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ABSTRACT

Optimization Problems in Radiation Therapy Treatment Planning

by

Troy Long

Chairs: Edwin Romeijn, Marina Epelman

Radiation therapy is one of the most common methods used to treat many types of cancer.

External beam radiation therapy and the models associated with developing a treatment

plan for a patient are studied. External beams of radiation are used to deliver a highly

complex so-called dose distribution to a patient that is designed to kill the cancer cells while

sparing healthy organs and normal tissue. Treatment planning models and optimization are

used to determine the delivery machine instructions necessary to produce a desirable dose

distribution. These instructions make up a treatment plan. This thesis studies four problems

in radiation therapy treatment plan optimization.

First, treatment planners generate a plan with a number of competing treatment plan

criteria. The relationship between criteria is not known a priori. A methodology is de-

veloped for physicians and treatment planners to efficiently navigate a clinically relevant

region of the Pareto frontier generated by trading off these different criteria in an informed

way. Second, the machine instructions for intensity modulated radiation therapy, a com-

mon treatment modality, consist of the locations of the external beams and the non-uniform

intensity profiles delivered from each of these locations. These decisions are traditionally

made with separate, sequential models. These decisions are integrated into a single model

and propose a heuristic solution methodology. Third, volumetric modulated arc therapy

(VMAT), a treatment modality where the beam travels in a coplanar arc around the pa-

tient while continuously delivering radiation, is a popular topic among optimizers studying

treatment planning due to the difficult nature of the problem and the lack of a universally

accepted treatment planning method. While current solution methodologies assume a pre-

determined coplanar path around the patient, that assumption is relaxed and the generation

xiii



of a non-coplanar path is integrated into a VMAT planning algorithm. Fourth, not all

patient information is available when developing a treatment plan pre-treatment. Some in-

formation, like a patient’s sensitivity to radiation, can be realized during treatment through

physiological tests. Methodologies of pre-treatment planning considering adaptation to new

information are studied.

xiv



CHAPTER I

Introduction

1.1 Radiation Therapy Treatment Planning

Radiation therapy is one of the most common methods used to treat many different

types of cancer. There are different techniques for exposing cancerous tissue to radiation,

and in these studies we will be investigating external beam radiation therapy. With this

technique, external beams of radiation are used to deliver a highly complex so-called dose

distribution to a patient that is designed to kill the cancer cells while sparing healthy organs

and normal tissue. Treatment planning models and optimization are used to determine the

delivery machine instructions necessary to produce a desirable dose distribution. This thesis

will focus on models that address some of the shortcomings with current treatment planning

and offer clinically applicable techniques for solving these problems.

After a patient is diagnosed with cancer, a physician will determine the patient’s course

of treatment (see Figure 1.1). If radiation therapy is included in this treatment, a patient

will have detailed imaging performed to allow treatment planners to construct a 3D model

of the patient within a treatment planning system, a software package that assists treatment

planners in determining machine instructions for delivery. After imaging, a physician will

manually contour each critical structure and target within the patient. The system then

uses this geometric information to simulate radiation delivered to the patient to estimate

the effects of delivering radiation from a certain angle at a certain intensity. This information

will be used to relate machine instructions to dose received by the patient. After the machine

instructions and corresponding dose distribution are decided upon by the physician and the

treatment planner, the patient is treated. Patients receive radiation over a number of days,

each session delivering a portion of the total treatment. These sessions are referred to as

fractions. During these fractions, new patient information may be observed and prompt

adapting the plan to the new information. After the patient completes a full course of

treatment fractions, the patient is imaged and the diagnosis is reassessed.

1



Figure 1.1: Illustration of the stages a patient goes through from diagnosis to treatment

The main treatment modalities we consider are intensity modulated radiation ther-

apy (IMRT) and volumetric modulated arc therapy (VMAT). In both modalities, radia-

tion is delivered through the rectangular opening on the gantry and through an multileaf

collimator (MLC) (see Figure 1.2) that uses sliding tungsten leaves to block radiation and

form shapes called apertures. IMRT utilizes a fixed number of stationary beam locations to

deliver radiation through multiple apertures of varying intensity at each location of varying

intensities. The primary decisions that are needed to define an IMRT treatment plan are

the beam directions, aperture shapes, and aperture intensities. VMAT, a more advanced

and modern modality, employs a beam that rotates in an arc continuously with dynamically

changing apertures and intensity (see Figure 1.2). The primary decisions that are needed to

define a VMAT treatment plan are the MLC leaf positions along the arc, the dose rate, and

the speed of the gantry.

Figure 1.2: (left) Sliding leaves in a multi-leaf collimator, (right) VMAT treatment delivery
machine, gantry ghosting through delivery arc (photo credits to Varian Medical Systems)

2



1.2 Traditional Treatment Planning Models

We present the general structure of treatment plan optimization models for IMRT without

the project-specific minutiae. The VMAT treatment planning model only applies to chapter

IV and thus will not be included here. Clinically motivated changes to these models as well

as corresponding solution methodologies will be explored in the following chapters.

As stated earlier, the decisions to be made in IMRT are the beam directions, aperture

shapes, and aperture intensities. Of these decisions, let us assume that the beam directions

are selected and fixed through some process (see chapter III). The remaining decisions are

the aperture shapes and aperture intensities. There are two main ways to model and solve

for these values: fluence map optimization (FMO) followed by leaf sequencing (LS) and

direct aperture optimization (DAO). FMO generates a non-uniform intensity profile for each

beam and the post-processing LS step generates the apertures and corresponding intensities

necessary to deliver a plan that produces a dose distribution close to that generated by

the original FMO intensity profile. DAO is an iterative procedure that actively generates

deliverable apertures to be used in the treatment planning model.

There is a core set of notation that will be used throughout this thesis. We present

that notation here, and any deviations or additions will be updated within the associated

chapters. Common to all presented treatment planning models, the patient geometry is

discretized into small volumes called voxels represented by set V . Let zj be the dose received

by voxel j ∈ V . Let B be the set of potential discrete beam locations around the body.

1.2.1 Fluence Map Optimization

In FMO, we need to define the sets of beam locations and beamlets. Let B′ be the set of

active (i.e., used in the treatment plan) beam locations. These locations can be in a coplanar

arc around the patient or in a non-coplanar arrangement. Non-coplanar arrangements are

often referred to as the 4π space around a patient. In order to represent the FMO intensity

profile, each beam b ∈ B′ is discretized into a grid of beamlets Nb. Let decision variable xbi be

the intensity for beamlet i ∈ Nb for beam b ∈ B′. Sometimes beamlet intensity is presented

as xi for i ∈ N when beam-specificity is not relevant to the problem (i.e., i ∈ N = ∪b∈B′Nb).
To relate the beamlet intensities to the voxel doses, let Dbij be the dose delivered to voxel

j ∈ V from beamlet i ∈ Nb in beam b ∈ B′ at unit intensity. With objective function F (z),

representing treatment plan evaluation criteria as a function of dose, and set of deliverable

treatment plans Z, we can construct the basic FMO model as follows:
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minimize
x,z

F (z) (1.1)

subject to zj =
∑
b∈B′

∑
i∈Nb

Dbijxbi ∀j ∈ V (1.2)

z ∈ Z (1.3)

xbi ≥ 0 ∀b ∈ B′,∀i ∈ Nb. (1.4)

LS occurs after FMO to generate apertures and aperture intensities. For the purposes

of this thesis, LS is assumed to occur without incident and thus is not considered when

modeling using FMO (see Xia and Verhey , 1998 for more information on LS).

1.2.2 Direct Aperture Optimization

In DAO, the variables of aperture intensities are directly represented in the model. Let

Ab be the set of deliverable apertures on beam b ∈ B′ and let ybk be the intensity of aperture

k ∈ Ab on beam b ∈ B′. To relate aperture intensity to dose received, let Dbkj be the dose

delivered to voxel j ∈ V from aperture k ∈ Ab at beam b ∈ B′. The full treatment planning

model looks as follows:

minimize
y,z

F (z) (1.5)

subject to zj =
∑
b∈B′

∑
k∈Ab

Dbkjybk ∀j ∈ V (1.6)

z ∈ Z (1.7)

ybk ≥ 0 ∀b ∈ B′,∀k ∈ Kb. (1.8)

While the model structure seems similar to the FMO model, there are many more deliv-

erable apertures than beamlets for each beam (i.e., |Nb| << |Ab|). Therefore, sophisticated

solution methodologies are used to solve this problem (see, e.g., Romeijn et al., 2005 for

a column-generation approach). Sometimes the b ∈ B′ subscript is dropped when beam-

specificity is not needed. Due to the large number of Dkj values, Dkj values are constructed

as needed using a beamlet approximation. Let i ∈ Nk be the set of beamlets that make up

aperture k ∈ A. We can then calculate Dkj as the following for all k ∈ A and j ∈ V :

Dkj =
∑
i∈Nk

Dij. (1.9)
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1.2.3 Modeling Criteria

As mentioned before, the main goals of radiation therapy treatment planning are to de-

liver a dose distribution that eradicates the cancerous tissue while sparing healthy tissue

and functioning organs. In the treatment planning models in Section 1.2, the objective of

the models is some function of dose, F (z). How F (z) is constructed, however, is not a well-

established, clear procedure in the clinic. There are a multitude of treatment plan evaluation

functions used to describe the effects of radiation in the body. There are functions that give

probabilities of control or complications for tumors and non-cancerous tissue, respectively.

Some examples include tumor control probability (TCP) and normal tissue complication

probability (NTCP) (see, e.g., Webb and Nahum, 1993; Warkentin et al., 2004; Marks et al.,

2010). Other criteria include voxel-based evaluation functions and dose-volume functions

(see Shepard et al., 1999 for an overview), metrics that convert non-uniform dose to a struc-

ture to the radiobiologically equivalent uniform dose (see equivalent uniform dose (EUD) in

Niemierko, 1999), and proxy metrics for some of those listed earlier (e.g., conditional value-

at-risk (CVaR) in Romeijn et al., 2003 and linearized EUD in Thieke et al., 2002). Some

are “easy” objectives (e.g., piecewise quadratic voxel-based penalties are convex) while oth-

ers are extremely difficult to incorporate explicitly into the treatment planning model (e.g.,

dose-volume objectives are non-convex).

On top of it being unclear which functions to use in the objective, the relative importance

of different objectives is also unclear a priori (see chapter II for more information). Multiple

objectives will be given for planners to improve upon or satisfy, but how these competing

objectives behave is not immediately clear. Traditionally, physicians and treatment planners

work together in an iterative, trial-and-error fashion to select a combination of evaluation

functions and relative importances to arrive at a desirable treatment plan.

1.3 Chapter Summaries

1.3.1 Sensitivity Analysis in Lexicographic Ordering, Chapter II

When presented with a radiation therapy case, physicians approach the treatment plan-

ning process with a number of goals for the treatment outcome of varying importance. For

example, sparing the brainstem of lethal radiation will be much more critical than reducing

hotspots in normal tissue surrounding the brainstem. In this process, the physicians develop

a hierarchy of criteria they believe to be significant in determining a treatment plan. Two

questions arise when considering different criteria of unclear relative importance. First, what

tradeoff information between competing objectives in the model might prove beneficial to
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treatment planners and physicians? Sometimes yielding a small amount on the most im-

portant treatment goals may provide significant benefits in overall treatment plan quality,

and identifying this tradeoff can be non-trivial. Second, how can these tradeoffs be calcu-

lated efficiently and presented in a manner valuable to physicians? Because the calculations

necessary to produce accurate representations of these relationships could be lengthy, tech-

niques to quicken the process without losing accuracy can help maintain clinical feasibility.

We address both of these questions in chapter II, as well as a several improvements that

increase the efficiency of the initially developed methodology. To improve the methodology,

we incorporate additional bounds on the relevant region of the generated Pareto frontier and

automate some of the proposed interactive steps.

1.3.2 Beam Orientation Optimization, Chapter III

In IMRT beam orientation optimization, a small number of beam positions must be iden-

tified that allow for both high treatment plan quality and efficient deliverability, creating a

large-scale combinatorial optimization problem. Traditionally, beam selection and FMO are

approached as separate, sequential models. We integrate these models and develop efficient

and effective methods for selecting high-quality coplanar or non-coplanar beam orientations

for IMRT treatments. The proposed methods explicitly incorporate the effects of beam se-

lection on the quality of the resulting optimal dose distribution. To this end, we propose a

greedy heuristic framework for solving the integrated model. The algorithm iteratively adds

beams to the model according to a dynamically updated attractiveness measure for each

remaining candidate beam. We consider measures that are based explicitly on the optimal

dose distribution corresponding to the currently selected set of beams. Several specific at-

tractiveness measures are proposed that use either first-order or both first and second-order

information. Performance of the algorithm is assessed on clinical data demonstrating a high

quality dose distributions found with fewer beams than traditional methods. Theoretical

work is also presented aimed at finding methods for bounding optimal solutions to the in-

tegrated beam orientation optimization and fluence map optimization treatment planning

model.

1.3.3 Non-coplanar Volumetric Modulated Arc Therapy, Chapter IV

VMAT is rapidly emerging as a method for delivering radiation therapy treatments to

cancer patients that are of comparable quality to IMRT but much more efficient. In VMAT,

the beam moves along a coplanar arc (i.e., fixed couch position with a moving gantry) while

delivering radiation through dynamically changing apertures. The decisions here are the
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(usually fixed) coplanar arc path, the movements of the MLC along the arc, the speed of

the gantry, and the dynamic dose rate of the beam. When making these decisions, we

must consider machine constraints such as MLC leaf movement restrictions, dose rate limits,

and gantry acceleration bounds. The next step in taking advantage of the flexibility of the

delivery machines is to consider non-coplanar paths in the 4π space around the patient as

well. We propose a constructive approach that employs both column generation and routing

heuristics to simultaneously determine the non-coplanar path of the beam, MLC movements,

and dose rate. A proof-of-concept implementation is presented on a brain cancer case.

1.3.4 Adaptive Treatment Planning for Lung Cancer, Chapter V

When developing a personalized treatment, planners use a physician’s treatment plan-

ning goals based on patient information obtained pre-treatment. However, over the course

of treatment these patient characteristics may change, evolving the planner’s initial under-

standing of patient characteristics and causing inaccuracies in the treatment plan. The

pre-treatment plan is often reoptimized mid-treatment to these new data. For example,

certain biomarker data obtained during treatment after several fractions of radiation have

been delivered has been shown to be predictive of a patient’s predisposition to radiation-

induced lung toxicity. We develop several methodologies for pre-treatment planning when

adaptation is likely to occur. A two-stage stochastic treatment plan optimization model to

explicitly consider future patient-specific biomarker information is developed along with a

less-computationally-intensive heuristic methodology. Recommendations for building flexi-

bility for future adaptation into initially-delivered dose distributions are presented.

Research Collaborators Chapter-specific acknowledgement sections will identify research

collaborators for each project.

Research Funding All projects partially supported by NSF GRFP between 2012 and

2015. Funding for projects in Chapters II and V partially from grant number NIH-P01-

CA59827. Two Rackham Student Research Grants were awarded for partial support on

Chapters III (2012) and IV (2014).
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CHAPTER II

Sensitivity Analysis in Lexicographic Ordering for

Radiation Therapy Treatment Planning

This chapter discusses a project we worked on in 2010-2012. This project allowed us

to get into both the modeling side of radiation therapy treatment planning as well as the

computational aspects of treatment plan optimization. Sections 2.1 to 2.3 of the following

text is largely pulled from the paper published in Medical Physics (see Long et al., 2012) along

with some additional work done with a few undergraduate student researchers in Section 2.4.

2.1 Introduction

When addressing a radiation therapy case, a physician generally presents the treatment

planner with a number of dosimetric goals of varying importance. Although the general

objective is to deliver a prescribed radiation dose to the target(s) while simultaneously

sparing critical structures, a major challenge remains how to make the unavoidable tradeoffs

between these conflicting goals. The literature on radiation therapy treatment planning

contains a multitude of evaluation criteria that can be used to quantify various properties of

a treatment plan. Because treatment planning is generally a time-consuming endeavor which

has to be performed for individual patients, providing a treatment planner with tools that

allow for an efficient assessment of the interplay and tradeoffs between conflicting treatment

plan evaluation criteria is essential to an efficient and effective treatment planning process.

Traditionally, radiation therapy treatment planning is based on optimization models

containing a single objective function to be optimized subject to a set of hard constraints on

the treatment plan. The objective function is typically a simple weighted sum of individual

treatment plan evaluation criteria (see Breedveld et al., 2009). Since there is no formal basis

for choosing a priori values for these weights, their values are usually updated manually

by the treatment planner in an iterative fashion in order to arrive at a clinically desirable
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treatment plan. Occasionally this method yields acceptable results quickly, but in general

this approach is inefficient and may lead to inferior treatment plans.

A modern technique for exploring the tradeoffs between treatment plan evaluation criteria

is based on multi-criteria optimization (MCO) (see, e.g., Küfer et al., 2009 for a recent

overview of this area). In this approach, the goal is to approximate the Pareto frontier

containing all efficient treatment plans, i.e., treatment plans with the property that it is not

possible to improve the plan with respect to one of the criteria without deteriorating the plan

with respect to at least one other. While there are many methods for generating this frontier

(see, e.g., Ruzika and Wiecek , 2005), a common technique is to solve a sequence of single-

objective optimization problems, each using an appropriately chosen set of weights for the

individual criteria. When all criteria are convex functions of the dose distribution delivered to

the patient, each of the corresponding solutions will represent a point on the Pareto frontier.

If the number of such solutions is large enough to allow the Pareto frontier to be accurately

approximated (typically using interpolation), the treatment planner can assess the tradeoffs

between competing objectives by navigating the frontier and use this information to select a

treatment plan. Using MCO as a means of quantifying tradeoffs is conceptually attractive, in

the sense that it provides the treatment planner with complete and comprehensive tradeoff

information on all criteria. However, the number of competing criteria can be large (say,

on the order of 10–25 in a typical clinical setting), which means that the Pareto frontier

is embedded in a correspondingly high-dimensional space. Many solutions may then be

required to accurately approximate the Pareto frontier, which reduces the efficiency of the

methodology (see Hong et al., 2008). Moreover, visualizing and interpreting the plethora of

tradeoffs can prove difficult (see Craft and Monz , 2010). Of course a reduction in the number

of criteria or data reduction in the form of a coarser representation of patient geometry

and/or capabilities of the delivery equipment may mitigate these drawbacks, but this may

affect the accuracy of the frontier or the quality of the tradeoff information (see, e.g., Craft

and Bortfeld , 2008).

A key observation is that the full Pareto frontier identified by MCO will likely contain

many tradeoff regions that are clinically unacceptable or irrelevant. This not only compli-

cates the navigation process as outlined above, it also means that a large amount of time

may be spent identifying such uninteresting tradeoffs. It therefore seems appropriate to

explicitly incorporate better a priori clinical information on priorities associated with the

different criteria into the treatment plan optimization process. One such approach is lexico-

graphic optimization (LO), which is sometimes also referred to as prioritized optimization

(see Wilkens et al., 2007; Jee et al., 2007; Clark et al., 2008). This is a multi-stage approach

that is based on a complete ranking or prioritization of treatment planning goals. In its
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purest form it starts by optimizing the highest ranked criterion. The optimal value to this

problem is then used to constrain the value of the corresponding criterion in subsequent

optimization models. In particular, in the following stage the second criterion on the pri-

oritized list is optimized subject to the value of the first criterion being optimal. Following

that, the third is optimized subject to the value of the first and second criteria’s solutions

from the previous model. This approach is then continued for each criterion on the list, and

the solution to the final optimization problem in the sequence is the optimal treatment plan

with respect to the prioritized list of criteria. LO is computationally efficient and provides a

clear, systematic approach. In contrast with MCO, LO does not rely on interaction with the

treatment planner (once the prioritization is fixed). However, much flexibility is sacrificed in

the wake of the computational and structural benefits. In particular, a notable drawback of

using an LO approach is that the treatment planner may be unaware of opportunities that

may exist to improve a treatment plan. In terms of MCO, the LO approach can be inter-

preted as confining the treatment planner’s view to a specific extreme solution on the full

Pareto frontier of inter-criterion tradeoffs. If a minor sacrifice in high-priority criteria could

yield meaningful benefits with respect to lower-priority criteria, the pure LO approach would

not recognize or identify this opportunity. In order to introduce some flexibility into the pro-

cess one might relax the optimality constraint on high-priority criteria and instead require

previously optimized criteria to remain “near-optimal.” Since tradeoffs are not characterized

and assessed explicitly, it is not clear how to quantify the concept of near-optimality, nor

how to predict the consequences of allowing a deviation from optimality. In contrast, our

method will provide an interactive way for the user to select the relaxation based on a formal

sensitivity analysis.

In this chapter, we propose a systematic approach, sensitivity analysis in lexicographic

ordering (SALO), which combines the benefits of MCO (flexibility and comprehensiveness)

and LO (efficiency and clinical focus) while avoiding their pitfalls. Similar to LO, it incor-

porates clinical information through a prioritized list of treatment plan evaluation criteria.

However, in contrast with LO, it uses this information to efficiently navigate a clinically in-

teresting and relevant segment of the Pareto efficient frontier in an interactive and iterative

fashion. In Section 2.2 of this chapter we will provide a formal and detailed description of the

SALO approach. In Section 2.3 we will then illustrate the approach on two clinical cases and

discuss the performance of the algorithm. In Section 2.4 we will discuss some improvements

made to the model and conclude in Section 2.5.

10



2.2 Model and Methodology

The goal of the SALO approach is to provide local information on the shape of the Pareto

frontier to treatment planners for use as a decision making aid, based on clinical preferences

represented via a prioritized list of treatment plan evaluation criteria. This local information

takes the form of a two-dimensional Pareto frontier that, in each stage, characterizes the

tradeoff between two consecutive criteria while (i) constraining higher priority criteria to

values that have been established earlier in the process; and (ii) temporarily ignoring lower

priority criteria. The treatment planner can then examine this tradeoff curve and select

a point that appropriately captures the tradeoff between the two criteria currently under

consideration. This point then defines a bound for the criterion that has the higher priority.

2.2.1 Bi-criteria Treatment Planning Model

Optimization models for radiation therapy treatment planning are usually classified as

“beamlet-based” (yielding an optimal fluence map, which subsequently needs to be converted

into a deliverable plan in a leaf-sequencing stage) and “aperture-based.” We have chosen

to use the latter, DAO, approach (see, e.g., Shepard et al., 2002; Preciado-Walters et al.,

2004; Romeijn et al., 2005; Men et al., 2007) since it not only eliminates the need for a leaf-

sequencing stage but can also allow for a more efficient implementation and solution since an

instance of the DAO model is typically much smaller and hence can be solved more rapidly

than an instance of a beamlet-based FMO problem. This is particularly important since

many of these problem instances will need to be solved during the course of the SALO pro-

cedure. However, if desired, the general SALO approach can be applied to a more traditional

FMO model with only minor modifications.

The notation in this chapter is consistent with notation presented in 1.2.1. For simplicity,

we will let y = (yk : k ∈ A) and z = (zj : j ∈ V) denote the corresponding vectors. Convex-

ity of the set of feasible treatment plans, Z, is important for tractability of our approach,

and we usually expect this set to contain only simple lower and upper bound constraints on

the individual voxel doses. In principle other hard constraints on treatment plan evaluation

criteria could be included as well, although we envision those tradeoffs to be made in the

actual SALO procedure rather than by a priori excluding certain dose distributions.

The treatment plan evaluation criteria are given as functions of the dose distribution:

G` : R|V| → R (` = 1, . . . , L + 1), where we assume that the criteria are indexed in order

of decreasing priority. For mathematical convenience we will assume that these criteria

are such that smaller values are preferred to larger values. In addition, we will generally

assume that they are all convex functions. Note that, in a multicriteria context, many

11



common treatment plan evaluation criteria, such as voxel-based penalty functions, EUD,

generalized equivalent uniform dose (gEUD), TCP, NTCP, or CVaR, are either convex

or can equivalently be replaced by convex ones (see Romeijn et al., 2004). Our proposed

approach could in principle be generalized to accommodate a nonconvex set Z and/or truly

nonconvex criteria, such as traditional Dose-Volume Histogram (DVH) constraints, albeit at

the expense of computational efficiency. The last criterion, GL+1, is typically chosen in order

to minimize total dose delivered to the patient while maintaining treatment plan quality

with respect to all previously considered criteria. The SALO approach then interactively

searches for a treatment plan by solving a sequence of bi-criteria optimization models of the

following form (for ` = 1, . . . , L), referred to as stages of the procedure:

minimize
(y,z)

{G`(z), G`+1(z)}

subject to (P(`))

zj =
∑
k∈A

Dkjyk for j ∈ V (2.1)

G`′(z) ≤ G`′ for `′ = 1, . . . , `− 1 (2.2)

yk ≥ 0 for k ∈ A (2.3)

z ∈ Z, (2.4)

where G`′ is an upper bound on treatment plan evaluation criterion G`′ that is set in the

earlier stage `′ of the procedure by solving the prior bi-criteria optimization problem (P(`′))

(for `′ = 1, . . . , `− 1) and making the corresponding tradeoff.

Due to the convexity of the criterion functions, the solution to the bi-criteria optimiza-

tion problem (P(`)) can be found by solving single-criterion optimization problems with an

objective function of the form:

αG`(z) + (1− α)G`+1(z), (2.5)

for all α ∈ [0, 1].

2.2.2 Sensitivity Analysis in Lexicographic Optimization Methodology

If the set of all deliverable apertures were manageable we could directly apply the ap-

proach outlined above. Unfortunately, in general the cardinality of the set A is very large

and the optimization problems (P(`)) cannot be solved explicitly. One potential approach

would be to generate high-quality apertures “on the fly” according to a column genera-
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tion approach that has been proposed for solving single-criterion DAO problems (see, e.g.,

Preciado-Walters et al., 2004; Romeijn et al., 2005; Men et al., 2007)). However, this would

mean that the set of apertures considered in later stages of the algorithm is different from (in

fact, larger than) the set of apertures allowed in earlier stages. This means that the tradeoffs

between the higher priority, and hence clinically more important, criteria are based on a

more limited set of apertures. Intuitively it would seem more attractive to base the more

important (or, in fact, all) tradeoff decisions on the most accurate representation of the op-

timization model rather than the least accurate, which makes a straightforward application

of this idea undesirable.

In order to address this issue we propose to start the SALO procedure with an initial phase

in which a high-quality pool of apertures is generated, which is then kept fixed throughout the

L stages of the SALO procedure. This does not only improve the computational efficiency

of the approach, but also ensures that all decisions are made based on consistent input

and information. However, it is clear that, in this process, the tradeoff decisions are not

made with respect to the full information regarding all deliverable apertures. We therefore

also propose a final phase in which a full DAO model is solved to identify a new set of

apertures that minimizes the last criterion, GL+1, subject to all bounds imposed on criteria

G1, . . . , GL. Clearly, this final phase could also take other considerations, such as treatment

delivery efficiency, into account. In summary, we propose a SALO procedure that proceeds

in three phases:

Sensitivity Analysis in Lexicographic Optimization

Phase 1. Generation of a clinically relevant aperture pool of computationally manageable

cardinality.

Phase 2. Generation of patient-specific treatment planning goals G` (` = 1, . . . , L) by

solving a sequence of bi-criteria optimization problems (P(1)), . . . , (P(L−1)).

Phase 3. Generation of final treatment plan that satisfies the patient-specific treatment

planning goals while minimizing an overall single objective function.

In the remainder of this section we will discuss these three stages in more detail.

2.2.2.1 Aperture Pool Generation

We generate an aperture pool by solving a traditional single-criterion treatment plan

optimization model based on the treatment plan evaluation criteria:
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minimize
(y,z)

L∑
`=1

α`G`(z)

subject to (P)

zj =
∑
k∈A

Dkjyk for j ∈ V (2.6)

yk ≥ 0 for k ∈ A (2.7)

z ∈ Z, (2.8)

where α` ≥ 0 (` = 1, . . . , L) are nonnegative criterion weights. The set of weights used in the

aperture generation phase could be based on experience with other, similar, patient cases.

Alternatively, we could use a sequence of criterion weights, allowing for the generation of

apertures that are attractive with respect to a variety of tradeoffs. We will denote the set of

apertures in the pool by A.

2.2.2.2 Solving the Bi-criterion Optimization Problem

We use the so-called Sandwich Algorithm (see, e.g., Hoffmann et al., 2006; Küfer et al.,

2009; Ehrgott et al., 2010) to approximate the Pareto frontier at a given stage of the SALO

procedure. This algorithm, which tries to balance clinical accuracy and computational ef-

ficiency, applies when all treatment plan evaluation criteria are convex, and is particularly

efficient in the bi-criteria case. The idea behind this algorithm is to approximate the entire

Pareto frontier by constructing both an upper (“conservative”) and a lower (“optimistic”)

bound on the frontier based on a finite set of points on the frontier. This is done by solving a

sequence of optimization problems of the form (P(`)) with objective function of the form (2.5)

for different values of α. The optimal solutions to these problems yield points on the Pareto

frontier. For convenience, let z∗(α; `) denote an optimal solution to (P(`)) when parameter

α is used. Then let

G∗`(α; `) = G` (z∗(α; `)) (2.9)

G∗`+1(α; `) = G`+1 (z∗(α; `)) (2.10)

G∗`,`+1(α; `) = αG∗`(α; `) + (1− α)G∗`+1(α; `). (2.11)

The Sandwich Algorithm then determines upper and lower bounds on the Pareto frontier

as follows:
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Upper bound Using simple linear interpolation of a set of Pareto efficient solutions we

obtain a piecewise-linear and convex function which is well-known to form an upper bound on

the Pareto frontier. This follows immediately from the fact that the line segment connecting

any two points of the form
(
G∗`(α; `), G∗`+1(α; `)

)
for different values of α is guaranteed to

be entirely on or above the Pareto frontier. More formally, such a line segment can be

characterized as

{(λG∗`(α′; `) + (1− λ)G∗`(α
′′; `), λG∗`+1(α′; `) + (1− λ)G∗`+1(α′′; `)) : λ ∈ [0, 1]} (2.12)

where 0 < α′ 6= α′′ < 1. The sandwich algorithm process can be seen in Figure 2.1 as

an example between the EUD to the bladder and the EUD to the rectum. Each iteration

generates points in between existing points, effectively doubling the precision), and adds

upper bounds on the curve using equation (2.12), shown as piecewise linear functions. The

lower bounds are not shown for simplicity, but the true curve must pass through all generated

points along the curve.

It is interesting to note that due to the convexity of G∗` and G∗`+1 we can find an even

better bound on the Pareto frontier by, instead of interpolating the pairs of optimal objec-

tive function values for different values of α, interpolating the optimal treatment plans (or,

equivalently, optimal dose distributions) for different values of α. In other words, the curve

of the form:

{(G` (λz∗(α; `) + (1− λ)z∗(α′; `)) ,

G`+1 (λz∗(α; `) + (1− λ)z∗(α′; `))) : λ ∈ [0, 1]}, (2.13)

where 0 < α 6= α′ < 1 is guaranteed to not only be entirely on or above the Pareto frontier,

but also entirely on or below the curve in equation (2.12). While the precise values of the

upper bound do not directly factor into our algorithm, we recommend using equation (2.13)

for upper bound estimation.

Lower bound A lower bound can be determined by observing that for some fixed α and

associated G∗`,`+1(α; `) a line given by the following:

{
(g`, g`+1) : αg` + (1− α)g`+1 = G∗`,`+1(α; `)

}
, (2.14)

is entirely on or below the Pareto frontier (where (g`, g`+1) denotes a point in R2). As α

changes, lines satisfying this equation lie tangent to the true curve. This follows since (i)

the Pareto frontier is convex by convexity of the criteria functions G` and G`+1; and (ii) the
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point
(
G∗`(α; `), G∗`+1(α; `)

)
lies both on the efficient frontier and the line (2.14). This means

that the upper envelope of these lines over a collection of different values of α ∈ (0, 1) is a

piecewise-linear convex function that is entirely on or below the Pareto frontier as well.

Figure 2.1: Example upper bounds generated by the sandwich algorithm

Choosing objective function weights α There are different ways in which the set of

values for α to be used at a particular SALO stage can be determined. In an interactive

implementation, the treatment planner could indicate which value to use with the goal of

refining the approximation of the Pareto frontier in the clinically most relevant or interesting

areas. In an automated setting this can be done by measuring the discrepancy between the

upper and lower bounds, and choosing that value of α where the discrepancy is largest. Since

the bounds are themselves curves, different discrepancy measures can be used, and each of

them will yield a different sequence of values for α and a different bounding of the frontier.

However, with careful design, we can ensure that the lower and upper bounds both converge

to the Pareto frontier as the number of values for α increases (see Craft et al., 2006).

2.2.2.3 Final Treatment Plan Optimization

This full model clearly has a feasible solution (by construction), i.e., by generating a

new set of apertures from scratch we know it will be possible to achieve all previously

identified treatment planning goals. The DAO column generation procedure can therefore

be initialized with the final solution obtained by the SALO procedure. However, if there is

an additional goal related to treatment plan delivery efficiency, such as limiting the beam-

on-time or number of apertures, it may be preferable to discard the original aperture pool

16



and start the DAO algorithm from scratch. Since a feasible solution is needed to start the

procedure, the algorithm is then started by first solving an auxiliary problem of the following

form:

minimize
(y,z)

L∑
`=1

max
{
G`(z)−G`, 0

}
subject to (I)

zj =
∑
k∈A

Dkjyk for j ∈ V

yk ≥ 0 for k ∈ A

z ∈ Z.

Any feasible solution to this problem with objective function value 0 is a feasible solution

to the actual problem from which the DAO algorithm can be started.

2.2.3 Treatment Plan Evaluation Criteria

For our experiments we have chosen to use common measures of gEUD for each target

and major critical structure as our main treatment plan evaluation criteria. Letting S denote

the set of structures and Vs the set of voxels in structure s ∈ S, the gEUD corresponding to

the dose distribution in structure s ∈ S is given by the following:

gEUDs(z; as) =

(
1

|Vs|
∑
j∈Vs

zasj

) 1
as

(2.15)

where 1 ≤ as ≤ ∞ if s is a critical structure while −∞ ≤ as ≤ 1 if s is a target, and where

gEUDs(z; as) =


maxj∈Vs zj if as =∞

1
|Vs|
∑

j∈Vs zj if as = 1

minj∈Vs zj if as = −∞,

(see, e.g., Niemierko, 1999; Choi and Deasy , 2002). For the sake of computational efficiency

we have chosen to use an approximation of gEUD given by a convex combination of mean

and maximum dose for critical structures and of mean and minimum dose for targets (see

Craft et al., 2005; Thieke et al., 2002). In particular, we choose treatment plan evaluation

17



criteria functions G` of the form:

γsgEUDs(z; 1) + (1− γs)gEUDs(z;∞) = γs
1

|Vs|
∑
j∈Vs

zj + (1− γs) max
j∈Vs

zj (2.16)

if s is a critical structure, and,

γsgEUDs(z; 1) + (1− γs)gEUDs(z;−∞) = γs
1

|Vs|
∑
j∈Vs

zj + (1− γs) min
j∈Vs

zj, (2.17)

if s is a target, where in both cases γs ∈ [0, 1]. (Note that, unlike the generic model, target-

related criteria will be maximized rather than minimized). These gEUD approximations

pertaining to targets are concave, thus taking the negative and minimizing fits into our

generic convex problem formulation. The advantage of using these approximations is that

our optimization problems can be formulated and solved as linear programs.

As our final criterion we have chosen to minimize the sum of all voxel doses:

GL+1(z) =
∑
j∈V

zj. (2.18)

Moreover, we assume that no tradeoff takes place between gEUD-criterion GL and this

final criterion GL+1, so that, in problem (P(L)), we limit ourselves to α = 1 in the corre-

sponding objective function (2.5).

2.3 Illustration of SALO on Clinical Cases

2.3.1 Data and computations

We illustrate our SALO procedure on two clinical cases from different sites: brain and

prostate. The brain cancer case has 8 beams and 575 beamlets while the prostate cancer case

has 7 beams and 796 beamlets. In both cases the beamlets were of dimension 5 × 5 mm2,

and only beamlets whose primary trajectory intersected with the target(s) were included in

the model. We chose the set Z to be of the form

Z =
{
z ∈ R|V| : zs ≤ zj ≤ zs, j ∈ Vs, s ∈ S

}
, (2.19)

for zs and zs chosen by physicians. The weighting parameters γs in the gEUD-approximation

described in Section 2.2.3 were found by evaluating both the gEUD and its approximation

on a clinically acceptable dose distribution, where suitable values of the gEUD parameters as
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were taken from Burman et al. (1991); Lawrence et al. (2010); Mayo et al. (2010); Michalski

et al. (2010); Roach, III et al. (2010); Viswanathan et al. (2010), and clinical practice at the

University of Michigan Department of Radiation Oncology. Values of γs were tweaked until

the approximate gEUD values from equations (2.16) and (2.17) were the same for the gEUD

values from (2.15) for clinically acceptable dose distributions. Table 2.1 provides, for each of

the two cases, the structures and two prioritization scenarios, as well as the number of voxels

|Vs| in each structure s ∈ S, the gEUD parameters as and γs, and the dose upper and lower

bounds zs and zs (where the latter is 0 if omitted). The structures without prioritization

values will be addressed in the final treatment plan optimization, but not in the interactive

portion of the algorithm.

The optimization problems were all solved on a Mac Pro 4,1 with a single 2.93 GHz Quad-

Core Intel Xeon processor and 12 GB DDR3 memory at 1066 MHz. All model generation

code was written in C++ and executed in Xcode, and the primal simplex method of CPLEX

12.2 was used as the solver. Since the coefficients Dkj are too numerous to be precomputed

and stored, and since the column generation relies on an efficient representation of these

coefficients, we make the common assumption that these coefficients can be expressed in

terms of so-called beamlet-based dose deposition coefficients,

Dkj =
∑
i∈Nk

Dij, (2.20)

where Nk ⊆ N is the subset of beamlets that is exposed in deliverable aperture k ∈ A, N is

a set of beamlets that discretizes the beams used for treatment, and Dij is the dose delivered

to voxel j ∈ V from beamlet i ∈ N at unit intensity. Storing the (nonzero) coefficients

Dij for all j ∈ V and i ∈ N is manageable in a sparse format. The prostate case used 7

beam directions and the brain case used 9 beam directions. Finally, in Phase 1 of the SALO

procedure we generated a pool of |A| = 100 apertures.

2.3.2 Results and Discussion

In this section we will describe in detail how the treatment planning process based on the

SALO procedure would proceed in the two clinical cases that were solved with a radiation

oncologist present. We will illustrate the SALO procedure by going through all steps that a

treatment planner would take when developing a treatment plan. For both cases we will show

two examples of potential a priori clinical priority lists, along with a potential sequence of

decisions made by the treatment planner, for a total of four SALO applications. Furthermore,

for ease of exposition we limit ourselves in both cases to a relatively small set of criteria.

The tradeoff decisions made during the SALO process were made by a radiation oncologist.
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Table 2.1: Structures with corresponding number of voxels and gEUD-parameters for the
two clinical test cases

Site Priority Structure (s) |Vs| as γs zs zs
A B

brain 1 2 PTV 6,318 −15 0.9 63 56
2 1 chiasm 216 10 0.38 57
3 3 brainstem 1,836 10 0.5 60
4 4 optic nerve (contralateral) 218 10 0.54 63
5 5 optic nerve (ipsilateral) 247 10 0.33 63

left eye 363 63
right eye 345 63
left lens 167 63
right lens 136 63
normal tissue ring 1 6,723 62
(0–1.5 cm from PTV)
normal tissue ring 2 4,652 57
(1.5–3 cm from PTV)
normal tissue ring 3 13,037 45
(> 3 cm from PTV)
TOTAL 34,258

prostate 1 2 PTV 3,586 −5 0.3 85.5 73
2 1 rectum 8,766 8 0.4 78
3 3 bladder 5,373 2 0.85 78
4 4 penile bulb 294 1 1 85.5
5 5 femora 7,049 4 0.8 85.5

normal tissue ring 1 2,700 83
(0–1.5 cm from PTV)
normal tissue ring 2 7,203 77
(1.5–3 cm from PTV)
normal tissue ring 3 9,419 65
(> 3 cm from PTV)
TOTAL 44,390

Note that, in addition to the tradeoff curves, in our experiments the treatment planners were

also provided with summary dose distribution information for the different structures (such

as minimum, maximum, and mean dose, as well as DVH endpoints) during the process.

2.3.2.1 Brain case

For the brain case we distinguish L = 5 major gEUD criteria, one for each of the first

five structures listed in Table 2.1. We consider the two alternative priority scenarios A and
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B as indicated in that table. Figures 2.2 and 2.3 show the L − 1 stages of Phase 2 of the

SALO procedure for these two scenarios, while Figure 2.4 shows the final sets of DVH curves.

These curves show how scenario A compares to (a) LO and (b) scenario B.

Consider scenario A for the brain case in Figure 2.2. When the treatment planner begins

the process, Figure 2.2(a) is generated and presented to the planner. The treatment planner

then uses this information to assess the relationship between the gEUDs delivered to the

planning target volume (PTV) and the chiasm. In this instance, the treatment planner used

this information to choose a lower bound on the gEUD to the PTV of 53.96 Gy, as indicated

by the dot. From the graph we can then also conclude that this means that the gEUD to the

chiasm will have to be greater than or equal to 47.94 Gy. The optimization model then adds

the lower bound on the gEUD to the PTV to the set of constraints and generates Figure

2.2(b). As we can see, by slightly increasing gEUD to the chiasm it is possible to reduce

the gEUD to the brainstem by a meaningful amount. However, as we allow more dose to

the chiasm, the benefit to the brainstem lessens. Without this accurate information, the

planner would not be able to identify the clinically most beneficial tradeoff between these

two criteria. The treatment planner then follows this procedure for all other stages.

After optimizing the final criterion (i.e., minimizing the sum of all voxel doses and gen-

erating a new set of apertures given the chosen gEUD bounds) we obtain a treatment plan

whose DVHs are shown in Figure 2.4(a). In addition, the DVHs obtained by using pure LO

are shown as well. We conclude that, by accepting a minor reduction in PTV dose, all other

high priority structures receive improved dose distributions, particularly the chiasm. Our

treatment planners consider the plan generated by the SALO procedure to be superior to

the one created using pure LO. This is consistent with expectations, for if the LO plan were

more desirable, then the treatment planner would have selected the extreme points on the

tradeoff curves (representing strict prioritization). Scenario B for the brain case provides an

alternate prioritization for the criteria, and the choices made by the treatment planner are

shown in Figure 2.3. In this scenario the chiasm is of higher importance than the PTV and

is constrained before the gEUD to the PTV. Finally, Figure 2.4(b) shows that the difference

between the two scenarios is relatively small, indicating a level of robustness of the procedure

with respect to interchanging the priorities of PTV and chiasm.

2.3.2.2 Prostate case

For the prostate case we also distinguished L = 5 major gEUD criteria, again one for

each of the first five structures listed in Table 2.1. We consider the two alternative priority

scenarios A and B as indicated in that table. Figures 2.5 and 2.6 show the L − 1 stages of

Phase 2 of the SALO procedure for these two scenarios, while Figure 2.7 shows the final set

21



(a)

43 

45 

47 

49 

51 

53 

55 

57 

48 49 50 51 52 53 54 55 56 57 58 

E
U

D
 C

hi
as

m
 (

G
y)

 

EUD PTV (Gy) (b)

38.5 

39 

39.5 

40 

40.5 

41 

41.5 

42 

47.5 48 48.5 49 49.5 50 50.5 

E
U

D
 B

ra
in

st
em

 (
G

y)
 

EUD Chiasm (Gy) 

(c)

10 

10.5 

11 

11.5 

12 

12.5 

13 

13.5 

14 

14.5 

39 39.5 40 40.5 41 41.5 42 

E
U

D
 C

on
t.
 O

N
 (

G
y)

 

EUD Brainstem (Gy) (d)

50 

50.5 

51 

51.5 

52 

52.5 

53 

11 11.5 12 12.5 13 13.5 14 14.5 

E
U

D
 I

ps
. 
O

N
 (

G
y)

 

EUD Cont. ON (Gy) 

Figure 2.2: SALO progression for the brain case, scenario A: (a) stage 1, (b) stage 2, (c)
stage 3, and (d) stage 4

of DVH curves. These curves show how scenario A compares to (a) LO and (b) scenario B.

For the prostate case, the procedure progresses in a similar fashion as for the brain case.

However, in this case most of the clinically desired treatment planning goals were more easily

satisfied. Therefore, instead of searching for a clinically feasible treatment plan, the SALO

process as applied here primarily focused on finding the most desirable treatment plan. For

scenario A the first tradeoff is presented in Figure 2.5(a). Instead of just focusing on meeting

treatment goals, the treatment planner can decide how aggressively they wish to treat the

PTV. For the next sets of tradeoffs, a similar line of reasoning is used, and Figure 2.7(a)

allows a comparison of the DVHs obtained by the SALO procedure and pure LO. As in

the brain case, a minor reduction in PTV dose allowed for significant reductions in dose to

critical structures, especially the rectum.

When selecting desired tradeoffs on the plots, it is critical to pay close attention to the

scales on the axes. For example, in Figure 2.5(c) it can be seen that small changes in the

bladder yields relatively large improvements in the femora. In contrast, in Figure 2.5(d) the

absolute differences are very small in magnitude and clinically insignificant due to the model

being very tightly constrained at that stage in the optimization.

In scenario B for the prostate case the rectum received the highest priority. In this

case, the treatment planner decided to be slightly more aggressive with respect to the PTV.
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Figure 2.3: SALO progression for the brain case, scenario B: (a) stage 1, (b) stage 2, (c)
stage 3, and (d) stage 4

As seen in Figure 2.7(b), the rectum receives more dose using the priorities in scenario B,

while the femora receives less. However, these changes are less dramatic than those between

scenario A and pure LO.

2.3.3 SALO Methodology Discussion

Through these processes, we can see how the prioritization aspect of LO has been inte-

grated with the interactive nature of MCO. By combining these two characteristics, clinically

desirable treatment plans were generated systematically and efficiently.

Without a treatment planning system with the flexibility to automate the SALO proce-

dure, this analysis would not be clinically feasible. For treatment planning systems that allow

plug-ins, implementing the SALO procedure is a straightforward process, and the clinical

benefits could be realized quite easily. That is, the procedure can be implemented without

changing a clinic’s current treatment plan solver. Programmers need only to set up some

background data structures and a coherent user interface.

The main downside to this type of implementation is that the usability heavily depends

on efficiently approximating the tradeoff curve between criteria. If the solver is too slow,

the treatment planner could be wasting time waiting for the tradeoff generation. One way
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Figure 2.4: Brain case: DVHs for treatment plan for (a) scenario A versus LO and (b)
scenario A versus scenario B

to speed up the solving process is use a solution methodology that benefits from previous

solution information. For the linear program applied to the brain and prostate cases in
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Figure 2.5: SALO progression for the prostate case, scenario A: (a) stage 1, (b) stage 2, (c)
stage 3, and (d) stage 4

Section 2.3.2, the solution algorithm used the most recent iteration’s solution to initialize

the solver for the next point on the tradeoff curve. Another way to speed up the process

is to design a solver to run on a graphics processing unit (GPU). When properly designed

and coded, models solved using GPUs allow for significant increases in speed (see, e.g., Men

et al., 2010).

In practice, it might be beneficial to supplement the SALO procedure with other dose

distribution information. Dose distribution statistics and DVHs for points along the trade-

off curves can be generated with little extra computational effort and would bolster the

information presented to treatment planners. Because all calculations up to the first stage

tradeoff assessment can be done without treatment planner interaction, different first stage

scenarios can be generated to influence decisions on the full prioritization. That is, a treat-

ment planner can first look at a few tradeoff curves before deciding the final importances of

criteria. Finally, for the treatment planners interested in the final relative weights between

the different criteria, these values can be recreated after the SALO procedure is completed

(see Breedveld et al., 2009 for this method).
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Figure 2.6: SALO progression for the prostate case, scenario B: (a) stage 1, (b) stage 2, (c)
stage 3, and (d) stage 4

2.4 SALO Extensions and Improvements

The following section is an extension of the SALO methodology developed with assistance

from two undergraduate researchers, Ruqing Ye and Christian Svetnicka. This section will

also use the FMO formulation of the IMRT treatment planning problem rather than the

DAO formulation presented earlier in the chapter. However, the technique can be extended

easily for the DAO formulation.

2.4.1 Pros and Cons of SALO

As discussed earlier, SALO has many advantages that make it more attractive over tradi-

tional multicriteria optimization techniques. The SALO procedure is more computationally

efficient than full-frontier methods of multicriteria optimization, mainly because it avoids

the complex navigation of multidimensional Pareto frontiers. In addition, SALO is flexible

in ways that lexicographic ordering methods are not. Lastly, SALO is interactive with the

clinician, allowing him/her to rank criteria and maintain control over the entire process,

rather than take a completely hands-off approach, like with lexicographic ordering.

However, SALO also has some disadvantages as well. For instance, the interactivity

that was previously listed as an advantage can be time-consuming. Clinicians are busy
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Figure 2.7: Prostate case: DVHs for treatment plan for (a) scenario A versus LO and (b)
scenario A versus scenario B

medical professionals, and many don’t have time to work with a fully interactive treatment

planning method such as SALO. Along with that point, patients often need treatment as
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soon as possible, and the slow interactivity can delay the treatment planning. Another

disadvantage of SALO is that, while improving over multicriteria optimization, SALO is still

prone to examining clinically unacceptable or irrelevant tradeoffs, which can again waste

time. Lastly, SALO only deals with relative criteria values rather than absolute values. This

is because SALO compares criteria against each other rather than against absolute values,

which may be clinically significant. This can be problematic because certain tradeoffs may

not make sense clinically (given absolute values), but SALO will still compare them because

it is constructed to assume that there is still a relative tradeoff to be made.

2.4.2 SALO with Automation

It is not surprising that a procedure such as SALO has drawbacks. Two significant

drawbacks are the slow interactivity of the procedure and the exploration of irrelevant or

unnecessary tradeoffs. This is because these drawbacks contribute directly to wasted time.

Therefore, we would like to improve the aspects of SALO that unnecessarily lengthen the in-

teraction process. Trivial choices occur when the tradeoff calculated has no clinical relevance

or produces an immediately clear choice, and the generation of unnecessary tradeoffs occurs

when sections of the tradeoff curve are calculated that would never be considered in the final

treatment plan. We seek to automate decisions regarding obvious and/or clinically irrelevant

choices so as to improve the treatment planning process and save clinicians’ valuable time.

In order to automate this process, we obtained more information from clinicians to incor-

porate into the treatment planning model. After speaking with our collaborators, we believe

that clinicians are able to provide an upper and lower bounds on the clinically relevant

ranges of our criteria. The upper bounds would signify a “worst case” limit that we will not

allow the dose distribution to exceed. The lower bounds would signify a limit beyond which

improvements in the treatment planning criteria no long have clinical impact. That is, we

gain no benefit for improving the criteria beyond that limit. These bounds will be used to

identify a “critical region” where tradeoff selection is nontrivial.

2.4.3 SALOA Model

We propose a modification to SALO we’re calling sensitivity analysis in lexicographic

ordering with automation (SALOA) that improves upon the existing SALO methodology by

incorporating new criteria bound information from clinicians. This information includes a

lower limit, GL
` , and “worst case” upper limit, GU

` , for each criterion. Any tradeoffs that

exist outside of the range determined by GL
` and GU

` are not clinically relevant and would

not be calculated; it would be frivolous and inefficient to consider points that improve upon
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the clinical lower limit, and it would also be clinically unacceptable to consider points worse

than the worst case upper limit. Therefore, the added constraint G`(z) ≤ GU
` will ensure

that unacceptable plans will not be considered. As mentioned before, we consider the FMO

formulation of the IMRT treatment planning model.

The general model is similar to SALO, but with an additional constraint to bound the

criteria by GU
` , and it is described as follows:

minimize
(x,z)

{G`(z), G`+1(z)}

subject to (P
(`)
SALOA)

zj =
∑
i∈N

Dijxi for j ∈ V (2.21)

G`′(z) ≤ G`′ `′ = 1, . . . , `− 1 (2.22)

xi ≥ 0 i ∈ N (2.23)

z ∈ Z (2.24)

G`(z) ≤ GU
` ` = 1, . . . , L (2.25)

where xi represents the intensity of beamlet i in set of beamlets N and Dij is the dose to

voxel j from beamlet i at unit intensity.

The interactive process differs from SALO. In the original SALO procedure, endpoints,

or points very close to the true endpoints, of the Pareto frontier are generated using an

objective function of the form αG`(z) + (1−α)G`+1(z) for different values of α, using a high

value of α to generate the endpoint (Gα
` , G

α
`+1) (for which G` will be lowest and G`+1 will be

highest) and a low value of α to generate an approximate endpoint (Gα
` , G

α
`+1) (for which G`

will be highest and G`+1 will be lowest), high- and low-α being almost one and almost zero,

respectively. With traditional SALO, the algorithm would then use the Sandwich Algorithm

to approximate the Pareto frontier by constructing both an upper and a lower bound on the

frontier. SALO thus produces a full or nearly full Pareto frontier for G` and G`+1. However,

this may result in calculating clinically irrelevant areas of the Pareto frontier. Instead, in

SALOA, we compare these endpoints to the values of GL
` ,GL

`+1,GU
` and GU

`+1. If the endpoints

are outside of the clinically relevant region, SALOA will automatically determine the next

step that should be taken based on this information.

The following rules for determining the relevant region, in which the tradeoff curve inter-

sects the critical region, help us generate a clinically relevant tradeoff curve for criteria G`

and G`+1:
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max{GL
` , G

α
` } ≤ G`(z) ≤ max{min{GU

` , G
α
` },max{GL

` , G
α
` }} (2.26)

Gα
`+1 ≤ G`+1(z) ≤ min{GU

`+1, G
α
`+1}. (2.27)

Let us define the critical region as the rectangular region for which the tradeoff curve

must be displayed to the physician if the tradeoff curve overlaps with it (see Figure 2.8). It

is defined by the values in the rectangle generated by the corners (GL
` , G

U
` ) and (GL

`+1, G
U
`+1).

Additionally, the endpoint-joint line is the line that connects the two endpoints determined

by the high and low values of α/.

Figure 2.8: Critical region of clinical relevance for G1 and G2

2.4.4 Solution Methodology

First, we must determine whether there exists a tradeoff in the clinically significant

tradeoff region for our criteria G` and G`+1. If there is not a relevant tradeoff, we are

then able to automatically select a value without having to engage the planner to choose a

tradeoff. However, if there is a relevant tradeoff to be decided upon, then we must generate

the tradeoff curve for the clinically relevant values of G` and G`+1. To implement this

procedure, we examine two major scenarios, with difference in the position of the high-α

point: (I) Gα
`+1 ≤ GL

`+1 and (II) GL
`+1 < Gα

`+1 ≤ GU
`+1. Each major scenario will then have

minor scenarios to consider and will be evaluated based on the constraints of the given stage.
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The first major scenario, (I), to consider occurs when the tradeoff curve never crosses the

threshold for the lower limit value of G`+1, that is, Gα
`+1 ≤ GL

`+1. Three minor scenarios are

given under this major scenario:

(Ii) Gα
` ≤ GL

` and Gα
` ≤ GL

` ,

(Iii) Gα
` ≤ GL

` and GL
` < Gα

` ≤ GU
` ,

(Iiii) GL
` < Gα

` ≤ GU
` and GL

` < Gα
` ≤ GU

` .

These three minor scenarios can be seen in Figure 2.9. In scenario (Ii), it is notable that

the tradeoff curve never crosses the threshold for the lower criterion limit for the higher-

weighted criterion G`. In other words, for all values of α, G` will always be outside of

the clinically relevant region of tradeoffs. Hence, for scenario (i), we can choose the bound

for G` to be GL
` , that is, G` = GL

` . This will produce the most clinically desirable value

for G` while also maintaining significant flexibility for the remaining tradeoffs between the

subsequent criteria.

In scenario (Iii), the tradeoff curve originates in the clinically irrelevant region for G`,

but ends in the clinically relevant region for G`. In such a case, the bound for G` can again

be selected automatically as GL
` . This is because all values between Gα

` and GL
` are clinically

irrelevant and need not be considered. Then, out of the remaining possible tradeoffs, GL
`

achieves the most clinically desirable value for G` while also maintaining significant flexibility

for the remaining tradeoffs between the subsequent criteria because of (I).

In scenario (Iiii), the tradeoff curve is contained entirely in the clinically relevant region

for G`. In this case, it would be logical to choose the value of Gα
` as G`. This is the value

that produces the most clinically desirable value for G` given the tradeoff curve, while still

allowing flexibility for the remaining tradeoffs between the subsequent criteria.

Upon examination of the results of each of the three minor scenarios, it can be concluded

that G` is always the maximum of GL
` and Gα

` , when Gα
`+1 ≤ GL

`+1. Therefore, G` = max

{GL
` , G

α
` }.

The second major scenario, (II), to consider occurs when the tradeoff curve does cross

the threshold for the lower limit of G`+1, that is, GL
`+1 < Gα

`+1 ≤ GU
`+1. Potential endpoint

locations for major scenario (II) are shown in Figure 2.10. The different black lines are

potential realizations of the tradeoff curve between the endpoints.

Two minor scenarios are given under this major scenario. For (IIi), the endpoint-joint

line potentially intersects with the critical region with Gα
` ≥ GL

` , and we would present to

the physician the part of the curve which is included in the critical region to choose the

upper bound G`. It should be noted that a potential arrangement of endpoints not shown
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Figure 2.9: Example endpoint locations and possible tradeoff curves for major scenario (I)
with Ii: Red Square Iii: Blue Diamond, Iiii: Green Octagon

on Figure 2.10 is that with one endpoint in the critical region and one not. The two shown

in the figure are just to show that the endpoints themselves need not be in the critical region

to be associated with this minor scenario. That that effect, the entire tradeoff curve does

not need to be presented. Rather, only the curve contained within the critical region has to

be presented to the physician. In Figure 2.11, the orange region represents the region where

the curve could potentially exist. Only curves that intersect with the yellow critical region

would be generated. Finding this intersection requires the calculation of new endpoints for

the clinically relevant tradeoff curve (i.e., intersection points with the critical region). The

new upper endpoint can be found by solving the model with the constraint G` ≥ GL
` and

the new lower endpoint can be found by solving the model with the constraint G`+1 ≥ GL
`+1.

The curve between the two points will then be generated and displayed to the physician for

input.

For (IIii), the endpoint-joint line does not intersect with the critical region, thus there is

no clinically relevant tradeoff to be made. The upper bound for G` can then be automatically

selected with G` = GL
` . This is the value that achieves the best, clinically significant value for

G` while maintaining significant flexibility for the remaining tradeoffs with the subsequent

criteria.
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Figure 2.10: Example endpoint locations and possible tradeoff curves for major scenario (II)
with IIi: Red Square, IIii: Blue Diamond

Figure 2.11: Feasible region for the convex tradeoff curve for minor scenario IIi given endpoint
locations

33



2.4.5 SALOA Results

As a proof of concept, we looked at a clinical protocol (L = 14) for a head and neck

case. This case used 11 beam directions. Instead of looking at the treatment plan quality of

SALO and SALOA, we instead investigated the number of times the FMO solver, the most

time-consuming subroutine, is called and the number of times physician input is required.

Due to the influence of the first criterion selection’s aggressiveness, we consider different

levels of constraining PTV coverage and see how these metrics are impacted versus SALO.

Table 2.2: Number of solver calls and physician input queries for SALO and SALOA

Technique: PTV coverage # Solver Calls # Physician Inputs
SALOA: low PTV 36 1
SALOA: med-low PTV 39 2
SALOA: med PTV 52 5
SALOA: med-high PTV 52 5
SALOA: high PTV 58 7
SALO 81 13

In Table 2.2, we see that the SALOA technique provides both fewer solver calls and fewer

physician interactions while still presenting the treatment planning with relevant tradeoffs.

2.5 Conclusions

The SALO and SALOA procedures provide treatment planners with a directed, sys-

tematic process to treatment plan selection. By following a physician’s prioritization, the

treatment planner can avoid wasting effort considering clinically inferior treatment plans.

The planner is guided by criteria importance, but given the information necessary to accu-

rately assess the tradeoff between criteria each stage. When applied to clinical cases, the

SALO procedure efficiently generated desirable treatment plans. The SALOA procedure

improved upon the computational efficiency of SALO. As treatment planning becomes more

individualized and complex with new techniques and models, methods that efficiently guide

the treatment planner towards desirable plans will be necessary to implement these advances

at the clinical level.
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CHAPTER III

Beam Orientation Optimization

3.1 Introduction

The set of machine instructions necessary for defining a treatment plan depends on the

treatment modality. In this chapter, we will focus on developing a model that integrates

two levels of machine instructions for IMRT and an associated solution methodology. IMRT

delivers radiation from a set of beam locations around the patient with the gantry stationary

during delivery. The linear accelerator is equipped with an MLC that, using sliding tungsten

leaves, dynamically produces shapes that partially block radiation (see Figure 1.2) called

apertures. From each beam location, radiation from multiple apertures at different intensities

enable a spatially complex dose distribution to be delivered within the patient. The machine

instructions to be determined are (1) the orientation of the stationary beam locations around

the patient and (2) the apertures and their corresponding intensities to be delivered at each of

these beam locations. For (1), often referred to as beam orientation optimization (BOO), we

would like a small number of stationary locations around the body (e.g., 5-9 beam locations)

that, when used as the beam set B′ in an FMO problem (see 1.2.1), produces a high quality

treatment plan. For (2), given beam set B′, we would like to find the intensity profile using

FMO followed by LS (there is potential for analogous development with DAO).

BOO can be approached in several ways: manual or pre-determined beam selection,

local searches and metaheuristics, constructive methods, and combinatorial programming.

An in-depth look into beam selection methodologies can be found in Ehrgott et al., 2008.

In clinical practice, beam selection has the potential to be an arduous, time consuming

process. The potential gains of BOO in some more accessible cancer locations (e.g., prostate

cancer) are believed by many physicians to be insignificant compared to the time investment.

Therefore, treatment planners will often use a predetermined beam arrangement (e.g., 7

equispaced coplanar beams) to determine (1). Historically, these arrangements have been

successful in allowing for clinically desirable dose distributions for the patient. In more
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complicated cases, treatment planners will visually inspect the case and select beams that,

in their experience, seem as if they will produce a high-quality treatment plan when solving

for (2). While this method may produce quick results, the selected beams may not be

optimal or even desirable when considering all possible arrangements. The added flexibility

in allowing non-coplanar beam arrangements further exacerbates these concerns.

Most BOO literature presents algorithmic methods for determining beam locations. One

class of methods for addressing (1) determines beam orientations by iteratively searching

the set of potential beam arrangements. These can be local searches (see, e.g., Aleman

et al., 2008a; Lee et al., 2011; Craft , 2007) or metaheuristic searches (see, e.g., Bertsimas

et al., 2013; Bedford and Webb, 2006, 2007; Pugachev et al., 2000). Sometimes beam quality

evaluation metrics are considered, such as beams-eye-view (BEV), pseudo-beams-eye-view

(pBEV), and mean organ-at-risk (see Goitein et al., 1983; Pugachev and Xing , 2001; D’Souza

et al., 2004, respectively). In these methods, beams are independently evaluated and ranked

to be selected based on these criteria. Others consider a greedy framework and evaluate each

iteration’s beam selection with the knowledge of previous selected beams (see, e.g., Breedveld

et al., 2012). Lastly, some research considers integer programming formulations of (1) and

(2) (see Aleman et al., 2008b; Lim et al., 2007; Lim and Cao, 2012; Meedt et al., 2003; Mǐsić

et al., 2010; Yarmand et al., 2013), but these often take too long to solve in a clinical setting

when considering large numbers of non-coplanar potential beam locations.

We study the problem of determining (1) while explicitly incorporating treatment plan

quality (i.e., the outputs of (2)). To this end, we integrate the BOO and FMO treatment

planning models to simultaneously decide (1) and (2). The output of this model is a set of

beam locations and the associated intensity profiles for each active location. LS will still need

to be performed in order to obtain deliverable apertures, but we assume this occurs without

incident. Section 3.2 details the BOO and FMO integrated model and our proposed solution

methodology. We apply our methodology to several clinical cases and compare the results

to existing methodologies in Section 3.4 and discuss the results and methods in Sections

3.4.2 and 3.4.3. Lastly, we present some theoretical work on objective function bounding in

Section 3.5 and give some suggestions for clinical use and future research in Section 3.6.

3.2 Treatment Planning Models

Notation for these models is consistent with that presented in 1.2.1.
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3.2.1 Traditional FMO Model

First we consider the traditional FMO model reproduced below from 1.2.1, given some

fixed beam set B′ ⊂ B and treatment planning objective function F (z). In PFMO below, the

fixed active beam set, B′, is fixed before any other machine instruction decisions are made.

PFMO is solved with decision variables x and z.

minimize
(x,z)

F (z)

subject to (PFMO)

zj =
∑
b∈B′

∑
i∈Nb

Dbijxbi j ∈ V (3.1)

xbi ≥ 0 b ∈ B′, i ∈ Nb (3.2)

3.2.2 Integrated BOO and FMO Model

For the integrated model, determining which B′ ⊂ B is a decision in the model. In BOO,

a relatively small subset B′ ⊂ B, such that |B′| << |B|, from the set of potential beam

locations is selected. The chosen set of locations must allow for a high quality treatment

plan to be delivered while being small enough to be deliverable in a clinically reasonable

amount of time. The integrated BOO and FMO treatment planning model can be set up

as follows. Let F (z) be the treatment planning objective function. Model PBOO
FMO represents

the full integrated model, where the decision variables are the contents of set B′ ⊂ B and

variables x and z.

minimize
(B′,x,z)

F (z)

subject to (PBOO
FMO )

zj =
∑
b∈B

∑
i∈Nb

Dbijxbi j ∈ V (3.3)

xbi ≥ 0 b ∈ B′, i ∈ Nb (3.4)

xbi = 0 b ∈ B\B′, i ∈ Nb (3.5)

We would like to solve this integrated model to produce a desirable treatment plan while

keeping |B′| small. Because treatment plan quality is dependent on patient geometry, a strict

bound on |B′| should not be imposed. Instead, the tradeoff between |B′| and treatment plan

quality is considered.
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This problem can be expressed as a subset selection problem. Let X (B′) be the set of

feasible solutions given active set B′ (i.e., X (B′) = {(x, z) : (3.3), (3.4), (3.5)}) and F(B′) be

a minimum F (z) such that (x, z) ∈ X (B′). Therefore, the updated problem, PBOO
FMO , can be

written as follows keeping in mind that we want to control |B′|):

min
B′⊂B
F(B′). (3.6)

3.3 Solution Methodology for PBOO
FMO

The goal of the integrated BOO and FMO model is to select beams while explicitly con-

sidering treatment plan quality in both coplanar and non-coplanar settings. However, solv-

ing this type of model to optimality can be prohibitively time consuming for large potential

beam location sets (see Yarmand et al., 2013), which occurs when considering high-resolution

coplanar and most non-coplanar beam arrangements. Using heuristic methods is a common

way of avoiding these computational pitfalls when selecting beam orientations provided that

they produce high-quality arrangements. Because of the computational advantages and po-

tentially high performance, we consider a greedy framework for subset selection. Let us

define ∆F(B′, b) as the difference between F(B′) and F(B′ ∪ {b}) for some b ∈ B\B′ with

B′ ⊂ B:

∆F(B′, b) = F(B′ ∪ {b})−F(B′). (3.7)

A greedy subset selection algorithm can now be presented in this context.

• Step 0: Set B′ = ∅

• Step 1: Find b∗ = argminb∈B\B′ ∆F(B′, b)

– If ∆F(B′, b∗) ≥ 0, stop

• Step 2: Set B′ = B′ ∪ {b∗}

– If |B′| reaches a pre-determined maximum size, stop

– If F(B′) is of desirable quality, stop

– Otherwise, go to Step 1

The output of this algorithm will be the set of beams to be delivered as well as the

associated fluence maps for delivery (i.e., (B′, x, z)). A major computational drawback to
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this general greedy algorithm is that Step 1 in each iteratoin involves O(|B|) evaluations of

function F(B′), a large-scale optimization problem. When considering non-coplanar beam ar-

rangements where |B| is large, this is clinically undesirable. Instead, we would like to replace

the beam evaluation function, ∆F(B′, b), with some approximation function, ∆F̃(B′, b), in

Step 1 of the greedy algorithm. We also want to define ∆F̃(B′, b) such that the stopping

condition in Step 1, ∆F̃(B′, b) ≥ 0, holds if there is no benefit to adding any additional

beams.

We would like the function ∆F̃(B′, b) to accurately and efficiently predict the benefit

of adding a beam without explicitly computing ∆F(B′, b). Therefore, the remainder of the

section will focus on methods of prediction. There has been work done in this area in signal

processing. Matching pursuit (MP) is commonly used in subset selection problems (see

Mallat , 1993; Tropp et al., 2006). In MP, the algorithm greedily selects the next element of

the subset based on which element provides the best local improvement, i.e., using first-order

information. While the integrated BOO and FMO model does not exactly fit this specific

problem structure, the motivation behind these algorithms provides insight into quantifying

∆F̃(B′, b), especially the idea of iteratively looking at first-order information. In Sections

3.3.1 and 3.3.2, we develop approaches that utilize first-order information to assess the quality

of each beam. Section 3.3.3 explores using second-order information.

3.3.1 KKT Motivation

One of the methods for determining apertures and aperture intensities (decisions (2)

from Section 3.1) in the literature is DAO (see, e.g., Romeijn et al., 2005). DAO utilizes

an iterative, greedy approach to generating apertures and their associated intensities given

a particular beam arrangement, explicitly solving for decision (2). The subproblem for

quantifying aperture quality, which is evaluated for each beam, is derived from studying the

Karush–Kuhn–Tucker (KKT) conditions for the treatment planning problem formulated for

aperture optimization. KKT conditions are the necessary conditions for a solution to be

optimal that use first order information (see Boyd and Vandenberghe, 2004). The general

idea is to evaluate the KKT condition associated with beams in B\B′ and add the beam

that most violates that condition.

In order to have a single KKT condition associated with each beam, we present an

artificially extended version of PFMO. We introduce variable qb for b ∈ B and objective

function weight ηb. We show KKT multipliers π, ρ+, and ρ− to the right of their associated

constraints.
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minimize
(x,z,q)

F (z) +
∑
b∈B

ηbqb

subject to (PKKT
FMO )

zj =
∑
b∈B

∑
i∈Nb

Dbijxbi j ∈ V (πj)

xbi ≤ qb b ∈ B; i ∈ Nb (ρbi)

xbi ≥ 0 b ∈ B; i ∈ Nb. (γbi)

qb ≥ 0 b ∈ B (ξb)

The restricted version of this problem, show below, fixes set B′ = B̄′. This is the analogous

to evaluating F(B̄′) with the addition of variable qb and objective weight ηb.

minimize
(x,z,q)

F (z) +
∑
b∈B

ηbqb

subject to (PKKT
FMO (B̄′))

zj =
∑
b∈B

∑
i∈Nb

Dbijxbi j ∈ V

xbi ≤ qb b ∈ B; i ∈ Nb
xbi ≥ 0 b ∈ B̄′, i ∈ Nb
xbi = 0 b ∈ B\B̄′, i ∈ Nb
qb ≥ 0 b ∈ B

Each iteration, we solve PKKT
FMO (B̄′) and check it’s corresponding solution to the KKT

conditions of PKKT
FMO . The conditions read as follows:

πj = [∇F (z)]j (3.8)∑
j∈V

Dbijπj + ρbi − γbi = 0 b ∈ B; i ∈ Nb (3.9)

ηb −
∑
i∈Nb

ρbi − ξb = 0 b ∈ B (3.10)

ρbi (xbi − qb) = 0 b ∈ B; i ∈ Nb (3.11)

−γbixbi = 0 b ∈ B; i ∈ Nb (3.12)
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ξbqb = 0 b ∈ B (3.13)

ρbi, γbi ≥ 0 b ∈ B; i ∈ Nb (3.14)

ξb ≥ 0 b ∈ B. (3.15)

For our problem, we assign ηb the value of 0 for all b to make model PKKT
FMO (B̄′) and

function F(B̄′) achieve the same optimal dose distribution. With that replacement made,

note that with a substitution, we must have the following:∑
i∈Nb

ρbi ≤ 0. (3.16)

Notice that a solution to PKKT
FMO (B̄′) satisfies all conditions except the following:

πj = [∇F (z)]j (3.17)

ρbi = γbi −
∑
j∈V

Dbijπj b ∈ B; i ∈ Nb (3.18)∑
i∈Nb

ρbi ≤ 0 b ∈ B. (3.19)

These can be combined into a single constraint for each beam, including inactive beams,

through substitution and a little logic (i.e., notice that γbi ≥ 0). Let us define new notation

v̄bi, such that,

v̄bi =

(∑
j∈V

Dbij [∇F (z)]j

)−
b ∈ B, i ∈ Nb, (3.20)

with the constraint in question written as the following:∑
i∈Nb

v̄bi ≥ 0 b ∈ B. (3.21)

By plugging in the optimal solution with active beam set B′, these conditions may be

checked. If they are satisfied, then B′ is an optimal beam arrangement. If they are not, then

the beam for which the condition below has the largest violation is added. Because F(B′)
was solved to optimality with active beam set B′, the only constraints that might not be

satisfied in the optimal solution to the restricted problem are those associated with inactive

beams in B\B′. Therefore, the largest violation is found solving the following subproblem

through enumeration.
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max
b∈B\B′

∑
i∈Nb

vbi (3.22)

It should be noted that the vector v̄b = {vbi|i ∈ Nb} is precisely the projected gradient of

the objective with respect to xb for each beam. This can be seen by changing the objective to

be based on x-values instead of z in the objective function through substitution of constraint

(3.3). The expression for each beam can be rewritten as the `1-norm of subvectors of these

projected gradients. ∑
i∈Nb

v̄bi = ‖v̄b‖1 ≤ 0 b ∈ B\B′ (3.23)

Therefore, the KKT-motivated predictive measure can be defined as the following:

∆F̃KKT(B′, b) = −‖v̄b‖1 b ∈ B\B′. (3.24)

3.3.2 Steepest Descent Motivation

Another approach for selecting a beam utilizes the concept of steepest descent. Given

an active beam subset B′, the beam that provides the steepest descent direction among all

potential “directions” that only involve adding a single additional beam is selected. To make

the notation cleaner, let us first reformulate the objective function to be in terms of beamlet

intensities by substituting in dose constraint (3.3).

G(xB′) = F

(∑
b∈B′

∑
i∈Nb

Dbijxbi : j ∈ V

)> (3.25)

We can present an analogous function where a single additional beam is added to the set

of active beams. Let beam b ∈ B\B′ be the additional beam.

G(xB′ , xb) = F


∑
b′∈B′

∑
i∈N ′b

Db′ijxb′i : j ∈ V

> +

(∑
i∈Nb

Dbijxbi : j ∈ V

)> (3.26)

Suppose that x̄ is an optimal solution to the integrated model using only a subset B′ ⊂ B
of the beams. This would imply that the projected gradient, [∇G(x̄B′)]

−, would be zero. The

steepest descent direction allowing an additional beam b ∈ B\B′ with objective G(xB′ , xb),
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however, may be nonzero. Note that only subvector xb will be involved with the projected

gradient calculation at point (x̄B′ , 0). Therefore, the following subproblem is considered with

fixed x̄B′ .

min
xb≥0

G(x̄B′ , xb) (3.27)

The steepest descent direction, i.e., the projected gradient corresponding to the additional

beam, can be given by the following expression:

v̄b = [∇G(x̄B′ , xb)]
−∣∣
xb=0

b ∈ B. (3.28)

We then calculate the norm of this vector, ‖v̄b‖2, to get our metric of comparison for

each beam. Therefore, the steepest-descent-motivated predictive measure can be defined as

the following:

∆F̃SD(B′, b) = −‖v̄b‖2 b ∈ B\B′. (3.29)

3.3.3 Second-order Motivation

The previous two approaches both rely on the first-order rate of change in objective

function value associated with individual beamlets in candidate beams. A perhaps more

sophisticated method would use second-order information to determine a Newton-like ap-

proximation to the benefits of adding an additional beam’s flexibility to the model.

Suppose again that x̄ is an optimal solution to the restricted problem only using B′ ⊂
B. A Newton-like improving direction for G(xB′ , xb) starting from (x̄B′ , 0) may involve the

subvector xB′ , unlike the previous approaches. Therefore, for each beam b ∈ B\B′, we

consider the following subproblem.

min
xB′ ,xb≥0

G(xB′ , xb) (3.30)

The difficulty in this subproblem lies in the non-negativity constraints on the beam-

let intensities (xB′ , xb), as a projected Newton direction for this problem at (x̄B′ , 0) is not

guaranteed to be improving (see Bertsekas , 1982). Instead, beamlet indices that are not

promising candidates for change are identified, i.e., beamlets with zero intensity and strictly

positive partial derivative of the objective function. This would indicate that the improving

direction for a beamlet with these characteristics would be to decrease in intensity, which is

impossible. Let us denote the indices of all beamlets of concern that have this quality by set
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N+(xB′ , xb).

N+(xB′ , xb) =
⋃

b′∈B′∪{b}

{
(b′, i) : i ∈ Nb′ , xb′i = 0,

∂G(xB′ , xb)

∂xb′i

∣∣∣∣
x=x̄

> 0

}
(3.31)

The Newton direction, wb, at x = (xB′ , xb), is generally in the form of

wb = −M(x)∇G(x), (3.32)

whereM(x) is a positive semi-definite matrix and ∇G(x) is the gradient of G at the current

solution. Using set N+(xB′ , xb), we constructM in the following way. This is an improving

direction if one exists (see Bertsekas , 1982).

[M(x)]−1
ii′ =

0, i 6= i′, and either i ∈ N+(xB′ , xb) or i′ ∈ N+(xB′ , xb)

∂2G(x)
∂xi∂xi′

, otherwise
(3.33)

In order to quantify this value, we consider the Newton decrement. This value can

be related to the quantity G(x̄B′ , 0) − infxB′ ,xb Ĝ(xB′ , xb), where Ĝ(xB′ , xb) is the second

order approximation of G at (x̄B′ , 0). This value is traditionally used in the unconstrained

Newton’s method, but we consider a different interpretation to adapt it for our use. In Boyd

and Vandenberghe (2004), it is described as “the directional derivative of G at (x̄B′ , 0) in

the direction of the Newton step.” Therefore, the expression can be seen as the dot product

between the projected gradient and the direction of the newton step. The expression (3.35)

is derived from equation (3.34) using the direction w̃b. We can then define ∆F̃(B′, b) with

x̄ = (x̄B′ , 0).

λ(x̄) =

√(
[∇G(x̄)]+

)>∇2G(x̄)−1∇G(x̄) (3.34)

∆F̃SO(B′, b) = −
√(

[∇Gr(x̄)]+
)>M(x̄)∇Gr(x̄) (3.35)

Numerical Issues Because the creation of set N+(x̄B′ , x̄b) involves identifying beamlet

intensities that are zero, it may be beneficial to include beamlets with intensities that are

very close to zero. Therefore, we consider ε-nearness when generating the set N+(x̄B′ , x̄b).

That is, we can redefine set N+(x̄B′ , x̄b) as the following equation for implementation.

N+(x̄B′ , x̄b) =
⋃

b′∈B′∪{b}

{
(b′, i) : i ∈ Nb′ , xb′i < ε,

∂G(xB′ , xb)

∂xb′i

∣∣∣∣
x=x̄

> 0

}
(3.36)
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3.4 Application

3.4.1 Assessing the BOO Methodology

We would like to compare our methods to clinical practice and other beam-ranking strate-

gies. To this end, we consider a coplanar equispaced strategy, BEV strategy, and pBEV

strategy as methods with which to compare. The pBEV original methodology requires a

lower PTV bound our FMO model lacks, so we modify pBEV to apply it to our FMO

model. We also consider turning on all potential beams to see how far our solutions are from

an “ideal” arrangement.

Another consideration when comparing plans is whether or not to change the objective

function when beam arrangements change. Since we do not have a consistent and fair way to

redefine objective function weights depending on beam arrangement or other factors, we keep

the same model parameters and objective weights regardless of beam arrangement. While in

practice parameter tweaking would occur once an arrangement is found, we do not consider

that step of the planning process for our comparisons. We are assessing these models in

terms of objective function value, which we assume to be a good indication of treatment

plan quality relative to other plans optimized using the same objective function.

3.4.1.1 Equispaced Beam Strategy

An equispaced strategy is an arrangement of beams that are angularly equally-spaced in

a coplanar arc around the patient. Clearly, given a desired number of active beams, there

are multiple ways to select equispaced beams. In order to avoid selecting an equispaced

arrangement that is subpar given the number of beams and resolution of beam sampling, we

solve the FMO with B′ set to each potential equispaced arrangement given our discretization

and take the best in terms of objective function value.

3.4.1.2 BEV Methodology

Goitein et al. (1983) provide a simple method for determining beam quality. This method

was described in Lee et al. (2011), which is the source we reference when implementing the

metric. For each beam, the BEV metric counts the number of PTV voxels that have a dose

coefficient above some κ > 0. The metric is as follows:

∆F̃BEV(B′, b) =
∑
s∈T

∑
j∈Vs

min

{
1,
∑
i∈Nb

rij

}
, where rij =

1, Dbij ≥ κ

0, otherwise
, (3.37)
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with rij as the indicator variable used in the counting process. It should be noted that this

metric does not take into account other active or inactive beam interactions or delivered

dose.

In order to select κ, we first calculated the metric with a number of values between 0

Gy and the maximum Dbij value in target voxels. We then selected κ for comparison by

selecting the κ that produced the lowest objective values when the arrangements associated

with each tested κ were solved using an FMO.

3.4.1.3 pBEV Methodology

Pugachev et al. (2000) and Pugachev and Xing (2001) present pBEV. Let Ts be the PTV

threshold value and D̄bj is the dose delivered to voxel j from beam b when considering the

model with a single beam and some “maximum” intensity profile. In order to calculate this

dose, the following steps are taken (these are reproduced here from their 2001 paper).

1. Find the voxels affected by the beamlet

2. Assign the beamlet an intensity that could deliver a dose equal to or higher than the

prescription in every target voxel

3. For each organ-at-risk (OAR) or normal tissue voxel crossed by the beamlet, calculate

the ratio by which the beamlet intensity has to be reduced to ensure that tolerance is

not exceeded

4. Find the minimum ratio from the data in step 3

5. Reduce the beamlet Intensity assigned in Step 2 accordingly to the minimum ratio.

This value represents the maximum usable intensity of the beamlet

6. Repeat steps 1-5 for all relevant beamlets to obtain the “maximum” beam intensity

profile, in which none of the beamlet intensities can be further increased without vio-

lating the tolerance of some structure

7. Perform a forward dose calculation using the “maximum” beam intensity profile

8. Compute the overall score of the chosen beam direction according to an empiric score

function as follows:

∆F̃pBEV(B′, b) =
∑
s∈T

1

|Vs|
∑
j∈Vs

(
D̄bj

Ts

)2

. (3.38)
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The difficulty in applying this approach is that we don’t have threshold values for the

OARs other than 0 Gy. Instead, we propose that we solve an FMO problem for each beam

and then use the resulting dose distribution for D̄bj. Then, high quality beams should have

higher values when evaluated with equation (3.38).

3.4.2 BOO Results

These cases were run using a C++ implementation of the pricing problem along with

a custom graphical processing unit (GPU) FMO solver for the restricted master problem

(RMP). Eigen basic linear algebra subprograms (BLAS) was used for the linear algebra

subroutines on the CPU pricing problem. Some of these cases are available for optimizers

in Craft et al. (2014). We considered a piece-wise quadratic voxel-based objective function

(see Romeijn et al., 2004). Let tj be the target dose value for each voxel and αj and βj be

the over- and under-dosing penalties, respectively.

F (z) =
∑
j∈V

αj
(
(zj − tj)+)2

+
∑
j∈V

βj
(
(tj − zj)+)2

(3.39)

First, we want to examine if our metrics do a good job in estimating ∆F(B′, b). Let

us consider the situation where we’ve added a few beams to the model and are considering

adding an additional beam. In Figures 3.1 and 3.2, let the “Explicit” line be the outright

calculation of ∆F(B′, b), i.e., the optimal value of FMO for each potential beam. We present

a first-order method and the second-order method estimations scaled using linear regression.

We do this to show the relative differences in metrics across different beams for each metric.

The asterisks represents the beam which would be chosen for each method. The beams are

sorted by angular position around a coplanar axis. In Figure 3.1, 2 beams have already been

selected. We see the second-order “Hess” methodology selects the beam physically closest

to the “best.” It should be noted that the “best” beam in the long run is not necessarily

the one selected using explicit calculation of ∆F(B′, b); that methodology is still heuristic in

nature. In Figure 3.2, similar predictive ability can be seen with 4 beams already added for a

prostate case. The large “humps” in the curve can be seen at places where beams are already

delivering radiation, and thus would be poor candidates when adding beams to the model.

This figure also includes the BEV and pBEV metrics. Since BEV and pBEV do not take

beam interaction into account, their predictive abilities are quite poor. The non-coplanar

results display similar prediction characteristics, but make for difficult-to-read plots and are

not shown here.

Next, we investigate if we see similar improvements in objective function value when using

our methods to the explicit methodology. We are also interested in the number of beams
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Figure 3.1: Predictive results for steepest descent and second-order methodologies scaled to
explicit ∆F(B′, b) calculation for |B′| = 2 on a coplanar head-and-neck case case

needed to achieve the same quality as a coplanar arrangement. In Figure 3.3, we see that

for an equispaced coplanar arrangement on a prostate case with 60 beams, we can achieve

the objective of the best 5-beam equispaced plan with 4 beams using our methods. We also

see that our methodologies cause decreases in the objective function almost identically to

explicitly calculating ∆F(B′, b). In Figure 3.4, a brain case, we look at the coplanar and

non-coplanar versions of our methods. The non-coplanar arrangements get close to achieving

the same objective as turning on all 60 coplanar beams. In this brain case, 394 non-coplanar

beams are considered. Figure 3.5 compares our methods on a non-coplanar liver case with

56 beams. We outperform BEV and pBEV significantly.

Clinically, we are also interested in how using non-coplanar beam changes how dose is

distributed in the body. Consider Figures 3.6 and 3.7. Figure 3.6 shows a dosewash of the

patient treated with 7 equispaced beams and Figure 3.7 shows the same patient treated with

7 potentially non-coplanar beams selected using the second-order method. The redistribution

of can be seen in a reduction in the normal tissue. Non-coplanar directions allow for the dose

to spread out a little more around the patient. Another way of visualizing dose to a patient

is in a dose-volume histogram (DVH). A DVH shows the fractional volume of a structure
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Figure 3.2: Predictive results for steepest descent and second-order methodologies scaled to
explicit ∆F(B′, b) calculation for |B′| = 4 on a coplanar prostate case case

Figure 3.3: Objective function value vs. added number of beams for a coplanar prostate
case with 60 beams

(y-axis) that receives some dose or higher(x-axis). The goal is to have a uniform high dose

to the cancerous tissue, while delivering lower doses to organs at risk. On the DVH, this

means that we want a step function that starts at 100% then steps down to 0% at the desired

target dose and for the organs at risk to have curves that are near to the bottom left corner.
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Figure 3.4: Objective function value vs. added number of beams for a brain case with 60
coplanar beams and 394 non-coplanar beams

Figure 3.5: Objective function value vs. added number of beams for a liver case with 56
non-coplanar beams

In the DVH in Figure 3.8, we see the 7-beam second-order plan (dashed) dominates the

7-beam equispaced plan almost everywhere. We observed this behavior in all non-coplanar

arrangements with our methodology versus equispaced coplanar arrangements.

3.4.3 Methodology Discussion

For each of these methods, we see good performance that is better than what many are

doing in the clinic. However, are these methodologies viable in a clinical environment? There

are other considerations to take into account before answering this question.
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Figure 3.6: Dosewash of 7 equispaced beams

Figure 3.7: Dosewash of 7 beams selected using the second order method

First, we assume a fixed objective function. In reality, this will be adjusted to the

physician’s and treatment planner’s goals. New objective functions would call for a rerun

of the integrated model, i.e., generate new beams, with the current framework. While

the solution methodology might allow for that, generating a new beam arrangement can

(dramatically) change the set of feasible dose distributions for the treatment plan. This
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Figure 3.8: DVH for the patient from Figures 3.6 and 3.7

can lead to inefficient tweaking and too much guesswork involved in changing the objective

function each iteration. Instead, it might be better to use some kind of pre-planning objective

function weight estimation technique (see, e.g., Chan et al., 2014) to define the objective used

to determine a beam arrangement, then tweak the plan with that fixed arrangement as is

traditionally done.

Second, there is the issue of computational efficiency. Clinically, the act of finding beams

needs to be fast enough not to hinder the treatment planner’s workflow. Consider the run

times presented in Figure 3.9. We can see the computation time for the different methods.

The KKT methodology and the first-order method have essentially the same computational

footprint at about one second per iteration, so only one is shown (“Grad”). The second-

order (“Hess”) and explicit methodology take much longer. Considering the performance of

the first-order methods, we recommend that they be used clinically over the second-order

methodology. It should be noted that this was implemented by a non-professional coder,

but with efficient libraries. We believe these numbers are proportionately reflective of a

high quality CPU implementation. However, these run times could be further improved

with a cloud- or GPU-implementation of the pricing problem provided the large amount of

coordinated data can be efficiently handled.

Finally, the greedy nature of the algorithm could be a problem. While we believe that
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Figure 3.9: Computation time for calculating beam score, |B| = 60

the inherent flexibility of beam selection problem (i.e., different “pretty good” arrangements

will do almost as well as the optimal arrangement) will allow our methods to perform well,

we did consider ways to control or reduce the impact from the greedy beam selection. First,

we considered adding and removing beams. However, when we did some numerical exper-

iments with this, dropping and adding new beams didn’t have a significant enough impact

to merit further pursuits. We also considered post-processing heuristics, but others (e.g.,

Aleman et al., 2008a) have studied neighborhood searches and other beam angle adjustment

algorithms. Our methodology could produce a seed arrangement for these post-processing

heuristics.

This last point about post processing led us to question how close we were to an optimal

arrangement and if there were bounds we could derive to gather this information. While

numerical results have not been generated on these bounds, the theoretical groundwork is

presented in Section 3.5.
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3.5 Bounding on the Optimal Objective Value

An aspect of this problem to consider is how we might bound the optimal objective value,

both on F(B′) and F(B). We would like to assess the quality of our methodology against

bounds in addition to the empirical case results presented earlier. We would also like to use

these bounds to gain insight into the problem and inspire future work to be done on this

topic. This section presents a series of proofs that lay the groundwork for bounding both

the FMO and DAO versions of the integrated problem.

3.5.1 Bounding F(B) Using an FMO Model

First, our optimal objective value given a restriction on the number of active beams, B̄,

can be seen as the following:

min
B′⊂B,|B′|≤B̄

F(B′). (3.40)

Clearly, for |B̄′| < |B̄′′|, we have the following relationship:

min
B′⊂B,|B′|≤B̄′

F(B′) ≥ min
B′′⊂B,|B′′|≤B̄′′

F(B′′). (3.41)

Therefore, a lower bound on the objective function value for any stage can be found

evaluating F(B), i.e., allowing all beams. This value is the ideal plan objective that we

would like to approach with a small subset of the beams. By comparing our solutions to this

value, we can assess how close we get to a bound on the optimal solution.

However, evaluation of F(B) involves solving a |B|-beam FMO, which may be compu-

tationally undesirable or even infeasible. In the non-coplanar setting, the sizes of the |B|
dose-to-point matrices prohibit explicit evaluation on our memory-constrained in-house GPU

solver. While a custom CPU solver was developed for this purpose, the custom CPU solver

still cannot handle more than around 300 beams (around 24GB of dose-to-point matrices

stored in binary format). For larger beam sets, there are methods of approximating bounds

on F(B).

3.5.1.1 Bounding F(B) given a feasible solution

In order to develop a bound on F(B), we assume that beamlet intensities are not allowed

to go above some upper limit, mbi, for each beam b ∈ B and beamlet i ∈ Nb.
Consider an optimization problem of the following form:

minimize
(x,z)

F (z)
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subject to (P̄UB)

zj =
∑
b∈B

∑
i∈Nb

Dbijxbi j ∈ V (3.42)

xbi ≥ 0 b ∈ B, i ∈ Nb (3.43)

xbi ≤ mbi b ∈ B, i ∈ Nb. (3.44)

The solution to this problem represents the “best” dose distribution possible given all

beams can be modulated. Since we often cannot solve this problem due to the size of |B|,
we would like to develop a bound on the optimal solution. Let x = {xbi : b ∈ B, i ∈ Nb},
z = {zj : j ∈ V}, and D = [D1 . . . D|B|] and let G(x) = F (Dx).

Lemma III.1. Let F (z) be a convex function. Then G(x) = F (Dx) is a convex function.

Proof. dom G = {x : Dx ∈ dom F}. Therefore, the affine mapping preserves convexity, so

G is convex (see Boyd and Vandenberghe, 2004, Section 3.2.2).

Using this knowledge, we can rewrite the problem in terms of x only for simplicity in

notation.

minimize
x

G(x)

subject to (ḠUB)

xbi ≥ 0 b ∈ B, i ∈ Nb
xbi ≤ mbi b ∈ B, i ∈ Nb

Our next goal is to find a bound on the optimal value to the above problem using a

feasible, but not optimal, solution. Let ∇G(x) be the gradient of G(x) and x ∈ XUB
represent x satisfying the constraints of ḠUB.

Theorem III.2. Let x̄ ∈ XUB and x∗ = argminx∈XUB G(x). Then,

G(x̄) +∇G(x̄)>τ ≤ G(x∗) (3.45)

with τ ∈ R|N | such that

τbi =

mbi − x̄bi if [∇G(x̄)]bi < 0

−x̄bi if [∇G(x̄)]bi ≥ 0
∀b ∈ B, i ∈ Nb. (3.46)
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Proof. By convexity of the function G we have the following relationship:

G(x̄) +∇G(x̄)>(x∗ − x̄) ≤ G(x∗). (3.47)

Let [∇G(x)]bi be term {bi} of the gradient of G(x). Observe that we can calculate the

largest improvement a change in particular variable can contribute to the objective. Every

term [∇G(x̄)]bi(x
∗
bi − x̄bi) is bounded below by the following:

[∇G(x̄)]bi(x
∗
bi − x̄bi) ≥

[∇G(x̄)]bi(mbi − x̄bi) if [∇G(x̄)]bi < 0

[∇G(x̄)]bi(−x̄bi) if [∇G(x̄)]bi ≥ 0
∀b ∈ B, i ∈ Nb. (3.48)

With τ defined as above, we have the relationship:

∇G(x̄)>τ ≤ ∇G(x̄)>(x∗ − x̄), (3.49)

which when combined with previous statements shows that our initial claim holds.

G(x̄) +∇G(x̄)>τ ≤ G(x̄) +∇G(x̄)>(x∗ − x̄) ≤ G(x∗) (3.50)

Now that we have an expression for a bound, we would like to know if the information

necessary can be calculated and the bound evaluated.

G(x̄) =
∑
j∈V

αj

((∑
b∈B

∑
i∈Nb

Dbijx̄bi − tj

)+)2

+
∑
j∈V

βj

((
tj −

∑
b∈B

∑
i∈Nb

Dbijx̄bi

)+)2

(3.51)

[∇G(x̄)]bi = 2
∑
j∈V

αjDbij

(∑
b′∈B

∑
i′∈Nb

Db′i′jx̄b′i′ − tj

)+

− 2
∑
j∈V

βjDbij

(
tj −

∑
b′∈B

∑
i′∈Nb

Db′i′jx̄b′i′

)+

(3.52)

Here αj and βj are the over-dosing and under-dosing penalties, respectively. tj is the
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threshold parameter. The relevant dimensions of the data are in the D matrix and in the

parameters of the function G. For the FMO representation of the machine instructions, xbi

represents beamlet intensity, D ∈ R|N |×|V|. Using the quadratic objective below, the other

data exists in R|V|. These sizes lend themselves to manageable calculation sizes and therefore

the bound can be computed easily given any x̄ ∈ XUB.

3.5.1.2 Bounding F(B) given an optimal solution using a fixed subset of beams,

B′

Another piece of information we’re interested in is a bound on the optimal objective

function using only a subset of the beams, |B′| << B. Consider the following BOO and

FMO integrated formulation.

minimize
(B′,x,z)

F (z)

subject to (P̄BOO
FMO )

zj =
∑
b∈B

∑
i∈Nb

Dbijxbi j ∈ V

xbi ≥ 0 b ∈ B′, i ∈ Nb
xbi ≤ mbi b ∈ B′, i ∈ Nb
xbi = 0 b ∈ B\B′, i ∈ Nb
|B′| ≤ B̄ (3.53)

Theorem III.3. Let B′′ be some arrangement B′′ ⊂ B with |B′′| = B̄ with optimal solution

x∗B′′ (i.e., solving P̄BOO
FMO with B′ = B′′). Suppose that we have an arrangement B̂ such that

B̂ ⊂ B′′ and |B̂| < B̄. Let x̄B̂ be a feasible vector for P̄BOO
FMO . Then,

G(x̄B̂) +∇G(x̄B̂)>φ ≤ G(x∗B′′), (3.54)

with ‖φ‖0 = B̄ calculated as

[φB′′ ]bi =


mbi − [x̄B̂]bi if [∇G(x̄B̂)]bi < 0, b ∈ B′′

−[x̄B̂]bi if [∇G(x̄B̂)]bi ≥ 0, b ∈ B′′

0 if , b ∈ B\B′′.

(3.55)

Proof. By convexity we have the following relationship:

G(x̄B̂) +∇G(x̄B̂)>(x∗B′′ − x̄B̂) ≤ G(x∗B′′). (3.56)
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Note that each term [x∗B′′ ]bi = x̄B̂ = 0 for all b ∈ B\B′′, i ∈ Nb. Therefore, ‖(x∗B′′−x̄B̂)‖0 ≤
B̄ for any potential arrangement B′′. By observing the maximum change in decision variables,

each term [∇G(x̄B̂)]bi[(x
∗
B′′ − x̄B̂)]bi is bounded below as follows:

[∇G(x̄B̂)]bi[(x
∗
B′′ − x̄B̂)]bi ≥


[∇G(x̄B̂)]bi(mbi − [x̄B̂]bi) if [∇G(x̄B̂)]bi < 0, b ∈ B′′

[∇G(x̄B̂)]bi(−[x̄B̂]bi) if [∇G(x̄B̂)]bi ≥ 0, b ∈ B′′

0 if , b ∈ B\B′′.

(3.57)

With φ defined as above, the following relationship then holds:

G(x̄B̂) +∇G(x̄B̂)>φB′′ ≤ G(x∗B′′). (3.58)

We can extend this to apply to an optimal beam arrangement given that B̂ beams are

included in the arrangement. Let B∗(B̂) signify an optimal arrangement given B̂ ⊂ B∗. We

have:

min
B′′⊂B

G(x̄B̂) +∇G(x̄B̂)>φB′′ ≤ G(x∗B∗(B̂)
). (3.59)

Let φ = φB′′ , such that,

B′′ = argmin
B′′⊂B

G(x̄B̂) +∇G(x̄B̂)>φB′′ . (3.60)

We can easily find the corresponding φ by greedily selecting the smallest B̄ − |B̂| terms

of [∇G(x̄B̂)]bi[φ]bi as each term is independent of subset selection B′′.

3.5.2 Bounding F(B) Using a DAO Model

Another method of determining a dose distribution given a fixed beam set to consider is

DAO using potential beam locations as potential aperture locations. Column generation is

the standard method of solving DAO, allowing us to avoid the previously mentioned memory

issues of solving F(B). The resulting objective function value will be an approximation to

F(B) if the column generation process is halted before all potentially beneficial columns

are added. Generating 1000+ apertures can provide some insight into an “ideal” solution.

However, this is still an approximation, and we would like to develop theoretical bounds on

the objective function value. We consider a way to make the FMO presented earlier with

upper bounds on the beamlet intensities equivalent to a DAO-like procedure, then use that
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equivalence to develop new bounds on the optimal solution of F(B). Let us consider the

DAO pricing problem with a beam-on-time bound.

3.5.2.1 DAO Pricing Problem with Beam-On-Time Bound

Let µb be the upper bound on total beam intensity, and let Kb be the set of deliverable

apertures for beam b. Let ybk be the intensity of aperture k on beam b. The following is the

DAO Master Problem:

minimize
(y)

H(y)

subject to (H̄BB)

ybk ≥ 0 b ∈ B, k ∈ Kb (3.61)∑
k∈Kb

ybk ≤ µb b ∈ B. (3.62)

Let γb be the dual variable associated with the beam-on-time constraint and ρbk be the

dual variable associated with the non-negativity constraint. As before, the dose deposition

constraint is contained in the objective function. Then, in addition to primal feasibility, the

KKT conditions for this master problem would be the following:

γb ≥ 0 b ∈ B (3.63)

ρbk ≥ 0 b ∈ B, k ∈ Kb (3.64)

γb(
∑
k∈Kb

ybk − µb) = 0 b ∈ B (3.65)

−ybkρbk = 0 b ∈ B, k ∈ Kb (3.66)

[∇H(y)]bk − ρbk + γb = 0 b ∈ B, k ∈ Kb. (3.67)

Now consider formulation H̄DAO
BB that only allows certain apertures K′b ⊂ Kb to have

positive intensity. Let y ∈ YDAOBB represent a feasible solution for H̄DAO
BB . This is the form of

the DAO RMP:

minimize
(y)

H(y)

subject to (H̄DAO
BB )

ybk ≥ 0 b ∈ B, k ∈ Kb
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∑
k∈Kb

ybk ≤ µb b ∈ B

ybk = 0 b ∈ B, k ∈ Kb\K′b.

After obtaining optimal solution y∗ ∈ YDAOBB to H̄DAO
BB , we want to check if it violates any

of the KKT conditions for the original master problem. First consider the KKT conditions

to the DAO RMP below:

γb ≥ 0 b ∈ B

ρbk ≥ 0 b ∈ B, k ∈ Kb
γb(
∑
k∈Kb

y∗bk − µb) = 0 b ∈ B

−y∗bkρbk = 0 b ∈ B, k ∈ Kb
[∇H(y∗)]bk − ρbk + γb = 0 b ∈ B, k ∈ Kb.

Without loss of generality, we can assume that y∗bk > 0 for k ∈ K′b, b ∈ B. This can be

easily realized by noticing that we can solve the model for some K′b, remove any zero-intensity

apertures from K′b, and then resolve to obtain the same solution with all apertures having

positive intensities. This means that for every k ∈ K′b and b ∈ B, we have ρbk = 0. For any

beam b using the entire allowed intensity amount µb (i.e., allowing non-negative γb), we can

calculate γb = −[∇H(y∗)]bk for any k ∈ K′b.
The conditions that the optimal solution to the RMP could potentially violate in the

master problem are constraints (3.64) and (3.67). These can be summarized as the following:

ρbk ≥ 0 b ∈ B, k ∈ Kb
[∇H(y)]bk + γb = ρbk b ∈ B, k ∈ Kb.

Therefore, we need to have the following condition satisfied.

[∇H(y)]bk + γb ≥ 0 b ∈ B, k ∈ Kb (3.68)

Then, for each beam b ∈ B, we would like to find the following:

min
k∈Kb

[∇H(y)]bk + γb. (3.69)

Note: γb = 0 for all beams that are not using all of their allowed µb intensity. Otherwise,
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we use γb calculated as above.

This can be easily altered address the beam-on-time constraint in Theorem III.5.

3.5.2.2 Bounding F(B) Given an Optimal Solution Using a Subset of Apertures

Let y ∈ YBB represent a feasible solution to problem H̄BB and let y ∈ YDAOBB represent a

feasible solution for H̄DAO
BB .

Theorem III.4. Let ȳ = argminy∈YDAOBB
H(y) and y∗ = argminy∈YBB H(y). Then,

H(ȳ) +
∑
b∈B

µb min
k∈Kb\K′b

[∇H(ȳ)]bk ≤ H(y∗). (3.70)

Proof. Clearly, ȳ ∈ YBB. By convexity,

H(ȳ) +∇H(ȳ)>(y∗ − ȳ) ≤ H(y∗). (3.71)

Now consider [∇H(ȳ)]bk(y
∗
bk − ȳbk) for k ∈ K′b, b ∈ B. Since no improving direction exists

for problem H̄DAO
BB in those dimensions, we have

0 ≤
∑
b∈B

∑
k∈K′b

[∇H(ȳ)]bk(y
∗
bk − ȳbk). (3.72)

Thus, we only need to consider [∇H(ȳ)]bk(y
∗
bk − ȳbk) for k ∈ Kb\K′b, b ∈ B. Note that for

each beam b, the total change in aperture dose is bounded above by µb by constraint (3.62)

due to ȳ ∈ YDAOBB . Therefore, the following bound holds for each beam.

µb min
k∈Kb\K′b

[∇H(ȳ)]bk ≤
∑

k∈Kb\K′b

[∇H(ȳ)]bk(y
∗
bk − ȳbk) ∀b ∈ B. (3.73)

We then have a bound on H(y∗).

H(ȳ) +
∑
b∈B

µb min
k∈Kb\K′b

[∇H(ȳ)]bk ≤ H(y∗) (3.74)

In order to calculate this bound, we need to be able to find mink∈Kb\K′b [∇H(ȳ)]bk for each

beam b ∈ B. The traditional DAO pricing problem finds mink∈Kb [∇H(ȳ)]bk and does not

consider constraint (3.62). However, there is an updated pricing problem that incorporates

constraint (3.62) (see Section 3.5.2.1).

62



This can be extended to problems with constraint (3.62) replaced by an overall beam-

on-time constraint. Consider the following optimization model.

minimize
(y)

H(y)

subject to (H̄DAO
OB )

ybk ≥ 0 b ∈ B, k ∈ Kb∑
b∈B

∑
k∈Kb

ybk ≤ T

ybk = 0 b ∈ B, k ∈ Kb\K′b

Theorem III.5. Let ȳ = argminy∈YDAOOB
H(y) and y∗ = argminy∈YOB H(y). Then,

H(ȳ) + T min
k∈Kb,b∈B

[∇H(ȳ)]bk ≤ H(y∗). (3.75)

Proof. Clearly, this can be seen as all apertures having a single “beam” bound. Given this

observation, this proof structure is identical to that in Theorem III.4.

3.5.2.3 Bounding F(B) Given a Feasible Solution Considering All Potential

Apertures

We would like to consider ȳ to be any feasible solution to H̄OB below. This would mean

that it is possible for all of the |K| apertures to have non-negative values.

minimize
(y)

H(y)

subject to (H̄OB)

ybk ≥ 0 b ∈ B, k ∈ Kb∑
b∈B

∑
k∈Kb

ybk ≤ T (3.76)

Let the feasible region here be define as YOB.

Theorem III.6. Let ȳ ∈ YOB and y∗ = argminy∈YOB H(y). Then,

H(ȳ) + T min
k∈Kb
b∈B
ȳbk<T

[∇H(ȳ)]bk − T max
k∈Kb
b∈B
ȳbk>0

[∇H(ȳ)]bk ≤ H(y∗). (3.77)
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Proof. Clearly, we have:

H(ȳ) +∇H(ȳ)>(y∗ − ȳ) ≤ H(y∗). (3.78)

For each k ∈ Kb, b ∈ B we have:

[∇H(ȳ)]bk(y
∗
bk − ȳbk) ≥

[∇H(ȳ)]bk(T ) if [∇H(ȳ)]bk < 0

[∇H(ȳ)]bk(−T ) if [∇H(ȳ)]bk ≥ 0
∀b ∈ B, k ∈ K′b. (3.79)

Because of constraint (3.76), we know that the total increase and total decrease in intensity

are each bounded by T . That is,

‖(y∗ − ȳ)+‖1 ≤ T (3.80)

and

‖(ȳ − y∗)+‖1 ≤ T. (3.81)

Therefore, we have the following bounds:

T min
k∈Kb
b∈B
ȳbk<T

[∇H(ȳ)]bk ≤
∑
b∈B

∑
k∈Kb
ȳbk<T

([∇H(ȳ)]bk)
− (y∗bk − ȳbk)+ (3.82)

and

− T max
k∈Kb
b∈B
ȳbk>0

[∇H(ȳ)]bk ≤ −
∑
b∈B

∑
k∈Kb
ȳbk>0 ([∇H(ȳ)]bk)

+ (ȳbk − y∗bk)+. (3.83)

Combining our previous statements, we have satisfy our theorem.

H(ȳ) + T min
k∈Kb
b∈B
ȳbk<T

[∇H(ȳ)]bk − T max
k∈Kb
b∈B
ȳbk>0

[∇H(ȳ)]bk ≤ H(y∗) (3.84)

This may be difficult to calculate for the general case due to the calculation involving all

potential apertures that could potentially occur.
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3.5.2.4 Bounding F(B) Given a Feasible Solution Using a Subset of Apertures

Consider problem H̄OB and RMP H̄DAO
OB . We let ȳ be any feasible solution to H̄DAO

OB and

then use that to calculate a bound on the optimal solution of H̄DAO
OB .

minimize
(y)

H(y)

subject to (H̄DAO
OB )

ybk ≥ 0 b ∈ B, k ∈ Kb∑
b∈B

∑
k∈Kb

ybk ≤ T

ybk = 0 b ∈ B, k ∈ Kb\K′b

Theorem III.7. Let ȳ ∈ YDAOOB and y∗ = argminy∈YDAOOB
H(y). Then,

H(ȳ) + T min
k∈Kb\K′b,b∈B

[∇H(ȳ)]bk + T min
k∈K′b
b∈B
ȳbk<T

[∇H(ȳ)]bk − T max
k∈K′b
b∈B
ȳbk>0

[∇H(ȳ)]bk ≤ H(y∗) (3.85)

Proof. By Theorem III.4, we have the following relationship:

T min
k∈Kb\K′b,b∈B

[∇H(ȳ)]bk ≤
∑
b∈B

∑
k∈Kb\K′b

[∇H(ȳ)]bk(y
∗
bk − ȳbk). (3.86)

Now we must find a lower bound for the following:∑
b∈B

∑
k∈K′b

[∇H(ȳ)]bk(y
∗
bk − ȳbk). (3.87)

Note that these variables are in the structure as Theorem III.6. Therefore, we apply

Theorem III.6 to get the following bound on H(y∗).

H(ȳ) + T min
k∈Kb\K′b,b∈B

[∇H(ȳ)]bk + T min
k∈K′b
b∈B
ȳbk<T

[∇H(ȳ)]bk − T max
k∈K′b
b∈B
ȳbk>0

[∇H(ȳ)]bk ≤ H(y∗) (3.88)
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3.5.3 Equivalence of Pricing Problem Constraints

Consider the bounded FMO model from Section 3.5.1.1 and the bounded DAO model

from Section 3.5.2.2. The main difference is between constraints (3.44) in the FMO model

and (3.62) in the DAO model. The physical differences in apertures and individual beamlets

(i.e., deliverability requirements) contribute to this modeling discrepancy. The reason we

consider these two models is that we want a bound on the BOO/FMO integrated model

using a DAO bounding technique. In order to have the bound be relevant, we must have the

FMO feasible region be contained in the DAO feasible region. Ideally, the regions would be

equivalent.

xbi ≤ mbi b ∈ B, i ∈ Nb (3.44)

and∑
k∈Kb

ybk ≤ µb b ∈ B (3.62)

Let us assume that µb = mbi for all b ∈ B and i ∈ Nb. First, we consider if (3.62) implies

(3.44). That is, if we have a feasible solution to the DAO model using constraint (3.62),

can we guaranty a feasible solution to the FMO model with constraint (3.44) with the same

objective function. We do so by finding beamlets that produce the same dose distribution.

Lemma III.8. Let ȳ ∈ YDAOBB . Then, ∃ x̄ ∈ XUB such that z = Dx = Dy.

Proof. Let

x̄bi =
∑
k∈Kb

s.t. i∈Nk

ȳbk b ∈ B, i ∈ Nb. (3.89)

Then, by our our definition of z = Dx and z = Dy, we have z = Dx̄ = Dȳ. x̄ satisfies

the non-negativity constraints. We see that the total dose any x̄bi is assigned is less than µb,

and thus constraint (3.44) holds.

Next, we consider if (3.44) implies (3.62). That is, if we have a feasible solution to the

FMO model with constraint (3.44), can we guaranty a feasible solution to the DAO model

using constraint (3.62) with the same objective function. We do so by finding apertures that

produce the same dose distribution.

Unfortunately, this does not necessarily work. We can see using a simple example. Let

us consider a single beam with a single row of three beamlets with intensities (µb,0,µb). We

can see that there is not any deliverable aperture shape to satisfy this intensity mapping.

Therefore more than µb intensity is necessary to deliver that map.
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However, if we relax the MLC constraints on the DAO problem (i.e., allow undeliverable

apertures to exist in Kb), then we can deliver any beamlet intensity map with at most µb

total aperture dose for each beam. Let K̃b be the set of all potential apertures (disregarding

deliverability) for beam b ∈ B. Let ỸDAOBB be the associated feasible region with Kb replaced

by K̃b.

Theorem III.9. x̄ ∈ XUB ⇐⇒ ȳ ∈ ỸDAOBB such that Dx̄ = Dȳ.

Proof. First, it follows from Lemma III.8 that if y ∈ ỸDAOBB , then we can find x̄ ∈ XUB such

that Dx̄ = Dȳ because YDAOBB ⊆ ỸDAOBB .

Second, we would like to show that if x̄ ∈ XUB, then ∃ ȳ ∈ ỸDAOBB such that Dx̄ =

Dȳ. Since deliverability is no longer a concern, we use the following procedure to generate

apertures and assign intensities.

• Step 1: Generate aperture k′ ∈ K̃b consisting of beamlet set Nk′ such that i ∈ Nk′ if

x̄bi > 0

• Step 2: Set ȳbk′ = min{x̄bi : i ∈ Nk′}

• Step 3: Set x̄bi = x̄bi − ȳbk′ for all i ∈ Nk′

• Step 4: If any x̄bi > 0, then go to Step 1. Otherwise, end.

We can see that by constructing the aperture intensities in this manner, we have at

most |Nb| iterations and thus at most |Nb| apertures. Each iteration, at least one beamlet

will drop out from the set of beamlets with positive intensity. Because we are reducing all

non-zero beamlet intensities uniformly, the highest total aperture dose we can have is the

maximum beamlet intensity, µb. Therefore, constraint (3.62) holds. With all other non-

generated apertures zero, the non-negativity constraints hold. Lastly, by our definition of

z = Dx and z = Dy, we have z = Dx̄ = Dȳ. Thus, our theorem holds.

It may be computationally beneficial to consider bounding the FMO model using the

DAO model allowing undeliverable apertures with constraints (3.44) in the FMO model and

(3.62) in the DAO model. The idea is that the fewer elements we use to undershoot the

bound, the better the bound will be. The number of apertures used in a clinically desirable

solution is traditionally fewer than the total number of beamlets.

3.5.4 Considerations and Potential Bounding Uses

While the current section has some methods for bounding F(B) and F(B′), there are some

additional considerations to account for before finding numerical results. First, coherent
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choices for mbi and µb need to be determined. What these should be is not clear as they

don’t bound these explicitly and/or consistently clinically. Also, how these bounds should

be incorporated into the algorithm’s stopping criteria is still an open question. Lastly, the

piecewise quadratic objectives used in our application may be ill-natured for these types of

bounds. Voxels far away from the threshold, tj, can produce high-valued gradients, which

can, in turn, generate grossly loose bounds. Linear objectives might provide a tighter bound,

but that has not yet been investigated

However, we believe that there are interesting uses for the theoretical work in Section

3.5, especially in an integrated BOO and DAO model. In each iteration of generating an

aperture, the model will assess whether or not to add an aperture to an existing beam

location or add an additional beam location. These types of bounding, which we believe will

be more effective in the aperture model due to the number of apertures being less than the

number of beamlets, can be integrated into the beam selection and stopping conditions of

this type of model.

3.6 Clinical Applicability and Future Research

3.6.1 Potential Clinical Implementation

Clinically, our integrated BOO and FMO model can be added into a treatment planning

system. The major downside is that the data required for the integrated model are the Dbij

values for each beam, which can be slow to calculate and expensive to store. There are

several ways to utilize the methods while sidestepping this issue.

One way to use this methodology is to use the integrated BOO and FMO model only

for the beam selection aspects of treatment planning and not for the end-of-planning FMO.

This would mean that the beam locations chosen by the integrated model, B′, would be the

fixed beam set used by treatment planners and physicians to tweak before delivery. The

presented methodology, in this respect, could be automated. It could also use downsampled

data. We did not investigate the effects of downsampling, but believe that this methodology

would continue to perform well with lower resolution voxels.

Another useful way to utilize the greedy framework is in considering when to add an

additional beam. Consider a treatment in the midst of the planning process with 8 active

beams that is unable to achieve a clinically acceptable dose distribution. Adding an addi-

tional beam will add flexibility to the model. The developed methodology can be used to

select the next beam to add to the model, even though the beam selection algorithm might

not have been used for the first 8. Estimates of the potential benefits of adding the additional

beam can also be observed.
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Lastly, this work was developed when also working on FusionArc (see Matuszak et al.,

2013), a hybrid delivery method that combines the continuous arc-based delivery of VMAT

with the stationary delivery of IMRT. A modified BOO-like algorithm was used to determine

where along an existing VMAT arc the gantry should stop and deliver an IMRT beam.

3.6.2 Future Work

Much of the groundwork for the BOO and DAO integrated model has been developed,

and we hope to study this model in the future. This type of constructive methodology is

also relevant to methods where beam locations of importance are iteratively selected (e.g.,

coplanar VMAT, FusionArc, Non-coplanar VMAT), which will be thematically evident in

chapter IV.
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CHAPTER IV

Non-coplanar Volumetric Modulated Arc Therapy

4.1 Introduction

The dose distribution a patient receives is dependent upon the machine constraints of

the delivery modality. Beams are fitted with an MLC, a device that, using sliding tungsten

leaves, can cast the beam’s output into shapes called apertures. The combination of aperture

modulation, dose rate, and beam orientation and/or movement define the different methods

of radiation delivery. Recall that there are several different treatment modalities that are

commonly used in modern radiation therapy: IMRT and VMAT. Both of these techniques

utilize a beam of radiation that is mounted on a moveable gantry that can rotate about

the body. With the ability to move the device to which the patient is fixed, called the

couch, non-coplanar beam directions can be achieved. In VMAT, the beam moves along

a coplanar arc (i.e., fixed couch position with a moving gantry) while delivering radiation

through actively changing apertures. The decisions that define a VMAT treatment plan are

the coplanar arc path, the movements of the MLC along the arc, and the dynamic dose

rate of the beam. When making these decisions, we must consider machine constraints such

as MLC leaf movement restrictions, dose rate limits, gantry speed constraints, and gantry

acceleration bounds. VMAT treatment planning is currently a hot topic among optimizers

studying treatment planning due to the difficult nature of the problem and the lack of a

standard treatment planning method (see, e.g., Peng et al., 2012; Craft et al., 2012; Papp

and Unkelbach, 2014; Unkelbach et al., 2015).

Coplanar VMAT takes advantage of the majority of the capabilities of the treatment

machine and thus is seen as one of the most state-of-the-art treatment modalities. However,

as treatment machines become more versatile in gantry and couch movement, the assump-

tion that VMAT arcs must be coplanar can be relaxed. Nearly all current VMAT modeling

techniques assume a pre-determined coplanar arc as an input to the inverse optimization for

the other decisions. We would like to consider a treatment modality where gantry and couch
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movement, dose rate, and MLC leaf movement are all dynamic without the coplanar restric-

tion applied to the beam’s arc. That is, determining the non-coplanar path of the arc through

the 4-π space around the patient would be combined with the previously mentioned VMAT

modeling restrictions (i.e., integrating a routing problem with an already-difficult treatment

planning problem). This creates a mathematically challenging problem where solving to op-

timality is clinically infeasible. At a workshop at Massachusetts General Hospital where the

top researchers in VMAT treatment plan optimization discussed the top methodologies and

considered the future of VMAT, non-coplanar VMAT emerged as one of the most promising

next-steps for cutting-edge algorithm research. An overview of modern optimization algo-

rithms for VMAT can be found in Unkelbach et al. (2015). Other modalities may approach

delivery angles in a more flexible manner, such as a robotic arm, but these modalities are

not nearly as widespread.

4.2 Treatment Planning Models

The VMAT optimization model requires us to introduce new notation and a few new

delivery concepts. We first look at the coplanar VMAT treatment planning model, then

study the non-coplanar counterpart.

In coplanar VMAT, the beam arc is predefined and modeled as a series of ordered control

points. The set of decisions to make are the MLC leaf positions modeled as apertures at each

control point, the dose rate through each control point, and the gantry speed through each

control point. The gantry speed can also be looked at as the time spent traveling between

control points and will be referred to as such for the remainder of the chapter. MLC leaf

movement constraints must also be applied to allow adequate time between control points

for MLC leaves to shift. Lastly, we assume that the gantry and couch can accelerate and

decelerate instantaneously. This is not a realistic assumption when dealing with the standard

delivery machinery. It should be noted that the delivery machines used for IMRT are also

used for VMAT. However, this assumption is more realistic for flexible delivery modalities

like the CyberKnife M6 FIM System. In the future work of the project, we would like to

incorporate acceleration/deceleration constraints in the model, but for our study they are

omitted.

The notation in this chapter follows that presented in Section 1.2.2 with a few additions.

In VMAT, the path of the beam is often modeled as passing through a series of locations

around the patient called control points. Let K be the set of all control points and let k` be

the `th control point along the arc. For decision variables, let Ak` be the aperture delivered

at k`, rk` be the dose rate at k`, tk` be the time spent per degree traveling through control
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point k` (i.e., inverse of the gantry speed), and yk` be the intensity per degree at control

point k`. Let m be the total number of control points in the delivery arc.

For parameters, let RU
k`

be the upper bound on dose rate for control point k` in dose per

time, TLk` and TUk` be the lower and upper bounds, respectively, on time per degree at each

control point k`, δk` be the distance in degrees at control point k`, and Dk`j(Ak`) be dose

received by voxel j ∈ V from aperture Ak` at unit intensity. Lastly, let TLk`,k`+1
(Ak` , Ak`+1

)

be minimum time the gantry can take traveling from k` to k`+1 and still allow for the MLC

leaf changes necessary to change from Ak` to Ak`+1
between control points k` and k`+1.

4.2.1 Traditional VMAT Model

With the above definitions, we present the traditional VMAT model with a fixed path,

(COP-VMAT-FP). In the clinical, this uses a coplanar arc.

(COP-VMAT-FP) minimize
(A,y,t,r,z)

F (z) (4.1)

subject to zj =
m∑
`=1

Dk`j(Ak`)δk`yk` j ∈ V (4.2)

yk` = rk`tk` ` = 1, . . . ,m (4.3)

δk`tk` ∈ [TLk` , T
U
k`

] ` = 1, . . . ,m (4.4)

rk` ∈ [0, RU
k`

] ` = 1, . . . ,m (4.5)

tk` ≥ TLk`,k`+1
(Ak` , Ak`+1

) ` = 1, . . . ,m (4.6)

Ak` ∈ A ` = 1, . . . ,m (4.7)

Constraint (4.2) relates aperture shape and angular fluence rate to dose received. Con-

straint (4.3) combines time per degree at a control point and dose rate to create fluence.

Constraints (4.4) and (4.5) bound variables t and r. Constraint (4.7) ensures apertures

are deliverable and constraint (4.6) controls the leaf movement restrictions based on gantry

movement and adjacent apertures.

4.2.2 Non-coplanar VMAT Full Problem

We extend the traditional VMAT model by relaxing the assumptions that the arc is

predetermined and that the arc is restricted to a coplanar path. Because of these relaxations,

k` is now a decision variable representing the `th control point in the arc. Let K be the set of

all potential control points in the 4π space around the patient. In order to construct a path,
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we add a constraint to the model requiring k`+1 to be adjacent to k`. Let Kk` be the set

of control points adjacent to k`, with adjacency defined as being within one unit of angular

discretization in parameter space.

We present the overall non-coplanar (NCP) VMAT full problem (FP) below. We would

like to select a subset of the control points that form a path to minimize some function of the

dose while adhering to deliverability constraints. While this formulation of the model may

be unsolvable in a realistic amount of time, it may help when finding a heuristic solution.

(FP) minimize
k,A,y,t,r,z

F (z) (4.8)

subject to zj =
m∑
`=1

Dk`j(Ak`)δk`yk` j ∈ V (4.9)

yk` = rk`tk` ` = 1, . . . ,m (4.10)

δk`tk` ∈ [TLk` , T
U
k`

] ` = 1, . . . ,m (4.11)

rk` ∈ [0, RU
k`

] ` = 1, . . . ,m (4.12)

tk` ≥ TLk`,k`+1
(Ak` , Ak`+1

) ` = 1, . . . ,m (4.13)

Ak` ∈ A ` = 1, . . . ,m (4.14)

k`+1 ∈ Kk` ` = 1, . . . ,m (4.15)

As stated earlier, k` represents the lth control point along the beam path, with the

path of the gantry passing through exactly m control points. Constraint (4.9) represents

the dose delivered to voxel j from apertures at active control points k1 to km. Constraint

(4.10) calculates the aperture intensity at control point k`. Constraints (4.11) and (4.12)

apply upper and lower bounds on absolute (non-directional) gantry travel time and dose rate,

respectively. Constraint (4.13) ensures sufficient gantry travel time to maintain deliverability

of adjacent apertures Ak` and Ak`+1
. Function TLk`,k`+1

(Ak` , Ak`+1
) represents the minimum

time the gantry can take traveling from k` to k`+1 and still allow for the MLC leaf changes

necessary to change from Ak` to Ak`+1
between control points k` and k`+1. Constraint (4.14)

ensures apertures are deliverable shapes. Constraint (4.15) requires adjacent apertures in

the path. Dummy apertures are added to the beginning and end of the path ` = 0,m + 1.

These dummy apertures have no MLC movement restrictions or dose rate and serve only as

placeholders for the pricing problem.

Using a representation of travel time (rather than speed) will help us out later when

constructing a feasible solution. Travel time can be converted back to speed after the model

has been solved. For simplicity, we assume that the same speed restrictions apply to gantry
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and couch movement, but separate speed restricts can be applied to the gantry and couch

in an extension of our model.

4.2.3 Master Problem

Solving the FP outright is computationally intractable, so we investigate ways to simplify

the solution process. We start by assuming the beam travels at its slowest speed to remove

a decision from the model. A post-processing step can be performed to raise speed as much

as possible given a feasible solution. The travel time is fixed to the control-point maximum

(i.e., movement speed to the control-point minimum), TUk` (see Section 2.1 in Peng et al.,

2012 for the speed-centered version of this model). The resulting upper bound on fluence

rate of aperture yk` is δk`R
U
k`
TUk` , which we denote with Y U

k`
. We get the following Master

Problem (MP). A feasible solution to this problem implies a feasible solution to the FP.

(MP) minimize
k,A,y,z

F (z)

subject to zj =
m∑
`=1

Dk`j(Ak`)δk`yk` j ∈ V

yk` ∈ [0, Y U
k`

] ` = 1, . . . ,m (4.16)

δk`T
U
k`
≥ TLk`,k`+1

(Ak` , Ak`+1
) ` = 1, . . . ,m (4.17)

Ak` ∈ A ` = 1, . . . ,m

k`+1 ∈ Kk` ` = 1, . . . ,m

4.3 Heuristic Methodology for NCP VMAT

What we would like to do with our methodology is to generate a feasible, high-quality

solution to the FP. Based on the success of the column-generation framework developed in

Peng et al., 2012, we consider a similar framework for this problem. The general idea is

to start with all k` control point locations unassigned and yk` = 0. Setting these decision

variables forms a RMP (see Section 4.3.1). We then solve the RMP to generate a deliverable,

but incomplete, treatment plan. Iteratively, we attempt to improve the current plan by

generating an aperture at an inactive control point that guarantees that we will have a feasible

solution when the algorithm terminates. That is, when m control points and apertures have

been assigned, the solution is feasible for (MP) with a connected path of control points

with apertures that are deliverable and reachable given the gantry travel time. The process

by which we select a beneficial aperture is the pricing problem (PP), and the PP will be

discussed in Section 4.3.2. After adding an aperture to the RMP, we solve the updated RMP.
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The solution to the RMP feeds into the next iteration’s PP. We continue this procedure

until m apertures are added.

4.3.1 Restricted Master Problem

Let us define the RMP given some control point set K′ ⊂ K. In RMP(K′), we fix a set

of |K′| = m′ < m control points k` ∈ K′ for ` = 1, . . . ,m′ and their associated apertures,

Āk` . The following program solves for the associated aperture intensities with fixed control

points and aperture shapes.

(RMP(K′)) minimize
y,z

F (z)

subject to zj =
m′∑
`=1

Dk`j(Āk`)δk`yk` j ∈ V

yk` ∈ [0, Y U
k`

] ` = 1, . . . ,m′

This program is an optimization problem with linear constraints, and thus it is a convex

optimization problem if F is a convex function. Using convex solvers, we can efficiently solve

this problem for manageable m′.

4.3.2 Pricing Problem

The overall idea for the PP is to select a control point and aperture that provide the

largest immediate benefit to the model while maintaining feasibility of MP (i.e. satisfies

constraints (4.14), (4.15), and (4.17)).

Suppose an aperture Ak̄ is inserted between control points k` and k`+1. Let us define

πk̄
k`,k`+1

(Ak̄) as the rate of improvement in the objective function with the addition of this

aperture based on first-order optimality conditions. Ak̄ ∈ Ak̄k`,k`+1
, where Ak̄k`,k`+1

⊆ A is

the set of deliverable apertures that can feasibly be added at control point k̄ to the plan

given preceding aperture Ak` and succeeding aperture Ak`+1
at control points kl and k`+1,

respectively. This value can be calculated as in equation (4.18) given optimal solution (ȳ, z̄)

to RMP(K′).
πk̄
k`,k`+1

(Ak̄) =
∑
j∈V

[−∇F (z̄)(z̄)]j Dk̄j(Ak̄)δk̄ (4.18)

Our strategy is to select a control point k̄ and aperture Ak̄ to fit in the path between

preceding aperture k` and succeeding aperture k`+1. Let P (k`, k`+1) be the set of potential

control points to consider between existing control points k` and k`+1 (see Section 4.3.2.1 for
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more detail). PP can be broadly described as below in equation (4.19).

(PP) max
`=0,...,m′

max
k̄∈P (k`,k`+1)

max
Ak̄∈Ak̄k`,k`+1

πk̄
k`,k`+1

(Ak̄) (4.19)

At the ends, a search is done between the end control point and some dummy control point

that has no MLC leaf restriction. Section 4.3.2.1 goes into defining the search neighborhood

P (k`, k`+1). Section 4.3.2.2 details the formulation and effect of Ak̄k`,k`+1
. Section 4.3.3

describes the PP solution procedure. Lastly, Section 4.3.3.1 discusses tie-breaking strategies.

4.3.2.1 Determining P (k`, k`+1)

P (k`, k`+1) is the control point search space between given control points k` and k`+1.

The overall idea in specifyingP (k`, k`+1) is to do two things: (i) ensure that there are always

enough remaining control points to complete the m-length path and (ii) restrict the search

space in between existing path control points to hedge against being overly greedy.

First, we consider (i). Since control points k` and k`+1) may not be adjacent, the gantry

would need to travel through a certain number of intermediate control points to reach k`+1)

from k` . Let E(k`, k`+1) be the number of control points necessary to travel between control

points k` and k`+1) along a minimum-time path (defined below) consisting of adjacent control

points. (If k` and k`+1) are adjacent, then E(k`, k`+1) = 0.)

Suppose K′ , with |K′| = m′ has been specified at the current step of the constructive

algorithm. Let J(K′) be the number of “not immediately necessary” control points, i.e.,

control points that are not “used up” to connect points in K′ with a sequence of adjacent

control points. We can compute J(K′) as the following:

J(K′) = m−m′ −
m′−1∑
`=1

E(k`, k`+1). (4.20)

Given this metric and aperture set k` ∈ K′ for ` = 1, . . . ,m′, we can make the following

claims:

• The longest feasible path between two control points k` and k`+1 is bounded by

E(k`, k`+1) + J(K′).

• The longest feasible path beyond an endpoint of the path is bounded by J(K′).

Next, we must incorporate (ii) to restrict our search space in between path control points.

One method of doing this is to consider the ratio in travel time between the path `→ k̄ →
`+1 and the path `→ `+1. Let us define Tt(k`, k`+1) as the shortest time it takes the beam
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to travel from k` to k`+1 given fixed angular travel time t and control points k` and k`+1.

Then, let T be some upper bound on this ratio. We would like to consider control points k̄

that satisfy the following ratio condition.

Tt(k`, k̄) + Tt(k̄, k`+1)

Tt(k`, k`+1)
≤ T (4.21)

We define our set of control points to consider, P (k`, k`+1), given a t, k` and k`+1.

P (k`, k`+1) =

{
k̄ :

Tt(k`, k̄) + Tt(k̄, k`+1)

Tt(k`, k`+1)
≤ T ,E(k`, k̄) + E(k̄, k`+1) ≤ J(K′) + 1

}
(4.22)

In order to calculate function Tt, let us make some additional assumptions. Assume that

the set of potential control point locations is equally spaced in parameter space in a grid

of gantry and couch orientations. We assume this for the proof-of-concept nature of the

project, but this assumption can be relaxed with updated Tt formulas. We can calculate this

time metric given an assumption on beam movement.

Let g and c be the number of control points apart k` and k`+1 are on the gantry axis

and couch axis, respectively. For example, see Figure 4.1. Let δ be the number of degrees

in spacing at each control point. Lastly, let us assume that the couch and gantry can move

simultaneously. We use a path heuristic in which the beam travels along a diagonal until it

can move in a parameter-space-orthogonal path to the destination.

Tt(k`, k`+1) = min(g, c)δt+ (max(g, c)−min(g, c))δt (4.23)

With these assumptions, calculating this expressing reduces to finding the max between

g and c.

One questions that still remains is how to deal with the endpoints of the path. Clearly,

we cannot extend past the endpoints further than J(K′) control points. However, we may

want to further restrict the search space from the endpoints. A simple bound, Eend, only

considering points within min(J(K′), Eend) control points from the endpoint may be all that

is necessary. This bound will affect how the algorithm grows the path. We could also look

at the time, Tt, to the control points past the end and restrict the search using that value.

Lastly, it may be logical to consider adding a condition that the beam cannot go back on

itself sharply from the endpoints to promote path movement around the body. While we do

not add this bound, a more in depth study of how the algorithm behaves will need to be

done before any definitive “endpoint rules” can be finalized.
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Figure 4.1: Illustration of g = 2 and c = 1 values between two red control points

4.3.2.2 Determining Ak̄k`,k`+1
and Its Implications

We need to specify set Ak̄k`,k`+1
, which is our aperture search space, in a particular way to

satisfy constraint 4.17 in MP. This constraint says that MLC leaves must be able to feasibly

move in the time between control points k`, k̄, and k`+1. Note that k̄ need not be adjacent

to the other two.

Ak̄k`,k`+1
⊆ {A ∈ A : δk`T

U
k`
≥ TLk`,k̄(Ak` , A), δk`T

U
k̄ ≥ TLk̄,k`+1

(A,Ak`+1
)} ≡ Ak̄Uk`,k`+1

(4.24)

How we choose Ak̄k`,k`+1
will define the MLC capabilities at some control point k̄. As we

can see in equation (4.24), the definition of Ak̄k`,k`+1
is dependent upon the preceding and

following apertures and the upper bound on the time spent at the control point. With the

preceding and following apertures fixed, our concern is with the upper bound on the time

spent between control points. Keeping the time at the machine upper bound could allow

for a larger Ak̄k`,k`+1
, i.e., a larger search space for deliverable apertures, but may reduce the

flexibility of the model in future iterations.
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One thing to note is that the choice ofAk̄k`,k`+1
will influence the behavior of the algorithm,

especially in later stages. If we choose a smaller set Ak̄k`,k`+1
, that will result in less flexibility

in the current set of apertures, but may allow for greater flexibility in later stages. We could

consider a family of potential choices for Ak̄k`,k`+1
(see Appendix A). However, let us continue

with our assumption of a fixed travel time. This information will be used when determining

the potential MLC leaf arrangements when solving the pricing problem.

Lastly, we want to know explicitly how our selected max angular travel time, TU
k̄

, and

preceding and following apertures Ak` and Ak`+1
control the feasible aperture region. That

is, for each row, we would like to determine the feasible MLC leaf positions given TU
k̄

, k`,

and k`+1 for potential control point k̄.

Let us assume that TU
k̄

, k`, and k`+1 are fixed along with apertures Ak` , and Ak`+1
. Let

Ak̄r be the set of feasible rows for the rth row of control point k̄ of aperture Ak̄.

Ak̄r =
{
a : TUk̄ δk` ≥ TLk`,k̄(Ak`r, Ak̄r), T

U
k̄ δk̄ ≥ TLk̄,k`+1

(Ak̄r, Ak`+1r)
}

(4.25)

Let v be the maximum speed an MLC leaf can move and N be the rightmost leaf setting.

The total distance a leaf can cover is v times the time it is moving. We can see the following

relationship.{
a : TUk̄ δk` ≥ TLk`,k̄(Ak`r, Ak̄r)

}
= {(L,R) : 0 ≤ L ≤ R ≤ N ;

|L− Lk` |, |R−Rk`| ≤ vTt(k`, k̄)
}
, (4.26)

and we can define the leaf positions as the following:

Ak̄r = {(L,R) : 0 ≤ L ≤ R ≤ N ; |L− Lk` |, |R−Rk` | ≤ vTt(k`, k̄);

|L− Lk`+1
|, |R−Rk`+1

| ≤ vTt(k̄, k`+1)}. (4.27)

4.3.3 Solving the PP

Recall the pricing problem from equation (4.19).

(PP) max
`=0,...,m′

max
k̄∈P (k`,k`+1)

max
Ak̄∈Ak̄k`,k`+1

πk̄
k`,k`+1

(Ak̄)

For each `, k̄, we want to solve the following:

(PP(`, k̄)) max
Ak̄∈Ak̄k`,k`+1

πk̄
k`,k`+1

(Ak̄). (4.28)
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For a given ` and k̄, we can calculate (4.28) in the following manner for a beam with M

rows (see Peng et al., 2012).

max
Ak̄∈Ak̄k`,k`+1

πk̄
k`,k`+1

(Ak̄) =
M∑
r=1

max
(L,R)∈Ak̄r

R∫
L

πk̄
k`,k`+1

(x)dx (4.29)

We integrate across the leaf positions in order to allow fractional (i.e., non-discrete) leaf

positions. Details can be found in Peng et al. (2012), Section 2.6.1.

The overall pricing problem becomes the following problem, over which we can enumerate

due to the fact that leaf positions can only be at integer points or the leaf limit.

(PP) max
`=0,...,m′

max
k̄∈P (k`,k`+1)

M∑
r=1

max
(L,R)∈Ak̄r

R∫
L

πk̄
k`,k`+1

(x)dx (4.30)

We represent aperture dose in the same manner as in Peng et al. (2012), and thus will not

be described in detail here. In short, the continuous row of beamlet positions is discretized

into N beamlets. Dose is the summation of the open beamlets plus the fraction of the

partially-blocked beamlets at the locations occupied by the MLC leaves. The function we

are integrating over is a step function.

4.3.3.1 Breaking Ties in the PP

It may be possible that, for a particular control point k̄, the pricing problem produces

the same (PP(`, k̄)) values for different `. In this situation, we need rules to determine where

to insert control point k̄ and associated aperture in the path. The list below shows some

methods of how to break ties in order of execution. In our implementation, we go by the

pricing problem score (4.30), then the lowest ratio (i), then the most central (iii).

i Insert the control point where the Tt(k`,k̄)+Tt(k̄,k`+1)

Tt(k`,k`+1)
ratio is the smallest

ii Insert the control point such that Tt(k`, k̄) + Tt(k̄, k`+1) is the smallest

iii Insert the control point so that it is most central (i.e., Tt(k`,k̄)

Tt(k̄,k`+1)
is closest to 1)

iv Insert the control point into the path with the smallest ` (to definitively break all ties)
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4.4 Application

4.4.1 Brain Case Details

This model was applied to a brain case as a proof-of-concept. The data is from common

optimization for radiation therapy (CORT) dataset in Craft et al. (2014). Potential control

point set, K, consists of control points spaced 10 degrees apart along both the gantry and

couch axes totaling 648 control points. Each control point contains 160 beamlets, and the

patient was discretized into 481,915 voxels. The prescription dose for the case is 60 Gy.

The dose-to-points data were generated in the open source Computational Environment for

Radiotherapy Research (CERR) (see Deasy et al., 2003).

This case was chosen primarily for the availability of data. For this type of algorithm,

dose-to-points matrices, D, must be generated for each potential control point. While this

may be avoided in a clinical implementation of this algorithm with additional path re-

strictions, considering the full K is necessary in the presented form of the algorithm. The

algorithm was implemented in C++ using Gurobi (see Bixby et al., 2010) to solve the RMP.

4.4.2 Model Assumptions

Several assumptions were made for this initial implementation. P (k`, k`+1), the set of

control points to search between k` and k`+1, has an additional restriction of not allowing

more than Ē control points between k`, selected point c, and k`+1. We also restricted the

search at the endpoints of the path to at most Ēend control points. The values we tested can

be seen in Table 4.1. We found that Ē was too influential and opted for finding a value in

future test. P (k`, k`+1) was constructed in the following way:

P (k`, k`+1) =

{
k̄ :

Tt(k`, k̄) + Tt(k̄, k`+1)

Tt(k`, k`+1)
≤ T ,

E(k`, k̄) + E(k̄, k`+1) ≤ min
(
J(K′), Ē

)
+ 1
}
. (4.31)

A number of assumptions were made on how the gantry and couch move. As mentioned

before, these assumptions may not hold with conventional IMRT delivery systems, but are

more realistic for some other systems, e.g., CyberKnife M6 FIM Systems. We assume that the

beam can feasibly deliver from all 4π angles. Ideally, we want to restrict the path to only visit

feasible control points (i.e., avoid collisions between the gantry and the couch/patient), and

that change fits within our framework. However, the collision information was not available

at the time of this project. We assume that the gantry and couch move in equispaced

parameter space at the same speed. This speed is not decoupled in the current formulation
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Table 4.1: Parameters tested over for the initial set of runs

m Ēend E T
36 4 4 2.5
36 4 8 2.5
36 4 100 2.5
36 4 100 3.5
36 8 4 2.5
36 8 8 2.5
36 8 100 2.5
36 8 100 3.5
36 10 100 2.5
36 10 100 4

of the model. Further studies must be done to determine these changes.

We assume that the couch and gantry can move simultaneously. Movement is assumed

to begin and end instantaneously (i.e., perfect acceleration/deceleration). We also assume

that the beam has no upper fluence bound.

The leaf movement speed upper bound is 4.5 cm per second and the gantry and couch

speed upper bound is 6 degrees per second. The parameters Ēend, E, and T were tested

to get ballpark estimates of what good values of these should be. A single parameter set,

bolded in Table 4.1 showing those tested, was used for the runs in the results section.

4.4.3 Results

With this proof-of-concept, we will examine treatment plan quality through dose-volume

histograms (DVHs, see 3.4.2 for DVH details) and dosewashes. These metrics are commonly

used for clinical assessment of the quality of treatment plans.

First, consider a 36 control point solution. We are interested in how well our algorithm

preforms compared with the state-of-the-art coplanar VMAT algorithm presented in Peng

et al. (2012). In Figure 4.2, we see the DVH comparing the 36 control point NCP VMAT

(solid) solution to the 36 control point coplanar VMAT (dashed) solution. The NCP VMAT

solution dominates the coplanar VMAT solution almost everywhere. This shows us that

considering non-coplanar directions for VMAT treatment can potentially yield higher-quality

treatment plans than using only the traditional coplanar arcs. However, only using 36 control

points heavily restricts our ability to take advantage of the flexibility of VMAT treatment

plant (i.e., dynamically adjusting the MLC leaf positions over the arc). We can see in Figure

4.3 that we fail to get close to the “ideal” IMRT solution that uses 36 non-coplanar control

points discovered by the NCP VMAT algorithm as beam directions. Therefore, we ask the
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question “Can we do better?”

Figure 4.2: 36 control point NCP VMAT (solid) vs. coplanar VMAT (dashed)

Figure 4.3: 36 control point NCP VMAT (dashed) vs. IMRT (solid)

To improve our solution, we interpolate along the 36-point NCP VMAT path and add

in four additional, equispaced control points in between the control points on the arc and

four more on the end to get up to 180 control points. This is a finer discretization than we

initially planned. An example of this can be seen in Figure 4.4. We then reoptimize the
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treatment plan (i.e., determine aperture shapes and aperture intensities) using the algorithm

in Peng et al. (2012) (again, without gantry acceleration/deceleration constraints) along a

predetermined non-coplanar arc.

Figure 4.4: Illustration of potential control points (blue), 36-point NCP VMAT trajectory
(red), and interpolated 180-point NCP VMAT trajectory (green)

The DVH showing this comparison can be seen in Figure 4.5. We see that a large

improvement is made by allowing greater control over the MLC leaves. We are also interested

in how far from an ideal plan this solution is. Consider optimizing an IMRT plan along the

same 180 control points. The DVH for this solution and the 180 control point NCP VMAT

along the 36-point NCP VMAT path can be seen in Figure 4.6. The 180 control point NCP

VMAT is much closer to the ideal solution than the 36 control point NCP VMAT is to the

36 control point IMRT solution.

Lastly, we would like to compare our 180 control point NCP VMAT taken from ex-

trapolating the 36 control point NCP VMAT path to a 180 control point coplanar VMAT

treatment plan. These results can be seen in the DVH in Figure 4.7. While the improve-

ments are not as significant as when considering 36 control point plans, the NCP VMAT

plan dominates the coplanar VMAT plan nearly everywhere. It should also be noted that

many of the parameter effects of the NCP VMAT model have not been studied, and the NCP

VMAT solutions presented here should not be considered to be the “best” the technique can

offer. The effects of allowing non-coplanar beam directions in VMAT treatment are more

evident when considering dosewashes. In Figure 4.8, we can see how some of the dose in

hotspots (areas of high dose in undesirable areas) is lowered by using NCP VMAT.
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Figure 4.5: 180 control point VMAT along 36 control point NCP VMAT path (solid) vs. 36
control point NCP VMAT (dashed)

Figure 4.6: 180 control point VMAT along 36 control point NCP VMAT path (dashed) vs.
180 control point IMRT (solid)

4.5 Conclusions and Future Work

Preliminary results suggest that superior treatments can be obtained without significant

increase in treatment time when using non-coplanar beams, but more extensive testing is

needed. Acceleration and deceleration constraints, as they pertain to specific VMAT delivery
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Figure 4.7: 180 control point VMAT along 36 control point NCP VMAT path (solid) vs. 180
control point coplanar VMAT (dashed)

modalities, should be implemented in the model. Gantry and couch speeds should also be

decoupled, although the gantry/couch parameter space may not be the ideal way of describing

beam location for other delivery modalities like the CyberKnife M6 FIM System.

On the clinical side, more cases should be tested with this planning framework. A full,

2-degree control point spacing should be optimized to see the effects of the algorithm on a

high-resolution search space. However, the method of interpolating between control points

on paths found using a course resolution is probably more clinically feasible. Fewer dose-to-

points matrices would need to be generated and the solution time for the algorithm would

be significantly faster. Lastly, a study in treatment time versus treatment plan quality could

be done using this type of algorithm for non-coplanar VMAT treatment plans.

A final thought for future work is in using NCP VMAT to improve existing plans or partial

plans. An incomplete path of control points can be be used as a seed for this algorithmic

framework provided they control points can be connect in the end. A treatment planner

might identify a few “high priority” locations they want the beam to pass through, and the

NCP VMAT algorithm could figure out the connecting path and associated apertures along

the path. Techniques like BOO (see III) could also be used to identify these “high priority”

control points. This is an exciting research area, and we hope to further study NCP VMAT

models in the future.
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Figure 4.8: (top) 180 control point coplanar VMAT dosewash, (bottom) 180 control point
VMAT along 36 control point NCP VMAT path dosewash
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CHAPTER V

Adaptive Treatment Planning for Lung Cancer

5.1 Introduction

When planning a radiation therapy treatment, known patient information is used to

generate a desirable treatment plan. Geometric information along with other pre-treatment

characteristics influence the resulting plan. Over the course of treatment, these patient

characteristics may change, and the planner’s initial understanding of patient information

may evolve, causing inaccuracies in the original planning model. Due to these inaccuracies,

the pre-treatment plan is often adapted to the new data by replanning and reoptimizing the

treatment plan. By incorporating the anticipation and knowledge of future changes into the

pre-treatment planning model, or “future-proofing” the treatment plan, planners may have

greater control of patient outcomes and improve the effectiveness of the treatment.

5.1.1 Adaptation Motivation

In traditional radiation therapy treatment planning, the general practice is to develop a

treatment plan and use that plan for the course of treatment. This plan is delivered over

n daily fractions, where fluence x
n

(and thus dose z
n
) is delivered in each fraction. This

has several advantages. First, it is an established method and straightforward in practice.

Second, it puts a relatively small strain on treatment planning resources (i.e., planner time,

computation time, physician time, etc.). However, not all patient information is known a

priori. The information describing a patient changes over the course of treatment, both

geometrically and physiologically. Treatments are often adapted (i.e., replanned given the

already delivered dose) when significant new information is realized.

Without considering adaptation when plans are initially generated pre-treatment, the

dose distribution already delivered at the time of adaptation may force the adapted treatment

to be inflexible in the amount it can adapt to the new information and still stay within the
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treatment planning protocol. Therefore, more sophisticated methods of adaptive planning

are sometimes considered (see Ding et al., 2007; Wu et al., 2008; Nishi et al., 2013; Hurkmans

et al., 2012; de la Zerda et al., 2007 for examples of adaptive treatment planning).

There are several reasons in addition to raising treatment quality that adaptation-conscious

planning should be considered. With treatment planning, imaging, and biomarker analysis

getting faster and more efficient (see Breedveld et al., 2012; Men et al., 2010; Long et al.,

2012, etc.), there are additional resources freed up for replanning. Dosemetrists are also

starting to plan with replanning in mind because they are realizing that considering future-

proofing initial plans can improve treatment. The quality of the treatment plan improves as

information is effectively incorporated into the model.

5.2 Lung Cancer Setting

In this chapter, we discuss possible modeling approaches to adaptive treatment planning

in radiation oncology. To make our discussion concrete, we use a specific cancer site (lung

cancer) and a specific form of new information (a particular biomarker which, as indicated

by preliminary studies, has the potential to be a good predictor of the likelihood of a certain

radiation side effect). It should be noted that further studies, including data analysis and

clinical validation of functions and probability estimates used in our models in this chapter,

are ongoing. However, the types of optimization models we present for the adaptive plan-

ning framework would be applicable in any treatment environment that has similar stages,

namely: make a pre-treatment plan, begin treatment, observe change in the patient or ob-

tain additional patient-specific information, re-plan, and finish treatment. We expect that

these treatment planning approaches will become increasingly applicable as mid-treatment

biomarker measurements and other monitoring of each patient’s status during treatment

become more prevalent.

The two main goals in lung cancer treatment are to eradicate the tumor and spare healthy

organs. Towards the first goal, we consider maximizing the chance of no tumor progression

after 2 years, which we refer to as the probability of local tumor control, PLTC. There

are numerous healthy organs to consider (e.g., spinal cord, esophagus, heart), but the lung

itself necessarily receives radiation. Therefore, in our models we particularly focus on the

adverse effect of radiation-induced lung toxicity (RILT), namely, the probability a patient

will develop RILT of grade 2 or higher, which we denote by PRILT.
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Table 5.1: Parameter estimates for calculating the probability of local tumor control

Parameter Estimate
S0(2) 0.298
β0 5.928
β1 0.0988
a 0.813

5.2.1 Local Tumor Control

The relationship between dose distribution vector z and PLTC can be characterized as

follows: let F (z) be D95 to the PTV (that is, 95% of the PTV receives dose of at least D95);

then

PLTC(z) = S0(2)e
β0−β1(F (z))

, (5.1)

with parameters S0(2), β0, and β1 (see Table 5.1 for estimates of values of these parameters

and Cox , 1972 for more information on a fitted Cox regression model used to obtain these

estimates). However, due to the computational difficulties presented by incorporating the

functional form of D95 into optimization problems, we will use the linearized EUD function

as a proxy for D95 instead. That is, in our models we will use

F (z) = zEUD
PTV ≡ azmin

PTV + (1− a)z̄PTV, (5.2)

where zmin
PTV and z̄PTV are the minimum and mean doses to the PTV, respectively, and a is

a structure-specific parameter used in the definition of linearized EUD (Thieke et al., 2002;

see Table 5.1 for the value of a used). Note that, since PLTC is increasing in F (z), zEUD
PTV can

be maximized instead.

5.2.2 Radiation Induced Lung Toxicity

Higher probability of RILT is the result of higher lung dose, specifically, higher mean lung

dose. Analysis of data collected for a large population of patients suggests the relationship

between mean lung dose and PRILT depicted in Figure 5.1, which is traditionally used to

estimate patient’s PRILT pre-treatment (in view of the following discussion, the relationship

can be interpreted as the expected value of PRILT, as a function of mean lung dose, for a

patient sampled from the population uniformly at random).

Gathering additional information part-way into the treatment can give planners a patient-

specific estimate of the relationship between PRILT and mean lung dose. In particular, our

clinical collaborators have considered the ratio of Transforming Growth Factor β1 (TGFβ1)

level measured 2 weeks into the treatment, and its pre-treatment level (see Kong et al., 2008
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Figure 5.1: Population based dependence of PRILT on mean lung dose (or expected PRILT).

for background information). Let u be the value of 2-week TGFβ1 ratio measured for a

particular patient:

u =
TGFβ12wk

TGFβ10wk

. (5.3)

According to the biostatistical studies by our collaborators, the estimate of PRILT as a func-

tion of dose distribution z (specifically, mean lung dose z̄lung) for this patient can be expressed

as

PRILT(z;u) =
eX(z̄lung;u)

1 + eX(z̄lung;u)
, (5.4)

where

X(z̄lung;u) = γ2
0 +

(
γ2

1 + γ2
2u
)
z̄lung (5.5)

and

z̄lung =
1

|Vlung|
∑

j∈Vlung

zj. (5.6)

(Table 5.2 shows estimates of relevant parameter values.)

Table 5.2: Parameter estimates for PRILT

Parameter Estimate
γ2

0 -5.3731
γ2

0 0.1697
γ2

0 0.0315
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Figure 5.2 depicts the population-based (i.e., expected) PRILT function, as well as two

patient-specific functions, one for a patient whose lung tissue is more resistant (i.e., having

a lower value of u), and anther for a patient whose lung tissue is more sensitive (i.e., having

a higher value of u).

Figure 5.2: PRILT as a function of mean lung dose for the population (expected PRILT) and
for sensitive and resistant patients.

5.2.3 Bounding PRILT in Pre-Treatment Planning Models

Since RILT is a highly undesirable side effect of radiation therapy in lung cancer cases,

it is common to include an upper bound on PRILT in optimization models used for treatment

planning. In light of the above discussion of patient-specific functional forms of PRILT, we

will discuss the meaning of such bounds, and two possible forms they can take. In this

subsection, we discuss the pre-treatment planning setting (i.e., planning done before the

value of u specific to the patient can be observed), but similar ideas are utilized in the

discussion of adaptive models later in this chapter.

Consider planning a treatment for a new patient, before a measurement of TGFβ1 ratio

specific to him can be made. We can view this patient as being selected randomly (uniformly)

from the entire population of patients; thus we can view his TGFβ1 ratio as a random

variable U . We assume that U is a continuous nonnegative random variable, with CDF H(·)
reflecting the distribution of values of this biomarker in the patient population. We consider

two possible approaches to constraining PRILT in our treatment planning models:
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Option 1 (“pop”): population-based, or expected value constraint, stating that expected

PRILT for a given patient does not exceed 1 − α (for a given α ∈ (0, 1)). This constraint is

commonly used in the traditional, non-adaptive approach to treatment planning. Essentially,

this constraint is a bound on the height of the blue curve in Figures 5.1 and 5.2; we can

express it as

E [PRILT (z;U)] ≡
∫
R

PRILT (z;u) dH(u) ≤ 1− α. (5.7)

(5.7) provides an important bound because a clinic is interested in their expected treatment

outcomes for a population of patients. However, due to the nature of an expectation, prob-

ability of RILT in some patients will be higher, in some patients — lower, than the target

value of 1− α, thus, this planning approach is not ideal on a patient-by-patient basis.

Although U is a continuous random variables, for computational tractability we use a

scenario-based discrete approximation. We discretize the range of U into S scenarios, ordered

so that u1 < u2 < . . . < uS−1 < uS (recall that higher values of u indicate higher levels of

patient’s sensitivity to radiation, so u1 corresponds to the most resistant patients, and uS —

to the most sensitive ones), and let ps be the probability of scenario s occurring. Details on

how the scenario set is constructed can be found in Section 5.4.1. With this discretization,

constraint (5.7) can be rewritten as

S∑
s=1

psPRILT (z;us) ≤ 1− α. (5.8)

Option 2 (“rob”): robust constraint, stating that PRILT for the given patient does not

exceed 1 − α. The attractive feature of this constraint is that it provides a bound on

the complication probability for the specific patient, which is attractive to clinicians and

planners, as well as patients. However, in pre-treatment planning, without any patient-

specific information available to the planner, this constraint is expressed as

PRILT(z;u) ≤ 1− α ∀u ∈ <, (5.9)

or, using our scenario approximation,

PRILT(z;us) ≤ 1− α, s = 1, . . . , S. (5.10)

In other words, without patient-specific information available, this is a worst-case bound on

PRILT for any patient, which leads to rather conservative treatment plans.
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5.3 Planning Strategies and Models

In this section, we present three treatment planning strategies, formulate corresponding

treatment planning optimization models, and discuss solution approaches.

The first treatment strategy we describe is non-adaptive (NA), which does not consider

future adaptation explicitly and will serve as a baseline for comparison the other two strate-

gies. Currently, the NA strategy is used in most clinics.

The other two treatment strategies incorporate new information (namely, observation

of biomarker value u part-way into the treatment) to allow adaptation, i.e., changing the

remaining portion of the treatment after the observation is made. The stochastic adap-

tive (SA) model uses two-stage stochastic optimization to fully incorporate adaptation of

the treatment plan into the pre-treatment treatment planning model. However, as we will

discuss, the SA model can be expensive to solve. Therefore, modeling strategy approximate

adaptive (AA) was developed to generate high quality “future-conscious” treatment plans

without the heavy computation overhead of the SA model.

We will use the IMRT FMO treatment planning framework in our models, with the same

notation as in Section 1.2.1. To keep our formulations concise, we let Z ⊂ R|V| denote the set

of feasible dose distributions, i.e., ones that satisfy any upper- and lower-bound constraints

and other clinical constraints on the dose distributions to structures other than the lung

and the PTV. We will assume that the set Z is convex, which is commonly true in clinical

settings; in our computational experiments set Z was a convex polyhedron.

5.3.1 Non-adaptive Treatment Planning Models

We begin by presenting the non-adaptive treatment planning models with two options

for constraining PRILT, and exploring relevant mathematical structure of each formulation.

The basic structure of these models is:

(NA) maximize
x,z

PLTC(z)

s.t. z ∈ Z

zj =
∑
i∈N

Dijxi j ∈ V

xi ≥ 0 i ∈ N

constraint on PRILT,

where, as discussed in Section 5.2.3, we have two options for constraining PRILT.
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Option 1: Population-based bound on expected PRILT. In the model (NApop) we use

constraint (5.7) to limit PRILT:

(NApop) maximize
x,z

PLTC(z) (5.11)

s.t. z ∈ Z (5.12)

zj =
∑
i∈N

Dijxi j ∈ V (5.13)

xi ≥ 0 i ∈ N (5.14)

E[PRILT(z, U)] ≤ 1− α (5.15)

Referencing expressions (5.4) and (5.5), we can express the left-hand side of (5.15) as follows:

E [PRILT (z;U)] ≡
∫
R

PRILT(z, U) dH(u)

=

∫
R

eX(z̄lung,u)

1 + eX(z̄lung,u)
dH(u)

=

∫
R

1− 1

1 + eX(z̄lung,u)
dH(u)

= 1−
∫
R

1

1 + eX(z̄lung,u)
dH(u)

= 1−
∫
R

1

1 + eγ
2
0+(γ2

1+γ2
2u)z̄lung

dH(u),

and, using an S-scenario discrete approximation, we can express constraint (5.15) as

≈ 1−
S∑
s=1

ps

1 + eγ
2
0+(γ2

1+γ2
2u)z̄lung

≤ 1− α.

Notice that the function on the left-hand side is monotone decreasing in z̄lung, and so we can

reduce this constraint to a simple upper bound constraint on z̄lung:

z̄lung ≤ MLD
(1)
, (5.16)

where MLD
(1)

is defined as the solution to
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α =
S∑
s=1

ps

1 + eγ
2
0+(γ2

1+γ2
2u
s)MLD

(1)
, (5.17)

which can be obtained numerically. Moreover, PLTC is a monotone increasing function of

z̄lung, and thus objective function (5.11) can be replaced with z̄lung. Therefore, if Z is a

polyhedral set, (NApop) is a linear programming problem.

Option 2: Robust bound on PRILT. Model (NArob) uses constraint (5.9), or its S-

scenario discretization (5.10) for controlling PRILT:

(NArob) maximize
x,z

PLTC(z) (5.18)

s.t. z ∈ Z (5.19)

zj =
∑
i∈N

Dijxi j ∈ V (5.20)

xi ≥ 0 i ∈ N (5.21)

PRILT(z, uS) ≤ 1− α. (5.22)

Again, objective function of (NArob) can be replaced with z̄lung, and constraint (5.22) can

be simplified by incorporating expressions (5.4) and (5.5) and rewriting the inequality as

γ2
0 +

(
γ2

1 + γ2
2u

S
)
z̄lung ≤ ln

(
1− α
α

)
,

further simplified to

z̄lung ≤
ln
(

1−α
α

)
− γ2

0

γ2
1 + γ2

2u
S

. (5.23)

5.3.2 Framework for Adaptive Treatment Planning Models

In this subsection we present several adaptive treatment planning models. To recap, the

general framework for these models is as follows: an initial treatment plan is developed prior

to observation of any patient-specific information captured by the TGFβ1 ratio. Treatment

delivery proceeds based on this plan, using equal fractions, until patient-specific information

(i.e., the value of the biomarker u) is observed (we refer to this as “stage 1” of the treatment).

At this point, the treatment is adapted, based on the dose delivered so far and the observed

value of u, and the remainder (“stage 2”) of the treatment is performed using the updated

plan.
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We will use the following additional notation: we define superscripts (1) and (2) to

designate the two treatment stages discussed above. For example, we will denote by z(1) and

z(2) the dose distributions of the treatment plans obtained for stages 1 and 2 of the treatment,

respectively (with x(1) and x(2) denoting the vectors of corresponding beamlet intensities).

Let w ∈ (0, 1) denote the length of the first stage, specifically, the percentage of treatment

that elapses before u is observed. Then, the patient receives a total dose distribution of

wz(1) in stage 1 of the treatment, (1 − w)z(2) — in stage 2, and a total distribution of

wz(1) + (1− w)z(2).

5.3.3 Stochastic Adaptive Treatment Planning Models

This section presents model SA for adaptive treatment planning (with two options for

constraining PLTC) based on the standard two-stage stochastic programming approach. The

advantage of this approach is that treatment planning for the first stage incorporates second-

stage treatment adaptation into the model. In other words, the first stage treatment plan

produced by SA is calculated in an informed way, which should enable it to take better

advantage of the re-planning opportunities than any other model. (See Shapiro et al. (2014)

for more information on stochastic programming.)

As before, we use a scenario-based approximation of the distribution of U in these models.

The basic structure of SA models is:

(SApop)

maximize
x(1), z(1), x(2)(s),

z(2)(s), z(s), s=1,...,S

S∑
s=1

psPLTC(z(s))

s.t. z
(1)
j =

∑
i∈N

Dijx
(1)
i j ∈ V

z
(2)
j (s) =

∑
i∈N

Dijx
(2)
i (s) j ∈ V ; s = 1, . . . , S

zj(s) = wz
(1)
j + (1− w)z

(2)
j (s) j ∈ V ; s = 1, . . . , S

constraint on PRILT

z(1) ∈ Z(1)

z(2)(s) ∈ Z(2) s = 1, . . . , S

z ∈ Z

x
(1)
i ≥ 0 i ∈ N

x
(2)
i (s) ≥ 0 i ∈ N, s = 1, . . . , S.
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The additional notation in this model includes x(2)(s) and z(2)(s) for s = 1, . . . , S — the

beamlet intensities and dose distribution, respectively, to be used in the second stage of

the treatment if the biomarker value us is realized, as well as the corresponding total dose

distribution z(s), for s = 1, . . . , S. Also, because of the explicit incorporation of biomarker

realizations, we alter our objective function to be the expectation of PLTC. This objective

function is separable in F (z(s)) and concave when the probability of complication exceeds

1− e−1 ≈ 63.2% (see Appendix B for derivation).

As in the (NA) models, we have two options for constraining PRILT in (SA).

Option 1: Population-based bound on expected PRILT. In the model (SApop) we use

a constraint similar to (5.7) to limit PRILT, with the modification reflecting scenario-based

values z̄lung(s) incorporated into the expectation:

(SApop)

maximize
x(1), z(1), x(2)(s),

z(2)(s), z(s), s=1,...,S

S∑
s=1

psPLTC(z(s)) (5.24)

s.t. z
(1)
j =

∑
i∈N

Dijx
(1)
i j ∈ V (5.25)

z
(2)
j (s) =

∑
i∈N

Dijx
(2)
i (s) j ∈ V ; s = 1, . . . , S

(5.26)

zj(s) = wz
(1)
j + (1− w)z

(2)
j (s) j ∈ V ; s = 1, . . . , S

(5.27)∑
s=1,...,S

PRILT(z(s);us)ps ≤ 1− α (5.28)

z(1) ∈ Z(1) (5.29)

z(2)(s) ∈ Z(2) s = 1, . . . , S (5.30)

z ∈ Z (5.31)

x
(1)
i ≥ 0 i ∈ N (5.32)

x
(2)
i (s) ≥ 0 i ∈ N, s = 1, . . . , S.

(5.33)

Constraint (5.28) can be written as follows:

S∑
s=1

ps

1 + eγ
2
0+(γ2

1+γ2
2u
s)z̄lung(s)

≥ α. (5.34)
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The left hand side of this constraint is decreasing in z̄lung(s) and concave as long as z̄lung(s)

corresponds to a PRILT less than 50% (see appendix B for derivation).

Option 2: Robust bound on PRILT. Model (SArob) imposes the robust version of the

constraint on PRILT:

(SArob)

maximize
x(1), z(1), x(2)(s),

z(2)(s), z(s), s=1,...,S

S∑
s=1

psPLTC(z(s)) (5.35)

s.t. z
(1)
j =

∑
i∈N

Dijx
(1)
i j ∈ V (5.36)

z
(2)
j (s) =

∑
i∈N

Dijx
(2)
i (s) j ∈ V ; s = 1, . . . , S (5.37)

zj(s) = wz
(1)
j + (1− w)z

(2)
j (s) j ∈ V ; s = 1, . . . , S (5.38)

PRILT(z;us) ≤ 1− α s = 1, . . . , S (5.39)

z(1) ∈ Z(1) (5.40)

z(2)(s) ∈ Z(2) s = 1, . . . , S (5.41)

z ∈ Z (5.42)

x
(1)
i ≥ 0 i ∈ N (5.43)

x
(2)
i (s) ≥ 0 i ∈ N, s = 1, . . . , S.

(5.44)

Constraint (5.39) can be expressed as simple upper bounds on z̄lung(s):

z̄lung(s) ≤
ln
(

1−α
α

)
− γ2

0

γ2
1 + γ2

2u
s

s = 1, . . . , S. (5.45)

5.3.3.1 Second Stage Planning Strategies

With the SA model, second-stage dose distributions, z(2)(s) are found for S specific

biomarker ratio observations. However, the observed biomarker ratio u may, and is most

likely, not one of these values. Therefore, the second stage dose distributions found in (SA)

may not correspond precisely to a patient’s estimated predisposition to PRILT. Physicians

must find a suitable second stage dose distribution for the patient. Two common strategies

exist for selecting a second stage treatment plan. Physicians can use the pre-computed second

stage treatment plan (x(2)(s), z(2)(s)) with scenario s that corresponds to the observed value

of u (see Section 5.4.1 for more details on matching u with s), or they can use a patient-
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specific plan found by reoptimizing the second stage dose specific to the observed ratio u.

This replanning model is presented below.

Let z̄ denote the dose distribution used in the first stage of the treatment (i.e., at the

time of re-planning, wz̄ has been already delivered to the patient), and u denote the observed

value of the biomarker. The corresponding instance of the re-planning problem (RP(z̄, u))

calculates the second-stage dose z(2) and total dose z = wz̄ + (1− w)z(2):

(RP(z̄, u)) maximize
x̃(2),z(2),z

PLTC(z) (5.46)

s.t. z ∈ Z (5.47)

z
(2)
j =

∑
i∈N

Dijx
(2)
i j ∈ V (5.48)

x
(2)
i ≥ 0 i ∈ N (5.49)

zj = wz̄j + (1− w)z
(2)
j j ∈ V (5.50)

PRILT(z, u) ≤ 1− α (5.51)

Due to the patient-specific nature of replanning model, constraint (5.51) of (RP) bounds

PRILT for the particular observed value of u. This constraint’s algebraic form is similar to

(5.23).

It should be noted that the (SApop) model may allow PRILT(z(s);us) to exceed 1 − α

for some scenarios. Using the pre-computed second stage dose distributions may result in

patients with higher than 1−α probabilities of PRILT. This characteristic can be seen in the

results Section 5.4.3.

5.3.4 Approximate Adaptive Treatment Planning Model

While the SA model offers the most control over PRILT and explicitly incorporates multiple

potential stage 2 biomarker realizations into the pre-treatment planning, its solution time

may prove clinically prohibitive in practice (see Table 5.4 for run time and problem size

details for our application). As S increases, the stochastic model solve time increases to

multiple hours, a time too long for practical clinical use.

In light of this, we also consider a simpler model for first-stage treatment planning in the

adaptive framework. This model approximates the stochastic programming model (we refer

to it as the approximate model, or AA). In particular, in this model we deliberately avoid

the creation of a second-stage dose distribution z(2)(s) for each scenario (which makes the

(SA) models large and hard to solve). Instead, we use a singe variable z(2) to approximate

eventual second-stage treatment decisions, imposing a number of constraints to encourage a
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good approximation.

The approximate adaptive model is as follows:

(AArob) maximize
x̃(1), z̃(1), x(2),

z(2), z

PLTC(z) (5.52)

s.t. z ∈ Z (5.53)

z̃
(1)
j =

∑
i∈N

Dijx̃
(1)
i j ∈ V (5.54)

x̃
(1)
i ≥ 0 i ∈ N (5.55)

z
(2)
j =

∑
i∈N

Dijx
(2)
i j ∈ V (5.56)

x
(2)
i ≥ 0 i ∈ N (5.57)

zj = wz̃
(1)
j + (1− w)z

(2)
j j ∈ V (5.58)

PRILT(z̃(1), uS) ≤ 1− α (5.59)

PLTC(z̃(1)) ≥ PLTC(z∗)− ε (5.60)

PRILT(z, u1) ≤ 1− α. (5.61)

Variables x̃(1) and z̃(1) represent the first stage beamlet intensities and dose distribution,

respectively, produced by this model, and variables x(2) and z(2) are approximations of second

stage treatment decisions. It should be noted that the size of this problem is independent of

S.

Constraints (5.59) and (5.60) ensure that the first stage dose distribution is no worse

than the one obtained by solving (NArob) (here, z∗ denotes the optimal value of (NArob)).

Since the model (AArob) has limited foresight into second-stage treatment, we utilized the

robust option for bounding PRILT, to ensure that there will exist a second-stage treatment

plan for each patient that is safe, i.e., has PRILT that does not exceed 1−α regardless of this

patient’s u value. We allow a small deviation, ε, from the optimal value z∗ to avoid numerical

issues without sacrificing plan quality by any significant amount. Constraint (5.61) allows

the second stage dose distribution to push more dose into the lung given the initial stage

one dose distribution, leading to a first-stage treatment plan (z(1), x(1)) that will allow for a

more flexible plan adaptation.

Because only the extremes of the biomarker ratio range are considered, we would solve

(RP(z̃(1), u)) to get the second stage treatment plan specific to this patient after delivering

dose wz̃(1) to the patient and observing u.
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5.4 Results and Discussion

In the previous section, we introduced 5 models for treatment planning: two non-adaptive

models, (NApop) and (NArob), and three models for computing treatment plans in an adaptive

environment, (SApop), (SArob), and (AArob).

These models were tested on four clinical lung cancer cases. The size of the data for

each case can be seen in Table 5.3. These cases were selected out of a pool of lung cancer

patients for their flexibility in allowing higher doses to the lung while staying within other

organs’ dosimetric limits. We are interested in the tradeoff between PRILT and PLTC. In this

section, we would like to show that the different models generate different first-stage dose

distributions, and that these distributions have an impact on the tradeoff between PRILT and

PLTC in the resulting full treatment.

Table 5.3: The sizes of clinical cases: number of voxels and number of beamlets. The
clinical number is the identifier for the case in UMPlan, the University of Michigan’s in-
house treatment planning system, included here for figure references and in case data needs
to be retrieved.

Case Clinical number |V| |N|
1 38 20221 1184
2 44 14965 1388
3 45 15155 1411
4 49 19473 1270

Table 5.4: The number of variables, constraints, and non-zeros as well as run time ranges in
minutes for case 3.

Model Variables Constraints Non-zeros Time min Time max
(NArob) 16572 17651 17871794 2 5

(SApob), S= 2 80029 83664 53702943 85 130
(SArob), S= 2 80027 83574 53702763 40 110

(AA
(1)
rob) 48299 50457 35789053 8 50

(SApob), S= 4 143487 149695 89538301 130 170
(SArob), S= 4 143483 149498 89537905 120 180

Throughout Section 5.3, we discussed the specific mathematical structure of PLTC and

PRILT-related functions used in the objectives and constraints of our models. Although in

many cases we could simplify these functions and constraints to be linear, a few remaining

functions are still nonlinear, notably, the objective function of both (SA) models and the

population-based PRILT constraint in the model (SApob). In our computational work, we
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approximated these nonlinear functions using inner piecewise linear approximations within

their convex regions at 1 Gy spacing on the x-axis. These approximation techniques are

discussed in Appendix C, which contains the full linear programming formulation of the

stochastic adaptive models from Section 5.3.3. This enabled us to use an off-the-shelf linear

program solver for this project. Due to the proof-of-concept nature of this chapter, we believe

it is sufficient to use a general purpose solver (in particular, clinical solution times are not

directly considered in this project).

5.4.1 Discretizing the Biomarker Ratio Distribution

As mentioned in Section 5.2.2, the random variable U is a continuous random vasriable,

whose distribution can be estimated using a (finite) set of already-treated patients. How-

ever, the full set of patient outcomes cannot be integrated into the stochastic model in a

computationally tractable way; thus we used a partitioning of the domain of U into potential

scenarios s = 1, . . . , S, with a single value, us, representing each scenario. We partitioned

the range of observed values of TGFβ1 ratios into S intervals, and chose the largest value in

each interval to be the “representative” value. Recall that larger values of u are observed in

patients who are more sensitive to radiation; this choice of representative values allows us to

provide robust guarantees on PRILT even using the scenario-based modeling approach. This

guarantee holds when we select a pre-computed second stage dose distribution from (SA) to

deliver to a patient after u is observed.

When it came to the choice of intervals to cover the domain of U , we considered a quantile

partition strategy and a uniform partition strategy.

Quantile Strategy Given the desired cardinality S, each scenario s corresponds to the

appropriate quantile of the underlying distribution of patient TGFβ1 ratios. Since the

distribution is divided by quantiles, ps = 1/n for each s = 1, . . . , S.

Uniform Strategy The domain of TGFβ1 ratios is split into S intervals of equal length.

The probability of a realization falling into the interval S is then:

ps =
|S(s)|∑S
s′=1 |S(s′)|

, (5.62)

where |S(s)| is the number of ratio realizations in interval s in the underlying data set.

After speaking with clinical collaborators and seeing little difference in the performance

of these partitioning strategies, we continue the chapter using only the quantile strategy.

Table 5.5 shows the us values for the n-quantile strategy. We artificially imposed 4.5 as
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the maximum value in order to keep a few outliers from the true distribution from overly

influencing the model.

Table 5.5: Scenario-specific biomarker ratio realizations for different numbers of quantiles

1-quantile 2-quantile 3-quantile 4-quantile 5-quantile
u0 4.5 0.795323131 0.576232926 0.503458878 0.4182977484
u1 4.5 1.069878213 0.795323131 0.6559276511
u2 4.5 1.4 0.8919406165
u3 4.5 1.5589825295
u4 4.5

5.4.2 Sanity Check: Flexibility in stage-one dose distribution

First, we determine if different models generate different z(1) dose distributions for stage 1

of the treatment (for non-adaptive models, obviously, stage 1 and stage 2 dose distributions

are the same). Dropping the superscript (1) for the purposes of this comparison, let us

consider zNA
rob − zAA

rob and zNA
rob − zSA

rob. The elements of these difference vectors are sorted in

increasing order and displayed for the PTV and lung structures in Figure 5.3. We can see

that there is a significant amount of dose redistribution.

5.4.3 Analysis for a Two-scenario Patient Population

Suppose that a patient can only have two biomarker ratio realizations that correspond

to the 2-quantile discretization presented in Section 5.4.1. We will relax this assumption

later on and consider the entire biomarker ratio distribution, but as a proof of concept, let

us consider this simple case. Because these biomarker ratio realizations are far apart, they

can be seen as a patient either being resistant to radiation (u = 0.795323131), or sensitive

to radiation (u = 4.5).

In this two-scenario environment, we do not solve model (RP(z̄, u)) to get a stage 2 dose

distribution with a robust bound (i.e., a stage 2 dose distribution with PRILT bounded by

constraint (5.51)). Instead, we consider the stage 2 dose distributions as determined by the

pre-treatment models to highlight the differences in PRILT control. Clinically, provided there

are available resources, model (RP(z̄, u)) could be solved to determine the patient-specific

stage 2 dose distribution. With only two scenarios, it is sufficient for the AA model to use

the overall dose distribution z = wz(1) +(1−w)z(2) for the resistant patient and stage 1 dose

distribution z̃(1) for the sensitive patient (from model (AArob)).
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Figure 5.3: Sorted differences in first-stage dose distribution vectors (a) zNA
rob − zAA

rob lung, (b)
zNA
rob − zAA

rob PTV, (c) zNA
rob − zSA

rob lung, and (d) zNA
rob − zSA

rob PTV.

It is interesting to analyze what is considered to be a feasible range of mean lung doses for

sensitive and resistant patients in different pre-treatment models. For example, in (NArob) the

treatment is planned assuming the patient is sensitive. On the other hand, the (SA) models

would optimize for both the initial dose distribution and the distributions corresponding to

the potential biomarker ratio realizations, with population (or expected value) based model

allowing for more flexibility than the robust (or worst-case) model. The different overall

mean lung dose feasible regions can be found in Figure 5.4.

Another key insight we want to look at is the tradeoff between PRILT and PLTC for

the patient population, as well as for sensitive and resistant patients, for each value of α.

Consider the tradeoff curves for case 2 in Figures 5.5, 5.6, and 5.7 that compare the realized

PRILT and PLTC for each patient type (as well as the population averages) if treated with

the plans obtained from models (NA) and (SA). (Recall that scenario 1 represents resistant

patients, and scenario 2 — sensitive patients.) Connecting black lines show the points on the

curve corresponding to a particular α. These connecting lines are vertical for the stochastic
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Figure 5.4: Feasible region with respect to mean lung dose for the second stage dose distri-
bution for the different methods (WC Bound = “rob” strategies)

adaptive robust method (i.e., the PRILT bound is kept and additional dose is added to raise

the PLTC), and these lines are horizontal for the non-adaptive method (i.e., the overall dose

stays the same and only the PRILT changes based on patient sensitivity). We see that both

techniques produce realizations that are on similar curves, but how these are related differ

greatly. Consider PRILT being bounded at 15%. Table 5.6 shows the realized values for each

of the techniques (recall, without solving model (RP(z̄, u))). We see that the added flexibility

in the stochastic adaptive model with population bound gives us the best population-wide

average PLTC, but it comes at the expense of the sensitive patient receiving more dose. We

also see that the approximate adaptive methodology performs almost as well as the stochastic

adaptive robust model, with much less computational overhead. The approximate adaptive

method performs similarly to the stochastic adaptive robust model in Figure 5.7, and thus

is not shown separately. Figures 5.5, 5.6, and 5.7 show the same plots for case 4.

5.4.4 The Impact of Treatment Adaptation to Exact Biomarker Value, and of

Adaptation Timing

Having demonstrated the potential structural impact of treatment re-planning on patient

outcomes in the previous subsection, let us consider more realistic measurements of biomarker

values: after w percent of the treatment has been delivered, an exact biomarker value is

observed; in particular, we no longer crudely partition the population into “sensitive” and
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Figure 5.5: PRILT vs. PLTC for a two-scenario patient population, case 2, NA - pop and rob
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Figure 5.6: PRILT vs. PLTC for a two-scenario patient population, case 2, SA - pop

“resistant” patients, but consider the full continuous range of potential biomarker values.

Out of necessity, the formulations of (SA) models are still scenario-based, and second-

stage treatment decisions (x(2)(s), z(2)(s)) for biomarker values us, s = 1, . . . , S included

in the models are produced in the process of obtaining first-stage solutions. As mentioned

in Section 5.3.3.1, when the precise value of u is observed, the treatment planner faces a

choice: to invest the time and create a second-stage treatment plan from scratch by solving
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Figure 5.7: PRILT vs. PLTC for a two-scenario patient population, case 2, SA - rob

Table 5.6: Realized PRILT and PLTC for α = 0.85

PRILT PLTC

Resis. Sens. Average Resis. Sens. Average
Non-adaptive - rob 0.0432 0.15 0.0966 0.6225 0.6225 0.6225
Non-adaptive - pop 0.0608 0.2392 0.15 0.7202 0.7202 0.7202
Approx Adaptive - rob 0.15 0.15 0.15 0.8378 0.6225 0.7301
Stochastic - rob 0.15 0.15 0.15 0.8384 0.6225 0.7304
Stochastic - pop 0.1034 0.1963 0.15 0.8079 0.6827 0.7453

an instance of problem (RP), or to utilize the pre-computed second stage treatment plan

(x(2)(s), z(2)(s) with scenario s that corresponds to the observed value of u (see Section 5.4.1).

Suppose the treatment planner decides to use the latter approach, i.e., not to fine-tune

the second stage of the treatment based on the exact observed value of u. Figure 5.11 shows

resulting treatment outcomes (PRILT and PLTC ) as a function of the patient’s biomarker

value. (The (SA) models were solved with S = 4 quantile-based scenarios). The figure

shows that there are benefits to be gained over non-adaptive treatments even when using

this limited version of treatment adaptation: more dose is given to the patients who are

identified as being more resistant, leading to improved PLTC.

Next, let us study the treatments resulting from full re-planning to the exact observed

biomarker value. We will focus our attention on the robust (option 2) treatment planning

models. The results can be seen in Figure 5.12. These lines are essentially on top of each

other. We see that the flexibility of the treatment planning optimization model, clinical pro-
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Figure 5.8: PRILT vs. PLTC for a two-scenario patient population, case 4, NA - pop and rob
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Figure 5.9: PRILT vs. PLTC for a two-scenario patient population, case 4, SA - pop

tocol, specific case geometry, and choice of w allow us to perform well regardless of the dose

distribution. As mentioned before, these cases were chosen for their flexibility in planning

(i.e., tumor is position relatively far from organs at risk). While this can be considered wor-
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Figure 5.10: PRILT vs. PLTC for a two-scenario patient population, case 4, SA - rob

risome for these techniques (i.e., little benefit gained from solving more complicated models

when model (RP(z, u)) is used), not all treatment plans will be as forgiving.

Sometimes not all of these flexibility-generating elements occur and an informed initial

stage distribution offers significant benefits. One example of when an informed approach

leading into reoptimization is desirable is when w is large (i.e., reoptimization occurs closer

to the end of treatment). Consider the non-adaptive method and the approximate adaptive

method. As a proof of concept, the initial treatment plan was developed for u = 4.5 and

then adapted to a realized biomarker ratio of u = 0.795323131 with w = 0.33, 0.67, 0.90, 0.95.

We assume that the accuracy of the biomarker-informed PRILT relationship does not change

based on w for this example.

As we see in Figure 5.13, as w is increased, the impact of the initial dose distribution

increases as well. There are two main takeaways from these plots. First, it is better to

test earlier than later. This intuitively makes sense as we have more room for adapting

the treatment. Second, the approximated adaptive methodology’s initial dose distribution

is better for replanning and allows for more flexibility as w increases.

5.4.5 When to Use These Techniques

The need for these techniques occurs frequently in the clinic. Treatment planners should

use a technique when adaptation is likely, as the choice of initial dose distribution will

likely have some kind of an impact on the flexibility of adapting the plan. For example,

esophagitis often occurs when treating lung cancer patients. If the patient’s symptoms get
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Figure 5.11: (top) Treatment outcomes for non-adaptive plans, and plans with limited
(scenario-based only) adaptation, vs. patient’s biomerker value; Realized PRILT (top) and
PLTC (bottom) realized.

too extreme during the treatment, the patient is replanned to spare the esophagus. Without

proper preparation in the treatment planning process, the patient may experience even more

adverse effects or subpar tumor coverage. If adaptation is not likely to be forced to occur

due to complications, then it might be useful to plan for “boosting” the dose near the end

of treatment if the patient is responding well to the radiation. In most cases, and especially

when w is not clearly known, we recommend the approximate adaptive methodology.
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Figure 5.12: For w = 0.33, (left) realized PRILT vs. biomarker ratio realization for reoptimized
plans, (right) realized PLTC vs. biomarker ratio realization for reoptimized plans; all models
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Figure 5.13: PRILT vs. PLTC for w= (a) 0.33, (b) 0.67, (c) 0.90, and (d) 0.95

5.5 Conclusions and Future Research

In conclusion, the initial stage dose distribution has an important effect on the quality of

the adapted dose distribution. Without some kind of methodology in place to address this

issue, treatment planners could produce subpar treatment plans when they adapt to changes

in patient information. This methodology can be extended to handle multiple potential

adaptations and “future proof,” to a degree, a plan that is likely to be adapted.

One assumption that was made in this work was that the functions representing PRILT
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were certain and that the biomarker ratio realizations were exactly representative the pa-

tient’s true sensitivity to radiation. That is, there was no uncertainty around the probability

functions or biomarker ratio realizations incorporated into the models. A natural extension

to this work is to consider the probability functions and/or the biomarker ratio realization

as estimates and incorporate the associated uncertainty to the treatment planning model.

Another extension to the model could be made when considering the timing of replanning,

i.e., the value of w. Suppose that there are only enough clinical resources to adapt a patient’s

treatment to new information exactly once. Also suppose that the information you obtain

from testing the patient (e.g., a biomarker test) increases in accuracy as w increases. Waiting

to get better information competes with the notion from Section 5.4.4 that more adaptive

flexibility is gained by obtaining information earlier. In these models, treatment planners

would need to decide pre-treatment when is the best time gather new information and adapt,

w, and how to plan knowing that adaptation will occur.
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APPENDIX A

Extending the Feasible Aperature Region by

Restricting Gantry Travel Time

We can consider a family of potential choices for Ak̄k`,k`+1
. Let Ak̄k`,k`+1

(t) be defined as

the following equation with fixed angular speed t.

Ak̄k`,k`+1
(t) =

{
A ∈ A : tδk` ≥ TLk`,k̄(Ak` , A), tδk̄ ≥ TLk̄,k`+1

(A,Ak`+1
)
}

for tδk̄ ≤ TUk̄ , tδk` ≤ TUk` (A.1)

Clearly, Ak̄k`,k`+1
(t) ⊆ Ak̄k`,k`+1

(t′) for t ≤ t′ and Ak̄k`,k`+1
(TUk`) = Ak̄Uk`,k`+1

is the largest set.

This information will be used when determining the potential MLC leaf arrangements when

solving the pricing problem. One thing to note is that the choice of Ak̄k`,k`+1
⊆ Ak̄Uk`,k`+1

will

influence the behavior of the algorithm in later stages. If we choose a smaller set Ak̄k`,k`+1
,

that will result in less flexibility in the current set of apertures, but may allow for greater

flexibility in later stages.

We want to know explicitly how our selected angular travel time t and preceding and

following apertures k` and k`+1 control the feasible aperture region. That is, for each row,

we would like to determine the feasible MLC leaf positions given s, k`, and k`+1 for potential

control point k̄.

Let us assume that t, k`, and k`+1 are fixed along with apertures Ak` , and Ak`+1
. We

would like to know the feasible MLC leaf positions for apertures at control point k̄. First, let

Ak̄r be the rth row of aperture Ak̄. Then, we can define set Ak̄r(t) as the set of feasible rows

for the rth row of control point k̄ with some abuse of notation for in our time constraint.

Ak̄r(t) =
{
a : tδk` ≥ TLk`,k̄(Ak`r, Ak̄r), tδk̄ ≥ TLk̄,k`+1

(Ak̄r, Ak`+1r)
}

(A.2)
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Let v be the maximum speed an MLC leaf can move and N be the rightmost leaf setting.

The total distance a leaf can cover is v times the time it is moving. Therefore, we can see

the following relationship.{
a : tδk` ≥ TLk`,k̄(Ak`r, Ak̄r)

}
= {(L,R) : 0 ≤ L ≤ R ≤ N ;

|L− Lk` |, |R−Rk` | ≤ vTt(k`, k̄)
}

(A.3)

We can define the leaf positions in the following manner.

Ak̄r(t) = {(L,R) : 0 ≤ L ≤ R ≤ N ; |L− Lk` |, |R−Rk` | ≤ vTt(k`, k̄);

|L− Lk`+1
|, |R−Rk`+1

| ≤ vTt(k̄, k`+1)} (A.4)

This family of apertures is an easy extension to combat greediness when solving the

pricing problem.
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APPENDIX B

Derivations for PRILT and PLTC

PRILT derivation

Consider constraint (5.34) reproduced below:

S∑
s=1

ps

1 + eγ
2
0+(γ2

1+γ2
2u
s)z̄lung(s)

≥ α.

We will show that the left hand side of (5.34) is decreasing in z̄lung(s) and concave as

long as z̄lung(s) corresponds to a PRILT less than 50%.

We can rewrite this complicating constraint as the following:

S∑
s=1

ps
1 + eδ

s
1z
s−δ0
≥ α, (B.1)

where, for convenience, we have

δ0 = −γ2
0 (B.2)

δs1 = γ2
1 + γ2

2u
s (B.3)

zs = z̄lung(s). (B.4)

We expect that δ0, δ1 > 0 (the initial parameter estimates show have γ2
0 < 0, γ1

2 , γ
1
2 > 0).
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Now consider the following function:

f s(zs) =
1

1 + eδ
s
1z
s−δ0

. (B.5)

It is easy to see that this function is decreasing in zs. Moreover,

lim
zs↓−∞

= 1 (B.6)

f s(0) =
1

1 + e−δ0
(B.7)

f s
(
δ0

δs1

)
=

1

2
(B.8)

lim
zs↑∞

= 0, (B.9)

where the first is clinically irrelevant but helps understand the shape of the function.Consider

the solution to the following:
1

1 + eδ
s
1z
s−δ0

= α, (B.10)

which is a feasible solution to the patient-specific strategy. In particular, this yields:

z̄lung(s) =
ln
(

1−α
α

)
+ δ0

δs1
. (B.11)

Suppose α = 0.85; then for us = 0 this is at 21.4 Gy, and for us = 5 this is at 11.1 Gy.

These would correspond to bounds on the mean lung dose that correspond to a particular

PRILT for a given biomarker realization. Now, consider the point ẑs ≡ δ0/δ
s
1 = 5.37

0.17+0.031us
Gy.

This point is an inflection point. For us = 0 this is at 31.7 Gy, and for us = 4.5 this is at 17.4

Gy. The constraint function is concave whenever zs ≤ ẑs for all s = 1, . . . , S. This means

that the function is concave on the feasible region as long as we assume that no patient gets

a MLD that would increase their probability of RILT to 1
2

or more. Restricting PRILT to

50% is a clinically reasonable hard bound for RILT. Because the complicating constraint

function is not linear or quadratic, linear program (LP) solvers (such as Gurobi or CPLEX)

cannot handle it directly. However, note that it is separable in zs. Therefore, it is easy to

approximate by a piecewise-linear function as long as we limit ourselves to a part of the

function where it is concave. We do this by having a hard bound on PRILT in all models

where this might be violated (i.e., PRILT(z, u) ≤ 1
2

for all dose distributions) included in the

construction of dose distribution set Z.
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PLTC derivation

Consider presented stochastic adaptive objective function presented in Section 5.3.3 with

PLTC function from 5.2.1 reproduced below. We will show that this function is separable in

F (z(s)) and concave when the probability of complication exceeds 1− e−1 ≈ 63.2%.

S∑
s=1

psPLTC (z(s)) =
S∑
s=1

psS0(2)e
β0−β1F (z(s))

(B.12)

While we would like F (z) to be D95 (a dose-volume function), we instead use some kind

of proxy function to facilitate the solving of the optimization model. We let F (z) be a

linearized EUD:

F (z) = azmin
PTV + (1− a)z̄PTV (B.13)

zmin
PTV = min

j∈VPTV

zj (B.14)

z̄PTV =
1

|VPTV|
∑

j∈VPTV

zj, (B.15)

with function parameter estimates S0(2) = 0.298, β0 = 5.928, and β1 = 0.0988. Note that

the objective function is separable in F (z(s)). Now let

f(d) = 1− S0(2)e
β0−β1d = exp

(
lnS0(2) · eβ0−β1d

)
, (B.16)

(i.e., f(d) represents probability of local progression (which we want to minimize) and 1−f(d)

is probability of no local progression) where d = F (z). Then its derivative is the following:

f ′(d) = exp
(
lnS0(2) · eβ0−β1d

)
· lnS0(2) · β1 · eβ0−β1d < 0. (B.17)

Since 0 < S0(2) < 1, f is decreasing in d. Moreover, its second order derivative is the

following:

f ′′(d) = −β2
1 · lnS0(2) · eβ0−β1d · exp

(
lnS0(2) · eβ0−β1d

)
·
[
lnS0(2) · eβ0−β1d + 1

]
. (B.18)

This means that f ′′(d) > 0 and hence f is convex in w whenever satisfies the following:

lnS0(2) · eβ0−β1d + 1 > 0, (B.19)

or, equivalently,
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F (z) = d >
β0 − ln

[
1

ln(1/S0(2))

]
β1

, (B.20)

and concave in d otherwise. This lower bound on F (z) is added to our models as a constraint

in feasible dose distribution set Z presented in Section 5.3. Clinically, plans would not be

allowed to have this low of F (z), so adding a clinically reasonable bound to maintain a

desirable model structure will not impact treatment plan quality.
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APPENDIX C

Full Linear Models for Stochastic Adaptive Lung

Formulations

Option 1: Population-based bound on expected PRILT. The following model is the

LP formulation of the (SApop) model including the piecewise linear approximations.

(SALP
pop) maximize

x(1), z(1), x(2)(s), z(2)(s),
z(s), h1

s, h
2
s, s=1,...,S

S∑
s=1

psh
1
s (C.1)

subject to

z
(1)
j =

∑
i∈N

Dijx
(1)
i j ∈ V (C.2)

z
(2)
j (s) =

∑
i∈N

Dijx
(2)
i (s) j ∈ V ; s = 1, . . . , S (C.3)

zj(s) = wz
(1)
j + (1− w)z

(2)
j (s) j ∈ V ; s = 1, . . . , S (C.4)

zmin
PTV(s) ≤ zj(s) j ∈ VPTV; s = 1, . . . , S (C.5)

z̄PTV(s) =
1

|VPTV|
∑

j∈VPTV

zj(s) s = 1, . . . , S (C.6)

zEUD
PTV (s) = azmin

PTV(s) + (1− a)z̄PTV(s) j ∈ VPTV; s = 1, . . . , S (C.7)

z̄lung(s) =
1

|Vlung|
∑

j∈Vlung

zj(s) s = 1, . . . , S (C.8)

zEUD
PTV (s) >

β0 − ln
[

1
ln(1/S0(2))

]
β1

s = 1, . . . , S (C.9)

121



S∑
s=1

psh
2
s ≥ α (C.10)

h1
s ≤ H1

(
zEUD

PTV (s)
)

s = 1, . . . , S (C.11)

h2
s ≤ H2

s (z̄lung(s)) s = 1, . . . , S (C.12)

z(1) ∈ Z(1) (C.13)

z(2)(s) ∈ Z(2) s = 1, . . . , S (C.14)

z(s) ∈ Z s = 1, . . . , S (C.15)

x
(1)
i ≥ 0 i ∈ N (C.16)

x
(2)
i (s) ≥ 0 i ∈ N ; s = 1, . . . , S, (C.17)

where H1(z) is a piecewise-linear and concave function and H2
s (z̄lung(s)), for s = 1, . . . , S, is

a piecewise-linear and concave function that satisfy the following:

H1(z) ≈ S0(2)e
β0−β1z (C.18)

H2
s (z̄lung(s)) ≈ 1

1 + eγ
2
0+(γ2

1+γ2
2u
s
1)z̄lung(s)

s = 1, . . . , S. (C.19)

Option 1: Robust bound on PRILT. The following model is the LP formulation of the

(SArob) model including the piecewise linear approximations.

(SALP
rob) maximize

x(1), z(1), x(2)(s), z(2)(s),
z(s), h1

s, h
2
s, s=1,...,S

S∑
s=1

psh
1
s (C.20)

subject to

z
(1)
j =

∑
i∈N

Dijx
(1)
i j ∈ V (C.21)

z
(2)
j (s) =

∑
i∈N

Dijx
(2)
i (s) j ∈ V ; s = 1, . . . , S (C.22)

zj(s) = wz
(1)
j + (1− w)z

(2)
j (s) j ∈ V ; s = 1, . . . , S (C.23)

zmin
PTV(s) ≤ zj(s) j ∈ VPTV; s = 1, . . . , S (C.24)

z̄PTV(s) =
1

|VPTV|
∑

j∈VPTV

zj(s) s = 1, . . . , S (C.25)

zEUD
PTV (s) = azmin

PTV(s) + (1− a)z̄PTV(s) j ∈ VPTV; s = 1, . . . , S (C.26)

z̄lung(s) =
1

|Vlung|
∑

j∈Vlung

zj(s) s = 1, . . . , S (C.27)
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zEUD
PTV (s) >

β0 − ln
[

1
ln(1/S0(2))

]
β1

s = 1, . . . , S (C.28)

h1
s ≤ H1

(
zEUD

PTV (s)
)

s = 1, . . . , S (C.29)

z̄lung(s) ≤
ln
(

1−α
α

)
− γ2

0

γ2
1 + γ2

2u
s
1

s = 1, . . . , S (C.30)

z(1) ∈ Z(1) (C.31)

z(2)(s) ∈ Z(2) s = 1, . . . , S (C.32)

z(s) ∈ Z s = 1, . . . , S (C.33)

x
(1)
i ≥ 0 i ∈ N (C.34)

x
(2)
i (s) ≥ 0 i ∈ N ; s = 1, . . . , S, (C.35)

where H1(z) is a piecewise-linear and concave function that satisfies the following:

H1(z) ≈ S0(2)e
β0−β1z . (C.36)

Note: As long as we limit ourselves to values α > 1
2

then, by construction, the bounds

in (C.10) are uniformly looser than the bounds in (C.30), so that option 2 is indeed more

conservative. We should also make sure to restrict ourselves to values of α that ensure that

the upper bounds (C.30) are nonnegative, i.e.,

α <
1

1 + eγ
2
0

,

which, for our parameter estimates, means α < 0.99538.
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