coupling with a Néel temperature TN = 4.9 K and a small  –ΔSM = 6.9 J 

kg
-1

 K
-1

 at T = 7 K and H = 7 T. On the other hand, the molecular [Mn
II
(glc)2(H2O)2] behaved as 

a well isolated paramagnet and exhibited a large  –ΔSM = 60.3 J kg
-1

 K
-1

 at T = 1.8 K and H = 7 T 

(Figure 1.33). The two complexes can be reversibly interconverted by the removal/addition of 

waters of hydration.
112

 

 

Figure 1.31. Structure of [Mn
II
(glc)2]n. (a) the coordination environment of the Mn

II
 ion. (b) polyhedral 

view of the 3d network. Color scheme: black – Mn; dark gray – O, light gray – C; white – H. Reprinted 

with permission from reference 112. Copyright 2014 Wiley-VCH Verlag GmbH & Co. KGaA.   
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Figure 1.32. Structure of [Mn
II
(glc)2(H2O)2. (a) the coordination environment of the Mn

II
 ion. (b) 

polyhedral view, including hydrogen bonds between adjacent molecules. Color scheme: black – Mn; dark 

gray – O, light gray – C; white – H. Reprinted with permission from reference 112. Copyright 2014 

Wiley-VCH Verlag GmbH & Co. KGaA.   

 

 

Figure 1.33. Temperature-dependence of –ΔSm for [Mn
II
(glc)2(H2O)2 from heat capacity measurements 

(solid) and magnetic measurements (empty) at select ΔH (● – 7 T, ▼– 5 T; ▲ – 3 T; ◄ - 2 T; ■ – 1 T). 

Reprinted with permission from reference 112. Copyright 2014 Wiley-VCH Verlag GmbH & Co. KGaA.   
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[Gd
III

(OH)CO3]n 

 Gd
III

 is a promising metal ion for use in MCE materials due to its large S = 7/2 spin and 

weak magnetic coupling due to contracted f-orbitals. Recently, a 3d network material with the 

formula [Gd
III

(OH)CO3]n (Figure 1.34) was characterized by heat capacity measurements to have 

impressive MCE properties, with a –ΔSM = 66.4 J kg
-1

 K
-1

 and Tad > 20 K at H = 7 T and T = 1.8 

K.
113

 The maximum magnetic entropy change at low fields is also impressive, with –ΔSM = 26.2 

J kg
-1

 K
-1 

and 54.4 J kg
-1

 K
-1

 at ΔH = 1 K and ΔH = 3 T, respectively. Furthermore, both the 

volumetric  and gravimetric magnetic entropy change exceeds all of the best performing MCE 

materials including gadolinium gallium garnet (Figure 1.35), making it one of the best 

performing MCE materials to date.
113

 

 

Figure 1.34. Structure of the [Gd
III

(OH)CO3]n along the a axis. Color scheme: green – gd; red and purple 

– O; gray – C; light gray – H. Reprinted with permission from reference 113. Copyright 2014 Royal 

Society of Chemistry. 

 

 

Figure 1.35. Comparison of the maximum -ΔSm at selected ΔH for various MCE materials. Reproduced 

with permission from reference 113. Copyright 2014 Royal Society of Chemistry. 
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[[M
III

F3(Me3tacn)]2Gd
III

3F2(NO3)7(H2O)(CH3CN)]·4CH3CN 

 In 2014, Pedersen and coworkers reported the synthesis and characterization of a family 

of isostructural [[M
III

F3(Me3tacn)]2Gd
III

3F2(NO3)7(H2O)(CH3CN)]·4CH3CN complexes where 

M
III

 = Cr
III

, Fe
III

, Ga
III

 and Me3tacn = N,N’,N’’-trimethyl-1,4,7-triazacyclononane (Figure 

1.36).
114

 Despite the larger spin of Fe
III

 over Cr
III

 (5/2 vs 3/2), the Cr
III

 derivative displayed a 

greater magnetic entropy change than the Fe
III

 complex, with –ΔSM = 38.3 J kg
-1

 K
-1

 (T = 2 K and 

H = 7 T) for the former and –ΔSM = 33.1 J kg
-1

 K
-1 

(T = 4.2 K and H = 7 T) for
 
the latter. It was 

determined through a combination of magnetic measurements, DFT and heat capacity 

measurements that a magnetic phase transition for the Fe
III

 complex below Tc = 0.65 K due to  

strong Fe
III

-Gd
III

 coupling. The presence of stronger magnetic interactions consequently led to 

reduced MCE behavior.
114

 

 

Figure 1.36. Crystal structure of [[M
III

F3(Me3tacn)]2Gd
III

3F2(NO3)7(H2O)(CH3CN)]·4CH3CN. Color 

scheme: purple – Gd; yellow – Fe; green – F; red – O; blue – N; gray – C. Reprinted with permission 

from reference 114. Copyright 2014 Wiley-VCH Verlag GmbH & Co. KGaA.   

 

1.6 Lanthanide Luminescence 

 Many of the quantum mechanical properties of 4f lanthanides which make them useful in 

SMMs also give rise to certain luminescence characteristics. The f-f transitions in the trivalent 

rare earth ions are characterized by narrow line widths and long luminescence lifetimes.
115

 These 
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sharp transitions can range from the near-infrared (NIR) region for Pr
III

, Nd
III

, Ho
III

, Er
III

, Tm
III

 

and Yb
III

, visible region for Pr
III

, Sm
III

, Eu
III

, Tb
III

, Dy
III

 and Ho
III

 and the ultraviolet (UV) region 

for Gd
III

. Specifically, Ln
III

 which luminesce in the NIR region are of interest for potential 

applications in OLEDs,
116

 telecommunications,
117

 solar energy conversion
118

 and bio-

imaging.
119-121

 The longer wavelengths of the NIR emission allows for greater sensitivity of 

detection and tissue penetration depth in biological imaging applications.
122

 

 According to Judd-Ofelt theory because f-f transitions in free lanthanide ions are Laporte 

forbidden, they have a low probability of occurring.
40

 However, the absorption coefficients due 

to this phenomenon is generally very weak, usually smaller than 1 M
-1

 cm
-1 

and excitation of 

these transitions can only occur with high powered laser source. 4f-5d transitions, on the other 

hand, are parity allowed, although these transitions are at such high energy that they are usually 

not observed in coordination complexes.
115

 

In order to circumvent the Laporte selections rules, another method of inducing 

lanthanide luminescence has been utilized: the “sensitization” of the lanthanide ions through an 

organic chromophore, also known as the antenna effect.
123

 The Jablonsky diagram in Figure 1.37 

shows several various energy transfer and radiative and non-radiative emission pathways.
115

 

Perhaps the most common mode of energy transfer is the 
1
S* → 

3
T* → Ln* pathway. In this 

mechanism, the ligand absorbs light to reach an excited single state, 
1
S*, which then goes 

through intersystem crossing to reach the ligand 
3
T* state and finally transfers energy to the 

lanthanide accepting excited state, Ln*. Alternatively, the ligand may be excited to an intra-

ligand charge transfer (ILCT) state which then transfers to the 
3
T* state, which sensitizes the 

Ln
III

 excited accepting J state, Ln*.
122

 The excited Ln* state is then relaxed back to the ground J 

state, emitting energy either through fluorescence, where there is no change in spin, as in Yb  
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Figure 1.37. Jablonksy diagram representing the energy absorption, transfer and radiative emission (plain 

arrows) and non-radiative dissipation (dotted arrows) processes in lanthanide complexes. 
1
S1* or 

1
S2* = 

excited single state,  
3
T* = triplet state, A = absorption, F = fluorescence, P = phosphorescence, k = rate 

constant, r = radiative, nr = non-radiative, IC = internal conversion, ISC = intersystem crossing, ILCT = 

intra-ligand charge transfer, LMCT = ligand-to-metal charge transfer. Reprinted with permission from 

reference 124. Copyright 2010 Royal Society of Chemistry. 

 

(
2
F5/2 → 

2
F7/2); or phosphorescence, where the transition involves a change in spin, as with Eu 

(
5
D0 → 

7
FJ).

125
 These intramolecular ligand-to-lanthanide energy migrations can occur via either 

a through-bond Dexter mechanism, or a through space Förster mechanism.
40

 It can be seen in 

Figure 1.37 that multiple energy transfer pathways may occur, including competing radiative and 

non-radiative relaxation, which quenches lanthanide luminescence.  

 The two most important parameters obtained from the emission spectra of Ln
III

 

complexes are the quantum yield, Q, and the lifetime of the excited Ln* state, τobs = 1/kobs, where 

kobs is the rate constant (s
-1

) of the depopulation of the excited state. In its most basic form, the 

quantum yield is 

Q =  
# emitted photons

# absorbed photons
                                                         (1.22) 

The intrinsic quantum yield reflects the direct excitation of a Ln
III

 ion and is related to  
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𝑄Ln
Ln =  

𝑘𝑟𝑎𝑑

𝑘𝑜𝑏𝑠
=

𝜏𝑜𝑏𝑠

𝜏𝑟𝑎𝑑                                                     (1.23) 

where k
rad

 and τ
rad

 are the radiative rate constant and lifetime, respectively. kobs is the sum of the 

rates of various relaxation processes: 

𝑘𝑜𝑏𝑠 = 𝑘𝑟𝑎𝑑 + ∑ 𝑘𝑛
𝑛𝑟

𝑛                                                         (1.24) 

where 𝑘𝑛
𝑛𝑟are the non-radiative rate constants. 

Equation 1.23 is then related to the overall quantum yield, Q
Ln

L
, by Equation 1.25: 

𝑄Ln
L = η𝑠𝑒𝑛𝑠𝑄Ln

Ln                                                           (1.25) 

where ηsens is the sensitization efficiency – the efficiency of the energy transfer from the ligand to 

the Ln
III

.
40

 

 Experimentally, the quantum yield may be measured by the absolute method with a 

fluorimeter with a integration sphere which determines the amount of light absorbed and emitted 

in all directions.
40

 The absolute quantum yield is 

𝑄abs =
𝐸𝑐

[𝐿𝑎(λ𝑒𝑥𝑐)−𝐿𝑐(λ𝑒𝑥𝑐)]𝐹𝑎𝑡𝑡(λ𝑒𝑥𝑐)
                                                (1.26) 

where Ec is the integrated intensity of the entire emission spectrum, La is the integrated intensity 

of the light exciting the empty sphere at wavelength λexc, Lc is the integrated intensity of the light 

exiting the sphere containing sample and Fatt is a correction for the attenuators used.
40

  

Since the sensitization of Ln
III

 ions can occur through many mechanisms, the design of 

luminescent coordination compounds can be difficult. As a general rule, the ligand 
3
T* state 

should be approximately 2,500 to 3,000 cm
-1

 higher in energy than the Ln
III

 accepting state in 

order to limit back
-
energy transfer.

40
 The main accepting and ground states for each Ln

III
 ion can 

be seen in Figure 1.38. Additionally, energy difference between the 
1
S1* and 

3
T* ligand states 

should be around 5,000 cm
-1

 in order to allow the most efficient intersystem crossing to occur. 
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Finally, high energy vibrations such as C-H, N-H and O-H oscillators can quench lanthanide 

luminescence through vibronic coupling, therefore it is necessary to encapsulate the Ln
III

 ion 

fully to preclude the X-H oscillators within its vicinity.
126

 Finally, for use in in vivo and in vitro 

assays, water solubility and stability is important. 

 

 

Figure 1.38. Partial energy diagrams for the lanthanide ions. The main accepting levels are in red and 

ground state is in blue. Reprinted with permission from reference 125. Copyright 2005 Royal Society of 

Chemistry. 

 

Important Luminescent Complexes 

[Ln
III

L]
- 

 In 2012, Raymond and coworkers reported the synthesis of isostructural [Ln
III

L]
-
 

complexes (Ln
III

 = Sm, Eu, Tb, Dy, Ho), with the ligand H4L, which incorporated four TIAM 

chromophores attached to an H(2,2) backbone (Figure 1.39).
127

 The complex [Ho
III

L]
-
 displayed 

NIR emission at 990/1010 nm, 1210 nm and 1450 nm which correspond to the
 5

F5 → 
5
I7, 

5
I6 → 

5
I8 and 

5
F5 → 

5
I8 transitions, respectively (Figure 1.40). Additionally, there was visible emission 

at 645 nm corresponded to the 
5
F5 → 

5
I8 transition. This was the first Ho

III
 compound which 

exhibited the 1210 nm and 1450 nm emission in aqueous solution, as these transitions tend to be 
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very weak.
127

 The Sm
III

, Eu
III

, Tb
III

 and Dy
III

 also displayed luminescence in aqueous solutions 

with very small values for the hydration number, q. This suggested that the H4L ligand 

effectively shielded the Ln
III 

ions from external quenching. 

 

 

Figure 1.39. (a) Chemical structure of the H(2,2) scaffold and the TIAM chromophore. (b) Crystal 

structure of [Ho
III

L]
-
. Reprinted with permission from reference 127. Copyright 2012 Wiley-VCH Verlag 

GmbH & Co. KGaA.   

 

 

 

Figure 1.40. Emission spectra of [Ho
III

L]
- 
in water and less than 5% DMSO at λexc = 330 nm. Reprinted 

with permission from reference 127. Copyright 2012 Wiley-VCH Verlag GmbH & Co. KGaA.   
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Luminescent Ln[12-MC-4]2[24-MC-8] Metallacrowns  

 The Zn
II
 ion is d

10
 and, therefore, does not have visibly absorbing d-d transitions that 

would interfere with optical applications. A family of Ln
III

[12-MCZnIIN(L)-4]2[24-MCZnIIN(L)-8]
3+

 

(L = picHA or quinHA)  MCs were examined for lanthanide luminescence since the 

“encapsulated sandwich” structure completely restricts solvent access to the lanthanide ion 

(Figure 1.41). 

 The first series of MCs to be examined were of the form Ln
III

[12-MCZnIIN(picHA)-4]2[24-

MCZnIIN(picHA)-8]
3+

.
126

 In this system it was found that the absorption of the ligands was of 

insufficient energy to sensitize the visibly emitting lanthanides. However, for selected NIR 

emitting lanthanides (Ln
III

 = Yb
III

 and Nd
III

) sensitization was achieved in both deuterated and 

protonated solvents. In addition to the low hydration number, this system excludes high energy 

oscillators (CH, NH, OH bonds) from the proximity of the Ln
III

, preventing non-radiative 

deactivation. The synthetic achievements of this first generation of luminescent metallacrowns, 

including the determination of a delicate solvent dependence for the formation of the 

encapsulated sandwich structure, warranted further study.  

 In an effort to shift absorption into the near-visible region, the next generation of 

analogous MCs were synthesized using H2quinHA as the ligand to form Ln
III

[12-MCZnIIN(quinHA)-

4]2[24-MCZnIIN(quinHA)-8]
3+

 complexes.
122

 The typical π-π* absorption of the quinHA MCs 

remained similar to that of the picHA system; however, a new broad absorption band was 

observed at ca. 380 nm. This absorption was independent of choice in Ln
III

, and it would not be 

expected for Zn
II
 to participate in either metal-ligand charge transfer (MLCT) or ligand-metal 

charge transfer (LMCT) processes. It was, therefore, deduced that this new broad absorption is a 

ligand-based charge transfer, either an interligand CT through space between the 12-MC-4 and 
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24-MC-8 or an intraligand CT across one single ligand. This CT band was still of insufficient 

energy to sensitize visibly emitting lanthanides, but excitation through this CT state led to strong 

emission in the NIR. Strong emission from the Yb
III

, Nd
III

, and Er
III

 derivatives allowed 

collection of high resolution spectra (Figure 1.42), and the photophysical data is summarized in 

Table 1.1. Of particular note is the extraordinarily high quantum yields of luminescence for Nd
III

 

and Er
III

, in addition to the ability to sensitize this luminescence in the near-visible/visible region 

(380-400nm). While the distance between the Ln
III

 and antennae is relatively long compared to 

other systems, the low hydration number and exclusion of ligand based high energy oscillators 

outweigh this long distance to give one of the best organic-Ln
III

 sensitizing ligand systems.      

 

Figure 1.41. Single-crystal X-ray structures of Tb
III

[12-MCZnIIN( picHA)-4]2[24-MCZnIIN(picHA)-8]
3+

 viewed 

along the (a) a-axis and (b) c-axis and Dy
III

[12-MCZnIIN( quinHA)-4]2[24-MCZnIIN(quinHA)-8]
3+ 

viewed along the 

(c) a-axis and (d) c-axis. The 12-MC-4 MC ring is highlighted in bold. Color Scheme: teal – Ln
III

, gray-

purple - Zn
II
, red – oxygen, blue – nitrogen, gray – carbon. Reproduced from crystal structures from 

references 122 and 126.  
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Figure 1.42. (Left) Corrected and normalized excitation and (right) emission spectra of Ln
III

[12-MCZnIIN( 

quinHA)-4]2[24-MCZnIIN(quinHA)-8]
3+

 complexes in the solid state (λex = 420 nm, solid traces) and methanol 

solution (1 mg/mL, λex = 370 nm, dashed traces). (Top) Yb
III

, λem = 980 nm; (Middle) Nd
III

, λem = 1064 

nm; (Bottom) Er
III

, λem = 1525 nm. Reprinted with permission from reference 122. Copyright 2014 

American Chemical Society.    
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Table 1.1. Photophysical Parameters of Ln
III

[Zn
II
MCquinHA] and Ln

III
[Zn

II
MCpicHA] Complexes (Ln

III
 = Yb, 

Nd, Er) in Solid State and Methanol Solutions (1 mg/mL)
a
. Reprinted with permission from reference 

122. Copyright 2014 American Chemical Society. 

 

Compound state/solvent τobs/μs
b qc λex/nm 𝑄Ln

L /% 

YbIII[ZnIIMCquinHA] 

Solid 

CH3OH 

CH3OD 

47.8(4) 

14.88(1) 

150.7(2) 

0 370 

2.44(4) 

0.25(1) 

2.88(2) 

YbIII[ZnIIMCpicHA] 

Solid 

CH3OH 

CH3OD 

34.5(1) 

12.1(1) 

133(1) 

0 320 

0.40(2) 

0.13(1) 

1.60(3) 

NdIII[ZnIIMCquinHA] 

Solid 

CH3OH 

CH3OD 

1.79(2) 

1.16(1) 

4.11(3) 

0 370 

1.13(4) 

0.38(1) 

1.35(1) 

NdIII[ZnIIMCpicHA] 

Solid 

CH3OH 

CH3OD 

1.18(2) 

0.90(1) 

3.53(2) 

0 320 

0.40(1) 

0.22(2) 

0.98(1) 

ErIII[ZnIIMCquinHA] 

Solid 

CH3 

OH 

CH3OD 

5.73(2) 

1.25(1) 

11.40(3) 

- 370 

4.2(1)·10-2 

9.9(3)·10
-4 

3.6(1)·10
-2 

aData for 298 K. Standard deviation (2σ) between parentheses; estimated relative errors: τobs, 

±2%; 𝑄Ln
L , ±10%. bUnder excitation at 355 nm. cThe inner sphere hydration numbers were 

calculated according to the following equations: q
Yb = 2·(kCH3OH – kCD3OD – 0.1) (in μs) and qNd 

= 290 · (kCH3OH – kCD3OD) – 0.4 (in ns).  

 

1.7 Thesis Aims 

 The interplay between form (molecular structure) and function (physical properties) can 

be exploited using the metallacrown approach to molecular design. In particular, this thesis 

focuses on utilizing the tunable and predictable nature of metallacrowns in order to control the 

properties in magnetic (SMM and MCE) and luminescent phenomena. The flexibility of this 

strategy allows for the synthesis of 3d, mixed 3d/4f and pure 4f (from a magnetic and 

spectroscopic point of view) complexes. Magnetic interactions, ligand field, second coordination 

sphere effects and even crystal packing can have drastic effects on the magnetic and luminescent 

properties of these molecules and will be examined in this thesis.  

 Chapter II will focus on a family of Ln
III

2Ga
III

4 compounds, in which the Dy
III

 derivative 

displays SMM behavior. Since Ga
III

 is diamagnetic, these complexes can be considered as pure 

4f based molecules. In Chapter III, we will investigate the superparamagnetic properties of 
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mixed M
III

/Ln
III

 (M
III

 = Mn
III

, Fe
III

 and Ga
III

) complexes in order to examine how 3d/4f 

interactions affect slow magnetic relaxation. Magnetic refrigerants based on Fe
III

 9-MC-3 

complexes will be studied in Chapter IV. Chapter V will diverge from the magnetic properties 

and instead examine the luminescent behavior of Ln
III

Ga
III

4 complexes. Finally, the 

understanding gained from this thesis research, along with future research directions will be 

recapitulated in Chapter VI. 
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Chapter II 

Assessing the Exchange Coupling and the Slow Relaxation of the 

Magnetization in Binuclear Lanthanide(III) Metallacrown Complexes 

 

2.1 Introduction 

 In order to increase spin, magnetic anisotropy and subsequently, the energy barrier, 

much of the current SMM research has shifted from transition metal complexes such as 

[Mn12O12(OCR)16(H2O)4],
1-2

 to lanthanide based complexes.
3
 Due to strong unquenched 

orbital angular momentum and significant spin-orbit coupling, lanthanide ions possess 

large intrinsic anisotropy such that even mononuclear lanthanide complexes can exhibit 

slow magnetic relaxation.
4-10

  

 Unlike their  transition-metal counterparts, lanthanide-based SMMs are at the 

weak-exchange limit,
11

 and have dynamic magnetic behavior which cannot be adequately 

described within the framework of the zero-field splitting phenomenon,
12

 which can be 

used to understand the origin of the energy barrier in transition-metal SMMs. 

Furthermore, lanthanide SMMs display dynamic magnetization behavior that can be 

complicated by the presence of multiple relaxation pathways.
13

 Nonetheless, when it 

comes to designing SMMs with large energy barriers, more metal centers may be better, 

as it has been shown that metal-metal exchange coupling can aid in suppressing quantum 

tunneling phenomena that occur in transition metal complexes
14

 and later for lanthanide-

based SMMs.
15
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 Correspondingly, SMMs with some of the largest energy barriers reported to date 

have been multinuclear lanthanide complexes.
16-18

 Unfortunately, due to the radial 

contraction of 4f orbitals, lanthanide-lanthanide interactions tends to be weak and most 

polymetallic lanthanide SMMs have magnetic properties which are of single-ion origin;
3
 

for instance a tetranuclear Dy
III

4 exhibited barrier heights of 9.7 and 107 K corresponding 

to two crystallographically independent Dy
III

 sites.
17

 In these compounds, the variable 

temperature ac data show only one distinct relaxation peak indicative of the single-ion 

relaxation. In order to understand magnetic behavior in complex polynuclear SMMs, 

simpler model systems are essential in elucidating the underlying 4f-4f interactions.
19-23

  

 Although the traditional MC design strategy only predicts mono-lanthanide 

compounds, poly-lanthanide metallacrowns can be synthesized by connecting MCs 

through carboxylate bridges
24-25

 or by serendipity, as with various Ln
III

-Mn
III

 compounds 

synthesized by Boron.
26

 The structural promiscuity of typical metallacrown ligands such 

as salicylhydroxamic acid (H3shi) allows for crystallization of unpredictable structure 

types.  This chapter will focus on the synthesis and characterization of an isotructural 

series of symmetric hexanuclear Ga4
III

-Ln2
III

 compounds with the general formula 

[Ga4Ln2(shi
3-

)4(Hshi
2-

)2(H2shi
-
)2(C5H5N)4(CH3OH)(H2O)] · 3C5H5N · 2CH3OH · 3H2O 

(Ln
III

 =  Gd
III

, Tb
III

, Dy
III

, Er
III

, Y
III

, Y
III

0.9Dy
III

0.1), and will be referred to as Ga4Ln2. To 

the best of our knowledge, compound Ga4Dy2 is the first reported example of an 

antiferromagnetically coupled Ising-like lanthanide dimer with a diamagnetic ground state 

that shows a slow relaxation of the magnetization and an opening of the hysteresis loop at 

zero magnetic field, a behavior that was observed in the antiferromagnetically coupled 

Dy3 complexes.
27
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2.2 Experimental  

 All reagents were purchased from commercial sources and were used without further 

purification. Elemental analysis was performed by Atlantic Microlabs Inc. All reactions were 

carried under aerobic conditions. 

Synthetic Methods 

 Gd2Ga4: Salicylhydroxamic acid (153.1 mg, 1.000 mmol), Gd(NO3)3·6H2O (112.8 

mg, 0.2500 mmol), Ga(NO3)3·xH2O (127.9 mg, 0.5000 mmol) were dissolved in 46 mL 

methanol. 13 mL pyridine was added drop wise to this solution, followed by 6.5 mL H2O. 

The solution was stirred for 30 seconds and then filtered. Slow evaporation of half of the 

solution yielded crystalline compound after 2 weeks. Yield: 0.0850 g (26.9%), Anal. 

Calcd for Gd2Ga4C94H93.62N15O31.31: C, 44.66; H, 3.73; N, 8.31. Found: C, 43.94; H, 3.64; 

N, 8.37. Single-crystal unit cell: monoclinic, space group C2/c, a = 25.2329 Å, b = 

22.0543 Å, c = 17.9967 Å, α = 90.0000˚ β =, 99.090˚, γ = 90.0000˚, V = 10043.9599 Å
3
. 

 General Procedure for Tb2Ga4, Dy2Ga4, Er2Ga4 and Y2Ga4: Salicylhydroxamic 

acid (153.1 mg, 1.000 mmol), Ln(NO3)3·xH2O (0.2500 mmol), Ga(NO3)3·xH2O (127.9 

mg, 0.5000 mmol) were dissolved in 21 mL methanol. 6 mL pyridine was added dropwise 

to this solution, followed by 3 mL H2O. The solution was stirred for 30 seconds and then 

filtered. Slow evaporation of half of the solution yielded crystalline compound after 2 

weeks.  

 [Ga4Tb2] Yield: 0.0892 g (28.3%),  Anal. Calcd for Tb2Ga4C94H93N15O31: C, 

44.70; H, 3.71; N, 8.32. Found: C, 44.45; H, 3.63; N, 8.38. Single-crystal unit cell: 

monoclinic, space group C2/c, a = 25.1697 Å, b = 22.1217 Å, c = 17.9895 Å, β = 

99.302˚, V = 9884.8 Å
3
. 
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 [Ga4Dy2] Yield: 0.1291 g (40.8%),  Anal. Calcd for Dy2Ga4C94H93N15O31: C, 

44.58; H, 3.70; N, 8.30. Found: C, 44.76; H, 3.41; N, 8.38. Single-crystal unit cell: 

monoclinic, space group C2/c, a = 25.1638 Å, b = 22.1781 Å, c = 18.0649 Å, β = 

99.353˚, V = 9947.72 Å
3
. 

 [Ga4Er2] Yield: 0.0947 g (29.8%),  Anal. Calcd for Er2Ga4C93H91N15O31: C, 

44.41; H, 3.69; N, 8.26. Found: C, 44.28; H, 3.58; N, 8.49. Single-crystal unit cell: 

monoclinic, space group C2/c, a = 25.1476 Å, b = 22.1380 Å, c = 18.0285 Å, α = 

90.0000˚ β = 99.1768˚, γ = 90.0000 ˚, V = 9908.3211 Å
3
. 

 [Ga4Y2] Yield: 0.1607 g (53.9%),  Anal. Calcd for Y2Ga4C94H93N15O31: C, 47.328; 

H, 3.929; N, 8.807. Found: C, 47.54; H, 3.75; N, 8.86. Single-crystal unit cell: 

monoclinic, space group C2/c, a = 25.1043 Å, b = 22.1794 Å, c = 18.0733 Å, α = 90.000˚ 

β = 99.377˚, γ = 90.000 ˚, V = 9908.3211 Å
3
. 

 Y1.8Dy0.2Ga4: Salicylhydroxamic acid (153.1 mg, 1.000 mmol), Dy(NO3)3·5H2O 

(11.0 mg, 0.0250 mmol), Y(NO3)3·5H2O (82.1 mg, 0.225 mmol),  Ga(NO3)3·xH2O (127.9 

mg, 0.5 mmol) were dissolved in 21 mL methanol. 6 mL pyridine was added drop wise to 

this solution, followed by 3 mL H2O. The solution was stirred for 30 seconds and then 

filtered. Slow evaporation of half of the solution yielded crystalline compound after 2 

weeks. Yield: 0.1363 g (45.4%),  Anal. Calcd for Y1.8Dy0.2Ga4C94H93N15O31: C, 47.04; H, 

3.91; N, 8.75. Found: C, 46.82; H, 3.76; N, 8.94. Single-crystal unit cell: monoclinic, 

space group C2/c, a = 25.1476 Å, b = 22.1380 Å, c = 18.0285 Å, α = 90.0000˚ β = 

99.1768˚, γ = 90.0000 ˚, V = 9908.3211 Å
3
. 
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Physical Methods  

X-ray Crystallography. Single-crystal X-ray diffraction data for Ga4Gd2, Ga4Dy2, Ga4Er2 and 

Ga4Y2 were collected by Jeff W. Kampf at the University of Michigan. The crystal data for 

Ga4Tb2 were collected by Régis Guillot at the Université de Paris Sud 11 in Orsay. I completed 

structural refinements on all the data sets.   

 Crystal data for compound Ga4Gd2 were collected at 85(2) K on a Bruker 

SMART-APEX CCD-based X-ray diffractometer equipped with a low temperature device 

and fine-focus Mo-target X-ray tube (λ = 0.71073 Å), operated at 1500 W power (50 kV, 

30 mA). The frames were integrated with the Bruker SAINT
28

 software package with a 

narrow frame algorithm. The data were processed with SADABS
29

 and corrected for 

absorption. 

 Crystal data for compound Ga4Tb2 were collected on a Kappa X8 APPEX II 

Bruker diffractometer with graphite-monochromated Mo Ka radiation ( = 0.71073 Å). 

Crystals were mounted on a CryoLoop (Hampton Research) with Paratone-N (Hampton 

Research) as cryoprotectant and then flashfrozen in a nitrogen-gas stream at 100 K. The 

temperature of the crystal was maintained at the selected value (100K) by means of a 700 

series Cryostream cooling device to within an accuracy of ±1 K. The data were corrected 

for Lorentz polarization, and absorption effects. 

 Crystal data for compounds Ga4Dy2, Ga4Er2 and Ga4Y2 were collected at 85(2) K 

on an AFC10K Saturn 944+ CCD-based X-ray diffractometer equipped with a 

Micromax007HF Cu-target microfocus rotating anode (λ = 1.54187 Å), operated at 1200 

W power (40 kV, 30 mA). The data were processed with CrystalClear 2.0 and corrected 

for absorption.
30
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     All structures were solved and refined with the SHELXTL (version 6.12) software 

package.
31

 All non-hydrogen atoms were refined anisotropically. Hydrogen atoms are 

placed in their idealized positions. Additional details are provided in Table 2.1. Selected 

bond lengths are given in Table 2.2.  

Magnetic Measurements. Variable-temperature susceptibility, variable-field magnetization and 

ac susceptibility measurements on polycrystalline samples mulled in eicosane were performed on 

a Quantum Design MPMS SQUID magnetometer. Variable-temperature dc susceptibility 

measurements were performed at 2000 Oe from 2-300 K. Isothermal magnetization 

measurements were performed at 2 K from 0-7 T. AC magnetic susceptibility measurements 

were done at both zero and applied fields (2000 Oe for Ga4Dy2 and 750 Oe for Ga4YDy) with an 

ac drive field of 3 Oe at frequencies ranging from 1 to 1488 Hz. Dc susceptibilities were 

corrected for the sample holder and eicosane and for diamagnetism of constituent atoms using 

Pascal’s constants. 

Micro-SQUID Measurements. Micro-SQUID measurements were performed by Wolfgang 

Wernsdorfer (Université J. Fourier, France). Magnetization measurements on oriented single 

crystals were carried out with an array of micro-SQUIDs.
32

 The field aligned parallel to the easy-

axis of magnetization by the transversal field method.
33

 Measurements were performed at a 

temperature range from 0.03 to 5 K in fields up to 1.1 T with sweep rates between 0.008 and 

0.280 T/s. 

Computational Details. Ab initio calculations were  performed by Hélène Bolvin (Université 

Toulouse III, France) with assistance from Jochen Autschbach and Frederic Gendron (University 

at Buffalo, State University of  New York). The following computational methodologies were 

written by Hélène Bolvin. Calculations are performed using the crystallographic geometry.   
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Table 2.1. Crystallographic Details for the isostructural Ga4Ln2 complexes.  

 Ga4Gd2 Ga4Tb2 Ga4Dy2 Ga4Er2 Ga4Y2 

mol formula 
Ga4Gd2C94H93.62N15O31.

31 

Ga4Tb2C94H93N15O

31 

Ga4Dy2C94H93N15O

31 

Ga4Er2C93H91N15O

31 

Ga4Y2C94H93N15O

31 

fw (g/mol) 2527.80 2525.55 2532.71 2528.21 2385.53 

cryst syst/ 

space group 
Monoclinic, C2/c Monoclinic, C2/c Monoclinic, C2/c Monoclinic, C2/c Monoclinic, C2/c 

T (K) 85(2) 100(1) 85(2) 85(2) 85(2) 

wavelength 

(Å) 
0.71073 0.71073 1.54178 1.54178 1.54178 

a (Å) 25.233(5) 25.1697(6) 25.1638(18) 25.1476(5) 25.1053(18) 

b (Å) 22.054(4) 22.1217(6) 22.1781(4) 22.1380(4) 22.1794(4) 

c (Å) 17.997(4) 17.9895(5) 18.0649(3) 18.0285(13) 18.0733(3) 

α (deg) 90 90 90 90 90 

β (deg) 99.09(3) 99.3020(10) 99.353(7) 99.177(7) 99.377(7) 

γ (deg) 90 90 90 90 90 

V (Å3) 9889.3(3) 9884.8(5) 9947.7(8) 9908.3 9929.1(8) 

Z 4 4 4 4 4 

density, ρ 

(g/cm3) 
1.698 1.697 1.691 1.695 1.596 

abs coeff, µ 

(mm-1) 
2.486 2.462 9.839 4.949 3.460 

F(000) 5060 5056 5063 5048 4848 

θ range for 

data 

collection 

(deg) 

1.59 – 25.44 1.59 – 30.67  3.44 – 68.23      3.45 – 68.24  3.44 – 68.25   

limiting 

indices 

-30 ≤ h ≤ 30, 

 -26 ≤ k ≤ 26, 

 -21 ≤ l ≤ 21 

-30 ≤ h ≤ 36,             

 -31 ≤ k ≤ 31,  

-25 ≤ l ≤ 25 

-27 ≤ h ≤ 29 

-26 ≤ k ≤ 26 

 -21≤ l ≤ 21 

-30 ≤  h ≤ 30, 

 -26 ≤  k ≤ 26, 

 -21 ≤  l ≤ 21 

-30 ≤ h ≤ 30,  

-26 ≤ k ≤ 25, 

 -21 ≤ l ≤ 21 

reflns 

collected/ 

unique 

76042 / 9136 152738 / 15061 133023 / 9072 139170 / 9069 140855 / 9097 

completenes

s to θ (%) 
99.8 99.2 99.5 99.9 100.0 

no. of data/ 

restraints/ 

params 

9136 / 128 / 745 15061 / 70 / 750 9072 / 92 / 746 9069 / 76 / 741 9097 / 175 / 744 

goodness of 

fit on F2 1.075 1.130 1.031 1.100 1.103 

final R 

indices   

[I > 2σ(I)] 

R1a = 0.0422 

wR2b = 0.1051 

R1 a = 0.0372 

wR2 b = 0.0814 

R1a = 0.0572 

wR2b = 0.1545 

R1a = 0.0868 

wR2b = 0.2382 

R1 a = 0.0437 

wR2 b = 0.1221 

R indices 

(all data) 

R1a = 0.0616 

wR2b = 0.1206 

R1 a = 0.0657 

wR2 b = 0.0980 

R1a = 0.0627 

wR2b = 0.1591 

R1b = 0.0957 

wR2a = 0.2574 

R1 a = 0.0459 

wR2 b = 0.1238 

largest diff 

peak and 

hole (e- Å-3) 

1.657 and -0.742 1.467 and -0.899 1.792 and -1.514 2.175 and -0.899 0.942 and -0.745 

a
R1 = Σ(||Fo| − |Fc||)/Σ|Fo|.

b
wR2 = [Σ[w(Fo

2
− Fc

2
)

2
]/Σ[w(F°)

2
]]

1/2
; w = 1/[σ

2
(Fo

2
) + (mp)

2
+ np]; p = [max(Fo

2
,0) + 

2Fc
2
]/3 (m and n are constants); σ = [Σ[w(Fo

2
− Fc

2
)

2
]/(n − p)]

1/2
. 
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Table 2.2. Selected bond lengths for Ga4Ln2 complexes.  

Compound Bond Length (Å) Compound Bond Length (Å) 
G

a
4
G

d
2
 

Gd(1)-O(1) 2.301(4) 

G
a

4
T

b
2
 

Tb(1)-O(1) 2.272(3) 

Gd(1)-O(9) 2.326(3) Tb(1)-O(9) 2.303(3) 

Gd(1)-O(2) 2.329(3) Tb(1)-O(2) 2.311(3) 

Gd(1)-O(2a) 2.343(3) Tb(1)-O(2a) 2.323(3) 

Gd(1)-O(5) 2.349(3) Tb(1)-O(5) 2.333(3) 

Gd(1)-O(510) 2.381(12) Tb(1)-O(510) 2.358(18) 

Gd(1)-O(7) 2.427(3) Tb(1)-O(7) 2.417(3) 

Gd(1)-O(11) 2.550(3) Tb(1)-O(500) 2.46(2) 

Gd(1)-O(500) 2.56(4) Tb(1)-O(11) 2.541(3) 

G
a

4
D

y
2
 

Dy(1)-O(1) 2.268(3) 

G
a

4
E

r 2
 

Er(1)-O(1) 2.251(4) 

Dy(1)-O(9) 2.309(3) Er(1)-O(9) 2.282(5) 

Dy(1)-O(2) 2.319(4) Er(1)-O(2) 2.296(4) 

Dy(1)-O(2a) 2.320(3) Er(1)-O(2a) 2.298(4) 

Dy(1)-O(5) 2.328(3) Er(1)-O(5) 2.308(4) 

Dy(1)-O(510) 2.365(11) Er(1)-O(510) 2.23(2) 

Dy(1)-O(7) 2.403(4) Er(1)-O(7) 2.370(4) 

Dy(1)-O(500) 2.48(2) Er(1)-O(500) 2.48(2) 

Dy(1)-O(11) 2.530(4)   Er(1)-O(11) 2.513(5) 

G
a

4
Y

2
 

Y(1)-O(1) 2.258(2) 
L

n
-L

n
 D

is
ta

n
ce

 (
Å

) 
  

Y(1)-O(9) 2.288(2)   

Y(1)-O(2) 2.292(2) Ga4Gd2 3.8558(9) 

Y(1)-O(2a) 2.313(2) Ga4Tb2 3.8323(4) 

Y(1)-O(5) 2.316(2) Ga4Dy2 3.8393(7) 

Y(1)-O(510) 2.369(10) Ga4Er2 3.8252(8) 

Y(1)-O(7) 2.393(2) Ga4Y2 3.8247(6) 

Y(1)-O(500) 2.397(19)   

Y(1)-O(11) 2.524(2)   

 

Magnetic properties were calculated using first principle methods on a monomeric species by 

replacing one of the lanthanide by a diamagnetic lutetium of configuration 4f
14

.  Since the two 

lanthanide atoms are related by an inversion center, there is only one type of monomer. All 

atoms are described with all electron basis sets ANO-RCC,
34-35

 Ln atoms with TZP quality, N 

and O atoms with DZP quality and other atoms with DZ quality. The excited states of the 

complexes have been calculated with the SO-CASSCF method using the MOLCAS78 suite of 

programs.
36

 The active space consists of n electrons in the 7 4f orbitals for an atom of 

configuration 4f
n
. First, a CASSCF (Complete Active Space Self Consistent Field) calculation is 
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performed:
37

 all the states with the maximal value of the spin are considered in the state average 

procedure. In the case of gadolinium, all the sextet states are considered in addition to the 

octuplet ground state. Spin-orbit coupling is evaluated as a state interaction between all CASSCF 

wave functions by the RASSI (Restricted Active Space State Interaction) method.
38

 Spin-Orbit 

(SO) integrals are evaluated within the AMFI approximation.
39

 The calculation of all the 

properties is implemented in a local program. g factors are calculated according to reference 
40

 

even in the case of non-degenerate states (see Appendix A for details). The dipolar magnetic 

interaction is calculated as  

𝐻̂𝑑𝑖𝑝 =
𝜇0

4𝜋𝑅3 {𝑀⃗⃗ ̂𝐴. 𝑀⃗⃗ ̂𝐵 − 3𝑀̂𝑧
𝐴 𝑀̂𝑧

𝐵}                                       (2.1) 

where 𝑅 is the intermetallic distance, 𝑧 the intermetallic direction  and 𝜇0  the magnetic constant. 

The exchange interactions are carried by the spin densities and are described by a Heisenberg-

Dirac-Van Vleck (HDVV) Hamiltonian 

𝐻̂𝐻𝑒𝑖𝑠 = −𝐽 𝑆 ̂𝐴 ⋅ 𝑆 ̂𝐵                                                    (2.2) 

𝑀⃗⃗ ̂𝐴(𝐵) and 𝑆 ̂𝐴(𝐵) are the total and spin momentum operators for site A(B). This scheme has been 

first proposed by Lines in the 70s,
41

 it has been applied to lanthanide complexes by Sutter et al in 

2002
42

 and since 2007, is applied in the group of Chibotaru
43

 A local modification of MOLCAS 

was used to generate natural spin orbitals (NSOs) from SO-CASSCF calculations
44

 (Appendix 

A).  

2.3 Results and Discussion  

 Synthesis and Characterization. The multidentate ligand salicylhydroxamic acid 

(H3shi) has been used in the synthesis of numerous metallacrown complexes,
45

 including 

several single-molecule magnets.
46-48

 Both predictable structure types (such as 9-MC-3, 

12-MC-4) as well as compounds with unpredictable molecular geometry can be 
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synthesized with H3shi by adjusting reaction and solvent conditions, allowing for 

isolation and study of a wide array of multinuclear metallacrown complexes. Pyridine 

(which acts as a base, a solvent and a ligand) has unique properties, which have resulted 

in several metallacrown complexes with both previously known and new structure 

types.
46, 49-50

 This multipurpose solvent aids in crystallization by forming π-interactions 

and coordinates to metal sites, forming structures whose architectures are directed by π-

interactions and steric effects.  

 The reaction of H3shi, Ga(NO3)3·xH2O  and Ln(NO3)·xH2O a 4:2:1 stoichiometric 

ratio in a solution of methanol, pyridine and water followed by slow evaporation of 

solvent afforded neutral macrocyclic complexes (Scheme 2.1) with the general formula 

[Ga4Ln2(shi
3-

)4(Hshi
2-

)2(H2shi
-
)2(C5H5N)4(CH3OH)(H2O)] · 3C5H5N · 2CH3OH · 3H2O. 

The structures of Ga4Ln2 compounds were determined by X-ray crystallography to be 

isostructural and crystallize in the monoclinic space group C2/c (Table 2.1). Slight 

differences in the composition of bound and lattice solvents were observed across the 

series of complexes. Compound Ga4YDy was determined to have the same unit cell 

parameters and is isostructural to Ga4Dy2 and Ga4Y2. It was synthesized with 10% Dy
III

 

and 90% Y
III

 in solution. Statistically speaking, such a reaction would form crystals 

composed of 81% Ga4Y2 (diamagnetic), 18% Ga4YDy and 1% Ga4Dy2. 

 As a representative example, the structure of compound Ga4Dy2 (Figure 2.1) can be 

described as a centrosymmetric μ2-oxo bridged di-lanthanide core surrounded by four peripheral 

Ga
III

 ions. In the core moiety of the asymmetric unit, one Dy
III

 and two Ga
III

 ions are chelated by 

four fully and partially deprotonated ligands and coordinated by pyridine and methanol or water 

solvent molecules. In Figure 2.1, Dy1 is chelated by the carbonyl (O1) and hydroximate oxygens  
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Scheme 2.1. Synthesis of Ga4Ln2 complexes. 

 

(O2) carbonyl (O1) and hydroximate oxygens (O2) of an in-plane shi
3- 

and by the 

carbonyl (O7) and phenoxide oxygens of an out-of-plane Hshi
2-

. The symmetry-generated 

hydroximate oxygen O2a also coordinates to Dy1, to form a Dy2(µ2-O)2 core. 

Hydroximate oxygens from an in-plane shi
3- 

(O5) and Hshi
2- 

(O11) also coordinate, 

bridging Dy1 to Ga2a and Ga1 respectively.  Dy1 is capped by a disordered water (O510) 

or methanol (O500, C500) with shared occupancy, to complete the coordination sphere 

around Dy1 which can be described as having distorted 8-coordinate trigonal 

dodecahedral geometry as determined by the SHAPE software (Appendix A, Table A1).
51

 

The four outer Ga
III 

cations, with roughly octahedral geometry, surround the two central 

Dy
III

 ions and are ligated by fully and partially deprotonated H3shi. Four fully 

deprotonated shi
3-

 and two H2shi
-
 coordinate the four Ga

III 
and two Dy

III
 ions to form the 

molecular plane, with two doubly deprotonated Hshi
2-

 pointing above and below the 

plane. (Figure 2.1).  
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Figure 2.1. X-ray crystal structure of complex Ga4Dy2. Top view (left) and Side view (middle). 

The first coordination sphere around the Dy
III

 is in distorted trigonal dodecahedral geometry 

(right). Color code: teal spheres = Dy
III

; salmon spheres = Ga
III

; gray = C; red = O; blue = N. 

Hydrogen atoms and lattice solvents are omitted for clarity. 

 

 

 DC Magnetic Studies and Theoretical Calculations. For complexes Ga4Gd2, 

Ga4Tb2, Ga4Dy2, Ga4Er2 and Ga4YDy, the variable-temperature dc susceptibility 

measurements were performed at an applied field of 2000 Oe from 2 to 300 K (Figure 

2.2).; the variable-field magnetization measurements were performed at 2 K from 0 to 7 T 

(Figure 2.3). The general behavior of all compounds is consistent with other lanthanide 

complexes reported in the literature.
21, 27, 52

 

 (i) Ga4Gd2. The room temperature χmT value for Ga4Gd2 (Gd
III

: 
8
S7/2, 15.9 cm

3 
K 

mol
-1

) is in good agreement with the expected value for two non-interacting Gd
III

 ions. 

Upon cooling, χmT is almost constant down to T = 10 K and then slightly decreases to 

reach a value of 7.8 cm
3 

K mol
-1

 at 2 K. This decrease is probably due to an 

intramolecular antiferromagnetic exchange coupling between the two Gd
III

 ions. The 

magnetization curve increases with the applied magnetic field and reaches saturation 

(13.8 Bohr Magneton) at 7 T. It is possible to fit the susceptibility and the magnetization 

data using a model based of the spin Hamiltonian 

 H = – JSGd1·SGd2 + gßHzSz                                            (2.3) 
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with g = 1.98 and J = – 0.16 cm
-1

 where g is the Lande factor and J the interaction 

parameter between the local S = 7/2 spins of the Gd
III

 ions (Figures 2.2 and 2.3, top left). 

This value is in agreement with those reported in the literature for dinuclear µ-oxo Gd
III

 

with a similar geometry.
53

 The Gd
III

 ion has no first order angular momentum and 

negligible zero field splitting. In such a case, the dipolar interaction is expected to be very 

weak. Thus, the antiferromagnetic interaction found experimentally is mainly due to 

superexchange and splits the S = 0 and S = 7 states by an energy equal to 4.48 cm
-1

 

(JS(S+1)/2, with |J| = 0.16 cm
-1

 and S = 7) (Appendix A, Tables A2 and A3). 

 

Figure 2.2. Temperature dependence of the χT product at 2000 Oe for Ga4Gd2 (top left), Ga4Tb2 

(top right), Ga4Dy2 (bottom left), Ga4YDy (bottom right). The solid lines correspond to the best fit 

(see text). 
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Figure 2.3. Magnetization vs. applied field at 2 K for Ga4Gd2 (top left), Ga4Tb2 (top right), 

Ga4Dy2 (bottom left), Ga4YDy (bottom right). The solid lines correspond to the best fit (see text). 

 

 (ii) Ga4Tb2, Ga4Dy2 and Ga4YDy. The χmT product and the field dependent 

magnetization at 2 K for Ga4YDy (Figure 2.2 and 2.3) show magnetic behavior expected 

for a mononuclear Dy
III

 complex (
6
H15/2, C = 14.17 cm

3 
K mol

-1
). Ab initio calculations 

allows for the determination of the spectrum of the energy levels and the associated gi 

values where i = 1, 2 and 3 are the directions of the g anisotropy tensor with 1 

corresponding to the largest value (Appendix A, Table A4). The ground state corresponds 

to MJ = ±15/2 with a very large g1 = 19.85 (g2 = 0.08, g3 = 0.04) value, indicating an easy 

axis of the magnetization as depicted in Figure 2.4. The magnetization axis forms an  
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Figure 2.4. Orientation of the magnetization axis of the ground Kramer doublet MJ = ± 15/2 of 
the Dy

III
 ion in Ga4YDy. 

 

angle of 79° with the Dy–Dy axis and is very close to the plane containing the Dy
III

 ions 

and the bridging oxygen atoms. The experimental magnetic data can be reproduced using 

the MJ energy spectrum determined from ab initio calculations (Figure 2.2 and 2.3, 

bottom right), which confirm the nature of the ground level (MJ = ±15/2) and the fact that 

the diluted compound contains mainly the paramagnetic Ga4YDy species. 

 The χmT product for Ga4Tb2 and Ga4Dy2 have the usual behavior expected for 

Tb
III

 and Dy
III

 ions (
7
F6 ground state C = 11.82 cm

3 
mol

-1 
K for an isolated Tb

III
). For both 

complexes, it slowly decreases from 300 K to around 50 K and then more abruptly 

(Figure 2.2). This behavior is due to the thermal depopulation of excited MJ sublevels and 

may be also to the presence of an antiferromagnetic interaction between the lanthanide 

ions. The magnetization measured at 2 K presents a sigmoidal shape at low applied 

magnetic fields with an inflection point around 0.5 T, which is the signature of the 

presence of an antiferromagnetic coupling within the two compounds (Figure 2.3). It is 

worth noting that the magnetization vs. field curve of Ga4YDy does not possess an  
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Figure 2.5. Magnetization vs. applied field at T = 1 and 0.03 K for Ga4Dy2, with the crystal 

anisotropy axis oriented parallel to the magnetic field. The thin solid lines are the experimental 

data; thick solid lines correspond to the best fit (see text). 

 

inflection point and its χmT product value at 2 K (10.8 cm
3 

mol
-1 

K) is larger than that of 

Ga4Dy2 (2.6 cm
3 

mol
-1 

K per 1 Dy
III

), which confirm that the inflection point in Ga4Dy2 is 

due to intra- and not to intermolecular antiferromagnetic interactions. In order to more 

accurately determine the value of the inflection point in the M = f(μ0H) curve, the 

magnetization of a single crystal of Ga4Dy2 was measured at very low temperatures using 

an array of micro-squids, with the magnetic field parallel to the anisotropy axis of the 

crystal. The curves at T = 1 and 0.03 K show sharp steps and a crossing point at μ0H = 

0.51 T (Figure 2.5). 

 These sharp steps are the result of the crossover from an antiparallel 

(antiferromagnetic: AF) to a parallel (ferromagnetic: F) alignment of the anisotropic 

moment of the two Dy
III

 ions. The value of the magnetic field at the crossing point allows 
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for the determination of the energy gap, ΔE, between the AF and the F states using 

Equation 1.1, where ΔE = g1*β*μ0H = 19.47*0.496*0.51 = 4.9 cm
-1

. The ab initio 

calculations for an isolated Dy
III

 ion (Figure 2.4) confirm that the magnetic dipole 

interaction between the two Dy
III

 ions in Ga4Dy2 is antiferromagnetic, which is expected 

since the easy magnetization axis is almost perpendicular to the Dy–Dy axis. These 

calculations lead to an AF-F energy gap of 1.26 cm
-1

, which is well below the 

experimental one extracted from the micro-SQUID magnetization data (4.9 cm
-1

). In 

order to account for the experimental energy gap, an additional interaction due to the 

exchange coupling between the two Dy
III

 ions was introduced (Equation 2.2). A good fit 

of the susceptibility, magnetization and micro-SQUID data of Ga4Dy2 is obtained using a 

Jexc value of – 0.29 cm
-1

 (Figures 2.3 and 2.5; Appendix A, Table A5). The difference 

between the calculated and the experimental micro-SQUID data at low temperature 

(Figure 2.5) is due to the presence of intermolecular dipolar interaction within the crystal 

which are dominant at low temperatures. 

 For Ga4Tb2, the situation is similar to that of the Dy analogue. An easy axis of 

magnetization is present: g1 = 17.85 and g2 = g3 = 0 for the 𝑀𝐽 = ± 6 ground levels 

(Appendix A, Table A6). The axis of anisotropy forms an angle of 79° with the Tb – Tb 

intermetallic axis (Figure 2.6). The computed dipolar interaction leads to a splitting 

between the AF (ground level) and the F states of 0.5 cm
-1

, which is not sufficient to 

reproduce the experimental data (Appendix A, Table A7). As is the case with Ga4Dy2, 

introducing an additional antiferromagnetic exchange interaction (J = – 0.12 cm
-1

) 

increases this energy by 2.7 cm
-1

 and allows for a reasonable fitting of the magnetic data 

(Figure 2.3, top right; Appendix A, Table A7).  
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Figure 2.6. Orientation of the magnetization axis of the ground Kramer doublet MJ = ± 15/2 of 

the Tb
III

 ion in Ga4Tb2, where one Tb
III

 has been replaced by a Lu
III

 ion. 

 

 (iii) Ga4Er2. The χmT value at room temperature (22.7 cm
3 

mol
-1 

K) corresponds to 

two isolated Er
III

 ions (Er
III

: 
4
I15/2, C = 11.5 cm

3 
K mol

-1
) (Figure 2.7). Upon cooling, χmT 

slightly decreases and reaches a value of 12.9 cm
3 

K mol
-1

 at 2 K, as expected for 

anisotropic ions. The magnetization curve increases sharply between 0 and 1 T and then 

continuously up to 7 T without reaching saturation (Figure 2.7).  

 No inflection point is present at low magnetic field, which excludes the presence 

of an antiferromagnetic coupling as for the other compounds. For the ground state, the ab 

initio calculations give three different g values: g1 = 9.94, g2 = 5.25 and g3 = 0.25 

(Appendix A, Table A8). The magnetic anisotropy is planar, with two non-equivalent 

directions. The largest magnetization direction (along g1) is found in a direction forming 

an angle of 32° with the intermetallic axis and lies almost in the Er2O2 plane (Figure 2.8).  

 The magnetization curve computed from ab initio calculations, does not fit the 

experimental data for Ga4Er2. A scaling factor of 1.8 increases the energy of the first 

excited state and reduces the effect of second order Zeeman interaction (see Appendix A 
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Figure 2.7. Temperature dependence of the χT product at 2000 Oe (left) and magnetization vs. 

applied field at 2 K for Ga4Er2. The solid lines correspond to the best fit (see text). 

 

 
Figure 2.8. Orientation of the two components of the easy plane of magnetization for the ground 

Kramer’s doublet of Er
III

 ion in Ga4Er2 where one Er
III

 has been replaced by a Lu
III

 ion.  

 

for details of the calculations) and improves the agreement of theoretical and 

experimental curves, particularly above 1 T. Since the planes of magnetization form a 

small angle with the intermetallic axis, the dipolar interaction is ferromagnetic. The 

magnetic behavior in the weak field region can be reproduced by considering the presence 

of a ferromagnetic coupling between the two ions due to exchange (Jexch
 
 = +2.4 cm

-1
) 

(Figure 2.7; Appendix A, Table A9). It is worth noting that when the ground state has a 

weak MJ value and the excited states are close to the ground one as in the present case, a 
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very weak error on the energy values and on the gi values may have a dramatic effect on 

the shape of the magnetization curve. This is why a reduction factor that changes the 

ground-excited state gap was necessary to better reproduce the magnetic data. In addition, 

if the ratio between g1 and g2 is different, the slope of the magnetization curve in the low 

field region is changed. For instance, if g1 is close to g2 (close to 10, which defines an 

anisotropic easy plane of magnetization), the experimental curve can be reproduced 

without considering an additional ferromagnetic exchange interaction between the two 

Er
III

 ions. 

 In summary, the magnetic studies together with theoretical calculations show that there 

is an easy axis of magnetization for the Dy
III

 and the Tb
III

 complexes with an intra-

molecular dipolar antiferromagnetic interaction, whereas for Er
III

, there is an easy plane 

of magnetization that leads to a ferromagnetic dipolar interaction between the two ions. 

Furthermore, an additional exchange interaction due to exchange between the metal ions 

is necessary to reproduce the experimental data that was found to be antiferromagnetic for 

the Dy and the Tb complexes and ferromagnetic (or absent) for the Er analogue. The 

analysis of the g values of the ground doublets allow us to extract the spin and the orbital 

contributions to the overall magnetization (Appendix A, Table A10). 

 In order to get a qualitative insight into the nature of the exchange interaction 

between the metal ions and particularly, the difference between AF coupled  Gd, Tb and 

Dy complexes and F coupled Er compound, calculations were performed to determine the 

shape of the Natural Spin Orbitals (NSOs)
54

 on one lanthanide site (Figure 2.9, 2.10 and 

2.11 for Ga4Dy2, Ga4Tb2, Ga4Er2, respectively, see Appendix A for details). The 

comparison of the overlap integrals between the NSOs within the binuclear complexes for 
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the Dy and the Er cases show that they are about ten times larger for the Dy2Ga4 then for 

the Er2Ga4 (Appendix A, Tables A11, A12 and A13). Since the overlap integral between 

NSOs is directly related to the magnitude of the antiferromagnetic contribution to the 

exchange interaction,
55-57

 one can conclude that such interaction is expected to be much 

larger for the Ga4Dy2 than for Ga4Er2, as found experimentally. The origin of the 

difference in behavior between the two complexes may be related to the weaker the 

magnetization density on the bridging oxo ligands for Er
III

 than for Dy
III

 (Figures 2.9, 

2.10 and 2.11). It is difficult to draw any conclusion from such qualitative analysis on the 

ferromagnetic exchange contribution. 

 
Figure 2.9. NSO for a Dy

III
 site of Ga4Dy2 determined along the direction 1, corresponding to the 

orientation of the magnetization axis. Each NSO is drawn taking into account its weight. 

 

 
NSO1 0.972    NSO2 0.966 

 
NSO3 0.966    NSO4 0.509 

 
  NSO5 0.503    NSO6 0.490 

 
NSO7 0.475 
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Figure 2.10. NSO for a Tb

III
 site of compound Ga4Tb2 determined along the direction 1 corresponding to 

the orientation of the magnetization axis. Here, the weight of each NSO is not taken into account in the 

drawing. 

 

 

 
 

 
Figure 2.11. NSO for an Er

III
 site for Ga4Er2 determined along the direction 1 (top) and 2 (bottom) 

corresponding to the orientation of the magnetization plane. Here, the weight of each NSO is not taken 

into account in the drawing. 
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 Low temperature micro-squid studies. The micro-SQUID data of compound 

Ga4Dy2 shows that the magnetic moment is saturated at μ0H = 1 T and T = 0.03 K (Figure 

2.12). Upon decreasing the field with a sweep rate of 0.035 T/s, the magnetization 

undergoes a sharp decrease to ca. 5% of saturation (Figure 2.12). The micro-SQUID 

magnetization curves at different temperatures cross at 0.51 T. An opening of the 

hysteresis was observed at zero field with a coercive field μ0HC = 540 Oe (Figure 2.13). 

Upon decreasing the magnetic field sweep rate from 0.28 to 0.008 T/s, the coercive field 

decreases from 678 to 421 Oe indicating the occurrence of quantum tunneling of the 

magnetization because the width of the hysteresis loop depends on the field sweep rate 

(Figure 2.13). The sharp step at 0.51 T is the result of crossover from the F to the AF 

states as explained previously. 

 

 
Figure 2.12. Micro-SQUID hysteresis plot for Ga4Dy2. M/MS = f(μ0H) at 0.03, 0.5 and 1 K for dc 

field sweep rate of 0.035 T/s. 
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Figure 2.13. Micro-SQUID hysteresis plot for Ga4Dy2. M/MS = f( 0H) at T = 0.03 K measured 

at different sweep rates showing the dependence of the width of the loop with the sweep rate. 

 

 To the best of our knowledge, an opening of the hysteresis loop has never been 

observed in a binuclear Dy2 complex but was seen in the antiferromagnetic trinuclear Dy3 

complex reported by Powell and Sessoli.
27, 52

 Since no hysteresis loop can occur when all 

the molecules are in the antiferromagnetic state (diamagnetic state) and since the excited 

ferromagnetic state cannot be populated at T = 0.03 K, the presence of the residual 5% 

magnetization below the step at 0.51 T can only be due to the presence of residual 

molecules in the ferromagnetic state. Actually, at large positive magnetic field, the 

moments are in the |– –> configuration of the ferromagnetic state. Upon decreasing the 

field at a given sweep rate, the majority of the molecules undergo a crossover from the 

ferro- |– –> to the antiferromagnetic (|+ –>; |– +>) state, but a small amount remains in the 

ferro- |– –> configuration (see Scheme 2). 
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Scheme 2.2. Field-dependent energy diagram showing the different relaxation processes for the 
Ga4Dy2. 


 
 Dynamic ac susceptibility studies. Ac susceptibility measurements may bring 

complementary information on the dynamics of the magnetization reversal at higher 

temperatures. A frequency dependence of the out-of-phase component of the 

susceptibility was observed only for Ga4Dy2 and the diluted Ga4YDy complex, with all 

other compounds showing no out-of-phase behavior. For compound Ga4Dy2, ac 

susceptibility measurements were first performed under zero dc applied external field, in 

the temperature range between 2 and 22 K and frequency range from 1 to 1488 Hz with 

an ac drive field of 3 Oe, with the temperature-dependent and frequency-dependent ac 

susceptibilities shown in Figures 2.14 and 2.15, respectively. 
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Figure 2.14. Temperature-dependence of the out-of-phase (top) and in-phase (bottom) ac 

magnetic susceptibility for Ga4Dy2 under zero applied dc field. 



85 
 

 
Figure 2.15. Frequency dependent out-of-phase (a) and in-phase (b) ac magnetic susceptibility for 

Ga4Dy2 under zero applied dc field. 

 

 The temperature-dependent out- of-phase susceptibility of Ga4Dy2 (Figure 2.14) 

shows that upon increasing the frequency of the oscillating field, the temperature of the 

maxima (TBf) shifts toward high temperatures as expected. On the other hand, the 

intensity (cm
3
 mol

-1
) of the χ” signals increases with increasing frequency until it reaches 



86 
 

a maximum at 450 Hz (TB450 = 4.00 K), after which the intensity decreases (Figure 2.14). 

This behavior is consistent with the fact that the slow relaxation corresponds to an excited 

state that becomes more and more populated when the temperature of the maximum is 

shifted upward and is evidence that the relaxation process observed is due to the excited 

ferromagnetic state that lies at 4.9 cm
-1

 above antiferromagnetic ground state. Assuming 

an activated relaxation process in the 2-5 K region, fitting the lnτ vs. 1/TB plot from the 

temperature-dependent out-of phase data using Equation 1.14 reveals that τ0 = 3.6x10
-6

 s 

and Ueff = 18 K (Figure 2.16). The temperature-dependent out-of-phase susceptibility 

curves display shoulders at higher temperatures in the 10-14 K region that appear only for 

frequencies above 500 Hz. This second relaxation process can be assigned to the isolated 

Dy
III

 ions because in this temperature range the two magnetic states are almost equally 

populated and the magnetic moments behave as if they were uncoupled. The analysis of 

the data leads to a thermal activated behavior relaxation process with τ0 = 6.8x10
-6

 s and 

Ueff = 26 K (Figure 2.16). 

 The frequency-dependent out-of-phase susceptibility curves for different 

temperatures (Figure 2.15) show only one maximum that shifts to high frequency upon 

heating. The intensity of the curves follow the behavior observed in the temperature-

dependent plot in Figure 2.14, where the magnitude of χ” increases from 2 to 4.25 K and 

then decreases. This shows that the relaxation process is due to the excited ferromagnetic 

state.  

 The Cole-Cole plots for compound Ga4Dy2 at zero applied dc field were obtained 

for temperatures between 2 and 11 K (Figure 2.17). The plots have close to an ideal 

semicircular shape indicating that only a few relaxation processes are present. The 
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Figure 2.16. Arrhenius plot for Ga4Dy2 with data extracted from the frequency-dependent data at 

zero applied dc field for the low (▼) and the high (▲) temperature processes. The solid lines are 

the best linear fit. 
 

semicircles were fitted using a generalized Debye model (Equations 1.15 and 1.16). The 

fits provided values for the α parameter, which decreased with increasing temperature, 

from 0.18 at 2 K to 0.032 at 11 K (Figure 2.17, right). The low α value at high 

temperatures indicates that only one relaxation process is present. As the temperature is 

decreased, the α parameter increases because other relaxation processes come into play, 

which is consistent with the above analysis.  

 

 
Figure 2.17. Cole-Cole plots for compound Ga4Dy2 under zero applied dc field. (a) Data from 2 to 11 K 

with fits (blue lines) obtained from the Debye equation. (b) Plot of α parameter vs. temperature. 
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 The ac data for compound Ga4Dy2 were also recorded in the presence of an 

applied 2000 Oe dc field. The same general behavior with two relaxation processes is 

observed, but with some differences in the temperature-dependent (Figure 2.18) and 

frequency-dependent (Figure 2.19) ac susceptibility. Upon increasing the frequency, the 

intensity of χ” increases and reaches a maximum at 36 Hz (TB36 = 3.0 K), instead of 450 

Hz under zero dc field. The high temperature process starts to be observable at 88 Hz 

instead of 450 Hz when a dc field of 2000 Oe is applied, which is compatible with a 

process due to the uncoupled Dy
III

 ions. 

 

Figure 2.18. Temperature-dependence of the out-of-phase (top) and in-phase (bottom) ac 

magnetic susceptibility for Ga4Dy2 under an applied dc field of 2000 Oe, at indicated frequencies. 
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Figure 2.19. Frequency dependent out-of-phase (top) and in-phase (bottom) ac magnetic susceptibility for 

Ga4Dy2 under an applied dc field of 2000 Oe. 

 The temperature-dependent out-of-phase ac susceptibility for Ga4YDy under zero 

dc applied field (Figure 2.20) revealed a frequency dependent maxima higher temperature 

with a tail at low temperature due to quantum tunneling of the magnetization, as it is 

generally observed for Dy
III

 ions.
58

 This last process can also be observed in the low 

temperature regime in the frequency-dependent data (Figure 2.21), where the maxima 

positions are relatively temperature independent. The barrier extracted from the 

frequency-dependent data for 6 at zero applied dc field is Ueff = 31 K, with τ0 = 7.0×10
-6

 s 

(Figure 2.22), close to that of the binuclear compound Ga4Dy2 (Ueff = 26 K). This is  
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Figure 2.20. Temperature-dependence of the out-of-phase (top) and in-phase (bottom) out-of-

phase ac magnetic susceptibility for Ga4YDy under zero applied dc field. 

 

consistent with a process due to the uncoupled Dy
III

 ions in Ga4Dy2. At lower 

temperatures, the relaxation tends to be temperature independent (Figure 2.21) as 

expected when the quantum tunneling process dominates. 
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Figure 2.21. Frequency-dependent out-of-phase (a) and in-phase (b) ac magnetic susceptibility for 

Ga4YDy under zero applied dc field. 

 

 

Figure 2.22. Arrhenius plot for the ac out-of-phase data for Ga4YDy under zero applied dc field, 

with data extracted from the frequency-dependent scans. 
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 Applying a dc magnetic field may slow down the tunneling and make other processes 

more visible. Field optimization experiments at 2 K (Figure 2.23) reveal that the optimal 

applied dc field is between 600 and 800 Oe. In the presence of a 750 Oe dc field, maxima 

in the temperature-dependent ac susceptibility plot for Ga4YDy can be observed (Figure 

2.24). Quantum tunneling of the magnetization has been mostly quenched as evidenced 

by the absence of overlapping peaks in the frequency-dependent data (Figure 2.25) and 

disappearance of the low temperature tail in the temperature dependent data (Figure 2.24). 

A linear fit of the high temperature data gives an energy barrier Ueff = 107 K, with τ0 = 

1.01 × 10
-7

 s (Figure 2.26), the behavior at low temperature shows that tunneling has not 

been completely quenched. As expected, the barrier is much higher than the zero-field 

barrier of 31 K. It is about half the value of the computed energy difference between the 

ground and the first excited states (153 cm
-1

 = 220 K; Appendix A, Table A4), which is 

consistent with the persistence of a relaxation by quantum tunneling via the ground state 

and via the first excited one. The persistence of quantum tunneling is due to the lack of a 

perfect axial g-tensor (g1 = 19.47, g2 = 0.08 and g3 = 0.04) and thus to a small mixing 

between the ground and the excited MJ states.  

 
Figure 2.23. Field optimization of compound Ga4YDy. (left) Out-of-phase susceptibility measurements 

at 2 K at a frequency range from 1 Hz to 500 Hz at various applied fields.  (right) Plot of frequency 

maxima vs applied field.  
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  The comparison of the χ” curves at 1284 Hz measured at zero and 2000 Oe for 

Ga4Dy2 and at 750 Oe for Ga4YDy (Figure 2.27) shows that the maximum of the 

temperature-dependent out-of-phase susceptibility for Ga4Dy2 and Ga4YDy are at the 

same temperature, which confirms that the high temperature process in Ga4Dy2 is actually 

due to the isolated Dy
III

 ions. 

 

 
Figure 2.24. Temperature-dependence of the out-of-phase (a) and in-phase (b) out-of-phase ac 

magnetic susceptibility for Ga4YDy under an applied dc field of 750 Oe 
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Figure 2.25. Frequency dependent out-of-phase (a) and in-phase (b) ac magnetic susceptibility for 

Ga4YDy under an applied dc field of 750 Oe. 

 

Figure 2.26.  Arrhenius plot for the ac out-of-phase data for Ga4YDy under an applied dc 

field of 750 Oe, with data extracted from the temperature-dependent scans. 
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Figure 2.27. Temperature-dependence of the out-of-phase ac susceptibility for Ga4Dy2 in zero dc 

field (─), in 2000 Oe dc field (─) and for Ga4YDy in 750 Oe dc field (─) at 1284 Hz. 

 

 

 Structure-property relationship. The Dy2(µ2-O)2 core of Ga4Dy2, has a Dy-Dy 

distance of 3.839 Å and a Dy-O-Dy angle of 111.70˚. This µ2-O bridging motif in this 

complex contributes to the antiferromagnetic interactions between the two Dy
III

 centers. 

The first coordination sphere of the Dy
III

 ions could be analyzed with the SHAPE 

software.
51, 59

 The best match ideal geometry around the Dy
III 

site was determined to be 

trigonal dodecahedron (D2d) (Appendix A, Table A1).  

 The Dy2(µ2-O)2 motif of the Ga4Dy2 complexes is not uncommon and has been 

shown to produce SMM behavior in several examples in the literature.
52, 60-62

 The most 

comparable example is the complex [Dy
III

2(valdien)2(NO3)2].
52

 This centrosymmetric 

complex also has distorted trigonal dodecahedral geometry around the Dy
III 

ions which 

are connected by a (µ2-O)2 bridged. As with Ga4Dy2, the Dy
III

 ions in this complex are 

antiferromagnetically coupled and has an energy barrier in zero applied dc field of 76 K. 

However, a closer inspection of the temperature-dependent ac out-of-phase behavior in 

[Dy
III

2(valdien)2(NO3)2] reveals that only one peak (of single-ion origin) is observed. The 
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energy barrier for this complex at zero applied dc field is 76 K, which is comparable to 

the 107 K barrier height of complex Ga4YDy (at an applied field of 750 Oe).   

 To the best of our knowledge, compound Ga4Dy2 is the first antiferromagnetically 

coupled Dy
III

 dimer to exhibit a coupled relaxation process in addition to a single-ion 

process under zero applied dc field. We reasoned that significant antiferromagnetic 

coupling between the Dy
III

 ions in Ga4Dy2 may lead to a J ground state with excited mJ 

states which contribute to magnetic blocking. Previously, a Dy
III

3 dimer complex
11, 27

 with 

antiferromagnetically coupled Dy
III

 ions has been reported to display SMM behavior. 

However, this compound was shown to display ac out-of-phase behavior originating from 

toroidal magnetic moment.
11

 Due to the symmetry elements in Ga4Dy2, it is likely that the 

Dy
III

 ions have more Ising-type magnetic moments. These results are unprecedented, 

since it would be expected that ferromagnetically coupled Dy
III

 ions would be expected to 

exhibit a higher energy barrier than individual, decoupled ions. Such a finding may have 

implications in the design of future SMMs.
 

2.4 Conclusions 

 Utilizing the metallacrown synthetic approach, we have structurally and 

magnetically characterized a family of isostructural Ga4Ln2 complexes. Significant 

antiferromagnetic coupling in the Dy
III

 derivative Ga4Dy2, has led to slow magnetic 

relaxation behavior attributed to both coupled and single-ion processes. It can be seen that 

diluted sample Ga4YDy2, comprising mainly of single Dy
III

 ions, exhibits significant 

quantum tunneling at zero-field (Ueff = 31 K), but tunneling can be quenched at an 

optimized field of 750 Oe and results in an energy barrier height of 107 K for the single-

ion relaxation process. These findings may provide insight to the design and 
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understanding of intramolecular magnetic coupling in lanthanide complexes in order to 

obtain materials with a higher energy barrier to the reorientation of magnetization.   
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Chapter III 

A Systematic Investigation of the Magnetic  

Interactions in Mixed 3d/4f Complexes 

 

3.1 Introduction 

 Aside from pure 3d
1-2

 and pure 4f
3
 SMMs, the rationale behind the synthesis of 

heterometallic mixed 3d/4f coordination clusters
4-5

 is based on a basic premise: can the large 

anisotropy of lanthanides be combined with the spin and strong coupling behavior of transition 

metals to generate complexes exhibiting large energy barriers and magnetic hysteresis at high 

temperatures? The metallacrown approach had previously led to the synthesis of several mixed 

3d/4f SMMs, including the first mixed Mn/Ln SMM complex described in Chapter I.

 Recently, the Powell group has investigated numerous mixed Ln
III

/Fe
II
 and Ln

III
/Fe

III
 

complexes in order to investigate the interactions between the 3d and 4f ions.
6-16

 In the case of a 

Fe
II

2Dy
III

 complex,
16

 the anisotropic barrier was determined to be 319 cm
-1

, whereas it was 305 

cm
-1

 for the Zn
II

2Dy
III

 analogue.
17

 Ab initio calculations showed that enhancement of the axial 

crystal field due to the paramagnetic Fe
II
 ions (vs. diamagnetic Zn

II
) led to a higher energy first 

excited Kramers’ doublet for the Dy
III

 ion.
16

 Furthermore, Mössbauer measurements showed that 

the interaction between the Fe
II
 and Dy

III
 ions effectively slow down the nuclear magnetic 

relaxation of the Fe
II
 ions.

16
 For isotropic Fe

III
 ions, the Powell group has investigated various 

Fe
III

2Ln
III

2 complexes which exhibit both ferromagnetic
12

 and antiferromagnetic
8, 10

 exchange 
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between the Fe
III

 and Ln
III

 ions. In both cases, it was found that the magnetic dipole originating 

from the anisotropic lanthanide centers affects the Larmor precession time of the Fe
III

 ions, as 

observed by Mössbauer spectroscopy.
8, 12

 

 In this Chapter, we will look into how peripheral 3d metal ions influence the magnetic 

relaxation of Dy
III

 ions. Two distinct cases will be investigated, where (i) two closely interacting 

Ln
III

 are surrounded by four paramagnetic ions and (ii) a single, central Ln
III

 is enclosed be four 

paramagnetic metals. In case (i), the system that is studied has the molecular formula 

[Fe
III

4Dy
II

2(shi
3-

)4(Hshi
2-

)2(H2shi
-
)2(C5H5N)4(CH3OH)(H2O)]. Herein referenced as Fe4Ln2, these 

compounds are isostructural to the Ga4Ln2 complexes described in Chapter II. In case (ii), a 

comparison of M4Dy complexes with the general formula Dy
III

(benzoate)3[12-MCMIIIN(shi)-

4](pyridinium
+
) (where M

III
 = Ga

III
 and Mn

III
) will be discussed. In the case of the Ga

III
 

(diamagnetic) analogues, the magnetic moment will originate solely from the central Dy
III

 ion. 

On the other hand, Mn
III

 (S = 2) ions will contribute to the molecular magnet moment. In general, 

Mn
III

 ions exhibit significant magnetic anisotropy (D ≈ ± 3 cm
-1

).   Examination of the magnetic 

properties of the Fe4Ln2 and M4Dy compounds will give insight into how 3d – 4f exchange 

interactions affect SMM behavior.  

3.2 Experimental 

 All reagents were purchased from commercial sources and were used without further 

purification. Elemental analysis was performed by Atlantic Microlabs Inc. All reactions were 

carried under aerobic conditions. 

Synthetic Methods 

 Fe4Dy2: Salicylhydroxamic acid (153.1 mg, 1.000 mmol), Gd(NO3)3·6H2O (112.8 

mg, 0.2500 mmol), Fe(NO3)3·9H2O (127.9 mg, 0.5000 mmol) were dissolved in 46 mL 
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methanol. 13 mL pyridine was added drop wise to this solution, followed by 6.5 mL H2O. 

The solution was stirred for 30 seconds and then filtered. Slow evaporation of half of the 

solution yielded crystalline compound after 2 weeks. Yield: 0.0892 g (28.3%),  Anal. 

Calcd for Tb2Ga4C94H93N15O31: C, 44.70; H, 3.71; N, 8.32. Found: C, 44.45; H, 3.63; N, 

8.38. Single-crystal unit cell: monoclinic, space group C2/c, a = 25.1697 Å, b = 22.1217 

Å, c = 17.9895 Å, β = 99.302˚, V = 9884.8 Å
3
. 

 [DyGa4(shi
3-

)4(C6H5CO2)4(C5H5N)(CH3OH)] · C5H6N · C5H5N · CH3OH 

(Ga4Dy): H3shi (153.1 mg, 1.0 mmol), Dy(NO3)3·5H2O (0.25 mmol), Ga(NO3)3·xH2O 

(225.7 mg, 1.0 mmol) was dissolved in 40 mL methanol. Sodium benzoate (432.3 mg, 3.0 

mmol) was added to the solution and stirred overnight. The solution was filtered, 

followed by addition of 2 mL pyridine. The solution was stirred for 15 minutes and then 

filtered. Slow evaporation of the half of the solution yielded crystalline compound after 2 

weeks.  Yield:  106.6 mg (23.3%). Anal. Calcd for DyGa4C73H60N7O22: C, 47.95; H, 3.31; 

N, 5.36. Found: C, 48.08; H, 3.10; N, 5.54. 

[DyMn4(shi
3-

)4(C6H5CO2)4(C5H5N)(CH3OH)] · C5H6N · C5H5N · CH3OH  (Mn4Dy): H-

3shi (153.1 mg, 1.0 mmol), DyCl3·6H2O (94.2 mg, 0.25 mmol), MnCl2·6H2O (197.9 mg, 1.0 

mmol) was dissolved in 40 mL methanol. Sodium benzoate (576.4 mg, 4.0 mmol) was added to 

the solution and stirred overnight. The solution was filtered, followed by addition of 2 mL 

pyridine. The solution was stirred for 3 hours and then filtered. Slow evaporation of the half of 

the solution yielded crystalline compound after 2 weeks.  Yield: 128.1 mg (%). Anal. Calcd 

for DyMn4C73H60N7O22: C, 47.95; H, 3.31; N, 5.36. Found: C, 48.08; H, 3.10; N, 5.54. 
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Physical Methods  

X-ray Crystallography. Single-crystal X-ray diffraction data for Fe4Dy2, Ga4Dy and Mn4Dy 

were collected by Jeff W. Kampf at the University of Michigan. I completed all structural 

refinements.   

 Crystal data for compounds Fe4Dy2 and Ga4Dy were collected at 85(2) K on an 

AFC10K Saturn 944+ CCD-based X-ray diffractometer equipped with a 

Micromax007HF Cu-target microfocus rotating anode (λ = 1.54187 Å), operated at 1200 

W power (40 kV, 30 mA). The data were processed with CrystalClear 2.0 and corrected 

for absorption.
18

  

 Crystal data for compound Mn4Dy were collected at 85(2) K on a Bruker 

SMART-APEX CCD-based X-ray diffractometer equipped with a low temperature device 

and fine-focus Mo-target X-ray tube (λ = 0.71073 Å), operated at 1500 W power (50 kV, 

30 mA). The frames were integrated with the Bruker SAINT
19

 software package with a 

narrow frame algorithm. The data were processed with SADABS
20

 and corrected for 

absorption. 

     All structures were solved and refined with the SHELXTL (version 6.12) software 

package.
21

 All non-hydrogen atoms were refined anisotropically. Hydrogen atoms are 

placed in their idealized positions. Additional details are provided in Table 3.1. Selected 

bond lengths are given in Table 3.2.  
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Table 3.1. Crystallographic Details for Fe4Dy2, Ga4Dy and Mn4Dy.  

 Fe4Dy2 Ga4Dy Mn4Dy 

mol formula C93H94N15O31Fe4Dy2  C73H60N7O22Ga4Dy C76H50N8O20DyMn4 

fw (g/mol) 2394.14 1828.66 1777.50 

cryst syst/ 

space group 
Monoclinic,  C2/c Monoclinic,  P21/c 

Monoclinic,  

P2(1)/n 

T (K) 85(2) 85(2) 85(2) 

wavelength 

(Å) 
1.54178 1.54178 0.71073 A 

a (Å) 25.0993(5) 17.1202(3) 17.1601(13) 

b (Å) 22.2455(4) 17.1515(3) 17.1033(12) 

c (Å) 18.2761(13) 28.505(2) 24.4861(18) 

α (deg) 90 90 90 

β (deg) 99.732(7) 122.170(5) 98.6070(10) 

γ (deg) 90 90 90 

V (Å3) 10057.5(8) 7085.1(5) 7105.6(9) 

Z 4 4 4 

density, ρ 

(g/cm3) 
1.581 1.714 1.662 

abs coeff, µ 

(mm-1) 
13.009 7.958 1.812 

F(000) 4808 3651 3552 

θ range for 

data 

collection 

(deg) 

3.42 to 68.24 3.05 to 68.25 1.69 to 27.29 

limiting 

indices 

-30 ≤ h ≤ 26 

-26 ≤ k ≤ 12 

-22 ≤ l ≤ 22 

-20 ≤ h ≤ 20 

-20 ≤ k ≤ 20 

-34 ≤ l ≤ 34 

-22 ≤ h ≤ 22 

-22 ≤ k ≤ 22 

-31 ≤ l ≤ 31 

reflns 

collected/ 

unique 

32508 / 9178 191116 / 12987 147223 / 15972 

completeness 

to θ (%) 
99.6 100.0 100.0 

no. of data/ 

restraints/ 

params 

9178 / 321 / 745 12987 / 55 / 1021 15972 / 4 / 1014 

goodness of 

fit on F2 1.104 1.068 0.964 

final R 

indices   

[I > 2σ(I)] 

R1a = 0.0936 

wR2b = 0.2414 

R1a = 0.0346 

wR2b = 0.0868 

R1a = 0.0529 

wR2b = 0.1343 

R indices (all 

data) 

R1a = 0.1051 

wR2b = 0.2624 

R1a = 0.0347 

wR2b = 0.0869 

R1a = 0.0866 

wR2b = 0.1548 

largest diff 

peak and 

hole (e- Å-3) 

2.706 and -0.823 2.569 and -0.719 2.086 and -0.787 

a
R1 = Σ(||Fo| − |Fc||)/Σ|Fo|.

b
wR2 = [Σ[w(Fo

2
− Fc

2
)

2
]/Σ[w(F°)

2
]]

1/2
; w = 1/[σ

2
(Fo

2
) 

+ (mp)
2
+ np]; p = [max(Fo

2
,0) + 2Fc

2
]/3 (m and n are constants); σ = [Σ[w(Fo

2
− 

Fc
2
)

2
]/(n − p)]

1/2
. 
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Table 3.2. Selected bond lengths for Fe4Dy2, Ga4Dy, and Mn4Dy. 

 

Compound Bond Length (Å) Compound Bond Length (Å) 
F

e
4
D

y
2
 

Dy(1)-O(1a) 2.254(5) 

G
a

4
D

y
 

Dy(1)-O(121) 2.293(2) 

Dy(1)-O(2) 2.317(5) Dy(1)-O(8) 2.315(2) 

Dy(1)-O(9) 2.320(5) Dy(1)-O(131) 2.319(2) 

Dy(1)-O(2a) 2.329(5) Dy(1)-O(5) 2.325(2) 

Dy(1)-O(5) 2.343(5) Dy(1)-O(11) 2.330(2) 

Dy(1)-O(510) 2.377(15) Dy(1)-O(2) 2.340(2) 

Dy(1)-O(7) 2.387(5) Dy(1)-O(111) 2.368(2) 

Dy(1)-O(500) 2.43(3)   Dy(1)-O(101)   2.368(2) 

Dy(1)-O(11) 2.526(5)   

M
n

4
D

y
 

Dy(1)-O(111) 2.284(4) 

 

  

Dy(1)-O(121) 2.290(4)   

Dy(1)-O(131) 2.294(4)   

Dy(1)-O(101) 2.297(4)   

  Dy(1)-O(2) 2.375(3)   

Dy(1)-O(11) 2.392(4)   

Dy(1)-O(5) 2.404(4)   

Dy(1)-O(8) 2.409(4)   

    

 

 

Magnetic Measurements. Variable-temperature susceptibility, variable-field 

magnetization and ac susceptibility measurements on polycrystalline samples mulled in 

eicosane were performed on a Quantum Design MPMS SQUID magnetometer. Variable-

temperature dc susceptibility measurements were performed at 2000 Oe from 2-300 K. 

Isothermal magnetization measurements were performed at 2 K from 0-7 T. AC magnetic 

susceptibility measurements were done at both zero and applied fields with an ac drive 

field of 3 Oe at frequencies ranging from 1 to 1488 Hz. Dc susceptibilities were corrected 

for the sample holder and eicosane and for diamagnetism of constituent atoms using 

Pascal’s constants. 
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3.3 Results and Discussion  

 Synthesis and Characterization. The Fe4Ln2 complexes were synthesized in a similar 

fashion as the Ga4Ln2 compounds discussed in Chapter II (Figure 3.1). Due to the immediate 

precipitation of dark, insoluble material, the reaction solution was diluted (with respect to the 

Ga4Ln2 complexes) in order to slow down crystal growth. Fe4Dy2 and Fe4Gd2 crystallized in the 

same space group (C2/c) as the gallium derivatives. The crystal structure of Fe4Dy2 shows the 

same general molecular morphology as the Ga4Ln2.  

 Both Ga4Dy (Figure 3.2) and Mn4Dy (Figure 3.3) exhibit a 12-MC-4 topology similar to 

structures described by Azar et al.
22

 In both compounds, benzoate was employed as a bridging 

ligand between the central lanthanide and ring metals. Due to the addition of pyridine in the 

reaction solution, in both complexes, pyridine coordinates to the ring metals and a charged 

pyridinium
+
 counter-cation is present in the lattice to provide charge balance.  

 In Ga4Dy and Mn4Dy, the central Dy
III

 ion has a pseudo square pyramidal ligand field 

which may be suitable to generate an easy-axis type anisotropy. First introduced by Coronado
23

 

and later revisited by Boron,
24

 single-ion lanthanide complexes which have square antiprism 

geometry may be evaluated by certain geometric parameters. Unlike the symmetric LnZn16 

complexes and polyoxometalate complexes studied by Boron
24

 and Coronado,
23

 respectively, the 

“top” (benzoate) and “bottom” (metallacrown ring) oxygen planes of the M4Dy complexes are 

not equivalent, and the compounds may be described as having pseudo C4v symmetry. However, 

their analysis may still be a useful qualitative tool to understand the geometry around the Dy
III

 

ion. 

 Following the same analyses used by Boron,
24

 the distance between the oxygen mean 

planes (Omp – Omp), average oxygen to oxygen distance in the metallacrown ring (avg. Oedge) and  
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Figure 3.1. Crystal structure of Fe4Dy2. Color scheme: orange spheres – Fe
III

, teal spheres – Dy
III

, red 

tubes – O, blue tubes – N, gray tubes – C. Hydrogens and lattice solvents were omitted.   

 

 

 

Figure 3.2. Crystal structure of Ga4Dy. (left) Side-view. (right) Top-down view. Color scheme: lilac 

spheres – Ga
III

, teal spheres – Dy
III

, red tubes – O, blue tubes – N, gray tubes – C. The pyridinium
+
 

counter-ion is in bold. Hydrogens, coordinating and lattice solvents were omitted for clarity.   
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Figure 3.3. Crystal structure of Mn4Dy. (left) Side-view. (right) Top-down view. Color scheme: purple 

spheres – Mn
III

, teal spheres – Dy
III

, red tubes – O, blue tubes – N, gray tubes – C. The pyridinium
+
 

counter-ion is in bold. Hydrogens, coordinating and lattice solvents were omitted for clarity.   

 

skew angles are reported in Table 3.3 and Table 3.4. For Ga4Dy and Mn4Dy, the ratio between 

the Omp – Omp and Oedge distances are less than one (Table 3.3). This suggests an axial 

compression around the Dy
III

, which, according to Rinehart and Long, is necessary for easy-axis 

anisotropy in oblate shaped lanthanide ions.
25

 According to Coronado,
23

 lanthanides with square 

antiprism geometry should have an ideal skew angle of 45° in order to optimize SMM behavior. 

The skew angles in Mn4Dy are closer to this ideal value than they are in Ga4Dy (Table 3.4).  

 Magnetic Properties. (i) Fe4Dy2. The variable-temperature dc magnetic susceptibility 

for Fe4Dy2 were measured at an applied field of 2000 Oe and in a temperature range of 300 to 2 

K (Figure 3.4). The room temperature χmT product (43.32 cm
3
 K mol

-1
) is slightly below the  

 

 

Table 3.3. Omp – Omp and average Oedge distances for Ga4Dy and Mn4Dy.   

 

Compound Omp - Omp (Å) Avg. Oedge 

(Å) 

Ratio 

Ga4Dy 2.53 2.64 0.958 

Mn4Dy 2.57 2.68 0.958 
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Table 3.4. Skew angles for Ga4Dy and Mn4Dy.   

Compound Bond Skew Angle (°) 

G
a

4
L

n
 

O2-Dy1-O101 48.23 

O2-Dy1-O111 41.41 

O5-Dy1-O111 47.68 

O5-Dy1-O121 42.13 

O8-Dy1-O121 48.77 

O8-Dy1-O131 41.24 

O11-Dy1-O131 48.45 

O11-Dy1-O101 42.09 

M
n

4
D

y
 

O2-Dy1-O101 47.59 

O2-Dy1-O111 43.03 

O5-Dy1-O111 47.60 

O5-Dy1-O121 42.57 

O8-Dy1-O121 47.23 

O8-Dy1-O131 42.43 

O11-Dy1-O131 46.82 

O11-Dy1-O101 42.73 

 

 
Figure 3.4. χmT vs. T for Fe4Dy2 and Ga4Dy2 (described in Chapter I).  
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expected value (45.84 cm
3
 K mol

-1
)
 
for two Dy

III
 and four Fe

III
 non-interacting ions (Fe

III
: 

6
A1g, S 

= 5/2, g = 2, C = 4.375 cm
3 

K mol
-1

; Dy
III

: 
6
H15/2, C = 14.17 cm

3 
K mol

-1
). The χmT product is 

still increasing at 300 K, suggesting a significant and complex coupling scheme. Upon cooling, 

χmT decreases until it reaches a value of 13.84 cm
3
 K mol

-1
 at 2 K. This value is much higher 

than the 2 K value for the Ga4Dy2 complex in Chapter II (5.04 cm
3
 K mol

-1
). This indicates that 

the Fe
III

-Dy
III

 interactions are significant at low temperatures. If they were negligible, the 

antiferromagnetic Fe1-Fe2 and Fe1A-Fe2A interactions (see Figure 3.1) should lead to no 

contribution to the magnetic moment and the χmT product should be similar to that of Ga4Dy2.  

 The magnetization curve of Fe4Dy2 at 2 K reaches a maximum of 9.87 NμB at a field of 7 

T, which is lower than the 10.36 NμB value for Ga4Dy2 (Figure 3.5). Whereas the magnetization 

curve for Ga4Dy2 is close to saturation at 7 T, it still steadily increasing for Fe4Dy2. Below 1 T, 

the magnetization for Fe4Dy2 increases much more sharply than for Ga4Dy2. However, above 1 

T, the magnetization value for Ga4Dy2 overtakes that of Fe4Dy2 (Figure 3.5). If the Dy
III

 ions 

were completely decoupled from the Fe
III

 in compound Fe4Dy2, it would be expected that the 

magnetization at 7 T would be greater than for the Ga
III

 derivative. This is another indication that 

significant Fe
III

-Dy
III

 interaction is present at low temperatures. 

  The ac susceptibility for Fe4Dy2
 
at zero applied dc field shows an out-of-phase signal, 

but without maxima above 2 K, suggesting a small energy barrier (Figure 3.6). In contrast, 

Ga4Dy2 exhibits maxima in the χ” vs. T plot, with barrier heights of 18 K and 26 K for the 

ferromagnetic and decoupled relaxation processes (Figure 2.16). A possible explanation for this 

is that the Fe
III

-Dy
III

 magnetic interactions leads to low-lying excited states which speeds up 

relaxation through mixing and/or quantum tunneling. Attempts to quench possible quantum 
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tunneling were unsuccessful, as no maxima was observed in the temperature-dependent χ” plot at 

fields up to 6000 Oe (Figure 3.7). 

 
Figure 3.5. M/NμB (per Fe4) vs. Field for Fe4Dy2 and Ga4Dy2.  

 

 

 
Figure 3.6. Temperature-dependent out-of-phase ac susceptibility under zero applied dc field for Fe4Dy2. 
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Figure 3.7. Temperature-dependent out-of-phase ac susceptibility for Fe4Dy2 under applied 

fields ranging from 1000 Oe to 6000 Oe. 

 

 (ii) Ga4Dy and Mn4Dy. The variable-temperature dc magnetic susceptibility for Fe4Dy2 

were measured at an applied field of 2000 Oe and in a temperature range of 300 to 2 K (Figure 

3.8). The room temperature χmT product for Ga4Dy and Mn4Dy are 14.90 cm
3 

K mol
-1

 and 26.21 

cm
3
 K mol

-1
, respectively, which is in good agreement with the expected value of 5 non-

interacting ions (Table 3.5). Upon cooling to 2 K, the χmT product decreases to reaches a value 

of 10.30  cm
3
 K mol

-1
 and 10.69 cm

3
 K mol

-1
 for Ga4Dy and Mn4Dy, respectively. For Ga4Dy, 

this decrease can be attributed to the depopulation of the Stark sublevels of the Dy
III

 ion. For 

Mn4Dy, the decrease in χmT may be due to a combination of antiferromagnetic coupling, zero-

field splitting in the Mn
III 

ions, and depopulation of the Stark sublevels of the Dy
III

 ion.  

The χmT product at 2 K for both compounds are relatively similar (Table 3.5). This 

suggests that at low temperatures Mn4Dy, dominant antiferromagnetic interactions between 

Mn
III

 ions leads to an S = 0 ground state for the ring system. Thus, the χmT product at 2 K is 
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Table 3.5. Summarized dc susceptibility data for Ga4Dy and Mn4Dy.  

Compound 

Curie constant 

for DyIII  

(cm3 K mol-1) 

Calc. χmT for four non-

interacting MIII ring ions  

(cm3 K mol-1) 

Calc. χmT for four 

non-interacting MIII 

ring ions and DyIII  

(cm3 K mol-1) 

χmT at 300 K 

(cm3 K mol-1) 

χmT at 2 K 

(cm3 K mol-1) 

Ga4Dy 14.17 0.00 14.17 14.90 10.30 

Mn4Dy 14.17 12.00 26.17 26.21 10.69 

 

 
Figure 3.8. χmT vs. T for Ga4Dy and Mn4Dy. 

 

 

 

mainly due to a weakly coupled Dy
III

 ion. This is consistent with a previously reported 

Li(Cl)2[12- MCMnIIIN(shi)-4] complex that is structurally similar to Mn4Dy, where the central 

metal is a diamagnetic Li
+
 ion.

26
 In this complex, the Mn

III
 – Mn

III
 exchange was determined to 

be -4.0 cm
-1

, which yields an S = 0 ground state. 

As seen in Figure 3.9,  the magnetization data were collected at 2 K at fields from 0 to 7 T (5.5 T 

for Mn4Dy). Below ca. 0.4 T, the magnetization curves for Ga4Dy and Mn4Dy follow a similar 
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trend and are roughly super imposable (Figure 3.9). This is evidence which corroborates the 

above postulation that the ring Mn
III

 ions are antiferromagnetically coupled and leads to an S = 0 

state. At low temperatures and fields, the magnetic moment of each of the three compounds 

corresponds to that of an uncoupled or weakly coupled Dy
III

 ion. When the field is increased 

above 0.4 T, the magnetic excited states of the ring system in Mn4Dy become populated and 

begin to deviate from the magnetization of the Ga4Dy complex.  

 

 

Figure 3.9. M/NμB vs. Field for Ga4Dy and Mn4Dy2. 

 



116 
 

The zero-field ac susceptibility plots for Ga4Dy, Mn4Dy show out-of-phase behavior at 

low temperatures, but does not exhibit a maxima above 2 K (Figure 3.10 and 3.11, respectively). 

As described above, the ligand field around the Dy
III

 ion of Ga4Dy and Mn4Dy has a pseudo 

square antiprism geometry, with an axial compression, which is manifested in the out-of-phase 

behavior at zero-field.  

 
Figure 3.10. Temperature-dependent out-of-phase (left) and in-phase (right) ac susceptibility for Ga4Dy 

under zero applied dc field. 

 

 

 

Figure 3.11. Temperature-dependent out-of-phase (left) and in-phase (right) ac susceptibility for Mn4Dy 

under zero applied dc field. 
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Figure 3.12. Field optimization of compound Ga4Dy. (left) Out-of-phase susceptibility measurements at 

2 K at a frequency range from 1 Hz to 500 Hz at various applied fields.  (right) Plot of frequency maxima 

vs applied field.  

 

 
Figure 3.13. Temperature-dependent out-of-phase ac susceptibility  Ga4Dy under an applied dc field of 

750 Oe. Inset: Energy barrier calculated from the Arrhenius plot. 

 

 

In order to quench the quantum tunneling in Ga4Dy, a static dc field can be applied to 

give a Zeeman splitting of the Stark sublevels; the removal of the degeneracy of the mJ has been 

known to reduce through-barrier relaxation processes.
27

 The optimal static dc field was 
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determined to be 750 Oe (see figure 3.12). A full ac susceptibility scan was performed under the 

optimal field from 2 to 10 K at frequencies between 1 and 1442 Hz (Figure 3.13). The presence 

of maxima in the χ” vs. T plot shows that quantum tunneling of the magnetization has been 

mostly quenched. The thermally activated relaxation follows an Arrhenius relationship (Equation 

1.14). A linear fit of the high temperature region reveals an energy barrier of Ueff = 51 K, with τ0 

= 8.4 ∙ 10
-9

 s (Figure 3.13). It is apparent that the non-ideal skew-angle (41.21° - 48.77°) in 

Ga4Ln leads to significant quantum tunneling in an applied field. In a 2012 report by Hailong 

and coworkers, the ac properties of three (phthalocyaninato)(porphyrinato) dysprosium(III) 

complexes showed that the complex with a skew angle closest to 45° showed the highest energy 

barrier.
28

 

Attempts to find an optimal field to quench quantum tunneling in Mn4Dy was 

unsuccessful (Figure 3.14). At different applied fields and at a temperature of 2 K, a weak χ” 

signal increased with decreasing frequency (Figure 3.14), with no maxima observed. When the 

same experiment was performed at 5 K, the χ” signal became very noisy and undecipherable 

(Figure 3.17). It appears that multiple relaxation processes may be present. 

 
Figure 3.14. Frequency-dependent out-of-phase ac susceptibility plot for Mn4Dy under applied fields 

ranging from 500 Oe to 4000 Oe at 2 K (left) and 5 K (right) 
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3.4 Conclusions 

 The systematic examination of heterometallic 3d/4f metallacrown complexes reveal that  

antiferromagnetic interactions between lanthanides and transition metals effectively quench 

SMM behavior. This result is surprising, since magnetic interactions in 4f lanthanides are 

generally weak. In case (i), the anisotropic barrier in Fe4Dy2 is much reduced in comparison to 

the Ga4Dy2 analogue. This finding was attributed to non-negligible Fe
III

-Dy
III

 interactions, which 

were observed in the dc magnetic data. In case (ii), the presence of a paramagnetic transition 

metal (Mn
III

) in the 12-MC-4 ring system complicated the dynamic relaxation behavior. Both 

Ga4Dy and Mn4Dy did not exhibit a maxima in the temperature-dependent out-of-phase ac 

susceptibility above 2 K. Under an optimal field of 750 Oe, quantum tunneling could be 

effectively quenched in Ga4Dy. On the other hand, an applied static dc field caused the ac 

behavior of Mn4Dy to become noisy and unreliable.  

The results of the work described in this Chapter suggest that for antiferromagnetically 

coupled 3d/4f metallacrowns, the presence of an antiferromagnetically coupled paramagnetic 

transition metal decreases the anisotropic barrier. In comparison, in Powell’s Fe
II

2Dy
III 

complex, 

it was found that ferromagnetic 3d-4f coupling to anisotropic Fe
II
 ions led to a larger barrier 

height than for the Zn
II

2Dy
III 

analogue.
16-17

 These results are not surprising, as ferromagnetic 

interactions should lead to a larger spin state. However, the design of ferromagnetic coupling 

remains a difficult prospect in coordination chemistry. 
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Chapter IV 

The Magnetocaloric Effect in Iron Based Metallacrowns  

4.1 Introduction 

Molecular nanomagnets are attractive candidates for use as low-temperature MCE 

refrigerants based on the magnetocaloric effect (MCE), due to relatively weak metal-metal 

magnetic coupling. As discussed in Chapter I, the ideal system would be molecules which have a 

large ground spin state, low magnetic anisotropy and weak (preferably ferromagnetic) magnetic 

exchange. Therefore, the three most suitable metal ions for MCE materials are the Mn
II
, Fe

III
 and 

Gd
III

 ions.
1
 The Mn

II
 ion has an isotropic S = 5/2 configuration and has been used to develop 

materials with large MCE;
2
 however, its tendency to oxidize to Mn

III
, a highly anisotropic ion, 

often causes problems with synthesis and stability. Due to an S = 7/2 spin state and intrinsically 

weak magnetic coupling, Gd
III

 has been the most common metal ion used to synthesize high-

performance MCE materials.
1
 However, prohibitive costs may preclude mass production and 

difficulties in the design of lanthanide coordination complexes
3
 make Gd

III
 a less attractive 

option for industrial MCE applications. The Fe
III

 ion has an advantage in cost compared to Gd
III

, 

and furthermore, its lower atomic mass allows for a larger theoretical limit to the value of -ΔSm  

(893.3 J kg
-1

 K
-1

 vs 421.3 J kg
-1

 K
-1

 for Gd
III

). With these factors in consideration, the focus of 

this chapter is the synthesis and magnetic characterization of three new Fe
III

-based MCE 

materials.  

Several Fe
III

-based molecules have been reported in the literature to exhibit MCE 

behavior. The cluster [Fe
III

8O2(OH)12(tacn)6]Br6 (tacn = trizacyclononane) which has been 
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extensively studied,
4-7

 was shown to possess an S = 10 ground state and displays a direction-

dependent MCE, where –ΔSm varies with the orientation of sample with an applied magnetic 

field.
8
 Later efforts to improve the performance of Fe

III
-based MCE materials have led to high 

nuclearity clusters such as the Fe14 complexes described previously in Chapter I. More recently, 

an Fe17 cluster with an S = 35/2 ground state was reported to exhibit a modest -ΔSm = 8.9 J kg
-1 

K
-1

 at 2.7 K and 7 T. It is worth noting that the spin multiplicity in an Mn cluster (M = metal ion, 

n = number of ions) is equal to (2S + 1)
n
, which potentially allows for higher total spin; however, 

the larger the cluster is, the more difficult it is to understand in detail its magnetic properties. For 

example, a molecule having eight Fe
III

 ions possesses (2∙5/2+1)
8
 = 1679616 spin states, which is 

too large for conventional matrix diagonalization methods.
4
 Such large clusters require time-

consuming computational studies to elucidate the exchange pathways.
9
 The impetus for the work 

described in this chapter was the synthesis and characterization of three simple Fe
III

-based MCs. 

The structure-property relationships as related to the MCE will be discussed. 

The first iron-based MC was an Fe
III

(acetate)3[9-MCFeIIIN(shi)-3](MeOH)3 ∙3MeOH 

complex, herein referenced as Fe4OAc, reported by Lah and coworkers in 1989.
10

 The coupling 

of this system could be described by a 2-J model; this simplicity made the complex a viable 

candidate to study how its magnetic interactions related to the MCE. To expand on this model, 

modulation of the magnetic coupling was achieved through substitution of the carboxylate 

bridging ligand. The acetate bridge in Fe4OAc was replaced with benzoate to form an 

Fe
III

(benzoate)3[9-MCFeIIIN(shi)-3](MeOH)3∙2MeOH∙3H2O  compound referenced herein as 

Fe4OBz. To further examine intramolecular coupling, two Fe
III

[9-MCFeIIIN(shi)-3] subunits were 

connected by three isopthalate bridging ligands to form an Fe
III

2(isopthalate)3[9-MCFeIIIN(shi)-3]2 
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dimer complex (Fe8). The intra- and intermolecular interactions of these MCs were investigated 

through structural and magnetic analysis.  

4.2 Experimental 

 All reagents were purchased from commercial sources and were used without further 

purification. Elemental analysis was performed by Atlantic Microlabs Inc. All reactions were 

carried under aerobic conditions. 

Synthetic Methods 

Fe
III

(acetate)3[9-MCFeIIIN(shi)-3](MeOH)3∙xMeOH (Fe4OAc): Synthesis follows a 

modified literature procedure.
10

 H3shi (153.1 mg, 1.0 mmol) was dissolved in 10 mL methanol. 

To this, a solution of Fe(acetate)2 (260.9 mg, 1.5 mg) in 10 mL methanol was added drop wise 

and the mixture was stirred for 1 hr. The solution was filtered and allowed to slowly evaporate 

for ~3 weeks, which yielded dark cube shaped crystals. The sample was filtered, washed with 20 

mL methanol and air dried. Yield: 134.1 mg (36.4%), Anal. Calcd for Fe4C31H51N3O26: C, 33.69; 

H, 4.65; N, 3.80. Found: C, 33.47; H, 4.60; N, 3.78. Single-crystal unit cell: monoclinic, space 

group C2/c, a = 21.55 Å, b = 21.55 Å, c = 21.55 Å, α = 90˚ β =, 90˚, γ = 90˚, V = 10014.4 Å
3 

(matches literature values). 

Fe
III

(benzoate)3[9-MCFeIIIN(shi)-3](MeOH)3∙2MeOH∙3H2O (Fe4OBz): H3shi (153.1 mg, 

1.0 mmol), FeCl3 ∙ 6H2O (360.4 mg, 1.33 mmol) was dissolved in 20 mL methanol. Sodium 

benzoate (432.3 mg, 3.0 mmol) was added to the solution and the mixture was stirred for 1.5 hrs. 

The solution was filtered and allowed to slowly evaporate for ~3 weeks, which yielded dark 

crystals. The sample was filtered, washed with 20 mL methanol and air dried. Yield: 191.8 mg 

(45.9%),Anal. Calcd for Fe4C46H51N3O23: C, 44.65; H, 4.15; N, 3.40. Found: C, 44.86; H, 4.12; 
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N, 3.40. Single-crystal unit cell: monoclinic, space group C2/c, a = 18.4496 Å, b = 18.4496 Å, c 

= 31.7599 Å, α = 90˚ β =, 90˚, γ = 120˚, V = 9362.32 Å
3
. 

General Procedure for Fe
III

2(isopthalate)3[9-MCFeIIIN(shi)-3]2(EtOH)6∙xH2O (Fe8): H3shi 

(229.7 mg, 1.5 mmol), FeCl3 ∙ 6H2O (540.6 mg, 2.0 mmol) and isopthalic acid (124.6 mg, 0.75 

mmol) was dissolved in 120 mL ethanol and 8 mL H2O. Ammonium bicarbonate (474.5 mg, 6 

mmol) was added to the solution and the mixture was stirred for 1.5 hrs. Dark precipitate formed 

and was filtered off. The solution was allowed to slowly evaporate over 3 to 4 weeks to yield 

small dark crystals. The sample was filtered and washed with a 60 mL of a 1:1 solution of 

ethanol and H2O and allowed to air dry. Single-crystal unit cell: a = 33.2164(9) Å, b = 

33.2164(9) Å, c = 61.4234(16) Å, α = 90˚ β =, 90˚, γ = 120˚, V = 58691(3) Å
3
. 

Fe8-A: Yield: mg (214.4 mg, 35.5% %), Anal. Calcd for Fe8C66H96N6O60: C, 33.30; H, 

4.07; N, 3.57. Found: C, 33.59; H, 4.06; N, 3.54. 

Fe8-B: Yield: mg (147.5, 27.7%), Anal. Calcd for Fe8C70H70N6O42: C, 39.77; H, 3.34; N, 

3.98. Found: C, 39.47; H, 3.25; N, 3.91. 

Fe8-C: Yield: mg (149.2, 28.6%), Anal. Calcd for Fe8C68H62N6O41: C, 39.53; H, 3.02; N, 

4.07. Found: C, 39.53; H, 2.81; N, 4.10. 

Fe8-A-Dry: Anal. Calcd for Fe8C66H50N6O37: C, 40.32; H, 2.56; N, 4.27. Found: C, 

40.81; H, 2.59; N, 4.30. 

Physical Methods  

X-ray Crystallography. Single-crystal X-ray diffraction data for Fe4OBz were collected by Jeff 

W. Kampf at the University of Michigan. The structural refinement was performed by myself. 

The crystal data for the Fe8 compound were collected and refined by Régis Guillot at the 

Université de Paris Sud 11 in Orsay, France. 
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Crystal data for the compound Fe4Obz were collected at 85(2) K on an AFC10K Saturn 

944+ CCD-based X-ray diffractometer equipped with a Micromax007HF Cu-target microfocus 

rotating anode (λ = 1.54187 Å), operated at 1200 W power (40 kV, 30 mA). The data were 

processed with CrystalClear 2.0
11

 and corrected for absorption.  

Crystal data for the compound Fe8 were collected on a Kappa X8 APPEX II Bruker 

diffractometer with graphite-monochromated Mo-Kα radiation ( = 0.71073 Å). Crystals were 

mounted on a CryoLoop (Hampton Research) with Paratone-N (Hampton Research) as 

cryoprotectant and then flashfrozen in a nitrogen-gas stream at 100 K. The temperature of the 

crystal was maintained at the selected value (100K) by means of a 700 series Cryostream cooling 

device to within an accuracy of ±1 K. The data were corrected for Lorentz polarization, and 

absorption effects. 

      All structures were solved and refined with the SHELXTL (version 6.12) software 

package
12

 All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were placed in 

their idealized positions. Experimental parameters and crystallographic data are provided in 

Table 4.1. 

Powder X-ray Diffraction (PXRD). Powder X-ray diffraction data for air-dried samples of 

Fe4OAc, Fe4OBz and Fe8 were collected at room temperature using a Bruker D8 Advance 

Diffractometer with Cu-Kα raciation (1.5406 Å, 40 kV, 40 mA). Powder diffraction patterns 

were collected at room temperature from 3° to 50° (2θ) using a step size of 0.05° and a scan time 

of 0.5 second/step.  

In order to obtain PXRD data of fresh (solvated) samples of Fe8, of crystals were 

collected from the mother liquor and quickly submerged in mineral oil to minimize solvent loss. 

The samples were then mounted on a CryoLoop™ and PXRD data were collected using a  
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Table 4.1. Crystallographic Details for Fe4OBz and Fe8. 

 Fe4OBz Fe8 

mol formula Fe4C50H3-N3O10 Fe8C66H48N6O56 

fw (g/mol) 1056.17 2267.90 

cryst syst/ space group R-3 R-3 

T (K) 473(2) 296(2) 

wavelength (Å) 1.54178 0.71073 

a (Å) R-3 33.2164(9) 

b (Å) 18.4496(2) 33.2164(9) 

c (Å) 18.4496(2) 61.4234(16) 

α (deg) 31.760(2) 90 

β (deg) 90 90 

γ (deg) 90 120 

V (Å3) 120 58691(3) 

Z 3 24 

density, ρ (g/cm3) 1.686 1.540 

abs coeff, µ (mm-1) 11.543 1.202 

F(000) 4815 27408 

θ range for data collection (deg) 3.10 to 68.22 1.50 to 26.49 

limiting indices 

-22 ≤ h ≤ 2 

 -22≤ k ≤ 22 

 -38 ≤ l ≤ 38 

-41≤ h ≤ 31  

-41≤ k ≤ 41 

 -76 ≤ l ≤ 76 

reflns collected/ unique 76364/3818 199732/13499 

completeness to θ (%) 100 99.8 

no. of data/ restraints/ params 3818/44/266 13499/26/578 

goodness of fit on F2 1.120 1.558 

final R indices   

[I > 2σ(I)] 

R1a = 0.0754 

WR2b
 = 0.2176 

R1a = 0.1214 

WR2b
 = 0.3482 

R indices (all data) 
R1a = 0.0784 

WR2b
 = 0.2232 

R1a = 0.1928 

WR2b
 = 0.3906 

largest diff peak and hole (e- Å-3) 1.362 and -0.574 3.128 and -0.681 
a
R1 = Σ(||Fo| − |Fc||)/Σ|Fo|.

b
wR2 = [Σ[w(Fo

2
− Fc

2
)

2
]/Σ[w(F°)

2
]]

1/2
; w = 

1/[σ
2
(Fo

2
) + (mp)

2
+ np]; p = [max(Fo

2
,0) + 2Fc

2
]/3 (m and n are constants); 

σ = [Σ[w(Fo
2
− Fc

2
)

2
]/(n − p)]

1/2
. 

 

 

Rigaku R-Axis Spider diffractometer with an image plate detector and a graphite 

monochromated Cu-Kα radiation (1.5406 Å, 50 kV, 40 mA) source. Images were collected for 7 

min while rotating the sample about the φ-axis and oscillated in ω to reduce preferred 

orientation. Images were integrated from 3° to 50° with a 0.02° step size. 
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Thermogravimetric Analysis. Thermogravimetric analyses were performed on a TA Instruments 

Q50 TGA. The temperature was ramped from 25 °C to 600 °C at a rate of 20 °C/min under a 

flow of 40% O2/ 60% N2 gas. 

Magnetic Measurements. Variable-temperature susceptibility and variable-field magnetization 

measurements on polycrystalline samples mulled in eicosane were performed on a Quantum 

Design MPMS SQUID magnetometer. Variable-temperature dc susceptibility measurements 

were performed at 2000 Oe from 300-2 K. Isothermal magnetization measurements were 

performed at 2-30 K from 0-7 T. Dc susceptibilities were corrected for the sample holder and 

eicosane and for diamagnetism of constituent atoms using Pascal’s constants. 

Acknowledgements. Dr. Marco Evangelisti assisted in fitting the magnetization data to the 

Maxwell equation (Equation 1.20) to obtain values of magnetic entropy change.  

4.3 Results and Discussion  

 Synthesis and Structural Characterization. (i) Fe4OAc. The synthesis and structural 

description of Fe4OAc (Figure 4.1) have previously been reported in literature.
10

 A modified 

synthetic procedure was employed, where Fe(acetate)2 was reacted with H3shi in methanol (in 

air) to yield dark block crystals which have the same unit cell dimensions as the reported 

structure. Furthermore, the experimental PXRD pattern of the sample matched well with the 

calculated pattern (Figure 4.2), suggesting that even after being air dried, the sample retained 

crystallinity. The crystal packing suggests that the individual molecules are well isolated (Figure 

4.3). The closest intermolecular Fe-Fe distance is 7.595 Å with negligible π-π interactions.  

 (ii) Fe4OBz. The reaction of FeCl3 ∙ 6H2O, H3shi and sodium benzoate in methanol 

yielded dark black crystals of Fe4OBz (Figure 4.4). The sodium benzoate was employed as both 

a base and a source of carboxylate bridging anions. The PXRD pattern showed that the sample 
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retained crystallinity upon exposure to air (Figure 4.5), and as such, the crystal structure can be 

reliably used to explain its magnetic properties. The resulting structure is analogous to Fe4OAc, 

with the more bulky benzoate groups replacing the acetate bridges. As shown in Figure 4.6, the 

overlaid structures of Fe4OBz and Fe4OAc reveal similar overall molecular geometry. The  

 

Figure 4.1. Crystal structure of Fe4OAc. Side (left) and top-down (right) views. Color scheme: orange 

spheres – Fe
III

, red tubes – O, blue tubes – N, gray tubes – C. Hydrogens and lattice solvents were 

omitted.   

 

Figure 4.2. Experimental PXRD pattern of Fe4OAc (black) and simulated pattern (red). 
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Figure 4.3. Packing diagram of Fe4OAc. For clarity hydrogens, coordinating and lattice solvents have 

been omitted. 

 

 

Figure 4.4. Crystal structure of Fe4OBz. Side (left) and top-down (right) views. Color scheme: orange 

spheres – Fe
III

, red tubes – O, blue tubes – N, gray tubes – C. Hydrogens and lattice solvents have been 

omitted. 
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Figure 4.5. PXRD pattern of Fe4OBz (black) and simulated pattern (red). 

 

Figure 4.6. Overlaid crystal structures of Fe4OAc (blue) and Fe4OBz (red). Molecules were tethered at 

the Fe
III

 sites. 

 

structure of Fe4OBz displays a more puckered arrangement of the shi
3-

 ligands. The more 

electron-withdrawing nature of the benzoate group leads to a larger central Fe to carboxylate  
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Table 4.2. Selected Bond Distances  

 

Fec-Fer 

Distance 

(Å) 

Fer-Fer 

Distance 

(Å) 

Avg. Fec 

Bond 

Length (Å) 

Avg. Fer 

Bond 

Length (Å) 

Avg. Fec – 

Ocarb Distance 

(Å) 

Avg. Fec –

Oox Distance 

(Å) 

Fe4OBz 3.416 4.834 2.019 2.016 2.015 2.023 

Fe4OAc 3.415 4.850 2.002 2.020 2.005 1.999 

Fe8 Dimer 3.386 4.839 1.983 1.976 1.971 1.993 

Fec = central Fe; Fer = ring Fe; Ocarb = carboxylate oxygen; Oox = oxime oxygen 

 

oxygen distance in Fe4OBz compared Fe4OAc with value of 2.015 Å and 2.005 Å, respectively 

(Table 4.2). The larger average central Fe-Ocarb
 
bond length in Fe4OBz is accompanied by a 

concomitant decrease in average Fer bond length (Table 4.2). 

 The crystal packing of the Fe4OBz molecules appear to be dictated by π-π interactions 

between adjacent benzoate groups on neighboring molecules. Most notably, two Fe4OBz  

molecules facing tail-to-head are arranged such that the benzoate bridges are clasped together to 

form an intermolecular dimer, resulting in a short central Fe
III

 – central Fe
III

 intermolecular 

distance of 6.389 Å (Figure 4.7). Here, the interacting benzoates are situated 4.623 Å apart at a 

60° angle; according to the Hunter-Sanders model,
13

 this interaction can be classified as a 

repulsive face-to-face π-stacking.  The Fe4OBz intermolecular dimers subsequently assemble in 

a hexagonal packing arrangement (Figure 4.7) which leads to further intermolecular interactions. 

As shown in Figure 4.8, the phenyl moiety of a shi
3-

 ligand is involved in edge-to-face π-

interactions with two benzoate groups on an adjacent Fe4OBz dimer. The distance of the shi
3-

 

hydrogens to the centroids of the benzoates range from 3.225 – 3.970 Å, which are close enough 

to be considered edge-to-face interactions.
13

 The cumulative effect of many interactions has a 

large effect on the low-temperature magnetic properties (infra vide).  
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Figure 4.7. Crystal packing of Fe4OBz. A pair of adjacent intermolecular dimers. Blue dashed line is the 

central Fe
III

 – central Fe
III

 distance. Green dashed line represents face-to-face π-π stacking. 

 

 

 

Figure 4.8. π-π interactions between adjacent intermolecular dimers of Fe4OBz. For clarity the phenyl 

groups engaging in π-interactions are in bold. 
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Figure 4.9. Crystal structure of the Fe8 dimer. Color scheme: orange spheres – Fe
III

, red tubes – O, blue 

tubes – N, gray tubes – C. Hydrogens and lattic solvents were omitted. 

 

 (iii) Fe8. The Fe8 compound is synthesized through the reaction of H3shi, FeCl3 ∙ 6H2O 

and isopthalic acid in an ethanol/water solution, with ammonium bicarbonate as a base. It was 

found that H2O was a necessary additional solvent that facilitated crystallization and solubilized 

ammonium salt impurities. This molecule can be simply described as two 9-MC-3 units 

connected through bifunctional isophthalate bridging ligands forming an intramolecular dimer 

(Figure 4.9). The central Fe
III

 of each 9-MC-3 unit is 6.959 Å apart, which is actually longer than 

central Fe – central Fe distance in the Fe4OBz intermolecular dimer (6.389 Å). An overlay of Fe8 

with Fe4OBz shows similar geometry, although the monomer complex has a more puckered 9-

MC-3 ring (Figure 4.10). 

Each dimeric Fe8 is involved in extensive π-interactions with neighboring molecules 

which are oriented in parallel (Figure 4.11). In addition, the Fe
III

 – Fe
III

 distances between the  
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Figure 4.10. Overlaid crystal structures of Fe8 dimer (blue) and Fe4OBz monomer (red). Molecules were 

tethered at the Fe
III

 sites. 

 

Figure 4.11. Possible intermolecular π-π interactions in Fe8. For each molecule, there exists several 

potential edge-to-face and face-to-face interactions with neighboring molecules between the aromatic 

groups from the shi
3-

 and isopthalate bridging ligands (bolded). 

 

ring Fe
III

 of adjacent molecules are a relatively short 4.800 Å. The dimer molecules pack in 

a honeycomb arrangement, with large ~15 Å solvent channels (Figure 4.12). Due to this large 

size, the lattice electron density was too diffuse and required the use of the SQUEEZE routine of  
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Figure 4.12. Packing diagram of Fe8 along the c-axis. Solvent channels are ca. 15 Å in diameter. 

 

PLATON
14

 to remove the diffraction contribution from these solvents. Also, there is significant 

solvent loss upon exposure to air, which can be observed by comparing the PXRD patterns of a 

fresh sample extracted from the mother liquor and immersed in mineral oil with an air dried 

sample (Figure 4.13). The PXRD pattern of the fresh sample retains crystallinity and matches the 

simulated powder pattern from the crystal structure. However, exposure to air will lead to loss of 

solvent and crystallinity, with the dried product having a large diffraction peak at an angle (2θ) 

of ~ 8°. All air dried samples of Fe8 show this peak at approximately the same angle, regardless 

of lattice solvent composition.  

The solvent content in the dimeric Fe8 complex was found to be quite sensitive to 

crystallization conditions such as temperature, humidity and crystallization time. Three separate 

batches of Fe8 was synthesized and yielded different levels of solvation and will be referred to 
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Figure 4.13. PXRD patterns of Fe8 dimer. Simulated pattern (red), pattern of a fresh sample immersed in 

mineral oil (black) and an air dried sample (blue).  

 

 

as Fe8-A, Fe8-B and Fe8-C (ordered in decreasing levels of solvation). An aliquot of Fe8-A was 

crushed and dried in vacuo at 50 °C for 3 days to remove solvent retained in the lattice and will 

be referred to as Fe8-A-Dry. The molecular formula and molecular weight (MW) of these 

samples were determined through elemental analysis, TGA and PXRD data (described in detail 

in Appendix B). For consistency, the MW of Fe4OAc and Fe4OBz were also determined by the 

same method. A summary of the MW for all compounds is presented in Table 4.3 and will be the 

values used to treat the magnetic data. 
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Table 4.3. Summary of molecular weights obtained by analysis of CHN and TGA data.  

Compound 
MW 

(g/mol) 

Fe4OAc 1111.55 

Fe4OBz 1250.92 

Fe8-A 2413.88 

Fe8-B 2126.37 

Fe8-C 2089.32 

Fe8-A-dry 1964.75 

 

 Magnetic Properties. The variable-temperature dc magnetic susceptibility for all 

samples were measured at an applied field of 2000 Oe and in a temperature range of 300 to 2 K. 

The room temperature χmT product for both Fe4OAc and Fe4OBz is around 10 cm
3
 K mol

-1
, 

much smaller than the expected value of 17.5 cm
3
Kmol

-1
 for four non-interacting Fe

III
 (S = 5/2, g 

= 2), suggesting that significant antiferromagnetic exchange is present. For Fe4OAc, the χmT 

product gradually decreases from 9.67 cm
3 

K mol
-1

 at 300 K down to 8.29 cm
3 

K mol
-1 

at 150 K 

(Figure 4.14), which is followed by an upswing to a maximum value of 14.35 cm
3 

K mol
-1

 at 5.5 

K, and then a decrease to 13.96 cm
3 

K mol
-1

 at 2 K. For Fe4OBz, χmT slowly decreases with 

decreasing temperature from 300 K to 130 K and rises to a maxima of 10.01 cm
3 

K mol
-1

 at 30 

K, followed by a decrease to 1.19 cm
3 

K mol
-1

 at 2 K (Figure 4.14).  

 As shown in Figure 4.14, below ca. 50 K, the χmT profile of Fe4OAc and Fe4OAc deviate 

significantly. The much steeper decrease χmT values at temperatures below 30 K for Fe4OBz in 

comparison to Fe4OAc suggests that predominant antiferromagnetic intermolecular interactions 

are present in the former. Also, the χmT product at 2 K for Fe4OBz (1.19 cm
3 

K mol
-1

) is much 

lower than it is for Fe4OAc (13.96 cm
3 

K mol
-1

). As a qualitative estimation, the low temperature 

χmT data can be extrapolated down to 0 K, where only the lowest energy spin state(s) is 

populated. The extrapolated χmT value at 0 K for Fe4OBz is -0.22 cm
3 

K mol
-1

, which essentially 

suggests a diamagnetic ground state. On the other hand, for Fe4OAc, the extrapolated 0 K value 



138 
 

 

Figure 4.14. χmT vs. T for Fe4OAc and Fe4OBz. Experimental data are open symbols, the fits (see text) 

are solid lines. Inset: coupling scheme for the Fe4 systems. 

 

 

is 13.35 cm
-1 

K mol
-1

. Assuming g = 2.00, the theoretical χmT values for S = 4 and S = 5 are 10 

and 15 cm
3 

K mol
-1

, respectively, indicating that Fe4OAc has an S = 5 ground state with a g 

value slightly smaller than 2.00 (calculated to be 1.89, using Equation 1.7) 

 In order to obtain exchange coupling parameters for the analogous Fe4 clusters, the χmT 

data were fit to an appropriate theoretical expression. Since both Fe4OAc and Fe4OBz molecules 

have 3-fold rotational symmetry, a 2-J coupling scheme (inset in Figure 4.14) was employed. 

The corresponding HDVV spin Hamiltonian: 

𝐻 =  −𝐽1(𝑆̂1 ∙ 𝑆̂2 + 𝑆̂1 ∙ 𝑆̂3 + 𝑆̂1 ∙ 𝑆̂4) − 𝐽2(𝑆̂2 ∙ 𝑆̂3 + 𝑆̂3 ∙ 𝑆̂4 + 𝑆̂2 ∙ 𝑆̂4)                 (4.1) 

where J1 is the ring Fe – central Fe exchange, J2 is the ring Fe – ring Fe exchange and 𝑆̂𝑥 are the 

spin operators of the Fe
III

 ions. The eigenvalues of Equation 4.1 can be determined through the 

Kambe method
15

 and are given by Equation 4.2. 
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E(S123, ST) = −
𝐽1

2
[𝑆𝑇(𝑆𝑇 + 1) − 𝑆234(𝑆234 + 1) −

35

4
] −

𝐽2

2
[𝑆234(𝑆234 + 1) −

105

4
]     (4.2) 

where S234 = S2 + S3 + S4 and ST = S1 + S234. A theoretical expression for χmT vs. T was derived 

from the van Vleck equation and eigenvalues from Equation 4.2, along with a molecular field 

model,
16

 which takes into account intermolecular interactions, zJ.   

 A fit for the entire temperature range of the χmT data for Fe4OAc, gave values of J1 =  

-27.27 cm
-1

, J2 = -5.95 cm
-1

, g = 1.99 and zJ = -0.09 cm
-1

 (Figure 4.14). The larger absolute value 

for J1 as opposed to J2 is not surprising, since ring Fe – central Fe exchange interactions may go 

through the oxime bridge (single atom) as well as the carboxylate and oximate bridge, whereas 

the ring Fe – ring Fe interactions are mediated only through a 2 atom oximate connection. The 

small intermolecular interaction, zJ, can be explained by the lack of apparent intermolecular 

contacts, as described in the structural section and visualized in Figure 4.3. As such, the 

negligible zJ term may be ignored and the energy diagram of the spin states as a function of J2/J1 

can be obtained using the eigenvalues obtained from Equation 4.2 (Figure 4.15). The 

experimentally determined value of J2/J1 is 0.218, indicating that the ground state is S = 5, with a 

doubly degenerate S = 4 excited state that is 23.2 cm
-1 

higher in energy (vertical green dashed 

line, Figure 4.15), and is in good agreement with S states obtained from extrapolation described 

previously. In principle, good MCE materials have the largest possible spin state and low lying 

excited states.
17

 Assuming antiferromagnetic coupling, MCE materials based on the Fe4 9-MC-3 

metallacrown topology can theoretically be optimized by having a J2/J1 ratio of 0.333 (vertical 

black dashed-dotted line, Figure 4.15), at the spin-frustrated state where the S = 5 state and 

doubly degenerate S = 4 state are of equal energy (vide infra). It must be stated that the absolute 

value of the energy between the spin states is dependent on the strength of the coupling, thus 

ideally, J1 and J2 should be small. 
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Figure 4.15. Energy Diagram for the spin states of the Fe4 9-MC-3 system plotted as E/|J1| vs. J2/J1. More 

negative E/|J1| values are lower in energy. The vertical green dashed line represents the J2/J1 ratio for 

Fe4OAc and the vertical orange dashed line represent the J2/J1 ratio for Fe4OBz. The ideal J2/J1 ratio of 

0.333 is represented by the vertical black dashed-dotted line. 

 

 

 For Fe4OBz, the intermolecular face-to-face and edge-to-face π-interactions appear to 

have led to significant antiferromagnetic exchange since the χmT product extrapolated to 0 K 

suggests a diamagnetic ground state. It has been previously reported that π-interactions can 

effectively mediate magnetic exchange. A 2007 study found that organic biphenylalenyl 

biradicaloid molecules have a large -0.29 eV (-2339 cm
-1

) intermolecular exchange interactions 

facilitated by π-π stacking.
18

 Although this extremely large magnetic exchange was due to the 

spin-delocalization of organic radicals, there have also been recent reports of π-interactions 
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affecting magnetic properties in superparamagnetic
19

 and photomagnetic coordination 

complexes.
20

  

 As a result of significant cluster-cluster interactions, attempts to fit the full range of the 

susceptibility data for Fe4OBz were unsuccessful. To circumvent this, only the high temperature 

data truncated at 100 K was included and with the intermolecular term, zJ, set to 0. The best fit 

parameters obtained were J1 = -24.23 cm
-1

, J2 = -5.54 cm
-1

 and g = 1.97 (Figure 4.14). The 

comparable J2 values for Fe4OBz and Fe4OAc can be attributed to the structural similarities seen 

in Figure 4.5. However, the difference in J1 values between the analogues may be ascribed to the 

change in electron withdrawing effects of the benzoate and acetate bridges. The phenyl group in 

benzoate is a more electron withdrawing substituent than the methyl substituent in acetate. It is 

reasonable that the weaker electron density in the carboxylate bridge for Fe4OBz is manifested in 

its smaller J1 exchange interaction.   

It should be noted that the coupling parameters obtained for Fe4OBz may only be 

(approximately) representative of non-interacting Fe4 clusters at high temperature, since the full 

temperature range could not be fit. At lower temperatures, the cumulative effect of numerous 

intermolecular exchange pathways via π-interactions makes it difficult to assess the true ground 

spin state. Nonetheless, it is worthwhile to examine the spin states obtained from the coupling 

parameters. From the fit of the susceptibility data, J2/J1 for Fe4OBz is 0.228, quite similar to the 

value of 0.218 for Fe4OAc. While the J2/J1 ratio has moved closer to the ideal value (0.333) in 

the energy diagram in Figure 4.15, the MCE of Fe4OBz will be complicated by intermolecular 

interactions.  

Magnetization data for Fe4OAc and Fe4OBz were collected at 2 K and in fields from 0 – 

7 T and plotted as M/NμB  vs H in Figure 4.16, where N is Avagadro’s number and μB is the Bohr  
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Figure 4.16. M/NμB (per Fe4) vs. Field for Fe4OAc and Fe4OBz.  

 

 

magneton. For Fe4OAc, the magnetization sharply rises at low fields and nearly saturates to a 

value of 9.61, which is consistent with 10 electrons in an S = 5 system. The magnetization data 

rises much more slowly for Fe4OBz, with an inflection at ~3 T that likely represents the 

‘decoupling field’ at which the long-range antiferromagnetic interactions are broken. The 

magnetization increases until it reaches a value of 9.90 at 7 T; which again, is consistent with an 

S = 5 ground state.  

The temperature-dependent susceptibility for Fe8-A, Fe8-B, Fe8-C, and Fe8-A-Dry 

presented in Figure 4.17 shows similar χmT data at temperatures above 200 K. For the most 

solvated sample, Fe8-A, the general profile of the susceptibility is similar to that of the Fe4 
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monomer complexes and reaches a maximum value of 18.81 cm
3 

K mol
-1

 at 15 K. The second 

most solvated sample, Fe8-B, has a maximum at 20 K, but at a much lower value of 14.63 cm
3 

K 

mol
-1

. Fe8-C and Fe8-A-Dry do not exhibit maxima and the χmT product decreases with 

decreasing temperature. One possible explanation for this data is that with decreasing solvation, 

antiferromagnetic intermolecular interactions become increasingly dominant at lower 

temperatures.  

The magnetization data at 2 K for the dimer compounds steadily increase with increasing 

field, reaching values of 17.30 (8.65 per monomer subunit), 13.81 (6.91 per monomer subunit), 

11.24 (5.62 per monomer subunit) and 8.35 (4.18 per monomer subunit) at 7 T for Fe8-A, Fe8-B, 

Fe8-C,  and Fe8-A-Dry, respectively (Figure 4.18). The lower magnetization values per 

 
Figure 4.17. χmT vs. T for Fe8-A, Fe8-B, Fe8-C and Fe8-A-Dry. 
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Figure 4.18. M/NμB (per Fe8) vs. field for Fe8-A, Fe8-B, Fe8-C and Fe8-A-Dry. 

 

 

monomer subunit is smaller than the values for Fe4OAc and Fe4OBz, which means either intra-

cluster interactions through the isopthalate, intermolecular interactions or both are prevalent even 

at high fields and low temperatures.        

Magnetocaloric Effect. In order to determine the magnetocaloric effect, magnetization 

experiments at fields between 0 and 7 T were performed at from 2 K to 20 K (2 K to 32 K for 

Fe4OBz).  The Maxwell relationship (Equation 1.20) was applied to the data to obtain estimates 

for the magnetic entropy change, -ΔSm. The magnetization curves and magnetic entropy change 

as a function of temperature for Fe4OAc and Fe4OBz are plotted in Figures 4.19 and 4.20.  
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For Fe4OAc, at all magnetic fields, -ΔSm increases with decreasing temperature and 

reaches a maximum of 14.7 J kg
-1 

K
-1

 at 3 K and ΔH = 7 T (Figure 4.19). This entropy change is 

higher than all reported iron compounds except for the previously described Fe14 structures.
21-23

 

However, it should be noted that for those compounds, the maximum -ΔSm occurs at a higher 

temperature of 6 K. At the lowest temperatures, (< 3 K), Fe4OAc has the largest -ΔSm for all 

reported Fe-based MCE materials. Additionally, there is a significant MCE at lower applied 

fields, with -ΔSm = 11.2 J kg
-1 

K
-1

 at 3 K and ΔH = 3 T. Practically, this may be significant as 

having large -ΔSm values at low working temperatures and ΔH values would be advantageous in 

cooling to the sub-Kelvin regime and allow for the use of standard electromagnets (which 

operate at low field strengths) in magnetic refrigerators.  

The MCE of Fe4OBz is significantly reduced in comparison to Fe4OAc, with a maximum -ΔSm 

= 7.4 J kg
-1 

K
-1

 at T = 7 K and H = 7 T (Figure 4.20). This behavior can be explained by the 

stronger antiferromagnetic interactions for Fe4OBz described above. Interestingly, at lower 

temperatures and fields, Fe4OBz exhibits an inverse MCE, where -ΔSm assumes a negative 

value. This can be interpreted as a decrease in temperature upon magnetization of the sample. 

Although the inverse MCE has been observed in various solid state materials,
24-27

 to our 

knowledge, this is the first time this phenomenon has been observed in molecular materials. 

Detailed theoretical discussions of the inverse MCE have been provided by Ranke.
28-29

 

Generally, an inverse MCE can be observed for materials at temperatures below 

antiferromagnetic or ferromagnetic phase transitions. The Néel temperature, TN, is 7 K for 

Fe4OBz and is maximum in the χm vs. T plot (Figure 4.21). The value for TN, which is unusually 

large for a molecular coordination complex,
30

 indicates the temperature at which long range 

antiferromagnetic ordering occurs.  
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Figure 4.19. M/NμB vs. field at temperatures between 2 and 20 K (left) and the temperature-dependent 

magnetic entropy change for Fe4OAc. 

 

 

 

 

 

Figure 4.20. M/NμB vs. field at temperatures between 2 and 20 K (left) and the temperature-dependent 

magnetic entropy change for Fe4OBz. 
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Figure 4.21. χm vs. T plot for Fe4OBz at a temperature range of 2 to 50 K. 

 

 

Characterization of the MCE for Fe8-A, Fe8-B, Fe8-C, and Fe8-A-Dry, can be seen in 

Figures 4.22, 4.23, 4.24 and 4.25, respectively. The most solvated sample, Fe8-A, exhibits the 

largest MCE, with -ΔSm = 9.9 J kg
-1 

K
-1

 at T = 5 K and H = 7 T. Samples which contain less 

channel solvent display weaker MCE, as Fe8-B and Fe8-C have -ΔSm = 9.1 J kg
-1 

K
-1

 (4 K and 7 

T) and -ΔSm = 7.4 J kg
-1 

K
-1

 (4 K and 7 T), respectively. The nearly completely desolvated 

sample, Fe8-A-Dry, exhibits the smallest -ΔSm, with a value of -5.4 J kg
-1 

K
-1

. As is the case for 

Fe4OBz, this trend may be explained by more prominent antiferromagnetic intermolecular 

interactions for the more desolvated Fe8 samples. 

Since the magnetic interactions in the Fe4 subunits are expected to be antiferromagnetic 

and similar to Fe4OAc and Fe4OBz, and the cluster-cluster interactions through the isopthalate 

bridges should not change with respect to the level of solvation, it can be reasoned that the loss 

of solvent leads to stronger antiferromagnetic intermolecular interactions. This may be due to the 

collapse of the channels and closer cluster to cluster contact. Furthermore, while we could not 
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ascertain the strength or sign of the exchange between Fe4 subunits through the isopthalate 

bridges, it is likely non-negligible, since the susceptibility data for all Fe8 complexes begin to 

diverge at 200 K. It is not believed that this is due to intermolecular interactions, since they do 

not manifest in the Fe4OBz until much lower temperatures (below 100 K). 

 
Figure 4.22. M/NμB vs. field at temperatures between 2 and 20 K (left) and the temperature-dependent 

magnetic entropy change for Fe8-A. 

 

 

 

 
Figure 4.23. M/NμB vs. field at temperatures between 2 and 20 K (left) and the temperature-dependent 

magnetic entropy change for Fe8-B. 



149 
 

 
Figure 4.24. M/NμB vs. field at temperatures between 2 and 20 K (left) and the temperature-

dependent magnetic entropy change for Fe8-C. 

 

 

 
Figure 4.25. M/NμB vs. field at temperatures between 2 and 20 K (left) and the temperature-dependent 

magnetic entropy change for Fe8-A-Dry. 

 

 

Of the complexes studied in this chapter, the MCE for Fe4OAc is the largest, because of 

the lack of long range intermolecular ordering. At 3 K and 7 T, it has a value of -ΔSm = 2.1 R, 

approaching the theoretical limit of Rln(2S + 1) = 2.39 R (Equation 1.21) for an S = 5 system 

(Figure 4.26). On the other hand, Fe4OBz has a smaller per mole –ΔSm throughout the 

temperature range. Fe8-A actually has the largest per mole -ΔSm of the three compounds, 

although its gravimetric -ΔSm is lower than Fe4OAc due to higher molecular weight. In a per Fe
III
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Figure 4.26. Temperature-dependence of the magnetic entropy change normalized to R (left) and 

normalized to the number of Fe
III

 ions (right) for Fe4OAc, Fe4OBz and Fe8-A at H = 7 T. 

 

ion basis, Fe4OAc has the highest -ΔSm for the entire temperature range of 2 to 20 K (Figure 

4.26). Below 8 K, the per Fe
III

 -ΔSm of Fe4OBz tracks with Fe8-A, but then decreases towards 

zero. 

 In order to see how the J2/J1 ratio affects the -ΔSm in an Fe4 system with the same J2 value 

(-5.95) and molecular weight (1111.55 g/mol) as Fe4OAc, the program MAGPACK
31

 was used 

to simulate the magnetization data for Fe4 systems with J2/J1 ratios of 0.218, 0.333, 0.320 and 

0.350. Figure 4.27 shows the calculated gravimetric -ΔSm vs. temperature plots. For the simulated 

J2/J1 = 0.218, which matches Fe4OAc, the maximum -ΔSm (16.57 J kg
-1 

K
-1

) matches fairly well 

with the experimental value for Fe4OAc (15.4 J kg
-1 

K). The difference may be due to the small 

intermolecular interaction in Fe4OAc, which was not included in the simulation. At the ideal 

J2/J1 ratio of 0.333, the maximum -ΔSm is 22.38 J kg
-1 

K
-1

, a 35% increase over simulated data 

for J2/J1 = 0.218 (Figure 4.27, top right).  

 For J2/J1 ratios smaller or larger than the ideal value of 0.333, there is a decrease in the 

maximum simulated entropy change. For J2/J1 = 0.320, slightly smaller than the ideal value, the 
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simulated maximum -ΔSm decreases to 20.10 J kg
-1 

K
-1

. When we increase the ratio past the ideal 

value to 0.35, the ground state becomes S = 4 (Figure 4.15), and the -ΔSm decreases to having a 

maximum value of 15.65 J kg
-1 

K
-1

 (Figure 4.27, bottom right). These simulations show that for a 

constant J2, having the lowest J1 value will not lead to a larger MCE. J1 should be modulated    

so that the J2/J1 ratio is 0.333.  

 

Figure 4.27. Simulated temperature dependent magnetic entropy change vs temperature for calculated 

Fe4 complexes with J2 set to -5.95. J2/J1 values are 0.218 (top left), 0.333 (top right), 0.32 (bottom left) 

and 0.35 (bottom right). 
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4.4 Conclusions 

 Most of the reported transition metal based magnetic refrigerants involve large 

polynuclear clusters (more than eight metal ions). While this strategy often results in large 

ground spin states appropriate for MCE properties, it also makes it difficult to understand the 

fundamental magnetic interactions which lead to such behavior. The studies described in this 

chapter have shown that relatively large MCE can be achieved in smaller coordination 

complexes. More importantly, the underlying intra- and intermolecular interactions have been 

elucidated and have been used to explain the MCE phenomenon.  

 The estimated -ΔSm = 15.4 Jkg
-1

K
-1

 for Fe4OAc has been explained by a simple 2-J 

magnetic coupling model and offers the potential for modification to achieve even greater values 

for -ΔSm. Analysis of the high temperature susceptibility data of Fe4OBz shows a shift closer to 

the ideal J2/J1 ratio of 0.333, but extensive antiferromagnetic intermolecular interactions have led 

to a decrease in the MCE. Similarly, these interactions have led to lower -ΔSm values for the Fe8 

dimer system. Future work may involve substituting the bridging ligand of the Fe4 system to get 

closer to the ideal J2/J1 ratio. If the trend in the pKa of the bridging ligands of Fe4OAc and 

Fe4OBz correlates to the strength of J1, then formate (pKa = 3.77) may be a reasonable option 

that could lower this value and also increase the metal to ligand weight ratio that is important for 

gravimetric values of -ΔSm. Additionally, the strength of J2 may be decreased through 

modification of the H3shi ligand. Ultimately, engineering weak ferromagnetic interactions is the 

key optimizing magnetic entropy change. 

 Lastly, it has been shown that aromatic ligands which mediate intermolecular π-π 

interactions can lead to strong antiferromagnetic interactions which quench the MCE. This 

suggests that using ligands that are more aliphatic in nature may be used to mitigate this and can 
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also reduce the molecular weight. However, ligands that are not bulky enough can also lead to 

strong intermolecular metal-metal exchange, as is the case for the Mn
II
 based glycolate salts.

2
 

The factors which affect MCE, including selection of metal ligands, magnetic interactions and 

even crystal engineering, makes it difficult to design transition metal based materials. The work 

described in this chapter may offer some insight into overcoming the complexities involved.  
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Chapter V 

Luminescent Ga
III

/Ln
III

 12-MC-4 Complexes 

 

5.1 Introduction 

Lanthanide(III) metal ions have attractive luminescence properties for a broad range of 

applications due to their unique electronic properties.  The sharp bandwidths, large energy gap 

between absorption and emission bands, and long luminescence lifetimes make Ln
III

 

luminescence attractive for practical application such as biological imaging,
1-3

 solar energy 

conversion,
4-6

 diode displays,
7
 and telecommunications.

8-9
 As noted in Chapter I, the 

sensitization through the “antenna effect” describes the excitation of an organic ligand 

(“antenna”), followed by the transfer of the corresponding energy to the accepting levels of the 

Ln
3+

 generating the subsequent f-f emission with long luminescence lifetimes upon return of the 

system to the ground state. The energy difference (ΔE) between the ligand’s excited triplet state 

(
3
T1) and the accepting f-orbital electronic level of the lanthanide is one of the identified 

parameters that impact the global sensitization efficiency (Figure 1.37). Some systems have been 

identified as more efficient for the Ln
III

 emitting in the visible (Tb
III

, Sm
III

, Dy
III

, Eu
III

)
10-11

 while 

others are more suitable for those emitting in the NIR (Nd
III

, Er
III

, Ho
III

, Yb
III

, Tm
III

).
12-13

  

In the case of metallacrowns, the LnZn16L16 sandwich complexes have demonstrated 

remarkable NIR luminescence properties. The hydration number (q) for the LnZn16L16 

derivatives is zero, indicating the absence of quenching solvent molecules directly bound to the 
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lanthanide cation. As a result, several of these compounds exhibit the highest luminescence 

quantum yield values reported to date for selected NIR emitting Ln
III

 (Yb
3+

, Nd
3+

, Er
3+

).
14-15

 

However, a drawback to this system is that visible emitting Ln
III

 ions cannot be sensitized. To 

date, only a very limited selection of ligand systems has been demonstrated that sensitize Ln
III

 

across the entire spectrum.
16-17

  

As a hypothesis for the creation of the ideal system, we can propose a good balance 

between two important parameters: the sensitization efficiency of the Ln
III

 and the protection 

from the presence of sources of non-radiative deactivation due to the harmonic oscillation of –

OH, –NH and –CH vibrations of solvent molecules and of the organic ligands of the complex. 

The closer the Ln
III

 ion is to the organic chromophoric ligand environment, the larger the 

efficiency of the sensitization. On the other hand, non-radiative deactivation increases with 

decreasing distance between the Ln
III

 ion and the vibrations of the chromophore. Consequently, 

the use of rigid systems to create new complexes is an attractive strategy, as it allows for the 

control of the distance between the antennae and the luminescent lanthanide(III) cations.  

As the next step for the creation of novel lanthanide-based NIR reporters, we have chosen 

to design and synthesize MC compounds which incorporate Ga
3+

 ions. In order to analyze the 

effects of the structure of MCs on their luminescence properties, we have to synthesize MCs 

based on Ga
III

, an isoelectronic cation to Zn
II
 and that cannot interfere (quench) with the excited 

states of the luminescent lanthanide.  Therefore, we hypothesized that these novel Ga
III

 MCs 

would possess many of the electronic features obtained for the Zn
II
 system while allowing for the 

use of different chromophores (tri-anionic MC ligands to compensate for the charge of Ga
III

). 

Moreover, the Ga
III

 ring metals form the backbone of these MCs; various isotopes of gallium are 

used in several biomedical applications, providing the potential for these compounds to serve as 
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multipurpose therapeutic agents. The combination of luminescent Ln
III 

and radioisotopes of Ga
III 

allows for the prospect of the reported complexes being used as both bimodal imaging (
68

Ga is 

used in PET imaging
18

) and theranostic (
67

Ga is a potential therapeutic radionuclide
19-20

) agents.     

This Chapter will focus on the photophysical properties of a series of Ga4Ln MCs (Ln
III

 

= Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb) isostructural to the Dy
III

(benzoate)3[12-MCMIIIN(shi)-

4](pyridinium
+
) compounds reported in Chapter III. The framework ligand used in the above 

compounds, salicylhydroxamic acid (H3shi), is structurally different from the picoline 

hydroxamic acid (picHA) ligand used in the first generation of LnZn16L16 complexes.
14

 

Furthermore, the central Ln
III

 ions are encapsulated by bridging benzoate molecules, which may 

play a role in the sensitization of the lanthanide(III) ions. Lastly, the synthesis and luminescent 

properties of the Gd
III

 and Dy
III

 derivatives of a Ln
III

2(isopthalate)4[12-MCGaIIIN(shi)-4]2(NH4
+
)2

 

complex (Ga8Ln2) will be reported. Comparison of the photophysical properties of the Ga4Ln 

and Ga8Ln2 dimer compounds will be used to examine whether the identity of the bridging 

ligand (benzoate vs. isophthalate) affects lanthanide sensitization. 

5.2 Experimental 

All reagents and chemicals were purchased from commercial sources and used without 

further purification. CHN analysis was performed by Atlantic Microlabs Inc. All reactions were 

completed under aerobic conditions.  

Synthetic Methods 

Preparation of Ga4Ln Complexes.  H3shi (153.1 mg, 1.0 mmol), Ln(NO3)3·xH2O (0.25 

mmol; 0.50 mmol for Ln = Sm and Eu), Ga(NO3)3·xH2O (225.7 mg, 1.0 mmol) was dissolved in 

40 mL methanol. Sodium benzoate (576.4 mg, 4.0 mmol) was added to the solution and stirred 

overnight. The solution was filtered, followed by addition of 2 mL pyridine. The solution was 
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stirred for 15 minutes and then filtered. Slow evaporation of half of the solution yielded 

crystalline compound after 2 weeks.  

   [Ga4Sm(shi
3-

)4(C6H5CO2)4(C5H5N)(CH3OH)] · C5H6N · C5H5N · CH3OH  (Ga4Sm). 

Yield: 104.9 mg (20.1%). ESI-MS, calc. for [M]
-
, C56H36N4O20SmGa4, 1513.8; found, 1514.2 

Anal. Calcd for SmGa4C73H60N7O22: C, 48.27; H, 3.33; N, 5.40. Found: C, 48.29; H, 3.16; N, 

5.51. 

      [Ga4Eu(shi
3-

)4(C6H5CO2)4(C5H5N)(CH3OH)] · C5H6N · C5H5N · CH3OH  (Ga4Eu). 

Yield: 213.0 mg (20.1%). ESI-MS, calc. for [M]
-
, C56H36N4O20EuGa4, 1514.8; found, 1515.0. 

Anal. Calcd for EuGa4C73H60N7O22: C, 48.224; H, 3.33; N, 5.39. Found: C, 48.35; H, 3.13; N, 

5.58. 

  [Ga4Gd(shi
3-

)4(C6H5CO2)4(C5H5N)(CH3OH)] · C5H6N · C5H5N · CH3OH  (Ga4Gd). 

Yield: 91.8 mg (20.1%). ESI-MS, calc. for [M]
-
, C56H36N4O20GdGa4, 1519.8; found, 1519.8. 

Anal. Calcd for GdGa4C73H60N7O22: C, 48.09; H, 3.32; N, 5.38. Found: C, 48.18; H, 3.07; N, 

5.57. 

      [Ga4Tb(shi
3-

)4(C6H5CO2)4(C5H5N)(CH3OH)] · C5H6N · C5H5N · CH3OH  (Ga4Tb). 

Yield:  102.0 mg (22.4%). ESI-MS, calc. for [M]
-
, C56H36N4O20TbGa4, 1522.8; found, 1522.8. 

Anal. Calcd for TbGa4C73H60N7O22: C, 48.04; H, 3.31; N, 5.37. Found: C, 48.33; H, 3.12; N, 

5.54. 

      [Ga4Dy(shi
3-

)4(C6H5CO2)4(C5H5N)(CH3OH)] · C5H6N · C5H5N · CH3OH  (Ga4Dy). 

Yield:  106.6 mg (23.3%). ESI-MS, calc. for [M]
-
, C56H36N4O20DyGa4, 1525.8; found, 1525.8. 

Anal. Calcd for DyGa4C73H60N7O22: C, 47.95; H, 3.31; N, 5.36. Found: C, 48.08; H, 3.10; N, 

5.54. 
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      [HoGa4(shi
3-

)4(C6H5CO2)4(C5H5N)(CH3OH)] · C5H6N · C5H5N · CH3OH  (Ga4Ho). 

Yield: 160.4 mg (35.0%). ESI-MS, calc. for [M]
-
, C56H36N4O20HoGa4, 1528.8; found, 1529.3. 

Anal. Calcd for HoGa4C73H60N7O22: C, 47.88; H, 3.30; N, 5.35. Found: C, 48.01; H, 3.07; N, 

5.50. 

      [ErGa4(shi
3-

)4(C6H5CO2)4(C5H5N)(CH3OH)] · C5H6N · C5H5N · CH3OH  (Ga4Er). Yield:  

159.5 mg (34.8%). ESI-MS, calc. for [M]
-
, C56H36N4O20ErGa4, 1529.8; found, 1530.1. Anal. 

Calcd for ErGa4C73H60N7O22: C, 47.82; H, 3.30; N, 5.35. Found: C, 47.29; H, 3.05; N, 5.53. 

      [TmGa4(shi
3-

)4(C6H5CO2)4(C5H5N)(CH3OH)] · C5H6N · C5H5N · CH3OH  (Ga4Tm). 

Yield: 148.4 mg (32.3%). ESI-MS, calc. for [M]
-
, C56H36N4O20TmGa4, 1532.8; found, 1532.8. 

Anal. Calcd for TmGa4C73H60N7O22: C, 47.78; H, 3.30; N, 5.34. Found: C, 47.06; H, 2.95; N, 

5.48. 

      [YbGa4(shi
3-

)4(C6H5CO2)4(C5H5N)(CH3OH)] · C5H6N · C5H5N · CH3OH  (Ga4Yb). 

Yield: 54.1  mg (11.8%). ESI-MS, calc. for [M]
-
, C56H36N4O20YbGa4, 1535.8; found, 1535.8. 

Anal. Calcd for YbGa4C73H60N7O22: C, 47.67; H, 3.29; N, 5.33. Found: C, 47.69; H, 3.10; N, 

5.49. 

 Preparation of Ga8Ln2 Complexes.  H3shi (306.3 mg, 2.0 mmol), Ln(NO3)3·xH2O (0.50 

mmol), Ga(NO3)3·xH2O (511.5 mg, 2.0 mmol) and Isophthalic acid (166.1 mg, 1.0 mmol) was 

dissolved in 15 mL DMF. Ammonium bicarbonate (632.5 mg, 8.0 mmol) was added to the 

solution and stirred overnight. The solution was filtered. Slow evaporation of half of the solution 

yielded crystalline compound after 3 months.  

      [Ga8Dy2(shi
3-

)8(isophthalate
2-

)4(DMF)6] · 8DMF · 2H2O (Ga8Dy2). Yield: 280.1 mg 

(34.6%). Anal. Calcd for Dy2Ga8C130H158N24O56: C, 40.71; H, 4.15; N, 8.76. Found: C, 40.75; H: 

4.45; N: 8.87.  
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 [Ga8Gd2(shi
3-

)8(isophthalate
2-

)4(DMF)6] · 8DMF · H2O (Ga8Gd2). Yield: 321.0 mg 

(33.7%). Anal. Calcd for Gd2Ga8C130H156N24O55: C, 41.01; H, 4.13; N, 8.83. Found: C, 40.98; H: 

4.28; N: 8.99.  

Physical Methods   

X-Ray Crystallography. Crystal data for compound DyGa4 were collected at 85(2) K on an 

AFC10K Saturn 944+ CCD-based X-ray diffractometer equipped with a Micromax007HF Cu-

target microfocus rotating anode (λ = 1.54187 Å), operated at 1200 W power (40 kV, 30 mA). 

The data were processed with CrystalClear 2.0
21

 and corrected for absorption. The structure was 

solved and refined with the SHELXTL (version 6.12) software package
22

 All non-hydrogen 

atoms were refined anisotropically. Hydrogen atoms placed in their idealized positions.  

Powder X-ray Diffraction (PXRD). Powder X-ray diffraction data for air-dried samples of the 

Ga4Ln complexes were collected at room temperature using a Bruker D8 Advance 

Diffractometer with Cu-Kα raciation (1.5406 Å, 40 kV, 40 mA). Powder diffraction patterns 

were collected at room temperature from 3° to 50° (2θ) using a step size of 0.05° and a scan time 

of 0.5 second/step.  

ESI-Mass Spectrometry. ESI-MS spectra were collected with a Micromass LCT Time-of-Flight 

Electrospray Mass Spectometer in negative ion mode at cone voltages ranging from -40 to -70 V 

on samples dissolved in DMF. Samples were injected via syringe pump. Data were processed 

with the MassLynx 4.0 software. 

Solid State Diffuse Reflectance. Solid state UV-Vis spectra were collected using an Agilent-Cary 

5000 spectrophotometer equipped with a Praying Mantis diffuse reflectance accessory. Spectra 

were collected in reflectance mode, with BaSO4 was used as a baseline. Samples (10% by 
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weight) were mulled in BaSO4 (90% by weight). The spectra were converted into normalized 

absorbance by using the equation A = 1 – R. 

Solution Absorption Spectra. UV-Vis spectra for the compounds dissolved in methanol were 

recorded on a Cary 100Bio UV-Vis Spectrophotometer. All spectra were collected in absorbance 

mode. 

Photophysical measurements. Luminescence data were collected on samples placed into 2.4 mm 

i.d. quartz capillaries or quartz Suprasil cells. Emission and excitation spectra were measured on 

a Horiba-Jobin-YvonFluorolog 3 spectrofluorimeter equipped with either a visible 

photomultiplier tube (PMT) (220-800 nm, R928P; Hamamatsu), a NIR solid-state InGaAs 

detector cooled to 77 K (800-1600 nm, DSS-IGA020L; Jobin-Yvon), or NIR PMTs (950-1450 

nm, H10330-45; 950-1650 nm, H10330-75; Hamamatsu). All spectra were corrected for 

instrumental functions. Luminescence lifetimes were determined under excitation at 355 nm 

provided by a Nd:YAG laser (YG 980; Quantel), while the signal was detected in the NIR by the 

aforementioned PMT (H10330-75). The output signal from the detectors was then fed to a 

500MHz bandpass digital oscilloscope (TDS 754C; Tektronix) and then transferred to a PC for 

treatment with Origin 8
®
. Luminescence lifetimes are averages of at least three independent 

measurements. Quantum yields in the NIR were determined with a Fluorolog 3 

spectrofluorimeter according to an absolute method using an integration sphere (GMP SA). Each 

sample was measured several times under slightly different experimental conditions. Estimated 

experimental error for quantum yields determination is 10 %. 

Acknowledgements. Svetlana Eliseeva (CNRS Orléans, France) and Evan Trivedi performed the 

photophysical measurements and data analysis for all samples.  
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Table 5.1. Crystallographic Details for Ga8Dy2. 

 Ga8Dy2 

mol formula C96H20Dy2Ga8N12O46 

fw (g/mol) 2939.84 

cryst syst/ space group Triclinic/ P-1 

T (K) 85(2) 

wavelength (Å) 1.54178 

a (Å) 14.1080(3) 

b (Å) 17.5806(3) 

c (Å) 19.2197(14) 

α (deg) 113.107(8) 

β (deg) 102.699(7) 

γ (deg) 98.218(7) 

V (Å3) 4135.4(3) 

Z 1 

density, ρ (g/cm3) 1.180 

abs coeff, µ (mm-1) 6.713 

F(000) 1408 

θ range for data collection (deg) 2.62 to 68.24 

limiting indices 

-16 ≤ h ≤ 16 

 -20 ≤ k ≤ 21 

 -23 ≤ l ≤ 23 

reflns collected/ unique 111713 / 14938 

completeness to θ (%) 98.6 

no. of data/ restraints/ params 14938 / 0 / 815 

goodness of fit on F2 1.929 

final R indices   

[I > 2σ(I)] 

R1a = 0.1430 

 wR2b = 0.3897 

R indices (all data) 
R1a = 0.1459 

 wR2b = 0.3981 

largest diff peak and hole (e- Å-3) 12.150 and -2.064 
a
R1 = Σ(||Fo| − |Fc||)/Σ|Fo|.

b
wR2 = [Σ[w(Fo

2
− 

Fc
2
)

2
]/Σ[w(F°)

2
]]

1/2
; w = 1/[σ

2
(Fo

2
) + (mp)

2
+ np]; p = 

[max(Fo
2
,0) + 2Fc

2
]/3 (m and n are constants); σ = [Σ[w(Fo

2
− 

Fc
2
)

2
]/(n − p)]

1/2
. 

 

Table 5.2. Selected bond lengths for Ga8Dy2. 

Bond Length (Å) 

Dy(1)-O(5) 2.301(10) 

Dy(1)-O(2) 2.326(8) 

Dy(1)-O(112) 2.328(9) 

Dy(1)-O(111) 2.343(8) 

Dy(1)-O(101) 2.347(7) 

Dy(1)-O(103) 2.353(8) 

Dy(1)-O(8)   2.391(9) 

Dy(1)-O(11) 2.396(7) 
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5.3 Results and Discussion  

Synthesis and Characterization. (i) Ga4Ln Complexes. The crystal structure and 

crystallographic parameters for the Ga4Dy (Figure 5.1) compound are reported in Chapter III. In 

the LnZn16L16 structures described in Chapter I, the distance between the Ln
III

 ion and the closest 

C-H oscillator was greater than 6 Å. For Ga4Dy, and the other analogues of the series, the 

shortest Ln-CH distance was found to be 4.37 Å. Nevertheless, remarkable NIR photophysical 

properties have been observed for these complexes despite this relatively short distance. This is a 

qualitative indication that the effect of potential luminescence quenching is compensated by the 

chromophore to lanthanide energy transfer. 

It should be noted that the centroid in the space in between the four benzoate groups is 

~2.3 Å from the inner most hydrogen atoms. Although no electron density was observed in that 

region, this void space is large enough to be occupied by a water molecule, which would 

potentially have implications in the photophysical data for the Ga4Ln complexes.  

 
Figure 5.1. Crystal structure of Ga4Dy.The blue dashed line represents the closest C-H oscillator to the 

Dy
III

 ion. Teal = Dy; green = Ga; tan = C; red = O; blue = N.  The transparent green sphere shows a void 

space where potential water molecules may reside. 
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Figure 5.2. Crystal structure of Ga8Dy2. Coordinating solvent molecules are omitted for clarity. 

 

 

 (ii) Ga8Ln2 Complexes. Utilizing the same synthetic strategy as the Fe8 dimer complex 

in Chapter IV, two 12-MC-4 units of the Ga4Ln complexes were linked together via isophthalate 

ligands. Using ammonium bicarbonate as a base, reaction of H3shi, Ln(NO3)3·xH2O, 

Ga(NO3)3·xH2O and Isophthalic acid in DMF forms the Ga8Ln2 complex which can be described 

as two 12-MC-4 monomer subunits connected via four isophthalate groups (Figure 5.2).  The 

molecular moiety has a net negative two charge. Since no metal atoms could be found in the 

electron density, the charge is likely balanced by two lattice NH4
+
 ions. However, these counter-

ions could not be located due to weak scattering. Similarly, the diffuse electron density of the 

lattice solvent required the use of SQUEEZE routine of the PLATON suite of programs.
23
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 Since the Ga8Dy2 complex crystallizes in the space group P-1, the two Dy
III

 ions are 

symmetry related by an inversion center and are situated 7.23 Å apart, such that any through-

space interactions are likely negligible. As with Ga4Ln, the closest C-H oscillator resides on the 

inner most carbon of a bridging benzoate and is 4.51 Å from the nearest Dy
III

 ion (Figure 5.2). 

This distance is longer than the 4.37 Å for Ga4Dy.  

Photophysical Properties. (i) Ga4Ln Complexes. All synthesized complexes (excluding 

Ga4Gd) of the series showed the ability to emit visible (Ga4Tm, Ga4Dy, Ga4Tb, Ga4Sm, 

Ga4Eu)  and/or near-infrared luminescence (Ga4Dy, Ga4Yb, Ga4Ho, Ga4Er, Ga4Sm ). For each 

of these MCs, the bands observed in both solution (Figure 5.3) and solid state (Figure 5.4) 

absorption spectra match well with those observed in the excitation spectra (Appendix C, Figures 

C1-C11) of the different Ga4Ln complexes.  This indicates that the excitation light is absorbed 

by the * transition located on the chromophoric shi
3- 

ligands and that the corresponding 

energy is being transferred to the luminescent lanthanides. Thus, this MC design is able to 

provide an antenna effect for these different lanthanide cations emitting in the visible and in the 

NIR.  

 The Gd
III 

derivative in this series is a useful probe to assess the electronic structure of 

these MCs, since this cation is not expected to exhibit Ln
III

 luminescence under UV excitation as 

the energy of the triplet state of the shi
3-

 ligand is hypothesized to be too low due to transfer to 

the accepting Gd
III

 level. The absorption spectrum of Ga4Gd exhibits two major features 

attributed to ligand based π  π* transitions on the basis of their high values of molar extinction 

coefficients with the lower energy absorption band located at 310 nm (corresponding to an 

energy of ca. 32,250 cm
-1

, Figure 5.5; black). This band is likely due to π  π* transitions on the 

ligand H3shi, which has an absorption at 299 nm; sodium benzoate does not show an absorption  
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Figure 5.3. UV-Vis absorption spectra for the Ga4Ln complexes in methanol at 298 K.  

 

 
Figure 5.4. Solid state absorption spectra for the Ga4Ln complexes. 
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until below ca. 285 nm (Figure 5.6). In the solution state absorption spectra, no bands that could 

be assigned to metal or ligand-based charge transfer were identified at lower energies.   

 Aside from Ga4Eu, all of the synthesized Ga4Ln complexes exhibit similar absorption 

spectra indicating that the nature of the lanthanide ion does not affect the electronic properties of 

the resulting complex (Figure 5.3 and Figure 5.4). In the case of Ga4Eu, ligand-to-metal charge 

transfer (LMCT)  can be observed in the solid state absorption spectra as an extension of the 

band to longer wavelengths (Figure 5.4). The LMCT cannot be observed in the solution UV-Vis 

spectra due to its low absorption coefficient. However, it is visible in the solid state reflectance 

experiments due to the yellow color of the Ga4Eu sample.
24

  

 Under excitation at 325 nm in solution (CD3OD) at room temperature, Ga4Gd exhibits 

fluorescence arising from its chromophoric moieties at 367 nm (ca. 27,250 cm
-1

, Figure 5.5; red). 

Phosphorescence can be observed by recording the signal emitted from Ga4Gd in the time-

resolved mode in the solid state at 77K upon excitation at 350 nm and using a 200µs delay after 

the excitation flash (Figure 5.5; blue). The 0-0 component of this band represents the energy 

level of the ligand’s triplet state (T1) which is attributed to the energy level responsible for the 

main contribution of the energy transfer to the Ln
3+

. The deconvolution of the phosphorescence 

spectrum (Figure 5.7) shows that the T1 level is located at 451 nm or (ca. 22,170 cm
-1

) which is 

sufficiently high in energy to populate the excited states of a wide range of visible and NIR-

emitting Ln
3+

.
25

 However, the energy difference (ΔE) between the donating triplet state of the 

reported MCs and the accepting main emitting levels of Tm
III

 (
1
G4, 21 350 cm

-1
), Tb

III
 (

5
D4, 

20 400 cm
-1

) and Dy
III

 (
4
F9/2, 21 100 cm

-1
) is relatively small (<2 300 cm

-1
), suggesting that a 

back energy transfer processes from the luminescent lanthanide to the chromophoric ligand is 

possible as discussed below.  
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Figure 5.5. Ligand based photophysical properties of Ga4Gd including the absorption spectrum (black), 

fluorescence (red; CD3OD, λex = 325 nm, 298 K, 0 µs delay), and phosphorescence (blue; solid, λex = 350 

nm, 77 K, 200 µs delay). 

 

 
Figure 5.6. Solution state absorption spectra of Ga4Gd (red), H3shi (blue) and sodium benzoate (blue 

dashed) in methanol at 298 K. 
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Figure 5.7. Deconvolution of the Ga4Gd phosphorescence signal  for the location of the T1 energy level 

(451 nm). Phosphorescence (blue), peaks obtained from deconvolution (dashed) and the sum (black). 

 

 Emission spectra of Ga4Sm, Ga4Eu, Ga4Dy, Ga4Tb, Ga4Ho, Ga4Yb, and Ga4Er were 

collected in solid state samples (Figure 5.8), and in MeOH or MeOD  solutions when possible 

(Appendix C, Figures C12 to C17). The results of this photophysical study are summarized in 

Table 5.3. Excitation spectra recorded on solid samples (Appendix C, Figures C1 to C7) and on 

solutions (Appendix C, Figures C8 to C11) are dominated by broad-bands due to ligand-based 

π→π* transitions and have two apparent maxima located at ca. 350 nm and at ca. 325 nm. In 

addition, fine structure that can be assigned to f-f transitions were observed for the Ga4Dy, 

Ga4Ho, and Ga4Er samples recorded in the solid state, though they are less pronounced for the  
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Figure 5.8. Solid state emission spectra of the Ga4Ln complexes collected at 298 K. 

 

Ga4Tb, which has a lower relative fluorescence intensity. These f-f transitions were not observed 

in solution. 

 An important parameter that can be obtained from the recording of luminescence 

lifetimes is the hydration number q.
26-27

 Reliable estimations have been developed by comparing 

lifetimes in deuterated and protic solvents for Tb
III

 and Yb
III

 and are summarized in Table 5.3. 

The hydration number was calculated to be between ca. 0.7 and 1.2 for the range of compounds, 

indicating that the Ln
III

 is coordinated to one molecule of solvent; such non-zero q values are 

detrimental for the intensity of the luminescence (and to the corresponding quantum yield 

values) as an indication that the overtone of a vibrations located in molecule of solvent create a 

route for non-radiative deactivation. As described previously, it is possible that the void space 

between bridging benzoate molecules may be occupied by a water molecule (Figure 5.1). 
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Table 5.3. Photophysical data for MC complexes. 
a 

ΔE(T–E
Ln

) is the energy gap between the ligand 

triplet state and Ln
3+

 emissive state: E
Tm

(
1
G4) = 21 350 cm

-1
, E

Tb
 (

5
D4) = 20 400 cm

-1
, E

Dy
 (

4
F9/2) = 21 100 

cm
-1

, E
Yb

(
2
F5/2) = 10 300 cm

-1
, E

Ho
(

5
F5) = 15 500 cm

-1
, E

Er
(

4
I13/2) = 6 700 cm

-1
. 

b
 quantum yield reflects the 

subtraction of the organic based signal; for organic and Tm
III

 emission, Q = 0.12(1). 
c
 q

Tb
 = 8.2 * (kCH3OH – 

kCD3OD) in ms. 
d
 q

Tb
 = 10.0 * (kCH3OH – kCD3OD – 0.06) in ms. 

e
 q

Yb
 = 2 * (kCH3OH – kCD3OD – 0.1) in µs.  

Ln
3+

 

complex 
State/Solvent ΔE (cm

-1
)

a
 obs (µs) q 

L

LnQ  (%) 

(visible) 

L

LnQ  (%) 

(NIR) 

Ga4Tm Solid 820 1.47(1)  0.02(1)
b
  

 CD3OD  ---    

 CH3OH  ---    

Ga4Dy Solid 1 070 21.2(2)  2.10(1) 0.21(1) 

 CD3OD  25.5(7)  0.78(1) 6.0(1)·10
-2

 

 CH3OH  12.0(1)  0.38(1) 2.4(1)·10
-2

 

Ga4Tb Solid 1 770 1.08(1)·10
3
 1.2

c
 34.7(1) --- 

 CD3OD  1.96(1)·10
3
 0.9

d
 28.6(1) --- 

 CH3OH  1.51(1)·10
3
  23.7(3) --- 

Ga4Yb Solid 11 870 55.7(3)  --- 5.88(2) 

 CD3OD  36.6(1) 0.72
e
 --- 4.29(1) 

 CH3OH  2.06(4)  --- 0.26(1) 

Ga4Ho Solid 6 670 ---  --- 2.0(2)·10
-3

 

 CD3OD  ---  --- --- 

 CH3OH  ---  --- --- 

Ga4Er Solid 15 470 6.75(3)  --- 4.4(1)·10
-2

 

 CD3OD  1.74(1)  --- 4.5(3)·10
-2

 

 CH3OH  ---  --- --- 

Ga4Sm Solid 4320 148(1)  2.46(8) 4.50(4) ·10
-1

 

 CD3OD  255(1)  2.33(5) 2.98 (1) ·10
-1

 

 CH3OH  26.7(1)  2.52(2) ·10
-1

 2.65(6) ·10
-2

 

Ga4Eu Solid 4930 242(7): 79% 

43(2): 21% 

 1.59(4) ·10
-2

 --- 

Ga8Dy2 Solid 878 15.0(1)  0.85(1) 0.01(1) 
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 The Ga4Eu complex exhibited transitions between the 
5
D0 emitting state to 

7
F0-4

 
states 

between 525 nm and 725 nm (Figure 5.8) in the solid state, which are typical for Eu
III

 

compounds.
24

 The relatively small quantum yield and luminescent life time observed (Table 5.3) 

are likely due to the LMCT described previously. The main emitting state for Sm
III

 ions (
4
G5/2) is 

only slightly higher in energy than the 
5
D0 state for Eu

III
. In both the solid state and in solution, 

the visible emission spectrum for Ga4Sm displays 
4
G5/2 → 

6
HJ (J = 5/2, 7/2, 9/2 and 11/2) 

transitions between 550 nm and 750 nm (Figure 5.8; Appendix C, Figure C12). The quantum 

yields for the visible emission in solution (2.33% in CD3OD) and in the solid state (2.46%) are 

modest; quantum yields up to 11% have been reported.
28

 However, the lifetime in CD3OD (255 

μs) is quite high.
29

 Furthermore, the NIR emission corresponding to the 
4
G5/2 → 

4
FJ (J = 5/2, 7/2, 

9/2 and 11/2) transitions (Figure 5.8; Appendix C, Figure C13) are intense enough to obtain 

quantum yields in both the solid state and in solution (Table 1), which is rare. 

 The observation of an emission signal arising from Tm
III

 in molecular complexes that are 

formed with organic ligands is extremely rare.  The emission spectrum obtained for Ga4Tm 

(Figure 5.8) recorded on solid state samples shows two visible characteristic bands originating 

from the 
1
G4 energy level and terminating on the 

3
H6 and 

3
F4 ground state levels, the signal of 

this last transition overlaps with a broad organic emission arising from the chromophoric ligand 

as the result of a not complete ligand to lanthanide energy transfer. The NIR bands of Tm
III

 could 

not be observed.  We could not observe any visible or NIR emission from samples in solution, 

which could be explained by the presence of quenching processes that bring the emission signal 

below the limit of detection of our instrument.  

 The emission spectrum of Ga4Dy recorded on solids-sate samples (Figure 5.8) exhibits a 

number of sharp bands across the visible and NIR regions, originating from electronic transitions 
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between the excited 
4
F9/2 energy level and the 

6
HJ (J = 15/2 – 5/2) and 

6
FJ (J = 11/2 – 1/2) ground 

state levels. In solution, a residual emission signal from the organic ligands is also observed, 

indicating an incomplete energy transfer to Dy
III

. Quantum yields recorded for Ga4Dy in the 

visible and the NIR are reported separately in Table 5.3. This result is remarkable as, to the best 

of our knowledge, this result is the first quantitative report of NIR emission arising from Dy
III

. 

Relatively strong emission bands resulting from transitions between the 
5
D4 level and 

terminating at the 
7
FJ (J = 6 – 0) ground states are observed for Ga4Tb with a quantum yield of 

34.7% in the solid state.  

 The desirable NIR emission from Ho
III

 is extremely rare in systems that contain organic 

lanthanide sensitizers, with fewer than five reports in the literature.
13, 17, 30-31

 Such NIR emission 

arising from Ga4Ho was observed at 965 – 990 nm and is due to the 
5
F5  

5
I7 transition and at 

1160 – 1190 nm originating from the 
5
I6  

5
I8 transition. The quantum yield for Ga4Ho in the 

solid-state (2.0(2)·10
-3

 %) is the first quantitative value ever reported and could be obtained as a 

results of the higher emission intensity. This value is two orders of magnitude larger than other 

reported quantum yields for complexes in solution. Emission signals in the visible were not 

observed, nor was it possible to collect an emission spectrum in solution.  

 An Yb
III

 emission signal was observed with an apparent maximum at 960 nm for Yb-1 

and is attributed to the 
2
F5/2  

2
F7/2 transition. The relatively shorter distance between the Ln

III
 

and C-H oscillators in comparison to MCs that we have studied previously
14-15

 is expected to 

result in additional deactivation by quenching through these oscillators.  In addition, we have 

identified an additional source of quenching through the coordination of a solvent molecule due 

to the insufficient protection of Ln
III

.   Surprisingly, the value quantum yield value that we have 

measured for Ga4Yb in the solid state (5.88(2) %) is over 1.5 fold higher than any other 
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comparable reported quantum yields for Yb
III

 complexes with organic ligands containing C-H 

bonds. However, in solution, quantum yields are in average values and are significantly lower 

than those measured in the solid state. These results can be partially explained by the non-zero 

value of q where the deactivation from the solvent will gain importance.  From these 

observations, we can conclude that the intrinsic sensitization efficiency is relatively high for this 

system, as demonstrated by the relatively high quantum yields in the solid state. 

 For the Er
III

 complex Er-1, the typical long wavelength emission is observed at ca. 1500 

– 1600 nm originating from the 
4
I13/2  

4
I15/2 transition. The quantum efficiency of this transition 

in the solid state is equal or slightly higher than the value observed for previously reported MC 

complexes, 4.4(1)·10
-2

 % versus 4.2(1)·10
-2

 %.
14-15

 This difference increases when the 

measurements are performed in deuterated solvent with respective values of 4.5(3)·10
-2

 % and 

3.60(6)·10
-2 

%. It is important to notice that these values are the highest ever reported in the 

literature. 

 (ii) Ga8Ln2 Complexes. Since the Ga8Ln2 dimer compounds are quite insoluble in all 

solvents, only the solid state photophysical data were collected. As with the Ga4Gd compound, 

the Ga8Gd2 complex may be used to examine the ligand based photophysical properties. At 

room temperature in the solid state and under 350 nm excitation, Ga8Gd2 exhibits ligand 

fluorescence at 393 nm (25445 cm
-1

, Figure 5.9, black). The solid state ligand phosphorescence 

was obtained at 77 K using an excitation wavelength of 350 nm and a 100 µs delay (Figure 5.9, 

red). The profile of the phosphorescence is similar to that of Ga4Gd (Figure 5.7), which is 

expected, since both compounds are sensitized by the framework ligand, H3shi.  Deconvolution 

of the phosphorescence spectrum shows that the 
3
T1 level is located at 455 nm, or 21978 cm

-1 

(Figure 5.10). This triplet state energy is slightly lower than that of the Ga4Gd compound 
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Figure 5.9. Ligand based photophysical properties of Ga8Gd2 including the ligand fluorescence (black, 

λex = 320 nm, 298 K, 0 µs delay), and phosphorescence (red; solid, λex = 350 nm, 77 K, 100 µs delay). 

 

(22,170 cm
-1

), but still is sufficiently high enough in energy to sensitize the emitting 
4
F9/2 state of 

Dy
III

 (ΔE = 878 cm
-1

). 

 The excitation spectrum for Ga8Dy2 (λem = 808 nm) exhibits a profile similar to that of 

the Ga4Dy complex (Appendix C, Figure C4) and has a maximum intensity at 340 nm (Figure 

5.11). Using an excitation wavelength of 350 nm, both visible (Figure 5.12) and NIR (Figure 

5.13) emission can be observed. The quantum yields for visible and NIR emission were 

determined to be 0.85(1)% and 0.01%, respectively, with the luminescence lifetime measured at 

15.0 μs. These values are smaller than those found for Ga4Dy (Table 5.3). This can be explained 

by an enhanced lanthanide to ligand back energy transfer in Ga8Dy2 due to the smaller ΔE. 
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Figure 5.10. Deconvolution of the Ga8Gd2 phosphorescence signal  for the location of the T1 energy 

level (451 nm). Phosphorescence (blue), peaks obtained from deconvolution (dashed) and the sum 

(black). 

 

 
Figure 5.11. Excitation spectrum for Ga8Dy2 at 298 K. λem = 808 nm 
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Figure 5.12. Visible emission spectrum for Ga8Dy2 at 298 K. λex = 350 nm 

 

 
Figure 5.13. NIR emission spectrum for Ga8Dy2 at 298 K. λex = 350 nm 



179 
 

5.4 Conclusions  

 The work in this Chapter presents a modular metallacrown platform highly efficient for 

the sensitization of visible and near-infrared lanthanide metal ions. By following basic principles 

from the metallacrown synthetic strategy, highly luminescent Ga4Ln coordination compounds 

can be obtained by a simple four-component self-assembly synthetic process.  The size of the 

lanthanide has an impact on the formation of the complex as the assembly for Ln
III

 ions larger 

than Sm
III

 could not be obtained. The electronic structure of the metallacrowns is remarkable in 

its ability to sensitize several lanthanide cations emitting in the visible (Eu
III

,
 
Tb

III
) and in the 

near-infrared (Ho
III

, Er
III

, Tm
III

, Yb
III

) or in both (Sm
III 

and
 
Dy

III
).  The sensitization of additional 

NIR emitting lanthanide cations opens new possibilities for multiplex bioanalytical experiments. 

 Unlike the LnZn16L16 sandwich complexes, the protection of the lanthanide cation against 

non-radiative deactivation is not optimized as indicated by the non-zero hydration number which 

indicates that the design of the MC could be optimized. The design of these structures localizes 

the lanthanide cations at the center of the assembly, with the goal of precluding luminescence 

quenching solvent molecules. However, a pocket between the bridging carboxylates may provide 

space for  a water molecule, as the calculated the q value was 1 for the Tb
III

 and Yb
III

 analogues. 

Nevertheless, the efficient sensitization from the H3shi chromophore to the Ln
III

 leads to highly 

luminescent visible and NIR emitters.   In particular, we have recorded the highest quantum yield 

values for Yb
III

 and Er
III

 for complexes containing organic ligands. Such results are indicative of 

a high sensitization efficiency from the chromophoric parts of ligands to the accepting levels of 

lanthanides which is in line with the observation that quantum yields and luminescence lifetimes 

are all higher in the solid state than they are in the solution phase. Therefore, there is room for 
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improvement of the luminescence properties through a modification of this MC providing a 

better protection to the lanthanide cations.  

 The Ga8Dy2 dimer compound exhibited lower quantum yields and luminescent lifetimes 

than the Ga4Ln monomer complex. This is possibly due to the smaller energy gap between the 

excited T1 state of the ligand and the emitting 
4
F9/2 state Dy

III
 (878 cm

-1
 and 1070 cm

-1
 for 

Ga8Dy2 and Ga4Dy, respectively. This also suggests that the carboxylate bridging ligand may 

have an effect on the triplet state energy of the shi
3-

 antenna. The work presented in this Chapter 

provides model systems which efficiently sensitizes a wide range of Ln
III

. The simplicity and 

synthetic reliability of the 12-MC-4 system provides ample opportunity to modulate structural 

features such as the framework and bridging ligands, in order to tune both the photophysical 

parameters and physical properties such as solution integrity and solubility.  
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Chapter VI 

Conclusions and Future Directions  

 

 Supramolecular assembly can be considered the Wild West of chemical research. A 

search on the Cambridge Crystallographic Database reveals that there are 14 different crystal 

structures (including several unreported by Boron
1
) containing the ligand H3shi and a metal ion.

2
 

These structures, along with the H3shi-based compounds reported in this thesis exemplify the 

structural promiscuity of the metallacrown type ligands. Certainly, predictable structure types 

such as the 9-MC-3 (with Fe
III

) and 12-MC-4 (with Ga
III

 and Mn
III

) can be reliably formed under 

the appropriate crystallization conditions. Nonetheless, serendipity reveals itself in the M4Ln2 

compounds described in Chapters II and III and also Mn6Ln2(shi
3-

)7(H2shi
-
)2 (Figure 6.1) and 

Ga4Ln(shi
3-

)4(H2shi
-
)2 (Figure 6.2) compounds that have been synthesized over the course of 

this thesis, but have not been reported in the previous chapters. Though, even in the apparent 

randomness of the structures, there are still elements of metallacrown design in these complexes; 

12-MC-4 fragments are present in the structures in Figures 6.1 and 6.2. However, with so much 

uncertainty involved, is it truly possible to ‘design’ a coordination complex for a specific 

application? The underlying goals of this thesis are not simply the synthesis of novel complexes, 

but to also explore different avenues of study for existing materials.  
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 In recent literature, the two most common approaches to designing SMMs are to (i) 

control the ligand field around the metal ion(s) to maximize molecular anisotropy and (ii) link 

the metals in such a way that optimizes magnetic interactions. While the metallacrown 

 

 
Figure 6.1. Crystal structure of Mn6Dy2(shi

3-
)7(H2shi

-
)2. Teal spheres - Dy

III
; purple spheres – Mn

III
; gray 

– C; red – O; blue – N. Hydrogens and lattice solvent were removed for clarity. In bold are two 12-MC-4 

fragments which have merged to form the molecular plane. 

 

 
Figure 6.2. Crystal structure of Ga4Ln(shi

3-
)4(H2shi

-
)2. Teal - Dy

III
; tan – Ga

III
; gray – C; red – O; blue – 

N. Hydrogens and lattice solvent were removed for clarity. In bold is a bent 12-MC-4 core structure. 
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strategy offers a measure of control over ligand field geometry,
3
 there has to fore not been a 

definitive description of how metallacrowns can optimize magnetic interactions. Thus, the focus 

of this thesis is the evaluation of how metal-metal interactions can affect slow magnetic 

relaxation in lanthanide metallacrown complexes. It has been proposed that strong magnetic 

exchange can aide in the suppression of quantum tunneling,
4
 and much of the current research 

has involved strengthening this interaction in polynuclear lanthanide complexes.
5-7

  

 The Ga4Ln2 complexes described in Chapter II were good candidates to study the effects 

of Ln
III

-Ln
III

 magnetic exchange. The short Ln
III

-Ln
III

 distances (~3.8 Å) and coupling through 

hydroximate oxygens allowed for potential dipolar and superexchange pathways. The Ga4Dy2 

analogue exhibited relaxation behavior originating from the decoupled Dy
III

 ions (26 K) and 

from the excited ferromagnetic state (18 K). This finding was remarkable, as to our knowledge, 

there have not been any reports of multiple relaxation processes in polynuclear Ln
III

 complexes 

containing symmetrically equivalent Ln
III

 ions. A combination of computation micro-SQUID 

studies and magnetic dilution experiments corroborated the above results. In Chapter III, the 

study of mixed 3d/4f metallacrown complexes showed that antiferromagnetic 3d-4f coupling 

effectively quenched SMM behavior due to the creation of low-lying excited states. 

 Considering these findings, what does it mean for the future of SMM research? Simply 

put, there is still much work to be done. The results presented in this thesis have shown that both 

4f-4f and 3d-4f antiferromagnetic coupling has an adverse effect on slow magnetic relaxation. 

However, the Powell group has garnered evidence that ferromagnetic 3d-4f interactions in a 

Dy
III

Fe
II

2 SMM is crucial to increasing the anisotropic barrier height.
8
 Practically speaking, 

however, inducing ferromagnetic interactions in coordination compounds will be very difficult, 

especially for Ln
III

 based complexes. The major limitation of lanthanide-based SMMs is the 
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prevalence of nuclear spin driven quantum tunneling.
9-10

 To mitigate this effect, strategies such 

as modifying the first-coordination sphere of the Ln
III

 ions
11-12

 and coupling Ln
III

 ions through 

radicals
7
 have been employed, though only a few lanthanide SMMs display high temperature, 

high coercive field magnetic hysteresis. Transition metal SMMs have been shown to exhibit 

hysteresis with large coercive fields,
13-14

 though these materials are limited by low energy 

barriers. A current trend in the literature is the use of Co
II
 ions, due to their potential for large 

magnetoanisotropy.
15-17

 It is quite apparent that the SMM field is still at a nascent stage of 

development, and all potential possibilities should be pursued. For instance, mixed Ln
III

 

complexes have not been extensive studied, due to difficulties in synthesis. A Ga4Er1.8Dy0.2 

complex may be of interest to see how oblate-prolate lanthanide interactions may affect slow 

relaxation. This compound could also potentially lead to ferromagnetic exchange interaction, as 

is the case in the pure Er
III

 derivative. 

Often a by-product of SMM research, ideal MCE materials have weak ferromagnetic 

interactions leading to a high ground S state and low molecular anisotropy.
18

 Similar to SMMs, 

the control of magnetic interactions is necessary to achieve high performance materials. A 

drawback of the metallacrown motif is that the -N-O- linking unit generally leads to 

antiferromagnetic interactions, which was problematic in the mixed 3d/4f SMM complexes 

described in Chapter III. Although it is difficult to design ferromagnetic coupling in molecular 

materials, careful consideration of both the number and spatial arrangement of the metal ions 

may lead to high spin ferrimagnetic materials which display significant MCE. As described in 

Chapter IV, the Fe4OAc complex displayed a significant MCE at 3 K, with -ΔSm = 15.4 J kg
-1 

K
-

1
 and -ΔSm = 11.2 J kg

-1 
K

-1
 at ΔH = 7 T and ΔH = 3 T, respectively. These values are 

comparable to those of much higher nuclearity iron(III) clusters.
19

 This suggests that, although  
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Figure 6.3. Structure of the proposed Fe

III
(formate)3[9-MCFeIIIN(shi)-3] complex. 

 

antiferromagnetic interactions are dominant in metallacrown complexes, careful molecular 

design can lead to ferrimagnetic complexes with significant MCE. 

A formate-bridged Fe4 compound (Figure 6.3) may potentially be a good candidate to 

improve the MCE of the Fe4 system. In Chapter VI, the bridging ligand with the lower pKa, 

benzoate, also had the larger J2/J1 ratio (closer to the ideal value of 0.333). If this trend continues, 

then formate, which has a lower pKa than both acetate or benzoate, should have the largest J2/J1 

ratio and be closest to the ideal value. It should be stated that coupling is highly dependent on 

bond lengths and angles,
20

 though these parameters are quite difficult to control. Formate would 

also be an advantageous ligand because its lower molecular weight would increase the metal : 

ligand weight ratio, and the lack of aryl moieties may preclude strong intermolecular 

interactions.  Development of materials with large MCE properties may ultimately require 

inducing ferromagnetic interactions. In a recent report, a ferromagnetically coupled Fe42 cyanide-

bridged complex was found to have a ground spin state S = 45.
21

 Thus, linking metallacrown 

clusters through cyanide groups may be a potential route towards higher spin complexes.  

In SMM and MCE research, emphasis is placed on controlling the first-coordination 

sphere and spatial arrangement of metal centers, in order to induce favorable magnetic 
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anisotropy and coupling. Ligand-based electronic properties have been found to have only a 

small effect in the Mn12 derivatives
14

 and has largely been ignored in the SMM literature. On the 

other hand, for research in luminescent lanthanide complexes, the reverse is true; the electronic 

properties of the antenna ligands are crucial to lanthanide sensitization and eliminating 

vibrational quenching from solvent molecules is necessary for efficient energy transfer. In this 

regard, metallacrowns are perhaps better suited for applications in luminescence rather than as 

molecular nanomagnets. The aryl hydroxamate ligands have excited triplet states which are a 

good energy match for the emitting states of Ln
III

 ions and MC complexes have a tendency to 

encapsulate the Ln
III

 ions.
3, 22-24

 Moreover, MCs are also quite amenable to ligand substitution, 

which allows for the tuning of both physical and photophysical properties.  

As an extension to the work of Jankolovits
23

 and Trivedi
24

, the Ga4Ln 12-MC-4 

complexes were synthesized and have shown the ability to sensitize both visible and NIR 

lanthanides (ranging from Sm
III

 to Yb
III

) with notable efficiency. The efficiency of the energy 

transfer from the ligand T1 state to the Ln
III

 emitting states was high enough such that these 

complexes exhibit some of the highest luminescence quantum yields and lifetimes reported in the 

literature. Examination of the Ga8Ln2 dimer complexes have shown that even though the T1 state 

is based on the shi
3-

 ligands, the identity of the bridging carboxylate can affect luminescent 

properties. These results show that the 12-MC-4 motif presents an effective, modular platform on 

which to design highly luminescent lanthanide complexes.  

In the evolution of the luminescent LnZn16Ln16 complexes, ligand substitutions were 

employed to both redshift the absorption profile and enhance the water solubility, in order to 

make them useful for practical bio-imaging applications.
23-24,25

 Similar modifications could 

potentially be made the above mentioned 12-MC-4 systems; the ability to sensitize both visible 
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and NIR lanthanides make for a particularly attractive target. More fundamentally, metallacrown 

based complexes may give insight into how the 3-dimensional arrangement of the antenna 

ligands around the Ln
III

 will affect sensitization. For instance, how would the photophysical 

properties of other compounds formed with H3shi (such as in Figure 6.2) compare with the more 

planar Ga4Ln complexes?   

To borrow a phrase from biology, the central dogma of metallacrown research is the 

innate capacity for the systematic substitution of ligands, metals and counter-ions in MC 

complexes, while still retaining the core structure. In Chapters II and III, the metallacrown ring 

metals were substituted with diamagnetic (Ga
III

) and paramagnetic (Mn
III

, Fe
III

) to better 

understand 3d-4f interactions. In the studies of the MCE and luminescent materials, ligand 

substitution was employed to modulate magnetic and photophysical parameters. The compounds 

described in this thesis are simple, yet highly modular in nature. Based on the previous studies 

and the work presented in this thesis, it is clear that metallacrowns offer great potential in both 

fundamental and applied research. 
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Appendix A 

Computational Details 

 

Table A1. SHAPE analysis of compound Ga4Dy2.  

OP 
(D8h) 

HPY 
(C7v) 

HPBY 
(D6h) 

CU 
(Oh) 

SAPR 
(D4d) 

TDD 
(D2d) 

JGBF 
(D2d) 

JETBPY 
(D3h) 

JBTP 
(C2v) 

BTPR 
(C2v) 

JSD 
(D2d) 

TT 
(Td) 

TBPY 
(D3h) 

31.549 24.076 15.088 13.16 3.463 1.131 11.071 27.127 3.008 2.61 2.365 13.686 24.070 

 

Abbreviations: OP – Octagon, HPY – Heptagonal pyramid, HBPY – Hexagonal bipyramid, CU – Cube, SAPR – Square 

antiprism, TDD – Triangular dodecahedron, JGBF – Johnson – Gyrobifastigium, JETBPY – Johnson Elongated 

triangular bipyramid, JBTP – Johnson Biaugmented trigonal prism, BTPR – Biaugmented trigonal prism, JSD – Snub 

disphenoid, TT – Triakis tetrahedron, ETBPY – Elongated trigonal pyramid   

Table A2: Energy gaps and g factors of the lowest states of GdLuGa4.  

Kramers Doublet E (cm-1) gi 

1 0 13.92 ; 0.03 ; 0.02 

2 1.0 9.64 ; 1.15 ; 0.98 

3 1.6 6.07 ; 5.39 ; 4.45 

4 2.1 13.10 ; 1.40 ; 0.75 

5 40600  

 

Table A3: Energy in cm
-1

 of the states of Ga4Gd2 issued from the ground spin octuplet of the 

monomers. The first line with J=0 considers only dipolar interaction.  

 -0.72;-0.72;-0.62;-0.62;-0.53;-0.46;-0.46;-0.41;-0.41;-0.41;-0.41;-0.37;-0.37;-0.34;-0.34;-0.34 

E with J=0 -0.31;-0.31;-0.22;-0.22;-0.16;-0.16;-0.15;-0.15;-0.12;-0.12;-0.09;-0.09;-0.08;-0.04; ; -0.04; 

 0.04;0.04;0.08;0.08;0.09;0.09;0.12;0.12;0.13;0.13;0.19;0.19;0.25;0.25;0.27;0.27;0.29; 

 0.29;0.30;0.40;0.40;0.40;0.40;0.43;0.43;0.45;0.50;0.57;0.57;0.58;0.58;0.75;0.75 

 -2.67;-2.58;-2.58;-2.33;-2.33;-2.08;-1.92;-1.92;-1.92;-1.92;-1.62;-1.56;-1.56;-1.35;-1.35; 

E with  -1.29;-1.29;-1.15;-1.02;-1.02;-0.77;-0.77;-0.64;-0.64;-0.60;-0.60;-0.53;-0.33;-0.33;-0.07;-0.07; 

J=-0.16 cm
-1

 0.11;0.11;0.21;0.21;0.22;0.22;0.26;0.52;0.52;0.77;0.77;0.97;0.97;1.12;1.12;1.21;1.21;1.21;1.21; 

 1.24;1.52;1.52;1.78;1.78;2.00;2.00;2.17;2.17;2.29;2.29;2.36;2.36;2.38 
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Table A4. Energy gaps and g factors of the lowest Kramer Doublets of DyLuGa4. 

Kramer Doublets E (cm-1) gi 

1 0 19.47 ;  0.08 ; 0.04 

2 153 15.75 ; 0.35 ; 0.66 

3 241 14.09 ;1.09 ; 1.39 

4 272 12.05 ; 6.15 ; 2.52 

5 329 8.86 ; 4.01 ; 1.04 

6 341 10.34 ; 5.68 ; 1.33 

 

Table A5: Energy in cm
-1

 of the states of Ga4Dy2 issued from the ground Kramer’s doublet of 

the monomers. The first column with J = 0 considers only dipolar interaction.  

states E with J = 0  E with Jexc = –0.29 cm-1 

│ + +〉 │ − −〉 -0.63 -2.36 

│ + −〉 │ − +〉 0.63 2.36 

 

Table A6. Energy gaps and g factors of the lowest doublets of TbLuGa4. 

Non Kramer 
doublets 

E (cm-1) gi 

1-2 0 ; 0.2 17.85 ;  0.00 ; 0.00 

3-4 83 ; 85 16.82 ; 0.00 ; 0.00 

5-6 148 ; 160 12.47 ; 0.00 ; 0.00 

7-8 228 ; 240 8.80 ; 0.00 ; 0.00 

9  278  

10-11 334 ; 344 16.44 ; 0.00 ; 0.00 

12-13 432 ; 433 16.86 ; 0.00 ; 0.00 

14-15 1828 ; 1832  
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Table A7: Energy in cm
-1

 of the states of Ga4Tb2 issued from the ground doublet of the 

monomers. The first column with J=0 considers only dipolar interaction. The gap between the 

│ + +〉 and  the │ − −〉 states is due to the small splitting in the non Kramer’s doublet of the 

monomer of 0.2 cm
-1

 (see Table A6, second line). 

states E with J=0 E  with J=-0.12 cm-1 

│ + +〉 │ − −〉 -0.63 -1.40 

 │ + +〉 0.54 1.60 

│ − −〉 0.94 2.00 

 

Table A8. Energy gaps and g factors of the lowest Kramer Doublets of ErLuGa4. 

Kramer 
Doublets 

E (cm-1) E*1.8 (cm-1) (1.8 is the 
reduction factor applied on the 
energy spectrum in order to be 

able to fit the magnetization 
data) 

gi 

1 0 0 9.94 ; 5.14 ; 0.25 

2 19 34 7.81 ; 5.51 ; 2.13 

3 50 89 12.20 ; 2.14 ; 0.40 

4 77 138 8.53 ; 5.46 ; 2.43 

5 139 251 8.93 ; 5.25 ; 1.94 

6 192 345 11.13 ; 3.57 ; 0.84 

7 235 422 9.49 ; 5.21 ; 2.84 

8 278            501 15.74 ; 1.23 ; 0.58 

9 6117 11010  

 

Table A9: Energy in cm
-1

 of the states of Ga4Er2 issued from the ground Kramer’s doublet of 

the monomers. The first column with J=0 considers only dipolar interaction.  

states E with J=0 E with J=2.4 cm-1 

│𝑇0〉 = 1 √2⁄ (│ + −〉 + │ − +〉) -0.20 -2.31 

│𝑇+〉 = 1 √2⁄ (│ + +〉 + │ − −〉)  -0.33 -1.47 

│𝑇−〉 = 1 √2⁄ (│ + +〉 − │ − −〉) 0.33 1.47 

 │𝑆〉 = 1 √2⁄ (│ + −〉 − │ − +〉) 0.20 2.31 
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Table A10: Orbital and spin contributions to the g factors of the ground doublets. The ratio of 

the orbital and spin contributions is the same as in the free ion term.  For gadolinium, the 

magnetic moment is the one of a pure spin. As in the free ion, the spin and orbital contributions 

are additive since the open shell is more than half filled and from Tb to Er, the orbital 

contribution increases while the spin one diminishes. 

 Gd Tb Dy Er 

g1 13.92 17.85 19.47 9.94 

g1
L 0.05 5.92 9.70 6.60 

g1
S 13.87 11.93 9.77 3.34 

g2 0.03 0.00 0.08 5.14 

g2
L 0.00 0.00 0.04 3.42 

g2
S 0.03 0.00 0.04 1.72 

g3 0.02 0.00 0.04 0.25 

g3
L 0.00 0.00 0.02 0.18 

g3
S 0.02 0.00 0.02 0.07 

 

Table A11. Overlap integral between the different NSO for the Ga4Dy2 complex along the 

direction of easy magnetization 

overlap 
integral 

NSO1 NSO2 NSO3 NSO4 NSO5 NSO6 NSO7 

NSO1 -1,08E-004 -2,77E-005 -4,02E-005 -5,32E-005 -1,69E-005 1,03E-004 -9,39E-005 

NSO2 -2,77E-005 -5,31E-004 6,79E-004 -6,66E-005 3,40E-004 -1,58E-004 -1,50E-004 

NSO3 -4,02E-005 6,79E-004 -1,11E-003 -1,67E-004 1,67E-004 3,05E-004 1,14E-004 

NSO4 -5,32E-005 -6,66E-005 -1,67E-004 4,85E-004 -2,37E-004 -2,96E-005 7,01E-005 

NSO5 -1,69E-005 3,40E-004 1,67E-004 -2,37E-004 -2,40E-004 -1,38E-004 7,64E-005 

NSO6 1,03E-004 -1,58E-004 3,05E-004 -2,96E-005 -1,38E-004 3,26E-004 -7,73E-005 

NSO7 -9,39E-005 -1,50E-004 1,14E-004 7,01E-005 7,64E-005 -7,73E-005 2,01E-004 

 

Table A12. Overlap integral between the different NSO for the Ga4Tb2 complex along the 

direction of easy magnetization 

overlap 

integral 
NSO1 NSO2 NSO3 NSO4 NSO5 NSO6 NSO7 

NSO1 -1,14E-004 1,59E-005 1,40E-005 -2,35E-005 3,57E-004 1,26E-004 -8,28E-005 

NSO2 1,59E-005 -3,80E-004 -5,75E-005 -1,41E-004 8,10E-004 -1,83E-004 -3,21E-006 

NSO3 1,40E-005 -5,75E-005 2,37E-004 -1,86E-004 5,37E-005 9,34E-005 -8,05E-005 

NSO4 -2,35E-005 -1,41E-004 -1,86E-004 -8,81E-005 -2,97E-004 -2,08E-004 3,21E-004 

NSO5 3,57E-004 8,10E-004 5,37E-005 -2,97E-004 -1,04E-003 -3,11E-004 6,99E-005 

NSO6 1,26E-004 -1,83E-004 9,34E-005 -2,08E-004 -3,11E-004 2,82E-005 2,12E-005 

NSO7 -8,28E-005 -3,21E-006 -8,05E-005 3,21E-004 6,99E-005 2,12E-005 3,87E-004 
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Table A13. Overlap integral between the different NSO for the Ga4Er2 complex along the two 

directions of the plane of magnetization: direction 1 (top), direction 2 (bottom) 

overlap 

integral 
NSO1 NSO2 NSO3 NSO4 NSO5 NSO6 NSO7 

NSO1 -5,03E-004 -1,18E-005 -1,90E-004 -5,12E-004 3,67E-004 9,36E-005 -1,87E-004 

NSO2 -1,18E-005 7,82E-005 1,48E-004 9,92E-005 8,86E-005 9,85E-005 1,78E-004 

NSO3 -1,90E-004 1,48E-004 -3,10E-004 2,39E-004 -2,26E-004 3,42E-004 3,65E-004 

NSO4 -5,12E-004 9,92E-005 2,39E-004 -2,44E-004 6,22E-004 9,79E-006 -2,62E-004 

NSO5 3,67E-004 8,86E-005 -2,26E-004 6,22E-004 -2,72E-004 -1,75E-004 -8,01E-005 

NSO6 9,36E-005 9,85E-005 3,42E-004 9,79E-006 -1,75E-004 3,19E-004 1,38E-004 

NSO7 -1,87E-004 1,78E-004 3,65E-004 -2,62E-004 -8,01E-005 1,38E-004 3,42E-004 

 

overlap 

integral 
NSO1 NSO2 NSO3 NSO4 NSO5 NSO6 NSO7 

NSO1 -3,75E-004 2,98E-004 -1,23E-005 -5,43E-006 -2,94E-004 1,90E-005 -7,75E-005 

NSO2 2,98E-004 -1,87E-004 8,49E-005 -2,44E-004 3,63E-003 5,82E-005 4,92E-007 

NSO3 -1,23E-005 8,49E-005 6,14E-006 -3,86E-004 2,82E-004 1,18E-004 -3,56E-004 

NSO4 -5,43E-006 -2,44E-004 -3,86E-004 -8,87E-004 5,39E-004 2,61E-004 3,68E-005 

NSO5 -2,94E-004 3,63E-003 2,82E-004 5,39E-004 4,54E-004 -3,46E-005 -1,43E-004 

NSO6 1,90E-005 5,82E-005 1,18E-004 2,61E-004 -3,46E-005 1,94E-004 7,06E-005 

NSO7 -7,75E-005 4,92E-007 -3,56E-004 3,68E-005 -1,43E-004 7,06E-005 2,06E-004 

 

Calculation of NSOs 

A local modification of MOLCAS was used to generate natural spin orbitals (NSOs) from SO-CASSCF 

calculations. Within the frame of the principal magnetic axes of the doublet ground state 𝑋, 𝑌  and 𝑍 ,  

to generate the NSOs 𝜙𝑝
𝑢 in direction 𝑢 = 𝑋, 𝑌, 𝑍 , one considers linear combinations of the ground state 

doublet components │Ψ0
𝑢⟩ and │Ψ0

′𝑢⟩ diagonalizing the magnetic moment operator   𝑀̂𝑈 and the NSOs 

𝜙𝑖
𝑢 are the eigen-functions of the one-particle spin-magnetization density matrices. It results that when 

the external magnetic field is applied along direction u, the spin density is 𝜌𝑢(𝒓) = ∑ 𝑛𝑖𝜙𝑖
7
𝑖=1 (𝒓)2 

where 𝜙𝑖 is NSOi with occupation 𝑛𝑖. The spin magnetization in this direction is 

∑ 𝑛𝑖 =7
𝑖=1 2⟨Ψ0

u|𝑆̂𝑢|Ψ0
u⟩ = 𝑔𝑖

𝑆/2 

Calculation of the states of the dimers 

Properties of the dimers are deduced from the properties of the monomers. Let us define the zero field 

state of the monomer A(B) as│𝐼⟩𝐴(𝐵) with the corresponding energies EI. All matrix elements 〈𝐼|𝐿𝑢|𝐽〉, 

〈𝐼|𝑆𝑢|𝐽〉 and 〈𝐼|𝑀𝑢|𝐽〉 ( 𝑢 = 𝑥, 𝑦, 𝑧) are calculated within this basis set where 𝐿⃗ , 𝑆  and  𝑀⃗⃗ =

−𝜇𝐵(𝐿⃗ + 𝑔𝑒 𝑆 )  are the orbital, the spin angular momenta and the total magnetic momentum. 𝑔𝑒 is the 
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g-factor of the free electron and 𝜇𝐵 is the Bohr magneton. The basis set for the dimer is built as the 

tensor product of SO states of the monomers│𝐼 𝐽⟩ =│𝐼⟩𝐴 ⊗│𝐽⟩𝐵 . The dipolar magnetic interaction 

can be written as  

𝐻̂𝑑𝑖𝑝 =
𝜇0

4𝜋𝑅3 {𝑀⃗⃗ ̂𝐴. 𝑀⃗⃗ ̂𝐵 − 3𝑀̂𝑧
𝐴 𝑀̂𝑧

𝐵}              (𝐴1) 

where 𝑅 is the intermetallic distance, 𝑧  the intermetallic direction  and 𝜇0  the magnetic constant. 

Matrix elements for the dimers are deduced from those of the monomer as  

⟨𝐼 𝐽│𝐻̂𝑑𝑖𝑝│𝐼′𝐽′⟩ =
𝜇0

4𝜋𝑅3 {⟨𝐼│𝑀̂𝑥
𝐴│𝐼′⟩⟨𝐽│𝑀̂𝑥

𝐵│𝐽′⟩ + ⟨𝐼│𝑀̂𝑦
𝐴│𝐼′⟩⟨𝐽│𝑀̂𝑦

𝐵│𝐽′⟩

− 2 ⟨𝐼│𝑀̂𝑧
𝐴│𝐼′⟩⟨𝐽│𝑀̂𝑧

𝐵│𝐽′⟩} 

The exchange interactions are carried by the spin densities and are described by a Heisenberg-Dirac-Van 

Vleck (HDVV) Hamiltonian 

𝐻̂𝐻𝑒𝑖𝑠 = −𝐽 𝑆 ̂𝐴 ⋅ 𝑆 ̂𝐵                 (𝐴2) 

Matrix elements of this operator are 

⟨𝐼 𝐽|𝐻̂ℎ𝑒𝑖𝑠|𝐼′𝐽′⟩ = −𝐽{⟨𝐼|𝑆̂𝑥
𝐴|𝐼′⟩⟨𝐽|𝑆̂𝑥

𝐵|𝐽′⟩ + ⟨𝐼|𝑆̂𝑦
𝐴|𝐼′⟩⟨𝐽|𝑆̂𝑦

𝐵|𝐽′⟩ + ⟨𝐼│𝑆̂𝑧
𝐴│𝐼′⟩⟨𝐽│𝑆̂𝑧

𝐵│𝐽′⟩}. 

Finally, the Zeeman interaction in the dimer is described by the following Hamiltonian 

𝐻̂𝑍𝑒𝑒 = −𝜇𝐵 𝐵⃗ ⋅  (𝑀⃗⃗ ̂𝐴 + 𝑀⃗⃗ ̂𝐵)             (𝐴3) 

where 𝜇𝐵 is the Bohr magneton and 𝐵⃗   is the external magnetic field with components 𝐵𝑥, 𝐵𝑦 and 𝐵𝑧.  

The matrix elements of this Hamiltonian are  

⟨𝐼 𝐽|𝐻̂𝑍𝑒𝑒|𝐼′𝐽′⟩ = −𝜇𝐵{𝐵𝑥(⟨𝐼|𝑀̂𝑥
𝐴|𝐼′⟩𝛿𝐽 𝐽′ + ⟨𝐽|𝑀̂𝑥

𝐵|𝐽′⟩𝛿𝐼 𝐼′)

+ 𝐵𝑦(⟨𝐼|𝑀̂𝑦
𝐴|𝐼′⟩𝛿𝐽 𝐽′ + ⟨𝐽|𝑀̂𝑦

𝐵|𝐽′⟩𝛿𝐼 𝐼′) + 𝐵𝑧(⟨𝐼|𝑀̂𝑧
𝐴|𝐼′⟩𝛿𝐽 𝐽′ + ⟨𝐽|𝑀̂𝑧

𝐵|𝐽′⟩𝛿𝐼 𝐼′)} 

where 𝛿 denotes the Kronecker symbol. Finally, the full matrix diagonalization of the total Hamiltonian 

𝐻̂ = 𝐻̂𝐴 + 𝐻̂𝐵 + 𝐻̂𝑑𝑖𝑝 + 𝐻̂𝐻𝑒𝑖𝑠 + 𝐻̂𝑍𝑒𝑒  provides all energy eigenvalues and eigenvectors. This allows 

the calculation of the magnetization of the dimer using a Boltzmann statistics. All terms are first 

principles except the exchange coupling parameter 𝐽.  

 

Magnetic dipole interaction between two magnetic planes  

The magnetic plane is denoted xy and the intermetallic axis is  𝑢⃗ = 𝛼𝑒𝑥⃗⃗⃗⃗ + 𝛽𝑒𝑦⃗⃗⃗⃗ + 𝛾𝑒𝑧⃗⃗  ⃗. We note 𝜅 =
𝜇0

4𝜋𝑅3.  

We restrict the discussion to the lowest doublet where│+〉  and │−〉  are the local states on one 

monomer. The matrices for the magnetization on one center are 
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𝑀̂𝑥    │+〉 │−〉 

〈+│ 0 𝑚

〈−│  𝑚 0 

                  

𝑀̂𝑦   │+〉 │−〉 

〈+│ 0 −𝑖 𝑚

〈−│  𝑖 𝑚 0 

 

The states for the dimer are obtained as a tensor product of the states of the monomer │ + +〉, │ + −〉, 

│ − +〉 and │ − −〉. The matrix of operator  𝐻̂𝑑𝑖𝑝  defined in Eq. A1 is 

𝐻̂𝑑𝑖𝑝 │ + +〉 │ + −〉 │ − +〉 │ − −〉 

〈+ + │ 0 0 0 −3𝜅𝑚2(𝛼 − 𝑖𝛽)2

 〈+ − │  0 0  𝜅𝑚2(2 − 3(𝛼2 + 𝛽2)) 0

 〈− + │  0  𝜅𝑚2(2 − 3(𝛼2 + 𝛽2)) 0 0

 〈− − │ −3𝜅𝑚2(𝛼 − 𝑖𝛽)2  0 0 0

 

In the case where the magnetic plane is perpendicular to the intermetallic axis, 𝛾 = 1 and 𝛼 = 𝛽 = 0. 

Introducing a new basis set,│𝑇+〉 = 1 √2⁄ (│ + +〉 + │ − −〉)  , │𝑇−〉 = 1 √2⁄ (│ + +〉 − │ − −〉)  , 

│𝑇0〉 = 1 √2⁄ (│ + −〉 + │ − +〉)  , │𝑆〉 = 1 √2⁄ (│ + −〉 − │ − +〉)  the previous matrix becomes  

𝐻̂𝑑𝑖𝑝 │𝑇+〉 │𝑇0〉 │𝑇−〉 │𝑆〉 

〈𝑇 + │ 0 0 0 0

 〈𝑇0│  0 2𝜅𝑚2  0 0

 〈𝑇 − │  0  0 0 0

 〈𝑆│ 0  0 0 −2𝜅𝑚2 

 

The ground state is the │𝑆〉 state. 

In the case were the magnetic plane includes the intermetallic axis, 𝛼 = 1 and 𝛽 = 𝛾 = 0 and the 

matrix becomes 

𝐻̂𝑑𝑖𝑝  │𝑇+〉 │𝑇0〉 │𝑇−〉 │𝑆〉 

〈𝑇 + │ −3𝜅𝑚2 0 0 0

 〈𝑇0│  0 −𝜅𝑚2  0 0

 〈𝑇 − │  0  0 3𝜅𝑚2 0

 〈𝑆│ 0  0 0 𝜅𝑚2 

 

The ground state is │𝑇+〉 as it is the case for Er2Ga4 without exchange interaction.  

Exchange interaction between two magnetic planes 

We develop the case where there is an asymmetry in the magnetic plane and for an isotropic 

Heisenberg Hamiltonian 𝐽. The matrices for the magnetization on one center are 
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𝑀̂𝑥    │+〉 │−〉 

〈+│ 0 𝑚𝑥

〈−│  𝑚𝑥 0 

                  

𝑀̂𝑦   │+〉 │−〉 

〈+│ 0 −𝑖 𝑚𝑦

〈−│  𝑖 𝑚𝑦 0 

 

The matrix of operator  𝐻̂𝐻𝑒𝑖𝑠  defined in Eq. A2 is 

𝐻̂𝐻𝑒𝑖𝑠 │ + +〉 │ + −〉 │ − +〉 │ − −〉 

〈+ + │ 0 0 0 −𝐽(𝑚𝑥
2 − 𝑚𝑦

2)

 〈+ − │  0 0 −𝐽(𝑚𝑥
2 + 𝑚𝑦

2) 0

 〈− + │  0  −𝐽(𝑚𝑥
2 + 𝑚𝑦

2) 0 0

 〈− − │ −𝐽(𝑚𝑥
2 − 𝑚𝑦

2)  0 0 0

 

or in the other basis set 

𝐻̂𝐻𝑒𝑖𝑠 │𝑇+〉 │𝑇0〉 │𝑇−〉 │𝑆〉 

〈𝑇 + │ 𝐽(−𝑚𝑥
2 + 𝑚𝑦

2) 0 0 0

 〈𝑇0│  0  𝐽(−𝑚𝑥
2 − 𝑚𝑦

2) 0 0

 〈𝑇 − │  0 0 𝐽(𝑚𝑥
2 − 𝑚𝑦

2) 0

 〈𝑆│ 0  0 0  𝐽(𝑚𝑥
2 + 𝑚𝑦

2)

 

With a ferromagnetic coupling 𝐽 > 0, the ground state is │𝑇0〉. The asymmetry in the x and y directions 

leads to an energy gap between │𝑇+〉  and  │𝑇−〉  states.  

The Zeeman Hamiltonian of Eq. A3 couples │𝑇0〉 with │𝑇+〉 (│𝑇−〉) when the magnetic field is applied 

along x (y).  
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Appendix B 

Estimation of the Molecular Weight of Fe4OAc, Fe4OBz, Fe8-A, Fe8-B, 

Fe8-C and Fe8-A-Dry 

 

A combination of TGA, elemental analysis and PXRD was used to determine the 

molecular weights of the Fe
III

 complexes described in chapter 4. Each compound was analyzed 

by TGA; the thermolysis of each compound gave a reddish-brown powder that was determined 

by PXRD (Figure A1) to be α-Fe2O3 (Hematite). The molecular weight can be determined by 

TGA through back calculation using the equation: 

MW = 
Mass of sample at start

(
mass of sample at end

MW of Fe2O3)
)÷(mol Fe2O3 generated per mol of compound)

 

A possible formula was also determined through elemental analysis results. The average MW 

from the TGA and elemental analysis was used for treating the magnetic data. 

 

Figure B1. PXRD patterns for the resultant TGA product of Fe4OAc (red), Fe4OBz (blue) and 

Fe8 (green) and hematite (simulated, black). 



201 
 

Fe4OAc 

Elemental analysis results were: C, 33.47; H, 4.60; N, 3.78. 

A potential formula derived from the CHN analysis is [Fe8(shi
3-

)6(isopthalate
-
)3(H2O)6]·H2O 

(Fe8C66H50N6O37), which gives a MW of 1105.13 g/mol 

MW back calculated from the TGA (Figure A2) is: 1117.97 g/mol 

The average MW determined is: 1111.52 g/mol  

 

Figure B2. TGA trace of Fe4OAc. 
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Fe4OBz 

Elemental analysis results were: C, 44.86; H, 4.12; N, 3.40. 

A potential formula derived from the CHN analysis is [Fe4(shi
3-

)3(benzoate
-

)3(MeOH)3]·MeOH·4H2O (Fe4C46H51N3O23), which gives a MW of 1237.29 g/mol 

MW back calculated from the TGA (Figure A3) is: 1264.55 g/mol 

The average MW determined is: 1250.92 g/mol  

 

Figure B3. TGA trace of Fe4OBz. 
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Fe8-A 

Elemental analysis results were: C, 33.47; H, 4.60; N, 3.78. 

A potential formula derived from the CHN analysis is [Fe8(shi
3-

)6(isopthalate
-
)3(H2O)6]·24H2O 

(Fe8C66H96N6O60), which gives a MW of 2380.25 g/mol 

MW back calculated from the TGA (Figure A4) is: 2447.51 g/mol 

The average MW determined is: 2413.88 g/mol  

 

Figure B4. TGA trace of Fe8-A. 
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Fe8-B 

Elemental analysis results were: C, 39.47; H, 3.25; N, 3.91 

A potential formula derived from the CHN analysis is [Fe8(shi
3-

)6(isopthalate
-

)3(H2O)6]·4H2O·2EtOH (Fe8C70H70N6O42), which gives a MW of 2114.07 g/mol 

MW back calculated from the TGA (Figure A5) is: 2138.66 g/mol 

The average MW determined is: 2126.37 g/mol  

 

Figure B5. TGA trace of Fe8-B. 
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Fe8-C 

Elemental analysis results were: C, 33.47; H, 4.60; N, 3.78. 

A potential formula derived from the CHN analysis is [Fe8(shi
3-

)6(isopthalate
-

)3(H2O)6]·4H2O·EtOH (Fe8C68H62N6O41), which gives a MW of 2066.01 g/mol 

MW back calculated from the TGA (Figure A6) is: 2112.63 g/mol 

The average MW determined is: 2089.32 g/mol  

 

Figure B6. TGA trace of Fe8-C. 
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Fe8-A-Dry 

Elemental analysis results were: C, 33.47; H, 4.60; N, 3.78. 

A potential formula derived from the CHN analysis [Fe8(shi
3-

)6(isopthalate
-
)3(H2O)6]·H2O 

(Fe8C66H50N6O37), which gives a MW of 1965.89 g/mol 

MW back calculated from the TGA (Figure A7) is: 1963.61 g/mol 

The average MW determined is: 1964.75 g/mol  

 

Figure B7. TGA trace of Fe8-A-Dry. 
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Appendix C 

Additional Photophysical Spectra of Ga4Ln Complexes 

 

Figure C1. Solid state excitation spectrum in for Ga4Sm recorded at 298 K with λem = 600 nm. 

 

Figure C2. Solid state excitation spectrum in for Ga4Eu recorded at 298 K with λem = 615 nm. 
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Figure C3. Solid state excitation spectrum in for Ga4Tb recorded at 298 K with λem = 545 nm. 

 

Figure C4. Solid state excitation spectrum in for Ga4Dy recorded at 298 K with λem = 575 nm. 
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Figure C5. Solid state excitation spectrum in for Ga4Ho recorded at 298 K with λem = 985 nm. 

 

Figure C6. Solid state excitation spectrum in for Ga4Er recorded at 298 K with λem = 1510 nm. 
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Figure C7. Solid state excitation spectrum in for Ga4Yb recorded at 298 K with λem = 965 nm. 

 

Figure C8. Excitation spectrum in for Ga4Sm recorded at 298 K with λem = 600 nm in CH3OH 

(solid line) and CD3OD (dashed line). 
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Figure C9. Excitation spectrum in for Ga4Tb recorded at 298 K with λem = 545 nm in CD3OD. 

 

Figure C10. Excitation spectrum in for Ga4Dy recorded at 298 K with λem = 575 nm in CD3OD. 
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Figure C11. Excitation spectrum in for Ga4Yb recorded at 298 K with λem = 960 nm in CD3OD. 

 

 

Figure C12. Visible emission spectrum in for Ga4Sm recorded at 298 K with λex = 325 nm in 

CH3OH (solid line) and CD3OD (dashed line). 
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Figure C13. NIR emission spectrum in for Ga4Sm recorded at 298 K with λex = 325 nm in 

CH3OH (solid line) and CD3OD (dashed line). 

 

Figure C14. Visible emission spectrum in for Ga4Tb recorded at 298 K with λex = 325 nm in 

CD3OD. 
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Figure C15. Visible emission spectrum in for Ga4Dy recorded at 298 K with λex = 325 nm in 

CD3OD. 

 

Figure C16. NIR emission spectrum in for Ga4Dy recorded at 298 K with λex = 325 nm in 

CD3OD. 
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Figure C17. NIR emission spectrum in for Ga4Yb recorded at 298 K with λex = 325 nm in 

CD3OD. 
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