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Abstract

Accurate position estimation provides a critical foundation for mobile robot percep-

tion and control. While well-studied, it remains difficult to provide timely, precise,

and robust position estimates for applications that operate in uncontrolled environ-

ments, such as robotic exploration and autonomous driving. Continuous, high-rate

egomotion estimation is possible using cameras and Visual Odometry (VO), which

tracks the movement of sparse scene content known as image keypoints or features.

However, high update rates, often 30 Hz or greater, leave little computation time per

frame, while variability in scene content stresses robustness. Due to these challenges,

implementing an accurate and robust visual odometry system remains difficult.

This thesis investigates fundamental improvements throughout all stages of a vi-

sual odometry system, and has three primary contributions: The first contribution

is a machine learning method for feature detector design. This method considers

end-to-end motion estimation accuracy during learning. Consequently, accuracy and

robustness are improved across multiple challenging datasets in comparison to state

of the art alternatives. The second contribution is a proposed feature descriptor,

TailoredBRIEF, that builds upon recent advances in the field in fast, low-memory

descriptor extraction and matching. TailoredBRIEF is an in-situ descriptor learning

method that improves feature matching accuracy by efficiently customizing descrip-

tor structures on a per-feature basis. Further, a common asymmetry in vision system

design between reference and query images is described and exploited, enabling ap-

proaches that would otherwise exceed runtime constraints. The final contribution is

a new algorithm for visual motion estimation: Perspective Alignment Search (PAS).

Many vision systems depend on the unique appearance of features during matching,

despite a large quantity of non-unique features in otherwise barren environments.

A search-based method, PAS, is proposed to employ features that lack unique ap-

pearance through descriptorless matching. This method simplifies visual odometry

x



pipelines, defining one method that subsumes feature matching, outlier rejection, and

motion estimation.

Throughout this work, evaluations of the proposed methods and systems are car-

ried out on ground-truth datasets, often generated with custom experimental plat-

forms in challenging environments. Particular focus is placed on preserving runtimes

compatible with real-time operation, as is necessary for deployment in the field.
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Chapter 1

Introduction

Real-time position estimation is a fundamental problem in robotics that enables appli-

cations such as mapping, planning, and control. Estimates of the motion over a short

time horizon, on the order of a few seconds, enable sensor data to be accumulated to

provide a more detailed description of the surrounding environment or to distinguish

between the static and dynamic parts of the scene. Estimates of the motion over a

longer horizon, on the order of minutes or hours, allow robots to collaborate on large

map-building tasks and minimize duplication of effort. Low-latency, local position

estimates are important for stable, high-speed control, while low-rate, global position

estimates are critical to relate prior map data, such as reference trajectories or scene

structure, to the robot’s current state, such as its current position or live sensor data.

For a mobile robot defined by its ability to move throughout the world, knowledge of

its own motion is critical.

Robustly estimating a mobile robot’s position is difficult. Dead-reckoning with a

combination of wheel odometers, gyroscopes, and accelerometers can provide satis-

factory estimates for short-term goals in favorable conditions. However, continuous

integration alone of the noisy and biased velocity and acceleration measurements

available from consumer-grade devices leads to position drift that is unsuitable for

sustained navigation. A solution to position estimate drift popular since antiquity is

celestial navigation — position estimation on the surface of the Earth using observa-

tions of the stars [1]. A host of related approaches use observable landmarks whose

positions are known (or assumed) to be fixed, through which drift in a dead-reckoned

position estimate can be observed and rejected. Alternatively, if the landmarks are

reliably observed and readily detected, position estimates can be computed without

the use of additional measurements.
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The Global Positioning System (GPS) is one such landmark-based solution [2].

It uses active electronic beacons, calculating position through inference involving the

time of flight for each signal. GPS is widely available, but it is sensitive to ionospheric

distortions and the reflection of signals within urban canyons. It fails when line-of-

sight paths to four or more satellites are not available, as inside tunnels or buildings.

This poses a problem for robots operating in mixed indoor/outdoor environments and

autonomous vehicles operating in cities.

Figure 1.1 shows an example of a robotic system that motivated this work and

operated in the challenging physical environments described previously. This system,

the University of Michigan’s winning entry to the MAGIC 2010 robotics challenge,

highlighted the need for position estimation systems robust to rough terrain in un-

known environments.

Figure 1.1: The team of ground robots that formed the University of Michigan’s entry in
the MAGIC 2010 robotics competition. ➞ 2012 Wiley Periodicals, Inc.

In MAGIC 2010, the University of Michigan’s 14 small (26 inch × 20 inch) ground

robots autonomously mapped an urban fairgrounds with limited, remote human over-

sight [3]. These robots, with a top speed of 1.2 m/s, explored this 500 m × 500 m

mixed indoor-outdoor course in 3.5 hours while stopping for numerous reconnaissance

objectives. A centralized ground station coordinated the multi-robot exploration and

mapping tasks, fusing individual maps derived from robots’ LIDAR data into a shared,

global map.

This difficult challenge combined multi-robot mapping, planning, perception and

control. These maps enabled autonomous, coordinated exploration in this unknown

environment by providing a unified representation for multi-robot planning and for

avoidance of simulated threats. However, these maps possessed local distortions re-
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sulting from wheel odometry inaccuracies, which occurred as a result of the uneven

terrain. Figure 1.2 shows an aerial camera view and the maps estimated during the

competition.

(a) Aerial view (b) Live mapping results (Phases 1-3)

Figure 1.2: Global, multi-robot maps from the MAGIC 2010 robotics competition [3]. The
course was divided into three phases of increasing difficulty, as shown in (b). Some geometric
distortion is present in the final live map estimates due to inaccurate odometry estimates.
Note the distortion in the bottom-left of Phase 1 or top-right of Phase 2. ➞ 2012 Wiley
Periodicals, Inc.

Camera-based approaches to motion estimation have been well-studied [4, 5, 6, 7]

and can make use of low-cost sensors and compute platforms. Many of these methods

are formulated in terms of image feature detection, description, and matching to

decompose the image-based motion estimation problem. Features, visual landmarks

corresponding to geometric primitives such as corners, are detected in the image

by selecting local maxima of a response function. This reduces the dense, regular

array of intensity values in the image to a small number of discrete elements with

known geometric properties, such as position or orientation. Between multiple images,

features are matched by selecting correspondences that minimize an error function

between two feature descriptors. These descriptors summarize the image appearance

surrounding the feature in order to provide robustness to phenomena that affect the

appearance of the image as a whole, such as viewpoint or lighting change.

Visual Odometry (VO) is a method that tracks the frame-to-frame motion of

features to provide a high-rate estimate of the incremental camera motion [6]. The

feature correspondences between frames provide the constraints used to simultane-

ously solve for the 3D feature positions and the 6 Degree of Freedom (6-DoF) camera
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motion. One camera is sufficient given enough correspondences, but there are ad-

vantages to multi-camera approaches. In the stereo case, using two cameras with an

overlapping field of view, the position of each image feature relative to the cameras

may be computed for every image pair [8], given that correct feature correspondences

have been formed.

Visual motion estimation methods are capable of providing accurate, high-rate

position estimates in conditions where dead-reckoning and GPS fail. Yet, implement-

ing such a system remains difficult due to trade-offs between runtime, accuracy, and

reliability. Further, these trade-offs are present at each stage in a motion estima-

tion pipeline — the type of features detected, the representation used to describe

them, and the methods to compute correspondences and resolve the camera motion

all impact the performance of the system.

This thesis develops unique approaches for detection, description, and motion

estimation in the visual odometry context. An emphasis is placed on real-time, stereo

approaches using low-cost sensors and operation in challenging environments.

1.1 Thesis overview

Building a visual odometry system remains challenging because of confounding fac-

tors such as environmental variability and because of the trade-offs between detection

repeatability, matching accuracy, runtime, frame rate, memory overhead, and simplic-

ity. This thesis improves the state of the art by investigating new methods for every

stage of a feature-based visual odometry pipeline and through a unique focus on both

descriptor-based and descriptorless visual motion estimation. An emphasis is placed

on preserving runtimes compatible with high frame rate, real-time use, as is expected

for robots operating in the field.

The key contributions of this thesis are:

❼ Chapter 3: A method for feature detector design that, in an offline setting,

learns a detector to maximize the accuracy of a target visual odometry pipeline

using ground-truth, camera-in-hand datasets in everyday, 3D environments

❼ Chapter 4: A method for online feature descriptor learning that effectively

performs per-feature customization of the descriptor sampling pattern. This

method, TailoredBRIEF, improves upon recent advances in intensity-comparison
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descriptors by addressing the sensitivity of specific comparisons to small changes

in viewpoint, increasing the overall feature matching accuracy

❼ Chapter 5: An alternative, search-based formulation for sparse, feature-based

visual odometry. This approach, Perspective Alignment Search (PAS), effi-

ciently utilizes indistinct visual features that are plentiful in otherwise feature-

deficient indoor environments. These indistinct edge features would confound

descriptor-based matching in a traditional odometry application, but are suc-

cessfully used in PAS through a descriptorless formulation and whole-scene

alignment objective
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Chapter 2

Background

Position estimation using one or more cameras requires an understanding of the math-

ematical model used to describe image formation and the algorithms used to transform

the raw image data into a form suitable for motion estimation.

2.1 Image formation

The dominate model for image formation in computer vision is the pinhole camera

model [8]. In the pinhole model, rays of light pass through a infinitesimally small

hole, or aperture, in a thin medium and strike an imaging plane. This is considered a

perspective projection. The image is formed by measuring the light received for each

pixel on the plane.

A small aperture is necessary to create a clear, sharp image. Without an aperture,

diffuse reflections would scatter light from a single source across the image plane,

resulting in measurements at each pixel without a unique source. The aperture serves

to permit only a subset of the available light and generate a coherent image.

The pinhole camera model can be described in terms of the position of a 3D point,

X = [X, Y, Z]T , and the camera parameters, including the focal lengths (fx, fy) and

optical center (cx, cy). Projecting through the pinhole model yields a coordinate in

pixels, (px, py). An illustration of this model is shown in Figure 2.1.

px = fx
X

Z
+ cx (2.1)

py = fy
Y

Z
+ cy (2.2)
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Frequently, the pinhole model in Equations 2.2 is instead described in terms of

the intrinsics matrix, K,

K =







fx 0 cx

0 fy cy

0 0 1






(2.3)

which relates the camera frame and image coordinates for a point X = [X, Y, Z]T

linearly, up to scale (subject to the constraint that pw = 1).

[px, py, pw]
T = K ·X (2.4)

In practice, most cameras deviate from the pinhole camera model. Small apertures

yield crisp images, but also permit little light to strike the image sensor. Consequently,

most cameras use a lens to focus additional light into a crisp image. This yields an

image with less noise, but results in image distortion whereby the image cannot be

described by the pinhole camera model, alone [8]. Once distorted, straight lines

as projected under the pinhole camera model appear bent across the image. For

problems in metrical computer vision, understanding and mitigating the effects of

lens distortion is necessary to produce accurate and meaningful results.

px

py X

Y

Z

(a) Pinhole model

px

py

(b) Resulting image

Figure 2.1: Illustration of the ideal pinhole camera model. Relative to the scene, the image
appears flipped on the image plane as a consequence of light passing through the pinhole
camera aperture

Imaging lenses are engineered to be axially symmetric about the principal axis.

When mounted with the axis of symmetry perpendicular to the image plane, it is

typically sufficient to express the image distortion as a polynomial function of a dis-

7



tance from the optical center of the image or, similarly, as a function of the angular

deviation from the principal axis. The parameters of this polynomial, as well as the

focal length and focal center parameters, make up what are called the intrinsic pa-

rameters of the camera. In addition, the extrinsic parameters describe the position

of the camera with respect to the origin in some coordinate system, be it another

camera, the center of a robot, or a map. These intrinsic and extrinsic parameters can

be estimated in a process known as camera calibration [9, 10, 11, 12]. Camera cali-

bration is a field unto itself, and we have demonstrated expertise in this area through

the development of a state-of-the-art camera calibrator known as AprilCal [12].

Once all intrinsics parameters are known, the effects of lens distortion can be

properly predicted by an application. Alternatively, the distortion can be removed

using image rectification, which resamples the image according to a distortion-free

camera model. An example of a distorted and rectified image is shown in Figure 2.2.

Note that the straight lines on the rectangular grid appear straight in the rectified

image, as is easily predicted by the pinhole model.

(a) Distorted (original) (b) Rectified (resampled)

Figure 2.2: A distorted camera image and an equivalent image with distortion removed.
Bilinear interpolation is used to resample a rectified image from the original, distorted
version.

The perspective imaging process loses an important quantity — scene depth.

While ray direction for each pixel is determined through calibration, the distance

to the scene along the ray is unknown. This depth can be recovered if more is known

about the geometry of the scene, or if multiple views are available.

Points in a planar environment can be related to an image of the scene through
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a two-dimensional homography. The 3× 3 homography matrix, H, relates two corre-

sponding homogenous points in the image, x and x′, such that x′ = Hx, up to scale.

Homographies can be used to create synthetic, ortho-rectified views of a plane, or to

map between image coordinates for two images of a planar scene. Figure 2.3 shows

an image of a planar roadway and the corresponding top-down, orthographic view

computed by resampling the original image with a homography.

(a) Perspective view (b) Resampled

Figure 2.3: Images before and after resampling with a homography. A top-down view of
a painted street is synthetically computed by sampling uniformly-spaced values using a
homography.

In the case of two cameras, the unknown depth of a point in the first image

projects into the second image as an epipolar line [8]. Thus, the distance to a point

observed in the first image can be recovered if the corresponding point is found in

the second image. This search along the epipolar line is simplified through stereo

rectification [8]. In stereo rectification, a pair of images are resampled so that lens

distortion is removed and the epipolar lines lie horizontally [13]. This reduces the

search along an arbitrary epipolar curve or line in the second image to a search along

the corresponding row. Figure 2.4 illustrates these scenarios.

The difference in x coordinates for a point in two stereo-rectified images, px2−px1,
is known as the disparity. Recovery of the full depth map for a stereo image pair

is known as dense disparity estimation, sometimes called dense stereo. Quantitative

evaluation of many dense disparity estimation methods is available from Scharstein et

al. [14, 15, 16, 17], including the well-known Semi-Global Matching (SGM) approach

from Hirschmüller [18]. Figure 2.5 shows a sample image and ground-truth depth

map.

For many motion estimation systems, the dense solution is not required and sparse

stereo methods are used instead.
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px1 px2

l1 l2

Figure 2.4: Epipolar geometry and stereo rectification. (Top) Illustration of epipolar ge-
ometry. The camera centers c1 and c2 are connected by a line through the epipoles e1 and
e2 called the baseline. The projections of the 3D point X lies on the epipolar lines l1 and
l2. (Bottom) Through stereo rectification, the image is resampled so that the epipolar lines
are horizontal and occupy corresponding rows. This allows algorithms to operate on only
corresponding scanlines when performing disparity estimation.

2.2 Image features

Images are composed of a dense, regular array of intensity samples, typically totaling

hundreds of thousands to millions of samples. To deal with such a large amount of

data, feature-based methods reduce the image to a set of discrete image primitives,

such as points, lines, or uniform regions. The presence and position of these primitives,

or image features, are extracted through the use of a feature detector. Local feature

appearance is summarized using a feature descriptor. Detectors and descriptors are

designed to provide invariant performance against various physical phenomena, yield-

ing repeatable detection or identical descriptions despite scene lighting or viewpoint

variations.

A number of invariant properties are commonly described in the literature:

❼ Lighting: Invariance to additive offsets and multiplicative scale factors in

recorded lighting levels

❼ Translation: Invariance to feature position within an image

❼ Scale: Invariance to size changes for image features (fixed aspect ratio). This is

a consideration for region (blob) features with defined extents. Scale-invariant
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Figure 2.5: Color and corresponding dense disparity image from Scharstein et al. [16].
Reproduced with permission.

detection reports a local extrema in a joint position and scale space. Scale-

invariant description summarizes an image area that varies in size proportional

to a feature’s scale

❼ Rotation: Invariance to in-plane rotation of the image. For descriptors, the

dominant orientation may be estimated to enable extraction of a rotation-

corrected descriptor

❼ Affine: Invariance to the combined effects of translation, rotation, and scaling,

particularly with a variable aspect ratio. In practice, it is used to increase

robustness to out-of-plane rotation

Features are categorized by the type of geometric primitive represented. Broadly

speaking, point features require the least computation and thus incur the lowest run-

times, while blob features possess the greatest level of invariance. Consequently, point

features are more common in high-rate video applications such as visual odometry,

while blob features are used frequently for visual search, object recognition, place

recognition, and so on. Figure 2.6 shows examples of the three feature categories.

❼ Points & Corners: Harris [19], FAST [20, 21], convolutional filters [22, 23],

or ORB [24]

❼ Lines: Canny edge detector [25]

❼ Blobs & Regions: SIFT [26], SURF [27], CenSurE [28], MSER [29]
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(a) Point features (b) Line features (c) Blob features

Figure 2.6: Feature detections for three common image feature categories. Detections
denoted by orange points, lines, or circles

In this thesis, the term feature is used to refer to a detected image primitive,

which has an associated image and position, and which optionally has an associated

descriptor. The portion of the image immediately surrounding a feature detection is

a pixel patch, which is sometimes used directly as a feature descriptor. As works in

the literature vary in focus on one or both aspects of the detection and description

problems, a categorization for a selection of methods is provided below.

❼ Detector-only: Harris [19], FAST [20, 21], CenSurE [28], learned detectors

from Trujillo and Olague [30], convolutional filters [22, 23]

❼ Descriptor-only: Pixel patch, DAISY [31], learned descriptors from Brown et

al. [32], BRIEF [33]

❼ Detector & Descriptor: SIFT [26], SURF [27], ORB [24], BRISK [34]

The performance of feature detectors and descriptors are analyzed by a number

of metrics. These metrics include repeatability, the degree to which features detected

in a reference image are detected in other images of the same content, precision, the

fraction of computed matches that are true correspondences, and recall, the frac-

tion of features for which true correspondences exist that were matched correctly.

Other criteria include computation time for various stages (detection, description,

and matching), and the memory footprint required to store descriptors or transfer

them throughout the system.
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2.3 Feature-based methods

Image features are useful in a wide range of applications, including Visual Odom-

etry (VO) [6, 35, 36, 23], Visual Simultaneous Localization And Mapping (Visual

SLAM) [4, 5, 7, 37], bundle adjustment [38, 8, 39], place recognition [40], object

recognition [41], and dense reconstruction [31].

Motion and location estimation are a common theme throughout visual odometry,

visual SLAM, bundle adjustment, and place recognition. These methods differ in

scope — in visual odometry, only the frame-to-frame camera motion is estimated [6,

22], while in visual SLAM and bundle adjustment, the joint estimation problem is

solved using many camera positions and many more features. In RSLAM, Mei et al.

presented a constant-time, large-scale mapping method to build visual maps online

in a relative coordinate frame [7], balancing metrical accuracy and the scalability of

map updates as the mapped area grows. In the bundle adjustment domain, Agarwal

et al. presented a method to perform city-scale visual mapping offline using images

scraped from the web [38].

The limited time-horizon of visual odometry and sliding-window visual SLAM

formulations provide a mechanism for runtime control at the expense of global pose

accuracy. While Agarwal et al.’s method was designed to reconstruct a city offline,

across many cores, and over the course of a day [38], many visual odometry and visual

SLAM methods are intended for in-situ, real-time use [6, 22, 7, 37].

Alternative formulations to live egomotion estimation are live localization and

place recognition. Such methods make use of prior maps which can be built ahead

of time, offline, using more data, time, and computational resources than would be

available online. At runtime, these methods estimate the current map position, either

globally, which is known as the “kidnapped robot problem”, or locally, using available

pose priors. Consequently, visual odometry and visual localization are complemen-

tary, as visual localization can reject the slow pose drift incurred by a visual odometry

application. One example of place recognition is FAB-MAP — an appearance-based,

bag-of-words visual place recognition application that recursively estimates the proba-

bility of revisiting a location given the re-observation of quantized visual features [40].

The precise usage of image features differs by application. In visual odometry, high

frame rates and constant velocity assumptions limit the possible feature motion within

the image, which allows less distinctive image features to be used. Some applications
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simply perform a dense search about the pose prior using a pixel patch descriptor [5].

Closing loops in visual SLAM, however, involves greater relative position uncertainty.

Consequently, features with greater invariances are typically used, such as the scale-

invariant SURF features used in FAB-MAP [40].

A typical visual odometry application tracks image features through a video and

estimates the camera motion and feature positions using Least Squares or a similar

method. In the stereo camera case, the feature positions can be estimated for every

image pair, as the intrinsic and inter-camera extrinsic parameters are known. The

camera motion can then be initialized by aligning the two 3D point sets with a method

such as that by Horn [42] and refined iteratively, or through a Perspective-n-Point

(PnP) method such as Lepetit et al.’s EPnP [43]. Many variations on this approach

have been described in the literature. For example, some stereo systems use only

one image whenever possible [44], to reduce computational load. Ma et al. fuse data

from a stereo camera, legged robot odometry, and a tactical-grade IMU [45]. Howard

uses inlier detection based on dense disparity images [35], computing inliers before

estimating the inter-frame motion.

Achieving robustness for these systems is critical, as pose estimation forms the

foundation of the rest of the system. The feature matching process almost always gen-

erates a small number of incorrect correspondences, however, as multiple features may

have similar appearance. Incorrect correspondences, or outliers, can have a significant

impact on the estimated motion. One way to make these methods robust is through

an outlier rejection stage, such as Random Sample And Consensus (RANSAC) [46].

In RANSAC, the minimum set of correspondences needed to compute a joint error

function are repeatedly drawn so that the degree of consensus, the agreement with

the resulting model, can be computed for each hypothesis. Given that the majority

of correspondences are inliers, hypotheses formed only of correct correspondences will

yield a low error, allowing outliers to be detected and discarded.

Speed and efficiency are a high priority for pose estimation, as many robots require

real-time operation in the field using limited computational resources. Modern CPU

architectures include Single Instruction Multiple Data (SIMD) vector instruction sets

to compute multiple results in parallel, which is known as data-level parallelism.

These instructions are often used for scientific and multimedia applications. They

can also be used to boost the performance of visual tracking systems, as has been

demonstrated in recent work [22, 33]. Examples of SIMD processor extensions include
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Intel’s Streaming SIMD Extensions (SSE) versions 1-4, Advanced Vector Extensions

(AVX), AVX2, AVX-512, and ARM’s NEON extensions. In this thesis, we make use

of Intel SSE and ARM NEON extensions.

2.4 Dense and correlative methods

Feature-based methods are not the only approach for camera and LIDAR position

estimation. Dense and correlative methods can be applied in many situations.

Dense methods have found recent popularity with the parallelism available through

a Graphics Processing Unit (GPU). Newcombe et al. proposed DTAM, a method for

real-time, dense mapping with a single camera [47]. DTAM performs many-view

dense disparity estimation, minimizing the average, absolute photometric error over

many short-baseline views. In KinectFusion, a GPU variant of the Iterative Closest

Point (ICP) method was applied to a stream from a depth camera to alternately align

and update a voxel-based surface representation [48]. Wolcott and Eustice recently

proposed a method for camera-based localization to a LIDAR-derived intensity map,

maximizing the mutual information between a live camera image and synthetic views

generated on a GPU [49].

Correlative methods have also been used for alignment of LIDAR data. Levinson,

Montemerlo, and Thrun presented a particle-filter method for LIDAR localization

into a ground-plane intensity map [50]. Olson detailed a multi-scale approach for

correlative “scan-matching” of planar LIDAR data that is robust to local minima [51],

unlike iterative alternatives like ICP.

15



Chapter 3

Feature detector learning 1

Most feature detectors described in the literature were designed by hand. This man-

ual design process allows the designer to leverage intuition about the problem and

explore a large, non-linear design space. While flexible, this approach to the design

and export of stand-alone feature detectors overlooks the differing requirements of

target applications. This chapter proposes and evaluates a method for automati-

cally learning feature detectors with the target application, a stereo visual odometry

system, “in-the-loop”. The goal of this work is to generate a feature detector that

maximizes the accuracy of the motion estimation pipeline, given the design decisions

in place in the implementation of that system. This approach allows us to thoroughly

explore the space of possible feature detectors and better understand the properties

of the top-performing detectors.

We propose to learn fast and effective feature detectors by restricting the detector

design space to a convolutional filter parameterization. Convolutional filters make up

an expressive space of feature detectors, yet possess favorable computational prop-

erties, including the ability to leverage SIMD instruction sets. The specific target

application in this work is stereo visual odometry, which requires fewer feature invari-

ances than an application that lacks any motion prior or continuity. Unlike feature

detection and matching evaluations limited to planar environments, these detectors

are learned on real video sequences in everyday, 3D environments. This approach

ensures the relevance of the learned results.

Learning these high-performance feature detectors requires a good source of train-

ing data, which can be difficult or expensive to obtain. We detail our method for gen-

1➞ 2013 IEEE. Adapted with permission, from Andrew Richardson and Edwin Olson, “Learning
Convolutional Filters for Interest Point Detection,” May 2013.
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Figure 3.1: Examples of convolutional filters for image feature detection. Hand-selected
filters include the corner and point detectors used by Geiger et al. [22] (top, both) and
a Difference-of-Gaussians (DOG) filter (bottom left) like those used for scale-space search
in SIFT [26]. The proposed method automatically learns convolutional filters for feature
detection. (Bottom right) The most accurate filter from this work.

erating ground truth data — instrumenting an environment with 2D fiducial markers

known as AprilTags [52]. These markers are robustly detected with low false-positive

rates, allowing us to extract features with known, global data association. These

constraints allow us to solve for the global poses of all cameras and markers, which is

used to evaluate motion estimates computed using only natural visual features. Im-

portantly, this global reconstruction is used to reject any feature detections present

on or near AprilTags, ensuring that the learn process is not biased by the presence of

fiducial markers.

The feature detectors learned with our method are efficient and accurate. Pro-

cessing times are comparable to FAST [20], a decision-tree formulation for corner

detection, and reprojection errors for stereo visual odometry are lower than those

with FAST in most cases. In addition, because our filters use a simple convolutional

structure, processing times are reduced by both increases in CPU clock rates and

SIMD vector instruction widths.

The main contributions of this work are:

1. A framework for learning a feature detector designed to maximize performance

of a specific application

2. A family of feature detectors (convolutional filters) with good computational
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properties for general-purpose vector instruction hardware (e.g. SSE, NEON)

3. A sampling-based search algorithm that can incorporate empirical evidence that

suggests where high quality detectors can be found and that tolerates both a

large search space and a noisy objective function

4. A method to evaluate the performance of learned detectors with easily-collected

ground truth data. This enables evaluation of the end application in arbitrary

3D environments

3.1 Background

Many feature detectors have been designed to enhance feature matching repeatability

and accuracy through properties such as rotation, scale, lighting, and affine-warp

invariance. Some well known examples include SIFT [26], SURF [27], Harris [19], and

FAST [20]. While SIFT and SURF aim to solve the scale-invariant feature detection

problem, Harris and FAST detect single-scale point features with rotation invariance

at high frame rates. Other detectors aim to also achieve affine-warp invariance to

better cope with the effects of viewpoint changes [53].

Many comparative evaluations of feature detectors and descriptors are present in

the literature [53, 54, 55]. Breaking from previous research, Gauglitz et al. evaluated

detectors and descriptors specifically for monocular visual tracking tasks on video

streams [55]. This evaluation is beneficial, as continuous motion between sequential

frames can limit the range of distortions, such as changes in rotation, scale, or lighting,

that the feature detectors and descriptors must handle, especially in comparison to

image-based search methods that can make no such assumptions. Our performance-

analysis mechanism is similar; however, whereas Gauglitz focused on rotation, scale,

and lighting changes for visual tracking, we focus on non-planar 3D scenes.

Machine learning provides an automated alternative to hand-crafted feature de-

tector and descriptor design. FAST, which enforces a brightness constraint on a

segment of a Bresenham circle via a decision tree, is a hybrid method that includes

a hand-designed detector but was automatically optimized for efficiency via ID3 [20].

An extension of FAST, FAST-ER, used simulated annealing to maximize detection

repeatability [21]. Unlike these approaches, we focus on learning a detector that im-

proves the output of our target application and on a parameterization that yields a
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low and nearly-constant runtime for feature detection.

Detector-learning work by Trujillo and Olague used genetic programming to as-

semble feature detectors composed of primitive operations, such as Gaussian blurring

and equalization [30]. Their results are promising, though the training dataset size

was small. Additionally, they attempt to maximize detector repeatability, whereas

our method is focused on the end-to-end system performance of our target application.

In addition to the detector-learning methods, descriptor learning methods like

those from Brown et al. learn local image descriptors to improve matching perfor-

mance [32]. They use discriminative classification and a ground-truth, 3D dataset.

Their resulting descriptors perform significantly better than SIFT on the ROC curve,

even with shorter descriptors. As this work focuses on detector learning, a common

patch descriptor is used for the fair evaluation of all detectors.

3.2 Learning a feature detector

Feature detector learning requires three main components: a parameterization for the

detector, an evaluation metric, and a learning algorithm. The parameterization de-

fines a continuum of detectors, ideally capable of describing the range from fixed-size

point or corner detectors to scale-invariant blob detectors, as well as concepts like

“zero mean” filters. The evaluation harness computes the motion estimation error,

which we want to minimize, resulting from use of a proposed detector. Given these

components, we can construct a method to generate feature detectors that maximize

our learning objective. While iterative optimization through gradient or coordinate

descent are obvious approaches to solve such problems, these approaches yield unsat-

isfactory performance for feature detector learning due to high dimensionality of the

search space and due to noise in the objective function. The proposed method uses

random sampling to evaluate far more filters in a fixed amount of time than with

iterative methods, to find good filters despite numerous local minima, and to develop

an intuition for the constraints on the filter design that yield the best performance.

3.2.1 Detector parameterization

We parameterize our feature detector as a convolutional filter [56]. This is an at-

tractive representation due to the flexibility of convolutional filters and the ability to
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leverage signal processing theory to interpret and constrain the qualities of a detector.

In addition to a convolutional filter’s flexibility, these filters can be implemented very

efficiently on hardware supporting vector instruction sets, such as Intel SSE, AVX,

and ARM NEON. This hardware is commonly available in modern mobile-device pro-

cessors, as rich media applications can benefit significantly from SIMD parallelism.

We want to find the convolutional filter that yields the most accurate result for

our target application. This is different from the standard metrics for feature detector

evaluation, such as repeatability, as the best features may not be detectable under

all conditions. Our objective function, which we minimize, measures the error in

the motion estimate against ground truth. This is in contrast to methods which

maximize an approximation of end-to-end performance like repeatability [21, 30].

The advantage of our approach is the potential to exploit properties specific to the

application. In stereo visual odometry, for example, edges that are vertical from the

perspective of the camera are easy to match between the left and right frames due to

the epipolar geometry constraints, an observation later explored in Chapter 5. This

property is not captured by standard measures like repeatability, so methods which

use these measures cannot be expected to exploit them.

Our detection method can be summarized as follows:

1. Convolve with the filter to compute the image response

2. Detect points exceeding a filter response threshold, which is updated at runtime

to detect a constant, user-specified number of features

3. Apply non-extrema suppression using the filter response over a 3× 3 window

This work focuses on 8× 8 convolutional filters. A näıve parameterization would

simply specify the value of each entry in the filter, a space of size R64. In the following

section, we detail alternative parameterizations which allow us to learn filters which

both perform better and require less time to learn.

3.2.2 Frequency domain parameterizations

Within the general class of convolutional filters, we parameterize our feature detec-

tors with frequency domain representations. In this way, we can apply meaningful

constraints on the qualities of these filters that would not be easily specified in the

20



spatial domain. In doing so, we learn about the important characteristics for success-

ful feature detectors built from convolutional filters.

We use the Discrete Cosine Transform (DCT) and Haar Wavelet transform to

describe our filters [57, 56]. Unlike the Fast Fourier Transform (FFT), the DCT and

Haar Wavelets only use real-valued coefficients and are known to represent image

data more compactly than the FFT [58]. This compactness is often exploited in

image compression and allows us to sample candidate filters more efficiently. These

transformations can be easily represented by orthonormal matrices and computed

through linear matrix products.

(a) 4× 4 DCT basis set (b) 4× 4 Haar basis set

Figure 3.2: Basis sets for the Discrete Cosine Transform (DCT) and Haar Wavelet Trans-
form. Each 4 × 4 basis patch corresponds to a single coefficient in the frequency domain.
The top-left basis corresponds to the DC component of a filter. Note that we use 8 × 8
filters in this work.

In this work, we make use of three representations for filters — pixel intensities,

DCT coefficients, and the Haar Wavelet coefficients. Figure 3.2 shows a set of basis

patches for the two frequency-domain representations. The pixel values of a filter

in the spatial domain can be uniquely described by a weighted linear combination

of these basis patches, where the weights are the coefficients determined by each

frequency transformation. For convenience, we refer to both the spatial values of the

filters (pixel values) and frequency coefficients as w.
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3.2.3 Error minimization

In our application, our goal is to find a convolutional filter which yields the best motion

estimate for a stereo VO system. We represent the error function that evaluates the

accuracy of a proposed filter by E(w). As described further in Section 3.3.2, our error

function is the mean reprojection error of the ground truth data, the four corners of

the AprilTags, using the known camera calibrations and the camera motion estimated

using the detector under evaluation.

While iterative optimization via gradient or coordinate descent methods is an ob-

vious approach for automatic learning, experiments showed that such iterative meth-

ods frequently terminate in local minima on the highly-nonlinear cost surface. We

propose instead to learn detectors by randomly-sampling frequency coefficient values

while varying the size and position of a coefficient mask that zeroes all coefficient

values outside of the mask. We refer to our mask of choice as a block-diagonal con-

straint, as illustrated in Figure 3.3. We also evaluate the performance of sampling

with bandpass constraints and sampling raw pixel values via the näıve approach. In

all cases, sampled values are taken from a uniformly-random distribution in the range

[-127,127].

(a) Bandpass (b) Block-diagonal

Figure 3.3: Illustrations of frequency-domain filter constraints for 8× 8 filters. Coefficients
rendered in black are suppressed (forced to zero). White coefficients may take any value.
A typical bandpass filter is shown in (a). We propose the use of the block-diagonal region
of support (b), which exhibited superior performance in our tests.

The constraints illustrated in Figure 3.3 are defined by low and high frequency

cutoffs, which define the filter’s bandwidth. The filters shown have low and high
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frequency cutoffs of 0.250 and 0.625, respectively2. Thus, the filters have a bandwidth

of 0.375.

Iteratively-optimizing with the target application in the loop can be very expen-

sive. Steepest descent methods that use the local gradient of the error function require

at least n error evaluations for square filters of width
√
n. After gradient calculation,

multiple step lengths may be tried in a line-search minimization algorithm. At a

minimum, n + 1 error evaluations are required for every update. Coordinate de-

scent methods require at least 2n evaluations to update every coefficient once. Both

methods require more calculations in practice. Because the error surface contains a

high number of local minima, step sizes must be small and optimization converges

quickly. This results in a great deal of computation for only small changes to the

filter. We found that 95% of our best randomly-sampled filters did not reduce their

error significantly after iterative optimization. Many did not improve at all.

In contrast to iterative methods, computing the error for a new filter only requires

one evaluation. The result is that in the time it would take to perform one round of

gradient descent for an 8×8 filter, we can evaluate a minimum of 65 random samples.

3.3 Stereo visual odometry

This section details the specific implementation of the stereo visual odometry system

used for feature detector learning. In principle, our in-situ training methods apply to

other stereo visual odometry pipelines and other applications. Prior work in visual

motion estimation demonstrated accurate and reliable, high-frame rate operation us-

ing corner feature detectors [7, 5]. A number of system architectures are possible

and have been demonstrated in the literature, including monocular [5, 4] and stereo

approaches [7, 22].

3.3.1 Visual odometry overview

Our approach to stereo visual odometry can be divided into a number of sequential

steps:

1. Image acquisition - 30 Hz hardware-triggered frames are paired using embed-

ded frame counters before performing stereo rectification via bilinear interpola-

2Note that we use frequency ranges normalized to the interval (0, 1)
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tion

2. Feature detection - Features are detected in grayscale images with non-

extrema suppression. Zero-mean, 9 × 9 pixel patch descriptors are used for

all features

3. Matching - Features are matched between paired images using a zero-mean

Sum of Absolute Differences (SAD) error score. To increase robustness to noise,

we search over a +/-1 pixel offset when matching. Unique matches are triangu-

lated and added to the map. Previously-mapped features are projected using

their last known 3D position and matched locally

4. Outlier rejection - Robustness to incorrect correspondences is provided through

both Random Sample Consensus (RANSAC) and “robust” cost functions in the

estimator (specifically, the Cauchy cost function with b = 1.0) [46, 8]

5. Motion estimation - The motion estimate is initialized to the best pose es-

timated in RANSAC. The point and camera motion estimates are improved

through non-linear optimization, iterating until convergence is achieved

The result is an updated 3D feature set and an estimate of the camera motion

between the two sequential updates.

3.3.2 Ground truth using AprilTags

We compute our ground truth camera motion by instrumenting the scene with April-

Tags and solving a global non-linear optimization over all of the tags and camera

positions. Specifically, the four tag corners are treated as point feature detections

with unique IDs for global data association. During learning, we explicitly reject any

feature detections on top of or within a small window around any fiducial marker so

that we do not bias the detector learning process. In other words, our system rejects

detections that would otherwise occur due to the presence of AprilTags in the scene

and focuses on the use of natural features in the environment. This is illustrated in

Figure 3.4b, where red overlays correspond to regions where all feature detections are

discarded. By using the reprojected fiducial marker positions, we can reject features

on markers even when the marker is not detectable in the current frame.
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(a) Reconstruction of the ground-truth camera tra-
jectory and landmark positions

(b) Reprojected ground-truth markers

Figure 3.4: Ground truth camera motion reconstruction using AprilTags. Stereo camera
trajectory (orange) in (a) is reconstructed using interest points set on the tag corners de-
termined by the tag detection algorithm. Shaded region (blue) corresponds to the scene
viewed in (b). The mask overlays (red) in (b) are the result of reprojecting the tag corners
using the ground truth reconstruction and are used to ensure that no features are detected
on the fiducial markers added to the scene. Example feature detections from the best filter
learned in this work are shown for reference (green).
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With the ground truth trajectory known, the accuracy of the visual odometry

pipeline can be evaluated for every candidate feature detector. For every sequential

pair of poses in the dataset, the 3D positions of the ground truth features (the corners

of the fiducial markers) are computed with respect to the first of the two poses.

These points are transformed to the reference frame of the second camera pose using

the motion estimate from the candidate feature detector. Once transformed, the

reprojection error is computed against the set of detections from the second camera

image pair. E(w) is the mean reprojection error over all pairs of poses in the dataset

using this method. It measures how well, on average, the ground truth features are

aligned with their observations when using the candidate detector.

3.4 Experiments

Our experiments focus on randomly-sampling filters under different constraints and

computing the mean reprojection error of the visual odometry solution with the se-

lected filter. In addition, we compare both error and computation time to existing

and widely-used feature detectors.

3.4.1 Implementation details

Training and testing was carried out on four datasets between 23 and 56 seconds

in length, recorded at 30 FPS. These datasets were collected in various indoor envi-

ronments, including an office, conference room, cubicle, and lobby. In each case, 15

seconds of video were randomly selected for training. Figures 3.4 and 3.6 show cam-

era trajectories and imagery from these datasets. This stereo rig included two Point

Grey FireFly MV USB 2.0 color cameras at a resolution of 376 × 240. Experiments

were run on a pair of 12-core 2.5 GHz Intel Xeon servers, each with 32 GB of mem-

ory. Sampling 5,000 filters required approximately 7 hours, averaging 9.7 seconds per

filter.

In contrast to the substantial computational resources used in learning, our target

application is limited to the compute available on a typical mobile robot. A mobile-

grade processor such as the OMAP4460, a dual-core ARM Cortex-A9 device, used

as an image preprocessing board, is a compelling and scalable computing solution

to our needs. With a convolution implementation optimized via vector instructions,
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(a) Office (b) Conference room

(c) Cubicle (d) Lobby

Figure 3.5: Images from the four datasets used for feature detector learning. Masks for
AprilTag fiducial markers are shown in red.
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(a) Office (b) Conference room

(c) Cubicle (d) Lobby

Figure 3.6: Reconstruction of the ground-truth camera trajectories and landmark positions.
The positions of the AprilTag fiducial markers (black and white textures) and the full camera
trajectory (orange line) are jointly estimated to provide ground-truth reference data for
training
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specifically ARM NEON, we can detect around 300 features per 376 × 240 image in

3.65 ms for a 8×8 filter. In comparison, the ID3-optimized version of the FAST feature

detector performs similarly, requiring 3.20 ms. For both methods, we dynamically

adjust the detection threshold to ensure the desired number of features are detected

even as the environment changes.

Figure 3.7: Time comparison between FAST-9 and an 8 × 8 convolutional filter feature
detector. Times represent the combined detection and non-extrema suppression time and
were computed on the PandaBoard ES (OMAP 4460) over 30 seconds of video with 376x240,
grayscale imagery.

While both methods are efficient enough for real-time use, the difference in com-

putation time for a large number of features is dramatic. Figure 3.7 shows the runtime

as a function of the desired number of features for both methods. This time measure-

ment includes detection and non-extrema suppression. While both methods show a

linear growth in computation time, the growth for the convolutional methods is much

slower than for FAST. This is because the convolution time does not change as the

detection threshold is reduced. The linear growth is due only to non-extrema sup-

pression. This result is especially important for methods where the desired number

of detections is high [5, 22].

3.4.2 Randomly-sampled filters

The proposed learning method was evaluated through a suite of random-sampling

experiments for block-diagonal filters with both the DCT and Haar parameterization.

We also compare to sampled bandpass and pixel filters. Figure 3.8 shows the error
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of the best filter sampled so far as 5,000 filters are sampled. In all four datasets,

the pixel and bandpass filters never outperformed the best block-diagonal filter. The

final filters of each type and from each dataset3 are shown in Figure 3.9.

Figure 3.10 shows the error distributions for each of the three constraints on the

conference room dataset. For each experiment, 5,000 filters were randomly generated

with the appropriate set of constraints. For the bandpass and block-diagonal con-

straints, we generated filters for all combinations of the DCT or Haar transform low

frequency cutoff and filter bandwidth, defined previously. Of the 27 combinations

of low and high-frequency mask cutoffs available for both DCT and Haar filters of

size 8 × 8 (in total,
(

8

2

)

− 1 combinations each for DCT and Haar), only 6 of them

include the DC component and, in the case of the block-diagonal filters, the vertical

and horizontal edge components.

From these plots, it is clear that limiting the search for a good filter through the

bandpass and block-diagonal sampling constraints significantly improved the percent-

age of filters which yield low reprojection errors. Our interpretation of this result is

that these filter-based detectors are sensitive to nonzero values for specific frequency

components. By strictly removing these components in 21 of the 27 constraint com-

binations, the average filter performance improves significantly.

Figure 3.11 shows separate distributions for block-diagonal filters for each of

the possible low-frequency cutoffs for filters with the most narrow filter bandwidth

(0.250). One plot is shown for each frequency transformation (DCT and Haar). From

these figures/filters, it is clear that filters perform significantly worse when the DC

and edge coefficient values are not zero. Beyond that, there is a clear trend of low

error for low-frequency filters, and an increasing error as frequency increases. Finally,

the DCT filter performance significantly degrades as high frequency components are

introduced; however, the Haar filter performance does not. Our interpretation of this

result is that, because Haar basis patches are not periodic, a simple step transition in

an image will often result in a single, unique maxima. In contrast, the periodic DCT

basis patches will yield multiple local maxima, causing a cluster of detections around

edges. Similar trends exist for filters with higher bandwidths.

The performance of the best sampled block-diagonal filters are compared to base-

line methods such as FAST, Shi-Tomasi, a Difference of Gaussians filter, and filters

used by Geiger et al. in Table 3.1. The best result from every testing dataset (row)

3Final coefficients available at http://umich.edu/⑦chardson/icra2013feature.html
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(a) Desk dataset (b) Conference room dataset

Figure 3.8: Mean reprojection error for the best convolutional filter sampled so far (running
minimum error) over 5,000 samples. Ground truth system error shown in red.

Figure 3.9: Visualization of the best learned convolutional filter for each combination of
dataset and sampling type. Best viewed in color.

31



(a) Pixels (b) Bandpass (c) Block-diagonal

Figure 3.10: Histogram of mean reprojection errors for three filter generation methods
on the conference room dataset. While randomly-generated bandpass filters yield better
performance, on average, than filters with uniformly-random pixel values, block-diagonal
filters have both better average performance and a lower error for the best filters. 79%
and 72% of sampled bandpass and block-diagonal filters, respectively, had errors under 2.5
pixels, while only 30% of random pixel filters had such low errors.

is shown in bold. All detector evaluations were performed with the same system pa-

rameters: 300 detected features after non-extrema suppression and rejection due to

fiducial marker masks, use of RANSAC and a Cauchy robust cost function (b = 1.0),

etc. These parameters were set via parameter sweeps using the FAST feature detector

on the office and conference room dataset. As such, these represent best-case con-

ditions for FAST. Mean values over 25 trials are reported due to variability induced

by RANSAC. The differences in the means between the trained filters and FAST

were statistically significant in 10 of the 12 cases with p values less than 0.01 for a

two-tailed t-test.

These results reinforce the notion that learned convolutional filters can compete

with non-linear detection methods, like the FAST feature detector. Only on the con-

ference room dataset did FAST perform better than a learned filter. On average,

learned filters had a lower reprojection error than FAST by a small amount, 0.05

pixels. For other baseline methods, such as Shi-Tomasi, the improvement in reprojec-

tion error was substantial. Note that while SURF outperformed all methods on the

cubicle dataset, this is due to SURF detections adjacent to AprilTags that cannot be

rejected in the same manner as other features due to SURF’s scale invariance.

For the linear baseline methods, the results vary greatly. Geiger et al.’s corner

filter performs the best of the three, and yet it and the other linear baselines perform
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(a) DCT block-diagonal filter distributions

(b) Haar block-diagonal filter distributions

Figure 3.11: Distributions of block-diagonal filter reprojection errors for filters with a band-
width of 0.250 on the conference room dataset. For both (a) and (b), the filters which include
the DC and vertical/horizontal edge components (LF cutoff of 0) have reprojection errors
greater than 4 pixels 84% and 87% of the time for DCT and Haar filters, respectively. Be-
yond the DC components, only the DCT filters with low-frequency cutoff of 0.5 or greater
have such large reprojection errors. The remaining distributions progress smoothly from
low error (left) to high error (right) as the frequency increases. Best viewed in color.
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Test Set Filters trained on dataset Linear baselines Non-linear baselines

Office Conf. rm. Cubicle Lobby DOG Geiger Corner Geiger Blob FAST Shi-Tomasi SURF

Office 0.447 0.466 0.471 0.468 40.281+ 0.492 0.595 0.470 2.060 1.322∗

Conf. room 0.981 0.929 0.996 0.981 1.505 1.047 1.218 0.953 1.141 1.584∗

Cubicle 1.292 1.142 1.134 1.368 2.962 2.131 4.042 1.441 4.550 0.795∗

Lobby 1.593 1.552 1.628 1.482 1.974 1.573 1.927 1.654 1.938 2.032∗

Table 3.1: Motion estimation testing error (pixels) on each dataset using learned feature
detectors and baseline methods. Reported numbers are mean values over 25 trials to com-
pensate for the variability of RANSAC, except for the training errors (gray). Bold values
are the best result for every row. ∗SURF generated features adjacent to AprilTags that
could not be easily filtered out due to SURF’s scale variation. As such, the SURF results
are not considered a fair comparison to the other methods. +Unusually large mean error is
the result of data association failures for the specified feature type

quite poorly on the cubicle dataset, unlike the learned filters. Interestingly, these

linear detectors (or an equivalent 8 × 8 filter) are simply a few of the convolutional

filters that could have been learned in our framework.

These results also suggest that dataset choice, not learned filter, was the best

predictor of testing errors. The cubicle dataset had a high error in a number of cases.

From inspecting the video stream, this is not surprising — the cubicle is generally

feature-deficient except for smooth edges and a narrow strip where the camera sees

long-range features over the cubicle wall.

3.5 Summary

Feature detectors are primarily designed manually and evaluated with proxy metrics

that aren’t guaranteed to reflect the requirements of a target application. This work

addressed this issue by automatically learning feature detectors in a general convolu-

tional filter framework. The learned detectors were automatically tuned to maximize

the accuracy of the motion estimate computed by a stereo visual odometry pipeline.

The resulting detectors outperform a comprehensive set of baselines and yield con-

sistent performance on the cubicle dataset, which disproportionally challenged most

baseline methods. Additionally, these results demonstrate that the learned features

are robust across datasets, as each training dataset produced filters that were similarly

or more accurate than the baseline methods when evaluated across testing datasets.

This works supports the concept of learning via controlled random sampling. We
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experimentally determined that gradient and coordinate descent methods quickly

converge in local minima without substantial improvement over a filter’s initial per-

formance, and we argue that the computation time required to compute a gradient

update step is better spent exploring tens, if not hundreds, of random samples. We

propose a mechanism to usefully distribute samples throughout the frequency domain

by sweeping over block-diagonal coefficient masks. Further, we demonstrate a trend

in both DCT and Haar wavelet-based filter performance that favors low-frequency

filters.
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Chapter 4

Feature descriptor learning

Feature descriptors generated by a sequence of two-pixel intensity comparisons are

capable of representing image features tersely and quickly. These so-called binary

or Boolean string descriptors, which store a comparison’s outcome in a single bit,

require only a few bytes per feature (e.g. 8-64B, often 32B), greatly reducing memory

footprint and network transfer bandwidth. In addition, computing and matching

these descriptors requires much less runtime than well-known alternatives like SIFT

and SURF, with comparable matching accuracy [33, 24].

One such method, BRIEF [33], is notable due to its intuitive formulation and

compatibility with vector instruction sets. But unlike one of BRIEF’s predecessors,

Randomized Trees [59, 60], BRIEF’s comparisons are fixed and do not adapt to the

image content of individual image features. This makes BRIEF sensitive to viewpoint

change, as the intensities shifting under the fixed sampling pattern can cause the test

outcomes, and thus the computed descriptor, to change. This results in increased

overlap between descriptor error distributions for true and false correspondences,

which ultimately leads to a higher false match rate.

Two of BRIEF’s primary advantages are the small memory footprint and fast

runtime. These are suited to the demands of real-time vision applications, with

constrained bandwidth and high-FPS runtime targets. However, they also set a high

bar for improvements — increases in descriptor robustness must come with minimal

side effects. How to do this given the unique formulation of BRIEF — the Boolean

string representation and use of XOR/POPCNT — is not especially clear.

This work proposes a formulation for online descriptor learning that improves the

matching performance for BRIEF-like descriptors. This is achieved by addressing

the sensitivity of intensity-test descriptors to viewpoint variation between multiple
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(a) Full set of intensity tests (b) Learned test subset

Figure 4.1: Illustration of BRIEF and TailoredBRIEF intensity tests for an image of a road
sign. Learning is used to select the subset of tests, (b), from the full set, (a), that produce
repeatable results under simulated viewpoint change. The surviving tests for this image
feature tend to compare the patch center to the patch perimeter.

observations of a feature. The proposed method effectively learns a unique descriptor

structure for every feature in an image, and does this in a manner compatible with

real-time use. The key is in doing this efficiently and in a way that is congruous with

the suggested implementation of BRIEF. For that, we propose tailoring for Boolean

string descriptors, and argue that this approach is suitable for real time systems.

Unlike most approaches for feature descriptor matching, the proposed method

uses an asymmetric division of labor between reference features and query features.

We define a reference feature to be one in a keyframe or map, and a query feature

to be those matched against reference features. This asymmetry is present in visual

odometry, SLAM, and localization, all of which can be or are naturally formulated to

reuse a set of reference features, which is undertaken to reduce pose drift or control

map size. Consequently, we propose an asymmetric representation for reference and

query feature descriptors, as an application like visual odometry can afford a larger

memory footprint or bandwidth requirement for the occasional reference feature.

Despite this asymmetry, the runtime for matching with the proposed method is

essentially unchanged, and the precision and recall are improved. We achieve this by

simulating the effect of viewpoint change on reference feature descriptors and defining

an appropriate weighting vector to suppress unreliable intensity tests. Figure 4.1

shows an illustration of the result, where the focus of the intensity tests has shifted
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from random pixel pairs to center-perimeter comparisons for the specific feature in

question.

The contributions of this work are:

❼ A demonstration of the viewpoint sensitivity of intensity comparison descriptors

❼ A method for computing descriptor weighting vectors through synthetic obser-

vations of an image patch

❼ An efficient distance function for weighted descriptors

❼ Evaluation of matching performance under typical appearance changes and com-

parison to prior art

4.1 Related work

This work is based on BRIEF [33], which stems from a line of research from Lepetit,

Fua, et al. on intensity-test based feature matching [59, 60, 61, 62, 63, 33, 64].

Lepetit and Fua investigated Randomized Trees as a way to reformulate descriptor-

based feature matching as a classification problem [59, 60]. They consider a class to

be all views of the same scene feature, and perform offline training to learn a decision

tree composed of ternary intensity tests. Synthetic views are generated to increase

the available training data, and multiple randomized trees are grown because of the

claimed intractability of building an optimal tree. Though the randomized trees

improved the problem tractability, the reported learning time of about 15 minutes

would be too great for many online learning problems.

Özuysal, Calonder, Lepetit, and Fua addressed scalability of this style of classifi-

cation with Randomized Ferns [61, 62]. The primary difference between randomized

trees and ferns is that while a randomized tree may perform different tests given the

outcome of the previous test, a fern converted to a tree always performs the same

test at a given depth. Additionally, Özuysal et al. consider combining the class-

membership probabilities estimated by each tree or fern in a Naive Bayes manner,

instead of simply averaging, and observe a 10-20% increase in feature recognition

rates. Ultimately, joint probabilities are considered between tests in the same fern,

and independence assumed between ferns. This allows some control over the size of

the required joint probability tables, which grow exponentially in the size of the fern.
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Calonder et al. introduced BRIEF [33, 64], which is formulated as a typical

feature descriptor and does away with the joint probability estimates. Additionally,

they justify the design by pointing out that the Hamming Distance between two

descriptors can be computed with XOR and POPCNT instructions, greatly improving

feature matching speed.

Others have also contributed in this space. Rublee et al. described ORB [24],

combining the FAST feature detector [20], an orientation estimator, and a method to

greedily choose test positions during offline training. In particular, they choose tests

that are less correlated under rotation than a typical set of BRIEF tests. Leutenegger

et al. described BRISK [34], which uses the FAST score as a saliency measure to

achieve invariance to scale and a radially-symmetric sampling pattern.

In contrast to these approaches, we propose TailoredBRIEF, an extension to

BRIEF that allows per-feature customization of the tests used to robustly describe

a feature. TailoredBRIEF focuses on the descriptor and matching aspects of the

problem, and does not attempt to construct a full detector/descriptor system like

ORB and BRISK. Finally, unlike the offline-trained Randomized Trees and Ferns,

TailoredBRIEF is meant to learn online, as new features are detected for the first

time. This approach is suitable for novel environment exploration by a mobile robot,

which would have no opportunity for offline training.

4.2 Descriptor extraction

The BRIEF descriptor summarizes local appearance through intensity tests between

pairs of pixels surrounding an image feature. The Boolean outputs of the tests are

stored bit-packed to minimize memory usage. Further, stored in this way, the XOR

instruction can be used with POPCNT to compute the number of bit errors between

two BRIEF descriptors, also known as the Hamming Distance. This results in a very

terse descriptor that can be matched much faster than alternatives like SURF [33, 27].

Before computing a BRIEF descriptor, a set of test points must be defined. Calon-

der et al. explored the effect on feature matching recall with test points drawn from a

number of parameterized random distributions [33]. We use a Gaussian distribution,

following from their results. Once defined, the same test points are used for every

descriptor. However, for scale-invariance, the relative test points’ positions may be

resized according to a feature’s scale. Finally, while the number of tests is arbitrary,
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it is typically chosen to be a multiple of the POPCNT operand length.

Algorithm 1 illustrates how a BRIEF descriptor is computed for a given feature.

For each pair of scaled test points, both image intensities are looked up relative to the

feature’s position. If the second intensity is greater, the appropriate bit in the descrip-

tor is set. When computing the error between two descriptors, each corresponding

section from the two descriptors is loaded, differenced using the XOR instruction, and

counted with POPCNT to determine the Hamming Distance.

4.3 Matching errors due to viewpoint change

Image feature matching through nearest-neighbor computation in a descriptor space

can be confounded by image feature appearance changes. These appearance changes

result from sensor noise, changes in the environment (such as variation in lighting in-

tensity or direction), and changes in the camera viewpoint. For descriptors composed

of two-point intensity comparisons, viewpoint changes shift the test points across the

image patch, resulting in unstable outcomes for some intensity comparisons. These

instabilities increase the matching error for a true correspondence, which leads to

false matches when the true error is too great.

We can explore this relationship by simulating BRIEF descriptor extraction under

viewpoint changes. Figure 4.2 shows an image patch centered about a road sign, which

contains sharp transitions, flat regions, and small text. As we sweep over changes to

scale and both in-plane and out-of-plane rotations, we transform the BRIEF test

positions and compute the intensity comparison results in the original image. This

corresponds to applying the inverse transformation to the image before descriptor

Algorithm 1 BRIEF EXTRACT (tests, im, x, y, scale)

bits = zeros(length(tests))
for all test ∈ tests do
a = im(x + scale*test.x1, y + scale*test.y1)
b = im(x + scale*test.x2, y + scale*test.y2)
if a < b then

bits[test.index] = 1
end if

end for

return bits
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extraction, but is simpler, as the full set of transformed test positions can be cached.

The descriptors computed under simulated viewpoint change are then compared

to the original descriptor. Figure 4.2 shows plots of the matching error, the Hamming

Distance, for two of the simulated viewpoint changes. As we move along the axes

away from the nominal scale or orientation, the true matching errors reach just under

33% of the total number of bits, even for small viewpoint changes.

Often, we are interested in the matching error distributions for true and false

correspondences. When these distributions have minimal overlap, we expect to com-

pute a true correspondence with high probability. Drawing from independent, uni-

form random distributions for the viewpoint change variables over a fixed range,

we can estimate the true-correspondence error distribution. To compute the false-

correspondence distribution, we can compare all sampled descriptors from one class,

or image patch, to those sampled from all other classes.

Figure 4.3 shows these sample distributions for a typical BRIEF descriptor and

the proposed method. A small library of seven input patches was used, computing

descriptors for each patch under 200 simulated viewpoint changes. All true and false

correspondences were then compared to estimate the sample probability distributions.

Without a learning stage to determine which tests are robust to small viewpoint

changes, the true and false probability distributions overlap. For some combination

of patches and viewpoint changes, selecting the minimum Hamming Distance pair

will result in a false correspondence. Further, the true correspondence mode is clearly

non-zero, between 10% and 20% of the 128 bits used. In contrast, by applying the per-

feature learned weights (proposed), the distribution overlap is decreased substantially

and the true correspondence mode shifts to an error of zero bits. This suggests that

feature matching precision will increase as a result.

4.4 Method: Tailoring BRIEF

Through online learning, we desire to improve the accuracy of descriptor-based feature

matching. We achieve this primarily by considering the effect of appearance changes

on the consistency of an individual feature descriptor. Like Lepetit et al., we simulate

the outcome of these appearance changes to generate training data [59], which is in

turn used to generate a Boolean-weighting vector that we refer to as a descriptor

mask. This mask is used repeatedly in the inner loop of the matching process, when

41



(a) Image (b) Nominal (c) Scale (d) Pitch (e) Yaw

−15 −10 −5 0 5 10 15
Roll (deg)

0

20

40

60

80

100

T
es
t
er
ro
rs

(%
)

Road sign

(f) Test errors (roll)

−15 −10 −5 0 5 10 15
Pitch (deg)

0

20

40

60

80

100

T
es
t
er
ro
rs

(%
)

Road sign

(g) Test errors (pitch)

−15 −10 −5 0 5 10 15
In-plane rotation (deg)

0

20

40

60

80

100

T
es
t
er
ro
rs

(%
)

Road sign

(h) Test errors (yaw)

0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20
Scale

0

20

40

60

80

100

T
es
t
er
ro
rs

(%
)

Road sign

(i) Test errors (scale)

Figure 4.2: Intensity tests on a road sign image patch under simulated viewpoint changes.
(b – e) Viewpoint change examples show the transformed positions of the nominal intensity
tests. The test outcomes are denoted with colored endpoints and lines. Orange endpoints
denote higher intensities. Red lines denote tests that differ from the nominal viewpoint.
(f – i) Sweeping over rotation and scale change parameters, up to 33% of intensity tests
produced erroneous results
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(a) BRIEF
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(b) TailoredBRIEF

Figure 4.3: Descriptor matching error distributions for example patches using BRIEF and
TailoredBRIEF. Descriptors extracted for 7 image patches under 200 synthetic viewpoint
changes were used to estimate the distribution of true and false correspondence descriptor
error. Overlap in these distributions indicates that the minimum-error match may be a
false correspondence. TailoredBRIEF shows decreased overlap as compared to BRIEF,
which suggests that feature matching accuracy will also improve.
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the matching error is computed for a specific pair of features.

Key to leveraging this technique is an efficient implementation. The design and

efficiency of the BRIEF descriptor make it especially well-suited to this task. This is

in part because the intermediate box filter computation can be reused during training.

It is also because the Boolean nature of the image tests lend themselves to efficient

descriptor mask training, as well as application during feature matching.

The remainder of this section discusses the specific approach to learning a descrip-

tor mask, and the application of these masks during matching.

4.4.1 Formulation

In the context of feature matching, not all intensity comparisons are equally reliable.

While it is possible to learn a better set of test points, as shown by Rublee et al.

to reduce average test correlation [24], for any specific test, some image patch exists

which will produce different results under a small perturbation. If tests were learned

for individual image patch instances, this effect could be minimized.

One can imagine utilizing a different set of BRIEF test points for each feature

in a reference image. For m features in a reference image and n features in a query

image, a total of m × n unique descriptors must be extracted in the query image.

This produces m × n matching errors. For m = n, which is common, the number

of descriptors extracted grows quadratically in the number of features, instead of

linearly as with a single set of test points. This presents an obvious challenge for

real-time systems which target 30-60 Hz operation.

We propose instead to extract a single descriptor for each image feature and learn

a vector of weights for each test. If we assume that the tests are independent and

produce errors according to a Bernoulli distribution, we can estimate pi for each test i

by sampling viewpoint change parameters and warping the image patch or test points

appropriately. We would then compute the probability of a true match as a function

of the test errors and Bernoulli probabilities. However, this would negate a key

property of BRIEF, as the extra mathematical operations would significantly increase

the number of operations required to compute the error between two descriptors.

Instead, we propose to learn a Boolean weighting vector and apply it with an AND

operation to the error vector, suppressing noisy tests. In this way, we can select the

subset of tests that are reliable for a particular image patch. Despite discarding a
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potentially large number of tests, we show that the matching performance actually

increases.

Algorithm 2 MASKED DISTANCE (blocks, mask, a, b)

dist = 0
for all bi ∈ range(0, blocks) do
dist += POPCNT(mask[bi] and (a[bi] xor b[bi]))

end for

return dist

This Boolean weighting vector can be applied efficiently during matching. The

Boolean weights are stored bit-packed as in the BRIEF descriptor. Algorithm 2

illustrates the matching error function with descriptors for two features, and one

descriptor’s learned mask. Here “blocks” is the number of 64-bit blocks of bits in

descriptors a and b, and the mask. For example, blocks is 4 for a 256-bit descriptor.

In practice, masks could be learned for both sets of features, instead of one as

shown. However, for many systems, this is unnecessary. For systems like visual

odometry and visual SLAM, reference features are added only periodically. We can

take advantage of this asymmetry by performing extra processing on the reference

features without affecting descriptor extraction time for the query features. Addi-

tionally, an important property of this formulation is that memory usage increases

only for reference features, which require twice the memory, while the memory for

query features is unchanged.

4.4.2 Mask learning via viewpoint simulation

Training data from which to compute a descriptor mask is gathered by sampling

viewpoint changes from uniform distributions in scale and 3-axis rotation. The full

transformation is shown in Equation 4.1, where R represents a 3D rotation matrix

generated from in-plane and out-of-plane rotation terms sampled from zero-mean

distributions. The original test point coordinates x and y in the range [−0.5, 0.5]

are rotated according to R. The result is then projected as if at unit distance by a

camera with focal length s, where s is sampled from a distribution with mean 1.
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Note that while we sample only over a small number of viewpoint change param-

eters, other terms such as additive noise could be readily integrated.

The transformed test point coordinates xp are computed once and stored. To

learn the descriptor masks, we do the following for each feature:

1. Compute all transformed descriptors using Algorithm 1

2. Compare the original descriptor to each of the transformed descriptors, com-

puting the number of errors for each test i

3. Estimate the sample probability pi(error) for each test

4. If pi(error) is greater than a small threshold, reject test i by setting its weight

to zero

This learning process is described further in Algorithm 3.

Algorithm 3 LEARN MASK (tests, im, x, y, scale, thresh)

desc = brief extract(tests, im, x, y, scale)
mask = ones(length(tests))
for all test ∈ tests do
transformed = transform test(test)
error = 0
for all sample test ∈ transformed do

bit = evaluate test(im, x, y, scale, sample test)
if bit 6= desc[test.index] then
error++

end if

end for

if error > thresh then

mask[test.index] = 0
end if

end for

return mask
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4.5 Evaluation

Matching performance for BRIEF and TailoredBRIEF was evaluated using sets of

still images related by ground truth homography matrices. We use a portion of

the standard affine region detector datasets from Mikolajczyk et al. [53], as in the

evaluation of BRIEF [33]. Figure 4.4 shows images from six of the sets considered in

this work. The omitted image sets possess rotation to the degree that an orientation

estimator is required, which is not considered in the scope of this work.

(a) Bikes (b) Graffiti (c) Leuven

(d) Trees (e) UBC (f) Wall

Figure 4.4: Sample images from the affine region detector dataset [53]

4.5.1 Evaluation of masks

Figure 4.5 shows the percentage of intensity tests that are rejected as a function of

the sample accuracy threshold. These results were computed using 800 difference-

of-box Center Surround Extrema (CenSurE) features [28], which were detected on

the first (reference) image from each dataset. CenSurE features were used following

from Calonder et al.’s report of improved recognition over SURF [33]. We used 50

randomly-sampled viewpoint changes in the ranges specified by Table 4.1.

Blurring before learning the descriptor mask makes a notable difference on the

repeatability of tests, decreasing the number of masked tests for the Wall dataset by
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(b) With 7-pixel box filter

Figure 4.5: Percentage of TailoredBRIEF test results that are suppressed as a function of
the sample accuracy threshold

Parameter Min Max

Scale 0.8 1.25
Roll -12◦ 12◦

Pitch -12◦ 12◦

Yaw -6◦ 6◦

Table 4.1: Ranges for randomly-sampled viewpoint change parameters. Roll and pitch in
this case are out-of-plane rotations, and yaw an in-plane rotation

30% when the mask accuracy threshold is set to 1. Despite suppressing a substantial

number of tests, approximately half of the tests are 100% repeatable over the range

of simulated viewpoints, and 76.7% of tests are repeatable at least 75% of the time.

4.5.2 Precision-recall evaluation

The matching performance is evaluated by computing the precision and recall as the

matching error threshold is varied. Ground truth homographies are used to classify

feature matches with a radial data association threshold of 5 pixels, irrespective of

feature scale. Care is taken to estimate the recall denominator by computing the

number of features with geometric neighbors when mapped through the homography.

This is done to avoid underestimating recall when detector repeatability is poor.

This is important to put the magnitude of repeatability improvements in perspective.

Calonder et al. refer to this as the recognition rate [33].
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CenSurE-TailoredBRIEF-NoBlur

Figure 4.6: Precision-Recall curves for the Wall dataset, image 1 versus 3. Approximately
800 features were extracted from each image using the CenSurE detector and descriptor
specified, matched with nearest neighbor and a sweep over the matching error threshold.
BRIEF and TailoredBRIEF were evaluated with and without a 7-pixel box filter to reduce
high frequency content.

Parameters were sampled in the ranges specified by Table 4.1, again detecting 800

CenSurE features. We used 256 intensity tests and a box filter width of 7, where

applicable. The number of viewpoint change samples was set to 25. This was chosen

to balance the runtime/performance trade off shown in Section 4.5.3. The threshold

used in Algorithm 3 was set to 0.1 (up to 10% test errors permitted).

Figure 4.6 shows the precision-recall curves for Wall, image 1 vs 3. The matching

error for TailoredBRIEF was computed as discussed in Section 4.4.1, and features

were matched by computing the nearest neighbor descriptor in the query image for

each feature in the reference image.

Results for two versions of the BRIEF and TailoredBRIEF (proposed) descriptors

are shown. Calonder et al. reported use of a box filter to blur an image before ex-

tracting descriptors. This was justified due BRIEF’s sensitivity to high frequency

content, and we see that the version without the box filter, denoted “CenSurE-

BRIEF-NoBlur”, does yield a lower precision and recall. The results are similar

for TailoredBRIEF; however, it is clear that the blur does not suppress all sensitivity

49



to viewpoint change and that the benefits of blurring and descriptor mask learning

are not mutually exclusive.

TailoredBRIEF shows a large increase in performance over BRIEF, including a

10.3% increase in recall from 65.3% at 90% precision. At the same precision level, Tai-

loredBRIEF captured 29.6% of the remaining true matches between the two frames.

Without image blurs, we see a 5.8-18.2% increase in recall between 90% and 98%

precision, respectively. Systems targeting high frame rates could reduce the total

CPU load by replacing the every-frame blurring operation needed for the “Censure-

BRIEF” level of performance with per-feature descriptor learning on the occasional

keyframe.

The full set of Precision-Recall curves are shown in Figure 4.7, using all datasets

and query images. The largest increase in recall occur for the Wall, Bikes, and Trees

datasets, which is expected due to the out-of-plane rotation (Wall) and blur (Bikes,

Trees) effects captured in training TailoredBRIEF. Similar performance results for

datasets whose effects aren’t simulated in training TailoredBRIEF, including lighting

change (Leuven) and image compression (UBC). The Graffiti dataset, as well as

Bark and Boat (not included), involve large in-plane image rotations that require an

orientation-aware descriptor to improve performance.

For datasets whose effects are captured in training (Wall, Bikes, Trees), we con-

sider the increases in recall by column. For query image 2, where the magnitude of

out-of-plane rotation or blur is small, recall is already in the 60-80% range and we

see improvements of about 5%, more in the case of Wall. For query images 3 and 4,

the recall often improves by 10%.

These results are summarized in Table 4.2. The area under the Precision-Recall

curve was computed for both BRIEF and TailoredBRIEF using the 7-pixel box filter.

By this metric, TailoredBRIEF’s performance exceeds BRIEF’s for most tests, and

exceeds or matches BRIEF in all but one case.

4.5.3 Computation time

Runtimes for various stages of BRIEF and TailoredBRIEF were computed on a Dell

Precision M6800 laptop with an Intel i7-4900MQ 2.8GHz processor and are shown

in Table 4.3. The total times are reported averaged over 100 trials using 812 image

features detected on the first image in Wall. Box filtering is optional but, if enabled,
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Figure 4.7: Precision-Recall curves for all datasets and images. See Figure 4.6 for a legend.
Plots are organized by dataset (row) and query image number (column). All datasets
show some increase in match quality for TailoredBRIEF. This increase is greatest for the
Wall, Bikes, and Trees datasets, which primarily involve out-of-plane rotation (Wall) and
blur (Bikes, Trees). Performance is generally the same for the Leuven and UBC datasets,
which involve effects not simulated in training for TailoredBRIEF, including lighting change
(Leuven) and significant image compression (UBC).
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Dataset Method Area Under the Precision-Recall Curve
1 vs 2 1 vs 3 1 vs 4 1 vs 5 1 vs 6

Wall
BRIEF 0.873 0.771 0.529 0.227 0.037
Proposed 0.884 0.793 0.555 0.238 0.030

Bikes
BRIEF 0.808 0.735 0.627 0.506 0.279
Proposed 0.830 0.764 0.645 0.576 0.347

Trees
BRIEF 0.693 0.572 0.407 0.227 0.082
Proposed 0.696 0.597 0.460 0.319 0.188

Leuven
BRIEF 0.796 0.741 0.736 0.708 0.685
Proposed 0.801 0.767 0.745 0.721 0.689

UBC
BRIEF 0.895 0.880 0.840 0.751 0.607
Proposed 0.897 0.890 0.844 0.769 0.653

Graffiti
BRIEF 0.066 0.085 0.000 0.017 0.000
Proposed 0.056 0.141 0.000 0.016 0.000

Table 4.2: Area under the Precision-Recall curves for all datasets and images. Results
shown correspond to BRIEF and the proposed method, TailoredBRIEF, using a 7-pixel
box filter. The areas have a maximum achievable value of 1 and are arranged in columns
sorted by image pair (e.g. 1 vs 2). The greater of the two areas is shown in bold for each
combination of dataset and image pair for differences of 1% or more. TailoredBRIEF yields
the greater area measure in 19 of 30 trials, while BRIEF yields the greater area measure
in only 1 of 30 trials. See Figure 4.7 for additional discussion of the performance on these
datasets.
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is needed for both the descriptor extraction and mask learning steps.

BRIEF and TailoredBRIEF require the same amount of time for descriptor ex-

traction, which is negligible in comparison to the box filter. Matching takes 0.97 ms

longer for TailoredBRIEF due to the inclusion of a descriptor mask. The amount of

time required to learn a descriptor mask depends on the number of viewpoint samples

used: 16.07 ms for 10 samples, 37.94 ms for 25 samples, and 149.28 ms for 100 sam-

ples. If learning masks on keyframes using 25 viewpoint samples, masks are ready

for use with just over a one-frame delay at 30 FPS, which should be sufficient for

most applications. With a small number of samples, masks could be learned for every

frame, if desired.

4.6 Summary

Viewpoint changes introduce variability into intensity-test feature descriptors. Due to

the inherent and desirable variability in feature appearance, some fraction of intensity

tests will sample from unstable portions of the surrounding image and will result in

descriptor errors under viewpoint change. This decrease in test reliability leads to

feature matching errors, as we illustrated in a synthetic example.

The proposed method, TailoredBRIEF, addresses this variability through the in-

troduction of an in-situ descriptor learning stage. By simulating viewpoint change on

individual features at runtime, the variability of each intensity test is characterized

on a per-feature basis. This online learning stage allows TailoredBRIEF to effec-

tively implement a unique descriptor structure for every feature. This results in a

substantial increase in match precision and recall.

TailoredBRIEF is designed to take advantage of an asymmetry in visual motion

estimation system design. Namely, that the descriptors extracted for reference im-

age features are reused at every match step in keyframe and map-based systems.

This property can be exploited to amortize extra computation on reference features.

TailoredBRIEF takes advantage of this asymmetry by performing online learning

on reference image features, improving matching performance with little impact on

memory usage or the computation time required for feature matching.
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Step Time (ms)

BRIEF TailoredBRIEF

Box filter 4.24 4.24
Compute descriptor 0.26 0.26
Match features 1.89 2.86

Total 6.39 7.36

Table 4.3: BRIEF and TailoredBRIEF runtimes for each stage of description and matching.
BRIEF and TailoredBRIEF have identical runtimes for filtering and descriptor extraction,
but the matching runtime is higher by 0.97 ms for TailoredBRIEF due to the integration
of descriptor masks. Both methods are well under the time constraint for a typical 30 FPS
or 60 FPS runtime budget.
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Chapter 5

Visual odometry as a search

Visual motion estimation methods used by robots that operate in mixed indoor-

outdoor environments must be robust to feature content variability. Many modern

building interiors lack texture due to their simple visual design. This lack of texture

can cause motion estimation dropouts when the required minimum or preferred num-

ber of features are not visible. While texture is sparse in these environments, strong

intensity gradients are usually present. Gradients often occur around door frames

and at floor-wall junctions, for example.

We propose edge-based visual odometry to address the issue of feature-dropout.

In the stereo camera case, edge detection and matching is efficient and very accurate,

even with simple, parallelizable methods and an order of magnitude increase in feature

counts. Further, edge matching in the stereo case yields an efficient sparse range

sensor. We show, for example, that 1000 camera-frame 3D points can be generated

by a sparse stereo system in 4 ms with 95% correspondence accuracy.

The primary challenge in edge-based visual odometry is in effectively matching

edges across the unknown camera motion without excessive restrictions on the inter-

frame camera motion or approximations of the observation model. This is complicated

by the similar visual appearance of adjacent patches along an edge. Due to this visual

repetition, descriptor-based matching is prone to failure, as it relies on descriptor

uniqueness.

Figure 5.1 illustrates edge feature matching with and without the geometrical

constraints that arise when the camera motion is known a priori. Obvious outliers

are present without the resulting epipolar constraints, but many subtle errors on the

order of a few pixels are also present. Both would have negative consequences for

motion estimation.
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(a) Matching without constriants

(b) Matching with constriants

Figure 5.1: Edge-feature matching with and without motion constraints. Edge features
are detected and matched using pixel patch descriptors between two stereo-rectified im-
ages. Colored line segments connect the features from both images, where color denotes
depth according to triangulation. (a) Without applying the epipolar geometry constraints
during matching, geometrically-implausible matches are formed from floor to ceiling and
differing walls. (b) Application of the epipolar constraint yields a more accurate set of
correspondences.

This thesis addresses this issue through the development of a descriptorless visual

motion estimation method, Perspective Alignment Search (PAS), that is applicable

to stereo visual odometry, embraces the pinhole camera model, and operates reliably

for a wide range of frame rates. This chapter first describes and evaluates the edge

features used in the proposed visual odometry system in Section 5.1, then describes

and evaluates PAS in Section 5.2.
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5.1 1D features for fast, sparse stereo matching

In a calibrated stereo system, the typical sparse stereo feature tracking pipeline for

visual odometry or object tracking with 2D features neglects a key property of the

stereo camera model — that there is only one degree of freedom for any compatible

correspondence. The stereo matching problem is so well-constrained by the epipolar

geometry of the stereo system that 2D features are more localizable than is necessary.

We propose the use of 1D features for sparse stereo matching and demonstrate that

these 1D features can be readily detected in large quantities in little time. In addition,

these matched features yield error rates comparable to 2D alternatives when evaluated

on the Middlebury dataset.

The contributions of this work include:

❼ A framework for sparse stereo matching incorporating epipolar geometry early

in the pipeline

❼ Efficient methods for 1D feature detection, matching, and sub-pixel alignment

❼ A comparative evaluation of 1D and 2D features for sparse stereo matching

using the 2006 Middlebury dense stereo dataset, including an evaluation on

synthetically-degraded imagery

Figure 5.2: Sparse feature detections and depth map for 1D features detected with a cali-
brated stereo system. The 1D features are detected with a 1D convolutional filter along the
rows of two stereo-rectified images, matched, and triangulated. (right) All matched features
colored by depth (green to blue from 0-15 m, red beyond 15 m).
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5.1.1 Prior work

Feature detectors have long been used in computer vision to focus processing on

portions of the image with strong signal, or represent the image abstractly with

highly-invariant image features. These detectors are typically categorized as corner,

edge, or region detectors and much work has been done in this domain. A few of the

most well known detectors include the Harris [19] and FAST [20] corner detectors,

the Canny edge detector [25], and region detectors such as SIFT [26] and SURF [27].

Dense methods have also been a focus of much research, such as dense disparity

estimation (dense stereo) and optical flow. Scharstein and Szeliski published the well

known Middlebury dense stereo datasets for evaluating dense stereo methods against

ground truth [14, 15], including a review of approaches. Recent work by Newcombe

et al. demonstrated monocular camera tracking with a dense representation on a

GPU [47] and showed great resilience to motion blur, but heavy GPU usage may

require too much power for use on small robotic platforms.

Methods for visual pose estimation follow a typical pattern of detection, feature

matching across unknown motion, and solving for the maximum-likelihood pose. Of-

ten interspersed in this pipeline are features like rotation estimate initialization [7],

coarse-to-fine tracking [5], and outlier rejection [7, 6]. While monocular methods like

MonoSLAM exist [4], stereo methods have the advantage of observing scene scale at

every frame, preventing scale drift. Many visual pose estimation methods are stereo-

based [7, 37, 45, 22]. Some use the second camera only periodically to initialize

features with known scale [44].

Most visual pose estimation methods make use of point features such as those

from Harris or FAST. However, recent work has made use of edge features for both

monocular [65] and stereo SLAM [66]. Eade used an edgelet formulation, with the

understanding that observations of edge features can not decrease the uncertainty

in the direction along the edge. Tomono used a point-based representation of edges

detected with the Canny edge detector for 3D SLAM with an iterative closest point

method to compute camera motion.

A recent work from Schauwecker et al. [67] examined the use of sparse visual

features in the stereo context, extending FAST and optimizing when possible with

SSE. This method, however, still makes use of a 2D feature detector, perhaps due to

savings in runtime by skipping full-image rectification.
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5.1.2 Method

We propose detecting 1D features with 1× 8 filter and a magnitude threshold. This

computation is simple and straightforward to optimize with existing vector instruc-

tions such as SSE or ARM NEON. As a descriptor for these features, we use a 1× 16

pixel patch. This descriptor is also compatible with vector instructions, as it is loaded

with a single instruction and efficiently compared in vector form. Because we use an

even filter width, our feature detections are initially located halfway between adjacent

pixels. Figure 5.3 illustrates this “1D convolutional” detector.

In addition to the 1D convolutional detector, we explored the use of a 1D gradient

detector and compare to a 2D gradient detector and the FAST-9 feature detector. In

all four cases, we use the same 1D descriptor and matching pipeline to ensure fair

comparisons between methods. We also compare to a more typical system — FAST

features with a 2D descriptor.

1D Gradient 1D Convolutional

2D Gradient FAST-9

Figure 5.3: Illustration of the feature detectors evaluated in this work. Two instances of a
1D detector are used to compute edges. We compare against two 2D detectors, a gradient
magnitude detector and the FAST-9 feature detector. Orange circles denote the center of
the detection — for the 1D detectors, a floating point coordinate is used to precisely locate
the edge.

5.1.2.1 Detection and suppression

The SSE-optimized feature detectors shown in Figure 5.3 are implemented using

addition and subtraction operations on 8-element vectors after conversion from 8 to
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16 bits to avoid overflow. Once the response has been computed, the absolute value

is taken and a threshold applied with further vector operations.

Non-extrema suppression is applied on an intra-row basis. Suppression does not

carry over multiple rows, as it is easier to skip entire rows during detection. This

reduces the number of features evenly across the image and saves runtime propor-

tional to the percentage of rows skipped. In addition, horizontal-only non-extrema

suppression reduces the possibility of suppressing a feature on different rows in the

two images, which would preclude matching.

5.1.2.2 Matching and sub-pixel alignment

Feature matching is achieved by computing the nearest neighbors. Let the left image

be image “A” and the right image be image “B”. We iterate over all features in A

and B and group features by row. Then, for every row, we iterate over all features

in A and compare each of them to all features in B, keeping the best match in B

for each feature in A. This, however, can result in multiple matches for features in

B, so only the best match for any feature in B is kept in a marriage-like approach.

For comparisons, we use the Sum of Absolute Differences (SAD) error with the SAD

vector instruction in SSE.

The candidate matches are first screened using the matching threshold without

alignment. From here, we perform sub-pixel alignment on the descriptors and linearly-

interpolate the aligned descriptor. Sub-pixel alignment is carried out by computing

the position offset for the feature in B with feature A held constant. Sub-pixel align-

ment has been studied previously in super resolution and in template tracking such

as ESM [68]. With only one direction for sub-pixel refinement, we can solve for the

mean-squared error solution as below.

Let a and bα be the 1 × N intensity vectors for matched features from images

A and B, respectively, where bα is the sub-pixel aligned descriptor. If the sub-pixel

alignment, α, were known and in the interval [0, 1), we could write bα using linear

interpolation as:

bα = (1− α)b0:N−1 + αb1:N (5.1)
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Let r and △ be defined as follows:

r = a− b0:N−1 (5.2)

△ = b0:N−1 − b1:N (5.3)

Then it can be shown via algebraic manipulation that the mean-squared error is

equal to:

MSE =
1

N
(a− bα)

T (a− bα) (5.4)

=
1

N
(r + α△)T (r + α△) (5.5)

By taking the derivative and setting it to zero, we can solve for α as:

α = − rT△
△T△ (5.6)

For every match, we perform one step of sub-pixel alignment and reject offsets

outside of the interval [−2, 2]. We then compute bα using linear interpolation and

verify that the aligned matching error remains beneath the matching threshold.

5.1.3 Evaluation

We evaluate our 1D feature detectors and descriptors using the Middlebury dense

stereo datasets [15]. These datasets include ground truth disparity information com-

puted by projecting a sequence of grayscale images onto a static scene and matching

the sequence of observed intensities between images. In total, 21 scenes were captured

with varying amounts of texture and objects in the scene. We use the third-resolution,

binocular stereo images with the single exposure and illumination for evaluation. The

images are converted to grayscale for use in this work. Figure 5.4 shows detections

and matched feature disparities for the Midd1 and Rocks1 Middlebury scenes. The

detections and matches shown are from the SSE-optimized 1D convolutional detector.

The feature types we evaluate overlap as much as possible for the sake of fair

comparison. All custom 1D and 2D features utilize independent, SSE-optimized de-

tection routines. For the FAST feature detector, we used the FAST-9 source code

available online [20]. For both the custom 1D and 2D detectors and FAST-9, we
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(a) Midd1 detections (b) Rocks1 detections

(c) Midd1 matches (d) Rocks1 matches

Figure 5.4: Example 1D convolutional filter detections and matches on the Midd1 and
Rocks1 images from the 2006 Middlebury dense disparity dataset. The parameters were
chosen to minimize runtime while maintaining a high percentage of inlier matches. Non-
extrema suppression and sub-pixel alignment were used. (Top) Detected 4165 and 6500
features from the grayscale-converted Midd1 and Rocks1 datasets with the 1D convolutional
filter. (Bottom) Matched features plotted over the ground truth disparity images. Shown
are 1713 and 3514 matches for Midd1 and Rocks1, respectively. Disparity indicated by
the color of matched features (green: small, cyan: mid, blue: large, white: unknown).
Red matches indicate outliers according to a 1-pixel disparity error threshold. These false
matches tend to occur at occluding contours, where the detection may lie on either the
foreground or background disparity label.
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evaluate using our own 1D non-extrema suppression, 1D descriptors, and matching

pipeline (coarse matching followed by sub-pixel refinement). We also compare to

FAST with a 16× 16 pixel-patch descriptor, with and without our implementation of

the ESM sub-pixel minimization algorithm [68]. This fully-2D FAST pipeline is most

like systems typically used in practice.

The legend entries in all plots are prefixed by the type of detector pipeline and the

type of descriptor pipeline (e.g. “2D,1D” for a 2D detector with a 1D descriptor and

sub-pixel alignment). The legend entries also contain keywords to denote enabled

options: “SSE” denotes a fully SSE-optimized pipeline, “SSEdesc” denotes use of

only the SSE-optimized descriptor, “noalign” denotes the lack of sub-pixel alignment,

“suppress” denotes use of non-extrema suppression.

These plots were generated by sweeping over the main two parameters for all

methods, the detection and SAD matching thresholds, with a non-extrema suppres-

sion width of 3 pixels. Using the results of these parameter sweeps, we then linearly-

interpolate to generate contours with a constant number of matched features. This

allows us to plot runtime and inlier percentage together to make the performance

trade off clear. In addition, this ensures that no sub-optimal parameters are mistak-

enly selected, which is important to properly compare differing 1D and 2D pipelines.

Figure 5.5 shows the results for all methods with 500, 1000, 2500, and 4000

matched feature pairs. The x-axis shows runtime in milliseconds while the y-axis

shows the percent of matches considered inliers. A match is considered an inlier if

the disparity is within one pixel of Middlebury’s ground truth. Both values are com-

puted as dataset-wide averages. The ideal detection and matching pipeline would be

located in the top-left corner for any given plot, which corresponds to instant gener-

ation of the desired quantity of matched features without any false correspondences.

As the series of figures at 500, 1000, 2500, and 4000 matches show, the relative perfor-

mance of detectors varies as the target number of matches increases. At 500 matches,

FAST-9 with a 1D descriptor and matching pipeline is the most ideal compromise

between speed and accuracy with an inlier percentage of 98.96% and a runtime of 3.4

ms. Switching to a 2D descriptor without sub-pixel alignment yields almost identical

performance in this regime.

While FAST feature matches are correct more often for small numbers of matches,

as the number of matches increases, the 1D methods maintain both their percentage

of inliers and runtime better than FAST. At 4000 matches, the 1D convolutional
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Figure 5.5: Plots of runtime vs. percentage of inliers with a constant number of matches per
plot. The results of a finely-spaced two-dimensional parameter sweep over the detection and
SAD matching thresholds were linearly interpolated to generate constant-match contours.
The plots compare runtime in milliseconds against the percentage of matches considered
inliers, where an inlier is defined to have a disparity within 1 pixel of Middlebury’s ground
truth. As the number of matches increases, the ideal method changes from FAST-9 to the
1D convolutional detector, especially if runtime is prioritized.
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detector and FAST with a 1D descriptor both have matches that are 95% inliers, but

the full runtime with the 1D detector is 2 ms faster at a total of 12.6 ms. Similarly,

the total runtime for the 2D matching pipeline with FAST now exceeds 15 ms, and

the 2D pipeline with sub-pixel alignment is not visible within the plot extents.

The example matches on the Midd1 image in Figure 5.4 show a line of features

labeled as errors by the ground truth system. This is because of a slight misalignment

of the detection with the disparity label for features on occluding edges, where the

disparity discretely transitions from a foreground to background value. One inter-

pretation of the higher inlier rate for FAST is that it tends to not detect features on

edges. Using the most similar disparity in the range [x-1,x+1] reduces this off-by-one

penalty. Figure 5.6 depicts the inlier percentage using this 1-pixel tolerance with the

center of detection for 2500 matches. By comparing to Figure 5.5, it is clear that

the 1D convolutional detector has only a slightly-reduced percentage of inliers while

gaining a reduction in runtime by 2.9 ms.

Table 5.1 depicts the runtimes for each stage of the detection and matching process

with 2500 matches and the 1D convolutional detector. The detection and matching

parameters were chosen to correspond to the top-left point for the 1D convolutional

detector as shown in Figure 5.6. The total time of 6.6 ms corresponds to merely 20%

Figure 5.6: Percent of match inliers when a 1-pixel horizontal tolerance is used to prevent
incorrect penalization of features on depth discontinuities. Edge features tend to yield
correct disparities on occluding edges, but whether the foreground or background disparity
should be used is ambiguous. By using the closest disparity in the range [x-1,x+1], we see
that the gap between FAST and 1D convolutional accuracy disappears.
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of a 33 ms, or 30 FPS, processing budget. The bulk of time is spent in detection,

suppression, and matching, with very little time for copying the pixel patches (op-

tional), 1D sub-pixel alignment, and triangulation using the rectified camera model.

These results were computed on a 2.7 GHz quad-core i7-3740QM MacBook Pro with

single-threaded, SSE-optimized routines.

Step Runtime (ms) SSE optimized

Detection 1.50 X

Suppression 1.60
Description 0.80
Matching 2.10 X

Sub-pixel alignment 0.26
Triangulation 0.35

Total 6.62

Table 5.1: Time required to generate an average of 2,500 matched features on the Middle-
bury dataset using the SSE-optimized 1D convolutional detector. Detection and SAD error
calculation in the matching stage were SSE optimized. The remaining stages either did not
lend themselves to easy optimization or show a significant performance gain.

5.1.3.1 Impact of synthetic image degradation

Many applications in robotics operate in diverse environments, often indoors. While

shutter times outdoors can be extremely small with good results (sub-millisecond with

zero dB gain), adequate lighting is rarely guaranteed. In addition, mobile robots risk

inducing motion blur with long shutter times. A desirable detector would be robust

to both modest amounts of noise and blur.

We first explore the effects of sensor noise by adding zero-mean, Gaussian noise

to the grayscale images. Figure 5.7 shows the impact of Gaussian noise with both

σ = 1 and σ = 3 for all methods and 2500 matches. With a small amount of noise,

σ = 1, it is hard to discern a difference in the percent of inliers for most methods.

However, for a large amount of noise, σ = 3, the performance difference is noticeable.

Most methods lose 4-10% of inlier matches, while the 1D convolutional detector only

loses 2%. The result is that the convolutional detector still has an inlier rate near

95% with 2500 matches, despite Gaussian noise with σ = 3.

Figure 5.8 shows the impact of blur on the input images. We blurred with a

Gaussian kernel with σ = 1.5 for all scenes. Some methods, like the 2D gradient, lose
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over 10% of inliers. For most methods, the change is closer to 5%. The methods with

the best inlier rate include FAST (1D and 2D without sub-pixel alignment) and the

1D gradient detector.

These results show that the 1D convolutional detector is robust primarily to im-

age noise. While other methods may outperform the 1D convolutional detector on

blurred images, the formation of blur is controllable by the application, as most im-

age sensors allow exposure control or prioritizing increases in gain over shutter time.

Consequently, blur can be avoided at the expense of increased noise, which the 1D

convolutional detector adequately rejects.

5.1.4 Summary

We have introduced an efficient framework for 1D feature detection and matching

in stereo systems with precise calibrations. While 2D features are common in such

systems and increase similarity to monocular methods, 1D features are sufficient for

generating precise, sparse point clouds with large numbers of features. Further, 1D

features are easy to implement efficiently with SIMD instructions and we show that

a modern processor can match 2,500 features in 6.6 ms with 95% inliers. We also

demonstrate the robustness of multiple methods to noise and motion blur and find

that a 1D feature pipeline can be more robust to noise than similar 2D pipeline, while

maintaining a very low runtime.
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Figure 5.7: Runtime and percent of inliers with 2500 matches and additive noise. (Left)
Gaussian noise with σ = 1. (Right) Gaussian noise with σ = 3. As the strength of the
noise increases, the percentage of inliers decreases for all methods. For σ = 3, the 1D
convolutional detector has the highest inlier percentage at 94%.

Figure 5.8: Runtime and inlier percentage for 2500 matches with blurred images. A Gaus-
sian kernel with σ = 1.5 was used to simulate significant motion blur.
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5.2 PAS: Visual odometry with Perspective Align-

ment Search 1

Feature-based visual motion estimation methods can fail in environments where point

or blob features are rare. Edge-based methods provide an alternative to these ap-

proaches, and we have demonstrated the ease and speed with which large quantities

of edge features can be generated. However, a method capable of accurately associ-

ating these features and estimating the corresponding camera motion is needed. We

demonstrate a descriptorless approach for data association and motion estimation

between sequential poses.

Another candidate for descriptorless scene alignment is visual localization. Like

visual odometry, visual localization is concerned with estimating the pose of the cam-

era. However, in contrast to odometry, localization is concerned with recognizing the

surrounding location given a prior map of the environment. A common problem in

visual localization is descriptor lighting invariance, as significant lighting changes can

occur between map creation and use. A descriptorless method would provide robust-

ness to lighting changes, provided that feature positions remain stationary under such

conditions. While localization is outside of the scope of this thesis, it does motivate

this approach.

In contrast to descriptor-based visual odometry, we propose Perspective Alignment

Search (PAS), a method for estimating the transformation that best aligns the entire

scene, without use of descriptor matching or outlier rejection. PAS is formulated as

a multi-scale search over the camera motion. It is a descriptorless method with only

implicit data association, a byproduct of computing the transformation that best

aligns both observations of the scene. As a result, PAS can utilize the edge features

detected by a 1D gradient filter, whereas a standard descriptor matching approach

would fail to find unique matches amongst a set of indistinct descriptors.

PAS was inspired by a correlative approach to LIDAR scan-matching that is

robust to local minima and posed as a multi-scale search over pose in the planar,

3 DoF case [51, 3]. However, unlike planar LIDAR scan-matching, PAS is enabled by

a bound on perspective motion of points in the scene under bounded 3D motion.

The contributions of this work are:

1➞ 2014 IEEE. Adapted with permission, from Andrew Richardson and Edwin Olson, “PAS:
Visual Odometry with Perspective Alignment Search,” September 2014.
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❼ Adaptation of a multi-scale pose search algorithm from LIDAR scan-matching

to the perspective case using the pinhole camera model

❼ Development of a bound on the perspective motion of a point under 3D trans-

lation

❼ Performance evaluation against both synthetic data and a LIDAR SLAM solu-

tion on a mobile ground robot

5.2.1 Related work

Recent literature focuses primarily on point and blob features for visual state estima-

tion, but edge features have been used on occasion in prior work. For example, Eade

and Drummond showed how to use edgelets in a monocular, particle-filter SLAM

system [65].

Point clouds formed from edge feature matching in a stereo context capture unique

scene geometry reminiscent of planar LIDAR scans. This suggests that similar meth-

ods can be employed for motion estimation with edge features. This was demonstrated

by Tomono, who used a variant of Iterative Closest Point (ICP) point-to-edge align-

ment in visual odometry [66, 36]. Iterative minimization is subject to local minima,

however. This led Tomono to run ICP with multiple random initializations when

used for localization.

Local minima are also a problem for LIDAR point cloud alignment, especially

when iterative methods are used from poor initializations. For this reason, Pandey et

al. described a method for visually bootstrapping a variant of ICP [69]. A different

approach was taken by Olson for planar LIDAR scan-matching, who showed that

a correlative search is robust to local minima while a multi-resolution formulation

exhibits significant runtime improvements [51]. This approach was later extended to

more than two levels in the multi-scale search [3]. These works form the basis for

PAS.

Other approaches to descriptorless and indistinct feature matching have been ex-

plored in the literature. Rodŕıguez et al. described a method for descriptorless track-

ing of a set of point features [70]. This method relies on a motion model restricted to

the image plane, which assumes that no perspective effects occur apart from an over-

all scaling term, thus limiting the accuracy of this approximation to high frame rates
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relative to the camera motion. Methods for associating weak features have also been

explored. Hsiao et al. described a method to use features with similar descriptors, ef-

fectively delaying the match rejection step until the pose hypothesis stage [41]. Unlike

the proposed work, Hsiao’s method was focused on the object recognition domain.

5.2.2 Method

We wish to compute the camera motion that best-aligns two observations of a scene

with a stereo camera pair, and to do so without the use of descriptors. We achieve

this by posing the problem as a search over the relative camera motion between two

poses, using a multi-scale search representation in a branch-and-bound framework.

The key components of this formulation are a bound on the perspective motion of

a point, integration into a branch-and-bound search, and an appropriate choice of

features.

To make this process efficient and suited for online use, PAS employs an external

orientation estimate, such as from an Inertial Measurement Unit (IMU). Given this

estimate of the orientation, PAS searches for the unknown translation that best-

aligns the observations. While relying on an orientation estimate is a limitation of

this method, IMU ICs resulting in orientation drift of a few degrees/minute can cost

less than ✩15 (e.g. InvenSense MPU-6050). Further, IMUs are ubiquitous amongst

mobile robots.

It is worth noting that methods based on vanishing-point estimation are capable

of estimating the relative rotation between two frames, independent of the camera

translation [8]. Such a method could provide a rotation estimate for PAS in place

of an IMU. However, this would restrict the use of PAS to environments where two

or more vanishing points can be robustly and continuously estimated [8]. This is an

undesirable limitation for robotic platforms designed to work in diverse environments.

Consequently, such an approach is not considered further in this work.

5.2.2.1 Multi-scale search

In a bundle adjustment framework, we would simultaneously compute the Maximum

Likelihood (ML) solution to estimate the transformations T̂i for cameras i ∈ {1, . . . n}
and the positions X̂j = [xj, yj, zj]

T for 3D points j ∈ {1, . . .m}. The transform T̂i is

a rigid-body transformation that projects a point from the body frame to the world
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frame, while the points X̂j are defined in the world-frame and may have an associated

observation in image i, denoted zi,j. Then, the ML solution corresponds to:

argmin
T̂i,X̂j

∑

i,j

‖zi,j − project(K, T̂−1

i X̂j)‖2 (5.7)

where K is a typical skew-free camera matrix with focal lengths (fx, fy) and focal

center (cx, cy):

K =







fx 0 cx

0 fy cy

0 0 1






(5.8)

In the stereo case, we can estimate the positions of image features from a single

pair of images. Like Tomono [66], we refer to each image pair as a stereo frame.

Let X̂j be redefined as the camera frame position in the current stereo frame. The

reprojection error against a previous observation is:

‖zi−1,j − project(K, T̂−1

i−1T̂iX̂j)‖2 (5.9)

Because we take the position X̂j to be the triangulated point in the current stereo

frame, the only unknowns are the correspondences between current and previous

observations, as well as the camera poses. If sequentially-estimating the camera

motion, as in the visual odometry problem, we need only estimate a single relative

transformation, T̂, which can be parameterized by a rotation R̂ and translation t̂ as

T̂ =

[

R̂ t̂

0 1

]

(5.10)

Using an external estimate of R̂, PAS searches over a discrete set of candidate trans-

lations to compute the ML estimate of t̂.

PAS is formulated as a branch-and-bound search with a multi-scale representation

and a fixed depth. The search is parameterized by the number of levels in the multi-

scale search, and the difference in translation, s, between adjacent leaf nodes. The

nodes are spaced at integer multiples of s in each dimension and nodes at Level l

have at most 3 child nodes in each dimension at Level l − 1 (up to 27 child nodes

for 3D translation). Thus, the node spacing on each axis is s3l. A one-dimensional
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illustration of the tree topology is shown in Figure 5.9.

Δx2

Δx1

Level 0:

Level 1:

Level 2:

0 s 2s 3s 4s-s-2s-3s-4s

Figure 5.9: Illustration of the PAS search tree for a one-dimensional search. Nodes at
Level 0 are positioned at integer multiples of the minimum resolution s. Nodes at Level 1
and above have at most 3 child nodes per dimension. The parameter ∆x corresponds to
the maximum position offset for any child node.

The search begins by initializing all nodes at the top level of the search to cover the

search range. Nodes are scored using a lookup table appropriate for their search level,

where higher scores are better, and added to a max heap. At Level 0, the lookup table

is simply an image containing a finite-range, thus robust, quadratic kernel rendered

for each matched feature in the reference image. Higher-level lookup tables specify

upper bounds on the kernel value for points under some unknown translation up to

±∆xl. In this way, a single lookup at Level l can effectively rule out entire branches

of the search tree, greatly speeding up the search.

Once the initial set of scored nodes has been added to the max heap, the search

proceeds by removing the best node from the heap and expanding it, creating scored

child nodes and placing them in the heap. If the best node is at the maximum search

depth, Level 0, the search is complete — no other nodes at Level 0 have higher scores,

nor do any nodes exist whose children could yield higher scores.

Given a lookup table at Level l, the score for a node with translation t̂ can be

computed by projecting all translated points into the lookup table.

score(l, t̂) =
1

n

n
∑

j=1

lookup(l, project(K, R̂X̂j + t̂)) (5.11)

where the function lookup(l,pxy) simply loads the value from lookup table l at position
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pxy determined by the projection of the transformed point.

Lookup tables are generated for a single reference camera, e.g. the left camera.

This results in comparable accuracy and a significant runtime reduction. The Level 0

lookup table is generated by rendering a kernel at each feature position using the

max operator, where the kernel is scaled such that higher values are better. For a

feature that projects to a given pixel location pxy and a kernel whose value changes

monotonically with distance, looking up the value at pxy corresponds to selecting

the nearest observation zi−1,j, computing the distance between pxy and zi−1,j, and

evaluating the kernel function for that distance. Because the kernel values are pre-

rendered into the lookup table, the score for a given pose can be computed without

computing the data association between observations and projected points. We use a

quadratic kernel with a fixed radius, computing the negative log-likelihood for points

within range of an observation, and scale the kernel to fill the full range using 8-bit

images.

At levels 1 and above in the search, these lookup tables store upper-bounds on the

score for any child nodes. In the planar, LIDAR scan-matching problem [51, 3], these

tables can be computed by filtering the Level l table with a max operator whose total

width corresponds to the translation between nodes at Level l+1. In the perspective

case, the search space (the unknown camera translation) is related to pixel space by

a perspective projection. Section 5.2.2.2 describes the derivation of a bound for this

case.

5.2.2.2 Perspective motion bound under 3D translation

PAS’s multi-scale search is enabled by a bound on the perspective motion of a trans-

lated point. By using this bound to render special lookup tables, PAS can evaluate

an upper-bound on the score of a range of translations at once.

Consider a 3D point Xa = [Xa, Ya, Za]
T in frame A and another measurement Xb

of the same point related by rotation R and translation t. Let Xa = RXb + t. The

standard pinhole projection equation for a camera not exhibiting distortion or skew

relates Xa to its pixel coordinate in the x-axis by:

px = fx
Xa

Za

+ cx (5.12)

and similarly for y. Given the following definition for R in terms of its row vectors

74



R1, R2, and R3:

R =







R1

R2

R3






(5.13)

Equation 5.12 is trivially equal to:

px = fx
R1Xb + tx

R3Xb + tz
+ cx (5.14)

If the translation is unknown, we can rotate and project the point Xb without trans-

lation and relate the new observation of Xb to the previous observation of Xa via:

ptx = fx
R1Xb

R3Xb

+ cx = fx
Xa − tx

Za − tz
+ cx (5.15)

Where the absolute deviation of ptx from px is given by dptx = |ptx − px|. We wish to

compute a single bound on dptx given a bounded translation. We first pick an upper

limit on the translation on all axes, ∆x, such that:

−∆x ≤ tx, ty, tz ≤ ∆x (5.16)

We can define tx = α∆x, ty = β∆x, and tz = γ∆x for

−1 ≤ α, β, γ ≤ 1 (5.17)

We then manipulate dptx into a convenient form in terms of Xa:

dptx = |ptx − px|

= fx

∣

∣

∣

∣

Xa − tx

Za − tz
− Xa

Za

∣

∣

∣

∣

= fx

∣

∣

∣

∣

Za(Xa − tx)

Z2
a − Zatz

− Xa(Za − tz)

Z2
a − Zatz

∣

∣

∣

∣

= fx

∣

∣

∣

∣

Xatz − Zatx

Z2
a − Zatz

∣

∣

∣

∣

(5.18)

and finally substitute in the new definitions of tx, ty, and tz:

dptx = fx∆x

∣

∣

∣

∣

Xaγ − Zaα

Z2
a − Zaγ∆x

∣

∣

∣

∣

(5.19)
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We wish to compute an upper bound for dptx given the constraints on α and γ. By

noting that Za ≥ 0 and requiring that Za > ∆x for all points, it can be shown that

Z2
a − Zaγ∆x is strictly positive. Further, by noting that |Xaγ − Zaα| ≤ |Xa| + Za

given the limits on α, γ, and Za, we merely need to minimize the denominator, which

can be done by setting γ to 1. This yields the desired bound on dptx:

dptx ≤ fx∆x

( |Xa|+ Za

Z2
a − Za∆x

)

(5.20)

For any point Xa and a limit on the translation ∆x, we can bound the maximum

perspective motion. This bound is visualized in Figure 5.10 for a set of 25 points.

After the bound is rendered in white, the pixels where points could actually project are

colored in gray by sweeping over all valid translations and projecting the translated

points. This figure verifies that the bound is correct — no pixels colored in gray fall

outside of the white bounds. Further, the bound is tight — few white pixels remain

visible.

Figure 5.10: Visualization of the perspective motion bound. A set of 25 points, arranged in
a 5× 5 grid with each row at an increasing depth, is used to visualize the bound on motion
in the image of translated points. The pixel motion bound is rendered first, in white, then
the set of points is translated numerous times in a fine sweep over the translation volume
and associated pixels colored over in gray.

This perspective motion bound allows us to construct our translation-image pyra-

mid. For a given search level l, we set the translation limit to ∆xl =
s
2
(3l − 1), where

s is the node spacing at Level 0. As depicted in Figure 5.9, this translation limit is

equal to the distance of the furthest child node. We then iterate through all points at

A and render a rectangle with width and height equal to twice the value of the bound
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on dptx from Equation 5.20, effectively dilating the pixel (px, py) by the maximum

possible motion in image space. The value of the rectangle is set to the optimal value

of the kernel. After all rectangles are rendered, we render the kernel with the max

operator centered at every border pixel. Figure 5.11 shows the result for a 4-level

search.

5.2.2.3 6 DoF non-linear optimization

Once the global minima has been found given an initial camera orientation, we can

perform non-linear optimization over the full pose state to improve the position esti-

mate. For example, to reduce error due to inertial sensor drift or pose discretization.

We perform Gauss-Newton minimization with Tikhonov regularization. The Ja-

cobian is computed numerically from the Level 0 kernel image and the state update

is scaled to ensure that the mean squared error decreases. If no suitable scaling term

can be found, optimization halts.

5.2.2.4 PAS-6D: Investigation of 6-DoF search

The perspective motion bound previously described enables a search over the 3-DoF

camera translation, with relative orientation provided by an external source. This

section describes how equivalent lookup tables can be created to perform a full 6-

DoF search, which we refer to as PAS-6D.

The translation-only bound was able to exploit the form of the pinhole projection

equations due to the axis-aligned translation limits. In the 6-DoF case, the addition of

unknown rotation introduces extra variables whose effects must be similarly bounded.

An expansion of Equation 5.14 in terms of the rotation matrix elements Rij provides:

px = fx
R11Xb +R12Yb +R13Zb + tx

R31Xb +R32Yb +R33Zb + tz
+ cx (5.21)

An approximate bound on the pixel motion can be investigated by numerically

computing the Jacobian of Equation 5.21 in terms of the camera-frame translations

x, y, z and rotations ϕ, θ, ψ corresponding to roll, pitch, and heading, respectively.

J =

[

∂px

∂x
,
∂px

∂y
,
∂px

∂z
,
∂px

∂ϕ
,
∂px

∂θ
,
∂px

∂ψ

]

(5.22)
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(a) Level 0 (b) Level 1

(c) Level 2 (d) Level 3

Figure 5.11: Translation-image pyramid in a synthetic environment. Projected points sam-
pled along a wireframe are shown in red. Images correspond to a 4-level search with trans-
lation levels of {2 cm, 6 cm, 18 cm, 54 cm}. Level 0 uses the kernel image as described in
Section 5.2.2.1, while Levels 1-3 use bounds images using the translation bound derived in
Section 5.2.2.2. Gray border added for clarity.

(a) Level 0 (b) Level 1 (c) Level 2

Figure 5.12: Translation-image pyramid using real features. 560 matched 1D edge features
were used to generate this 3-level translation-image pyramid. Gray border added for clarity.
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The first order pixel deviations on the x-axis are then given by:

dprtx = J11∆x+ J12∆y + J13∆z + J14∆ϕ+ J15∆θ + J16∆ψ (5.23)

This linear deviation expression is maximized when the magnitude of each trans-

lation and rotation parameter is maximized with signs matching the corresponding

term in J. This yields the first-order bound:

|dprtx| ≤ |J11||∆x|+ |J12||∆y|+ |J13||∆z|+ |J14||∆ϕ|+ |J15||∆θ|+ |J16||∆ψ| (5.24)

Figure 5.13 illustrates the perspective motion bound in the 6-DoF case, similar

to the translation-only case in Figure 5.10. For a 3 × 3 grid of sample points with

depths varying by row from 2.5 m to 4.5 m, it is apparent that a small number of

transformation states are not captured by this bound. However, a numerical evalua-

tion indicates that fewer than 0.001% of all samples evaluated violated the first-order

bound.

Figure 5.13: Comparison of the first order pixel motion bound for PAS-6D and a sweep
over 6-DoF transformations. For each point in the 3× 3 grid, a dense sweep over combined
±5 cm translations and ±3◦ rotations yields the region in gray. The first-order bound is
shown in white. The depth of each row increases linearly by 1 m from 2.5 m to 4.5 m.

In addition to this bound on the perspective motion of a point, the search for-

mulation must reflect the extra degrees of freedom. From our experiments, we found

that the rotation component of the search should be resolved before searching over

translation. Given this policy, a set of corresponding lookup tables can be generated.

Figure 5.14 illustrates the result for a 5-level search.
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(a) Level 0 (b) Level 1 (c) Level 2 (d) Level 3 (e) Level 4

Figure 5.14: Transformation-image pyramid for PAS-6D. From right to left, nodes at each
respective level are spread in this example by (8 cm, 4◦), (8 cm, 2◦), (8 cm, 1◦), (4 cm, 1◦),
and finally (2 cm, 1◦), as nodes expand over rotation before translation.

Through this first-order estimate of the 6-DoF perspective motion bound, PAS-6D

is capable of optimally aligning two sets of observations with unknown or corrupted

rotations. However, PAS-6D does not achieve rates compatible with real-time oper-

ation. Even with a small search range, ±16 cm translation and ±8◦ rotation, each

search takes multiple seconds to complete. Consequently, the remainder of this chap-

ter focuses on the translation-only implementation, PAS.

5.2.3 Evaluation using synthetic data

A custom simulation environment was used to evaluate PAS in controlled conditions

with imperfect orientation estimates. A wireframe description of the world was used

to create simulated feature matches between the left and right cameras by stepping

down each line and projecting discrete points into all cameras. A fixed forward

velocity with sinusoidal gyro rates about the camera-frame Y and Z axes was used

for the true robot motion. Orientation measurements are simulated and optionally

degraded with a drift parameter specified in degrees/second. Figure 5.15 shows this

environment with a deliberately-drifting pose estimate.

Figure 5.16 shows the mean and max error between the simulated and the esti-

mated robot pose for frame rates between 5 and 30 FPS. Gyro drift is fixed to 0.2◦/s on

all axes, and the pose is estimated in three modes: using PAS, using optimization

only, and using both. When PAS is used alone, the angular drift is uncorrected and

the pose estimate exhibits a large, constant error. Using non-linear optimization alone

produces estimates with a mean error as low as 1 cm. However, it is sensitive to the

size of the robust kernel — for low frame rates, optimization alone fails to converge,

as is clear from the max error plot. Optimizing after computing the solution with

PAS yields the best results, with an average error of less than 1 cm. This combination
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Figure 5.15: Simulation environment for PAS using a deliberately-drifting pose estimate.
Estimated trajectory in red, true trajectory in blue.

is able to reject the gyro drift even at low frame rates and produces more accurate

estimates than when using optimization alone, even at higher frame rates.
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Figure 5.16: Mean and max pose error for three configurations against the true, simulated
pose as the frame rate is varied. Average errors included in legend.

Figure 5.17 shows the mean pose error for PAS followed by optimization for three

frame rates. The amount of gyro drift, shown on the X-axis, is varied from 0 to 5◦/s .

As the frame rate is increased, the basin of convergence for PAS with optimization

increases, where a drift rate of nearly 3◦/s is rejected at an update rate of 30 FPS.

For a lower drift rate of 0.5◦/s , an update rate of 10 FPS is sufficient.
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Figure 5.17: Mean pose error for three configurations against the true, simulated pose as
the simulated gyro drift rate is varied. As the frame rate increases, more gyro drift is
successfully rejected.

5.2.4 Evaluation using a mobile ground robot

5.2.4.1 Implementation details

PAS is implemented in C and all results computed on an Apple MacBook Pro 10,1

Intel Core i7-3740QM (4 cores) running Ubuntu 12.10 (native). Video is capture

via a custom stereo rig composed of two grayscale Point Grey Firefly MV 1394a

cameras with Boowon BW3M30B-2000 M12 lenses separated by a 17.5 cm baseline.

Images are captured at 640 × 480 resolution at 30 frames per second. The cameras

automatically synchronize, and images are paired using host times and a passive time

synchronization algorithm [71]. In addition, a MEMS-grade IMU is used to estimate

orientation rates [3]. The data is collected by the ground robot platform used in the

MAGIC 2010 Robotics Competition [3]. LIDAR data is collected for comparison to

pose estimates from SLAM.

Feature detection is performed using the 1D convolutional gradient detector shown

in Figure 5.2. Stereo-rectified imagery is used, and detection is performed on alter-

nating rows to improve runtime without a noticeable impact on accuracy. A 16-pixel

horizontal patch is used as a descriptor for matching between the left and right im-

ages, leveraging epipolar constraints, at which point the descriptors are discarded.

Note that the PAS algorithm, which is a component in the larger visual odometry

system, does not use feature descriptors when estimating the camera motion.

PAS is implemented using a max heap and 8-bit lookup tables. A quadratic kernel
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with a 7 pixel radius was used, scaled to fill the full 8-bit range. The kernel is inverted

for use with the max heap. Keyframes are used to reduce error accumulation, with

new keyframes created every 0.5 m or 15◦of rotation. Point clouds used in search are

decimated uniformly by a factor of two to reduce runtimes.

We collected data to evaluate the PAS-based visual odometry system on a mobile

robot as described in Section 5.2.4.1. The robot was driven through an office envi-

ronment at an average speed of 0.73 m/s and top speed of 1.2 m/s. The video stream

is stereo rectified, and a proportional controller on the feature detection threshold

maintains 800 matched features per stereo frame. The average computation time for

image preprocessing and feature detection, matching, and triangulation is shown in

Table 5.2.

Stage Time (ms)

Rectification 4.2
Detection 6.0
Matching, triangulation 1.7

Total 11.9

Table 5.2: Average computation time for image preprocessing and stereo feature matching.

5.2.4.2 Experiments

To evaluate the trade-off between frame rate and total CPU load for PAS, we con-

ducted an experiment in which a log was processed using 5, 10, 15, and 30 FPS with

search parameters matched to the robot’s velocity. Using a 2 m/s upper estimate

of the maximum velocity, we computed search parameters to enclose the unknown

motion and ensure that all searches have a terminal resolution at Level 0 of 2 cm.

Table 5.3 shows the parameters and results for each of the settings. Computation

times per update for PAS search are shown in milliseconds, as well as the estimated

runtime per second given the update rate (FPS), single-update runtime, and addi-

tional runtime required for image preprocessing: rectification plus feature detection,

matching, and triangulation. Additionally, rendering the translation image pyramid

for each new keyframe took 4.7 ms for a 2-level search and 10.1 ms for a 3-level search,

averaged over the entire run.

The computation time per update in this table varies significantly with the update
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FPS Range Levels Time CPU Time Ratio Nodes
cm ms % P95:P50 %

5 ±40 3 19.2 15.6 2.73 2.0
10 ±20 3 10.0 21.9 2.17 7.5
15 ±14 3 7.9 29.7 1.85 15.2
30 ±8 2 4.8 50.1 1.69 41.1

Table 5.3: Parameter sweep for PAS to find the best update rate and search resolution.
Image preprocessing (See Table 5.2) excluded in runtime measurement, but included in
estimated CPU load. The runtime ratio of the 95th to the 50th percentile runtime is
shown, as well as the percentage of nodes evaluated in the multi-scale search.

rate (FPS). A single search with the 5 FPS settings takes approximately 4x as long

as a single 30 FPS search. However, when accounting for the number of updates per

second as well as the computation time to rectify the images and detect features, the

30 FPS configuration requires 34.5% more total CPU load, denoted by the “CPU”

column.

While the 30 FPS setting requires more runtime, its runtimes are the most con-

sistent. This is demonstrated by the “Time Ratio” column, which shows the ratio

of runtimes for the 95th percentile vs. the 50th percentile. This reduced variation

is explained by the percentage of search nodes that are evaluated, on average, in

the course of a single update. 41.1% of the nodes in the 30 FPS search volume are

evaluated, while at 5 FPS, only 2.0% of the nodes need to be evaluated. Choosing

an appropriate update rate requires balancing the trade-off between CPU load and

near-real-time performance.

Table 5.4 shows the runtime, estimated load, and average trajectory error against

SLAM for the 5 and 30 FPS configurations. The trajectory errors are computed by

stepping down the trajectory in 1 second intervals and evaluating the error of the

estimated trajectory against the SLAM reference trajectory. A ±5 second sliding

window is used for each evaluation and the transformation that best-aligns the two

trajectories is applied before computing the error.

This table shows that PAS without optimization is comparable in terms of ac-

curacy to the alternatives, and that PAS without optimization can be much faster.

At 5 FPS, using only non-linear optimization results in much higher error, as may

be predicted following the evaluation in Figure 5.17. PAS followed by optimization

yields a slight improvement in the error. At 30 FPS, PAS requires only 40% as much
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Figure 5.18: Visual odometry with PAS vs. LIDAR-based SLAM for a 3 minute indoor trial.
(Color-mapped) The SLAM trajectory is assumed to be the ideal result, as it is computed
from LIDAR scan-matching with loop closures and global optimization. (Cyan) PAS was
run open-loop with keyframes, and with optimization disabled. Color map applied to SLAM
trajectory corresponds to relative trajectory error against PAS. Grid spacing is 5 meters.

Figure 5.19: Accumulated edge features after alignment with PAS. Individual points colored
by height and accumulated when well-aligned at short range. Camera trajectory in cyan.
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Method 5 FPS 30 FPS

Time CPU Error Time CPU Error
ms % m ms % m

Optim. 36.4 24.2 0.229 28.3 120.6 0.093
PAS 19.2 15.6 0.117 4.8 50.1 0.080
PAS+Optim. 45.2 28.6 0.092 30.3 126.6 0.088

Table 5.4: Comparison of methods for motion estimation using two frame rates on a 3 minute
indoor log. Methods include non-linear optimization used alone, PAS, and PAS followed by
optimization. Image preprocessing time (See Table 5.2) excluded in runtime measurement,
but included in estimated CPU load. Error denotes average sliding-window error.

runtime as the alternatives. For these settings, only PAS without optimization could

be run online at 30 FPS, though with additional optimizations or greater decimation

that would not be the case. Finally, all variants at 30 FPS yield similar local errors.

An example trajectory from real data is shown in Figure 5.18. PAS was run at

30 FPS and compared to the output of a LIDAR SLAM solution [3]. The SLAM

solution is computed using loop closures and batch optimization, while PAS is run

open-loop. PAS was run without optimization, following from the smaller runtime

and trajectory error presented in Table 5.4. The cyan trajectory corresponds to PAS

after applying the transformation that best aligns the entire PAS trajectory to that

of SLAM. The SLAM trajectory is shown with colors indicating the average sliding-

window trajectory error described previously. Errors are primarily present during

large turns, which may be explained by feature density or by use of orientation from

an IMU, which slowly drifts over the course of the run. While the PAS trajectory

exhibits drift over the course of the log, due to accumulation of gyro errors, this error

is small enough for closed-loop control or as a prior for a visual SLAM or localization

system.

5.2.5 Evaluation on the KITTI dataset

PAS was evaluated on the KITTI Vision Benchmark Suite odometry dataset [72],

which provides synchronized, rectified stereo imagery at 10 Hz for evaluating odome-

try estimation in an automotive environment. Figure 5.20 shows a sample image with

detected features, as well as a translation-image pyramid from the previous frame with

aligned features. While PAS was designed with feature-poor indoor environments in
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mind, data from feature-rich outdoor environments can be used if the spatial dis-

tribution of features is controlled, such as through image blurring and non-extrema

suppression.

Evaluation was performed using the first 11 datasets from the KITTI benchmark,

as the ground truth poses are available. Datasets 00-04 were used to fit the method’s

parameters, while datasets 05-10 were used only for performance evaluation. Table 5.5

shows the selected parameters.

Parameter Value

Row decimation 2
Desired number of matches 800
Search point cloud decimation 2
Search levels 4
Search minimum resolution 2 cm
Search range ±3.2 m
Kernel radius 7 pixels

Table 5.5: Parameters for PAS evaluation on the KITTI dataset

As PAS requires an orientation estimate, the reference orientation from the pose

ground truth was used. Subsequently, the PAS search computed the 3-axis transla-

tion. Table 5.6 shows the mean translation error, computed as the average distance

between each translation estimate and corresponding reference pose update. Overall,

individual updates were on average within 2.5 cm of the reference, or 2.6% of the dis-

tance traveled. Single-threaded operation on an Apple MacBook Pro 10,1 required an

average of 86.9 ms per update, including blurring, feature detection, feature match-

ing, and PAS motion estimation. This meets the 100 ms runtime budget for the 10 Hz

video stream, while key steps such as search and translation-image pyramid creation

could be easily parallelized.

Dataset 05 06 07 08 09 10 Overall

Mean distance traveled (cm) 80 112 63 79 107 77 96
Mean translation error (cm) 1.9 1.4 1.5 2.8 2.1 3.1 2.5
Mean translation error (%) 2.31 2.52 2.51 2.68 2.16 3.63 2.61
Mean update time (ms) 84.0 83.2 85.5 86.0 86.0 81.3 86.9

Table 5.6: Comparison of PAS translation estimates compared to ground truth. Values
represent averages over all sequential motion estimates
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(a) Blurred camera image with detected features

(b) Level 3

(c) Level 2

(d) Level 1

(e) Level 0

Figure 5.20: Example image from the KITTI dataset with detected features and corre-
sponding translation-image pyramid. (a) Sample image with detected features. Feature
colors from blue to green correspond to increasing feature depth. Red indicates an out-of-
range feature (valid range: 8-80 m). (b-e) Corresponding translation-image pyramid from
the previous frame with aligned features in blue.
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The performance of PAS visual odometry is compared to other methods evaluated

on the KITTI dataset in Table 5.7. The comparison was limited to single-core, stereo

camera methods for fairness. Due to the need for reference orientations, PAS was

evaluated on datasets 5-10, while other methods were evaluated on datasets 11-21.

Because the KITTI translation error metric computes Euclidean distances between

true and estimated sub-trajectories, it is sensitive to orientation error. This gives

PAS an unfair advantage in this evaluation, as PAS used the reference orientations

directly. However, these results present possible best-case performance for PAS given

a suitable inertial or image-based orientation estimator.

Method Datasets Translation (%) Time (s) Environment

PAS* 5-10* 0.91* 0.087 1 core @ 2.7 GHz

MFI 11-21 1.30 0.1 1 core @ 2.2 GHz
TLBBA 11-21 1.36 0.1 1 core @ 2.8 GHz
D6DVO 11-21 2.04 0.03 1 core @ 2.5 GHz
GT VO3pt 11-21 2.54 1.26 1 core @ 2.5 GHz
VO3pt 11-21 2.69 0.56 1 core @ 2.0 GHz
TGVO 11-21 2.94 0.06 1 core @ 2.5 GHz
VOFSLBA 11-21 4.17 0.52 1 core @ 2.0 GHz

Table 5.7: Comparison of performance for PAS and a subset of single-core methods as
reported on the KITTI dataset. *PAS was evaluated on datasets 5-10 due to the use of
the ground-truth orientation information, while the remaining methods were evaluated on
datasets 11-21. As such, these results can only provide an illustrative comparison of the
performance. Additionally, the use of ground-truth orientation provides an unfair advantage
to PAS given the orientation-sensitivity of the KITTI translation evaluation metric. As such,
these results suggest possible best-case performance for PAS when paired with a high-quality
orientation estimate.

Figure 5.21 shows the estimated trajectories using PAS (cyan) overlaid with the

ground truth camera trajectories (orange). As the ground truth orientations were

used for PAS, only translation errors are present.

This evaluation shows that visual odometry with Perspective Alignment Search

can be applied in feature-rich outdoor environments with average translation errors

of 2.5% and average update times under the 100 ms runtime budget. While the

environment is feature rich, the density of features can be controlled through image

blurring and non-extrema suppression. This ensures that the search is effective at the

coarsest levels, where a greater amount of dilation is present in the translation-image
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pyramid.

5.2.6 Summary

Perspective Alignment Search (PAS) is a new method for efficient, joint alignment of

sparse point clouds and camera observations with unknown data association. PAS

employs a multi-scale translation search using a translation-image pyramid, a special

lookup table based on a bound on the projected motion of a moving, 3D point. This

results in a solution to the descriptorless motion estimation problem that is efficient

for a range of frame rates, and is not limited to high rate operation. It also yields

a robust method that is not susceptible to local minima in the cost surface, as it

employs a multi-scale branch-and-bound search.
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(a) Dataset 05 (b) Dataset 06

(c) Dataset 07 (d) Dataset 08

(e) Dataset 09 (f) Dataset 10

Figure 5.21: Ground truth and PAS trajectory estimates on the KITTI datasets. (or-
ange) Ground truth camera trajectory. (cyan) PAS trajectory estimate using ground truth
orientation. Grid lines spaced 100 m apart
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Chapter 6

Conclusion

Visual odometry is a powerful tool for the real-time estimation of a robot’s motion.

Estimating this quantity quickly and accurately is critical for other algorithms whose

analyses are predicated on the context these motion estimates provide. This includes

algorithms for mapping, multi-robot collaboration, planning, and control.

6.1 Summary of the thesis

This thesis has approached problems in robustness and methodology for visual odom-

etry. We have demonstrated and evaluated methods that employ machine learning

to improve feature detection and description and have developed an alternate ap-

proach to visual odometry that casts the matching and motion estimation problem

as a search. Due to the computational limits of a mobile robot and the timeliness re-

quired for online operation, this thesis has focused particularly on real-time methods

and opportunities to employ vector instruction optimizations.

The contributions of this thesis are:

❼ A method for learning feature detectors to optimize the performance of a visual

odometry system

As feature detectors are often designed by hand and later integrated into appli-

cations with diverse requirements and implementation trade-offs, performance

can be improved by automatically optimizing detectors while in use in the target

application. We described a method that utilizes random sampling to learn de-

tectors parameterized as convolutional filters. This method improves upon the

performance of learned filters defined by raw intensities using frequency-domain
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parameterizations and by steering the focus of sampling within the frequency

domain using coefficient masks.

A suite of custom ground-truth datasets were used for filter training and evalua-

tion. We described a method to generate ground-truth, 3D camera trajectories

using in-situ fiducial markers. Experimental results show that learned filters

outperform a suite of linear and non-linear baseline methods across this set of

diverse datasets

❼ A method for online feature descriptor learning that improves matching perfor-

mance through per-feature descriptor tailoring

Feature descriptors defined by a set of pairwise intensity comparisons yield sub-

stantial runtime improvements over alternatives like SURF, but are sensitive to

changes in viewpoint. We demonstrate this sensitivity and propose a method

for online feature descriptor learning that customizes, or tailors, the descrip-

tor sampling structure on a feature-by-feature basis. We describe how this can

be efficiently integrated into a visual odometry pipeline, taking advantage of

the asymmetry in feature lifetimes in a keyframe-based application. Through

evaluation on a standard dataset, we show that the application of per-feature

learning improves matching precision and recall while maintaining fast descrip-

tor extraction and matching runtimes

❼ An evaluation of detection and stereo matching for 1D edge features

Indoor environments are sometimes feature-poor with respect to the point or

blob features needed by typical visual odometry applications. We argue for

the use of 1D edge features in a stereo context, turning a stereo camera into

a fast, sparse 3D point cloud generator. We demonstrate that modern SIMD

processor optimizations can yield thousands of matches with low outlier rates in

only a few milliseconds. We evaluate this approach on standard, dense disparity

datasets and under synthetic image degradation

❼ A new approach to visual odometry that employs a multi-scale search over pose

to maximize the perspective alignment of two feature sets

Estimating motion with 1D edge features is complicated by the indistinct ap-

pearance of neighboring detections. We propose a method that formulates the
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problem as a multi-scale search over the camera motion. In this way, the data

association between features is implicit, arising as a result of a proposed motion,

and the method is descriptorless, as the indistinct descriptors are not used to

solve for the unknown motion of the camera.

The proposed algorithm, Perspective Alignment Search (PAS), simplifies the

visual odometry pipeline by replacing the matching, outlier rejection, and mo-

tion estimation stages of a standard pipeline with a single algorithm. We derive

a bound on the perspective motion of a 3D point and show how this is used to

create the translation-image pyramid, a special lookup table that enables the

multi-scale search in PAS. In contrast to descriptorless methods that necessitate

high frame rates, we show that PAS operates efficiently over a wide range of

frame rates as a consequence of this multi-scale approach

6.2 Directions for future research

The methods described in this thesis improve the performance of visual odometry

systems along multiple axes, from the features detected to the motion estimation

method, itself. Yet, there is still room for improvement.

❼ The detector learning method detailed in Chapter 3 explores a large parameter

space, yet our results indicate that the best detectors are unevenly distributed

throughout this space. One of the successes of this work is the realization that

better detectors can be learned on a fixed schedule by varying the range of

the sampled distribution. It may be possible to improve the learning efficiency

further by automatically learning where in the frequency space to draw samples.

For example, a small number of samples from any lobe in Figure 3.11 should

allow characterization of the error distribution under a Gaussian assumption.

This would support the a) use of fewer resources b) use of larger datasets,

further increasing environment diversity, or c) expansion of the problem scope,

for example combining the detector and descriptor learning problems

❼ This thesis demonstrates that a new algorithm, Perspective Alignment Search

(PAS), is applicable to the visual odometry problem. No work has been done to

apply this method to other domains. One suitable application is highway vehicle

tracking. At highway speeds, yaw rates must be small due to limits on lateral
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acceleration that are necessary to maintain traction and ride comfort. This

suggests that a translation-only alignment provided by PAS would be suitable

for inter-frame vehicle tracking. Further, it is arguable that vehicle designs are

suited to the edge-based tracking presently demonstrated

❼ SLAM and localization methods are progressing toward long-term operation

over days or years, despite changes in lighting [73, 74, 75] and structure [76, 77].

Similarly, autonomous vehicles will need to operate in adverse, winter weather

conditions. This calls for robust camera or LIDAR methods that can pick

out the invariant data for localization. We argue that geometry-based stereo

vision approaches [78, 66, 36] are well-positioned in this regard, due to their

decreased reliance on the local appearance of features and the prevalence of ex-

isting, low-cost hardware. Avenues for research in this direction include further

development of descriptorless perspective alignment methods for the purpose

of localization, and development of learning-based approaches that exploit the

known geometry of the scene to focus attention on stable reference features
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