
VIRTUALIZING DATA PARALLEL SYSTEMS FOR
PORTABILITY, PRODUCTIVITY, AND

PERFORMANCE

by

Janghaeng Lee

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

(Computer Science and Engineering)

in the University of Michigan

2015

Doctoral Committee:

Professor Scott Mahlke, Chair

Nathan Clark, Virtu Financial

Associate Professor Kevin Pipe

Assistant Professor Lingjia Tang

Associate Professor Thomas Wenisch

c© Janghaeng Lee 2015

All Rights Reserved

To my family

ii

ACKNOWLEDGEMENTS

I would like to express my first and foremost gratitude to my research advisor, Professor

Scott Mahlke, for his continuous support of this research. I consider myself truly lucky

to have worked with him these past years. He has shown incredible patience, served as

an excellent mentor from immense knowledges, encouraged me all the time, and guided

pathways to success in this field.

My sincere gratitude also goes to my thesis committee, Prof. Thomas Wenisch, Prof.

Kevin Pipe, Prof. Lingia Tang, and Nathan Clark for providing excellent comments and

suggestions that helped me to make this work more valuable. I am grateful to Nathan

Clark, the former advisor at Georgia Tech, who brought me to this area and enlightened me

the first sight of research in this field. Also, I thank to Neungsoo Park who led me out into

the graduate study in the United States.

It was very fortunate to be a member of Compilers Creating Custom Processors (CCCP)

research group. I specially thank to Mehrzad Samadi, who is a great collaborator through-

out years, providing significant helps in this work. It would not possible to have my thesis

in the current shape without his support. I would also like thank a number of other students

and alumni in the CCCP research group: Shantanu Gupta, Yongjun Park, Hyoun Kyu Cho,

Ankit Sethia, Gaurav Chadha, Anoushe Jamshidi, Daya Khudia, Andrew Lukefahr, Shruti

iii

Padmanabha, Jason Jong Kyu Park, John Kloosterman, Babak Zamirai, and Jiecao Yu.

All the people in the group are tightly bound together helping each other, and they made

my PhD life much more enjoyable. In particular, Mehrzad, Ankit and Daya gave funny-

and-stupid jokes all the time although I do not care, Jason Jong Kyu helped me when I

encountered with math problems, and Shantanu played a great role as a mentor during my

internship at Intel, giving me an opportunity to work on a great project.

My special thanks are extended to my Korean friends who made my time in Ann Arbor

more enjoyable. Especially, I thank to Jason Jong Kyu Park and Eugene Kim as I could

have tasty meals every dinner.

Finally and most importantly, my family deserves endless gratitude. My father, Jungsik

Lee, and my mother, Sunmee Kim, always gave me the unconditional love and support.

Whatever I am, I stand here because of them. I appreciate my brothers, Jihaeng and Jang-

wook. I have unforgettable childhood memories with them. They are always supportive

and encouraging all the time.

iv

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . viii

LIST OF TABLES . xii

ABSTRACT . xiii

CHAPTER

I. Introduction . 1

1.1 Challenges of Using Multiple GPUs 3

1.2 Contributions . 5

1.2.1 SKMD . 5

1.2.2 VAST . 6

1.2.3 MKMD . 7

II. Background . 9

III. SKMD: Single Kernel Execution on Multiple Devices 12

3.1 Introduction . 12

3.2 SKMD System . 17

3.2.1 Kernel Transformation 19

3.2.2 Buffer Management 25

3.2.3 Performance Prediction 26

3.2.4 Transfer Cost and Performance Variation-Aware Parti-

tioning . 29

3.2.5 Limitations . 35

3.3 Evaluation . 36

v

3.3.1 Results and Analysis 40

3.3.2 Execution Time Break Down 43

3.3.3 Performance Prediction Accuracy 46

3.4 Related Work . 48

3.5 Conclusion . 51

IV. VAST: Virtualizing Address Space for Throughput Processors 52

4.1 Introduction . 52

4.2 Motivation . 56

4.3 VAST System Overview . 57

4.3.1 VAST System Execution Flow 58

4.3.2 VAST Execution Timeline 60

4.4 Implementation . 61

4.4.1 The Design of Page Accessed Set 61

4.4.2 OpenCL Kernel Transformation 63

4.4.3 Look-ahead Page Table Generation 67

4.4.4 Forwarding Shared Pages 69

4.5 Further Optimization . 71

4.5.1 Selective Transfer . 71

4.5.2 Zero Copy Memory . 73

4.5.3 Double Buffering . 74

4.6 Evaluation . 74

4.6.1 Results . 77

4.6.2 Page Lookup Overhead 81

4.7 Related Work . 83

4.8 Conclusion . 86

V. MKMD: Multiple Kernel Execution on Multiple Devices 88

5.1 Introduction . 88

5.2 MKMD Overview . 91

5.3 Execution Time Modeling . 93

5.4 MKMD Scheduling . 99

5.4.1 Kernel Graph Construction 99

5.4.2 Coarse-grain Scheduling 100

5.4.3 Fine-grain Multi-kernel Partitioning 102

5.4.4 Partitioning a Kernel to Time Slots 105

5.4.5 Overhead and Limitations 109

5.5 Evaluation . 110

5.5.1 Results . 112

5.5.2 Sensitivity to Profiles 114

5.5.3 Case Study . 117

5.6 RELATED WORK . 118

5.7 Conclusion . 120

vi

VI. Conclusion . 122

6.1 Summary . 122

6.2 Future Directions . 124

BIBLIOGRAPHY . 126

vii

LIST OF FIGURES

Figure

1.1 Challenges in exploiting multiple GPUs for large data sets. Because the

programming model exposes the hardware details, programmers must

consider portability, productivity, and performance when they write the

data parallel kernels with large data on multiple devices. 2

3.1 Physical OpenCL computing devices with different performances, mem-

ory spaces, and bandwidths. 14

3.2 The SKMD framework consisting of four units: Kernel Transformer,

Buffer Manager, Partitioner, and Profile Database. 16

3.3 OpenCL’s N-Dimensional range . 18

3.4 Partition-ready Blackscholes kernel. 20

3.5 Different memory access patterns of kernels 21

3.6 Merge Kernel Transformation Process. Only global output parameters,

call and put in (a), are marked for merging. Using data flow analysis,

store values to global output parameters are replaced with GPU’s partial

results, and then proceed with dead code elimination (b). As a result, the

merge kernel does not have computational part (c). 22

3.7 Execution time varied by applications, input size, and the number of en-

abled work-groups. Depending on the application and input size, the

number of enabled work-groups impacts on the execution time differ-

ently. 27

3.8 Performance impact on VectorAdd varying the number of work-groups.

The execution time of GPUs do not scale down in spite of reduced number

of work-groups. 29

3.9 Comparison of linear partitioning and ideal partitioning 31

3.10 Speedup and work-group distribution. Each benchmark has different

baseline (a), as the fastest device differ by kernels. The fastest device

is determined with regard to the execution time and data transfer cost. . . 41

3.11 Break down of the execution time on each device. The bars on the top

is the baseline, which is the fastest single-device execution. SKMD con-

siders the transfer cost, and offloads work-groups in order to balance the

workload among the three devices. 44

viii

3.12 Performance prediction accuracy. L2-Norm error (a) shows Euclidean

distance between the real execution time and the predicted execution time

in milliseconds. Average error rate (b) shows the average percentage of

errors in predictions. 47

4.1 The code transformation for partial execution of an OpenCL kernel. The

kernel takes two additional arguments for the work-group range to exe-

cute, and grey backgrounded code is also inserted at the beginning of the

kernel to check if the work-group is to be executed. The work-groups out

of the range will terminate the execution immediately. 56

4.2 The VAST system located between applications and OpenCL library.

VAST takes an OpenCL kernel and transforms it into the inspector kernel

and the paged access kernel. At kernel launch, the GPU generates PASs

(PASgen) by launching the inspector kernel, then transfers them to the

host to create LPT and frame buffer (LPTgen). Next, LPT and frame

buffer are transferred to the GPU in order to execute the paged access

kernel. 58

4.3 Execution timeline for VAST system. Only PAS generation and the first

LPT generation cost is exposed. Other LPT generations and array re-

coveries are overlapped from data transfer and kernel execution. With

double buffering, the second LPT generation starts immediately after the

first LPT generation. 60

4.4 The design of Page Accessed Set (PAS). Each work-group has its own

PAS for each global argument. Each entry of PAS has a boolean value that

represents whether corresponding page has been accessed by the work-

group. 62

4.5 Data flow graphs for the kernel transformation. In the inspector kernel

(a), all computational code are removed by dead code elimination. In

paged access kernel (b), the base and the offset are replaced with new

nodes for address translation. 64

4.6 The design of Look-ahead Page Table (LPT) and frame buffer. One pair

of LPT and frame buffer corresponds to one global argument. 65

4.7 PAS generation for shared pages (shared PAS). Each reduced PAS is used

for a single sequence of partial execution. As the sequence of partial

execution increases, the number of logical operations increase for shared

PAS as VAST should check pages used in the previous sequences. 69

4.8 Execution timeline after optimizations. Selective input transfer removes

the cost of frame generation (a). Zero copy memory for output buffer

removes the cost of array recovery (b). Double buffering overlaps the

input transfer with kernel executioans (c). 72

4.9 Benchmark specifications. For the speedup over the CPU-baseline, data

size more than GPU memory is used (a). For the comparison with normal

GPU execution, data size less than GPU memory is used (b). 77

ix

4.10 Speedup of VAST over Intel OpenCL execution with 4 KB page frame

size. VAST does selective transfers for input buffers. VAST+ZC uses

selective transfers for input buffers and zero copy memory for output

buffers. VAST+ZCDB uses all optimization techniques discussed in Sec-

tion 4.5. 78

4.11 Speedup of VAST over the GPU-baseline. The performance was mea-

sured using small workloads that fits into GPU memory. GPU-ZC is the

execution using zero copy memory for all buffers. 79

4.12 Paged access kernel execution time normalized to the original kernel ex-

ecution time. Working set size for each benchmark is less than 2 GB.

Paged-access kernel execution does not use zero copy memory. 81

4.13 Performance counters collected on N-body with 256K particles. Paged-

access kernel has approximately 60 million more instructions (a), and 20

million more load transactions for page lookups (b). However, Paged-

access kernel experiences higher IPC (f), because it gets more L2 hit rate

(i). 84

5.1 A kernel graph for solving a matrix equation, A2BBTCB, consisting of

six kernels. The system is equipped with different computing devices

with separated physical memory. Devices are connected through PCI

express (PCIe) interconnect. Each kernel has different amount of compu-

tation, and each device has different performance. 89

5.2 MKMD workflow that operates in profiling mode and execution mode.

In profiling mode, MKMD builds a mathematical model with a set of

profile data for the execution time prediction. In executionmode, MKMD

predicts the execution time of kernels on various input sizes using the

model, and schedules kernels based on the predicted time. 92

5.3 Upper bounds of trip count. The upper bounds are statically determined

as N for (a), and N
T
for (b) . 95

5.4 Scalability of execution time on NVIDIA GTX760 varying input sizes

and the number of enabled work-items (T). The execution time is linear

to the value of cost function Tf(x1, ..., xN). 96

5.5 Coarse-grain scheduling result on three heterogeneous devices. Dotted

arrows presents the buffer transfer between devices. PCI bus operates in

full-duplex, but GTX760 and i3770 experience input and output conges-

tion respectively. 101

5.6 Available compute-time slots (dotted-squares) for partitioning kernel 3.

Because kernel 3 depends on kernel 2 (arrow), the lower bound and up-

per bound of available time slots are the finish time of kernel 2 and 3

respectively. 103

5.7 Kernel partitioning process. The decimal numbers in a parenthesis shows

the ratio of work-groups. The mark (M) is the cost for mering nonlinear

outputs. 108

5.8 (a) Speedup of MKMD over in-order executions, and (b) the average de-

vice idle time normalized to the finish time. 112

5.9 MKMD scheduling overhead. 113

x

5.10 Error rates and L2-norm error in milliseconds varying the number of pro-

files for the execution time modeling. CPU has relatively high error rates

on memory-intensive kernels as shown in (a), (b), and (c), but the execu-

tion time of these kernels is trivial as they do not have much computation.

As a result, the absolute error (L2-norm) in time is also small as illustrated

in (d), (e), (f), and (g). 115

5.11 MKMD total execution time with different timing models varying the

number of profiles. The baseline is the execution time scheduled with the

model from 80 profiles. This result shows that the entire scheduling time

is not sensitive to the number of profiles. 116

5.12 Kernel graph for triple commutator. 117

5.13 Execution timeline for triple commutator. Because matrix computation

is too expensive on i3770, (a) the coarse-grain scheduler does not sched-

ule any matrix multiplication kernel on it while GPUs take more than 4

kernels. With MKMD, (b) all devices are almost fully utilized. 118

xi

LIST OF TABLES

Table

3.1 Experimental setup. 36

3.2 Benchmark specification. VectorAdd, Blackscholes, BinomialOption, and

ScanLargeArrays are classified as contiguous kernels, whereas others are

defined as discontiguous kernels. 38

3.3 Profile execution parameters and real execution parameters for evaluating

performance prediction accuracy. For each profile, 16 profile data was

collected varying the number of work-groups. 46

4.1 Experimental Setup . 75

5.1 Execution time estimation on NVIDIA GTX 760. The cost functions,

f(x1, ..., xN), were statically analyzed. For example, 8thArg means that

the value of the 8th argument is the trip count of a loop in the kernel.

LocalSize(0) means the work-item count per work-group in the first di-

mension, while the constant 1 means that a loop was not found in the

kernel. 98

5.2 Experimental Setup . 110

5.3 Benchmark Specification . 111

xii

ABSTRACT

VIRTUALIZING DATA PARALLEL SYSTEMS FOR PORTABILITY,

PRODUCTIVITY, AND PERFORMANCE

by

Janghaeng Lee

Chair: Scott Mahlke

Computer systems equipped with graphics processing units (GPUs) have become increas-

ingly common over the last decade. In order to utilize the highly data parallel architecture

of GPUs for general purpose applications, new programming models such as OpenCL and

CUDA were introduced, showing that data parallel kernels on GPUs can achieve speedups

by several orders of magnitude. With this success, applications from a variety of domains

have been converted to use several complicated OpenCL/CUDA data parallel kernels to

benefit from data parallel systems. Simultaneously, the software industry has experienced

a massive growth in the amount of data to process, demanding more powerful workhorses

for data parallel computation. Consequently, additional parallel computing devices such as

extra GPUs and co-processors are attached to the system, expecting more performance and

capability to process larger data.

However, these programming models expose hardware details to programmers, such as

xiii

the number of computing devices, interconnects, and physical memory size of each device.

This degrades productivity in the software development process as programmers must man-

ually split the workload with regard to hardware characteristics. This process is tedious and

prone to errors, and most importantly, it is hard to maximize the performance at compile

time as programmers do not know the runtime behaviors that can affect the performance

such as input size and device availability. Therefore, applications lack portability as they

may fail to run due to limited physical memory or experience suboptimal performance

across different systems.

To cope with these challenges, this thesis proposes a dynamic compiler framework that

provides the OpenCL applications with an abstraction layer for physical devices. This

abstraction layer virtualizes physical devices and memory sub-systems, and transparently

orchestrates the execution of multiple data parallel kernels on multiple computing devices.

The framework significantly improves productivity as it provides hardware portability, al-

lowing programmers to write an OpenCL program without being concerned of the target

devices. Our framework also maximizes performance by balancing the data parallel work-

load considering factors like kernel dependencies, device performance variation on work-

loads of different sizes, the data transfer cost over the interconnect between devices, and

physical memory limits on each device.

xiv

CHAPTER I

Introduction

Over the past decade, heterogeneous computer systems that combine multicore proces-

sors (CPUs) with graphics processing units (GPUs) have emerged as the dominant plat-

form. The advent of new programming models such as OpenCL [37] and CUDA [58]

makes it possible to utilize GPUs for processing massive data in parallel for general pur-

pose applications. By leveraging these programming models, programmers can develop

data parallel kernels for GPUs that achieve speedup of 100-300x in optimistic cases [55],

and speedup of 2.5x in pessimistic cases [46].

As a result of these new ways to use massive data parallel hardware, applications from

a variety of domains have been converted to OpenCL/CUDA programs. Meanwhile, the

industry for large-scale data-intensive applications has grown rapidly, and now requires

higher performance on data parallel processing of much larger sets of data [8, 59, 16]. Be-

cause hardware vendors cannot meet these demands with a single computing device (CPU

or GPU including off-chip memories), they configured systems with additional GPUs, ex-

pecting applications to benefit from the additional devices.

Now the burden of improving performance and handling large data sets on increased

1

Challenges

of

Exploiting

GPUs

Portability

Performance Productivity

Figure 1.1: Challenges in exploiting multiple GPUs for large data sets. Because the program-

ming model exposes the hardware details, programmers must consider portability, productivity, and

performance when they write the data parallel kernels with large data on multiple devices.

computing devices must come from the software layers, e.g. applications, libraries, com-

pilers and operating systems (OSs). In traditional software, the benefit from improved

hardwares came for free as OSs virtualize underlying hardwares by providing the illusion

of private computing resources to an application. Therefore, application programmers do

not have to consider target hardware such as processor types and memory sub-systems for

optimizing an application.

For data parallel software, although the OpenCL/CUDA programming model alleviated

part of the complexity by providing unified processing interfaces, it still exposes hardware

details to programmers, such as the number of processing elements, the size of off-chip

memory, and interconnects between computing devices. Due to the absence of the virtu-

alization layer between the hardware and OpenCL/CUDA program, we found three main

challenges in using multiple GPUs: portability, productivity, and performance as shown in

Figure 1.1.

2

intro/figs/3ps.eps

1.1 Challenges of Using Multiple GPUs

Portability: Different GPUs have different architectural specifications, e.g. the number

of cores, the number of registers, maximum number of threads per processors, and the

size of global memory. As a result, a data-parallel kernel optimized for a specific GPU

is not guaranteed to be optimal for other GPUs. In the worst case, the execution may

fail on other GPUs if there are not enough resources, such as physical memory. Most

importantly, OpenCL/CUDA programming model exposes the computing devices of the

system, so application programmers must write the code to list up available devices and

pick a GPU to process data parallel kernels. Also, if a program is written to use a single

GPU, simply attaching new additional GPUs does not bring any performance improvement.

Productivity: In order to make data parallel kernels with large data sets run on multiple

GPUs, the programmer must restructure their code to operate within the limited physical

memory space of a GPU by following several steps: 1) manually divide working sets to

create a set of partial workloads; 2) change the kernel if the algorithm depends on the size

of the working set; 3) transfer the working set back and forth between the application and

GPUs; and, 4) merge the partial outputs from different GPUs into the application’s memory

address space. This process requires a deep analysis of the memory access pattern of the

target kernel’s working set, and substantial code is necessary to facilitate communication

management between the application and GPU.

In addition to these efforts, if an application consists of multiple data parallel kernels,

programmers must analyze the workload of each kernel to map kernels properly into the

devices. During this process, they must also consider dependencies and communication

3

cost between kernels.

This process is tedious and prone to errors and may fail if programmers are unable to

statically determine the working set due to indirect array accesses.

Performance: To maximize the performance of data parallel kernels on multiple GPUs,

statically determining where to execute or how much of the workload to assign to a device

cannot be determined without knowing what resources will be available at the time of

execution. For example, if the fastest GPUs are busy with another data parallel kernel,

the application should select alternative GPUs as a computing device instead of waiting

for the fastest GPU to be free. In addition, interconnects, such as Peripheral Component

Interconnect Express (PCIe), must also be considered for the cost of data transfer because

GPUs have separate memories that use different address spaces. If PCIe bus bandwidth is

saturated by transferring another kernel’s data, workload distribution over multiple GPUs

must be different from the case where the bus is idle. With these dynamic behaviors, it

is hard for programmers to statically decide a workload distribution that maximizes the

performance.

Obviously, shifting all the burden of solving these issues on programmers is an un-

achievable goal. Instead, it is desirable to push as much of these responsibilities as possible

to an additional abstraction layer of software that provides a seamless adaptation of appli-

cation to hardware.

4

1.2 Contributions

In this thesis, we propose a dynamic compiler framework that significantly improves

portability, productivity, and performance for multiple OpenCL kernels on multiple het-

erogeneous devices. This is accomplished by virtualizing computing units (CPU cores

or GPU’s streaming multi-processors), physical memory of GPUs, and the interconnect

between devices. With the information of the underlying system, the framework takes mul-

tiple kernels from the applications, and schedules them on the physical devices considering

kernel dependencies. The framework is fully transparent to OpenCL applications, thus the

only responsibility for programmers is to write OpenCL kernels assuming that there is a

single data parallel device.

The remainder of this chapter describes different frameworks that are specifically de-

signed to virtualize multiple devices and physical memory space, and to schedule multiple

kernels for improving portability, productivity, and performance.

1.2.1 SKMD

In order to improve portability, productivity, and performance of OpenCL kernels on

multiple devices, we propose Single Kernel Multiple Device (SKMD) [44], a dynamic sys-

tem that transparently orchestrates the execution of a single kernel across asymmetric het-

erogeneous devices regardless of memory access pattern. SKMD transparently partitions

an OpenCL kernel across multiple devices being aware of the transfer cost and performance

variation on the workload, launches partitioned kernels for each devices, and merges the

partial results into the final output automatically. For partitioning, performance for each de-

5

vice is predicted through a linear regression model which is trained offline. Using the per-

formance prediction model, partitioning decision is made using steepest ascent hill climb-

ing heuristic in order to minimize the execution time. SKMD is fully transparent to the

applications, so it provides the illusion of a single device by virtualizing physical devices.

As a result, SKMD not only eliminates the tedious process of re-engineering applications

when the hardware changes, but also makes efficient partitioning decisions based on appli-

cation characteristics, input sizes, and the underlying hardware. More details of SKMD are

discussed in Chapter III.

1.2.2 VAST

Although SKMD provides an abstraction layer for computing units and interconnects,

it does not virtualize memory space of GPUs, exposing the physical memory of GPUs to

the programmer. Without virtual address space on GPUs, SKMD cannot handle an appli-

cation with large data that exceeds the physical memory of GPUs, so OpenCL applications

are not fully portable to GPUs even with SKMD. For larger data sets, programmers must

manually split the working set of the application to make data fit into physical memory,

and manage the data transfer between the application and GPUs. This is still a huge burden

for programmers. To increase the programming productivity, we present Virtual Address

Space for Throughput processors (VAST) [43], a runtime system that provides program-

mers with an illusion of a virtual memory space for OpenCL devices. With VAST, the

programmer can develop a data parallel kernel in OpenCL without concern for physical

memory space limitations. In order to virtualize the memory space for GPUs, VAST uses a

inspector-executormodel, which inspects memory footprints of each thread before the real

6

execution, and efficiently extracts required working set of a subset of threads so as to not

exceed the physical memory of GPUs. The extracted data is reorganized into contiguous

memory space, and page tables are created for the address translation. Later, a subset of

threads are executed accessing data through software address translation, and the execu-

tion of a subset of threads is repeated until all the threads finish their executions. Because

VAST is able to process regardless of the type of kernels and fully transparent to the appli-

cations, it significantly improves portability and productivity of OpenCL applications. In

Chapter IV, VAST is discussed in more detail.

1.2.3 MKMD

As more applications are converted to utilize the highly data parallel architectures, ap-

plications are composed of several data parallel kernels communicating one another. Con-

sequently, it is critical to map data parallel kernels properly onto multiple data parallel

hardware in order to maximize the performance. However, it is difficult to manually map

several data parallel kernels onto several computing devices because programmers must

consider many factors like input size, type of data parallel kernels, kernel dependencies,

the number of computing devices, and the interconnect between devices.

While SKMD and VAST virtualize computing resources and address space of GPUs,

they focus only on a single kernel, so their executions can be suboptimal in terms of mul-

tiple data parallel kernels. For example, if there are two kernels that are independent each

other, it could be better mapping kernels onto different devices separately rather than ap-

plying SKMD for each kernel.

To tackle this challenge, this thesis proposes Multiple Kernels on Multiple Device

7

(MKMD), a runtime system that does temporal scheduling of multiple kernels along with

spatial partitioning across multiple devices. To achieve this goal, MKMD proposes a two-

phase scheduling. The first phase builds a kernel graph and schedules at a kernel granularity

maximizing the resource utilization. In this phase, an entire kenrel is executed by a single

device. After than, the second phase reschedules kernels at the work-group granularity by

spatially splitting kernels into sub-kernels considering temporal available computing re-

sources. As a result of this phase, idle time slots on devices are removed. Further details of

MKMD is described in Chapter V.

8

CHAPTER II

Background

The OpenCL programming model uses a single-instruction multiple thread (SIMT)

model that enables implementation of general purpose programs on heterogeneous CPU/GPU

systems. An OpenCL program consists of a host code segment that controls one or more

OpenCL devices. Unlike the CUDA programming model, devices in OpenCL can refer

only to both CPUs and GPUs whereas devices in CUDA usually refer to GPUs. The host

code contains the sequential code sections of the program, which are run on the CPUs, and

a parallel code is dynamically loaded into a program’s segment. The parallel code section,

i.e. kernel, can be compiled at runtime if the target device cannot be recognized at compile

time, or if a kernel runs on multiple devices.

The OpenCL programming model assumes that underlying devices consist of multi-

ple compute units (CUs) which are further divided into processing elements (PEs). The

OpenCL execution model consists of a three level hierarchy. The basic unit of execution is

a single work-item. A group of work-items executing the same code are stitched together to

form a work-group. Once again, these work-groups are combined to form parallel segments

called NDRange, N-Dimensional Range, where each NDRange is scheduled by a command

9

queue. Work-items in a work-group are synchronized together through an explicit barrier

operation. When executing a kernel, work-groups are mapped to CUs, and work-items are

assigned to PEs. In real hardware, since the number of cores are limited, CUs and PEs are

virtualized by the hardware scheduler or OpenCL drivers. For example, NVIDIA devices

virtualize an unlimited number of CUs on physical streaming multi-processors (SMs) by

quickly switching context of a work-group to another using a hardware scheduler.

For scheduling work-groups, devices do not have to consider the execution order of

work-groups because the programming model relies on the relaxed memory consistency

model. The OpenCL programming model uses relaxed memory consistency for localmem-

ory within a work-group and for global memory within a kernel’s workspace, NDRange.

Each work-item in the same work-group sees the same view of local memory only at a syn-

chronization point where a barrier appears. Likewise, every work-group in the same kernel

is guaranteed to see the same view of the global memory only at the end of kernel execu-

tion, which is another synchronization point. This means that the ordering of execution is

not guaranteed across work-groups in a kernel, but only guaranteed across synchronization

points.

Based on this memory consistencymodel, an OpenCL kernel can be executed in parallel

at work-group granularity without concern of the execution order. If a kernel executes

a subset of work-groups instead of the entire NDRange, the result at the end of kernel

execution would be incomplete. However, if the rest of the work-groups are executed after

all, it would correctly complete regardless of type of application. This feature enables

scheduling a subset of work-groups by software even on separate devices that use different

address spaces. By simply assigning subsets of work-groups to several devices exclusively,

10

partial results would appear interleaved in their address spaces. The final result can be

made when the partial results are properly merged.

11

CHAPTER III

SKMD: Single Kernel Execution on Multiple Devices

3.1 Introduction

Heterogeneous computer systems with traditional processors (CPUs) and graphic pro-

cessing units (GPUs) have become the standard in most systems from cell phones to servers.

GPUs achieve higher performance by providing a massively parallel architecture with hun-

dreds of relatively simple cores while exposing parallelism to the programmer. Program-

mers are able to effectively develop highly threaded data-parallel kernels to execute on the

GPUs using OpenCL or CUDA. Meanwhile, CPUs also provide affordable performance on

data-parallel applications armed with higher clock-frequency, low memory access latency,

an efficient cache hierarchy, single-instruction multiple-data (SIMD) units, and multiple

cores. With these hardware characteristics, many studies have been done to improve the

performance of data-parallel kernels on both CPUs and GPUs [46, 75, 12, 24, 33, 26, 17].

More recently, systems are configured with several different types of processing de-

vices, such as CPUs with integrated GPUs and multiple discrete GPUs or data parallel co-

processors for higher performance. However, as most data-parallel applications are written

12

to target a single device, other devices will likely be idle, which results in underutiliza-

tion of the available computing resources. One solution to improve the utilization is to

asynchronously execute data-parallel kernels on both CPUs and GPUs, which enables each

device to work on an independent kernel [13]. Unfortunately, this approach requires pro-

grammer effort to ensure there are no inter-kernel data dependences. In spite of this effort,

if dependences cannot be eliminated, but several kernels are dependent on a heavy kernel,

the default execution model of one kernel at a time must be used.

To alleviate this problem, several prior works have proposed the idea of splitting threads

of a single data-parallel kernel across multiple devices [49, 38, 36]. Luk et al. [49] proposed

the Qilin system that automatically partitions threads to CPUs and GPUs by providing

new APIs. However, Qilin only works for two devices (one CPU and one GPU), and the

applicable data parallel kernels are limited by usage of the APIs, which requires access

locations of all threads to be analyzed statically. Kim et al. [38] proposed the illusion of a

single compute device image for multiple equivalent GPUs. Although they improved the

portability by using OpenCL as their input language, their work also puts several constraints

on the types of kernels in order to benefit from multiple equivalent GPUs. For example, the

access locations of each thread must have regular patterns, and the number of threads must

be a multiple of the number of GPUs.

Despite individual successes, the majority of data parallel kernels still cannot benefit

from multiple computing devices due to strict limitations on the underlying hardware and

the type of data-parallel kernels. As hardware systems are configured with more than two

computing devices and more scientific applications have been converted to more compli-

cated OpenCL/CUDA data-parallel kernels in order to benefit from heterogeneous archi-

13

CPU Device (Host)

Multi Core

CPU

(4-16 cores)

Memory

< 20GB/s

Faster GPUs Slower GPUs

> 150GB/s

GPU Cores

(< 300 Cores)

Global Memory

> 100GB/s

GPU Cores

(< 100 Cores)

Global Memory

PCIe < 16GB/s

GPU Cores

(> 16 cores)

Figure 3.1: Physical OpenCL computing devices with different performances, memory spaces, and

bandwidths.

tectures, these limitations become more significant. To overcome these limitations, we

have identified three central challenges that must be solved to effectively utilize multiple

computing devices:

Challenge 1: Data-parallel kernels with irregular memory access patterns are

hard to partition over multiple devices. Memory read/write locations of adjacent threads

may not be contiguous, or the access location of each thread may depend on control flow or

input data. This kind of data-parallel kernel discourages partitioning over multiple devices

because the irregular locations of input data must be properly distributed over multiple

devices before execution, and output data must be gathered correctly after execution.

Challenge 2: The partitioning decision becomes more complicated when systems

are equipped with several types of devices. As shown in Figure 3.1, a system may have

several GPUs which have different performance and memory bandwidth characteristics. In

addition, some computing devices, such as CPUs or integrated GPUs, can share the mem-

ory space with the host program while external GPUs cannot because they are physically

separated. In this case, the partitioning decision must be made very carefully with regard

14

skmd/figs/hetero_config.eps

to the cost of data transfer in addition to the performance of each device.

Challenge 3: The performance of a GPU is often not constant to the amount of

data that it operates upon, and this variation will affect the partitioning decision. This

problem is more significant for memory-bound kernels where each thread spends most of

its time on memory accesses. For this type of kernel, GPUs hide memory access latency by

switching context to other groups of threads. With fewer threads, more memory latency is

exposed that often leads to disproportionately worse performance. This behavior makes the

partitioning decisions more complex since the partitioner must consider the performance

variation of GPUs.

In this dissertation, we propose SKMD (Single Kernel Multiple Devices), a dynamic

system that transparently orchestrates the execution of a single kernel across asymmetric

heterogeneous devices regardless of memory access pattern. SKMD transparently parti-

tions an OpenCL kernel across multiple devices being aware of the transfer cost and perfor-

mance variation on the workload, launches parallel kernels, and merges the partial results

into the final output automatically. This dynamic system not only eliminates the tedious

process of re-engineering applications when the hardware changes, but also makes efficient

partitioning decisions based on application characteristics, input sizes, and the underlying

hardware.

The challenge for transparent collaborative execution is threefold: 1) generating ker-

nels that execute a partial workload; 2) deciding how to partition the workload accounting

for transfer cost and performance variation; and, 3) efficiently merging irregular partial

outputs. To solve these problems, this dissertation makes the following contributions:

15

OpenCL API

Application Binary

CPUs

CPU Driver

Launch

Kernel

Data-Merge

Kernel

GPU Driver

Partition-Ready

Kernels

WG-Variant

Profile Data

Work

Groups
Dev 0 Dev 1 Dev2

16 22.42 14.21 42.11

32 22.34 34.39 55.12

48 22.55 38.11 80,58

512 22.41 39.21 120.23

Perf. (WGs/ms) Table

for the Application

GPUs GPUs GPUs

OpenCL Library

SKMD Framework

Launch

Partitioner
Buffer

Manager

Kernel

Transformer

Performance

Predictor

Figure 3.2: The SKMD framework consisting of four units: Kernel Transformer, Buffer Manager,

Partitioner, and Profile Database.

• The SKMD runtime system that accomplishes transparent collaborative execution of

a data-parallel kernel.

• A code transformation methodology that distributes data and merges results in a

seamless and efficient manner regardless of the data access pattern.

• A performance predictionmodel that accurately predicts the execution time of OpenCL

kernels based on offline profile data.

• A partitioning algorithm that balances the workload among multiple asymmetric

CPUs and GPUs considering the performance variation of each device.

16

skmd/figs/framework_general.eps

3.2 SKMD System

SKMD is an abstraction layer located between applications and the OpenCL library.

Since OpenCL supports both CPUs and GPUs as computing devices, it is selected as the

language for SKMD. The SKMD layer hooks into every OpenCL application programming

interface (API) including querying-platform APIs. For querying-platform APIs, SKMD re-

turns an illusion of virtual platform with only one large available device. SKMD maintains

all information such as device buffer size, kernel name, and kernel arguments in an in-

ternal mapping table, and does not pass them to the real OpenCL libraries but returns a

fake value (e.g. CL SUCCESS) immediately to the application until the kernel launch

(clEnqueueNDRangeKernel) is requested. The framework consists of a profiler to col-

lect performance metrics for each device by varying the number of work-groups, and a

dynamic compiler to transform and execute the data-parallel kernel on several devices as

shown in Figure 4.2.

The Dynamic compiler has four units: kernel transformer, buffer manager, parti-

tioner, and performance predictor as shown in the grey boxes in Figure 4.2. The kernel

transformer changes the original kernel to the Partition-ready kernel, which enables the

kernel to operate on a subset of work-groups. After kernel transformation, the buffer man-

ager performs static analysis on kernels to determine the memory access pattern of each

work-group. If the memory access range of each work-group can be analyzed statically,

the buffer manager will transfer only necessary data back and forth from each device once

the partitioning decision is made. On the other hand, if the memory access range cannot

be analyzed, the entire input should be transferred to each device and the output must be

17

num_groups(0)

num_groups(1)

num_groups(2)

(a) 3-dimensional work-group range

num_groups(0)

num_groups(1)

num_groups(2)

(b) Flattened view of 3-dimensional work-groups

Dev1 (33%) Dev2 (50%)

Flattened work-groups

Dev3 (17%)

(c) Partitioning on flattened work-groups

Figure 3.3: OpenCL’s N-Dimensional range

merged. In order to merge irregular locations of output from different devices, the kernel

transformer generates theMerge kernel, and SKMD launches it on the CPU.

Once kernel analysis and transformation are done, ranges of work-groups to execute on

each device are decided by the partitioner considering the workload performance on each

device. To estimate performance, the performance predictor utilizes a linear regression

model based upon offline profile data. If the profile information does not exist, SKMD

executes a dry run with Partition-ready kernels varying number of the work-groups for

each device in order to collect the data. After the partitioning decision is made, the buffer

manager transfers necessary data from the host to external devices, then SKMD launches

the actual kernel for each device.

18

skmd/figs/ndrange1.eps
skmd/figs/ndrange2.eps
skmd/figs/ndrange3.eps

The rest of this section discusses these three components of SKMD: kernel transforma-

tion, buffer management, performance prediction, and performance variation-aware parti-

tioning.

3.2.1 Kernel Transformation

As OpenCL kernels can launch up to three dimensional work-groups, the kernel trans-

formation flattens N-dimensional work-groups to one dimension to assign balanced work

over all devices at a work-group granularity. For example, Figure 3.3(a) shows three di-

mensional ranges, each of which has 8 work-groups. Figure 3.3(b) shows the flattened

view, which has 512 work-groups in a single dimension. Once the SKMD framework has

the flattened view of N-dimensional work-groups, it assigns a subset of work-groups in the

flattened range as shown in Figure 3.3(c). Based on this idea, the next subsection discuss

how SKMD generates the Partition-ready andMerge kernels.

Partition-Ready Kernel: Assigning partial work-groups can be done through the code

transformation shown in Figure 4.1. The lines of code with gray background illustrate the

generated code by dynamic compiler. As shown in the figure, it adds a parameter WG from

and WG to to represent the range of the flattened work-group indices to be computed on

a device. In other words, SKMD runs (WG from−WG to + 1) work-groups and skips

the rest on a device. If a kernel launches more than a one dimensional NDRange, flattening

code is inserted as shown at line 11 in Figure 4.1. After flattening, each work-item identifies

its work-group index (flattened id) and checks if it is allowed to execute the kernel.

The additional code with gray background is lowered to 3-9 instructions in PTX and

x86-64 ISAs. These additional instructions consist of loading indices and dimension sizes,

19

1__kernel void Blackscholes_CPU(

2 __global float *call,

3 __global float *put,

4 __global float *price,

5 __global float *strike, float r, float v,
6 int WG_from, int WG_to)
7{
8 int idx = get_group_id(0);

9 int idy = get_group_id(1);

10 int size_x = get_num_groups(0);

11 int flattened_id = idx + idy * size_x;

12 // check whether to execute

13 if (flattened_id < WG_from || flattened_id > WG_to)

14 return;
15 int tid = get_global_id(1) * get_global_size(0)

16 + get_global_id(0);

17 float c, p;

18 BlackScholesBody(&c, &p,

19 price[tid], strike[tid], r, v);

20 call[tid] = c;

21 put[tid] = p;

22}

Figure 3.4: Partition-ready Blackscholes kernel.

MADDs, comparisons, and branches. For PTX code, however, there is no actual load in-

struction for indices and sizes, because GPUs maintain special registers for them, and they

are available to each work-item and work-groups [60]. Nonetheless, these instructions can

be unnecessary overhead for disabled work-groups in GPUs. To estimate this overhead,

VectorAdd was tested with NVIDIA GTX 760 by enabling only one work-group out of

524,288 work-groups, each of which consists of 256 work-items. As a result, the over-

head for this checking code on the GPU is 2.687 ns / work-groups. This overhead can be

eliminated if GPU vendors provide interfaces to the software for work-group scheduling,

so that the runtime system can run partial work-groups without imposing additional work

for disabled work-groups.

On the other hand, for x86 code, the checking code in CPUs may produce significant

overhead as the Intel OpenCL driver executes a kernel in the same way that Diamos et

al. [12] proposed. In their work, the driver transforms a kernel to be wrapped by N-nested

loops in order for CPUs to execute N-dimensional work-items in a work-group. This is

20

Work-groups 33% 50% 17%

Input Address

Read

Output Address

Write

(a) Contiguous Access Kernel

33% 50% 17% Work-groups

Input Address

Read

Output Address

Write

(b) Discontiguous Access Kernel

Figure 3.5: Different memory access patterns of kernels

necessary because the context of each work-item in CPUs must be switched by the code,

not the hardware. After the transformation, the driver iterates over work-groups distribut-

ing them to multiple threads in order to fully utilize multiple CPU cores. Unfortunately,

this leaves CPU execution inefficient for the Partition-ready kernel as CPUs must execute

checking code serially with actual load instructions inside the innermost loop, even though

checking whether to execute is independent from inner loops.

To avoid this problem, SKMD is configured with a specialized OpenCL driver for CPU

devices. The specialized driver directly takes the range of enabled work-groups, so the

SKMD system does not transform a kernel but the driver selectively iterate over work-

groups. Through this loop-independent code motion, SKMD eliminates the overhead of

checking code within the kernel code.

Merge Kernel: Another challenge of collaborative execution of a single data-parallel

kernel is that several computing devices may use different address spaces, so the results

from each device must be merged after execution. Some kernels have contiguous memory

accesses called, Contiguous kernel, where each of the threads writes the result in contigu-

21

skmd/figs/memlayout_linear.eps
skmd/figs/memlayout_nonlinear.eps

1 __kernel void Blackscholes(

2 __global float *call,

3 __global float *put,

4 __global float *price,

5 __global float *strike,

6 float r,

7 float v)

8 {

9 int tid = get_global_id(1) *
10 get_global_size(0) + get_global_id(0);

11 float c, p;

12 BlackScholesBody(&c, &p,

13 price[tid],

14 strike[tid],

15 r, v);

16 call[tid] = c;

17 put[tid] = p;

18 }

(a) Blackscholes Kernel

ST

&call

tid

LD

&c_gpu

DEAD

Insert

LD nodes
1

2

Remove 3

Replace

(b) Data Flow Graph

1 __kernel void Blackscholes_Merge(

2 __global float *call,

3 __global float *put,
4 __global float *c_gpu,

5 __global float *p_gpu,

6 int GPU_from, int GPU_to)
7 {
8 int idx = get_group_id(0);

9 int idy = get_group_id(1);

10 int size_x = get_num_groups(0);

11 int flat_id = idx + idy * size_x;

12 // check whether to execute

13 if (flat_id < GPU_from || flat_id > GPU_to)

14 return;
15 int tid = get_global_id(1) *
16 get_global_size(0) + get_global_id(0);
17 // computation code is removed by DCE

18 call[tid] = c_gpu[tid];

19 put[tid] = p_gpu[tid];
20 }

(c)Merge Kernel for Blackscholes

Figure 3.6: Merge Kernel Transformation Process. Only global output parameters, call and put

in (a), are marked for merging. Using data flow analysis, store values to global output parameters

are replaced with GPU’s partial results, and then proceed with dead code elimination (b). As a

result, the merge kernel does not have computational part (c).

ous locations as shown in Figure 3.5(a). In this case, partial outputs can be merged at lower

cost by simply concatenating partial output from the external GPU devices to the host.

On the other hand, forDiscontiguous kernels that have discontiguous memory accesses,

it is difficult to merge partial output. For example, matrix multiplication is usually imple-

mented by assigning a work-group to work on a tile. Because a two dimensional matrix

22

skmd/figs/dfg2.eps

is flattened to a single dimensional array, writing locations of consecutive work-groups be-

come discontiguous as shown in Figure 3.5(b). Clearly, this type of memory layout can

cause significant overhead for merging outputs. The overhead is high because the output

cannot be copied at once, so each device has to keep the write location for merging and

selectively copies the data afterward.

To solve this problem, SKMD uses a code transformation technique that automatically

merges the data without storing memory-write locations and takes full advantage of the

data/thread parallelism in multi-core CPUs. SKMD merges the output without storing

memory-write locations by reusing the original kernel function for merging partial outputs.

In the CPU device, enabled work-items will write their results to the host’s memory, while

locations for disabled work-items will remain untouched. Instead, the kernels launched in

external GPU devices touch those locations in their own address space. Thus, transferring

the GPU devices’ output to the host and then selectively copying them to the CPU output

would complete the final results. In order to selectively copy the external GPU results,

SKMD launches the Merge kernel to regenerate the addresses that external GPU devices

modified in their output.

To illustrate how merge kernel is generated, Figure 3.6(a) shows the original Blacksc-

holes kernel that generates two output arrays (call and put). For the merge kernel shown

in Figure 3.6(c), the dynamic compiler inserts a parameter GPU from and GPU to, as well

as two additional parameters, p gpu and c gpu, which are the GPU’s partial output ar-

rays (put prices and call prices) transferred to the host’s memory. Output parameters of

the kernel can be determined by the basic data-flow analysis, checking whether global

pointer parameters are used for store. For kernels that copy global pointer parameters

23

to temporary local variables, SKMD uses alias analysis to keep track of the usage of those

pointer variables. The condition for enabled work-group of Merge kernel is equivalent to

that of Partition-ready kernel as shown at line 13 in Figure 3.6(c).

Once the GPU output parameters have been set up, the dynamic compiler follows sev-

eral steps to transform the kernel as illustrated in Figure 3.6(b). The first step is to match the

base of the store instruction to the base of the output parameter from the GPU using use-def

chains. After the dynamic compiler gets the corresponding base, it inserts a load instruction

with the base and the same offset of the store instruction. Next, it replaces the value of store

instruction with the loaded value as shown in lines 19-20 of Figure 3.6(c). Finally, it marks

store instruction as live and proceeds with dead code elimination using the mark-sweep

algorithm [78] to remove all computation code. As a result of this transformation, all com-

putation code, lines 11-15 in Figure 3.6(a), are removed. Note that every function call is

inlined before the transformation in order to avoid expensive inter-procedural analysis.

Clearly, transformed merge kernel does not contain any computation code, except the

calculation of index for the load and store. With this approach, the cost of merging reaches

the bandwidth between CPU cores and main memory (>20 GB/s with DDR-3) regardless

of application. That is, 67 MBytes of 4K× 4K single-precision floating point matrix can be

merged in a short time (< 3.9ms) compared to total execution time (< 1500ms). However,

if a kernel finishes the execution quickly, but still has to merge large size of data, merging in

the host can be a bottleneck. In this case, SKMD does not partition a kernel across multiple

devices as the partitioning algorithm considers merging cost, which is discussed in detail

in Section 3.2.4.

24

3.2.2 Buffer Management

In the SKMD framework, the buffer manage is in charge of transferring input/output

back and forth between the host and external devices. Since the main idea of SKMD is to

assign subsets of work-groups to several devices, each device may not require the entire

input data. Likewise, each device will generate a subset of the output, so it is desirable

to send only updated output back to the host. Considering that the bandwidth of the PCI

express channel is relatively low (less than 6 GB/sec), it becomes critical to reduce the

amount of transferring input and output for external GPU devices.

To determine if it is safe to transfer partial data to GPU devices, the buffer manager

checks if the kernel is a contiguous kernel by analyzing index space of each work-group.

For index space analysis, the buffer manager uses data flow analysis focusing on the index

operand of store and load instructions, which is represented as tid in Figure 3.6(b). Using

use-def chains, the buffer manager computes the function of index. If the function is affine

and represented as a · (W0 ·w0 + l0), it is defined as a Contiguous Kernel. In this equation,

a is a constant or an induction variable of loop, and wi, li, and Wi represents work-group

ID, work-item ID, and size of work-group in the i-th dimension, respectively. For this

type of kernel, it is safe to transfer a subset of data to each device proportional to assigned

work-groups.

On the other hand, if the index space of the kernel cannot be determined statically, or

the affine function fails to be recognized as above, the buffer manager gives up optimizing

data transfer and defines it as a discontiguous kernel. In this case, the entire input and

output will be transferred back and forth between the host and external devices if the kernel

25

is partitioned and theMerge kernel will be launched at the end.

3.2.3 Performance Prediction

After the kernel transformations, SKMD statically determines how many work-groups

should be assigned across several devices. The goal of the partitioning is to minimize the

overall execution time by balancing workload across devices. Therefore, accurate perfor-

mance prediction for each device is necessary for optimal load balancing. For performance

prediction, SKMD relies on offline profile data, which includes the execution time along

with the number of partial work-groups and kernel parameters such as the size of input,

output, value of scalar parameters, and NDRange information. However, SKMD cannot

simply rely on the raw profile data because kernel parameters of real execution may be

different from those of the profiling execution, and it is unrealistic to profile with all com-

binations of execution parameters.

Figure 3.7 illustrates the execution time of Blackscholes (a) and Matrix Multiplication

(b) varying the size of input (one of the kernel parameters) and the partial number of work-

groups. As shown in the figure, the execution times of each application are dependent both

on the size of input and the number of enabled work-groups. In response to this property,

SKMD utilizes linear regression analysis model [53] using the equation below.

y = β0 +
n

∑

i=1

βixi + ǫ (3.1)

For SKMD, the execution time corresponds to y, the dependent variable to be predicted,

and the properties that can affect the execution time are mapped to xi, independent vari-

26

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 2 4 8 16 32 64

E
x
ec

u
ti

o
n

 T
im

e
(m

s)

of enabled work-groups

32M Options

16M

8M

4M

2M

1M

(a) Blackscholes

0

1

2

3

4

5

6

7

8

9

10

11

1 2 4 8 16 32 64 128

E
x
ec

u
ti

o
n

 T
im

e
(m

s)

of enabled work-groups

6K Matrices

5K

4K

3K

2K

1K

(b)Matrix Multiplication

Figure 3.7: Execution time varied by applications, input size, and the number of enabled work-

groups. Depending on the application and input size, the number of enabled work-groups impacts

on the execution time differently.

ables. Those properties are the size of each global arguments, values of scalar arguments,

the dimension of NDRange, the number of work-groups, and the number of work-items.

A linear regression model requires the dependent variable y to be linear to the com-

bination of coefficients βi and independent variables xi, but the execution time in SKMD

may not be represented as a simple combination of βi and xi as described in Equation 3.1.

Figure 3.7 illustrates such case since the execution time is not always linear to the number

of work-groups, but becomes linear as the number of work-groups grows. Meanwhile, in

some applications, the execution time also may not be linear to the input size when the

input size is very small as shown in Figure 3.7(a). To handle these cases, transformations

27

skmd/figs/lm_motiv1.eps
skmd/figs/lm_motiv2.eps

are applied to independent variables as shown in Equation 3.2.

y = β0 +
n

∑

i=1

n
∑

j=1

m
∑

k=1

βkfk(xi, xj) + ǫ (3.2)

This equation is still a linear regression model since y is linear in the coefficients βk, but

the only difference is that transformed independent variables (fk(xi, xj)) are used instead

of simple xi. If modeling a linear equation is done by transforming independent variables,

the prediction can also be done by plugging transformed variables into the linear equation.

For the transformation, an important observation in SKMD is that the execution time

eventually becomes linear to the number of work-groups when the number of work-groups

is large, but the point where the linearity appears is varied by application characteristics

as shown in Figure 3.7. From this property, the number of work-groups is multiplied by

a function that converges from 0 to 1 as the number of work-groups increases. The tan−1

function can meet this requirement because it converges to π
2
from −π

2
. In order to make

the tan−1 function to converge from 0 to 1, the tan−1 function is divided by π and then 0.5

is added as shown in Equation 3.3, where x is the number of work-groups.

g(x) =
tan−1(a(x− b))

π
+ 0.5 (3.3)

In this equation, a is an arbitrary number that changes the slope of the tan−1 function,

and b is another arbitrary number that changes the point that starts to converge. As a result

of this function, the linearity to the number of work-groups will grow as the number of

work-groups increases. Note that SKMD puts several transformed functions with different

a and b, so the regression solver will find the best a, b values by computing the coefficients.

28

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
a

li
ze

d
 E

x
e.

 T
im

e

of Work-groups

Intel i7-3770 GTX 750 Ti GTX 760 Perfect Scale

Figure 3.8: Performance impact on VectorAdd varying the number of work-groups. The execution

time of GPUs do not scale down in spite of reduced number of work-groups.

To this end, a complete transformed function can be represented as Equation 3.4, where

xi is the number of work-groups and xj is another independent variable.

f(xi, xj) = xig(xi)h(xj) (3.4)

In this equation, the function h(xj) is applied for the independent variable xj because

the time complexity of the program may vary. For example, the time complexity of the

square matrix multiplication is O(N3), where N is the number of output elements. In this

case, h(xj) corresponds to xj
3, where xj is the size of output buffer. Note that, SKMD

tries various time complexity functions for h(xj), then the linear regression solver will

eventually find the best transformed function by assigning meaningful coefficient.

3.2.4 Transfer Cost and Performance Variation-Aware Partitioning

Once the performance model for each device is ready, SKMD makes a decision of

how many work-groups should be assigned to each device. The goal of assigning is to

minimize the overall execution time by balancing workloads among several devices. This

29

skmd/figs/partialscale1.eps

is an extension of the NP-Hard bin packing problem [18] and a common problem in load

balancing parallel systems [45].

The difference is that it involves more parameters, such as data transfer time between

the host and devices, and the cost of merging partial outputs. Most importantly, the per-

formance of devices can vary as the number of work-groups assigned to devices changes.

To illustrate, Figure 3.8 shows the relative execution time of the V ectorAdd kernel nor-

malized to the time spent executing 32,768 work-groups on three devices. As shown in the

figure, execution time does not scale down well as the number of work-groups decreases

on discrete GPUs. If the partitioning decision is made without considering transfer cost

and performance variance of partitioning, it will be suboptimal or even cause slowdown

compared to single-device execution.

To illustrate, the example shown in Figure 3.9 assumes that there are three external

GPU devices, each of which has a different performance. If partitioning is done relying

only on their maximum performance, partitioned execution may take longer than single

device execution for two reasons: 1) serialized data transfer; and 2) decreased performance

due to small amount of workload as shown in Figure 3.9(a). In this example, since the

CPU device does not have data transfer and GPU device 2 has significant slowdown when

it executes a small amount of work, more workload should have been assigned to the CPU

device instead of GPU device 2. Figure 3.9(b) shows the ideal case for this example.

Regarding the cost of transfer and performance variance of devices, the partitioning

decision becomes a nonlinear integer programming problem. Many heuristics could poten-

tially be used for this problem, however, one limitation is that SKMD performs partition-

ing at runtime, thus the algorithm must be executed very quickly so as not to overwhelm

30

GPU Dev 0

CPU Dev

GPU Dev 1

GPU Dev 2 Wait

Worse on Small Work

GPU Dev 0

 Only

Input Trans. Kernel Exe. Output Trans.

(a) Partitioning w/o considering transfer time and performance variation

GPU Dev 0

CPU Dev

GPU Dev 1

GPU Dev 2 Wait

Speedup

GPU Dev 0

 Only

(b) Ideal Partitioning

Figure 3.9: Comparison of linear partitioning and ideal partitioning

potential benefits from collaborative execution. This restriction prohibits the exact time

consuming integer programming solutions [41].

To perform partitioning at runtime, SKMD utilizes a decision tree heuristic [66]. For

our system, SKMD uses a top-down induction tree, where the root node is the initial status

and all work-groups are assigned to the fastest device based on the estimation. A node in

the tree represents a distribution of the work-groups among the devices. A node is branched

to its children, and each child differs from the parent in that a fixed number of work-groups

are offloaded from the fastest device to another from the parent’s partition. For each child,

the partitioner estimates the execution time for all devices considering data transfer cost

and performance variation of assigned work-groups. The induction is done by a greedy

algorithm that chooses a child with the most time difference between offloaded device

and offloading device. The partitioner traverses the tree until offloading does not decrease

overall execution time.

31

skmd/figs/partition_ex2.eps
skmd/figs/partition_ex3.eps

Algorithm 1 Performance Variation-Aware Partitioning

1: Partition[1..k] = 0 ⊲ Partition result of k devices

2: BaseDev = argmin
x∈k

{EstDevExeT ime(x, T otalWGs)}

3: PrevExeTime = Min{EstDevExeT ime(x, T otalWGs)}
4: Partition[BaseDev] = TotalWGs ⊲ Assign all groups to base device

5: if Contiguous Kernel then

6: MinOffloadCnt = PartitionGranularity

7: else

8: MinOffloadCnt = Cnt OffsetsMergeCost(BaseDev)
9: end if

10: TolerateCnt = 0

11: OffloadedCnt = 1

12: while (OffloadedCnt> 0 or TolerateCnt < 10) do

13: OffloadedCnt = 0

14: CandidateDevs[1..k].TrialCnt = 0

15: CandidateDevs[1..k].Diff =MAX VALUE

16: for i = 1 to k do

17: if Partition[i] = 0 then

18: OffloadingTrial = MinOffloadCnt

19: else

20: OffloadingTrial = PartitionGranularity

21: end if

22: OffloadingTrial *= 2TolerateCnt

23: if OffloadingTrial> Partition[BaseDev] then

24: continue ⊲ Skip trial for this device

25: end if

26: Partition[BaseDev] -= OffloadingTrial

27: Partition[i] += OffloadingTrial

28: DevsTime[1..k] = EstAllDevsT ime(Partition)
29: EstExeTime =Min{DevsT ime[0..k− 1]}
30: if EstExeTime< PrevExeTime then

31: CandidateDevs[i].TrialCnt = OffloadingTrial

32: CandidateDevs[i].Diff = DevsTime[BaseDev] - DevsTime[i]

33: end if

34: Partition[BaseDev] += OffloadingTrial

35: Partition[i] -= OffloadingTrial

36: end for

37: OffloadDev = argmax
x∈k

{CandidateDevs[x].Diff}

38: OffloadedCnt = CandidateDevs[OffloadDev].OffloadingTrial

39: Partition[OffloadDev] += OffloadedCnt

40: Partition[BaseDev] -= OffloadedCnt

41: if OffloadedCnt> 0 then

42: TolerateCnt = 0

43: else

44: TolerateCnt++

45: end if

46: end while

47: return Partition

32

In detail, the partitioner loads the linear regression equation for performance predic-

tion for each device. The performance equations for each device are computed offline using

profile data. By using the performance equation, the partitioner initially estimates the ex-

ecution time for single device execution for all k devices to identify the fastest device for

each kernel. The execution time in the algorithm includes the transfer cost, which can be

estimated using buffer size allocated by the OpenCL APIs divided by the bandwidth of

PCIe.

Before the partitioner offloads work-groups from the fastest device, it determines the

granularity of the number of work-groups to offload (PartitionGranularity) based on

the total number of work-groups (TotalWGs). In our framework, we limited the number

of induction steps to 2,048, so PartitionGranularity becomes Ceil(TotalWGs/2, 048).

One more thing to consider in terms of offloading is the number of minimum work-groups

(MinWGs) that offsets the merge cost as a result of multiple-device execution. If the ker-

nel is a discontiguous kernel, SKMD must merge output at the end. If the fastest device

offloads work-groups to another device for the first time, the time reduced from offloading

must be greater than the merge cost. The merge cost can be roughly estimated through

the size of output buffer divided by the bandwidth between CPUs and the main memory.

Note that the merge cost is computed only for a discontiguous kernel, while for a con-

tiguous kernel, it uses default PartitionGranularity for initial offloading. After initial

offloading, since the node in the tree contains enough work-groups to offset the merge

cost already, the number of work-groups offloaded to the same device can be increased by

PartitionGranularity.

Once the partitioner has prepared the necessary values for traversing, it starts to traverse

33

down the decision tree from the root node by offloading PartitionGranularity work-

groups to k devices at each step. At each child node, the partitioner estimates the execution

time for all devices using the EstAllDevT ime function, which considers data transfer,

serialization of PCIe transfer, and performance variation as a result of offloading. After

the time estimation of all devices at a child node, the partitioner chooses the maximum

value among estimated time, and add the merge cost to compute the overall execution time.

Then, the partitioner checks if the overall execution time is reduced compared to the parent

node. If a child node takes longer, it is not a candidate for the induction. If the overall time

of a child node is reduced, the partitioner marks it as a candidate. For each candidate node,

the partitioner computes Balancing Factor, which is the difference between the overall

execution time in parent node’s and the time spent in the device that is offloaded from

the parent. For the induction, the partitioner selects the candidate node with the highest

Balancing Factor among all candidates.

If there is no candidates, the partitioner increases PartitionGranularity temporarily

to make sure that the slowdown does not come from the performance variance. If there

is still no candidate after additional trials, the partitioner stops traversing and returns the

status of child node which has the partitioning results. Algorithm 1 shows a high-level

description of partitioning algorithm. While-Loop presented at Line 12-46 corresponds

to traversing down the decision tree, and For-Loop at line 16-36 corresponds to testing

children of a node in the tree.

Overall, the time complexity of this algorithm is O(kN) where k is the number of

devices, and N is the number of total work-groups. Note that N can be reduced to a

constant by limiting the number of induction steps as described above.

34

3.2.5 Limitations

As SKMD partitions workloads at a work-group granularity, global barriers or atomic

operationsmust be handled carefully.

For global barriers, the execution of work-groups should be ordered at synchronization

points in the middle of execution. If work-groups are distributed across multiple devices,

work-groups in each device must make sure that the other devices reached the same syn-

chronization point. One approach to handle this case is to break down the entire kernel into

multiple kernels at the global synchronization point, similar to loop fission [63], then the

split kernels are executed in order.

For atomic operations, the value must be updated with atomicity across all the work-

items in the NDRange. However, if work-groups are scattered across multiple devices,

each device will end up having their own partial atomic values. If the atomic operations

are associative and commutative, intermediate atomic values from different devices can be

aggregated later in the host. According to OpenCL specification, there are 11 atomic oper-

ations [37]. If an OpenCL compiler can analyze the atomic operations during compilation

and detect if they are associative and commutative, OpenCL kernels can still benefit from

the idea of SKMD by running special aggregation code in the runtime system.

Also, kernels that have irregular behaviors may not benefit from SKMD system. The

main reason is that SKMD predicts the execution time based on a regression model as

discussed in Section 3.2.3, which builds a model with NDRange information, the size of

array parameters, and value of scalar parameters. However, it does not consider the value

of array parameters. If control flows of a kernel are heavily dependent on the value of array

35

Device

Intel Core

i7-3770

(Ivy Bridge)

NVIDIA

GTX 760

(Kepler-GK104)

NVIDIA

GTX 750 Ti

(Maxwell-GM107)

of Cores 4 (8 Threads) 1,152 640

Clock Freq. 3.4 GHz 1.62 GHz 1.28 GHz

Memory 32 GB DDR3 (1866) 2 GB GDDR 5 2 GB GDDR 5

Peak Perf. 435.2 GFlops 2,258 GFlops 1,306 GFlops

OpenCL Driver
Intel SDK 2014

(Enhanced)
NVIDIA CUDA SDK 6.0

PCIe N/A 3.0 x8

OS Ubuntu Linux 12.04 LTS

Table 3.1: Experimental setup.

(e.g. breath first search), the execution time is unpredictable only with the size of array.

Because SKMD partitions a kernel statically before distributing work-groups, it is difficult

to partition this kind of kernels optimally across several devices if the execution time is

unpredictable. Applications with these semantics were not handled in this disseration, as

SKMD gives up partitioning if a kernel has array-value-dependent control flows.

3.3 Evaluation

SKMD was evaluated on a real machine that has three different type computing devices

as shown in Table 4.1. Intel Ivy Bridge has an integrated GPU but it does not support

OpenCL in unix-based operating systems, so the integrated GPU is not considered as a

computing device in our experiments. However, the idea of SKMD framework is not lim-

ited to discrete GPUs. SKMD was prototyped using Low-Level Virtual Machine (LLVM)

3.4 [42], on top of a Linux system with NVIDIA driver for GPU execution, and Intel

OpenCL driver for the CPU execution.

36

Every function call to the OpenCL library was hooked by our custom library that

leverages SKMD’s compilation framework. Inside the framework, we used Clang for the

OpenCL frontend, and LLVM 3.4 incorporated with libclc extension was used for the

PTX backend [48]. However, the PTX backend is used only for Merge kernels, while

Partition-Ready kernels were transformed at the source level and then directly fed into the

NVIDIA OpenCL driver.

Enhanced OpenCL driver for CPUs: For Partition-Ready kernels in CPUs, simply

transforming a kernel at the source level and passing it to Intel OpenCL driver may cause

significant overhead as discussed in Section 3.2.1. This is mainly because checking code for

disabled work-groups will be executed for all work-groups within the innermost loop. To

address this problem, we implemented an enhanced OpenCL driver that takes the range of

enabled work-group directly so that it can selectively iterate over work-groups. In order to

keep the aggressive optimizations made by the Intel driver, we used Intel’s offline OpenCL

compiler that generates optimized LLVM-IRs, and then we reverse-engineered them to

implement the enhanced driver that executes the generated IRs for partial work-groups. As

a result of the enhanced driver, the overhead for Partition-Ready kernels is removed for the

CPU.

Benchmarks: For the experiments, a set of benchmarks from the AMD SDK [2] and

the NVIDIA SDK [56] were used to evaluate SKMD. Some benchmarks that either do not

create enough work-groups regardless of input size, or have atomic operations were ex-

cluded. Input sizes for each benchmark for the evaluation are shown in Table 3.2. The

applications from the benchmark suite were compiled without any modification. In Ta-

ble 3.2, Histogram and Reduction were marked as 1st round, because the OpenCL kernels

37

Application Execution Parameters
Buffer Size # of

Work-groups

Contiguous

AccessInput Output

AESEncrypt 4,096×4,096 BMP image 48 MB 48 MB 16,384 N

AESDecrypt 4,096×4,096 BMP image 48 MB 48 MB 16,384 N

BinomialOption 524,288 options 8 MB 8 MB 524,288 Y

Blackscholes 32 million options 400 MB 270 MB 32,768 Y

BoxMuller 192 million numbers 768 MB 768 MB 256 N

FDTD3d 3D dimsize=256, Radius=2 68 MB 68 MB 256 N

Histogram (1st-round) 67 million numbers 256 MB 2 MB 2,048 N

MatrixMultiplication 8,192×8,192 matrices 512 MB 256 MB 65,536 N

MatrixTranspose 8,192×8,192 matrices 512 MB 256 MB 65,536 N

MedianFilter 7,680×4,320 PPM image 128 MB 128 MB 518,400 N

MersenneTwister 192 million numbers 512 KB 768 MB 256 N

Nbody 524,288 particles 16 MB 16 MB 1,024 N

Reduction (1st-round) 67 million numbers (float) 256 MB 65 KB 16,384 N

ScanLargeArrays 8 million numbers (float) 32 MB 32 MB 32,768 Y

SobelFilter 7,680×4,320 PPM image 128 MB 128 MB 518,400 N

VectorAdd 50 million numbers (float) 400 MB 200 MB 196,608 Y

Table 3.2: Benchmark specification. VectorAdd, Blackscholes, BinomialOption, and ScanLargeAr-

rays are classified as contiguous kernels, whereas others are defined as discontiguous kernels.

are used for generating intermediate results, and the host applications finalizes the results

later.

To explain Histogram in NVIDIA SDK implementation, each work-group consists of

256 work-items, and each work-item has its own 256 bins in the local memory (65,536

bins per work-group). The entire data is divided by the number of work-groups, and these

chunks are split again into 256 parts for work-items. Thus, one work-item will increment

its own 256 bins by inspecting one part of data. After incrementing the bins, 256 work-

items are in charge of aggregating bins in the local memory. For example, work-item 0

in a work-group aggregates bin 0 of all 256 work-items, and work-item 1 gathers bin 1s,

and so on. In this manner, bins for every chunk are gathered for each work-group, and

these aggregations are done for all work-groups in the OpenCL kernel, which is referred to

as Histogram (1st-round) in Table 3.2. With the result from the OpenCL kernel, the final

aggregation is done in the second round by the host application .

38

Similarily, Reduction from NVIDIA SDK is implemented without atomic operations.

Instead, work-items in a work-group reduce two numbers at the first step, and reach the

local barrier. After that, half of them reduce the reduced numbers again until only one

work-item remains. As a result, the last work-item will generate the reduced number for

the entire work-group. These steps are done for all work-groups in the OpenCL kernel,

which is also referred to as Reduction (1st-round) in Table 3.2. The reduced numbers for

all work-groups are finally reduced in the second round in the host application.

Methodology: Before the real execution, offline profiling is performed to collect per-

formance data for each benchmark. For offline profiling, it is important to collect enough

data to model linear regression accurately. If the model is computed with too few data,

the error rate can be high especially when execution parameters of the real execution dif-

fer much from profile-run. For this reason, SKMD requires an application to use profil-

ing mode if there is not enough profile data. With profiling mode, SKMD launches the

OpenCL kernel on each device several times varying the number of work-groups. Because

it is important to catch the point that linearity appears as discussed in Section 3.2.3, SKMD

increases the number of work-groups by four (finer granularity) until it reaches 16, and

then increases the granularity as the number of work-groups grows. Once profile data is

collected, SKMD performs the linear regression analysis as discussed in Section 3.2.3.

For the dynamic overheads, we did not consider the cost of kernel analysis and transfor-

mation because they can be done during offline profiling, but we measured the partitioning

overhead, which is done in the real execution. To reduce the overhead, we forced the height

of decision tree used in partitioning algorithm to be within 1,024 steps. In other words, for

kernels that launch more than 1,024 work-groups, SKMD increases partitioning granular-

39

ity. As a result, 1, 024 × 2 (the number of offloading devices) estimations are done in the

worst case. As 2,048 time estimations can be done with less than 100K instructions, the

overhead for the partitioning algorithm is observed as less than 1ms which is negligible for

all benchmarks.

We measured wall clock execution time including the transfer time between host and

GPU devices, kernel execution time, and data merging cost in case of discontiguous access

kernels. Because the CPU resource is shared with the operating system or other applica-

tions, the execution time on the CPU device can vary. Therefore, we ran 1,000 times for

each benchmark and selected 100 sets of results that have the least CPU execution time,

and used the average of those 100 results for the final result.

3.3.1 Results and Analysis

Figure 3.10(a) shows speedup of SKMD compared to the fastest single device execution

and the linear partitioning execution, which is similar to prior approaches [49, 38]. In the

linear partitioning, the number of work-groups assigned to each device are proportional

to the predicted performance without consideration of the transfer cost. The baseline is

different for each benchmark based on its characteristics. For each benchmark, we ran

them on all devices and chose the fastest device (including the transfer cost) as the baseline.

Three benchmarks, Reduction, Histogram, and VectorAdd used CPU-only execution as

their baseline because data transfer cost overwhelms the benefits of executing on GPUs, as

they are extremely memory-bound kernels.

As illustrated in Figure 3.10(a), SKMD performs 28% faster than the single device

execution on average as it considers the transfer cost and performance variation of each

40

0

0.5

1

1.5

2

2.5

R
ed

u
ct

io
n

H
is

to
g
ra

m

M
at

ri
x
M

u
lt

ip
li

ca
ti

o
n

M
at

ri
x
T

ra
n
sp

o
se

M
er

se
n

n
eT

w
is

te
r

B
o

x
M

u
ll

er

A
E

S
E

n
cr

y
p

t

A
E

S
D

ec
ry

p
t

F
D

T
D

3
d

N
b

o
d

y

M
ed

ia
n

F
il

te
r

S
o

b
el

F
il

te
r

G
E

O
M

E
A

N

V
ec

to
rA

d
d

B
la

ck
S

ch
o

le
s

B
in

o
m

ia
lO

p
ti

o
n

S
ca

n
L

ar
g

eA
rr

ay
s

G
E

O
M

E
A

N

G
E

O
M

E
A

N

Discontiguous

Kernels

Contiguous

Kernels

ALL

Intel i7-3770 Only Linear Partition SKMD PartitionGTX 750 Ti Only GTX 760 Only

(a) Speedup normalized to the fastest single device execution

Linear Partition SKMD Partition

R
ed

u
ct

io
n

H
is

to
g
ra

m

M
at

ri
x
M

u
lt

ip
li

ca
ti

o
n

M
at

ri
x
T

ra
n
sp

o
se

M
er

se
n
n
eT

w
is

te
r

B
o
x
M

u
ll

er

A
E

S
E

n
cr

y
p
t

A
E

S
D

ec
ry

p
t

F
D

T
D

3
d

N
b
o
d
y

M
ed

ia
n
F

il
te

r

S
o
b
el

F
il

te
r

V
ec

to
rA

d
d

B
la

ck
S

ch
o
le

s

B
in

o
m

ia
lO

p
ti

o
n

S
ca

n
L

ar
g
eA

rr
ay

s

A
V

E
R

A
G

E

Discontiguous

Kernels

Contiguous

Kernels

-

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

GTX750Ti GTX760 Intel i7-3770

(b)Work-group distribution

Figure 3.10: Speedup and work-group distribution. Each benchmark has different baseline (a), as

the fastest device differ by kernels. The fastest device is determined with regard to the execution

time and data transfer cost.

device during partitioning. An important point from this result is that the linear partitioning

causes slowdown on memory-bound kernels compared to the single device execution. This

is mainly because it does not take the transfer cost into account during the partitioning

although collaborative execution is not favorable due to the transfer cost.

41

skmd/figs/speedup.eps
skmd/figs/workdistribution_var.eps

To illustrate how SKMD partitions work-groups across different devices, Figure 3.10(b)

shows the work distribution of all applications. On average, SKMD partitioning, which

considers the transfer cost, assigns more workload to the CPU than the linear partitioning.

The linear partitioning makes a bad decision for memory-bound applications by assigning

less workload to the CPU, although considerable amount of time is spent on transferring

the data. On the other hand, SKMD partitioning assigns more workload to the CPU, as the

CPU can work more while the data is being transferred to the external GPUs.

Reduction, Histogram, VectorAdd: Reduction, Histogram, and VectorAdd are ex-

tremely memory-bound kernels so SKMD assigns most of the work to the CPU device.

The difference is that Reduction and Histogram are recognized as a discontiguous kernel,

so the host program must transfer the entire input to the external GPU device which dis-

courages collaborative execution due to expensive cost of data transfer. On the other hand,

VectorAdd which is a contiguous kernel does not require the entire input for the partial ex-

ecution, so there is still a chance for the CPU to offload work-groups to the GPU devices.

MatrixMultiplication, AESEncrypt/Decrypt, Nbody, BinomialOption: These bench-

marks are compute-bound kernels where a significant amount of time is spent on computa-

tion, not memory accesses. For these benchmarks, the portion of the workload assigned to

the GPUs are higher than the CPU because of its massively data-parallel structure. As men-

tioned earlier, because GTX 760 is a high performance GPU, it executes more work-groups

than GTX 750 Ti.

MatrixTranspose: MatrixTranspose is a memory-bound kernel but SKMD assigns all

of work to GTX 750 Ti despite the expensive cost of data transfer. This is due to the very

low performance of the CPU. Since the OpenCL implementation targets GPUs, each work-

42

group has a local memory to store input in order to avoid un-coalesced global memory

accesses among work-items. However, for the CPU execution, having local memory does

not benefit from coalesced memory access, but rather produces unnecessary overhead of

copying data to additional space. This overhead may not be significant for other bench-

marks, but for MatrixTranspose in the CPU, copying input to the scratchpad is another

equal amount of work compared to the naive transpose.

ScanLargeArrays: ScanLargeArrays has large memory foot-prints with contiguous

memory access patterns. Similar to VectorAdd, it does not have to transfer the entire data

back and forth between the CPU and the GPUs. However, it has more computations than

VectorAdd that are faster on GPUs, so larger portion of workload is offloaded to the GPUs

than VectorAdd.

Other benchmarks have considerable amount of computations and large memory foot-

prints with discontiguous access patterns. In this case, both compute and transfer costs are

proportional to the size of data, so the data transfer time could offset the reduced computa-

tion time from the collaborative execution. As a result, the speedup from the collaborative

execution is relatively low as shown in Figure 3.10.

3.3.2 Execution Time Break Down

In this section, we show how SKMD transfers data between the CPU and the GPUs,

and assigns work-groups to different devices. Figure 3.11 shows the execution time break

down of three sample applications: Vector Add, Matrix Multiplication, and Histogram.

For VectorAdd, CPU-only is the baseline because it is an extremely memory-bound

kernel. As shown in Figure 3.11(a), SKMD starts the execution on the CPU while trans-

43

0 5 10 15 20 25 30 35 40 45

Intel i7-3770

GTX 760

GTX 750 Ti

Only

S
K

M
D

 P
ar

ti
ti

o
n

in
g

In
te

l
Time(ms)

Input Transfer Kernel Execution Output Transfer Merge Time

(a) VectorAdd

0 1000 2000 3000 4000 5000 6000 7000

Intel i7-3770

GTX 760

GTX 750 Ti

Only

S
K

M
D

 P
ar

ti
ti

o
n

in
g

G
T

X

7
6
0

Time(ms)

Input Transfer Kernel Execution Output Transfer Merge Time

(b) MatrixMultiplication

0 5 10 15 20 25 30 35 40

Intel i7-3770

GTX 760

GTX 750 Ti

Only

S
K

M
D

 P
ar

ti
ti

o
n

in
g

In
te

l

Time(ms)

Input Transfer Kernel Execution Output Transfer Merge Time

(c) Histogram

Figure 3.11: Break down of the execution time on each device. The bars on the top is the baseline,

which is the fastest single-device execution. SKMD considers the transfer cost, and offloads work-

groups in order to balance the workload among the three devices.

ferring huge data to GTX 760 in background. As soon as the data transfer is finished,

SKMD launches the kernel on GTX 760, and at the same time, it transfers data needed for

the remaining work-groups to GTX 750 Ti and then launches the kernel. The transfer time

for GTX 750 Ti is smaller because it is a less powerful GPU for VectorAdd so the size of

data assigned to it is smaller. Since VectorAdd has contiguous memory accesses, there is

no need to merge the data. After both kernels are done, the buffer manager transfers the

44

skmd/figs/breakdown_vadd.eps
skmd/figs/breakdown_mm.eps
skmd/figs/breakdown_histo.eps

data from the GPUs and simply puts them in the final result. As shown in the figure, the

CPU finishes execution almost at the same time as the GPUs finish their data transfer as a

result of accurate partitioning.

The baseline of MatrixMultiplication is GTX 760-only as shown in Figure 3.11(b).

Since Matrix Multiplication takes much more time in computation than VectorAdd, the

impact of transferring time is less for this benchmark. However, SKMD transfers the entire

input and output back and forth between the host and GPU devices as it is classified as

a discontiguous kernel. Similar to VectorAdd benchmark, GTX 760 starts execution first

followed by GTX 750 Ti but finishes later than GTX 750 Ti because it has more work-

groups to execute due to its higher performance. At the end, the CPU merges all partial

results to generate the final output by launching the merge kernel.

Histogram shows different behavior from the other cases. The baseline for Histogram

is CPU-only execution because it has large input, which incurs large transfer cost for the

GPU execution. In terms of execution performance, GTX 750 Ti outperforms than GTX

760 for Histogram as shown in Figure 3.10(b)-Linear Partition, which partitions kernels

linear to the performance. Therefore, GTX 750 Ti has higher priority for offloading. Also,

the output size is much smaller than input size as shown in Table 3.2.

Histogram is categorized as a discontiguous kernel, so SKMD still has to transfer the

entire input to the external GPU devices. As shown in Figure 3.11(c), SKMD does not

assign any work-groups to GTX 760 after assigning some work-groups to GTX 750 Ti,

because serialized input data transfer to GTX 760 would break balanced execution among

three devices. As the output size is small, the overhead of merging kernel is negligible for

this benchmark.

45

Application
Profile Parameters Real Parameters

(same as Table 3.2)Profile 1 Profile 2

AESEncrypt 1,024×1,024 BMP image 2,048×2,048 BMP image 4,096×4,096 BMP image

AESDecrypt 1,024×1,024 BMP image 2,048×2,048 BMP image 4,096×4,096 BMP image

BinomialOption 16,384 options 65,536 options 524,288 options

Blackscholes 1 million options 8 million options 32 million options

BoxMuller 8 million numbers 32 million options 192 million options

FDTD3d 3D dimsize=64, Radius=1 3D dimsize=128, Radius=2 3D dimsize=256, Radius=2

Histogram (1st-round) 4 million numbers 16 million numbers 67 million numbers

MatrixMultiplication 1,024×1,024 matrices 2,048×2,048 matrices 8,192×8,192 matrices

MatrixTranspose 1,024×1,024 matrices 2,048×2,048 matrices 8,192×8,192 matrices

MedianFilter 1,920×1,080 PPM image 3,840×2,160 PPM image 7,680×4,320 PPM image

MersenneTwister 8 million numbers 64 million numbers 192 million numbers

Nbody 65,536 particles 131,072 particles 524,288 particles

Reduction (1st-round) 8 million numbers 34 million numbers 67 million numbers

ScanLargeArrays 500,000 numbers 1 million numbers 8 million numbers

SobelFilter 1,920×1,080 PPM image 3,840×2,160 PPM image 7,680×4,320 PPM image

VectorAdd 8 million numbers (float) 16 million numbers 50 million numbers

Table 3.3: Profile execution parameters and real execution parameters for evaluating performance

prediction accuracy. For each profile, 16 profile data was collected varying the number of work-

groups.

3.3.3 Performance Prediction Accuracy

To evaluate the accuracy of performance prediction on the CPU and the GPUs, we pro-

filed the applications with two sets of execution parameters as shown in Profile Parameters

of Table 3.3. With the profiled data from two sets of execution parameters, SKMD per-

formed a linear regression analysis to get the coefficients. After the computation of the

coefficients, we ran the applications with the real execution parameters as shown in Real

Parameters Table 3.3. For the real execution, we randomly picked the number of partial

work-groups 128 times, and compared the real execution time with the predicted execution

time.

Figure 3.12(a) shows the L2-Norm errors between predicted time and execution time,

and Figure 3.12(b) shows the average error rate for each benchmark. The L2-Norm error

means Euclidean distance between two time vectors, thus it represents the amount of error

46

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

(m
s)

Intel i7-3770 GTX 750 Ti GTX760

(a) L2-Norm

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

R
a

te

Intel i7-3770 GTX 750 Ti GTX760

(b) Average Error Rate

Figure 3.12: Performance prediction accuracy. L2-Norm error (a) shows Euclidean distance be-

tween the real execution time and the predicted execution time in milliseconds. Average error rate

(b) shows the average percentage of errors in predictions.

in milliseconds, while the average error rate shows the difference over the real execution

time. For all benchmarks, high error ratios were observed when SKMD predicts the exe-

cution time with a very few number of work-groups. This is mainly because the execution

time is very short with a few number of work-groups. As a result, even small error values

can result in high error ratios. For example, if SKMD predicted the time as 0.011 ms, but

47

skmd/figs/lm_result1.eps
skmd/figs/lm_result2.eps

the real execution took 0.01 ms, then the error ratio becomes 10% in spite of only 0.001 ms

of misprediction. Considering that the execution time for the execution parameters shown

in Table 3.3 takes more than 10 ms for all benchmarks, the errors in prediction time are

negligible since the error remains under 0.1 ms in most cases as shown in Figure 3.12(a).

3.4 Related Work

A significant focus has been on the execution of data-parallel applications on CPUs.

[46] examined several data parallel applications to show that CPUs can have compara-

ble performance to GPUs, if it takes full advantage of multi-cores with single instruction

multiple data (SIMD) units. There has also been some work on efficient execution of

OpenCL/CUDA applications on CPUs. [75] proposed a source-to-source compiler that

translates a CUDA program into a standard C program using loop-fission technique to

eliminate synchronization. Similarly, [12] developed the Ocelot, a runtime system that

dynamically transforms OpenCL/CUDA kernels for CPU execution. [24] also performed

a similar study, but approached in a light-weight thread (LWT) execution model. In a sim-

ilar fashion, [33] has focused on more efficient execution of OpenCL applications using

whole-function vectorization. All of these prior works are focusing on performance im-

provement on CPUs to show CPUs can perform as good as GPUs for some applications but

none of them deals with collaborative execution with GPUs.

Performance modeling of GPUs for a certain set of applications have been studied for

several years [31, 25]. [25] proposed an analytical model for a GPU architecture with

awareness of memory-level and thread-level parallelism. However, this model relies only

48

on static information of GPU architectures and applications, such as the number of regis-

ters, the size of memory on the device and those numbers required by the application. Also,

this study was based on relatively simple GPU architectures compared to contemporary

GPU architectures, which is much harder to predict the performance statically. Meanwhile,

Jia et al. proposed a GPU performance prediction method based on a linear regression

model, but the work used the prediction model for GPU space exploration varying GPU

architectures. On the other hand, our work described the linear regression model that fits

for various execution parameters in order to optimize the performance.

Dynamic decision of execution on heterogeneous systems with CPUs and GPUs has

been studied in the past [13, 47, 49, 7, 36]. Harmony [13] reasons about the whole pro-

gram by building a data dependency graph and then scheduling independent kernels to run

in parallel. However our approach is different from prior works in that our system is work-

ing on finer granularity (work-groups) rather than function or task level. MERGE [47] is a

predicate dispatch-based library system for managing map-reduction applications on het-

erogeneous systems. [49] proposed the Qilin that automatically partitions threads to one

CPUs and one GPUs by providing new APIs that abstract away two different programming

models, Intel Thread Building Block and CUDA. [38] also proposed a framework that

distributes workload of an OpenCL kernel to multiple equivalent GPUs for specific types

of data-parallel kernels. Delite [7] and is a compilation framework that takes a program

written in OptiML and converts it into C++/CUDA program. Then runtime system man-

ages execution between CPU and GPUs. While this work is limited to domain-specific

languages, SKMD provides more generality as it supports a variety of OpenCL applica-

tions. The PEPPHER proposed by [36] improved the performance by tuning the execution

49

strategy on a heterogeneous system based on their performance prediction model. Our ap-

proach differs from prior work in that our system supports more than two different types

of devices and considers data transfer cost and performance variance during partitioning.

Also, our approach does not rely on additional programming extensions or APIs.

In the mean time, a series of works have been done for virtualizing GPU resources [67,

34, 68, 79, 76, 43]. PTask [67] provides APIs that work with OS abstraction layers to man-

age compute tasks on GPUs by using a data-ow programming model. Dandelion [68] also

proposes a compiler/runtime framework that takes C# sources with newer APIs, and con-

verts them to CUDA code, and runtime manages execution between CPUs and GPUs using

PTask [67]. [34] proposed Gdev that manages GPU resources in the OS level, so GPUs

can be treated as first class computing resources in multi-tasking systems. SKMD is differ-

ent from these prior works as SKMD does not require programmers to use additional APIs

or language extensions, but it is transparent to OpenCL applications, which can be further

optimize parallel kernels by utilizing local memories. [79, 76] also proposed virtualiza-

tion layers for GPUs which take over the control of GPU memory space from applications

without changing APIs. Through these techniques, GPUs can access the data in the host

directly on page faults. Similarly, NVIDIA recently offered Unified Virtual Address to

provide abstract view of unified memory system in separate physical memory [58]. Main

purpose of this idea is removing the burden of managing multiple memory spaces [35],

but it still leaves work distribution between devices as programmer’s responsibility. On

the other hand, SKMD focuses on balancing workloads across multiple computing devices

and transfers the entire working-sets at once in order to avoid high overhead from frequent

PCIe bus transactions for page fault handling.

50

3.5 Conclusion

In this chapter, we presented SKMD, a framework that transparently manages collabo-

rative execution on CPUs and GPUs of a single OpenCL kernel. SKMD leverages assigning

a subset of data-parallel workload over multiple CPUs and GPUs so as to increase overall

performance. As a part of the exploration, this chapter introduced several techniques that

transparently enable a kernel to work on a partial workload and efficiently merge results

from separate devices. In order to distribute a balanced workload, this chapter also pre-

sented an accurate performance prediction model and an efficient methodology for balanc-

ing workload between CPUs and GPUs being aware of data transfer cost and performance

variance depending on the type of device. By experimenting with OpenCL applications

on a real hardware, we showed that SKMD yields a geometric means of 28% speedup on

a machine with one CPU and two different GPUs as compared to the fastest device-only

execution.

51

CHAPTER IV

VAST: Virtualizing Address Space for Throughput

Processors

4.1 Introduction

Graphics processing units (GPUs) have emerged as the computational workhorse of

throughput oriented applications because of their low cost, high performance, and wide

availability [8]. Modern GPUs achieve several tera floating point operations (FLOPS) of

peak performance while costing a few hundred dollars. With CUDA or OpenCL, program-

mers can develop data parallel kernels for GPUs that achieve speedups of 4-100x over

traditional processors (CPUs) [69].

As a result, software in various domains has been connverted to exploit GPU’s com-

puting resources, many of which work on large data sets. For example, galaxy formation

simulation in space research computes physical forces among hundreds of million parti-

cles [74]; economical analysis combines thousands of factors in tens of dimensions and

then computes on it [15]; and numerous fields perform data minings from a huge amount

of data [80],

52

However, discrete GPUs have a critical limitation: the entire data to processmust reside

in GPU memory before execution. When the data size exceeds the physical memory of the

GPU, the application should be developed to let the GPU to access the host memory di-

rectly through the peripheral component interconnect express (PCIe) bus for every access,

which has much lower bandwidth and higher latency than GPU’s memory. Otherwise, the

executionmust be fallen back to the CPU which supports nearly arbitrary data sizes through

virtual addressing. Smart programmers can overcome this restriction by applying a divide-

and-conquer approach. In this case, the programmer explicitly divides the workload into

smaller chunks and executes a series of kernels each processing a subset of the data. This

approach is not a panacea, however. Even in the simple case where the kernel operates on

contiguous data chunks, explicit data management is tedious, requiring manual buffer allo-

cations and data transfer to/from the host. For non-contiguous data, divide-and-conquer is

more complex. Lastly, the size of chunks may change across GPUs with differing amounts

of physical memory.

A natural question is why do GPUs not support virtual addressing to eliminate this

problem as CPUs have done for many decades [71, 5]. Through a combination of hardware

(e.g., translation look-aside buffers) and operating system support (e.g., page tables), CPUs

provide the appearance of a nearly infinite address space to facilitate processing large data

sets. However, virtualizing the address space of discrete GPUs is difficult for the following

reasons:

• Discrete GPUs have separate memories that use different address spaces, and each

transaction between the host and GPU is expensive.

53

• GPUs do not interact with the operating systems for memory management, but in-

stead directly access their physical memory.

• Execution on GPUs is non-preemptive, therefore all data must be present in the phys-

ical memory before execution.

The combination of these factors makes it difficult to execute kernels on GPUs whose

total memory footprint exceeds the physical memory size on the GPU without programmer

intervention. As the size of data to process keeps increasing, this limitation will become

more significant.

To tackle these challenges, we present Virtual Address Space for Throughput processors

(VAST), a run-time software system that provides the programmer with the illusion of a

virtual memory space for commodity OpenCL devices. VAST transparently divides and

transfers working sets based on the available physical memory space on the target GPU.

To virtualize the memory space, VAST adopts a look-ahead page table (LPT), a new type

of page table that contains a list of virtual pages that will be accessed by specific ranges

of the OpenCL workload. LPT differs from conventional page tables used in operating

systems in that the LPT is filled up before the pages are actually accessed. With LPT,

VAST decomposes the working set into individual page frames for execution of the partial

workload. Page frames are packed into a contiguous buffer (frame buffer) that resides

in the GPU’s physical memory and LPT represents the mapping of an OpenCL buffer

from the CPU’s virtual space into the GPU’s physical space (the frame buffer). Instead of

transferring the entire data to the GPU, VAST transfers the LPT and frame buffer for each

partial workload. At the same time, VAST transforms the kernel to access memory through

54

the LPT (e.g., software address translation).

The VAST runtime system significantly improves GPU portability as it can utilize any

GPU for larger sized workloads. The challenges of VAST are four fold: dividing an ar-

bitrary workload based on the available physical memory size, efficiently generating the

LPT and frame buffer, transforming the kernel to use the relocated and packed data, and

avoiding replicated transfers due to reuse of data across partial workloads. To address these

issues, this dissertation makes following contributions:

• A code transformation methodology that quickly inspects memory access locations

of an OpenCL kernel in order to generate LPTs.

• A novel technique that partitions an OpenCL workload into partial workloads based

on the physical memory constraints of a GPU and packs the corresponding data into

a frame buffer using LPTs.

• Kernel transformation techniques to access data out of the frame buffer using LPTs.

• A technique to avoid replicated data transfers to the GPU.

• A comprehensive performance evaluation of VAST on real hardware consisting of an

Intel Core i7 3770 CPU and an NVIDIA GTX 750 Ti GPU.

The rest of the chapter is organized as follows. Section 4.2 discusses the OpenCL exe-

cution model and opportunities for virtualizing GPU memory space. Section 4.3 explains

the overview of VAST, and then the implementation and optimizations are discussed in

Section 4.4 and Section 4.5 respectively. The experimental results of using VAST for var-

ious OpenCL applications are presented in Section 4.6. Section 4.7 discusses the related

55

__kernel void

matrixMul(__global float* C,

 __global float* A, __global float* B,

 int wA, int wB,

 int range_from, int range_to)

{

 int gid_x = get_group_id(0);

 int gid_y = get_group_id(1);

 int size_x = get_num_groups(0);

 int flat_id = gid_x + gid_y * size_x;

 // check whether to execute

 if (flat_id < range_from || flat_id > range_to)

 return;

 int idx = get_global_id(0);

 int idy = get_global_id(1);

 float value = 0;

 for (int k = 0; k < wA; ++k) {

 value += A[idy * wA + k] * B[k * wB + idx];_________

 }

 C[idy * wA + idx] = value;

}

Figure 4.1: The code transformation for partial execution of an OpenCL kernel. The kernel takes

two additional arguments for the work-group range to execute, and grey backgrounded code is also

inserted at the beginning of the kernel to check if the work-group is to be executed. The work-groups

out of the range will terminate the execution immediately.

work in this area. And finally, we conclude in Section 4.8.

4.2 Motivation

As discussed in Chapter II, an OpenCL kernel can be executed in parallel at a work-

group granularity without concern of the execution order. Through the code transformation,

the OpenCL host program can control the number of executed work-groups as shown in

Figure 4.1. By inserting checking code at the beginning of the kernel, every work-item

checks if the work-group it belongs to is supposed to execute. If it should not, the work-

group terminates the execution immediately and the GPU will schedule it out. In this way,

we can limit the total amount of memory accessed by those work-groups to a predefined

amount (the GPU’s physical memory size). This memory is reorganized into page frames

56

vast/figs/matmul_code.eps

and packed into a frame buffer by VAST. A look-ahead page table (LPT) is then used to

map between the original CPU address to the page frame address for the GPU. We refer to

this model as partial execution and the goal of VAST is to automate the decomposition and

to restrict the kernel as necessary to realize software-managed paging.

4.3 VAST System Overview

VAST is an abstraction layer located between an application and the OpenCL library.

The VAST layer overloads all OpenCL APIs including device-querying functions. By over-

loading device-querying APIs, VAST provides the application with the illusion of a virtual

GPU device that has very large amount of memory. With the virtual device, programmers

can allocate buffers as much as they need without concern for the physical memory size.

In order to virtualize address space of OpenCL kernels, actual data must be rearranged

into page frames with the look-ahead page table (LPT), which is filled with a list of pointers

to the corresponding page frames that will be accessed during the execution. In addition, the

OpenCL kernel must access data through the LPT and frame buffer (address translation),

as similar to the conventional program accessing data through TLBs and the operating

system’s page table. After kernel execution, the output buffer for the LPT and page frames

must be recovered to original memory space on the host.

The rest of this section describes execution flow of VAST system and illustrates timeline

of VAST execution.

57

OpenCL Kernel

IR

CPU

Look-ahead

Page Table

Generator

LPT

<empty>

0

<empty>

1023

Transform

Frame Buffer

<4KB data>

<4KB data>

...

<4KB data>

Paged

Access

Kernel

Host Memory GPU Memory

Plain

Array

OpenCL Library

Application

x86 Code

Array

Recovery

Recover

VAST System

5

1

2

10

Inspector

Kernel

PAS

0

1

1

...

0

0x0000

0x0001

0x0002

GPU

0xFFFF

Addr MSB

0: Not used

1: Used LPTgen

S

4

... ...

S

S

3

6

9 8

7

PASgen

Execute

...

PTX Code

Figure 4.2: The VAST system located between applications and OpenCL library. VAST takes an

OpenCL kernel and transforms it into the inspector kernel and the paged access kernel. At kernel

launch, the GPU generates PASs (PASgen) by launching the inspector kernel, then transfers them

to the host to create LPT and frame buffer (LPTgen). Next, LPT and frame buffer are transferred

to the GPU in order to execute the paged access kernel.

4.3.1 VAST System Execution Flow

Figure 4.2 illustrates sequences of VAST system operations. First, VAST compiles an

OpenCL kernel into intermediate representations (IRs), and then generates a GPU binary

58

vast/figs/framework_general.eps

(PTX) for the Inspector Kernel, and the Paged Access Kernel as shown in Figure 4.2 ➊.

After a compilation request, the application will request the kernel launch. On this re-

quest, VAST first launches the Inspector Kernel ➋ that only inspects usage of global argu-

ments (arguments with global keyword) and fills up the Page Accessed Sets (PASs) ➌.

PAS contains boolean values that represent whether a work-group has accessed each page.

Note that each work-group has its own PAS for each global argument of the kernel, and the

size of PAS is fixed as Ceil(AllocSize
PageSize

) where AllocSize is actual OpenCL buffer allocation

size from the application. For example, 4GB of OpenCL buffer will require 1MB of PAS

with 4KB pages. In order to reduce the number of PASs, one PAS can be shared among

several work-groups. In this case, one PAS represents the pages accessed by a subset of

work-groups.

Next, VAST transfers PASs from the GPU to the host ➍, and then the host fills up the

LPT and frame buffers using the PASs until the size of frame buffer reaches the available

GPU memory size ➎. After that, VAST allocates the actual buffers for the LPT and frame

buffer on the GPU, and transfers them to the GPU device ➏. At this point, VAST knows

how many work-groups should be executed as it has generated the LPT and frame buffer

for the specific range of work-groups. In order to execute specific range of work-groups

of the kernel, the Paged Access Kernel also takes additional parameters for the ranges of

work-groups to execute as discussed in Section 4.4.2 of Chapter III. Once VAST finishes

the transfer, it launches the Paged Access Kernel ➐, which accesses the memory through

the LPT.

During execution, the frame buffer in the device memory will be updated ➑, and after

the execution, VAST will transfer them back to the host memory space ➒. Finally, VAST

59

Time

Gathers Frame Buffers for

k work-groups

LPT gen w/

Frame Buffer

PAS gen

Transfer

Host to Device

Paged Access

Kernel Execution

Transfer

Device to Host

Array Recovery

depends on
A B

*

Figure 4.3: Execution timeline for VAST system. Only PAS generation and the first LPT generation

cost is exposed. Other LPT generations and array recoveries are overlapped from data transfer and

kernel execution. With double buffering, the second LPT generation starts immediately after the

first LPT generation.

recovers arrays using the LPT and modified frame buffer ➓, and repeats the steps from LPT

generation ➎ to recovery ➓ until all work-groups finish their execution.

4.3.2 VAST Execution Timeline

Figure 4.3 visualizes the timeline of VAST execution. As shown, the cost of generating

LPTs and frame buffers can be hidden by overlapping them with data transfer and kernel

execution. Thus, the only exposed cost is PAS generation and the first LPT generation.

Mind that VAST allocates LPTs and frame buffers twice on the host for double buffering.

With double buffering, the next LPT generation can proceed right after the previous LPT

generation, as shown in Figure 4.3.

One important point from Figure 4.3 is that transferring the second working set to the

GPU (marked as *) starts after retrieving the first partial result back to the host, not after the

kernel execution. The main reason is that some pages written in the first partial execution

can also be written by the work-groups in the second partial execution. Similar to data for-

60

vast/figs/exeflow.eps

warding in a CPU pipeline datapath, VAST forwards only written pages from the previous

execution to the next execution. Details of forwarding shared pages will be discussed in

Section 4.4.4.

Another feature of VAST is that it avoids duplicated data transfer. To illustrate, if page

frames of a global argument during the partial execution are identical to that of the next

execution, VAST skips LPT and frame buffer generation as well as buffer transfer for the

next execution.

4.4 Implementation

This section discusses the implementation of VAST system including design of PAS,

kernel transformations, and how to create LPT and frame buffers using PASs. Also, the

ways to handle shared pages and to avoid duplicated data transfers are discussed.

4.4.1 The Design of Page Accessed Set

As described in Section 4.3.1, the first step for VAST is launching the inspector kernel

on the GPU in order to generate Page Accessed Sets (PASs). PAS represents a list of pages

accessed by a set of work-groups during execution. Therefore, each entry of PAS contains

a boolean value as shown in Figure 4.4. Later, these PASs will be used on the host to

generate Look-ahead Page Table (LPT), which contains pointers to the page frames.

The inspector kernel is able to execute on the GPU without transferring the working set

because most OpenCL kernels use a combination of work-item index and scalar variables

as the index of global array access. Upon this property, VAST passes only scalar and -

61

0

0

..
.

1

0

..
.

float value = argK[Offset];

PAS for

Work-group N

PASs for arg1 PASs for argK PAS of argK for

work-group N

..
.

Table Index log2PAGESIZE - log2TYPESIZE

Figure 4.4: The design of Page Accessed Set (PAS). Each work-group has its own PAS for each

global argument. Each entry of PAS has a boolean value that represents whether corresponding

page has been accessed by the work-group.

constant arguments to the inspector kernel along with the NDRange information (size

of work-groups and work-items) for PAS generation. If global array access depends on the

value of a global argument, (e.g. indirect memory access), the inspector code is leveraged

on the host, and the host generates PASs directly.

As shown in Figure 4.4, VAST makes use of single level paging because it minimizes

both PAS generation time for the inspector kernel and address translation time for the paged

access kernel. As a result, with 4KB pages, 4 GB of data can be fit into 1 MB of PAS if

each entry uses 1 byte to store a boolean value. However, if PASs are maintained per work-

group per global argument, the size of overall PASs can become significant if the kernel

is launched with a large number of work-groups. For this reason, VAST makes a set of

consecutive work-groups to share one PAS depending on the number of work-groups. The

62

vast/figs/pagetable.eps

number of work-groups per PAS is determined statically using the equation below.

WORKGROUP PER PAS = Ceil(
MEMSIZE

32
AllocSize

TOTAL WORKGROUP

) (4.1)

The assumption behind this equation is that one work-group accesses the space of

AllocSize
TOTAL WORKGROUP

. With this assumption, VAST computes the number of work-groups

not to exceed MEMSIZE
32

accesses. This is a rough estimation, and if it appears that the

number is too small or large, VAST adjust the number dynamically.

When several work-groups try to modify the shared PAS, atomic operation is not neces-

sary because according to NVIDIA’s programming guide [58], if a non-atomic instruction

executed by more than one thread writes to the same location in global memory, only one

thread performs a write and which thread does it is undefined. Thus, it is safe to share one

PAS among several work-groups and work-items because every work-item will try to write

the same boolean value (TRUE).

4.4.2 OpenCL Kernel Transformation

As shown in Figure 4.2 - ➊, VAST transforms each OpenCL kernel into an inspector

kernel and paged access kernel. Both kernel transformations only focus on usages of global

arguments, but the difference is that the inspector kernel replace entire memory operations

with the new stores, while the paged access kernel replaces only the bases and offsets of

memory operations as shown in Figure 4.5.

In detail, the first step for the inspector kernel transformation is to inline function calls in

the kernel in order to avoid expensive inter-procedural analysis. In general, every function

call can be inlined since the OpenCL programming model prohibits recursive calls as it

63

ST

offset

ST ST

&PAS &PAS

Get

PAS base
1

2

Mark old ST as DEAD 4

Get

PAS Index

SHIFT

AMT

SHIFT

AMT

1 1

Insert new ST Node 3

Remove dead code 5

SHR

(>>)

SHR

(>>)

&arg1

(a) DFG for the inspector kernel

ST

&arg1&arg1

offset

LDLD

&LPT&LPT

Get

LPT base
1 SHIFT

AMT

SHIFT

AMT

Replace Base & Offset6

ADDADD

ANDAND

SHR

(>>)

SHR

(>>)

&Frame

Buffer

&Frame

Buffer

Get Frame Pointer

4
LOAD

Frame Index

SHL

(<<)

SHL

(<<)

Get

Frame Offset
3

Get LPT

Index
2

5

SHIFT

MASK

SHIFT

MASK

(b) DFG for the paged access kernel

Figure 4.5: Data flow graphs for the kernel transformation. In the inspector kernel (a), all compu-

tational code are removed by dead code elimination. In paged access kernel (b), the base and the

offset are replaced with new nodes for address translation.

adopts SIMT executionmodel that does not allow threads to execute different instructions at

a time [44]. Next, VAST adds arguments for PASs to the kernel, each of which corresponds

to the respective global arguments. Besides, the arguments for each PAS’s size are added

to the inspector kernel because each work-group finds out their own PAS base by offsetting

the PAS argument by flat work group id×PAS SIZE as shown in Figure 4.4. Note

that the size of PAS differs by global argument because it depends on the actual OpenCL

buffer allocation size from the application.

Once the kernel arguments are setup, VAST performs several steps to transform the ker-

nel as illustrated in Figure 4.5(a). First, VAST finds out load (LD) or store (ST) instruction

that accesses global argument using Def-Use (DU) chains. Next, it matches the base of

LD/ST to the base of the PAS. After VAST gets the corresponding PAS base, it inserts a

node that computes the PAS index using the offset of the LD/ST instruction. The amount

of shifting the offset is determined statically by looking at the type of base pointer and the

64

vast/figs/dfg2.eps
vast/figs/dfg3.eps

4095

<empty>

..
.

0

<empty>

Table Index log2PAGESIZE - log2TYPESIZE

value[N-1]

value[1]

..
.

value[0]

TYPESIZE

value[0]

Page

Frame 0

Look-ahead

Page Table Frame Buffer

Page

Frame 1

Figure 4.6: The design of Look-ahead Page Table (LPT) and frame buffer. One pair of LPT and

frame buffer corresponds to one global argument.

page size as shown below.

SHIFT AMT = log2PAGESIZE − Ceil(log2TY PESIZE) (4.2)

For example, the offset of float type array will be shifted right 10 bits if the page size

is 4,096 bytes for the index of PAS. VAST also supports a custom type such as struct, but

in the page frame, those array elements will be aligned to the order of magnitude through

Ceil() function in the equation. The next step is to insert a new store instruction with the

PAS base, and PAS index as shown in Figure 4.5(a). Finally, VAST proceeds with dead

code elimination (DCE) using the mark-sweep algorithm [78] in order to remove all the

computation code as well as the dead control flows. Because computation code and unre-

lated control flows are removed by DCE, the inspector kernel completes PAS generation

very quickly, which is evaluated in Section 4.6.

In the meantime, VAST also generates the Paged Access Kernel. Similar to the inspector

kernel, VAST also adds additional arguments for LPT and frame buffer for each global

65

vast/figs/pagetable2.eps

argument to the paged access kernel. In addition, it inserts two additional arguments for

the range of work-groups to execute as well as checking code at the beginning of the kernel

for the partial execution as discussed in Section 4.4.2 of Chapter III.

After setting up the kernel arguments, VAST only inspects uses of global array access

using DU chains as the same as the initial step for the inspector kernel. For each use of

global arguments, VAST inserts nodes for address translation based on the design of LPT

and frame buffer as shown in Figure 4.6. As shown in the figure, an additional LOAD

is used for querying the target frame index. The LOAD address of LPT is likely to be the

same among work-items, because OpenCL programmers are encouraged to write the kernel

to access the memory coalesced between work-items to fully utilize memory parallelism.

Once the nodes for the frame pointer and the frame offset are added, VAST replaces the

original base and offset operands of memory access with the frame pointer and the frame

offset respectively as shown in Figure 4.5(b).

Pointer Aliasing is also handled in VAST during kernel transformations. As OpenCL

kernels can use a pointer variable, aliased global pointers also must be considered for both

the inspector kernel and the paged access kernel. An important property of an OpenCL

program is that any pointer variable that will alias to a global argument must be declared

with the global keyword. As a results, if global pointer arguments do not alias one

another, aliases of those can be determined as either No-Alias orMust-Alias in many cases

through basic alias analysis. With this alias result, VAST can keep track of aliased pointers

by offsetting the base. If an aliased global pointer uses different type (typecast), VAST uses

different SHIFT AMT for the aliased pointer during transformation.

66

Algorithm 2 PAS Reduction

1: k = 1

2: RangeFrom = 1

3: ReducedPAS[1..NumArgs][1..PAS SIZE] = 0

4: MemFull PAS[1..N][1..NumArgs][1..PAS SIZE] = 0

5: for i = 1 to PAS CNT do

6: TotalMemUsed = 0

7: for j = 1 to NUM ARGS do

8: MemFull PAS[k][j] = ReducedPAS[j]

9: ReducedPAS[j] = OR REDUCE(ReducedPAS[j], PAS[j][i])

10: MemUsed = SUM REDUCE(ReducedPAS[j])×PAGE SIZE

11: TotalMemUsed = TotalMemUsed + MemUsed

12: end for

13: if TotalMemUsed > MEM SIZE then

14: i = i - 1 ⊲ Roll-back one step

15: k = k + 1

16: StoreRange(RangeFrom, i) ⊲ Store partial execution range

17: RangeFrom = i + 1

18: ReducedPAS[1..NumArgs][1..PAS SIZE] = 0 ⊲ Reset

19: end if

20: end for

21: StoreRange(RangeFrom, PAS CNT) ⊲ Store the last range

22: returnMemFull PAS[1..k] ⊲ return reduced PASs

4.4.3 Look-ahead Page Table Generation

Once PASs are generated by launching the inspector kernel, those are transferred to

the host in order to generate Look-ahead Page Table (LPT) and frame buffer. As shown

in Figure 4.4 and 4.6, LPT differs from PAS in that the entry of LPT contains a frame

pointer (4 bytes), while PAS contains a boolean variable (1 byte). Moreover, LPT stands

for one global argument, while PAS is maintained per global argument per work-groups

as discussed in previous sections. LPT can be produced multiple times for one global

argument because one LPT is for a single sequence of partial execution, which executes for

the working set that fits into GPU memory as shown in Figure 4.3.

In order to generate LPT using PASs, VAST follows several steps. Considering that

each PAS stores the list of pages accessed by a set of work-groups, the first step is to

67

reduce several PASs, which will contain the list of pages accessed bymultiple sets of work-

groups. This reduction process is done until the accessed page size in the reduced PASs

for all global arguments does not exceed the physical memory size. Algorithm 2 illustrates

how VAST reduces the PASs. As illustrated in the algorithm, the outermost loop (line 5-

20) iterates over the sets of work-groups, and the PAS used by a set of work-groups are

OR-reduced to the PAS used by the next set of work-groups for each global argument (at

line 9). As a result, OR-reduced PASs will contain the pages accessed by the multiple

sets of work-groups. After OR-reduction, VAST checks the number of accessed pages by

executing SUM-reduce on reduced PAS (line 10-11). If the total page size of the reduced

PAS exceeds the GPU memory, it stores the range for partial execution (line 13-19), and

continue reduction until PASs for all the work-groups are processed.

The time complexity of this algorithm is O(kNM), where k is the number of global

arguments, N is the number of work-groups, and M is the number of PAS entry count.

In general, k is a very small number (<5) and N can be reduced by letting several work-

groups to share one PAS. Furthermore, reduction operation, which takes O(M), can be

further optimized by utilizing SIMD instructions as reducing two entries is independent

from reducing other entries. In other words, 16 entries can be reduced at once with the

128-bit SIMD instruction as each PAS entry consists of a single byte. As a result, the entire

PAS reduction produce negligible overhead, which is evaluated in Section 4.6.

Once reduced PASs were computed, VAST keeps reduced PASs and the ranges of work-

groups for the partial execution. Each reduced PAS that corresponds to the range will

represent a list of pages that will be accessed by the range of work-groups to be executed.

With reduced PASs, the next step is to allocate the frame buffer for each global argu-

68

1

0

Reduced

PAS

A

1

1

Reduced

PAS

B

Reduced

PAS

C

Shared PAS

for B

A B

Shared PAS

for D

(A B C) D

1

0

..
.

0

1

0

0

Reduced

PAS

D

1

0

..
.

0

0

0

0

0

1
..

.

0

1

1

0

0

1

..
.

Shared PAS

for C

(A B) C

0

0

0

0

0

0

..
.

0

0

1

0

0

1

..
.

1

0

..
.

0

1

0

0

Figure 4.7: PAS generation for shared pages (shared PAS). Each reduced PAS is used for a single

sequence of partial execution. As the sequence of partial execution increases, the number of logical

operations increase for shared PAS as VAST should check pages used in the previous sequences.

ment on the host. At this point, VAST knows how much memory space is required for

the frame buffer by multiplying the page size by the number of valid (TRUE) entries in

the reduced PAS. Finally, VAST starts to fill up the LPT and the frame buffers by iterating

entries of the reduced PASs. If the entry value of PAS is TRUE, it copies the corresponding

page of the plain array to the contiguous memory space, the frame buffer. At the same

time, the location (index) of the page frame in the frame buffer is stored to the entry of LPT

as shown in Figure 4.6. One intelligent feature is that if the corresponding argument is a

Write-Only argument, VAST fills up the frame buffer only for the shared pages, which will

be discussed in detail in the next section.

4.4.4 Forwarding Shared Pages

As discussed in Section 4.2, the OpenCL uses a relaxed memory consistency model for

global memory within NDRange. Thus, any order of work-group execution will produce

69

vast/figs/sharedpages.eps

the same result without concerning write-conflicts among work-groups. However, in VAST,

the granularity of memory transaction between the host and the GPU is a page frame, which

is much larger than usual memory write. As a result, false sharing of a page may occur

among the work-groups with regards to a writable frame buffer because more than one

work-group can change the same page even though they write different location within the

page. Sharing the same pages between work-groups within the same sequence of partial

execution is safe because there is no write-conflict within a page as discussed. However, if

a page was shared among work-groups in different sequences of partial execution, VAST

must transfer up-to-date page frames for each partial execution due to Write-After-Write

(WAW) dependencies. One option is that VAST waits for the partial output to be arrived

from the previous partial execution, and also waits for the partial output to be recovered to

the plain array. After that, VAST proceeds with LPT and frame buffer generation in order

to transfer up-to-date page frames for the next partial execution.

Obviously, this option brings a serious serialization of the execution, because LPT and

frame buffer generation could be overlapped from the kernel execution and transferring

data back and forth between the host and the GPU as shown in Figure 4.3. In order to avoid

serialization, VAST precomputes shared pages among each sequence of partial execution,

and selectively copies the shared pages by looking at the list of shared pages (Shared PAS).

A shared PAS for partial execution can be precomputed using reduced PASs shown in

Figure 4.7. The example in the figure illustrate that there are four reduced PASs, which

means the entire kernel execution was decomposed into four sequences of partial execution.

At each sequence, every accessed page in the PAS must be compared with the same page

in previous sequences of PAS. For example, at the fourth sequence D, VAST performs OR-

70

reduce PASs for all previous sequences, A to C, which represents all the pages accessed by

the previous sequences of partial execution. After that, VAST AND-reduce it with the PAS

of the fourth sequence. VAST also keeps these shared PASs only for the write arguments,

and selectively copies the frame buffer when the partial results are transferred back to the

host.

4.5 Further Optimization

In this section, we further investigate optimization opportunities on VAST.

4.5.1 Selective Transfer

In Figure 4.3, the steps of LPT/Frame gen., HostToDev, DevToHost and Recovery con-

sume the host memory bandwidth. Considering that the bandwidth of the host memory

is relatively lower than GPU memory, huge bottlenecks may exist in these stages, so it is

important to minimize the usage of host memory. Especially, a significant bottleneck is

in Frame generation because it copies data scattered accross memory space into another

contiguous space within the host memory, which has limited bandwidth.

Strictly speaking, gathering the data into contiguous space does not have to be done in

the host because the host can selectively transfer the data to the GPU. In other words, data

can be gathered in GPUs directly while the host transfers the data.

This approach may cause too many transfer requests due to selective transfers at the

page granularity. but the cost can be hidden by using asynchronous APIs. As a result of

this optimization, LPT/Frame gen. will be almost removed as shown in Figure 4.8(a). as

71

Time

Selective transfer for

k work-groups PAS gen

Transfer

Host to Device

Paged Access

Kernel Execution

Transfer

Device to Host

Array Recovery

depends on
A B

...

(a) Selective input transfer

Time

Selective transfer for

k work-groups PAS gen

Transfer

Host to Device

Paged Access

Kernel Execution
Include

Device to Host

depends on
A B

...

(b) Zero copy memory for output buffers

Time

Selective transfer for

k/2 work-groups PAS gen

Transfer

Host to Device

Paged Access

Kernel Execution
Include

Device to Host

depends on
A B

...

(c) Double buffering

Figure 4.8: Execution timeline after optimizations. Selective input transfer removes the cost of

frame generation (a). Zero copy memory for output buffer removes the cost of array recovery (b).

Double buffering overlaps the input transfer with kernel executioans (c).

the cost LPT generation is almost invisible.

72

vast/figs/exeflow_st.eps
vast/figs/exeflow_zc.eps
vast/figs/exeflow_db.eps

4.5.2 Zero Copy Memory

Although using selective transfer reduces the cost of LPT/Frame gen., by removing the

cost of Frame Generation in the host, a considerable bottleneck may still exist in the host

due to Recovery.

One option to reduce this cost is to use zero copy memory [51]. Zero copy memory

allows GPUs to access the host memory directly through the PCI express bus without allo-

cating buffers on the GPU. The main advantage of zero copy memory is that the execution

of a kernel on GPUs is not limited by GPU’s physical memory size. However, it can cause

serious slowdown from low bandwidth and high latency of PCI express bus, because each

work-item in a kernel accesses the host buffer on demand.

For this reason, zero copy memory is known to be beneficial only when the buffers are

read from or written to only once during the kernel execution [51]. The key observation in

OpenCL/CUDA kernels is that each element of output arrays is written no more than once

in general, because multiple work-items writing to the same memory locations will cause

undefined behaviors [58]. Thus, multiple writing to the same location is done by the same

work-item (thread). This happens when a work-item wants to keep an intermediate result

in the array before the final store. In this case, programmers usually use a temporary local

variable to reduce the number of memory accesses.

Upon this observation, one optimization that can be applied to VAST is to allocate

output buffers as zero copy memory. This will eliminates the entire Recovery step as shown

in Figure 4.8(b), and reduces the time for PAS gen, PAS reduction, LPT generation steps,

because page tables and frames for output buffers are not maintained anymore. Meanwhile,

73

DevToHost step will disappear in the execution time line, but the cost will be added to the

kernel execution Kernel Exe., because the data will be written to the host memory directly

during the kernel execution.

4.5.3 Double Buffering

In VAST, one sequence of execution takes workload as much as possible, and the next

sequence of execution had to wait until the output buffer arrives from the previous sequence

of execution. The main reason of this serialization is that pages for output buffers can be

shared between sequences of execution as discussed in Section 4.4.4, so the next sequence

of execution must wait until clean copy of pages arrive to the host.

However, by using zero copy memory for output buffers as discussed in Section 4.5.2,

the next sequence of execution does not have to wait until the previous sequence finishes

execution as each sequence will write the data directly to the host exclusively. Since this

restriction is removed, the execution (Kernel Exe.) can be overlapped with the data transfer

(HostToDev) as shown in Figure 4.8(c). In addition, by letting each sequence of execution

take fewer amount of workload, the first sequence of execution can start the execution

earlier as the amount of data (HostToDev) for each sequence decreases.

4.6 Evaluation

VAST was prototyped using Clang [10] for OpenCL front-end, and Low-Level Virtual

Machine (LLVM) 3.6 [42] for the back-end. Once Clang parses the OpenCL kernel and

generates the IRs, LLVM transforms it to the inspector kernel and the paged access kernel.

74

Device Intel Core i7 - 3770 NVIDIA GTX 750 Ti

of Cores 4 (8 Threads) 640

Clock Freq. 3.2 GHz 1.02 GHz

Memory

(B/W)

32 GB DDR3

(12.8 GB/s)

2 GB GDDR5

(86.4 GB/s)

Peak Perf. 435.2 GFlops [27] 1,306 GFlops

OpenCL Ver. Intel SDK 2013 [1] CUDA SDK 6.0 [58]

PCIe (B/W) 3.0 x16 (15.76 GB/s)

OS Ubuntu Linux 12.04 LTS

Table 4.1: Experimental Setup

After transformation is done, it lowers IRs to PTX binary to launch the kernels in the GPU.

In order to evaluate optimizations discussed in Section 4.5, there are three versions of

VAST, each of which uses 4 Kbyte page size.

• VAST: VAST with selective transfers.

• VAST+ZC: VAST with selective transfers and zero copy memory for output buffers.

• VAST+ZCDB: VAST with all optimizations, selective transfers, zero copy memory

for output buffers, and double buffering.

For the experiments, we used a real machine configured as shown in Table 4.1.

Benchmarks and working sets: For the evaluation, we used the OpenCL benchmarks

from NVIDIA Computing SDK 4.2 [56]. We bailed out very simple benchmarks such as

BandwidthTest, InlinePTX, VectorAdd, etc. Since the benchmark suite is for evaluating

NVIDIA GPUs, some benchmarks are unable to take large inputs. For these benchmarks,

we only modified them to take large inputs. The list of applications, execution parameters,

and working set size are shown in Table 4.9.

CPU-Baseline: We used the OpenCL execution on the CPU device as one of our

75

baselines under the assumption that OpenCL kernels are fallen back to the CPU device

(OpenCL’s logical device) when the working set size exceeds the GPU memory. This is

possible because the CPU device, which shares the address space with the host, has 32 GB

of memory, and thus it can execute on a large working set. For the CPU execution, we

used the Intel OpenCL library [1], which fully utilizes all cores with simultaneous multi

threading (SMT) and SIMD instructions (SSE and AVX). In addition, the Intel OpenCL

library allows a kernel to access the host’s memory directly if the buffer was created with

the CL MEM USE HOST PTR flag. Therefore, our CPU-baseline does not include data

transfer time.

GPU-Baseline: In addition to the CPU-baseline, we also used normal GPU execution

as another baseline. Normal execution means that the host application transfers input to the

GPU at once, executes an OpenCL kernel, and gets the output back to the host. Because

this execution model cannot proceed with the data that exceed the GPU memory, we used

different execution parameters as shown in Table 4.9(b). The comparison with the GPU-

baseline will evaluate the overhead of address translation.

GPU-ZC: For a large amount of data, programmers can develop OpenCL/CUDA ker-

nels to use zero copy memory, in which kernels access the data in the host memory directly

through the PCIe bus. In order to show the overhead of using zero copy memory and the

performance comparison with VAST, we also used the moderate workload as defined in

Table 4.9(b) for GPU-ZC.

76

Application Execution Parameters OpenCL Kernel
Buffer Size # of

WorkgroupsInput Output Total

BlackScholes 256 million options BlackScholes 3.0 GB 2.0 GB 5.0 GB 1,024

FDTD3d 3D dimsize=1024, Radius=2 FiniteDifferences 4.0 GB 4.0 GB 8.0 GB 4,096

MatrixMul 20,480×20,480 matrices MatrixMul 3.1 GB 1.6 GB 4.7 GB 409,600

MedianFilter 30,720×17,820 PPM image ckMedian 2.0 GB 2.0 GB 4.0 GB 8,294,400

MersenneTwister 1.15 billion numbers
MersenneTwister 1 MB 4.3 GB 4.3 GB 512

BoxMuller 4.3 GB 4.3 GB 512

Nbody 41 million particles IntegrateBodies MT 1.3 GB 1.3 GB 2.6 GB 81,920

Reduction 940 million numbers Reduce6 3.5 GB 64 KB 3.5 GB 16,384

SobelFilter 30,720×17,820 PPM image ckSobel 2.0 GB 2.0 GB 4.0 GB 8,294,400

(a) Execution parameters with more than 2GB of data

Application Execution Parameters OpenCL Kernel
Buffer Size # of

WorkgroupsInput Output Total

BlackScholes 64 million options BlackScholes 768 MB 512 MB 1,280 MB 1,024

FDTD3d
X-dim=768, YZ-dim=512,

Rad=2
FiniteDifferences 784 MB 784 MB 1,568 MB 1,536

MatrixMul 8,192×8,192 matrices MatrixMul 512 MB 256 MB 768 MB 65,536

MedianFilter 11,520×6,480 PPM image ckMedian 285 MB 285 MB 570 MB 1,166,400

MersenneTwister 384 million numbers
MersenneTwister 0.5 MB 1,465 MB 1,465 MB 256

BoxMuller 1,465 MB 1,465 MB 256

Nbody 262,144 particles IntegrateBodies MT 8 MB 8 MB 16 MB 512

Reduction 235 million numbers Reduce6 896 MB 0.1 MB 896 MB 16,384

SobelFilter 11,520×6,480 PPM image ckSobel 285 MB 285 MB 570 MB 1,166,400

(b) Execution parameters for less than 2GB of data

Figure 4.9: Benchmark specifications. For the speedup over the CPU-baseline, data size more than

GPU memory is used (a). For the comparison with normal GPU execution, data size less than GPU

memory is used (b).

4.6.1 Results

Comparison with the CPU-baseline: First, we evaluated the speedup of three ver-

sions of VAST over the CPU-baseline. The time measured in VAST involves the time for

PAS/LPT generation, and buffer transfer time.

As shown in Figure 4.10, all versions of VAST performs better than the CPU execution

on average. Especially, VAST+ZC and VAST+ZCDB performed better than CPU on every

benchmark, showing geometric means of 3.2x and 3.46x speedup, respectively.

The reason why Blackscholes, MersenneTwister, and BoxMuller show a huge perfor-

mance gap between VAST and VAST+ZC is that those applications are generating rela-

77

0

1

2

3

4

5

6

7

8

9

10

11

S
p
ee

d
U

p
 o

v
er

 C
P

U
-B

as
el

in
e

VAST VAST+ZC VAST+ZCDB

Figure 4.10: Speedup of VAST over Intel OpenCL execution with 4 KB page frame size. VAST

does selective transfers for input buffers. VAST+ZC uses selective transfers for input buffers and

zero copy memory for output buffers. VAST+ZCDB uses all optimization techniques discussed in

Section 4.5.

tively large amount of data compared to computations. Particularly, MersenneTwister is

a random number generator, which take seeds as an input (few bytes of data), while the

outputs are a huge number of random numbers as shown in Table 3.2. Without zero copy, a

significant amount of time will be spent in Recovery step, which is done in the host memory.

In contrast, MatrixMul and Nbody do not show observable differences between VAST

and VAST+ZC because they are very compute intensive benchmarks, which means that the

portion of array recovery is almost negligible compared to the kernel execution time.

Comparison with the GPU-baseline: Conceptually, VAST is activated only when the

data size is more than GPU’s physical memory. However, in order to investigate the cost of

virtualizing the address space, we forced to trigger VAST execution in spite of small data

size defined in Table 4.9(b), and compared three versions of VAST with the GPU-baseline.

78

vast/figs/eval_speedup_cpu.eps

0

0.2

0.4

0.6

0.8

1

1.2

1.4

S
p
ee

d
U

p
 o

v
er

 G
P

U
-B

as
el

in
e

w
/

T
ra

n
sf

er

GPU-ZC VAST VAST+ZC VAST+ZCDB

Figure 4.11: Speedup of VAST over the GPU-baseline. The performance was measured using small

workloads that fits into GPU memory. GPU-ZC is the execution using zero copy memory for all

buffers.

With moderate working set sizes, Figure 4.11 shows the performance of GPU-ZC and

three versions of VAST normalized to the GPU-baseline. These number includes data

transfer for both VAST and the GPU-baseline.

As shown in the figure, VAST with all optimizations achieves 66% performance of the

GPU-baseline performance on average, while GPU-ZC that uses zero copy memory for all

buffers gets only 48% of GPU-baseline performance. The gap between VAST and GPU-

baseline generally comes from the exposed cost of generating PAS and page lookups during

the kernel execution, which is not necessary for the GPU-baseline.

Some benchmarks, such as BlackScholes, MedianFilter, and Reduction, perform better

with GPU-ZC than with GPU-baseline. The main reason for this is that those are streaming

kernels where buffers are read from or written to only once during the kernel execution. As

a result, high latency of the PCIe bus is amortized by prefetching the data. as well as the

79

vast/figs/eval_speedup_gpu.eps

kernel execution can start the execution without copying the entire data so the execution

time can be overlapped with the data transfer. Considering that these benchmarks are very

memory intensive in which the communication cost is larger than the execution time, most

of the execution time can be hidden.

However, GPU-ZC shows very poor performance on FDTD3d and MatrixMul because

one array element is accessed by multiple work-items, which results in multiple PCIe trans-

actions for each work-item.

For VAST, similar to the comparison with the CPU-baseline, memory-intensive bench-

marks, such as BlackScholes, FDTD3d, MersenneTwister, and BoxMuller show huge gaps

between VAST and VAST+ZC. The reason why MersenneTwister and BoxMuller show

poor performance compared to the GPU-baseline is that they generate large output array

(1.46 GB), and every time it generate a single random number, it writes back to the host

through the PCIe bus that has high latency. Blackscholes is also memory intensive, but

achieves good performance because it involves more computations than MersenneTwister

and BoxMuller. Also, the output size of Blackscholes is much less than those two bench-

marks.

On the other hand, Nbody on VAST shows slightly better performance than the GPU-

baseline, even though VAST has overhead for PAS generation and paged access kernel.

According to the implementation of Nbody in NVIDIA Computing SDK, the entire input

data is accessed by every work-item, but the start locations of global memory accesses

among work-items are different in order to avoid all multiprocessors trying to read the

same memory locations at once. This implementation can cause scattered accesses. For

example, the working set for the last work-group starts to access the tail of the array, and

80

0

0.5

1

1.5

2

2.5

E
x
ec

u
ti

o
n

 T
im

e
N

o
rm

al
iz

ed
 t

o
 D

ir
ec

t
A

cc
es

s

4K 16K 64K 256K 1MPageSize:

Figure 4.12: Paged access kernel execution time normalized to the original kernel execution time.

Working set size for each benchmark is less than 2 GB. Paged-access kernel execution does not use

zero copy memory.

then accesses the head of the array. In VAST, scattered memory locations are gathered into

contiguous page frames, resulting in speedup from more memory level parallelism. The

overhead and benefit of paged accesses are discussed in detail in Section 4.6.2.

4.6.2 Page Lookup Overhead

As discussed in Section 4.3 and 4.4, if the working set size exceeds GPU’s memory

size, VAST transforms the OpenCL kernels to make them access the data through LPT.

As a result, one additional memory access occurs for each global memory access for page

lookups. In the worst case, VAST could experience large slowdown due to doubled memory

accesses for looking up pages. However, a realistic lookup overhead will not be significant

because the size of LPT is small enough to fit in the GPU’s cache and all the work-items in

a work-group have a higher probability of looking up the same page, taking advantage of

81

vast/figs/eval_pgaccess_new.eps

memory level parallelism. In order to evaluate accurate page lookup overhead, we forced

VAST to execute paged access kernels on a small working set, and compared the time spent

in the GPU for the kernel execution. For this comparison, we did not use VAST+ZC and

VAST+ZCDB because the kernel execution time includes the data transfer for the output

when zero copy memory is enabled. We also differentiated page sizes from 4KB to 1MB

in order to observe the performance impact from varied page sizes. For the overhead esti-

mation, we chose our working set size as approximately 1.6GB to not exceed the physical

memory size on the GPU.

Figure 4.12 illustrates paged access kernel execution time, normalized to normal kernel

execution time. As shown in the figure, page lookups bring 29.4% overhead on average

with various page sizes. However, this results is based on VAST without zero copy memory,

the actual page lookup overhead can be reduced if zero copy memory is applied.

A majority of the benchmarks shows less than 25% page lookup overhead, but FDTD3d

shows considerable overhead. FDTD3d is a 3-dimensional stencil benchmark in which 3-

dimensional adjacent input elements must be accessed to compute one output element. In

this case, working sets of adjacent work-items are not contiguous in linear array space, but

far away one another. As a result, VAST suffer from noticeable overhead as adjacent work-

items will lookup different pages which causes separate memory transactions for lookups.

In the meantime, VAST shows slightly better performance on Nbody in spite of ad-

ditional page lookups for every memory access. This is because memory access for the

page lookup affects L2 cache in a positive way for fetching actual data from page frames.

To explain, Figure 4.13 shows the performance counters collected on Nbody with 256K

particles. As shown in the figure, Paged-access kernel has approximately 60 million more

82

instructions due to page lookups (a), which result in 20 million more load transactions

(b) and more register pressure (d). However, Paged-access kernel experiences higher IPC

(f), because it gets more L2 hit rate (i). L2 hit rate of paged-access kernel comes from

less cache thrashing, because it requires more registers per thread, which results in fewer

number of threads scheduled on a streaming multi-processor at a time.

4.7 Related Work

A variety of research has been done to virtualize OpenCL devices as OpenCL pro-

gramming models expose hardware details, such as the number of processing elements, the

number of registers, and the physical memory size in each level of the hierarchy.

While a series of previous works tried to virtualize GPU hardwares in order to allevi-

ate the efforts in optimizing performance [26, 81, 70], other types of researches focus on

virtualizing multiple GPUs to distribute the workload automatically [49, 38, 39, 44, 40].

Although they split data parallel workloads into several parts to distribute them over mul-

tiple computing devices, they either limit the data parallel kernels to have specific memory

access patterns [38, 39, 49, 40], or distribute the entire data to each device assuming the

entire working set fits into each GPU memory [44]. On the contrary, VAST fully virtualizes

the GPU memory that also supports kernels with indirect memory access pattern.

In the mean time, numerous works have proposed automatic CPU-GPU communication

in order to remove explicit memory management [29, 28]. CGCM [29] uses compile-

time type-inference to statically determine the types of data structures and transfer them

between CPU and GPU memories, DyManD [28] employs run-time libraries to allocate

83

83820

83840

83860

83880

83900

83920

83940

Normal Paged

M
il

li
o
n

s

Instructions Executed

(a)

0

20

40

60

80

100

Normal Paged

M
il

li
o
n

s

Global Load

Transactions

(b)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Normal Paged

M
il

li
o
n

s

Global Store

Transactions

(c)

32

34

36

38

40

42

44

Normal Paged

Registers/Thread

(d)

0

100

200

300

400

500

Normal Paged

M
il

li
o
n

s

Requested Global Load

Throughput(bytes/sec)

(e)

1.96

1.97

1.98

1.99

2

2.01

Normal Paged

Issued IPC

(f)

65

66

67

68

69

70

71

72

Normal Paged

M
il

li
o
n

s

L2 Read Transactions

(g)

325

330

335

340

345

350

Normal Paged

M
il

li
o
n

s

L2 Read Throughput

(bytes/sec)

(h)

0

20

40

60

80

100

Normal Paged

L2 Hit Rate (%)

(i)

Figure 4.13: Performance counters collected on N-body with 256K particles. Paged-access kernel

has approximately 60 million more instructions (a), and 20 million more load transactions for page

lookups (b). However, Paged-access kernel experiences higher IPC (f), because it gets more L2 hit

rate (i).

data-structures in CPU and GPU memories. However, they only manage communications

between kernels in cyclic patterns, assuming the entire working set fits into GPU memory.

Larger data sets require explicit programmer management. More recently, OpenACC [62]

proposed new programming standards that consist of a set of compiler directives at a higher

84

vast/figs/perf_insts.eps
vast/figs/perf_glds.eps
vast/figs/perf_gsts.eps
vast/figs/perf_regpres.eps
vast/figs/perf_gldtp.eps
vast/figs/perf_ipc.eps
vast/figs/perf_l2lds.eps
vast/figs/perf_l2ldtp.eps
vast/figs/perf_l2hit.eps

level, which hides hardware details from programmers. Despite these efforts, programmers

must explicitly mange buffer transfer due to physical memory size on the GPU.

NVIDIA introduced Unified Memory in CUDA [58]. NVIDIA’s Unified Memory ab-

stracts away data transfer management between the host and GPU by allocating memory

spaces in both the host and GPU and managing coherenece at the OS’s page granularity.

As a result, programmers do not have to copy the data back and forth between the host and

GPU, but the runtime system transparently migrates the data between the host and GPU

depending on whether pages are clean or dirty on each side. Although Unified Memmory

provides programmers with a single virtualized space from seperate physical memories of

the host and GPU, it still physically allocates the space in GPU that exactly correspond to

the host memory. In other words, Unified Memory failes if the application tries to allocate

the space larger than the physical memory size of GPU.

Inspector-executor (IE) model, which is applied to VAST, has been also adopted in

the field of distributed systems [4, 52, 72]. In their works, the inspector code is used

for identifying precise loop-carried dependencies for irregular access pattern in order to

distribute loop iterations over multiple nodes. Although some of their works perform data

compaction to reduce communication cost between nodes, the target system extracts the

compacted data assuming that the target node has a plenty of memory space supported by

virtual address space. On the other hand, VAST makes use of the inspector to generate LPT

in order to provide virtual memory space on GPUs, while the executer is transformed from

the original code to access through LPT.

Recently, there has been research projects to virtualize GPUmemory [30, 65]. RSVM [30]

is a region based virtual memory running on both CPU and GPU. In this work, program-

85

mers must define regions as the basic data unit abstractions. Then, RSVM manages these

regions and transfers them if necessary. However, VAST does not need the programmer

to think about access patterns of threads and divide the memory manually, thus, VAST is

fully automatic and transparent. Pichai et al. [65] explored address translations on GPUs

by putting translation look-aside buffers (TLBs) in the shader cores. Their work allows a

unified virtual/physical memory space among CPUs and GPUs. However, they only target

integrated CPU/GPU systems that share physical memory while VAST handles systems

with descrete GPUs.

4.8 Conclusion

In this chapter, we presented the VAST system that provides the programmer with an il-

lusion of large memory space for OpenCL devices. Virtualizing memory space for the GPU

is done by automatically partitioning the OpenCL’s NDRange into subsets of work-groups,

and efficiently splitting the working set into several chunks required by a subset of work-

groups based on available physical memory on the GPU. With the subsets of work-groups

and divided working set, VAST performs partial execution multiple times consecutively.

To support these procedures, we introduced a new type of page table, LPT, which has

addresses of page frames that will be accessed by a subset of work-groups on the GPU,

and we introduced code transformation techniques to generate LPT efficiently and to make

OpenCL kernels access memories through LPT.

Our experiments showed that NVIDIA GTX 750 Ti GPU with 2 GB of memory suc-

cessfully executed for more than 2 GB of working set regardless of memory access pattern.

86

In addition, VAST achieved 3.46x speedup over CPU execution, which is a realistic alter-

native for large data computation.

87

CHAPTER V

MKMD: Multiple Kernel Execution on Multiple Devices

5.1 Introduction

As the amount of data to process keeps growing, data parallel hardware such as graph-

ics processing units (GPUs) and data parallel coprocessors have been intensively focused

on. With OpenCL and CUDA, more application domains focus on exploiting the compu-

tational power of GPUs, and the complexity of the applications being mapped onto data

parallel systems has increased. Applications will grow from a single kernel surrounded by

the corresponding setup code, to a multitude of communicating data parallel kernels with

interspersed CPU code that require exploiting all processing resources (CPUs and GPUs)

to achieve the desired performance level.

Unfortunately, applications with several data parallel kernels are difficult to efficiently

map onto multiple CPUs and GPUs for three main reasons. First, the mapping decision

must be made depending on the number of available computing devices, being aware of

their performance capability. Second, kernel execution time is varied by the input size, so

kernels must be mapped considering the input size of each kernel. However, programmers

88

1

6

5

4

1Kx8K Matrix Transpose

1Kx1Kx8K Matrix Mul

1Kx8Kx1K Matrix Mul

1Kx1Kx1K Matrix Mul

3

Matrix A

(1Kx1K)

Matrix B

(1Kx8K)

Matrix C

(1Kx1K)

CPU GPU 1 GPU N

PCIe Interconnect

GPU MEM GPU MEM MEM

Multiple kernels

with data flows

Kernel types and size

2

Figure 5.1: A kernel graph for solving a matrix equation, A2BBTCB, consisting of six kernels.

The system is equipped with different computing devices with separated physical memory. De-

vices are connected through PCI express (PCIe) interconnect. Each kernel has different amount of

computation, and each device has different performance.

cannot determine the input size that will be used for the real execution. Third, it is hard

to fully utilize computing resources due to kernel dependencies. If no kernel can be exe-

cuted in parallel due to dependencies, kernels should be mapped to a single device in serial

resulting in other devices being idle.

To explain these observations, Figure 5.1 illustrates an example application with mul-

tiple kernels for solving a matrix equation, A2BBTCB. In the equation, A and C are

1K × 1K matrices, and B is a 1K × 8K matrix. The target system has different devices

each of which shows different performance on different kernels. First, kernels 1, 2, and

5 in Figure 5.1 are not dependent on each other, thus they can be executed in parallel on

separate devices if there are enough devices. However, it is difficult for programmers to

allocate resources efficiently as they do not know the target system at compile time.

89

mkmd/figs/dag_archs.eps

Next, kernels 1 and 5 in Figure 5.1 are the same code, but have different computation

cost due to the input size. For this reason, even though programmers target a specific

system, they cannot statically decide which kernel should be mapped to a faster device.

Last, kernel 6 in Figure 5.1 must be executed alone after all other kernels are finished,

which leaves the other devices idle. However, the performance can be further improved by

splitting kernel 6 into sub-kernels, and mapping them to all devices.

To address these challenges, this dissertation proposes MKMD, or multiple kernels

on multiple devices, a runtime system that combines temporal scheduling of multi-kernels

along with spatial partitioning of data/computation across multiple computing devices. The

objective of MKMD is to complete all kernels and CPU code in the least time. To achieve

this goal, MKMD proposes a two-phase scheduling approach considering the expected

kernel execution time, data transfer cost, and available bandwidth of the interconnect. The

first phase is coarse-grain scheduling, which constructs a kernel graph and schedules at a

kernel granularity maximizing the resource utilization. This phase assumes kernels must

be entirely executed by a single device. The second phase is fine-grain partitioning, which

reschedules kernels at the work-group (thread-block) granularity by spatially partitioning

kernels into sub-kernels across available computing devices. In this manner, this phase

removes idle computing periods on devices to reduce kernel execution time.

As MKMD schedules kernels before their execution, it must be aware of the execution

time for each kernel on each device for the given input sizes. Offline profiling can be

used for the execution time estimation, but profiling all combinations of kernels, devices

and different input sizes is time-consuming and often infeasible. In order to estimate the

execution time with a few sets of offline profile data, MKMD builds a regression model for

90

each kernel on each device, and uses the model for the different input sizes.

With MKMD, programmers are only responsible for enqueuing data-parallel kernels to

MKMDwithout worrying about mapping kernels to target devices or splitting a kernel into

sub-kernels. The contributions of this dissertation are as follows:

• Input-variant performance estimationmethodology that is specialized for data-parallel

kernels.

• Mapping the list of data-parallel kernels to a task scheduling problem where the goal

is to assign kernels to compute devices cognizant of execution capabilities and data

transfer times.

• A fine-grain kernel partitioning algorithm that identifies idle time slots and splits

kernel execution across multiple idle devices.

5.2 MKMD Overview

MKMD is a runtime library that is compatible with OpenCL APIs as illustrated in

Figure 5.2. Since MKMD is transparent to OpenCL applications by providing the illusion

of a single virtual device, programmers can build an algorithmwithout concern for mapping

multiple kernels to several devices.

Instead, MKMD makes a scheduling decision by estimating the execution time of each

kernel on the underlying devices for the given input size. In addition, each kernel can be

decomposed into several sub-kernels for scheduling at work-group granularity. MKMD

also predicts the execution time of sub-kernels with a partial number of work-groups. In

order to estimate the execution time, MKMD operates in two different modes, profiling

91

Application

OpenCL

Kernel

MKMD

Profiling Mode

Static Analysis

Generate Sub-kernels

Execution Mode

Profile

Modeling

Offline

Analysis

Result

Coarse-grain

Scheduling

Fine-grain

Multi-kernel Partitioning

Graph Construction

Generate Sub-kernels

Execute

Figure 5.2: MKMD workflow that operates in profiling mode and execution mode. In profiling

mode, MKMD builds a mathematical model with a set of profile data for the execution time predic-

tion. In execution mode, MKMD predicts the execution time of kernels on various input sizes using

the model, and schedules kernels based on the predicted time.

mode, and execution mode, as shown in Figure 5.2.

In profiling mode, MKMD collects offline profile data by executing the kernels with

various input sizes and different numbers of work-groups. As profiling the execution time

for all possible input sizes and numbers of work-groups is unrealistic, MKMD profiles

kernels on each devices with a set of few representative inputs and work-groups, and per-

forms a regression analysis to construct a mathematical model for a wide range of input

and work-group sizes. In order to facilitate the regression analysis, MKMD statically an-

alyzes kernels to approximate the computational complexity. Details of the modeling are

discussed in Section 5.3.

92

mkmd/figs/general_flow.eps

Once the offline analysis is done, MKMD can be run in execution mode, which follows

five steps as shown in Figure 5.2; 1) Kernel graph construction; 2) Coarse-grain scheduling;

3) Fine-grain multi-kernel partitioning; 4) Sub-kernel generation; and 5) Execution.

For the kernel graph construction, MKMD analyzes the parameters of each kernel, de-

termines the data (buffer) flow between kernels, and then constructs the graph. In the next

step, MKMD performs coarse-grain scheduling, which assigns kernels to the devices con-

sidering kernel dependencies, predicted execution time, and buffer transfer cost between

the devices. After coarse-grain scheduling, MKMD runs fine-grain partitioning to improve

the scheduling results, in which the scheduler could have left some devices idle for certain

amount of time due to insufficient kernel-level parallelism. In order to utilize those idle

devices, MKMD decomposes a kernel into a set of sub-kernels at work-group granularity,

offloads them to available devices, and adjusts the scheduling results.

After the scheduling decision is made, MKMD executes kernels by generating the ac-

tual OpenCL commands for each device, which include both kernel executions and data

transfers. The details of MKMD scheduling and partitioning are discussed in Section 5.4.

5.3 Execution Time Modeling

In order for MKMD to schedule kernels before it runs kernels, it must be aware of the

execution time for each kernel on each device for the given input sizes. One way to estimate

the kernel execution time is to refer to the offline profile data, which is gathered by varying

the combination of the number of work-groups, input size, and device. However, it is often

impractical to profile for every possible input size.

To avoid a large number of profiling, another approach is to build a model to predict

93

the execution time for the given input size. To build such a model, the relation between

computational cost and a given input must be analyzed first. Prior works have examined

experimental algorithmics in order to analyze the asymptotic cost of programs using repre-

sentative input sets [61, 50, 82, 11]. The intuition behind these works is that the asymptotic

cost can be inferred from several executions with different input size by extrapolating the

trend of the result. [50] showed that a large number of input sets may be required as there

are some cases where cost functions are hard to be discovered. To improve the accuracy on

these cases, [82] narrowed down the domains to specific data structures, and [11] applied

regression analysis techniques.

Although previous studies showed that empirical analyses can provide accurate cost of

a program, they mainly target legacy sequential applications on conventional processors.

As traditional software has dynamic behaviors and faces difficulties in static analysis due to

complex data structures, asymptotic analyses may require considerable amount of profile

data.

However, the asymptotic cost of OpenCL kernels can be statically analyzed in many

cases due to restrictions of the programming model and their deterministic properties.

First, OpenCL does not allow recursive calls, so expensive inter-procedural analysis can

be avoided by inlining function calls. Second, it prohibits system calls and double point-

ers (pointers of pointers), which make kernels more deterministic and easy to analyze.

Third, the number of work-items and the input/output size of the kernel is predefined be-

fore kernel launch, thus the upper bound of the loop can be statically determined for many

cases [22, 23].

Based on these observations, this work investigates the potential of static analysis on

94

1

2

3

4

5

6

7

8

__kernel void square_matmul(__global float *C,

 __global float *A, __global float *B, int N) {

 int i = get_global_id(0);

 int j = get_global_id(1);

 for (int k = 0; k < N; ++k)

 tmp += A[i * N + k] * B[k * N + j];

 C[i * N + j] = tmp;

}

(a)Matrix multiplication

1

2

3

4

5

6

7

__kernel void vadd(__global float *C,

 __global float *A, __global float *B, int N) {

 int i = get_global_id(0);

 int T = get_global_size(0);

 for (int k = i; k < N; k += T)

 C[k] = A[k] + B[k];

}

(b) Vector addition

Figure 5.3: Upper bounds of trip count. The upper bounds are statically determined as N for (a),

and N
T
for (b)

OpenCL kernels, proposes an efficient methodology that requires a few input sets for mod-

eling the execution time, and evaluates the accuracy of proposed approach. Note that if the

cost function cannot be analyzed statically, it can also be modeled using more profile data,

which was discussed in Section 3.2.3.

To illustrate the static cost analysis, Figure 5.3 shows two simple code examples. In

Figure 5.3(a), the upper bound of the loop trip count is N , which is passed by the host

program. Because the kernel code is executed by the number of work-items defined by

the host program, the asymptotic cost of the kernel is O(TN), where T is the number of

work-items.

In contrast, some kernels are launched with a fixed number of work-items, but each

work-item iterates until all input elements are properly handled as shown in Figure 5.3(b).

In this case, the upper bound of the loop trip count is analyzed as N
T
. Because the code will

also be executed by T work-items, the asymptotic cost of this kernel becomes as O(N).

Since the asymptotic cost can be regarded as the dynamic instruction count in the worst

95

mkmd/figs/reg_code1.eps
mkmd/figs/reg_code2.eps

0

0.5

1

1.5

0.0E+00 2.0E+06 4.0E+06 6.0E+06

T
im

e
 (

m
s)

32K 64K 96K 128K 256K

Option count

f(x1, ... ,xN) value

(a) Blackscholes

of particles

0

500

1000

1500

0.0E+00 2.5E+10 5.0E+10

T
im

e
 (

m
s)

32K 64K 128K 256K

f(x1, ... ,xN) value

(b) N-body

(x1, ... ,xN) value

0

1

2

3

0.0E+00 1.0E+06 2.0E+06 3.0E+06

T
im

e
 (

m
s)

2M 8M 16M 32M

(c) Sobel filter

0

5

10

15

0.0E+00 5.0E+08 1.0E+09

T
im

e
 (

m
s)

1Kx1Kx1K 1Kx4Kx1K 4Kx4Kx4K 1Kx6Kx1K 6Kx6Kx6K

Matrix size

f(x1, ... ,xN) value

(d)Matrix multiplication

Figure 5.4: Scalability of execution time on NVIDIA GTX760 varying input sizes and the number

of enabled work-items (T). The execution time is linear to the value of cost function Tf(x1, ..., xN).

case, the estimated dynamic instruction count can be defined as,

c× Tf(x1, ..., xN) (5.1)

where c is an estimated coefficient, T is the number of work-items, and xi is a variable

that can affect the trip count of a loop in the kernel. Consequently, the estimated execution

time on a device, T imeest can be defined as

T imeest =
CPI

Freqclock
× c× Tf(x1, ..., xN) (5.2)

96

mkmd/figs/scale_bs.eps
mkmd/figs/scale_nbody.eps
mkmd/figs/scale_sobel.eps
mkmd/figs/scale_mm.eps

In Equation 5.2, CPI (cycles per instruction) and Freqclock differ by device properties

(e.g. the number of cores and memory hierarchies), while the value of Tf(x1, ..., xN) can

be determined statically at compile time. Therefore, the new coefficient, CPI
Freqclock

× c, is

estimated using a regression analysis.

To explain, Figure 5.4 illustrates the execution time of several benchmarks fromNVIDIA

SDK [56], varying input sizes and the number of work-items. Each legend represents the

execution with different input parameters. The X-axis in the figure is the value of the

cost function, Tf(x1, ..., xN), varying the number of work-items, T , with the technique

discussed in Section 3.2.1.

As shown in the figure, for the same input size, the execution time is linear to the value

of the cost function. Also, the slopes, CPI
Freqclock

× c, are equivalent regardless of the input

size. Although Figure 5.4 (a) and (b) show the same initial cost over different input sizes,

(c) and (d) show different initial cost despite the same value of the cost function. The

reason is that the number of work-items (T) is controlled by the software methodology

as discussed in Section 3.2.1, which activates the entire number of work-items first, and

selectively disables work-items by exiting work-items immediately. In other words, the

fixed cost increases as the total number of work-items grows.

Because Blackscholes in NVIDIA SDK uses the fixed number of work-items similar

to the example shown in Figure 5.3(b), and N-body runs with a relatively small number of

work-items, the initial cost is similar regardless of the input size. On the other hand, the

other benchmarks, (c) and (d), have different initial cost because they increase the number

of work-items as the input size grows. Note that the initial cost is linear to the number of

97

Kernel f(x1, ..., xN)
Avg. Error (%)

20 profiles 40 profiles

Blackscholes 8thArg 2.12 1.27

N-body 8thArg
LocalSize(0) 1.72 1.23

MatrixMul 6thArg 1.4 0.9

FDTD3d 6thArg 1.98 1.45

SobelFilter 1 1.18 0.97

MedianFilter 1 1.06 0.98

K-Means 4thArg ∗ 5thArg 1.42 1.18

Table 5.1: Execution time estimation on NVIDIA GTX 760. The cost functions, f(x1, ..., xN),
were statically analyzed. For example, 8thArg means that the value of the 8th argument is the trip

count of a loop in the kernel. LocalSize(0) means the work-item count per work-group in the first

dimension, while the constant 1 means that a loop was not found in the kernel.

work-item, but it still can be different across devices. Therefore, initial cost must also be

considered during regression analysis, and the final equation for the execution time can be

expressed as,

y = β1Tf(x1, ..., xN) + β2T + ǫ (5.3)

With Equation 5.3, the tuple, <y, Tf(x1, ..., xN), T>, is recorded for each profile-run,

and then β1, β2, and ǫ are modeled through the regression analysis. Once the values of β1,

β2, and ǫ are modeled, the execution time ŷ can be estimated in runtime by putting the real

value of f(x1, ..., xN) and T .

In order to evaluate the accuracy of the execution time model, OpenCL applications

from NVIDIA SDK and Rodinia [9] were used. Table 5.1 shows the estimation result for

a subset of applications from two benchmark suites on NVIDIA GTX 760. The execution

time models were constructed with 20 and 40 sets varying input sizes and work-group

sizes. The sizes of input for the profiling were more than 100 MB. The second column

of Table 5.1 describes the cost function, f(x1, ..., xN), which is analyzed at compile time.

To compute the average error rate, 100 executions were performed with random inputs and

98

work-group sizes, and the estimated time was compared with the observed time.

As shown in Table 5.1, the average performance prediction error with random input

remained under 3% with 20 profiling sets, and under 2% with 40 profiling sets.

5.4 MKMD Scheduling

With a regression model constructed through profiling, MKMD schedules multiple ker-

nels to execute them in the least time. This section discusses how to construct the kernel

graph, and how to schedule the kernels in coarse granularity and partition them in finer

granularity.

5.4.1 Kernel Graph Construction

In order to launch multiple OpenCL kernels, the application enqueues kernels in a spe-

cific order defined by programmer. After enqueuing multiple kernels, the application issues

the queue using one of OpenCL APIs, such as clFlush or clFinish. Upon this issue request,

MKMD analyzes the dependencies between kernels to ensure that outputs are available for

consuming kernels. Since kernels in the queue are supposed to be executed once, MKMD

constructs a directed acyclic graph (DAG), which is called the kernel graph, where nodes

(Vi) and edges (Ei,j) correspond to the kernels and buffers, respectively.

Each node has the average execution time of the kernel for all devices as a node weight.

Likewise, each edge contains the buffer transfer time as the edge weight, which can be

computed by the buffer size divided by the interconnect bandwidth.

For the initial and final buffer transfers between the host program and devices, MKMD

also adds a source node and a sink node to the graph. The source node has only out-edges

that correspond to the initial buffers from the host program, whereas the sink node has only

99

in-edges that correspond to the buffer being transferred to the host. During scheduling,

these two nodes are forced to be scheduled in the CPU device, which shares the address

space with the host program. Note that the node weights of both source and sink nodes are

zero because they do not have actual computation.

5.4.2 Coarse-grain Scheduling

Once the kernel graph is constructed, MKMD schedules a task in kernel granularity

using a list scheduling algorithm. The basic idea of list scheduling is to compute priorities

of tasks, and make a list of tasks ordered by the priorities. With the list, the scheduler

repeatedly selects the task with the highest priority, and assign it to a resource that can

accommodate the task.

Many prior researches have utilized list scheduling [54] for certain cases [73, 6, 77].

The way that MKMD schedules in kernel granularity is similar to the HEFT algorithm [77]

as MKMD targets heterogeneous OpenCL devices, but uses different metrics due to the

interconnect.

For listing the kernels, MKMD traverses down the graph from the source node comput-

ing the priority of the node, P (Vi), defined as

P (Vi) =

{

W (Vi) + max
Vj∈Succ(Vi)

(W (Ei,j) + P (Vj)), Vi 6= Vsink

0, otherwise
(5.4)

where W (Vi) is a node weight, and W (Ei,j) is an edge weight from a node to the imme-

diate successors. Because P (Vi) is accumulated with the max value of successors P (Vj)

as shown in Equation 5.4, the list ordered by the priority is topologically ordered, which

means that it is guaranteed that all predecessor kernels are scheduled before scheduling a

kernel. After the prioritization, MKMD selects the kernel with the highest priority in the

100

3 4 6

5

120 140 160 180 200 220 240 260

i3770

GTX760

GTX750

Time (ms)

1

3 4

2

5

0 20 40 60 80 100 120 140

i3770

GTX760

GTX750

Time (ms)

6

Figure 5.5: Coarse-grain scheduling result on three heterogeneous devices. Dotted arrows presents

the buffer transfer between devices. PCI bus operates in full-duplex, but GTX760 and i3770 expe-

rience input and output congestion respectively.

list, and schedules it on a device.

The first step for the selected kernel is to find the earliest slot for each device. Note

that a kernel cannot be scheduled before predecessors finish, and must wait for the data

from predecessors to be transferred if they are scheduled in different devices. Therefore,

the earliest start-able time of kernel i on device k, EST (Vi, Dk), can be defined as

EST (Vi,Dk) = max
Vj∈Pred(Vi)

{KTend(Vj) + Ttrans(Vj , Ej,i, k)} (5.5)

whereKTend(Vj) is the scheduled finish time of the predecessor kernel Vj , where Ttrans(Vj , Ej,i, k)

is the buffer transfer time from the scheduled device of predecessor Vj to device k.

Note that if predecessors are scheduled in different devices, buffers cannot be trans-

ferred to device k at the same time, but transferred in serial. Thus, Ttrans(Vj, Ej,i, k) is

defined as

Ttrans(Vj , Ej,i, k) =

W (Ej,i)×BWmax

AvailBW (KD(Vj), k)
, KD(Vj) 6= k

0, otherwise

(5.6)

where W (Ej,i) is the estimated transfer time at full bandwidth,KD(Vj) is the scheduled

device of the predecessor Vj , andAvailBW () returns the available bandwidth between two

devices being aware of the buffer transfer schedule.

Once EST (Vi, Dk) is computed for each device, the next step is to find a device that

101

mkmd/figs/motiv_heft.eps

can finish the kernel in the earliest time. Because EST (Vi, Dk) does not consider if the

device k has available time slots in which the execution time of kernel i fits, the earliest

finish-able time of kernel i on device k, EFT (Vi, Dk), can be defined as

EFT (Vi,Dk) = AvailEST (Vi,Dk) + Texe(Vi,Dk) (5.7)

where Texe(Vi, Dk) is the estimated execution time of kernel i on device k, andAvailEST ()

returns the available earliest start-able time of device k afterEST (Vi, Dk)where Texe(Vi, Dk)

fits into.

With EFT , the final schedule device, schedule start time, and schedule end time of

the kernel are defined as:

KD(Vi) = argmin
k∈Devs

{EFT (Vi,Dk)} (5.8)

KTstart(Vi) = AvailEST (Vi,KD(Vi)) (5.9)

KTend(Vi) = EFT (Vi,KD(Vi)) (5.10)

Figure 5.5 shows the scheduling result for the same application shown in Figure 5.1 on

a system with three different devices, Intel i3770, NVIDIA GTX 760, and GTX 750. As

shown in Figure 5.5, the coarse-grain scheduling considers kernel dependencies and the

interconnect between devices, but still leaves some devices idle for considerable amounts

of time. For example, i3770 is idle from 53 ms, and GTX750 is idle from 138 ms. In

order to remove the idle periods from coarse-grain scheduling, MKMD performs fine-grain

multi-kernel partitioning on the results, which is discussed in Section 5.4.3.

5.4.3 Fine-grain Multi-kernel Partitioning

The basic idea of partitioning is to split the kernel into finer granularities, work-groups,

and then offload some work-groups to the idle devices so that the original device can finish

102

1

3 4

2

5

0 20 40 60 80 100 120 140

i3770

GTX760

GTX750

Time (ms)

Figure 5.6: Available compute-time slots (dotted-squares) for partitioning kernel 3. Because kernel

3 depends on kernel 2 (arrow), the lower bound and upper bound of available time slots are the

finish time of kernel 2 and 3 respectively.

the kernel earlier. As discussed in Section 3.2.1, an OpenCL kernel can be selectively exe-

cuted at work-group granularity. Through the transformed kernel, MKMD can decompose

a kernel into several sub-kernels, and distribute them across multiple devices as balanced

as possible based on the coarse-grain scheduling result. To achieve this, MKMD follows

several steps, prioritization, device availability identification, partitioning, and adjusting

successors’ schedule.

Prioritization: For fine-grain multi-kernel partitioning, MKMD must consider the ef-

fects of partitioning on the overall scheduling result. To illustrate, in Figure 5.5, finishing

kernel 6 in the earliest time is the objective, but the kernel depends on the results from

kernels 4 and 5. Again, kernel 4 is dependent on kernel 3, which is also dependent on ker-

nel 2. Because the earliest scheduled kernel has a higher chance to have larger impact on

later kernels as they are scheduled with the consideration of kernel dependencies, MKMD

prioritizes the kernels by the order of schedule start time from the coarse-grain scheduling

result.

Starting from the kernel with the highest priority, MKMD partitions a kernel by offload-

ing work-groups from the scheduled device to other devices. In Figure 5.5, MKMD starts

103

mkmd/figs/timeslot.eps

Algorithm 3Multi-kernel partitioning

1: V[1..N]← kernels ordered by the start time

2: for i = 1 to N do

3: Vi ← V[i]

4: Reschedule Vi to EST(Vi, KD(Vi))

5: LB← max
Vj∈Pred(Vi)

{KTend(Vj)}

6: UB← KTend(Vi)

7: for k = 1 to NUMdevs do

8: Listslot[k]← Available time slots between LB and UB

9: end for

10: Partition Vi to Listslot[1..NUMdevs] by work-groups

11: if Partitioned then

12: Create new nodes SET
p∈Partitions

{Vi,p}

13: UpdateDAG with new nodes

14: Update Schedule with the partition result

15: end if

16: end for

from kernel 1, but kernels 1 and 2 cannot be partitioned because of interconnect bandwidth

saturation. Thus, kernel 3 becomes the first kernel that will be actually partitioned.

Device availability identification: When offloading work-groups to other devices,

MKMD must identify the temporal availability of the devices, so MKMD first identifies

the available time slots for each device. Then, a time slot becomes the basic unit to which

work-groups are offloaded. Note that one device can have multiple time slots as it can be

idle intermittently.

Available time slots for each device can be easily identified from the scheduling re-

sult, but it is important to keep the consistency that the offloaded work-groups cannot be

executed before predecessor kernels finish. For this reason, the time slots have lower and

upper limits where the lower limit is the latest finish time of predecessor kernels, and the

upper limit is the finish time of the kernel to be partitioned. Figure 5.6 visualizes available

time slots for partitioning kernel 3 from the coarse-grain scheduling example in Figure 5.5.

Because kernel 3 depends on kernel 2, the lower bound is the finish time of kernel 2.

104

Partitioning: With available time slots for each device, MKMD partitions a kernel to

minimize the schedule length by offloading work-groups to available slots. This is a job-

shop scheduling problem which minimizes the makespan of the entire schedule. Job-shop

problem is an NP-complete problem, but the partitioning must be done quickly because

the entire process of MKMD is done in runtime. Therefore, MKMD uses a hill-climbing

greedy heuristic, which is further discussed in Section 5.4.4.

Schedule adjustment: As a result of partitioning, the schedule length of a kernel can

be reduced, and successor kernels can start execution earlier. Therefore, MKMD adjusts

the schedules of successor kernels after partitioning. In order to minimize the overhead,

MKMD does not change the scheduled device of successor kernels, but only adjusts suc-

cessors’ start time.

Overall, Algorithm 3 shows a high-level description of multi-kernel partitioning. In the

algorithm, the first line prioritizes kernels by the schedule start time, and lines 5-9 compute

available time slots for a kernel. After that, a kernel is partitioned into the time slots as

shown at line 10, and the kernel graph and the schedule are updated in lines 12-14. For

line 10, Section 5.4.4 explains how to partition a kernel into time slots in detail. As a

result of partitioning, the execution time of the kernel will be reduced. This means that

the following kernels that were dependent on the partitioned kernel now can be scheduled

earlier. For this reason, before partitioning, the algorithm reschedules the kernel to the

earliest start-able time (EST) on the same device as shown at line 4 in Algorithm 3.

5.4.4 Partitioning a Kernel to Time Slots

105

As discussed in Section 5.4.3, partitioning a kernel across multiple time slots can be

reduced to a bin-packing problem as the objective is to minimize the finish time by packing

work-groups into time slots. In addition, there are two more challenges to be considered.

The first challenge is that the usage of interconnect bandwidth must be considered when

work-groups are offloaded. For example, even if a device has a large available time slot for

a specific kernel, offloading work-groups may not be possible if interconnect bandwidth is

saturated during the period because the input cannot be transferred.

Another challenge is that the cost of merging output may occur if sub-kernels are ex-

ecuted on different physical devices. Because different physical devices use different ad-

dress spaces, sub-kernels will generate partial results in their own address space. Using the

methodology discussed in Section 3.2.1, several partial results can be merged efficiently

by executing the merge-kernel. Because the merge-kernel is executed for merging two par-

tial results, the cost of merging grows as the number of devices that execute sub-kernels

increases.

Partitioning Heuristic: To tackle these challenges, the optimal partitioning solution

can be found through an exhaustive search, but the overhead will be significant. Since

MKMD partitioning is performed at runtime before the execution, MKMD uses a hill

climbing heuristic to minimize the overhead. The inputs of the partitioning algorithm are

the scheduled time slot from coarse-grain scheduling and available time slots for each de-

vice.

The hill climbing algorithm starts from a coarse-grain scheduling solution, which is

the state where all the work-groups are assigned to a scheduled slot. Next, it duplicates

the current state to several candidate states. The number of candidates is as many as the

106

Algorithm 4 Kernel partitioning to available time slots

1: Slots[1..S-1]← all available time slots in Listslot[1..Numdevs]

2: Slots[S]← Scheduled time slot for kernel v

3: currState.Slots[1..S]← Slots[1..S]

4: Woff ← number of work-groups to offload at a time

5: Timecurr ← max
s∈S
{currState.Slots[s].FinishTime}

6: Timeprev ← Timecurr + 1
7: while Timecurr < Timeprev do

8: Timeprev ← Timecurr
9: nextState[1..S]← currState

10: sfrom ← argmax
s∈S

{currState.Slots[s].FinishTime}

11: for s = 1 to S do

12: nextState[s].tryOffload(sfrom, s, Woff)

13: end for

14: spick ← argmax
s∈S

{nextState,Slots[s].FinishTime}

15: currState← nextState[spick]

16: Timecurr ← max
s∈S
{currState.Slots[s].FinishTime}

17: end while

18: return currState.Slots

number of available time slots. Once candidate states are created, each candidate attempts

to offload a fixed number of work-groups to their available time slot.

While candidates offload the work-groups, they estimate the execution time considering

available interconnect bandwidth, amount of buffer transfer, and additional cost for merging

outputs. During the estimation, MKMD also checks if the execution time for offloaded

work-groups fits in the time slot, or if the finish time of the slot is later than the upper

bound. In this case, the candidate is disqualified.

Among qualified candidates, the algorithm picks the candidate who finishes the kernel

in the earliest time. The current state is updated with the picked candidate state, and the

algorithm repeats the process of finding candidates until no candidate state is found.

Algorithm 4 describes the procedure of partitioning. In the algorithm, line 9 corre-

sponds to duplicating the current state to several candidate states, and in lines 11-13, each

candidate state tries offloading a fixed number of work-groups to a different time slot.

107

1 3(.09)

3(.91)

3(M)

4

2

5

0 20 40 60 80 100 120 140

i3770

GTX760

GTX750

Time (ms)

(a) Partitioning result for kernel 3

1 3(.09) 4(.42)

3(.91)

3(M)
5(.11)

4(.56) 4(M)

6(.53)

6(M)

2

5(.89)

4(.02) 5(M)

6(.47)

0 50 100 150 200

i3770

GTX760

GTX750

Time (ms)

(b) Final scheduling result

Figure 5.7: Kernel partitioning process. The decimal numbers in a parenthesis shows the ratio of

work-groups. The mark (M) is the cost for mering nonlinear outputs.

While the algorithm tries to offload in line 12, it considers current status of the intercon-

nect, and the merge cost in case of kernel decomposition. After the offloading trials, in line

14, the algorithm picks the candidate state which finishes the earliest time.

Note that the trip count of the while loop in lines 7-17 can be controlled by defining

Woff as the total number of work-groups divided by the trip count. In MKMD, the trip

count of the while loop is limited to 100 to reduce the time complexity. In other words,

each iteration tries to offload 1% of work-groups, and reaching 100 iterations means that

all work-groups are offloaded to other time slots. Therefore, in most cases, the while loop

stops iterating before it reaches the limit of 100. As the while loop is reduced to a constant,

the final time complexity of the partitioning algorithm is O(S), where S is the number of

108

mkmd/figs/motiv_skmd.eps
mkmd/figs/motiv_mkmd.eps

time slots.

As a result of the algorithm, kernel 3 in Figure 5.6 is partitioned as shown in Fig-

ure 5.7(a). After partitioning the rest of kernels, the final scheduling result is illustrated in

Figure 5.7(b).

5.4.5 Overhead and Limitations

The coarse-grain scheduling costs O(V 2K), where V is the number of kernels and K

is the number of device. After the coarse-grain scheduling, partitioning is performed for

each kernel at the cost ofO(V S), where S is the number of time slots. Because the number

of time slots can not exceed V ×K, the partitioning algorithm is in proportion to to V 2K

as well. Therefore, the entire cost of MKMD scheduling algorithm is O(V 2K), which is

evaluated in Section 5.5.

Because MKMD makes a scheduling decision of multiple kernels based on the execu-

tion time model before it runs a kernel, it has two main limitations.

First, the scheduling decisions can be suboptimal for irregular applications, because

they are hard to model the execution time. For example, if the trip count of a loop is varied

by work-groups and it is dependent on the value of input array, it is difficult to build a

model to predict the entire execution time.

Second, the scheduling decision is made assuming that all underlying devices are exclu-

sive to the application until it finishes the execution. However, if other applications occupy

the hardware resources in the middle of the execution, the scheduling result is not optimal

anymore because available resources are changed.

109

Device
Intel Core i7

3770

NVIDIA

GTX 760

NVIDIA

GTX 750 Ti

of Cores 4 (8 Threads) 1152 640

Clock Freq. 3.2 GHz 0.98 GHz 1.02 GHz

Memory

(B/W)

32 GB DDR3

(12.8 GB/s)

2 GB GDDR5

(192 GB/s)

2 GB GDDR5

(86.4 GB/s)

Peak Perf. 435.2 GFlops [27] 2,258 GFlops 1,306 GFlops

OpenCL Ver. Intel SDK 2013 CUDA SDK 6.0

PCIe (B/W) - 3.0 x8 x2 (7.88 GB/s)

OS Ubuntu Linux 12.04 LTS

Table 5.2: Experimental Setup

5.5 Evaluation

Implementation: MKMD was prototyped as a library, and it overloads OpenCL API

calls from the application through dynamic linker redirection. Inside MKMD, it uses the

Clang [10] for the OpenCL front-end, and the Low-Level Virtual Machine (LLVM) 3.6 [42]

for the back-end. For execution of partial work-groups, LLVM transforms the kernel to a

sub-kernel by adding a checking code to the beginning. Taking the range of linearized

work-group indices as parameters, the checking code filters out the work-groups that are

not in the range. Once the kernels are built, MKMD can operate in profiling mode for

building a regression model. For each parameter, MKMD executes kernels multiple times

with different numbers of work-groups.

In execution mode, MKMD takes the list of OpenCL commands from the application,

and performs scheduling as discussed in Section 5.4.

Baseline: For the experiments, we configured a real machine as shown in Table 5.2.

The baseline of our experiment is in-order OpenCL execution on a single device assum-

ing that the programmer picks the fastest device, GTX 760 in our experimental setup, and

110

Name Equation Domain

Algebraic Bernoulli (ABE) ATX +XA−XBBTX System Theory

Biconjugate Gradient Stabilized

(BiCGSTAB)
Iterative method with 11 operations Linear Systems

Triple Commutator
ABC +BCA + CAB

−BAC −ACB − CBA
Mathematics

Generalized Algebraic Bernoulli

(GABE)
ATXE + ETXA− ETXGXE System Theory

Reachability Gramian AP + PAT +BBT Control Theory

Jacobi D−1(L + U)x+D−1b Linear Systems

Continuous Lyapunov AX +XAT +Q Control Theory

Continuous Algebraic Riccati

(CARE)
ATX +XA−XBR−1BTX +Q Control Theory

Stein AXAT −X Probability

Singular Value Decomposition

(SVD)
UΣV T Signal Processing

Sylvester AX +XB − C Mathematics

Table 5.3: Benchmark Specification

simply enqueues the OpenCL commands to that device. We also compared MKMD with

the coarse-grain-only (Coarse-Only) algorithm, excluding the fine-grain multi-kernel par-

titioning. Scheduling assumes that initial status is where the host has initial inputs and the

final status is that the final output is gathered to the host. Based on these statuses, kernels

will be scheduled.

Benchmarks: In order to evaluate MKMD for more complex kernel graphs, we used

linear algebra equations found in various scientific domains as our benchmarks. For each

linear algebra kernel, we used the OpenCL implementation from NVIDIA SDK [56]. The

equations and their domains are listed in Table 5.3. The sizes of vectors and matrices used

in the equations are 4K and 4K × 4K, respectively.

111

0

0.5

1

1.5

2

2.5

S
p

ee
d

u
p

CoarseOnly MKMD

(a) Speedup over in-order OpenCL executions

0

0.2

0.4

0.6

0.8

1

N
o

r
m

a
li

z
e
d

 I
d

le
 T

im
e

SERIAL CoarseOnly MKMD

(b) Average device idle time normalized to the entire execution time

Figure 5.8: (a) Speedup of MKMD over in-order executions, and (b) the average device idle time

normalized to the finish time.

5.5.1 Results

First, we measured the speedup of MKMD over in-order execution. As shown in Fig-

ure 5.8(a), MKMD performs better than in-order executions on every benchmark. The dif-

ference between Coarse-Only and MKMD is the performance gain from fine-grain kernel

partitioning as discussed in Section 5.4.3. In geometric mean, MKMD brings 89% per-

formance improvement over in-order single device execution. Among 89% performance

112

mkmd/figs/eval_speedup.eps
mkmd/figs/eval_idle.eps

0

5

10

15

0

2

4

6

8

10

12

#
 o

f
K

e
r
n

e
ls

T
im

e
 (

m
s)

Scheduling Time # of Kernels

Figure 5.9: MKMD scheduling overhead.

improvement, approximately half comes from the coarse-grain scheduling by assigning

kernels out of order across multiple devices, and the other half comes from the fine-grain

multi-kernel partitioning by splitting the kernels into several sub-kernels and assigning

them to the idle devices.

For BiCGSTAB, both coarse-only and MKMD scheduling do not show much speedup

as shown in Figure 5.8(a). The reason is that it is composed of many matrix-vector multi-

plications, which are fairly memory-intensive and run much faster on GPUs. As a result,

Coarse-Only scheduling assigns most of kernels to a single GPU in order to execute quickly

and to avoid multiple data transfers. Even multi-kernel partitioning cannot help reducing

the execution time, as the kernel execution time is relatively small compared to buffer

transfer time. Thus, MKMD shows the same speedup as Coarse-Only scheduling.

The reason why the Coarse-Only also shows less speedups on Stein and SVD is that

there are not many kernels that can be run in parallel. Therefore, the Coarse-Only execution

is similar to in-order execution. On the other hand, MKMD achieves 1.9x speedup for both

benchmarks taking advantage of fine-grain kernel partitioning.

113

mkmd/figs/eval_overhead.eps

Figure 5.8(b) shows the average idle time of devices normalized to the entire execution

time, or the ratio of device underutilization. As shown in the figure, in geometric mean,

MKMD utilizes the devices 94% of the time, while in-order execution makes use of the

devices 30% of the time.

For some benchmarks, such as ABE and commutator, device underutilization ofMKMD

is low. This shows that MKMD utilizes all available resources to improve performance.

The detailed behavior of the devices on commutator is discussed Section 5.5.3.

Figure 5.9 illustrates scheduling overhead for each benchmark. As shown in the figure,

the absolute time of scheduling overhead is less than 10 msec for all benchmarks. In terms

of the overhead ratio normalized to the entire execution time, BiCGSTAB and Jacobi have

12.8% and 2.9%, respectively, and the other benchmarks have less than 0.2%. The main

reason why BiCGSTAB and Jacobi have relatively large overhead is that they finish in a

very short time (less than 35 msec). As discussed in Section 5.4.3, the scheduling overhead

is not relative to the input size or kernel execution time, but relative to the number of kernels

and devices, and Figure 5.9 shows such pattern.

5.5.2 Sensitivity to Profiles

This section examines the relation between the number of profiles and execution time

estimation errors, and shows how the number of profiles affects the final scheduling result.

In order to measure the error rate of models from different number of profiles for the

kernels used in the benchmarks defined in Table 5.3 ranging from 4 profiles to 80 pro-

files. Those kernels consist of vector addition (VectorAdd), matrix-vector multiplication

(MatVecMul), matrix transpose (Transpose), and matrix multiplication (MatrixMul). Once

114

0.00

0.05

0.10

0.15

0.20

0.25

0.30

4 10 16 20 30 40 80

E
r
r
o

r
 R

a
te

GTX760 GTX 750Ti i3770

(a) VectorAdd

0.00

0.02

0.04

0.06

0.08

0.10

0.12

4 10 16 20 30 40 80

E
r
r
o

r
 R

a
te

GTX760 GTX 750Ti i3770

(b) MatVecMul

0.00

0.02

0.04

0.06

0.08

0.10

0.12

4 10 16 20 30 40 80

E
r
r
o

r
 R

a
te

GTX760 GTX 750Ti i3770

(c) Transpose

0.00

0.01

0.02

0.03

0.04

4 10 16 20 30 40 80

E
r
r
o

r
 R

a
te

GTX760 GTX 750Ti i3770

(d)MatrixMul

0.00

0.04

0.08

0.12

0.16

0.20

4 10 16 20 30 40 80

L
2

N
o

r
m

 E
r
ro

r
(m

s)

GTX760 GTX 750Ti i3770

(e) VectorAdd

0.00

0.02

0.04

0.06

0.08

0.10

4 10 16 20 30 40 80

L
2

N
o

r
m

 E
r
ro

r
(m

s)

GTX760 GTX 750Ti i3770

(f)MatVecMul

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

4 10 16 20 30 40 80

L
2

N
o

r
m

 E
r
ro

r
(m

s)

GTX760 GTX 750Ti i3770

(g) Transpose

0.00

0.01

0.02

0.03

0.04

0.05

0.06

4 10 16 20 30 40 80

L
2

N
o

r
m

 E
r
ro

r
(m

s)

GTX760 GTX 750Ti i3770

(h)MatrixMul

Figure 5.10: Error rates and L2-norm error in milliseconds varying the number of profiles for

the execution time modeling. CPU has relatively high error rates on memory-intensive kernels as

shown in (a), (b), and (c), but the execution time of these kernels is trivial as they do not have much

computation. As a result, the absolute error (L2-norm) in time is also small as illustrated in (d), (e),

(f), and (g).

we built the models with different number of profiles, we ran 100 executions with ran-

dom input sizes ranging from 2K to 8K for vectors, and 1K×1K to 4K×4K for matrices.

Also, random number of work-groups were used for various workloads. With these random

workloads, we compared the real execution time with estimated execution time.

Figure 5.10 shows error rates and L2-norm error in milliseconds. L2-norm error is Eu-

clidean distance between the real execution time and estimated execution time. As shown

in the figure, memory intensive kernels, such as VectorAdd, MatVecMul, and Transpose,

have relatively high error rates on CPU. However, the executions of those kernels finish

in a very short time as they do not have much computation. Thus, the absolute error in

millisecond becomes less than 0.2 ms even for the model with 4 profiles.

In order to examine the sensitivity of MKMD to errors, we ran the benchmarks on

115

mkmd/figs/eval_err_vadd.eps
mkmd/figs/eval_err_mv.eps
mkmd/figs/eval_err_tp.eps
mkmd/figs/eval_err_mm.eps
mkmd/figs/eval_l2_vadd.eps
mkmd/figs/eval_l2_mv.eps
mkmd/figs/eval_l2_tp.eps
mkmd/figs/eval_l2_mm.eps

0

0.2

0.4

0.6

0.8

1

1.2

N
o

r
m

a
li

z
e
d

 T
o

ta
l

E
x
e
c
u

ti
o

n
 T

im
e

4 10 16 20 30 40 (profiles)

Figure 5.11: MKMD total execution time with different timing models varying the number of

profiles. The baseline is the execution time scheduled with the model from 80 profiles. This result

shows that the entire scheduling time is not sensitive to the number of profiles.

MKMD framework with various execution time models from different number of profiles.

Figure 5.11 shows the entire execution time of MKMD with different models varying the

number of profiles, normalized to the execution time with the model from 80 profiles. As

shown in the figure, the overall performance of MKMD is not sensitive to the number of

profiles which affects error rates and L2-norm errors. One of reasons is that the absolute

error in time (L2-norm) is negligible as shown in Figure 5.10, which results in similar

scheduling decisions for compute-intensive benchmarks. For memory-intensive bench-

marks, such as BiCGSTAB and Jacobi, MKMD also produces similar schedules being

insensitive to the errors, because the scheduling decision is dominated by data transfers,

not computation for memory-intensive kernels.

116

mkmd/figs/eval_sensitivity.eps

1 2 3 4

CA AC CB

6 5 8 7 9

C B B A

AB

MatAdd

MatMul

10

11 12 13 14 15

Figure 5.12: Kernel graph for triple commutator.

5.5.3 Case Study

This section further investigates the behavior of MKMD on triple commutator because

it is composed of many compute-intensive kernels. The kernel graph of triple commutator

is built as shown in Figure 5.12, and the execution timeline is depicted in Figure 5.13.

While MKMD performs coarse-grain scheduling, the kernel with the highest priority is

kernel 1, the next is 2, and so on according to the Equation 5.4. Therefore, kernel 1 will

be scheduled on the device which can finish it at earliest, which is GTX 760. Next, for

kernel 2, the scheduler will assign it to GTX 750 as shown in Figure 5.13(a), because there

is no dependency between kernels 1 and 2. While the scheduler assigns several matrix

multiplication kernels to the GPUs, it does not assign a single kernel to the CPU (i3770),

which leaves it idle as shown in Figure 5.13(a). The reason is that assigning the entire

kernel to the CPU will increase the schedule length more than assigning it to GPUs even if

several kernels are already assigned to them.

Based on coarse-grain scheduling results in Figure 5.13(a), MKMD starts multi-kernel

partitioning as discussed in Section 5.4.3. With prioritization by the start time, kernel 1

will be partitioned first, and kernels scheduled later will be adjusted after partitioning. For

this reason, kernel 1 utilizes the CPU more (15% of work-groups) than kernel 2 does (6%

117

mkmd/figs/eval_graph.eps

11 12

14

1 3 5 7 9

2 4 6 8 10

13 15

0 500 1000 1500 2000 2500 3000 3500 4000 4500

i3770

GTX760

GTX750

Time (ms)

(a) Coarse-grain schedule only

1(0.19)

2(0.03)

3(0.16)

4(0.06)

5(0.13) 6(0.09) 7(0.11)

8(0.02)
11

8(0.09) 9(0.11)

10(0.05) 12 14 10(0.05)

1(0.81)

1(M)
2(0.12)

3(0.70)

3(M)
4(0.23)

5(0.58)

5(M)

6(0.37) 7(0.48)

7(M)

8(0.46) 9(0.49)

9(M)

10(0.46)

2(0.85)

2(M) 3(0.14)

4(0.71)

4(M) 5(0.29)

6(0.54)

6(M)

7(0.41) 8(0.44)

8(M)

9(0.40) 10(0.45)

10(M) 13 15

0 500 1000 1500 2000 2500 3000 3500 4000 4500

i3770

GTX760

GTX750

Time (ms)

(b)MKMD

Figure 5.13: Execution timeline for triple commutator. Because matrix computation is too expen-

sive on i3770, (a) the coarse-grain scheduler does not schedule any matrix multiplication kernel on

it while GPUs take more than 4 kernels. With MKMD, (b) all devices are almost fully utilized.

of work-groups) as shown in Figure 5.13(b). In the end, MKMD almost fully utilizes all

three devices as shown in Figure 5.13 by splitting kernels into sub-kernels, executing them

out of order without breaking the consistency.

5.6 RELATEDWORK

As the systems become more heterogeneous, programming several data parallel kernels

for heterogeneous devices has become extremely difficult.

Research has been done for task scheduling on heterogeneous processors or distributed

systems using various programming languages [20, 62]. Using StreamIt [20], [19] pro-

118

mkmd/figs/eval_comm_heft.eps
mkmd/figs/eval_comm_mkmd.eps

posed a compiler framework that refines stream graph of StreamIt program to a multi-core

CPUs. Kudlur et al. also proposed a way to map StreamIt languages to distributed shared

memory systems [41]. However, the usage of StreamIt language is strictly limited to cer-

tain cases, and the programmer must explicitly define the communication graph even for

data parallel tasks. [62] proposed a set of compiler directives at a higher level, which

hides hardware details from programmers. Despite these efforts, programmers still must

know the underlying devices to explicitly schedule data parallel code and manage the buffer

transfer between devices.

Rather than programming languages, many prior works proposed ways to alleviate the

efforts in programming data parallel kernels on multiple heterogeneous devices [49, 38, 40,

44, 64]. [49] proposed Qilin system that automatically partitions threads to one CPU and

one GPU by providing new APIs that abstract away two different programming models,

Intel Thread Building Blocks and CUDA. However, they do not consider multiple kernels,

and the number of devices is limited to two. [40] proposed a similar runtime system that

distributes OpenCL workloads over multiple heterogeneous devices with the performance

prediction based on an artificial neural network. However, they limited the type of OpenCL

kernels to have regular memory access pattern. [38, 44, 14, 64, 32] proposed runtime sys-

tems that can distribute any type of kernels to several devices. Nonetheless, all these works

only focus on optimizing a single OpenCL kernel for multiple devices, not considering the

interaction between multiple kernels.

Research for virtualizing GPU resources has been done [67, 68]. PTask [67] proposes

APIs that work with operating systems to manage tasks on GPUs by using a data-ow pro-

gramming model. Dandelion [68] also proposes a compiler/runtime framework that works

119

on C# sources with newer APIs. In this work, a compiler converts C# to CUDA, and

the runtime framework manages execution between CPUs and GPUs using PTask [67].

While these works target C# code and require program modification to use additional APIs,

MKMD transparently works on multiple OpenCL kernels without program modification.

For scheduling multiple data parallel kernels on heterogeneous devices, [13] proposed

the Harmony system, which schedules data parallel kernels considering the performance of

device. [3] proposed StarPU system, which also schedules multiple data parallel kernels

on heterogeneous devices. [21] dynamically assigns kernel to devices of a heterogeneous

system based on historical runtime data. However, all of these works schedule kernels at

a kernel granularity, which can cause devices to idle for a considerable amount of time

as evaluated in Section 5.5. [57] proposed Hyper-Q that supports multiple kernels on

heterogeneous architectures, but it only considers multiple kernels on a single device, and

requires programmers to identify the order of kernel execution.

5.7 Conclusion

As applications become more complex, programs commonly execute multiple data par-

allel kernels. In the meantime, the complexity of underlying hardware continues to in-

crease with a wider variety of computation accelerators. In order to maximally utilize the

underlying resources for applications with multiple data parallel kernels, this chapter pre-

sented MKMD, a runtime framework that automatically builds a dependence graph from

the OpenCL command queue, and schedules kernels out of order considering the costs

of data transfer and execution time on each device. Execution time estimates are adap-

tive to input size using a regression model that is driven by a small number of profiling

120

runs. MKMD combines coarse-grain kernel scheduling with fine-grain kernel partitioning

to densely make use of all available time slots among devices. For a system with three dif-

ferent computing devices, MKMD achieves a mean 1.89x speedup over in order execution

on the fastest device for a set of multi-kernel benchmarks.

121

CHAPTER VI

Conclusion

6.1 Summary

Asmore application domains focus on exploiting the computational power of GPUs, the

complexity of the applications being mapped onto heterogeneous systems has increased.

Applications have grown from a single kernel surrounded by the corresponding setup code,

to a multitude of communicating data parallel kernels with interspersed CPU code that

require exploiting all processing resources (CPUs and GPUs) to achieve the desired perfor-

mance level.

In this thesis, we showed three dynamic compiler frameworks that virtualize data par-

allel computing devices for portability, productivity, and performance of OpenCL applica-

tions. In Chapter III, we showed SKMD that virtualizes computing units and interconnects,

and transparently orchestrates the execution of a single OpenCL kernel on multiple de-

vices. With the experiments on a real machine with Intel i3770, NVIDIA GTX 750 Ti, and

NVIDIA GTX 760, SKMD showed that it transparently utilizes all the underlying devices

achieving an average speedup of 28% on a system with one multicore CPU and two asym-

metric GPUs compared to a fastest device execution strategy for a set of popular OpenCL

122

kernels.

Next, in Chapter IV, we showed another framework, VAST that virtualizes the memory

space of one physical computing device such as GPUs. While SKMD partitions a kernel

for multiple devices, VAST splits a kernel for multiple executions for a single device, but

executes sub-kernels multiple times with subsets of data. The experiments with NVIDIA

GTX 750 Ti showed that VAST successfully executes kernels that have memory foot prints

larger than GPU’s physical memory.

Last, in Chapter V, we showed MKMD that orchestrates the execution of multiple data

parallel kernels on multiple devices. While SKMD and VAST focus on virtualizing the

hardware resources for the execution of a single data parallel kernel, MKMD provides

temporal schedules for multiple kernels considering inter-kernel dependencies, and makes

better spatial partitioning decisions across multiple devices with regards to the kernel de-

pendencies and the physical interconnect among devices. Through the experiments on the

real machine with Intel i3770, NVIDIA GTX 750 Ti, and NVIDIA GTX 760, we showed

that MKMD achieves a mean 1.89x speedup over in order execution on the fastest device

for a set of multi-kernel benchmarks.

In summary, this thesis addressed important issues of portability, productivity, and per-

formance for emerging data parallel applications on data parallel platforms. By virtualizing

computing units, memory space, and the interconnect of data parallel systems, the proposed

frameworks significantly improved productivity, portability and performance of data paral-

lel applications on multiple heterogeneous devices.

123

6.2 Future Directions

As data to process grows continuously and the need for the computing power keeps

increasing. In response, many data parallel systems are scaled to a cluster consisting of

multiple nodes, each of which has several data parallel devices.

A natural future direction to extend this work is to make the framework scalable to a

cluster. The scheduling and partitioning problems become more complicated as the inter-

connect between the node is different from the one inside the node. In addition, latency of

communication between nodes should be considered.

Although the works presented in this dissertation showed that the frameworks success-

fully virtualize data parallel platforms for OpenCL applications, it schedules and partitions

multiple kernels on devices based on a static approach, which makes all the decisions be-

fore it actually launch kernels. As a result, it required considerable amount of offline profile

data to model the execution time of kernels on each device. Also, it made an assumption

that all hardware resources are exclusive to the application. However, it is general that mul-

tiple application shares hardware resources, and thus some hardware may no be available

to the application even though it was available at the time of scheduling and partitioning.

To address this issue, the extension of this work could be the investigation of dynamic

scheduling and partitioning, which are more adaptive to dynamic status of the system.

Also, as the scheduling and partitioning decision is made focusing on the system status,

a dynamic approach does not have to model the execution time. However, a dynamic

approach may have worse performance because the decision should be made with narrower

scope.

124

While this dissertation mainly targets the OpenCL runtime, more opportunities can be

found throughout the software stack in order to improve performance, portability, and pro-

ductivity of data parallel kernels. For example, if multiple processes contend for a limited

number of processing devices, scheduling at OS level can improve the system performance.

On the other hand, exploration of simplifying programmingmodels can be a possible exten-

sion of this work to further improve portability and productivity of data parallel applications

on parallel hardware.

For several years, OpenCL and CUDA have been improved to provide with more func-

tionalities. One recent improvement in OpenCL and CUDA is sub-device [37] and Hyper-

Q [58], which enables splitting a device into several small devices so that multiple kernels

can run concurrently on one physical device. Another future direction of this work would

be the investigation of utilizing t functionality along with MKMD as it can improve respon-

siveness of a data parallel kernel among multiple kernels.

125

BIBLIOGRAPHY

126

BIBLIOGRAPHY

[1] Intel(r) sdk for opencl applications 2013, 2013. http://software.intel.com/en-

us/vcsource/tools/opencl-sdk. 75, 76

[2] AMD. Accelerated Parallel Processing (APP) SDK, 2012.

http://developer.amd.com/tools/heterogeneous-computing/amd-accelerated-parallel-

processing-app-sdk. 37

[3] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier. StarPU: A Unified Plat-

form for Task Scheduling on Heterogeneous Multicore Architectures. Concurrency

and Computation: Practice & Experience, 23(2):187–198, Feb. 2011. 120

[4] A. Basumallik and R. Eigenmann. Optimizing irregular shared-memory applications

for distributed-memory systems. In Proc. of the 11th ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, pages 119–128, 2006. 85

[5] A. Bensoussan, C. T. Clingen, and R. C. Daley. The Multics virtual memory: con-

cepts and design. Communications of the ACM, 15(5):308–318, May 1972. 53

[6] D. Bernstein andM. Rodeh. Global Instruction Scheduling for Superscalar Machines.

In Proc. of the ’91 Conference on Programming Language Design and Implementa-

tion, pages 241–255, 1991. 100

127

[7] K. J. Brown, A. K. Sujeeth, H. J. Lee, T. Rompf, H. Chafi, M. Odersky, and K. Oluko-

tun. A Heterogeneous Parallel Framework for Domain-Specific Languages. In Proc.

of the 20th International Conference on Parallel Architectures and Compilation Tech-

niques, pages 89–100, 2011. 49

[8] J. Canny and H. Zhao. Big Data Analytics with Small Footprint: Squaring the Cloud.

In Proc. of the 19th International Conference on Knowledge Discovery and Data

Mining, pages 95–103, 2013. 1, 52

[9] S. Che, M. Boyer, J. Meng, D. Tarjan, , J. W. Sheaffer, S.-H. Lee, and K. Skadron.

Rodinia: A benchmark suite for heterogeneous computing. In Proc. of the IEEE

Symposium on Workload Characterization, pages 44–54, 2009. 98

[10] Clang. A C language family frontend for LLVM, 2014. http://clang.llvm.org. 74,

110

[11] E. Coppa, C. Demetrescu, and I. Finocchi. Input-sensitive profiling. In Proc. of the

’12 Conference on Programming Language Design and Implementation, pages 89–

98, 2012. 94

[12] G. Diamos, A. Kerr, S. Yalamanchili, and N. Clark. Ocelot: a dynamic optimization

framework for bulk-synchronous applications in heterogeneous systems. In Proc. of

the 19th International Conference on Parallel Architectures and Compilation Tech-

niques, pages 353–364, Sept. 2010. 12, 20, 48

[13] G. F. Diamos and S. Yalamanchili. Harmony: an execution model and runtime for

128

heterogeneous many core systems. In Proc. of the 17th international symposium on

High performance distributed computing, pages 197–200, 2008. 13, 49, 120

[14] T. Diop, S. Gurfinkel, J. Anderson, and N. E. Jerger. DistCL: A framework for the

distributed execution of OpenCL kernels. In IEEE 21st International Symposium

on Modeling, Analysis and Simulation of Computer and Telecommunication Systems,

pages 556–566, 2013. 119

[15] L. Einav and J. Levin. The data revolution and economic analysis, 2013. 52

[16] J. Fung and S. Mann. Computer vision signal processing on graphics processing

units. In Proc. of the 2004 IEEE International Conference on Acoustics Speech and

Signal Processing, pages 805–808, 2004. 1

[17] W. W. L. Fung, I. Sham, G. Yuan, and T. M. Aamodt. Dynamic warp formation and

scheduling for efficient GPU control flow. In Proc. of the 40th Annual International

Symposium on Microarchitecture, pages 407–420, 2007. 12

[18] M. Garey and D. Johnson. Computers and Intractability; A Guide to the Theory of

NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990. 30

[19] M. I. Gordon, W. Thies, and S. Amarasinghe. Exploiting coarse-grained task, data,

and pipeline parallelism in stream programs. In 12th International Conference on

Architectural Support for Programming Languages and Operating Systems, pages

151–162, 2006. 118

[20] M. I. Gordon, W. Thies, M. Karczmarek, J. Lin, A. S. Meli, A. A. Lamb, C. Leger,

J. Wong, H. Hoffmann, D. Maze, and S. Amarasinghe. A stream compiler for

129

communication-exposed architectures. In Tenth International Conference on Archi-

tectural Support for Programming Languages and Operating Systems, pages 291–

303, Oct. 2002. 118

[21] C. Gregg, M. Boyer, K. Hazelwood, and K. Skadron. Dynamic heterogeneous

scheduling decisions using historical runtime data. In 2nd Workshop on Applications

for Multi- and Many-Core Processors, 2011. 120

[22] S. Gulwani, K. K. Mehra, and T. Chilimbi. SPEED: Precise and Efficient Static

Estimation of Program Computational Complexity. In Conference Record of the 38th

Annual ACM Symposium on Principles of Programming Languages, pages 127–139,

New York, NY, USA, 2009. ACM. 94

[23] S. Gulwani and F. Zuleger. The Reachability-bound Problem. In Proc. of the ’10

Conference on Programming Language Design and Implementation, pages 292–304,

New York, NY, USA, 2010. ACM. 94

[24] J. Gummaraju, L. Morichetti, M. Houston, B. Sander, B. R. Gaster, and B. Zheng.

Twin peaks: a software platform for heterogeneous computing on general-purpose

and graphics processors. In Proc. of the 19th International Conference on Parallel

Architectures and Compilation Techniques, pages 205–216, Sept. 2010. 12, 48

[25] S. Hong and H. Kim. An analytical model for a GPU architecture with memory-level

and thread-level parallelism awareness. In Proc. of the 36th Annual International

Symposium on Computer Architecture, pages 152–163, 2009. 48

[26] A. H. Hormati, M. Samadi, M. Woh, T. Mudge, and S. Mahlke. Sponge: portable

130

stream programming on graphics engines. In 16th International Conference on Ar-

chitectural Support for Programming Languages and Operating Systems, pages 381–

392, 2011. 12, 83

[27] Intel. Intel Core i7-3700 Desktop Processor Series, 2012.

http://download.intel.com/support/processors/corei7/sb/core i7-3700 d.pdf. 75,

110

[28] T. B. Jablin, J. A. Jablin, P. Prabhu, F. Liu, and D. I. August. Dynamically managed

data for CPU-GPU architectures. In Proc. of the 2012 International Symposium on

Code Generation and Optimization, pages 165–174, 2012. 83

[29] T. B. Jablin, P. Prabhu, J. A. Jablin, N. P. Johnson, S. R. Beard, and D. I. August.

Automatic CPU-GPU communication management and optimization. In Proc. of the

’11 Conference on Programming Language Design and Implementation, pages 142–

151, 2011. 83

[30] F. Ji, H. Lin, and X. Ma. RSVM: A region-based software virtual memory for GPU.

In Proc. of the 22nd International Conference on Parallel Architectures and Compi-

lation Techniques, pages 269–278, 2013. 85

[31] W. Jia, K. A. Shaw, and M. Martonosi. Stargazer: Automated Regression-based GPU

Design Space Exploration. In Proc. of the 2012 IEEE Symposium on Performance

Analysis of Systems and Software, pages 2–13, 2012. 48

[32] R. Kaleem, R. Barik, T. Shpeisman, B. T. Lewis, C. Hu, and K. Pingali. Adaptive

Heterogeneous Scheduling for Integrated GPUs. In Proc. of the 23rd International

131

Conference on Parallel Architectures and Compilation Techniques, pages 151–162,

2014. 119

[33] R. Karrenberg and S. Hack. Whole-Function Vectorization. In Proc. of the 2011

International Symposium on Code Generation and Optimization, Apr. 2011. 12, 48

[34] S. Kato, M. McThrow, C. Maltzahn, and S. Brandt. Gdev: First-Class GPU Resource

Management in the Operating System. In Proc. of the USENIX Annual Technical

Conference (USENIX ATC’12), pages 401–412, 2012. 50

[35] S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco. GPUs and the

Future of Parallel Computing. IEEE Micro, 31(5):7–17, 2011. 50

[36] C. Kessler, U. Dastgeer, S. Thibault, R. Namyst, A. Richards, U. Dolinsky,

S. Benkner, J. L. Traff, and S. Pllana. Programmability and performance portabil-

ity aspects of heterogeneous multi-/manycore systems. In Proc. of the 2012 Design,

Automation and Test in Europe, pages 1403–1408, Mar. 2012. 13, 49

[37] KHRONOS. OpenCL - the open standard for parallel programming of heterogeneous

systems, 2014. 1, 35, 125

[38] J. Kim, H. Kim, J. H. Lee, and J. Lee. Achieving a single compute device image

in OpenCL for multiple GPUs. In Proc. of the 16th ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, pages 277–288, 2011. 13, 40, 49,

83, 119

[39] J. Kim, S. Seo, J. Lee, J. Nah, G. Jo, and J. Lee. SnuCL: an OpenCL framework for

132

heterogeneous CPU/GPU clusters. In Proc. of the 2012 International Conference on

Supercomputing, pages 341–352, 2012. 83

[40] K. Kofler, I. Grasso, B. Cosenza, and T. Fahringer. An Automatic Input-sensitive

Approach for Heterogeneous Task Partitioning. In Proc. of the 2013 International

Conference on Supercomputing, pages 149–160, 2013. 83, 119

[41] M. Kudlur and S. Mahlke. Orchestrating the execution of stream programs on mul-

ticore platforms. In Proc. of the ’08 Conference on Programming Language Design

and Implementation, pages 114–124, June 2008. 31, 119

[42] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong program anal-

ysis & transformation. In Proc. of the 2004 International Symposium on Code Gen-

eration and Optimization, pages 75–86, 2004. 36, 74, 110

[43] J. Lee, M. Samadi, and S. Mahlke. VAST: the illusion of a large memory space for

GPUs. In Proc. of the 23rd International Conference on Parallel Architectures and

Compilation Techniques, pages 443–454, 2014. 6, 50

[44] J. Lee, M. Samadi, Y. Park, and S. Mahlke. Transparent CPU-GPU collaboration for

data-parallel kernels on heterogeneous systems. In Proc. of the 22nd International

Conference on Parallel Architectures and Compilation Techniques, pages 245–256,

2013. 5, 64, 83, 119

[45] J. Lee, H. Wu, M. Ravichandran, and N. Clark. Thread tailor: dynamically weav-

ing threads together for efficient, adaptive parallel applications. In Proc. of the 37th

133

Annual International Symposium on Computer Architecture, pages 270–279, 2010.

30

[46] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen, N. Satish,

M. Smelyanskiy, S. Chennupaty, P. Hammarlund, R. Singhal, and P. Dubey. Debunk-

ing the 100x GPU vs. CPU myth: an evaluation of throughput computing on CPU and

GPU. In Proc. of the 37th Annual International Symposium on Computer Architec-

ture, pages 451–460, 2010. 1, 12, 48

[47] M. D. Linderman, J. D. Collins, H. Wang, and T. H. Meng. Merge: a programming

model for heterogeneous multi-core systems. In 13th International Conference on

Architectural Support for Programming Languages and Operating Systems, pages

287–296, 2008. 49

[48] LLVM. libclc, 2012. http://libclc.llvm.org. 37

[49] C.-K. Luk, S. Hong, and H. Kim. Qilin: exploiting parallelism on heterogeneous

multiprocessors with adaptive mapping. In Proc. of the 42nd Annual International

Symposium on Microarchitecture, pages 45–55, 2009. 13, 40, 49, 83, 119

[50] C. McGeoch, P. Sanders, R. Fleischer, P. R. Cohen, and D. Precup. Experimental

Algorithmics. Springer-Verlag New York, Inc., New York, NY, USA, 2002. 94

[51] W. mei W. Hwu. GPU Computing Gems Emerald Edition. Morgan Kaufmann Pub-

lishers Inc., 2011. 73

[52] S.-J. Min and R. Eigenmann. Optimizing irregular shared-memory applications for

134

clusters. In Proc. of the 2008 International Conference on Supercomputing, pages

256–265, 2008. 85

[53] D. Montgomery, E. Peck, and G. Vining. Introduction to linear regression analysis.

Wiley series in probability and statistics. Wiley, New York, NY [u.a.], 3. ed edition,

2001. 26

[54] S. Muchnick. Advanced Compiler Design Implementation. Morgan Kaufmann Pub-

lishers, 1997. 100

[55] NVIDIA. GPUs Are Only Up To 14 Times Faster than CPUs says Intel,

2010. http://blogs.nvidia.com/ntersect/2010/06/gpus-are-only-up-to-14-times-faster-

than-cpus-says-intel.html. 1

[56] NVIDIA. CUDA Toolkit 4.2, 2012. https://developer.nvidia.com/cuda-toolkit-42-

archive. 37, 75, 97, 111

[57] NVIDIA. NVIDIA’s next generation CUDA compute architecture: Kepler GK110,

2012. www.nvidia.com/content/PDF/kepler/NVIDIA-kepler-GK110-Architecture-

Whitepaper.pdf. 120

[58] NVIDIA. CUDA C Programming Guide, 2014. http://docs.nvidia.com/cuda. 1, 50,

63, 73, 75, 85, 125

[59] NVIDIA. NVIDIA GPU Computing SDK, 2014. http://developer.nvidia.com/gpu-

computing-sdk. 1

135

[60] NVIDIA. Ptx: Parallel thread execution isa, 2014.

http://docs.nvidia.com/cuda/parallel-thread-execution. 20

[61] D. Ofelt and J. L. Hennessy. Efficient Performance Prediction for Modern Micropro-

cessors. In 2000 ACM SIGMETRICS International Conference on Measurement and

Modeling of Computer System, pages 229–239, New York, NY, USA, 2000. ACM.

94

[62] OpenACC. Directives for accelerators, 2014. http://www.openacc.org. 84, 118, 119

[63] D. A. Padua andM. J.Wolfe. Advanced Compiler Optimizations for Supercomputers.

Communications of the ACM, 29(12):1184–1201, Dec. 1986. 35

[64] P. Pandit and R. Govindarajan. Fluidic Kernels: Cooperative Execution of OpenCL

Programs on Multiple Heterogeneous Devices. In Proc. of the 2014 International

Symposium on Code Generation and Optimization, pages 273–283, 2014. 119

[65] B. Pichai, L. Hsu, and A. Bhattacharjee. Architectural Support for Address Transla-

tion on GPUs: Designing Memory Management Units for CPU/GPUs with Unified

Address Spaces. In 19th International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, pages 743–758, New York, NY, USA,

2014. ACM. 85, 86

[66] J. R. Quinlan. Induction of decision trees. Journal of Machine learning, 1(1):81–106,

Mar. 1986. 31

[67] C. J. Rossbach, J. Currey, M. Silberstein, B. Ray, and E. Witchel. PTask: Operating

System Abstractions to Manage GPUs As Compute Devices. In Proc. of the 23rd

136

ACM Symposium on Operating Systems Principles, pages 233–248, 2011. 50, 119,

120

[68] C. J. Rossbach, Y. Yu, J. Currey, J.-P. Martin, and D. Fetterly. Dandelion: A Compiler

and Runtime for Heterogeneous Systems. In Proc. of the 24th ACM Symposium on

Operating Systems Principles, pages 49–68, 2013. 50, 119

[69] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk, and W. mei

W. Hwu. Optimization principles and application performance evaluation of a mul-

tithreaded GPU using CUDA. In Proc. of the 13th ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, pages 73–82, 2008. 52

[70] M. Samadi, A. Hormati, M. Mehrara, J. Lee, and S. Mahlke. Adaptive input-aware

compilation for graphics engines. In Proc. of the ’12 Conference on Programming

Language Design and Implementation, pages 13–22, 2012. 83

[71] D. Sayre. Is automatic ”folding” of programs efficient enough to displace manual?

Communications of the ACM, 12(12):656–660, Dec. 1969. 53

[72] S. Sharma, R. Ponnusamy, B. Moon, H. Yuan-Shin, R. Das, and J. Saltz. Run-time

and compile-time support for adaptive irregular problems. pages 97–106, 1994. 85

[73] G. Shobaki and K. Wilken. Optimal Superblock Scheduling Using Enumeration. In

Proc. of the 37th Annual International Symposium on Microarchitecture, pages 283–

293, Washington, DC, USA, 2004. IEEE Computer Society. 100

[74] J. Silk and G. A. Mamon. The current status of galaxy formation. Research in As-

tronomy and Astrophysics, 12(8):917–946, 2012. 52

137

[75] J. A. Stratton, S. S. Stone, and W.-M. W. Hwu. MCUDA: An efficient implemen-

tation of CUDA kernels for multi-core CPUs. In Proc. of the 13th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, pages 16–30, 2008.

12, 48

[76] Y. Suzuki, S. Kato, H. Yamada, and K. Kono. GPUvm: Why Not Virtualizing GPUs

at the Hypervisor? In Proc. of the USENIX Annual Technical Conference (USENIX

ATC’14), pages 109–120, June 2014. 50

[77] H. Topcuouglu, S. Hariri, and M. you Wu. Performance-Effective and Low-

Complexity Task Scheduling for Heterogeneous Computing. IEEE Transactions on

Parallel and Distributed Systems, 13(3):260–274, Mar. 2002. 100

[78] L. Torczon and K. Cooper. Engineering A Compiler. Morgan Kaufmann Publishers

Inc., 2nd edition, 2011. 24, 65

[79] K. Wang, X. Ding, R. Lee, S. Kato, and X. Zhang. GDM: Device Memory Manage-

ment for Gpgpu Computing. In 2014 ACM SIGMETRICS International Conference

on Measurement and Modeling of Computer System, pages 533–545, 2014. 50

[80] X. Wu, X. Zhu, G.-Q. Wu, and W. Ding. Data Mining with Big Data. IEEE Transac-

tions on Knowledge and Data Engineering, 26(1):97–107, Jan. 2014. 52

[81] Y. Yang, P. Xiang, J. Kong, and H. Zhou. A GPGPU compiler for memory optimiza-

tion and parallelism management. In Proc. of the ’10 Conference on Programming

Language Design and Implementation, pages 86–97, 2010. 83

138

[82] D. Zaparanuks and M. Hauswirth. Algorithmic profiling. In Proc. of the ’12 Con-

ference on Programming Language Design and Implementation, pages 67–76, 2012.

94

139

	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	Introduction
	Challenges of Using Multiple GPUs
	Contributions
	SKMD
	VAST
	MKMD

	Background
	SKMD: Single Kernel Execution on Multiple Devices
	Introduction
	SKMD System
	Kernel Transformation
	Buffer Management
	Performance Prediction
	Transfer Cost and Performance Variation-Aware Partitioning
	Limitations

	Evaluation
	Results and Analysis
	Execution Time Break Down
	Performance Prediction Accuracy

	Related Work
	Conclusion

	VAST: Virtualizing Address Space for Throughput Processors
	Introduction
	Motivation
	VAST System Overview
	VAST System Execution Flow
	VAST Execution Timeline

	Implementation
	The Design of Page Accessed Set
	OpenCL Kernel Transformation
	Look-ahead Page Table Generation
	Forwarding Shared Pages

	Further Optimization
	Selective Transfer
	Zero Copy Memory
	Double Buffering

	Evaluation
	Results
	Page Lookup Overhead

	Related Work
	Conclusion

	MKMD: Multiple Kernel Execution on Multiple Devices
	Introduction
	MKMD Overview
	Execution Time Modeling
	MKMD Scheduling
	Kernel Graph Construction
	Coarse-grain Scheduling
	Fine-grain Multi-kernel Partitioning
	Partitioning a Kernel to Time Slots
	Overhead and Limitations

	Evaluation
	Results
	Sensitivity to Profiles
	Case Study

	RELATED WORK
	Conclusion

	Conclusion
	Summary
	Future Directions

	BIBLIOGRAPHY

