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ABSTRACT 

 

Type 1 diabetes is caused by autoimmune destruction of insulin-secreting beta-cells 

found in the islets of Langerhans of the pancreas. Severe cases can be treated in a 

minimally invasive way by islet transplantation; however, islet transplantation has been 

limited by an inability to measure islet viability and potency prior to transplant. To 

address this need, we have developed a microfluidic platform to measure both 

intracellular Ca2+ flux and insulin secretion, two important indicators of beta-cell 

function, at high temporal resolution during glucose treatment. Combining these 

measures on islets required methods for measuring fluorescence at two separate 

locations on a microfluidic system. To accomplish this objective, we used a 2-chip 

system in which perfusate was collected in fractions while [Ca2+]i was measured using 

fluorescence imaging. The perfusate was subsequently analyzed for insulin by 

microchip electrophoresis with laser-induced fluorescence detection (MCE-LIF) using 

the same fluorescence microscope. We were able to distinguish first and second phase 

insulin secretion from batches of 8-10 islets with 80 s temporal resolution. Measured 

basal and peak first phase insulin secretion correlated well with previously reported 

results. Total analysis time using this system was <90 min. 

 

For an alternative approach to islet evaluation, we developed a metabolomic method to 

identify potential biomarkers of islet health for transplant. Using a miniaturized sample 

preparation method and HPLC-TOF-MS, we were able to identify 62 metabolites reliably 

in whole islet samples. To mimic damage that can occur during islet transplant, we 

induced oxidative stress in islets using H2O2 and measured their immediate 

metabolomic response as well as their response 1-4 h following stress removal. 

Increased concentrations of pentose phosphates, glucose-6-phosphate, and fructose 

bisphosphate in the immediate response corresponded to glycolysis blockage and 

possibly increased flux through the pentose phosphate pathway. Post-stress responses 
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included increased levels of free fatty acids, phospholipids, long chain CoAs, and HMG-

CoA as well blunted malonyl CoA concentrations, potentially relating to alterations in the 

glycerolipid/free fatty acid cycle and mevalonate pathway. These metabolites could 

comprise a metabolic signature of stressed cells for islet evaluation prior to 

transplantation.
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CHAPTER 1  

Introduction 

 

The overall goal of this work was to develop analytical techniques for evaluating 

function in pancreatic islets of Langerhans, with the ultimate purpose of screening islet 

viability prior to clinical islet transplantation in type 1 diabetes patients. A secondary 

objective of islet evaluation was to study islet physiology and effects of stressors on islet 

function as they relate to mechanisms of diabetes pathogenesis. Although this work 

focused specifically on islets, the methods developed could potentially be used to study 

other cell systems as well. 

 

Diabetes Background 

The disease diabetes mellitus is characterized by a lack of proper blood glucose 

regulation. Diabetes is a serious concern in the United States, affecting 29.1 million 

people (9.3% of the population) and costing an estimated $245 billion annually (2014) 

(1). There are two distinct classes of this disease: type 1 diabetes, also known as 

insulin-dependent diabetes mellitus (IDDM), which involves autoimmune destruction of 

insulin-secreting β-cells, leading to insulin deficiency; and type 2 diabetes, or noninsulin-

dependent diabetes mellitus (NIDDM), which occurs when tissues become resistant to 

insulin action, eventually leading to β-cell failure and a loss of β-cell mass (2). Type 2 

diabetes is more prevalent than type 1, accounting for ~90-95% of Americans 

diagnosed with the disease (1).  

 

Islets of Langerhans 

Blood glucose levels are regulated in part by pancreatic endocrine tissue clustered into 

groups of cells called the islets of Langerhans. There are ~2 million islets in a human 

pancreas, with each islet containing ~2000-4000 cells. Islets can vary in size, with an 
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average diameter of ~150 µm, and they are comprised of 5 major cell types:  glucagon-

secreting ɑ-cells, insulin-secreting β-cells, somatostatin-secreting δ-cells, pancreatic 

polypeptide-secreting PP cells, and grehlin-secreting ε-cells. The most prevalent cell 

types in an islet are β-cells (~50-80%) and ɑ-cells (~15-20%) (3). Their associated 

hormones, insulin and glucagon, are important regulators of glucose homeostasis. 

Human blood glucose levels are maintained at a constant concentration of ~5 mM. 

When blood glucose concentration falls below 5 mM, glucagon is secreted from the 

pancreas, resulting in the breakdown of glycogen stores in the liver. When blood 

glucose concentration rises above 5 mM, insulin is secreted and carried through the 

bloodstream, where it interacts with insulin receptors on tissues, causing them to 

increase their blood glucose intake (4, 5). The release of insulin from healthy β-cells in 

response to a glucose challenge has been shown to be biphasic and pulsatile (6). 

 

The first phase of glucose-stimulated insulin secretion (GSIS) is associated with the so-

called KATP-dependent pathway of insulin secretion (Figure 1.1). In this pathway, an 

increase in extracellular glucose concentration causes increased glucose uptake across 

glucose transporter- type 1 (GLUT-1) in humans or type 2 (GLUT-2) in rodents (7). 

Once inside the β-cell, glucose undergoes glycolysis, and glycolytic products enter the 

citric acid cycle and undergo oxidative phosporylation, resulting in the production of 

adenosine triphosphate (ATP). The consequent increase in ATP/ADP ratio causes ATP-

regulated K+ channels to close, thus preventing K+ from leaving the cell. The increased 

positive charge inside the cell due to increased intracellular [K+] leads to membrane 

depolarization, resulting in the opening of voltage-gated L-type Ca2+ channels. 

Increased levels of Ca2+ induce vesicles containing insulin to fuse with the plasma 

membrane of the cell, releasing insulin into the extracellular space through exocytosis. 
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Figure 1.1. KATP-dependent pathway of GSIS. Abbreviations are: glucose transporter-2 (GLUT-2), 
adenosine triphosphate (ATP), adenosine diphosphate (ADP). 

 
Although KATP-dependent GSIS has been well-characterized, investigations have 

determined that it cannot be solely responsible for all GSIS. When diazoxide is used to 

hold KATP channels open, glucose still is able to stimulate insulin release when β-cell 

membranes are depolarized using high [K+] (8). Additionally, when sulfonylureas are 

used to hold KATP channels closed, a glucose stimulus again increases insulin secretion 

(9). Taken together, these experiments provide evidence for a KATP-independent 

pathway of GSIS. 

 

KATP-independent, or amplifying, pathways are thought to be associated with the second 

phase of GSIS, since these pathways serve only to amplify an existing insulin response 

and do not stimulate insulin secretion unless membrane depolarization and [Ca2+]i influx 

have occurred (10). Several molecules have been implicated as possible amplifiers of 

insulin secretion, including glutamate (11), long chain acyl CoAs (10), mitochondrial 

GTP (12), AKG (13), and malonyl CoA (14, 15). Anaplerosis (replenishment of citric acid 

cycle metabolites) has been hypothesized to be involved in the KATP-independent 

pathways of GSIS; evidence for such a pathway includes high levels of expression of 

pyruvate carboxylase (PC) and malic enzyme (ME) in islets (16). It has been shown that 

~50% of glucose carbon entering the mitochondria is metabolized by the anaplerotic 

enzyme PC in rat islet tissue, resulting in a net increase in citrate acid cycle metabolites 

in the mitochondria. These metabolites (e.g. citrate and malate) are then exported to the 
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cytosol, where they may be involved in insulin secretion signaling (13). This process is 

thought to occur through either a pyruvate/malate or pyruvate/citrate shuttle or through 

malonyl CoA formation and lipid esterification processes (16). Anaplerotic and 

cataplerotic reactions and products are summarized in Figure 1.2 (13). 

 

 

Figure 1.2. Anaplerotic and cataplerotic pathways. It is thought that KATP-independent pathways of 
GSIS are related to anaplerosis either through the pyruvate-malate or pyruvate-citrate shuttle. The 
pyruvate-citrate cycle involves cataplerosis of citrate (Cit) from the mitochondria to the cytosol, 
where it is converted to malonyl CoA through acetyl CoA.  Malonyl CoA has been suggested as a 
metabolic coupling factor for GSIS. The pyruvate-malate shuttle involves cataplerosis of malate 
from the mitochondria to the cytosol, where it is converted to pyruvate or oxaloacetate, forming 
NADPH and NADH in the process, which also have been considered as possible coupling factors 
for GSIS. Reproduced with permission from reference 13. 

 

Glucose and fatty acid metabolism interact through a glycerolipid/free fatty acid 

(GL/FFA) cycle, which consists of both anabolic and catabolic pathways (Figure 1.3). In 

the lipogenesis portion of the cycle, glycolysis-derived glycerol-3-phosphate (G3P) 

esterifies with fatty acyl CoA to form lysophosphatidic acid (LPA). LPA in turn is used to 

synthesize phosphatidic acid (PA), which is then hydrolyzed to diacylglycerol (DAG) and 
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finally culminates in triacylglycerol (TG). The lipolysis portion of the cycle reverses this 

pathway, hydrolyzing DAG from TG, which is further hydrolyzed to monoacylglycerol 

(MG). Glycerol and FFA are then formed from MG. This process is futile in terms of 

energy consumption/generation; however, altered flux through the GL/FFA cycle has 

been demonstrated in Zucker fatty rats and in models of type 2 diabetes (17). This 

signifies that flux through the GL/FFA cycle is important for regulation of GSIS. 

 

 

Figure 1.3. Interaction of glucose and fatty acid metabolism. Metabolites involved in the GL/FFA 
cycle pathway are shown in red, metabolites involved in the anaplerotic pathway are shown in 
blue, and metabolites involved in the KATP-dependent pathway are shown in green. Glucose-
derived glycerol-3-phosphate (Gro3P) helps regenerate NAD

+
 required for metabolism of 

glyceraldehyde-3-phosphate (GA-3-P) to 3-phosphoglycerate (3-PG). Pyruvate-derived citrate, 
formed via anaplerotic reactions, gives rise to malonyl-CoA, which inhibits β-oxidation of fatty 
acids. Fatty acyl CoAs (FA-CoA) are redirected towards formation of phospholipids, thus driving 
the GL/FFA cycle. Lipid molecules involved in this cycle can potentially act as signaling 
molecules for amplification of insulin secretion. Flux through the GL/FFA cycle has been shown to 
be altered in type 2 diabetes. Reproduced with permission from reference 17. 

 

The pentose phosphate pathway (PPP) has also been found to be associated with 

insulin release. Although the PPP is not highly active in β-cells, increases in the PPP 

metabolites sedoheptulose-7-phosphate (S7P), pentose phosphates, 6-

phosphogluconic acid (6PG), and phosphoribosyl pyrophosphate (PRPP) have been 
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observed in response to glucose stimulation in INS-1 cells (18) and in rat islets (19). 

Moreover, inhibition of the PPP through inhibition of glucose-6-phosphate 

dehydrogenase by trans-dehydroepiandrosterone (DHEA) reduces pentose phosphate 

levels and insulin secretion following glucose stimulation (19). 

 

The KATP-independent pathway of GSIS has been shown to be impaired in β-cells 

derived from animal models of type 2 diabetes. Insulin release is blunted in diabetic rat 

islets, while [Ca2+]i is normal compared to control. When high [K+] is used to depolarize 

plasma membranes in the presence of diazoxide, insulin release is significantly lower in 

diabetic rat islets as compared to control, indicating that the reduction in insulin 

secretion is not related to KATP channel function (20). Indirect evidence has shown the 

KATP-independent pathway to be impaired in diabetic human patients as well (10). Loss 

of KATP-dependent insulin secretion is observed in prediabetic type 1 diabetes patients 

(2). Although the mechanisms of disease progression differ, increasing loss of β-cell 

mass over time leads to an eventual inability to produce enough insulin in response to 

glucose to properly regulate blood glucose levels in both type 1 and type 2 diabetes. 

  

Type 1 Diabetes Treatment 

There are several treatment options available for type 1 diabetes. The most common 

method of treatment is the administration of exogenous insulin, either through injection 

or through an insulin pump. While blood glucose levels can often be regulated 

adequately with these methods, they are inconvenient for patients because blood 

glucose levels must be monitored regularly throughout the day through finger-pricking 

and patients must either inject themselves several times per day or wear a pump at all 

times, potentially restricting their daily activities. Additionally, exogenous insulin 

administration does not mimic the pulsatile patterns seen in endogenous insulin 

secretion. Some patients have difficulty achieving glycemic control with exogenous 

insulin and suffer life-threatening hypoglycemic episodes (1). For these patients, whole 

pancreas transplantation has been a successful method of treatment. 
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Pancreas transplantation is a major operation, and is most often performed in 

conjunction with a kidney transplant. While pancreas transplantation is quite successful, 

with ~85% of transplantation recipients remaining insulin-independent one year post-

transplant, it has a high risk of complications and is thus only indicated for a small 

subset of diabetes sufferers (22). Another alternative, still in clinical trials, is islet 

transplantation. Islet transplantation, which involves infusion of donor islets into a vein in 

the recipient’s liver (Figure 1.4), is minimally invasive and has a lower risk of 

complications compared to whole pancreas transplantation. However, islet 

transplantation has not been as successful. Many times, patients need several islet 

infusions to achieve insulin-independence, and the rates of long-term insulin-

independence (~55%, sustained over 5 years) have been lower in comparison to whole 

pancreas transplantation (21). 

 

 

Figure 1.4. Schematic of islet transplantation. Islets are isolated from a donor pancreas and 
injected into the portal vein in the recipient’s liver. This process is minimally invasive. Image 
(open-source) courtesy of the University of Alberta via the Clinical Islet Transplantation (CIT) 
Consortium (22). 

 

Multiple reasons exist for islet failure in the context of islet transplantation. Islets lose 

vascularization during isolation and require the formation of new blood vessels for 

nutrient supply once transplanted. The current insertion site in the portal vein of the liver 

is not ideal for islet re-vascularization. Recent work has attempted to identify alternative 

locations for transplant that provide ease of surgical access, close proximity to blood 

supply, and capacity for a large transplant volume. Possible transplant sites include the 
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spleen, gastric submucosa, intramuscular, and subcutaneous (23). Because islets are 

allogeneic, immunosuppressants are required to prevent an immune response in 

transplant recipients. Encapsulation of islets is being investigated as a method to 

prevent immune rejection of transplanted islets. This method has the added benefit of 

allowing the xenotransplantation of islets, thus reducing the demand for human 

pancreata availability (24). Another potential source of β-cells for transplantation is 

through stem cell differentiation (25). 

 

Islet Evaluation for Transplantation 

There is currently no adequate way to determine the viability and potency of an islet 

preparation prior to transplantation, although such a method is necessary for regulatory 

reasons and to improve the success rate of clinical islet transplants. Requirements for 

any potential viability assay are that it is β-cell specific, correlates to transplantation 

outcome, and is fast. The median culture time for islets prior to human transplantation 

reported in a retrospective study is 20 h (26), so an assay would need to be able to be 

completed and analyzed within this timeframe to allow effective decisions about using a 

particular islet preparation. 

 

Viability is currently measured using fluorescein diacetate/propidium iodide (FDA/PI) to 

assess membrane integrity (27). This test, however, does not account for early 

apoptotic cells, and does not correlate with clinical results. The current standard for 

determining potency is the diabetic nude mouse bioassay (NMB), in which islets are 

transplanted into a diabetic, immunodeficient mouse to determine whether they will 

reverse diabetes. The NMB correlates very well with islet transplantation success, but it 

can only be used retroactively, because several days to weeks are required to 

determine the outcome of the test. Static glucose-stimulated insulin secretion (GSIS), as 

measured through enzyme-linked immunosorbent assay (ELISA), has been used to 

evaluate islet potency prior to transplantation; however, the results have not correlated 

well with clinical outcomes (27). While the reason for this lack of correlation is unknown, 

there are several plausible explanations. Because the static GSIS test measures only 

bulk insulin release, it does not capture the dynamics of insulin secretion, which are 
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important to β-cell function (28). Additionally, stresses from isolation could temporarily 

impair insulin secretion from otherwise viable islets (29).  

 

Many researchers have been working to develop assays that can successfully predict 

clinical outcomes prior to transplantation. Work has focused on cell membrane integrity 

tests (30), mitochondrial health assays, including oxygen consumption rate (OCR) (29, 

31, 32) and ATP/ADP ratio (33, 34), and dynamic GSIS (27, 28, 35). A capillary 

electrophoresis (CE)-based microfluidic chip has previously been developed in our lab 

to measure dynamic GSIS from single islets (36), and was subsequently improved to 

allow parallel measurement of GSIS from single islets in four (37) or fifteen (38) 

channels. Using these devices, down to 6 s temporal resolution can be achieved (36). 

Such a system can record 300 electropherograms over a 30 minute timeframe in near 

real time, providing measurement of 1st and 2nd phase insulin secretion dynamics, 

including 3-5 min oscillations during 2nd phase release, that cannot be measured by 

static incubations. 

 

Another microfluidic device has been developed for detection of multiple components of 

the GSIS pathway. Both calcium influx and mitochondrial membrane potential changes 

are measured from batches of 25-30 islets in response to glucose stimulation at 

established gradients. Perfusate from the chip is collected, and GSIS is determined by 

ELISA (28, 35). While this system is able to measure islet potency via several different 

parameters, ELISA is time-consuming, labor-intensive, requires large volumes (100-200 

µL per assay), and is costly (over $5 per assay on average). One 30 min glucose 

stimulation experiment with fractions collected every minute would require 30 individual 

assays alone, and take several hours to complete following the experiment. One of the 

objectives of this dissertation was to develop a microfluidic chip that combines the 

multiparametric advantages of this device with the speed, temporal response, and cost 

advantages of on-chip GSIS measurements. 
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Microfluidic Monitoring of Cells 

We elected to pursue a microfluidic approach to rapidly assay islet cell function. 

Microfluidic devices are useful for studying cellular systems because their dimensions 

(µm-scale) are compatible with cell size, and they allow precise control over the cellular 

environment. Using microfluidics, many processes (e.g. cell trapping, cell lysis, reagent 

addition, separation, and detection) can be incorporated onto a single device, resulting 

in a highly automated system. Reagent consumption is much lower in microfluidic 

devices than in conventional systems, resulting in lower costs and less waste. Because 

of these advantages, microfluidics has been adapted for a wide range of applications, 

including DNA analysis (39), in vitro fertilization (40), disease diagnostics (41), 

proteomics (42), high-throughput screening (43), and cell secretion studies (44). 

 

CE -Based Immunoassay 

One of the workhorse techniques in biochemical analyses is the immunoassay. ELISA 

and radioimmunoassay (RIA) are extremely sensitive techniques that are used to 

quantify molecules in a sample based on antibody-antigen interactions. However, these 

techniques suffer from long analysis times and high costs as described above. For time 

scale experiments, fractions must be collected for each desired measurement, which 

limits the temporal resolution that can be achieved due to sample size requirements. 

Temporal resolution is important in order to observe cellular secretion dynamics that 

can occur on a second-to-minute timescale. CE-based immunoassay (CE-IA) was thus 

developed to overcome some of these limitations.  

 

CE-IA involves a solution-phase reaction of antigen with antibody prior to separation of 

antigen-antibody complexes from free molecules (45). Since its introduction, CE-IA has 

been described for the analysis of a wide array of molecules, including drugs (46), 

hormones (47), proteins (48), peptides (49), antibiotics (50), and toxins (51). CE-IA 

became a commonly used technique for detecting molecules secreted from cells (52), 

and was later adapted for use in an on-line microfluidic system (36, 44). Using 

microchip electrophoresis (MCE), separation times of 5-10 s can be routinely achieved, 

allowing detection to be completed in near-real time. 
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Despite its advantages, CE-IA typically exhibits higher concentration detection limits 

than ELISA. Most commercial ELISA kits report protein detection limits of 100 pg mL-1 

(53), whereas insulin detection limits using MCE in our lab have been 2-5 ng mL-1 (38). 

Most typical detectors used with MCE are concentration-sensitive. Thus, in order to 

detect low concentrations of analytes that are secreted from cells in a continuous flow 

environment such as MCE, low perfusion flow rates are optimal to minimize sample 

dilution. This must be balanced with high enough perfusion rates to obtain fast temporal 

resolution. Temporal resolution can be improved using segmented flow, or droplet-

based, microfluidics, in which small plugs of aqueous sample are separated by an 

immiscible oil phase to prevent diffusion (43). In this work, we explored continuous and 

segmented flow methods for collection of perfusate prior to MCE. Maintenance of 

temporal resolution under these conditions was critical for observing 1st and 2nd phase 

insulin secretion dynamics. 

 

Detection on Microfluidic Chips 

Multiple modes of detection exist for microfluidic chips, including electrochemical, mass 

spectrometry (MS)-based, and laser-induced fluorescence (LIF) detection. 

Electrochemical detection is advantageous because it is more compact than other 

methods, suggesting that it is more amenable to true "lab-on-a-chip" techniques. 

However, it is necessary to keep the high voltages used for electrophoretic separation 

on-chip distinct from the electrodes. Electrochemical detection on-chip usually involves 

either amperometry or conductimetry. In amperometry, oxidation and reduction currents 

are measured at a working electrode. Suppression of the separation voltage can be 

achieved by designing the channel cross-section to widen immediately in front of the 

detector electrode, resulting in a drop of resistance in the solution. Amperometry can 

only be used to measure electroactive species (54). Conductimetry involves applying 

AC voltage between two electrodes and measuring the electric current to determine 

solution conductivity (55). Contactless conductivity detectors, in which the electrodes 

are not in direct contact with the measured solution, have typically been used in MCE. 
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MCE has been coupled to mass spectrometry using matrix-assisted laser desorption 

ionization (MALDI) and electrospray ionization (ESI) interfaces. MS has the advantage 

of being able to detect a large number of unlabeled compounds and to give structural 

information. However, interfacing MCE to MS presents some challenges. MALDI 

detection is typically done off-line because the sample needs to be crystallized with 

matrix, which is not easily achieved in a continuous flow format (56). Although ESI is 

well-suited for continuous flow applications, few CE electrolytes are compatible with 

ESI. ESI can be coupled to a chip using spray generated directly on the planar side of 

the chip or using a nanospray emitter tip inserted into an on-chip channel. Spray 

generated on the side of the chip is subject to band broadening effects because fluid 

tends to spread over the surface prior to the onset of electrospray. Nanospray emitter 

tips result in less band broadening, although these effects can be variable from chip-to-

chip due to differences in capillary alignment within the channel (57). 

 

The most commonly used detection system with MCE is LIF due to its superior 

concentration detection limits in low volumes, down to the pM range (58). Materials 

used to fabricate microfluidic devices are typically transparent (e.g. glass or 

polydimethylsiloxane (PDMS)), so measuring fluorescence in a channel is 

straightforward. The downsides of this detection method are that it requires the sample 

to be fluorescent or labeled with a fluorescent tag, and most of the associated 

instrumentation (e.g. confocal microscopes and lasers) is large and bulky. 

 

Recent work has focused on reducing the size of LIF systems so they can approach the 

"lab-on-a-chip" ideal. Typical optical arrangements for detection on a microfluidic 

channel are shown in Figure 1.5, including confocal (3a), bevel incident (3b-c), and 

orthogonal (3d-f). Confocal microscopy is the most commonly used configuration. 

Miniaturization of typical optical elements used in confocal microscopy has been 

demonstrated, although further miniaturization is limited by complicated material 

handling methods (59). Bevel incident configurations have suffered from high 

background signal due to reflection and refraction from the microchip surface (60). 

Orthogonal arrangements are amenable to insertion of an optical fiber into the chip for 
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excitation and/or emission, but LODs are higher than with a confocal arrangement, 

possibly due to poor focusing and collection capabilities of optical fibers (61). 

Alternatively, optical elements, including lenses and waveguides, have been fabricated 

directly into microfluidic devices (62–64). This approach allows for precise alignment of 

features with channels, but requires extensive fabrication processes. Additionally, optics 

must be designed individually for each new chip design. As such, miniaturization of LIF 

systems is an ongoing challenge. 

 

 

Figure 1.5. Optical configurations for detection on microfluidic chips. The confocal system (a) is 
the most commonly used for microchip detection, although options for miniaturization are limited. 
Introducing LIF at a bevel-incident angle and collecting fluorescence perpendicular to the 
microchip (b,c) results in high background due to reflection and refraction from the microchip 
surface. Orthogonal configurations have been employed by inserting an optical fiber into the side 
of the chip (d), by focusing laser light through the sidewall of the chip using an objective lens and 
measuring perpendicularly (e), or by focusing laser light along the perpendicular axis and 
collecting fluorescence through the sidewall of the chip (f). LOD of (d) and (e) are typically orders 
of magnitude higher than other configurations due to weak focusing of light in (d) or scattering of 
light at the chip sidewall in (e). LOD in (f) is comparable to traditional confocal systems, although 
alignment of the system is not trivial. E = excitation, F = fluorescent detection, O = optical fiber,    
L = lens. Reprinted with permission from reference 57. Copyright 2006 American Chemical 
Society. 

 

Multi-Point Detection 

One advantage of miniaturized LIF detectors is that they can afford the ability to 

optically detect compounds at multiple points on the same chip. This is important in our 

work because [Ca2+]i requires fluorescent measurement in the islets, while MCE 

requires fluorescent measurement at a different point on the same chip. Previously, a 
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majority of multi-point detection systems on-chip employed electrochemical detection for 

one or both of the measurements. For example, characterization of red blood cells and 

circulating tumor cells consists of measuring differences in both cell morphology and 

cell electrical properties. Simultaneous detection of these properties on-chip has been 

accomplished by using electrodes to measure electrical properties via resistive pulse 

sensing while a complementary metal oxide semiconductor (CMOS) imaging sensor is 

used to image the cells (65). In another reported system, cardiac myocytes are perfused 

on-chip with test solutions. Integrated planar microelectrodes stimulate the 

cardiomyocytes and record the evoked action potential while [Ca2+]i is monitored 

optically via imaging experiments using an epi-fluorescent microscope (66). 

 

While multi-point detection using electrochemical detection for one or both of the 

measurements is relatively straightforward due to the small size requirements of 

electrodes, it is more difficult to achieve multi-point detection using optical detection for 

both of the measurements. Miniaturized detectors generally require extensive 

fabrication and/or complex instrumentation, as discussed above. Traditional optical 

equipment has been used for separation experiments in which multiple assays are 

performed on adjacent channels in parallel. Typically, single-point detection has been 

performed, either by moving the chip relative to the detector or by scanning the laser 

line relative to the channels (67). This method does not allow fast sampling rates. 

Alternatively, a radial design with all of the channels converging to one detection point 

has been employed (38). However, this is only useful for assays in which it is possible 

to design detection points close together; it would not be possible, for example, to 

visually monitor cells while measuring secreted products downstream. One study solves 

this problem by making sequential measurements and moving the objective. That study 

uses a microfluidic device to isolate and lyse single erythrocytes prior to CE separation 

and LIF detection of cellular GSH. Cell loading is observed with a confocal microscope, 

and then the chip is shifted to measure LIF detection of GSH with the same microscope 

(68). If both measurements need to be made temporally, decoupling the measurements 

in time so that they can be made sequentially is one strategy for successful analysis. 
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We explored this option for developing an islet evaluation system to achieve rapid multi-

point detection of [Ca2+]i and insulin release from islets. 

 

Metabolomics 

Our interest in β-cells and potency testing also led us to consider a metabolomics 

approach for islet analysis. Metabolomics aims to measure comprehensive metabolic 

responses to externally applied stimuli in an effort to characterize biochemical pathways 

and identify potential disease biomarkers (69). Metabolomics is complementary to 

genomics, transcriptomics, and proteomics. As metabolites are the end products of 

cellular systems, metabolomics data are most closely related to a cell's phenotype at a 

specific time (70). Eukaryotic organisms are estimated to contain 4000-20,000 different 

endogenous metabolites. Because the metabolome is so varied, consisting of 

molecules including lipids, cholesterols, amino acids, nucleic acids, and carbohydrates 

at concentrations ranging from the pM to mM range, detection of the entire metabolome 

using a single technique can be challenging (71). 

 

Metabolomic Platforms 

The platforms routinely used for metabolomics are mass spectrometry (MS) and nuclear 

magnetic resonance (NMR). NMR is fast, non-destructive, provides detailed structural 

information, and requires minimal sample preparation (72). Additionally, since NMR has 

routinely been used for metabolite analysis since the 1970s, analysis methods and 

associated chemometric software are readily available (71). 1H-NMR is the most 

commonly used isotope due to its ubiquitous presence in compounds. However, NMR is 

not as sensitive as MS, with detection limits in the low µM range (73). Overlap of 

spectra in complex samples can complicate analyses (74). Typical 1H-NMR 

metabolomics experiments can measure 25-75 metabolites in tissue samples and over 

200 metabolites in urine samples. NMR suffers from high sensitivity to the chemical 

environment in that small differences in pH, protein content, or ionic strength can cause 

shifts in peak positions and line widths (74). This dependence on environment is 

especially important in biological samples such as urine or serum, which can vary 

significantly based on source. 



16 
 

MS can measure metabolites with high sensitivity and selectivity, although typically a 

sample preparation step is required, which can cause loss or degradation of metabolites 

(70). Direct injection of samples into the MS results in analysis times of less than 1 min. 

However, there any many disadvantages to a direct injection method: chemical isomers 

cannot be distinguished, and ion suppression is high since all compounds are 

introduced into the MS at the same time (70). These issues make it advantageous to 

add a separation step prior to MS analysis, resulting in longer analysis times and 

preference towards certain classes of metabolites based on the type of separation used. 

 

Separation Methods 

Separation methods can serve to reduce the amount of metabolites being introduced 

into the MS at one time, resulting in less ion suppression and improved sensitivity. They 

also add an additional parameter by which a compound can be identified, thus aiding in 

the certainty of feature identification. Separation techniques are utilized in both NMR 

and MS analyses. 

 

In CE-MS, metabolites are separated by mass and charge before being introduced into 

the MS, typically using an electrospray ionization (ESI) interface. CE-MS has high 

resolution, high separation efficiency, and can separate metabolites over a wide m/z 

range (70-1027). Little sample pretreatment is required, and CE tends to be faster than 

liquid chromatography (LC). CE-MS has been used to detect 1692 compounds in B. 

subtilis cells (75). However, CE is not effective for separating uncharged compounds 

and macromolecules, such as sugars, lipids, cholesterols, and steroids. Also, due to 

poor concentration sensitivity, pre-concentration of samples is often required to improve 

detection limits (76). Finally, interfacing CE to MS is not trivial. Because of the low flow 

rates used in CE, the electrospray is not stable unless a sheath flow is used, which 

reduces the sensitivity of the method (77). Even so, detection limits of less than 50 nM 

have been reported with total ion electropherogram RSD of 5% for single-cell 

metabolomics (78). 
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Gas chromatography-mass spectrometry (GC-MS) has commonly been used in 

metabolomics studies. GC-MS typically exhibits greater chromatographic resolution 

than LC-MS, and because GC is typically coupled to MS using electron-impact 

ionization, it is not as susceptible as LC to ion suppression. This method offers good 

sensitivity, with detection limits in the pM to nM range (72). However, in order to be 

analyzed by GC-MS, compounds must either be volatile or be derivatized to be volatile. 

Derivatization can result in loss of thermally labile metabolites, and sample stability can 

be a concern. Additionally, derivatization can result in multiple peaks per analyte due to 

partial silylation, isomerization, or degradation, thus complicating the spectra and 

analysis (79). 

 

Liquid chromatography-mass spectrometry (LC-MS) can provide complementary 

information to GC-MS data. LC-MS offers simpler sample preparation than GC-MS and 

can detect a wider range of metabolites. However, because it typically utilizes ESI, it is 

prone to ion suppression from co-eluting compounds and has lower retention time 

reproducibility than GC. Reverse phase C18 or C8 columns are commonly used to 

measure nonpolar and medium polarity analytes; however, polar analytes elute in the 

dead time and are not reliably quantified using reverse phase LC (RPLC). Ion-pairing 

agents have been used in RPLC to improve retention of polar compounds, but they can 

contaminate the column. Alternatively, polar compounds can be analyzed using 

hydrophilic interaction chromatography (HILIC). A HILIC method based on an amino-

column and high mobile phase pH of 9.5 was developed for the analysis of central 

carbon metabolism (80). HILIC suffers from greater retention time variability than RPLC 

and shorter column life; however, it provides an orthogonal technique to RPLC for 

added metabolite coverage (81). The work presented in this dissertation utilizes both 

RPLC and HILIC for analysis of nonpolar and polar metabolites, respectively. 

 

Mass Analyzers 

Mass analyzers for metabolomics experiments include low resolution analyzers like the 

triple quadrupole (QQQ) and high resolution analyzers, like the time-of-flight (TOF), 

Fourier-transform ion cyclotron (FT-ICR), and Orbitrap analyzers (70, 82). The QQQ 
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has successfully been used to quantitate 90 metabolites with known fragmentation 

patterns when operated in selected reaction monitoring (SRM) mode (83). When the 

analytes of interest are unknown, a high resolution analyzer is preferable. TOF 

analyzers can provide resolution of compounds with the same nominal mass but 

different monoisotopic mass and have mass accuracy down to 5 ppm (72). Orbitrap and 

FT-ICR instruments provide even greater resolving power and mass accuracy (<1 ppm 

for FT-ICR) and don't require chromatographic separation. However, without separation, 

isomers cannot be distinguished (71). Also, the scan rate for these high resolution 

analyzers is slow (up to 1600 s/spectra, compared to 1 s/spectra for TOF analyzers) 

(82). These disadvantages, coupled with the high cost of these instruments, have 

limited their use in metabolomics studies (72). 

 

Directed vs. Undirected Metabolomics 

Directed, or targeted, analysis involves the analysis of a subset of metabolites, such as 

those associated with a specific pathway of interest. Directed analysis is fairly 

straightforward, requiring identification of metabolites by comparison of retention time 

and m/z to standard compounds. Undirected, or untargeted, analysis involves the 

identification of as many metabolites as possible. This approach is often referred to as 

"hypothesis-generating", since the goal is typically to identify possible compounds of 

interest based on differences between treatment groups (84). Undirected analysis 

requires a high resolution mass analyzer for accurate peak identifications, as well as 

advanced data analysis techniques. 

 

Data Analysis 

Data analysis for directed metabolomics is fairly straightforward and can be 

accomplished using conventional MS software. Undirected metabolomics is more 

challenging due to the large number of "features" (ions with unique m/z and retention 

time) that must be found and subsequently identified. Several software programs have 

been developed to process metabolomics data, including MetaboMiner for NMR data 

(85) and MetAlign, MZmine, and XCMS for LC-MS data (86). Software is also available 

from MS vendors, such as Mass Profile Pro (Agilent) or Metabolic Profile (Bruker). Raw 
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data is pre-processed and filtered, features with signal above a specified signal-to-noise 

threshold are selected based on m/z and retention time, peaks are aligned using 

specified m/z and retention time windows to account for nonlinear drift in the instrument, 

and ions/adducts are identified through comparison to metabolite databases, such as 

the Kyoto encyclopedia of genes and genomes (KEGG), the Human Metabolome 

Database (HMDB), and the Metabolite Link (METLIN) database (87, 88). Compounds 

preliminarily identified through undirected analysis should be confirmed by injecting 

standards of the identified compounds onto the MS for direct comparison. Pre-

processed data can be visually interpreted with either the previously mentioned 

software or MetaboAnalyst (89) to determine compounds of interest that differ between 

sample groups based on multivariate statistical analysis. 

 

Metabolomics in Diabetes Research 

Metabolomics has been widely employed for the identification of possible biomarkers of 

disease, and has been applied to clinical studies involving the onset of type 1 diabetes. 

Increased levels of glutamic and aspartic acids and branched chain amino acids are 

observed in mice at high risk of developing type 1 diabetes (90). Another study 

corroborated these findings; serum samples from children who later developed type 1 

diabetes were shown to exhibit lower levels of phosphatidylcholines (PC) from birth, as 

well as increased levels of proinflammatory lysophosphatidylcholine, glutamate, and 

branched chain amino acids and decreased levels of several TCA cycle metabolites 

prior to the development of islet autoantibodies (91). This research demonstrates a 

phenotype that could be used for identifying those at risk of identifying type 1 diabetes 

and for identifying possible targets for intervention in disease progression. 

 

In addition to clinical studies, isolated islets and clonal β-cells have also been studied in 

order to gain insights into islet function and diabetes progression. One study has used 

NMR-based metabolomics in clonal β-cells to try to identify possible biomarkers of β-cell 

health for the purpose of islet transplantation (92). Clonal β-cells have typically been 

preferred for metabolomics studies due to their ease of access and specificity for β-cell 

metabolism (18, 19, 93–96). Several different clonal lines exist, including rat-derived 
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INS-1 and BRIN-BD11 cells and mouse-derived MIN-6 cells (97–99). However, because 

clonal cells are proliferative and may exhibit different metabolic regulation than non-

proliferative native islets, it is unclear whether findings made in clonal cells can be 

extrapolated to whole islets. Several recent metabolomics studies have been conducted 

using islets; however, the large number of islets used per sample (240-500) limits the 

scope of experiments that can be performed (19, 100). Thus, sample preparation 

methods for the reproducible analysis of smaller amounts of tissue are required so that 

more comprehensive studies of islet function can be performed. In this work, we aimed 

to develop a sample preparation method for islet metabolomics that could be applied to 

studies of islet viability. 

 

Dissertation Overview 

The main objective of this research was to develop analytical techniques to evaluate the 

viability and potency of pancreatic islets for clinical islet transplantation. Chapter 2 

describes the development of two analogous techniques for measuring Ca2+ flux and 

insulin secretion from the same group of islets. Both techniques involve fluorescent 

imaging of islets in a microfluidic chamber to measure [Ca2+]i while collecting perfusate 

to later assay for insulin via a microchip-based electrophoretic competitive 

immunoassay. The first method involves continuous collection of perfusate in a 

capillary, while the second method involves fraction collection in a well plate followed by 

segmentation with oil in tubing for infusion into an electrophoresis chip. The second 

method was completed in collaboration with Dr. José Oberholzer and Dr. David 

Eddington at the University of Illinois at Chicago. This work is currently in preparation for 

submission to Analytical Methods. 

 

Chapter 3 describes the development of a sample preparation method for extraction 

and LC-MS analysis of intracellular metabolites in whole islets. This method was used in 

Chapter 4 to study the effects of oxidative stress on islet metabolism. Metabolites and 

pathways that were altered by these treatments were identified; these metabolites could 

comprise a metabolic signature of stressed cells for the purpose of islet evaluation prior 

to transplantation. These results are currently in preparation for submission to Islets.  
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CHAPTER 2  

Sequential Detection of [Ca2+]i and Insulin Secretion On-Chip 

 

Introduction 

Type 1 diabetes, a disease characterized by an inability to properly regulate blood 

glucose levels, is caused by autoimmune destruction of insulin-secreting β-cells found in 

the islets of Langerhans of the pancreas. A promising treatment for type 1 diabetes 

(currently in stage 3 clinical trials) is islet transplantation, which involves infusion of 

donor islets into the portal vein in the recipient’s liver. More recently, alternate insertion 

sites, such as a subcutaneous, pre-vascularized site, have shown potential in animal 

studies (1). Islet transplantation is minimally invasive and has a lower risk of 

complications than current treatments, such as whole pancreas transplantation. 

However, islet transplantation has not been as successful as anticipated. Many times, 

patients need several islet infusions to obtain insulin-independence, and the rates of 

long-term insulin-independence (~55%, sustained over 5 years) have been low in 

comparison to whole pancreas transplantation (2).  

 

One possible contribution to this low success rate is inadequacy of current methods in 

determining the viability and potency of an islet preparation prior to transplantation. 

Viability is currently measured using fluorescein diacetate/propidium iodide (FDA/PI) to 

assess membrane integrity (3). This test, however, does not account for early apoptotic 

cells, and does not correlate with clinical results. The current standard for determining 

potency is the diabetic nude mouse bioassay (NMB), in which islets are transplanted 

into a diabetic, immunodeficient mouse to determine whether they will reverse diabetes. 

The NMB correlates well with islet transplantation success, but it can only be used 

retroactively, because several days to weeks are required to determine the outcome of 

the test. Static glucose-stimulated insulin secretion (GSIS), as measured through 
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enzyme-linked immunosorbent assay (ELISA), has been used to evaluate islet potency 

prior to transplantation; however, the results have not correlated well with clinical 

outcome (3). The reason for this lack of correlation is unknown, though there are 

several plausible explanations. For example, the static GSIS test measures only bulk 

insulin release and does not capture the dynamics of insulin secretion, such as first and 

second phase and oscillations that may be better indicators of β-cell function (4). 

Additionally, stresses from isolation could temporarily impair insulin secretion from 

otherwise viable islets (5).  

 

Researchers have been working to develop assays that can successfully predict clinical 

outcomes prior to transplantation. Work has focused on measuring cell membrane 

integrity (6), oxygen consumption rate (OCR) (5, 7, 8), ATP/ADP ratio (9, 10), and 

dynamic GSIS (3). Several of these tests have shown promise in predicting islet 

transplant outcome. One study that screened human islet preparations via GSIS, 

ATP/ADP ratio, and mitochondrial membrane potential prior to transplantation in mice 

showed that each of these measures demonstrates some predictive power for 

transplant outcome, but a combination of all three provides the highest success rate 

(85.7%) in islet classification (11). However, because this study measured each 

component separately, the total time required to run such an evaluation is not conducive 

to islet transplant requirements. Incorporating simultaneous measurements of several 

predictors of islet health and function in a single microfluidic system could allow more 

rapid analysis. 

 

To address multimodal detection of islet function on-chip, a device dubbed the 

chemistrode has been devised to measure [Ca2+]i, insulin, and glucose. In this method, 

the chemistrode is brought into contact with a single islet. Stimulus plugs are introduced 

to the islet surface, and response plugs containing perfusate are collected for later 

analysis (12). However, this method can only measure single islets, and total analysis 

time is >24 h. Alternatively, a microfluidic device has been developed to measure 

calcium influx and mitochondrial membrane potential changes from batches of 25-30 

islets in response to glucose stimulation at established gradients. Perfusate from the 
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chip is collected, and GSIS is determined by ELISA (4, 13). While this system is able to 

measure islet potency via several different parameters, ELISA is time-consuming, labor-

intensive, high volume (100-200 µL per assay), costly (over $5 per assay on average), 

and slow. One 30 min glucose stimulation experiment with fractions collected every 

minute would require 30 individual assays alone, and take several hours following the 

experiment to complete.  

 

An alternative to ELISA is microchip electrophoresis immunoassay (MCE-IA), which 

involves solution-phase reaction of antigen with antibody prior to separation of the 

antigen-antibody complex from the free molecules and detection. A chip has previously 

been developed to measure dynamic GSIS from single islets. Using this device, down to 

6 s temporal resolution and 0.8 nM insulin detection limits are achieved, allowing rapid 

measurements of insulin secretion dynamics (14). We aimed to couple MCE with [Ca2+]i 

measurements to achieve rapid multimodal evaluation of islets. 

 

A difficulty with multimodal detection is that [Ca2+]i requires fluorescent measurements 

in the islets, while MCE requires fluorescent measurement at a different point on the 

same chip. Placing two standard microscope objectives in close proximity is impractical, 

thus an alternative strategy is required. Several methods of performing multi-point 

fluorescence measurements have been described; however, they require extensive 

fabrication and/or complex instrumentation (15, 16). One study solves this problem by 

making sequential measurements and moving the objective. In that study, a microfluidic 

device is used to isolate and lyse single erythrocytes prior to CE separation and LIF 

detection of cellular GSH. Cell loading is observed with a confocal microscope, and then 

the chip is shifted to measure LIF detection of GSH with the same microscope (17).  

 

In our work, both measurements needed to be made simultaneously ([Ca2+]i flux and 

insulin secretion). To use the same microscope for both measurements, we had to 

decouple the events in time so that they could be measured sequentially. We thus 

developed a facile method for collecting perfusate during glucose stimulation to be 

analyzed following the completion of the [Ca2+]i measurements. We compared the 
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sensitivity and temporal resolution of perfusate collected in a capillary (continuous flow 

collection) to perfusate collected in a well plate and converted into plugs segmented 

with oil for introduction of small volumes into a CE chip (segmented flow collection). 

Both methods achieved faster analysis times and were less expensive to operate than 

existing multimodal microfluidic devices for islet evaluation. This system demonstrates a 

simple and cost-effective method for rapid detection of multiple analytes in a microfluidic 

system. 

 

Experimental Procedures 

Materials 

Electrophoresis buffers were: balanced salt solution (BSS), consisting of 125 mM NaCl, 

5.9 mM KCl, 1.2 mM MgCl2, 2.4 mM CaCl2, 25 mM tricine, and 0.7 mg mL-1 BSA; 

immunoassay buffer, consisting of 60 mM NaCl, 1 mM EDTA, 20 mM tricine, 0.1% (w/v) 

Tween-20, and 0.7 mg mL-1 BSA; and electrophoresis buffer, consisting of 20 mM NaCl 

and 150 mM tricine. All buffers were adjusted to pH 7.4. 

 

Roswell Park Memorial Institute (RPMI) culture medium, fetal bovine serum, penicillin-

streptomycin, collagenase, fura-2 dye, and anti-insulin antibody were purchased from 

Life Technologies (Carlsbad, CA). Fluorescein isothiocyanate-labeled insulin (FITC-

insulin) was purchased from Sigma-Aldrich (St. Louis, MO). All other chemicals were 

purchased from Thermo Fisher Scientific (Waltham, MA). 

 

Cell Culture 

Pancreatic islets were isolated from 20-30 g male CD-1 mice as previously described 

(18). Islets were cultured in RPMI-1640 media supplemented with 11 mM glucose, 10% 

fetal bovine serum, and 1% penicillin/streptomycin at 37 ºC and 5% CO2 for 2-5 days 

prior to experimentation. 

 

Glass Microfluidic Chip Fabrication 

Glass microfluidic chips were fabricated as previously described (19). Briefly, blank 2.5 

cm x 7.6 cm x 1.1 mm glass slides coated with a 530 nm thick layer of AZ1518 positive 
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photoresist over a 120 nm chrome layer (Telic Co., Santa Monica, CA) were exposed to 

collimated UV light through patterned photomasks for 5 s. The exposed slides were 

developed in AZ726 MIF Developer (Microchemicals) for 30 s, and the underlying 

chrome was removed using CEP-200 Chrome Etchant (Microchrome Technologies, 

Inc., San Jose, CA). The exposed glass was etched in a solution of 14:20:66 (v/v/v) 

HNO3/HF/H2O for variable times depending on desired channel depth. Multiple channel 

depths were formed on a single chip by protecting desired channels with HF-resistant 

tape for a portion of the etching time. Carbide drill bits (Kyocera Precision Tools, Inc., 

Hendersonville, NC) were used to drill 360 µm diameter access holes and 750 µm 

diameter islet chambers. The remaining photoresist and chrome were then removed 

using acetone and CEP-200 chrome etchant, respectively, and the etched glass plates 

were cleaned in piranha solution (3:1 v/v H2SO4/H2O2) for 20 min followed by heated 

RCA solution (5:1:1 v/v/v H2O/NH4/H2O2) for 40 min. Chips were aligned under water 

(taking care to align any features etched into both halves of the chip under a 

microscope), dried, and annealed at 640 ºC for 8 h. Microfluidic reservoirs (Upchurch 

Scientific, Oak Harbor, WA) were applied over access holes after bonding. Capillaries 

(40 µm i.d. x 150 µm o.d.) were inserted into capillary channels and glued in place by 

wicking heat-sensitive epoxy into the channel over a hot plate and then rapidly cooling. 

Care was taken to ensure epoxy did not flow into the microfluidic channels. Capillaries 

were then cut to size, and if necessary, a sheath capillary (185 µm i.d. x 360 µm o.d.) 

was epoxied over the inserted capillary to allow connections to other capillaries to be 

made. 

 

PDMS Microfluidic Chip Fabrication 

Multilayer PDMS microfluidic devices were fabricated using soft photolithography as 

previously described (20). Degassed PDMS (10:1 polymer base/curing agent)  was 

poured into three master molds, taking care to keep thickness of the bottom layer <1 

mm to be compatible with the working distance of the microscope. After the PDMS was 

cured, access holes were created using a 14 gauge hole punch and the layers were 

bonded together using plasma treatment. Novec 1720 (3M, St. Paul, MN) was perfused 

through the device to coat the channel walls and prevent absorption of analyte 
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molecules into the PDMS during experimentation. After all visible bubbles had 

disappeared and the channel walls were entirely wet, the device was heated to 130 ºC 

on a hot plate for 15 min. Once cooled, microbore tubing (Cole-Palmer, Vernon Hills, IL) 

was inserted into the outlet and “glued” into place using tacky PDMS that was then 

cured. The completed device consisted of three layers: the top layer contained 

perfusion channels; the middle layer consisted of a 2.5 mm diameter x 1 mm depth islet 

chamber and the reagent mixing channels; and the bottom layer contained an array of 

500 µm diameter x 150 µm depth wells to immobilize the islets. An image of the 

assembled device is shown in Figure 2.1. 

 

 

Figure 2.1. Image of PDMS chip for fraction collection, filled with food dye for visualization of 
channels. 

 

PDMS Extraction Device Fabrication 

PDMS tees used to align droplet tubing with glass electrophoresis chips were formed 

using a pour over method as previously described (21). 

 

Calcium Flux Measurements 

[Ca2+]i was measured using fura-2 dye as previously described (22). Briefly, islets were 

loaded with 2 µM fura-2-AM via a 45 min incubation. They were then rinsed briefly with 

BSS and loaded into a microfluidic chamber, where they were perfused with BSS 

containing basal (3 mM) and stimulatory (11-14 mM) levels of glucose. The dye was 

excited alternately with 340 nm (Ca2+-complexed dye) and 380 nm (free dye) light and 

emission was collected at 510 nm. The ratio of complexed to free dye was calculated 
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and converted to Ca2+ concentrations using calibration standards as described before 

(22). 

 

Insulin Secretion Measurements 

Insulin secretion was measured by microchip electrophoretic competitive immunoassay 

as previously reported (14, 23). Briefly, electrophoresis chips were conditioned with 0.1 

mM NaOH using a vacuum pump attached to the waste reservoir, followed by ddH2O, 

followed by electrophoresis buffers. Secreted insulin, FITC-insulin, and anti-insulin 

antibody were sampled by electroosmotic flow (EOF) and mixed, after which they were 

injected onto a separation channel in 5 or 8 s intervals using a flow-gated injection. 

Laser-induced fluorescence at the end of the separation channel was detected using a 

photomultiplier tube (PMT). Instrument control and data collection were regulated by a 

LabVIEW program (National Instruments, Austin, TX) (23). High throughput peak 

analysis of the collected electropherograms was accomplished using Cutter software 

(24). The ratio of FITC-insulin bound to antibody to FITC-insulin free in solution (B/F) 

was calculated and converted to insulin concentrations using calibration standards. 

 

Sequential Detection of [Ca2+]i and Insulin Secretion with Continuous Flow Collection 

Groups of 7-10 islets were loaded into a 0.44 mm2 cell chamber on a glass microfluidic 

chip. A schematic of the chip design is shown in Figure 2.2. The chamber was plugged 

with a piece of PDMS that had been punched out of a larger slab using a 17 gauge 

hypo tube (Small Parts, Inc., Logansport, IN) and cut to size. The plug naturally flared 

out, so when it was inserted into the chamber, the edge of the plug remained above the 

surface of the hole, making removal of the plug straightforward so that the chip could be 

re-used. Islets were perfused at a rate of 1.3 µL min-1 with basal (3 mM) and stimulatory 

(11 mM) levels of glucose using helium pressure. Channels were designed to fan out 

leading into and from the islet chamber; this design improved the flow through the 

chamber as compared to a single inlet and outlet, thus allowing all islets to be 

stimulated simultaneously regardless of their position in the chamber (Figure 2.2a and 

Figure 2.3a). A thin film resistor taped to the bottom of the chip maintained the cell 

chamber at 37 ºC. 
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Figure 2.2. Schematic of capillary collection chips. a) Islets were placed in a chamber (inset) and 
perfused with basal and stimulatory levels of glucose at 1.3 µL min

-1
. Perfusate was collected in a 

75 µm i.d. capillary attached via one capillary outlet, while a 2
nd

 capillary acted as a flow split. b) 
The collection capillary was detached from the perfusion chip and attached to the inlet of an 
electrophoretic chip. Perfusate and reagents were sampled by EOF. Secreted insulin, FITC-insulin, 
and anti-insulin antibody mixed and reacted, after which they were injected onto a separation 
channel (0.5 s injection, 8 s interval). FITC-insulin-antibody complex and free FITC-insulin were 
separated based on size and charge and were detected by LIF at the end of the separation 
channel. 

 

[Ca2+]i was measured via fluorescence imaging while perfusate was collected in a 75 

µm i.d. x 360 µm o.d. capillary. A second, waste capillary was also attached to the chip 

to reduce the flow rate into the collection capillary and allow for longer collection time. 

Sample could be collected for 25-30 min in a 330 cm long capillary. Following collection, 

the capillary was transferred to a glass electrophoresis chip. Typically, perfusion 

reservoirs are used to introduce fluid into a chip; however, commercially available 

reservoirs introduce a void volume that can result in band broadening. In order to 

maintain as high temporal resolution as possible, capillaries were inserted directly into 

inlet and outlet channels etched on the perfusion and electrophoresis chips (Figure 2.2). 

The perfusate was pumped into an open reservoir on the electrophoresis chip at a rate 

of ~0.9 µL min-1, from which it was then sampled by electroosmotic flow. Insulin was 

detected by electrophoretic competitive immunoassay as described above. 
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Figure 2.3. [Ca
2+

]i measurements on-chip. a) Individual islets (plotted as separate traces) 
responded to glucose stimulation simultaneously in a 0.75 mm diameter chamber with fanned 
chamber inlet/outlet design. Following an initial abrupt influx of Ca

2+
, [Ca

2+
]i oscillated rapidly in 

individual islets. b) The averaged [Ca
2+

]i response from the individual traces in (a) did not exhibit 
oscillations because of varying oscillation frequencies in individual islets. Arrows indicate time of 
glucose stimulation. Basal and stimulatory glucose concentrations were 3 and 11 mM, 
respectively. 

 

Sequential Detection of [Ca2+]i and Insulin Secretion with Segmented Flow Collection 

Prior to each use, the PDMS-based perfusion chamber was conditioned with ethanol for 

15 min followed by KRB supplemented with 3 mM glucose. Groups of 20 islets were 

loaded into the chamber and the chamber was plugged with a closed-tipped connector. 

A thin film resistor was taped to the bottom of the device to maintain the cell chamber at 

37 ºC. Islets were then perfused with basal (3 mM) and stimulatory (14 mM) levels of 

glucose at a flow rate of 2.5 µL min-1 using a syringe pump. FITC-labeled insulin and 

anti-insulin antibody were pumped into the chip at flow rates of 1 µL min-1 each, where 

they mixed with the perfusate from the islets. The mixed insulin, FITC-insulin, and 

antibody flowed from the outlet of the microfluidic device into a low-volume 384-well 

plate. Samples were collected in 2.5 min intervals. Insulin standards (1-500 nM) were 

added to the adjacent wells. 

 

Perfluorinated oil (100:1 PFD/PFO) was added on top of the wells (the well plate had 

previously been built-up with epoxy and derivatized using Teflon spray to allow the oil 

phase to remain on top of the less-dense aqueous phase). The well plate was placed on 

an xyz stage, which was controlled by a computerized program. A syringe pump 

operated in reverse mode was used to pull alternating plugs of oil and sample into a 150 
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µm i.d. x 360 µm o.d. HPFA+ tube (Idex Health & Science, Oak Harbor, WA). Each well 

was sampled 10 times, creating 10 droplets from each well. 

 

To then separate the aqueous droplets from the oil for insulin detection, the tube 

containing the droplets was inserted into a PDMS extraction device, shown in Figure 

2.4, as previously described (21). An electrophoresis chip with a 40 µm i.d. x 150 µm 

o.d. x 4 mm length inlet capillary was inserted into the extraction device perpendicular to 

the droplet tube, so that the outlet of the tube and the inlet of the capillary were in close 

proximity. A second capillary filled with food dye was inserted into the extraction device 

in the waste channel to provide some additional back pressure. When droplets were 

pumped into the device at a flow rate of 0.3 µL min-1, aqueous sample droplets were 

extracted across the hydrophilic capillary into the electrophoresis chip. Oil was excluded 

from the capillary, and continued down the PDMS waste channel. Insulin was then 

detected by electrophoretic competitive immunoassay. 

 

 

Figure 2.4. Schematic of microfluidic devices for aqueous droplet extraction and analysis. 
Droplets containing secreted insulin, FITC-insulin, and anti-insulin antibody were pumped into a 
PDMS device (left) at 0.3 µL min

-1
. Aqueous sample was extracted across the hydrophilic capillary 

into an electrophoresis chip while oil continued to waste. A waste droplet generator added back 
pressure to improve extraction efficiency. Extracted aqueous solution was sampled by EOF, and 
then injected onto a separation channel (0.2 s injection, 5 s interval). FITC-insulin-antibody 
complex and free FITC-insulin were separated based on size and charge and were detected by LIF 
at the indicated location in the separation channel. Adapted with permission from reference 21. 
Copyright 2014 ACS. 
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Alignment of Sequentially Collected Data 

Because [Ca2+]i data was collected in real time and insulin data was collected from 

stored samples, it was necessary to report insulin data based on its collection time 

instead of its analysis time. To align the peaks from each measurement, we added a 

fluorescent tracer to the perfusion solution (either fluorescein or rhodamine) to indicate 

when a step change from basal to stimulatory glucose concentration was made. We 

also accounted for differences in flow rates between measurements for the continuous 

flow collection method. For the segmented flow collection method, 10 droplets were 

collected from each well; the measurements from replicate droplets were averaged 

together for each time point. 

 

Statistical Analysis 

Error bars are expressed as means ± 1 standard deviation unless otherwise specified. 

 

Results 

In this work, we explored the possibility of collecting samples from islets while [Ca2+]i 

was measured, and then assaying the collected samples for secreted insulin by 

electrophoresis. Samples were collected and analyzed in a way that preserved the 

temporal insulin secretion profile and therefore allowed both time-resolved [Ca2+]i and 

secreted insulin to be measured. We developed two methods for collection and 

electrophoretic analysis. In the first, depicted in Figure 2.2, perfusate from an islet chip 

was collected in a narrow bore (75 µm i.d.) capillary and infused into an electrophoresis 

chip for insulin detection. In the second, shown in Figure 2.4, perfusate from an islet 

chip was collected as fractions in a 96-well plate. Fractions were sampled into tubing as 

aqueous droplets segmented with oil. The droplets were de-segmented immediately 

prior to infusion into an electrophoresis chip for insulin measurement. Our results 

showed that detection limits and electropherogram stability were similar for both 

methods, but the continuous flow collection method was less manually intensive and 

simpler to implement. 
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Electropherogram Reproducibility 

Electropherogram reproducibility over the time span of a typical experiment (30 min) 

was ~10% RSD in B/F for both electrophoresis chip designs with no added insulin. To 

measure day-to-day electropherogram reproducibility of a single chip, calibrations were 

recorded on 3-5 separate days. Average RSD in B/F for standard insulin concentrations 

was 10 ± 3% for the continuous flow collection method (Figure 2.5a) and 25 ± 12% for 

the segmented flow collection method (Figure 2.5b). This drift in signal could be due to 

possible differences in conditioning or clogging in the channels. Chips were calibrated 

daily to account for this drift. Average RSD in B/F for three separate calibrations taken 

on a single day (n = 3 days) was 11 ± 3% for the segmented flow chip, which was 

similar to electropherogram stability throughout a single experiment. This indicated that 

calibrating daily should be sufficient for accurately measuring insulin concentrations.  

 

 

Figure 2.5. Insulin immunoassay reproducibility. Day-to-day variations in insulin calibrations 
using a) continuous flow collection b) segmented flow collection. Error bars represent 1 standard 
deviation. 

 

Continuous Flow Collection Method 

The insulin secretion assay was calibrated by flowing insulin standards through the 

perfusion chip, collecting them in the capillary, and then pumping them into the 

electrophoresis chip. A plot of B/F against time during infusion of the capillary is shown 

in Figure 2.6a. An overlay of the insulin concentrations, corrected to reflect the time 

points at which they were collected instead of the times at which they were analyzed, 

shows the correlation between the B/F and the concentration input. The average LOD, 
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calculated as the concentration required to give a B/F lower than 3x the standard 

deviation of the blank, was 19 ± 10 nM (n = 3). This was below the expected basal 

concentrations of insulin secretion from groups of 7-10 islets, so it was adequate for our 

islet experiments. A representative calibration plot obtained from this data is shown in 

Figure 2.6b, with good fit (R2 = 0.987) to a logarithmic curve. 

 

 

Figure 2.6. Representative calibration of standard insulin using continuous flow collection 
method. a) Temporal trace, with resolution of 84 ± 15 s. B/F (solid line) corresponding to standard 
insulin concentrations of 10, 50, 100, and 500 nM (dashed line) was measured. b) Calibration 
showed good fit to a logarithmic curve (R

2
 = 0.987). Error bars represent 1 standard deviation. 

 

We then evaluated the temporal resolution of this collection method. The fall time, 

measured as the amount of time it required the signal to drop from 90% average 

intensity of one concentration to 110% average intensity of the following concentration, 

was calculated to be 84 ± 15 s ( n = 4). Insulin secretion dynamics are on the order of 

minutes (1st phase insulin secretion typically lasts for 2-5 min following glucose 

stimulation, with slow changes in second phase). Based on these dynamics, 84 s 

temporal resolution should be adequate for recording first and second phase insulin 

secretion dynamics. Insulin secretion in single islets can oscillate in 2nd phase with 

periods of 3-5 min. Islets in groups can be entrained to all oscillate with the same 

frequency under some conditions (25), but in most cases, oscillation frequencies differ 

between individual islets and tend to offset each other. Consequently, we were not 

concerned with having sufficient temporal resolution for oscillations at this stage.   

 

To test the method, we measured [Ca2+]i and insulin secretion from groups of 7-10 

islets. Islets were perfused with basal levels of glucose for 60 min followed by 
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stimulatory levels of glucose for 15 min. Fluorescein was spiked into the stimulatory 

glucose to act as a tracer to determine when the change from basal to stimulatory 

glucose levels was made in the insulin plot. This facilitated temporal matching of the 

different traces. Fluorescein migrated slower than the bound and free peaks, so it did 

not interfere with detection of insulin secretion (Figure 2.7). Representative averaged 

[Ca2+]i data is shown in Figure 2.8a, and representative time-corrected insulin data is 

shown in Figure 2.8b, demonstrating measurement of 1st phase and 2nd phase 

secretion dynamics. The average basal insulin concentration measured was 25 ± 10 pg 

min-1 islet-1, and the average maximum insulin release during 1st phase secretion was 

195 ± 91 pg min-1 islet-1 (n = 5). Typical values reported in islets are 30-50 pg min-1  

islet-1 and 100-200 pg min-1 islet-1 for basal and 1st phase secretion, respectively, so our 

results were comparable (23, 26). The average first phase peak width was 3.0 ± 0.9 

min; this was comparable to [Ca2+]i data and similar to expected first phase peaks of 2-5 

min (27). Second phase secretion was elevated above basal levels, but oscillations in 

insulin secretion were skewed or not present, probably due to varying oscillation 

frequencies between individual islets, as demonstrated in Figure 2.3b with [Ca2+]i 

oscillations. 

 

 

Figure 2.7. Electropherogram with fluorescein tracer. Fluorescein migrated following the bound 
and free peaks, and thus could be added to perfusion solutions to act as a tracer without interfere 
with insulin measurements. Dashed and solid lines represent traces with and without added 
fluorescein, respectively. 
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Figure 2.8. Measurement of [Ca

2+
]i and insulin secretion from a representative group of 8 islets 

using continuous flow collection method. Traces shown for a) averaged [Ca
2+

]i and b) secreted 
insulin. Arrows indicate time of stimulation with 11 mM glucose. Basal glucose concentration was 
3 mM. 

 

Segmented Flow Collection Method 

As an alternative method for perfusate collection, we tested a segmented flow collection 

strategy. We calibrated the insulin immunoassay using insulin standards, as shown in 

Figure 2.9. The LOD was calculated to be 2.4 ± 1.0 nM insulin (n = 4). By injecting 

sample onto the separation channel every 5 s, we were able to measure ~10 

electropherograms per insulin concentration; since 10 droplets were collected at each 

concentration, this corresponded to ~1 electropherogram per droplet. It took 3 droplets 

to wash the previous droplet from the sampling channel, so these "carry-over" droplets 

between concentrations were not included in averaged concentration data. 
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Figure 2.9. Representative calibration of standard insulin using droplets generated from a 96-well 
plate. a) Temporal trace of experiment. B/F corresponding to standard insulin concentrations of 
10, 50, 100, and 500 nM was measured. Three injections (15 s), corresponding to 3 droplets, were 
required to completely wash out the sampling channel. b) Calibration showed good fit to a 
logarithmic curve, with R

2
 = 0.9897. Error bars represent 1 standard deviation. 

 

We then measured [Ca2+]i and insulin secretion from a group of 25 islets. Rhodamine 

110 was spiked into the stimulatory glucose to act as a tracer for when the switch from 

basal to stimulatory levels of glucose occurred. Rhodamine was selected instead of 

fluorescein, which we used in the prior experiments, because the peak migrated earlier 

in the electropherograms than the analyte peaks instead of later (Figure 2.10). 

Therefore, no sacrifices needed to be made in injection time. Averaged [Ca2+]i data from 

the 7 islets imaged is shown in Figure 2.11a, and the corresponding insulin data for the 

experiment is shown in Figure 2.11b. The basal insulin secretion was 11 ± 1 pg min-1 

islet-1, and the maximum 1st phase insulin secretion was 108 ± 33 pg min-1 islet-1 (n = 

1). These results were similar to those previously reported (14, 22) as well as those 

obtained using the capillary collection method, and demonstrated the ability of the 

sequential detection method to distinguish 1st and 2nd phase insulin secretion 

dynamics. 

 



44 
 

 

Figure 2.10. Electropherograms with and without rhodamine tracer. Rhodamine eluted before 
bound and free peaks, allowing maintenance of fast separation times without interfering with 
insulin detection. 

 

 

Figure 2.11. [Ca
2+

]i and insulin secretion measured from 20 islets with segmented flow collection 
method. Representative traces shown of a) averaged [Ca

2+
]i from 7 islets (those in the microscopic 

field of view) and b) insulin secretion. Each time point corresponded to averaged insulin 
concentrations measured from 9 injections of replicate samples. Arrows indicate time of 
stimulation with 14 mM glucose. Basal glucose was 3 mM. Error bars represent SEM. 

 

Discussion 

We have developed a simple, cost-effective method for collecting cellular secretions 

from microfluidic devices while retaining temporal information. This method provided the 

ability to monitor cells optically on-chip and later measure cellular secretions via LIF 
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using the same microscope; by decoupling the two measurements, no specialized 

optical equipment was required. We applied this system to measuring [Ca2+]i and insulin 

secretion from islets. By using a multimodal method, we aimed to achieve a more 

holistic view of islet health than by using either of these measures alone. Because the 

measurements were made on a microfluidic chip, the analytes could be measured and 

analyzed more rapidly than with traditional methods, making this method compatible 

with requirements of islet evaluation prior to transplantation.  

 

Insulin Limits of Detection 

Insulin detection limits were in the low nM range (2-20 nM) for both the continuous flow 

and segmented flow collection methods. Previous studies using similar chip-based 

immunoassays for insulin have reported detection limits below 1 nM (23, 24, 26). A 

possible reason for this loss in sensitivity could be due to differences in the 

fluorescently-labeled insulin used for the studies. While previous studies reported only 

one peak due to FITC-insulin free in solution, we detected two separate free peaks. This 

is likely due to a difference in labeling. FITC is functionalized with an isothiocyanate 

reactive group, which can react with amine and sulfhydryl groups. Insulin contains two 

reactive amine groups, so it is possible for each molecule of insulin to be either singly or 

doubly labeled (28). While the FITC-insulin used in previous studies was likely all doubly 

labeled, the FITC-insulin used here contained both types of labels, resulting in 

differences in electrophoretic mobility and thus 2 separate peaks. This difference in 

labeling could contribute to differences in B/F determination or interactions with antibody 

that may have resulted in higher detection limits. Nonetheless, the detection limits were 

low enough to detect basal levels of insulin secretion from groups of islets as required 

for this study. 

 

Temporal Resolution of Insulin Detection 

When collecting continuous perfusate in a capillary, one concern was that diffusion in 

the capillary would greatly reduce the temporal resolution of the system. Reducing the 

inner diameter of the capillary can limit diffusion; however, narrow capillary sizes also 

limit the collection time possible because the increased back pressure could cause the 
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chip to leak at the point of connection and/or the cell chamber could feel this pressure. 

Additionally, narrower bore capillaries can clog easily, affecting the flow rate through the 

capillary and interfering with accurate timescale analysis of insulin secretion. We found 

that 75 µm i.d. capillaries were the smallest we could use without leaking when used in 

conjunction with a second, waste capillary. With this capillary size, the temporal 

resolution of the system was 84 ± 15 s (n = 4). By comparison, the temporal resolution 

on a single-chip system was measured to be 53 ± 10 s (n = 2) using similar perfusion 

flow rates (1.35 µL min-1), so we obtained 1.6-fold worse resolution due to diffusion in 

the capillary (Figure 2.12). 

 

 

Figure 2.12. Design and performance of single channel electrophoresis chip. a) Islets were 
inserted into the islet chamber, which was then plugged with a PDMS plug (illustrated in inset). 
Islets were perfused with basal and stimulatory levels of glucose at a rate of 1.35 µL min

-1
. The 

sample flowed into an open reservoir, which was sampled by EOF. b) By adding or removing 
fluorescein from the perfusion solution (as indicated by arrows), the temporal resolution of the 
system was measured to be 53 ± 10 s. 

 

Using segmented flow, we could prevent diffusion during sample collection and maintain 

high temporal resolution. In order to segment the perfusate, we collected fractions in a 

well plate that were then sampled alternately with oil using a syringe pump operated in 

reverse-flow mode. In this instance, the temporal resolution was limited by the fraction 

size. Because we were using low-volume 384-well plates (50 µL volume), we needed to 

collect 10 µL per well to ensure sampling of the aqueous solution. At the flow rates 

used, this translated to 2.5 min collection times. Speeding up the flow rates to achieve 

higher temporal resolution was not an option, because the insulin concentrations would 

have been diluted below the limit of detection. 
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Because the fraction volume was limited by the well plate and not the assay, there are 

several methods that can be used to easily reduce the temporal resolution. One option 

is to collect fractions in a 1536-well plate (2 µL volume). Using smaller wells, we could 

reduce the collection time to 5-10 s per well. Another advantage of reducing the well 

sizes is that it would increase the surface-to-volume ratio in the wells. Although the 

wells were derivatized with a Teflon spray prior to use to maintain the perfluorinated oil 

phase on top of the less dense aqueous phase, we found that the phases would 

sometimes flip mid-experiment. This was especially prevalent in islet perfusate samples, 

since the BSA and tween-20 present in the samples (necessary to block adsorption of 

proteins and reagents to microchannel walls) reduced the surface tension as compared 

to other samples without these additives. By maintaining a higher surface-to-volume 

ratio in the wells, a higher ratio of the oil would be in contact with the derivatized well 

walls, and the samples would be less likely to flip. 

 

While there are advantages to collecting fractions in smaller wells, one must consider 

that the trade-off for improved temporal resolution is that instead of collecting 10 wells in 

25 min, we would be collecting 150-300 wells in the same time frame. In doing so, both 

the time spent forming droplets and the time spent analyzing droplets would be greatly 

increased. Another option for reducing the temporal resolution is to form droplets 

continuously directly on-chip. This method eliminates the need for an added droplet 

formation step, thus reducing the time and labor required for analysis. However, the 

length of tubing required to collect droplets directly from  the chip for 20-30 min is 

prohibitive. When collecting such large quantities of droplets, the backpressure that 

builds up in the collection tube can cause droplets to merge or to split. When droplet 

size varies, then the droplets will move at different rates, thus impeding the ability to 

relate the droplets' measurements back to the times that they were taken. 

 

Comparison of Methods 

Both of these methods exhibited similar electrophoretic reproducibility, with slightly 

lower limits of insulin detection for the segmented flow chip. The continuous flow 

collection method obtained better temporal resolution; however, both were capable of 
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measuring first phase and second phase insulin secretion dynamics. Importantly, the 

continuous flow collection method required less time and less labor to run (because it 

did not include the added steps of droplet formation and droplet extraction). Operation 

of the continuous flow system was comparatively simple, only requiring a capillary to be 

transferred from one chip to another. Compared to a single-chip system, which would 

require expensive and/or complicated optical systems to analyze both analytes, the 

temporal resolution was only 1.6-fold worse, which was an acceptable trade-off. Based 

on these characteristics, the continuous flow collection method was better suited for 

islet evaluation. However, the continuous flow collection method was limited in further 

advancements by backpressure experienced in the capillary and potentially the cell 

chamber, whereas the segmented flow collection method can be vastly improved in 

temporal resolution and analysis time, making the segmented flow collection method 

more attractive for future developments.  

 

Applicability to Islet Evaluation for Transplantation 

The main requirement for applicability of this method to islet evaluation for 

transplantation was that the measurement could be completed quickly. The median 

culture time for islets prior to human transplantation, reported in a retrospective study, is 

20 h (29). Previously developed evaluation methods using ELISA for insulin detection 

are labor-intensive and time-consuming, taking a half day to run. Our sequential 

detection method, comparatively, took <90 min for measurement and analysis of [Ca2+]i 

and secreted insulin, making it compatible with the time requirements necessary for 

transplantation. 

 

Previous work has indicated that a combination of [Ca2+]i, insulin, and mitochondrial 

membrane potential measurements should better predict the outcome of a transplant 

than any of these measures alone (13). Mitochondrial membrane potential imaging 

measurements could easily be incorporated into our system by adding another 

excitation wavelength to the filter wheel. 

 



49 
 

Conclusion 

In this work, we have developed two proof-of-concept methods for the rapid sequential 

detection of [Ca2+]i and insulin secretion in glucose-stimulated islets. These methods 

demonstrated a simple way to detect analytes in solution on-chip via LIF while 

monitoring cells or a reaction at a different point on the chip. Further improvements to 

temporal resolution could broaden the applicability of these methods to measuring other 

cellular phenomena. If temporal resolution is not a great concern for a specific 

application, continuous flow collection offers a simple method with minimal manual 

manipulation for conducting multi-point detection. Other options, like second detectors, 

are discussed in Appendix A.  

 

Rapid sequential detection of [Ca2+]i and secreted insulin is worth exploring for use as a 

regulatory standard to indicate whether islets are suitable for clinical transplantation. 

Before this would be possible, issues in chip reliability need to be addressed- for 

example, chip clogging, occasional leaking at capillary connections to the chip, and 

electropherogram variability. To test the validity of the method, we would need to 

transplant islets into mice and develop an islet health scoring system relating the 

dynamics of the measures to the outcomes of the transplantations. We could then 

determine the suitability of the scoring system for predicting the viability of future islet 

transplants. 
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CHAPTER 3  

Development and Optimization of a Sample Preparation Method for Islet 

Metabolomics 

 

Introduction 

Insulin-secreting pancreatic β-cells regulate glucose homeostasis through a triggering 

(KATP-dependent) and an amplifying (KATP-independent) pathway (1–3). While the 

mechanism of action of the triggering pathway is well-characterized, less is known 

about the amplifying pathway, which is thought to involve anaplerosis through either 

malonyl CoA formation and lipid esterification processes or through a pyruvate/malate 

or pyruvate/citrate shuttle (4). Investigation into these pathways is imperative for 

understanding the mechanics of glucose-stimulated insulin secretion (GSIS), which 

could provide insights into the development of diabetes mellitus and provide potential 

targets for therapeutic development. 

 

Metabolomic analysis is a powerful tool for investigating alterations in cellular response 

to various stimuli. A desirable metabolomic method is able to quantify a wide range and 

amount of metabolites with good reproducibility. Nuclear magnetic resonance (NMR), 

gas chromatography-mass spectrometry (GC-MS), and liquid chromatography-mass 

spectrometry (LC-MS) have all been employed successfully for mammalian cell 

metabolomics (5–8); we chose to use high performance liquid chromatography-time-of-

flight mass spectrometry (HPLC-TOF-MS) here because it is highly sensitivity compared 

to NMR and avoids the need to derivatize samples as in GC-MS, thus simplifying the 

experiment and metabolite identification.  

 

Previous β-cell metabolomic studies have typically been conducted with clonal β-cells 

rather than primary islets because clonal cells are easily obtained in large quantities, do 
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not require animal sacrifice, and consist purely of β-cells (9–14). Clonal lines such as 

rat-derived INS-1 and BRIN-BD11 cells and mouse-derived MIN-6 cells (15–17) have 

proven to be valuable models of β-cell function. Certain strains secrete insulin in 

response to a variety of secretagogues, including glucose, amino acids (15, 18), 

incretins (16), tolbutamide (17), forskolin (19, 20), and phorbol-12-myristate-13-acetate 

(PMA) (19, 20). However, underlying metabolic differences could still exist, resulting in 

discordant metabolic responses in clonal cells as compared to native islets. For 

example, it has been reported that suppression of either the cytosolic or mitochondrial 

form of malic enzyme reduces GSIS in glucose-responsive INS-1 832/13 cells but not in 

isolated rat islets (21). Additionally, while it has been widely reported that lipotoxicity is 

glucose-dependent (so-called glucolipotoxicity), this effect may be dependent on β-cell 

source. While glucolipotoxicity is present in INS-1 cells, studies did not replicate these 

findings in MIN6 cells or in isolated human islets (22). 

 

Because of these potential differences in metabolic activity, it is important to corroborate 

data obtained from clonal cells with data derived from native islets. However, such work 

requires overcoming challenges of islet analysis. Islets are not as easily obtained or 

manipulated as clonal cells and they vary widely in size. Murine islets from an eight-

week-old NOD mouse were found to range in volume from ~20,000 to 3,600,000 µm3 

(23), meaning that a sample of a set number of islets could contain widely ranging 

numbers of cells. Size variation creates potential differences in islet metabolite content 

when normalizing to islet numbers. More subtle is the fact that islet size can affect 

nutrient availability. Islets in culture rely on diffusion for stimulants to reach the center of 

the cell cluster; therefore, the steady-state stimulant concentration at the center of the 

islet is influenced by outer cell stimulant consumption, thus creating an intra-islet 

stimulant concentration gradient (24). As such, the metabolic profile of islets with 

varying size is inherently more variable than in dissociated cells, potentially leading to 

lower reproducibility of results. 

 

One way to combat this is to use a large number of islets per sample to average out the 

effect of size. Recent studies have used 240-500 islets per sample (11, 25). Increasing 
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islet number also in principle increases number of metabolites covered, signals, and 

reproducibility. However, large sample sizes are not practical for large-scale 

experiments due to the availability of primary islets. Only 100-200 islets can be routinely 

isolated from a single mouse, so 2-3 animals would need to be sacrificed for a single 

sample. Not only is this wasteful and ethically problematic, but it also limits the amount 

and scope of experiments that can be performed due to time constraints involved in 

obtaining the required number of islets. We thus aimed to determine the minimum 

number of islets that could be used while still obtaining similar metabolite coverage and 

reproducibility as previous reports using conventional columns and sample preparation 

methods. 

 

In this work, we developed a sample preparation method for the reproducible analysis of 

62 metabolites from groups of 50 murine islets of Langerhans. We then compared 

metabolite changes in response to glucose stimulation in islets to those reported in INS-

1 832/13 cells. Several key differences were discovered, indicating possible differences 

in metabolic regulation between primary islets and clonal cell lines. 

 

Experimental Procedures 

Materials 

Kreb's Ringer Buffer consisted of 20 mM HEPES, 118 mM NaCl, 5.4 mM KCl, 1.2 mM 

MgSO4●7H2O, 1.2 mM KH2PO4, and 2.4 mM CaCl2 and was adjusted to pH 7.4. 

 

Roswell Park Memorial Institute (RPMI) culture medium, fetal bovine serum, penicillin-

streptomycin, and collagenase were purchased from Life Technologies (Carlsbad, CA). 

Acetonitrile, ammonium acetate, methanol, and chloroform were purchased from 

Sigma-Aldrich (St. Louis, MO). All other chemicals were purchased from Thermo Fisher 

Scientific (Waltham, MA). 

 

Islet Isolation and Culture 

Pancreatic islets were isolated from 20-30 g male CD-1 mice as previously described 

(26). Typically 100-200 islets were isolated per mouse, and the islets from 3-4 mice 
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were pooled together. Islets were cultured in RPMI-1640 media supplemented with 11 

mM glucose, 10% fetal bovine serum, and 1% penicillin/streptomycin at 37 ºC and 5% 

CO2 for 2-3 days prior to experimentation. Islets selected for experimentation were 100-

300 µm in diameter, oblong to spherical in shape, had an intact membrane, and lacked 

a hypoxic (darkened) center. When aliquoting islets for various conditions, we 

handpicked 10-15 islets per condition at a time instead of picking a whole group at once 

to reduce the chance of introducing investigator bias by preferentially selecting a certain 

size or shape of islet for the conditions aliquoted first. Islets were transferred to KRB 1 h 

prior to metabolism quenching to replicate conditions present in insulin secretion 

studies. For optimization experiments, islets were incubated in KRB supplemented with 

11 mM glucose for 1 h prior to metabolism quenching, while for glucose stimulation 

experiments, islets were transferred to KRB with 2.8 mM glucose for 1 h, after which 1 

M glucose was spiked in to a final concentration of 16.7 mM glucose. Metabolism was 

quenched either 5 or 15 min following stimulation, roughly corresponding to 1st phase 

and 2nd phase secretion. 

 

Metabolite Quenching Method 

Islets were transferred by pipette to a 1.5 mL Eppendorf tube and centrifuged for 30 s, 

after which the supernatant was aspirated from the islet pellet. Islet metabolism was 

then quenched either by dropping the tube into liquid nitrogen or by adding 100-200 µL 

of extraction solvent at -75 ºC (kept on dry ice) directly to the pellet. Samples were 

stored at -80 ºC for up to 8 days, after which extraction solvent was added to the tubes 

that had been snap frozen in liquid nitrogen. All samples were then extracted by probe 

sonication and LC-TOF-MS was performed on the resulting supernatant. 

 

Extraction Solvent Screen 

Groups of 75 islets were quenched with liquid nitrogen and extracted with either 75% 

9:1 MeOH:CHCl3/25% H2O, 80% MeOH/20% H2O, or 90% 9:1 MeOH:CHCl3/10% H2O. 

Extraction solvents were compared based on metabolite coverage, peak heights, and 

peak shapes. Experiments were performed in triplicate. 
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Internal Standard Metabolite Quantification 

13C-labeled internal standards (adenosine monophosphate (AMP), adenosine 

diphosphate (ADP), adenosine triphosphate (ATP), citrate (CIT), succinate (SUC), 

malate (MAL), and acetyl CoA (aCoA)) were spiked into the extraction solvent in 

approximately a 1:1 ratio with the expected sample metabolite concentrations. 

Metabolites were then quantified using the ratio of the isotopic peak area to the sample 

peak area. 

 

Sample Size Determination 

To determine the minimum appropriate sample size, samples containing 25, 50, and 75 

islets were analyzed at basal and stimulatory levels of glucose. All experiments were 

performed in triplicate. Samples were evaluated based on number of metabolites 

detected and relative standard error of the average peak areas for 42 known 

metabolites. 

 

Protein Quantification 

Proteins were quantified using a Pierce Bicinchoninic Acid (BCA) assay kit (Life 

Technologies, Carlsbad, CA) according to the manufacturer's protocol. Briefly, islet 

pellets were dissolved in 100 µL radio-immunoprecipitation assay (RIPA) lysis and 

extraction buffer. Samples and standards were then aliquoted in triplicate into a 96-well 

plate (25 µL per well) and 200 µL of working reagent was added to each well. After 

mixing briefly, the plates were incubated at room temperature overnight and then the 

absorbance at 562 nm was read using a plate reader. 

 

Metabolite Measurement 

Analyses for polar metabolites were performed using HPLC-TOF-MS. Chromatographic 

separations were carried out on a Phenomenex Luna NH2 column (150 x 1 mm, 3 µm 

particle size). Mobile phase A consisted of acetonitrile and mobile phase B consisted of 

5 mM ammonium acetate, adjusted to pH 9.9 with ammonium hydroxide. The gradient 

program was (time, %B, flow rate): 0 min, 20%, 70 µL min-1; 25 min, 100%, 70 µL min-1. 

Injection volume was 30 µL, column temperature was 25 ºC, and autosampler 
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temperature was 6 ºC. An Agilent Technologies LC/MSD TOF equipped with a dual 

electrospray ionization (ESI) source was used for detection in negative ion mode. 

Typical chromatograms obtained using this method are shown in Figure 3.1. 

 

Analyses for nonpolar metabolites were performed using reverse-phase 

chromatography coupled to the aforementioned mass spectrometer in positive ion 

mode. Chromatographic separations were carried out on a Waters Acquity UPLC C18 

column (2.1 x 50 mm, 1.7 µm particle size) equipped with a guard column (2.1 x 5 mm, 

1.7 µm particle size). Mobile phase A consisted of 8:2 isopropanol/methanol and mobile 

phase B consisted of 4:4:2 water/acetonitrile/methanol. Injection volume was 15 µL, 

column temperature was 45 ºC, and autosampler temperature was 6 ºC. 

 

Undirected data analysis was performed using XCMS online (27). Features with peak 

widths greater than 10 s and less than 120 s were aligned based on similar retention 

time (within 5 s deviation) and similar m/z (within 15 ppm deviation). Features that were 

likely induced by the same compound were grouped together to determine the total 

number of unique compounds detected in each sample group. Directed analysis was 

performed for a series of 87 metabolites previously identified in islets or in INS-1 cells. 

Of these, 62 were consistently detected to be present in our samples. We have chosen 

to focus here on those that exhibited changes due to glucose concentration. Metabolites 

were identified using retention time compared to standards and accurate mass. 

Combined peak areas were reported for unresolved isomers, like citrate/isocitrate and 

glucose-6-phosphate/fructose-6-phosphate (G6P/F6P). For most metabolites, peak 

areas were measured from extracted ion chromatograms of [M-H]- metabolite ions with 

±70 ppm detection windows centered on the theoretical mass. [M-2H]2- ions were used 

for aCoA and other CoAs to improve sensitivity. 

 

To account for instrumental drift, samples were randomized prior to injection onto the 

columns. To account for variations in MS sensitivity from run-to-run, metabolite peak 

area fold changes as compared to the average metabolite peak areas measured from 
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control samples maintained at basal levels of glucose were calculated and used to 

compare results from separate runs rather than absolute peak areas. 

 

Statistical Analysis 

Data are reported as means ± 1 standard error of the mean (SEM). Statistical 

significance (p value < 0.05) was determined using an independent sample, two-tailed 

Student's t-test, assuming equal variance. 

 

 

Figure 3.1. Typical metabolite chromatograms from islet extracts. Extracts were obtained from 
samples following 15 min stimulation with 16.7 mM glucose. Metabolites were extracted with m/z 
window ± 50 ppm. Peaks were smoothed using Gaussian smoothing with 15-pt function width and 
5-pt Gaussian width. 
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Results and Discussion 

We established a sample preparation method for the reproducible analysis of 62 

metabolites from small groups of murine islets through optimization of metabolism 

quenching, extraction solvent, and sample size (Figure 3.2). Signal variability due to 

islet number was investigated as a facet of the optimization. We also examined the 

effect of an internal standard addition on sample-to-sample and run-to-run variability. 

Next, we performed glucose stimulation experiments and compared our results to 

known or expected outcomes to verify that our islet metabolomic method could 

accurately detect changes in metabolites. Finally, we compared the results obtained 

with our method to published results obtained using clonal INS-1 832/13 cells and 

identified some possible differences in metabolic regulation between primary and clonal 

cells. 

 

 

Figure 3.2. Metabolomic sample preparation method. Islets were cultured in RPMI-1640 media and 
transferred to minimal media supplemented with 2.8 mM glucose for 60 min, after which glucose 
was spiked in to a final concentration of 16.7 mM. After an incubation period of 5 or 15 min, the 
islets were transferred to an Eppendorf tube and the samples were quenched. After addition of 
extraction solvent, islet metabolites were extracted using a probe sonicator, and supernatant was 
injected onto an LC-TOF-MS. 
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Metabolism Quenching Method 

Metabolism quenching serves to slow or ideally stop metabolism at a specific time point.  

Quenching is an important step in metabolomics because intracellular metabolite levels 

can change quickly, leading to possible misinterpretations of the metabolome if 

metabolism is not properly stopped at the desired point in time. Cold solvent addition    

(-75 ºC) is the most common quenching method, although some researchers have 

reported a loss of metabolites with cold (-40 ºC) methanol quenching due to metabolite 

leakage (8). Snap freezing with liquid nitrogen is another common quenching technique 

for tissue or adherent cell culture metabolomics (5, 28), and applying liquid nitrogen 

directly to plates of INS-1 cells was found to improve stability in storage compared to 

samples stored as extracts (9). We tested variations of both methods. For the liquid 

nitrogen method, we dropped the sample tube into a pool of liquid nitrogen, while for the 

cold solvent addition method, we added 100 µL of -75ºC extraction solvent directly to 

the islet pellet before placing the tube on dry ice. 

 

To compare the two quenching methods, we used the ATP/ADP ratio and the energy 

charge ratio. ATP/ADP ratio is a good barometer for metabolome quenching because 

the molecules have rapid turnover (8) and the ratio has well-known changes in islets in 

response to glucose treatment (29, 30). Previous reports have found ratios of 1.9 ± 1.4 

at 3 mM glucose (29), ~5.0 ± 0.5 at 5 mM glucose (31), and 4.1 ± 1.9 at 20 mM glucose 

(29). The energy charge ratio, calculated as ([ATP] + 1/2[ADP])/([ATP] + [ADP] + [AMP]) 

has an established physiological range in healthy cells of 0.80-0.95 (32). 

 

When using the liquid nitrogen quenching method, the measured ATP/ADP ratio at 11 

mM glucose was 1.6 ± 0.2 (n = 11), which is much lower than reported values for islets, 

and the energy charge ratio was 0.74 ± 0.02 (Figure 3.3a-b). In samples quenched via 

cold solvent addition, the ATP/ADP ratio was higher than with the liquid nitrogen method 

(6.5 ± 1.6, n = 4), and in line with the values expected. The energy charge ratio was 

also higher (0.89 ± 0.02) and in the expected range. Based on these results, we 

concluded that the liquid nitrogen quenching method was inefficiently quenching islet 

metabolism, probably due to the Leidenfrost effect (33). Cold solvent addition, 
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conversely, seemed to be a suitable metabolism quenching method, and was used in all 

subsequent experiments. 

 

 

Figure 3.3. Metabolism quenching method comparison. Samples were cultured in KRB 
supplemented with 11 mM glucose for 1 h, then quenched using either liquid nitrogen or -75 ºC 
solvent addition. a) ATP/ADP ratio was 1.6 ± 0.2 using liquid nitrogen (n = 11) and 6.5 ± 1.6 using 
cold solvent addition (n = 4). b) Energy charge ratio was 0.74 ± 0.02 using liquid nitrogen and 0.89 
± 0.02 using cold solvent addition. 

 

Extraction Solvent Screen 

Choice of extraction solvent can have a significant effect on recovery, peak shape, 

metabolite coverage, and metabolite retention, with more polar solvents favoring 

improved recovery of more polar analytes, and vice versa. The best extraction solvent 

depends upon sample composition. We were interested in selecting an extraction 

solvent that was compatible with MS analysis and with analytes known to be important 

in stimulus-secretion coupling in β-cells, e.g. glycolysis, TCA, and pentose phosphate 

metabolites, nucleotides, fatty acids, and long chain CoAs.  

 

Because of limited sample availability, we only tested 3 solvents. Methanol is the most 

commonly used extraction solvent for tissue metabolomics. A study comparing several 

different methanol/water ratios shows that the optimal ratio for endogenous metabolite 

extraction from E. coli samples (based on better yields of high-energy compounds than 

in higher organic content solvents and lower yield of decomposition products than in 

lower organic content solvents) is 80% (34). Previous work in our group using INS-1 

cells demonstrates that a 70% 9:1 MeOH:CHCl3 solvent tends to result in higher peaks 

with better sensitivity for glycolytic and TCA metabolites than 70% MeOH. The residual 



63 
 

water in the plate is estimated and included in the solvent ratios (9). Based on these 

reports, we selected 90% 9:1 MeOH:CHCl3, 75% 9:1 MeOH:CHCl3, and 80% MeOH as 

potential extraction solvents for our experiments in islets (results shown in Figure 3.4). 

We compared both peak shape and peak area. Peak shape is important for accurate 

quantification of peak area, while maximizing the peak area can improve metabolite 

coverage. 

 

 

Figure 3.4. Extraction solvent effect on peak areas. Metabolites were extracted using either 90% 
9:1 MC/10% H2O, 80% MeOH/20% H2O, or 75% 9:1 MC/25% H2O (n = 3 for each solvent tested). 
Samples extracted using higher organic content solvents exhibited larger relative peak areas for 
early-eluting compounds, while samples extracted using lower organic content solvents showed 
larger relative peak areas for late-eluting compounds, especially nucleotides. Trend lines are 
displayed to show this trend. R

2
 = 0.2068, 0.0942, and 0.1188 for 90% 9:1 MC (solid line), 80% 

MeOH (narrow dashed line), and 75% 9:1 MC (wide dashed line), respectively. 

 

Qualitatively,  the peak shapes using the 90% 9:1 MeOH:CHCl3 were better than with 

either of the other two solvents for early-eluting peaks such as glutamate (Figure 3.5a-i). 
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The poor peak shapes could be caused by dissolving the sample in a solvent that is 

stronger than the mobile phase. Peak shapes could potentially be improved by 

changing the mobile phase gradient so the initial aqueous content is higher. Middle and 

late-eluting peaks did not exhibit solvent-specific differences in peak shape. 

 

 

Figure 3.5. Glutamate chromatographic peak shapes by extraction solvent. Peak splitting is 
observed when samples are extracted using lower organic content extraction solvents, as in (a-f). 
The best peak shapes are observed with 90% 9:1 MC (g-i). 

 

Quantitatively, peak areas tended to trend based on the polarity of the extraction 

solvent: early-eluting compounds, including fatty acids, amino acids, and some 

glycolytic metabolites, tended to have larger peaks in solvents with higher organic 

content. In the first 17 min of the chromatogram, the 90% 9:1 MeOH:CHCl3 solvent 

corresponded to, on average, 17% larger peak areas than the 80% MeOH solvent (p = 

0.01) and 29% larger peak areas than the 75% 9:1 MeOH:CHCl3 solvent (p < 0.00001). 

Later-eluting compounds, namely nucleotides, tended to have much larger peaks in 
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solvents with lower organic content; the average peak areas of all nucleotides were 

50% larger using the 75% 9:1 MeOH:CHCl3 solvent than either of the other solvents (p 

< 0.0001). Middle-eluting compounds and long chain CoAs were comparable across all 

extraction solvents, with the exception of alpha-ketoglutarate (AKG), which was only 

detected with 80% MeOH, and CDP-choline, which was only detected with 90% 9:1 

MeOH:CHCl3. No significant difference in peak area RSE based on extraction solvent 

was observed (RSE was 16 ± 9%, 13 ± 11%, and 13 ± 7% for 90% 9:1 MeOH:CHCl3, 

80% MeOH, and 75% 9:1 MeOH:CHCl3, respectively). 

 

Based on these results, we decided to use 90% 9:1 MeOH:CHCl3 for all subsequent 

experiments to preserve sensitivity and peak shape of early-eluting compounds; 

nucleotide sensitivity was not as important comparatively because these peaks are 

relatively abundant in islet samples regardless of the extraction solvent used. 

 

Effect of Islet Number on Metabolome Coverage and Reproducibility 

As discussed in the introduction, it is of interest to decrease islet numbers required for 

assay, but using too few islets could result in variability due to islet size and intra-islet 

nutrient concentration gradients. We therefore evaluated our sample preparation 

procedure on groups of 25, 50, and 75 islets to determine if these numbers could yield 

good metabolome coverage and reproducibility. These values represent numbers of 

islets that can be conveniently obtained from a single mouse; the smaller numbers 

would allow replicates or multiple experiments from a single subject. 

 

For this study, we measured metabolites at basal (3 mM) and stimulatory (16.7 mM) 

glucose concentrations in islets that had been extracted into 200 µL extraction solvent. 

Each group contained 3 replicates. Using XCMS online for undirected analysis (27), we 

found that the LC-MS analysis of 25 islets yielded 3230 aligned features, of which 219 

were determined to be likely to correspond to unique compounds; 50 islets yielded 4098 

aligned features, of which 255 were unique compounds; and 75 islets generated 4275 

aligned features, of which 273 were unique compounds. These values correlate to 86% 

metabolite coverage in 25 islet samples compared to 50 islet samples and 80% 
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metabolite coverage in 25 islet samples compared to 75 islet samples, demonstrating 

that, as expected, increasing the sample size increased the number of compounds that 

could be detected in islets. These results were obtained in a single MS run with 

randomized samples, so variability in MS sensitivity should not have contributed to any 

differences observed. 

 

By comparison, recent islet metabolomic studies using 240 islets have measured 

comparable numbers of compounds. Using a GC-MS metabolomic method, 195 

metabolite derivatives have been detected in INS-1 cells 15 min following glucose 

stimulation, of which 61 could be identified and measured via directed analysis in 

isolated rat islets (11). Other islet metabolomic studies do not report the total number of 

metabolites detected via undirected analysis (25, 35). The reason we were able to 

obtain similar metabolite numbers using 25-50 islets could be due to their use of GC-MS 

as opposed to LC-MS, as GC-MS is believed to measure fewer compounds. Other 

studies using INS-1 cells have found 325 unique peaks using GC-MS (13) and 345 

unique peaks using LC-MS (El Azzouny, M. et al, unpublished data). Comparatively, we 

measured about 75% the number of metabolites using ~50-fold overall less material. 

We were able to achieve these results by using low volumes of extraction solvent to 

avoid sample dilution. Scaling the extraction solvent volume to the number of cells, our 

samples were only 5-10 times less concentrated than the INS-1 samples. Further 

reduction in extraction solvent volume was limited by injection volume requirements. 

 

Next, we performed directed analysis on a series of 42 known metabolites in groups of 

25, 50, and 75 islets at basal and stimulatory levels of glucose. Each condition was 

tested in triplicate. Of these 42 metabolites, we found that 37 were detected in 25 islet 

samples, with 31 detected in all six sample sets. All 42 metabolites were detected at 

least once in the 50 and 75 islet samples, although in the 50 islet samples, only 39 were 

detected in all 6 sample sets. To compare the reproducibility of the peak area 

measurements for the detected metabolites, we plotted the average RSE values 

obtained for all metabolites at basal and stimulatory glucose concentrations (Figure 

3.6). We found that the 25 islet samples typically were the most variable, with an 
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average RSE of 26 ± 2%. This RSE was significantly higher than the average RSE 

values of the 50 and 75 islet samples, which were 20 ± 1% (p = 0.02) and 17 ± 1% (p = 

0.0001), respectively. There was no significant difference in average RSE between 50 

and 75 islet samples. These results were collected using a poor column, so only 42 

metabolites were compared; 62 metabolites could be consistently detected in 

subsequent experiments using 50 islets. 

 

 

Figure 3.6. RSE dependence on sample size. RSE was measured for 42 metabolites extracted from 
sets of 25, 50, and 75 islets. Results were pooled from metabolites measured at basal and 
stimulatory levels of glucose (n = 6 for each bar). Average RSE was 26 ± 2%, 20 ± 1%, and 17 ± 1 % 
for 25, 50, and 75 islets, respectively. 

 

Based on the results from both the directed and undirected analyses, we reasoned that 

25 islets were too few to obtain adequate metabolite coverage and reproducibility using 

our current sample preparation and MS methods. Lower signal-to-noise ratios are a 

contributing factor for this higher variability, as the metabolites with the smallest peak 

areas tended to have high RSE (30-50%) for 25 islet samples. However, some large 

peaks, such as ADP and ATP, had similarly high RSE values that could not be 

attributed to signal-to-noise ratios, leading us to believe that this variability resulted from 

islet heterogeneity, which should have more of an impact at smaller sample sizes. Since 

50 and 75 islet samples resulted in similar metabolite coverage in both directed and 



68 
 

undirected analysis and similar peak area variability, we decided to use samples 

containing 50 islets for all subsequent experiments. 

 

Sample Tissue Variability 

The above data suggests that 50 islets per sample provided a reasonable compromise 

between metabolite coverage and reproducibility and tissue requirements relative to 25 

or 75 islets. We next sought to determine how variable total tissue would be for this islet 

number from sample-to-sample. For this study, we examined protein content in 18 

groups of 50 islets. We found that the average protein content in all samples was 96.3 ± 

19.9 µg mL-1 (standard deviation). 

 

The variation in islet protein content (RSD = 21%) could account for some of the 

variability in islet metabolite measurements; thus, we corrected the measured peak 

areas by measured protein concentration of each sample. However, there was no 

difference in variability between corrected and uncorrected peak areas. Average RSE 

was 15 ± 2% and 17 ± 2% for uncorrected and protein-corrected samples incubated in 3 

mM glucose, respectively (n = 9). Corresponding average RSE for samples incubated in 

16.7 mM glucose was 9 ± 1% and 10 ± 1%, respectively (n = 9). The improved RSE 

with high glucose could have occurred because metabolite levels tend to be higher at 

high glucose, resulting in more signal. The ineffectiveness of protein content in 

improving metabolite variability could be related to differences in metabolic response 

from individual cells due to the intra-islet nutrient concentration gradient. 

 

Internal Standard Metabolite Quantification 

Stable isotope-labeled compounds can be added to samples and used as internal 

standards to correct for some variables in analysis including loss during sample 

preparation and signal variation from different injections. We had available stable 

isotopes for AMP, ADP, ATP, CIT, SUC, MAL, and aCoA. The isotopes were added to 

the samples during the quenching step. Absolute signal variation in a series of injections 

from 4 samples containing identical concentrations of stable isotopes is shown in Figure 

3.7, demonstrating differences in peak area from sample-to-sample. As shown in Figure 
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3.8, the addition of the internal standards was able to correct for differences in peak 

areas based on extraction solvent composition. Although the raw peak area for ATP 

was significantly higher in samples extracted in lower organic content solvent, the 

quantified amount of ATP in all samples was the same (Figure 3.8a). Corrections for the 

other metabolites are shown in Figure 3.8b-g; there were no significant differences in 

metabolite levels based on extraction solvent in the stable-isotope corrected data. 

 

 

 

Figure 3.7. Sample-to-sample variability. Eight internal standards were spiked into four biological 
samples in equal concentrations. When injected sequentially onto the LC-TOF-MS, peak areas for 
each metabolite varied from injection-to-injection. 

 

While stable isotopes were useful in correcting for large differences in metabolite 

concentrations, such as those introduced by varying the extraction solvent, they did not 

improve variability overall. The RSE for metabolite peak areas in replicate samples was, 

on average, 17% for both the raw data and the stable-isotope corrected data, indicating 

that most of the variation was due to the sample itself and not to variation in the MS. 
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Figure 3.8. Internal standard correction of metabolomic data. Stable isotope-labeled metabolites 
were added to samples to quantify metabolite concentrations for a) ATP b) ADP c) AMP d) CIT/ICIT 
e) aCoA f) MAL g) SUC. Absolute quantification eliminated variations in measured metabolite peak 
areas due to extraction solvent effects (n = 3 for each bar). Error bars represent standard error. 

 

Islet Metabolomic Method Verification 

Using stable isotope-corrected data, we determined the absolute intracellular 

concentrations of 7 metabolites measured 15 min following stimulation with 16.7 mM 

glucose. Measured concentrations were on the same scale as previous reports, as 

shown in Table 3.1 (30, 36). We next wanted to verify that our method could accurately 

measure changes in metabolism. Therefore, we stimulated islets with 16.7 mM glucose 

and measured fold-change in peak areas with respect to islets maintained at basal 

glucose concentrations (2.8 mM). We compared our results with expected metabolic 

changes based on known glucose-stimulated insulin secretion (GSIS) pathways. In a 

normal β-cell, elevated levels of extracellular glucose result in glucose uptake across 
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glucose transporter-type 2 (GLUT-2). Inside the cell, glucose undergoes glycolysis. 

Glycolytic products enter the citric acid cycle and undergo oxidative phosphorylation, 

resulting in the production of ATP. The consequent increase in the ATP/ADP ratio 

causes ATP-regulated K+ channels to close, leading to increased [K+]i and ultimately 

membrane depolarization. Voltage-gated L-type Ca2+ channels then open to allow Ca2+ 

influx into the cell. Increased [Ca2+]i induces vesicles containing insulin to fuse with the 

plasma membrane of the cell, releasing insulin into the extracellular space through 

exocytosis (2, 3). Anaplerotic pathways lead to a net increase in TCA cycle components 

(37). 

 

Based on these pathways and reported results (11), we would expect to see increases 

in glycolytic and TCA cycle components following glucose stimulation. Our results, 

reported in Figure 3.9 as the average fold change of each metabolite as measured in 

relation to the average peak area at basal glucose concentration for a series of 62 

metabolites, confirmed that our metabolomic method was able to reliably detect these 

expected changes in metabolites. We observed significant increases in G6P/F6P, MAL, 

ATP/ADP, NADH/NAD, and NADPH/NADP within 5 min of glucose stimulation, 

corresponding to 1st phase response. These metabolites remained elevated 15 min 

following stimulation, during the 2nd phase response. Additionally, other glycolytic and 

TCA cycle components 2-phosphoglycerate/3-phosphoglycerate (2PG/3PG), AKG, and 

malonyl CoA (mCoA) were also significantly elevated at this time, consistent with 

expected contribution of anaplerosis to 2nd phase glucose response (Figure 3.10a-b). 
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Figure 3.9. Metabolite heat maps. Concentrations of 62 metabolites and 4 metabolite ratios are 
expressed as fold changes versus time 0; n = 3 for each time point. Asterisks represent p < 0.05 
vs. time 0 as determined by an independent sample, two-tailed student’s t-test. 

 

Glucose Stimulation: Islets vs. INS-1 

Next, we sought to compare islet results to INS-1 data from our lab and other published 

results to determine if there were any inherent differences in metabolic responses to 

glucose. Comparing metabolic responses between islets and INS-1 cells is important for 

determining the applicability of data obtained using INS-1 cells to native islet 

metabolism. Due to different incubation conditions, the results are not directly 

comparable; however, by comparing data from a variety of sources and a variety of time 

points after glucose stimulation, some differences in metabolism between INS-1 cells 
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and islets can be established. Absolute concentrations of metabolites measured in islets 

and in INS-1 cells (10) are summarized in Table 1. Interestingly, concentrations of 

metabolites from INS-1 cells tend to be an order of magnitude higher than 

concentrations in our islet samples, possibly corresponding to higher metabolism rates 

in INS-1 cells. Because we only measured static metabolite levels, more experiments 

would need to be performed to explore this hypothesis. For a more in-depth analysis of 

metabolite levels, we compared fold changes in metabolite concentrations from basal to 

stimulatory levels of glucose in islets vs. INS-1 cells. 

 

 

Figure 3.10. Metabolic changes in response to 16.7 mM glucose 5 and 15 min post-stimulation in   
a) glycolysis metabolites b) TCA cycle metabolites c) nucleotides d) cofactors. n = 3 for each bar. 
Error bars represent standard error. Asterisks indicate p <0.05 as determined by an independent 
sample, two-tailed student's t-test. 
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Table 3.1. Absolute concentrations of metabolites measured in islets vs. INS-1 cells. Islets in our 
work were incubated at 2.8 mM glucose for 60 min prior to 16.7 mM glucose stimulation for 15 
min. Islets in previously published work were incubated for 60 min at 15 mM glucose followed by 
60 min at 20 mM glucose (30) or were incubated for 30 min at 5.5 mM glucose prior to 16.7 mM 
glucose stimulation for 60 min (36). INS-1 cells were incubated in 0.5 mM glucose for 30 min prior 
to 10 mM glucose stimulation for 30 min. 

 

Islets vs. INS-1: Glycolysis 

Glycerol-3-phosphate (G3P) was increased in response to glucose in both islets and 

INS-1 cells. The islet G3P fold increase (2.2 ± 0.8 fold after 15 min glucose stimulation) 

was comparable to INS-1 cells in one report (11), but the increase was significantly 

lower than in INS-1 cells in a second study (~30 fold in INS-1 cells) (10). This difference 

in metabolite levels between the INS-1 samples could be related to incubation 

conditions. In the second INS-1 study, INS-1 cells are pre-incubated in 0.5 mM glucose 

rather than 2.8 mM glucose as in the first study. G3P is formed from glycerol, which is 

released from triglycerides during β-oxidation. It is reasonable to believe that more 

glycerol may be available in cells that have been maintained at lower glucose 

concentrations. Thus, we concluded that G3P response is similar in islets and in INS-1 

cells under similar incubation conditions. 

 

Hexose phosphates have generally been reported to increase with a delayed response 

in glucose-stimulated INS-1 cells; increases reach 2-5 fold after 30-60 min of stimulation 

(10, 13, 38). In our islet samples, hexose phosphates increased 3.0 ± 0.2 fold within 5 

min of stimulation and 7.1 ± 1.9 fold 20 min after stimulation. Because other glycolytic 
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metabolites were similar between INS-1 cells and islets (including 2PG/3PG), this is 

likely not due to any differences in glycolytic metabolism. It could be related to 

differences in flux through the pentose phosphate pathway, which also utilizes hexose 

phosphates. While a 2.4 fold sustained increase in the PPP metabolite sedoheptulose-

7-phosphate (S7P) upon glucose stimulation was found in INS-1 cells (10), we observed 

a significant transient decrease (0.85 ± 0.05 fold) in S7P within 5 min of stimulation. 

Other pentose phosphate pathway metabolites were not detectable using our current 

metabolomic method; however, other studies have found 2.5 fold increases in ribose 5-

phosphate in INS-1 cells and 1.6 fold increases in rat islets (11). This increase in 

hexose phosphates and slightly lower increase in ribose-5-phosphate in comparison to 

INS-1 cells could correlate with reduced flux through the pentose phosphate pathway in 

islets as compared to INS-1 cells. Additionally, our inability to detect other PPP 

metabolites, which in INS-1 cells are detected in concentrations similar to aCoA and 

NADPH (10), could be indicative of lower levels of these metabolites in islets as 

compared to INS-1 cells. 

 

Islets vs. INS-1: TCA Cycle 

We found similar glucose-stimulated increases in the TCA cycle components AKG, 

SUC, and MAL as has been reported in INS-1 cells (10, 11, 13). CIT/ICIT, however, has 

been found to increase about 4-fold in INS-1 cells, while in our islet data, there was not 

a significant increase (1.3 ± 0.3 fold). This is paralleled in published work, in which  

citrate has been found to increase 4-fold in INS-1 cells, but to have little-to-no effect on 

metabolic regulation in rat islets based on an OPLS loading plot (11). Because other 

TCA cycle components are similar between islets and INS-1 cells, this reduced 

response is not likely due to changes in flux through the TCA cycle. Instead, it could be 

caused by differences in citrate usage for cataplerotic reactions. Citrate exported from 

the mitochondria can be converted into aCoA-derived mCoA, which was found to be 

slightly upregulated in glucose-stimulated islets (10.6 ± 2.9 fold) as compared to 

glucose-stimulated INS-1 cells (~6-8 fold) (10). Alternatively, the reduced increase in 

citrate could be caused by decreased formation through anaplerosis. Evidence for an 

anaplerotic pathway in islets includes high levels of expression of pyruvate carboxylase 
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(PC) (4). Pyruvate/citrate cycling and/or pyruvate/isocitrate cycling have been 

suggested to be important for GSIS, and in particular, for the KATP-independent pathway 

(39). GSIS is reduced when the mitochondrial pyruvate carrier (MPC) is inhibited in both 

INS-1 cells and in rat islets (40), and this decrease in insulin secretion occurs mainly 

during the 2nd phase of insulin secretion (13). 

 

Islets vs. INS-1: Nucleotides and Cofactors 

Qualitatively, nucleotide and cofactor response were similar between INS-1 cells and 

islets. Decreased concentrations were observed in mono and di-nucleotides and NADP 

upon glucose stimulation, while tri-nucleotide levels remained constant and NADH 

concentration increased. NADPH/NADP, NADH/NAD, and ATP/ADP ratios 

correspondingly increased (Figure 3.9 and Figure 3.10c-d). Quantitatively, the changes 

were not as great in islets as in INS-1 cells. AMP decreased maximally 0.7 ± 0.1 fold 

and ADP 0.5 ± 0.1 fold following 5 min glucose stimulation in our data. Results in INS-1 

cells show sustained 0.5-fold decreases in AMP and 0.3-fold decreases in ADP (10). 

Increases in NADH were likewise subdued; we reported 4-fold and 8-fold increases 5 

and 15 min following glucose stimulation, respectively, whereas INS-1 data has shown 

increases of ~16-fold using similar glucose concentrations (10). These slightly smaller 

fold-changes in molecules involved in cellular energetics could indicate varying 

metabolic rates between the INS-1 cells and islets. 

 

Islets vs. INS-1: Long Chain Acyl CoAs 

Long chain acyl CoAs (LC-CoAs) have been suggested as a metabolic coupling factor 

for GSIS. Evidence has shown that LC-CoAs can open KATP channels, resulting in the 

closure of Ca2+ channels, which could be related to oscillations in [Ca2+]i during the 2nd 

phase glucose response. LC-CoAs can also directly stimulate insulin exocytotic 

machinery (41). At stimulatory levels of glucose, mCoA levels increase, resulting in 

inhibition of CPT-1 and subsequent blockage of LC-CoA entry to the mitochondria for β-

oxidation, leading to accumulation of LC-CoAs in the cytosol (42). Measuring 

compartmental LC-CoAs is difficult, and evidence for cytosolic LC-CoA accumulation is 

indirect (41). Total LC-CoA content (mitochondrial + cytosolic) has been reported to 
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rapidly decrease with glucose stimulation in INS-1 cells and remain lower than control 

for at least 45 min; these results are consistent with LC-CoA esterification with G3P for 

de novo synthesis of phosphatidic acid (PA) and diacylglycerol (DAG) (10).  In our 

results, all LC-CoA levels decreased during 1st phase insulin secretion in accord with 

INS-1 data (significant only for 18:1 CoA; other LC-CoAs had p < 0.09), but except for 

16:0 CoA, they all returned to basal levels within 15 min of glucose stimulation. This 

replenishment of LC-CoAs could indicate differences in glycerolipid/free fatty acid 

cycling in the 2nd phase of insulin secretion between islets and INS-1 cells. 

 

Islets vs. INS-1: Other Metabolites 

Differences were found between islets and INS-1 cells in several other metabolites, 

including ZMP, which is reported to increase 9-fold upon glucose stimulation in INS-1 

cells (10), while we saw no effect of glucose on ZMP in islets. ZMP can act as an AMP 

analog to activate AMPK, which induces inhibition of mCoA formation and could act as 

a negative regulator of insulin release. It was hypothesized based on the observed 

increase in ZMP that ZMP could play a role in negative regulation of GSIS during the 

2nd phase of insulin secretion (10). Reductions have also been reported in HMG-CoA, 

citicoline, and CDP-ethanolamine in INS-1 cells. HMG-CoA is involved in the 

mevalonate pathway, while citicoline and CDP-ethanolamine are involved in de novo 

synthesis of the phospholipids phosphatidylcholine (PC) and phospatidylethanolamine 

(PE) through the Kennedy pathway. In islets, we detected no significant change in 

HMG-CoA, citicoline, nor CDP-ethanolamine. Additionally, the sugar nucleotide donor 

GDP-Mannose was observed to increase 14-fold in INS-1 cells (10), while in islets, we 

observed a modest increase of 2.9 ± 0.4 fold.  

 

A lot of these differences can be attributed to the proliferative nature of INS-1 cells as 

compared to non-proliferating primary islets, suggesting that there may be many 

differences in metabolism between INS-1 cells and primary islets that could affect data 

interpretation of metabolomic experiments if researchers only study metabolism in 

clonal cell lines. One such difference is in glucose-stimulated PPP metabolite levels, 

which increase significantly in INS-1 cells. In our data, the only detectable PPP 
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metabolite decreased upon glucose stimulation, and other studies have reported 

smaller increases in ribose 5-phosphate in islets than in INS-1 cells. This difference 

could be because the PPP is used in clonal cells for the synthesis of nucleotides used in 

cell division/growth. Likewise, differences in LC-CoA concentrations following extended 

(>15 min) stimulation could be related to increased biosynthesis of membrane 

phospholipids in the proliferating INS-1 cells. These ideas would require more testing. It 

is important to note that our islet measurements only measured static metabolite levels, 

so we cannot directly determine whether changes in metabolite concentrations were 

due to changes in flux through a pathway or to increased/decreased synthesis or usage 

of metabolites. 

 

Conclusion 

We have developed a sample preparation method for the analysis of 62 known 

metabolites from groups of 50 murine islets of Langerhans by HILIC-TOF-MS. This is 

comparable to the 87 metabolites that were previously measured by this method in 

samples of INS-1 cells containing ~200 times the number of cells used here, with loss of 

some less abundant metabolites like succinyl CoA, ribose phosphate, 6-

phosphogluconic acid (6PG), phosphoribosyl pyrophosphate (PRPP), and 

phosphoenolpyruvate (PEP). Compared to other islet metabolomics papers using 240-

500 islets, we measured comparable numbers of metabolites. Other papers focused 

more on amino acids, with up to 12 detected (we only measured glutamate and 

aspartate) (11). We could not quantify these other amino acids with our current method 

due to poor peak shapes. Additionally, those studies were able to measure aconitate, 

ribose 5-phosphate, and PEP. These differences were likely due to differences in 

analysis methods, as we used HILIC-MS as opposed to GC-MS. Based on the total 

number of metabolites detected by undirected and directed analysis in our work 

compared to others', and the inability of protein content or stable-isotope labeled 

standards to reduce variation between samples, we concluded that sample variation 

was a larger impediment to reducing islet number in islet metabolomics than was 

metabolite detection. 
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In comparing islets with INS-1 cells, we found that the absolute concentrations of 7 

tested metabolites were an order of magnitude higher in INS-1 cells than in islets. We 

also discovered a number of differences in metabolic responses to glucose stimulation; 

namely, in islets, we observed larger increases in hexose phosphates, no significant 

increases in citrate or ZMP, and less reduction in many LC CoAs compared to 

previously reported INS-1 results. The differences between islets and INS-1 cells could 

indicate key differences in metabolism, particularly in the pentose phosphate pathway 

and/or in glycerolipid/free fatty acid cycling during 2nd phase insulin secretion. The 

cause of these disparities is unclear. They could be related to differences in β-cell 

metabolism, cell incubation conditions, or species from which the cells are derived. 

Future work in mouse-derived MIN-6 cells or in human islets could discern species-

related differences in β-cell metabolism.  

 

Additionally, the islet metabolic response could be confounded by the presence of other 

cell types. Islets consist of glucagon-secreting ɑ-cells, insulin-secreting β-cells, 

somatostatin-secreting δ-cells, pancreatic polypeptide-secreting PP cells, and grehlin-

secreting ε-cells, of which the β-cell is the most prevalent, constituting anywhere from 

50-80% of an islet's mass (43). The varying ratios in cell type can also contribute to the 

sample-to-sample variability that is observed in islets. Regardless of the cause of the 

disparities in islet and INS-1 cell metabolic responses, this work both underscores the 

significance of sample preparation/cell culture methods in the interpretation of 

metabolomic results and highlights the importance of  corroborating findings obtained 

using clonal cell lines with data derived from primary islets. 
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CHAPTER 4  

Application of Metabolomic Method to the Study of Oxidative Stress in Islets 

Cynthia M. Cipolla, Mahmoud El Azzouny, Shusheng Lu, Robert T. Kennedy 

 

Introduction 

Islets are susceptible to oxidative damage due to their low levels of the antioxidants 

catalase, selenium-dependent glutathione peroxidase 1 (GPX1), and Cu,Zn-superoxide 

dismutase 1 (SOD1) (1). Oxidative stress temporarily blocks glycolysis, after which cells 

can either be repaired or undergo apoptosis (2, 3). Previous studies have shown that 

oxidative stress (induced via transient hyperglycemia (4), lipid peroxidation (5), or 

transient hydrogen peroxide administration (6, 7)) results in DNA strand breaks, 

mitochondrial dysfunction, alterations in calcium homeostasis, and inhibition of glucose-

stimulated insulin secretion (GSIS) in islets.  

 

Oxidative stress-induced damage can occur to islets as a result of reactive oxygen 

species (ROS) formed during autoimmune reactions in type 1 diabetes (8) or as a result 

of increased mitochondrial respiration due to high insulin demand in type 2 diabetes (9). 

Therefore, better understanding of the mechanisms of oxidative damage may be useful 

in understanding β-cell dysfunction that accompanies diabetes. 

 

Oxidative damage to islets is also a known impediment to islet transplantation, a 

promising treatment for type 1 diabetes. Current isolation and culture methods induce 

stresses on islets that can result in oxidative damage in culture, while after the islets are 

transplanted, poor vascularization can also result in oxidative damage to the cells (10). 

In turn, this damage leads to impaired islet function, cell death and poor outcome to the 
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transplant. One study found that treating human pancreata with the antioxidant 

glutamine intra-ductally prior to islet isolation leads to higher occurrences of diabetes 

reversal when islets are transplanted into mice than conventional isolation procedures 

(10). Better understanding of oxidative damage may therefore be useful in 

understanding how to more effectively preserve islets for transplant. 

 

Understanding oxidative damage more completely may also be useful in evaluating 

islets for their potency and viability prior to transplant. Such a method is necessary for 

regulatory reasons and to improve the success rate of clinical islet transplants. At 

present, standard islet viability and potency testing prior to transplantation involve 

inclusive and exclusive dyes (11) and static GSIS measurements. However, results 

from these tests do not correlate well with clinical results; i.e., islets with strong GSIS in 

vitro do not always result in a successful transplantation and vice versa. Many times, 

islet transplant patients need several islet infusions to obtain insulin-independence, and 

the rates of long-term insulin-independence (~55%, sustained over 5 years) have been 

relatively poor compared to other treatments (12). These results suggest that the 

currently used measures do not sufficiently capture the status of cells and their potential 

for longer term function. More in depth measures may be needed to for adequate 

markers of islet viability and potency. 

 

To address these needs, we used a metabolomic approach to assess islets before and 

after oxidative stress. As illustrated in previous work using NMR to study the 

metabolome of β-cells during hypoxia, measuring many metabolites provides a powerful 

tool for investigating stress-induced alterations in cellular pathways (13). We felt that it 

may be possible to identify potential markers of oxidative stress that could be useful in 

an islet potency test prior to transplant. 

 

A desirable metabolomic method should be able to quantify many classes of 

metabolites with good reproducibility, sensitivity, and dynamic range. Accordingly, we 

used high performance liquid chromatography-time-of-flight mass spectrometry (HPLC-

TOF-MS) here because of its high sensitivity, selectivity, and applicability to many types 
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of metabolites. Previous metabolomic studies have typically been conducted with clonal 

beta-cells due to their ease of access and specificity for beta-cell metabolism (14–22). 

However, clonal cells are derived from a cancer line and as such may favor pathways 

involved in cell growth, which could result in different metabolic regulation than would be 

seen in a native cell population. For this reason, it is important to corroborate data 

obtained from clonal cells with data derived from native islets. 

 

In this work, islets treated with hydrogen peroxide were used as a model of oxidative 

stress, based on the biological role of hydrogen peroxide as an intermediate in free 

radical cytotoxicity and on its capability to diffuse across plasma membranes (23). We 

measured islets' insulin, calcium, and metabolic responses to basal and stimulatory 

levels of glucose at multiple time points following acute hydrogen peroxide 

administration. Our goal was to examine the immediate and long term responses to 

acute oxidative stress on the metabolic pathways involved in GSIS. Such study should 

help reveal short term and longer lasting alterations in metabolite levels and the ability 

of islets to recover normal metabolic response after an oxidative challenge. We also 

aimed to determine if the metabolic profile could indicate whether islets had previously 

undergone oxidative stress, which would be valuable for use as a biomarker. This work 

has possible implications on type 1 and type 2 diabetes pathogenesis and on islet 

viability assays. 

  

Experimental Procedures 

Materials 

Electrophoresis buffers were: balanced salt solution (BSS), consisting of 125 mM NaCl, 

5.9 mM KCl, 1.2 mM MgCl2, 2.4 mM CaCl2, 25 mM tricine, and 0.7 mg mL-1 BSA; 

immunoassay buffer, consisting of 60 mM NaCl, 1 mM EDTA, 20 mM tricine, 0.1% (w/v) 

Tween-20, and 0.7 mg mL-1 BSA; and electrophoresis buffer, consisting of 20 mM NaCl 

and 150 mM tricine. Kreb's Ringer Buffer (KRB) consisted of 20 mM HEPES, 118 mM 

NaCl, 5.4 mM KCl, 1.2 mM MgSO4●7H2O, 1.2 mM KH2PO4, and 2.4 mM CaCl2. All 

buffers were adjusted to pH 7.4. 
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Roswell Park Memorial Institute (RPMI) culture medium, fetal bovine serum, penicillin-

streptomycin, collagenase, fura-2 dye, and anti-insulin antibody were purchased from 

Life Technologies (Carlsbad, CA). FITC-insulin, acetonitrile, ammonium acetate, 

methanol, and chloroform were purchased from Sigma-Aldrich (St. Louis, MO). All other 

chemicals were purchased from Thermo Fisher Scientific (Waltham, MA). 

 

Glass Microfluidic Chip Fabrication 

Glass microfluidic chips were fabricated as previously described (24). Briefly, blank 2.5 

cm x 7.6 cm x 1.1 mm glass slides coated with a 530 nm thick layer of AZ1518 positive 

photoresist over a 120 nm chrome layer (Telic Co., Santa Monica, CA) were exposed to 

collimated UV light through patterned photomasks for 5 s. The exposed slides were 

developed in AZ726 MIF Developer (Microchemicals) for 30 s, and the underlying 

chrome was removed using CEP-200 Chrome Etchant (Microchrome Technologies, 

Inc., San Jose, CA). The exposed glass was etched in a solution of 14:20:66 (v/v/v) 

HNO3/HF/H2O for variable times depending on desired channel depth. Carbide drill bits 

(Kyocera Precision Tools, Inc., Hendersonville, NC) were used to drill 360 µm diameter 

access holes. The remaining photoresist and chrome were then removed using acetone 

and CEP-200 chrome etchant, respectively, and the etched glass plates were cleaned 

in piranha solution (3:1 v/v H2SO4/H2O2) for 20 min followed by heated RCA solution 

(5:1:1 v/v/v H2O/NH4/H2O2) for 40 min. Chips were aligned under water, dried, and 

annealed at 640 ºC for 8 h. Microfluidic reservoirs (Upchurch Scientific, Oak Harbor, 

WA) were applied over access holes after bonding. 

 

Cell Culture and H2O2 Treatment 

Pancreatic islets were isolated from 20-30 g male CD-1 mice as previously described 

(25). Islets were cultured in RPMI-1640 media supplemented with 11 mM glucose, 10% 

fetal bovine serum, and 1% penicillin/streptomycin at 37 ºC and 5% CO2 for 2-3 days 

prior to experimentation. Islets were then incubated in culture media with 100 µM H2O2 

for 30-40 min, after which they were rinsed with fresh media and incubated in RPMI for 

an additional 0, 1, 2, or 4 hours. Following incubation, islets were used immediately for 

calcium and insulin experiments, while for metabolomic experiments, they were then 
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incubated for 1 h in KRB supplemented with 2.8 mM glucose. This hour was accounted 

for in the reported culture time, so immediate response experiments were performed 

with H2O2 added to the KRB. 

 

Dynamic Insulin Secretion 

Dynamic insulin secretion was measured by microchip-based electrophoretic 

competitive immunoassay as previously reported (26). Briefly, islets were rinsed with 

balanced salt solution (BSS) and loaded into a microfluidic perfusion chamber. Secreted 

insulin was sampled by electroosmotic flow (EOF), mixed with fluorescein 

isothiocyanate (FITC)-labeled insulin and anti-insulin antibody, and injected onto a 

separation channel in 8 s intervals. Laser-induced fluorescence at the end of the 

separation channel was detected using a photomultiplier tube (PMT). The ratio of FITC-

insulin bound to antibody to FITC-insulin free in solution (B/F) was calculated and 

converted to insulin concentrations using calibration standards. This approach allowed 

insulin secretion from islets to be continuously measured at 8 s intervals in real-time.  

 

Calcium Flux Measurement 

[Ca2+]i was measured using fura-2 dye as previously described (27). Briefly, islets were 

loaded with 2 µM fura-2-AM via a 45 min incubation. They were then rinsed with KRB 

and loaded into a microfluidic chamber, where they were perfused with KRB containing 

basal (2.8 mM) and stimulatory (16.7 mM) levels of glucose. The dye was excited 

alternately with 340 nm (Ca+-complexed dye) and 380 nm (free dye) light and emission 

was collected at 510 nm. The ratio of complexed to free dye was calculated and 

converted to Ca+ concentrations using calibration standards. 

 

Metabolite Measurement 

Groups of 50 islets were incubated in KRB supplemented with 2.8 mM glucose for 1 h, 

after which glucose was spiked into the high glucose samples to a final concentration of 

16.7 mM. Following an additional 15 min incubation, islets were collected into 

Eppendorf tubes, samples were centrifuged for 30 s, supernatant was removed, and 

metabolism was quenched via addition of 100 µL of 90% 9:1 methanol:chloroform/10% 
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water at -75 ºC (stored on dry ice). Samples were stored at -80 ºC for up to 2 weeks 

prior to use. Over this time, there should be no significant loss or alteration of the 

metabolite profile (14). Immediately before analysis, islets were lysed using a probe 

sonicator. Samples were then centrifuged at 4 ºC for 5 min and the supernatant was 

transferred to LC vials. 

 

Analyses were performed using HPLC-TOF-MS. Chromatographic separations of polar 

compounds were carried out on a Phenomenex Luna NH2 column (150 x 1 mm, 3 µm 

particle size). Mobile phase A consisted of acetonitrile and mobile phase B consisted of 

5 mM ammonium acetate, adjusted to pH 9.9 with ammonium hydroxide. The gradient 

program was (time, %B, flow rate): 0 min, 20%, 70 µL min-1; 25 min, 100%, 70 µL min-1. 

Injection volume was 30 µL, column temperature was 25 ºC, and autosampler 

temperature was 6 ºC. Separations of nonpolar compounds were performed on a 

Waters Acquity UPLC C18 column (2.1 x 50 mm, 1.7 µm particle size) equipped with a 

guard column (2.1 x 5 mm, 1.7 µm particle size). Mobile phase A consisted of 8:2 

isopropanol/methanol and mobile phase B consisted of 4:4:2 

water/acetonitrile/methanol. Injection volume was 15 µL, column temperature was       

45 ºC, and autosampler temperature was 6 ºC. An Agilent Technologies LC/MSD TOF 

equipped with a dual electrospray ionization (ESI) source was used for detection in 

negative ion mode for HILIC analysis and in positive ion mode for reverse phase 

separations. 

 

Directed analysis was performed for a series of 87 metabolites previously identified in 

islets or in INS-1 cells. Of these, 62 were consistently measured in our samples. We 

have chosen to focus here on those that exhibited changes due to glucose 

concentration or H2O2 treatment. Metabolites were identified using retention time 

compared to standards and accurate mass. Combined peak areas were reported for 

unresolved isomers, like citrate/isocitrate (CIT/ICIT) and glucose-6-phosphate/fructose-

6-phosphate (G6P/F6P). For most metabolites, peak areas were measured from 

extracted ion chromatograms of [M-H]- metabolite ions with ±70 ppm detection windows 
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centered on the theoretical mass. [M-2H]2- ions were used for acetyl-CoA (aCoA) and 

other CoAs to improve sensitivity. 

 

To account for instrumental drift, samples were randomized prior to injection onto the 

columns. To account for variations in MS sensitivity from run-to-run, metabolite peak 

area fold changes as compared to the average metabolite peak areas measured from 

control samples maintained at basal levels of glucose were calculated and used to 

compare results from separate runs rather than absolute peak areas. 

 

Apoptosis Assay 

Apoptosis was measured using the Apo-ONE Homogenous Caspase 3/7 Assay kit 

(Promega, Corporation, Madison, WI) according to the manufacturer's protocol as 

previously described (28). Briefly, islets were treated with H2O2 for 40 min, then rinsed 

with culture media and aliquoted into an opaque 96-well plate in triplicate (25 

islets/well), where they were incubated for 0-4 h. Apo-One Caspase 3/7 reagent, 

containing active substrate Z-DEVD-R110, was then added to each well. Caspase 3/7 

activity cleaved the DEVD peptide groups to create the fluorescent product Rhodamine 

110. After 1.5 h incubation, the fluorescence was read using a plate reader equipped 

with 485 nm excitation and 535 nm emission filters. 

 

Protein Quantification 

Proteins were quantified using a Pierce Bicinchoninic Acid (BCA) assay kit (Life 

Technologies, Carlsbad, CA) according to the manufacturer's protocol. Briefly, islet 

pellets were dissolved in 100 µL radio-immunoprecipitation assay (RIPA) lysis and 

extraction buffer. Samples and standards were then aliquoted in triplicate into a 96-well 

plate (25 µL per well) and 200 µL of working reagent was added to each well. After 

mixing briefly, the plates were incubated at room temperature overnight and then the 

absorbance at 562 nm was read using a plate reader. 
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PI Staining 

Islets were treated with 100 µM H2O2 for 40 min, then transferred to a microfluidic chip, 

where they were perfused with culture media for 0-4 h. Islets were then perfused with 

100 ng/mL propidium iodide (PI) solution in culture media for 30 min prior to rinsing and 

imaging. PI stained late apoptotic and necrotic cells. The fluorescence was imaged 

using a xenon arc lamp, green filter, and CCD camera. 

 

Immunohistochemical Staining 

Islets were treated with 100 µM H2O2 for 30 min in RPMI, then were rinsed and 

incubated for 4 h in fresh RPMI. Immunohistochemical staining was used to quantify 

insulin and glucagon-containing cells as previously described (29). Briefly, islets were 

fixed for 1 h with Bouin's solution and then with formalin until they were embedded in 

paraffin blocks. The embedded islets were sectioned and then stained with anti-insulin 

and anti-glucagon antibodies. Fluorescent secondary antibodies were used for detection 

of β-cells and ɑ-cells via fluorescence microscopy. ImageJ software was used for cell 

counting. 

 

Statistical Analysis 

Data are reported as means ± 1 standard error of the mean (SEM). Statistical 

significance (p < 0.05) was determined using either 2-way ANOVA or an independent 

sample, two-tailed Student's t-test, assuming equal variance. 

 

Results 

Dynamic Insulin Secretion and Calcium Flux 

We measured [Ca2+]i and insulin secretion in response to an increase in extracellular 

glucose concentration from 3 to 16.7 mM in control islets and islets that had been 

treated with H2O2 for 30 min. The treated islets were removed from H2O2 either 0, 1, 2, 

or 4 h prior to testing. Basal [Ca2+]i and insulin secretion were elevated as compared to 

control immediately following H2O2 treatment, reaching maximal levels 1 h following 

exposure, as shown in Figure 4.1a-b. Basal [Ca2+]i returned to control concentrations 

within 4 h following H2O2 treatment. 
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Control islets showed an immediate rise in [Ca2+]i and insulin secretion in response to 

glucose stimulation (Figure 4.2a). The [Ca2+]i response tended to stay level, but the 

insulin plot showed a biphasic response with a distinct first phase peak that lasted ~4 

min followed by a second phase of elevated insulin secretion. Immediately after 

treatment with H2O2, [Ca2+]i increased slowly in response to glucose stimulation, while 

insulin secretion increased abruptly but plateaued with no distinct 1st phase peak, as 

shown in Figure 4.2b. One hour following treatment, [Ca2+]i response to glucose 

stimulation showed a slow rise qualitatively similar to that immediately after H2O2. The 

insulin response showed first phase and second phase dynamics that began to 

resemble controls (Figure 4.2c). Two hours after H2O2 exposure, immediate influx of 

Ca2+ in response to glucose stimulation was observed while insulin response to glucose 

exhibited exaggerated 1st and 2nd phase responses as compared to control (Figure 

4.2d).  

 

 

Figure 4.1. Basal [Ca
2+

]i and insulin secretion following 30-40 min H2O2 treatment. At the indicated 
time points following treatment, islets were placed in a microfluidic device and were perfused with 
3 mM glucose while a) [Ca

2+
]i or (b) insulin secretion was measured. n = 4-9 islets per bar. Error 

bars represent SEM. Asterisks indicate significant difference (p < 0.05) compared to control as 
determined by an independent samples, two-tailed student's t-test. 
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Figure 4.2. Average [Ca
2+

]i and insulin secretion timescale responses to 16.7 mM glucose 
stimulation at various times following acute H2O2 treatment. Time points were a) control b) 0 h     
c) 1 h d) 2 h (n = 4-9 islets per trace). Basal was 2.8 mM glucose. 

 

Islet Morphology 

Murine islets are typically oblong to spherical in shape with smooth membranes and a 

diameter of ~100-300 µm, as shown in Figure 4.3a. Immediately following exposure to 

H2O2, the islet morphology remained largely unchanged (Figure 4.3b). However, after   

1 h perfusion with fresh culture media, significant membrane blebbing started to occur 

(Figure 4.3c), and was even more pronounced 2 h post-H2O2 (Figure 4.3d). After 4 h, 

blebbed cells (Figure 4.3e) were easily shed by mechanical disturbance (i.e. by 

pipetting), resulting in islets consisting of reduced mass and lowered total protein 

content (Figure 4.4), but that had regained their membrane boundaries (Figure 4.3f). 
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Figure 4.3. Islet morphology at various time points following H2O2 treatment. a) Control islets were 
placed on a microfluidic chip and imaged. b) Islets were then perfused with 100 µM H2O2 in RPMI 
for 40 min, after which they were imaged. Perfusion solution was switched to RPMI (no H2O2), and 
islets were imaged c) 1 h d) 2 h and e) 4 h later. f) A separate 3 islets were treated with H2O2 off-
chip using the same conditions and transferred to the chip for imaging 4 h following removal of 
H2O2. Mechanical disturbance via pipette caused shedding of blebbed cells, resulting in redefined 
plasma membranes. 

 

 

Figure 4.4. Protein content in islets at various time points following exposure to 100 µM H2O2 (n = 
6-18 sets of 50 islets per bar). Error bars represent SEM. Asterisks indicate significant difference 
(p < 0.05) compared to control, as determined by an independent samples, two-tailed student's t-
test. 

 

Sample Group Equivalency 

All metabolomic experiments were performed on groups of 50 islets with 1 h exposure 

to KRB supplemented with 3 mM glucose. However, after H2O2 treatment, a portion of 
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cells underwent apoptosis and/or necrosis, reducing islet mass in those sample groups, 

as substantiated by a 2-fold decrease in total sample protein content 4 h post-H2O2 

stress (p < 0.0001), as shown in Figure 4.4. This leads to the possibility that the 4 h 

post-H2O2 sample group did not contain a comparable number of cells as the other 

groups, thus obfuscating the results. To overcome this issue, we normalized the raw 

peak areas to protein content for all islet samples. 

 

A second concern was that the ratio of β-cells to ɑ-cells in the islet would be altered by 

H2O2 treatment. Because ɑ-cells are located on the periphery of the islet in rodents (30), 

they could be more susceptible to damage. We used immunohistochemical staining to 

image insulin and glucagon-containing cells in control and H2O2-treated islets subjected 

to a 4 h culture period post-stress, as shown in Figure 4.5a-b. Of total cells counted, 

control islets contained 10 ± 2% ɑ-cells. As suspected, H2O2-treated islets exhibited 

very few ɑ-cells overall, with several islets not containing any α-cells. Because the 

amount of ɑ-cells in the control islets was low, we assumed they did not contribute 

significantly to the metabolite levels measured. 

 

 

Figure 4.5. Immunohistochemical staining of islets. Islets were stained for insulin (blue) and 
glucagon (red). a) Control islets contained 10 ± 2% ɑ-cells (n = 6). b) Islets treated for 30 min with 
H2O2 followed by 4 h incubation in fresh RPMI exhibited poor islet architecture and very few ɑ-
cells (n = 8). Images courtesy of Lynda Elghazi-Cras. 
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Metabolomic Profile 

We examined the immediate effect of H2O2 administered in KRB on the metabolic 

profile in islets, shown in Figures 4.6a and 4.7a-c. Metabolite amounts are reported as 

fold changes compared to control islets at basal glucose concentration. Control islets 

exhibited increased amounts of glycolysis and tricarboxylic acid (TCA) cycle 

components and increased cellular energetics following stimulation with high glucose, 

which correlated with previously reported responses in islets and in INS-1 cells (15–17), 

indicating that the metabolomic method was able to reliably detect changes in 

intracellular metabolites.  

 

In the H2O2-treated islets, we found evidence of oxidative stress immediately following 

the treatment, as shown by a 2-fold decrease in reduced to oxidized glutathione ratio 

(GSH/GSSG). We also observed changes consistent with a blockage in glycolytic flux at 

this time point, as demonstrated by significant increases in upstream metabolites 

G6P/F6P and fructose 1,6-bisphosphate (FBP) at both basal and stimulatory glucose 

concentrations. These results were consistent with a block of the enzyme 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH) (4). Adenosine monophosphate 

(AMP), adenosine diphosphate (ADP), guanosine monophosphate (GMP), and 

guanosine diphosphate (GDP) were all elevated as well, which resulted in decreased 

ATP/ADP and GTP/GDP ratios. Nucleotide cofactors nicotinamide adenine dinucleotide 

(NAD+) and reduced nicotinamide adenine dinucleotide phosphate (NADPH) were 

decreased, although nicotinamide adenine dinucleotide phosphate (NADP+) was 

elevated, resulting in reduced NADPH/NADP+ ratios. Most TCA cycle components were 

unaffected, with the exception of malonyl CoA (mCoA), which was reduced 3-fold. 

Several long chain CoA (16:0 and 18:0 CoA) concentrations also trended down 

immediately following H2O2 treatment, although the decrease was not significant          

(p = 0.09). 

 

Next, we investigated how metabolome response to glucose stimulation was affected in 

islets that had been treated with H2O2 and then cultured in fresh media for either 1 or 4 

h (Figures 4.6b and 4.7). We observed that all nucleotides that had been affected in the 
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immediate response returned to or near control levels within 4 h. Glycolysis apparently 

resumed normal function shortly after H2O2 treatment ended, with most metabolites 

returning to or approaching control levels after 4 h culture. FBP remained elevated at 

both basal and stimulatory levels of glucose 4 h post-H2O2; however, the levels were 

only 3-fold above control, whereas they had reached 7-fold above control with high 

glucose immediately following H2O2 administration. TCA cycle components remained 

unaffected, except for continued reduced levels of mCoA until at least 4 h post-stress 

and 1.5-fold lower acetyl CoA (aCoA) levels 1 h post-stress. Several other compounds 

were significantly affected during culture following H2O2 stress, including increases in 

levels of many fatty acids following 1 h culture and increases in many phospholipid 

levels following 4 h culture. 
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Figure 4.6. Metabolite heat maps for islets exposed to 100 µM H2O2. a) Islets were incubated in 
KRB supplemented with 3 mM glucose for 1 h prior to 16.7 mM glucose stimulation for 15 min. 
H2O2 was added 40 min prior to metabolism quenching. b) Islets were treated with H2O2 in RPMI 
(11 mM glucose) for 40 min. Islets were then cultured in fresh media for 1 or 4 h (the final hour of 
which was in KRB supplemented with 3 mM glucose) prior to stimulation with 16.7 mM glucose for 
15 min. LG = low glucose, HG = high glucose, n = 3-9 sets of 50 islets per condition. Asterisks 
represent significance (p < 0.05) between control and treated conditions as determined by 2-way 
ANOVA. 
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Figure 4.7. Metabolite fold changes following H2O2 exposure in a) PPP metabolites b) mCoA c) 
mevalonate pathway metabolites. Bars represent measurements at low (2.8 mM) and high (16.7 
mM) glucose for each time point (n = 3-9 samples per condition). Error bars represent SEM and 
asterisks indicate significance (p < 0.05) as determined by 2-way ANOVA. 

 

Apoptosis Assay and PI Staining 

Caspase 3/7 activity was elevated compared to control immediately following H2O2 

treatment, and reached maximum levels after 1 h culture in RPMI, as demonstrated in 

Figure 4.8. Presumably, after this point, many of the cells were already dead. Caspase 

3/7 activity remained elevated above control levels 2-4 h post-H2O2. As a 

complementary method of cell death detection, islets were stained with PI, which 

detected late-stage necrotic and apoptotic cells. PI staining showed an increasing 

amount of dead cells per islet over time (Figure 4.9a-e), although mechanical 
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disturbance of islets led to removal of dead cells and reduced islet mass, with minimal 

staining (Figure 4.9f). 

 

 

Figure 4.8. Caspase 3/7 activity assay. Islets were treated with 100 µM H2O2 for 40 min and then 
cultured in fresh media for the indicated amounts of time. n = 3 sets of 25 islets per condition. 
Error bars represent SEM. Asterisks indicate significance (p < 0.05) compared to control as 
determined by an independent samples, 2-tailed student's t-test. 

 

 

Figure 4.9. PI staining of H2O2-treated islets. Control islets (a) were compared to islets that had 
been treated with 100 µM H2O2 for 30 min and then transferred to a microfluidic chip, where they 
were perfused with RPMI for b) 0 h c) 1 h d) 2 h e) 4 h. Following perfusion, islets were stained for 
late apoptotic/necrotic cells with propidium iodide (PI). f) H2O2-treated islets were cultured for 4 h 
in an incubator prior to transfer to the microfluidic chip. Mechanical disturbance with a pipette 
caused shedding of the apoptotic/necrotic cells, resulting in minimal staining. 



101 
 

Discussion 

We stressed islets with hydrogen peroxide as a model of oxidative stress and measured 

their insulin, calcium, and metabolic responses to basal and stimulatory levels of 

glucose. These responses were correlated to measures of apoptotic and necrotic cell 

death. Insulin release and [Ca2+]i responses to glucose were immediately distorted. 

Soon thereafter, cell blebbing was visually observed and increased rates of apoptosis 

were measured. Following a culture period of 2-4 h in fresh media, insulin secretion and 

[Ca2+] responses returned to normal and gross islet morphology looked healthy. We 

identified metabolites and pathways that were immediately affected by H2O2 stress and 

investigated whether these perturbations were reversible 1-4 h following removal of the 

stress. In doing so, we gained insight into metabolic pathways potentially involved in 

diabetes pathogenesis and also established possible markers of islet viability for the 

purpose of islet evaluation prior to islet transplantation. 

 

Suppression of Glucose-Stimulated Insulin Secretion (GSIS) Pathway 

Insulin secretion and Ca2+ flux are often considered to be hallmarks of islet function, 

because insulin secretion is specific to β-cells and Ca2+ is an important part of the GSIS 

pathway. In a functioning β-cell, elevated levels of extracellular glucose result in uptake 

of glucose across glucose transporter-type 1 (GLUT-1) in humans or type 2 (GLUT-2) in 

rodents. Inside the cell, glucose undergoes glycolysis, and glycolytic products enter the 

citric acid cycle and undergo oxidative phosporylation, resulting in the production of 

ATP. The consequent increase in the ATP/ADP ratio causes ATP-regulated K+ 

channels to close, thus preventing K+ efflux from the cell. The increased positive charge 

inside the cell due to increased intracellular K+ levels leads to membrane depolarization, 

resulting in the opening of voltage-gated L-type Ca2+ channels. Increased [Ca2+]i 

induces vesicles containing insulin to fuse with the plasma membrane of the cell, 

releasing insulin into the extracellular space through exocytosis (31, 32). 

 

In H2O2-treated INS-1 cells, it has been shown that insulin secretion is suppressed, 

[Ca2+]i is elevated, and [Ca2+]i and mitochondrial membrane potentials are unresponsive 

to glucose stimulation in experiments performed immediately following 10 min treatment 
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with 200 µM H2O2 (6). We observed similar immediate insulin release and [Ca2+]i 

responses to H2O2 treatment. It has been suggested that the initial elevation in basal 

[Ca2+]i could be related to inhibition of the mitochondrial Na2+/Ca2+ antiporter, preventing 

efflux of Ca2+ from the mitochondria (6). Ca2+ influx into the cytosol has also been 

reported in H2O2-treated islets (33). This increase is thought to be due to release of 

Ca2+ from intracellular stores as well as increased influx from the extracellular space 

due to membrane permeabilization through lipid peroxidation (34). The increase in basal 

[Ca2+]i likely results in the increase in basal insulin secretion we observed, because 

Ca2+ promotes exocytosis from insulin vesicles. However, membrane hyperpolarization 

in response to H2O2 interferes with normal KATP-dependent stimulus-secretion coupling, 

resulting in loss of response of [Ca2+]i to glucose. 

 

By using LC-MS analysis, we found that the observed H2O2-induced changes in [Ca2+]i 

and insulin secretion correlated with lowered ATP/ADP ratio and increases in G6P/F6P, 

FBP, and, to a lesser extent, CIT/ICIT. It has been shown that H2O2 induces a glycolytic 

block in cells that is restored within approximately 2 h post-stress, at which point cells 

can either be repaired or undergo apoptosis (3). Our results were consistent with this 

observation, as we have shown here immediate increases in metabolites upstream of 

the glycolytic enzyme GAPDH, likely due to its inactivation (Figure 4.7). GAPDH activity 

could be measured via spectroscopic assay to confirm this observation. As glycolysis 

and subsequent ATP/ADP increase is necessary for the KATP-dependent GSIS pathway, 

insulin secretion and [Ca2+]i were not responsive to glucose stimulation. Apoptosis 

assays and PI staining showed that cells tended to die about 1-2 h after removal of the 

H2O2 stress. Glycolytic flux appeared to resume normal function after this time, as 

ATP/ADP and glycolytic metabolites returned to normal levels. Upon restoration of 

glycolysis, both insulin secretion and [Ca2+]i were capable of recovering from transient 

oxidative stress, with both returning to normal amounts within 4 h post-treatment. 

 

Taken together, this data seems to show that once the damaged cells were removed, 

the remaining islet cluster was able to function normally. Interestingly though, not all of 

the affected metabolites returned to control levels, indicating that there were potentially 
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other pathways affected that were not repaired within 4 h of removal of the stress, even 

though insulin release and [Ca2+]i function appeared normal at this time. 

 

Although KATP-dependent GSIS has been well-characterized, investigations have 

determined that it cannot be responsible for all GSIS. When diazoxide is used to hold 

KATP channels open, glucose is still able to stimulate insulin release when cell 

membranes are depolarized using high [K+] (35). Additionally, when sulfonylureas are 

used to hold KATP channels closed, a glucose stimulus again increases insulin secretion 

(36). Taken together, these experiments provide evidence for KATP-independent 

pathways of GSIS. As such, we investigated the possibility that H2O2 stress influenced 

function in these pathways. 

 

PARP-Activated Pathways 

Oxidative stress has been reported to increase poly (ADP-ribose) polymerase (PARP) 

activity in islets, with PARP immunoreactivity increasing significantly within 30 min of 

H2O2 treatment, though the increase is transient and not seen 60 min or 90 min post-

stress (37). Inhibiting PARP reduces H2O2-induced [Ca2+]i elevations in clonal β-cells 

(38). PARP is an inhibitor of GAPDH, which catalyzes the oxidative phosphorylation of 

glyceraldehyde-3-phosphate (G3P) in the presence of NAD+. GAPDH inactivation in 

islets results in the observed accumulation of upstream metabolite G6P (4). We 

observed immediate significant increases in G6P/F6P as well as another upstream 

metabolite, FBP, in islets following H2O2 treatment, as shown in Figures 4.7a and 4.10. 

Thus, our results were consistent with early-stage PARP activation. 
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Figure 4.10. Metabolite changes in PPP (left), glycolytic (middle) and hexosamine (right) pathways 
in immediate response to H2O2 treatment. Red = upregulated metabolites and green = 
downregulated metabolites. 

 

One reported consequence of hyperglycemia-induced PARP activation/GAPDH 

inactivation induced during hyperglycemia in mesangial cells by overproduction of 

superoxide is increased flux through the hexosamine pathway (39). The hexosamine 

pathway synthesizes the substrates for N- and O-glycosylation of proteins such as UDP 

N-acetylglucosamine (40), as shown in Figure 4.10. We observed a transient increase 

in UDP N-acetylglucosamine (1.5 fold) immediately following H2O2 treatment, supporting 

increased flux through the hexosamine pathway during early-stage H2O2 injury. 

 

We observed several changes in the pentose phosphate shunt pathway (PPP) that 

could explain the loss and then recovery of distinct first phase insulin release following 

H2O2 exposure. Although the PPP is not highly active in β-cells, recent studies using 

clonal INS-1 cells and rat islets have found increases in PPP metabolites in response to 

glucose stimulation (15, 16). Furthermore, H2O2 induces several enzymes involved in 

the PPP in Saccharomyces cerevisiae (41). In the PPP, glucose-6-phosphate is 

oxidized and decarboxylated, generating ribulose-5-phosphate and reducing NADP+ in 

the process (Figure 4.10). NADP+ is a positive regulator of the PPP. In the immediate 

response to H2O2 stress, we observed increased amounts of NADP+ and G6P/F6P, 

which would suggest that the PPP should be more active. Our observations support this 
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idea, as pentose phosphates were only detectable in islets quenched immediately 

following H2O2 stress. 

 

Increased flux through the PPP could help the cells to replenish NADPH that is oxidized 

in the process of reducing glutathione, as demonstrated in Figure 4.10. GSH is an 

important antioxidant that helps limit ROS-induced cellular damage, and GSH/GSSG 

levels were significantly reduced immediately following H2O2 stress (0.5 fold). NADPH-

mediated glutathione reduction is thought to play a role in the potentiation of insulin 

release (42), which could help explain the loss of phase dynamics in insulin release 

immediately following H2O2 treatment. At later time points, after the stress had been 

removed, NADP+, NADPH, GSH/GSSG, and G6P concentrations were normal and 

pentose phosphates were not detectable, indicating that the H2O2 had likely been 

neutralized by this point and increased flux through the PPP was no longer necessary. 

 

Anaplerotic Pathways 

Anaplerosis has been hypothesized to be involved in the KATP-independent pathways of 

glucose-stimulated insulin secretion through either malonyl CoA formation and lipid 

esterification processes or through a pyruvate/malate or pyruvate/citrate shuttle (43). 

Evidence for an anaplerotic pathway includes high levels of expression of pyruvate 

carboxylase (PC) and malic enzyme (ME) in islets (43). 

 

Culturing islets with high glucose and high fatty acids has been reported to increase 

glucose oxidation despite 30% lower pyruvate dehydrogenase activity. This observation 

could indicate enhanced metabolic flux through PC and the malate-pyruvate shuttle 

(44). PC produces oxaloacetate, which reacts with aCoA to produce CIT. We found no 

change in these metabolites and therefore did not obtain any evidence of changes in 

PC activity; however, we cannot rule out a change in flux through the pathway. Both 

malate dehydrogenase and citrate synthase have been found to be insensitive to H2O2-

induced oxidative stress in isolated nerve terminals, which is consistent with our 

observation that malate and citrate concentrations were not affected by H2O2 exposure 

(45).  
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Lipid/Fatty Acid Biosynthetic Pathways 

Several molecules have been implicated as possible amplifiers of insulin secretion, 

including glutamate (21), long chain acvl CoAs (LC-CoAs) (46), mitochondrial GTP (47), 

and AKG (48). Malonyl CoA has been suggested to be involved in the regulation of 

insulin secretion (49, 50) and has been shown to correlate with GSIS in a dose-

dependent manner (51). The initial increase in mCoA levels following glucose 

stimulation is Ca2+-independent (43). 

 

We observed an immediate impairment in glucose-induced mCoA following H2O2-

induced oxidative stress (Figure 4.7b). This impairment was seen concomitantly with a 

rise in AMP, so it could result from AMPK-induced inhibition of mCoA formation via ACC 

phosphorylation. AMPK activation by pioglitazone has been shown to slow glucose 

metabolism and insulin secretion in INS 832/13 cells at glucose concentrations below 

10 mM, but to have no such effect at concentrations above 16 mM (52). AMPK 

expression was not found to be altered by transient exposure of H2O2 to islets in a 

recent study (53), but AMPK was shown to be activated by H2O2 in a different study 

(37). In our experiments, the mCoA inhibition persisted until at least 4 h post-stress, 

whereas AMP levels returned to normal. This maintained reduction in mCoA makes it 

plausible as a potential marker of previously induced oxidative stress, as might occur in 

the islet isolation process. The question then becomes: how is mCoA 

production/utilization affected by H2O2, and why do lowered levels not seem to 

negatively affect insulin secretion following acute oxidative stress? 

 

Malonyl CoA abundance rose 10-fold in response to glucose in control islets (Figure 

4.7b). This metabolite can inhibit CPT-1, resulting in accumulation of long chain fatty 

acids in the cytosol and blockage of β-oxidation. However, it has recently been 

suggested that the reduction of β-oxidation that occurs at high glucose could result 

primarily from a redirection of acyl CoA toward esterification instead of CPT-1 inhibition 

(54). We observed increased levels of many fatty acyl CoAs, fatty acids, and 

phospholipids (monoacylglycerol (MG), diacylglycerol (DAG), and triacylglycerol (TG)) 4 

h post-H2O2, indicating that β-oxidation inhibition was probably not affected by the 
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reduced mCoA levels. Instead, mCoA could have been consumed for lipogenesis. Fatty 

acid pathways possibly affected by H2O2 treatment are shown in Figure 4.11. 

 

 

Figure 4.11. Regulation of fatty acid and mevalonate pathways 4 h post-H2O2 stress. Red = 
upregulated metabolites and green = downregulated metabolites. 

 

Another possibility is that mCoA production was compromised by diversion of 

precursors to formation of other molecules, like HMG-CoA. In addition to the previously 

discussed metabolites, pantothenic acid (PAN) amounts were decreased, HMG-CoA, 

NADP, GSH, and GSH/GSSG concentrations were increased, and aCoA abundance 

remained unchanged 4 h post-H2O2 (Figure 4.7c). Increased export of NADPH from the 

mitochondria could account for many of these changes in metabolite levels (48). 

Although overall NADPH levels did not change in comparison to control, NADPH 

increased in response to glucose stimulation in control islets, whereas no such increase 

was observed in islets 4 h post-H2O2. PAN is involved in CoA synthesis, so the 

decreased levels could indicate that it was consumed for CoA production. HMG-CoA is 

involved in the mevalonate pathway, which leads to isoprenylation of proteins and 

cholesterol biosynthesis as shown in Figure 4.11. Isoprenylation of proteins is important 

for GSIS, as shown by a recent study in which inhibition of the mevalonate pathway 

prior to HMG-CoA synthesis negatively regulates GSIS in murine islets, while 

downstream inhibition of cholesterol synthesis without interruption of isoprenyl molecule 

synthesis has no effect on GSIS (55). It is thus possible that cholesterol synthesis and 



108 
 

thus secretory granule membrane properties were affected in formerly stressed cells, 

even though normal insulin secretion resumed at this point. Flux through the 

mevalonate/isoprenylation pathway could explain the reduction in mCoA observed with 

H2O2, and could also explain how it was possible for insulin secretion to be normal or 

even slightly more active than normal even though mCoA levels were blunted. 

 

Potential Markers of Damaged Cells 

Many of the early responses to H2O2 were reversed following stress removal; however, 

several metabolites were significantly different compared to control islets 4 h post-H2O2. 

FBP, GMP, NADP, fatty acids, and LC-CoA amounts were all elevated and mCoA 

downregulated after 4 h. These metabolites could comprise a metabolic signature for 

islets that have been previously damaged by oxidative stress. Such a signature could 

be valuable for detecting  islet damage during islet isolation for transplantation. A 

metabolic signature is important because islets need to be evaluated for viability; this 

evaluation would happen after the initial damage has occurred and prior to 

transplantation. Most evidence of initial damage, including alterations in [Ca2+]i and 

insulin secretion (especially if measured only statically and not as a temporal profile), 

was not present only 1-4 h post-stress, even though the islets had sustained previous 

damage. By screening islets for levels of these metabolites, we could potentially create 

a more accurate measure of islet health than current islet viability tests and thus 

improve the outcomes of islet transplantation. 

 

Conclusion 

We have identified several key components in islets' response to oxidative stress, 

including an initial blockage of glycolysis coupled with probable increased flux through 

the pentose phosphate and hexosamine pathways followed by recovery. Although 

glycolysis resumed and insulin secretion and [Ca2+]i dynamics returned to normal, 

several metabolites remained affected, most notably decreased mCoA concentrations 

and increased amounts of FBP, fatty acids, and LC-CoAs. These altered metabolite 

levels could indicate a shift in some of the KATP-independent pathways of glucose-
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stimulated insulin secretion. Possible targets include fatty acid/lipid biosynthetic 

pathways like the mevalonate pathway following H2O2-induced stress. 

 

One disadvantage of these experiments is that static metabolite levels were measured, 

which makes it difficult to discern information about flux through a pathway; increased 

levels of a metabolite could indicate increased flux or decreased usage, for example. 

Future improvements to the sample preparation and/or MS method will allow less 

abundant metabolites to be measured, and could improve metabolite signal for future 

metabolic flux experiments. The work presented here identified some important 

metabolites and pathways that could be involved in diabetes pathogenesis and/or that 

could be targeted as markers of oxidative stress for the purpose of islet functionality 

screening prior to islet transplantation. 
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CHAPTER 5  

Summary and Future Directions 

 

Summary 

The overall goal of this work was to develop analytical techniques for evaluating 

function in pancreatic islets of Langerhans, with the ultimate purpose of screening islet 

viability prior to clinical islet transplantation in type 1 diabetes patients. A secondary 

objective of islet evaluation was to study islet physiology and effects of stressors on islet 

function as they relate to mechanisms of diabetes pathogenesis. Although this work 

focused specifically on islets, the methods developed could potentially be used to study 

other cell systems as well. 

 

Dual Detection of GSIS Pathway Components 

Dual detection of [Ca2+]i and insulin secretion from groups of islets was realized using a 

two-chip system. Islets were perfused on the first chip with basal and stimulatory levels 

of glucose, and [Ca2+]i was measured via fluorescence microscopy while perfusate was 

collected for later analysis on a second chip by microchip electrophoresis coupled with 

laser-induced fluorescence detection (MCE-LIF). Two methods of perfusate collection 

were explored. In the first method, perfusate was collected continuously in a narrow 

bore capillary, while in the second method, perfusate was collected in fractions in a 

multi-well plate. These fractions were than segmented with oil in tubing to prevent 

diffusion between the fractions. Immediately prior to analysis by MCE-LIF, the aqueous 

droplets were de-segmented from the oil phase by flowing the solutions through a 

hydrophobic device coupled to a hydrophilic extraction capillary. 
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Both of these methods provided rapid measurement of [Ca2+]i and GSIS from a single 

batch of islets, with total analysis times <90 min. Temporal resolution of GSIS was 80-

150 s, which was adequate for measuring first phase and second phase dynamics. 

Basal and peak 1st phase insulin secretion were measured to be 10-25 pg min-1 islet-1 

and 100-200 pg min-1 islet-1, respectively. These concentrations were comparable to 

those measured previously in single islets. This work demonstrated the first on-chip 

multimodal detection of GSIS pathway components that is compatible with the time-

sensitive requirements of islet transplantation. 

 

Islet Metabolomics Sample Preparation Method Optimization 

As an alternative method for islet analysis, we explored a metabolomics approach. Our 

hypothesis was that intracellular metabolites might provide an indicator of cell stressors 

and health that could be used to evaluate islets. In considering our method, we sought 

to decrease the number of islets required because of the difficulty in obtaining them. We 

developed a sample preparation method for the reproducible analysis of 62 metabolites 

from 50 islets of Langerhans. Through optimization of quenching method, extraction 

solvent, and sample size, we established a method in which islets were quenched via 

cold solvent addition (90% 9:1 MeOH:CHCl3/10% H2O, -75ºC), extracted with probe 

sonication, and analyzed via HPLC-TOF-MS (HILIC and reverse phase columns, 

sequentially). Using this method, we obtained an average RSE of 20% and similar 

metabolite coverage to previous methods using larger numbers of islets. 

 

We applied the method to measure metabolite levels in islets incubated in basal 

concentrations of glucose (2.8 mM) and islets incubated in stimulatory levels of glucose 

(16.7 mM) for 5 or 15 min, roughly corresponding to first phase and second phase 

responses. We observed similar absolute concentrations of quantified metabolites as 

have previously been reported in islets under similar conditions. Furthermore, we 

observed increased levels of glycolysis and TCA cycle components and increased 

cellular energetics in response to glucose stimulation, consistent with reported 

responses in beta-cells and/or islets. This suggested that our method was able to 

reliably detect changes in intracellular metabolites. 
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We then compared the results obtained using our method to published results obtained 

in either islets or clonal cell lines to investigate whether any metabolic differences exist 

between native islets and clonal β-cells. We identified a number of differences, including 

larger increases in hexose phosphates, no significant increase in citrate or ZMP, less 

reduction in many long chain CoAs, and ~10-fold lower total absolute concentration of 7 

tested metabolites (AMP, ADP, ATP, aCoA, MAL, SUC, and CIT) in islets as compared 

to INS-1 cells. These differences could indicate key differences in metabolism between 

islets and INS-1 cells, particularly in the pentose phosphate pathway and/or in 

glycerolipid/free fatty acid cycling during 2nd phase insulin secretion. This work 

demonstrated the importance of corroborating metabolomic data derived from clonal 

cells with data obtained from native islets. 

 

Application of Islet Metabolomic Method to Studies of Oxidative Stress 

Towards our goal of evaluating islets and to better understand how stressors can affect 

the metabolome, we treated islets with H2O2 as a model of oxidative stress. We 

measured their secreted insulin, [Ca2+]i, and metabolic responses to basal and 

stimulatory levels of glucose immediately following the stress or after a subsequent 

culture period in fresh media. Immediately following exposure to H2O2, basal [Ca2+]i and 

secreted insulin concentrations were elevated, and their responses to glucose were 

distorted. We observed several differences in metabolite levels, including decreased 

GSH/GSSG, ATP/ADP, GTP/GDP and NADPH/NADP+ ratios, and decreased mCoA 

concentration. We also observed increased G6P/F6P, FBP, and AMP concentrations. 

These differences were consistent with increased PARP/decreased GAPDH activity and 

associated glycolysis blockage, coupled with probable increased flux through the 

pentose phosphate and hexosamine pathways. This data showed evidence for an 

antioxidant role in the pentose phosphate pathway in islets. 

 

One hour following acute H2O2 exposure, damaged cells blebbed and underwent 

apoptosis. [Ca2+]i and insulin secretion returned to control levels within 4 h following 

stress. While many of the early metabolic responses to H2O2 also were reversed in this 

timeframe, interestingly, several metabolites were significantly different compared to 
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control islets after 4 h recovery, including increased amounts of FBP, GMP, NADP+, 

fatty acids, and long chain acyl CoAs and decreased concentration of mCoA. These 

altered metabolite levels could indicate a shift in some of the KATP-independent 

pathways of GSIS following H2O2-induced stress; one potential target identified was the 

mevalonate pathway. Additionally, these metabolites could create a metabolic signature 

for islets that have been previously damaged by oxidative stress, like could occur during 

islet isolation for transplantation or in diabetes pathogenesis. 

 

Islet Potency Evaluation 

This dissertation presented two general approaches for islet evaluation. The first, 

involving multimodal detection on-chip of [Ca2+]i and insulin, achieved rapid islet 

analysis (<90 min), as is necessary in order to make effective decisions about islet 

viability prior to transplantation. However, for use in a clinical setting, these devices 

would need to be less manually intensive and more high-throughput (devices described 

here evaluated 7-20 islets, while 200-300 islets are currently evaluated prior to 

transplantation at UIC). It also is vital to verify that these measures correlate to islet 

function post-transplant prior to developing this method for this purpose further. 

 

For the second approach to islet evaluation, we developed a metabolomic method to 

identify potential biomarkers of islet health for transplant. After exposing islets to 

oxidative stress to mimic damage that can occur during islet isolation, we identified 

several metabolites and pathways that were altered immediately following treatment 

and up to 4 hours later. The ability of this method to distinguish between healthy and 

previously stressed cells makes it promising as a tool for islet evaluation. However, now 

that some differences have been identified, it is important to determine what effect they 

have on islet viability. Previous stress could result in islets being more likely to fail or 

could help condition islets so that they are better suited to deal with future stress- a 

study has shown, for example, that although hypoxia diminishes [Ca2+]i and insulin 

responses to glucose, this effect could be mitigated by preconditioning islets with 

intermittent hypoxia (1). Once the relationship between the identified metabolic 

signature and islet function is determined, the method can be optimized for the 
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detection of significant metabolites. The current system is ideal for global metabolite 

identification during the hypothesis-forming stage; however, the methods are slow (37 

and 45 min per HILIC and reverse phase, respectively). Specific assays for metabolites 

of interest could be developed with faster analysis times that are more compatible with 

the requirements of islet transplant. 

 

Future Directions 

Several advancements to the developed methodology can be made to move closer 

towards our goal of islet evaluation. Microfluidic devices need to be further automated, 

possibly by reducing manual handling steps in sequential detection methods or by 

moving to a one-chip system using miniaturized detectors. Metabolomic methods can 

benefit from improved detection limits to provide better metabolite coverage and 

pathway analysis. Likewise, flux analyses can provide greater insights into the 

metabolites and pathways affected during and following stress. Following these 

technical improvements, we can measure more complete responses to oxidative stress 

and other common islet stressors, and corroborate rodent islet data with human islets. 

Once probable markers have been identified, we can test their correlation with 

transplant outcome. 

 

On-Chip Segmentation of Islet Perfusate 

While segmentation of aqueous samples with oil preserves temporal information, we are 

currently limited in the temporal resolution achieved in insulin secretion experiments by 

the amount of time necessary to collect the required fraction volume. Furthermore, the 

current method is labor-intensive, requiring an analyst to collect samples, transfer the 

well plate to an xyz stage for droplet formation, and then connect the droplet tube to an 

extraction device and electrophoresis chip. We could eliminate the droplet formation 

step from the process by forming droplets directly on-chip rather than collecting 

fractions of perfusate. 

 

A chip has been developed by our collaborators at the University of Illinois at Chicago to 

create droplets containing perfusate, FITC-insulin, and anti-insulin antibody, as shown 
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in Figure 5.1a. With an islet perfusate flow rate of 2.5 µL min-1, FITC-insulin and 

antibody flow rates of 1 µL min-1 each, and an oil flow rate of 5 µL min-1, 20 nL droplets 

were formed on-chip at a frequency of ~8 Hz (Figure 5.1b). However, several problems 

were encountered. First, the ratio of mixing from the 3 aqueous channels was not stable 

throughout the experiment. This could be attributed to oil entering the aqueous channels 

during connection of the oil tubing to the chip. Redesign of the chip to incorporate a 

longer oil channel and an aqueous mixing channel prior to segmentation could improve 

the stability of the device. 

 

A second concern with on-chip segmentation is the length of tubing required to store all 

of the samples from a 25 min experiment. While droplets formed well, we observed 

coalescence of droplets as they moved through the 5 ft tube, likely due to increased 

back pressure. When droplet size varies, then the droplets will move at different rates, 

thus impeding the ability to relate the droplets' measurements back to the time that they 

were collected. One possible solution is to reduce the size of the microfluidic system so 

that lower flow rates could be achieved. Additionally, samples could be collected in a 

series of smaller tubes rather than one long tube, or a flow split could be introduced to 

further reduce the volume of fluid being collected in the tubing. 

 

 

Figure 5.1. Microfluidic device for on-chip droplet generation. a) Schematic of chip design. 
Secreted insulin, FITC-insulin, and anti-insulin antibody were combined in a 2.5:1:1 ratio. 
Perfluorinated oil was used to segment the flow, creating 20 nL droplets at a frequency of 8 Hz 
that were collected in tubing. Fluid flow is controlled using syringe pumps. b) Image of PDMS-
based device. Channels were filled with food dye for visualization. Droplets formed showed good 
mixing of reagents and uniformity in size. 
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One-Chip System for Simultaneous Detection of [Ca2+]i and Insulin Secretion 

The methods presented for detecting [Ca2+]i and insulin secretion from a single group of 

islets consisted of collecting perfusate from one chip used for [Ca2+]i detection that could 

later be perfused into a second chip used for insulin detection. The rationale was that 

we could use the same microscope system to measure both analytes via LIF. However, 

an alternative method would be to use a compact detector for one or both of the 

measurements. The advantage of such a system is that it allows simultaneous detection 

of both analytes, thus reducing the time required for analysis and eliminating extra 

manual handling steps. 

 

We developed a microfabricated fiber optic probe detection system with integrated 

optics that could be coupled to microfluidic devices by aligning the probe to a detection 

channel. The dimensions of the probe (1.1 mm wide x 500-600 µm deep) allow it access 

to detection in confined spaces, such as those encountered on a microfluidic chip 

containing several fluidic reservoirs. This microprobe could potentially be used to 

measure insulin secreted from islets at the end of a separation channel while [Ca2+]i is 

measured using a traditional microscope in an islet chamber located on the same chip 

(schematic shown in Figure 5.2). However, the current detection limits of the microprobe 

are not sensitive enough to measure levels of FITC that would be relevant for an 

electrophoretic immunoassay. 
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Figure 5.2. Schematic of one-chip microfluidic system for dual detection of [Ca
2+

]i and insulin 
secretion. [Ca

2+
]i is measured via traditional confocal microscopy, while insulin secretion is 

measured via MCE-LIF. A PDMS microprobe is aligned to the detection region of the chip. 
Excitation laser light is guided into the channel using a fiber optic coupled with microfabricated 
optical elements, while fluorescence is collected from the channel in a similar manner. Signal is 
detected using a PMT.  

Further improvements to the microprobe can improve the sensitivity to the level required 

for our assay. One simple improvement is to use glass-based photomasks rather than 

film. The microfabricated optical faces were measured to have a feature edge surface 

roughness of ~2 µm, which resulted in backscattering from the optical faces. By using 

higher quality masks, this background light scattering can be diminished. 

 

A second method for improving the detection limits is to integrate filters directly onto the 

tips of the fibers. By integrating filters directly into the probe, we can reduce the effect of 

light scattering that occurs along the length of the fiber and thus reduce the fluorescent 

background. We have successfully been able to mill dielectric filters down to 200 µm x 

500 µm while leaving the optical layer intact. To incorporate them into the probe, the 

filters can be thinned and back polished to a smoothness tolerance of 1 µm. Filters can 

be handled using vacuum suction and inserted into designed holders on the mask. 

 

 

 



122 
 

UHPLC 

The sensitivity of the metabolomic method can be greatly improved by using an ultra 

high pressure liquid chromatography (UHPLC) system that is currently being developed 

in our lab. UHPLC utilizes 25-100 cm long capillary columns packed with sub-2 µm 

particles that are operated at pressures greater than 1000 bar (2). One effect of using a 

UHPLC column is that the peak capacity is increased, thus resulting in less co-elution 

and ion suppression and consequently improved sensitivity (3). Because of this 

improvement in ion suppression, UHPLC has become an important method for 

proteomics (4) and has become increasingly used for metabolomics and lipidomics (5). 

While most experiments have been conducted using reverse phase columns, HILIC 

columns have been used more frequently recently due to an increase in the number of 

commercially available HILIC columns with sub-2 µm particles (6). Intensity RSD for a 

reverse phase column was found to be less than 30% for most features, and retention 

time RSD less than 5%, demonstrating good peak stability for undirected data analysis 

(5). 

 

One advantage of UHPLC is that flow rates can be slowed down, making this system 

compatible with nano-ESI. Recent work showed similar reproducibility in nano-UHPLC 

compared to conventional UHPLC, with detection limits 2-2000 times lower for all 

(xeno)metabolites analyzed (7). By using a nano-UHPLC system, we can potentially 

improve detection of low abundance or poorly ionized metabolites. As a secondary 

advantage, the injection volumes will be much lower, thus allowing us to use smaller 

extraction volumes and thus improve the sensitivity even more. 

 

Metabolic Flux Analysis 

One disadvantage of the work shown in Chapters 3 and 4 is that we were measuring 

static levels of metabolites at specified time points. Although we could determine 

whether metabolite levels had changed over a certain time span, we could not specify 

whether these variations were due to changes in formation of a metabolite or changes 

in the utilization of that metabolite. Additionally, since many metabolites are involved in 

multiple pathways, it can be challenging to determine which pathways are affected by a 
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specific metabolic change. For example, we would be interested in determining the 

relative flux through pathways involving malonyl CoA, since we observed sustained 

decreases in levels of this metabolite following oxidative stress. There can also be 

experimentally important changes in flux through a pathway even though the metabolite 

levels remain constant. For these reasons, it is beneficial to study metabolic flux. 

 

Metabolic flux analysis, or "fluxomics", involves adding a 13C-labeled precursor to cells 

and measuring its propagation through various known pathways (8). By knowing the 

location of the 13C label on the precursor and the reactions involved in the pathways, it 

is possible to determine the relative flux through each of the pathways involved. One of 

the challenges in metabolic flux analysis is that instead of generating one peak per 

compound, each compound will be split into several peaks based on the number of 13C 

atoms that are incorporated. When using small sample sizes, this can mean that many 

low abundance metabolites are no longer detectable, thus limiting the utility of this 

method. In order to run metabolic flux analysis on islet samples, we would first want to 

improve the sensitivity of the metabolomic method. 

 

Other Cell Stressors 

While we have been able to obtain information on the effects of oxidative stress on islet 

function, other types of stress can also occur during islet isolation and diabetes 

pathogenesis. Because multiple stressors likely act on islets simultaneously, it is 

important to understand the effects of multiple types of stress on islet viability. Other 

potential stressors include hypoxia and cytokines. Studies have previously been 

conducted in β-cells under both of these conditions. 

 

One study used 1H NMR to study changes in metabolic markers in INS-1 cells during 

hypoxia-induced cell death. A decrease in creatine-containing compounds was 

observed during early-stage hypoxia (2-6 h), while increased levels of taurine-containing 

compounds were observed in late-stage hypoxia (12-24 h) (9). Since our LC-MS 

method measures many different compounds than the published NMR method, we can 

potentially obtain complementary data that gives more insight into the particular 
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pathways affected. In preliminary studies, for example, following 1 h of hypoxia, we 

observed increased levels of FBP and decreased levels of mCoA, NAD, CDP-

ethanolamine, and citicoline. Measuring responses to hypoxia is also interesting from 

the standpoint that islets preconditioned with intermittent hypoxia have been found to 

have improved insulin secretion under hypoxic conditions as compared to control islets 

(1). Further exploration into the effects of hypoxia on islets can provide insights into the 

effects of islet preconditioning on islet function. 

 

Cytokines are another potential stressor of islets. Cytokines are released as part of the 

immune response to oxidative and ER stress and can cause cell death (10). Cytokine 

release occurs at several points in the islet isolation process, beginning with increased 

cytokine production in the pancreas from the moment of brain death in the islet donor. 

Islets have also been shown to express several proinflammatory cytokines during 

culture. After transplantation, immune responses in the recipient can stimulate 

additional cytokine release (11). Previous work has suggested that cytokines induce cell 

death through a necrotic, rather than apoptotic, pathway (12). However, this work does 

not include any glucose stimulation studies and does not give any indication of possible 

lasting effects of cytokine treatment on the surviving cells, which is important from the 

viewpoint of islet evaluation and is an area for potential future investigation. 

 

Human Islets 

All of the work presented here was completed using rodent islets; however, as human 

islets become more readily available for research, it would be beneficial to replicate 

experiments in human islets to ensure transferability of the method. Human islets are 

morphologically different from rodent islets. While rodent islets contain a core of β-cells 

surrounded by a shell of α-cells, human islets show no such organization. Additionally, 

the ratio of β-cells can vary significantly in human islets, reportedly from 28-75%, so 

sample variability may be a greater issue (13). Metabolic differences have been 

reported between rodent and human islets as well. While pathways incorporating the 

enzymes pyruvate carboxylase (PC) and ATP citrate lyase are important in rodent 

islets, research has suggested that pathways involving the enzymes succinyl-CoA:3-
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ketoacid-CoA transferase (SCOT) and acetacetyl-CoA synthetase may be preferred in 

human islets (14). Since our main goal is to develop a method to evaluate islets for 

human islet transplantation, identification of robust biomarkers relevant to human islet 

metabolic processes is imperative. 

 

Development of Islet Scoring System 

The primary goal of this work was to develop analytical methods to evaluate islet 

viability for the purpose of islet transplantation. In order to use the methods that we 

developed to evaluate viability, we would need to transplant islets that have been 

evaluated via our methods into mice and determine the outcome of the transplantation. 

This could be done in collaboration with islet surgeons at the University of Illinois at 

Chicago. We would then use statistical methods to develop a scoring system that would 

correlate the measurements taken with the expected outcome of the transplantation, 

and create a cut-off value for "healthy" vs. "unhealthy" islets. Finally, we would use our 

scoring system to evaluate islets prior to transplantation in mice and determine the 

efficacy of our system in predicting future islet viability and potency. 
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APPENDIX A 

Monolithic Integrated Microscale Spectroscopic Probes (MiMS Probes) 

Thitaphat Ngernsutivorakul, Cynthia M. Cipolla, Colleen E. Dugan, Michael D. Morris, 

Robert T. Kennedy, Francis W. L. Esmonde-White 

 

Introduction 

Fluorescence spectroscopy is a powerful technique due to its high sensitivity, fast 

response, and ease of use. Most conventional optical systems are formed through an 

assembly of individual components, such as microscope objectives, mirrors, and lenses. 

This approach requires fixtures and an assembly process which incurs an inherent base 

cost, and limits the ability to develop highly integrated analytical devices. Chemical 

measurements in tight spaces are also restricted due to size, particularly for multi-

position detection and parallel analysis on microfluidic chips. Miniaturization of optical 

detection systems is currently a hot topic.  

 

Many recent spectroscopic applications have been investigated which necessitate 

miniaturized optical probes. These probes are generally made by assembling compact 

optics and by integrating fiber optics into the analytical devices (1, 2). For instance, 

optical fibers have been integrated with micro-lenses in order to develop miniature 

portable Raman probes. While these probes are commercially available, they are 

typically expensive because of costs associated with material handling and precise 

optical alignment. Furthermore, they are limited to sizes larger than 1 mm to 

accommodate the required alignment hardware and optical elements. For biomedical 

applications, additional bulk is also added to the probes in order to allow autoclaving. 

Nonetheless, fiber optic probes with lenses have been reported with 2 mm diameter, 

and fiber optic probes without lenses have been made as small as 1 mm diameter (3–

5). Optical detection systems have alternatively been miniaturized using 
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microfabrication techniques (6–11). By microfabrication, the optics can be integrated 

into a microfluidic chip with precise alignment and can be mass produced. The 

integrated devices can be used for a variety of applications such as protein separation, 

DNA analysis, and flow cytometry (12–14). Most designs have utilized the common 

photoresist and PDMS (poly(dimethylsiloxane)) rapid prototyping method due to several 

advantages of the materials, for example, low-cost and ease of fabrication (15, 16). 

Typical designs use fiber optics to deliver the light from the light source and to collect 

the light from microfluidic channels (17–22).  Additionally, optical elements such as built-

in lenses and other waveguides can be incorporated into the devices using air-PDMS 

(23–28) or liquid-liquid interfaces (11, 29–34).  These systems are typically developed 

with extensive integration in mind, and their sophisticated designs allow specific 

performance to be achieved. However, they also require fixed optics and therefore low 

flexibility. In addition, the optics and the microfluidic systems must be manufactured 

simultaneously, leading to more potential points of failure and complication in fabrication 

processes, especially for chips requiring multiplexing (35). 

 

In this work, we have used microfabrication (22, 23, 36) to develop miniaturized optical 

probes. The probes are smaller than traditional fluorescence probes made using fiber 

optics by other techniques. The miniaturized probes allow measurements in small 

spaces. The system also allows easy integration with microfluidic devices via a “plug-

and-play” configuration. Finally, the potentially low cost of fabrication suggests the 

possibility of disposable probes that would facilitate diagnostics and other applications.  

 

Experimental Section 

Refractive Index (RI) Characterization and Optical Design 

The RI of PDMS (Sylgard 184, Dow Corning, Midland, MI) from 200 to 830 nm was 

measured on the flat surface of the polymer using an ellipsometer (Sopra GESP-5 

system). The PDMS was prepared as a 1/4" thick slab cast against a glass plate and 

cured between 90°C and 100°C for 45 min according to the manufacturer directions 

(standard 1:10 ratio of parts A:B). ZEMAX was used in non-sequential mode to model 

multimode glass optical fibers and air-gap optical elements in a PDMS device. The 
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measured RI values of the PDMS were used to design a series of lensed probes for 

collecting light from a liquid sample outside the PDMS probe through 0.22 NA low-OH 

multimode optical fibers. Mirror elements were created using total internal reflection by 

designing the angle of incidence on the mirror elements to be greater than the critical 

angle. Mold elements forming the optics were designed to avoid high aspect ratio 

elements of the mold that would resist demolding of the final device. Lens and mirror 

properties (position, angle, height, thickness and curvature) were optimized to maximize 

the fluence arriving at the focal region of the probe. For simplicity, both the excitation 

and collection fibers were treated as fiber optic light sources in the model. An example 

of ZEMAX simulation is shown in Figure A.1a.    

 

 

Figure A.1. Design of a microfabricated probe. a) Zemax simulation of the optical pathway of the 
probe coupled to a microfluidic system. The lenses were designed to focus 100 µm below the 
coverslip. b) Schematic of probe cross-section. Layer 1 elevated the fibers, layer 2 created the 
optics and held the fiber in place, and layer 3 formed the boundary. c) Optical fibers inserted into 
specially-designed SU-8 mold. L = lens, M = mirror. d) Microscale image of microfabricated probe 
with dimensions of 1.1 mm wide x 0.6 mm thick. e) Line-shaped focus of white light through each 
fiber, corresponding to the design in (c). 
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Mask Design 

AutoCAD was used to design lithographic masks based on the optimized ZEMAX 

models. Additional features were incorporated such as skid-and-post structures for 

holding the fiber optics, a bounding box to act as the outer edge of the probe mold, and 

registration patterns for allowing spatial alignment of the multiple feature layers. An 

illustration of the fiber encapsulation features is shown in Figure A.1b, which shows the 

skids made in the first lithographic layer, the posts in the second lithographic layer, and 

the bounding box formed in the third lithographic layer, along with a fiber snapped into 

place after development of the unexposed SU8. For the exposure times used, each 

subsequent exposure during the UV lithography process crosslinked all polymer in the 

lower layers, creating solid structures down to the silicon wafer substrate. Three 

separate layers were designed and printed onto emulsion film masks with a 7 μm 

minimum feature size (Fineline Imaging, Colorado Spring, Colorado). These masks 

were used to sequentially expose each physical layer in the lithography process. 

 

SU-8 master mold fabrication 

The master mold was microfabricated using SU-8 2075 photoresist (MicroChem, 

Newton, MA) on a 4-inch Si wafer (ID: 1116, University Wafer , Boston, MA). This mold 

consisted of 3 layers. The first layer was created by spin-coating a 110 µm thick layer of 

photoresist onto the wafer, followed by a soft-bake process heating the level wafer. The 

wafer was aligned to the photomask and UV exposed for 18 seconds at 17 mW/cm2. 

The photoresist layer was then post-exposure baked to polymerize the exposed pattern. 

The second and third layers of the device were created via a similar process. The 

second layer was 300 µm thick using an exposure time of 28 seconds, while the third 

layer was 110 µm thick with 34 second exposure time. All times and temperatures used 

for soft-bake and post-exposure bake were according to the MicroChem SU-8 2000 

processing guidelines for the cumulative thickness. After the final post-exposure bake, 

SU-8 developer solution (MicroChem, Newton, MA) with sonication was used to 

dissolve unexposed photoresist. The SU-8 mold surfaces were exposed to 

trichloro(methyl)silane (Sigma-Aldrich, St. Louis, MO) vapor to later aid the release of 

PDMS from the molds. 
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Probe Fabrication  

Two 2 meter segments of 105 µm core/125 µm clad/250 µm polyamide buffer coated 

low-OH optical fiber (FG105LCA, Thorlabs, Newton, NJ) were cut. A 4 cm segment at 

the end of each fiber was stripped to remove the polyamide buffer, and then flat-cleaved 

using a wide-blade fiber scribe (F-CL1, Newport, Irvine, CA). The flat-cleaved optical 

fiber segments were manually positioned in the SU-8 skid-and-post mold structures so 

that the cleaved end of the fiber was in contact with a physical stop designed at the 

entrance of the optical system, as shown in Figure A.1c. A small volume of PDMS 

prepolymer (approx. 1 mL Sylgard 184, Dow Corning, Midland, MI) was prepared 

gravimetrically in a 1:10 ratio, mixed, and poured into the SU-8 molds after insertion of 

the optical fibers. The wafer assembly was placed in a vacuum chamber to degas the 

PDMS. A glass microscope slide was pressed firmly into contact with the upper 

surface of the SU-8 mold to control the probe thickness. The silicon 

wafer/SU-8 mold/PDMS/glass assembly was placed in an oven at 95°C and allowed to 

cure for 45 min. The lensed fiber optic probes were de-molded by carefully separating 

the glass slide and SU-8 mold. An image of the final probe is shown in Figure A.1d. The 

free ends of the optical fibers were then terminated with standard FC-PC connectors 

using low-fluorescence epoxy (EPO-TEK 301, Epoxy Technology, Billerica, MA). 

 

Probe Optical Characterization 

The transmission efficiency and spectral throughput characteristics of the microprobe 

were measured and compared against a probe consisting of two bare cleaved fibers. 

Light transmission through both probes was measured using an optical power meter 

(PM100, Thorlabs, Newton, NJ) and a 543 nm 1.5 mW He-Ne laser (Melles Griot, 

Carlsbad, CA). The transmittance of a NIST calibrated white light source (HCA, Kaiser 

Optical Systems, Ann Arbor, MI) was measured using a spectrometer (USB2000, 

Ocean Optics, Dunedin, FL) to determine the spectral throughput characteristics of each 

probe from 200 to 800 nm with an integration time of 1 s. Reflectance spectra using one 

fiber as a source and the other as a collector were conducted using a fiber optic 

illuminator (Fiber-Lite 3100, Dolan-Jenner Industries, Woburn, MA) as a source and the 
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same spectrometer, using Teflon as a high reflectance standard. These provided data 

on the collection efficiency and the background of the probes. 

 

Characterization of the fluorescence performance of the probes was conducted using 

integration times of 0.1 s to 0.5 s using the USB2000 spectrometer and 543 nm He-Ne 

laser source described earlier. The probe was placed into contact with a droplet of 10 

μM resorufin on a silver-coated glass coverslip (EMF, Ithaca, NY) to determine the 

response of a bulk solution. To evaluate the probe performance on a microfluidic chip, 

the probes were aligned to a PDMS microfluidic chip consisting of 100 μm wide x 60 μm 

deep channels, with a 100 μm thick cover layer of PDMS. 

 

Microfluidic Experimental Protocol 

The utility of the fabricated probe was initially characterized with dye filled capillary and 

subsequently with a microfluidic fluorescence based enzyme assay of glycerol. For 

fluorescence detection, a 543 nm He-Ne laser source and a photomultiplier tube (PMT) 

detector (Model R1547, Hamamatsu, Japan) were used with a 580 nm band pass filter 

(XF3022, Omega Optical, Brattleboro, VT) as an emission filter. The voltage and 

amplifier gain of the PMT were set at 0.75kV and 107 V/A, respectively. Initial data was 

collected with resorufin standards flowed through a fused silica capillary with 150 μm 

inner diameter and 360 μm outer diameter (Polymicro Technologies, Phoenix, AZ). This 

initial data was used to determine the detection limit using a 251 point (~1 s) boxcar 

smoothing. The performance of the microprobe on a microfluidic chip was also 

characterized for a glycerol assay. Figure A.2 illustrates the arrangement of the probe 

for on chip fluorescence detection. A PDMS microfluidic chip was fabricated by soft 

lithography with a channel network design similar to a previously published device (37). 

Glycerol standard solutions (Sigma-Aldrich, St. Louis, MO) were diluted to 

concentrations of 14, 28, 56, and 112 µM with Hank’s Balanced Salt Solution (Life 

Technologies, Carlsbad, CA) before on-chip mixing with free glycerol reagent (Sigma-

Aldrich, St. Louis, MO) and 1 mM Amplex UltraRed (Life Technologies, Carlsbad, CA) in 

20% DMSO. The solutions were pumped at 1 µL min-1 using a syringe pump (Chemyx, 

Stafford, TX). The channel was designed to mix and then incubate the flowing mixture 
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using serpentine channels. The fluorescent product (analogous to resorufin) was 

detected at the outlet by a microfabricated probe. The probe was aligned to the 

detection zone of the microfluidic chip using a stereotaxic alignment frame (Model 900, 

KOPF, Tujunga, CA). An analog-to-digital converter (NI USB-6008, National 

Instruments, Austin, TX) was used for data acquisition and collection at 250 samples/s 

with LabVIEW (Version 10.0.1, National Instruments, Austin, TX). Data was processed 

in MATLAB (R2012b, MathWorks, Natick, MA).  

 

 

Figure A.2. Probe performance in a microfluidic channel. a) Schematic of probe set-up with 150 
µm i.d. x 360 µm o.d. capillary. b) Microscopic image of the probe on the capillary. 

 

Results and Discussion 

Design and Fabrication of Probes 

RI of PDMS can vary significantly depending on selected wavelengths, curing times, 

and temperatures, necessitating its measurement to allow for precise design of optical 

PDMS elements. Measured RI values were used to design optical elements using 

ZEMAX. The cylindrical optics in the fabricated probe generated a line-shaped focus, 

perpendicular to the plane of the optical system, as demonstrated in Figure A.1e. The 

probe design shown in this work used a side-firing configuration, to unambiguously 

demonstrate the functionality of the integrated lenses and mirrors. This design had the 

added benefit of maintaining the source and collection optical fibers along a common 

axis on a single side of the sample, which was comparable to a microscopy 

epi-configuration. The configuration facilitated having a small but robust probe because 

the fibers were together along their length. Folding mirrors are necessary in any design 

where the optical fibers are parallel in order to have the excitation and collection regions 
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overlap. Furthermore, a side-firing design is well suited to microfluidic applications, and 

avoids probe deformation during alignment to the sample. Additional designs were 

tested, including forward facing probes with more than two fibers, 45⁰ side firing, and 

non-lensed probes, but results have not been included for clarity. 

 

In order to accommodate two 125 μm optical fibers, the width of these probes had to be 

at least 400 μm. In practice, a 90⁰ side firing probe incorporating two 30⁰ incidence 

total-internal-reflectance based mirrors requires a minimum width of approximately 1.1 

mm. These probes had structures based on three layers, giving a total thickness of 

approximately 500-600 μm, including an externally bonded 100 μm PDMS cover layer. 

By microfabrication, the probes have the potential to match the surface quality that has 

been previously demonstrated in SU-8 and PDMS systems. Examples include features 

replicated on a micrometer scale with optical quality surfaces (23). In the present work, 

we fabricated devices using inexpensive emulsion masks with a surface roughness of 

approximately 2 µm. The aspect ratio was not well optimized; instead, feature sizes 

were deliberately kept large to avoid issues with mold fabrication and demolding of the 

PDMS structures. Using manufacturer defined processing steps, the layer thicknesses 

were within 2% of the design values, and the optical features were within 2% of the 

target size. Optimization of mask material and the SU-8 processing steps will enable the 

optical performance of the microprobes to be enhanced. 

 

Probe Optical Performance  

To evaluate the optical performance of the microprobe, a series of comparisons were 

made to a probe consisting of two cleaved bare fibers assembled side by side with 

identical FC connectorization. The optical throughput of the microfabricated probe was 

determined by injecting laser light at the rear FC fiber interface and measuring the 

optical power transmitted through the probe face. The bare fiber probe had 84% 

throughput while the probe with fabricated optics had 70% throughput. We assumed 

that the majority of the 16% loss in the bare fiber was due to losses in injecting light 

through the FC connector, and in the microprobe an additional 14% loss was due to the 

probe optical elements. 
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To verify if any spectral artifacts were caused by the microfabricated optics, we 

compared white light (HCA) throughput of the microfabricated probes to the throughput 

of a bare fiber using a spectrometer (Ocean Optics). The spectra were identical for both 

probe types, as illustrated in Figure A.3a, indicating that no spectral artifacts were 

generated by the microoptical system. 

 

A series of reflectance tests were conducted to evaluate the relative performance of the 

microprobe to the bare fiber probe. To compare the background scattering arising from 

the probe optics, a white light reflectance spectrum was collected with the probes 

pointing into free space in a dark room, as shown in Figure A.3b. The scattered white 

light background generated from the microfabricated probe was significant, while the 

bare fiber probe had no discernible background because the bare fiber probe has no 

interfaces which can scatter light from the excitation channel back into the collection 

channel. The microprobe optical faces were fabricated with a lithographic mask having 

approximately 2 µm feature edge roughness, causing backscattering from the optical 

faces. Through the use of higher quality lithographic masks, the background light 

scattering can be diminished. Next, the collection efficiency from a highly scattering 

(teflon) surface was measured. Both probe types had approximately the same collection 

efficiency, with a slightly different spectral collection efficiency due to wavelength-

dependent light scattering effects. However, when collection efficiency was tested 

against a transparent PDMS slab, the bare fiber probe collected 3.3 times more signal 

than the microprobe. This was because the surface reflections from the PDMS slab 

were collected very efficiently by the two parallel fibers. The spatial offset between the 

excitation and collection paths in the microprobe allowed very little reflectance to be 

collected, with half of this reflectance arising within the microprobe as shown by the 

reflectance in air. 
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Figure A.3. Spectroscopic performance of probe in comparison to bare fibers.  a) Detection of 
white light through bare fibers (red) and through each lensed fiber (blue), showing identical 
spectral shapes. Data were offset for comparison. b) White light reflectance spectrum from varied 
materials. c) Laser excitation of 10 µM resorufin with lensed and unlensed fibers immersed in the 
bulk solution and d) in microfluidic channels through a 100 µm PDMS coverslip. The 
microfabricated optics’ focusing capability offset the reduced light transmission and resulted in 
stronger fluorescence on chip. 

 

When measuring resorufin in bulk solution, the bare fiber probe outperformed the 

microfabricated probe because of a higher overall collection solid angle. Based on the 

integrated area of fluorescence emission from 575-595 nm, the bare fibers 

outperformed the microfabricated probe 2.2 fold when in contact with the bulk 

fluorescence solution (Figure A.3c). However, when measuring resorufin in a channel 

buried 100 µm below the surface of the PDMS microfluidic device, the microfabricated 

probe detected fluorescence efficiently, whereas fluorescence was not detectable using 

the bare fiber probe. The lensed microprobe focused the light into the sample channel. 

The bare fiber probe collected the excitation laser light reflected from the PDMS 

microchip, with the laser signal swamping any fluorescence (Figure A.3d). The high 

collected intensity of laser light caused the wings of the 543 nm laser line to become 

apparent. The much higher reflectance from the PDMS surface when using the bare 

probe was in agreement with the results shown in Figure A.3b, where the surface 
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reflectance of the bare fiber probe was several fold greater than for the microprobe. This 

demonstrated the utility of using microfabricated optics on a microprobe. 

 

Fluorescence Detection 

Preliminary experiments were performed measuring resorufin standards in a 150 µm 

i.d./360 µm o.d. fused-silica capillary. Results are shown in Figure A.4a. The calibration 

curve was linear with R2 of 0.997 and RMSE of 0.69. The limit of detection (LOD), 

determined as the concentration to give a signal 3 times the standard deviation of the 

blank, was 6 nM. Figure A.4b presents a trace of 52 nM resorufin flowing through the 

capillary alternating with a blank.  Our results demonstrated that the probe was 

adequately stable for analytical microfluidic experiments.  

 

 

Figure A.4. Probe performance in 150 µm i.d. x 360 µm o.d. capillary (a,b) and the PDMS chip (c,d). 
a) Calibration curve of 0.05  to 10 µM resorufin, resulting in detection limit of 6 nM after 249 point 
boxcar smooth (acquisition rate of 250 samples/s). b) Trace of 52 nM resorufin switching with a 
blank. c) Probe detection of on-chip glycerol assay. Individual traces show alternating between 
low and high glycerol concentrations (0, 14, 28, 56, 112 µM, respectively). d) Linear range of 
glycerol assay corresponding to (c). Deviation from the line at 14 µM is inherent to the assay (38). 
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The probe was then coupled to a PDMS-based microfluidic chip for quantification of 

glycerol in an on-chip fluorescence enzyme assay. The signals of the fluorescent 

products from different glycerol concentrations are shown in Figure A.4c. Each trace 

represents the signals upon switching between low and high glycerol concentrations. 

The fluorescence assay, using the probe as a detector, resulted in a linear response 

with R2 of 0.988 and RMSE of 3.81 (Figure A.4d). The calculated LOD was 0.7 µM for 

glycerol. The results demonstrated that the probe could be used to detect fluorophores 

with decent reproducibility and wide dynamic range. With probe detection, analytical 

performance of the on-chip assay was comparable to our previously reported on-line 

enzyme assay (39) and other commercial glycerol assay kits (38).  

 

The results showed that our microfabricated probes are suitable for on-chip 

fluorescence applications with adequate sensitivity. The LODs were comparable to 

other microfabricated devices with integrated optics and optical fibers (17, 18, 23). Our 

probes had the advantage of being able to focus into small channels (down to 15 µm 

deep x 30 µm wide, results not included here), enabling their use for a wider variety of 

applications, such as electrophoresis, cytometry, and applications requiring high 

temporal resolution or low flow rates. Furthermore, the probes incorporated both 

excitation and emission fibers in parallel on the same side of the microfluidic device, 

which allowed for simplified fabrication and required less space for integration. Because 

our probes were standalone devices, they were also flexible, i.e. a single probe design 

could be used for many different applications on different chips. As the major 

microfluidic design characteristic is the coverslip material and thickness, a given design 

could be highly reusable. Individual probes could also be reusable, and low material 

costs could allow large numbers to be used simultaneously in parallel.  

 

Conclusion  

Microfabrication, soft lithography in particular, is a viable and cost-effective way to 

miniaturize spectroscopic probes. The potential for low cost through integrated molding 

of probe optics may enable disposable high performance probes. The materials 

selected for this probe are also compatible with autoclaving at 134 ⁰C or 121 ⁰C, 
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offering a unique potential compatibility with biomedical applications as compared to 

traditional assembled microprobes that require the use of adhesives and have materials 

with dissimilar thermal expansion coefficients. The microprobes were only slightly larger 

than the optical fibers on which they were molded. Our microfabricated probes were 

thus smaller than any commercial optical probes, enabling chemical measurements in 

tight sampling points which would require the probe to be less than a few mm in size. 

The probes' applications were accordingly versatile, including fluorescence 

measurements in both microfluidic and non-microfluidic systems. 

 

A variety of further applications can be realized due to the size and configuration of the 

probes. Pairing a microfluidic device with the probes illustrates a simple approach for 

coupling fluorescence to a chip.  Multiple probes can be placed on a single chip for 

monitoring several chemicals in real time; this was previously restricted because of 

microscope dimensions (40, 41). Another benefit of the probe design is its applicability 

to lab-on-a-chip applications. The probes can feasibly be coupled with more compact 

light sources (42, 43) and detectors (44) and other miniature optics (45, 46), resulting in 

highly-integrated and portable analytical devices. One issue to address is probe 

alignment to the chips, which is currently accomplished via a micropositioner and can 

be lengthy at times. Future iterations of the probes will contain alignment markers to aid 

during this process. 

 

Sensitivity of the probe is currently not low enough to measure levels of FITC that would 

be relevant for an electrophoretic immunoassay, which limited the potential of applying 

this technology for multi-point fluorescent detection of [Ca2+]i and insulin secretion on-

chip. However, further improvements to the microprobe can improve the sensitivity to 

the level required for our assay. One simple improvement is to use glass-based 

photomasks rather than film. With higher quality masks, optical faces can be fabricated 

with less surface roughness, resulting in reduced backscattering. A second method for 

improving the detection limits is to integrate filters directly onto the tips of the fibers; this 

will reduce the effect of light scattering that occurs along the length of the fiber and thus 

reduce the fluorescent background.  
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APPENDIX B 

Application of Metabolomic Method to Study of Hypoxia in Islets 

 

Introduction 

Several types of stress can occur during islet isolation and diabetes pathogenesis in 

addition to oxidative stress. Because multiple stressors likely act on islets 

simultaneously, it is important to understand the effects of multiple types of stress on 

islet viability. Hypoxia occurs in isolated islets in culture due to limited diffusion of 

oxygen and nutrients within the islet (1). A previous study used 1H NMR to investigate 

changes in metabolic markers in INS-1 cells during hypoxia-induced cell death. That 

study shows a decrease in creatine-containing compounds during early-stage hypoxia 

(2-6 h) and an increase in taurine-containing compounds during late-stage hypoxia (12-

24 h) (1). Since our LC-MS method measures many different compounds than the 

published NMR method, we can potentially obtain complementary data that gives more 

insight into the particular pathways affected. Measuring responses to hypoxia is also 

interesting from the standpoint that islets preconditioned with intermittent hypoxia have 

been found to have improved insulin secretion under hypoxic condition as compared to 

control islets (2). Further exploration into the effects of hypoxia on islets can provide 

insights into the effects of islet preconditioning on islet function. 

 

Experimental Procedures 

Materials 

Kreb's Ringer Buffer (KRB) consisted of 20 mM HEPES, 118 mM NaCl, 5.4 mM KCl, 1.2 

mM MgSO4●7H2O, 1.2 mM KH2PO4, and 2.4 mM CaCl2, adjusted to pH 7.4. 
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Roswell Park Memorial Institute (RPMI) culture medium, fetal bovine serum, penicillin-

streptomycin, collagenase, and fura-2 dye were purchased from Life Technologies 

(Carlsbad, CA). Acetonitrile, ammonium acetate, methanol, and chloroform were 

purchased from Sigma-Aldrich (St. Louis, MO). All other chemicals were purchased 

from Thermo Fisher Scientific (Waltham, MA). 

 

Glass Microfluidic Chip Fabrication 

Glass microfluidic chips were fabricated as previously described (3). Briefly, blank 2.5 

cm x 7.6 cm x 1.1 mm glass slides coated with a 530 nm thick layer of AZ1518 positive 

photoresist over a 120 nm chrome layer (Telic Co., Santa Monica, CA) were exposed to 

collimated UV light through patterned photomasks for 5 s. The exposed slides were 

developed in AZ726 MIF Developer (Microchemicals) for 30 s, and the underlying 

chrome was removed using CEP-200 Chrome Etchant (Microchrome Technologies, 

Inc., San Jose, CA). The exposed glass was etched in a solution of 14:20:66 (v/v/v) 

HNO3/HF/H2O for variable times depending on desired channel depth. Carbide drill bits 

(Kyocera Precision Tools, Inc., Hendersonville, NC) were used to drill 360 µm diameter 

access holes. The remaining photoresist and chrome were then removed using acetone 

and CEP-200 chrome etchant, respectively, and the etched glass plates were cleaned 

in piranha solution (3:1 v/v H2SO4/H2O2) for 20 min followed by heated RCA solution 

(5:1:1 v/v/v H2O/NH4/H2O2) for 40 min. Chips were aligned under water, dried, and 

annealed at 640 ºC for 8 h. Microfluidic reservoirs (Upchurch Scientific, Oak Harbor, 

WA) were applied over access holes after bonding. 

 

PDMS Hypoxia Chamber Fabrication 

Multilayer PDMS microfluidic devices were fabricated using soft photolithography as 

previously described (4). The completed device consisted of three layers: the top layer 

contained a cell culture reservoir and gas inlet/outlets; the middle layer consisted of a 

100 µm PDMS film for gas exchange with the cell chamber; and the bottom layer 

contained microfluidic channels for gas flow. An image of the assembled device is 

shown in Figure B.1. 
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Cell Culture and Hypoxia Treatment 

Pancreatic islets were isolated from 20-30 g male CD-1 mice as previously described 

(5). Islets were cultured in RPMI-1640 media supplemented with 11 mM glucose, 10% 

fetal bovine serum, and 1% penicillin/streptomycin at 37 ºC and 5% CO2 for 2-3 days 

prior to experimentation. Islets were then transferred to a hypoxia chamber in 500 µL of 

KRB supplemented with 3 mM glucose (for metabolomic experiments) or RPMI (for 

[Ca2+]i experiments). A thin film resistor was taped to the bottom of the device to 

maintain a temperature of 37 ºC. Nitrogen gas was flowed through the microchannels to 

induce hypoxia in the islets. Using this method, oxygen concentrations in the media 

approached 0% (4). Islets were treated with hypoxia for 1 h. For [Ca2+]i measurements, 

islets were then removed and either immediately inserted into a perfusion microfluidic 

chip for [Ca2+]i measurements or allowed to recover in RPMI for 1 h prior to [Ca2+]i 

measurements. For metabolomic experiments, glucose was spiked into the media to a 

final concentration of 16.7 mM. Islets (50 per sample) were then immediately collected 

into Eppendorf tubes, samples were centrifuged for 30 s, supernatant was removed, 

and metabolism was quenched via addition of 100 µL of 90% 9:1 

methanol:chloroform/10% water at 75 ºC (stored on dry ice). This process was 

completed in 3-4 min. 

 

 

Figure B.1. Image of PDMS device used for inducing hypoxia in islets. 

 

Calcium Flux Measurement 

[Ca2+]i was measured using fura-2 dye as previously described (6). Briefly, islets were 

loaded with 2 µM fura-2 via 45 min incubation. They were then rinsed with KRB and 

loaded into a microfluidic chamber, where they were perfused with KRB containing 
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basal (2.8 mM) and stimulatory (16.7 mM) levels of glucose. The dye was excited 

alternately with 340 nm (Ca2+-complexed dye) and 380 nm (free dye) light and emission 

was collected at 510 nm. The ratio of complexed to free dye was calculated and 

converted to Ca2+ concentrations using calibration standards. 

 

Metabolite Measurement 

Immediately before analysis, islets were lysed using a probe sonicator. Samples were 

then centrifuged at 4 ºC for 5 min and the supernatant was transferred to LC vials. 

Analyses were performed using high performance liquid chromatography-time-of-flight-

mass spectrometry (HPLC-TOF-MS). Chromatographic separations of polar compounds 

were carried out on a Phenomenex Luna NH2 column (150 x 1 mm, 3 µm particle size). 

Mobile phase A consisted of acetonitrile and mobile phase B consisted of 5 mM 

ammonium acetate, adjusted to pH 9.9 with ammonium hydroxide. The gradient 

program was (time, %B, flow rate): 0 min, 20%, 70 µL min-1; 25 min, 100%, 70 µL min-1. 

Injection volume was 30 µL, column temperature was 25 ºC, and autosampler 

temperature was 6 ºC. An Agilent Technologies LC/MSD TOF equipped with a dual 

electrospray ionization (ESI) source was used for detection in negative ion mode. 

 

Directed analysis was performed for a series of 87 metabolites previously identified in 

islets or in INS-1 cells. Of these, 62 were consistently measured in our samples. We 

have chosen to focus here on those that exhibited changes due to hypoxia treatment. 

Metabolites were identified using retention time compared to standards and accurate 

mass. Combined peak areas were reported for unresolved isomers, like citrate/isocitrate 

and glucose-6-phosphate/fructose-6-phosphate. For most metabolites, peak areas were 

measured from extracted ion chromatograms of [M-H]- metabolite ions with ±70 ppm 

detection windows centered on the theoretical mass. [M-2H]2- ions were used for acetyl-

CoA (aCoA) and other CoAs to improve sensitivity. 

 

To account for instrumental drift, samples were randomized prior to injection onto the 

columns. To account for variations in MS sensitivity from run-to-run, metabolite peak 

area fold changes as compared to the average metabolite peak areas measured from 
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control samples maintained at basal levels of glucose were calculated and used to 

compare results from separate runs rather than absolute peak areas. 

 

Results 

[Ca2+]i Response to Hypoxia 

Control islets showed an immediate rise in [Ca2+]i in response to 16.7 mM glucose 

stimulation (Figure B.2). The [Ca2+]i response tended to stay level after the initial 

increase. Immediately following hypoxia, islets exhibited two different trends. Baseline 

[Ca2+]i was initially elevated ~2 fold in all islets, although in some of the islets, it 

decreased back to normal levels over ~4 min. The islets that returned to normal 

baseline exhibited lower 1st and 2nd phase [Ca2+]i compared to control, whereas the 

islets that remained elevated had a continually increasing [Ca2+]i response (similar to 

H2O2-treated islets). One hour post-hypoxia, there was no observed difference between 

hypoxia-treated islets and control. 

 

 

Figure B.2. [Ca
2+

]i response to glucose stimulation following 1 h hypoxia. Islets were perfused 
with basal (2.8 mM) and stimulatory (16.7 mM) glucose in KRB. [Ca

2+
]i was measured either 

immediately following removal of hypoxic conditions (0 h post-hypoxia) or 1 h post-hypoxia. Data 
represent the average response from multiple islets; n = 2-3 islets per condition. 

 

Metabolic Response to Hypoxia 

Several metabolites were found to be altered immediately following exposure to 

hypoxia, including increased fructose 1,6-bisphosphate (FBP) concentration, decreased 
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malonyl CoA (mCoA), nicotinamide adenine dinucleotide (NAD+), CDP-ethanolamine 

(CDP-EA), and citicoline (CDP-choline) concentrations, and reduced long chain acyl 

CoA response to glucose stimulation, as shown in Figure B.3a-f. 

 

 

Figure B.3. Absolute metabolite peak areas immediately following 1 h hypoxia for a) FBP b) mCoA 
c) NAD

+
 d) 16:0 CoA e) CDP-EA f) CDP-Choline. Metabolism was quenched 3-4 min following 

glucose stimulation. LG = low glucose (2.8 mM) , HG = high glucose (16.7 mM), n = 2 sets of 50 
islets per conditions. Error bars represent SEM. 

  

Discussion 

Islets were made hypoxic for 1 h using hypoxia chambers kindly provided by Elizabeth 

Ferraz-Samar at the University of Illinois at Chicago. This treatment appeared to be 

more mild than the 100 µM H2O2 treatment discussed in Chapter 4. [Ca2+]i was slightly 

elevated (~2 times) above control levels immediately following hypoxia treatment with a 

blunted response to glucose stimulation. In comparison, H2O2-treated samples exhibited 

6.6-fold elevation in basal [Ca2+]i immediately following treatment and only slow 

increases in response to glucose stimulation. Within 1 h of treatment, the hypoxia-

treated samples were similar to control in both basal and glucose-stimulated [Ca2+]i. 



149 
 

Islet morphology appeared to be normal at this time, with no membrane blebbing 

observed. 

 

Preliminary metabolomic studies showed several metabolites that appeared to be 

affected immediately following hypoxia treatment, as shown in Figure B.3. These 

changes in metabolites were similar to those affected by H2O2 treatment, with much 

greater decreases in CDP-choline and CDP-EA amounts with hypoxia treatment. 

 

Conclusion 

This work demonstrated the use of hypoxia chambers to effectively induce stress in 

islets, as determined by interference with [Ca2+]i and perturbations in metabolite levels 

immediately following treatment. More replicates are needed to verify the results 

observed and delve into pathways involved in hypoxia-induced stress. Because this 

treatment was less severe than our previously used H2O2 treatment, it may not have as 

many long-term effects. Studying the effects of hypoxia on islet metabolism at various 

time points following treatment will provide insights into the effect of hypoxia on islet 

metabolic function, with possible implications for islet preservation for transplant and for 

islet evaluation. 
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