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ABSTRACT

DEPENDABLE COMPUTING ON INEXACT HARDWARE THROUGH ANOMALY

DETECTION

by

Daya Shanker Khudia

Chair: Scott Mahlke

Reliability of transistors is on the decline as transistors continue to shrink in size. Aggres-

sive voltage scaling is making the problem even worse. Scaled-down transistors are more

susceptible to transient faults as well as permanent in-field hardware failures. In order to

continue to reap the benefits of technology scaling, it has become imperative to tackle the

challenges risen due to the decreasing reliability of devices for the mainstream commodity

market. Along with the worsening reliability, achieving energy efficiency and performance

improvement by scaling is increasingly providing diminishing marginal returns. More than

any other time in history, the semiconductor industry faces the crossroad of unreliability

and the need to improve energy efficiency.

These challenges of technology scaling can be tackled by categorizing the target appli-

cations in the following two categories: traditional applications that have relatively strict

correctness requirement on outputs and emerging class of soft applications, from various

domains such as multimedia, machine learning, and computer vision, that are inherently
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inaccuracy tolerant to a certain degree. Traditional applications can be protected against

hardware failures by low-cost detection and protection methods while soft applications can

trade off quality of outputs to achieve better performance or energy efficiency.

For traditional applications, I propose an efficient, software-only application analysis

and transformation solution to detect data and control flow transient faults. The intelli-

gence of the data flow solution lies in the use of dynamic application information such as

control flow, memory and value profiling. The control flow protection technique achieves

its efficiency by simplifying signature calculations in each basic block and by performing

checking at a coarse-grain level. For soft applications, I develop a quality control tech-

nique. The quality control technique employs continuous, light-weight checkers to ensure

that the approximation is controlled and application output is acceptable. Overall, I show

that the use of low-cost checkers to produce dependable results on commodity systems—

constructed from inexact hardware components—is efficient and practical.
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CHAPTER I

Introduction

The continual trend of shrinking transistor size and reducing their operating voltage

leads to higher energy efficiency among many other benefits such as high speed operation

and smaller size. However, this trend in scaling faces numerous challenges such as decreas-

ing reliability of devices [20], increasing leakage current [21] and rapid increase in the cost

of manufacturing [117]. As a result of technology scaling, unreliable components are be-

coming increasingly common in general-purpose commodity systems manufactured with

the ongoing and upcoming generations of semiconductor technology. Industry experts [20]

believe that designers face the demanding task of constructing reliable systems from these

unreliable components. Along with the unreliability of devices, researchers [21] believe

that energy efficiency is the key limiting factor to scaling. For the further advancement of

semiconductor industry, solving the problem of constructing energy efficient systems from

increasingly unreliable devices is of utmost importance. Therefore there is a dire need to

construct systems that generate dependable results, whether faced with the challenge of

unreliable hardware or improving energy efficiency.

First, integrated circuits manufactured with scaled-down transistors are less reliable [20,
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120, 44]. The reliability of scaled down transistors is a major roadblock in the path of

continued scaling. The results of unachieved reliability requirements can at best lead to

unsatisfactory user experiences or at worst can tarnish the reputation of the company who

designed it. Integrated circuits manufactured at these newer, smaller technology nodes

are susceptible to transient and permanent in-field hardware failures even in commodity

systems. With smaller and cheaper transistors becoming pervasive in mainstream comput-

ing, it is necessary to protect these devices against in-field errors. Moreover, the rate of

errors is increasing for integrated circuits manufactured at smaller technology nodes and

thus necessitates the need for protection of applications running on mainstream commodity

processors. In commodity systems, area and power are primary design constraints, hence,

low-cost reliability solutions are preferred.

Second, as we are moving towards smaller and smaller transistor geometries the per-

formance gains and energy efficiency provided by scaling are becoming limited. The rate

at which operating voltage can be reduced has slowed because threshold voltage cannot

be scaled down any further without increasing leakage power. The threshold voltage of a

transistor is usually scaled down along with the operating voltage. This reduction in thresh-

old voltage exponentially increases the leakage current of the transistor, hence the leakage

power also increases. Thus, achieving energy efficiency and performance improvement

by scaling increasingly provides diminishing marginal returns necessitating the need for

innovations across the system stack. One such method is trading off small percentage of

program accuracy with a larger gain in performance/energy efficiency. This area of re-

search is broadly known as approximate computing and has recently been explored by

many researchers at all levels of the system stack [38, 40, 7, 129], i.e., from programming
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languages [38] to transistor level [49]. However, many of the approximate computing solu-

tions do not address the problem of output quality control. To make approximate computing

practical and useful providing dependable results by controlling output quality control is

absolutely necessary.

The rest of this Chapter is organized as follows. Problems in achieving low-cost relia-

bility and the solutions proposed are briefly discussed in Section 1.1 and the challenges in

obtaining good quality results and associated solutions are briefly discussed in Section 1.2.

1.1 Low-cost Reliability

A computer system can fail (malfunction) in numerous ways. Some of the causes of

malfunctioning are faults in underlying hardware, software bugs or even user errors. In

this work, my focus is on mitigating the effects of inexactness of the underlying hardware

on the produced results. Two of most common causes of failure are permanent faults and

transient hardware faults. Permanent faults are persistent hardware failures and are not a

focus of this dissertation. As the name suggests, transient faults, also referred to as soft

errors, are not persistent and do not render the computer system unusable for its lifetime.

However, when a transient fault occurs in a computer system, it can corrupt the application

output or crash the system. In this dissertation, I focus on the reliability issues caused by

soft errors. Soft errors, also referred to as Single Event Upsets (SEUs), are caused by high

energy particle strikes from space or Alpha particles or internal to chip voltage fluctuations

or circuit crosstalk. Researchers generally agree that system-level soft errors increase with

the number of transistor and tighter integration at future technologies [86, 44]. In general,
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memories in a chip have been more susceptible to transient faults because memory cells

have smaller geometries, higher densities and lower operating voltages. Chandra et al. [28]

establish that voltage scaling exacerbates the susceptibility to particle strikes by reducing

the critical charge at circuit nodes. They conclude that soft errors in logic (latches, flip-

flops), not only memory elements, are an equally concerning problem at smaller technology

nodes. Soft Error Rate (SER) is the rate at which a component encounters soft errors. SER

for the logic on chip is steadily rising with technology scaling while SER for memory is

expected to remain stable [120]. Intel projects that, with increasing chip density, the soft

error problem can become a major threat to computer reliability [52].

Memory cells are usually protected by efficient solutions such as parity and/or Error

Correcting Code (ECC). The regular structure of memory cells enables application of such

solutions feasible. However, no such general solutions exist for errors in arbitrary logic

inside a microprocessor. Hence, different efficient solutions are required at circuit, mi-

croarchitecture or software level to tackle the problem of soft errors in microprocessor

logic. High reliability server class solutions such as DMR (Dual-Modular Redundancy) and

TMR (Triple-Modular Redundancy) have high cost in terms of area/performance/power

overheads. They are too costly to be practical in commodity market. Other multithreading-

based solution, Redundant Multithreading (RMT) [108], run two copies of the original

program for error detection. This solution, though, cheaper in comparison to DMR/TMR,

has an overhead of running an extra thread for each thread in an application and thus is

expensive for commodity market space. A lack of efficient solutions in commodity market

space necessitates the need for efficient soft error reliability solutions.

To solve the problem of detecting soft errors cheaply, we propose a profiling-based
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software-only application analysis and transformation solution. The goal is to develop a

low cost solution which can be deployed for off-the-shelf commodity processors. The

solution works by intelligently duplicating instructions that are likely to affect the pro-

gram output, and comparing results between original and duplicated instructions to pro-

duce symptoms. The intelligence of our solution lies in the use of control flow, memory

dependence, and value profiling to understand and exploit the common-case behavior of ap-

plications. This deviation from common case behavior, i.e. anomaly, possibly indicates the

presence of error. For such cases, we propose a low-cost reliability solution( Chapter II).

This is a solution to protect data-flow of an application.

Previous studies have reported that as much as 70% of the transient faults disturb pro-

gram control flow [58, 130], making it critical to protect control flow. Traditional ap-

proaches employ signatures to check that every control flow transfer in a program is valid.

While having high fault coverage, large performance overheads are introduced by such de-

tailed checking. We propose a coarse-grain control flow checking method to detect transient

faults in a cost effective way. Our software-only approach is centered on the principle of

abstraction: control flow that exhibits simple run-time properties (e.g., proper path length)

is almost always completely correct. Our solution targets off-the-shelf commodity systems

to provide a low cost protection against transient faults. The proposed technique achieves

its efficiency by simplifying signature calculations in each basic block and by performing

checking at a coarse-grain level. The coarse-grain signature comparison points are obtained

by the use of a region based analysis. Chapter III describes this technique in more details.
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1.2 Quality Controlled Results

Marginal gains from scaling have forced computer architecture researchers to explore

alternative avenues such as inexact accelerators to achieve energy efficiency and perfor-

mance improvements. Computers are designed to produce results that are 100% numeri-

cally correct all the time. However, performance and energy efficiency of such systems can

be improved by trading-off an exact numerical match of the outputs for performance and/or

energy [38].

At the same time, a growing number of applications from various domains such as

multimedia, machine learning and computer vision are inherently occasional inaccuracy

tolerant, and therefore a good match for this trade-off. For these soft workloads, not all

computations are inaccuracy tolerant (e.g., a loop trip count). We propose a compiler-based

approach that takes advantage of soft computations inherent in the aforementioned class of

workloads to bring down the cost of software-only error detection. The technique works

by identifying a small subset of critical variables that are necessary for correct macro-

operation of the program. Traditional duplication and comparison is used to protect these

variables. For the remaining variables and temporaries that only affect the micro-operation

of the program, strategic expected value checks are inserted into the code. Intuitively, a

computation-chain result near the expected value is either correct or close enough to the

correct result so that it does not matter for non-critical variables. Chapter IV describes this

technique in more details.

Approximate computing can also be employed for the aforementioned emerging class

of soft workloads. The approximated output of such applications, even though not 100%
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numerically correct, is often either useful or the difference is unnoticeable to the end user.

This opens up a new design dimension to trade-off application performance and energy

consumption with output correctness. However, a largely unaddressed challenge in this

area is quality control: how to ensure the user experience meets a prescribed level of qual-

ity. Current approaches either do not monitor output quality or use sampling approaches to

check a small subset of the output assuming that it is representative. While these approaches

have been shown to produce average errors that are acceptable, they often miss large errors

without any means to take corrective actions. To overcome these challenges, we propose

Rumba for online detection and correction of large approximation errors in an approxi-

mate accelerator-based computing environment. Rumba employs continuous lightweight

checks in the accelerator to detect large approximation errors and then fixes these errors

by exact re-computation on the host processor. The lightweight checks work by detecting

the anomaly in the series of output produced or by predicting if the accelerator is going to

make large error for certain inputs. Rumba exploits temporal similarity commonly found

in computing domains amenable to approximation for efficient detection and lightweight

error prediction methods, and application idempotence commonly occurring in data par-

allel computing patterns (e.g., map and stencil) for selective correction. Overall Rumba,

dynamically investigate an application’s output to detect elements that have large errors

and fix these elements with a low-overhead recovery technique. The detailed working of

Rumba is presented in Chapter V.

Another neural network can be used as a checker to predict the error of an neural accel-

erator. The co-design of checker and the accelerator is an interesting design space that can

provide better error vs. energy efficiency trade-offs for certain application. Some applica-
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Figure 1.1: A high-level flow diagram of the overall process. Compilation phase performs profiling
and an analysis of vulnerable parts of an application. It also analyzes an application, with the help
of developer provided annotations, for approximate parts. The checkers are inserted as a part of
the compilation process. Recovery for transient errors or to get better quality results is initiated at
runtime.

tions produce excessive error even with the best possible configuration of the accelerator.

Hence, such applications as such are not amenable for approximation on an accelerator.

However, with a combination of the accelerator and a checker, the error can be brought

down to an acceptable level, allowing energy-efficient execution. This idea is explored in

Chapter VI.

In this dissertation, I focus on the issues of reliability in traditional applications and

quality control in approximate computing for soft computing applications. The working of

overall system is shown in Figure 1.1. Application profiling is done at the compile time

with a representative set of inputs. With the help of profiling, intelligent duplication is

performed. Applications amenable for approximation are also analyzed to insert specific

quality control checkers. At runtime, these checker firings control the initiation of recovery.

Checkers check for transient errors or bad quality results and are always on, hence, should

have very low cost to avoid associated overheads. However, recovery can be a more costly

mechanism as it is initiated relatively infrequently. With this overall flow, the specific
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contributions of this dissertation are as follows:

1.3 Contributions

• A selective instruction duplication approach that leverages memory profiling and

edge profiling in compiler analysis to identify and replicate a small subset of vul-

nerable instructions not covered by symptom-based fault detection. Novel use of

value profiling for the generation of software symptoms.

• A novel abstraction based technique to insert simplified signatures for control flow

checking. Under the proposed scheme, more complex signatures can be used to

explore trade-offs in performance overhead and fault coverage. A novel region based

method to insert checking at a coarse granularity abstracting away the details of fine-

grain control flow.

• A fully automated compiler analysis and transformation method that partitions com-

putations among three categories: to be protected by traditional duplication, to be

protected by soft value checks or not to be protected. This method also judiciously

performs selective duplication and inserts value checks. Our technique does not re-

quire any program annotations.

• Light-weight online detection policies using exponential moving average and low-

cost error prediction methods to detect large error output elements generated by an

approximate computing system. The ability to manage performance and accuracy

trade offs for each application at runtime using a dynamic tuning parameter.
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The rest of the dissertation is organized as follows. Chapter II describes the profile-

based code duplication to protect against transient errors. Chapter III describes the control

protection mechanism to protect against transient errors. Chapter IV discusses a method to

efficiently detect transient faults for soft applications. The methods to control the quality

of output results under approximation are proposed in Chapter V. The design space of

approximation accelerator is explored in Chapter VI. Finally, Chapter VII concludes this

dissertation and proposes possible future extensions.
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CHAPTER II

Efficient Soft Error Protection using Profile Information

Successive generations of processors use smaller transistors in the quest to make more

powerful computing systems. It has been previously studied that smaller transistors make

processors more susceptible to soft errors (transient faults caused by high energy particle

strikes). Such errors can result in unexpected behavior and incorrect results. In this chap-

ter, we describe a profiling based technique that protects traditional applications against

soft errors. The criteria of evaluation here is any corruption in output is user unacceptable

and should be avoided. We propose a profiling-based software-only application analysis

and transformation solution. The solution works by intelligently duplicating instructions

that are likely to affect the program output, and comparing results between original and du-

plicated instructions. The intelligence of our solution is garnered through the use of control

flow, memory dependence, and value profiling to understand and exploit the common-case

behavior of applications. The anomalies are treated as an indication of errors. The overall

goal of the work in this chapter is to minimize the number of output corruptions.
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2.1 Introduction

Any microprocessor-based computing system is expected to work reliably during its

lifetime. A typical set of tasks performed on a commodity level computer system could

include video games, web browsing, bank transactions, and more. While running these

applications on their computers, users want their experience to be fault-free. Modern com-

puter systems are built using billions of tiny transistors, and even a single transistor failure

can render a computer system useless. Most hardware vendors have a lifetime reliability

target to achieve an acceptable product quality.

The focus of the work in this chapter is soft errors, or single-event-upsets (SEUs). Soft

errors, also referred to as transient faults, are primarily caused by neutron particle strikes

from cosmic radiation and alpha particles from packaging material impurities. As the name

suggests, transient faults are not persistent and do not render the computer system unusable

for its lifetime. However, when a transient fault occurs in a computer system, it can corrupt

the application output or crash the system.

Soft errors due to packaging contamination have been reported for several decades.

In 1978, Intel Corporation reported that chip packaging modules were contaminated with

Uranium from a mine nearby [79]. Neutrons form the atmosphere were to blame in another

incident in 1996, when E. Normand [93] detailed single event upsets in RAM chips. A

third example of such errors was noted in 2004 by Cypress Semiconductor who claimed

a number of incidents related to soft errors [137]. One single error resulted in the crash

of a data center while another series of errors caused frequent shutdowns in a massive

automotive factory.
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The amount of charge released by high energy particle strikes determines whether a

transistor will malfunction or not. If the size and operating voltage of transistors in a

system is small, it is more likely to be affected by particle strikes. Transistor sizes and

operating voltages are decreasing, making future technology generations more susceptible

to soft errors [120]. Traditionally, reliability research has focused largely on the high-

performance server market. Notable past works in this area have been the IBM S/360

(now Z-series servers) [123, 12] and the HP NonStop systems [15]. Both utilize large-scale

modular redundancy for effective fault tolerance. As such, they are not feasible outside

mission-critical domains. Additional research has aimed to provide fault protection via

redundant multithreading [108, 100, 91, 47, 122]. Since processors which can execute

multiple threads simultaneously are increasingly commonplace, the idea of using separate

threads for error checking is a possibility. These techniques often require significant ex-

tra computations. Diva [9] is a less expensive alternative utilizing a small checker core to

monitor computations performed by a larger microprocessor. Lower cost hardware check-

ers based solutions such as Argus [81] and others [134, 23] require small hardware changes.

These hardware checkers based solutions still won’t work for off-the-shelf hardware.

Embedded design spaces have relatively tight cost budgets because of intense com-

petition. In these markets, area and power are primary considerations. Consumers are not

willing to pay the additional costs (in terms of hardware price, performance loss, or reduced

battery lifetime) for the solutions adopted in the server space. At the same time, reliability

requirements are also not stringent; consumers can tolerate glitches in video playback, and

infrequent crashes of their desktop/laptop computers (usually caused by software bugs).

The key challenge facing the consumer electronics market in future technologies is provid-
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ing just enough coverage (the percentage of errors that either get masked or can be detected

and recovered from) of soft errors so that the effective fault rate remains at levels. Provid-

ing solutions which can achieve this coverage “on the cheap” is the goal of the work in this

chapter.

To achieve statistically significant soft error coverage at minimal overheads, we pro-

pose a software-only approach for detecting soft errors. This work is built upon two areas

of prior research: symptom-based fault detection and software-based instruction duplica-

tion. Symptom-based detection schemes recognize that applications often exhibit anoma-

lous behavior (symptoms) in the presence of a transient fault [132, 70]. These symptoms

can include memory access exceptions, divide-by-zero, and even mispredicted branches.

At runtime, an individual symptom doesn’t always signify a soft error, but a judicious use

of these symptoms can be used to trigger a recovery. Although symptom-based detection is

inexpensive, the amount of coverage that can be obtained from a symptom-only approach

is typically limited. To address this limitation, we make use of the second area of prior re-

search, software-based instruction duplication [101, 102]. With this approach, instructions

are duplicated and results are validated within a single thread of execution. This solution

has the advantage of being purely software-based, requiring no specialized hardware, and

can achieve coverage of more than 90%. However, the overheads in terms of performance

and power are quite high since a large fraction of the application is replicated.

One of the key insights that this work exploits is that the majority of transient faults can

either be ignored (because they do not ultimately propagate to user-visible corruptions at

the application level) or are easily detected by light-weight symptom-based detection. To

address the remaining faults, compiler analysis is applied to identify high-value portions
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of the application code that are both susceptible to soft errors (i.e., likely to corrupt sys-

tem state) and statistically unlikely to be covered by the timely appearance of symptoms.

These portions of the code are then protected with instruction duplication. Our solution

intelligently selects between relying on symptoms and judiciously applying instruction du-

plication to optimize the coverage and performance trade-off. In this way, our solution

provides a low-cost, high-coverage solution for soft errors in embedded microprocessors

targeted for the consumer electronics market [62]. However, unlike the high-availability

IBM and HP servers that can provide provable guarantees on coverage, this work provides

only opportunistic coverage, and is therefore not suitable for mission-critical applications.

The contributions of this chapter are as follows:

• A software solution which does not need any user annotations in the application

to generate reliability-aware code and works on applications written in a variety of

languages.

• A selective instruction duplication approach that leverages memory profiling and

edge profiling in compiler analysis to identify and replicate a small subset of vul-

nerable instructions not covered by symptom-based fault detection.

• Novel use of value profiling for the generation of software symptoms.

• Microarchitectural fault injection experiments to demonstrate the effectiveness of our

proposed solution in terms of fault coverage and performance overhead.
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2.2 Background and Motivation

2.2.1 Soft Error Rate (SER)

The effect of soft errors is becoming more pronounced as a result of transistor scal-

ing. Aggressive scaling on one hand provides cheaper and more abundant transistors to

pack on an individual chip, while on the other hand making each individual transistor more

susceptible to soft errors. Traditionally, memory cells are more vulnerable to soft errors

because they use smaller transistors to achieve higher densities and have inherent feedback

mechanisms that can exacerbate the effect of small disturbances arising due to high en-

ergy particle strikes. Memory cells are mostly protected against soft errors by using parity

checks or Error Correcting Codes (ECC). Due to shrinking device sizes for implementing

logic in processors, the individual transistors in logic are also becoming vulnerable to soft

errors. Additionally, combinational logic faults are harder to detect and correct. Shivaku-

mar et al. [120] reported that the SER for SRAM cells is expected to remain stable, while

the SER for logic is steadily rising. The aforementioned factors have motivated researchers

to propose solutions to protect the microprocessor logic core against transient faults.

Feng et al. [41] and Shivakumar et al. [120] presented data for the effect of device

scaling on the failures in time (FIT∗) metric. They showed an exponential increase in

the SER for future technology generations. Since for future technologies it will be hard

to power on all the transistors at once, aggressive voltage scaling is expected to be used.

Voltage scaling further exacerbates the problem of soft errors as smaller disturbances in

circuits will be able to flip a bit.

∗The number of failures observed per one billion hours of operation.
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Fortunately, around 75-92% of transient faults get masked (i.e., do not corrupt actual

program state) due to architecture- or application-level masking. This masking can also

occur at the circuit level. Our experiments show this masking rate to be around 78%

collectively from all sources. Accounting for this masking, the raw SER for the present

technology generation translates to about one failure every month in a population of 100

chips. For a typical commodity system such as laptop or mobile systems, this failure rate

would be unnoticeable. However, in future technology nodes like 16nm, the user-visible

fault rate could be as high as one failure a day for every chip. The potential for this dra-

matic increase in the effective fault rate will necessitate incorporating soft error tolerance

mechanisms into even low-cost commodity systems.

2.2.2 Instruction Duplication

In this Section, we provide an overview of the terminology used and point out the key

differences with previously proposed instruction-duplication-based solutions. SWIFT [101]

proposed the idea of duplicating instructions in a single thread of execution. The authors of

SWIFT explain that a program has executed correctly if all the stores in the program have

executed correctly assuming the program only communicates by writing data out through

stores. Therefore, SWIFT recursively duplicated instructions by walking the data flow

chains of the operands of stores and by protecting the control flow. Shoestring [41] im-

proved upon this idea by considering only global stores and by protecting the control flow

only for the immediate branch that affects the execution of a global store instruction. For

classifying instructions, the terminology is adopted from Shoestring. The initial analysis

phase of our solution classifies instructions into the categories described below.
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Figure 2.1: Duplicating instructions in a single thread of execution: Part (a) shows the original code
and Part (b) shows the code after the duplicated instructions are inserted. Solid edges represent
the data flow edges and dashed edges represent control flow edges. In (b), underlined nodes are
duplicated nodes, and C and B nodes represent compare and branch instructions to compare the
results from duplicated and original dataflow chains. The node with dashed outline is a symptom
generating instruction.

• Symptom-generating: these instructions (e.g., address generation of loads and stores.)

are likely to produce detectable symptoms if they consume a corrupted input.

• High-value: instructions (e.g., operands of I/O system calls.) which are likely to

corrupt the output of the program if they consume a corrupted input.

• Safe: these instructions (e.g., those directly consumed by symptom-generating in-

structions.) are naturally covered by symptom-generating consumers.

Figure 2.1 shows the duplication process. Assuming node 2 is an operand of a high

value instruction, the duplication starts at this node and walks the data flow chain until a

safe instruction (node 3) is encountered. A duplicated instruction is placed just after the
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original instruction in program order. Compare and branch instructions are inserted to com-

pare the results and to divert control flow to a recovery basic block. If the results match,

the high value instruction is executed normally; Otherwise, recovery is triggered through

the recovery basic block. In addition to encountering a safe instruction, the recursive du-

plication is terminated when 1) no more producers exist, and 2) the producers are already

duplicated. Safe instructions are determined based on the probability of whether or not a

particular instruction would generate a symptom if corrupted by a soft error.

2.2.3 Proposed Solution Landscape

As previously mentioned, a soft error solution that targets the commodity user space

needs to be designed with lower overhead and acceptable coverage as targets. Figure 2.2

(data used from [41]) is a conceptual plot of overhead and coverage trade-off for symptom-

based and duplication based fault detection schemes. Our solution is a hybrid of these

two techniques and tries to achieves as much fault coverage as possible by leveraging

the strengths of each technique. The bottom highlighted region in this plot indicates the

amount of fault coverage that results from intrinsic sources of soft error masking, avail-

able naturally. The natural masking can occur because of many reasons such as register

values being dead (i.e., such registers would be overwritten before they will be read) or

Y-branches [131] (i.e., sometimes changing the direction of a conditional branch doesn’t

affect the correct program behavior). Among the remaining unmasked faults, symptom-

based detection relies mostly on hardware exceptions and their coverage quickly saturates.

The saturation of fault coverage provided by symptom based methods is expected because

these schemes rely on rare hardware exceptions such as page faults, divide-by-zero, etc. If
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Figure 2.2: The trade-off between overhead and fault coverage from two existing fault detection
schemes: symptom-based detection and instruction duplication-based detection. Also indicated
is the region of the solution space targeted by our proposed technique. Our solution is aiming
to provide between 90% and 99% coverage with little overhead. The dashed horizontal lines show
user-visible failure rate for a single chip in a 16nm technology node with aggressive voltage scaling.
This is a conceptual plot and is not to scale.

more frequently occurring microarchitectural events such as branch mispredicts and cache

misses are included as symptoms, then recovery may be triggered more frequently, leading

to an unacceptable amount of overhead [132]. In general, symptom-based methods provide

good coverage at a relatively low overhead.

The coverage versus performance curve is far less steep for instruction duplication; The

coverage increases almost linearly with the amount of code duplication. One advantage of

instruction-based duplication is that the amount of coverage can be tuned according to an

application’s requirements by providing more or less duplication of code.
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Figure 2.2 is generated in the context of a single 16nm chip with aggressive voltage

scaling. The fault coverage provided by intrinsic sources of masking translates to more than

one failure per day. This level of fault coverage is clearly unacceptable and might result

in user visible corruptions very frequently. To achieve a more imperceptible failure rate,

the fault coverage must be improved. Symptom-based and instruction-duplication methods

combined can provide an acceptable level of coverage.

Neither symptom-based nor instruction duplication-based techniques provide a stand-

alone solution to achieve the desired coverage and performance benefits. The proposed

solution in this chapter tries to strike a balance between performance overhead and fault

coverage by exploiting the strengths of each technique. Figure 2.2 also shows the solution

landscape targeted by our solution.

2.2.4 Opportunities for Profile Based Duplication

In the past, profiling information has been successfully used in profile-guided opti-

mizations (PGOs) to improve the performance of a program [48]. GCC [57] and Intel’s

compiler (icc) can use profiling information to generate an efficient program binary. Most

optimizations based on profiling data work by uncovering previously unexplored opportu-

nities. For example, if a multiply operation generates the same invariant value frequently,

then the multiply operation can be optimized away with a check inserted for the correct

value. Similarly, edge profiling and memory profiling can be used in optimizations such as

partial dead-code-elimination, improved object layout, and more.

In this chapter, we use edge profiling, memory profiling and value profiling for the first

time (to the best of our knowledge) in the context of code duplication for protection against
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soft errors. With profiling information we can exploit the common case behavior of a pro-

gram to duplicate only those critical instructions. Different types of profiling information

enables us to ignore unnecessary duplication of instructions that are unlikely to cause pro-

gram output corruption in the presence of a transient fault. For example, in the context of

having the same invariant value generated by an instruction, we insert a comparison with

the specific invariant value in the code. The failure of this comparison then indicates the

possibility of a transient fault and triggers the recovery mechanism via a jump to recovery

code.

Specific details on different kinds of profile data used are presented in Section 2.3.

2.3 Proposed Solution

The main underlying observation behind our proposed solution is that 100% reliability

is not always required. We need to keep the user visible corruptions at a level users have

become accustomed to. Sensitive applications that are required to be executed reliably can

be transformed with the compiler techniques developed as a part of the proposed solution.

These applications will run marginally slower but will be able to tolerate more soft errors.

Our proposed solution uses the idea of instruction duplication in a single thread of execution

as explained in Section 2.2.2, and adds profiling-based intelligent tracing of dependences

manifesting through memory to generate more efficient duplication code. In essence, our

solution uses the dynamic behavior of applications to generate efficient code for transient

fault detection.
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2.3.1 Overview of proposed solution

Figure 2.3 shows our proposed solution framework in the context of machine-executable

generation using the LLVM compiler framework [66]. The first step in this process is to

convert the source code of the application to LLVM Intermediate Representation (IR, also

called LLVM bit-code). In LLVM terminology, passes perform the transformations and op-

timizations that make up the compiler. Passes operating at the IR level either analyze the IR

code or transform it from IR to IR, performing optimizations. Our duplication code frame-

work is written as a pass in LLVM. The reliability-aware code generation pass analyzes

and transforms the code by inserting duplicate instructions and comparisons as previously

as described in Section 2.2.2.

Source to LLVM bit-

code generation

(High-level source 

language to LLVM 

bit-code)

Profile-based code analysis 

and intelligent duplication 

(LLVM bit-code to LLVM bit-

code)

Code generation for an 

intended target

(LLVM bit-code to machine 

executable)

Classification Analysis Duplication

Profile information

Figure 2.3: This Figure shows the flow of application compilation. LLVM bit-code is the internal
representation of the LLVM compiler infrastructure. Our proposed solution operates at the LLVM
bit-code level. Classification and analysis phases identify vulnerable parts of an application, and
then the duplication phase protects the most vulnerable instructions by duplicating code.

An intuition behind our idea is that applications predominantly communicate to the ex-

ternal world using I/O library calls, and if we can capture the true input data flow chain

of the operands of these calls, we can better protect the program output from getting cor-

rupted. Under this observation, we can capture most, if not all, of the program I/O. This
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type of approach is suitable for our low overhead approach as we don’t target 100% fault

coverage. We include all library call and function call instructions as high-value instruc-

tions. An example where a program doesn’t communicate using library calls is with the

use of memory mapped I/O. An application might choose to memory map a file to com-

municate to the external world. Memory mapped locations can be used just like an array

- direct loads and stores can be made to these memory locations. Using our technique,

we can consider all stores as high value (at higher overhead) to protect applications with

memory-mapped I/O.

We use LAMP [78], a toolset to trace and record the aliasing of memory addresses, to

obtain memory profiling information. LAMP allows us to determine the data dependences

that manifest through memory by reading and writing values at the same address. While

duplicating instructions, our duplication algorithm walks the producer chain, considering

the dependences through memory. In the recursive duplication of the producer chains of

the operands of high value instructions, whenever a load is encountered, we consider the

stores that aliased with the load and duplicate their producer chains too. By considering

aliasing stores, the duplication algorithm of our solution achieves better and more useful

code duplication. In our solution, the duplication process starts from the operands of library

calls (high-value instructions). If a load is encountered during duplication, the compiler

pass obtains all the stores that wrote to the address from which the load is reading using the

memory profiling information. The duplication process considers these stores as potential

candidates that can corrupt program output. The producer chains of these stores are also

protected by duplication. The remainder of this section describes the complete process from

the analysis of the instructions to code duplication including the insertion of comparison
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instructions.

2.3.2 Overhead Reduction Without Losing Coverage

As mentioned previously, our solution detects soft errors by adding extra instructions in

a single thread of execution, incurring a penalty in performance. In this section, we investi-

gate techniques to reduce the overhead by using various kinds of profiling information. In

particular, we utilize edge profiling for not protecting infrequently executed instructions,

memory profiling to find load and store aliases and identify silent stores, and value profil-

ing to get the information about instructions which produce statistically invariant values.

The performance overhead incurred because of instruction duplication can be further re-

duced by using information about the runtime behavior of applications through profiling.

Information about the runtime behavior of programs enables us to remove duplication for

protecting the code that doesn’t provide significant fault coverage.

2.3.2.1 Simple Edge Profile based Pruning

The intuition behind this optimization is that frequently executed instructions should

not be duplicated to protect an infrequently executed instruction. The probability of a soft

error affecting an infrequently executed instruction is relatively low and so to protect such

a instruction, unnecessary duplication of frequently executed instructions should not be

performed. An example of this is shown in Figure 2.4. At the time of duplicating the

instruction (node 4) in bb3, we check whether its operand-generating instruction (node 2)

is executed frequently in comparison to the instruction itself. If this happens to be the case,

the duplication is terminated for that particular data flow chain. If this optimization is used,
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then node 2 wouldn’t be duplicated and as a result of this , we duplicate fewer instructions.

Figure 2.4: This Figure shows an example where execution frequency-based optimization is ef-
fective. The solid edges represent data flow edges and dashed edges represent control flow edges.
Control flow edges are annotated with the execution frequency of the edge obtained using a profile
run. Underlined numbers represent duplicated instructions. While duplicating an instruction in ba-
sic block bb3, if its operands’ parent basic block is executed 100 times more frequently, then we
don’t duplicate its operand.

2.3.2.2 Using Memory Profiling Information

We use memory profiling to obtain information about aliasing between loads and stores.

Also, memory profiling is used to identify silent stores that exist in an application. Further

descriptions of these techniques follow.

Dependences Through Memory: As pointed out in Section 2.3.1, to duplicate the true

dependences of the producer chains of high value instructions, we need load/store depen-

dence information. Memory profiling provides us with this information. If we have the
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memory profiling information available at the time of duplication, intelligent duplication

can be performed. e.g., only library and function calls can be considered as high value

instructions and only the operands of stores that alias with the loads in the producer chain

of library call operands need to be protected.

Silent Store Optimization: A silent store is defined as a store that writes the same value

to a memory location that is already present at that location. As reported in many previous

studies, a significant percentage of total stores are silent. Bell et al. [13] report 18% to 64%

of total stores as silent for SPEC95 benchmarks. We have implemented silent store profiling

as an extension of the LAMP toolset. In experiments with SPECINT2000 benchmarks, we

observed silent stores ranging from 0.01% to 72% of total stores. The presence of high

fractions of silent stores can be exploited to our advantage.

For the purpose of this work, while doing recursive duplication, if we encounter a store

which is almost always silent then we stop the recursive duplication. Considering the high

percentage of stores that exist in benchmark applications, we can save in terms of instruc-

tion duplication. The intuition behind this idea is that even if a corrupted value is written

by a store it will be written correctly in subsequent executions of the same store. The silent

store removal optimization is explained in Figure 2.5 through an example. The duplication

starts from the library call by walking the Data Flow Graph (DFG) and whenever a load is

encountered, the recursive duplication continues with the operands of the stores that write

to the same address as the load. Figure 2.5(a) shows duplication without considering the

silent store optimization, and we end up duplicating more instructions. Figure 2.5(b) shows

duplication when silent store optimization is enabled. If a store in the recursive duplication
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Figure 2.5: This Figure represents the control and data flow graphs for an example code. Solid
arrows represent data flow edges and dashed edges represent control flow edges. In part (a), in-
structions 1 and 2 are both duplicated (seen underlined), with comparisons (C) and branches (B) to
recovery code if a comparison fails. L represents a load instruction. If a silent store is on the path of
the recursive producer chain, then the duplication process is terminated at that store and no source
operands of the store are duplicated, as seen in part (b). The store instruction ’S’ is assumed to be a
silent store for this example.

of a producer chain turns out to be silent, we terminate recursive duplication. This reduces

the number of instructions duplicated. We use a threshold of 80% for a store to be consid-

ered silent since at runtime, it is not guaranteed that a store considered silent will always

write the same value, and if a transient fault affects the store at such an execution instant,

our technique will miss the fault. Such instances are expected to be rare because we choose

a high threshold to classify a store to be silent.
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2.3.3 Software Symptom Generation using Value Profiling

Figure 2.6: The effect of the value profiling on the instruction duplication process. Part (a) shows
duplication without considering value profiling while part (b) shows duplication if value profiling
is taken into account. Instruction 3 is assumed to generate the value ’0’ more than 99% of the
time, and an extra comparison(C3,0) is added accordingly, jumping to additional recovery code if
this comparison fails. Underlined instructions are duplicates, branches are indicated with ’B’, and
comparisons with ’C’.

As mentioned in section 2.2.3, fault coverage that can be harnessed by using hardware

symptoms saturates quickly (i.e., adding more symptoms doesn’t improve fault coverage

by a great extent). We have developed a novel value profiling-based method to generate

software symptoms. If an instruction generates the same value almost 100% of the time,
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we can use that value and compare it to the value generated by the same instruction at

runtime. If the value generated at runtime differs from the one that the instruction gener-

ates very frequently, it is assumed that a fault has occurred and the recovery mechanism is

triggered. Since for each value comparison we need to insert one compare (cmp) and one

branch instruction, these instructions should be only inserted when they provide benefits

in comparison to unintelligent duplication of the data flow chain. The benefits can only be

seen in cases if the data flow chain is long and the count of instructions which would have

been duplicated is greater than 2 (value cmp + branch instruction). In essence, this tech-

nique is expected to improve fault coverage by providing software symptoms and reduce

overhead by a small amount.

An example where value profiling would be useful is provided in Figure 2.6. Figure

2.6(a) shows straight up duplication without considering value profiling. Say instruction

3 of Figure 2.6(a) generates the value ’0’ more than 99% of the time during the profiled

execution of the program. While doing duplication by recursively traversing the operands,

if instruction 3 is encountered in Figure 2.6(b) then an extra compare instruction is inserted

to compare the value generated by it to ’0’. If these two values do not match at runtime,

then the recovery mechanism is triggered. Although rare, it is possible that at runtime, the

application encounters different inputs and so instruction 3 produces output other than 0.

Since this is rare case, the recovery should be initiated only once from the same place; if

the comparison fails at a location twice from the same place, such requests for recovery are

ignored.
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2.4 Experimental Setup

This chapter presents a solution to target soft errors induced by transient faults. The

main cause of soft errors in microprocessors is high energy particle strikes. The experi-

ments with high energy particle strikes conducted by Dixit et al. [35] are not feasible in

academic studies such as the one presented here. An acceptable alternative to these exper-

iments is the use of statistical fault injections (SFI) into a microarchitectural model of a

processor. SFI has been previously used in validating the solutions proposed to solve the

problem of soft errors. For the purpose of this work, we use a single bit-flip fault model

implemented in the microarchitectural model of an ARM processor.

For profiling the SPECINT2000 benchmarks we have used training data provided in

the benchmark suite corresponding to each benchmark. While running the benchmark on

the simulator, we utilized test data provided in the benchmark suite. We only use training

data for profiling. However, profiling information from multiple runs of a program with

representative inputs can be combined easily in our profiling infrastructure.

2.4.1 Compiler Passes

We have used the LLVM [66] compiler infrastructure to implement the reliability-aware

code generation pass. This pass uses internal information from other analysis passes such as

memory profiling and value profiling to produce bitcode with duplicated instructions. The

LLVM code generation framework is then used to generate ARM binaries from the bitcode

with duplicated instructions. Some optimization passes such as machine common subex-

pression elimination can remove the duplicated instructions. We have disabled them during
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the phase when LLVM prepares the IR for code generation. In some cases, the instruction

scheduling can also interfere with the relative order of symptom generating instructions and

duplication. This causes the wrong value to propagate and a delay in generation of symp-

toms. For such cases, a false dependency can be created to stop such relative movement of

symptom generating instructions with respect to duplicated instructions.

Since LLVM supports a number of front-ends (including C/C++), the developed pass

is capable of generating reliability aware code for applications written in many languages.

The pass takes LLVM IR as input and also produces IR with duplicated instructions. The

other benefit of operating at the IR level is that all the code generation targets supported

by LLVM (Alpha, ARM, etc.) can be used with the solution presented in this work. We

have performed all experiments targeting an ARM architecture. If the LLVM bitcode is

target independent, our code duplication framework can be used as-is to generate machine

executable for a multitude of targets.

2.4.2 Fault Injection Framework

The fault model used in this work is a single bit-flip model. This model has been widely

used in experimental evaluation of the previously proposed solutions to tackle the problem

of soft errors. These faults are inserted by flipping a random bit at a random cycle dur-

ing the course of application run. For the initial experiments, we injected faults randomly

into the register file. In our experiments, faults in other microarchitectural structures are

not explicitly injected, but faults in other structures predominantly manifest through regis-

ter file as corrupted states. Thus, the register file is an attractive target for fault injection

experiments. Wang et al. [133] showed that the bulk of transient fault-induced failures
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are dominated by corruptions introduced from injections into the register file. Overall,

our technique is capable of detecting faults injected into other microarchitectural units that

affect the program. Thus, injecting faults only into register file is a limitation of our eval-

uation infrastructure and is not a limitation of our proposed technique. For the purpose of

this work, we have used the GEM5 [17] simulator. The simulator was run in ARM syscall

emulation mode and modeled the ARMv7-a profile of ARM architecture. We have used

a model of the in-order ARM architecture. Since our injection site is the register file, we

expect that an out-of-order model wouldn’t affect our conclusions significantly. In fact,

we believe that an out-of-order model will improve our results because duplication of in-

structions in a single thread of execution results in extra instruction level parallelism which

an out-of-order model could exploit efficiently. The details of the processor configuration

used for the experiments are in Table 2.1.

Table 2.1: GEM5 Simulator parameters (models an ARMv7-a profile of ARM architecture).

Processor core @ 2GHz
Simulates an In-order core
Physical register file size 16 entries
Simulation Mode Syscall Emulation

Memory
L1-I/L1-D cache 32KB, 2-way
L2 cache (unified) 2MB, 16-way
DTLB/ITLB 64 entries(each)

The experimental results shown in this chapter are produced with fault injection trials.

At the start of each trial a random physical register and a random bit are selected for injec-

tion. The selected bit is then flipped at a random time during the application run and the

program executes with this modified register data. We have only used user mode registers

to inject faults. Injecting faults in privileged mode registers would yield a higher masking
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rate because no benchmarks use these registers and so, injected faults would have no effect.

To stress test our technique, we chose to ignore injecting faults in privileged mode registers

and as a result, a lower masking rate is observed in comparison to the masking rate reported

in previous research [133] efforts with soft errors.

To calculate the statistical significance of a given number of fault injection trials, we

use the works of Leveugle et al. [69]. We need 96 fault injection trials for each benchmark

to have a 10% margin of error and confidence level of 95%. Ideally, we would like to

perform our experiments with a 5% margin of error and a confidence level of 95% but this

amounts to 384 trials per benchmark. Considering we have 10 benchmarks and we need

perform fault injection experiments for full duplication, the baseline, and our proposed

technique, running 384 trials per benchmark would lead to a very long simulation time.

The approximate time would be 23040 (3*10*384*2) hours of simulation assuming 2 hours

of average runtime for each benchmark. Therefore, we chose 100 fault injection trials for

each benchmark to yield results with reasonable accuracy in a timely manner. After the

fault injection, the program runs until completion and the log files are collected. At the

end of every simulation the log files are analyzed to determine the outcome of the run as

described below. The result of each trial is classified into one of four categories:

1. Masked: The injected fault did not corrupt the program output. Application-level or

architecture level masking occurred in this case.

2. Covered by symptoms: The injected fault produces a symptom such as a page fault

or divide-by-zero fault so that a recovery can be triggered. The next section describes

the recovery support in further detail.
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3. SWDetect: The injected fault was detected by the extra comparison inserted at the

time of duplication.

4. Silent corruptions or infinite loop: Faults that produce user visible corruptions,

cause early program termination, or do not terminate in definite time are classified

into this category.

The result classifications of the injection experiments in this chapter are based on the fact

that only user-visible corruptions really matter. From an architecture perspective, this idea

of failure may seem inaccurate, but it is consistent with recent symptom-based works and

is the most appropriate in the context of evaluating our current work. The main motivation

behind our solution is that the cost of ensuring reliability can be reduced by focusing on

hiding only the faults that are noticeable by the end user at run-time. Therefore, the metric

of importance is not the number of faults that propagate into the microarchitectural state,

but rather the percentage of faults that actually do result in user-visible failures.

2.4.3 Recovery Support

Our solution relies on the ability to roll back processor state to a clean checkpoint.

Wang and Patel [132] indicate that checkpointing and recovery are possible if the fault can

be detected within a window of 1000 instructions for speculated pipelines. The results

presented in Section 2.5 assume that in modern/future processors, a mechanism for recov-

ering to a checkpointed state of 1000 instructions in the past will already be required for

aggressive performance speculation.
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2.4.4 Benchmarks

We have used 10 applications from the SPECINT2000 benchmark suite (gzip, vpr, gcc,

mcf, crafty, perlbmk, parser, gap, vortex, bzip2) as representative workloads in experiments,

and they are compiled with standard -O3 optimizations. In this chapter, multithreaded pro-

grams are not considered. However, we do not foresee any problems of using our technique

with race-free multithreaded programs. Code duplication in a multithreaded environment

may uncover hidden concurrency bugs because the extra duplicated instructions inserted

may change the relative ordering of instructions in the simultaneous execution of threads.

In the context of embedded systems if the change in execution time affects program out-

put, these programs might not run correctly after partial duplication. Experiments with

multithreaded programs are left as an interesting direction to explore further.

2.5 Experimental Results

In this section, the effectiveness of various techniques presented in this chapter is an-

alyzed using the experimental setup described earlier. First, the data for silent stores is

presented. We then analyze the maximum amount of fault coverage we can obtain from

full duplication. Finally, the effect of using memory profiling for tracing dependences

through memory is analyzed in comparison to previous works.

2.5.1 Silent Stores

The % Dynamic silent stores column in Figure 2.7 shows the number of dynamic

silent stores as a percentage of total stores for various applications. 176.gcc, 181.mcf,
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Figure 2.7: The % Dynamic silent stores bar shows dynamic silent stores as a percentage of total
dynamic stores in a benchmark. The high percentage of silent stores in some benchmarks suggest
that their presence can be exploited for intelligent code duplication. The % Overhead reduction bar
shows the reduction in performance overhead if silent store optimization is used while duplicating
instructions. Notice that the benchmarks showing a large percentage of silent stores also show a
significant reduction in overhead.

253.perlbmk and 255.vortex show a high percentage of dynamic silent stores and these

also show a significant reduction in overhead as shown in the % Overhead Reduction col-

umn in Figure 2.7. For the results presented in Figure 2.7, duplication is terminated (see

Section 2.3.2.2) only when a static store is silent more than 80% of the time (i.e., if a

static store in a benchmark writes the same value already present at a memory location less

than 80% of its dynamic execution time, the store is not considered for this optimization).

175.vpr and 253.perlbmk show less reduction in overhead because many static stores in

these benchmarks do not cross the threshold of 80%.
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2.5.2 Performance Overheads and Fault Coverage

In this subsection, a comparison of our solution is made with previous works using the

criteria of performance overhead and fault coverage. If a fault results in masking, SWDetect

or symptoms, system can correctly execute the program. Hence, fault coverage is defined

as the percentage of injected faults that result in masking, SWDetect or symptoms.
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Figure 2.8: Overhead comparison among full duplication, profile oblivious duplication, and pro-
file aware duplication. In full duplication, duplication is not terminated at safe instructions and all
branches are also protected. Although profile oblivious duplication uses safe instructions, profil-
ing information is not utilized. This represents a system equivalent to Shoestring. Profile-aware
duplication uses safe instructions as well as profiling information.

In this first experiment, we examine the maximum amount of coverage we can obtain

by doing the maximum amount of duplication. Since loads are never duplicated to save on

memory traffic, the overhead wouldn’t be 100% for full duplication and there will always
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Figure 2.9: Coverage breakdown for full duplication (full-dup), profile oblivious duplication (pro-
oblivi) and profile aware duplication (pro-aware).

be some faults which can escape detection by the duplicated code. The full duplication

column in Figure 2.8 shows the performance overhead if the duplication is not terminated

at safe instructions and all the branches are also protected by duplication. The full-dup

column in Figure 2.9 is the corresponding fault coverage breakdown among the different

categories of result classification. Essentially, “Full duplication” data represents the per-

formance overhead and fault coverage with the maximum amount of duplication possible

with our scheme. On average, the performance overhead is 50.51% and the coverage of

transient faults by combining symptom-based and duplication-based methods is 94%. The

performance overheads in this Section are compared to -O3 optimized baseline. Though

the overhead is high, it gives improved coverage of faults. In the 164.gzip benchmark, all
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unmasked faults are detected by the duplicated code.

The profile-oblivious duplication column in Figure 2.8 and pro-oblivi column in Fig-

ure 2.9 show the performance overhead and fault coverage numbers if the duplication is

terminated at safe instructions and only the immediate branch whose execution affects the

execution of high value instruction is protected by duplication. This is equivalent to the

Shoestring solution. It reduces overhead but fault coverage deceases from 94% to 92.2%.

For the rest of results, we have considered profile oblivious duplication as our baseline

values for result comparisons.

A general trend observed in the results is that with lesser duplication, masking goes up.

For example, profile oblivious duplication (pro-oblivi) has lower overhead than full dupli-

cation (full-dup) on average (Figure 2.8), hence lesser duplication, but has more masking

than full-dup (Figure 2.9). This stems from the fact that with less duplication, there a de-

creased chance of fault detection and therefore a greater chance of fault masking or overall

failure since undetected faults result in masking or failure. Since the amount of duplication

in an application changes its code structure, randomly injected faults in the same applica-

tion with different levels of duplication show different behavior.

The profile-aware duplication column in Figure 2.8 shows the overhead if we dupli-

cate the producer chains of library and function calls only (i.e., only library and function

calls are considered as high value instructions) and make use of profile information. The

pro-aware column in Figure 2.9 shows the corresponding coverage breakdown numbers. In

this set of experiments, the effectiveness of using LAMP to trace the dependences through

memory and other profiling techniques while duplicating instructions is demonstrated. The

overhead is reduced by 41% but the coverage of transient faults provided by the combi-
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nation of symptom-based and software duplication stays about the same. These results

demonstrate the effectiveness of using the profiling information for efficient duplication.

Our technique results in better code duplication, providing the same level of fault coverage

seen with our baseline but at 41% lower overhead.

2.5.3 Contributions of Each Technique

So far we have discussed the combined effect of edge, memory, and value profiling on

the obtained results. In this section, the contribution of each technique is presented. We

have combined the contributions of edge profiling and silent store optimization together

and the results in this section are presented for a subset of benchmarks because running

100 fault injection trials for each configuration leads to a large number of simulations.

These benchmarks are not handpicked because they show desirable behavior.

The ‘Sl-st and edge profile aware’ column in Figure 2.10 show the reduction in over-

head if the silent store and edge profile based optimizations are used. The profile oblivious

duplication bar is the baseline overhead. In comparison to our baseline, these two tech-

niques combined result in a 12.78% reduction in overhead. The sl-edge-aware column in

Figure 2.11 shows the coverage breakdown among different components. On average, be-

cause of software duplication, the combined fault coverage stays the same. As shown in

the val-aware column in Figure 2.10, the use of value profiling provides a 5.9% reduction

in the performance overhead of duplication on average. Value profiling provides a slight

increase in the number of faults covered by duplication while reducing the overhead.

Overall, the experimental results demonstrate that the techniques proposed in this chap-

ter are effective as they provide a significant reduction in performance overhead while still
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Figure 2.10: The profile-oblivious column is the baseline overhead. The reduction in overhead if
we use the silent store optimization and edge profiling information is shown in the ‘Sl-st and edge
profile aware’ column. The value profile aware column shows the reduction in overhead if we use
value profile in comparison to our baseline.

maintaining the desired fault coverage levels.

2.6 Related Work

This section describes the work that is related to our proposed solution. Software in-

struction duplication is an approach which is extended in our work in an effort to increase

fault-coverage while reducing performance overhead and eliminating the need for addi-

tional hardware support. In this case, redundant execution can also be achieved in software

without creating independent threads as shown by Reis et al. [101]. The previous works in
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Figure 2.11: The pro-oblivi column shows the coverage breakdown for our baseline . The coverage
breakdown if we use silent store optimization and edge profile information is shown in the sl-edge-
aware column. The val-aware column shows the coverage breakdown for value profile aware code
duplication.

software-based instruction duplication are [41, 101], the most closely-related works to our

solution. Our work differs from these works in the following ways:

• Our work makes novel use of value profiling to generate extra software-based symp-

toms.

• SWIFT [101] considered all the stores as starting point for duplication. Shoestring [41]

improved upon that by considering global stores and all functions calls as starting

point for instruction duplication. Our solution starts duplicating instructions only

from library and function calls and then uses memory profiling to find the true load/-
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store dependencies. In this process, only the important stores get considered as high

value and a lesser duplication overhead is achieved.

• Silent store profiling information is incorporated in this work for the first time.

• Unlike some of the previous works, our solution is not tied to a specific ISA. We

take a fresh approach, and instruction duplication is implemented instead at the IR

(Intermediate Representation) level. This enables greater applicability, as IR-level

implementation allows for a wider target base, being useable on a multitude of dif-

ferent processor architectures.

Other works such as CRAFT and PROFIT [102] improve upon the SWIFT solution by

leveraging additional hardware structures and architectural vulnerability factor (AVF) anal-

ysis [92], respectively. Compiler-based instruction duplication delivers nearly complete

fault coverage, with the added benefit of requiring little to no hardware cost. However, in

order to achieve this, solutions like SWIFT can more than double the number of dynamic

instructions for a program, incurring significant performance and power penalties which

are costly to implement in embedded devices. Latif et al. [65] present a software based

solution which exploits data representation for fault detection. It doesn’t handle arbitrary

C/C++ programs.

With respect to other hardware and software based solutions, our solution’s ability to

achieve high levels of fault coverage with very low performance overhead, and all without

any specialized hardware, sets it apart.

Some recent solutions have also suggested the idea of distributed checking in the core

for various components. Argus [81], for example, relies on a series of hardware checker
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units to perform online invariant checking to ensure correct application execution. Our so-

lution differs from all of these techniques because it does not require any special hardware

modifications.

Our proposed solution also makes use of symptom-based detection, which relies on

anomalous microarchitectural behavior to detect soft errors. A light-weight approach for

detecting soft errors, ReStore [132], analyzes symptoms including memory exceptions,

branch mispredicts, and cache misses. In our proposed solution, extra symptom generating

instructions are introduced based on value-profiling data. The strength of symptom-based

detection lies in its low cost and ease of application. mSWAT [53] presented a solution

which detects anomalous software behavior to provide a reliable system. It requires special

simple hardware detectors to detect faults.

One final approach to soft error tolerance targets another aspect of the microarchitec-

ture, the register file. Register file protection schemes are based on the premise that faults

occurring in the register file are statistically more likely to corrupt the output of the pro-

gram. As ECC is applied to main memory to protect against soft errors, the same technique

can also be applied to the register file. Solutions like the one presented by Montesinos et

al. [87] build upon this insight and only maintain ECC for those registers most likely to

contain live values. ECC protection would only be helpful if the soft error corrupts a regis-

ter after it has been written; If faulty data gets written to registers, ECC is simply useless.

In contrast, our solution can detect errors which occur elsewhere in the architecture but

propagate to the register file. Similarly, Blome et al. [18] propose a register value cache

that holds duplicates of live register values to aid in the protection process.
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2.7 Conclusions

The relentless desire to scale transistor size will increase the rate at which soft errors

occur during the time when the processor is in use. As a result, it is necessary to provide

protection against soft errors not only for mission-critical applications but also for impor-

tant applications running on commodity processors. The high overhead of techniques to

protect against soft errors for mission-critical computing systems is not acceptable for ap-

plications running on commodity processors. We make novel use of value profiling for

generating software symptoms. In this chapter, we presented a solution that uses profile-

based compiler analysis to selectively duplicate instructions. Our profile based selective

duplication results in a reduction of overhead of 41% in comparison to a previously pro-

posed solution while maintaining the same level of fault coverage.
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CHAPTER III

Low Cost Control Flow Protection Using Abstract Control

Signatures

70% of the transient faults disturb program control flow [58, 130], making it critical to

protect control flow. Traditional approaches employ signatures to check that every control

flow transfer in a program is valid. While having high fault coverage, large performance

overheads are introduced by such detailed checking. In this chapter, we propose a coarse-

grain control flow checking method to detect control faults in a cost effective way. Our

software-only approach is centered on the principle of abstraction: control flow that ex-

hibits simple run-time properties (e.g., proper path length) is almost always completely

correct. Our solution targets off-the-shelf commodity systems to provide a low cost protec-

tion against transient faults. The proposed technique achieves its efficiency by simplifying

signature calculations in each basic block and by performing checking at a coarse-grain

level. The coarse-grain signature comparison points are obtained by the use of a region

based analysis. The overall goal of this technique is to minimize the number of control

flow disturbances.
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3.1 Introduction

In the quest to make chips faster, cheaper and energy efficient, transistors are being

scaled down in size. As silicon technology is moving deeper down into the nanometer

regime, reliability of microprocessors is emerging as a critical concern for manufacturers.

Factors such as increasingly smaller devices, reduced voltage levels, and increasing operat-

ing temperatures exacerbate the problem of reliability of these components. Furthermore,

billions of transistors are packed into modern microprocessors, and a fault in even a single

transistor has the ability to corrupt the output of the application or crash the entire system.

In this chapter, we focus on the reliability concerns caused by soft errors. Soft errors,

as described in Section 2.1 of the Chapter II, are caused by high energy particle strikes from

space or circuit crosstalk in an electronic circuit. A high energy particle such as a neutron

from cosmic rays or an alpha particle from packaging material impurities releases charge in

the circuit that in turn can disturb the functionality or the charge stored at a semiconductor

device. As the name suggests, transients faults do not cause permanent damage to the chip

and devices work correctly once the effect of the fault is over.

The semiconductor industry has reported many instances of the problems caused by soft

errors over the last few decades. Other than the real life instances of soft errors mentioned

in the introduction of chapter II, Cypress semiconductor reported that a single soft error

caused a billion-dollar automotive industry to halt every month [137]. In 2005, HP also

reported [89] that cosmic rays were the cause of frequent crashes of its 2048-CPU system

installed at the Los Alamos National Laboratory. These studies illustrate the issues caused

by soft errors and necessitate the need for reliability solutions at all levels (e.g., circuit,
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architecture or application level) of the system stack.

Traditionally, memory cells have been more vulnerable to transient faults and are usu-

ally protected by mechanisms such as parity checks or Error Correcting Codes (ECC). The

use of smaller transistors to implement logic circuits in microprocessors increases suscep-

tibility of logic circuits to transient faults. Shivakumar et al. [120] reported that Soft Error

Rate (SER) for the logic on chip is steadily rising with technology scaling while SER for

memory is expected to remain stable. SER is the rate at which a component encounters

soft errors. Also, SER scales with number of transistors and level of integration [44].

Without actively addressing these issues, SER is expected to rise significantly in new prod-

ucts. Moreover, previous studies [58, 130] reported that more than 70% of the transient

faults lead to disturbance in control flow and are the cause of control flow errors. Control

flow errors are defined as the incorrect change in the sequence of instructions executed by

processors under the influence of external events such as soft errors.

Traditional solutions in server space for reliability have provided fault tolerance via

DMR (dual-modular redundancy) and TMR (triple-modular redundancy). IBM Z-Series [12]

servers and HP NonStop [15] systems are two pioneers of such schemes. These solutions

incur a large energy and/or performance overhead and are not directly applicable in the

embedded design space. Signature based solutions [94] employ signature updates in every

basic block and check that all control flow transfers lead to a correct target address. This

checking results in high instruction overheads due to the combination of computing, updat-

ing, and checking the unique control signatures of each potential control flow edge. Typical

performance overheads of prior work are on the order of 75% (Section 3.2.3 describes such

techniques in detail).
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In this chapter, we propose Abstract Control Signatures (ACS) to provide a practical low

cost solution for Commercial Off-the-Shelf (COTS) embedded microprocessors to protect

against control flow target (i.e., the branch destination address) errors [60]. These errors

are usually not covered by redundancy-based data protection techniques [41, 62], yet they

lead to a disproportionately high number of incorrect executions. ACS is a software-only

solution and does not require any modifications in the hardware. Our solution is based

on the principle of abstraction and the insight that control flow that exhibits simple but

repeated properties of correctness is almost always entirely correct. ACS achieves abstrac-

tion by checking simpler properties (e.g., path length) and promoting control flow signature

checking from individual basic blocks to group of blocks.

ACS is targeted for COTS commodity systems. In the commodity embedded market,

achieving performance targets in a cost-effective manner is of paramount importance. Due

to the associated cost of providing high reliability, commodity systems typically cannot tar-

get 100% protection against faults. Our solution is designed considering these requirements

of embedded market space. The proposed solution provides opportunistic fault coverage

but does not guarantee 100% fault coverage and hence is not applicable to mission critical

systems. The contributions of this chapter are as follows:

• A novel abstraction based technique to insert simplified signatures. Under the pro-

posed scheme, more complex signatures can be used to explore trade-offs in perfor-

mance overhead and fault coverage.

• A novel region based method to insert checking at a coarse granularity abstracting

away the details of fine-grain control flow.
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• A global signature based method for protecting control flow transfers through call

and return instructions.

• Microarchitectural fault injection experiments to validate ACS.

3.2 Background and Motivation

In this section, we present background details that are necessary to understand ACS and

discuss the motivation behind the approach.

3.2.1 Fault Detection

In order to protect against transient faults, detection of these faults is a necessary first

step. Fault detection can be achieved by introducing some form of redundancy. For ex-

ample, time redundancy involves executing the same instructions twice on the same hard-

ware, space redundancy involves executing the same instructions on duplicate hardware

and information redundancy involves usage of parity, ECC etc. High reliability systems

typically use a mixture of fault detection techniques such as DMR/TMR and/or ECC for

protection against soft errors. These solutions are too expensive in terms of energy/per-

formance/area overheads (∼100%) to be used in the embedded market. A relatively inex-

pensive class of solutions for commercial market use time redundancy based software-only

techniques. Data flow and control flow checking are usually employed in software-based

techniques [94, 95, 19, 130, 41] against soft errors. Data flow checking ensures that com-

putation (e.g., addition) is correct. Software-based data flow checking techniques work by

replicating instructions. Control flow protection techniques usually employ signatures to
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ensure correct control flow [94, 130]. A brief comparison of related technique to ACS

Table 3.1: Brief comparison of ACS with other techniques.

Data flow Control flow
Branch calls/rets

High overhead

DMR, TMR DMR, TMR DMR, TMR
SWIFT [94] SWIFT
EDDI [95] EDDI

ALLBB [19] ALLBB (ret only)
ACFC [130]

Low overhead
Shoestring [41]
ProfileBased [62]
ACS+ProfileBased ACS ACS

is shown in Table 3.1. The techniques are classified based on their relative performance

overhead and whether they handle data flow errors, control flow errors or both. Control

flow protection techniques are further classified into two categories based on whether they

protect branches and call/ret instructions. The techniques are also classified based on their

relative performance overheads. Techniques having overhead ∼70% or more are in high

overhead row and those with ∼40% or less in low overhead row. Typically low overhead

techniques reduce overhead by sacrificing on fault coverage. A more detailed description

of related work is presented in Section 3.6.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Data Flow

Errors

Control Flow

Target Errors

% of runs

Correct executions Incorrect executions

Figure 3.1: Control flow target errors are ∼2.5x as likely to cause incorrect executions.

Figure 3.1 shows the number of incorrect executions resulting from errors in register

files (corrupting the data) and branch targets for SPECINT2000 benchmarks. A high mask-

ing rate (∼75%) for data errors is consistent with the reported masking data in previous
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works [41, 133]. On average, errors in the branch targets are ∼2.5x more likely to result in

incorrect executions. Hence, in this chapter, we focus on efficient detection of control flow

errors, in branches as well as call/ret instructions, and our technique can be combined with

previously proposed [41, 62, 94] code duplication based solutions for a complete solution

(see Section 3.5.3 for a combined solution).

3.2.2 Control Flow Errors

Figure 3.2: Control Flow Target Errors: Corruption of branch target can result in nearby (Type A)
or far away (Type B) displacement of control flow.

To better understand control flow protection techniques, we need to comprehend the

various cause of control flow errors. A control flow error can occur in a non-control flow

(e.g., add) or in a control flow (e.g., branch) instruction. A non-control flow instruction

of the application can be converted into a control flow instruction by a soft error thus

erroneously affecting control transfers. Errors occurring in control flow instructions can be

divided into two categories: Firstly, control flow condition errors are caused by the errors

in the direction of a conditional branch. Secondly, control flow target errors are caused

by the errors in the destination of a branch. Branch conditions are usually protected by data
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flow protection schemes by duplicating the computation leading to a condition. As shown

later in Figure 3.10 (Section 3.4.3), the errors in branch targets result in disproportionately

high number of incorrect executions. Hence, we focus on the control flow disturbances

caused by the errors in branch targets. From here onwards, unless otherwise specified,

the use of control flow errors with respect to ACS refers to the errors in branch targets.

Figure 3.2 shows a part of a Control Flow Graph (CFG) containing 4 Basic Blocks (BBs).

Two types of errors that affect branch target are also shown in the Figure. Type A errors

cause the erroneous jump to nearby locations and Type B errors direct the control flow to

far away locations. Type A errors cause the program to skip a few instructions and are

more likely to result in masking or program output corruptions. In contrast, Type B errors

are more likely to crash the program either by directing the control flow to out of program

scope or to a different function in the same program. In Section 3.3, we describe how our

proposed method handles these control flow errors.

3.2.3 Signature Based Techniques and Associated Overheads

Figure 3.3: Basic signature scheme: If the correct control flow transfer takes place, G at dest_BB
would be equal to s2 otherwise not.
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Many of the previously proposed software-only techniques for control flow protection

embed signatures or assertions into BBs at compile time [94, 45, 4]. This section briefly

describes the fundamentals of these signature based techniques, especially CFCSS [94].

CFCSS assigns a unique signature Si to each BB in the program. A general purpose register

(G) is used to hold the signature of the currently executing BB. G is initialized to the

signature of first BB when a program starts. Subsequently, whenever a transition is made

from src_BB to dest_BBs the value of G is updated with the newly computed value. This

new value is calculated by taking the xor of G and the static signature difference (xor) of

src_BB and dest_BB. After this, G should be equal to the unique signature assigned to

dest_BB. A comparison of G with unique value of dest_BB is inserted in dest_BB to

make sure that control flow is correct. If this comparison fails, an incorrect control flow

transfer has taken place. A simple case of this scheme is shown in Figure 3.3. For a

complex case of branch-fan-in nodes, extra dynamic adjusting signatures must be inserted

to avoid aliasing [94]. This necessitates the need for multiple signature updates in branch-

fan-in nodes and dynamic signature computation in predecessors BBs of the branch-fan-in

nodes. These extra updates contribute to the overhead of such a scheme.

Essentially, every BB in the application contains signature computation or update in-

structions as well as comparison instructions for ensuring correct control flow. The cost

of embedded signature checking at runtime in every BB can be prohibitive, making these

techniques impractical. We have implemented CFCSS and in our experiments on small

benchmarks (the same ones used in CFCSS [94]) we observe, on average, a performance

overhead of 68%. Though, for Insertsort benchmark from the set of benchmarks, it is as

high as 222%. For real representative benchmarks from SPECINT2000, we observe up to
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a 144% overhead (75% on average) for the CFCSS technique. The opportunity to reduce

this huge overhead is one of the motivations behind proposing ACS.

3.3 Abstract Control Signatures

Figure 3.4: Abstract signatures: The whole program is divided into regions at a higher abstraction
level. Such regions are enclosed by dashed light blue (grey) lines in this Figure. Every region
is assigned a signature. Every abstract region updates its signature based on the control transfers
among the BBs inside it. These signatures are only checked in other abstract regions.

Fundamentally, there are two critical aspects of any signature based control flow pro-

tection scheme. The first is signature computations (or updates) in each BB and the second

is signature comparisons (or checking) to check for erroneous control flow. These two
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computations are the main contributors to the performance overhead of signature-based

control flow checking schemes. To reduce performance overhead, we propose raising the

level of abstraction of signature checking and simplifying signature updates in every BB.

The abstraction level is raised by working at the levels of regions∗. The whole program

is divided into regions that are larger than just a BB. These regions are more than just a

collection of BBs and ideally should possess certain properties that help in minimizing the

number of signature comparisons and signature updates. Each region has a signature vari-

able associated with it. For example, one desirable property of regions is to have a single

entry point so that the associated signature variable need not be initialized at every entry

point. As shown later (Section 3.3.2), this reduces the number of required signature com-

parisons. The signature variable associated with a region is checked in other regions that

are the target of the control flow edges from the region under consideration. Essentially,

signature information flows between these abstract regions. The signature associated with

each region represents the correctness of control flow internal to that region. In this sense,

checking control flow outside regions abstracts away the details about control flow inside a

region, hence the name ACS (Abstract Control Signatures). A high level diagram for ACS

concept is shown in Figure 3.4. In Figure 3.4 the signature sig1 is associated with region 1

and is updated inside the BBs of region 1. Assuming a BB in region 1 has a control flow

edge to a BB in region 3, sig1 would only be checked in that BB in region 3.

∗In this chapter, region is used to refer to a single entry multiple exit code section that satisfies the
following property among others: loop back edges are only allowed to the entry node (see Section 3.3.1).
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3.3.1 Design of ACS

The idea of ACS is very generic and can be realized in various ways. ACS can be im-

plemented by forming regions at various granularity levels and different signature updates

according to the required trade-offs in performance overhead and fault coverage. The sig-

nature update inside each BB can also be tuned. For example, the signature update inside

each BB can be as simple as having a parity bit set/reset and the corresponding check would

be to check against 0 if even number of blocks were traversed and against 1 if odd number

of blocks were traversed. These updates can be more complex such as usage of hash func-

tions or xors. Similarly, the region formation can also be customized. For example, if the

region is a single BB then this scheme is the same as regular signature checking in each

BB.

For ACS implemented as a part of this chapter, we have made following choices for

signature updates and regions. We use a simple counter variable as the signature. For

signature updates, we increment the signature by 1 in the beginning of every BB. The

intuition behind using increment by 1 is as follows: Consider 2 points in a program, X is

a region entry and Y is the corresponding region exit. If control reaches X, we expect it

to reach Y. ÂăIf in going from X to Y, a valid number of BBs are traversed and the first

instruction in each of those BBs is executed, we hypothesize that control flow is likely

correct. ÂăObviously, this is not always true, but our experiments have confirmed that

small disruptions (fault in the lower bits of the branch target) in the control flow will result

in changes to the path length due to positioning of counter updates at the beginning of BBs

and large disruptions (fault in upper bits) will result in Y never being reached. ÂăThus,
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if the hypothesis is statistically true, individual control transitions need not be checked

with minimal loss in fault coverage. This allows only the higher level information to need

checking. To see the usefulness of such counters, let us consider the control flow errors

shown in Figure 3.2. On one hand, Type B errors (far away erroneous jumps) that would

transfer control from one region to another, are easily caught. On the other hand, Type A

errors (nearby erroneous jumps) are likely to skip the signature updates, so they are also

caught. We use intervals [3] as regions because of the desirable properties they possess.

Intervals: An interval is a set of BBs such that every BB except the header BB in the

interval has its predecessors in the interval. An interval satisfies the following, and many

other, properties.

1. The header block of an interval dominates all the BBs in that interval. Basically, this

implies that control can only enter at the header node of an interval.

2. If a loop is part of an interval then the loop header and interval header are the same.

The header BB of a loop is the target BB of back edges in that loop.

Figure 3.5 shows an example of intervals for a CFG that has nested loops. Interval 1

contains only bb1 and its header is also bb1. Interval 2 contains all the remaining blocks

shown in the Figure. Interval 2 contains a loop and note that loop header bb2 is also the

header node of the interval 2. Another interesting observation is that the outer loop is never

contained in a single interval. We use intervals formed according to the maximal interval

definition [88]. A latch BB of a loop is defined as the block that has a branch to the header

of the loop. For example, bb_latch1 is the latch block for the inner loop starting at bb2.

A basic overview of the implemented scheme is shown in Figure 3.6. The counter C1
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Figure 3.5: Intervals in the Figure are shown by enclosed dashed light blue (gray) lines. This Figure
shows two intervals for a control flow graph that has a nested loop.

(signature for the shown region) is incremented by 1 in each BB, and in the successor BB

of bb4, a check would be inserted to make sure that the value of C1 is 3. In the presence of

a control flow error, assume that the transition happens such that after bb1, either signature

updates of bb2 or bb3 is skipped or bb4 is executed. The signature value would not be 3

in the successor BB of bb4 and this would be detected. We put the increment as the first

instruction in the BBs so that the signature won’t get updated in case of small erroneous

jumps. Thus, very small changes to the branch target are caught because of this positioning

of signature updates.

However, if we naively insert the increments in each BB of the program, the counter

value at the exit points of the interval will depend on 1) the path taken during runtime 2)

the particular exit taken. For example, consider the CFG shown in Figure 3.7. If at runtime,
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Figure 3.6: Every interval is associated with a signature. In our scheme, signature are simple
counters. The signature is initialized in the header and incremented by 1 in other blocks. The
signature checks are made in the BBs that are destination BBs of exits out of an interval.

edge bb1 → bb2 is traversed, the signature value at the exit out of bb3 would be 3 since

each BB increments signature by 1. However, if the edge bb1→ bb3 is traversed signature

value at the same point would be 2. Another similar problem exists if there are multiple

exit points from an interval. The signature values at the exit points of an interval would

be different if the exits originate from different BBs. Different signature values from an

interval exit would imply that checks would need to be inserted with different values. To

solve this problem, we make sure that from every exit out of an interval, the same signature

value needs to be checked no matter which exit is taken. To tackle the aforementioned

problems, we have developed a method to calculate extra balancing increments required

along edges. The details of this method are described in the next subsection.
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Figure 3.7: The extra increments required to be inserted along control flow edges is shown. This
balances out signature values at the exits out of an interval.

3.3.2 Calculating Balancing Increments

The goal is to calculate the extra balancing increment required to be inserted along the

imbalanced edges in the CFG. Figure 3.7 shows an imbalanced CFG. An imbalanced CFG

implies that at every exit there could be multiple signature values depending on the path

traversed during runtime. If the CFG is not balanced, we will need to check against multiple

values at exit points. Checking against multiple values will require multiple comparison

instructions.

We solve these problems by using a technique of slack distribution, a modified version

of the algorithm used by Chu et al. [31] for optimal work partitioning. Our adapted version

of the technique works as follows: First, every exit out of an interval is connected to a
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dummy exit node. All BBs in the interval are assigned a fCount of 0. All edgeWeights

are initialized to 1 and represent an initial increment along the associated edge. fCount

is a number associated with each BB that represents the path length from the header of

an interval to the BB under consideration. The algorithm starts from the header BB of

the interval. By iterating over predecessors, the sum of edgeWeight and fCount for each

predecessor is calculated. fCount for the current block is then maximum value over all pre-

decessors. This can be written as follows: fCount(bb) = maxx∈predecessors(bb)(fCount(x) +

edgeWeight(x → bb)). For every interval, this calculation is repeated until there is no

change in fCount value of any BB. The pseudo code of the algorithm is described in Algo-

rithm 1. Every BB is also associated with a number called bCount . bCount is the number

calculated starting from dummy exit nodes and traversing the predecessors. bCount are

initialized to fCount for each BB. Using an algorithm similar to the one shown in Algo-

rithm 1, bCount is calculated for every BB in the interval. The update equation of bCount

is as follows: bCount(bb) = minx∈successors(bb)(bCount(x)− edgeWeight(x→ bb)). Note

that during the calculation of fCount and bCount only the successors and predecessors that

are in the interval are considered. The dummy_exit block is considered a part of the inter-

val during analysis. Once the fCount and bCount calculation is completed for every BB in

the interval, the amount of extra balancing increment to be inserted along an edge between

srcBB and destBB can be calculated as follows: extraIncrement [srcBB → destBB ] =

fCount [destBB ]− edgeWeight [srcBB → destBB ]− bCount [srcBB ].

Figure 3.7 shows an example of extra increment calculation for a CFG. Numbers on the

left side of blocks represent fCount and numbers on right side of the BB represent bCount .

Numbers on the edges are the extra increments required to be inserted along that edge. e.g.,
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based on the algorithm described above edge bb1 → bb3 edge gets an increment of 1

and edge bb1 → bb4 gets an increment of 2. Once this step is executed, all the required

increments are inserted along all edges of an interval.

Create dummy_exit block and connect all exit edges to this block;
Initialize all edgeWeight to one;
Initialize all fCount to zero;
change = 1;
while change do

change = 0;
for each bb in Interval do

maximum = max(fCount(x) + edgeWeight(x→ bb)) for x in
predecessors[bb] and x→ bb is not a backEdge;
if fCount[bb] < maximum then

change = 1;
fCount[bb] = maximum;

end
end

end
Algorithm 1: Algorithm for calculating fCount for every BB in an interval.

3.3.3 Error Detection Analysis

Let Ci be the counter associated with an interval. Every block inside that interval

updates the counter by 1 and at every exit out of the interval the counter value should

be the maximum path length (since we insert balancing increments) through that interval.

Let that max value for an interval be CMax . If Ci is not equal to CMax when control

exits out of the interval then the control flow inside the program got disturbed. For all the

intra-interval control flow errors, if any update to the path length counter is skipped, the

path length calculation would be wrong and hence the control flow error will get caught.

Erroneous jumps to other intervals are detected as the path length is not correct at the entry

point of those intervals. However, there could be multiple paths of same length inside
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the interval. In the presence of single errors, the probability of traversing a different path

of the same length path and still having the same CMax at exits is very low as explained

below. We refer to this probability as aliasing probability. Consider two BBsBBi andBBj

and assume that an error occurs while executing the branch in BBi transferring control to

BBj . In such a case and under single bit errors, aliasing occurs if all of the following three

conditions are satisfied:


pathLength(BBj) == pathLength(BBi) + 1

BBj /∈ successors(BBi)

BBi jumps to the first instruction of BBj

pathLength(BBi) is the length of the path (number of BBs required to be traversed) from

the interval header to BBi. The first condition implies that the path length at erroneous

destination block should be 1 more than source block. The second condition requires that

BBj is not a valid successor of BBi according to the CFG and the third condition requires

the jump to be at the beginning of the BB. If the jump is not at the beginning of the BBj ,

the counter update would be skipped and the error would be caught. Fortunately, this a very

specific case, so the aliasing probability is very low, dependent on the structure of the CFG.

For SPECINT2000 benchmarks, the probability of such an aliasing is on the order of 10−5.

This is calculated by analyzing the CFG for such a case. This probability encompasses the

aliasing probability between predecessor blocks (an erroneous jump between two prede-

cessors) of a common successor BB in the same interval. An erroneous change in branch

condition can transfer control to a statically valid target in the CFG and is another case of
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aliasing. We assume that such a case can be handled by data flow protection methods.

3.3.4 Insertion of Checking Instructions

An important part of the technique is to find the BBs where the comparison instructions

should be inserted. Each interval has a unique signature variable. We compare this variable

with the statically known CMax to test that the proper number of increments occurred. For

our initial implementation, we chose to insert checks at all the exit points of an interval and

in the latch block of loops. However, this is suboptimal and in the next section we show

that how this can be further optimized.

3.3.5 Optimization for Loops

(a) Checks for loops (b) Optimized insertion of checking instruc-
tion

Figure 3.8: Optimizing signature checking for loops: The checks on signatures are moved out of
loops to exit blocks so that they are not executed in each iteration.
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A naive way to insert a checking instruction for a loop is as shown in Figure 3.8(a).

The latch block contains the checking instruction (the instruction that compares C1 to 3).

However, in this situation, the check is executed once every loop iteration. This can be

optimized as shown in Figure 3.8(b). In the optimized case, the checking instruction is

moved out of the loop and check is now made against a remainder. Essentially, a multiple

of loop path length gets tested by the remainder. Remainders are a costly operation and

one important issue to consider here is the fact that loop increments are inserted in such a

way that the remainder is always taken by a power of two. This is shown in Figure 3.8(b),

in bb4 counter C1 is incremented by 2 instead of 1 to make sure that remainder by 4 is

taken. If this is the case the remainder instruction can simply be converted to a bitwise and

instruction (e.g., remainder by 4 can be computed as bitwise and with 3).

3.3.6 Call and Return Instructions

A source of control flow transfers are call and return instructions. In this chapter, we

propose a new technique to protect the control flow from caller to callee header and the

return from callee to caller. The idea is akin to the path length approach used for branches

except each function call has a unique path length (a unique number) that is checked upon

entry of the callee and upon return to the caller to ensure call/returns go to and return from

proper targets. We make the path length unique for each function to ensure that there is no

aliasing among calls to different functions. The technique works as follows: Let F be the

set of all the functions in an application. Every fi ∈ F is assigned a unique code such a
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way that the following is true.

HammingDistance(ACode(fi), ACode(fj)) > 1

∀fi, fj ∈ F and i 6= j

For binary numbers a and b, Hamming distance is equal to the number of positions at which

the corresponding bits in a and b are different. Simply put, Hamming distance is the num-

ber of errors required to transform a to b, and vice versa. HammingDistance(a, b) is the

Hamming distance between a and b. ACode(fi) represents the code assigned to fi. Every

function in the application is assigned a unique code in a way such that the Hamming dis-

tance between any two codes is greater than 1. This ensures that there is no aliasing among

calls because of erroneous transition from one function to another function in presence of

single bit errors. Figure 3.9 shows an example of instrumented code. The Global Signa-

Figure 3.9: Handling call and return instructions. Instructions in bold represent the inserted in-
structions.

ture Register (GSR) is updated before and after the call as shown. RConst is a convenient

constant (power of 2) chosen in a way such that the costly remainder operation can be con-

verted to simple bit shift operation. 34 is the Hamming code assigned to the function Foo.
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Inside the callee, the GSR is updated in the entry BB of the callee and return BB of the

callee. This ensures that other calls inside Foo can use the same type of instrumentation.

If source code of a call (e.g., library calls) is not available then the increments inside the

callee cannot be inserted and only the increments around the call are inserted. In such a

case, the transition to the beginning of the callee cannot be checked but the instrumented

code ensures the return from callee should be right after the call instruction. Calls through

pointers and compiler built-ins (i.e., compiler intrinsics) are treated in the same way as

library calls.

3.4 Experimental Setup

A common practice in the literature to evaluate transient fault detection solutions is to

use Statistical Fault Injections (SFIs) into a microarchitectural model of a processor. We

believe that SFI provides the opportunity to inject faults into various hardware structures

and hence are close to real transient fault scenarios. SFI has been previously [41, 101] used

in validating the solutions proposed to protect against soft errors.

3.4.1 Compiler Transformations

We have used the LLVM [66] compiler infrastructure to insert ACS into an application’s

code. Firstly, application source code is converted into LLVM’s internal representation

called LLVM IR (Intermediate Representation). ACS is implemented as a pass over LLVM

IR. ACS insertion pass should be run after all the optimization passes on IR so that these

passes do not interfere with ACS code. Our ACS insertion pass takes IR as input and
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as output it generates IR with signature computations and checks embedded into it. An

LLVM interval formation pass is internally run and the information is used to insert control

flow checking signatures. Some optimization passes such as constant propagation in code

generation phase can propagate the constant initialization of signatures into the next BB.

This can effectively remove the effect of inserted signature from the BB where the signature

was initialized to its successors BBs. We have disabled such optimizations during the phase

when LLVM prepares the IR for code generation.

3.4.2 Benchmarks

We have used 11 benchmarks from the SPECINT2000 benchmark suite (gzip, vpr, gcc,

mcf, crafty, perlbmk, parser, gap, vortex, bzip2, twolf) as representative workloads in exper-

iments. All these benchmarks were compiled with -O3 option of gcc frontend for LLVM.

SPECINT2000 benchmarks. In the context of embedded systems, if the change in execu-

tion time affects program output, these programs might not run correctly after control flow

protection. We do not consider multithreaded benchmarks in this chapter. However, we do

not foresee any problems of using ACS with multithreaded programs.

3.4.3 Fault Injection Campaign

To evaluate the proposed approach, we ran an extensive fault injection campaign. An

acceptable way in literature to model transient faults is using single bit-flips. These faults

are inserted by flipping a random bit at a random cycle during the course of the applica-

tion run. We injected faults in the register file (a large part of the processor’s architectural

state) and branch targets. A fault in a register used as branch target or in the computation
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Figure 3.10: The incorrect executions as a percentage of unmasked faults caused by disturbance in
control flow targets. Faults are injected in register file as well as branch targets.

of branch targets for indirect branches can disturb the control flow. Figure 3.10 shows the

results of this experiment and Y-axis in the Figure is incorrect executions caused by control

flow target errors as a percentage of the unmasked faults. The results show that a large

percentage (on average 42%) of the unmasked faults result in incorrect executions and are

caused by control flow faults. 175.vpr and 300.twolf (100% bars in the Figure 3.10) have

high masking rate and all the remaining incorrect executions for these two benchmarks are

caused by control flow faults. Even though the size of branch target (32 bit) is smaller

than register file (16 registers of size 32 each), the contribution of branch target errors to

incorrect executions is disproportionately high. Hence, control flow faults are an important

category of faults to consider. Therefore, for the rest of the experiments, we chose to inject

faults in branch targets only. Injecting faults in branch targets represents stress testing (a

pessimistic case) control flow protection schemes since all the injected faults are guaran-

teed to disturb the control flow and subsequently do not inflate coverage numbers as they
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result in less masking compared to data errors as shown in Figure 3.1. The same method

of fault injection is used for the baseline (CFCSS). To inject a fault, the program runs nor-

mally until it encounters the first control flow instruction after the selected random point is

encountered. Once the control flow instruction is selected, a random bit is selected from the

target address of the control flow instruction. This selected random bit is flipped to com-

plete the injection of fault. Faults in PC (Program Counter) and other address circuitry are

expected to disturb the control flow in a similar manner. Our technique is also capable of

detecting faults injected into other microarchitectural units that affect the program control

flow.

We used the GEM5 [16] simulator to simulate the workloads and implemented fault

injection infrastructure into this simulator. The simulator was run in ARM syscall emula-

tion mode and modeled the ARMv7-a profile of ARM architecture. To obtain performance

overhead, workloads are simulated in an out-of-order model of the target processor. We use

atomic model for processor configuration to inject control flow faults. The details of the

processor configuration for out-of-order model used for the experiments are in Table 3.2.

Table 3.2: GEM5 Simulator parameters (models an ARMv7-a profile of ARM architecture).

Processor core @ 2GHz
Simulation configuration out-of-order core
Simulation mode Syscall emulation
Physical integer register file size 256 entries
Reorder Buffer Size 192 entries
Issue width 2

Memory
L1-D cache 64KB, 2-way
L1-I cache 32KB, 2-way
DTLB/ITLB 64 entries (each)

We have chosen to inject 1100 faults per technique to evaluate the solution. The statis-
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tical significance of these faults can be calculated by leveraging the work done by Leveugle

et al. [69]. The calculation for our experimental setup shows that we need 96 fault injec-

tion trials for each benchmark to have a 10% margin of error and confidence level of 95%.

Note that the margin of error only applies to fault coverage data. The performance over-

head shows the exact simulation cycles consumed by the simulator. Therefore, we chose

100 fault injection trials for each benchmark to yield results with reasonable accuracy in a

timely manner. After the fault injection, the program runs until completion. The result of

each simulation trial is classified into one of the following five categories:

• Masked: The injected fault did not corrupt the program output. Application-level or

architecture-level masking occurred in this case.

• HWDetect: The injected fault produces a symptom such as a page fault so that

a recovery can be triggered. A fault is considered under this category only if the

symptom is produced within a number of cycles (2000 for our experiments) after the

fault was injected.

• CFDetect: The injected fault was detected by the control flow checking instructions

inserted at the time of compiler transformation.

• Failure: The injected fault resulted in out-of-bound address access and resulted in

simulation termination. Also, faults causing infinite loops in the program are classi-

fied under this category.

• SDC: Faults that corrupt the program output are classified into this category. These

are Silent Data Corruptions.
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Traditionally, the fault tolerance research community considers a program to be cor-

rect if the architectural state is correct at every cycle. Li et al. [73] showed that 17.6%

of the multimedia and AI applications showed correct results even though they had archi-

tecturally incorrect states. We believe that user-visible program output corruptions truly

matter to end users and cycle-by-cycle correct architectural state is not important to them.

So in the context of evaluating this work, a program is considered to have executed cor-

rectly if the final output of the program matches. The result classifications of the injection

experiments in this chapter are based on the fact that only program output corruptions really

matter. Therefore, for this work we do not regard the number of faults that propagate to the

microarchitectural state as a metric of importance. The percentage of faults that actually do

corrupt program output are considered harmful because these faults corrupt program output

without any hint of failure and represent the worse case scenario.

3.4.4 Recovery Support

ACS, like CFCSS, is a detection-only solution for control flow errors. Once a control

flow error is detected, we rely on a recovery mechanism to recover from the detected error.

A software-only recovery scheme such as Encore [42] or checkpointing-based recovery

schemes can be used in conjunction with our solution. Feng et al. [41] and Wang et al. [132]

proposed that future microprocessors with aggressive performance speculation will need

recovery support. If available, the same scheme can be used by our solution. However,

the cost of checkpointing-based and software-only schemes increases with respect to the

number of instructions executed from recovery point. So, one important target for our

scheme is to keep a bound on fault detection latency.
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Figure 3.11: The performance (Runtime on simulated core) overhead for all techniques.

3.5 Experimental Evaluation and Analysis

Using the experimental setup described in Section 3.4, we obtain performance overhead

and fault coverage results. Figure 3.11 shows the performance overhead measured in terms

of runtime. These overheads are in comparison to unmodified applications compiled at

-O3 optimization level. CFCSS shows the runtime overhead for the CFCSS scheme [94]

and CFCSS_ivl bar shows the instruction overhead if the interval information is used in

conjunction with CFCSS to insert checking at a coarser granularity. CFCSS_ivl has the

xor (same as CFCSS) signature update inside every BB and in contrast to CFCSS only

signature checking is moved at a coarser granularity. Also, CFCSS_ivl does not have any

loop optimizations (Section 3.3.5). The third and fourth bar for each benchmarks shows

the runtime overhead when we use ACS. ACS_w/o_calls_rets bar in this Figure shows the

overhead without the protection for calls and returns (Section 3.3.6) and ACS_w/_calls_rets

the overhead if protection for calls and rets is included. Overall, the performance overhead
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Figure 3.12: CFCSS bar shows the fault coverage for CFCSS and CFCSS_ivl shows the fault
coverage with checking inserted using interval information. ACS_w/o_calls_rets shows the fault
coverage without protection for calls/returns and ACS_w/o_calls_rets shows the fault coverage if
calls/returns are also protected.

is 75%, 57.8%, 11% and 28.8% for CFCSS, CFCSS_ivl, ACS_w/o_calls_rets and ACS_-

w/_calls_rets, respectively. We have also measured the impact of code size expansion

on application binaries and on average code size overhead is 22% with ACS. The code

size overhead is largest for 176.gcc showing largest performance overhead. To give more

insight on the reduction in overhead, we measured the number of intervals and basic blocks

in benchmarks. On average, there are 13302 basic blocks and 1993 intervals across the

evaluated benchmarks and the number of checks required to be inserted are 2461. This

represents a 5.4x decrease in the number of checks by abstracting from BBs to intervals.

In the next experiment, we explore the fault coverage provided by these techniques.

We define fault coverage as the percentage of faults out of total injected faults that do not

result in Silent Data Corruptions (SDCs). SDCs are the most harmful errors because the

program silently corrupts data while the user thinks that application worked as expected.

The faults classified in HWDetects imply that these symptoms can be used to trigger re-

covery [41, 132]. Each bar in Figure 3.12 shows the distribution of faults among different

categories when the instrumented application runs with fault injections. The four bars are
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Figure 3.13: Comparison of fault detection latency with CFCSS. The fault detection latency is not
adversely affected.

the fault distribution for CFCSS, CFCSS_ivl, ACS_w/o_calls_rets and ACS_w/_calls_rets

and the average fault coverage for these techniques is 98.8%, 98.4%, 96.6% and 96.3%, re-

spectively. All these techniques reduce the number of SDCs in comparison to unprotected

application, but ACS without calls/rets protection has only 11% performance overhead in

comparison to 75% performance overhead of CFCSS.

3.5.1 Fault Detection Latency

Another important metric with regard to fault detection techniques is the detection la-

tency. Fault detection latency is directly related to the overhead of a recovery scheme. A

longer latency implies that either the fault cannot be recovered or the recovery overhead

would be high. Figure 3.13 shows the latency of ACS with respect to CFCSS. WithIn2K

represents the number of faults detected in less than 2000 (2K) cycles of injections. Simi-

larly, WithIn5K, WithIn10K and WithIn100K represents the number of fault detected within
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5000, 10000 and 100000 cycles of injection, respectively. These categories are cumulative

and faults classified under WithIn5K include all the faults detected with in 5K cycles, i.e., it

subsumes the faults classified under WithIn2K. Similar rules apply for faults detected with

in 10K and 100K cycles. The bars in the figure are normalized with respect to the number

of faults detected in WithIn2K. For example, the WithIn5K bars represent the ratio of the

number of faults detected with in 5K cycles and number of faults detected with in 2K cy-

cles. In case of ACS, on average, WithIn5K contains 2% more than WithIn2K. Similarly,

WithIn10K and WithIn100K contain only 3% and 5% more faults than WithIn2K. The same

numbers for CFCSS are 0%, 1% and 1% for 5K, 10K and 100K cycles, respectively. Over-

all, ACS only increases the detection latency for at most 5% of the faults detected within

2K cycles.

3.5.2 Analysis of SDCs

In this subsection, we discuss some of the cases that escape the detection by CFCSS

and ACS control flow methods and eventually result in silent data corruptions. LLVM

IR supports the switch statements as the terminating instruction of BBs. When the code

generation phase converts this switch statement to machine instructions, it is converted

into multiple branches. Since these branches were not visible to our code instrumentation

pass, these do not get protected by ACS or CFCSS. Some of the faults that affect such

unprotected branches eventually cause SDCs. One way to handle these switch statements

is to convert all the switch statements to if-else in the LLVM IR itself before running our

code instrumentation pass. Another frequent case of SDCs is the faults that displace target

address (i.e., faults in low order bits) only by few instructions usually result in SDCs. For
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example, we noticed that a fault in second bit of target address of a back edge caused

only two extra instructions to be executed. Those two extra instructions happened to be

immediate mov instructions and they just disturbed the value of two registers. Affected

registers were written to memory and hence caused SDC. A similar problem also exists

with CFCSS.

3.5.3 Data and Control Flow Protection

In this subsection, we present the results for combining a profile-based data flow [62]

and our proposed control flow solution. Figure 3.14 shows the performance overhead on

the primary vertical axis and fault coverage on the secondary vertical axis when a com-

bination of ACS and profile based data flow protection is used. SWDetects category in

the fault outcome classification represents the number of faults detected by software (both

data and control flow) and other category are same as previously mentioned. Control flow

condition errors are handled by duplicating the computations for branch conditions. A

combined solution incurs an average performance overhead of 47.4% and provides 96.5%

fault coverage. The binary is 35% larger and overhead on dynamic instructions is 55.4%.

SWIFT [101] is another solution that used data duplication. By leveraging the ideas from

CFCSS, SWIFT also enhances control flow protection. In comparison to ACS with data

duplication, SWIFT incurs an increase of: 2.3x for dynamic instructions, 2.3x for binary

size and 1.53x for execution time over the same set of benchmarks as used in this work

even though the performance overhead of SWIFT was measured on a aggressive server

class workstation targeting a different ISA (IA64) than our evaluations (ARM). An IA64

system can take better advantage of instruction level parallelism introduced by duplication
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Figure 3.14: Performance overhead and fault coverage for complete data and control flow protec-
tion.

of instructions.

3.5.4 Discussion and Limitations

Similar to other signature based schemes [94, 4], ACS cannot detect faults in branch

conditions. Though other schemes [127, 45] can detect errors in a branch condition if the

error occurs after the branch condition is evaluated. This still misses the errors happening

before condition evaluation and in variables used in evaluation of that condition. Corrupt

branch conditions or other variables used to compute branch conditions can cause control

flow condition errors. These errors in branch conditions can be handled by combining ACS

with data flow protection based methods as described in Section 3.5.3. In this chapter, we

focus on the faults in branch targets and other variables used in computing branch targets.

In the presence of an error in the inserted checking code, the following scenarios can

occur: 1) If the check evaluates to True, then the error in signature comparison branch
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will result in skipping the signature updates of next basic block, hence the error will be

caught at the next check. 2) If the check is wrong (i.e., an error has already occurred), then

considering that a transient fault is a rare event, a second error in this short span of time in

signature comparison is probabilistically unlikely to occur.

In LLVM, the CFG is the basis of data flow analysis and many optimizations. To

facilitate this data flow analysis, LLVM doesn’t allow the address of a BB to be taken and

then jump to it. Jumps to a location specified in a variable can only exist in the form of

call instructions and for other control flow instructions target BBs are known at LLVM IR

level. So at LLVM IR level, there is no special handling for indirect branches is required.

3.6 Related Work

Control flow protection is becoming an increasingly important concern for reliability

researchers. Two particularly noteworthy pieces of software-only work in this area are

CFCSS [94] and ECCA (Enhanced Control Flow Checking using Assertions) [4]. In our

experimental results, we have compared our work with CFCSS in detail. ECCA assigns a

unique prime identifier to each BB in the program and checks prime identifier at runtime

using an assertion in every BB. The authors of [130] reported that ECCA incurs 150%

memory overhead. Venkatasubramanian et.al [130] use parity in each BB to check for

correct control flow. Control flow is checked by special variables inserted in each routine.

The main difference with respect to these techniques and ACS lies in the fact that we raise

the level of abstraction for checking and the signature update is simplified in each BB. Borin

et al. [19] presented a control flow error detection technique where the signature checks are
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made in 1) every BB, 2) only in the BBs with back edges and BBs with return instructions,

3) only in BBs with return instructions and 4) only at the end of the application. This

previous work reports 77% overhead for the case 1 and 37% for the case 3, in comparison to

11% overhead of ACS. Fault coverage data or detection latency for these different checking

granularity is not reported in the paper. It is expected that delaying the checking to loop end

points (blocks with back edges) and function ends (return blocks) will result in relatively

more failures and program corruptions or will affect detection time. CEDA [127] is an

assertion based scheme that assigns static signatures while minimize aliasing. The overhead

of CEDA for common benchmarks is 27.1% in comparison to 11% of ACS. CEDA work

also presents comparison with CFCSS and YACCA [45]. The performance overhead of

CEDA reported in that paper is comparable to CFCSS for the chosen five benchmarks with

a slightly better fault coverage. Since ACS has lower overhead than CFCSS, it will also

have lower overhead than CEDA. The paper reports YACCA’s overhead even larger than

that of CFCSS and CEDA.

A comparison with SWIFT [101] is already described in Section 3.5.3. Other works

such as CRAFT and PROFIT [102] improve upon the SWIFT solution by using additional

hardware structures and architectural vulnerability factor (AVF) analysis [92]. Our goal in

this work is to make the control flow protection practical for commodity embedded systems

by reducing the performance overhead. Our experimental results demonstrate that this

can be achieved at significantly less performance overhead than these previously proposed

techniques.

Symptom detection based solutions rely on anomalous microarchitectural behavior to

detect soft errors. A light-weight approach for detecting soft errors, ReStore [132], an-
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alyzes symptoms including memory exceptions, branch mispredicts, and cache misses.

mSWAT [76] presented a solution which detects anomalous software behavior to provide a

reliable system. It requires special simple hardware detectors to detect faults. These tech-

niques are orthogonal to ACS, as they rely on specialized hardware. If available, they can

be leveraged along with ACS to increase the number of faults detected under HWDetects

category.

A category of previous works related to control flow protection are watchdog processor

based solutions [77]. The general idea of these techniques is to have a watchdog processor,

along side the main processor, that monitors and checks the program executing on the main

processor. These solutions rely on the availability of watchdog processor and in some

cases even propose specific changes to the watchdog processors. A variety of watchdog

based solutions [127, 82, 75] are proposed in literature by modifying some aspect (e.g.,

changing the type of signatures) of the technique. Some recent solutions also suggest the

idea of distributed checking in the core for various components. Argus [81], for example,

relies on a series of hardware checker units to perform online invariant checking to ensure

correct application execution (data flow as well as control flow). Argus achieves very low

overhead by adding extra hardware. In comparison to these techniques, ACS targets COTS

components and does not require any hardware changes.

An interesting approach to soft error reliability is using Redundant Multithreading

(RMT). AR-SMT [108] introduced the idea of RMT on SMT cores; The work is done by a

leading thread, and the trailing thread checks for the correctness. Subsequent works [100,

46] in this category have tried to reduce the overhead due to RMT. All these techniques

come with the overhead of running an extra thread which executes a skeleton of the origi-
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nal program.

Another compiler assisted solution for control flow checking uses extra hardware to

minimize the overhead [71]. It requires compiler, as well as hardware changes. Ours is a

software-only approach to produce protected programs.

There is a large body of related work in Control Flow Integrity (CFI) [1] for com-

puter security against external software attacks. CFI works by making sure that all the

control transfer occur as determined by the static CFG. The failure model targeted by CFI

schemes is very different from soft errors failure mode. In CFI, constant destinations (di-

rect branches ) are statically verified and while computed (dynamic branches) are verified

for correct destination by instrumenting the code. Soft errors can affect the direct as well

as indirect branches and hence CFI, as is, is not directly applicable for soft errors. Though

direct branches can also be protected in a manner similar to dynamic branches, but the

already high overhead (20%-60% for dynamic branches only) would become prohibitive.

Path profiling [11] finds the execution count of a path in a Directed Acyclic Graph

(DAG). It is a related problem to our work and gives an unique number for each path in a

DAG. However, we want to have a balanced path length along with information about edges

in the path to insert balancing increments. This can not be obtained with path profiling.

Moreover, usually profiling is created with training inputs but later the program might be

executed with a different set of inputs. In ACS, we need the correct path length with the

current inputs a program is executing. Therefore, the data produced by off-line profiling

can not be used in ACS.
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3.7 Conclusions

The ever increasing desire to create powerful and efficient microprocessors, with each

successive new generation, has led to the use of increasingly smaller transistors into these

devices. Aggressive scaling makes transistor devices more susceptible to transient faults.

To tackle the problem of control flow protection at minimal performance overhead, we have

proposed Abstract Control flow Signatures (ACS). ACS achieves its efficiency by working

at a coarse-grain level than the previously proposed signature based techniques and also by

simplifying signature updates in each basic block. ACS reduces performance overhead, on

average, from 75% down to 11% while maintaining the similar level of fault coverage in

comparison to a previously proposed approach (CFCSS [94]).
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CHAPTER IV

Harnessing Soft Computations for Low-budget Fault

Tolerance

A growing number of applications from various domains such as multimedia, machine

learning, and computer vision are inherently fault tolerant. However, for these soft work-

loads, not all computations are fault tolerant (e.g., a loop trip count). In this chapter, we

propose a compiler-based approach that takes advantage of soft computations inherent in

the aforementioned class of workloads to bring down the cost of software-only transient

fault detection. The technique works by identifying a small subset of critical variables that

are necessary for correct macro-operation of the program. Traditional duplication and com-

parison is used to protect these variables. For the remaining variables and temporaries that

only affect the micro-operation of the program, strategic expected value checks are inserted

into the code. Intuitively, a computation-chain result near the expected value is either cor-

rect or close enough to the correct result so that it does not matter for non-critical variables.

The overall goal here is to minimize the number of user unacceptable output corruptions.

Exact output is not necessary in the aforementioned classes of applications if an user can
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tolerate approximate outputs.

4.1 Introduction

An increasing number of both current and emerging workloads from domains such as

multimedia, machine learning, computer vision, etc., either compute on approximate data

and/or produce results that have subjective interpretations, i.e. the quality of the output is

subjectively judged by a human. Such applications can inherently tolerate more faults while

still producing user acceptable outputs. User acceptable outputs are the program outputs

where either the user can not differentiate between an output in presence of a fault or the

output is useful even in presence of fault. Multimedia computations such as encoding/de-

coding of audio, images and video are examples of such applications. Such computations

are referred to as soft or imprecise computations [24, 72] in the literature. Also, other ap-

plications from domains such as machine learning and computer vision use probabilistic

algorithms that are inherently tolerant to a certain degree of faults.

As Chapter II and Chapter III, the focus of this chapter is on the faults caused by soft

errors. Soft errors, as mentioned in the introduction of Chapter II, are caused by high en-

ergy particle strikes from space or Alpha particles. Soft errors can also be caused by circuit

crosstalk or random noise. The silicon-chip technology is becoming more susceptible to

soft errors with each new generation due to decreasing transistor sizes and increasing tran-

sistor density. Soft Error Rate (SER) for the logic on chip is steadily rising with technology

scaling [120]. SER is the rate at which a component encounters soft errors and SER scales

with number of transistors and level of integration [44]. With increasing chip density, In-
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tel expects the errors caused by cosmic rays to increase and become a limiting factor in

design [52]. Soft computing workloads have high levels of inherent fault tolerance. For

the workloads that have subjective interpretation of results, fault detection efforts can be

directed only to the parts of the program that when perturbed produce user unacceptable

outputs. As a result, there is an opportunity to reduce the overhead of fault protection for

these applications. In this chapter, we analyze and identify the nature of faults that cause

unacceptable outputs and propose an efficient software-only fault detection scheme that

exploits soft computations.

The inherent fault tolerant nature of soft computing applications raises an important

question: Do these applications require any fault protection at all? The answer to this

question is "yes, they do" because not all computations in soft computing applications

are fault tolerant. As identified by the works in the field of approximate computing [113,

39, 10], a program has certain computations that can be approximate for user acceptable

outputs, while the computation of other parts of the program needs to be precise. For

example, correctness of a variable that holds the number of frames of video to be decoded

is more important for user acceptable output than the computation of a single pixel in a

frame. To differentiate errors causing the user acceptable outputs from to the ones causing

unacceptable outputs, we refine the definition of silent data corruption to Unacceptable

Silent Data Corruptions (USDCs). USDCs are the incorrect program outputs in presence

of a fault that are below an acceptable quality but the program completes execution without

terminating prematurely and behaving abnormally.

Our solution takes advantage of not-so-strict requirement on program output correct-

ness and protects only the critical parts of the computation. To this end, we analyze the
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nature of soft computations and propose a compiler-based software-only approach for iden-

tifying USDC-causing variables automatically and inserting relevant detection code. Our

approach does not require any program annotations and works by identifying critical vari-

ables that, if corrupted, affect the program output significantly as a single corruption either

affects many computations or has repeated impact on computation. Variables that carry a

state across iterations in a loop are examples of such critical variables. Computation of

critical variables is protected using traditional replication, duplicating their producer chain

and inserting a check [41]. Expected value checks are inserted on other variables to make

sure that they stay in a compact range obtained by profiling. We hypothesize that a devia-

tion outside this range is unlikely to happen in program execution under normal conditions.

Any deviations within the checking range is unlikely to cause a USDC. Hence, expected

value checks represent checking substantial abnormal behavior of a program while allow-

ing insignificant corruptions. In this manner, soft checks are performed on soft computation

because they are low overhead, while hard checks are sparingly used on critical variables.

The major contributions of this chapter are as follows:

• A fully automated compiler analysis and transformation method that partitions com-

putations among three categories: to be protected by traditional duplication, to be

protected by soft value checks or not to be protected. This method also judiciously

performs selective duplication and inserts value checks. Our technique does not re-

quire any program annotations.

• We analyzed soft computing benchmarks from various domains such as multimedia,

machine learning, computer vision, etc., to identify the nature of computations and
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to develop compiler heuristics. We also implemented fidelity metrics to measure the

objective quality of the outputs.

• Fault injection experiments are performed to evaluate the efficacy of the proposed

scheme. We show that, on average, at 19.6% performance overhead, SDCs can be

reduced from 15% down to 7.3% and USDCs from 3.4% down to 1.2% in compar-

ison to an unmodified application. This unacceptable silent data corruption rate is

even lower than a traditional full duplication scheme that has 57% overhead.

4.2 Motivation

4.2.1 Soft Computations

Soft computations can tolerate relatively higher numbers of errors than other applica-

tions that require their results to be numerically-precise. Soft computing has been previ-

ously exploited in trading off accuracy for energy efficiency [113, 39] or execution time [85].

In this chapter, we propose to exploit such computations for trading off the cost of providing

reliability with the accuracy of results. However, all parts of these error tolerant applica-

tions are not equally error tolerant. For example, errors in loop variables might cause a

significant portion of the output to be corrupted. The computation of such variables needs

to be precise.

In order to define the level of acceptable degradation, we need to evaluate whether the

output of an application is acceptable to the end user. Naturally, the tolerable amount of

degradation is application dependent and different quality metrics are required for different

applications. For example, an objective metric for the acceptable quality of a decoded
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image is to have Peak Signal to Noise Ratio (PSNR) above a certain threshold. Higher

PSNR implies a better quality image. Similarly, the output of a data classification algorithm

(machine learning application) can be acceptable if the number of correctly classified test

data in presence of a fault does not significantly differ from the classification quality in the

absence of the fault. The type of quality measure metric used for different applications and

thresholds for them to be of accepted quality are provided later in Section 4.4.2.

(a) Decoded image in a fault-
free environment

(b) Decoded image of accept-
able quality in presence of a
fault

(c) Decoded image of unaccept-
able quality in presence of a
fault

Figure 4.1: Difference between decoding (part (a)) of an image in a fault-free environment and
decoding in presence of faults (part (b) and (c)). Though the decoded image in part (b) does not
numerically match with fault free decoding, the difference is not perceptible. The distortions in
part (c) are perceptible (top-right corner) and thus the output is unacceptable.

In Figure 4.1, we demonstrate how the faults might affect the output of an application.

We injected faults into various runs of a jpeg image decoder and analyzed the outputs. The

experimental setup for injecting faults is described in Section 4.4. Figure 4.1 shows an ex-

ample of a decoded image under three scenarios. Figure 4.1(a) is the decoded image when

no fault was injected in the application run. Figure 4.1(b) is the decoded image when a fault

was injected and the output is numerically incorrect but the difference is not perceptible.

Figure 4.1(c) shows the unacceptable output in presence of a fault. The top-right portion

of Figure 4.1(c) is significantly distorted due to incorrect pixel values. The pixels in both
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Figure 4.1(b) and Figure 4.1(c) do not numerically match with the ones in Figure 4.1(a).

However, the primary difference between these two figures is that in Figure 4.1(b) only

few of pixels are incorrectly computed thus causing an imperceptible difference while in

Figure 4.1(c), a large slice of pixels are incorrectly calculated causing a perceptible change.

We further analyzed the propagation of the faults in each of these cases. The fault in Fig-

ure 4.1(b) only corrupts the output of an addition by a small amount while calculating

inverse discreet cosine transform, hence causes only small output disturbance. However,

the fault in Figure 4.1(c) causes error in decoding Huffman-compressed coefficients for a

block of data, hence corrupting a lot more data. This shows that for soft computing style

application it is critical to protect the computations that affect a large amount of output.

4.2.2 Silent Data Corruptions

Traditionally, the fault tolerance research community only considers a cycle-by-cycle

match of architectural state as the correct execution of a program. This strict notion of

program correctness is called Architecturally Correct Execution (ACE) [90]) and is used in

many hardware based reliability solutions. However, Li et al. [73] showed that 17.6% of the

multimedia and AI application runs produced correct results even though they had archi-

tecturally incorrect states. Feng et al. [41] believe that the user-visible output corruptions

truly matter, and Khudia et al. [62] also leverage this idea of application level correctness.

A program is said to have an SDC, if in presence of a fault, the program completes ex-

ecution without terminating prematurely and behaving abnormally but the output of the

program is incorrect. These are most harmful type of faults because they silently corrupt

the output of the program while the user thinks that program worked correctly. Hence, a
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number of previous works [54, 55, 41] have analyzed SDCs and focused on reducing them.
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Figure 4.2: SDCs are divided into acceptable SDCs and unacceptable SDCs. Unacceptable SDCs
are further divided into the ones due to large and small instruction output value changes. Soft
checks using expected values can detect unacceptable SDCs (up to 14% of total SDCs) due to large
instruction output value change.

As briefly mentioned before, an exact output match is not critical for the end user in

case the output is of high fidelity. Traditionally, SDC-free execution is considered as a

criterion for correctness. However, for soft computations the program can be assumed to

have correctly executed even if it generates numerically incorrect but high fidelity outputs.

This notion of having acceptable corruption is not applicable for all types of computations,

e.g., most of the SPEC CPU benchmarks but is applicable to soft computation benchmarks.

For our work, we divide the SDCs further into two categories: Acceptable Silent Data

Corruptions (ASDCs) and Unacceptable Silent Data Corruptions (USDCs). ASDCs are

the SDCs that are admissible to the user due to the negligible differences compared to fault

free execution. However, USDCs are the SDCs that change the output significantly such

that it is not acceptable to the user.
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We performed fault injection experiments on unmodified soft computing benchmarks to

quantify the USDCs caused by faults that force large disturbance on the generated values by

instructions. The results of this experiment are presented in Figure 4.2. The experimental

setup and description of these benchmarks are presented later in Section 4.4. The Y-axis in

the graph plots total SDCs caused in the fault injection experiments. Each column is divided

into ASDCs and USDCs. USDCs are further divided into the SDCs that were due to a large

and small value changes in the corrupted instructions. On average, 77% of the SDCs result

in ASDCs and 14% in USDCs with large value changes. ASDCs are the errors that result in

user acceptable outputs and therefore nothing needs to be done for these. USDCs that are

caused by large output value change of a computation can be detected by having expected

value checks. Expected value checks, obtained by profiling (Section 4.3.3.1), make sure

that the output does not deviate outside a compact range. Although 14% might not seem

like a very large percentage but one must view this in the proper context as USDCs are the

worst of all.

4.3 Solution: Analysis and Design

4.3.1 Overview

We analyze a number of benchmarks to find out the most vulnerable computations in

soft applications to develop our compiler heuristics. These analyses involve fault injections

and then investigating fault propagation. The outcome of the program is correlated back to

the fault injection variable. Once these patterns are identified, we make compiler heuristics

to insert checking code in the application. As mentioned previously, all the computations in
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a program are not soft computations. Precise computation of parts of the program that can

adversely affect the program output should be maintained. In our experiments we found

that the heuristics we have developed work well across a wide range of soft applications.

. . .
f o r ( c r c = i n i t ; l e n >= 3 2 ; l e n −= 32){

r e g i s t e r u n s i g n e d long d a t a ;
d a t a = m a d _ b i t _ r e a d (& b i t p t r , 3 2 ) ;

. . .
t a b l e V a l = c r c _ t a b l e [ ( d a t a >> 24) ^ . . . ] ;
c r c = ( c r c << 8) ^ t a b l e V a l ;

. . .
}

. . .

Figure 4.3: The code snippet from mp3dec (mad) [50] benchmark. The variables that are dependent
on their own values in the previous iterations are underlined. A corruption in such variables is more
likely to result in unacceptable outputs.

To show frequently occurring computations in soft computing applications, we show

a code snippet from mp3dec (mad) [50] benchmark in Figure 4.3. In our experiments

with various benchmarks, we have noticed that a corruption in the variables that carry

state across loop iterations is more likely to result in USDCs. We define such variables as

state variables and these variables are underlined in this figure. State variables include

loop iteration variables. Intuitively protecting state variables makes sense as state variables

have a snowball effect on the subsequent computations, because the error not only affects

the current iteration but it also propagates to future iterations. Protecting such variables

is critical to minimize the user unacceptable outputs because errors in these variables are

likely to cause significant changes in the output of a program. Loop index variables are also

state variables and an error in loop index variables have the potential to change the output

significantly by increasing or decreasing the number of iterations executed.
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. . .
crcD = i n i t ;
f o r ( c r c = i n i t ; l e n >= 3 2 ; l e n −= 32){

r e g i s t e r u n s i g n e d long d a t a ;
d a t a = m a d _ b i t _ r e a d (& b i t p t r , 3 2 ) ;

. . .
t a b l e V a l = c r c _ t a b l e [ ( d a t a >> 24) ^ . . . ] ;
c r c = ( c r c << 8) ^ t a b l e V a l ;
crcD = ( crcD << 8) ^ t a b l e V a l ;
i f ( c r c != crcD )

r e c o v e r _ a n d _ c o n t i n u e _ e x e c u t i o n ( ) ;
. . .

}
. . .

Figure 4.4: The code snippet from Figure 4.3 with crc variable duplicated. For the sake of brevity,
the duplication of other state variables (those shown in Figure 4.3) is not shown in this figure.
Variables postfixed with D are duplicated variables.

We protect state variables by duplicating the producer chains of such variables. Pro-

ducer chain of a variable can be obtained by the recursive traversal of its use-def chain. The

effect of duplicating the producer chain of one such variable crc is shown in Figure 4.4.

Line 9 in Figure 4.4 is the duplicated line and variables postfixed with D are the duplicated

variables. For the purpose of exposition, we deliberately show duplication of only a single

variable in this example. A more detailed and complete example of duplication is presented

later in this section.

In general, some variables and instructions generate a value or a range of values fre-

quently [25]. Generation of such values is more common in soft computations due to the

repetition of same calculation on different inputs. A check for these frequent values or a

range of values produced by an instruction can help protect against corruption. A range

check is inserted for such variables and the range is obtained by profiling, as explained

later in Section 4.3.3. Figure 4.5 shows a value range check inserted for a variable on line
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. . .
f o r ( c r c = i n i t ; l e n >= 3 2 ; l e n −= 32){

r e g i s t e r u n s i g n e d long d a t a ;
d a t a = m a d _ b i t _ r e a d (& b i t p t r , 3 2 ) ;

. . .
t a b l e V a l = c r c _ t a b l e [ ( d a t a >> 24) ^ . . . ] ;
i f ( t a b l e V a l < V1 && t a b l e V a l > V2 )

r e c o v e r _ a n d _ c o n t i n u e _ e x e c u t i o n ( ) ;
c r c = ( c r c << 8) ^ t a b l e V a l ;

. . .
}

. . .

Figure 4.5: The code snippet from Figure 4.3 with expected value check inserted on variable tabl-
eVal. Assume that the value generated lie within the range [V1, V2] (Obtained by profiling). This
is a simple example of inserting value checks and more detailed examples are shown later in Sec-
tion 4.3.3.

7. This is assuming that the variable tableVal lies between V1 and V2. If the duplication

were to be performed for tableVal, its input data and data’s producer chain would also need

to be duplicated. Thus the value checks help to save on cost of duplication. Again for the

purpose of exposition, Figure 4.5 only shows a simple example.

If an instruction generates the same value frequently then this value can be used to check

the output of that instruction at certain opportunistic points in an application. The use of

frequently generated values for soft checks is a novel idea but frequently generated values

by an instruction has previously been used in various optimizations [25, 135]. For example,

if a multiply operation generates the same invariant value frequently, then the multiply

operation can be optimized away with a check inserted for the correct value. Racunas et

al. [98] also make use of certain consistent bounds on intermediate data in their hardware-

based scheme. The intuition behind such value range checks is that if the instructions

produce values between a previously seen ranges (in the profile data) the output would not
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Figure 4.6: Instruction duplication in a single thread of execution. Instructions marked with double
circle are duplicated instructions. The instruction marked with ld is a load instruction. We do not
duplicate loads to save on memory traffic.

be significantly affected and is expected to be acceptable. These checks are soft checks in

the sense that they check the expected output values of instructions.

Overall, the foundation of our work is based on the following two observations:

1. First, if the program variables in the main loops of applications that have state across

iterations are corrupted, they are more likely to result in unacceptable output. Pro-

tecting these variables is critical for reducing USDCs.

2. Second, many soft computing benchmarks use the same calculations on different

inputs repeatedly such that generated values are in a range. If in presence of an

error, the value generated is within this range, it is probabilistically unlikely to have

a USDC in such a case. An expected value check on such instructions is inserted to

protect against soft errors.
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Figure 4.7: Depending on the generated values, one of the three different types of value checks can
be inserted. Part (a) shows a single value check inserted if a single value is frequently generated
by an instruction. If two values are most frequently generated, the check in part (b) is inserted.
However, if the values generated lie in a range, a range check as shown in part (c) is inserted.

4.3.2 Recomputing State Variables

State variables are a critical part of an application and corruption in these variables

propagates to subsequent iterations of the loop. They are protected by duplicating the pro-

ducer chain of such variables and then inserting a comparison between original producer

chain and duplicated producer chain of such variables. The technique to identify state vari-

ables is described in Section 4.4.1. Figure 4.6 shows an example of such a duplication

process in form of a data flow graph. Each circle represents an instruction (or destination

variable of that instruction). The solid arrows are data flow edges and dashed arrows repre-

sent inter-iteration loop dependences. The instructions marked with ld is a load instruction.

The instructions marked with double circle are duplicated instructions. The state variable

in this figure is variable 5. The producer chain of instruction 5 is duplicated as shown in

Figure 4.6(b). To save on memory traffic, the producer chain is terminated whenever a

load instruction is encountered. The reason for this is that a fault in data flow input for

load (address operand) is more likely to result in a symptom such as out-of-bound access.

Such symptoms can be used as an indication of soft error [41, 132] and a recovery can be
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triggered.

4.3.3 Expected Value Checks

In soft computing benchmarks, same calculation on different inputs is performed re-

peatedly. Moreover, in general some instructions produce the same value almost all the

times [25]. To cover the values produced by an instruction, we devise three different types

of value checks as shown in Figure 4.7. Figure 4.7(a) shows the data flow graph before and

after the value checks are inserted. Instruction 1 produces the value V1 frequently so a check

with V1 is inserted. Similarly, Figure 4.7(b) shows the code before and after value checks

if the instruction generated two values V1 and V2 most frequently. Finally, Figure 4.7(c)

shows the data flow graph before and after a range check is inserted on an instruction that

produces values in a range [V1, V2]. To optimize the number of value checks, we came up

with two optimizations for long producer chains.

Optimization 1: A naive insertion of value checks on all the instructions that produce

values amenable for one of the checks in Figure 4.7 might lead to a prohibitively large

number of checks. Hence, to reduce the number of checks, we insert value checks deeper

in the producer chain. Figure 4.8 shows an example of such an optimization. If the values

produced by instruction 1, 3, 4 and 5 are amenable for value checks, a value check is only

inserted on the value produced by instruction 5.

Optimization 2: While duplicating instructions, if in a long producer chain, an instruc-

tion produces a value amenable to checks, the duplication is terminated and a value check

is inserted. An example of this is shown in Figure 4.9. In this example, instruction 4 pro-

duces value(s) or a range. In our duplication framework, if such a situation is encountered
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Figure 4.8: Optimization 1 for long producer chains: this figure shows an example of a case where
multiple instructions in the producer chain of an instruction are amenable for value checks. In order
to minimize on number of checks, value check should only be inserted for an instruction lower in
the producer chain.

the recursive duplication of producers is terminated and one of the value checks is inserted

instead.

Figure 4.9: Optimization 2 for long producer chains: if an instruction amenable to value check is
encountered in producer chain, the duplication of producer chain of critical variables is terminated
at that point and a value check (vChk) is inserted as shown.
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4.3.3.1 Value Profiling:

The frequent values or the range of values produced by an instruction are obtained us-

ing value profiling. In general, during the profile run, collecting all the values produced by

an instruction has very high overhead. An optimization to this is to maintain a fixed set of

most frequently produced values by each instruction. Since we also need a range of values

produced by an instruction, we have modified this traditional value profile. Essentially, we

require a histogram with bins as values produced corresponding to each instruction. How-

ever, the future values are unknown, so deciding the histogram bin size before running the

program is not possible. We have adopted a modified version of the On-line histogram algo-

rithm [14] for this purpose. Our adopted version of the algorithm is shown in Algorithm 2.

Input: A histogram h = ([lb1, rb1], m1), ... ([lbB, rbB], mB), a value v
Output: A histogram with B bins
if v ∈ [lbi, rbi] for some i then

mi = mi + 1
end
else

Add [v, v, 1] to the histogram h. Histogram h can now potentially have B+1
bins;
Sort the bins. Denote the sorted bins by ([lp1, rp2], m1), ... ([lpB+1, rpB+1],
mB+1);
Find a bin [lpi, rpi] that minimizes lpi+1 - rpi;
Replace the bins ([lpi, rpi], mi), ([lpi+1, rpi+1], mi+1) by the bin
([lpi, rpi+1], mi + mi+1);

end
Algorithm 2: Algorithm for obtaining histogram of the values produced by an instruc-
tion.

The algorithm takes a histogram h of size B as an input. The number of bins B are pre-

decided and are set to 5 in our experiments. Initially the input histogram to this algorithm

can be empty. This histogram is maintained for every value generating instruction in the
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program during profiling phase (a one time off-line process). ([lb1, rb1], m1) is a bin

frequency pair andm1 represents the number of values generated by a particular instruction

between and including lower bound of the bin (lb1) and upper bound of the bin (rb1).

Input: A histogram h = ([lb1, rb1], m1), ... ([lbB, rbB], mB) with sorted bins, a
threshold on range Rthr

Output: A frequent range ([lp, rp], m)
Pick a bin ([lbi, rbi], mi) such that mi = max(m1 ... mB);
initialize retBin = ([lbret, rbret], mret) with ([lbi, rbi], mi);
Denote the bin left to retBin by leftBin and the one to the right by rightBin;
leftBin = ([lbleft, rbleft], mleft) and rightBin = ([lbright, rbright], mright);
while (rbret - lbret < Rthr ) and still unconsidered bins do

if mleft ≥mright then
retBin = ([lbleft, rbret], mleft + mret);
leftBin = next leftBin;

end
else

retBin = ([lbret, rbright], mret + mright);
rightBin = next rightBin;

end
end
return retBin;

Algorithm 3: A greedy algorithm for obtaining compact range on the values produced
by an instruction.

Once we have the bin-frequency pair for all the value generating instructions in an

application, the next step is to obtain a tight range of lower and upper bound where most

of the values generated by an instruction are concentrated. This information is calculated

and used while inserting the value checks in the application source code. This is obtained

by a greedy algorithm that works by picking a bin that has highest frequency and extends

this bin towards left or right while the range size lies within a threshold. This algorithm is

shown in Algorithm 3.

An important point to note here is that value profiling is an offline process (needs to

be done once per benchmark) and this overhead does not directly impact the performance
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overhead of our technique. The frequent values or frequent range of values are obtained by

profiling the program on representative inputs. An application instrumented with expected

value checks might generate value check failures at runtime even if there are no errors

(false positives). However, this is not a correctness issue and could only lead to unwanted

recovery initiations. If a check fails, recovery from the check should be executed once and

if the same check fails again after recovery further recovery should not be executed for that

check. False positives rate is analyzed in Section 4.5.

4.4 Experimental Setup

We have evaluated our work by using Statistical Fault Injections (SFIs) into a microar-

chitectural model of a modern microprocessor. This same method is used by previous

works [41, 62, 90] to evaluate reliability solutions. SFI is performed by introducing bit

flips randomized in both time and space.

4.4.1 Source Code Transformations

We use the LLVM [66] compiler infrastructure to insert duplication code and expected

value checks into the application’s source code. At first, application source code is con-

verted into LLVM’s internal representation called LLVM IR (Intermediate Representation).

Our solution is implemented as a pass over LLVM IR. Passes operating at the IR level ei-

ther analyze the IR code or transform it from IR to IR, performing optimizations. Value

profiling is implemented as a separate pass. The IR is instrumented to collect value pro-

filing information. Our duplication pass uses information from other analysis passes such
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Table 4.1: The benchmarks and their acceptable quality metrics.

Benchmark
(Benchmark
Suite)

Description
(Category)

Inputs Fidelity Mea-
sure (Threshold)

train test
jpegenc and
jpegdec (media-
bench [67])

A JPEG image
encoder and de-
coder (image)

flower.ppm
and
flower.jpg

grid.ppm
and
grid.jpg

Peak Signal
to Noise Ratio
(PSNR) (30 dB)

tiff2bw
(mibench [50])

A tiff format to
BW converter
(image)

galaxy.tiff stars.tiff PSNR (30 dB)

segm (SD-
VBS [128])

Image segmenta-
tion (Computer
vision)

qcif sim_fast Segment matrix
mismatch (10%)

tex_synth (SD-
VBS [128])

Texture synthe-
sis (Computer
vision)

qcif sim_fast Output matrix
mismatch (10%)

g721enc and
g721dec (media-
bench [67])

audio encoding
and decoding
(audio)

universal.pcm clinton.pcm Segmental SNR
(80 dB)

mp3enc
and mp3dec
(mibench [50])

mp3 encoding
and decoding
(audio)

large.wav small.wav PSNR (30 dB)

h264enc and
h264dec (media-
bench II [43])

h264 video en-
coding and de-
coding (video)

foreman1.yuv
and
4CIF.264

foreman2.yuv
and
test.264

PSNR (30 dB)

kmeans (in-
house)

Clustering algo-
rithm (Machine
learning)

color100 edge100 Cluster assign-
ment mismatch
(10%)

svm (svm-
light [59])

Support vector
machine (Ma-
chine learning)

train.dat test.dat Classification er-
ror (10%)
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as value profiling to produce bitcode with duplicated instructions and value checks. The

LLVM code generation framework is then used to generate ARM binaries from the modi-

fied bitcode. Identifying State Variables: LLVM IR is in Static Single Assignment (SSA)

form. At IR level, the state variables can simply be identified by looking the phi nodes

in loop headers. A phi node merges all the incoming versions of the variable to create a

new name for it. State variables have two incoming definitions—one from outside loop

definition and the other from inside loop updates—at loop headers and are represented by

phi nodes in loop headers.

4.4.2 Benchmarks and Fidelity Measures

We have collected a variety of benchmarks (a total of 13) that represent soft computa-

tions from various domains and at least two benchmarks from each of the following five

categories: image, audio and video processing; computer vision; machine learning. These

benchmarks represent a good mix of soft computations and we did not hand pick these

benchmarks to show a desirable behavior. A brief description of these benchmarks along

with their source benchmark suite is given in Table 4.1. Different inputs are used for pro-

filing and running the benchmarks. These profiling and test inputs are given in column 3 of

the table. Column 4 in the table shows the fidelity metric used to evaluate the quality of the

produced outputs. This is an application dependent metric and different metrics are used

for different benchmarks. Column 4 also shows the threshold used for acceptable quality

results. Higher PSNR represents a better quality image and video. We chose 30 dB as

threshold for PSNR and 80 dB for segmental SNR for acceptable quality. Similar thresh-

old values are used by Thomas et al. [126]. For machine learning and computer vision
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benchmarks, outputs with more than 10% deviations are not considered acceptable. All

these benchmarks are compiled with their suggested compiler options. We use Clang [34]

as a frontend to generate bitcode for LLVM. Figure 4.10 shows the total number of state

variables, duplicated instructions and inserted value checks as a fraction of the total static

IR instructions. At most, only 11.4% of the static IR instructions are duplicated and only

8.3% of total static IR instructions have expected value checks on them.
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Figure 4.10: shows the total number of state variables, duplicated instructions and inserted value
checks as a fraction of the total static IR instructions. The static code duplication and expected value
checks are not more than 12% of the total static IR instructions.

4.4.3 Fault Model and Injection Experiments

The proposed approach is evaluated by injecting a number of faults in each application

run. The traditional single bit-flip [53, 73, 126, 41] in the processor state is used to model

transient faults. At a random cycle during the program execution, a register is randomly

selected first and then a randomly selected bit in that register is flipped. Wang et al. [133]

showed that, on aggregate, as much as 70% of the total failures due to faults in pipeline
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structures such as register file, register alias tables, register free lists, instruction input and

output operands etc. results in register file inconsistencies. Thus, the register file is an

enticing target for fault injections and similar to previous works [41, 62], we evaluated

our work by injecting faults into the register file. Please note that protecting register file

by ECC would be able to cover faults occurring in register file itself but not the faults

that occur in other hardware structures and then propagate to register file. Overall, our

proposed technique is capable of handling faults in other microarchitectural units that affect

the program. A fault in a register can also affect the data dependent control flow. Our

solution have protection against such faults either by state variables duplication or by value

checks. However, it does not provide protection against faults that affect branch targets. For

protecting against branch target faults, a previously proposed [60] signature-based low-cost

solution can be used in conjunction with our proposed approach.

Table 4.2: GEM5 Simulator parameters (models an ARMv7-a profile of the ARM architecture).

Processor core @ 2GHz
Simulation configuration out-of-order core
Simulation mode Syscall emulation
Physical integer register file size 256 entries
Reorder Buffer Size 192 entries
Issue width 2

Memory
L1-D cache 64KB, 2-way
L1-I cache 32KB, 2-way
DTLB/ITLB 64 entries (each)

We used the GEM5 [16] simulator to simulate the workloads and implemented fault

injection infrastructure in this simulator. The simulator was run in ARM syscall emulation

mode and modeled the ARMv7-a profile of ARM architecture. The performance overheads

are obtained using an out-of-order model of the target processor and fault coverage results
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are obtained using an atomic model of the target processor.

The details of the processor configuration for out-of-order model used for the experi-

ments are in Table 4.2. We injected a total of 13000 faults per technique to evaluate the

proposed solution, i.e. 1000 fault injection trials for each of the 13 benchmarks. Work by

Leveugle et al. [69] can be used to calculate the statistical significance of the fault injection

results. The calculation for our experimental setup shows that the with 95% confidence,

margin of error for fault coverage results is 3.1%. After the fault injection, the program

runs until completion. The result of each simulation trial is classified into one of the fol-

lowing five categories:

• Masked: The injected fault did not corrupt the program output. Application-level or

architecture-level masking occurred in this case. Also faults that generate acceptable

quality results are classified into this category.

• HWDetect: The injected fault produces a symptom such as a page fault so that

a recovery can be triggered. A fault is considered under this category only if the

symptom is produced within a number of cycles (1000 for our experiments) after the

fault was injected.

• SWDetect: The injected fault was detected by the software checks inserted at the

time of source code transformation.

• Failure: The injected fault resulted in out-of-bound address access and resulted in

program termination. Also, faults causing infinite loops in the program are classified

under this category.

109



0% 

10% 

20% 

30% 

40% 

50% 

60% 

70% 

80% 

90% 

100% 

O
ri
g

in
a

l 

D
u

p
 o

n
ly

 

D
u

p
 +

 v
a

l 
c
h

k
s
 

O
ri
g

in
a

l 

D
u

p
 o

n
ly

 

D
u

p
 +

 v
a

l 
c
h

k
s
 

O
ri
g

in
a

l 

D
u

p
 o

n
ly

 

D
u

p
 +

 v
a

l 
c
h

k
s
 

O
ri
g

in
a

l 

D
u

p
 o

n
ly

 

D
u

p
 +

 v
a

l 
c
h

k
s
 

O
ri
g

in
a

l 

D
u

p
 o

n
ly

 

D
u

p
 +

 v
a

l 
c
h

k
s
 

O
ri
g

in
a

l 

D
u

p
 o

n
ly

 

D
u

p
 +

 v
a

l 
c
h

k
s
 

O
ri
g

in
a

l 

D
u

p
 o

n
ly

 

D
u

p
 +

 v
a

l 
c
h

k
s
 

O
ri
g

in
a

l 

D
u

p
 o

n
ly

 

D
u

p
 +

 v
a

l 
c
h

k
s
 

O
ri
g

in
a

l 

D
u

p
 o

n
ly

 

D
u

p
 +

 v
a

l 
c
h

k
s
 

O
ri
g

in
a

l 

D
u

p
 o

n
ly

 

D
u

p
 +

 v
a

l 
c
h

k
s
 

O
ri
g

in
a

l 

D
u

p
 o

n
ly

 

D
u

p
 +

 v
a

l 
c
h

k
s
 

O
ri
g

in
a

l 

D
u

p
 o

n
ly

 

D
u

p
 +

 v
a

l 
c
h

k
s
 

O
ri
g

in
a

l 

D
u

p
 o

n
ly

 

D
u

p
 +

 v
a

l 
c
h

k
s
 

O
ri
g

in
a

l 

D
u

p
 o

n
ly

 

D
u

p
 +

 v
a

l 
c
h

k
s
 

jpegdec jpegenc tiff2bw g721dec g721enc mp3dec mp3enc h264dec h264enc segm tex_synth kmeans svm average 

%
 o

f 
to

ta
l 
fa

u
lt

s
 

Masked SWDetects HWDetects Failures USDCs 

Figure 4.11: The fault outcome distribution among different categories is shown. Column original
shows the distribution for original unmodified code. The fault distribution with code duplication and
code duplication along with value checks is shown in Dup only and Dup + val chks, respectively.

• USDC: Faults that generate unacceptable data corruptions are classified into this

category. These are the SDCs that do not have acceptable output.

4.4.4 Recovery Support

The proposed solution is a soft error detection-only solution. Once a soft error is de-

tected, we rely on a recovery mechanism to recover from the detected error. Previously

proposed solutions such as Encore [42], a software-only recovery scheme can be used for

recovery. Checkpointing-based recovery schemes can also be used in conjunction with our

solution. Moreover, previous works [41, 132] propose that in future processors, recovering

from a checkpointed state of ∼1000 instructions would be required for aggressive perfor-

mance speculation. Such a recovery scheme, if available, can also be integrated with our

solution.
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4.5 Experimental Evaluation and Analysis

Two of the most important parameters of any reliability scheme are its performance

overhead and provided fault coverage. We obtained performance overhead and fault cover-

age results using the experimental setup described in the above section. We use the simu-

lated runtime of the application as a performance measure and use this runtime to compare

the performance of different techniques. Our overall technique is a combination of critical
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Figure 4.12: Performance overhead of checking by 1) duplicating the producer chain of state vari-
ables. 2) duplicating the producer chain as well as inserting value checks wherever necessary.

variable checks by duplication and value checks. To analyze the contribution of each of

these, we present results for both.

Performance Overhead: Figure 4.12 shows the performance overhead measured in

terms of runtime. Dup only column shows the performance overhead if the duplication of

state variables is performed and no expected value checks are inserted. The mean perfor-

mance overhead of Dup only is only 7.6%. Dup + val chks column for each benchmark
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shows the performance overhead if the duplication of the producer chains of state variables

and expected value checks are inserted. Dup + val chks also includes the two optimiza-

tions described in Section 4.3.3 that arise out of the interaction between duplication and

inserting value checks. The mean performance overhead for Dup + val chks is 19.6%.

Four benchmarks jpegdec, tiff2bw, mp3dec, h264dec and tex_synth see a relatively bigger

increase in performance overhead from Dup only because these benchmarks have a number

of instructions amenable for value checks. It is interesting to note that the overhead of svm

is lower for Dup + val chks than Dup only even though we found that the number of dy-

namic instructions are higher in Dup + val chks. This is due to the lower data cache misses

and branch mispredicts in the later case. The average overhead of full duplication tech-

nique (not shown in Figure 4.12) also used by Khudia et al. [62] is 57% for the benchmarks

used in our work. Full duplication is maximum amount of duplication possible without

duplicating loads/stores.
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Figure 4.13: Each column represents the silent data corruptions as a percentage of total faults. The
stacks in each column further divide the silent corruptions between acceptable program outputs and
unacceptable data corruptions.

Fault Coverage: We analyze the fault coverage results for unmodified, Dup only and

Dup + val chks by injecting faults using the setup described in Section 4.4. If a fault results
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in Masking, SWDetect or HWDetects, system can correctly execute the program. Hence,

fault coverage is defined as the percentage of injected faults that result in Masking, SWDe-

tect or HWDetects. First, faults are injected into original unmodified applications and their

outputs are classified among Masked, SWDetects, HWDetects, Failures and USDCs based

on the effect of the fault on the application execution. The results for this classification

are shown in Figure 4.11. Y-axis in the figure plots the percent of total injected faults into

an application. Results of fault injections into unmodified applications are shown in first

column (Original) for each benchmark. Original column does not have any SWDetects

because there are no software checks in the binary. Faults in unmodified applications gen-

erate 3.4% USDCs. Second, fault coverage of state variable only duplication is shown in

Dup only column. It improves fault coverage for all the benchmarks and reduces SDCs and

USDCs. Dup only, on average, has 1.8% USDCs. Finally, Dup + val chks column show

the fault coverage if the duplication of state variables along with expected value checks and

all optimizations are used. Dup + val chks has only 1.2% USDCs. We have also calculated

the USDCs for full duplication and this is not shown in a already dense Figure 4.11. The

USDCs rate for full duplication is 1.4% at 57% performance overhead. Please note that

loads/stores are not duplicated in full duplication, hence there are a number of faults that

escape detection. This result shows that selective duplication along with value checks is a

more efficient way than soft computation unaware full duplication to protect soft computa-

tion workloads.

Acceptable SDCs: Another important analysis is the number of acceptable outputs

among silent data corruptions. In this experiment, we break down the SDCs further be-

tween Acceptable SDCS (ASDCs) and Unacceptable SDCS (USDCs). Figure 4.13 shows
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the result of this analysis for unmodified, Dup only and Dup + val chks. Each column in

Figure 4.13 represents the total number of SDCs for the corresponding benchmark. For ex-

ample, for kmeans 4.2% of the total injected faults into the unmodified (Original column)

application resulted in SDCs. Each column is further divided into ASDCS and USDCs.

On average, the SDCs are reduced from 15% down to 9.5% when going from Original

to Dup only while USDCs are reduced from 3.4% down to 1.8% for the same and SDCs

are reduced from 15% down to 7.3% when going from Original to Dup + val chks while

USDCs are reduced from 3.4% down to 1.2% for the same. It is interesting to note that

mp3enc and h264enc have higher SDCs for Dup + val chks than Dup only. This is due to

the interaction of code duplication for state variables and expected value checks. An opti-

mization (Optimization 2 in Section 4.3.3) that we implemented to minimize performance

overhead is to insert value checks instead of code duplication wherever beneficial in terms

of performance overhead. This, however, in some cases can result in more SDCs if critical

value checks are left out.

Sensitivity of results to different inputs: To ascertain the insensitivity of results to

input variations, we performed 2-fold cross-validation on our results. We switched test and

train inputs, i.e. test input was used to obtain profile data and train input was used in fault

injection runs, to obtain fault coverage results for Dup + val chks. We performed cross-

validation on jpegdec and kmeans from two separate fields. Cross-validation was performed

only on these two benchmarks due to a large number of runs required for obtaining fault

coverage results. The average performance overhead difference is 3%. The difference

between Masked, SWDetect, HWDetect, Failures and USDCs is only .2%, .45%, .05%,

.15% and .15%, respectively.
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Impact of False Positives: A false positive occurs when one of the value checks fails

at runtime in the absence of a fault. In such cases, an unnecessary recovery needs to be

triggered. A high false positive rate increases the overhead due to unnecessary recoveries in

a fault detection and recovery system. For pipeline-flush based recovery, Racunas et al. [98]

calculate that 1 recovery initiation per 1000 instructions does not degrade the performance

significantly (2% to 6%). This degradation in performance is dependent on the particular

recovery technique. In comparison, in our case, the average false positive rate across all the

evaluated benchmarks is as low as 1 value check fail per 235K instructions. For our current

implementation, the profiling is done only on one input but the false positive rate can be

further reduced by combining profiling form multiple inputs and thus inserting checks only

on more stable invariant values.

Comparison with prior work: Thomas et al. [126] define the notion of Egregious Data

Errors (EDCs) for the outputs that deviate significantly from error-free outputs. Their work

develops heuristics for placing detectors by analyzing the pointer and control data affected

by a fault. In contrast, the main novelty of our scheme lies in the judicious combination

of selective use of expensive duplication for critical state variables and inexpensive value

checks for non-state parts of an application. The coverage of their scheme is measured

assuming ideal (100% detector accuracy (without implementing backward-slice duplica-

tion based error detectors). Memory dependence (reaching stores for loads) in backward

slice is not considered and hence coverage with actual implemented detectors is expected

to be lower. At 20% and 25% performance overhead (extra LLVM IR instructions) they

report a 85% and 86% coverage of EDCs with ideal detectors, respectively. In comparison,

even though it represents comparing IR instruction overhead and ideal detector coverage
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with runtime overhead and actual detector coverage, our technique shows 82.5% actual

implemented detectors coverage of USDCs at 19.6% performance overhead (runtime).

4.6 Related Work

Li et al. [73] propose the notion of application level correctness and also introduce

the concept of acceptable quality. We have used acceptable output quality measure in

evaluating our work. The idea of user acceptable outputs has been used in previous re-

search [39, 10, 85] to trade-off between energy efficiency/execution time and output so-

lution quality. Li et al. [72] also previously proposed a light-weight recovery mechanism

and soft instruction classification. They show a fault coverage of 96% with relaxed defini-

tion of correctness in comparison to 97.8% of fault coverage of our solution. Performance

overhead of their technique is not reported in the paper. In comparison, we propose a tech-

nique to utilize the soft computing nature of applications and insert expected value checks

to propose a low cost fault detection solution.

There are a number of solutions proposed in the area of Software Implemented Hard-

ware Fault Tolerance (SIHFT). SWIFT [101] uses instruction duplication in a single thread

of execution. SWIFT protects the stores by duplicating their computation. Follow-up work

on SWIFT such as CRAFT and PROFIT [102] improved upon SWIFT by adding additional

hardware and Architectural Vulnerability Factor (AVF) analysis. However, the overhead of

SWIFT is 1.41x even on an aggressive ILP-friendly Intel Itanium processor( more favor-

able for exploiting ILP offered by interleaved duplication). Our proposed solution only has

19.6% performance overhead on a ARM processor.

116



Shoestring [41] used the idea of protecting only global stores in order to lower perfor-

mance overhead. Khudia et al. [62] improved Shoestring by utilizing profiling information.

Both of these solutions, unlike our solution, do not use the notion of user acceptable outputs

and do not incorporate application domain characteristics to increase the efficiency of their

proposed solution. We compare with error detector placement work by Thomas et al. [126]

in Section 4.5. Sundaram et al. [124] propose selective replication of instructions that has

30% to 75% performance overhead. Cong et al. [32] propose an approach to protect in-

structions based on their criticality. The technique is a combination of static analysis and

dynamic monitoring. The authors report energy savings and overhead of runtime monitor-

ing but a combined performance overhead for duplication and runtime monitoring is not

reported. Pattabiraman et al. [96] derived program level detectors using static analysis to

find the best location for detectors to be placed in program to avoid system crashes. They

identify certain properties such as fanout and lifetime from dynamic dependence graph of

the program for detector placement. Unlike our work, their focus is not on reducing the

large output corruptions but to avoid system crashes and in fault containment.

Likely program invariants have previously been used in checking validity of data streams,

detecting software bugs [37, 51, 136], to minimize the corruption of executing applica-

tions [97] and lower SDC rates due to permanent hardware faults [109]. Range-checks used

in this work are also a form of likely invariants. However, we combine range-based checks

with duplication to provide an effective transient fault detection solution. For transient

faults (usually a single-bit upset), range-based checks should be frequent while permanent

hardware faults continuously produce error hence sparing use of range-checks suffices.

Our solution is optimized to have low-overhead even though relatively frequent checks are
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required to detect a single-bit upset. Other than high-cost high-reliability server class solu-

tions such as DMR (Dual-Modular Redundancy) and TMR (Triple-Modular Redundancy),

an approach to soft error reliability is Redundant Multithreading (RMT). Since processors

which can execute multiple threads simultaneously are increasingly commonplace, the idea

of using separate threads for error checking is a possibility. AR-SMT [108] introduced the

idea of RMT on SMT cores. The actual work is done by a leading thread, and the trailing

thread checks for the correctness. Subsequent works [100, 99] in this category have tried

to reduce the overhead of RMT still needing to run an extra thread for each existing thread

in the program. Shye et al. [121] explore process level redundancy in applications to pro-

vide transient fault detection. In comparison, our solution does not need to run any extra

thread/process to provide fault detection.

There exist a number of hardware based solutions to provide protection against soft

errors. In comparison, our solution is able to achieve high fault coverage with a low per-

formance overhead without needing any specific hardware additions. Racunas et al. [98]

present an hardware mechanism that can identify 85% of the injected faults to ensure that

much of the program intermediate data falls within certain bounds. Their use of bounds

on intermediate values in hardware is similar to our use of value checks in software. Ar-

gus [81] relies on a series of hardware checker units to perform online invariant checking

to ensure correct application execution. Lee et al. [68] propose hardware-based scheme

for partitioning failure critical and non-critical data into soft-error prone and soft-error

protected caches. Soft error detection by anomalous microarchitectural behavior has been

used by researchers to propose reliability solutions. Symptoms such as memory exceptions,

branch mispredicts and cache misses are used in ReStore [132] to detect soft errors. These
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symptoms are an attractive way to detect soft errors at a relatively low cost. However,

fault coverage starts to saturate as more symptoms are included and performance overhead

starts rising. For example, using cache miss as a symptom might result in too many false

detections. mSWAT [53] presented a solution that detects anomalous software behavior to

provide a reliable system. mSWAT requires special simple hardware detectors to detect

faults. Our solution, however, uses only the available symptoms such as page faults to

classify faults under HWDetects category.

4.7 Conclusions

The relentless pursuit of technology scaling in order to gain performance, energy effi-

ciency and higher densities have made transistors more susceptible to soft errors. A grow-

ing number of applications from domains such as multimedia, computer vision, machine

learning etc. do not need their output to be 100% correct. This numerically incorrect but

acceptable output property of such applications can be exploited to provide an efficient

fault tolerant solution.

In this chapter, we propose a software-only solution that exploits the inherent fault tol-

erant nature of soft computing applications. Our solution duplicates producer chains of

certain critical variables and inserts expected value checks on other variables. We show

that a combination of these two is helpful in reducing the number of unacceptable silent

data corruptions. Overall, on average, SDCs are down from 15% to 7.3% and unaccept-

able SDCs are down from 3.4% to 1.2% in comparison to unmodified application. The

performance overhead of the proposed technique is only 19.6% and it does not require any
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hardware modifications.
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CHAPTER V

Rumba: An Online Quality Management System for

Approximate Computing

Soft applications mentioned in the previous chapter are inherently inaccuracy tolerant

to a certain degree. Hence, these are naturally amenable to approximate computing and

approximate computing can be employed to trade-off accuracy for energy efficiency/per-

formance gain for such applications. The approximated output of such applications, even

though not 100% numerically correct, is often either useful or the difference is unnotice-

able to the end user. However, a largely unaddressed challenge in the area of approximate

computing is quality control: how to ensure the user experience meets a prescribed level

of quality. Current approaches either do not monitor output quality or use sampling ap-

proaches to check a small subset of the output assuming that it is representative. While

these approaches have been shown to produce average errors that are acceptable, they often

miss large errors without any means to take corrective actions. In this chapter, we consider

application that are amenable to approximate accelerators and the output quality is defined

per-application basis.
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5.1 Introduction

Computation accuracy can be traded off to achieve better performance and/or energy

efficiency. The techniques to achieve this trade off fall under the umbrella of approximate

computing. Algorithm specific approximation has been used in many different domains

such as machine learning, image processing, and video processing. Different algorithms

in these domains have been approximated by programmers to achieve better performance.

Video processing algorithms are good candidates for approximation as occasional varia-

tion in results will not be noticeable by the user. For example, a consumer can tolerate

occasional dropped frames or a small loss in resolution during video playback, especially

when this allows video playback to occur seamlessly. Machine learning and data analysis

applications also provide opportunities to exploit approximation to improve performance,

particularly when such programs are operating on massive data sets. In this situation, pro-

cessing the entire dataset may be infeasible, but by sampling the input data, programs in

these domains can produce representative results in a reasonable amount of time.

However, algorithm specific approximation increases the programming effort because

the programmer needs to write and reason about the approximate version in addition to the

exact version. Recently, to solve this issue, different software and hardware approximation

techniques have been proposed. Software techniques include loop perforation [2], approxi-

mate memoization [29, 110], tile approximation [110], discarding high overhead computa-

tions [111, 115], and relaxed synchronization [105]. Furthermore, there are many hardware

based approximation techniques that employ neural processing modules [40, 7], analog cir-

cuits [7], low power ALUs and storage [113], dual voltage processors [38], hardware-based
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fuzzy memoization [5, 6] and approximate memory modules [114]. Approximation accel-

erators [40, 129, 36] utilize these techniques to trade off accuracy for better performance

and/or higher energy savings. In order to efficiently utilize these accelerators, a program-

mer needs to annotate code sections that are amenable to approximation. At runtime, the

CPU executes the exact code sections and the accelerator executes the approximate parts.

These techniques provide significant performance/energy gains but monitoring and

managing the output quality of these hardware accelerators is still a big challenge. A few of

the recently proposed quality management solutions include quality sampling techniques

that compute the output quality once in every N invocations [111, 10], techniques that build

an offline quality model based on the profiling data [10, 40].

However, these techniques have four critical limitations:

• As the output quality is dependent on the input values, different invocations of a

program may produce results of different output qualities. Therefore, sampling tech-

niques are not capable of capturing all changes of the output quality. Moreover, it

is highly possible to miss large output errors because only a subset of outputs are

actually examined, i.e., monitoring is not continuous. Also, profiling techniques do

not work efficiently if the profiling data is not representative of all possible inputs.

• Using these quality management techniques, if the output quality drops below an

acceptable threshold, there is no way to improve the quality other than re-executing

the whole program on the exact hardware. However, this recovery process has high

overhead and it offsets the gains of approximation.

• These techniques measure the quality of the whole output that is usually equal to the
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average quality of each individual output element, e.g., pixels in an image. Previous

works [40, 7] in approximate computing show that most of the output elements have

small errors and there exist a few output elements that have considerably large errors,

even though the average error is low. These large errors can degrade the whole user

experience. For example, having a few pixels with high error in an image can be

easily noticed by a user. Existing quality management techniques treat all errors

equally but large errors have noticeable effect on the perceivable output quality.

• Tuning output quality based on a user’s preferences is another challenge for the

hardware-based approximation techniques. Different users and different programs

might have different output quality requirements. However, it is difficult to change

the output quality of an approximate hardware dynamically.

To address these issues, we propose a framework called Rumba∗, an online quality

management system for approximate computing [63]. Rumba’s goal is to dynamically

investigate an application’s output to detect elements that have large errors and fix these el-

ements with a low-overhead recovery technique. Rumba performs continuous light-weight

output monitoring to ensure more consistent output quality. Rumba’s design is based on

the following two observations:

First, approximation error can be accurately predicted by simple prediction models

such as linear, decision tree, and moving average. Second, we observe that code regions or

functions that are amenable for approximation are often pure. Pure code regions just read

their inputs and only write to their outputs without modifying any other state. Such sections

∗The name Rumba is inspired from Roomba R©, an autonomous robotic vacuum cleaner. It moves around
the floor and detects dirty spots on the floor to clean them.
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can be safely re-executed without any side effects. It gives us the benefit of re-executing

the loop iterations to fix the erroneous output elements with low overhead.

Rumba has two main components: detection and recovery. The goal of the detection

module is to efficiently predict output elements that have large approximation errors. De-

tection is achieved by supplementing the approximate accelerator with a low-overhead error

prediction hardware. The detection module dynamically investigates predicted error to find

elements that needs to be corrected. It gathers this information and sends it to the recovery

module on the CPU. In order to improve the output quality, recovery module re-executes

the iterations that generate high error output elements.

To reduce Rumba’s overhead, recovery is done on the CPU in parallel to detection on

the approximate accelerator. The recovery module controls the tuning threshold to manage

output quality, energy efficiency and performance gain. The tuning threshold determines

the number of iterations that need to be re-executed.

The major contributions of this work are as follows:

• We explore three light-weight error prediction methods to predict the errors generated

by an approximate computing system.

• The ability to manage performance and accuracy trade offs for each application at

runtime using a dynamic tuning parameter.

• We leverage the idea of re-execution to fix elements with large errors.

• 2.1x reduction in output error with respect to an unchecked approximate accelerator

with the same performance gain. Detection and re-execution decrease the energy

savings of the unchecked approximate accelerator from 3.2x to 2.2x.
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5.2 Challenges and Opportunities

The ability of applications to produce results of acceptable output quality in an approx-

imate computing environment is necessary to ensure a positive user experience. Output

quality control for approximate programs is important for the wide adaptation of this tech-

nology.
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Figure 5.1: Typical cumulative distribution function of errors generated by approximation tech-
niques. A large number of output elements have small errors while a few output elements have large
errors.

5.2.1 Challenges of Managing Output Quality

The following are the main challenges of output quality management in an approximate

computing environment.
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(a) (b) (c) 

Figure 5.2: An example of variation in image quality with the changing distribution of errors.
Subfigure (a) is the original image without any errors. Ten percent of the pixels in (b) have 100%
error while the rest of the pixels are intact. All pixels in (c) have 10% error. Although these two
images have the same average quantitative output quality (90%), errors in Subfigure (b) are more
noticeable.

Challenge I: Fixing output elements with large errors is critical for user experience.

We analyze the distribution of errors in the output elements generated by an application

under approximation. Previous studies [40, 110, 111] reported that the Cumulative Distri-

bution Function (CDF) of the errors of an approximated application’s output follows the

curve shown in Figure 5.1. Figure 5.1 shows a typical CDF of errors in output elements

when total average error is less than 10%. This figure shows that the most of the output

elements (about 80%) have small errors (lower than 10%). However, there are few output

elements (about 20%) that have significant errors.

Although the number of elements with large errors is relatively small, they can have

huge impact on the user perception of output quality. Figure 5.2 demonstrates this. In this

figure, we generate two images by adding errors such that the overall average error is 10%

in both images. Figure 5.2(a) is the original image. In Figure 5.2(b), only 10% of pixels

have 100% errors while the rest of pixels are exact. On the other hand, all pixels in Fig-

ure 5.2(c) have about 10% error. Even though the overall output error is the same for both
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the generated images, errors in Figure 5.2(b) are more noticeable than Figure 5.2(c) to the

end user. This shows that to effectively improve the output quality, a quality management

system should reduce the long tail of high errors.

Challenge II: Output quality is input-dependent. Another characteristic of approximate

techniques is that output quality is highly dependent on the input [40, 110, 111, 10]. In this

case, these techniques must consider the worst case to make sure that the output quality is

acceptable. To show this, we run an image processing application called mosaic that gen-

erates a large image using many small images. The first phase of this application computes

the average brightness of all input images. To approximate this phase, a well-known ap-

proximation technique called loop perforation [2] is used. Loop perforation drops iterations

of the loop randomly or uniformly. Therefore, in this case, instead of computing the aver-

age brightness of all the pixels, the approximate version computes the average brightness

of a subset of the pixels.

Figure 5.3 shows the output error for 800 different images of flowers [80]. Average

error of all the images is about 5% but there are many images that have output error above

the average, up to a maximum of 23%. Therefore, an approximate system in the worst case

(23% error) may produce unacceptable quality results. However, if a quality management

system can reduce the unacceptable outputs, the aggressiveness of approximate techniques

can be increased to get better performance and/or energy savings.

Also, since the output quality is highly input-dependent, previous quality managing

systems such as quality sampling or profiling techniques might miss invocations that have

low quality. In order to solve this problem, a dynamic light-weight quality management

system is required to check the output quality for all invocations.
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Figure 5.3: Mosaic application’s output error for 800 different images of flowers. This data shows
that the output quality is highly input-dependent.

Challenge III: Monitoring and recovering output quality is expensive. One of the chal-

lenges that all approximate techniques have is monitoring the output quality. In order to

solve this problem, continuous checks are necessary. Such checks cannot compute the exact

output, but instead need to be predictive in nature. Different frameworks [111, 10] suggest

running an application twice (exact and approximate versions) and comparing the results to

compute output quality. Unfortunately, it has high overhead and it is not feasible to monitor

all invocations. Running exact and approximate at all times will nullify the advantages of

using approximation.

To reduce this overhead, these frameworks utilize quality sampling techniques that

check the quality once in every N invocations of the program. Therefore, if the invoca-

tions that are not checked have low output quality, these frameworks will miss them due to

the input dependence of output quality (Challenge II).
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Challenge IV: Different users and applications have different requirements on output

quality. In an approximation system, the user should be able to tune the output quality

based on her preferences or program’s characteristics. Software-based approximation tech-

niques are better at tuning the output quality. However, for hardware-based techniques, it

is a huge challenge. For example, in a system with two versions of functional units, exact

and approximate, it is hard to control the final output quality dynamically.

5.2.2 Rumba’s Design Principles

To overcome the four challenges, Rumba exploits two observations found in the kernels

that are amenable to approximation: predictiveness of errors and recovery by selective re-

execution.
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Figure 5.4: Exact output, approximate output and relative errors in the approximate output. The
relative errors in the approximate output are higher for some inputs than the others and are more
easily predictable than the output itself.

Predictiveness of Errors: Rumba’s detection module is based on the observation that it is

possible to accurately predict the errors of an approximate accelerator using a computation-
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ally inexpensive prediction model. Figure 5.4 shows exact output (a Gaussian distribution),

approximate output produced by an accelerator and errors in approximation. For this case,

it is visually clear that errors are concentrated on certain inputs. Hence, a simple prediction

model can separate cases of high errors accurately.

Rumba dynamically employs light-weight checkers to detect approximation errors. A

threshold on the predicted errors is used to classify errors in the output elements as high.

Therefore, Rumba targets output elements with high errors as mentioned in Challenge I.

Also, since Rumba has light-weight checkers, the checks can be performed online for all

the elements of each invocation (Challenge III).

Recovery by Selective Re-execution: In computing, a pure function or code region only

reads its inputs and only affects its outputs, i.e., it does not affect any other state. In other

words, pure functions or code regions can be freely re-executed without any side-effects.

Similar characteristics have been previously used in recovering program from external er-

rors simply by re-executing [42, 64]. Such functions or code regions naturally occur in

many data-parallel computing patterns such as map and stencil. We analyzed the data par-

allel parts of the applications in Rodinia benchmark suite [30] and found out that more than

70% of them can be re-executed without any side effects. Rumba detects this characteristic

using these previous techniques to identify such regions in applications. A more detailed

description of recovery is given in Section 5.3.1. It is not a new restriction imposed by

Rumba as previously proposed approximate accelerators [40, 7] require functions or code

regions to be pure to be able to map them to an approximate accelerator.

Therefore, if Rumba detects that one of the accelerator invocations generates output

elements with large error, the Rumba recovery module can simply re-execute that iteration
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Figure 5.5: A high-level block diagram of the Rumba system. The offline components determine
the suitability of an application for the Rumba acceleration environment. The online components
include detection and recovery modules. The approximation accelerator communicates a recovery
bit corresponding to the ID of the elements to recompute with the CPU via a recovery queue.

to generate the exact output elements. In this case, there is no need to re-run the whole pro-

gram to recover those output elements (Challenge III). Also, using this technique, Rumba

can manage the performance/energy gains by changing the number of iterations to be re-

executed to target Challenge IV.

5.3 Design of Rumba

5.3.1 Overview

Approximation errors can be broadly divided into large errors and small errors. Ap-

proximation accelerators generate a large number of small errors and relatively few large

errors as shown in Figure 5.3. Rumba is a detection and recovery scheme for errors in an

approximate computing system. Rumba is specifically designed to detect these large errors

by a light-weight checker and then fix these errors. Rumba makes the output of an approx-

imation accelerator computing system acceptable by reducing the long tail of large errors.

Alternatively, with Rumba’s error correction capabilities, it will be possible to dial up the

amount of approximation, thus improving performance and/or energy savings, while still
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producing user acceptable outputs.

A high-level block diagram of the Rumba system is shown in Figure 5.5. The offline

part of Rumba system consist of two trainers. The first trainer finds the optimal configura-

tion of the approximate accelerator for a particular source code. The second trainer trains

a simple error prediction technique based on the errors produced by the accelerator trainer.

The configuration parameters for both the approximate accelerator and the error predictor

are embedded in the binary.

The execution subsystem of Rumba is shown in the same figure. For the purpose of

exposition, we assume that the design of our approximation accelerator is similar to the

one proposed by Esmaeilzadeh et al. [40]. However, the same design principles can apply

to other accelerator based approximate computing systems. As shown in the figure, the core

communicates to the accelerator using I/O queues for data transfers from the core to the

accelerator and back from accelerator to the core. Rumba’s execution has two components:

detection and recovery modules.

The annotated approximate part of the application code gets mapped to the approxi-

mation accelerator [40, 7]. We augment the approximate accelerator by an error predictor

module to detect approximation errors. A variety of prediction techniques can be used

to predict these errors. We explore three light-weight checkers that are implemented us-

ing three simple error prediction techniques. These error predictors are described in Sec-

tion 5.3.2. Once a check fires, i.e., approximation for that particular output element is

larger than a tuning threshold (determined by the online tuner based on user requirements),

a recovery bit for the iteration generating that particular element is set in the recovery

queue as shown in Figure 5.5. The CPU collects these bits from the recovery queue and
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re-executes the iterations that their recovery bit is set. Output merger choses the exact or

the approximate output as final result. A more detailed description is in Section 5.3.3. An-

other important aspect of Rumba is the dynamic management of output quality and energy

efficiency. By controlling the threshold at which the checker fires, Rumba can control the

number of iterations to be re-executed. This tuning process is discussed in Section 5.3.4.

5.3.2 Light-weight Error Prediction

An important first step is the inexpensive detection of large approximation errors in

output elements. Since it is not known beforehand which output elements will have large

errors, runtime checks should be employed for all the output elements. Therefore, the light-

weight nature of these checkers is of paramount importance. Complex checkers to detect

large approximation will offset the gains of approximation and, thus, are not desirable. A

desirable dynamic checker should have low overhead and still be accurate at predicting

errors in output elements.

A dynamic checker does not have access to the exact results, hence, the errors in ap-

proximate output cannot be computed by comparing with the exact result. Computing

exact values is not an option because that negates the benefits of employing an approxima-

tion system. The Rumba detection module needs to detect large approximation errors by

using inputs to the accelerator or the approximate output produced by the accelerator. We

call a method an input-based method if the method calculates errors using the inputs to the

accelerator. Similarly, if the errors are detected by just observing the accelerator output,

such a method is called an output-based method. For input-based methods, approximation

errors can be obtained using a simple predicting model on inputs in the following two ways:
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• Errors by Value Prediction (EVP): predict the output using a model and then get the

error by comparing it with the approximate accelerator’s output.

• Errors by Error Prediction (EEP): predict the errors directly using a model.

In our experiments, we observed that if we use the same Prediction model it is more accu-

rate to predict the errors directly than computing the errors by first predicting the output.

We analyzed errors in the approximation of a Gaussian distribution and found that average

distance between exact approximation errors and errors obtained by EVP and EEP is 2.5

and 1, respectively, i.e., EEP is more accurate. Therefore, we use simple prediction mod-

els to predict errors in the approximation. We explore two input-based methods and one

output-based method to detect errors.

5.3.2.1 Error prediction using a linear model:

The first error prediction method is a linear error predictor and is an input-based method.

A linear error prediction method predicts error by computing a linear function of inputs to

the accelerator. Equation 5.1 shows the linear function that is calculated to compute the er-

ror. The number of terms (xis) are determined by the number of inputs to the code section

that is mapped to the approximate accelerator. A linear model requires relatively simple

computations in the form of multiply-add operations. Hence, the online prediction of errors

for a particular input does not add much energy overhead. The weights (wis) and constant

c are determined by offline training.

err = w0 ∗ x0 + w1 ∗ x1 ... wN−1 ∗ xN−1 + c (5.1)
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where xi is the ith input, wi is the weight for the ith input and c is a constant.

5.3.2.2 Error prediction using a decision tree:
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Figure 5.6: A decision tree with a depth of 3 in decision nodes. For this example, it predicts errors
based on two inputs. The leaf nodes (gray) give the approximation errors. The coefficients (cis and
vis) are determined by offline training.

The second error prediction method is a decision tree and is also an example of input-

based methods. An example of error prediction using a decision tree is shown in Fig-

ure 5.6. This model contains decision and leaf nodes. The decision nodes typically have

two branches and uses one of the inputs to decide on whether to traverse the left or right

child. This process continues until it reaches a leaf node in the tree. Leaf nodes store the

predicted error. Training data is used to determine the values of constants used in making

decisions at the decision nodes and predicted error at the leaf nodes. The computation re-

quired in a decision tree is dependent on the depth of the tree structure. We limit the tree

depth to 7 in our experiments. Only comparison operations are required to implement this

decision tree and hence it is not a computationally expensive error prediction method.
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5.3.2.3 Error prediction using moving average:

The third error prediction model is using moving average as the general trend of data

in the sequence. This moving average based method is an output-based method because

it just observes the accelerator outputs to find out the erroneous elements. The difference

between current element and the moving average can be used to detect large errors in a

number in the sequence. In this work, we used Exponential Moving Average (EMA) which

can be calculated by the formula shown in Equation 5.2.

EMA = (e ∗ α) + (Previous EMA ∗ (1− α)) (5.2)

where e = Current element, α = Smoothing factor = 2
1+N

and N = Number of elements in

the history

EMA computes the exponential moving average over a window of output elements and

compare it to each output element to compute the difference. If the difference is higher

than a tuning threshold, the detection module marks the output element as erroneous.

Once an application is deemed fit for approximation on the accelerator, it is transferred

to the accelerator augmented with an error predictor. The dynamic check for each output

element is the predicted error greater than a tuning threshold. If this predicted error is

greater than a tuning threshold, a large approximation error is suspected and the check

fires.

Predictor Hardware: Figures 5.7(a) and 5.7(b) show the hardware for the linear error

and decision tree error predictors. An approximate accelerator is augmented with these

hardware to predict errors. Coefficient buffers are circular buffers and contain weights and
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Figure 5.7: Hardware for the approximation error predictors.

constants for the linear model and decision constants and errors for the decision tree model.

The coefficients are transferred to these checkers via a config queue (the same queue is used

to transfer accelerator configuration) between the CPU and the accelerator.

EMA detects large approximation errors by comparing the current approximate outputs

with the history of previously computed approximate outputs. The history is represented

by EMA, the detection module keeps the EMA and calculates the approximate error in the

current approximate output by comparing it with EMA.
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Figure 5.8: An example of overlapping the re-computation of elements by the CPU with the ap-
proximation accelerator. For example, a large error is detected in iteration 0 by the accelerator and
the CPU recomputes this iteration while accelerator is working on the execution of iteration 1 and
2.
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5.3.3 Low-overhead Recovery

Rumba’s recovery module on the CPU gets an iteration’s recovery bit via the recovery

queue. If the corresponding bit of an iteration is set, the recovery module re-executes

that iteration and commits the re-computed output while discarding the accelerator output

for that input. The results received by the CPU from the approximation accelerator are

directly committed to their final destination if the corresponding recovery bit is not set in

the recovery queue. This is how Rumba merges approximate outputs from the accelerator

with the exact outputs obtained by re-execution on the CPU.

The CPU and the accelerator work in a pipelined fashion, i.e., while accelerator is

working on an iteration, the CPU recomputes a previous iteration. An example of such an

arrangement is shown in Figure 5.8. For this example, the checks fire for output elements

of iterations 0, 2, 5 and 6. The CPU re-computes iteration 0 while the accelerator is work-

ing on iteration 1 and 2. Similarly, re-computation of iteration 2 is overlapped with the

execution of 3 and 4 on the accelerator and so on. In such a setup, the CPU can recompute

50% of the output elements, assuming a 2x gain for the accelerator, and still keep up with

the accelerator provided the elements to recompute are uniformly distributed.

5.3.4 Online Tuning

The tuning threshold of Rumba is used as a threshold for the dynamic checks to de-

termine if the current output has large error. A larger threshold value will result in fewer

iterations to be re-executed. This, in turn, will cause higher energy savings but lower out-

put quality. Rumba’s tuning threshold can be determined by user specified requirements
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either on energy consumption or output quality. Online tuning can be programmed in three

modes:

TOQ Mode: In this mode, user specifies the target output quality (TOQ). The goal of

this mode is to make sure that all output elements have better quality than TOQ. Therefore,

Rumba compares the predicted quality with TOQ and re-execute iterations that have lower

quality than TOQ.

Energy Mode: If a user specifies an energy target to achieve, Rumba calculates the

number of iterations (iteration budget) it can re-execute while staying in the energy budget.

For each invocation, it monitors the number of re-executed iterations. If it goes over the

iteration budget it stops re-executing and increases the tuning threshold for the next invoca-

tion. If the current invocation is finished and Rumba still stays within the iteration budget,

the tuning threshold is decreased. This would result in more iterations to be re-executed

for the next invocation and thus improves output quality while staying in the same energy

budget.

Quality Mode: If a user is more concerned about achieving the best output quality,

Rumba maximizes re-execution of iterations on the CPU until the current invocation of

accelerator finishes. The accelerator performance gain in comparison to the CPU deter-

mines how many elements the CPU can recompute and still keep up with the accelerator.

If the CPU is not fully utilized during recovery, it implies that it can fix more iterations

so the tuning threshold is increased for the next invocation. If accelerator finishes the cur-

rent invocation and the CPU still has iterations to re-execute, the tuning threshold for the

next invocation is increased. This results in lesser number of re-executions for the next

invocation.
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5.3.5 Error Detector Placement
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Figure 5.9: Shows the design choices for the relative placement of input-based detectors with
respect to the accelerator. Configuration in part (a) adds delay, thus impacting overall performance,
in the path to invoking accelerator. Configuration in part (b) wastes energy on invocations of the
accelerator that have large error.

An important design choice for input-based methods is the relative invocation of the er-

ror predictor with respect to the accelerator. An input-based detector can be placed in one

of the ways shown in Figure 5.9. Figure 5.9(a) (Configuration 1) shows the error detector

placement before sending the inputs to the accelerator and Figure 5.9(b) (Configuration 2)

shows the error detector placement if the error detector and accelerator simultaneously start

working on inputs. These configurations provide different trade-offs in the design space.

Configuration 1 saves the unnecessary accelerator invocations, hence saves energy, for the

cases when error detector detects an error. However, since error prediction precedes the ac-

celerator invocation, it delays accelerator computation, hence, has performance overhead.

Energy is wasted in Configuration 2 for accelerator invocations that have errors greater than

the threshold. However, error detector in this configuration does not add any delay in the

invocation of the accelerator, hence, does not add to performance overhead. In our exper-

iments, to minimize the impact on performance overhead, we use Configuration 2. Error

detector placement for output-based methods is straight forward and should be invoked

after accelerator invocation.
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Application Domain Train
Data

Test
Data

NN Topology
(Rumba)

NN Topology
(NPU)

Evaluation
Metric

blackscholes Financial
Analysis

5K
inputs

5K out-
puts

3->8->8->1 6->8->8->1 Mean Rel-
ative Error

fft Signal Pro-
cessing

5K ran-
dom fp
numbers

5K ran-
dom fp
numbers

1->1->2 1->4->4->2 Mean Rel-
ative Error

inversek2j Robotics 10K ran-
dom (x,
y) points

10K ran-
dom (x,
y) points

2->2->2 2->8->2 Mean Rel-
ative Error

jmeint 3D Gaming 10K
pairs
of 3D
triangles

10K
pairs
of 3D
triangles

18->32->2->2 18->32->8->2 # of mis-
matches

jpeg Compression 220x200
pixel
image

512x512
pixel
image

64->16->64 64->16->64 Mean
Pixel Diff

kmeans Machine
Learning

220x200
pixel
image

512x512
pixel
image

6->4->4->1 6->8->4->1 Mean
Output
Diff

sobel Image Pro-
cessing

512x512
pixel
image

512x512
pixel
image

9->8->1 9->8->1 Mean
Pixel Diff

Table 5.1: Applications and their inputs.

5.4 Experimental Setup

We evaluate Rumba with a Neural Processing Unit (NPU) style accelerator [40]. Al-

though we evaluate Rumba using a NPU-style accelerator, the design of Rumba is not

specific to an accelerator as the core principles can be applied to a variety of approximation

accelerators [129, 7]. We use the same hardware parameters as used by the NPU work for

modeling the core and the accelerator. The remainder of this section describes the bench-

marks, accelerator outputs and energy modeling setup used to evaluate the effectiveness of

Rumba.

Benchmarks: We evaluate a set of benchmarks from various domains that map to ap-

proximate accelerators. The benchmarks represent a mix of computations from different

domains and illustrate the effectiveness of Rumba across a variety of computation patterns.
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We use the same set of benchmarks as used in the NN accelerators [40, 7]. A brief descrip-

tion of these benchmarks along with their domain, train and test data is given in Table 5.1.

Rumba NN (Neural Network) topology column in the table shows the NN topology used by

Rumba. For example, 6->4->4->1 for kmeans implies that the NN has 6 inputs, two hidden

layers of 4 neurons each and 1 output. The final column in this table shows the NN topology

used by the unchecked NPU. In all cases, Rumba’s error detection capabilities make it pos-

sible to chose a smaller or equal, therefore efficient, NN. The output quality of applications

is usually measured by an application specific error metric [111, 110, 40]. This application

specific error metric is given in the evaluation metric column in Table 5.1. We use Mean

Pixel Difference for images and target a 90% output quality because SAGE showed that

more than 86% of the images (from an image quality assessment database [118, 138]) with

quality loss (according to Mean Pixel Difference metric) less than 10% were equivalent to

“Good” or “Excellent” ratings by human subjects. 90% output quality is in commensurate

with the previous works in approximate computing [40, 10, 113].

Accelerator Output: We obtain the accelerator output (approximate output) by imple-

menting NN using pyBrain [116] library. We find the best NN configuration by searching

the NN topology space. The best configuration for our case is the smallest NN that does

not produces excessive errors. The NN topology space is large thus the NN we consider

have at most 2 layers and the number of neurons are restricted to at most 32 neurons in

each layer (same restriction as in NPU [40]).

Energy Modeling: We run each application using the GEM5 [16] simulator to calculate

the different microarchitectural activities. These activities are fed to McPAT [119], which

calculates the baseline energy for the entire application. We use an X86-64 model for the
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Parameter Value Parameter Value
Fetch/Issue width 4/6 Load/Store Queue Entries 48/48
INT ALUs/FPUs 2/2 L1 iCache 32KB
Load/Store FUs 1/1 L1 dCache 32KB
Issue Queue Entries 32 L1/L2 Hit Latency 3/12 cycles
ROB Entries 96 L1/L2 Associativity 8
INT/FP Physical Registers 256/256 ITLB/DTLB Entries 128/256
BTB Entries 2048 L2 Size 2 MB
RAS Entries 16 Branch Predictor Tournament

Table 5.2: Microarchitecutral parameters of an X86-64 cpu used in experiments.

cpu core and the microarchitectural parameters are given in Table 5.2. The accelerator

design is an 8-Processing Elements (PEs) NPU and uses the same parameters for various

structures of the PEs as given in the NPU paper [40]. We model the energy of the multiply-

and-add for the linear error model and comparator in the same way as in the NPU paper. We

calculate the energy for the light-weight checkers separately. The energy of these checkers

and the energy of re-computation of elements on the CPU are combined to calculate the

total energy for a particular scheme.

5.5 Evaluation

We evaluate Rumba for output quality, energy savings, false positives and the coverage

of large errors. We also analyze the energy savings of Rumba for different target output

qualities.

5.5.1 Output Quality

Output Error: Output errors are measured using the application specific metric given

in Table 5.1 on the whole application output. Figure 5.10 shows the output error with

respect to the number of output elements fixed for different techniques under consideration.
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Figure 5.10: Output error with respect to the number of output elements fixed.

Output error is directly related to the output quality. Output error of 5% represents 95%

output quality. The y-axis of each plot in this figure shows the output error, while the x-axis

shows the number of elements that need to be fixed to achieve that particular output error.

Random fixes a given percentage of randomly selected output elements. For example, for

fixing 10% of the elements Random selects 10% of output elements randomly and then

recomputes them. Similarly, Uniform shows the output error when a given percentage of

output elements to be fixed are chosen uniformly among all output elements. Ideal has the

oracle knowledge about the approximation errors in all the output elements and it uses this

oracle knowledge to fix a given percentage of the output elements. The data for Ideal is

generated by sorting approximation errors in output elements by the error magnitude and

then fixing the highest error elements. For example, to obtain output error when 10% of

the elements are fixed for the Ideal scheme, the top 10% approximation error elements are

fixed. Finally, EMA, linearErrors and treeErrors represent the output error when the errors
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Figure 5.11: False positives at 90% target output quality. Ideal have zero false positives. A low
number of false positives for linearErrors and treeErrors indicate their effectiveness in detecting
large approximation errors.

are calculated by using the prediction models described in Section 5.3.2.

The techniques that are closest to the Ideal line in these plots represent the best possible

achievable results. For a point on the x-axis, if the corresponding y value for a technique

is close to y value of Ideal at the same x point, the technique is closer to the ideal case.

For inversek2j, if 30% elements are fixed, Ideal, Random, Uniform, EMA, linearErrors and

treeErrors will have 2.1%, 9.7%, 9.6%, 5.9%, 2.6 and 2.7% output errors, respectively.

Hence, linearErrors and treeErrors are better techniques than Random, Uniform and EMA

but worse than Ideal.

These plots also show that for some benchmarks (e.g., kmeans) linearErrors performs

better and for others (e.g., blackscholes) treeErrors performs better. Overall, error predic-

tion accuracy of a particular scheme is benchmark dependent.

False Positives: A false positive is a large error detected by a particular scheme that
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was not actually a large error. An error prediction scheme will have a false positive if

the predicted error is high but the actual error is not. It is important to have low numbers

of false positives for a technique for it to be practical. A high number would imply that

the CPU would need to fix a large number of elements thus partially offsetting the gains

of approximation. Figure 5.11 shows the number of false positives for 90% target output

quality, i.e., 10% output error in output elements. For example, the first bar from the left

for the blackscholes benchmark represents 32% false positives for Random if we target

90% output quality. Random and Uniform have a large percentage of false positives since

these techniques randomly and uniformly, respectively, pick approximate output elements

to fix and do not have any detection method. Ideal does not have any false positives since

it has oracle knowledge of the errors in output elements. On average, Ideal, Random,

Uniform, EMA, linearErrors and treeErrors have 0%, 14.8%, 14.5%, 13.3%, 2.1% and

.76% false positives for 90% target output quality. linearErrors and treeErrors show a very

low percentage of false positives and thus are effective at detecting large approximation

errors.

Fixed Elements: Figure 5.12 shows the number of elements that are need to be fixed

(recomputed) to achieve 90% output quality. A lower number of fixes implies that the

energy overhead of re-execution on the CPU will be lower. Hence, a technique that fixes

lower number of elements to achieve the same quality is better. For example, on average,

Random requires 41% (29% more than Ideal) of the output elements to be fixed to achieve

10% output error. In comparison to Ideal, linearErrors and treeErrors just require 9% and

6% extra elements to be fixed to achieve the same output quality, respectively.

Large Error Coverage: Relative coverage is defined as the normalized ratio of de-
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Figure 5.12: The number of elements that are required to be re-executed for a 90% target output
quality.

tected large errors (larger than 20%) and the total number of fixes required. This ratio is

normalized with respect to Ideal. This shows how good a prediction scheme is with re-

spect to Ideal. Figure 5.13 shows the relative coverage of large errors for 90% target output

quality. For example, the first bar from the left for blackscholes benchmark represents that

relative coverage of Random is 29.2%. The relative coverage of scheme is high if it fixes a

less number of elements to cover more large error elements for a given target output qual-

ity. On average, linearErrors and treeErrors are able to achieve 57.6% and 67.2% relative

coverage, respectively.

5.5.2 Energy Consumption and Speedup

Figure 5.14 shows the energy consumed by various techniques in comparison to the

CPU baseline for a target output quality of 90%. This figure shows the whole application

energy savings. First column (labeled NPU) for each benchmark represents the energy
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Figure 5.13: Relative coverage of large errors at 90% target output quality. Ideal has 100% cover-
age.

savings of the unchecked NPU, i.e., no error checking mechanism is employed. NPU [40]

reduces, on average, the CPU energy consumption by 3.2x. Note that since NPU does

not have any fixing mechanism for large errors and so the output application quality is not

always 90%. Without fixing any errors, output error, on average, is 20.6%. The other bars

from left to right for each benchmark show energy consumed by Ideal, Random, Uniform,

EMA, linearErrors and treeErrors schemes, respectively. The energy consumption shown

for each of the schemes in this figure includes energy required to recompute the elements on

the CPU and also the energy required for the checkers in the accelerator. As also observed

in the NPU work [40], kmeans has very little energy gains and achieves slowdown because

the code region that gets mapped to the NPU is very small and can be efficiently executed

on the CPU itself. Energy savings of sobel decrease significantly for linearErrors and

treeErrors schemes because this particular benchmark requires relatively large number of

re-executions due to the lower prediction accuracy of errors.
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Figure 5.14: Energy consumption of Rumba, including the cost of re-computation and the en-
ergy used for the prediction of large approximation errors. treeErrors saves 2.2x energy while the
unchecked NPU saves 3.2x energy.

Figure 5.15 shows the speedup all the schemes described earlier. Each scheme also

factors in performance loss due to re-execution on the CPU if the CPU cannot keep up

with the accelerator. Since Rumba (linearErrors or treeErrors) overlaps recovery on CPU

with the accelerator execution, it is able to maintain the same speedup (2.1x) as the NPU.

Our energy savings and speedup for the NPU baseline are close to the ones given in the

NPU paper [40] but do not exactly match as we use different neural network libraries and

simulation infrastructure.

Time for prediction: Figure 5.16 shows the time taken by the two error predictor

model normalized with respect to the NPU. For all the benchmarks, linearErrors and

treeErrors require less time than the NPU. Therefore, the predicted error is always avail-

able before NPU finishes and the NPU never needs to wait for the error predictor to finish,

i.e., error prediction does not slow down the NPU.
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Figure 5.15: Speedup of each technique with respect to the CPU baseline. Rumba (linearErrors or
treeErrors) maintains the same speedup (2.2x) as the NPU.

Rumba reduces approximation errors overall by 2.1x (20.6% to 10%). Rumba achieves

this error reduction while maintaining the same performance improvement as the NPU ac-

celerator but reduces the energy savings from 3.2x to 2.2x in comparison to the unchecked

NPU.

5.5.3 Case Studies

Energy vs. Output Quality: Figure 5.17 shows the energy consumption of different

schemes with varying requirements on output quality for the fft benchmark. Energy savings

for the unchecked NPU for fft is 3.3x. As expected, Ideal achieves the best energy savings

among all techniques. treeErrors achieves energy savings close to the Ideal scheme for

higher target error rates (> 7%). Note that the gap between treeErrors and Ideal increases

as the demands on output quality increases ( greater than 97%). This is because Ideal

knows exactly which elements to fix to achieve certain target output quality while treeEr-
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Figure 5.16: Time used by error prediction models in comparison to the NPU. This is normalized
with respect to the NPU. Error prediction model are faster in all the cases, hence, the accelerator
never needs to wait for the error prediction model to finish execution.

rors (or linearErrors) must predict such cases. This causes the false positives for treeErrors

(or linearErrors) to start increasing, requiring more re-computation and more energy con-

sumption. Thus, the gap between Ideal and treeErrors (or linearErrors) is larger at high

demands on output quality.

CPU Activity: In this second case study, we show an example of the CPU activity

in conjunction with the accelerator. The top half of Figure 5.18 shows the percentage

difference of each output element (on y-axis) with treeErrors for 200 elements (on x-axis).

To achieve 10% target output error, a tuning threshold of 0.33 is required on this percentage

difference (y-axis). The bottom half of the figure shows the CPU activity. The accelerator

and the CPU work in tandem, i.e., the CPU fixes the detected large approximation errors

while the accelerator executes other iterations. Only 30 elements out of these 200 (15%)

are above this threshold and thus the CPU can keep up with an approximate accelerator as

fast as 6.67x.
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Figure 5.17: Energy consumption vs target error rate for fft.

5.6 Related Work

Approximate computing, where the accuracy is traded off for better performance or

higher energy efficiency, is a well-known technique. Approximate computing techniques

can be broadly classified into two categories: Software-based and hardware-based ap-

proaches. Software-based approaches are usually algorithmic modifications and can be

utilized without any hardware modifications. Loop perforation [2] is one of the well-

known software approximation techniques which skips the iterations of loops randomly

or uniformly. Rinard et al. [107] use early phase termination technique to terminate paral-

lel phase as soon as there are too few remaining tasks to keep the processor busy to prevent

the processors from being idle and wasting energy. Sartori et al. [115] introduce a software

approximation technique which targets control divergence on GPUs. Paraprox [110] is a

software framework which detects patterns in data parallel applications and applies dif-

ferent approximation techniques such as loop perforation, approximate memoization, and

153



0

0.5

1

P
er

ce
n
ta

g
e 

D
if

fe
re

n
ce

0.33

�������

���	
���

0

1

0 50 100 150 200

C
P

U
 A

ct
iv

it
y

Output Elements

Figure 5.18: The approximation accelerator and the CPU work in tandem. The CPU works on
re-computing detected large error iterations while the accelerator continues with the execution. In
this case, 0.33 is the tuning threshold used to achieve 10% target error rate.

tile approximation based on the detected patterns. All these software approximation tech-

niques need a quality management system to monitor the output quality and control the

aggressiveness of the approximation during execution.

Different hardware approximation techniques have also been proposed to save energy

while improving performance. EnerJ [113] proposed hardware techniques such as volt-

age scaling, width reduction in floating point operations, reducing DRAM refresh rate, and

reducing SRAM supply voltage to reduce energy consumption. Esmaeilzadeh et al. [38]

demonstrated dual-voltage operation, with a high voltage for precise operations and a low

voltage for approximate operations. The low-voltage pipeline introduces faults in the oper-

ations and hence these operation are approximate. We compare against the hardware neural

network [40] proposed by the same authors extensively in our results section. Du et al. [36]

also use hardware neural networks to trade off accuracy for energy savings. Amant et al. [7]
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design limited precision analog hardware to accelerate approximable code sections. Other

works [125, 129] design different approximate accelerators. Sampson et al. [114] improve

memory array lifetime using approximation. Flikker [74] is an application-level technique

that reduces the refresh rate of DRAM memories which store non-critical data. The Rumba

quality management system can be added to these hardware-based approximation tech-

niques to control and improve their output quality.

There exist a few quality management solutions to control quality in an approximate

computing system. Ansel et al. [8] use a genetic algorithm to find the best approximate

code that provides the acceptable quality. In this work, the programmer writes runtime

low overhead checking functions to verify output quality online. However, Rumba can

automatically manage the output quality without programmer’s help. CCG [112] is another

quality monitoring technique. In this technique, while GPU runs the approximate version,

the CPU is responsible to check the quality of a subset of data for the next invocation. To

reduce the performance overhead of monitoring, size of the subset that is processed by the

CPU is small and thus, CCG’s accuracy to predict the output quality is limited. Unlike

CCG, Rumba has light-weight checkers and therefore, it can investigate larger subset of

the data compared to CCG.

Green [10] is a framework that developers can use to take advantages of approximation

opportunities to achieve better performance or reduce energy consumption. Green builds a

quality of service model based on the profiling data that gets used at runtime. In order to

make sure that output quality is acceptable, Green checks the output quality once in every

N invocations. SAGE [111] is an approximation framework for GPUs that automatically

generates approximate versions of the input program using skipping atomic expressions,
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compressing data, and tile approximation. SAGE also uses a similar quality sampling

strategy as Green to check the output quality frequently. However, in contrast to these

techniques, because of its light-weight checkers, Rumba checks all invocations to reduce

large errors and to make sure that the output quality is acceptable for all invocations. Some

other techniques [26, 27, 106, 104, 83] statically analyze applications assuming an input

distribution to reason about the output quality under approximation. Such techniques do

not need sampling but can only handle limited computational patterns and approximation

methods.

PowerDial [56] is a framework that dynamically monitors the application’s perfor-

mance during runtime. When the performance drops below target performance, PowerDial

will increase the aggressiveness of the approximation to match the performance require-

ments. Their goal is to maximize accuracy while maintaining application’s performance.

Several probabilistic reasoning models [84, 27, 22, 103, 29] are also introduced to compute

the probability of the output being wrong. In contrast, Rumba dynamically monitors the

output quality during runtime and recovers from the large errors generated by an approxi-

mation technique.

Hardware reliability for soft computations and approximate computing share the same

basic underlying philosophy. Hardware reliability solutions [61, 126, 72] for soft computa-

tions aim to allow errors in error tolerant parts of an application with the goal of lowering

the cost of reliability. The idea of re-execution has previously been used in the context of

reliability to recover against hardware faults [33, 42]. We leverage this idea in the con-

text of recovering against approximation errors and it fits well with the nature of the code

regions (pure) that are mapped to approximate accelerators.
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5.7 Conclusions

Approximate computing can be employed for an emerging class of applications from

various domains such as multimedia, machine learning and computer vision. Approximate

computing trades off accuracy for better performance and/or energy efficiency. However,

the quality control of approximated outputs has largely gone unaddressed. In this chapter,

we propose Rumba for online detection and correction of large errors in an approximate

computing environment.

Rumba predicts large approximation errors by light-weight checkers and corrects them

by recomputing individual elements. Our results demonstrate that Rumba is effective at

predicting large errors and follows an ideal case very closely. Across a variety of bench-

marks from different domains, we show that Rumba reduces the output error by 2.1x in

comparison to an accelerator for approximate programs while maintaining the same per-

formance improvement. To achieve this, the Rumba framework reduces the energy savings,

on average, from 3.2x to 2.2x in comparison to an unchecked accelerator.
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CHAPTER VI

Neural Accelerator and Checker Design Space Exploration

Previous chapter shows that error prediction is feasible, cheap and practical to build. It

also demonstrated the predictability of approximation errors with the help of cost effective

and simple methods. Most of the errors in approximate accelerators are small but large

errors do matter for approximate computing. Approximation errors can be effectively pre-

dicted using input-based simple prediction methods (e.g., decision tree) or output-based

methods (e.g., EMA). We deliberately restricted the error prediction models to be decision

tree and linear methods in the previous chapter to keep the cost of checkers low. How-

ever, another neural network can also be used to predict errors of the neural accelerator.

However, that raises several interesting questions. For example, how big the size of such

a neural network checker can be before we nullify the gains of approximation? This chap-

ter explores the answer to this question and related trade-offs of accelerator and a neural

network checker.
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6.1 Introduction

Error prediction is an effective method to control the large errors produced by an ap-

proximate accelerator, e.g. a Neural Processing Unit (NPU). Error prediction can also be

performed using another neural network. Let us first take a look the process of training a

neural checker in the context of approximation error prediction. Figure 6.1 shows how we

train an error prediction method. First, using a set of inputs, the NPU model is trained.

Once an NPU model is obtained, approximate outputs are produced using a second set of

train input. Errors are calculated by comparing the exact output for second training set and

approximate output. Now this second set of inputs and calculated errors are used to train

another neural network to obtain the error predictor model. This model is used to predict

errors online on a previously unseen test set.

Using another neural network is particularly interesting if the NPU is constructed from

a neural fabric. If we have a computation fabric that can be configured to construct neural

network of different sizes, the NPU and the checker can be constructed from the same fab-

ric. In such a case, a natural question is what is the trade off between the size of the NPU

and the size of checker? In this chapter, the design space of the accelerator and checker

is investigated. This chapter of the dissertation investigates the answers to following ques-

tions:

• Does some application become amenable to approximation if we use an error checker?

• Is it better to have a big NPU and no error checker or an NPU combined with an error

checker?

159



!"#$%&$#'()*+$

)*,-#./%-#,-#.$
0'()*$123$

123$4%5"6$

!"#$%&$#'()*7$

)*,-#.$

8(69-6(#"$

:''%'.$

0'()*$:''%'$

2'"5)9#%'.$

:''%'$2'"5)9#%'$

;%5"6.$

<-#,-#$=(,,'%>?$

:>(9#$4%5"6$
<-#,-#$=">(9#?$

Figure 6.1: Shows the steps to train an error predictor.

• Can a combination of an NPU and an error checker provide better quality and better

energy efficiency?

• Given a neuron computation fabric, how can we divide the neurons among the NPU

and the checker to get better output quality along with energy efficiency, i.e., should

more neuron be allocated to the NPU or more to the checker?

6.2 Exploration Setup

As briefly mentioned, the idea is to explore the co-design of accelerator and the error

checker design. We also aim to analyze various trade offs related to error and energy ef-

ficiency of such a co-design. To answer the questions raised in Section 6.1, we trained

different configuration of neural checkers and decision trees of various depths. These con-

figuration were then evaluated in conjunction with various NPU configuration for output

error and energy cost analysis. The neural network topology space is large thus the NN

we consider have at most 2 layers and the number of neurons are restricted to at most 128

neurons in each layer. For each layer the number of neurons considered are 1, 2, 4, 8, 16,
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32, 64 or 128 for the NPU configuration as well as checker configuration. Thus, we have

72 (8 (one layer only) + 8*8 (two layers)) total configurations for the NPU and similarly

72 configuration of the checker for each NPU configurations. Hence, total configurations

explored are 5184 (72*72) for NPU vs NN checker. For example, let us assume if NPU

configuration has two hidden layers of size 32 each. For this configuration, each of the 72

NN configuration were trained as error predictor and the cost versus error trade offs are

analyzed. Decision tree checkers were restricted to a max depth of 7 to restrict the number

of total designs.

6.3 Experimental Results

Figure 6.2 shows energy cost versus error for different NPU versus NN and decision

tree checker configurations for Blackscholes benchmark. Each circle on this graph is a

combination of a particular configuration for the NPU and a particular configuration of the

NN checker. For example, a point on this graph can corresponds to an NPU configuration of

two hidden layers of 32 neurons each and a checker NN configuration that have 8 neurons

in a single layer. The points represented by indexed square are the configurations that does

not have any checker, i.e., these are NPU only design points. A single square on this graph

shows the error and cost for no accelerator, i.e., all the computations are performed exactly

on the CPU. Points shown by a cross sign correspond to an NPU and decision tree of certain

depth. On the x-axis of this graph is the cost of a configuration relative to the CPU. CPU

has a cost of 1 and output error of 0% as shown in the figure. In this figure, output error for a

configuration is shown on the y-axis. The number in the box corresponding to each design
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Figure 6.2: Error versus cost design points by pairing of different NPU configurations with differ-
ent configurations of the NN checker and decision tree checker of different depths. This data is for
Blackscholes benchmark and only some selective configurations are labeled and shown. All pairing
of configurations are shown in Figure 6.3 for Blackscholes benchmark.

point is the number of neurons in each hidden layer. For example, the box with 64->64

and 8->8 implies that the NPU has two hidden layers of 64 neurons each and the checker

has two hidden layers of 8 neurons each. Similarly, the box with 64->64 and 5 implies

that the NPU has two hidden layers of 64 neurons each and the decision tree checker has a

depth of 5. This figure only shows some selective points and labels them. A total of 5761

(5184 (neural checker) + 72*7 (decision tree) + 72 (NPU Only) + 1 (CPU Only)) design

points are possible for a benchmarks and for Blackscholes all these are plotted in Figure 6.3.

Similarly, Figure 6.4 shows the design space exploration result for the fft benchmark.

Some trends are clearly demonstrated in these figures. First, there is no NPU config-
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Figure 6.3: Error versus cost design points by pairing all explored different NPU configurations
with different configurations of the NN checker. The data shown in this graph is for Blackscholes
benchmark.

uration that is able to achieve output error less than 20% for the Blackscholes benchmark.

So if 20% error is not acceptable in output then this benchmark can not be approximated

with an NPU accelerator. NPU only designs are efficient in terms of energy but have high

error (All are in top left half of the plot). Second, with the combination of the NPU and a

checker we can improve energy efficiency with respect to the CPU and keep the error low as

well. Third, a benchmark that produces unacceptable output is able to produce acceptable

outputs with a combination of the NPU accelerator and an NN or decision tree checker.

We have explored the NPU-checker design space for all the benchmarks used in Chap-

ter V. Table 6.1 shows a summary of the results for all the benchmarks. NPU only column

shows the whole application output error and energy cost (as a fraction) relative to the CPU

163



!"

#"

$!"

$#"

%!"

%#"

&!"

&#"

!" !'%" !'(" !')" !'*" $" $'%" $'(" $')"

!
"
#$
"
#%
&
''
(
'%
)*

+%

,-&'./%0(1#%)'&2345&%#(%678+%

+,"-./01/2" +/3245"-./01/2" 6/072//"-./01/2" -89":;5<"

Figure 6.4: Error versus energy cost design points for the fft benchmark.

for an efficient NPU configuration that has no checker. Half error design column shows the

error and energy cost for a Pareto-optimal npu-checker design that has approximately half

the error of NPU only design. The last column in this table also shows the checker type that

is able to achieve the given half error design. Table shows N/A for Half error design for the

sobel benchmark. sobel has very low error with almost all the configuration of the NPU,

hence, we do not get much benefits of using of a checker with this benchmark. The results

in this table demonstrate that the best checker type to achieve 50% less error is application

dependent.

Overall, the results show that NPU-checker co-design provides many choices and a user

can pick a design based on the error requirements for a particular application.
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NPU only Half error design
Application Output error Energy cost Output error Energy cost Checker Type

(%) (x) (%) (x)
blackscholes 21.53 .07 10.78 0.42 Decision Tree
fft 12.69 .05 6.42 0.12 Decision Tree
inversek2j 12.92 .01 6.49 0.09 Decision Tree
jmeint 35.89 .04 17.27 0.49 Neural Network
jpeg 19.49 .02 10.02 0.47 Neural Network
kmeans 10.41 .28 5.98 0.82 Neural Network
sobel 0.46 .03 N/A N/A N/A

Table 6.1: Summary of design space exploration results. NPU only column shows the application
output error and cost relative to the CPU for an efficient NPU configuration that has no checker.
Half error design column shows the error and cost for a Pareto-optimal NPU-checker design that
has approximately half the error of the NPU only design.

6.4 Conclusions

In this chapter, the design space of the NPU accelerator and the checker is explored.

The design space exploration highlights few important trade offs. For some benchmarks,

an NPU-only design might not give acceptable output error. In such cases, a combination

of the NPU and checker is a good alternative. We can obtain different design points that

have different error versus energy efficiency trade-offs. Overall, NPU combined with a

checker is a better accelerator design than the NPU accelerator alone.
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CHAPTER VII

Conclusions and Future Directions

As transistors are becoming smaller and smaller, integrated circuits constructed out of

these transistors are becoming increasingly susceptible to transient faults. Traditional so-

lutions to protect against these failures are expensive in terms of performance/energy/area

overheads. In this thesis, I have proposed low-cost software only methods to protect against

transient faults for applications from various domains. These methods intelligently com-

bine traditional duplication and other novel ways of symptom generation to detect transient

faults (Chapter II, III and IV).

Also, in the path of performance scaling, energy has become the limiting factor [21].

Therefore, designers have started to explore alternative methods such as heterogeneous

cores and accelerator for achieving energy efficiency and improving performance. At the

same time, a class of emerging applications from domains such as multimedia, machine

learning, computer vision do not require 100% numerically correct output. Many of these

applications either compute on sensor data and/or produce results that have subjective in-

terpretations, i.e., the quality of the output is subjectively judged by a human. These two

trends of marginal gains in energy efficiency by scaling and increasing number of approx-
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imate applications go well with each other. Approximate computing is at the intersection

of both of these trends and works by trading off accuracy of application outputs to achieve

energy efficiency and/or improve performance. A slew of approximation solutions has

recently been proposed [40, 111, 115, 2]. A key challenge for such systems is to provide

acceptable quality of outputs. Providing acceptable output quality is critical in making such

systems practical. We propose Rumba for online detection and correction of large errors in

an approximate computing environment (Chapter V). The co-design of the accelerator and

the error checker is explored in Chapter VI.

One of the main themes of this thesis is the exploitation of anomalies to provide accept-

able results. Anomalies can be used to construct systems with good enough answers using

inexact components. Such systems with good enough answers are going to be a norm in

the future as these are efficient and faster. Many of the methods and ideas explored in this

thesis can be further expanded and combined with other ideas in a variety of contexts. In

Chapter IV, the method to find out the variables that are going to cause unacceptable silent

data corruptions is based on heuristics. Bornholt et al. [22] proposed an interesting of repre-

senting uncertainty and finding out the distribution of program variables. This uncertainty

information can be combined with the heuristics developed in Chapter IV to improve the

coverage of unacceptable silent data corruptions.

We have explored quality control using error prediction methods in the context of an

accelerator based approximate computing environment. We believe that error prediction

is an equally feasible technique for other approximation methods such as Truffle architec-

ture [38] that has two pipelines: a high voltage pipeline for exact operations and a low

voltage pipeline for inexact operations. For example, a prediction method can be trained
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to predict if an operation is going to make large error on the low voltage pipeline. If this

happens to be the case, such an operation can be executed on the high voltage pipeline.

The large errors are fixed using prediction methods in the hope that they improve the

perceived and average output quality. However, a still challenging problem in this area is

to find out how exactly intermediate results affect the final output quality of an application.

Finding a solution to this problem is a practically useful direction of further research.

An attractive area of research that was explored in Chapter VI is the accelerator design

space. It shows the usefulness of error prediction. The chapter demonstrates that some of

the applications that produce unacceptable quality with the accelerator alone, and hence

hitherto deemed as not amenable to approximation, can take advantage of approximation

with the help of error prediction methods. An interesting direction is to find out which

applications become amenable to approximation with a combined design of an accelerator

and error prediction methods.

We have explored hardware checkers for quality control in approximate computing

because they are energy efficient. Software checkers can also be used, however, an open

question is the effect of software checkers on total energy savings. Along the similar lines,

the whole NPU can be implemented in software as well. Esmaeilzadeh et al. [40] reported

that the overhead of a software implementation of the NPU, on average, is 20x for the

evaluated benchmarks. However, we postulate that a special and highly optimized software

implementation can outperform if the amount of computation approximated by the neural

network is significant. No such benchmarks exist in the current set of evaluated benchmarks

but finding out a set of such benchmarks is a worthy direction of research.

Let us assume that the code region approximated on the accelerator is a loop and has N
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inputs and M outputs. We can unroll the loop the k times and can construct an NPU with kN

inputs and kM outputs instead of just N inputs and M outputs. A fascinating question and

a direction of research is finding out the scenarios where such loop unrolling is beneficial

in terms of the quality of output results.
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