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1.0 Introduction 

This document constitutes the final report on TACOM Contract No. DAAE07-93-C-R124 
entitled, "The Crewman's ~s soc ia t e  for Path Control (CAPC): An Automated Driving 
Function." The project has developed an electronic system for preventing road-departure 
accidents by motor vehicles. Insofar as the system concept involves supplementing dnver 
control, but not replacing it, this project builds upon the Army's interest in limited 
automation of the driving function for the sake of reducing crew sizes in either wheeled or 
tracked military vehicles. It also addresses the interest of the commercial motor-vehicle 
industry in active-safety technologies for the private automobile. 

The prime contractor has been the University of Michigan. The University's participation 
has come from both the UM Transportation Research Institute (UMTRI) and the College of 
Engineering's Mechanical Engineering and Applied Mechanics (MEAM) D e p m e n t .  The 
Environmental Research Institute of Michigan (ERIM) has served as a subcontractor. The 
Ford Motor Company's Research Laboratory has also participated as a collaborating 
partner. 

The project has involved a two-year effort to develop, design, fabricate, and test a road- 
departure prevention system. The package design emerged with the aid of a complete 
system simulation. System computational features were incorporated within the simulation 
together with representations of the vehicle, sensors, roadway, and driver-assist function. 
When refined, the software necessary for effecting the function of road-departure 
prevention was downloaded onto a computer installed in the test vehicle. Equipped also 
with a suite of sensors plus recording instrumentation, this vehicle then became a testbed 
for a limited study of the road-departure issue using proving grounds and public roadways. 

As with any system that intends to supplement the control activity of the human driver, it is 
highly important that the scope of system functionality be carefully defined, lest it be 
assumed that the remarkable robustness of the human operator is being somehow matched. 
In Section 2.0 of this report, the distinctions relative to the scope of the currently addressed 
system are delineated. 

The development of a system configuration is covered throughout Section 3.0, presenting 
both the development and design considerations that were addressed for each of the 
principal subsystems of the package. The simulation tool is presented as both a stand-alone 
engineering aid and as a complete analytical statement of the contents of the CAPC 
warning-and-intervention system. 

The developed system was built up on the platform of a Ford Taurus SHO passenger car. 
With road-edge sensing by digital Charge-Coupled Detectors (CCD) video camera and 
serial communication of data among three major modules of the system, the package 
provided a complete working prototype of the road-departure-prevention function. The 



physical implementation of this prototype is presented in Section 4.0 of this report. The 
results of limited field testing are presented in Section 5.0. 

It should be pointed out that the CAPC system was conceived as providing both a warning 
functionality and a direct intervention by means of differential braking, which effects a 
limited fonn of path control. While both functions were represented within the system 
simulation, only the warning function'was implemented on the prototype vehicle within this 
project. 

Conclusions and recommendations are presented in Section 6.0. The basic conclusion is 
that while the working prototype does indeed provide a reasonable testbed for examining 
this function, many opportunities for robustness improvement exist. 

Finally, Section 8.0 includes an assessment of safety issues, a set of instructions for 
system operation, and documentation of both the hardware and software aspects of system 
design. A set of appendices provides supporting material. 



2.0 CAPC Performance Goals & Objectives 

This section presents statements of the system goal, objectives, and requirements that were 
used to guide the initial development of the CAPC prototype. Upon having implemented a 
working package in this project, it appears that substantial variation in the rules for 
warning-and-intenention functions is both possible and worth further exploration. 
Nevertheless, the reader may look upon the "Requirements" section as a set of assumptions 
underlying the CAPC prototype as it was implemented within this project. 

2.1 CAPC Goal 

The goal statement provides the highest-level description of the purpose of this system. 
The statement embodies the value judgment that it is safer to keep vehicles on the roadway 
than it is to allow inadvertent departure from the road into the potentially threatening 
roadside zone. The overarching goal of the CAPC system is stated as follows: 

To limit the occurrence of events in which motor vehi~les'inadvertent.1~ depart from 
the travel lanes of limited-access highways and intrude into the adjacent roadside, 
perhaps risking rollover, collision with fixed objects, or uncontrolled reentry into 
traffic. 

2.2 Objectives of the System 

The objectives characterize the desired performance attributes afforded by design features 
of the system. Thus, the objectives serve to break down the goal in terms that point toward 
the design approach: 

1) to monitor the location and orientation of painted road edges and lane delineators, 
so as to determine the layout of the road ahead of the host vehicle 

2) to predict the path of the vehicle in near-future time 

3) to determine the future time at which the predicted path of the vehicle departs 
from the travel lanes of the roadway ahead 

4) to monitor the dnver's road-keeping behavior to more reliably discern whether a 
certain variation in road-following performance is truly threatening or is benign for 
this driver 

5) to provide an audible warning to alert the dnver to a impending road-edge 
departure that is deemed truly threatening 



6) to provide a control intervention that safely redirects the vehicle's path such that 
the driver can readily regain manual control 

7) to manage the monitoring and decisionmaking functions such that false alarms 
are minimized and total "misses" of protective action are practicably nonexistent 

8) to retain a level of control authority for the driver that exceeds that of the 
provided system at all times 

2.3 Technological Emphasis 

The CAPC system prototype is to provide a testbed platform upon which to gain empirical 
evidence of favorable approaches for predicting road departure, deciding on a protective 
response, delivering that response, and studying human interaction during the recovery 
phase of near-departure events. Accordingly, the sensing task is defined to have sufficient 
simplicity that a minimum investment in sensing technology is required. A rather ideal set 
of roadway conditions has been stipulated, below, in order to ensure that a relatively simple 
sensor can deliver reliable road-edge detection, permitting the concentration of resources 
onto the study of the driver-assistance functionality. 

2.4 Requirements 

The requirements constitute non-quantitative statements of system features upon which 
design specifications would be based. The requirements have been categorized in three 
groups-those dealing with the driver's activity, the highway environment, and the 
warning-and-intervention process. 

2.4.1 Driver Activity 

The prototype system interacts with driver activity in the following way: 

The type of dnver control failure for which the CAPC system serves as a countermeasure 
involves inadvertent departure from the roadway due to inattention or drowsiness. 
Such departures are assumed to involve rather small angles of departure-being of the 
order of 1 degree of arc included between the resultant velocity vector of the vehicle and 
the local tangent to the roadway centerline. Departures in this class are thought to be 
amenable to correction by means of either an audible warning or a modest-authority 
control intervention. 

The system does not interrupt the normal road-keeping task. Although this provision 
suggests that lane-changing activity, for example, would not be interrupted in any way, 
the stipulation of highway conditions, below, further constrains vehicle travel to the 



right-most lane only. Thus, while the concept of CAPC is such that free change of 
lanes would be supported in a fully mature system, the prototype vehicle does not 
incorporate the high-level logic needed to support lane-changing. 

The prototype system accommodates a wide range in the road-keeping behavior of 
drivers. As an example, "accurate road-keeping" behavior (such as a driver who steers 
quite precisely down the' center of the lane) enables a more certain conclusion of 
pending road departures such that warnings come earlier in the departure sequence and 
a greater likelihood exists of departure avoidance. On the other hand, "sloppy road- 
keeping" behavior (i.e., weaving around in the lane) requires that a pending roadway 
departure be defined more narrowly in order to reduce the burden of false alarms. 
Warning-and-interventions both come later in the departure sequence and the likelihood 
of departure avoidance is somewhat reduced. 

Recognizing that driver control is to be preserved as the highest authority, the system will 
not intervene when the brake pedal has been applied and any intervention-in-progress 
will be discontinued whenever manual braking begins. In order to permit steering-only 
recovery by the driver, the system will "soften" the strength of its intervention 
controller (i.e., effectively reduce its gain) as it approaches the intended conclusion of 
the intervention sequence-such that any conflict between system-applied path 
corrections and driver-applied control via steering inputs will diminish toward zero as 
the system's authority is withdrawn. (While this initial statement attempts to address 
the issues of driver interaction with machine-delivered intervention control, it is fully 
recognized that a vast ignorance exists on this point, calling for extensive research with 
an operating prototype.) 

The driver will hear an audio warning just before and during any control intervention. 
The warning will continue until braking is applied or until the warning sequence times 
out. 

Even if path-control intervention has been initiated (by means of differential braking) a 
driver will be able to override the path correction by means of the considerably higher 
authority permitted via steering wheel actuation. 

2.4.2 Application Environment 

The prototype system applies to the following operating environment: 

limited-access highways, away from entrance and exit ramps at which road-edge 
striping is intentionally interrupted 

white striping that is in virtually as-new condition and which is painted as a) a 
continuous line on the right outside edge of the right-most lane and b) as a dashed 
delineator on the left side of this lane 



daytime, non shadowed, illumination of the pavement 

pavement free of water, snow, or other contaminants 

pavement in relatively good repair 

shoulder of road clear of harmful objects and debris for at least the distance of a car 
width 

other vehicles no closer than 50 meters in front of the CAPC prototype (implying a time 
headway of some 2 seconds or more, at highway speeds) 

2.4.3 Warning and Intervention to Avoid Road Departure 

The Warning function activates when the current value of Time-to-Lane Crossing (TLC) 
drops below a threshold value. The threshold value and the point on the vehicle to which 
the TLC determination is "referenced" are to be adjustable in the CAPC prototype. 

A Control Intervention is initiated at the latest point in time within which the differential 
brake-steer system can act automatically and succeed without driver participation in 
preventing a pending Road Departure, given the control authority of the system. (Although 
within this phase of the project, this feature was not fully implemented a 
warbled form of audible warning was sounded when the "latest point" criterion was 
satisfied, as a simple indicator of the intervention event.) 



3.0 Development of the System Design 

3.1 CAPC System Concept 

The CAPC system is designed to detect the impending departure of a motor vehicle from a 
roadway, and to first warn the driver of the danger. Then, if necessary, the system must 
actively intervene with the goal of keeping the vehicle on the road. The system is designed 
as a safety backup for situations in which a driver is not responding properly due to 
drowsiness, illness, or other lapses. Intervention is done by differential braking, which 
provides a limited path-control capability. The driver remains in the loop and is always able 
to steer the vehicle even if differential braking is activated. 

To anticipate road departures and provide assistance at appropriate moments, the system 
includes the following functions and elements: 

a sensing system that records and processes the roadway geometry in front of the 
vehicle 

a prediction of the future trajectory of the vehicle 

an ongoing evaluation of the driver's lane-keeping performance 

logic for decision-making that considers information about the driver, the roadway 
environment and the vehicle 

a means of intervention 

Figure 3.1.1 provides the basic layout of the lane-departure-avoidance system with 
modules as described above. 

When in operation, the system observes the lane-edge lines using optical sensing (a video 
camera), converts images into a geomemc rendering of the previewed roadway layout 
(Roadway Geometry DSP block), and compares this with the predicted path of the vehicle 
over the near-future time. Decisions for warning or intervention are made on the basis of 
rules that consider the anticipated time-to-lane crossing (TLC), the roadway configuration, 
and the deduced status of the driver. The dnver-status model is developed, in a training 
sense, early in the trip sequence by means of a continuous state identification function 
which is based on vehicle and roadway states as a result of the control activities of the 
driver. While warnings might be issued through any varie:y of visual, audio, or kinesthetic 
cues, intervention control will be accomplished by differential braking. 
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Figure 3.1.1 Basic CAPC system lay-out. 

Figure 3.1.1 shows only the basic functionality of the system. A more detailed schematic 
of the CAPC system is shown in figure 3.1.2, which also includes the signals of interest 
for each module, especially a more detailed description of the roadway geometry signal 
processing. 

The lane marker data is provided by the lane-mark sensor subsystem (LMS), which uses a 
single digital, high-resolution, black and white CCD camera and image processing to track 
lane-marks (paint marks indicating lane and road boundaries). The system uses a flat-earth 
model to convert image-coordinate locations of the lanemarks into vehicle coordinates; pitch 
and roll estimates are passed from the CAPC system to the LMS to correct for low 
frequency vehicle vibration. A distinction is made between near-range and far-range image 
data, both in this schematic and throughout this report. The near-range lane marker data 
consist of x-y coordinates of lane markers typically in the range of 5 to 20 meters ahead of 
the vehicle. The far-range lane marker data includes data from 20 up to 100 meters ahead of 
the vehicle. 

The near-and far range data sets are used for different applications. The lane-marker data 
from the far range is used for the lane-margin (TLC) calculations. Intersections between the 
projected future vehicle path and the perceived road edges typically occur in the far-range if 
the CAPC system is operated on hghways. When closing the loop during an intervention, 
the lane-marker data closer to the vehicle (near range) is of importance because the system 
closes the loop around errors in the current vehicle position and heading relative to the road 
edge. 
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Figure 3.1.2 Detailed schematic of the CAPC system 

Kalman filter techniques are used to match a model of the roadway geometry with the 
perceived lane-mark data. The Kalman filter is a recursive computation, which makes use 
of a state model to convert real-time measurements into updated estimates of system states. 
For CAPC, two Kalman filters are used -- a so-called far-range Kalman filter, which 
estimates road geometry in the far-range, and a near-range Kalman filter which estimates 
both the near-range road geometry and the vehicle position and heading with respect to the 
road edge. It also provides improvement of vehicle rate knowledge. Both near- and far- 
range Kalman filters contain a simple three-state roadway geometry model with the lateral 
relative position, relative heading, and curvature as states. Besides the roadway geometry 
model, the near-range Kalman filter contains a simple two-degree-of-freedom vehicle 
model. 

The design of the Kalman filters will be described in detail in section 3.3 (far-range) and 
section 3.5 (near-range). Section 3.2 presents the lane-mark sensor (LMS) subsystem. 
The LMS includes a high-resolution CCD camera and image processing, and provides the 
lane marker data to both Kalman filters. Section 3.4 describes the driver-state assessment 
and section 3.5 discusses the subsystems necessary to close the loop during an intervention 
(near-range roadway geometry and differential braking controller). The decision module is 
presented in section 3.6. Finally, each of these modules are modeled and integrated in a 



simulation tool. Section 3.7 describes the simulation requirements, architecture and 
features. 



3.2 Design of the Lane-Mark Sensor (LMS) Subsystem 

3.2.1 Design Requirements 

The Lane-Mark Sensor (LMS) was specifically engineered to support the CAPC Prototype 
functional objectives. The following LMS requirements were stipulated: 

sense lane-marks up to 100 meters in front of a vehicle operating on a test track 
traveling at interstate highway speeds during good daylight weather 

update lane-mark data every 100 milliseconds 

detect the position of lane-rnarks at 2 meter intervals in the near-range (6 to 20 
m), and at 10 meter intervals in the far-range (30 to 100 m) 

correct lane-mark positions for vehicle pitch and roll 

report lane-mark positions in vehicle coordinates, assuming a flat earth model of 
the road 

3.2.2 Lane-Mark Sensor Design 

Design Alternatives 

A number of different design alternatives were considered. The following objectives were 
used in evaluating the alternatives: meet all requirements; support easy software 
development; and utilize simple, low-cost hardware. 

The following sections outline a few of the alternatives considered for components of the 
LMS system. 

The Camera 

Since the CAPC objectives require imaging from a moving vehicle, the camera needed to 
possess a full-frame "snap-shot" exposure capable of capturing a full frame without any 
blurring or interlace problems commonly asscxiated with a standard TV camera. 

The camera also needed a highly accurate pixel registration since the (x,y) position was 
derived from a calibration of the image position. The best way to obtain this registration 
accuracy is by using a digital-readout camera. Digital readout also has the advantages of 
being immune to almost all electrical interference in the vehicle, as well as producing a 
superior image quality over an analog camera. 



The pixel resolution of the camera was also a consideration. The resolution had to be fine 
enough to give adequate sampling of the lane-mark at the 100-meter range for reliable 
detection while giving sufficient roadway coverage. This resolution could have been 
accomplished by one or multiple cameras. The use of two cameras, each having a different 
field-of-view, was a design alternative considered. 

Frame Grabber & Image Processing Hardware 

Another option utilized DataCube image processing hardware on a VME-bus chassis. 
Besides its relatively high cost as a frame grabber, the architecture would require a costly 
computer specially made for the VME-bus. This type of system would not support easy 
software development, would be relatively expensive, and would be unnecessarily 
complex. 

An ERIM-provided CYTO HSS specialized image-processing computer was considered, 
but the processing power of this machine far exceeded the requirements of the CAPC 
prototype. The cost of such a system would also be large, and future development of the 
LMS system would require it to be replaced due to the cost of such a computer. 

Another option was a digital frame grabber with no special image processor that was 
accessed by a standard Pentium PC via the local-bus. The Pentium processor would 
perform all the required image processing for real-time operation. It has the advantage of 
being low-cost, capable of supporting easy software development, and supportive of future 
system utilization. 

The Selected Design 

The selected LMS system consists of a Pulnix 9701 digital CCD camera (768 x 484 
pixels), a MuTech MV- 1000/MV- 1100 PCI-bus digital frame-grabber with interconnect 
cable, and a PCI-bus with an Intel 100 MHz Pentium computer. The LMS system 
components are shown in figure 3.2.1 and figure 3.2.2. Significant features of the digital 
camera are (1) exposure interval control, (2) exposure timing control (asynchronous 
reset), and (3) full-frame "snap-shot" readout (progressive scan). The frame-grabber 
provides software control of the exposure interval, the ability to trigger the timing of the 
exposure by an external TT'L signal, and capture of the digital image into memory space 
that is directly accessible to the CPU. All LMS processing functions are performed by the 
Pentium CPU. 

The camera is rigidly mounted inside the CAPC test vehicle near the rear-view mirror and 
views the roadway at a slight horizontal depression angle. Interior mounting provides the 
benefits of isolation from environmental elements and utilization of the vehicle's windshield 
wiper system. Maximizing the height of the camera position above the road surface 
improves the imaging perspective for long ranges; the CAPC system routinely locates 
highway-quality lane marks to a distance of 100 m and can function out to 150 m (under 
good lighting and pavement conditions). 
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Figure 3.2.1: LMS System Block Diagram 
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Figure 3.2.2: LMS System Components 



Performance Attributes 

The Pulnix digital CCD camera and MuTech framegrabber possesses unique capabilities 
which are essential to the detection of,lane marks up to and in excess of 100 meters: 

1) full-frame "snapshot" exposure initiated via external 'ITL signal 
2) short "freeze-frame" exposure length controllable by software 
3) analog-to-digital conversion synchronized with CCD pixel readout 

Together, these features make possible the capture of sharp roadway images in spite of 
highway speeds and vehicle angular motion, as seen in Figure 3.2.3. Angular camera 
displacements are particularly troublesome for the detection of lane marks at long range; 
short exposure times mitigate the blurring. Software exposure control permits adjustment 
to enhance the detection of lane marks, in spite of bright objects (e.g. sky) in the scenes. 
Conventional auto-gain or auto-iris responds to peak scene values. 

The lens selected to support CAPC provides a 40 degree horizontal field-of-view. 
Neighboring pixels subtend a horizontal angle of 0.96 mad. At a range of 100 meters, the 
ground-sampled distance corresponding to the horizontal sampling is approximately 9.6 
cm. Lane-mark widths are typically 10 cm, thus approximately one sample of lane-mark is 
expected at 100 m range. 

Figure 3.2.3: Example Image from LMS Camera 



The lane-mark detection algorithm exploits the relatively uncluttered (and fine spatial 
sampling of the) near-range image to locate the lane marks over the range of 6 to 20 m. 
The near-range lane marks are then "followed" out to a distance of 100 m. The near-range 
algorithm also exploits the fact that the vehicle lateral deviation and headmg angle undergo 
relatively small changes over a 100 msec interval. The knowledge of heading angle and 
lateral deviation from the previous frame is used to select small portions of the current 
frame for lane mark processing, minimizing computational requirements, and permitting the 
use of a conventional microprocessor. 

3.2.3 Location and Tracking of Lane Marks 

The horizontal regions overlaid in red in Figure 3.2.3 indicate the current search regions; 
the down-range separation is two meters. Due to the PC1 bus architecture of the MuTech 
digital frame-grabber, the captured image is directly accessible to the Pentium processor. 
An assembly-level routine is used to locate the position of the lane-mark within the linear 
search region. The lane mark search proceeds as follows: 

1) A vector representing the differences between successive pixels is calculated. 

2) The maximum positive and negative transitions are recorded. 

3) The mean of the absolute value of the maximum and minimum transitions is 
calculated. 

4) The pixel midway between the maximum and minimum transition is located. 

5) If the mean of the transition exceeds a (suitable) threshold and the width of the 
lane mark is less than 3 times the expected width. The pixel location is passed 
to a routine which marks the location in the image with a vertical yellow line 
(see figure 3.2.2) and converts the coordinates to the vehicle coordinate system. 

Tracking Lane Marks 

If four or more lane marks are found by the near-range, lane-mark search, a least squares 
linear fit (in vehicle coordinates) is made to determine lateral deviation of the vehicle CG 
from the right lane mark and the vehicle heading angle. Curvature in the lane mark (which 
is minimal over the near-range) is ignored. The heading angle and lateral deviation values 
are used to position the search regions for the successive frame. Once initialized, the 
search windows track the vehicle motion. 



Initialization 

Real-time, lane-mark location (and tracking) at 10 Hz (or faster) becomes tractable using a 
conventional microprocessor if the initialization process is permitted to exceed the 100- 
msec cycle time; initialization times up to a few seconds are insignificant relative to 
operating times of minutes (or hours). During initialization the following process occurs: 

1) exposure setting 
2) initial lane mark acquisition 

The exposure setting process involves the acquisition of successive frames of images while 
adjusting the exposure time to achieve selected grey-scale values in the image. The 
exposure is first set to achieve a road surface value of 80 counts. Next, the lane mark 
search is initiated and lane marks located. The exposure is then adjusted to achieve a value 
of approximately 200 for the right hand (white) lane mark. 

Although it is possible to vary (the assumed) heading angle and lateral deviation during the 
search process, the width of the search allows for considerable latitude in vehicle position 
during the initial acquisition of the lane marks; the vehicle must be nominally in the center 
of the lane and parallel to the roadway during initialization. 

3.2.4 Calibration 

The LMS converts the lane-mark locations in the image (row, column) to displacements in 
the vehicle coordinate system. As shown in Figure 3.2.4, the vehicle coordinate system 
origin is at the vehicle CG and the x-axis is aligned with the vehicle heading axis. The y- 
axis lies in the plane of vehicle motion forming a right-handed orthogonal coordinate 
system (as viewed from below). 

/ ERlM Lane-Mark Sensor (LMS) 

Figure 3.2.4. Vehicle Coordinate System 



Since the LMS CCD sensor measures angular displacements to objects in the scene (two 
parameters) transformation to a rectilinear vehicle coordinate system (three parameters) 
requires the assumption of a model for the road surface. For implementation with CAPC, 
the road surface was assumed to be flat (or reasonably close) for this transformation. 

Assuming a "flat earth" each pixel (row and column) can be associated with a down-range 
(x) and cross-range (y) displacement from the vehicle CG. Transformation from image 
row and column to the vehicle coordinate system proceeds as follows: 

1) Row and column values are transformed (rotated) as required by the vehicle 
roll angle (provided to the LMS). 

2) Row values are transformed (translated) as required by the vehicle pitch angle 
(provided to the LMS). 

3) The transformed row and column values are converted to rectilinear coordinates 
(assuming a flat earth.) 

Calibration of the LMS system was accomplished and verified at the Ford Dearborn 
(dogbone) test track . A reflective hemisphere was placed at the center of the roadway at a 
50 m displacement down-range from the vehicle CG; the vehicle was positioned so the sun 
was illuminating from the rear of the vehicle and a bright reflection of the sun was observed 
to illuminate a single pixel on the LMS engineering &splay. From the row location of this 
pixel, the depression angle of the camera optical axis (with respect to horizontal) could be 
accurately determined; from the column position and a sighting along the vehicle 
longitudinal axis (using plumb bobs) to determine the lateral displacement, any offset in 
azimuth (or yaw) angle of the optical axis with respect to vehicle heading could be 
determined. The LMS software was updated with the precise angles and the calculated 
downrange and lateral offset displacements were observed to yield the correct results. If 
the camera is removed from the mount or adjusted in position, this calibration must be 
repeated. 

3.2.5 Software Documentation 

The LMS software is documented in this report in four places. The specifications for 
communication with the CAPC host are included as appendix B; mechanical and electrical 
interface specifications are presented in appendix C. A flowchart is also presented in 
section 8.3.2, and a listing of code is included as appendix E. 



3.3 Design of the Lane Margin Processor 

The time to lane-crossing (TLC) is used to measure the "lane tracking margin" of a vehicle, 
and is computed after the arrival of each set of data from the far-range portion of the lane 
marker subsystem (LMS). The TLC is defined as the remaining time until the center of 
mass of the vehicle will reach either edge of the roadway, and is estimated by comparing 
the road geometry model (derived from vision data, as described in section 3.2) and the 
predicted vehicle path, which will be described later in this section. In the current CAPC 
vehicle prototype, the decision to issue a warning or indicate when an intervention would 
occur is based upon the TLC. Our plan for the future is to include a driver-state assessment 
in the decision making process. 

This section presents a brief summary of how TLC is computed. Much work has been 
done to develop algorithms for computing TLC and to assess the performance. In this 
section we refer to several appendices which describe in detail both the heart of the 
algorithms, the performance predicted by simulation, and supporting studies. Much of this 
is included in appendix I -- a doctoral dissertation defended in 1995 and based on the 
CAPC problem. Additional details can be found in numerous papers based on this work, 
which are referenced as appendix I. 

There are several motives for using TLC as a decision criterion instead of, for example, the 
lateral position of the vehicle in the lane. First, TLC is a predictive measure which 
considers not only the current vehicle position and the current roadway shape, but also 
considers the steering input and the roadway far ahead of the vehicle to anticipate future 
road departures. This prediction aspect makes the computations and the sensing more 
complex -- more sensor range is required, a steering sensor is needed, and computations 
must be done to predict the intersection of the roadway and the vehicle's trajectory. But 
many practical advantages are gained. The use of TLC accommodates different driving 
behaviors by allowing drivers to wander about the lane, in any normal patter of steering, as 
long as complete lane-departure is not imminent. For example, some drivers may hug one 
side of the lane which would result in false alarms if only the lane position were 
considered. But the use of TLC allows this behavior -- until the driver either turns the 
steering wheel too far toward the edge or until the driver is not reacting to changing 
roadway curvature. Therefore the predictive nature of TLC provides improvement in 
performance of the system. 

Additionally, given a road-departure system which uses prediction, the use of TLC 
simplifies the decision process. TLC is a single variable -- one that can be understood 
intuitively -- and the decision to warn or intervene becomes a simple process. Tuning the 
decision process in the prototype vehicle, for example, was accomplished in a matter of 
hours. This simplicity, of course, derives from the fact that the TLC computation has 
boiled down all the analog transducer information and all the roadway image information 
into a continually updated scalar measure of the vehicle's proximity to a road departure. 

In appendix I, Lin provides a review of the use of TLC for vehicle safety systems. 
Significant advancements in the understanding and computation of TLC and its levels of 



uncertainty have occurred as part of the CAPC project. Lin developed many of the TLC 
algorithms used in both the CAPC prototype vehicle and in the CAPC simulation code. In 
addition he has completed work not included in either, and has established important facts 
about TLC used directly in the prototype vehicle (for example, the use of lOHz image 
rates). This section summarizes the work on TLC for CAPC. Throughout this section we 
make a distinction between algorithms that are included in the CAPC prototype vehicle and 
other algorithms that have been tested extensively in simulation, but which are not included 
in the prototype vehicle. For now, the vehicle includes only the most necessary parts of the 
TLC algorithm; this is to help increase computational speed and simplify the processes of 
tuning and testing. 

The TLC is computed by comparing the estimated road geometry with the predicted vehicle 
path to find any intersections in the near future (up to four seconds). The road geometry is 
estimated using measurements at 10Hz; the data includes LMS reports of lane edge 
coordinates, vehicle yaw rate and forward speed, and front wheel steer angle. Road edge 
geometry is estimated as either a second or third order polynomial curve fit. The predicted 
vehicle path is computed from using current vehicle motion estimates (yaw rate, vehicle 
speed, steer angle) and propagating the path into the future, assuming that the steer angle is 
constant. The propagation is done using a simple two-degree-of-freedom dynamic model 
with a linear tirelroad interface model. Both lane-geometry estimation and vehicle-path 
prediction are described in more detail in the subsections following this section. The reader 
is referred to appendix I for more details. First, however, the following subsection 
provides an overview of the TLC computation. 

3.3.1 Time-to-Lane Crossing Computation 

A flow chart describing the TLC calculation algorithm is shown in figure 3.3.1. The TLC 
is obtained by first projecting forward the vehicle path until it intersects the lane boundary. 
This provides a rough estimate of the TLC. Then, based on this TLC estimate, an 
interpolation scheme is applied to refine the TLC such that the TLC error due to projection 
time step can be nearly eliminated. If the predicted vehicle path does not intersect the 
estimated edges of the roadway within four seconds, the TLC is assigned the saturation 
value of four seconds. TLC values of greater than four seconds are not useful, since these 
values indicate that the vehicle is in no immediate danger of leaving the road. 

Appendix I describes the interpolation scheme used for TLC values less than four seconds. 
This new method reduces the computations required to obtain an accurate TLC value. Also 
in the appendix, the bandwidth of TLC is identified and used to show that the required 
sampling rate of measurements supporting the TLC computation must be 10 Hz. This 
sampling rate is implemented in the CAPC prototype system. 

The major sources of error affecting the TLC are discussed in appendix I. These include 
the image measurement errors of the roadway (due to pitch and roll, superelevation, or 
grade) and vehicle-path-projection errors (due to wind and roadway disturbances, as well 
as vehicle-motion-measurement error). The CAPC prototype includes on-line estimation of 



pitch and roll using LVDT deflection transducers at each wheel. These LVDTs measure the 
travel between the sprung and unsprung masses at each wheel; section 8.3.3 describes the 
approximation of pitch and roll from these measurements. The pitch and roll is used in the 
LMS to correct the reported positions of points on the lane marker. Superelevation effects, 
which are only significant on test tracks, are reduced by using a Kalman filter to combine 
the image information in the far-range with vehicle motion data. This same Kalman filter 
acts as a lowpass filter to further reduce effects of random measurement error in pitch and 
roll, as well as the vehicle-motion measurements (yaw rate, vehicle speed, and steering) 
used in projecting the vehicle path. Ln addition, Lin has developed an on-line estimation 
scheme for computing the magnitude of external disturbances acting on the vehicle which 
affect the vehicle path projection. This scheme, 
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Figure 3.3.1: TLC Calculation Algorithm 

however, is not included in the CAPC vehicle, but it is discussed later in the subsection on 
vehicle path prediction. 



3.3.2 Lane Geometry Modeling 

Lane-geometry modeling is the part of the TLC computation that represents the road edge in 
the neighborhood of the predicted point of intersection. Lane geometry modeling is 
performed after the arrival of each set of LMS data -- that is, at 10Hz. The output is a set 
of three coefficients, which represent each of the two road edges as a polynomial, as seen 
in vehicle coordinates. The inputs include the lane marker positions reported by the LMS, 
yaw rate, vehicle speed, and front wheel steer input. The steering and vehicle motion 
inputs are required because lane geometry modeling is computed using a Kalrnan filter 
which combines all the measurements using a model of vehicle dynamics and kinematics. 
The Kalrnan filter was developed to increase the performance of the system by reducing the 
sensitivity of lane geometry modeling to errors due to pitch and roll, superelevation, and so 
on. 

Furthermore, an uncertainty characterization for the lane-geometry representation has also 
been developed by Lin so that the TLC uncertainty can be predicted on-line (see Appendix 
I). This has not yet been implemented on the vehicle. The uncertainty of the lane geometry 
model is a three-by-three covariance matrix for each road edge. 

Figure 3.3.2 shows the structure of computations for lane-geometry modeling and the 
characterization of its associated uncertainty. Image processing (described in section 3.2) 
reports locations of points on the lane markers. Points in the near-range -- up to 20 m 
ahead of the vehicle -- are incorporated along with vehicle motion and steering sensors into 
a near-range Kalman filter. This Kalman filter provides estimates of the vehicle's position 
and heading with respect to the roadway, as well as the yaw rate and lateral velocity. These 
vehicle motion estimates are used in lane geometry estimation, vehicle path prediction, and 
brake-steer intervention control. A detailed description of this filter is provided in section 
3.5.2. 

Lane geometry is estimated using a second Kalman filter, which is referred to as the far- 
range Kalrnan filter. The far-range Kalman filter uses the estimates of vehicle position and 
heading and vehicle rates provided from the near-range Kalman filter to combine data 
reported by the LMS over successive images. This data describes far-range lane marker 
positions -- 20 to 100 m ahead. The purpose of using two Kalman filters is to optimize the 
accuracy of both local information (vehicle motion and position within the lane) and 
previewed information (roadway geometry far ahead of the vehicle), since the models of 
roadway geometry only approximate the true shape. 
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Figure 3.3.2: Structure of the Lane Geometry Modeling Computation 

The use of a far-range Kalman filter is the result of long examination of estimation 
approaches. In Appendix I, simulation is used to compare the Kalman filter used in the 
CAPC prototype with a simpler approach -- using only LMS data from a single frame -- 
and with a more complicated model of the lane geometry. The design used was chosen for 
performance and simplicity. In that appendix, the effects of large superelevations often 
found on test tracks are examined as well. The Kalman filter provides some advantages for 
highly superelevated roadways, although there can be a loss of performance in tight 
transitions between curves and straightaways that often occur on test tracks. 
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The TLC uncertainty is due in part to the uncertainty in the lane geometry estimate. The 
lane geometry uncertainty, in turn, is due mainly to errors in the lane marker positions 
reported by the vision-based LMS subsystem. A model of the errors in lane marker 
position determination, as a function of lane marker position, is used to compute a set of 
standard deviation values for the polynomial coefficients. This uncertainty algorithm uses 
the model of LMS uncertainties, which considers the effects of the camera's pixel 
resolution, vehicle vibration, and roadway roughness on the uncertainty of the lane marker 
locations. An algorithm has been developed for the characterization of the lane marker 
location uncertainty and subsequently the uncertainty of the roadway geometry, however 
the CAPC vehicle does not contain the uncertainty computations. Details about the 
computation of uncertainty of the lane geometry model are in Appendix I. 
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3.3.3 Vehicle Trajectory Prediction 

The vehicle's trajectory is predicted using a simple model of lateral vehicle dynamics and 
measurements of the steer angle and the vehicle's current heading and displacement with 
respect to the road edge. Figure 3.3.1 earlier showed that vehicle path projection is used to 
compute the TLC by propagating the path (based on constant steer angle) until either the 
vehicle CG crosses the roadway edge or until projection has continued for over four 
seconds. Here we describe the process of propagating the vehicle path. 

Figure 3.3.3 below shows that vehicle path projection uses the near-range Kalman filter 
described in the previous section (and in Section 3.5 in detail) to provide the current vehicle 
heading angle, lateral displacement, and vehicle rates. The steer angle is assumed constant 
during the prediction interval, and takes a value provided on-line by a transducer measuring 
the displacement of the steering rack. Vehicle longitudinal speed is also assumed constant 
during the interval. The path is projected by numerically integrating the vehicle 
displacement, using a simple two-degree-of-freedom dynamics model of the vehicle, which 
includes the yaw angle and the vehicle lateral motion. Appendix I shows that this simple 
model is sufficient for TLC purposes. 

The vehicle lateral dynamics can be approximately described by a two-degree-of-freedom 
lateral dynamics model, the so-called bicycle model: 

where v is the vehicle lateral velocity, r is the yaw rate, 6 is the steer angle, the C's are 
the cornering stiffness of the tires (relating wheel slip angle and lateral forces on the tires), 
m is the lumped vehicle mass, u is the vehicle forward speed, 1 is the length of the vehicle 
wheel base, I ,  is the moment of inertia about the z axis of a standard SAE coordinates 
system, and a and b are the distances from the front tire axis and rear tire axis to the 
vehicle's center of gravity respectively. The {e, ,e,lT term represents disturbances acting on 
the vehicle's lateral motion. Major disturbance sources include wind and superelevation of 
the road, while minor disturbances derive from road crown, suspension misalignment, 
unequal tire pressures, etc. Approaches to estimating components of these disturbances are 
presented later in this subsection, so for the moment this term will be neglected. 
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Figure 3.3.3: Structure of the vehicle path prediction computation 

Three more states are added to integrate the yaw rate and the vehicle lateral velocity to 
provide lateral and longitudinal displacements of the vehicle. Let x and y denote, 
respectively, the longitudinal and lateral displacements of the vehicle in the vehicle's 
coordinate system, and let y denote the heading angle of the vehicle. The heading angle 
is assumed to be small; Appendix F contains a simulation study which supports the 
validity of this assumption for moderate vehicle maneuvers at highway speeds. Three 
states can then be added: 

The propagation of the vehicle path is done using an interpolation scheme which first uses a 
large time step for propagation, then, after the approximate time of lane-crossing is 
identified, uses a smaller time step to compute a refined value. This approach was 
developed to provide accurate TLC values while minimizing computation time. The applied 
interpolation scheme for refining the predicted vehicle path is introduced in Appendix I. 



Additional computations have been developed to estimate the uncertainty in the predicted 
path. These are not yet included in the CAPC vehicle, but are included in the simulation 
tool. Appendix I describes the characterization of uncertainty of the path projection. 

Disturbance Estimation 

A further refinement to vehicle path projection is the on-line estimation of the lateral-force 
and yaw-moment disturbances. These disturbances, which arise from effects such as 
wind, crown, and superelevation, are modeled as unchanging over the period of path 
projection (less than four seconds). Implementation involves augmenting the Near-range 
Kalman filter with two additional states to be estimated: the lateral disturbance force acting 
on the vehicle, and the yaw moment disturbance. In Appendix I, extensive simulation 
studies show that for situations in which these disturbance sources are strong, the use of 
on-line disturbance estimation can significantly improve the accuracy of TLC. 

Adaptive Vehicle Modeling 

The underlying assumption for the path projection algorithm and the disturbance 
characterization algorithm is that accurate estimates of vehicle parameters (inertia and tire 
cornering stiffness) have been given. To obtain these parameter estimates accurately, it is 
necessary to monitor the vehicle status and road environment, and to update these vehicle 
parameters accordingly. As part of this, on-line estimation of roadtire characteristics is 
important for implementation of the TLC calculation and the overall lane-departure 
warning system for a large fleet of vehicles. This is referred to as the adaptive vehicle 
modeling issue, and is the main concern of this subsection. This work has not been 
incorporated into the CAPC prototype vehicle, but has been presented in a conference 
paper, Appendix F. An introduction to the work is provided here. 

A disturbance observer has been developed to identify the road-surface friction coefficient. 
The effect of the road surface condition on vehicle path prediction (measured in TLC) is the 
main performance evaluation metric. The vehicle path prediction is obtained based on the 
2-DOF lateral dynamic model (bicycle model). To calculate the TLC the longitudinal tire 
force is first estimated from a single wheel model. The road friction coefficient and the tire 
lateral force are then calculated based on an anisotropic model. Based on the estimated 
lateral force, the cornering stiffness is then obtained. This updated cornering stiffness is 
then used in the bicycle model to compute the TLC. In the estimation scheme, the wheel 
speed and torque are assumed to be available (measured or calculated). From the measured 
wheel speed and the estimated vehicle velocity the tire-slip ratio can be calculated. Vehicle 
velocity is derived by the undriven wheel under driving conditions or estimated during 
bralung conditions. 

The methods to estimate the road surface conditions involve a recursive least square method 
using a forgetting factor and an enhanced adaptive observer which can improve the 
performance of the observer based on a linear relationship between the output and input 
signals. From simulation results we found that the inclusion of the road friction estimation 



scheme will improve the TLC accuracy significantly when the road is slippery and there is a 
fair amount of steering applied. The TLC can be improved up to 0.5 second. We observe 
that the TLC can be improved more significantly when TLC is large. This means that the 
updating of the cornering stiffness is more useful for warning than intervention control. 
See Appendix F for details. 



3.4 Design of the Driver Status Assessment 

On-line identification of driver state is used in the decision to issue a warning, initiate 
intervention, or do nothing. On-line identification of the driver state is also valuable for 
other driver assistance features such as automatic cruise control, collision warning and road 
departure warning. These driver assistance features are centered around the ability to 
perform a control-type task while at the same time keeping the driver in the control loop. 
Automatic cruise control takes over the function of headway control, but it remains the duty 
of the driver to steer the vehicle. Road departure warning can be viewed as a further 
extension where an additional driver support system acts as a co-pilot to monitor lane 
keeping performance. 

A system which includes driver behavior may make it possible to accommodate different 
driving styles. If driver actions can be monitored, it would be possible to "personalize" the 
warning criteria according to driving style. In addition, it would also be possible to track 
changing driver parameters during a long drive. This would enable a driver assistance 
system to provide warning as a function of changing driver state. 

This section provides a brief overview of this driver assessment.work; Appendix G, which 
is a paper delivered to the 1995 American Control Conference, provides more details. At 
this time, the CAPC prototype vehicle does not include a driver-state-assessment module. 
The CAPC simulation tool includes a very simple driver-state-assessment module based on 
the work of W. W. Wierwille at Virginia Tech [4], however, because driver drowsiness is 
a very slow process and because desktop simulators do not easily lend themselves to 
testing such effects, this feature is not often used. There are plans to include the new 
driver-state-assessment work into the CAPC vehicle as soon as development is more 
complete, but for now investigative work has proceeded using the driving simulator at the 
Ford Research Laboratories. 

Goal: 

We seek a method to detect changes in driving patterns so that an assessment of driver 
alertness/performance can be made. This assessment will be used first as an input to a lane 
departure warning system. Our hypothesis is that system identification techniques can be 
used to form a set of driver parameters that can be correlated with various levels of lane 
keeping performance. Variations of these key parameters will then permit us to monitor 
driver state. We are currently pursuing a system identification approach, which is 
described briefly below and in more detail in Appendix G 

Results & Discussion 

Driver models found in the literature are used primarily for vehicle dynamics studies for 
maneuvers such as lane changes, emergency maneuvers, and general tracking [1,2,3]. The 
function of these driver models is to provide steering inputs in simulation so that vehicle 
dynamics models can be evaluated. We have investigated driver steering frequency 
distributions, stationarity issues, and comparisons of literature driver models and simulator 



data, and have found that driver models for vehicle dynamics studies are not readily 
amenable to describing straight-line driving behavior. 

Appendix G compares straight-line steering commands and vehicle lateral position obtained 
from a simulation using a driver model with the same signals obtained from a driver using 
the Ford Research Laboratory driving simulator. We have discovered what we call a 
complacency zone where driver model output (steering position) remains constant while 
lane deviation and heading angle errors build. Past some undefined threshold, the driver 
makes a correction. Complacency is a function of disturbance level, and will also be a 
function of other factors such as traffic density and road curvature. Additionally, real 
drivers steer with a lower frequency spectrum than driver models from the literature. 
Therefore these models cannot be used in on-line driver state assessment for a system such 
as CAPC. 

Additionally, driving-simulator tests over one hour duration have shown evidence that the 
driver begins to allow the vehicle to wander about the lane more. This has helped to 
motivate the use of a system identification approach to on-line driver modeling. We have 
assumed an ARX structure as the candidate model structure, as shown in Figure 3.4.1: 

where y(t)  is the driver-model, steering-position output (8 in the figure) and u(t-nk) is the 
delayed driver-model input (in this case lateral vehicle position, y in the figure). 
Indicators such as parameter values and pole/zero locations are used to track changes in 
driver state. Appendix G describes the work in detail. It is concluded from driving 
simulator experiments that such an approach may be capable of identifying changes in 
driving behavior with simple on-line computations. 
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3.5 Design of the Brake-Steer Controller 

This section deals with the design of a controller that operates the rear brakes to correct the 
path of the vehicle in case of an intervention by the CAPC system. The CAPC prototype 
vehicle does not include a completed implementation of this differential braking (or brake- 
steer) approach. The vehicle does include a dual hydraulic system for later brake-steer 
implementation, and the controller described in this section is also included in the software 
onboard the vehicle. The prototype, however, is missing the necessary electronic driver 
board to translate the controller's commanded brake pressure into electrical signals to open . 
and close the appropriate solenoid valves. Section 4 describes the existing hardware and 
Section 8.4 includes schematics for an eventual implementation. 

The use of brake-steer for active intervention is a natural step in the trend toward using 
brake valving to achieve various vehicle control safety functions. To date, ABS, 4WS, and 
traction control are widely available. Yaw-rate control using differential braking is available 
in production models from Mercedes and Toyota. Pilutti et al. first proposed this in 
conjunction with the CAPC project Appendix H is a conference paper describing the first 
work on brake-steer for lateral path control. The final brake-steer design presented in this 
section follows that work; more sophisticated control design was performed to account for 
the prototype's discrete-time implementation and long (0.20 second) delay between image 
information and controller command update. 

First, the authority available with differential braking for lateral path control is discussed in 
Section 3.5.1. Second, the design of an estimator is described in Section 3.5.2. This is 
the "near-range" Kalman filter which has been referred to in previous sections. This uses 
onboard vehicle motion transducers and near-range LMS data to estimate the current vehicle 
position and orientation with respect to the local road edge, the local road curvature, and the 
side-slip velocity and yaw rate. Finally, the design of the controller which effects the 
differential braking during an active intervention is presented in Section 3.5.3. The 
controller is a state-feedback controller designed using the theory of linear optimal control. 
More states can be added to reject disturbances, as described in Chapter 11 of Appendix I. 
The designs of the state estimator and the controller are performed separately, as the 
separation principle of linear optimal control theory allows. 

3.5.1 Brake-Steer Authority 

Before discussing the details of controller design for active intervention, it is useful to 
determine the authority available when using brakes to steer the vehicle. A simple 
experiment using the CAPC simulation tool is used to determine the relation between 
cornering control using steer inputs and cornering control using differential braking. The 
relation between the front wheel steer angle 6fi, the lateral acceleration A,, and the vehicle 
speed U can be derived from a simple 2 DOF vehicle model with linear tire characteristics 
and is given by 



where 

tjfi is the front wheel steer angle (rad) 
A is the lateral acceleration (m/s2) 
U is the vehicle speed (mls) 

The vehicle model parameters for the prototype vehicle a Ford Taurus SHO are given in 
Table 3.5.1. The values for the cornering stiffnesses are valid for this particular vehicle-tire 
configuration. Due to compliance effects (suspension bushings, steering elasticity) the 
cornering stiffnesses are lower than the values valid for a stand-alone tire and therefore 
these numbers do represent effective cornering stiffnesses. 

Table 3.5.1 Vehicle parameters ('94 FORD Taurus SHO) 

To characterize the performance of brake-steer actuation, a set of simulations are run in 
which a single front or rear wheel of a Ford Taurus SHO is activated such that the 
dimensionless longitudinal brake slip K = -10%. This slip value corresponds to a 
longitudinal tire force that is slightly smaller than the tire force limit. The vehicle model 
used in this simulation experiment contains 14 DOFs and the tire model is based on the 
Magic Formula with combined slip. Figures 3.5.1 and 3.5.2 show two plots of interest. 
With the above equation is it easy to calculate the lateral acceleration due to steering alone, 
as a function of the vehicle speed. These lines are shown in both plots for front wheel steer 
angles ranging from 0.5 to 3.0 deg. Overlaid on these lines of constant steer angle are the 
lateral acceleration responses simulated for three different, initial, vehicle speeds (60, 90, 
120 kmh) while one wheel (front or rear) is braked with 10 percent slip. The steering 
wheel is held fixed in the straight ahead position. Due to the longitudinal braking force at 
one wheel, the vehicle decelerates and comers at the same time. The plotted responses 
illustrate that 10 percent rear wheel slip provides a cornering ability similar to steering the 
front wheels with about 1.1 degree of front-wheel steer angle. Ten percent slip of a single 
front wheel corresponds to about 1.5 degrees front-wheel steer angle. 
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Figure 3.5.1 Brake-steer authority with 10% rear wheel slip. 
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Figure 3.5.2 Brake-steer authority with 10% front wheel slip. 



The deceleration that occurs when braking one front wheel is much larger (= 0.3g) than 
when braking a rear wheel (a 0.15g). This is due to the fact that the static front-tire load is 
about 50% larger than the static rear-tire load. The vertical tire load of the rear wheel that is 
braked is also reduced due to braking (load transfer from rear to front wheels) and due to 
cornering (load transfer from right to left wheels in this case). The higher the speed of 
travel, the higher the level of lateral acceleration is and thus the larger the tire side force. 
This means that the brake force will also decrease due to combined slip effects. So, while 
braking a single rear wheel, the normal load of this particular wheel is the lowest of all four 
wheels on the vehicle. 

For typical highway applications the authority of braking one rear wheel should be 
sufficient to recover the vehicle from inadvertent road departures given that the angle of 
attack (heading) between vehicle longitudinal axis and roadway axis is reasonable shallow. 
If more steer performance is required, the front wheels might be used to accomplish a more 
powerful steer effect under the requirement that the steering wheel is held firmly fixed. 
Depending on the front suspension geometry, the vehicle might counteract the brake-steer 
induced concerning motion if the driver does not hold the wheel fixed. In that case brake- 
steer corrections will fail and a road departure cannot be avoided. 

This analysis as presented above doesn't account for any influence of the geometry of the 
suspension (such as the scrub radius) or elastokinematic properties (bushing compliances) 
on the cornering ability using brakes. Both compliance and geometry effects might affect 
the authority of brake-steer control significantly. The presented result did account for the 
compliance in the steering system associated with aligning moments. 



3.5.2 Near-range Kalman Filter Design 
A Kalman Filter [2] is used to estimate unknown or unmeasurable states of the vehicle- 
roadway system. The following roadway model related states (Figure 3.5.3) are of interest: 

Ye lateral position error [ml 
W e  heading error bad] 
K curvature [ l/ml 

The vehicle dynamics related states of interest are: 
v side slip velocity [mlsl 
r yaw rate [rads] 

Figure 3.5.3 Roadway geometry and vehicle model. 

The relation between the states and the derivatives of the states are described by the 
equations of motion of the vehicle and roadway model. The road-model-related differential 
equations are 

where U is the speed of travel of the vehicle (mls), r the yaw rate of the vehicle (rads) and 
v the side slip velocity ( d s )  of the vehicle. This road model assumes a constant curvature 
( K ) .  The dynamics of the vehicle may be described by a 2 DOF flat vehicle model with 
equations of motion given by 



where 6* is the front wheel steer angle (rad) and Pb the brake pressure applied at a rear 
wheel in (Pa). The vehicle parameters are given by Table 3.5.1. 

The equations of motion can be described as a matrix (state-space) form given by 

g = A . g + B . P b + G . 6 f i  (3.5.7) 

with state vector 

The linear time invariant state-space equation of the Kalman filter is given by [2] 

As can be seen from this equation, the Kalman filter is identical to the state-space model of 
the vehicle-roadway system except for the input ~ ( y  - C E )  . Vector y is a vector 
containing the lateral position of the lane markers (coking directly from the LMS) at 
various longitudinal distances in front of the vehicle, and C i  are the estimated lateral 
positions at the same longitudinal distances. With the state-space description of the vehicle- 
roadway model as defined above, the output vector can be composed as 

where xi are longitudinal coordinates in the vehicle frame (e.g., 5, 7.5, 10, 12.5, and 15 
meter ahead of the vehicle). The dynamic behavior of the estimation error (y - CS) is 
prescribed by selecting a feedback matrix L. Matrix L may be designed to ensure that the 
eigenvalues of the closed-loop Kalman filter eig(A - LC) correspond to a rapid well 
behaved decay of any estimation error. The state estimation becomes faster, but also more 
sensitive to measurement noise. Thus the Kalman filter provides a compromise between the 
speed-of-state reconstruction and immunity to measurement noise. The balance between 
these two properties is determined by the covariance matrices Qf and Rf in the design stage. 



Matrix Qfis related to the known inputs (front wheel steerhrake pressure) and matrix Rfto 
the noise coming from the lane marker sensor. 

The design of the Kalman filter is fairly straightforward. After determination of the state- 
space matrices, the noise covariance matrices have to be chosen. A method of computing 
the Kalman filter feedback gain matrix L is required. The method chosen is that one due to 
Kalman and Bucy [ I ]  in which it is assumed h a t  the system to be observed is driven by 
white noise and that the observed signals are corrupted by white noise too. Feedback 
matrix L can be found by solving the algebraic Riccati equation. The only problem with the 
above vehicle-roadway model is that this model is not directly driven by white process 
noise. Furthermore the model is not observable because the curvature is modeled as an 
integrator without input. To overcome the white noise input and observability requirement a 
slight alteration of the model in the Kalman filter design phase has been made. First it is 
assumed that the model is driven by white noise steer and brake pressure inputs. 
Furthermore a third white noise source has been included representing the input for the 
curvature state. This means that the curvature is expected to behave as integrated white 
noise. A new process noise input vector Hand white noise source _w can now be 
determined 

The Kalman filter design should be based on matrices A,  H, C, Qfand Rf. After some trial 
and error the following covariance matrices resulted in a good Kalman filter performance. 

Note, the elements of the white measurement noise covariance matrix Rfare proportional to 
the longitudinal spacing of the lane marker data (5,7.5, 10, 12.5 and 15 meter ahead of the 
vehicle). Matrix L (5x5) can now determined by solving the matrix Riccati equation using 
a routine such as the LQE function in the commercial package Matlab. Figure 3.5.4 - 3.5.7 
illustrate the performance of the Kalman filter when it is implemented in the CAPC 



simulation tool. Random (low frequency) steering has been applied while the vehicle was 
traveling 108 kmlh on a straight uneven road. The vehicle model used was the 14 DOF 
model with a non-linear transient tire model (Magic Formula). 

From equations (3.5.2) - (3.5.6) it can be seen that the differential equations of the vehicle 
model as well as the roadway geometry model are vehicle speed (U) dependent. This 
implies that the time invariant Kalman filter as discussed above is valid for only one vehicle 
speed because matrix A is not updated for the speed of travel. Although a Kalman filter is 
normally robust for certain parameter changes, it is not expected that it will operate 
satisfactorily when designed for one vehicle speed and operated at another speed that is 
significantly different from the design speed. Therefore the equations of motion of the 
roadway as well as the vehicle model are updated based on the speed of travel. 

Two options are available. One might consider designing a time-variant Kalman filter 
which implies that the feedback gain matrix L has to be determined on-line. The other 
option is to calculate several feedback matrices off-line -- each valid for one specific vehicle 
speed. The latter method implies that the feedback gains are determined by a table look-up 
or polynomial fit. To reduce the computational burden the latter option (gain schedulin;) 
has been chosen. The gains of Kalman filter feedback matrix L have been determined for 
speeds from 5 to 55 m/s and each gain has been fitted by a 3rd order polynomial fit as a 
function of the vehicle speed. The coefficients of the fit are then transferred to the CAPC 
control code. It has been chosen to update the feedback gain matrix L every time the speed 
of the vehicle changes by five The equations of motion of the vehicle and roadway 
geometry model are updated every time step for changes of the speed of travel. Figure 
3.5.8 show the change of the five state-feedback gains as a function of the vehicle speed. 
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Figure 3.5.4 Estimation of the vehicle side-slip velocity 
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Figure 3.5.5 Estimation of the vehicle yaw rate. 
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Figure 3.5.6 Estimation of the lateral vehicle position. 
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Figure 3.5.7 Estimation of the vehicle heading angle. 
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Figure 3.5.8 Kalman filter feedback gains as a function of vehicle speed. 



Figure 3.5.9 illustrates the final lay-out of the Kalman filter. It has 3 inputs: the front wheel 
steer angle of the vebicle, the applied brake pressure on a nar wheel and the lane marker 
data from the LMS. The front wheel steer angle and lane marker coordinates can be 
measured dmctly. The applied brake pressure comes from the brake controller as will be 
discussed in the next section. A first-order system with time constant 'I has been augmented 
to the command brake pressure &put. It describes the dynamics of the brake system and 
improves the state estimation when brake-steer control is applied. 

1 - front wheel 
brake pressure steer angle 

z s+l 

near-field 
LM data 

Figure 3.5.9 Kalman filter lay-out. 



3.5.3 Brake-Steer Controller 

The brake-steer controller is based on an LQ (linear quadratic) state feedback [2] plus a 
feed-forward design. The states estimated with the near-range Kalman filter described 
above are now used to close the loop to provide an active intervention function. The 
intention is to steer the vehicle by applying the brakes of a single rear wheel. 

The front wheel steer input can be regarded as a disturbance while closing the loop during a 
brake-steer intervention. Depending on the direction of the steer angle it might help or 
counteract brake-steer control. Since the front wheel steer angle is measured directly it can 
be rejected by a feed-forward controller. The magnitude of the front-wheel steer 
disturbance depends on the roadway geometry. On a straight road without wind or road- 
surface disturbances, any steer angle unequal to zero must be rejected. While driving 
through a curve the front-wheel steer angle depends on the radius of the curve and the 
vehicle's handling characteristics (underloversteer). Since the LMS in combination with the 
above described Kalman filter is able to determine the curvature of the roadway it is 
possible to estimate the kinematically required front-wheel steer angle tik,, if the 
underloversteer behavior (and thus vehicle speed) is known. From equation (3.5.6) the 
rear-wheel brake pressure required to reject a yaw motion can be determined quite easily 
and is given by 

The kinematically required front-wheel steer angle as a function of the vehicle speed U and 
estimated roadway curvature k can be determined from the steady-state solution of 
equations (3.5.5) and (3.5.6) 

The first part of equation (3.5.15) describes the relation between the wheelbase of the 
vehicle and the radius of a curve ( 1/? ) and the second part contains the correction based on 
the understeer coefficient for the steady-state handling characteristics of the vehicle. 

The starting-point for the control-system design based on LQ control is the state-space 
representation of the vehicle-roadway model given by 

x = A - & + B . P ~ + G . ~ ~  - (3.5.16) 

with 



As can be seen, the curvature has been eliminated from the roadway model because this 
state is uncontrollable (meaning that the brake pressure cannot influence the curvature K of 
the roadway geometry. However, it does affect the relative lateral position ye and heading 
angle ye) .  Therefore the roadway geometry model can be simplified to 

ye =-v-Uye (3.5.17) 

The integral of the lateral position has been added in order to eliminate static position 
offsets due to unknown disturbances. The vehicle dynamics equations remain unchanged 
from equations (3.5.5) and (3.5.6). 

The object of LQ control is to specify an input brake pressure Pb which steers the vehicle 
to a specified target state in such a way that, during the process, a defined quadratic cost 
function J is minimized. Minimization of the performance criterion yields an optimal 
feedback law compromising control effort (brake pressure) and control quality. 

The aim of the brake-steer controller is to redirect the vehicle such that it remains on the 
road if the driver fails to take over control. The parameters td assess the quality of the 
controller are the lateral position, with respect to the road edge, the heading angle, and the 
integral of the lateral position error. Furthermore the applied brake pressure is limited and 
should be included in the performance index (otherwise LQ control will fail). Therefore the 
following performance index J will be used 

with q,, q,, q,, and qp being weighting factors. Many different control laws can be derived 
by changing the weighting constants. It is up to the user to make a proper selection of the 
factors. 

With the performance index and state-space equations available it is now quite 
straightforward to design the feedback controller that minimizes J at given weighting factor. 
The brake pressure Pb is a linear combination of the states by means of state feedback 
matrix K according to 

with 
- 



Note that the feed-foward part is not related to the state-feedback design and can therefore 
just be added to the total brake pressure. Matrix K can be determined by solving the matrix 
Riccati equation (LQR function in Matlab). 

Depending on the choice of the weighting factors the response might be too sluggish, have 
too much overshoot, or exhibit a static offset. The control system designer may tune the 
closed-loop behavior by adjusting the weighting constant. For example if the response is 
too sluggish it means that the contribution of the ye part in quadratic index J is too small. 
The response can be made faster by increasing weighting factor qy and recalculating the 
feedback gains. 

The closed-loop performance has been determined by a simulated step position error input 
of 1 meter and a front wheel step-steer input of 0.5 degree while the vehicle was driving on 
a straight road. The first simulated condition characterizes the quality of the feedback part, 
while the second tests the quality of the feed-forward part in combination with the 
feedback. Figure 3.5.10 and 3.5.11 show the results for different values of the weighting 
factors. 

All simulations were carried out with the 14 DOF vehicle model with non linear tires based 
on the Magic Formulae (combined slip). As can be seen from the figures, a trade-off exists 
between a fast recovery of the lateral position of the vehicle without too much overshoot 
and the rejection of disturbances. The more integral action the feedback structure has (large 
value of qi), the larger the overshoot will be. However, more integral action results in a 
better disturbance rejection. The following combination of weighting factors gave a 
reasonable good closed-loop performance: 

qy = 20, qW = 0 ,  qi = 5, qp = le-12 

The integral action is necessary in order to be able to cope with model errors, side wind, 
road superelevations, and faulty driver inputs. 

The real brake-steer controller in the prototype CAPC vehicle is subjected to time delays: 
100 rns from the lane marker imaging system (10 Hz) 
100 rns from the brake-steer controller (10 Hz) 

These time delays might affect the closed-loop performance significantly depending on the 
magnitude (and thus closed-loop eigenvalues) of the feedback gains. Figure 3.5.12 and 
3.5.13 illustrate the effect of 100 and 200 ms time delay between brake-steer controller 
input (estimated states from the Kalman filter) and output (brake pressure). 
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Figure 3.5.10 Position step input of 1 meter at t = 1 sec 
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Figure 3.5.11 Steer step input of 0.5 deg at t = 1 sec. 
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Figure 3.5.12 Position step input of 1 meter at t = 1 sec. 
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Figure 3.5.13 Steer step input of 0.5 deg at t = 1 sec. 



As can be seen from the figures, time delays are fatal for a good brake-steer controller 
design. Less resonant behavior can be obtained with more conservative LQ gains, but 
performance degrades significantly too. Therefore is seems to be necessary to predictor the 
vehicle/roadway states 200 rns ahead such that they match the applied brake pressure. . 

The simplest way to predict these states td,l sec ahead is to use the derivatives from the 
Kalman filter states. The new predicted states that should be used for the brake-steer 
controller are then given by 

Figure 3.5.14 and 3.5.15 show the results of including a prediction step between the 
Kalman filter output and the brake-steer controller input. The responses of the system with 
prediction are much better damped and the disturbance rejection response is now stable. 
Without the prediction step the system will get unstable in case of a disturbance due to the 
200 ms time delay. 

As with the Kalman filter, the feedback gains of the brake-steer controller are vehicle speed 
dependent. Figure 3.5.16 presents the gains as a function of speed of travel. The gains 
have been calculated in the range from 5 to 55 mls and a 3rd order polynomial fit has been 
used in the simulation code to determine the gains. 
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Figure 3.5.14 Position step input of 1 meter at t = 1 sec 
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Figure 3.5.15 Steer step input of 0.5 deg at t = 1 sec. 
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Figure 3.5.16 Brake-steer feedback gains as a function of vehicle speed. 



Finally Figure 3.5.17 shows a schematic of the entire brake-steer controller. Both feed- 
forward and feed-back loops are clearly identifiable. 
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Figure 3.5.17 Schematic of the brake-steer controller. 



3.6 Design of the Decision Module 

The decision module has the task of determining when to initiate a warning andlor 
intervention response. Because the differential braking intervention controller is not yet 
implemented on the CAPC prototype vehicle, there is currently only an audible buzzer to 
indicate when an intervention would occur, if the differential braking system were 
completed. The CAPC simulation tool does include the active intervention feature. The 
design of warning and intervention logic in both the vehicle and the simulation have been 
based on the presence of closed loop intervention. The decision rules for activating both 
the warning and intervention buzzers in the vehicle is done based both on extensive 
simulation work and on field experience with the CAPC vehicle. Here we describe the 
decision rules, the considerations made and work performed to arrive at these rules, and 
the types of road departure scenarios in which the system is expected to function well. 

The concept of the CAPC system includes making decisions based on both the time-to-lane 
crossing (TLC) and on the driver state. However, work on the driver-state assessment 
(Section 3.4) has not proceeded sufficiently to include a driver-state-assessment module 
onboard, and so decisions are based only on TLC. The use of both metrics is desirable 
because the TLC is a scalar measure of the vehicle-roadway tracking margin assuming that 
steering inputs will not change; the driver state indicates the alertness of the driver which, 
in turn, can be considered as the likelihood that the steering input will change to improve 
lane keeping. 

TLC is updated at 10 Hz, and the decision to warn, intervene, or do nothing is also updated 
at 10 Hz, immediately following the computation of TLC. In essence, decisions to warn or 
intervene are made by comparing the TLC to two threshold values, TLC, and TLC, : 

If TLC > TLC,, then do nothing. 
If TLC I TLCw, then warn. 
If TLC 5 TLC,, then intervene and issue a warning. 

The values of the two parameters used in the prototype are TLC, = 2.0 sec, and TLC, = 
1.0 sec. These values were chosen by a combination of simulation and experience in the 
field using the prototype vehicle. Simulation indicates that this set of thresholds will be 
effective for mild and moderate road departure scenarios. Limitation in the moderate 
authority of differential braking, of course, means that there will be severe departure 
scenarios for which even active intervention cannot prevent road departure. Empirical field 
experience with several drivers indicates that the system provides a good "feel" -- i.e., 
warnings and intervention indicators are issued at reasonable times. The rest of this section 
describes how these values were determined, as well as insights discovered. 

There is tight coupling between the decision logic parameters and the high-level system 
goals. We chose these parameter values because we wish to meet the following system 
goals, listed in order of precedence: 



1. Warn only when the driver cannot perform normal lane-keeping with normal 
driving authority. 

2. Intervene only when: 

(a) the driver cannot keep the vehicle on the roadway even using an 
aggressive level of steering authority 

(b) the driver has had time to react to a warning 

3. Allow driver ultimate authority of lateral motion during intervention. 

4.  Once started, a successful intervention is one in which: 

(a) intervention does not begin before one wheel leaves the lane 

(b) intervention (assuming no driver reaction) keeps one wheel on the 
pavement of the travel lane at all times. 

These goals determine the feel of the system. For example, notice that the system is not 
designed to keep the vehicle on the road at all costs. To do that results in many false 
alarms, since the TLC thresholds for intervention would need to be quite large to handle 
severe road departure scenarios. Instead, the approach taken is to provide a backup to the 
driver which allows the driver as much leeway as possible. This minimizes false alarms 
and driver annoyance while still providing effective safety assistance for departure 
scenarios which would be induced by drowsiness or inattention. 

Note that the placement of goal 2(a) above goal 2(b) places higher priority on timely 
intervention than on allowing the driver enough time to react to a warning before the active 
safety system intervenes. We note, also, that the use of brake-steer for active intervention 
is assumed to satisfy the third goal. Certainly other sets of goals can be selected, and other 
goals would simply result in different thresholds. 

Simulations were used to choose initial values for the TLC thresholds: TLC, = 1.4 sec, 
TLC, = 0.8 sec. These were later adjusted in the field to TLC, = 1.8 sec to allow the 
driver more time to react, and finally, TLC, = 2.0 and TLC, = 1.0 sec after additional 
dnvers reported their preferences. 

Additional decision logic is included to improve robustness: (1) The TLC must fall below 
the threshold for three consecutive samples before any new action is taken, and (2) no 
action is begun unless there are four points currently being reported by the LMS on the 
right side of the lane. The full logic used is shown in Table 3.6.1. 

We briefly describe how the initial simulation-based TLC thresholds were chosen. 
Numerical simulations are run to choose TLC thresholds that meet the desired criteria over 
the largest range of initial conditions. Simulations include two basic steering scenarios 
conducted in three different road curvature settings. Steering includes both a so-called 
pulse steer input and a step steer input, both applied at the steering wheel. The pulse input 



is used to generate a motion in which the vehicle travels along its longitudinal axis with 
zero steer angle and no curvature in its path. This represents a gentle drift off the road. 
The step steer represents a driver who has, for instance, fallen asleep, and the vehicle 
travels with curvature in its path (relative to the ideal path). Departures are simulated in 
three roadway scenarios: in a straight-away; in a constant radius curve; in a Euler spiral 
transition from constant curvature to (or from) a straight-away. Speeds of 40 to 120 kph 
(25 to 75 mph) are used. We assume that the driver either reacts appropriately -- as a step 
input of the steering wheel -- or the driver does not react, and the steering wheel is kept 
fixed. 

Figure 3.6.1 shows the results of a simulation in which the vehicle is traveling at 90 kph 
down a straight away when a step input of 4 deg is applied at the steering wheel (about 
0.25 deg at the front wheel). The vehicle curves slightly toward the right edge of the road, 
as shown in the second subplot of the figure. Note that the CG distance is measured with 
respect to either the left or right side lane, depending on the vehicle direction and proximity 
-- hence the sudden jumps in the subplot. Soon the TLC falls below the warning 
threshold. In this simulation the "driver" takes no action despite the warning, and soon an 
intervention occurs. The brake-steer system brings the CG back to the right-side lane 
marker, as desired, overcoming both the off-road heading angle and the original 4 deg 
offset in steering. The plot shows that the CG travels up to about 0.7m past the edge, so 
that the left wheels barely remain on the lane. This simulation is considered successful 
because intervention does not begin until a wheel has left the lane, and because at least one 
wheel remains on the lane. We note that the vehicle is traveling toward the edge at about 
1.4 m/s when the intervention begins, which is a rather steep heading angle (about 3 
degree). 

A second simulation is run in which the same initial step input of steer is applied, but now 
the driver "reacts" to the warning. This is modeled with a step steer applied 0.8 sec after 
the warning reaches the driver. (The simulation program contains the system delays that 
are part of the prototype computing environment.) This corrective steer is 20 deg at the 
steering wheel -- corresponding to about 0.25G at 90 kph. Figure 3.6.2 presents the 
results of this simulation, which shows that the driver's action is sufficient both to avoid 
triggering the intervention and to keep the vehicle in the lane. 

Finally, a third simulation is run in which, again, the step input is applied. This time, 
however, the vehicle's curve toward the right edge is taken to be part of the driver's normal 
lane-keeping behavior, and a corrective steer of 10 deg at the wheel (about 0.13 G at 90 
kph) is applied just before the warning would go off. This simulation's results are shown 
in Figure 3.6.3. The vehicle CG is still in the middle of the lane when the warning is about 
to sound -- but the steering indicates that if held constant, the vehicle CG will pass over the 
road edge in two seconds at a speed of about 1.6 m/s, which is a moderately severe 
departure. 

Extensive simulation work was performed to choose the TLC thresholds, and to evaluate 
the performance that might be expected. The decision rules and parameters chosen in 
simulation were found to provide a good warning and intervention functionality which was 



expected to have a good feel, by designing specifically to avoid false alarms in the large 
majority of typical driving situations, and by allowing time for the driver to react to the 
warning. Experience in the vehicle itself confirmed this -- the thresholds were changed 
only slightly. 

We find that the important variables'in the success of the warning and intervention decision 
system are vehicle speed; angle of vehicle departure; difference in curvature between the 
roadway and the vehicle's path; front wheel steer angle; and of course, the authority and 
quality of the intervention actuation system. 

The system, of course, has a finite set of situations in which both the system function and 
the system feel are delivered successfully. Clearly for very severe departure situations, the 
TLC will trigger warnings and interventions while the vehicle is still well within the lane. 
Additionally, the current system configuration, including the limited authority of brake- 
steer intervention, cannot prevent the vehicle from completely leaving the lane if departure 
angles are greater than approximately 3.5 deg (at 90 kph) in straight aways, and about 2.0 
deg in sharp curves (radius of curvature 400m). There are several ways to expand the set 
of recoverable scenarios, including braking with the front wheels, improving the brake- 
steer controller design, and using additional variables in the decision logic (such as 
predicted angle of departure). The last option would allow us to sidestep the natural 
tradeoff in TLC threshold design between (a) avoiding false alarms and early warnings in 
mild scenarios and (b) providing adequate warning and time for intervention in more severe 
scenarios. A summary of the limits of performance of the system with the decision rule 
and parameters described here is presented in Table 3.6.2. 



Warning on if: 
- 

estimated TLC I TLC, for [3] consecutive samples 

and 

warning has been on for less than [lo] seconds 

and - 

a new warning is not begun unless the previous warning has been off for 
at least [I] second, and unless the LMS has reported at least [4] points on 
the right side of the lane. 

or if: 

intervention is active 

Intervention begins when: 
- 

estimated TLC I TLC, for [3] consecutive samples ** 

and - 
a new intervention is not begun unless the previous intervention has been 
off for at least [ I ]  second. 

Intervention and warning continue until: TLC rises above the respective 
thresholds, or until the action has continued for [lo] seconds. 

No warning or interventions allowed when: vehicle speed is below [30 kph] or 
above [ 120 kph]. 

Threshold values: - 
TLCW = 2.0 sec - 
TLC, = 1.0 sec 

Table 3.6.1 Warning and Intervention Rules in the CAPC Prototype 
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Figure 3.6.1: 
Simulation: Warning and intervention with no corrective steering by dnver 
(90 kph on straight road with Step steer input of 4 deg at steering wheel) 
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Figure 3.6.2: 
Simulation: Driver reacts to a warning (0.25G), and intervention is avoided 
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Figure 3.6.3: 

Simulation: Warning is not issued when driver lane-keeps with normal authority 



Normal weaving within lane: 

False alarms may occur in transitions on tight test track curves. 

m e s s i v e  weavin~ within lane: 

False alarms of warning likely to occur. Unwanted "interventions" should 
be rare. 

False alarms are induced especially by large steer angles. 

Mild or moderate departures ( < 2 deg departure angles and small acceleration of vehicle 
off roadway) 

Warnings will feel fine except in curves, where they may feel late. 

Most interventions are "successful" in straight-aways, once started-- 
starts after one wheel on shoulder, and keeps one wheel on roadway at all 
times. 

Interventions in curves are less successful than in straight-aways, 
sometimes allowing all wheels to leave road. Especially true at higher 
speeds. 

Severe de~artures: (includes transitions, large departure angles, accelerating departures) 

Warnings may feel too earlv in straight-aways and too late in curves. 

Interventions in straight-aways begin before one wheel is on the shoulder, 
and are successful up to 3 deg departure angle at 90 kph. 

Interventions in curves are rarely successful at highway speeds -- the 
vehicle leaves the roadway and "ABS" limits the authority. 

+ 

Table 3.6.2: Simulation: Limits of performance 



3.7 Design of a System Simulation Tool 

The different subsystems of a lane-departure avoidance system as described above have 
been combined on a simulation level in the CAPC simulation tool. The simulation tool is a 
modular concept written in C-language and runs on Macintosh computers with floating 
point processors. The main objective of the tool is to combine the subsystems into a road 
departure avoidance system and to study the performance and interaction among the 
different modules. The seven major parts of the CAPC simulation tool are the vehicle, the 
lane-marker recording and processing, the estimation of the future trajectory of the vehicle, 
the time-to-lane crossing calculation, the brake-steer controller, the driver-status assessment 
and the CAPC decision-making module. Appendix A is the User's Manual for the CAPC 
simulation tool. A more detailed document (the Reference Manual for the CAPC 
Simulation Tool) describes the models in the simulation, and is available upon request from 
the UMTRT Engineering Research Division. 

The simulation tool has played a significant role as the CAPC system has grown to its final 
(hardware) design. Before implementation onboard the prototype vehicle, control strategies 
and state estimation methods have been implemented in the simulation tool to verify their 
efficiency and stability. The final controller and the CAPC simulation code have both been 
written in C-language, and the commonalty of the code has simplified and shortened the 
implementation phase significantly. 

The CAPC simulation tool offers the possibility to study the interactions among the various 
lane-keeping subsystems. For example, the influence of external disturbances like road 
roughnesses and wind on the determination of the perceived roadway geometry has been 
studied using the CAPC simulation tool. Since the vision system is mounted rigidly on the 
sprung mass of the vehicle, the motion of the vehicle will affect the estimates of the lane 
marker locations due to heave, roll, and pitch motions. The simulation tool was also used 
to explore the need for image stabilization as a counter measure to this problem. 

3.7.1 Simulation Architecture 

The core of the CAPC simulation is the vehlcle model. The CAPC simulation tools offer a 
variety of vehicle models, each designed for a specific application. The most extensive 
model contains 14 degrees of freedom (DOFS). The sprung mass is able to move in 3 
directions (longitudinal, lateral, and vertical) and to rotate about three axes (roll, pitch, and 
yaw). Each wheel suspension has one DOF with respect to the vehicle body and the 
rotation of a wheel also accounts for one DOF. This 14 DOF model contains all the major 
DOFS necessary for describing the motions of the vehicle for the CAPC application. 

Two simplified models based on 7 and 8 DOF vehicle models are also available. The 
models are simplified with respect to the wheel suspensions. The 7 DOF model doesn't 
contain suspensions (and can therefore only describe the longitudinal, lateral, and yaw 
motion of the vehicle) and the 8 DOF model adds the roll motion of the sprung mass to the 



7 DOF model. The simplified models are more computationally efficient but less accurate 
than the 14 DOF model. 

It is important to consider that the tire plays a crucial role in vehicle dynamics. It 
accomplishes essentially three basic functions: (1) support the vehicle weight, cushioning 
road irregularities, (2) develop lateral forces for cornering, (3) develop longitudinal forces 
for accelerating and braking. In treating tire effects, several different tire models have been 
made available in the CAPC simulation tool. The most extensive is based on an empirical 
model known as the Magic Formula tire model. It can describe the tire slip force for a large 
range of load and slip quantities. Furthermore, it offers the possibility to treat the case of 
combined slip (cornering and braking or accelerating at the same time). The less extensive 
models are all based on the Magic Formula but contain certain simplification in order to 
speed up the simulation time. 

The CAPC simulation vehicle can be operated on various roadway types with different 
geometries and road roughnesses. An oval test track, a straight road, a winding road, and a 
skid pad have been pre-programmed as options within the CAPC simulation tool. The 
geometry can be extended with grades and superelevations. Furthermore, several data sets 
of different artificially generated road roughness profiles are available. The road friction 
coefficient can be changed too. 

Most of the maneuvers done with the simulation vehicle can be executed under the control 
of a driver model. Two driver models are available in the CAPC simulation tool. The 
simple driver model is characterized by a preview model that looks at a single point in front 
of the vehicle. The other option is a more elaborate optimal preview model that minimizes 
the tracking error at several points in front of the vehicle. 

The CAPC vehicle was initially equipped with two vision systems: one for the near-range 
and one for the far-range area. Both cameras are modeled in the CAPC simulation tool. The 
image of the camera can be determined by applying several coordinate transformations to 
the known roadway geometry in front of the vehicle assuming a flat earth model. 
Hardware specifications describing the camera's CCD chip size and resolution have been 
modeled as well. Furthermore, the position of the cameras on the vehicle, the orientation 
and the update frequency can be selected over a wide range. 

A summary of the subsystems available in the CAPC simulation tool follows: 
+ Vehicle Models: 

7 DOF flat vehicle model: longitudinal, lateral, yaw and 4 wheel rotational DOFs 
8 DOF yawlroll model: 7 DOF model + roll DOF 
14 DOF full vehicle model: 6 DOFs for the vehicle body, 1 DOF for each axle and 
4 wheel rotational DOFs 

+ Tire Models: 
Steady-state (different road friction coefficients possible): 

* Cornering stiffness as a function of vertical tire load 
* Magic Formula (pure slip, combined slip) 

Transient: first-order relaxation system (tire load dependent) 



+ Antilock Brake System Model: 
First-order lag system with brake pressure saturation 

+ Driver Model: 
Simple preview model with driver limitations (time lag) 
UMTRI's optimal preview driver model 

+ Cruise-Control (set, resume, accelerate) 
4 Far-range Camera determining the future roadway geometry 
4 Near-range Camera determining the heading angle and lateral deviation 
+ Path Prediction based on: 

2 DOF linear flat vehicle model (lateral and yaw D O 8  
* Linear tires, fixed cornering stiffnesses 
* Non-linear tires, cornering stiffnesses as a function of vertical tire load 

3 DOF linear yawlroll vehicle model (lateral, roll and yaw DOF) 
* Linear tired, fixed cornering stiffnesses 
* Non-linear tires, cornering stiffnesses as a function of vertical tire load 

+ Lane Margin Calculation: time-to-lane crossing 
4 Driver Status assessment based on vehicle states and steering wheel activation 
4 Brake-Steer Controller based on LQ feedback of the lateral deviation, heading 

angle, side slip velocity and yaw rate 
CAPC Supervisory Controller based on driver status and time-to-lane crossing 

4 Roll & Pitch angle estimation based on measured suspension deflections 
4 Road Roughnesses collected from empirical road models 

Roadway Geometry: straight lines, curves w Iw/o superelevations andlor slopes 
4 Wind Disturbances: constant wind, crosswind gust, random crosswind 
6 Real-Time Driving Simulator: 

8 DOF yaw/roll model including wheelspin DOF, Magic Formula tires, cruise 
control, path-prediction, lane margin calculation, warnings and intervention 

3.7.2 Simulation User Interface 

The CAPC simulation is menu driven and is supported by various animations. The user is 
able to modify all important model parameters using pull-down menus and dialogs. A 
complete user's manual can be found in the appendix of this report. The user's manual 
gives a short overview of all the options that can be selected in the graphical user interface 
of the tool. 

The simulations are supported by graphical and numerical outputs. The graphical animation 
shows the vehicle from a top view including the roadway geometry, predicted future 
trajectory and perceived roadway geometry. The scenery of the roadway as recorded by 
both vision systems is also displayed during the animation. Figure 3.7.1 shows a screen 
display of the animation. 
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Figure 3.7.1. CAPC graphical simulation output. 

The numerical output contains all important states of the vehicle, roadway geometry, 
disturbances, vision system outputs, and CAPC control in- and outputs. The data is stored 
in an ERD file format and can be displayed by a separate public-domain engineering plotter 
(EP) available from UMTRI. It is also possible to look at the simulation in progress (real- 
time) from the point of view of the driver. Figure 3.7.2 gives an impression of this driving 
simulator mode. This mode is based on the same modules as the simulation mode. 
However, most of the modules are simplified in order to let the simulation run in real-time. 
Some items have been disabled (such as the 14 DOF vehicle model) because of the 
computational burden of these modules. 
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Figure 3.7.2. CAPC driving simulator output. 

3.7.3 Vehicle Model Evaluation 

One should never attach value to simulation results if the models that were used to generate 
these results were not evaluated and compared with the real world. The most complex 
module with the largest amount of (unknown) parameters is the vehicle dynamics model. 
After the completion of the prototype vehicle, the simulation tool and the real world have 
been compared in order to tune the model (by altering its parameters) such that model and 
prototype car match. The CAPC prototype vehicle is installed with numerous sensors 
whose outputs can be compared with simulated signals. The following sensor signals are 
available: 

vehicle speed at each wheel (4 ABS wheelspin sensors) 
front wheel steer angle (displacement LVDT on the rack) 
steering wheel angle GVDT on the steering wheel shaft) 
yaw rate (optical sensor) 
lateral acceleration (accelerometer) 
suspension deflection at each wheel (LVDT) 

The post-processing mode of the CAPC simulation tool allows the user to port a measured 
ERD data file from the prototype car directly into the simulation. This mode has been 
designed especially to evaluate the vehicle dynamics models within the CAPC tool. The 
measured front wheel steer angle from the rack has been ported to the simulation tool 



(multiplied by the steering system gear ratio) while making the steering elasticity of the 
vehicle model infinite such that measured and simulated steer inputs match. Later on the 
front-wheel steering elasticity has been derived by comparing the front-wheel steer angle 
with the steering angle measured at the wheel. The vehicle speed has been derived by 
averaging the four measured wheelspin.speeds. This derived speed has been used as a set- 
point speed for the cruise control module in the simulation. Having both steer input and 
vehicle speed the driver model can be by-passed in the simulation tool and measured data 
from the vehicle can directly be compared with simulated signals from the CAPC tool. 

Not all parameters needed to be adjusted. The geometry of the vehicle and suspensions 
could be derived from design drawings provided by Ford. The main unknown parameters 
were the vehicle's mass, moments of inertia and effective tire cornering stiffnesses. The 
mass of the prototype vehicle including equipment and driver + passenger on the right rear 
seat has been determined by four scales. From the four measured quantities the total front 
and rear axle load can be derived. Although the measured wheel loads showed a slight 
asymmetric pattern, the vehicle was modeled as symmetric with identical left and right 
wheel loads, so that the CG is located at the middle of the car. 

The moments of inertia and tire-cornering stiffnesses have not been measured in the 
laboratory. A different approach has been used to identify these parameters. A least square 
optimization technique has been used to fit measured vehicle responses with equivalent 
simulated data. Several handling related tests were carried out with the prototype vehicle 
and the measured vehicle speed, front wheel steer input, steering wheel input, yaw rate and 
lateral acceleration were recorded with the MacDAS data-acquisition package. After that the 
measured front-wheel steer input and vehicle speed were ported into a simulated vehicle 
model and identical maneuvers were carried out with these real driver inputs. 

The vehicle model used for the parameter identification was a simple 2 DOF vehicle with 
linear steady-state tire characteristics (based on a fixed cornering stiffness) and a transient 
tire model extension (based on a fixed relaxation length). In MATLAB the unknown 
cornering stiffnesses and yaw moment of inertia have been optimized using the FMINS 
function. The object function to be minimized is the sum of the quadratic errors between 
measured and simulated lateral acceleration and yaw rate. It is given by 

Weighting factors ql and 92 might be chosen freely by the user. Since the magnitude of the 
yaw rate (in degls) is about the same as the magnitude of the lateral acceleration (m/s2), 
coefficients ql and 92 have both been chosen equal to unity. The optimization in MATLAB 
is such that the 2 DOF vehicle model is simulated for the total duration of the measured 
steerispeed input. The quadratic object function (3.7.1) is then computed and, in the 
LMINS procedure, the three parameters (front and rear tire cornering stiffness, yaw 
moment of inertia) are adjusted such that J gets smaller. The optimization is iterative and 
thus the vehicle model is simulated over and over until a minimum of J has been found. 



The maneuver chosen to optimize the vehicle parameters was a moderately severe lane 
change (Ay c 0.4 g). Higher levels of lateral acceleration should be avoided because these 
kinds of maneuvers cannot be described well enough with the simple tire model based on 
cornering stiffnesses. Table 3.7.1 shows the parameters of interest before and after 
optimization. The old inertia values were estimates based on the size of the vehicle [I]. 

Table 3.7.1 Vehicle model parameters. 

variable 

front axle load 
rear axle load 
front tire cornering stiffness 
rear tire cornering stiffness 
steering elasticity 
yaw moment of inertia 
roll moment of inertia 
front suspension damping 
rear suspension damping 

As can be seen the effective front-tire cornering stiffness has been reduced significantly 
during the optimization process. This is mainly due to the steering elasticity and elasticity in 
the front suspension due to bushings compliances. By knowing the new effective cornering 
stiffness values, the parameters (a3 and a4) of the Magic Formula (MF) have been changed 
such that the effective cornering stiffness valid for the static front and rear tire load match 
the values as presented in table 3.7.1. 

Since the vehicle model comes with the steering elasticity built-in, the cornering stiffness of 
the front tire Cml must be derived from the effective cornering stiffness q{, according to 
table 3.7.1 using the geometry of the front suspension in combination with the known 
steering elasticity. Its value is given by 

unit 

kg 
kg 

Nlrad 
Nlrad 
Nlrad 
kgm2 
kg& 
Nslm 
Nslm 

CFal = 0.5. = 84,943 N 1 rad 
eff t m  + t p  1-2'cFa,- 

C3t 

with 
tm the mechanical trail of the front suspension (0.02 m) 
tp the pneumatic trail of a front tire for small slip angles (0.0191m) 
c,, the steering elasticity (2.0e4 Nmtrad) 

OLD 

1,086 
723 

70,760 
59,850 
50,000 
3,562 
580 

1,295 
1.032 

This value is considerably higher than the effective cornering stiffness and it is also higher 
than the value for the rear tires. 

NEW 

1,09 1 
723 

63,760 
66,430 
20,000 
3,960 
464 

2,590 
2,063 

The roll moment of inertia and suspension damping coefficients have been tuned using 
frequency response functions and this analysis will be described hereafter. Figure 3.7.3 
shows a comparison of the measured prototype vehicle data with simulation results. Two 



vehicle models were simulated: the simple 2 DOF model with Linear tires and the complex 
14 DOF model with non-linear tire characteristics (m. The type of maneuver can be 
characterized as a series of lane changes with increasing severity at constant forward speed. 

The simulation results match quite well with the measunment data. Even the simple 2 DOF 
model does a surprisingly good job when the severity increases. However, once higher 
levels of lateral acceleration are reached the simple, comering-stiffness tire model is not 
sufficient because it neglects the influence of the load transfer on the tire slip forces and 
thus the sum of simulating both tire side forces at an axle is higher than in reality. Here the 
14 DOF model with the Magic Formula tire model is doing a much better job. 

Yaw Rate (deg/s) 

-lu . . . - - - -- . 

0 5 10 15 20 
Time (s) 

Figure 3.7.3. Lane changes at 121 kmh (75 mph). 

Frequency response functions (FRFs) are also valuable for tuning vehicle models. In 
particular the FRF of the lateral acceleration and yaw rate over the steer input can be of use 
in the model evaluation phase. A random steering maneuver at a constant vehicle speed has 
been shown to be the best type of maneuver, when applied correctly, because the 
measured data contains many frequencies of interest. The total duration of the measurement 
sequence was limited to about 17 sec. This sequence has been split into four windows each 
4.25 seconds long. Fast Fourier transformation techniques have been used to calculate 
power/cross spectral densities, transfer functions and coherencies. For the vehicle models it 
has been chosen to use the linear representation of the model (linearized set of equations of 
motion) to calculate frequency response functions in an analytical way. In that case no time 



domain simulations are required. Figure 3.7.4 and 3.7.5 present two important FRFs. The 
solid lines correspond to the measured response and the dashed one with the 2 DOF linear 
model. The dash-dot line is valid for a 10 DOF linearized model. This latter vehicle model 
is equivalent to the 14 DOF model, however, without the wheelspin DOF. 

For the yaw rate FRF not much difference can be seen between the two simulation models 
and prototype car. This is not surprising because both models behave almost identically in 
the yaw degree of freedom as a rigid mass with two lateral dampers (tires). For the lateral 
acceleration FRF there is a substantial difference above 1.5 Hz. The main reason being that 
the accelerometer in the car was not exactly attached in the CG of the vehicle. It was 
installed 0.25 m behind and 0.17 m below the vehicle's CG. Therefore the measured lateral 
acceleration consist of a combination of true lateral acceleration and yaw and roll 
acceleration. The FRFs for both vehicle models were corrected for this offset. Since the 2 
DOF model doesn't include the roll degree of freedom a difference between measured and 
analytically determined response for the lateral acceleration FRF is present. 

The roll moment of inertia and suspension damping have been altered in order to match the 
measured response with the 10 DOF model FRF. With the initial set of parameters the roll 
motion related resonance peak near 2 Hz was not well damped and thus the damping has 
been increased. The location of the roll natural frequency has been used to tune the roll 
moment of inertia while keeping the suspension and antiroll bar stiffnesses constant. After 
some trial and error both the measured FRF and the 10 DOF FRF did agree very well. 
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Figure 3.7.4. Frequency response functions (yaw rate vs. steer input). 
- = measured with the CAPC prototype vehicle 
- - - = 2 DOF linear vehicle model 
-.-.- = 10 DOF linearized vehicle model 
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Figure 3.7.5. Frequency response functions (lateral acceleration vs. steer input). 
- = measured with the CAPC prototype vehicle 
- - - = 2 DOF h e a r  vehicle model 
-.-.- = 10 DOF linearized vehicle model 
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4.0 Implementation of CAPC prototype 

The CAPC prototype hosts a number of processors, controllers, and specialized hardware 
to implement the function. Transducers., signal processing, data collection and storage are 
handled via UMTRI's MacDAS system. This provides a basic framework in which 
experimental controllers.can be developed. The MacDAS system and the CAPC controller 
algorithm reside on a Macintosh Quadra computer. Lane sensing, analog signal processing, 
and brake pressure servo control are handled by other processors. A block diagram of the 
CAPC prototype is shown below. Separable components and high level interfaces allow 
integration of other data sources. 

Figure 4.0.1: CAPC Prototype block diagram 
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4.1 Prototype System Configuration 

Brake Actuator 

The hydraulic brake system of the Taurus SHO has been modified by Ford Motor 
Company. The system currently provides for independent operation of each of the four 
wheel brakes on the SHO. Each brake caliper is equipped with a pressure sensor such that 
a brake pressure loop can be closed around each wheel. The control mechanism is intended 
to be a build-dump-hold pressure servo using a modest amount of hysteresis about the 
desired pressure point. The CAPC function will determine the desired amount of pressure 
to be applied and which wheel it will be applied to. When the brake actuator receives this 
information via an RS-232 link, it operates the valves and closes the pressure loop, 
executing a digital control loop at several hundred Hz. Schematics are included in Section 
8.4 for the designs of brake-steer controller interface wiring, pressure transducer signal 
conditioning, power supply design, and communications circuitry to the BlueEarth Micro- 
445 rnicrocontroller chosen to close the pressure servo loop. These circuits were designed 
but not constructed on the CAPC prototype during the project's Phase I. 

Transducers 

The vehicle contains a suite of transducers for measuring or estimating vehicle motion 
including roll, pitch, velocity, lateral acceleration, and yaw rates. Also sensed are driver 
inputs and roadway geometry. A table of transducers is shown along with a few 
specifications. The vehicle drawing indicates the transducers' locations . 

V - forward velocity freq-to-voltage converters, 0.45mIsec 
Z - suspension defl. LVDT signal cond., H0mm fr, f120mm rear 
asw - steer wheel angle string pot around shatt, 590 deg, no zero 
ilfw - front wheel angle LVDT on rack, M deg (at front wheel) 
Ay - lateral acceleration servo-type accelerometer, f 1 Odeglsec 
r - yaw rate optical gyro - &I00 deglsec, no drift 

also 

P - brake caliper pressure installed by Ford, 3000psi max 

Figure 4.1.1: Transducers installed in CAPC prototype 



Dots in figure 4.1- 1 indicate nominal transducer location. Note that the instrumentation at 
all four wheels is identical. The Linear-Variable Differential Transformer (LVDT) indicated 
as "Z" for suspension measurements (hence pitch and roll estimates) are installed such that 
the motion between the sprung mass and the unsprung mass is transduced (i.e., the change 
in length of a suspension strut). Pitch and roll are then computed knowing the vehicle's 
wheelbase and track width dimensions. In this way we can deduce the gross motions of the 
sprung mass, except for contributions due to tire deflection. The LVDT for front-wheel 
steer angle (afw) transduces the linear motion of the steering rack. The string pot for 
driver's steering-wheel input (asw) is attached to an aluminum grooved barrel, which is 
clamped around the shaft between the tilt mechanism and the universal joint at the firewall. 
Vehicle velocity (V) is transduced using the OEM magnetic pickups provided with the ABS 
system, and a frequency-to-voltage conversion. (See Section 8.4 for a schematic of the 
frequency-to-voltage conversion circuit.) The accelerometer and yaw rate transducers are 
commercial products and follow a typical installation. The CCD camera is part of the LMS 
system. Photos of the LVDT and CCD camera installations are shown in Figures 4.1.2 and 
4.1.3. 

Calibration of steering-wheel angle (in terms of both front wheel angle and rack 
displacement) and suspension deflection was performed on UMTRI's Suspension 
Measurement Facility, shown in Figure 4.1.4. In this facility, the vehicle's suspension 
was exercised in a known manner and the outputs of the transducers calibrated to the 
motion. The suspension LVDTs were calibrated to indicate the purely vertical change of the 
spindle at the lateral center of the tire. The front-wheel steer angle was calibrated to indicate 
the angle of the front tire plane (including static compliances at three different load 
conditions). The driver steering-wheel input was calibrated with reference to a known 
rotary transducer. Yaw rate and lateral acceleration transducers were calibrated prior to 
installation in the vehicle. 

Figure 4.1.2: Suspension LVDT and steer LVDT installed in CAPC prototype 



Figure 4.1.3: CCD camera installed in CAPC prototype 

Figure 4.1.4: UMTRI's Suspension Measurement Facility 



Signal Conditioning 

All analog transducers shown above e e i v e  signal conditioning from customized circuitry. 
The LVDTs and velocity pulsers use special signal processing stages to generate the 
proportional output. A block diagram of this circuitry plus channel gain, offset, and 
filtering is shown below in Figure 4.1.5. See Section 8.4 for detailed schematics of the 
LVDT and velocity signal processing designs. 

Signal Cond. Rack 

+ Susp. 

converters s ign i  processors I =riel nlehm 
for LVDTs 

Figure 4.1.5: Signal conditioning block diagram 

The analog gain and filter stage is housed in a single unit and controlled via RS232 serial 
communications to the Quadra host computer. The analog rack has automatic gain and 
offset measurement and zero adjustment capability, and can be fully calibrated automatically 
via the MacDAS system. The CAPC code initializes the rack to the desired configuration at 
startup. 

Computers 

There are many processors in the CAPC system. The primary computers are the Macintosh 
Quadra 800 executing the CAPC function computations and data acquisition, and the 80586 
implementing the lane-mark sensor system. Ancillary processors are a microcontroller in 
the analog rack, one for the brake servo pressure loop, and processors in the imaging 
camera and on computer V0 cards. A photo of the primary computer installation is shown 
in Figure 4.1.6. 

The Quadra 800 hosts MacDAS, UMTRI's standardized, test-platform, control code. The 
system is an infrastructure for controllers and data acquisition, providing the control system 
with analog and digital LIO, serial VO, graphics, real-time loop management, user 
interfaces, and standard ERD file VO. The MacDAS system also controls the analog rack 
and shields the control algorithms from hardware upgrades. 

The Brake Servo design hosts a microcontroller (a BlueEarth Micro-445) for closing the 
build-dump-hold pressure loop. This micro contains analog and digital YO and dual RS232 
serial ports. The pressure commands from CAPC are transmitted via serial line to the 
controller. The controller also generates a serial output stream of pressure values which can 
be collected using a laptop or other computer. 



Figure 4.1.6:. Signal conditioning rack and computers located 
in the CAPC prototype vehicle's trunk. 



Data Communications 

Communications between modules in the CAPC system are largely RS232 serial, including 
MacDAS with the analog rack, CAPC with the LMS system, and also CAPC with the 
Brake Servo processor. The communication protocol developed between the CAPC 
function and the LMS system is outlined in detail in Section 8.3.2 and Appendix B, while 
the basic interaction is illustrated in Figure 4.1.7. 

( Conditioning I -, /-laTx brake 1 
Rx actuator 

Modern Dmsure 
data ml I Quadra 800 1 o a u r  

Printer 

L Calikatm 
Status 

computer I 80586(LMS) I 
Figure 4.1.7: Communications block diagram 

RS232 communications convey information to and from the Quadra computer (hence the 
CAPC function and MacDAS infrastructure) to the signal conditioning rack, the brake 
controller, and the LMS computer. Commands are typically sent from the Quadra and 
replies or status information are returned. The communications to the LMS system consist 
of operational commands outlined in Section 8.3.2. The LMS system will also return lane 
geometry via this connection. The analog rack receives control for gain, filtering, and offset 
adjustments, and provides status information. This is typically done at startup, and is never 
performed during the actual running of the CAPC function. When the system is in 
operation, all communications are ignored by the analog rack (it is placed in a stand-by 
mode) but are utilized by the brake servo controller. The servo can also report its status to 
the CAPC system. Note that neither MacDAS nor CAPC collect the brake servo's pressure 
data over this line, so an additional transmit line is provided for hooking up a separate 
processor (such as a laptop) with a serial port for collecting data. This data is simply a 
stream of values indicating the pressures at each wheel transducer, reported at 20Hz. 



4.2 Physical Installation in Taurus SHO 

Installation of the MacDAS system and the CAPC function was accomplished using 
UMTRI's shop facilities. Wiring for transducers and controllers was installed in the 
vehicle's wiring channels wherever possible. CCD camera signals and power were routed 
through the roof frame system, under the headliner. Also present are duplicate CCD signal, 
power, and extra twisted-pair cables to support a second camera; other sensors are also 
possible. Section 8.4 includes schematics for the analog transducer cabling. 

The LVDTs for suspension deflection measurements were mounted using customized 
bracketry attached to the vehicle's suspension components and a rigid member of the frame 
or body. The steering rack LVDT body was also mounted on a customized bracket and the 
rod-end attached to the rack's lateral gear, Vehicle velocity is generated by picking up pulse 
signals from OEM supplied ABS wheel speed sensors. 

The ABS system has been disabled since it will not function properly with the modified 
braking system. The ABS control unit itself was also removed from the OEM housing, and 
its housing and connector were used to interface the brake servo controller described 
above. This connector also provides convenient interface to the velocity pulses, ABS relay 
power, and brake switch signals formerly used by the ABS controller. All brake controller 
signals and power have been routed to a space behind the vehicle's stereo system, where 
the servo controller would be installed. 

The accelerometer was located near the C.G. in the lowest section of the front seat arm rest. 
The yaw rate transducer was conveniently located in the trunk with the primary computers 
and signal conditioning. Also in the trunk is the power distribution system consisting of a 
lOOOW square-wave inverter whose input is tied directly to the battery of the vehicle. The 
vehicle's charging system will maintain sufficient battery charge as long as the engine is 
running above idle - i.e. while driving. Cooling for the equipment in the trunk was 
necessary. A simple solution was the removal of speakers in the rear deck and installation 
of a fan to move cooler cabin air through the trunk. 

Great care has been taken to eliminate all ground loops in the test platform and to assure 
maximum noise rejection. All system installations were designed to receive a single ground 
reference at the inverter. Mountings to the vehicle are made through insulated mechanisms 
such as wood and plastic to avoid contact between instrument cases and the vehicle chassis. 
Many transducers are isolated based on their technology while others required insulated 
mountings. At present there is a single loop which exists between the CCD camera and the 
vehicle chassis where the camera is attached to the roof frame. This connection can be 
easily broken by inserting a delrin (or similar material) barrier between the camera and 
mount. Since there is at present no voltage drop across this loop and hence no current flow, 
the loop has not caused any problems. Future modifications or additions to the vehicle will 
likely warrant isolating the camera and recalibrating the sensing system. 



5.0 Testing of the CAPC Prototype 

5.1 Test Plan and Rationale 

The CAPC vehicle prototype testing has consisted of three basic activities: 

1) calibration and sensor noise quantification 

2) identification of vehicle model parameters 

3) verifying qualitatively that the TLC and decision algorithms behave as expected 

Testing has confirmed qualitatively that the prototype provides the basic functionality of a 

road-departure, warning-and-intervention system. There has not yet been the opportunity 

to conduct thorough quantitative testing of the performance of either the subsystems or the 

system. Such quantitative testing will require "ground truth" knowledge -- that is, external 

measures of the vehicle's position in the lane, as well as a time-tagging to provide a means 

to compare the TLC that is computed on-line to the actual truth. This initial phase of the 

project has been primarily a design and implementation phase, and the testing completed to 

date provides evidence that the system is performing as intended. 

In the next sections we review test results that address the items above. 



5.2 Test Results 

5.2.1 Experimental data 

Sensor calibrations 

Sections 3.2 and 4 described static calibrations of the LMS and the analog systems, 

respectively. 

Analog transducer noise stationary vehicle 

Analog transducers are filtered with a lOHz lowpass filter before digitization. 
There is no digital filtering. Figure 5.2.1 shows traces of the analog transducer signals 

while the car is stationary, the engine is revved at 3000rpm, A d  all vehicle systems are 

running off the onboard power. This gives an indication of electrical noise on each of the 

transducers. The 3 sigma values for each measurement signal (for electrical noise only ) 

are approximately as shown in Table 5.2.1. Figure 5.2.2 shows similar traces collected 

while the vehicle was being driven at 98 kph (62 mph). The signal variations now include 

disturbances of the roadway environment. 

Table 5.2.1 Electrical noise values for transduced signals (3 sigma, estimated) 

Vehicle dynamics modeling parameter estimation 

Section 3.7.3 describes the testing performed to compute values for vehicle yaw inertia, 
cornering stiffness at the front and rear tires, and suspension damping values. The yaw 



inertia and cornering stiffness are especially important because several sets of gains in the 
TLC and brake-steer algorithms depend on these parameters. 

TLC while steering sinusordally 

Figure 5.2.3 shows traces of signals collected while driving on a straightaway at highway 
speed and while gently steering with a sinusoid-like motion, so that the vehicle traveled 
back and forth in the lane. The figure shows how for relatively large steer motions, the 
estimates of lateral position are still consistent, The TLC drops below four seconds several 
times, and as steer amplitude is increased, warnings and intervention buzzers are triggered. 
We point out the agreement in this data between the two Kalman filters estimates, and 
especially that the yaw estimate coming from the near-range Kalman filter matches the 
direct output of the yaw rate sensor. The curvature estimates are very nearly zero. 
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Figure 5.2.1 Analog transducers -- stationary vehicle 
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Figure 5.2.3 (page 2): Sinusoidal steering to trigger warnings and intervention 



TLC and the warning & intervention function during road 
departures: 

Numerous tests were conducted to see how the warning and intervention signals "felt." 
Figure 5.2.4 below is an example of these tests, in which the vehicle is steered into a path 
of departure. The estimate of the CG's position shows that the CG crosses at a time of 13 
seconds, whereupon the TLC is also approximately zero. Before that time, at 
approximately 10.8 sec, the warning was triggered, and a short time later, as the TLC 
dropped below one second, the intervention signal goes high. We note that there is 0.2 sec 
delay in the TLC subsystem, and so the CG will cross the lane marker ideally when TLC 
has computed 0.2 sec. 
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Figure 5.2.4 : Warning and intervention indicators as vehicle drifts out of lane 



5.2.2 Performance constraints during testing 

As noted earlier, the CAPC road-departure prevention system is designed to prevent 
unintended road departures due to driver inattention. [Daytime, dry-weather test track-like 
conditions] are assumed. When the system is operated under other conditions -- such as on 
urban freeways, under difficult lighting conditions , or for severe departure conditions -- 
the performance can degrade. Below are items seen during testing which constrain the 
circumstances under which CAPC works as intended. Please note that most of these are 
well outside the bounds of the design conditions. 

System constraints: 

For best performance the system must be operated on pavement that is in reasonably good 
shape. Potholes or rough pavement jar the vehicle, resulting in spikes in analog transducer 
measurements, which in turn create erroneous jumps in the estimated TLC. The result is an 
increase in false warnings. 

We find, as predicted in simulation, that for the current decision rules there is a tradeoff 
between minimizing false warnings and succeeding in delivering a timely warning soon 
enough during severe road departure scenarios. If the TLC thresholds are too high, the 
driver experiences false alarms during the course of normal lane-keeping excursions, and 
the system is more susceptible to false warnings induced by outliers from the sensors. If 
the TLC thresholds are too low, warnings are not issued until the vehicle has traveled 
further toward the road edge. In some departure scenarios, there would not be enough 
warning for the driver to react and recover the vehicle before all four wheels would leave 
the lane. 

At very low speeds the accuracy of the vehicle dynamics models used in TLC computation 
degrades. Operation is now limited to speeds greater than 10 mlsec. At very high speeds, 
the Kalman filters used in the TLC computation are not well tuned; operation is limited to 
speeds below 50 m/s -- i.e., obviously covering the range of all legal speeds in the U.S. 

Road superelevation should not be greater than six degrees. For superelevations greater 
than about three degrees, special tuning of the Kalrnan filters used in TLC computation is 
required. Virtually all U.S. freeway mileage (in the through lanes of travel) involve 
superelevation values below three degrees. 

Road radii of curvatures should be 300 meters or more for a vehicle traveling at highway 
speeds. (This covers the Ford Michigan Proving Grounds and all U.S. interstate 
highways.) Greater curvatures can be accommodated with further tuning of the Kalrnan 
filters and with redesign of the LMS camera parameters, so that an adequate field of view is 
obtained. 

Decision tuning: If the shoulder is quite narrow, then a system designed for wide shoulders 
may allow the vehicle to leave the roadway. Conversely, if the system is designed for very 
narrow shoulders, false alarms will increase and the warning and intervention will feel a bit 
early to the driver. 

Sufficient LMS data are required to make decisions to issue warnings or to indicate when 
an intervention would occur. No new warning or intervention decision is indicated in the 



current CAPC logic unless the LMS has reported four points from the right-side lane 
marker for five or more consecutive frames. 

L MS constraints: 

The CAPC system issues warnings and indicates when interventions would occur only for 
right-side departures from the cumnt lane. This is done because the LMS does not report 
sufficient data from dashed lines for reliable TLC computation, and because the LMS 
currently does not decide whether a lane marker is dashed or solid. We note that the CAPC 
simulation tool (Section 3.7) includes logic to compute TLC only to solid lines (road 
edges), and that the LMS system currently has the ability to communicate this information. 
Accordingly, this constraint will be removed with additional development. 

The LMS initializes its operation assuming that the vehicle is traveling roughly down the 
middle of a lane. 

To avoid false alarms, the system is disabled manually at exit and entrance ramps and other 
areas where the rightside lane marker is intempted. 

Twelve-foot lanes are assumed, and the near-range search windows are steered together. 
Therefore, when operating in lanes of significantly different width, the CAPC function can 
be affected if the LMS locks onto the left-side marker. This is true because the right-side 
search windows are then centered twelve feet to the right of the left marker, and this leads 
to missing the marker entirely. The LMS contains a constant parameter for lane width, 
which can be changed by an engineer. 

When operating with traffic in, or near, the lane of travel, false alarms can be triggered by 
the LMS locking onto either the vehicle ahead or its shadow. This is because the roadway 
geometry estimation assumes that all LMS data comes from lane markers. Obviously the 
roadway geometry estimates become erroneous when nonmarker objects are captured. 

While passing beneath overpasses the LMS often loses track of where the lane marks are 
located, and the search logic reinitializes itself. 

Poor lighting conditions can also lead to false alarms or misses. In general, the LMS is 
tolerant of illumination conditions that satisfy the original design intent, but for other 
conditions the following observations have been made during field testing: 

Testing during times of significant ambient lighting variation (e.g., cumulus clouds) 
can lead to loss of lane marker tracking. The camera exposure time is automatically 
set when CAPC operation is begun, however, as lighting changes due to clouds, 
shadows, or a change in the travel direction, the exposure may be inappropriate, 
and image quality may become too poor to locate lane markers. 

Operation while traveling east within a few hours after sunrise, or while traveling 
west before sunset, does not provide adequate lighting conditions. 

Nighttime operation is not allowed with the current setup. The difficulty is that the 
required long exposure time conflicts with the existing framegrabber software. 

During rainfall, the system is usually able to find the lane markers, but more 
outliers are reported by the LMS to CAPC because of puddles, reflections, and 



decreased contrast between the roadway and the lane markers. These effects linger 
until the roadway is largely dry. 

The system operates with an increased number of false warnings in very tight curves, such 
as cloverleaf transitions. The LMS only tracks to 20 or 30rn range because the search 
window logic in the LMS is designed for test tracks or freeway geometries, and does not 
expect the tight radii. False warnings occur because the limited downrange sights, along 
with the superelevation, lead the TLC Kalman filter to believe the road to be straighter than 
it is. 



6.0 Conclusions and Recommendations 

The first phase of the CAPC project has yielded the somewhat simplified, but operating, 
prototype of a road-departure warning system. Given the interim nature of this 
achievement, we have chosen to cite various conclusions in reference to each of the 
objectives for the overall work. As such, the conclusions constitute a sort of status 
summary of the progress toward a more complete system. Likewise, the recommendations 
that accord with the current status are organized as substasks of a follow-on phase of the 
project. 

Conclusions 

1) The first objective was to monitor the location and orientation of painted road edges and 
lane delineators, so as to characterize the layout of the road ahead of the host vehicle. 
By way of conclusion, the LMS package satisfies this objective under more or less ideal 
roadway conditions. As such, the LMS serves to enable the study of the lane- 
keepinglroad-departure process in a real vehicle, at highway speeds, on real roads, and 
even in real traffic. Although a precise ground truth tool is not yet available for 
assessing the locational accuracy of the LMS subsystem, it appears that the LMS 
achieves an estimate of the immediate lateral position of the vehicle that is within a few 
inches of its true location relative to the road edge. Pitch and roll corrections have been 
seen as a necessary element for obtaining suitable road-finding performance in the far- 
field, where the assessment of road curvature is important. 

2) The second objective was to predict the path of the vehicle in near-future time. The on- 
board transducers of the vehicle's motion response and the steer-input angle appear to 
support an effective prediction of the vehicle's path. Although the system makes a static 
extrapolation from the current motion variables as if no future changes in input will 
occur, test observations suggest that a dynamic forecast (where, for example, a future 
change in the steer input would be anticipated based upon the immediate past history) is 
unlikely to add value. This expectation is based upon the observation that favorable 
TLC thresholds for warning tend to be relatively short-i.e., less than 2 seconds into the 
future. Thus, the impact of the static nature of our path projection is rather small, given 
that the application scenario is that of a drowsy or otherwise impaired driver whose most 
likely steering waveform is flat. 

3) The third objective was to develop a continuous prediction of the future time, TLC, at 
which the predicted path of the vehicle crosses beyond the outermost travel lane of the 
roadway ahead. Perhaps the largest single effort was devoted to the processing that 
yields the TLC measure. The current system provides both TLC projections and their 
uncertainty. A future stage of development will employ the uncertainty data in the 
decision making process, using a fuzzy logic controller. 

4) The fourth objective of monitoring the driver's road-keeping behavior and effecting an 
assessment of hisher road-following performance is not fully realized within the current 



project. Extensive work on the Ford Driving Simulator has yielded measurable 
differences in driver control quality associated with attention level. These differences 
should be assessable from data that can be collected on-board the vehicle. It remains to 
develop the process for characterizing driver state from real-time measurements and 
implementing this processor within the CAPC host computer. 

5) The current CAPC prototype does satisfy the fifth objective of providing an audible 
warning by which to alert the driver to a pending road-edge departure. The warning 
criteria are fully adjustable using a pull-down menu that is available on the engineer's 
console inside the vehicle. 

6) Physical implementation of a control intervention, the sixth objective, is not quite 
complete. The CAPC prototype does, however, incorporate all of the mechanical 
hardware for controlling brake pressure at the two rear wheels. Also, the "power 
electronics" module by which control solenoids would be activated has been designed. 
The intervention controller software has been developed and exercised extensively using 
the CAPC simulation tool. Simulation results show that the intervention controller will 
be able to redirect the vehicle with a level of control authority that is equivalent to one- 
degree of steer angle applied at the front wheels. The prototype system currently 
computes the basis for an intervention and signals the driver by a pulsed warning tone to 
indicate the point at which a physical redirection of the vehicle would have commenced, 
if intervention hardware were active. 

7) The seventh objective was to implement a robust decisionmaking function by which the 
occurence of false alarms and misses could be properly managed. While the current 
prototype does implement a number of features which do aid in managing decision 
errors, the complete decisionmaking module awaits the next phase. 

8) Since only a warning system is implemented, currently, the prototype system does 
satisfy the eighth objective-namely, that of retaining a level of control authority for the 
driver which exceeds that of the provided system at all times. It will remain for full- 
scale testing of the system, with its intervention system activated, to determine whether 
the brake-steer feature does indeed leave sufficient control authority for the driver's safe 
recovery from a near-departure event. 

Recommendations 

The achievements represented in the fully integrated prototype vehicle suggest that a 
basically sound approach has been developed for road-departure warning and intervention. 
Or, more precisely, the functionality of the current prototype provides an effective platform 
for examining the related issues of intervention mechanics, sensor robustness, and human 
interaction with the function. We recommend that the first phase of work be followed with 
an effort that utilizes the platform and expands the base of knowledge for implementing real 
road-departure prevention products. The following tasks are recommended: 



1) A Systems Requirements Document should be developed as an explicit statement 
of the CAPC capability to be prototyped in a next phase. 

2) Priority Improvements in System Performance should be undertaken, based 
upon a listing of candidate enhancements that has emerged from the first phase. Such 
enhancements should include: 

a) spot-refinements of the LMS package so as to improve its robustness while still 
retaining the original architecture and physical elements of this subsystem 

b) enhancements to the software for determining TLC 

c) implementation of the brake-steer intervention subsystem 

d) addition of a driver state-assessment algorithm (with associated new on-board 
measurements, as needed) 

e) addition of a fuzzy-logic module for effecting decision making based at least upon 
TLC, the uncertainty levels in TLC, the vehicle's roadway departure angle, and the 
driver 's state 

f) provision of the sensing and high level logic needed to extend the CAPC function to 
left-side road departures, as well as right-side 

3 )  Development of a Ground Truth Tool should be undertaken as a means of 
quantitative evaluation of the CAPC prototype's location-finding performance. The 
Ground Truth Tool would yield data on the precise location of the prototype vehicle, at 
10 Hz, The same tool can be implemented to premap a selected test area such as the 
Ford Proving Grounds, thereby permitting subsequent differential calculations that 
yield the reference values for vehicle location relative to the road edge lines. 
Differential GPS is an obvious candidate for this implementation. 

4 )  Evaluation of Systems Improvements would be effected by means of computer 
simulation, use of the UM and Ford driving simulators, and by full scale testing of the 
system on proving grounds (especially when the intervention function is enabled) and 
on the public highway. The Ground Truth Tool should be employed for obtaining data 
showing the levels of system performance in quantified, statistically meaningful terms. 
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8.0 Prototype Operating Instructions & 
Software Descriptions 

8.1 Safety Assessment Report 

The System 

From the viewpoint of hazard analysis, the CAPC prototype constitutes a conventional 
passenger car driven by a human operator on a paved roadway, with the companion 
assistance of an instrumentation system that couples electronically with the brake system. 
The analysis, below, is based upon the assumption that hazards that are associated with any 
of the conventional aspects of this commercially available passenger car require no special 
consideration here. Accordingly, the entire scope of any special CAPC hazards pertain to 
the system's electronic connection with the rear-wheel brakes. Insofar as this feature has 
not been implemented in the current CAPC prototype, we flatly declare that no special 
safety issues are posed by this system. In anticipation of the brake-steer implementation, 
however, this safety discussion has been prepared. 

In particular, it is recognized that inadvertent actuation of the electronically controlled 
brakes could pose a possible loss of control of the vehicle, especially in the case in which 
both rear wheels would be applied to the full-torque condition at the same time as another 
malfunction caused the antilock system to fail, thus causing a spinout. A lesser, but 
perhaps still alarming disturbance would ensue if only a single brake was inadvertently 
applied to the full-torque condition, thus inducing a temporarily curved path until the dnver 
responded with recovery steering or foot-pedal braking. 

In order to circumvent either of these modes of failure when CAPC's full functionality is 
not being tested, the future extension of the prototype system will provide a master "Brake 
Shut-Off' switch on the dashboard, with a red "Brakes Hot" alert lamp. The switch is 
wired directly into the circuit branch that applies control signals to the electronic brakes. 
By this arrangement, the state of enablement of the electronic control circuits is 
continuously displayed to the driver and the circuits can be disabled whenever the test 
driver chooses. The "Brake Shut-Off' switch is a palm-operated button that latches open 
when pressed, thus providing a panic-button functionality. 

An additional feature of the control-circuit design will provide that any application of the 
brake pedal by the test driver, thereby closing the brake lamp switch, causes the entire 
electronic brake actuation circuit to be disabled. Thus, whenever the CAPC prototype is 
being subjected to "full-function" testing, with electronic brakes enabled, any inadvertent 
brake actuation due to an electronic anomaly can be readily overridden by means of the 
natural, manual bralung reaction of the test driver. 



Aside from brake system issues, the CAPC prototype is equipped with a benign 
instrumentation package that is transparent to the driver and which presents nothing 
unusual to the driving environment. The instrument system is powered by a 110 VAC 
inverter located in the trunk of the vehicle. No possibility of electrical shock to the driver, 
from this system, exists. 

Given the provision of an electronic brake disabling switch, the means for minimizing 
hazards during our test program are procedural, as outlined below. 

All Testing 

Under all conditions of CAPC testing, use of the prototype vehicle will be under the 
supervision of the CAPC project director or a designated test engineer. No other use of the 
vehicle will be permitted. The driver of the vehicle will either be a UM or Ford employee 
authorized by the test engineer or another individual permitted to drive during 
demonstration testing, with the test engineer accompanying. 

When the future CAPC prototype is operated on a public highway, the electronic brake 
system will always be disabled. Thus, no full-function testing of CAPC on public 
highways will be done. This provision is discussed under "On-fighway Testing," below. 

Full-function testing of CAPC, with the electronic brake system active, will only be done 
on private proving grounds facilities under conditions which give satisfactory margin for 
recovery by the test driver, in the event that inadvertent actuation of the brakes should 
occur. This provision is discussed under "Proving Grounds Testing." below. 

On-High way Testing 

Whenever the CAPC prototype vehicle is to be driven on the public roadway, either for the 
purpose of collecting image data or simply driving to and from a private proving grounds 
area, the "Brake Shut-Off' switch will be engaged such that electronic brakes are disabled. 
In this mode of operation, the brake system behavior is identical to that of the unmodified, 
production version of Ford's Taurus SHO. Accordingly, hazards pertaining to inadvertent 
brake application in the public highway environment will be eliminated by a procedural 
admonition that electronics brakes never be enabled on a public roadway. 

Proving Grounds Testing 

Full-function testing of CAPC, on private proving grounds facilities, will require that the 
electronic brake system be active. Accordingly, the following procedural steps will be 
taken to ensure that no significant test hazards are posed by the possibility of inadvertent 
(or simply unanticipated) actuation of the electronic brake system: 



1) The "Brake Shut-Off' switch will be engaged (i.e., system disabled) whenever the test 
vehicle is being operated in any possibly hazardous proximity to other test vehicles 
(such as in ingressing or egressing from the test track for full-function testing.) 

2) The vehicle will only be operated in the full-function mode in test lanes which give at 
least one-lane clearance from guardrails or other fixed objects. At Dana and Ford 
Proving Grounds, the outermost lanes will not be used for CAPC testing as they lie 
adjacent to guardrails. At TACOM's track, we will not operate immediately adjacent to 
the east retaining wall. 

3) The test driver will be instructed that a simple tapping of the brake pedal will disable the 
electronic braking function, thus arresting any inadvertent or unanticipated actuation. 

4) Full-function testing will begin at lower speeds, which afford a simpler context for 
manual recovery from automatic braking interventions. Only after the driver has gained 
experience with the intended brake interventions at low speeds will speed be elevated to 
the level of highway operations. 



8.2 CAPC Prototype Vehicle System Operating Instructions 

Basic Operation 

The CAPC Prototype can function basically turn-key except for a few simple steps. The 
basic procedure is outlined below in this section. 

Step 1. Power up systems 
With vehicle parked and running, turn on inverter and AC power strip - NEVER run 
the inverter with the vehicle off. All systems but the Quadra will come on line. 
Press the power-on button on the Quadra computer keyboard. The MacDAS software 
will automatically load and begin initialization. 

Step 2. Run Controller 
select the "Controller ..." option from the bottom of the "MIO-16" menu. The data 
window will appear and signals should be displayed in the plots. 

Step 3. Zero References 
Zero references for steer, yaw, and acceleration MUST be grabbed at the start using 
the %-Z key combination. One MUST be driving straight down a level road, holding 
the steering wheel as straight as possible. It is recommended that new zeros be 
grabbed every hour or when driving conditions change significantly. 

Step 4. Go / Kill 
The CAPC function can be started and stopped using the "Go/KillU button. The 
system should only be started ("Go") when centered in a lane on a straight section of 
roadway so that the LMS can find the lane markers. The function may be killed at any 
time with the "Kill" button. 

Step 5. Finished - with the vehicle STILL RUNNING, 
Close the Controller window (via the "Done" button) and Quit MacDAS (via the 
"Quit" selection under the "File" menu). Select "Shut Down" from the "Special" 
menu under the Finder. 
Power-down the AC power strip. 
Turn off the inverter. 



Additional steps for Data Collection 
The CAPC Prototype can collect a limited amount of data during running. If it is desirable 
to collect analog and controller data, the system's calibration should be updated prior to 
beginning operation. The following steps should be inserted in the above list where 
applicable. 

Step la. Calibrate Transducers 
Place the vehicle on a level roadway and steer exactly straight ahead, with the nominal 
load in place (passengers, etc.). Sit VERY still for the calibration. 
Select 'Calibrate Cards ...I from the "MIO-16" menu. 
In the next dialog, select the 'Cal' button. 
In the last dialog, the calibration will take place and the results are displayed on the 
screen. The channel printed in italics is the one currently being calibrated. Do NOT 
move during calibration. Allow ALL channels to be calibrated. 
When the last channel is finished, select the 'Done' button at the lower right comer of 
the calibration window. 

This calibration will remain valid until another setup file is loaded or the application is 
terminated. Calibration of the LMS system should only be done by qualified 
personnel. 

Step 4a. Go / Kill / Save 
In order to save data, the 'Kill' button must be selected BEFORE 95 percent of the 
buffer is filled (via the Ok, 0% indicator), otherwise a buffer-overmn error will occur. 
Alternatively, the 'Autosave' box can be checked. 
Once Killed, the data for that run can be saved by selecting the 'Save' button. 
Selecting 'Go' again will clear the data spooler and restart data acquisition; data will 
not be saved for the previous run. 

* Data will be saved in the 'DataFiles' folder as an ERD file with the name indicated in 
the file display (0001:0), and the file number automatically incremented. 



8.3 CAPC Software Systems Manual 

8.3.1 CAPC Prototype Vehicle Integrated User/Programmerls 
Manual 

Introduction 

The CAPC prototype functionality is defined by the many subsystems and their 
interactions. The primary control logic of CAPC resides within the control loop of 
UMTRI's MacDAS data acquisition system. This software is an infrastructure for 
controllers and data acquisition, providing the control system with analog and digital YO, 
serial 110, graphics, real-time loop management, user interfaces, and standard ERD file UO. 
The MacDAS system also controls the analog rack and shields the control algorithms from 
hardware upgrades. 

The software provides a variety of menu options for working with the analog rack and 
transducers, automated calibrations, digital YO and analog outputs. [Also are options for 
sampling and channel setups.] The controller-specific portion of the system (in this case the 
controller is CAPC) provides a few simple menus and user interaction dialogs. 

The basic program layout is shown below: 
+ Data Files: 

read & write ERD data files 
initialize analog and digital sections; internal gain & offset tables 
auto-sequencing of data file numbers for easy data collection 

+ Hardware: 
complete channel setup control including gain, offset, filter frequent 
automated calibration system for input channels 
analog and digital I/O exercise capability 
automated calibration capability for analog outputs 
specialized rack interaction commands and dialogs 

+ Data Acquisition: 
automated data collection and storage 
variety of real-time graphics displays 
derived channel capability (linear combinations of other channels) 

+ Controller: 
real-time interface with MacDAS for data transfers 
hooks into MacDAS loop timing for time-dependent controllers 
hooks into MacDAS control loop for state-machines 
controllers can modify the data acquisition process in real-time 
internal data generated by controllers is collected and saved in the ERD file 

During program startup and initialization the following screen will appear: 
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Figure 8.3.1.1. CAPC / MacDAS start-up screen. 

The CAPC prototype software begins execution by loading setup files and initializing all 
hardware. This includes locating and initializing the analog rack, the LMS sensor, and the 
brake controller. Also a default channel setup for CAPC is loaded and the program placed 
in the standard Macintosh menu loop. In this mode the software is interactive, allowing 
calibrations, VO exercising, and system setup editing. The two other distinct modes of 
operation are either Data Collection or Controller. In both modes the system switches to a 
real-time graphical display and user interface. Specific data channels are displayed on the 
monitor as well as a variety of status information. The user can start and stop the operations 
and save collected data. The distinction between the two modes is that Data Collection 
simply collects the data specified in the channel setup, while Controller not only collects 
data but makes calls to the controller loop and stores any internally generated data. Details 
on these and other modes follow in the menu descriptions below. 



Software Description 

The PROGRAM folders 

There are four items in the CAPC folder required for execution of the prototype. The 
application MacDAS 2.0 contains the compiled MacDAS code and the CAPC code. The 
folder "DataFiles" is the default location to store all data files generated by MacDAS. This 
also contains the default setup file named '0000'. The folder CalFiles contains data files 
generated during calibration, and the folder "TempFiles" contains temporary dump files 
generated by the data collection system. These last two need not be of concern for the 
casual user. 
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This menu provides for loading and saving primary setup files. It also allows for the 
changing of data file numbers and termination of the program: 

Save Channel Setup 
The current channel setup (names, units, gains, offsets, calibrations, etc.) may 
be saved. ALL data in the setup is saved into an ERD header file, including 
disabled channel information. Note that the file '0000' is loaded at startup; 



saving a new setup file called '0000' to replace the old one will provide for a 
new default setup at startup. 

New Channel Setup 
The current channel setup may be overridden by another ERD file. This allows 
a previous data file to be loaded and used as the setup for current tests. 

Current File Number 
This will allow the user to change the current ERD file number. During data 
collection, data files are numbered sequentially like 0014, 0015, etc. This 
option sets the start number for the next set of data files. Valid values range 
from 1 to 9999. 

Quit 
This will terminate the application, freeing memory and serial ports. 

The Edit menu 

Undo %Z 

Cut %C 
COPY %B 
Paste %B 
Clear %B 

Preferences ... 

This menu is currently unused but included for completeness. 



The MZO-16 menu 

Init. Blue Earth 

This menu is the primary interface to the MacDAS system. It is termed 'MIO-16' since that 
is the name of the multi-function I.10 board installed for MacDAS. Each item is discussed 
below. 

Edit Chan. Setup 
The current channel setup can be modified, including names, gains, offsets, 
calibrations, etc. Details of channel editing and parameters can be found in the 
MacDAS Technical Reference. Modification is not recommended for the casual 
user. 

Sampling Setup 
The sampling rate, controller rate, buffer size, and miscellaneous parameters 
can be modified here. The impact of changing each parameter is described in 
detail in the MacDAS Technical Reference. Modification is not recommended 
for the casual user. 

Calibrate Car& 
The cards in the analog rack require periodic calibration and adjustment. When 
the system starts up the default cal information is loaded from '0000'. This 
function will recalibrate the analog cards and automatically rezero drifted 
transducers or circuitry. This function also provides a basic "health-check" on 
amplifiers and transducers. This operation should be performed whenever data 
is to be collected or if a transducer performs poorly. 

Calibrate D/As 
This function is not utilized in CAPC. 



Analog Inputs 
This function allows the user to view a range of analog input channel values. 
The raw data on the inputs is displayed as A D  units, voltage, and engineering 
units. 

Analog Outputs 
This function is not utilized in CAPC. 

Digital PO 
This allows the exercising of the digital outputs and monitoring of inputs. For 
example the warning buzzer and the intervention alert can be energized 
independently from this control panel. 

Ampl$ier Cards 
This function can be found in the MacDAS Technical Reference. 

Record New Zeros 
This function will measure the current voltage on each channel and record the 
values as a new zero for each channel. 

Restore analog 
This function can be found in the MacDAS Technical Reference. 

Init . BlueEarth 
This function can be found in the MacDAS Technical Reference. 

Data Collection 
This allows the user to collect data on the channels specified in the setup files 
(default '0000'). Data is saved in ERD files using the sequenced file number as 
a name. Details on this function can be found below under 'Operation' and in 
the MacDAS Technical Reference. 

Controller 
This allows the user to execute the embedded control function (CAPC) while 
collecting data. The controller is called as part of the timing loop, and data is 
shared between MacDAS and CAPC. Internal data generated by CAPC is saved 
by the MacDAS system as part of the normal data stream. Data is saved in ERD 
files using the sequenced file number as a name. Details on this function can be 
found below under Operational Notes below and in the MacDAS Technical 
Reference. 



The CAPC menu 

~ C R P C  I 
LMS Tools 
Brake Tools 

Brake Enabled 
Reset 

TLC Thresholds ... 

This menu is dedicated to controller-specific functions. 
LMS Tools 

This provides a valuable interface to the LMS system for initialization, 
debugging, development, and demonstration. It provides access to all defined 
communication packets, system calibration, and will exercise the LMS system 
in real-time while displaying returned lane geometry. It can also send user- 
specified pitch, roll, and velocity values to the LMS system. Details of this tool 
can be found under Operational Notes below. 

Brake Tools 
Function not currently implemented. 

Brake Enabled 
Function not currently implemented. 

Reset 
Function not currently implemented. 

TLC Thresholds 
Three parameters that determine when the warning and intervention buzzers are 
activated can be changed through this selection. A pop-up dialog box appears; 
details can be found below under Operational Notes . 



Operational Notes 

The Collect Data & Controller window 

Below is the window that appears during data collection or controller exercising. Six 
plotting windows are indicated showing a variety of signals. The amplitude of each 
parameter is plotted on the vertical axis against time on the horizontal axis. 

This window shows a number of specific functions, each of which is outlined below. 
Go /Kil l  

This is the primary control button for all system users. When selecting "Go", 
the hardware starts collecting data into a circular buffer. Also, the controller will 
receive a 'start' command and will be called in a timely manner thereafter. The 
button name will change to 'Kill'; this is to stop the controller and data 
collection and hardware clocks. Note that when in the control mode, pressing 



'Go' causes the LMS systein to receive a START packet and begin looking for 
the lane lines in the center of the image. The vehicle should be centered on a 
straight section of road at this time. 'Kill' can be issued at any time and will also 
send a STOP packet to the LMS system. 

Pause / Con?. 
This function simply halts all clocks and data acquisition cycles. This is 
intended for system level diagnostics - data channel phasing will be corrupted 
by use of this option. This is intended primarily for state-machine operation and 
is not recommended for use in the CAPC function. 

Save 
This will save the data in the spooled buffers as an ERD file. This save may 
take several seconds, depending on the size of the data file. All controller 
activity is stopped during a save and the controller must be restarted after 
completion. 

Autosave 
When checked, the system will automatically save the data buffer when it 
reaches 95 percent full. Note that the controller is automatically stopped when 
saving data. 

Done 
This will leave the data acquisition or control window. 

Matrix 
This is not implemented in the CAPC prototype 

0001:o 
This indicates the current file number that the presently acquired data will be 
saved under. The :O is an indication of spools made to the hard disk, not utilized 
by the CAPC controller. 

Ok, 0% 
This shows an estimate of the amount of data that has been collected (in kbytes) 
and the amount of buffer space being consumed (in %). 

hidden keys 
There are a number of functions that were not given buttons on the screen, 
rather they can be accessed via hidden key strokes. The table below outlines 
each function and its appropriate command-key combination. 

- 

Esc Rbort Rbort test controller D 1/0 
%C Clear Clear spool files ( 0001:N - >  0001:0 1 
%Z Zero Record zeros for steer, yaw rate,  Ry 
%I lnit Initialize collection to startup state 
8gH Reset Reset circular buffer ptrs. ( N%-> 0% ) 
%T Thresh. CRPC Threshold Pop-up Menu 



CAPC Threshold Menu 
The CAPC function uses three thresholds in deciding when to issue warnings 
or to indicate when interventions would take place. The following menu can 
only be accessed when the controller is not actively running (i.e., by quitting 
the Data Acquisition & Controller menu). The menu is accessed by choosing 
"TLC Thresholds ..." froin the CAPC menu. The user adjusts the TLC values 
at which warnings and "interventions" are triggered, as well as shifting the 
lateral location of the lane markers. Default values are embedded in the control 
code. 

TLC warning threshold 

E ~ t r a  lateral offset 



The LMS Tools window 

Below is the window for interfacing with the LMS system in a development stage. The tool 
is provided to allow high-level access to packet transmissions but provide low-level 
information on data streams. It also contains a controller simulation which can exercise the 
LMS system in real time and display and collect returned lane geometry. 

The top third is dedicated to user controls, LMS status display, and parameter adjustment 
capabilities. The middle section (Outgoing) displays the actual data in hexadecimal that was 
transmitted to the LMS system. The lower section (Incoming) displays replies from the 
LMS system as either packets (in hexadecimal) or in lane-geometry engineering units (x,y 
coordinate pairs for data points as well as lane descriptors). 
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This window shows a number of specific functions, each of which is outlined below. 
Init, Probe, Cal, ReCal, Start, Stop 

Selecting any one of these buttons will send the specified packet to the LMS 
system. Any replies may be displayed on the Incoming section. 

Tx, Rx, El Run 
These provide serial port control functions. 'Tx' will transmit a single 
pitchlrolYveloc packet to the LMS system. 'Rx' will check the Quadrats serial 



buffer to see if it has received any lane geometry. 'E' will empty the Quadra's 
buffer (allows for setting the buffer to a known state). The 'Run' button will 
begin a nominal lOHz control loop. There is no CAPC function being executed, 
but analog channels are being sampled, the LMS system is being clocked, and 
lane geometry is being prmessed and displayed on the screen. This is primarily 
a test of the communication systems and data validation. Note that holding 
down the Option key while pressing Run will cause the system to run at about 
half speed, or 5Hz (useful for debugging & testing communications). 

Pitch, Roll, Veloc 
These edit boxes allow the user to enter values for parameters to be sent to the 
LMS system using the 'Tx' button. When in 'Run' mode, these boxes display 
the actual transducer values which are being sent to the LMS system. 

Done 
This will leave the LMS Tools window. 



8.3.2. Software Flowcharts and System Interface Requirements 

MacDAS / CAPC Controller 

The CAPC prototype control code is executed under UMTRI's MacDAS real-time data 
acquisition and control system. Note in the following diagram that the CAPC function has 
been broken into two halves. The first half is responsible for interacting with the 
transducers and generating data for the controller to use. The second half deals with the 
LMS data arriving (see timing diagram following the flow chart) and the execution of the 
actual CAPC control code. 

The MacDAS system functions in esentially two distinct modes. The first is a simple 
display mode which is the default when 'Controller ...I is launched. This mode simply 
displays the values of the analog channels and any other information programmed into the 
display routine. This is Not a data collection mode, nor is the controller being executed. 
When 'Go' is selected, the real-time loop management begins by starting internal clocks 
and timers. The CAPC function itself will also be told that it is expected to begin 
functioning, allowing for initial states to be set. 

Data is sampled during this phase at will, without any interest in controlled timing. This 
allows for smooth display of information and also allows the Macintosh to 'borrow' the 
processor for other applications which may be running under the Finder. In the data 
acquisition or run mode, the timing of data is strictly controlled via hardware interrupts to 
achieve the desired sample rate; all other processes are suspended. When data is required 
for display or control, the most recently collected samples are copied from the acquisition 
buffer into the controller's variable space. 

During the running mode, the CAPC function is called at a fixed sample rate. In the case of 
CAPC the controller executes at 10H.z. Also during the run mode, the LMS system receives 
Transister-Transister Logic (TTL) signals for triggering the camera and vehicle state data 
packets. The TTL signals are synchronized to the analog data stream and the CAPC 
function calls. 

Real-time loop management for the controller is achieved using hardware timers and a 
polling approach, rather than an interrupt-based system as the analog sampling does. This 
increases the overhead but allows for the controller to overrun its alloted time limit without 
causing system failures. If the control function or other sequence times out (such as waiting 
for lane geometry) the loop manager is able to resynchronize itself without interfering with 
the control loop timing (i.e., time overruns will not accumulate). 
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Figure 8.3.2.2 MacDAS / CAPC / LMS timing diagram 

The above timing indicates the split in cycle halves for the controller. Each 50ms interval 
represents half of the alloted looms interval for the lOHz control cycle. In the first half, 
data is sampled from the buffer (fc), pitch and roll is computed (P&R) and transmitted to 
the LMS system (tx). Also at the start of the first half the LMS system beings integration of 
the video image (integ), receives the pitch and transmits the lane geometry that was 
computed (LG) in the previous cycle. 

The blocks outlined in bold lines indicate the overall path to complete one entire cycle of the 
CAPC function, including communication and computations on all platforms. 



CA PC Function Flowchart 

Figure 8.3.2.3 shows the flow of the CAPC function itself. The CAPC function is begun 
by hitting the 'Go' button in the Data Acquisition & Controller window, as described 
above. CAPC initializes itself as follows: first CAPC waits for LMS data to arrive, then 
checks whether the vehicle speed is within the allowed bounds. If it is, then an initial least 
squares fit is used to estimate roadway geometry from the first image, and this is used as 
initial conditions for the Kalman filters. 

Once initialization takes place, the system goes into a 10 Hz loop which lasts until either the 
'Kill' or 'Save' button are pressed in the Controller window. The loop consists of: 
vehicle path prediction; near-range Kalman filtering; far-range Kalman filtering; decision- 
making; and possibly activating warning and/or intervention devices. Variables are passed 
to the MacDas function for storage. Details of the code itself follow in Section 8.3.3. 
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Figure 8.3.2.3: CAPC function flowchart 



L MS N o  wchart 

The Lane-Mark Sensor (LMS) System'is a turnkey system which interfaces to the CAPC 
Controller via a serial cornrnunictions connection. The operation of the system is 
summarized in the flowchart in Figure 8.3.2.4. 

The LMS system has two distinct modes of operation. Before a START command is given 
from the CAPC controller, the system is in a wait state where no data is sent back and forth 
totfrom the CAPC controller. Once the system receives INIT and START command 
packets, it sets the exposure of the camera, A d  starts sending lane data, corrected for the 
pitch and roll of the vehicle from the CAPC controller. to the CAPC controller. [The 
timing of this transaction is driven by transitions of the Frame Clock triggers the LMS 
camera to capture an image.] This image is automatically transferred to the LMS computer, 
and upon completion of the transfer, the "Frame Ready" flag is set. It is this flag that the 
LMS code uses to send old lane geometry to the CAPC controller, and process the newly 
captured image. A detailed explanation of the communications can be found in the 
Communication Interface Specification, ERIM document #2498003, which is included as 
Appendix B. 

The LMS Processor communicates with the remainder of the CAPC system via an RS-232 
Interface. The internal timing of the LMS system is synchronized with a Frame Clock from 
the CAPC controller. A detailed explaination of the Electrical Interface can be found in the 
Lane-Mark-Sensor Mechanical & Electrical Interface Specification, ERIM document 
#2498001. This is Appendix C in this report. 
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Figure 8.3.2.4: Flowchart of LMS processing 



8.3.3. CAPC Prototype Software Code 

This section addresses the CAPC control code onboard the prototype vehicle. The CAPC 
control code is that part ,of the code which is specific to the CAPC function. It does not 
include the generic MacDas code described in previous sections, nor the LMS computer 
code, also described and listed elsewhere. The CAPC control code is limited to those 
operations which take the digitized analog transducer data and the LMS data and compute 
decisions to either activate or leave silent the warning and intervention actuators. 

In this section the code structure is reviewed, variables are identified, operations to 
compute vehicle speed, roll and pitch are presented, and finally a list describing the code 
functions is presented. A listing of the CAPC control code itself is included as an 
additional appendix. 

CA PC control code structure 

The structure of the CAPC algorithms was explained in Section 3, and the flowchart 
presented in Section 8.3.2. The core of the algorithm with its inputs and outputs is depicted 
again in Figure 8.3.3.1. 
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Figure 8.3.3.1 CAPC system lay-out. 

Variables 

The first operation done in the CAPC control code is retrieving the sensor signals from the 
A-D converter and the lane marker DSP. The analog sensor variables are denoted by: 

d-sw steering wheels angle (degrees) 
d-fw front wheel steer angle (degrees) 
defl-RF suspension deflection, right front (rnm) 
defl-LF suspension deflection, left front (rnrn) 
defl-RR suspension deflection, right rear (mm) 
defl-LR suspension deflection, left rear (rnm) 

wheelspin speed, right front ( d s )  
u-LF wheelspin speed, left front ( d s )  
u-RR wheelspin speed, right rear ( 4 s )  
u-LR wheelspin speed, left rear (mts) 
r vehicle yaw rate (degls) 
AY vehicle lateral acceleration (mls2) 

The lane marker data set is characterized by an array of x-y data points and some additional 
variables that describe the amount of points and the state of the lane lines. A distinction has 
been made between near- and far-range data. The near-range contains all data points 
between 5 and 20 m longitudinal distance in front of the vehicle and the far-range range 
extends from 20 to 100 m. The variables of interest are: 



SolidL Boolean variable (0 = dashed left lane line, 1 = solid) 
SolidR Boolean variable (0 = dashed right lane line, 1 = solid) 
n-leftN number of left lane marker points in the Near-range range 
n-rightN number of right lane marker points in the Near-range range 
LlaneN-xe[ ] array with left lane line x-coordinates in the Near-range range (m) 
LlaneN_ye[ ] array with left lane line y-coordinates in the Near-range range (m) 
RlaneN-xe[ ] array with right lane line x-coordinates in the Near-range range (m) 
RlaneN_ye[ ] array with right lane line y-coordinates in the Near-range range (m) 
n-leftF number of left lane marker points in the Far-range range 
n-rightF number of right lane marker points in the Far-range range 
LlaneF-xe[ ] array with left lane line x-coordinates in the Far-range range (m) 
LlaneF_ye[ ] array with left lane line y-coordinates in the Far-range range (m) 
RlaneF-xe[ ] array with right lane line x-coordinates in the Far-range range (m) 
RlaneF_ye[ ] array with right lane line ycoordinates in the Far-range range (m) 

The derived and output variables of the CAPC control code are given by: 
u vehicle speed (mls) 
ePitch estimated pitch angle (deg) 
eRoll estimated roll angle (deg) 
TLCi time-to-lane crossing (sec) 
sigrnaTLC time-to-lane crossing uncertainty (sec) 
P-brake command brake pressure (Pa) 
v-est estimated vehicle side-slip velocity (mls) 
r-est estimated vehicle yaw rate (deg/s) 
Y-est estimated lateral vehicle position (m) 
h-est estimated vehicle heading angle (deg) 
k-est estimated roadway curvature ( llm) 
aO-L 0th-order polynomial coefficient of left lane line (m) 
al-L 1st-order polynomial coefficient of the left lane line (llm) 
a2-L 2nd-order polynomial coefficient of the left lane line (l/m2) 
aO-R 0th-order polynomial coefficient of right lane line (m) 
al-R 1st-order polynomial coefficient of the right lane line (llm) 
a2-R 2nd-order polynomial coefficient of the right lane line (l/m2) 
warning Boolean variable for warning (0 or 1) 

Vehicle speed, roll, and pitch 

The vehicle speed has been calculated by averaging the two front wheelspin derived 
velocities. It has been chosen to ignore the rear wheel derived speeds because of the 
application of brake-steer control on the rear axle. The speed of travel reads 



The roll and pitch angle of the sprung mass has been derived from the four suspension 
deflection LVDT sensors. The LVDTs have been calibrated for the displacement in the 
wheel plane at the middle of the tire. The calibration was carried out by moving the wheels 
up and down while the sprung mass was fixed with straps to the ground. The gains and 
offsets of the sensors were calculated by measuring the output voltage of each of the 
LVDTs and regress these values by a linear 1st-order function with the measured 
displacement of the hydraulic actuator that moved the wheel. This methods takes into 
account the deflection of the suspension as well as the tire. 

The pitch angle can be determined by subtracting the front and rear suspension deflections 
(in mrn) and dividing it over the wheelbase Wb. Both left and right side LVDTs have been 
used (averaging). The pitch angle (in degrees) is given by 

f defl- LR + defl- RR defl- LF + defl- RF \ 

The roll angle (in degrees) has been derived in a similar fashion as the pitch angle and 
yields 

(defl- RF - defl- LF) a (1 + RollRatiol) + 
1.167-Twl-1000 

RR - defl- LR) . (1 + RollRatiol) 
1 .104.T~2.1000 

with 

1 ~ ~ 1 ~  .c-swl+ c-rsl 
RollRatiol = 2. 

For the roll angle a correction needs to be applied for the antiroll bars with stiffnesses c-rsl 
and c-rs2. These bars were Not activated during the calibration because both wheels of an 
axle were moved in plane up and down. Therefore the roll angle is not equal to the 
difference between the left and right suspension deflection over the trackwidth (Tw). In 
case of a roll motion, the antiroll bars will introduce an extra force in the suspension to 
resist the roll motion. Therefore the vertical tire force will be different from the situation as 
created during the LVDT calibration. The extra tire force due to the antiroll bars will result 
in an extra tire deflection and thus a different roll angle. The factors 1.167 and 1.104 are 
the gains representing the ratio between measured deflection at the sensor and measured 
deflection in the wheel plane (including tire deflections) for a pure vertical motion of the 
suspension at the front and rear axle respectively. From these numbers the vertical tire 
stiffness can be calculated quite easily and the values for the front and rear tires are given 
by 



Vehicle parameters within the CAPC control code 

The parameters of interest valid for the Ford Taurus SHO test vehicle are presented in Table 
8.3.3.1. 

Table 8.3.3.1 CAPC prototype vehicle parameters (vehic1e.h). 

Functions within the CAPC control code 

unit  

N/rad 
N/rad 
m 
m 
m 
m 
m 

kg 
kgmA2 
m 
Nlm 
Nlm 
Nmlrad 
Nmlrad 

symbo l  
C-Fa1 
C-Fa2 

a-v 
b-v 
Twl 
Tw2 
Wb 

m-V 
I-zv 
Tirewidth 
c-sw 1 
c-sw2 
c-rs 1 

A flow chart of the CAPC core code was shown in Figure 8.3.2.3. Every 100 ms one 
complete cycle is computed. The following function calls correspond with each operation 
of the flow chart: 

Get analog + L M  data: 
Function: GetLMSdata(); 

This function retrieves the LMS data from the packages as sent 
through the serial connection between the image processing PC 
and the Macintosh computer. It stores all the data points in eight 

description 
cornering stiffness of 1 front tire 
cornering stiffness of 1 rear tire 

distance CG to front axle 
distance CG to rear axle 
trackwidth of front axle 
trackwidth of rear axle 
wheelbase 
total mass of vehicle 
total yaw moment of inertia 
tire contact patch width 
front suspension spring rate at wheel 
rear suspension spring rate at wheel 

, roll stiffness, front anti-roll bar 

value 

6.376E+4 
6.643E+4 
1.073E+O 1 
1.620E+O 
1.5688+0 / 
1.521E+O 1 
2.693E+O 
1.814E+3 
3.960E+3 
2.150E-1 
3.280E+4 
2.410E+4 
8.586E+4 

c-rs2 1 roll stiffness, rear anti-roll bar 6.688E+4 



arrays (LlaneN-xe[], LlaneN_ye[], RlaneN-xe[], RlaneN_ye[], 
LlaneF-xe[], LlaneF_ye[], RlaneF-xe[] and RlaneF-xe[]). If 
the LMS doesn't send any data points the sensor is supposed to 
be nonoperational and the flag LMS-ready = false. 

Function: CheckPosition.(); 
This function checks the vehicle position on the road. In the 
prototype car the operations within this function have been 
disabled meaning that the CAPC system will operate as a lane 
keeping system rather than a road-keeping system. 

Outputs: LanePosN = 1 -+ right lane line is used for near-range, 2 + left line 
LanePos = integer number denoting the lane number 
Onshoulder = Boolean indicating that the vehicle is on the shoulder 

Initialize Kalrnan filter: 
Function: Init-KalrnanNO; 

This function initializes the near-range Kalman filter when the 
CAPC system is started up. The initial conditions of the state 
estimator are calculated from a sample of near-range lane marker 
data. The vehicle should be operated on a straight road. A first- 
order polynomial fit of the lane marker data is used to determine 
the relative lateral position and heading of the vehicle. All other 
Kalman filters states are made equal to zero. 

Function: Init-KalrnanF(30.0); 
This function initializes the far-range Kalman filter when the 
CAPC system is started up. The initial conditions of the state 
estimator are calculated from a sample of far-range lane marker 
data. The vehicle should be operated on a straight road. A first- 
order polynomial fit of the lane marker data is used to determine 
the relative lateral position and heading of the vehicle. All other 
Kalman filters states are made equal to zero. The far-range 
Kalman filter is designed only for one vehicle speed. The input 
argument represents the design speed (30 m/s in this case). A 
discretization of the state-space equations will be applied 
assuming a zero-order sample and hold scheme. 

Function: Init-Brakesteer(); 
This function initializes the brake-steer controller. Initial 
conditions are made equal to zero and the brake-steer feedback 
gains will be calculated for the current vehicle speed. 

Path Prediction: 
Function: Path-Prediction(X-pth); 

This function calculates the future trajectory of the vehicle based 
on the current speed (u), front wheel steer angle (d-fw) of the 
vehicle, measured yaw rate (r) and estimated vehicle side-slip 
velocity (v-est). A simple 2 DOF vehicle model is integrated for 
one time step each time this function is called. In total this 
function will be called n-prd times where n-prd equals the total 
prediction time (4 sec) over the simulation time step. The x-y 



coordinates and the yaw angle of the vehicle are stores in an 
array denoted by X-pth[]. Every prediction time step the values 
are copied to Xpdl[k], Y-ndl[k], P-ndl[k] were k runs from 0 
to n-prd. 

Outputs: X-ndl[k] = x-position of vehicle (m) 
f-ndl[k] = y-position of vehicle (m) 
P-ndlk] = yaw orientation of vehicle (rad) 

Kalman filter (near-rangek 
Function: KalmanFilterN(); 

This function computes the near-range Kalman filter. The inputs 
for the near-range Kalman filter are the near-range lane marker 
coordinates LlaneN-xe [I, LlaneN-ye[], RlaneN-xe [I, 
RlaneN-ye[], the front wheel steer angle (d-fw), the vehicle 
speed (u) and an estimate of the command brake pressure during 
interventions (P-brake). Depending on the vehicle position 
within the lane line (LanePosN), either the left or right line 
markers are used for the near-range Kalman filter. First the 
Kalman filter feedback gains are calculated using the current 
vehicle speed and then the Kalman filter differential equations 
are solved using a 2nd-order Runge-Kutta method with a fixed 
time step. The estimated states after integration are stores in an 
array denoted by Xkf_near[ 1; 

Outputs: Xkf_near[O] = estimated side-slip velocity (m/s) 
Xkf_near[l] = estimated yaw rate (radJs) 
Xkf_near[2] = estimated relative lateral position (m) 
Xkf_near[3] = estimated heading angle mu 
Xkf_near[4] = estimated roadway curvature (llm) 

Kalman filter (far-rangel: 
Function: KalmanFilterFO; 

This function computes the far-range Kalman filter. The inputs 
for the far-range Kalman filter are the far-range lane marker 
coordinates RlaneF-xe[], RlaneF-ye[], the estimated vehicle 
side-slip velocity from the near-range Kalman filter (v-est) and 
the measured yaw rate (r). The far-range Kalman filter is 
represented in the discrete-time domain and integration of the 
dynamics corresponds with a recursive matrix manipulation. The 
estimated states are stores in an array denoted by Xkf_far[]. This 
array contains information for a right lane only. The Kalman 
filter states are used to compose the coefficients of a 2nd-order 
polynomial expression of the left and right lane lines. The two 
arrays containing the polynomial coefficients are denoted by 
LlaneF-pol[] and RlaneF-pol[]. The left lane line is constructed 
by shifting the right lane line one lane width to the right. 

Outputs: Xkf_far[O] = estimated relative lateral position (m) 
Xkf_far[l] = estimated - heading angle (rad) 
Xkf_far[2] = estimated 112 curvature (llm) 



coordinates and the yaw angle of the vehicle are stores in an 
array denoted by X-pth[]. Every prediction time step the values 
are copied to X-ndlk], Y-ndl[k], P-ndl[k] were k runs from 0 
to n-prd. 

Outputs: X-ndl[k] = x-position of vehicle (m) 
Y-ndlk] = y-position of vehicle (m) 
P-ndlk] = yaw orientation of vehicle (rad) 

Kalman filter (near-ranee): 
Function: KalmanFilterNO; 

This function computes the near-range Kalman filter. The inputs 
for the near-range Kalman filter are the near-range lane marker 
coordinates LlaneN-xe[], LlaneN-ye[], RlaneN-xe[], 
RlaneN-ye[], the front wheel steer angle (d-fw), the vehicle 
speed (u) and an estimate of the command brake pressure during 
interventions (P-brake)., Depending on the vehicle position 
within the lane line (LanePosN), either the left or right line 
markers are used for the near-range Kalman filter. First the 
Kalman filter feedback gains are calculated using the current 
vehicle speed and then the Kalman filter differential equations 
are solved using a 2nd-order Runge-Kutta method with a fixed 
time step. The estimated states after integration are stores in an 
array denoted by Xkf_near[ 1; 

Outputs: Xkf_near[O] = estimated side-slip velocity (m/s> 
Xkf_near[l] = estimated yaw rate (radls) 
Xkf_near[2] = estimated relative lateral position (m) 
Xkf_near[3] = estimated heading angle (rad) 
Xkf_near[4] = estimated roadway curvature (llm) 

Kalman filter (far-range): 
Function: KalmanFilterF(); 

This function computes the far-range Kalman filter, The inputs 
for the far-range Kalman filter are the far-range lane marker 
coordinates RlaneF-xe[], RlaneF-ye[], the estimated vehicle 
side-slip velocity from the near-range Kalman filter (v-est) and 
the measured yaw rate (r). The far-range Kalman filter is 
represented in the discrete-time domain and integration of the 
dynamics corresponds with a recursive matrix manipulation. The 
estimated states are stores in an array denoted by Xkf_far[]. This 
array contains information for a right lane only. The Kalman 
filter states are used to compose the coefficients of a 2nd-order 
polynomial expression of the left and right lane lines. The two 
arrays containing the polynomial coefficients are denoted by 
LlaneF-pol[] and RlaneF-pol[]. The left lane line is constructed 
by shifting the right lane line one lane width to the right. 

Outputs: Xkf_far[O] = estimated relative lateral position (m> 
Xkf_far[l] = estimated - heading angle (rad) 
Xkf_far[2] = estimated 112 curvature (llm) 



LlaneF-pol[O] = 2nd-order coefficient, left lane line 
LlaneF-pol[l] = 1st-order coefficient, left lane line 
LlaneF_pol[2] = 0th-order coefficient, left lane line 
RlaneF-pol[O] = 2nd-order coefficient, right lane line 
RlaneF-pol[l] = 1st-order coefficient, right lane line 
RlaneF_pol[2] = 0th-order coefficient, right lane line 

T L C  calculation: 
Function: Calculate-TLC(); 

This function computes the time-to-lane crossing (TLC) by 
calculating the point of intersection between the perceived lane 
lines and the future vehicle trajectory. Both left and right lane 
lines are checked for intersections. If a lane line is marked as a 
dashed line, No TLC value will be determined for that specific 
line. If a TLC occurs within the maximum path prediction time 
(4 sec) a Boolean variable Cross-L or Cross-R will denote 
whether the intersection took place on the left or right side. 

Outputs: TLC = TLC value (sec) 
Cross-L = true + road departure on the left side 
Cross-R = true + road departure on the right side 

Decision making: 
Function: CAPC-Supervisor(); 

This function determines when to issue a warning and when to 
intervene. The major inputs are the TLC value and the lateral 
position of the vehicle with respect to the road surface. Two 
buzzers will be activated, one for warning and one for 
intervention. 

Outputs: Warn-on = true + issue warning 
Brake-on = true intervene 

Brake-Steer control: 
Function: Brakesteer() ;  

This function computes the brake command pressure for the two 
rear wheel brakes in case of an intervention. The brake-steer 
controller is based on a combination of a feed-forward (using the 
front wheel steer angle and roadway curvature) and a feedback 
of all the near-range Kalman filter states (except for the 
curvature). The output of the brake-steer controller is at the 
command brake pressure denoted by P-brake. If P-brake > 0 
then the right rear command brake pressure Pa-2R = P-brake, if 
P-brake c 0 then the left rear command brake pressure Pa-2L = 
P-brake. Both front axle brakes are not used (Pa-lL = Pa-lR = 
0). A 200 ms prediction of the Kalman filter states will be used 
in order to overcome stability problems while closing the loop 
due to the latency. The predicted Kalman filter states are stored 
in the array denoted by Xkf-pred[]. 

Outputs: Pa-lL = command pressure Left Front 
Pa-lR = command pressure Right Front 



8.3.4. CAPC Simulation Tool code 

The CAPC simulation tool was described in detail in Section 3.7. The code was developed 
on an Apple Macintosh Quadra 800 and consists of about 90,000 lines of C-code. A listing 
is available upon request. The following C-code files are necessary in order to run the 
CAPC simulation tool on a Macintosh equipped with a floating point unit: 

main menu.c: 
Function: 

Function: 

Function: 

Function: 

Function: 

Function: 

Function: 

Function: 
Function: 

Function: 

Function: 

Function: 

Function: 

Function: 

Function: 

LoadMenusO; 
This function inserts the menus in the menu bar. 

ToggleMenuCheck(); 
This function toggles a selected menu on or off. 

SetMenuCheckO; 
This function sets a menu check. 

ToggleDefaults(); 
This function toggles the defaults. 

HandleMenuToggleO; 
This function handles selecting the menu toggles. 

EventLoopO; 
This function contains the event loop. 

HandleEvent 0; 
This function handles the event in case a mouse button has been 
pushed or a key has been touched. 

IsAppWindow(); 
DoMenuO; 

This function is a part of the menu selection. 
DoMenuSelect(); 

This function selects the menu items. 
DoKeyDownO; 

This function handles a key-down event. 
DoMouseEvent(); 

This function handles a mouse event. 
DoAppleMenu(); 

This function handles to "Apple" menu. 
HiliteButtonO; 

This function hilites a button in a dialog. 
CenterDialogO; 

This function centers a dialog on the screen. 

main graphics.~: 
Function: Init-ToolBox(); 

This function initializes the graphical toolbox. 
Function: Determinescreeno; 



Function: 

Function: 

Function: 

Function: 

Function: 

Function: 

Function: 

Function: 

Function: 

Function: 

Function: 

Function: 

Function: 

Function: 

Function: 

Function: 

This function determines the type of monitor the user is using. 
The screen resolution and colors will be set here too. 

DrawBackGroundO; 
This function paints the background of the screen. 

InitAnimWindow(); 
This function initializes the four animatio~l windows. 

InitDrivSimWindow(); 
This function initializes the driving simulator window. 

Drawcar(); 
This function draws a top-view of the CAPC car. 

DrawTireForcesO; 
This function draws the magnitude of the tire longitudinal and 
lateral forces as vectors at each wheel. 

DrawRoadO; 
This function draws a top-view road and paints it black. 

DrawMarkersO; 
This function draws the white lane markers on the road. 

DrawMarkers-est(); 
This function draws the estimated position derived from the 
imaging system of the lane markers on top of the white lane 
markers. 

DrawNudleO; 
This function draws a top-view of the predicted vehicle 
trajectory. 

DrawRulerO; 
This function draws a top-view of the ruler with a length of 100 
meters and tick-marks at 10-meter intervals. 

DrawNearFieldRangeO; 
This function draws a projection of the range of the near-range 
camera on the road surface. 

DrawFarFieldRangeO; 
This function draws a projection of the range of the far-range 
camera on the road surface. 

ShowNearFieldScreen(); 
This function paints the perceived image as seen through the 
near-range camera. 

S howFarFieldScreen(); 
This function paints the perceived image as seen through the far- 
range camera. 

DrawAnimScreenlO; 
This function draws a top view of the car on the road with the 
magnitude of the tire forces as vectors. 

DrawAnimScreen20; 
This function draws a top view of the car on the road. The 
predicted vehicle path (yellow) and the perceived lane markers 



(purple) are also shown. The perceived roadway geometry as a 
result of Kalman filtering is shown as a blue line. 

Function: DrawTestScreenO; 
This function draws a top view of the car on the road with the 
magnitude ,of the tire forces as vectors in the post-processing 
mode of the CAPC simulation tool. 

Function: ShowSimulatorScreen(); 
This function draws the entire scenery as seen through the eyes 
of the human driver in the CAPC driving simulator mode. 

Function: MakeHoodO; 
This function determines the shape of the hood of the vehicle as 
seen in through the lane marker sensors. 

Function: MakeArrowO; 
This function determines the shape and size of the arrow as used 
as warning signals in the driving simulator mode. 

Function: MakeBrakeMeterO; 
This function determines the shape and size of the brake 
pressure indicator as used in the dnving simulator mode. 

Function: Makecar();  
This function determines the shape and size of the car (Ford 
Taurus). 

main fi1eIO.c: 
Function: PrepareERDfile(); 

This function prepares the header of the ERD output file. 
Function: Savesetup();  

This function save the setup file (*.STP) that contains all the 
model and simulation related parameters. 

Function: ScanParrnFile(); 
This function reads one line if the setup parameter file. 

Function: OpenSetup(); 
This function opens the dialog for the setup parameter file. 

Function: Loadsetup(); 
Thls function loads the data from the setup file. 

d i a l o ~  ab0ut.c: 
Function: DoAboutDialog(); 

This function displays the "Apple about" dialog. 

dialog  driver.^: 
Function: DriverSParmSetDlg(); 

This function handles the parameter dialog of the simple preview 
driver model. 

Function: DriverOParmSetDlg(); 



This function handles the parameter dialog of the optimal 
preview driver model. 

Function: DriverMParmSetDlgO; 
This function handles the parameter dialog of the mouse driver . 

dialog ~ a t h . c :  
Function: PathPredParmSetDlg(); 

This function handles the parameter dialog of the vehicle path 
prediction. 

d i a l o ~  sens0r.c: 
Function: SensNearParmSetDlg(); 

This function handles the .dialog of the parameters related to the 
near-range camera. 

Function: SensFarParmSetDlg(); 
This function handles the dialog of the parameters related to the 
far-range camera. 

dialog simu1ation.c: 
Function: ScenarioParmSetDlg(); 

This function handles the parameters related to the scenarios. 
Function: TimeSetDlgO; 

This function handles the parameters related to simulation 
timing. 

Function: ElevationParmSetDlg(); 
This function handles the parameters related to roadway grade 
and superelevation. 

r Function: ChangeCheckBox(); 
This function handles toggling check boxes on or off. 

Function: OutPutSetDlg(); 
This function handles the selection of output channels of the 
ERD file. 

Function: DefaultERDoutput(); 
This function toggles the default ERD output channels. 

dialog wind.c: 
Function: WindContinueParmSetDlg(); 

This function handles the parameters related to the continuous 
wind speeds in 3 directions. 

Function: WindGustParmSetDlg(); 
This function handles the parameters related to the side wind 
gust. 

Function: WindRandomParmSetDlg(); 



This function handles the parameters related to the random side 
wind. 

Function: WindGustRandParmSetDIg(); 
This function handles the parameters related to a combination of 
a side wind gust with randomly distributed wind speeds. 

dialog ABS.c: 
Function: ABSParmSetDlgO; 

This function handles the parameters related to the brake system 
and antilock brake system dynamics. 

d i a l o ~  BrakeSteer .~ :  
Function: BrakeSteerParmSetDlg(); 

This function handles the parameters related to the brake-steer 
controller. 

dialog Dr iverSta tus .~ :  
Function: DriverStatusParmSetDlg(); 

This function handles the parameters related to the driver status 
assessment. 

dialog s u ~ e r v i s o r . ~ :  
Function: SupervisorParmSetDlg(); 

This function handles the parameters related to the decision 
making module. 

dialog tire.c: 
Function: TireParmSetDlgO; 

This function handles the road friction adjustment. 

dialog vehic1e.c: 
Function: VehicleParrnSetDlg(); 

This function handles the basic parameters (such as mass, 
moments of inertia, wheelbase, speed, etc.) related to the 
vehicle. 

Function: SuspensionParmSetDlg(); 
This function handles the parameter adjustment of the 
suspension properties (springsldampers). 

Function: SuspensionParmGeolSetDlg(); 
This function handles the parameter adjustment of the front 
suspension geometry. 

Function: SuspensionParmGeo2SetDlg(); 



This function handles the parameter adjustment of the rear 
suspension geometry. 

Function: AeroParmSetDlg(); 
This function handles the parameter changes related to the 
aerodynamic vehicle properties. 

Function: CruiseControlParmSetDlg(); 
This function handles the parameter changes related to the cruise 
control. 

initia1ization.c: 
Function: 

Function: 

Function: 

Function: 

Function: 

Function: 

Function: 

Init-System(); 
This function initializes all the parameters (model and simulation 
related) of interest for the CAPC simulation Tool. It is called 
only once during start-up. 

Reset-System(); 
This function resets all counters and state variables. 

Init-DrivSimO; 
This function initializes the driving simulator mode. 

Init-Vehicle(); 
This function initializes all the vehicle-model-related parameters 
and computed derived variables. 

Init-Road(); 
This function initializes all the road model parameters. 

Init-Driver(); 
This function initializes all the driver model parameters. 

Init-Scenarioso; 
This function initializes all the scenario related parameters. 

measure.c: 
Function: GetMeasurementsO; 

This function copies all analog and image related data such that 
they are delayed one time step. 

 simulation.^: 
Function: Handlesimulate() ;  

This function handles the CAPC simulation loop. 
Function: DrivSimulate(): 

This function handles the driving simulation mode. It contains 
all the function calls to be carried out in one simulation cycle. 

Function: Simulate();  
This function handles the ordinary simulation mode. It contains 
all the function calls to be carried out in one simulation cycle. 

Function: System-Equationso; 
This function contains all the equations of motion of the entire 
CAPC system which need to be integrated in the time domain. 



model 7dof.c: 
Function: Vehicle7_Equations(); 

This function contains the equations of motion of the 7 DOF 
vehicle model. 

model 8dof.c: 
Function: Vehicles-Equationso; 

This function contains the equations of motion of the 8 DOF 
vehicle model. 

model 14dof.c: 
Function: Vehiclel4-Equations(); 

This function contains the equations of motion of the 14 DOF 
vehicle model. 

model abs.c: 
Function: 

model  cruise.^: 
Function: 

model tire.c: 
Function: 

Function: 

Function: 

Function: 

Function: 

Function: 

Function: 

ABSmod-Equationso; 
This function contains the equations of motion of the ABS 
dynamics model. 

Cruisecontrol(); 
This function described the cruise control dynamics. 

Magic-Ftx(); 
This function contains the equations of the Magic Formula for 
pure longitudinal bralung or traction tire slip forces. 

Magic-Fty 0; 
This function contains the equations of the Magic Formula for 
pure lateral tire slip forces. 

Magic-Mtz(); 
This function contains the equations of the Magic Formula for 
the aligning torque. 

TireCFaO; 
This function determines the tire slip forces as a function of 
constant slip stiffnesses. 

TireCFa-Fz(); 
This function determines the tire slip forces as a function of tire 
load (Fz) dependent slip stiffnesses. 

Magic-table(); 
This function calculates the tire slip forces based on a table look- 
up version of the Magic Formula. 

MakeMagicTablesO; 
This function fills a table (side force versus slip angle, brake 
force versus slip) based on the Magic Formula equations. 



Function: Magic-Simple(); 
This function determines the tire slip forces (pure slip) based on 
the Magic Formula. 

Function: Magic-Tire(); 
This function determines the tire slip forces (combined slip) 
based on the Magic Formula. 

model  driver.^: 
Function: DriveSMod-Equations(); 

This function contains the differential equations of the simple 
preview driver model. 

Function: DriveOMod-Equationso; 
This function contains the differential equations of the optimal 
preview driver model. 

Function: CalcPathDevO; 
This function calculates the path deviation for the simple preview 
model. 

Function: Drivervehicle-Equationso; 
This function contains the equations of motion of a simple 2 
DOF vehicle model. 

Function: TransDriverO; 
This function calculates the transition matrix for the optimal 
preview driver model. 

Function: Steer(); 
This function determines the steering wheel angle for the optimal 
preview driver model. 

model path.c: 
Function: Path-Prediction(); 

This function contains the integration routine for the path 
prediction based on a Runge-Kutta second-order integration. 

Function: PathPred2_Equations();  
This function contains the equations of motion of a 2 DOF 
vehicle model (lateral and yaw) as used for prediction of the 
future vehicle trajectory. 

Function: PathPred3_Equations();  
This function contains the equations of motion of a 3 DOF 
vehicle model (lateral, yaw, and roll) as used for prediction of 
the future vehicle trajectory. 

Function: Fastpath-Prediction(); 
This function contains the equations of motion of a 2 DOF 
vehcle model (lateral and yaw) and an integration routine based 



on a fust-order Euler method as used for the prediction of the 
future vehicle trajectory in the driving simulator mode. 

model r0ad.c: 
Function: Makestraight(); 

This function contains the code to make a straight piece of road. 
Function: Makecurve(); 

This function contains the code to make a curved piece of road 
with a given radius, superelevation and spiral constants. 

Function: MakeRoad(); 
This function determines the geometry and road roughness 
profiles of several hard-coded test tracks which are available in 
the CAPC simulation code. The road roughnesses are read from 
an ERD file which contains information about two tracks. 

Function: Elevat(); 
This function determines the road elevations at a point on the 
vehicle with given local coordinates. 

Function: UnevenRoadO; 
This function determines the 4 road elevations at each wheel of 
the vehicle. 

model wind.c: 
Function: AeroForces(); 

This function determines the 3 aerodynamic forces and 3 
moments acting on the vehicle body given the wind speeds and 
aerodynamic coefficients of the car. 

CAPC BrakeSteer.~: 
Function: Brakesteer(); 

This function determines the brake force at each wheel in case an 
intervention is commanded from the CAPC decision making 
module. 

Function: Get-BSgainsO; 
This function determines the brake-steer feedback gains as a 
function of the vehicle speed 

Function: Init-Brakesteer(); 
This function initializes the brake-steer controller. 

CAPC FarFie1d.c: 
Function: PolyShiftFit(); 

This function contains a least square polynomial fit routine. The 
origin of the data set has been shifted such that numerical ill- 
conditioning is avoided. 

Function: RecordFarFieldO; 



This function records the far-range image. 
Function: GetXY coordsF();  

Thls function abstracts the x-y lane marker coordinates from the 
far-range image. 

Function: FitLaneGeoF();  
This function fits the far-range lane marker coordinates with a 
polynomial function. 

Function: RecordPost();  
This function records the posts along the road in the driving 
simulator mode. 

CAPC NearFie1d.c: 
Function: RecordNearFieldO; 

T h ~ s  function records the near-range image. 
Function: GetXY coordsN();  

This function abstracts the x-y lane marker coordinates from the 
near-range image. 

Function: FitLaneGeoNO; 
This function fits the near-range lane marker coordinates with a 
polynomial function. 

CAPC Rol1Pitch.c: 
Function: EstimateRollPitch(); 

This function estimates the roll and pitch angle of the vehicle 
based on suspension deflection measurements. 

CAPC TLC.c: 
Function: Calculate-eTLC(); 

This function computes the time-to-lane crossing based on a 
perceived (estimated) roadway geometry. 

Function: Calculate-TLC(); 
This function computes the time-to-lane crossing based on the 
true known roadway geometry as available from the roadway 
geometry model withln the simulation. 

Function: Uncertainty-TLC(); 
This function computes the time-to-lane crossing uncertainty in 
case polynomial fits are used for the roadway geometry 
characterization. 

Function: UncertaintyKF-TLC(); 
This function computes the time-to-lane crossing uncertainty in 
case a Kalman filter is used for the roadway geometry 
characterization. 

CAPC Dr ive rS ta tus .~ :  



Function: rMean(); 
This function computes a recursive mean. 

Function: rVar(); 
This function computes a recursive variance. 

Function: ds-perclos() ; 
This function combines the regression function for the driver 
status assessment. 

Function: Init-Driverstate(); 
This function initializes the driver status assessment. 

Function: GetDriverStateO; 
This function determines the driver status assessment quantities. 

CAPC initia1ize.c: 
Function: Init-ABS-model(); 

This function initializes the ABS brake-steer model. 
Function: Init-RoPi-Estimation(); 

This function initializes the rolVpitch estimation routine. 
Function: Init-Path-Prediction(); 

This function initializes the path prediction. 
Function: Init-Lane-Sensor(); 

This function initializes the lane marker sensors. 

CAPC KalmanF CF.c: 
Function: KalmanFilterFO; 

This function computes the far-range Kalman filter. 
Function: EvalLeftFO; 

This function evaluates the y-coordinate of a left far-range lane 
markers at a given x-position. 

Function: EvalRightFO; 
This function evaluates the y-coordinate of a right far-range lane 
markers at a given x-position. 

Function: EvalRightNO; 
This function evaluates the y-coordinate of a right near-range 
lane markers at a given x-position. 

Function: Get-KFinputF(); 
This function determines the Kalman filter lane marker 
coordinate inputs. 

Function: Init-stateKalrnanF0; 
This function finds the initial conditions of the Kalman filter 
states. 

Function: Init-KalmanFO; 
This function initializes the far-range Kalman filter. 

*Function: C2D(); 
This function computes the discrete-time representation of a 
continuous-time state-space representation. 



CAPC Ka1manN.c: 
Function: fake-KalmanFilterNO; 

This function fakes a Kalman filter in case an LQ brake-steer 
controller is used without a near-range Kalman filter. 

Function: KF-equationsN0; 
This function contains the differential equations of the near- 
range Kalman filter. 

Function: KalmanFilterNO; 
This function computes the near-range Kalman filter states. 

Function: CheckPosition(); 
This function determines the vehicle position on the road using 
variables obtained through the imaging system. 

Function: Get-KFinputNO; 
This function determines the Kalman filter lane marker 
coordinate inputs. 

Function: Get-KFgainsNO; 
This function determines the Kalman filter feedback gains as a 
function of the vehicle speed. 

Function: Init-stateKalmanN0; 
This function finds the initial conditions of the Kalman filter 
states. 

Function: Init-KalmanNO; 
This function initializes the near-range Kalman filter. 

CAPC  supervisor.^: 
Function: CAPC-Supervisor(); 

This function contains the CAPC decision-making module. 

model 2dof.c: 
Function: Vehicle2_Equations(); 

This function contains the equations of motion of a 2 DOF 
vehicle model. 

t e s t i n g . ~ :  
Function: GoTestingO; 

This function contains one cycle of the post-processing mode 
simulation loop. 

Function: ReadERDfileO; 
This function reads the binary (floating-point) ERD file obtained 
from the CAPC prototype vehicle. 

Function: Init-PostSim(); 
This function initializes the CAPC post-processor mode. 



8.3.4 Lane-Mark-Sensor Software Code 

Appendix E is a code listing of the control software used in the LMS Processor. This 
program was written in Forth, using Polyforth Inc's pF32-386IpMSD Forth for the Intel 
386t processors. 



8.4 Drawings 

The following pages include three sets of drawings. Section 4 refers to these drawings; 
revisit that section to put these drawings in context. The schematics are: 

Brake-steer pressure servo design (incomplete): 
- pressure transducer signal conditioning 
- power supply 
- communications to BlueEarth microcontroller 
- interface wiring 

Design of signal conditioning converters for the LVDTs and the wheel speed 
sensors 

Transducer cable diagrams 
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Transducer Cables (continued) 
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The different sub-systems of a lane departure avoidance system have been combined on a 
simulation level in the CAPC (Crewman's Associate for Path Control) simulation tool. The 
simulation tool is a modular concept wrinen in C-language and is running on a Macintosh 
computer. The main objective of the tool is tocombine the subsystems to one total lane departure 
avoidance system and to study the performance and interaction among the different modules. The 
seven major parts of the CAPC simulation tool are: the vehicle, the lane marker recording and 
processing, the estimation of the future trajectory of the vehicle, the time-to-lane crossing 
calculation, the brake-steer controller, the driver status assessment and the CAPC supervisory 
controller. 

The core of the simulation is the vehicle. While driving on the road the vehicle is subjected to all 
kinds of external inputs like for example steering wheel rotation, road unevennesses and wind. The 
CAPC simulation tools offers a variety of vehicle models, each designed for a specific application. 
The most extensive model contains 14 degrees of freedom (DOFS). The sprung mass is able to 
move in 3 directions (longitudinal, lateral and vertical) and to rotate about 3 axes (roll, pitch and 
yaw). Each wheel suspension has one DOF with respect to the vehicle body and the rotation of a 
wheel also accounts for one N F .  This 14 DOF model is the most extensive vehicle dynamics 
model available in the CAPC simulation tool and contains all the major DOFs necessary the 
described the motions of the vehicle of interest for the CAPC application. Two simplified models 
being a 7 and a 8 DOF vehicle model are also available. The models are simplified with respect to 
the wheel suspensions. The 7 DOF model doesn't contain suspensions (and can therefore only 
describe the longitudinal, lateral and yaw motion of the vehicle) and the 8 DOF model adds the roll 
motion of the sprung mass to the 7 DOF model. The simplified models are more computational 
efficient but less accurate than the 14 DOF model. 

The tire plays a crucial role in vehicle dynamics. It accomplishes essentially three basic functions: 
( 1 )  support the vehicle weight, cushioning road irregularities, (2) develop lateral forces for 
cornering, (3) develop longitudinal forces for accelerating and braking. Several tire models are 
available in the CAPC simulation tool. The most extensive model is based on an empirical model 
known under the name Magic Formula tire model. It can describe the tire slip force for a large 
range of load and slip quantities. Furthermore, it offers the possibility to treat the case of combined 
slip (cornering and braking or accelerating at the same time). The less extensive models are all 
based on the Magic Formula but contain certain simplification in order to speed up the simulation 
time. 

The CAPC simulation vehicle can be operated on various roadway types with different geometries 
and unevennesses. Besides an oval test track also a straight road, a winding road and a skid pad 
have been pre-programmed. The geometry can be extended with grades and superelevations. 
Furthermore, several data sets of different artificially generated road unevenness profiles are 
available. The road friction coefficient can be changed too. 

Most of the maneuvers done with the simulation vehicle will be carried out by a dnver. Two driver 
models are available in the CAPC simulation tool. The simple driver model is characterized by a 
preview model that looks at a single point in front of the vehicle. The other option is a more 
elaborate optimal preview model that minimizes the tracking error at several points in front of the 
vehicle. 

The CAPC vehicle will be equipped with two vision systems: one for the near-field range and one 
for the far-field area. Both cameras are modeled in the CAPC simulation tool. The image of the 
camera can be determined by applying several coordinate transformations to the known roadway 
geometry in front of the vehicle assuming a flat earth model. The hardware specifications being the 



camera's CCD chip size and resolution have been modeled too. Furthermore, the position of the 
cameras on the vehicle, the orientation and the update frequency can be chosen arbitrary. 

The following subsystems are available in the CAPC simulation tool: 
+ Vehicle Models: 

7 DOF flat vehicle model: longitudinal, lateral, yaw and 4 wheel rotational DOFs 
8 DOF yawlroll mdel :  7 DOF model + roll DOF 

14 DOF full vehlcle model: 6 DOFs for the vehicle body, 1 DOF for each axle and 4 
wheel rotational DOFs. 

+ Tire Iliodels: 
Steady-state (different road friction coefficients possible): 

* Cornering stiffness as a function of vertical tire load 

* Magic Formula (pure slip, combined slip) 

Transient: first-order relaxation system (tire load dependent). 

4 Anti-Lock Brake System Model: 
First-order lag system with brake pressure saturation. 

4 Driver Model: 
Simple preview model with dnver limitations (time lag). 

UMTRI's optimal preview driver model. 

4 Cruise-Control (set, resume, accelerate) 

+ Far-Field Camera determining the future roadway geometry. 

4 Near-Field Camera determining the heading angle and lateral deviation. 
+ Path Prediction based on: 

2 DOF linear flat vehicle model (lateral and yaw DOF). 

* Linear tires, fixed cornering stiffnesses 
* Non-linear tires, cornering stiffnesses as a function of vertical tire load 

3 DOF linear yawlroll vehicle model (lateral, roll and yaw DOF). 

* Linear wed, fixed cornering stiffnesses 
* Non-linear tires, cornering stiffnesses as a function of vertical tire load 

+ Lane Margin Calculation: time-to-lane crossing. 

+ Driver Status assessment based on vehicle states and steering wheel activation. 

+ Brake-Steer Controller based on LQ feedback of the lateral deviation, heading angle, 
side slip velocity and yaw rate. 

4 CAPC Supervisory Controller based on driver status and time-to-lane crossing. 
+ Roll & Pitch angle estimation based on measured suspension deflections. 

+ Road Unevennesses collected from empirical road models. 
+ Roadway Geometry: straight lines, curves w Iwlo superelevations and/or slopes. 
+ Wind Disturbances: constant wind, crosswind gust, random crosswind. 
+ Real-Time Driving Simulator : 



8 DOF yawlroll model including wheelspin DOF, Magic Formula tires, cruise control, 
path-prediction, lane margin calculation, warnings and intervention. 

The CAPC simulation tool is a modular concept written in C-language. The simulation tool is menu 
dnven and is supported by various animations. The user is able to modify all important model 
parameters using pull-down menus and dialogs. The simulations are supported by graphical and 
numerical outputs. The graphical animation shows the vehicle from a top view including the 
roadway geometry, predicted future trajectory and perceived roadway geometry. The scenery of 
the roadway as recorded by both vision systems is also displayed during the animation. Figure 1 
gives an impression of the animation. 

S rite Model Stmulatlon Dtsturbanrer Roadway Controllers Scenarios Window 

I I 
Figure 1. CAPC simulation. 

The numerical output contains all important states of the vehicle, roadway geometry, disturbances, 
vision system outputs and CAPC control in- and outputs. The data is stored in an ERD format and 
can be displayed by a separate public domain engineering plotter. It is also possible to look at the 
simulation in progress (real-time) from the point of view of the driver. 

The CAPC simulation tool offers the possibility to study the interactions among the various lane 
keeping subsystems. For example, the influence of external disturbances like road unevennesses 
and wind on the determination of the perceived roadway geometry has been studied using the 
CAPC simulation tool. Since the vision system is mounted rigidly on the coach of the vehicle, the 
motion of the vehicle will affect the estimates of the lane marker locations due to heave, roll and 
pitch motions of the sprung mass. The image of the vision system can be stabilized successfully 
for the low frequency vehicle motions using suspension deflection sensor. 

The simulation tool has played a significant role as the CAPC system grew to its final (hardware) 
design. A priory to the tests on the proving ground, control strategies have been implemented in 
the simulation tool to verify their efficiency and stability. The final controller and the CAPC 



simulation code have both been written in C-language. The ability to exchange code has simplified 
and shortened the implementation phase significantly. 
When starting up the CAPC simulation tool the following screen will appear: 

Driving Sirnuletor 

Written by Paul J.m. Uenhouens 

Figure 2. CAPC start-up screen. 

The simulation tool offers three modes of operation. The first mode is the Simulation mode that 
includes all the features of the lane departure avoidance system. The second mode is a real-time 
driving simulator mode and it is a down-scaled version of the ordinary simulation mode. Some 
items have been disabled (such as the 14 DOF vehicle model) because of the computational burden. 
The driving simulator mode offers an animated view of the vehicle and roadway as seen through 
the eyes of the driver. The third mode is a post-processor option that allows the user to input 
measured steering wheel angle and vehicle speed from the prototype car directly into the 
simulation. The input file needs to be an ERD binary file with specific channel short names, After 
selecting one of the modes, a menu-bar will appear on top of the screen. The following section will 
explain the meaning of each of the menu-items. It might be used as a quick user manual for 
operating the CAPC simulation tool. 

The File menu 

Modify E R O  Output Setup ... 
Saue Simulation Setup ... 
Load Simulation Setup ... 
-- 

L o a d  E R D  t f s l  f ~ l e  ... 

Quit 8 Q 

The file menu enables to user to modify the simulation 10. It contains the following menu items: 
Modify ERD Output Setup 

The user may select and modify the variables to be saved for plotting after a simulation 
run. The output selection can be done by selecting this item. A dialog will appear with a 
large amount of check boxes. Choose the signals that you would like to study after a 
simulation run. The data will be stored in a text ERD-format and the signals can be 
viewed using the ERD plotter. 



Save Simulation Setup 
All the parameters of a specific vehicle are stored in a setup file (*.STP). Besides 
vehicle parameters the setup file contains also simulation related parameters, such as 
time-step, road unevennesses and controller gains. After moddjing the vehicle and 
simulation related parameters, the setup can be saved by selecting h s  menu item. The 
setup file needs to have the extension .STP. When starting up the simulation tool the 
default vehicle parameters will be loaded from the file defaultSTP. This file may not 
be erased. The program comes with two vehicle configurations: Taurus-SHO.STP and 
Crown-Victoria.STP. The default car corresponds with Taurus-SHO. 

Load Simulation Setup 
A previously saved setup can be loaded by selecting this item. All the current vehicle . 
and simulation related parameters will be replaced by the data from the setup file. 

Load ERD test file 
This option is only selectable in the Post-Processor mode of the CAPC simulation 
Tool. A file in an ERD format with specific short names wlll be used to run a 
simulation in a post-processor mode. This file must be recorded with the CAPC 
prototype vehicle + MacDAS software. The front wheel steer angle and vehicle speed 
as stored in the ERD file are ported directly into the simulation tool such that a 
simulation can be carried out with measured driver inputs. The ERD fde must be in a 
binary floating-point format and needs to contain the following short names: 

- d-sw (steering wheel angle in degrees) 
- d-fw (front wheel steer angle in degrees) 
- u-RF (right front wheel speed in d s )  
- u-LF (left front wheel speed in mls) 
- u-RR (right rear wheel speed in mls) 
- u-LR (left rear wheel speed in mls) 

The vehicle speed is derived by averaging all four wheelspin derived speeds. 
Quit 

Selecting thls menu item will quit the simulation program. 

The Models menu 
The simulation menu allows the user the choose and modify model related items. Different models 
for the vehicle, tires, driver and path prediction can be selected. The complexity of the model varies 
with the selection and it is also possible to change specific parameters of each model. The models 
menu contains 8 items being: 

Vision System 

Near-Field Camera b 

Tires... 
Rnti Lock Brake System ... b 

dRoll B Pitch Compensation 

Driver... b 
b 

Modily Panmeters ... 
Path Prediction ... 
Cruise Control... b 
Oriuer Status... b 

The CAPC vehicle is equipped with two vision systems (digital video cameras): 
Near-Field Camera 

The near-field vision system is scanning the roadway geometry close in front of the 
vehicle. 



Far-Field Camera 
The far-field vision system is also scanning the roadway geometry in front of the 
vehicle. However, the range is longer as with the near-field camera. 

Both vision svstem related menus come with a submenu. The cameras are fixed on the vehicle 
body. Ttus iiplies that vehicle motions such as body roll during cornering. pitch during braking or 
acceleration or a combination of heave, roll and pitch when the vehicle is operated on an uneven 
road affect the images of the cameras. The transformation from screen coordinates to roadway x-y 
coordinates can be compensated for the motion of the vehicle. Two options are available: 

No Compensation 
No compensation means that the motion of the vehicle is not included in the 
transformations from image coordinates to roadway geometry coordinates. 

Roll & Pitch Compensation 
A correction will be applied in the transformation based on estimates of the roll and 
pitch angle of the vehicle determined by suspension deflection measurements. 

The last submenu item is: 
Modify Parameters 

Selecting h s  menu item enables the user to m d f y  the position and orientation of the 
cameras on the vehicle. Furthermore, the focal length, image update rate and the range 
of interest can be changed. 

Vehicle Model 
Simulation Disturbances Roadway Controllers Scenarios Window 1 

Anti Lock Brake System ... 8 DOF Yaw-Roll Uehicle Model 
Driver ... ) d 14 DOF Full Uehicle Model 
Path Prediction... b 
Cruise Control... 'I b Modify Uehicle Parameters... 

1 
Driver Status... '1 Modify Suspension Characteristics... 1 

Front Suspension ... 

Uision System ... 
Tires... 

The Vehicle model menu enables the user to change the type and complexity of the vehicle model 
and to alter the parameters of thls model. It contains the following selections: 

2 DOF Flat-Vehicle Model 
The 2 DOF vehicle model is characterized by the lateral and yaw DOFs. This model can 
only be used in the Post-Processor mode. 

7 DOF Flat-Vehicle M&l 
The 7 DOF vehicle model is characterized by the following seven degrees of freedom: 
longitudinal, lateral, yaw and 4 wheel rotational DOFs. 

8 DOF Yaw-Roll Vehicle Model 
The 8 DOF vehicle model is characterized by the following eight degrees of freedom: 
longitudinal, lateral, roll, yaw and 4 wheel rotational DOFs. 

14 DOF Full Vehicle Model 
The 14 DOF vehicle model is characterized by the 6 DOFs for the vehicle body, 1 DOF 
for each axle and 4 wheel rotational DOFs. 

Modf i  Vehicle Parameters 
This menu item enables the user to change important vehicle parameters such as the 
masses, moments of inertia and vehicle speed of travel. 



Modi '  Suspension Characteristics 
The suspension spring and damping constants can be changed if thls item is selected. 
Furthermore it allows the user to change the vertical tire stiffness and auxilary roll 
stiffness of the anti-roll bars. 

M o d i '  Suspension Geometry 
The geometry of the front and rear suspension can be altered by selecting this item. The 
geometry of the true suspension has been represented by a simplified suspension 
model. Modifying the parameters will affect the track width and roll center height. 

Modify Aerodynamic Parameters 
The six aerodynamic coefficients of the vehicle body can be changed when this item is 
selected. Furthermore, the frontal area of the car, the barometric pressure and air 
temperature can be altered. 

Tire Model - - - - - - - - - - 
Simulation Disturbances Roadway Controllers Scenarios Window 

I Lane Sensors ... b I 
Uehicle... 

[ Driuer Status. .. b 
*/Transient Tire Model 1 

Driver... b 
Path Prediction... b 
Cruise Control... b 

Modify Parameters... I 

Table look-up based on Magic Formula 
*/Magic Formula Tire Model (pure slip) 

Magic Formula l i re  Model (combined slip) 

The tires are separated from the vehicle menu item. The following slip force models can be chosen: 
Cornering Stiffness (constant) 

This tire model is the simplest model available. It is using constant slip stiffnesses to 
calculate the tire slip forces and moments 

Cornering Stiffness (load dependent) 
This tire model takes the load dependency of the slip stiffnesses into account while 
calculating the tire slip forces. 

Table look-up based on Magic Formula 
The Magic Formula is an empirical tire model that is valid for a wide range of load/slip 
combinations. The output of the model is a longitudinal and lateral tire slip force, and 
the aligning moment. The inputs are the longitudinal slip, the side slip angle, the 
vertical tire load and the wheel camber angle. The table look-up version of the Magic 
Formula is based on a table that is filled with numbers generated by the original version 
of the Magic Formula. This version is faster because less computations have to be 
carried out. The table look-up version doesn't consider combined slip (cornering and 
braking at the same time). 

Magic Formula Tire Model (pure slip) 
This tire model is identical to the look-up version as described above. It uses the 
original Magic Formulae and considers only pure slip situations. 

Magic Formula Tire Model (combined slip) 
The combined slip version of the Magic Formula is the most extensive tire model 
available in this simulation tool. Unfortunately, the computational burden is significant. 

Transient Tire Model 
Selecting this menu item toggles the transient tire model on or off. The transient tire 
model is based on a fust-order relaxation system with a load dependent relaxation 



length. This option can be combined with any of the five previously described steady- 
state tire models. 

Modify Parameters 
Selecting this item will allow the user to modify the tire-road friction coefficient. 

Anti-Lock Brake System - Model 
Simulation Disturbances Roadway Controllers 

Lane Sensors ... b 
Uehicle ... 

Driver ... 
Path Prediction ... 
Cruise Control ... 
Driuer Status. .. 

Some of the dynamic properties and parameters of the anti-lock brake system can k altered by 
selecting: 

Modifj, Parameters 
Beside changing the brake system related parameters such as effective rotor radus, 
brake cylinder bore and friction coefficient between pad and rotor also the time constant 
of the brake system model (first-order system) can be modified. 

Driver Model 

Lane Sensors ... 
Uehicle ... b 
Tires ... b 
Rnti Lock Broke System ... b 

Path Prediction... 
Cruise Control ... b Mouse  river 

No Driver, fined Steering Wheel 

Modify Parameters.. . 
1 

The CAPC simulation tool has two different kinds of driver models built in: 
I 

Simple Preview Model 
This model is relatively simple and steers the vehicle by traclung one point at a fmed 
distance in front of the vehicle. The model includes limitations of the human driver such 
as a neuromuscular related dynamics and a pure time delay. The simplicity of the model 
restricts the application only to straight line driving eventually in combination with 
disturbances like side wind gusts. 

Optimal Preview Model 
This model is a more sophisticated version of the simple preview model. It minimizes 
the tracking error at several points in front of the vehicle. This model is better for 
complicated maneuvers and driving trough curves. The model also included a pure time 
delay. 

Besides the two dnver models the following options are available: 
Mouse Driver 

The vehlcle can be steered by moving the mouse from left to right. The neutral position 
corresponds to the middle of the screen. 

r No Driver, Fixed Steering U'heel 
As the name already suggest, the steering wheel is fixed in the neutral position with this 
option. 



The characteristic parameters of the driver model can be altered by selecting: 
Modify Parameters 

Depending on the driver model chosen (simple, optimal preview, mouse h v e r )  the 
selection will enable the user to modify time constants and gains. 

Path Prediction Model 

Anti Lock Brake System ... 

The time-to-lane crossing algorithm as used in the CAPC program uses the future vehicle trajectory 
as an input to the calculations. The iuture path of the vehicle is based on a simple vehicle model 
assuming that the steering wheel position and vehicle speed remain constant during the projection. 
The path is obtained by integrating the differential equations of the vehicle. Appropriate initial 
conditions are necessary. The following path prediction mdeldmethods are available: 

Steady-state Curve 
The steady-state curve prediction is based on the steady-state solution of the Merential 
equations of a 2 DOF vehicle model (lateral and yaw). The solution has the shape of a 
curve with a fixed radius. The radius depends on the steering wheel input, vehicle 
parameters and speed of travel. 

2 DOF Vehicle Model (linear tires) 
The path projection is based on a 2 DOF vehicle model (lateral and yaw) and a h e a r  
tire model (constant cornering stiffnesses). 

2 DOF Vehicle Model (non-linear tires) 
The path projection is based on a 2 DOF vehicle model (lateral and yaw) and a non- 
linear tire model (load dependent cornering stiffnesses). 

2 DOF Vehicle Model (linearized) 
The path projection is based on a 2 DOF vehicle model (lateral and yaw) and a hear  
tire model (constant cornering stiffnesses). The geometry related to the path prediction 
has been linearized: cos(y) = 1, sin(y) = y . 

3 DOF Vehicle Model (linear tires) 
The path projection is based on a 3 DOF vehicle model (lateral, roll and yaw) and a 
linear tire model (constant cornering stiffnesses). 

3 DOF Vehicle Model (non-linear tires) 
The path projection is based on a 3 DOF vehicle model (lateral, roll and yaw) and a 
non-linear tire model (load dependent cornering stiffnesses). 



Cruise Control 

ck Brake System ... 

The cruise control has three modes of operation: 
Cruise Off 

Thicruise control is switched off. 
Cruise On 

The cruise control is switched on and holds the forward speed of the vehicle constant. 
Accelerate 

The cruise control is switched on and the controller follows a predefined speed pattern. 
The speed pattern can be modified by selecting the Modifi, Parameters menu item. 

Driver Status Model 

Anti Lock Brake System ... 
Driuer ... 
Path Predictlon ... 

Modify Parameters... I 

The status of the dnver is an input for the CAPC decision module. The algorithm monitors several 
vehicle-roadway related signals such as lateral deviation of the vehicle and steering wheel input. 
The moving average and standard deviation values are combined to one quantity denoted by 
PERCLOS (the proportion of the time that the dnver's eyes are 80 to 100 percent closed). The 
regression parameters can be changed by selecting the Modifi Paramerers menu item. 

The Simulation Menu 

Pulling down the simulation menu enables the user to start a simulation or change integration 
related stetting. The following menu items are selectable: 

Timing 



Selecting the timing option enable the user to change the simulation time step, duration 
and communication interval. The communication interval determines the out~ut  to the 
ERD-data file and to the screen. 

Euler 1st-order 
This is the fastest integration routine available. The integration of the differential 
equations is less accurate as with the more elaborate methods. The integration time step 
is constant. 

Runge-Kutta 2nd-order 
This method is a down-scaled version of the Runge-Kutta 4th-order integration 
method. It is faster than 4th-order routine but also less accurate. The integration time 
step is constant. 

Runge-Kutta 4th-order 
This is the most elaborate integration method available in the CAPC software. The 
integration time step is constant. 

Start 
Selecting this item will start the simulation. A menu will appear were the user is able to 
assign a name to the ERD output file. The simulation can be interrupted by pressing a 
button on the mouse. 

Continue 
After termination of a simulation run (by pressing a mouse button) it is possible to 
continue with the simulation from the current position. The initial values correspond 
with the values after the termination of the previous simulation run. 

Reset 
This option resets all the state variables in the simulation. All initial conditions will be 
set to zero (with exception of the vehicle speed). 

The Disturbance Menu 
The vehicle can be subjected to different kinds of disturbances. Two sources are available being 
road unevennesses and wind. 

Road Irregularities 

m s  menu offers the following selectable items: 
No Unevennesses 

The road surface is smooth. 
Good PCC 

where PCC stands for Portland Cement Concrete. 
Faulted PCC 



Rough Asphalt 
Wavy Surface Treatment 

FORD MPG north straight 
This is a road unevenness data file derived from a measured data file recorded at the 
Ford Michigan Proving Ground, north straight-away. 

FORD MPG sorcth straight 
This is a road unevenness data file derived from a measured data file recorded at the 
Ford Michigan Proving Ground, south straight-away. 

Artificially Generated Slabs 
The length of the slabs is 9 m. They are modeled as smooth flat plates with a slight 
positive slope. The joints between the plates is discontinuous and the discontinuity is 
modeled as a random process. The height difference during the transition from plate to 
plate ranges between 6.4 and 12.7 mm. 

Wind 
Roadway Controllers Scenarios Window 

Road irregularltles b 1 1  4No Continuous Wind Wind 
Crosswind Gust 
Random Crosswind 

-- .- - -. . -. . . . - . , . 

The wind disturbance menu offers the following items to be selected: 
No Wind 

The vehicle will not be exposed to wind disturbances. There will be no aerodynamic 
forces acting on the vehicle. Even the speed of the vehicle itself does not generate 
aerodynamic forces. 

Continuous Wind 
There will be a continuous wind speed present. The direction and the magnitude of the 
wind speed can be altered in the Modify Wind Parameters menu item. The orientation 
of the wind speeds is according to the intertial frame. The default wind speed is zero. 
This means that the vehicle is only subjected to aerodynamic forces only due to its 
forward speed. 

Crosswind Gust 
The gust is a side wind speed with an orientation according to the y-axis of the inertial 
coordinate system. The gust is of a pulse shape. The start time, stop time and DC wind 
speed can be altered by selecting the Modifi Wind Parameters menu item. 

Random Crosswind 
The random crosswind gust is identical to the Crosswind Gust as explained above 
except that the wind speed is randomly distributed. The random speed effect has been 
obtained by low-pass filtering of white noise. In addition to the start and stop time, the 
standard deviation and frequency contents of the random component can be changes by 
selecting the Modtfy Wind Parameters menu item. 

DC + Random Crosswind 
This option is identical to the Random Crosswind except that the random wind speed is 
superimposed on a DC side wind speed. 

Modib Wind Parameters 



Depending on the type of wind disturbances chosen, selecting this item will allow the 
user to modify particular wind parameters such as speed and pulse duration times. 

The Roadwav Menu 

,Controllers Scenarios 
Straight Road b 
Dual Test Track b 
Tacom Test Track 
Dana Test Track 
Sinus Road 
IS0 Double Lane Change 
Skidpad 

Season b 
* 

The roadway menu enables the user to select different roadway geometries. The following items 
can be selected: 

Straight Road 
The road is straight and the user is allowed to choose different values for the grade and 
superelevation. 

Oval Test Track 
This roadway geometry corresponds with 1 lap of the FORD Michigan Proving 
Ground oval. Both turns have the same radius (381 m) and the straight-aways are each 
1609 meter long. This oval contains 6 lanes, each with a different superelevation (0, 
0.5, 2.5, 6, 15, 28 degrees). 

Tacom Test Track 
The geometry of this track corresponds with one lap of the Tacom test track in 
Michigan. It has two tight curves (102 m radius, O\uperelevation) and one larger bend 
(145 m radius, 8.5" superelevation). 

Dana Test Track 
The geometry of thls track corresponds with the track from the Dana Corporation in 
southern Michigan. It is an oval with two identical bends (279 meter radius, 6.2" 
superelevation) at the end of the straight-aways (each 408 meter long). 

Sinus Road 
Thls particular roadway has a sine-shape with a wavelength of 200 m and an amplitude 
of 2 m. 

IS0 Double Lane Change 
This is a free interpretation of the ISOKR 3888 norm for double lane changes. 

Skid pad 
The skid pad is a circular track width a radius of 100 m. 

Seasons 
The season switch enables the user to change the colors of the animated screens 
according to the 4 seasons of the year. 

All roadway geometries can be combined with any of the seven road unevenness types from the 
Disturbance menu. 

The Controllers Menu 



The controller menu controls the specific hard- and software related items for the road departure 
avoidance (CAPC) system. It has the following items: 

CAPC 
The switch enables or disables the entire CAPC system. If it is switched off the 
program will simulate only the vehicle dynamics related part (including a dnver model). 

Brake-Steer 
This menu option allows the used to enable or disable brake-steer control. If it is 
switched off and the CAPC system switch is on, the entire CAPC system will operate 
in an open-loop. The brakes will not be activated if a road departure is sensed when 
brake-steer control has been disabled. Two types of feedback controllers are available: a 
PID feedback of the lateral position error and a more sophisticated Linear Quadratic 
state feedback controller which uses the lateral position error, heading angle, side-slip 
velocity, yaw rate and integral of the lateral position error as inputs. The gains of the 
PID feedback controller can be changed in the Modify PID Feedback Gains option. The 
LQR gains are hard-coded in the simulation software as a function of the vehicle speed. 

Near- Field LM Kalman Filter 
Switching this option on means that a Kalman filter will be used to match measured 
near-field lane marker (LM) data with a roadway geometry model and thus to filter-out 
noise. If the Kalrnan filter is disabled, least square curve fitting will be used instead. 

Far-Field LM Kalmun Filter 
Switching this option on means that a Kalman filter will be used to match measured far- 
field lane marker (LM) data with a roadway geometry model. If the Kalman filter is 
disabled, least square curve fitting will be used instead. 

Mod& Supervisor Parameters 
The supervisory controller decides whether or not to wadintervene if a road departure 
is detected. By selecting this option the user can change the sampling rate and some 
threshold values related to the decision malung module. 

The Scenarios Menu 

(201 Curve, Step Steer 

The scenario menu contains some pre-programmed scenarios that will cause a road departure due 
to a forced steering input. The following selections can be made: 



l No Scenario 
No additional steer input will be generated if this menu item is selected. 

l ( l a )  Straight Road, Step Steer 
A step steer input will initiate a road departure. The magnitude and timing of the step 
can be altered in the Modify Scenario Parameters menu item. The steering wheel will 
remain in the non-neutral position. 

l ( 1  b) Straight Road, Pulse Steer 
A pulse steer input will initiate a road departure. The magnitude and width of the pulse 
can be altered in the Modify Scenario Parameters menu item. The steering wheel will be 
in the neutral position again after the pulse has been applied. 

l (2a)  Curve, Step Steer 
This scenario corresponds with scenario (la) except that the road departure will occur 
in a curve rather than on a straight-away. 

l (2b) Curve, Pulse Steer 
This scenario corresponds with scenario (lb) except that the road departure will occur 
in a curve rather than on a straight-away. 

(3)  Curve, No Steer 
The steering wheel is fixed in the neutral position and the vehicle is approaching a 
curve. 

M o d i f y  Scenario Parameters 
Selecting thls item enables de user to change the timing and magnitude of the forced 
steering wheel input. 

Selecting one of the scenarios will not only initiate a road departure, but also other menu options 
such as roadway and tire model will be altered depending on the scenario chosen. With all 
scenarios, the driver model will be disabled once a steplpulse steer in initiated. 

The Windows Menu 

dUehicle I I 
/Near-F ield Screen 
/Far-Field Screen 

With the window menu the user is able to enable or disable the animated screen output of the 
simulation tool. 

l Vehicle I 
This window corresponds with the large rectangular window on the bottom of the 
screen en shows the vehicle, roadway and camera ranges. 

l Vehicle I1 
This window shows a close-up of the vehicle only. The red lines on every comer of the 
vehicle represent the magnitude of the tire slip forces 

l Near-Field Screen 
This screen corresponds with the image as seen through the near-field camera. 

Far-Field Screen 
This screen corresponds with the image as seen through the far-field camera. 

The Vehicle 1/II windows and the two camera images are updated with different frequencies. The 
camera images are updated with the scanning frequency of the cameras which can be altered in de 
Models, Lane Sensor, Modify Parameters menu and the two vehicle images are updated with the 



communication interval as set in the Simulation, Timing menu. This menu is inactive in the driving 
simulator or post-processor mode. 
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Introduction 

BRIM 
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The CAPC Lane-Mark Sensor (LMS) Processor developed by ERIM communicates with the 
UMTRI CAPC Processor via an RS-232 line and frame clock. The purpose of th~s document is 
to define various aspects of this interface. 

The first section characterizes the Frame Clock and the timing that it controls. Section 2 gives the 
RS-232 communications format. 
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1.0 The Frame Clock Input 
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The purpose of this clock is to synchronize the two systems so that the data received from the 
CAPC system corresponds in time to the image data from the cameras. The Frame Clock input 
will be supplied to the LMS by the CAPC system. 

This signal is a 5 Hz ?TL clock with a 50% duty cycle. Upon a transition of the clock, the LMS 
processor captures a frame from the camera. This frame may or may not be processed, depending 
on the current mode of the LMS processor (see section 2). 

1.1 Timing During Lane-Marker Acquisition Mode 

All activity in the LMS System during lane-marker acquisition mode, which is the mode when the 
LMS system is sending lane-marker data, is directly or indirectly slaved in time to the Frame 
Clock. This clock triggers the Camera Subsystem to expose a frame of image data. When this 
image data is completely exposed, it is transferred to the LMS Processor where it is processed. 
Figure 1 shows the timing of the major processes in the LMS system. 

The LMS keeps a variable value called Frame Count. This value is incremented at every rising 
and falling edge of the Frame Clock during lane-marker acquisition mode only. The pitch & roll 
information packet and the Lane Geometry information packet are both tagged with the Frame 
Count for which the data is valid. 
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Receive Roll&Pitch: 

Send LG Packet: 

Figure 1. Timing of the LMS system. 
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Control and data information transfer between the LMS and CAPC Processors is in the form of 
packets. All packets have the same general format shown below: 

The following two sections outline the conrenls of the packet's fields. 
2.1 The Header and Checksum Information 

' h at the end of a number denotes hexadecimal format. 

Valid Values 

AAh' 

OOh- A9h 
AB h - FFh 

OOOOh - FFFFh 

OOh - FFh 

t 

Field 

Packet Marker 

Packet Type 

Data Length 

Data 

Checksum 

Data F o m t  

1-Byte 

1 -Byte 

2-Byte Unsigned Integer 

Defined in Section 2.2 

I -Byte 



The first three fields (Packet Marker, Packet Type, and Data Length) make up a packet's header, 
and the last byte of the packet is a checksum of the whole packet. The definitions of these fields 
are common among all packet data types discussed in section 2.2. 

BRIM 
Code Ident 

Packet hlarker 

The Packet Marker always has the value of AAh. The purpose of this is to mark the beginning of 
a packet independent of context. To accomplish this, this byte value, AAh, must be 
distinguishable horn other AAh bytes that may appear in all other fields of the packet This is 
accomplished by the swapping of all occurrences of the byte AAh not in the Packet Marker field 
with the sequence of two AAh bytes (AAAAh) prior to transmit and following receive of data on 
the RS-232. An occurrence of AAh without a following AAh on the input data stream should be 
interpreted as a packet marker. 
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This 1 -byte field identifies the type of information that is contained in the Data field. The value of 
this field is defined along with the Data field in section 2.2. 

Data Length 

The number of bytes of the 'Data' field is given in the 'Data Length' field. Any AAh bytes 
occurring in the packet must be handled as outlined in the Packet Marker description, but it 
should only count as one byte in the Data Length (i.e., a AAh replaced by AAAAh still only 
counts as one byte in the Data Length field). 

Checksum 

This byte is a no-carry sum of all bytes that preceded this field in the packet. Though, no error 
correction scheme is to be implemented, an error in checksum will void all data, and will increase 
the checksum error count in the STATUS packet. The checksum should be calculated without 
the doubling of AAh bytes, as discussed in the Packet Marker description above. Note. an 
occurance of an Aah checksum will be transmitted as AAAAh 



2.2 Data Field 
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Two types of Packet Types will be sent to the LMS system: asynchronous and synchronous. 
Asynchronous packets can be sent anytime when the LMS is not in lane-maker acquisition mode 
(see the START packet type). Synchronous packets are sent to the LMS only when the LMS 
system is receiving a frame clock and is in lane-marker acquisition mode. Sjnchronous packets 
are synchronized with the frame clock input. A summary of packet types are given below: 

Title: Communications Interface 

. Specification 

Drwg No: 2582003 Revision: 3 
Contract: CAPC 

The INITIALIZE Packet 

Next Assy 

Size: A 

Page 5 of 11 

This asynchronous-mode packet initializes the LMS system, and any previous operation 
parameters are flushed. The Frame Count is also reset to the value OOh. The packet format is: 

Packet Name 

INITIALIZE 

CALIBRATE 

PROBE 

STATUS 

START 

STOP 

P&R 

LG 

SynclAsync 

m c  

ASPC 

APC 

Async 

&PC 

A PC 

SPC 

sync 

Packet-Type 

Olh 

02h 

03h 

8 1 h 

04h 

05h 

1 Oh 

91 h 

Originator - 
CAPC System 

CAPC System 

CAPC System 

LMS System 

CAPC System 

CAPC System 

CAPC System 

LMS System 

Field 

Packet Marker 

Packet Type 

Data Length 

Checksum 

Data Format 

1-Byte 

1 -Byte 

2-Byte Unsigned Integer 

1 -byte 

Valid Values 

AAh 

Olh 

0005h 

B l h  



The CALIBRATE Packet 

ERIM 
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This asynchronous-mode packet initiates a calibration routine in the LMS System. The packet 
format is as follows: 
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Restore field defines the LMS if it should restore the last calibration stored (Restore-Olh), or 
actually begin the calibration procedure outlined in Calibration Routine Specification 
(Restore=OOh). If Restore is OOh, the LMS system assumes that all prerequisites for a calibration 
are satisified. 
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Field 

Packet Marker 

Packet Type 

Data Length 

Restore 

Checksum 

The PROBE Packet 

This packet stimulates the LMS system to return the STATUS packet. This packet can be sent 
anytime, but excessive use of this in lane-marker acquisition mode may cause a delay in lane- 
marker data delivery. The format of this packet follows: 

Data F o m t  

1 -Byte 

1 -Byte 

2-Byte Unsigned Integer 

I -byte 

1 -byte 

Valid Values 

AAh 

02h 

000 1 h 

OOhor Olh 

B3h - B4h 

Valid Values 

AAh 

03h 

0005h 

B2h 

F ieZd 

Packet Marker 

Packet Type 

Data Length 

Checksum 

Data Format 

I -Byte 

I -Byte 

2-Byte Cnsigned Integer 

I -byte 



The STATUS Packet 

This packet is sent by the LMS system to report the status and health of the LMS sensor. Two 
conditions results in this packet being sent: 1) it was requested via a previous packet sent to the 
LhIS system or 2) a error occurred in the operation. The packet has the following format: 
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Title: Communications Interface 
. specification 
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Contract: CAPC 

The data returned is defined as: 
Initialized: OOh = Not previously initialized via INITIALIZE Packet 

0 1 h =Initialized 
Calibrated: OOh - Not successfully calibrated previously via CALIBRATE Packet 

01 h = Calibrated 
Camera Health: OOh = Camera-Subsystem requires re-calibration 

01 h = Camera-Subsystem passed all operational tests 
Frame Count: The next Frame Count value 
Error: OOh = LMS system is operating normallj 

0 1 h = LMS system is not receiving Frame Clock 
02h-FEh = Currently undefined error codes. 
FFh - General Fatal Error. re-initialize and re-calibrate 

LbIS Mode OOh = Not in Acquisit~on Mode 
Olh = In Acquistion Mode 

Valid Values Field 

Checksum I -byte Oh-FFh 

Data F o m t  
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 RIM - 

If the LMS system reports a Error, i t  will not send any lane-marker data to the CAPC system. 
Depending on the error, the LMS may have to be re-initialized and/or re-calibrated. 

The START Packet 

Title: Communications Interface 

. Specification 

Drwn No: 2582003 Revision: 3 

This asynchronous-mode packet puts the LMS system to lane-marker acquisition mode, which is 
the mode that starts the LMS to process the camera images and returns lane-marker data While 
in the lane-marker acquisition mode, the only synchronous-type packets and asynchronous-type 
packets STOP and PROBE should be sent to the LMS system. The START Packet has the 
following format: 

Next Assy: 

Size: A 

The STOP Packet 

This asynchronous-mode packet takes the LMS system out of lane-marker acquisition mode. 
After the LMS system receives this, it will accept all asynchronous-mode packets, and it will not 
send or process any synchronous packets. 

Valid Values 

AAh 

04h 

OOOOh 

B3h 

Field 

Packet Marker . 

Packet Type 

Data Length 

Checksum 

Data Format 

I -Byte 

1 -Byte 

2-Byte Unsigned Integer 

1 -byte 

i 

Valid Values 

AAh 

05 h 

0005h 

B4h 

Field 

Packet Marker 

Packet Type 

Data Length 

Checksum 

Data Format 

I -Byte 

I -Byte 

2-Byte Unsigned Integer 

1 -byte 



The P&R Packet 

This synchronous-mode packet, sent from the CAPC system, contains Pitch and Roll data. The 
format of this packet is as follows: 
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The Frame Count identifies the frame for which the pitch and roll data is valid. 

Field 

The Pitch and Roll data is reported in 11100th of a degree, i.e., 
Pitch in degrees = 'Pitch' field 1 100 and 
Roll in degrees - 'Roll' field I 100. 

The Velocity data is reported in XXX units. 

Data Format Valid Values 



The LG Packet 
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This synchronous-mode packet, sent from the CAPC system, contains lane-marker data. The 
format of this packet is as follows: 

Title: Communications Interface 
Specification 
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The Frame Count identifies the frame for which the pitch and roll data is valid. 
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Field 

'Packet Marker 

Packet Type 

Data Length 

Frame Count 

# Records 

Lane Data Records 

Checksum 

The # Records field contains the number of Lane Data Records that the packet contains. Each 
Lane Data Record has the following format: 

Data F o m t  

1-Byte 

1 -Byte 

2-Byte Unsigned Integer 

1 -Byte 

1 -byte 

see below 

1 -byte 

The ID field is the identification code that is assigned to the lane by the LMS. As lanes are 
acquired, i t  is assigned an 1-byte ID and this ID is kept until it  is no longer tracked by the LMS 
system. 

Valid Values 

AAh 

9 1 h 

Variable 

Oh-FFh 

00h - 02h 

defined below 

Ooh-FFh - 

Field 

Lane-Type 

ID 

# Data-Point Records 

Data-Point Records 

The lane-type is defined as follows: 
OOh : Solid 
O l  h :  Dashed 

Data Size 

1 -Byte 

1 -Byte 

1 -Byte 

4-bytes x # of Records 

Valid Values 

see below. 

OOh - FFh 

OOh - 20h 

defined below 



The # of Data-Point Records field contains the number of data-points associated with the lane. 
Each Data-Point Record has the following format: 
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The X location values are in the units of centimeters, e.g., 
X in meters - (X location reported) / 100. 

Title: Communications Interface 
Specification 

Dnvg No: 2582003 Revision: 3 

Contract: CAPC 

The Y location values are in the units of centimeters, e.g., 
Y in meters = (Y location reported) / 100. 
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Valid Values 

OOOOh - FFFFh 

0000h - FFFFh 

Field 

X Location 

Y Location 

Data Format 

2-Byte Unsigned Integer 

2-byte Signed Integer 
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The CAPC Lane-Mark Sensor (LMS) developed by ERIM consists of two main parts: the 
Camera Subsystem, and the LMS Processor. The system block diagram is shown in figure 1. 

j LaneMarker-Sensor 
j 

Analog Video Frame 
Puln~x 30DG-XX 

Clock 

Intel Control and Data 
j 
I 

I 

I 120VAC Power 
[ 
I 12VDC Power 
1 

- 

Title: Lane-Mark-Sensor Mechanical & 

Electrical Interface Specification 

Drwg No: 2582001 Revision: 4 

Contract: CAPC 

Figure 1. Detailed Block Diagram of the Lane-Marker Sensor System 
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The following sections discuss the mechanical and electrical requirements of the LMS 
subsystems. 

1.0 The CCD Camera 

The LMS system contains a Pulnix TM9701 CCD digital camera. The exact camera position and 
mounting in the car is determined in accordance to the following mechanical and electrical 
requirements. 

1.1 Mechanical Requirements 

The camera should be mounted in the test car's interior space as high and as close to the 
windshield as possible while creating an unobstructed forward-looking view. The camera's 
dimensions (without lenses) is shown in Figure 2. An additional amount of space should be 
allocated for a lens, which mount directly to the front of the camera (see Figure 2). The lens used 
does not exceed 43mm x 48mm (diameter x length) in size. 
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Figure 2. The Pulnix TM9701 CCD Camera's Physical Dimensions 
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The camera is connected to the other parts of the system via the interconnections shown in Figure 
3 and the following table. 

Qty. 

1 

1 

1 

Cable Type Required 

2-Conductor 24AWG 

75-Ohm Coax 

Pulnix 30DG-XX 
Digital Cable 

Data Type 

12VDC Power 
(see section 1.2) 

RS- 170 Video 

RS-422 and TTL 
Digital 

Cable Diameter 

8mm 

Routing Destination 

UMTRI Power 
supply 

UMTRI Spec'd 
(documentation use) 

LMS Processor 



Supplied by ERlM (Pulnix 30DG-XX Connector & Cable) 
Digital Video to 

8mm Diameter LMS Processor 
Supplied by ERlM (Pulnix PC-12P Connector) 

a Pin 1 - GND 
Pin 2 - +12VDC 12VDC @ 500mA 

J 
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Figure 3. Camera Interconnection Requirements 

1.2 Electrical Requirements 
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The camera must be supplied with 10.8- 14.2 Volts DC at 500 milliamps. The power is delivered 
to the camera through a Pulnix PC- 12P connector via pin 1 (ground) and pin 2 (+VDC). The 
connector is supplied as part of the LMS System, but the power source is not supplied. 
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All required camera signals are incorporated into the Pulnix 30DG-XX Digital Cable, which is 
connected to the LMS Processor. A RS- 170 video signal is available from the camera, via the 
BNC connector on the back of the camera, for documentation and debugging uses. This signal, 
however, will only be active when the LMS System is not operating. Due to this limitation, the 
RS-170 signal is not be used by the LMS System itself. 

1.3 The Camera Lens 

The camera lens is a 12.5mm focal length 2 3 "  C-mount f11.7 Cosmicar lens. This size was 
chosen to give adequate field-of-view when mated with the Pulnix camera. 

2.0 The LMS Processor 

The LMS Processor captures the data coming from the CCD camera using a MuTech MV- 1000 
commercial frame grabber with a MV- I 100 digital input daughterboard. The camera information 
is then processed real-time to produce lane-marker data. All communications with the Processor 
is accomplished via a bi-directional RS-232 connection and a frame clock input, as discussed in 
detail in the Communications Interface Specification, ERIM document #2582003. 



2.1 Mechanical Requirements 

BRIM 
Code Ident: 

The LMS Processor is a standard PC-class Pentium computer with the approximate size of 18cm 
x 46cm x 44cm (height x width x depth). A space of lOcm should be reserved behind the 
processor for the cable inputs. No mounting provisions are supplied. 

The LMS processor requires the backpanel interconnections shown in Figure 4 and the following 
chart: ' 

Title: Lane-Mark-Sensor Mechanical & 
Electrical Interface Specification 

Drwg No: 2582001 Revision: 4 

Contract: CAPC 

Next Assy: 

Size: A 
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2.2 Electrical Requirements 

Qty 

1 

2 

1 

2 

The LMS Processor requires 120f 10% Volts at 50-60Hz AC at no more than 100 watts 
consumption. This power is not supplied by the LMS System. 

A frame clock input from the main CAPC Processor is required for operation of the LMS System. 
This clock should be a -5Hz ?TL clock with the 50% duty cycle. The leading- and trailing-edge 
of this clock corresponds to the sampling time of the next incoming vehicle-dynamics data 
supplied to the LMS Processor by the CAPC System. 

Cable Type Required 

Standard U.S. 3-prong power plug 

Pulnix 30DG-XX Digital Cable 

RS-232 
(9-Pin Sub-D Female Connector). 

Twisted Pair 
( 9-pin Sub-D Male Connectors - 

pin 5: clock, pin 9: signal ground) 

The control and data information is transferred between the LMS and CAPC system using a 
standard full-duplex RS-232 link with the following characteristics: 

57,600 baud 
8 data bits 
No parity 
1 stop bit 
No hardware 01- software handshaking 

Data Type 

120VAC 
Power 

RS-422 & 
TT'L Digital 

RS-232 
Digital 

Frame Clock 

Diameter 

7mm 

8mm 

UMTRI- 
Spec'd 

UMTRI- 
Spec'd 

Routing 
Destination 

- 

UMTRl's 
Power Inverter 

Camera 
Subsystem 

CAPC 
Processor 

CAPC 
Processor 
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( SLERIM 

The format of the information transferred via the RS-232 link is specified in the Communications 
Interface Specification, ERIM document #2582003. 

LMS Processor Frame clock Input #2 (See ~ o t c  2) 

RS-232 from CAPC Processor 

igital Camera Interface Cable 
Fnme Clock Input #1  (See Note 1) 

5 I-pin Airborne High-Densi 
Digital Camera Interface Cable 

DB 15 High-Density Female 
Video Monitor (Diagnostic Use)  

Electrical Interface Specification 

Drwn No: 2582001 Revision: 4 

Figure 4. LMS Processor Interconnections 

Size: A 



Appendix D 

Computer code listing: 
CAPC Prototype Control Code . 
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I. CAPC V r o t o t y p .  - U s . r r 1 r l . h  ./ 

/ I  ---- p c k o t  . t r a c t m r o  d. .crlptlon.  
t e e  . t r u a  ~ s p r c k r t (  

r c h a r  a p r r k r r .  I/ p o l n t e r  to t h r  p a c k r t  -her by t -  
.PtYP-. 
*pl.nqth, 

/ I  p o i n t -  to t h o  p c k d  trp- bytr 
I1 p o l n t e r  t o  L 5 m  o f  p r c h t  l r n q t h  Wr-pir 

'Pd.t-, / /  p o i n t e r  t o  1.t b y t o  o f  pmcket d a t a  
.pchk.u-~ 

un.1qnad .hOrt 
/ I  p o i n t e r  t o  t h r  p r c k r t  c h . ~ k m m l  b y t r  

t-f m t r u c t  LGp.cketDmtm( 
mln t  I r c o r d . 1  / I  n u l b . r  of l a n e  r a c o r d .  ( - .mSP.pdat.(Ol ) 
v l n t  . f r a d o u n t )  / I  I r m a  c o u n t  f o r  l a n e  d a t a  ( - .WSP.pdat.( 11 ) 

t w f  a t m a t  Ulmn&.taRrcord( 
mch.r 1 m e t y p . l  
mchrr 

/ I  typ.  Of l a n o  t h l .  r e c o r d  1. f o r  
h e w 1  

"char  
I1 nulber f o r  t h e  Ian-'. W ( 0 .  . a551  

-char  
. d@c. l  I 1  n u l b r r  of d a t a - p o l n t  r-ord. 
.d&a-c, 

)  Ililand.t."-cord, 
I1 f1r.t d a t a - p o l n t  r e c o r d  

t  y p r d s t  . t m a t  ~ r t . Q o l n t l m o r d (  
uch.r ..lo", 
u.2h.r 

I 1  . d r t .  loc. t l0" 
-Ylo" l  

I  l l i & t a . o l n t l c o r d l  
I /  y  d a t a  1oc.t Ion  

((uch.r)OxOl) 
((och.r)O.O2) 

I /  -1.0. t o  t h o  Us 

( ( u c h a r ) O r 0 3 )  
((uchmr)Oxo4) 

( ( ~ c h m ~ ) O 1 0 5 )  

( ( ~ c h . r ) O ~ l l )  
( ( u c h . ~ ) O x 9 I )  

I f  l r n r  qeo-. f r o m  t h r  U S  

E r r  uch-r L I s ~ O u t q o l n p m u f t  IUI o - m s  I I 
E r r  l o n g  US~Wt_""*yte.l 
Err uchmr U S ~ l l l c o l n q _ m u f f l  WAX I ~ Y ~ K S  1 8  
e r r  l m q  I I I S _ L - ~ ~ . ~ . , ~ ~ ,  
Lrr qlobrlLa"r(ie-try qm, 

11 r l t i p l y  i n m - l n p  ( o r  d i r i d o  o u t q o l n j )  rmlu-. by  t h s u  
Md h ~ O U - C - A ~  
Md h 

0.01000 
.I'ICU-FO*_GAI. 

/ I  0 .01  d r g r a . / b l t  

Mri I n 0  
0.01000 

nroc-cca-mrm o . ~ o o o o  
/ I  0 . 0 1  d r g r r a m f b l t  
/ I  0.05 o/ . /bl t  

I n t  T r m . - l t ~ n v r n (  f t y p r  e p l t c h ,  f t y p  . r o l l ,  f t y p  . v r l o o .  uchmr rm 1, 
I n t  R c r l r r l r n & r o a t r y (  r o l d  1, 
1 n t  ..r.eUSP.ck&, boo1  l n l t  I .  
l n t  

. -  - - - -  
s . n d u s P . c k e t (  l n t  pck.tI&, u c h r ~  . d a t a  ) I  

- id U p d . t s L l n . G e n d r y (  I n t  dmtmst.  u l n t  i l o c ,  I n t  y l o c  ) I  
- id GI-USCrflext(  I n t  U S o r r ,  c h a r  . t x t  ) I  

/ I  tr-por." p r o t o t -  
-Id rmkrUsda t . (  r o l d  ), 

l s "dLt  

I .  U P C  C m t r o l l e r  Coda#  I l l s  Tool.  D l a l o q  
I .  

. / 
.I 

/ *  h.t Updat.8 5 march 1995  ( G J )  
I. / 

-1 .............................................. 
U S  1. a l l r r  m d  re.pondlnq 

/I  i n p l t  r e f  n u 0  of U S  p o r t .  
/ I  o u t p u t  r d  nu- of  U S  port 

/ I  .t.t". byte. 

ChPC Prototype control code Listing 





I y r o " t I " I 0  
I y r o n t  I n f o  

Iy~trmt(fWlndaP,~..~rontInfo) I / I  q r t  t h -  c m r r m t  w l n d a  f o n t  i n f o r v t l o n  

"rr.oltI',f~. f r n t  - -moo, 
m r r r m t  I.fO..i.- - 9)  
. ~ r m t l . f o . f a ~ ~  - 0 1  
m r r o l t l n f o . a d r  - m r o c o p  1  
mysrt.mt(fw1ndaP.n-ronrlnfo) I / I  "t t h o  m a  w l n d a  f o n t  I n f o r u t i o n  

m p r l n t f  ( t h r o u t ,  - U S  1. .lirr I d  -, ( I n t )  I-.. 1 . A l i v r  
I a r l b (  STA'NS_XlDC, STAlUS-YUX + O.STA.IVS_IICI ) I  
Drm~trInq(Ct~P.tr(thaut))~ P t d . t r (  ( u c h m r . ) t h a ~ t ) ~  

w o l d  D u m p U I S m x t D a t a (  I n t  ad- 1 I  
v o i d  ~ u m p l n S ' ~ s x t ~ a t a (  I n t  loda ) (  

.trt lc r I I L  ' f n T O . . f N T I t  
i n t  1, 

. p r i n t f (  t h r o u t ,  - c a l l b r r t d  S O 1 1  -, ( u i n t )  1 - . c a l l b r m t d  
I w r l b (  S T A l U S  I=, S T A l V - Y I B C  + l * S T A N S  I I C l  ) )  
D r m r S t r l n q ( c t o F . t r ( t h ~ ~ t )  ) I  s t d l . t r (  ( u c h . r i ) t h e u t  ) I  

. p r l n t f (  t h - u t ,  - C r r r .  W r l t h  S O 1 1  -, ( u l m t )  I r . . c - r a l a a l t h  ), 
I w r l b (  S T A ' N s _ u a c ,  s T A m s _ Y U X  + 3 * s T A m s _ I I C R  ) I  
D r m r s t r h q ( C t o P . t r ( t h - ~ t ) ) ~  . t d . t r ( ( u c h . r . ) t h - u t l )  

m p r i n t f  ( t h o o u t ,  - r r - r  C o u n t  a 0 1 1  -, ( u i n t )  1 m . f  r a w o u n t  ) I  
I a r l b (  S T A l U S _ U L K ,  STANS-YLOC + 4.STAIVS_IICI  ) I  
Dr.rstrinq(ctoPmtr(thaut))j r t d . t r (  ( u c h a r . ) t h a u t ) s  

m p r l n t f  ( t h - t ,  -Us E r r o r  S O 1 1  ', ( u i n t )  1 r m . l - m ~ r r o r  ), 
M a r l a (  STATUS--, S T A l W S - m  + 3.STAIVS I I C I  ) )  
Dr.rStrinq(CtoP.tr(thamt))) . t d . t r ( ( u c h a r - l t h m u t ) ,  

. p r i n t f (  t h r o u t .  -nun nod. S O 1 1  -, ( u i n t )  Im..oplods 1 )  
I w r l a (  STA'NS_IIIIE,  STAIUS-YIBC + b.STAIVS_IMCl ) I  
Dr.6trhq(ctoP.tr(th-t))# . t o C m t r (  ( u c h . r . ) t h s o u t ) ,  

0"rnd.f STAUS-ILDC 
&mid  STATUS-YIDC 
0"- S T A l U S _ I I I  

. w l t c h ( d e )  ( 
c..r I .  11 open f l l r  

f n m  - fopsn(-us  m . t  o ~ t o - , - ~ - ~ ,  
f n r l  - LO-(-US 7s.1 out I - , - ~ - ) ,  
f p r l n t f ( f R T O .  - ~ n \ t  l ~ \ t T y ~ ~ \ t m ~ t . \ t ( x , Y )  D-tm Polnt . .  .. . \ n - ) ,  
f p r l n t f ( f n T l ,  - r n \ t r r ) \ t ~ ~ ~ \ t ~ y l . \ t ( x , r )  D a t a  r o l n t . . .  . . \ n u ) ,  
b r a h l  

m r ~ t r o n t ( f w l n ~ . . m ~ ~ m t I ~ f o ) ~  I /  .at t h o  n.r r i n d -  f o n t  l n f o r v t i o n  
I 
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d u  - ADIEU ~ C ~ ~ C A P C I . + ~ I ~ L ~ J .  ma~o._inprt( (..*cAPc~.&LI_L~) 
,LDCh.n, .err I 1, 

dRF - ADIEU ( hcxlCAPCl.defl~Ur), analq-Input( (..+CAPCI.&fI-UP) 
>Nkh.", 'err ) )I 

uRF - ADIEU ( h c r ( c ~ ~ c 1 . u ~ ~ ~ ) .  anmlq-lnput ( (a-WAPCI .m-Rr)-,ADchmn, 
&err 1 11 

u u  - ADIEU ( hcr(CAPC1.u LF). analq-Input( (n.WAPCI.u_Lr)->ADchu,, 
*err 11 

ralocvrl - 0.5 (unr + uLF), 
p i t c h ~ a ~  - 5.0~-4 . .ID . ( ~ L I  - u + d~ - a r )  / Wbl 
rollVal - S.OE-4 . 120 . ( (dRr - dLF) / (1.167 -1) (1.0 + 

nolllrtlol) + 
( d m  - d u )  / 

(1.104 . -2) (1.0 + UollhtloZ))~ 

rr1ocv.1 - 0.5 (ulr + "LI)l 
pltehvrl - 5.m-4 RID (a - dLr + dun - dnr) / w b ~  
rollv.l - 5.0~-4 . RID . ( (dal - u )  1 (1.167 -1) - (1.0 + nollnmtlol) + 

( d m  - a) / (1.104 . W l )  . (I.@ .ollurtlo2))l 

C... LEDpty.. 
C g t  SlrlrMulf ( lmm.refln )I a,,l, 

hlunm. 
I /  iK option k-y hrld. do about lhx. el- do 
.tmpy( r m n r g ,  @ IOW. (click -.a - (~nlo~;~;.~:~? um.Ctr1l.q ) - 21 
run0.h C I1 
IK I(btlomIr.llrldl I 

I /  ch-k for mmrlnq datm fll- 
If (wsarrr-0) 

If IdoSmrel DulpUISl-.tDltm( 0 I D  

If (ShlftKeyleld) ( 
runDeL.y .- 41 
.trcpy( run-.q, 'Runnln. 1 112 nr a u r a  to .top)... 

1 
) 
USNer.aq&Serran( rvnlq )I 

I /  chrok Kor .erlnq drtm Kllr 
IK ( G~cmtrolrrata(fWindaP,ksrreUSmrtCB) ) (  

doYv- - 1) 
Dumpush.tata( 1 )I 

I/ check for abort 
GstmrtCvsnt (aeryErant. sqEvsnt ) I  

if ( OptlmI-yleld ) (  
GItDblqStrlnq(fWlndorP,kPltchET,~tr)l ~ d ~ K o p l ( . t r l n q V a l , p S t t ) )  

oitchvrl - atoll mtrinaV.1 l r  
cams kWmtRaplyC31 

~ q l e C o n t r o l ( f * l n d a P , k ~ " t I I ~ I l C 3 ) ,  
EqtySsrlalBuff ( I-...-# In )s 
brssk, 

.I-( 
ftyp. dLL,dnU,dLs,dRF.ull~,uLs# 
char tlptrll0l) 

du - ADIEU ( hcrlCAPCl.+fl~UII, am.lq_Inprt( (a.*CAPCl.+fl-LR) 

dill ' ADIEU ( hCrlCAPCl.dsfl.ERl, .lulq_inpt( (am+CAPCl.defl_UR) 

C-C Prototype Control Code Listing 



I /  o h w k  f o r  r n r  r r r o r .  
I t  ( usrrr a 0 ) ( 

~ - s ~ r f i r t (  u s u r ,  rrm.9 ) I  
uSur..aqdmSorran( or-q ) I  

b 
I 1  mlrrr. updot- t h o  .tat-. 
usst.tumas&r-n( ) I  

11 ~ h ~ o k  f o r  d l m p b y  of out-qolnp b u f f r r  
I f  ( shorOut)  

u s o " t . u f f ~ S o l r m l  l l  

I /  o h w k  t o r  d1mpl.y of In-oomlnq b u f f r r  ( c l e r r  I f  n o t )  
It (.harm) ( 

I f  ( . h e  ) 
U(SLan6-Sormn ( ) I  

01" 
lnsrnnmffrahsor-m(  11 

ob.. WShol.Dlq I pub110 Dlod.IDlal 
I 
p r l r r t r a  

*-to .f SLat-, 

r o l d  DoXnl t ( In t l6  r-lD)l 
-id ~ o c l a r ( r o 1 d ) )  
m l d  D S l l l c t t v o I d l #  

v o i d  USWr.ug&nScr-( char . thotor t  ) I  
v o l d  IJlsst.tu.onscrren( v o i d  ) I  

v o l d  s u l f - r o n r r m m g i n - (  c h a r  -but ,  i n t  X I -  ) I  
v o i d  U(SlnBufferOnSalrm(  void  I1 
wold I J l S O m t s u f f r d h s c r m (  void  ) I  
void  I J l ~ n r c ; r o l o n s c r r m (  -Id ) #  

CAPC Prototype control  Code Listing 



Appendix E 

Computer code listing: 
Lane-Mark-Sensor (LMS) Software Code 





960  Part 4 . Re1 0 G: \LMS\APP\CAPC. SRC 

0 \ polyFORTH ISD-4 PolyForth Extansions glg ( 03 Apr 1994) 

1 \ "^OPTION copyright 1994 (C) by Forth, Inc 6 ERIM* 

2 

3 2 OPTION" CAPC Loads CAPC Source: 

4 

5 INSTALL CAPC-COM OMIT COMCLOCK 

6 INSTALL FRAMEGRABBER 

7 INSTALL CAMERA INSTALL INVERTED 

8 INSTALL DIAGNOSTICS OMIT IMGSEQ 

9 OMIT FAKEDATA 

10 

11 

12 

13 

14 

15 

961 Part 4 R e 1  1 G:\LMS\APP\CAPC.SRC 

0 TAPC Dlsplays these CAPC Emulator lnstructlons 

1 

2 

3  

4 

5 

6 

7 

8 

9 

10 

11 

12 

1 3  

14 

15 

962 Part 4 R e 1  2 G:\LMS\APP\CAPC. SRC 

0 ( CAPC Load Block glg 15 Feb 1995) 

1 - 1  +B H .  'CAPC . 'CAPC 

2 TIMERS LOAD 

3 5 +? LOAD ( TIMERS Background Task ) 

4 

5 ( +  FRAMEGRABBER PC1 LOAD MUTECH LOAD + I  

6 

7 1 +B LOAD 

8 60 +P LOAD 

9 [ +  DIAGNOSTICS 102 +P 108 +P THRU 

10 I +  CAMERA 114 +? 116 +P THRU ( Exposure Settlng ) 

11 117 +P lle +P THRU ( Fadlng Memory Fllter ) - 1  + !  

12 2 +B LOAD 

13 

1 4  

1 5  

ERIM Proprietary 29 Aug 1995 08:06 



963 Part 4- R e 1  3 G:\LMS\APP\CAPC. SRC 

0 ( CAPC L o a d  B l o c k  919 1 5  F e b  1 9 9 5 )  

1 

2 

3 [ +  CAPC-con 

4 

5 8 t P L O A D  ( UART F a c i l i t y  V a r i a b l e  ) 

6 9 + P  1 4  + P  THRV ( G e t p a c k e t ,  S e n d p a c k e t  ) 

7 6 +P W A D  ( OBUF ) 

8 15 t P  32 + P  THRU ( C o m m a n d s ,  D i s p l a y p a c k e t  ) 

9 

1 0  + I  

11 

1 2  

1 3  

1 4  

1 5  

964 Part 4 Re1 4 G:\LMS\APP\CAPC.SRC 

0 ( CAPC L o a d  B l o c k  9 1 9  1 5  F e b  1 9 9 5 )  

1 33 + P  36 +P THRU ( L a n e  G e o m e t r y  S t r u c t u r e  ) 

2 81 + P  8 9  + P  THRU ( L a n e  G e o m e t r y  E x t r a c t i o n  ) 

3 4 2  + P  LOAD ( T r a c k i n g  L o g i c  ) 

4 90  + P  101  +P THRU ( L a n e  G e o m e t r y  Extraction ) 

5 

6 37 + P  3 9  + P  THRU ( L a n e  G e o m e t r y  Processing ) 

7 

8 [ +  FAKEDATA 

9 4 2  I N  .\APP\CAPC-EM 45  IN ..\APP\CAPC-EM THRU 

l o  4 8  IN .\APP\CAPC-EM 49 IN ..\APP\CAPC-EM THRU ( L a n e  G e o )  

11 + I  

1 2  5 0  + P  5 3  +P THRU ( M a i n L o o p  ) 

1 3  111 +P 1 1 3  +P THRU ( CAPC I n i t  ) 

1 4  4 7  +P 4 9  + P  THRU ( I n l t l a l l z a t l o n  ) 

1 5  

965 Part 4 R e 1  5 G:\LMS\APP\CAPC. SRC 

0 ( TIMERS I n i t i a l l z a t l o n  g l g  1 8  Mar  1554 : 

2 ( u n  s r l  

3 1 1 2  0 1 C 2 4  5 1 2  BACKGROUND WATCHER 

4 WATCHER BUILD 

5 

5 WATCHING WATCHER WATCHES,  

7 

8 . -WATCHING WATCHER HALT , 

9 

1 0  0 I N I T I A L I Z E S  WATCHING 

ERIM Proprietary 29 Aug 1995 08:06 

T h e  WATCHER b a c k g r o u n d  t a s k  m o n i t o r s  t h e  t i m e r s .  T h e  TIMERS 

u t i l i t y  u s e s  CATCH w h i c h  r e q u i r e s  t h e  USER v a r l a b l e  CATCHER 

T h e  TIMERS u t l l l t y  c a n n o t  b e  TURNKEY o r  TARGET c o m p i l e d  l n  I t s  

p r e s e n t  s t a t e  



966 Part 4 .  Re1 6 G:\LMS\APP\CAPC.SRC 

0  ( OBUF 919 0 3  Mar 1 9 9 5 )  

1 

2 : ? f i n  NEW-IN @ O L D - I N  @ - DUP 

3 O< I F  MAX-IN @ 1 +  + THEN ; 

4 

5 : . I B U F  B U F - I N  O L D - I N  @ + ?:in DUMP ; 

6 

7 : OBUF 0  DUP O L D - I N  ! NEW-IN ! ; 

8 

9 : ' IBUP ?:in ?DUP I F  COUNTER 

1 0  B E G I N  DUP uKEY . 5  S P A C E S  T I M E R  AGAIN 

11 THEN DROP OBUF ; 

12 : ' I B U F S  B E G I N  ' I B U F  ?ESC AGAIN ; 

1 3  

1 4  

15 

967 Part 4 Re1 7 G:\LMS\APP\CAPC.SRC 

968 Part 4 Re1 8 G:\LMS\APP\CAPC.SRC 

0 ( UART Access Control  g l g  0 1  A p r  1 9 9 4 )  

1 F A C I L I T Y  UART 

L 

3 IU UART GET U ]  UART RELEASE , 

UART i s  t h e  f a c i l i t y  v a r i a b l e  f o r  t h e  UART rece iver  

I t  1s  used t o  sequence t ask  execution between t h e  OPERATOR 

t a sk  and the  REMOTE ( R S - 2 3 2 )  t a sk  

4 ' x t  i s  an execut ion token used by t h e  REMOTE task I t s  va lue  

5 FREE ( a - : 0 SWAP i s  s e t  by t h e  OPERATOR t a sk  

6 

7 VARIABLE ' x t  VARIABLE x T I M E  x T I M E  c o n t a l n s  t h e  execut ion tlme o f  t h e  vectored ' x t  behavlor 

8 

9 r e m o t e E X E C U T E  It 1 s  e s s e n t i a l  t h a t  the  REMOTE t a sk  GRAB t h e  f a c l l l t y  

1 0  SECOND ACTIVATE UART GRAB COUNTER >R ' x t  >EXECUTE v a r i a b l e  and not f l r s t  t r a v e r s e  t h e  multlprograrning loop a s  

11 COUNTER R, - x T I M E  U i  NOD GET does 

1 2  

1 2  

1 4  

1 5  

ERIM Proprietary 29 Aug 1995 08:06 



969 Part 4 .  Re1 9 G:\LMS\APP\CAPC.SRC 

0 ( "KEY, uEMIT, u?KEY g l g  07 Mar 1995) 

1 

2 \ 54 +P 55 +P THRU ( Diagnost ic  defs ) 

3 56 +P WAD ( UEMIT ) 

A 

5 : uKEY KEY ; 

6 

7 : u?KEY ?KEY ; 

8 

9 

10 

11 

12 

13 

14 

15 

9 7 0  Part 4 Re1 10 G:\LMS\APP\CAPC.SRC 

0 ( pKEY, pEMIT glg 0 3  Mar 1995) 

1 HEX 

2 VARIABLE dbl 

3 

4 : pKEY uKEY dbl @ IF 

5 ( ?.A - NOT If bad packet EXIT ) 

6 DROP 0 dbl ! UKEY 

7 ELSE DUP AA - IF 1 d b l  THEN 

0 THEN . 
9 

10 : pEMIT ( c - ) DUP AA - IF AA uEMIT THEN uEMIT . 
11 

12 

1 3  

1 4  

15 

971 Part 4 Re1 11 G:\LMS\APP\CAPC.SRC 

0 ( [sync], .Len g l g  15 Feb 1995) 

1 HEX 

2 VARIABLE PacketBuffer 401 ALLOT VARIABLE PacketLen 

3 VARIABLE crcError VARIABLE Badpacket 

I 

5 [sync] ( crnd ) BEGIN u?KEY 'DUP IF AA - IF 

6 uKEi DUP AA - IF DROP ELSE EXIT THEN THEN THEN 

7 AGAIN 

8 

9 dLen ( crc - crc n ) 0 dbl 1 pKEY pKEY OVER > /  OVEP + 

10 0 MAX 400 MIN >R + + R >  , 

11 

i L  >PB ( a I PacnetBuffel PacketLen - 
13 

14 

? 5 

ERIM Proprietary 29 ~ u g  1995 08:06 



972 Part 4 - Re1 12 G : \LMS\APP\CAPC. SRC 

0 ( Getpacket glg 15 Feb 1995) 

1 HEX 

2 : GetPacket ( - cmd ) [sync] DOP AA + ( crc ) 

3 @Len DUP PacketLen ! 

4 ?DUP IF 0 DO pKEY DUP 

5 

6 PacketBuffer I + C! + 

7 LOOP 

8 THEN 

9 

10 FF AND pKEY DUP >PB C! 

11 - NOT IF 1 crcError t !  DROP AA THEN 

12 dbl @ IF uKEY DROP THEN ; 

13 

14 

15 

9 7 3  Part 4 Re1 13 G:\LMS\APP\CAPC. SRC 

0 ( Listen, ?Packet 919 07 Mar 1995) 

1 VARIABLE PacketReady VARIABLE PacketType 

2 : (Listen) UART GRAB GetPacket PacketType ! 

3 1 PacketReady ! U] ; 

4 

5 : listen UART @ NOT IF 

6 SECOND ACTIVATE (Listen) STOP THEN ; 

7 : Listen listen ; 

8 

9 . ?Packet ( - cmd ) PacketReady @ IF 0 PacketReady ! 

10 PacketType C ELSE 0 THEN ; 

11 

12 . -Listen SECOND HALT UART FREE : 

13 

14 

1 5  

9 7 4  Part 4 Re1 14 G:\LMS\APP\CAPC.SRC 

0 ( SendPacket glg 16 Feb 1995) 

1 HEX VARIABLE SendStruct CELL ALLOT 

2 pSend OVER CONSTANT + DOES> @ SendStruct t 

3 0 1 pSend SendCmd 2 pSend SendLen CELL pSend SendAddr 

4 1 psend SendCRC CONSTANT ISendStructl 

5 [HI ( crc n - crc ) DUP >c DUP pEMIT t DUP pEMIT + 

6 [ B ]  ( crc c - crc ) DUP pEMIT + , 

7 

8 (SendPacket) ( - ) AA DUP uEMIT ( crc ) 

9 SendCmd Ctl DUP uEMIT + SendLen He [HI SendLen H 

10 'DUP IF 0 DO SendAddr @ I + C' [B] LOOP THEN 

11 DUP SendCRC C '  pEMIT , 

12 

13 SendPacket ( cmd a n - ) SendLen H t  SendAddr ' SendCmd C 

14 (SendPacket) 

15 

ERIM Proprietary 29 Aug 1995 08:06 



97 5 Part 4 . Re1 15 G : \LMS\APP\CAPC . SRC 
0 ( Command Vectors glg 15 Fcb 1995) 

1 HEX 

2 VARIABLE U C W S  3FC ALLOT 

3 

4 : uInit U C W S  400 ERASE ; 

5 0 INITIALIZES uInit 

6 

7 : :UCMD ( n) : LAST @ @ CFA 4+ SWAP 4 *  UCMDS + ! ; 

8 

9 : ExccutcCmd ( n ) 4.  U C W S  + @EXECUTE ; 

10 

11 

12 

13 

14 

15 

976 Part 4 Re1 16 G:\LMS\APP\CAPC.SRC 

0 ( Misc. Packet Commands glg 15 Feb 1995) 

1 HEX 

2 AA :UCMD bell 1 Badpacket t !  BELL ; 

3 

4 07 :UCMD Ptype PacketBuffcr PacketLen F TYPE . 
5 

6 

7 

8 

9 

10 

11 

12 

13 

1 4  

1 5  

977 Part 4 Re1 17 G:\LMS\APP\CAPC. SRC 
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978 Part 4 -  Re1 18 G:\LMS\APP\CAPC.SRC 

0 ( STATUS glg 03 Mar 1995) 

1 HEX 

2 VARIABLE LXSstatus 2 ALLOT 

3 

4 : pStat OVER CONSTANT + W E S >  @ Lnsstatus + ; 

5 

6 0 1 pStat ?Initialized 

7 1 pStat ?Calibrated 

8 1 pStat ?CameraReady 

9 1 pstat Framecount 

10 1 pStat Error 

11 1 pStat LMSmode CONSTANT ILMSstatusI 

12 

13 

14 

15 

979  Part 4 Re1 19 G:\LMS\APP\CAPC .SRC 

0 ( PROBE glg 03 Mar 1995) 

1 HEX 

2 

3 03 .UCMD status 81 LMSstatus ILMSstatusl Sendpacket ; 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

1 5  

980 Part 4 R e 1  20 G:\LMS\APP\CAPC.SRC 
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981 Part 4 .  Re1 21 G:\LMS\APP\CAPC.SRC 

0 ( D e f a u l t  C l o c k i n g  9 1 9  07 Mar 1 9 9 5 )  

1 

2 VARIABLE A r m e d  

3 : ? F r a m e c l o c k  ( - f ) A r m e d  @ ; 

4 

5 [ -  FRAMEGRABBER [ -  COMCLOCK 

6 VARIABLE C l o c k P e r i o d  

7 

8 : C l o c k i n g  BEGIN C l o c k P e r i o d  @ MS 

9 LMSmode C @  I F  1 F r a m e C o u n t  C + !  1 A r m e d  ! THEN AGAIN ; 

1 0  

11 : C l o c k I n i t  1 0 0  C l o c k P e r i o d  ! ; 

1 2  0 I N I T I A L I Z E S  C l o c k I n i t  

1 3  

1 4  - 1  - 1  

1 5  

9 8 2  Part 4 Re1 22 G:\LMS\APP\CAPC. SRC 

0 ( COM P o r t  F r a m e c l o c k  15  F e b  1 9 9 5 )  

1 HEX 

2 I+ COMCLCCK 

3 

4 . ( ? F r a m e c l o c k )  ( - f ) MSR INPUT 11 AND .ll XOR NOT 

5 

6 . C l o c k i n g  CoM2 MSR INPUT DROP 

7 BEGIN ( ? F r a m e c l o c k )  L M S m o d e C 8  AND I F  -RTS 

8 1 F r a m e c o u n t  C t l  1 A r m e d  THEN PAUSE AGAIN ; 

9 + I  
1 0  

11 . t R T S  MCR INPUT 2 OR MCR OUTPUT ; 

1 2  . -RTS MCR INPUT FD AND MCR OUTPUT . 
1 3  . -RTS MCR INPUT 2 XOR MCR OUTPUT . 
1 4  

1 5  

983 Part 4 Re1 23 G:\LMS\APP\CAPC.SRC 

O ( F r a m e G r a b b e r  C l o c k l n g  gig 07 Mar 1 9 9 5 )  

1 

2 ( +  FRAMEGRABBER 

3 

4 : C l o c k i n g  ( c a p t u r e  BEGIN c a p t u r e )  LMSmode C9 I F  

5 -RTS 1 F r a m e C o u n t  C + '  1 A r m e d  THEN ( c a p t u r e  AGAIN , 

6 +! 
7 

8 

9 

1 0  

11 

1 2  

1 3  

14 

1 5  
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984 Part 4 - R e 1  24 G : \LMS\APP\CAPC. SRC 

0 ( FrameClock BACKGROUND t a s k  glg 07 Mar 1995)  

1 

2 ( u n  s r )  

3 :USER 0 512 96 BACKGROUND FrameClock 

4 FrameClock BUILD 

5 

6 : tFrameClock FrameClock ACTIVATE Clocking ; 

7 

8 : -Frameclock FrameClock HALT ; 

9 

1 0  

11 

12  

1 3  

1 4  

1 5  

985 Part 4 Re1 25 G:\LMS\APP\CAPC. SRC 

0 ( Disp lay  Packet  g i g  17 Feb 1995)  

1 

2 : Disp laypacke t  ( cmd - cmd ) Ct 2@ 2>R 

3 CORNER @ >R TOP 2@ 2>R [Corner]  2C@ CORNER 2C! 0 .  TOP 2C! 

4 4 0 TAB . "  Packet  Type " DUP 4 .R CR 

5 ( Packe tBuf fe r  PacketLen @ I +  DUMP ) 

6 2R> TOP 2 !  RZ CORNER ! 2RZ Ct 2 !  ; 

7 

8 . .Framecount C f  2@ 2>R 

9 CORNER c TOP 2 ?  [Corne r ]  2C@ CORNER 2C! 0 .  TOP 2C! 

10 0 0 TAB " Frame Count " Framecount C@ 4 . R  21 SPACES 

11 TOP 2 '  CORNER ' 2R> C? 2! . 
12  

13 

14 

15 

986 Part 4 Re1 26 G:\LMS\APP\CAPC.SRC 

Should a pendlng c lock  t r a n s i t i o n  be processed '  

Should Armed v a r l a b l e  be zeroed here '  
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9 87 Part 4 - Re1 27 G: \LMS\APP\CAPC. SRC 

0 ( START, STOP qlg 06 Mar 1 9 9 5 )  

1 HEX 

2  VARIABLE ' s t a r t  VARIABLE ' s t o p  

3 

4 04 :UCMD StartLMS 

5  0 Framecount C! ' s t a r t  @EXECUTE Should a pending clock t r a n s i t i o n  be processed? 

6 1 LMSmode C! +Frameclock ; Should Armed v a r i a b l e  be zeroed here? 

7 

8 05 :UCMD StopLMS ' s top  @EXECUTE 0 LMSmode C! -Frameclock 

9 0 ' I n i t i a l i z e d  C! ; 

1 0  

11 

1 2  

13 

14 

1 5  

988 Part 4 Re1 28 G:\LMS\APP\CAPC.SRC 

0 ( CALIBRATE glg 1 6  Feb 1 9 9 5 )  

1 HEX 

2 

3 02 .UCMD c a l i b r a t e  1 'Calibrated C !  ; 

4 

5 

6 

7 

8 

9 

1 0  

11 

1 r 
1 3  

14 

15 

989 P a r t  4 Re1 29 G:\LMS\APP\CAPC.SRC 
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990 Part 4 - Re1 30 G : \LMS\APP\CAPC . SRC 
0 ( P i t c h  b R o l l  g l g  07 Mar 1 9 9 5 )  

1 

2 VARIABLE PbRdata 1 ALLOT 

3 

4 : p 6 r I t e m  OVER CONSTANT + DOES> @ PhRdata  + ; 

5 

6 0 1 p b r I t e m  PbRcount 

7 2 p b r I t e m  P i t c h  

8 2 p b r I t e m  R o l l  

9 

1 0  CONSTANT IPLRdatal  

11 

1 2  

1 3  

14 

1 5  

P i t c h  a n d  R o l l  u n i t s  a r e  0 . 0 1  d e g r e e  

991 Part 4 Re1 31 G:\LMS\APP\CAPC.SRC 

.PbR , @ P i t c b R a d  g l g  1 2  May 1 9 9 5 )  P i t c h  a n d  r o l l  i n  100  t h s  o f  a d e g r e e  a r e  c o n v e r t e d  t o  

m i c r o r a d i a n s  u s l n g  a r a t i o n a l  a p p r o x i m a t i o n  f o r  PI /180 .  

.PLR Ct  2@ 

CORNER P TOP 2P [ C o r n e r ]  2C@ CORNER 2C! 0 .  TOP 2C! 

P i t c h  H@ 1 0 TAB . '  P i t c h  " 1 0  .R  

R o l l  H8 CR . ' R o l l  " 1 0  .R 

PLRcount C@ CR . "  PSR c o u n t  " l o  .R 

TOP 2 !  CORNER ! C# 2 !  ; 

@ P i t c b R a d  ( - n ) P i t c h  H@ 698131701 4000000 */ ; 

@ R o l l > R a d  ( - n ) R o l l  H$ 698131701 4000000 '/ ; 

LMSdata Framecount PLR , 

992 Part 4 Re1 32 G:\LMS\APP\CAPC.SRC 

0 ( P i t c h  & R o l l  g l g  07 Mar 1 9 9 5 )  L l v e  p l t c h  a n d  r o l l  d a t a  rs s t o r e d  o n l y  l f  t h e  camera  1 s  e n a b l e d  

1 

2 CODE ><H" a - h )  W POP h W ) 0 MOV 

3 0 h l  0 XCHG h 0 1 0 MOVSX 0 PUSH NEXT 

4 

5 HEX 

6 

7 10 UCKD p s r  [ +  CAMERA 

8 P a c k e t B u f f e r  C@ PLRcount CI 

9 P a c k e t B u f f e r  l+ ><H@ P l t c h  HI 

1 C P a c k e t B u f f e r  3 + ><Hta R o l l  H I  PLR + I  . 
I1 

12 

1 3  

1 4  

1 5  
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993  Part 4 -  Re1 33 G:\LMS\APP\CAPC.SRC 

0 ( LG Structure glg 10 Mar 1995) 

1 VARIABLE 'LgBuffer 

2 

3 : pLg OVER CONSTANT + DOES> @ 'LgBuffer @ + ; 

4 

5 0 1 pLg LgFrameCount 1 pLg tLaneRecords 

6 0 pLg ldr CONSTANT ILgHeaderl 

7 

8 VARIABLE ldrPTR 

9 : pLDR OVER CONSTANT + DOES> @ 1drPTR @ + ldr + ; 

10 

11 0 1 pLDR LaneType 1 pLDR LaneID 

12 1 ~ L D R  :DataPalrs 0 pLDR Datapairs 

1 3  CONSTANT ILDRheaderl 

1 4  

15 

9 9 4  P a r t  4 Re1 34 G:\LMS\APP\CAPC.SRC 

0 ( LG Buffers glg 10 Mar 1995) The lane geometry buffer 1s slzed for 256 data palrs 

1 1025 CONSTANT ILgBufferl 

2 VARIABLE (LgBuffer) ILgBufferI ALLOT Currently a max of 16 data palrs per lane are produced. 

3 

4 LgBuffer ( n  - a )  2 M O D  The number of palrs 1s llmlted by the RS-232 transfer time. 

5 [ ILgBufferl 2/ ] LITERAL * (LgBuffer) + , 

6 

7 VARIABLE (LG) CELL ALLOT 

8 

9 LgLen ( n ) 2 M O D  4 .  (LG) + 

10 

11 #Buffer Framecount C :  01 AND . 
12 

13 DataLen [ iLgBuffer ILqHeaderI - ILDRheaderI - ] LITERAL . 
14 

15 

995 Part 4 Re1 3 5  G:\LMS\APP\CAPC.SRC 

0 ( LgBuffer Inlt g l g  16 Mar 1995) 

2 LgInlt 

3 0 LaBuffer ILqBufferI ERASE 

4 0 LgLen 2 CELLS ERASE 

5 #Buffer LgBuffer 'LgBuffer 

6 ILgHeader (Buffer LgLen 

7 

8 NewBuffer :Buffer LgBuffer 'LgBuffer , 

9 

10 

11 

1:: 

13 

14 

1 5  
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996 Par t  4 - Re1 36 G :\LMS\APP\CAPC. SRC 

0 ( # !  g i g  13 Mar 1 9 9 5 )  

1 

2 VARIABLE PalrPTR 

3 

4 : $ !  ( n ) >< PairPTR @ SWAP OVER D a t a P a i r s  + H! 

5 2+  1023 AND PairPTR ! ; 

6 

7 : ! P a i r  ( c r o s s  down ) :! :! ; 

8 

9 : @ P a i r  ( - c r o s s  down ) Pai rPTR @ D a t a P a i r s  + 2 -  DUP 

1 0  ><He SWAP 2 -  ><He ; 

11 

1 2  

13 

14 

1 5  

997 Part 4 Re1 37 G:\LMS\APP\CAPC.SRC 

0 ( ELaneData g l g  1 3  Mar 1 9 9 5 )  

1 [ -  FAKEDATA 

2 : @ L e f t L a n e D a t a  

3 0 PalrPTR ! 

4 [ t  FRAMEGRABBER GrabTimeout  @ NOT I F  t ]  

5 FindLef  t 

6 [ t  FRAMEGRABBER THEN + I  

7 PalrPTR @ 4 /  t D a t a P a i r s  C! ; 

8 : @RlghtLaneData  

9 0 PalrPTR ! 

1 0  [ t  FRRMEGRABBER GrabTimeout  I! NOT I F  t ]  

11 F l n d R l g h t  

1 2  [ t  FRAMEGRABBER THEN t ]  

1 3  PalrFTR 4 /  : D a t a P a l r s  C!  ; 

14 - 1  

1 5  

998 Part 4 Re1 38 G:\LMS\APP\CAPC.SRC 

0 ( GetLaneData g l g  16  Feb  1 9 9 5 )  

1 VARIABLE ( R l g h t L a n e T y p e l  VARIABLE ( L e f t L a n e T y p e )  

2 ( -  FAKEDATA 

3 GetLaneDara 0 ldrPTR 0 t L a n e R e c o r d s  C 1  

4 Framecount C Q  LgFrarneCount Cl 

5 [ R l g h t L a n e T g p e ]  U a n e T y p e  Ci 0 LaneID C 1  

6 ( -RTS ) @ R l g h t L a n e D a t a  

7 PalrPTR e 'DUP I F  ILDRheaderl t ld rPTR t 1  

8 1 3LaneRecords  C t I  THEN 

9 ! L e f t L a n e T y p e l  LaneType CI 1 LaneID C 1  

1 0  ( -RTS ) e L e f t L a n e D a t a  

11 PalrPTR 'DUP I F  ILDRheaderl + ld rPTR t 1  

1 2  1 :LaneRecords C t l  THEN 

1 3  

14 I 

15  
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999 Part 4 - Re1 39 G:\LMS\APP\CAPC.SRC 

0 ( Process Lane Geometry glg 16 Feb 1995) 

1 HEX 

2 \ : ProcessLG ; 

3 

4 : PKOCeSSLG 

5 GetLaneData 

6 ( -RTS ) 

7 ldrPTR @ ILqHeaderl + #Buffer LgLen ! ; 

8 

9 

10 

11 

12 

13 

14 

15 

1000 P a r t  4 Re1 40 G:\LMS\APP\CAPC.SRC 

1001 Part 4 R e 1  41 G:\LMS\APP\CAPC.SRC 
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1 0 0 2  Part 4 - Re1 42 G : \LMS\APP\CAPC . SRC 
0 ( Search  Geometry Rese t  g l 9  10 Aug 1995) 

1 

2 VARIABLE [NearTracking]  

3 

4 : RG 0 tanHeading ! Lanewidth @ 2 /  LatDev ! ; 

5 

6 : ?NearTracking [NearTrackingJ  @ ?DUP I F  1- 

7 [NearTracking]  ! 

8 ELSE RG THEN ; 

9 

10 

11 

12 

13 

14 

15 

1003 Part 4 Re1 43 G :  \LMS\APP\CAPC. SRC 

0 ( Search  Geometry FteLet 919 1 0  Aug 1995) 

1 

2 VARIABLE [Fa rTrack ing ]  

3  

4 

5 : 'FarTracking (Fa rTrack ing ]  @ ?DUP I F  1- [Fa rTrack ing ]  ! 

6 ELSE ZERO-Deltas THEN ; 

7 

8 . ?Tracking ?NearTracklng ?FarTracking ; 

9 

10 

11  

1 2  

13 

1 4  

15 

1004 Part 4 Re1 44 G:\LMS\APP\CAPC. SRC 
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10 0 5 Part 4 - R e 1  4 5  G : \LMS\APP\CAPC . SRC 

1006 Part 4 Re1 46 G:\LMS\APP\CAPC. SRC 

1007 Part 4 Re1 47 G:\LMS\APP\CAPC.SRC 

0 ( LMS Inltlallzatlon 17 Feb 1995) 

InltLMS -L;sten -FrameClock 

PacketBuffer 400 ERASE 

PSRdata IPSRdatal ERASE 

0 crcError ' 0 Badpacket 

LMSstatus ILMSstatus ERASE 

LgInlt ( Assumes Framecounter zeroed ) 

COM2 MSR INPUT DROP OBUF 

I+ FAKEDATA 0 >PTR ' + I  

[ +  CAMERA 1600 thSEC t )  

'star: IS SetupLMS 

testprocess IS 'Tracking . 

C INITIALIZES InltLMS 
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1 0  0 8 Part 4 - Re1 4 8 G : \LMS\APP\CAPC . SRC 

0 ( LMS INIT 1 7  Feb 1995)  

1 

2 0 1  :UCND i n i t i a l i z e  In i tLHS 1 ? I n i t i a l i z e d  C !  ; 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

1009 P a r t  4 Re1 49 G:\LMS\APP\CAPC.SRC 

1010 Part 4 Re1 50 G:\LMS\APP\CAPC.SRC 

0 ( S e n d e r  TERMINAL t a s k  g l g  0 9  Mar 1 9 9 5 )  

1 ( p e r  dev  n  ) 

2 \ ' BIOS DEVICE TASK-SIZE TERMINAL S e n d e r  S e n d e r  CONSTRUC 

3 H E X  

4 (SendLG) 

5 9 1  # B u f f e r  1+ DUP LgBuffer  SWAP LgLen l J  S e n d p a c k e t  

6 

7 \ SendLG S e n d e r  ACTIVATE (SendLG) STOP . RECOVER 

8 

9 SendLG (SendLG) . 
1 0  

11 

1 2  

1 3  

14 

1 5  

ERIM Proprietary 29 Aug 1995 08:07 



1 0 1 1  Part 4 -  Re1 51 G:\LMS\APP\CAPC.SRC 

0 ( Main TERMINAL task glg 09 Mar 1995) 

1 ( per dev n ) 

2 ' SVGA-GFAPHICS 

3 DEVICE @ TASK-SIZE TERMINAL Main Main CONSTRUCT 

4 

5 'TYPE @ Main 'TYPE HIS ! 

6 

7 

0 

9 

10 

11 

12 

13 

14 

15 

1012 Part 4 R e 1  52 G:\LMS\APP\CAPC.SRC 

0 ( BusyLoop glg 15 Feb 1995) 

1 

2 VARIABLE 'testprocess VARIABLE 'LMSprocess VARIABLE 'LMSsend 

3 

4 . BusyLoop Listen 

5 

6 ?FrameClock IF [t FRAMEGRABBER ?Timeout t )  

7 NewBuffer 'LMSsend @EXECUTE 

8 

9 ( +  DIAGNOSTICS @IMAGE IMAGE 'testprocess @EXECUTE + I  

10 

11 'LMSprocess @EXECUTE ( .Framecount ) 0 Armed 1 THEN 

12 

13 ?Packet ?CUP IF DlsplayPacket ExecuteCmd THEN . 
14 

15 

1013 Part 4 Re1 53 G:\LMS\APP\CAPC.SRC 

C ( MalnLoop glg 15 Feb 1995) 

I 

2 MalnLoop UART FREE OBUF -RTS 

3 'Half IF Halfscale 0 50 [Corner] 2C1 

4 ELSE Fullscale 31 55 (Corner) 2C' THEN 

5 BEGIN BusyLoop 

6 PAUSE ( 7ESC ) AGAIN 

7 

8 GO PAGE 15 0 TAB Haln ACTIVATE MalnLoop STOP . 
9 

13 -GO Maln HALT 

11 

12 

13 

14 

1 5  
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1014 Part 4 - R e 1  54 G : \LMS\APP\CAPC . SRC 

0 ( CollectLwp glg 15 Peb 1995) 

1 

2 

3 : CollectLoop UART FREE OBUF -RTS 

4 ?Half IF Halfscale ELSE Fullscale THEN 

5 ZERO-FRAME-COUNT 0 'LMSprocess ! 

6 BEGIN BUSyL00p 

7 PAUSE [imgt] @ 78 > UNTIL ; 

8 

9 : ZC CollectLoop ; 

1 0  

11 : ss save-sequence ; 

1 2  

13 

14 

15 

1015 Part 4 Re1 55 G:\LMS\APP\CAPC.SRC 

1016 P a r t  4 Re1 56 G:\LMS\APP\CAPC.SRC 

0 ( UEXPECT,  UTYPE 919 15 Feb 1 9 9 5 )  

1 ASSEMBLER 

2 CREATE execute W W OR 0-  NOT I F  CELL W SUB W ) L I P  

3 THEN NEXT 

4 

5 CODE UTYPE ( a n )  5 ) 1 MOV 1NZ I F  [ 1 C #  U )  ADD ) SECOND 

6 ' T Y P E  H I S  W MOV execute JMP THEN 2 C E L L S  t S ADD NEXT 

7 uEMIT ( c )  ' S  1 UTYPE DROP 

8 \\ 

9 CODE UEXPECT ( a n )  0 , HERE USE CELL W )  PUSH 

1 0  SECOND 'EXPECT HIS i.i MOV execute JMP 

11 CODE U S T R A I G H T  ( a n )  - i  . ' UEXPECT CELL+ U S E  

1 2  

1 3  u7KEY ( - t )  0 S U Z X P C T  

14 uKEY ( . n j  0 ' 5  1 USTRAIGHT , 

1 5  
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1 0 2 0  Part 4. R e 1  60 G:\LMS\APP\CAPC.SRC 

0 ( 02 Hay 1995) 

1 MARKER P U L N I X  

2 

3 ( Vector Arithmetic) FORTH 5 1  IN MATH 52 I N  MATH THRU 

4 

5 6 3  + P  7 5  +P THRU 

6 

7 

8 

9 

10 

11 

1 2  

13 

14 

15 

1021 Part  4 Re1 61 G:\LMS\APP\CAPC.SRC 

1022 Part 4 Re1 62 G:\LMS\APP\CAPC.SRC 
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1 0 2  3 Part 4 . Re1 63 G: \LMS\APP\CAPC. SRC 

0 ( Camera Data Structure glg 02 May 1995) 

1 VARIABLE 'CamData 

2 

3 : camItem ( n ) OVER CONSTANT + DOES> @ 'CamData @ 

4 0 

5 CELL camltem efl 

6 CELL camItem FPA-H CELL camItem FPA-W 

7 CELL camItem PPA-H# CELL camItem FPA-W# 

8 CELL camitem FPA-Row-0 CELL camItem FPA-Col-0 

9 CELL camItem Phi/Pixel CELL camItem Theta/Pixel 

10 CELL camItem FPA-Addr-0 

11 CELL camItem ALPHA-0 CELL camItem DELTA-0 

12 CELL camItem H-0 CELL camItem Y-0 

13 CELL camItem X-0 

14 CONSTANT l CamData l 

15 

efl unit is microns 

FPA dimension units are microns 

Angle units are microradians 

+ ; 

Values through FPA-Row-0 are input quantities, others are 

derived quantities. 

H-0 is the camera helght (cm) above the road surface. 

X-0 and Y-0 are camera coordinates (cm) in the vehicle 

(CG) coordinate system. The camera is in front of, and 

to the right of the CG. 

1024 P a r t  4 Re1 64 G:\LMS\APP\CAPC.SRC 

0 ( Camera Data gly 02 May 1995) 

1 

2 CREATE Cam-Data-1 

3 12500 , 

4 6600 , 8900 , 

5 484 , 768 , 

6 242 , 384 , 
7 0 ,  0 ,  

8 0 ,  

9 0 , 10751 , 

10 1245 , 15 , 

11 14 , 

12 

1 3 

1 4  

15 

TM9700 Data Sheet andlcates 11.6 mlcron x 13.6 micron cell size. 

A 13.64 mlcron pitch follows from a 6.60 mm vertical dimension 

and 484 cells. 

An 11.6 micron pitch would require a horizontal size of 8.91 mm. 

The Cosmicar 12.5 mm efl lens data indicates a HFOV of 39 degree 

07 mlnutes for a 2/3" CCD. 

1025 P a r t  4 Re1 65 G:\LMS\APP\CAPC.SRC 

0 ( Camera Data glg 02 May 1995) 

2 Camera-1 'CamData IS Cam-Data-1 ; 

3 

4 CamDataInlt 

5 FPA-Ro.h-C' . FPA-WI v FPA-Col-0 + €PA-Addr-0 ' 

6 FPA-F 1000000 efl P FPA-HI P ' '/ Phi/Plxel ' 

7 FPA-\I l0OOOOO efl 3 €PA-W# @ */ Theta/Plxel ' 
a 

9 . Camlnlt Camera-1 CamDataInrt ; 

1 0  0 INITIALIZES carnlnlt 

1 : 

12 

13 

1 J 

15 
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1026 Part 4 .  Re1 66 G:\LMS\APP\CAPC.SRC 

0 ( Camera r , c  t o  

1 HEX 

2 VARIABLE '>IA 

3 : rc>lmgOffset  

4 

5 : rc>IA ( r c - 
6 

7 

8 

9 : - r c>IA ( r c 

10 

11 

12  

1 3  

1 4  

1 5  

image o f f s e t  conve r s ion  g l g  24  Apr 1995)  The image a d d r e s s  i s  conf lned  t o  one ME f o r  t h e  MuTech FrameGrab 

a ) >R NEGATE FPA-W? @ 

R> t FPA-Addr-0 @ t 

0 MAX 100000 M I N  ; 

- a ) > R  FPA-W) @ * 
R> NEGATE + FPA-Addr-0 @ t 

0 MAX 100000 M I N  ; 

1027 P a r t  4 Re1 67 G:\LMS\APP\CAPC.SRC 

0 ( Pixe1:Angle  Conversion gig 02 May 1 9 9 5 )  PHI and THETA u n i t s  a r e  rnicroradians .  

1 

2 PHI ( r - n ) P h i p i x e l  @ 10 */ ; P i x e l  row and column u n i t s  a r e  t e n t h s  o f  a p i x e l  

3 

4 THETA ( c - n ) The ta /P ixe l  10 * /  ; 

5 

6 . ROW ( n - r ) 1 0  Ph i /P lxe l  @ * /  . 
7 

8 COL ( n - r ) 10 Theta /Pixel  @ */ ; 

5 

10 

11 

1 2  

13 

1 4  

1 5  

1028 P a r t  4 Re1 68 G:\LMS\APP\CAPC.SRC 

ERIM Proprietary 29 Aug 1995 08:07 



1 0  2 9 Part 4 - Re1 6 9 G : \LMS\APP\CAPC . SRC 

0 ( Trig Approximations 919 10 May 1995) Scaling for Trig functions is 1E6 

1 MARKER -TRIG 

2 

3 : tan ( n - n ) DUP DUP 3000000 */ OVER 1000000 */ + ; 

4 

5 : sin ( n - n ) DUP DUP 6000000 */ OVER 1000000 */  - ; 

6 

7 : cos ( n - n ) 1000000 SWAP DUP 2000000 */ - ; 

0 

9 : atan ( n - n ) DUP DUP 3000000 +/  OVER 1000000 */ - ; 

10 

11 

12 

13 

14 

15 

1030 Part 4 R e 1  70 G:\LMS\APP\CAPC.SRC 

0 ( Roll Compensation 919 12 May 1995) Row and Column are adjusted by the roll value received 

1 from the CAPC data acquisition system. 

2 : Rollcomp ( r c - r' c' ) 2DUP 

3 @Roll>Rad DUP sin >R cos 1000000 V t /  

4 2SWAP R> 1000000 V+/ NEGATE SWAP V t ;  

5 

6 : -Rollcomp ( r c - r' c' ) 2DUP 

7 FRollzRad NEGATE DUP sin > R  cos 1000000 V*/ 

0 2SWAP R> 1000000 V*/ NEGATE SWAP V+ ; 

9 

10 

11 

12 

13 

14 

15 

1031 Part 4 R e 1  71 G:\LMS\APP\CAPC. SRC 

Here, row and column units are pixels 
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1 0 3 2  P a r t  4 .  Re1 72 G:\LMS\APP\CAPC.SRC 

0 ( A n g l e  t o  S u r f a c e  Range C o n v e r s i o n  g l g  11 May 1995)  S u r f a c e  r a n g e  a n d  c r o s s  r a n g e  u n i t s  a r e  cm. 

1 

2 : DownRange ( p h i  - n ) DELTA-0 @ @ P i t c b R a d  - SWAP- t a n  D e p r e s s i o n  a n g l e  is  a d j u s t e d  by t h e  p l t c h  d e l t a  r e c e i v e d  from 

3 DUP O> IF  > R  H-0 @ lOoooo  R> */ x-0 @ t t h e  CAPC d a t a  acquisition s y s t e m .  

4 ELSE DROP 0 THEN ; 

5 

6 : CrossRange  ( t h e t a  p h i  - n ) DownRange SWAP ALPHA-0 @ - 
7 1000000 '/ Y-0 @ t ; a 

8 

9 : S u r f a c e R a n g e  ( t h e t a  p h i  - cross down ) DownRange DUP YR 

10  SWAP ALPHA-0 @ - 1000000 * /  Y-0 @ t R> ; 

1 1  

1 2  

1 3  

1 4  

1 5  

1 0 3 3  P a r t  4 Re1 73 G:\LMS\APP\CAPC.SRC 

0 ( Camera P i x e l  t o  S u r f a c e  Range C o n v e r s i o n  g l g  1 8  May 1 9 9 5 )  

1 

2 : DRange ( r c - n ) Rollcomp DROP PHI DownRange . 
3 

4 : CRange ( r c - n ) Rollcomp THETA SWAP , P H I  C r o s s R a n g e  , 

5 

6 : SRange ( r c - c r o s s  down ) 

7 Rollcomp THETA SWAP PHI S u r f a c e R a n g e  ; 

8 

9 . d c > d C r o s s  ( r c - n ) THETA SWAP PHI DownRange 

10  SWAP 1000000 '/ 

1 1  

1 2  

1 3  

1 4  

15 

1034 Part 4 Re1 74 G:\LMS\APP\CAPC.SRC 

0 ( S u r f a c e  Range t o  Angle Conversion g l g  2 3  May 1 9 9 5 :  

2 . p h l  ( down - p n l  : X-0 &' - > F  H-O l0OOOC R ,  ./ 
3 a t a n  DELTA-C ' , P l t c n > R a d  - SWAP- . 
3 

5 t h e t a  ( c ross  down - t h e t a  ) 

6 SWAP Y-0 5 - SWAP 

7 1000000 SWAP ' /  

8 ALPHA-0 'u + . 
9 

10  - S R  ( c r o s s  down - t h e t a  p h l  ) C U P  > R  t h e t a  R', p h i  

11 

1 2  

l 3  

14 

1 5  
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1 0  3 5 Part 4 . R e 1  75 G : \LMS\APP\CAPC . SRC 

0 ( Surface Range t o  Camera Coordinate Conversion g lg  23  Hay 1 9 9 5 )  

1 

2 : c&rc ( cross down - r c ) DUP phi >R theta 

3 COL R> ROW SWAP -Rollcomp ; 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

1036 Part 4 Re1 76 G:\LMS\APP\CAPC.SRC 

1037 Part 4 Re1 77 G:\LMS\APP\CAPC.SRC 
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1038 Part 4 .  Re1 78 G:\LMS\APP\CAPC. SRC 

o ( s u r f a c e  Range / Angle D i s p l a y  g l g  1 8  Way 1 9 9 5 )  

1 

2 : ' . '  46 HOLD ; 

3 

4 : G . 2  ( n ) DUP ABS 0 < I  I I ' . '  t S  SIGN $> WRITE 2 SPCS : 

5 

6 

7 

8 

9 

1 0  

11 

1 2  

1 3  

1 4  

1 5  

1039 Part 4 Re1 79 G:\LMS\APP\CAPC.SRC 

0 ( S u r f a c e  Range / ~ n ' g l e  D i s p l a y  9 l g  1 8  May 1 9 9 5 )  

1 [ +  DIAGNOSTICS 

2 

3 . .RANGES ( r c - r c ) 2DUP 1 0  1 0  V* SRange 

4 dCP 2DUP 2>R 20 140  V -  AT 

5 NORM 1 8  SCRUB XOR'D 2 SPCS G . 2  G . 2  

6 2R> AT . 
7 

8 . .ANGLES ( r c - r c ) 2DUP 1 0  1 0  V *  Rol lcomp 

9 THETA SWAP PHI @CP 2DUP 2>R 40 1 4 0  V -  AT 

1 0  NORM 1 8  SCRUB XOR'D 9 G.R 9 G . R  

1 1  2R>  A T  

1 2  

1 3  GEOMETRY 'userInfo ASSIGN .RANGES .ANGLES . 
1 4  t ]  

1 5  

104 0 Part 4 Re1 80 G :\LMS\APP\CAPC. SRC 
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104 1 Part 4 . Re1 81 G : \LMS\APP\CAPC . SRC 

0 ( Roadway Data S t r u c t u r e  g l g  24 May 1995)  

1 VARIABLE ' RoadData 

Roadway dimension u n i t s  a r e  cm 

2 Heading a n g l e  u n i t s  a r e  mic ro rad ians  

3 : roadI tem ( n ) OVER CONSTANT + DOES> @ 'RoadData @ + ; 

4 0 

5 CELL roadI tem tanHeading 

Sur facVa l s  u n i t s  a r e  c o u n t s .  

6 CELL roadI tem LatDev CELL road I t em Lanewidth 

7 CELL roadI tem S u r f a c e V a l s  

8 

9 CONSTANT IRoadDatal 

1 0  

12 : < Y >  ( down - c r o s s  ) tanHeading @ 1000000 */ 

13 LatDev @ + ; 

1042 Part 4 Re1 82 G:\LMS\APP\CAPC.SRC 

0 ( LaneMark Data S t r u c t u r e  g l g  2 4  May 1995)  

1 VARIABLE 'LMdata 

Lane mark dimension u n i t s  a r e  cm. 

2 LMval u n i t s  a r e  c o u n t s .  

3 : lrnItern ( n ) OVER CONSTANT + DOES> @ 'LMdata @ + ; 

4 0 

5 CELL lrnItem LMwidth 

6 CELL lrnItem LMlen 

7 CELL lmItem LMVal 

8 

9 CONSTANT ILMdatal 

10 

11 

1 2  

: 3 

1 4  

1 5  

1043 Part 4 R e 1  83 G:\LMS\APP\CAPC.SRC 

0 
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1 0  4 4 Part 4 . Re1 84 G : \LMS\APP\CAPC . SRC 
0 ( Roadway Data 919 24 May 1995) Ford TEST track width is 3.50 m 

1 

2 CREATE RoadData IRoadDatal ALLOT 

3 

4 . RoadInit RoadData IRoadDatal ERASE 

5 'RoadData IS RoadData ; 

6 

7 0 INITIALIZES RoadInit 

8 

9 

10 

11 

12 

13 

14 

15 

1 0 4 5  P a r t  4 Re1 85  G:\LMS\APP\CAPC.SRC 

0 ( Lane Mark Data g l 9  24 May 1995) 

1 

2 CREATE LMdata ILMdatal ALLOT 

3 

4 LMdataInlt LMdata ILMdatal ERASE 

5 'LMdata IS LMdata 

6 10 LMwidth ! ; 

7 

8 0 INITIALIZES LMdataInit 

9 

10 

11 

12 

13 

13 

15 

1 0 4 6  P a r t  4 Re1 86 G:\LMS\APP\CAPC.SRC 

0 ( Lane M a r 4  Intensltj' q l q  15 Jun 1995) 

2 VARIABLE 3-1: VARIABLE S-I 

J CLEAF-I C 3-1: ' 0 5-1 , 

6 I+ ( c ) ? S-:I + I  S-I t '  , 

7 

8 <I> ( r ) 5-13 8 'DUP IF DUP 2/ S-I + SWAP / 

9 ELSE 0 THEN 

10 

1: 

? 2 

13 

14 

15 

ERIM P r o p r i e t a r y  29 Aug 1995 08:07 



104 7 Part 4 . Re1 87 G : \LMS\APP\CAPC . SRC 
0 ( Least Squares Line Data Structure glg 04 Jun 1995) 

1 VARIABLE 'LSQdata 

2 

3 : 1sqItern ( n ) OVER CONSTANT t DOES> @ 'LSQdata @ t ; 

4 0 

5 CELL lsqItem S-t  

6 CELL lsqItem S-X 

7 CELL lsqItem S-Y 

8 CELL lsqItern S-X2 

9 CELL lsqItem S-Y2 

10 CELL lsqItern S-XY 

11 

12 CONSTANT ILSQdatal 

13 

14 

15 

1048 Part 4 Re1 88 G: \LMS\APP\CAPC. SRC 

0 ( Least Squares Line glg 04 Jun 1995) 

1 : CLEAR-S S-3 ILSQdataI ERASE ; 

2 

3 : St ( y x - ) 2DUP S-X Vt! 2DUP 2DUP V* S-X2 Vt! 

4 S-XY t! 1 S-I t! , 

5 

6 : denom S-# @ S-X2 @ S-X @ DUP * - ; 

7 . slope ( n ) S-1 @ S-XY @ * S-X @ S-Y @ - 

8 1000000 denom * /  ; 

9 

10 . intercept ( n ) S-X2 @ S-Y @ denom * /  

11 S-X @ S-XY @ denom */ - . 
12 

13 . LinReq ( - slope intercept t I f ) S-: 'c 3 > IF slope 

13 intercept 1 ELSE 0 THEN , 

15 

1049 Part 4 Re1 89 G:\LMS\APP\CAPC.SRC 

0 ( 'ORIENTATION glg 04 Jun 1995) 

2 CREATE RLWorkSpace ILSQdatal ALLOT 

3 

4 'LSQdata IS RLWorkSpace 

5 

6 
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1050 Part 4 .  Re1 90 G :\LMS\APP\CAPC. SRC 

0 ( Line Following Stats 919 13 Jun 1995) 

1 VARIABLE 'DeltaData 

2 

3 : deltaltem ( n ) OVER CONSTANT t DOES> @ 'DeltaData @ + ; 

4 

5 0 CELL deltaItem S-DI 

6 CELL deltaItem S-Delta 

7 CELL deltaItem S-!Delta1 

8 CELL deltaItem <Delta> 

9 8 CELLS deltaltem RDeltas 

10 8 CELLS deltaItem Deltas 

11 

12 CONSTANT IDeltaData I 

13 

14 

15 

10 51 Part 4 R e 1  91 G :\LMS\APP\CAPC. SRC 

0 ( Line Folloilng Stats glg 13 Jun 1995) 

1 

2 ZERO-Deltas S-DC IDeltaDataJ ERASE , 

3 

4 Inlt-Delta-Suas S-D? 3 CELLS ERASE , 

5 

6 tlDelta ( n ) 1 S-Dl t i  DUP S-Delta + I  ABS S-IDeltaI + I  , 

7 

8 UpdateRDeltas ( n n ) RDeltas t 2DUP HtI 

9 2t H@ t <Delta> + I  

10 

11 CREATE DeltaWorkSpaze IDeltaDatal ALLOT 

12 

13 'DeltaData :j  Del'aWorkSpace 

1: 4 3  +P LOAD 

15 

1052 P a r t  4 Re1 92 G:\LMS\APP\CAPC. SRC 

0 ( Gradlent qlc 11 May 1995) HEX 

1 CODE GRAD ( s d n ) ; POP 40 8 1 CMP S> IF 40 D 1 MOV THEN 

2 W POP S ) : XCHZ P PUSH U PUSH PUSHF STD 

3 DS 0 MOV [ IMGSES >MuVRAM 0 MOV - 1  0 GS MOV 

4 3 3 XOR i 2 XOR O 0 XOR R R XOR 

5 1 b K ) M O V  1 K A D D  4 C E L L S W ) W L E A  1 I A D C  i D E C  

6 GS SEG I ) 0 hlMOV 

7 BEGIN GS SEG b LODS h 0 8 P ROL 0 h l  0 SUB 

8 CY IF C b NEG 0 b 3 CMP U< IF 0 b 3 MOV 1 b 3 hl MOV 

9 THEN STC 

10 ELSE 3 10 : ROR 0 b 3 CMP U< IF 0 b 3 MOV 

1 ! ? b 3 h l  MOV THEN 3 10 P ROR CLC 

1 2 THE!: R RCF ? RCR b STOS 

1 3  LOOP b LODS 3 SYCS - 3  P I )  W LEA 

I J  R o IOV 579s i o MOV STOS 3 o MOV STOS 

!5 3 I XCHG P?PF C P O P  R P O P  S ) i XCHG NEXT 
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1 0  53 P a r t  4 . R e 1  93 G : \LMS\APP\CAPC . SRC 

0 ( L i n e  F o l l o w i n g  g l g  11 Hay 1995)  [ C o l D e l t a J  is t h e  p i x e l  delta b e t w e e n  t h e  estimated l i n e  l o c a t l o  

1 HEX n a n d  t h e  m e a s u r e d  l i n e  l o c a t i o n  

2  VARIABLE [ C o l D e l t a ]  

3 

4 CODE L o c H a r k  ( r c n n - r c '  h e i g h t  w i d t h  ) 

5 W POP 

6 2 POP 2 1 MOV 1 1 0  1 ROR b 1 0 1 MOVZX b 2 0 ADD 

0 # 0 h i  ADC h 0 SHR 0 PUSH 

2 h i  0 1 MOVZX 1 h i  0 SUB 0 # 0 h i  SBB SXT 0 PUSH 

2 h i  0 1 MOVZX 1 h i  0 ADD 0 # 0 h i  ADC 0 SHR 

[ t  INVERTED 0 2 CELLS S )  SUB + I  

[ -  INVERTED 0 2 CELLS S )  ADD - 1  

W SHR W 0 SUB [ t  INVERTED 0 NEG + )  

0 [ C o l D e l t a )  MOV NEXT 

1 0 5 4  Part 4 Re1 9 4  G:\LMS\APP\CAPC.SRC 

0 ( L i n e  F o l l o w i n g  g l g  11 May 1 9 9 5 )  

1 VARIABLE [ S l o p e )  VARIABLE C o l L i m i t  

2  : E d g e L i m i t  ( r c n - r c '  n  ) >R 

3 DUP O <  I F  ABS -1 ELSE 1 THEN SWAP 

4 C o l L i m i t  @ R@ 2/ - MIN + R> ; 

5 

6 : ? L a n e M a r k  ( r c n - r c '  f ) 

7 >R 0 Re 2 /  

8 ( -  INVERTED V -  - 1  [ t  INVERTED V t  + )  

9 2DUP r o I m g 0 f f s e t  

1 0  [ +  IMGSEQ l m g A d d r  t + I  ( -  IMGSEQ > v r a m  C E L L t  : + - 1  

11 PAD FO GRAD PAD CG L o c M a r k  2>R OVER R> 

1 2  1 0  1 0  V* d c > d C r o s s  L M w i d t h  la 2' < 

1 3  R> ( S l o p e ]  > AND I F  1 ELSE 0  THEN . 
1 4  

1 5  

1055 Part 4 Re1 95 G:\LMS\APP\CAPC. SRC 

0 ( L a n e  Processing M a r k s  2 4  May 1 9 9 5 )  

1 [ +  DIAGNOSTICS 

2 

3 L M d a t a M a r k  

4 ( r c n ) >R [ 1 1 0  V t /  ) R "  2 /  0  V +  r c > * H C  

5 (LCP 2SWAP 2DUP 'AT R> 0 V -  YELLOW 'DRAk AT 

6 

7 S e a r c h M a r k  ( r c n ) >R 0 R@ 2/ V -  r c > * R C  

8 PCP 2SWAP ZDUP +AT 0 R> V t  RED 'DRAk AT 

9 

1 0  L a n e M a r k  BLUE 

1 1  6 0 0  DUP <Y> SWAP c d > r c  1 1 0  Vt/ rc;*RC CP 2 F 'AT 

1 2  2 0 0 0  DUP <Y; SWAP c d > r c  1 1 0  V*/ rc;*RC 

1 3  'DRAW 2 R .  AT ti 

14 

1 5  

ERIM Proprietary 2 9  Aug 1995 08:07 



1 0  5 6 Part 4. Re1 96 G : \LMS\APP\CAPC . SRC 

0 ( LH Locate 919 24 May 1995) 

1 : FlndNearRight CLEAR-S CLEAR-I 

2 2200 600 DO I DUP <Y> SWAP 

3 c&rc 

4 1 10 V*/ 6 4  EdgeLimit 

5 I+ DIAGNOSTICS > R  2DUP R@ SearchMark b +I 

6 'LaneMark 

7 NOT IF NIP -242 SWAP ELSE 

8 2DUP @ImgVal I+ 2DUP 

9 10 10 V* SRange 2DUP St !Pair THEN 

10 [ +  DIAGNOSTICS 16 LMdataMark t] 

11 [ -  DIAGNOSTICS 2DROP - 1  

12 200 +LOOP 

13 LinReg IF LatDev ! tanHeading ! 10 [NearTrackingJ ! 

14 I+  DIAGNOSTICS LaneMark + )  THEN ; 

15 

1 0 5 7  Part 4 Re1 97 G :\LMS\APP\CAPC. SRC 

0 ( LM Locate 919 24 May 1995) 

1 

2 : FindNearLeft 

3 2200 600 DO I <Y> LaneWldth @ - I 

4 cdzrc 

5 1 10 V*/ 64 EdgeLimit 

6 [ +  DIAGNOSTICS >R 2DUP R@ SearchMark R> + I  

7 ?LaneMark 

8 NOT IF NIP -242 SWAP ELSE 2DUP 

9 10 10 V *  SRange !Pair THEN 

10 I+ DIAGNOSTICS 16 LMdataMark t) 

11 [ -  DIAGNOSTICS 2DROP - )  

12 200 +LOOP ; 

13 

13 

1 5  

1058 Part 4 Re1 98 G:\LMS\APP\CAPC. SRC 

LM Locate 919 24 May 1995) Only even-valued downrange distance palrs are sent to CAPC 

Q U A D P A  

FlndMark ( cross down n - f ) OVER >R >R 

cd>rc 

1 10 V*/ <Delta> @ + R> EdgeLimit 

It DIAGNOSTICS >R 2DUP Re SearchMark R> t )  

?LaneMark 

NOT IF R> DROP NIP 0 SWAP -242 SWAP 

ELSE 1 ROT ROT 2DUP 

10 10 V* SRange 

R> 100 / 1 AND NOT IF !Pair ELSE 2DROP THEN THEN 

[ -  DIAGNOSTICS 2DROP - 1  

i t  DIAGNOSTICS 8 LMdataMark t1 . 
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1059 Part 4 - Re1 99 G: \LMS\APP\CAPC. SRC 

0 ( LM Locate 919 24 May 1995) The Deltas array must be large enough to hold all the values 

1 generated by the DO loop. 

2 : IMarkl ( - n ) S-Dt @ 5 OVER < IF 

3 S-IDeltal @ 10 ROT */ 4 HAX 16 MIN 

4 ELSE DROP 16 THEN ; 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

1060 Part 4 Re1 100 G:\LMS\APP\CAPC. SRC 

0 ( LM Locate gig 24 May 1995) 

1 VARIABLE (PRhitsl 

2 : FindFarRight Init-Delta-Sums RDeltas HP <Delta> ' 

3 0 [(Rhlts] ! 

4 0 10500 2500 DO 

5 I DUP <Y> SWAP IMarkI FindMark 

6 IF [ColDelta] @ 1 (1Rhitsl + !  

7 ELSE IMarkJ 2 /  S-IDeltal + !  0 

8 THEN 

9 DUP +!Delta IMarkl MIN OVER UpdateRDeltas 

10 2t 500 +LOOP DROP 

11 [#Rhlts] @ 4 > IF 10 [FarTrackinq) ! THEN . 
12 

13 FlndRlght FlndNearRlght FindFarRlqht . 
14 

15 

1061 Part 4 R e 1  101 G:\LMS\APP\CAPC.SRC 

0 ( LM Locate 919 24 May 1995) 

2 FlndFarLeft Init-Delta-Sums LDeltas Ha <Delta, 

3 0 10500 2500 DO I <Y> LaneWldth O - I 

IMarkl FindMark 

5 IF [ColDelta] ' 

6 ELSE IMark 2/ S-IDeltal + I  0 

7 THEN 

8 DUP +(Delta OVER LDeltas + 2+ Hm t <Delta, + '  

9 500 +LOOP DROP , 

10 

11 FlndLeft FlndNedrLeft FlndFarLeft 

12 

13 

1 .. 
I5 
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1 0  6 2 Part 4 - Re1 102 G : \LMS\APP\CAPC . SRC 

0 ( VIEWING SUPPORT glg 06 Apr 1995) 

1 

2 1024 1024 + 29 + HALUW: ( Grab -80 frames of memory ) 

3 

4 VIEWING LOAD 

5 484 [imgH] ! 768 [imgw] ! 1 (B/Pl ! imgInit 

6 

7 78 +P 79 +P THRU 

8 

9 : VAN 1588 H-0 ! 157552 DELTA-0 ! 20394 ALPHA-0 ! ; 

10 : VAN2 1588 H-0 1 94830 DELTA-0 ! 23175 ALPHA-0 ! ; 

11 : TAURUS2 1241 H-0 ! 10751 DELTA-0 ! -3821 ALPHk-0 ! ; 

12 : TAURUS 1241 H-0 ! 14000 DELTA-0 ! -2781 ALPHA-0 ! : 

13 0 INITIALIZES TAURUS2 

14 \ IMAGE- E:\CAPC\IMAGES\DTB6.RAW 

15 

FOR TAURUS: DELTA-0 was 22643 

For TAURUS2: Pitch- -13 Roll-+16 

DELTA-0 - 20710 ( HIGHBAY ) 10751 ( TRACK ) 

ALPHA-0 - -2781 ( HIGHBAY ) -3821 ( TRACK ) 

1063 Part 4 Re1 103 G:\LMS\APP\CAPC ..SRC 

0 ( '3ImgVal glg 24 Apr 1995) 

1 

2 : PIngVal ( r  c - n ) rczImgOffset 

3 [ +  IMGSEQ imgAddr + I0 1- MIN CI + I  

4 [ -  IMGSEQ >R >MuVRAM B >warn CELL+ @ R> -+ 

5 EC@ - 1  , 

6 

7 : Fullscale 4 8 3  0 ORIGIN 599 799 SIZE ; 

8 . Halfscale 241 0 ORIGIN 299 399 SIZE ; 

9 

10 [ -  IMGSEQ 

11 Dlrect '1maqeDlsplay ASSIGN DROP 

1064 Part 4 R e 1  104 G:\LMS\APP\CAPC.SRC 

0 ( Dlsplay Row s Colunm / Camera Conversion 16 May 1995) 

RC:-rc ( r  c - r '  C' ) 

NEGATE FPA-Row-0 @ NEGATE FPA-Col-C - V t  

RC>rc ( r c - r' c ) 

YNEGATE FPA-ROW-0 €PA-COl-0 NEGATE V +  

-rc>RC ( r c - r' c '  ) 

NEGATE FPA-Row-0 €PA-Col-0 ' V t  

rc;RC ( r c - r '  c '  : 
YNEGATZ FPA-Row-0 FPA-Col-0 Y L  

rc>*R? : r c I '  c '  ) 

FPh-Row-C FPA-Col-0 V +  
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Appendix F 

"Road Friction Coefficient Estimation for 
Vehicle Path Prediction" 

C.-S. Liu and H. Peng, 
1995 LAVSD Symposium on Vehicles on Roads and Tracks 
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0  ( D i s p I n i t  919 2 4  Apr 1 4 9 5 )  

1 

2  : D i s p I n i t  B&W 'imageType I S  s e q u e n t i a l  

3 0 [ d e l a y ]  ! H a l f s i z e  H a l f s c a l e  

4 [t IMGSEQ P l a i n  +I [ -  IMGSEQ D i r e c t  - 1  

5 [t INVERTED 

6 ' h o s t > d i s p l a y  IS  /2BROTlBO 

7 '>IA I S  - rc>IA 

8 ' rcXform I S  RC>rc t) 

9  [ -  INVERTED 

1 0  '>IA IS  r o I A  

11 'rcXform I S  RC>TC - 1  

1 2  '@ImageData  IS  @ImgVal ; 

1 3  

14 0  INITIALIZES D i s p I n i t  

15 
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0  ( Image F e t c h  g l 9  07 Apr 1995)  

1 

2 [ - CAMERA 

3 

4 : @IMAGE [ +  IMGSEQ 1 [ i m g l l  + !  

5 

6 [ +  CAPC-COM " P&RData " COUNT DROP 2@ 

7  imgAddr 2@ D- + NOT I F  

8 imgAddr 9 + PbRcount 5  MOVE ( .P&R ) THEN t )  

9 

1 0  + I  ; - 1  

11 

12 

13 

14 

15 
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0 ( Image Fe tch  919 07 Apr 1995) 

1 

2 I+  C A M E R A  

3 

4 'IMAGE 

5 [Nex t f r ame l ]  4 [ lmgc]  I 

6 

7  [ +  IMGSEQ Zvram CELL+ @ 

8 1mgAddr imgLen @Image 

9 

1 0  ( +  CAPC-COM " PbRData " COUNT lmgAddr SWAP MOVE 

11 Framecount CmUmgAddr 8 + C 

12 PLRcount lmgAddr 9 t 5 MOVE + I  + I  

1 3  

1 4  1 [NextFramet]  t '  t ]  

15 
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0 ( I m a g e  C a p t u r e  g l g  2 5  M a r  1994) 

1 [t CAWEM 

2 : CAPTURE c a p t u r e  @IMAGE IMAGE ; 

3 

4 : [CAPTURE [ c a p t u r e  @IMAGE IMAGE ; 

5 

6 : CAPTURES ( n - )  0 MAX ?DUP I F  c a p t u r e  

7 1- ?DUP I F  0 Di, [CAPTURE [ N e x t F r a r n e l ]  @ . c a p t u r e ]  ' M O P  

8 THEN @IMAGE IMAGE [ N e x t F r a r n e l l  @ T E 3  ; 

9 

1 0  : CAPTURING BEGIN (CAPTURE c a p t u r e ]  ?ESC AGAIN . 
11 

1 2  ' v t  I S  CAPTURE 

13 t] 

14 

15 
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0 ( IMAGE STUFFING glg 23 M a r  1994) HEX 

1 CODE MBSTUFIT ( s o - ) O B a n k s  CALL *A0 0 HOV i ES MOV 

2 W POP S ) I XCHG >MuVRAM 0 MOV 0 GS MOV 

3 b B a n k  0 MOVZX 0 1 0  1 ROL 0 W SUB 

4 [ w i n H J  1 MOV PUSHF CLD R PUSH L o o k u p  R MOV 

5 BEGIN 1 PUSH [ w i n W ]  1 MOV 

6 BEGIN GS SEG b LODS [ b i a s )  0 ADD 

7 F F  # 0 AND 7000 X 0 h TEST 

8 0- NOT I F  0 h OD P SHR 1 0 0 0  O 0 h OR THEN 

9 0 R )  0 )1 b 0 MOV b STOS 

10 LOOP 

11 PHYSICAL W ADD W INC [ w i n W ]  W SUB 

1 2  [ l m g w l  I ADD [lrngWJ I ADD [ w i n w )  I SUB I w l n W ]  : SUB 

1 3  1 POP LOOP 

I 4  R POP POP€ I POP SS-DATA L 0 MOV 0 DS MOV 0 ? 5  MOV NEXT 

1 5  
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0 ( LMS Startup Sequence gl9 09 Hay 1995) 

1 

2 [ + CAMERA 

3 

4 : SetRoad RoadVal 80 setexp ; 

5 

6 . SetLine 

7 FindNearRight 

8 S-1 @ 3 > IF 

9 <I> ?DUP IF [DesiredVal] $ 

10 2DUP - ABS 10 < IF 2DROP EXIT THEN 

11 setexp THEN THEN ; 

12 +I 

13 

14 

15 
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0 ( LMS Startup Sequence 919 09 May 1995) 

1 VARIABLE [AutoExpl 

2 

3 SetExposure [t CAMERA (AutoExpl ? IF 

4 Framecount C@ DUP 1 AND IF DROP EXIT THEN 

5 DUP 4 < IF DROP EXIT THEN 

DUP 10 < IF DROP SetRoad EXIT THEN 

20 < IF SetLine EXIT THEN 

9 THEN t] 'LMSprocess IS ProcessLG 'LMSsend IS SendLG ; 

10 

11 : SetupLMS RG [ +  CAMERA 1600 thSEC t] 

12 'LMSprocess IS SetExposure 0 'LMSsend ! : 
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0 ( LMS Startup Sequence 919 09 May 1995) 

1 

2 InltCAPC 15 (Slope] 364 ColLlmlt ' COM2 57600 BAUD 

3 366 LaneWldth RG 

4 ZERO-Deltas 0 [RlqhtLaneTypel 1 [LeftLaneTjpe) 

5 1 IAutoExp) 

6 'start IS SetupLMS 

7 [ t  DIAGNOSTICS [t CAPC-COM '1maqeLabel IS LMSdata 

8 0 50 [Corner] 2CI + I  t] 

9 

10 0 INITIALIZES InltCAPC 

11 

12 DEARBORN 350 LaneWldtb 0 [ LeftLaneType) 

13 UblTRI 311 LaneWldth 1 [LeftLaneType] 

1 4  HIGHWAY 366 LaneWldth 0 [LeftLaneTypeJ ' 

15 
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0 ( Auto Exposure glg 24 Apr 1995) 

1 

2 VARIABLE 'CurrentVal VARIABLE %Max VARIABLE [DesiredVal] 

3 

4 : CurrentVal ( n ) 'CurrentVal @EXECUTE ; 

5 : CenterVal ( n ) 0 0 @IngVal ; 

6 : RoadVal ( n ) -100 0 @ImgVal ; 

7 

8 : NewExp ( n n - n ) >R DUP 255 < IF 

9 Exposure @ R> * /  

10 ELSE R> DROP DROP Exposure @ 2. THEN ; 

11 

12 : .EXPOSURE 

13 550 640 AT loglcal @ NORM @COLOR WHITE 10 SCRUB XOR'D 

14 Exposure @ 10 G.R COLOR logical ! ; 

15 
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0 ( Auto Exposure glg 24 Apr 1995) 

1 

2 : ?Exp ( n - n ) DUP 

3 2196 > IF CR . "  Excessive Illumination - -  reduce iris " 

4 CR THEN DUP 

5 500 < IF CR ."Insufficient Illumination - -  enlarge x i s  " 

6 CR THEN ; 

7 

8 

9 

10 

11 

12 

13 

14 

15 
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0 ( Auto Exposure glg 24 Apr 1995) 

1 

2 setexp ( n n ) NewExp 'Exp thSEC EXPOSURE . 
3 

4 SETEXF CurrentVal [DeslredVall setexp . 
5 

6 InltEXp 'CurrentVal IS CenterVal 85 %Max I 

7 200 [DeslredVal] 1600 thSEC , 

8 

9 0 INITIALIZES InltExp 

10 

11 

12 ! +  DIAGNOSTICS 

13 MouseVal ( n MOUSER MP HIS 2 dIngVai t )  

14 

15 
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0 ( A u t o  T h r e s h o l d  919 27 Apr 1 9 9 5 )  

1 VARIABLE G a i n  VARIABLE D e l t a T  

2 VARIABLE ( V e l o c i t y ]  VARIABLE ( P o s i t i o n ]  VARIABLE [ E p s )  

3 

4 : ! E p s  C u r r e n t V a l  1 0 0 0  * [ P o s i t i o n ]  B - ( E p s ]  ! ; 

5  

6 : P V e l  1 0 0 0  G a i n  @ - DUP D e l t a T  @ / 

7  [ E p s ]  @ 1 0 0 0  */  [ v e l o c i t y 1  ? t ;  

8 

9  : P P o s  1 0 0 0  G a i n  @ - 2* [ E p s l  @ 1 0 0 0  */ 

10 D e l t a T  P ( V e l o c i t y ]  @ 1 0 0 0  */ t [ P o s i t i o n ]  @ t  ; 

11 

1 2  : U p d a t e P i l t e r  ! E p s  PPos  ( P o s i t i o n ]  ! PVel  [ V e l o c i t y ]  ! ; 

1 3  

1 4  : F v a l  [ P o s i t i o n ]  B 1 0 0 0  / ; 

1 5  
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0  ( F i l t e r  L e n g t h  g l g  27 Apr 1 9 9 5 )  

1 

2  : F i l t e r L e n  zR 3 2 0 0  D e l t a T  @ R> */ 1 0 0 0  SWAP- G a i n  ! ; 

3 

4  : F i l t e r I n i t  C u r r e n t V a l  1 0 0 0  [Position] ! - 0  ( V e l o c i t y )  ! ; 

5  

6 . .FILTER 

7 5 0 0  6 4 0  AT l o g i c a l  @ NORM @COLOR WHITE 1 0  SCRUB XOR'D 

8 C u r r e n t V a l  4  G.R F v a l  6 G.R COLOR l o g i c a l  ! ; 

9 

1 0  : F M F I n l t  

11 0  [ V e l o c i t y ]  ! 1 2 8  1 0 0 0  ( P o s i t i o n ]  ! 

1 2  ' v a l u e  IS F v a l  1 2 5  D e l t a T  ! 1 0 0 0  F i l t e r L e n  ; 

1 3  

1 4  0  INITIALIZES F M F I n l t  

1 5  
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Road Friction Coefficient Estimation For Vehicle Path Prediction 

cm-SHANG L I U ~  AND HUEI P E N G ~  

One of the most noticeable trends of the automotive industry in the 1990's is the emerging of 
active safety technologies. Instead of passive protection and crash worthiness, emphasis has been 
shifted toward accident prevention and damage reduction using active safety techniques. To develop 
effectiveactive safety devices,it is llecessary to estimate vehicle motions accurately, and reliable 
road friction estimation is one of the most important steps toward this goal. 

This paper is part of an on-going research toward the development of a lane-departure warning 
system [I], one of the most technology-demanding active safety systems. The basic concept of the 
lane-departure warning system is to project vehicle trajectory, and compare with the perceived road 
geometry (obtained from vision systems) to calculate a performance metric termed "time to lane 
crossing" (TLC). When the calculated TLC is less than a threshold value, the control system will 
either issue waming signals or take intervention actions. To project the vehicle future trajectory 
accurately, we need to update vehicle parameters (speed, cornering stiffness, etc.) and estimate 
external disturbances (road super-elevation, wind gust, etc.). The estimation of external 
disturbances further depends on the vehicle parameters. Therefore, on-line estimation of roaditire 
characteristics is crucial for the TLC calculation and the overall lane-departure warning system. It 
is important to note that accurate roadtire friction estimation can also improve the performance of 
many other vehicle controllsafety systems such as ABS, traction control, and 4WS systems. 

Recently, various methods to identify the road friction coefficients have been developed. 
Dieckmann [2] developed a method which allows the exact measurement of wheel-slip in the order 
of From the information of measured wheel slip the road surface variation is detected. 
hchhom et al.[3] use optical sensor at the front-end of the car and stress and strain sensors inside 
the tire's tread to determine the road friction potential. Ito et al. [4] uses the applied traction force 
and the resulting wheel slip variations to estimate the road surface condition. Pal et al. [5] applied 
the neural-network based identification techque to predict the structural response of a non-linear 
system and applied it to forecast the frictional coefficient of the road. Pasterkamp and Pacejka [6] 
develops an on-line estimation method based on recoption of the pneumatic trail to estimate the 
friction between tire and road. In h s  paper, we have developed a disturbance observer to identify 
the road surface friction coefficient. The effect of the road surface condition on vehicle path 
prediction (measured in TLC) is the main performance evaluation metric. The vehicle path 
prediction is obtained based on the 2-DOFlateral dynamic model (bicycle model). To calculate the 
TLC the longitudinal tire force is first estimated from a single wheel model. The road friction 
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coefficient and the tire lateral force are then calculated based on an anisotropic model. Based on the 
estimated lateral force, the cornering stiffness is then obtained. This updated cornering stiffness is 
then used in the bicycle model to compute the TLC. In the estimation scheme, the wheel speed 
and torque are assumed to be available (measured or calculated). From the measured wheel speed 
and the estimated vehicle velocity the tire slip ratio can be calculated. Vehicle velocity is derived 
by the undriven wheel under driving conditions or estimated during braking conditions. 

The methods to estimate the road surface conditions are least square method and modified 
adaptive observer. The least square method used in this paper is a recursive least square method 
with a forgetting factor [8]. The modified adaptive observer applied in this paper is a traditional 
adaptive observer with a correcting term which improves the performance of the observer based on 
a linear relationslup between the output and input signals. From simulation results we found that 
the inclusion of the road friction estimation scheme will improve the TLC accuracy significantly 
under several cases. 

2. SYSTEM MODELS 

The system models used to estimate the road surface condition consist of two parts: a single 
wheel model and an anisotropic brush model. The model used for the velucle path prediction and 
TLC calculations is a 2 DOF lateral dynamic model. 

2.1 Single Wheel Model 
The single wheel model shown in Fig. 1 is used to calculate the'tire longitudinal force. The 

dynamics of the system in the state-space form is 

Fig. 1 Single Wheel Model 

where x is the wheel angular velocity w , y is the measurement (which is also the wheel speed), 
A =0, B= 1 and C =l .  The external disturbance signal u is 

where T is the tire traction torque (negative when braking). I, is the wheel moment of inertia, 
Fx is the tire longitudinal force and Rw denotes the radius of the tire. 

2.2 Anisotropic Brush Model 
The anisotropic brush tire model represents the tire forces as functions of the tire slip ratio, slip 

angle and road surface condition. When the tire strain is not saturated, the longitudinal force F, 
and lateral force F, are 



K  
where o = /- is the total strain of the tire, ox = -- ando, =-- 

1+ K 
ran( a) are the 
1 + K  

strain components in the x and y directions, respectively. kx and k, are the tire horizontal 
stiffness, a is the tire slip angle, K is the tire slip ratio, and Fx is the tire normal force. p is 
the maximum traction coefficient. 

The main reason we chose the brush model is because it is a easier model in mathematical 
manipulations. The parameters of the brush model were tuned to match the force curves of the 
magic formulam used in the simulation program. Fig 2 compares the tire forces from both the 
brush model and the magic formula under different mad surface conditions and tire slip ratio. It can 
be seen that some discrepancies still exist. However, when the slip ratio is smaller than the peak- 
force value, these two models are quite close. 

I I I I 

C' =1.0 
- Brush Model 

Cc =0.1 
--.-.-.-.-.-...-.-.-,-,-\ .-.-.-.-.-.-.-.-...-.-.-.-.- 

I I I I 

Fig.2 The Comparison between Brush Model and Magic Formula 

2.3 Vehicle Lateral Dynamics 
The vehicle lateral dynamics were found to be accurately described by the following 2 DOF 

bicycle model when the lateral acceleration is less than 0.3g 

where u and v are the vehicle longitudinal and lateral speeds, r is the yaw rate, m is the vehicle 
mass, and I, is the yaw moment of inertia. C,, and C,, are front and rear wheel cornering 



stiffness, respectively. 6,=,,, is the front wheel steering angle, and a and b are the distance from 
vehicle center of gravity to front and rear axles, respectively. 

3. ESTIMATION SCHEMES 

3.1 Recursive Least Square Method 
To estimate the longitudinal force from the single tire model, we can rewrite E q . ( l )  into the 

discrete form as 

where At is the sampling time, and k  is the time index. For least-square estimation, we put the 
output signal in the following form 

y ( k )  = a T ( k p ( k )  (6) 
o ( k ) - w ( k  - 1)  T ( k  - 1 )  

where for the single-wheel dynamics, we have y( k )  = -- , a T ( k ) = -  
At 

%, 
I, 1, 

and O ( k )  = F,(k)  

It is well-known that the recursive least-square estimation of the parameter vector O ( k )  is 

and the two auxiliary matrices are updated in the following way 

where k h  <1 is the forgetting factor. 

3.2 Enhanced Adaptive Observer 
A standard Luenberger observer for the state-space model shown in E q . ( l )  has the following 

form: 

where K is the observer gain vector selected in a way such that the eigenvalues of the closed-loop 
state matrix A + KC are located at desired locations. The error dynamics of thls observer can be 
obtained by subtracting E q . ( l )  from Eq.(8): 

where e = 2 - x ,  e, = i ( t )  - ~ ( t )  and Ak = A + KC. The updating law for the estimation of the 
unknown input is chosen to be 

u^,(t) = - B ~ P ~  
G( t )  = iO ( t )  - Koe 

A : P + P A ~  =-Q 

where i o ( t )  is the estimated input before correction, t ( t )  is the estimated input after correction, 
KO is the linear correction gain, and P and Q are positive definite matrices. The derivation of 
the updating law listed above will be shown in the next section. 



3.3 Stability Analysis of the Enhanced Adaptive Observer 
To avoid any confusion, the derivation of the estimation scheme is divided into two steps: pre- 

correction and aftercomxtion. 

a) Pre-Correction 
The observer of the system can be written as 

where $( t )  is the estimated input before correction. Subtract Eq.(l) form (13), we have 

e =  Ake+ Be,, (14) 

where e,,, = li, ( t )  - u(t) 

The Lyapunov candidate function is chosen as 

Taking the derivative of the Lyapunov function (15) along the trajectory of the error dynamics, we 
have 

Let 

then Eq.(17) becomes 

In other words, the updating law shown in Eq.(lO) will guarantee the convergence of the 
estimation error for both state and input signals, for the cases when the unknown input u( t )  is 
constant. The aforementioned assumption of the update law imposes a limit on our ability to 
track time-varying functions. In the following, we will introduce a modification to reduce the 
effect of h s  drawback. 

b) Modification of the Up-date law 
We assumed that the estimated input error e,,, is proportional to the state estimation error e 

when e is small, i.e. 

euo = K g  (19) 
In order to achieve the condition described in Eq.(18), Eq.(19) must be matched with Eq.(17). 

Take the derivative of Eq.(19) and substitute it into (17), we obtain the following relationship 

K d k  + & BK, + B' P S )  (20) 
From the above equation the proportional gain matrix KO can be solved. Substituting the 
obtained matrix KO into Eq.(19) and from the definition that e,, = i o ( t )  - u( t ) ,  we have the 
modified estimation signal 

Compare Eq.(19) with Eq.(21), Eq.( l l )  is obtained. The block diagram of the estimation 
scheme is shown in Fig. 3. 



Fig.3 Schematic Representation of Estimation 

3.4 Estimation of Road Surface Condition 
The estimation of the road surface condition is based on the anisotropic brush model described in 
section 2.2. The idea is that it needs more tire slip to obtain the same tire-road interactive force 
when the road is slippery; thus road surface condition can be detected by observing tire shear force 
vs, tire slip. After estimating the tire longitudinal f om,  the tire-road friction coefficient p can be 
obtained from (3a) and (3b): 

/ A 

A F 
p = -  

Fz 
where 

I , ,  l2 and k are tire-road patch length, width and stiffness, respectively. I, and I2 depend on the 
tire pressure and k varies with the tire slip ratio. a,,, is the maximum total strain allowed on the 
tire. 

4. VEHICLE PATH PREDICTIOK AND TLC CALCULATION 

4.1 Vehicle Path Prediction 
Vehicle path is determined by the complex interaction between human driver and the vehicle 

dynamics. To predict the future trajectory of the vehicle, it is a common practice [I] to assume 
that the steering angle is fixed and the vehicle speed remain constant in this future period of time. 
This assumption, albeit not true in many cases, will be used in most of the simulation cases in 
this paper. The prediction of the vehicle future path will be obtained from the bicycle model 
described in section 2.3. Since the relative motion of the car (with respect to the road ) is of 
interest, the lateral dynamics described in (4) will be augmented to include curved-road scenarios. 



a) Straight Road 
When the road is straight, the following bicycle model is used: 

where y is the lateral displacement, v is the lateral speed, + is the vehicle heading angle, and r is 
the yaw rate. 

b) Curved Road 
When the road is curved, the orientation of the road $d and the changing rate of the orientation 

rd must be considered. Choosing y and 4 - 4d instead of v and 4 as the state variables, the 
vehicle lateral dynamics in c w e d  road will be 

4.2 TLC Calculation 
TLC (time to lane crossing) is defined as the time for the center of gravity of the vehicle to 

cross the roadway edges. When calculating the TLC, the steering angle and the vehicle speed are 
assumed to be constant. TLC has been found to be a good metric for active safety measures. 
Warning, intervention or conuol actions can be taken based on the value of TLC. The TLC is 
calculated based on the lateral motion of the vehicle. More precisely, given the current lateral 
displacement from the lane edges, and assuming a constant steering input, TLC is defined as the 
time necessary for the lateral displacement to drrmnish to zero. It is obvious that the vehicle path 
prediction and TLC are affected by the tire cornering stiffness and steering input. On the other 
hand, tire lateral force needs to be calculated based on an estimated cornering stiffness. An initial 
guess of the tire cornering stiffness is chosen to estimate the vehicle lateral speed and the tire slip 
angle, the estimated vehicle lateral speed and tire slip angle are then used to calculate the updated 
tire cornering stiffens. Since the calculation of tire lateral speed and cornering stiffness depends on 
each other, we must solve them iteratively. Due to this iterative process, the estimation of the tire 
cornering stiffness is not fast enough to track the variation of the cornering stiffness if the real 
cornering stiffness varies dramatically. 

5. SIMULATION RESULTS 

The aforementioned methods were implemented on a simulation program which was developed 
by the CAPC team of the University of Mchgan Transportation Research Institute (UMTRI). A 
14 DOF vehicle model [l l]  was used, which includes the six degree of freedom of the sprung 
mass, and one degree of freedom for each of the four suspension linear motion and tire rotational 
'motion. The simulation program utilizes the combined-slip magic formula model to compute the 



tire forces. In the simulations some variables are assumed to be measured. The wheel speed is 
measured, which is corrupted with . l% random white wise. This level of accuracy was shown to 
be achievable under moderate vehicle speeds[l2]. The high accuracy of the wheel speed 
measurement is necessary, since we need the high accurate of the tire slip ratio to identify the road 
surface condition. The measurement of yaw rate is contaminated by a 0.1% white noise error. The 
engine torque and braking torque have 5% white noise error. The steering angle of the front wheel 
is assumed to be measured with a 0.1 degree white noise emr. 

time (sac) 10 

Fig. 4'~stimation of the Road Surface Condition 

Both modified adaptive observer and least square algorithms are applied. It was found that both 
of these methods work well if designed properly. Fig. 4 shows the scenario when the road surface 
condition experienced a stepchanges from y = 1.1 to y =0.2. The vehicle driving torque is 440 N 
when p =l.  1 and is 220 N when y =0.2. N'e can see that the fluctuation of the estimation result 
is large when y is large. T h ~ s  is because it is difficult to distinguish y when p is large (see 
Figure 2). 

Fig. 5 shows the estimated cornering stiffness for both front and rear wheels under three 
different road surface conditions. The steering wheel is assumed to be kept at 30 degree (=1 degree 
steering at tires). We can see that when y = 1.1 and y =0.5 the cornering stiffness didn't deviate 
much from the initial guesses, but when y =0.2 the cornering stiffness will reduce to about 4000 
Mad .  Since the cornering stiffness will not vary much when y is larger than 0.5, we will focus 
on the cases when the road surface is slippery. When y is high, we would expect TLC to be very 
insensitive to the road surface condition. Fig. 6 shows the predicted path of the vehicle when the 
wheel steering angle is 20 degree (=0.67 degree steering at tires) and p = 0.1. The results show 
that the TLC based on up-dated cornering stiffness is much more accurate. We also expect that the 
improvement from updated cornering stiffness will be larger when TLC is higher. In other words, 
i t  makes more sense to use updated cornering stiffness for warning, rather than on intervention and 
conuol actions. 
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Fig: 5 Estimation of the Cornering Stiffness 

In figure 7, the vehicle is assumed to have a 20 degree wheel steering angle at 18 mlsec. It is 
assumed that the road is straight and the distance between the c.g. of the vehicle and the road edge 
is 2m. The rms value of TLC estimation error is 0.02 second and 0.28 second for the updated and 
un-updated cases, respectively. Fig. 8 shows the calculated TLC under the same driving conditions 
except that the road has a radius of curvature = 1000m. The rms value of TLC estimation error is 
0.187 second and 0.65 second for the updated and un-updated cases. It should be noted that the 
difference between the estimated TLC and the nominal TLC is larger in the in the curved-roadcase. 
The major reasons is that the TLC is larger in this case. Because the initial value of the cornering 
stiffness of the updated one is the same of that of the un-updated one, the initial calculated TLC 
will be the same in both cases. 
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Fig. 7 Calculated TLC (Straight Road) 

Fig. 9 shows the TLC of the vehicle with zero steering angle on a curved road. It can be seen that 
the 0.1 degree measurement noise of the front wheel steering angle has little effect on the TLC 
calculation. Only the results of the updated case is presented because the difference between the 
cornering stiffness of the updated and un-updated cases is small when tire slip angle is very small. 

Fig. 10 shows the effect of vehicle load variation. A 200 kg luggage is assumed to be loaded 
in the trunk. Important parameters of the vehicle including c.g. location, vehicle mass and 
moment inertia are changed accordingly. The driving conditions and road geometry are the same as 
those of Fig. 8. The results show that the TLC based on updated information is still much more 
accurate than the un-updated case. The rms value of the estimation error is 0.09 second and 0..35 
second, respectively. 
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Fig. 8 Calculated TLC (Curved Road) 

time (sec) 

Fig. 9 Calculated TLC (curved road, zero steering angle) 
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Fig. 10 Calculated TLC (curved road, extraload in tIunk) 

The effect of road gradient is shown in Fig. 11. The gradient of the road is assumed to be 0.05 
rad (about 3%). All the other simulation parameters are the same as those of Figure 8. The rms 
value of TLC estimation error is 0.33 second and 0.78 second for the updated and un-updated cases, 
respectively. Under this circumstance, the identification schemes cannot provide satisfactory 
improvements. 
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O O 0 \ . nominal 

TLC 
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Fig. 11 Calculated TLC (curved road, 0.05 rad gradient) 

The effect of road super-elevation is presented in Fig. 12. The results show that the TLC of the 
updatedcaseare closer to the nominal value than the un-updated does. The rms values of TLC 
error are 0.037 second and 0.21 second. We can see that the rms values of TLC error are reduced 
significantly of the un-updated one as compared to the rms values of TLC error of the case shown 
in Fig. 8. It is because that when the road has a proper super-elevation the tire forces generated by 
the steering will be reduced, i.e. the tire slip angle will be reduced. Since the cornering stiffness 
will be insensitive to road surface conditions when the slip angle is small, it can be expected that 
the calculated TLC of un-updated one will be more close to the nominal one if the road super- 
elevation is more than 0.05 rad. 
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Fig. 12 Calculated TLC (Curved Road 0.05 rad Super-elevation) 

When the vehicle is steered by wiggling input (a rough approximation of a drunk driver), the 
TLC was only slightly improved in a certain region which can be viewed more clearly in Fig. 14. 
The main reason of this dsmal improvement is because the estimation scheme is sluggish. 
this simulation the steering input is sinusoidal whch means that the effective cornering stiffness 
changes dramatically, thus the estimated cornering stiffness cannot follow the change of cornering 
stiffness well. The TLC calculation is improved more when the steering angle is large, i.e., when 
the cornering stiffness is not fast varying and effective cornering stiffness is s m d .  
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Fig. 13 Calculated TLC (straight road, sinusoidal steering angle input) 
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Fig. 14 TLC Error (straight road, sinusoidal steering angle input) 
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6. CONCLUSIONS 

Both methods of modified adaptive observer and least square algorithm work well to estimate 
the road surface condition. The purpose of using the modified adaptive observer is that it can 
estimate the time variant nonlinear input without a mathematical form of the input. The effect of 
the vehicle parameters (tire cornering stiffness) on the TLC calculation is the main performance 
evaluation metric in this paper. It is found out that the accuracy of the TLC can be improved as 
large as 0.5 second if the road surface condition is considered, but for some cases the accuracy of 
the TLC calculation of the updated one is still not good enough even though it has better results 
than that of the un-updated one. The solution is that we should modify the scheme of the vehicle 
lateral speed estimation. It is also found that the TLC calculation error of the case of the cornering 
cornering stiffness without updating will be reduced if the road has a proper super-elevation. For 
the case of sinusoidal steering input, the updated one can only have better performance on some 
regions. How to increase the response and accuracy of the cornering stiffness estimation is another 
challenge task. It is observed that the TLC can be improved more significant when TLC is large. 
It means that the update of the cornering stiffness is more useful for warning than 
Interventiodcontrol. 
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Abstract 
On-line identification of driver state is a desirable 

element of many proposed active safety systems (e.g., 
collision detection and avoidance, automated highway 
and road departure warning systems). Here we 
consider driver state assessment in the context of a 
road departure warning and intervention system. A 
system identification approach, using vehicle lateral 
position as the input and steering wheel position as 
the output, is used to develop a model and to 
continually update its parameters during driving. 
Driving simulator results indicate that changes in the 
bandwidth and/or parameters of such a model may be 
useful indicators of driver fatigue. 

Motivation 
On-line identification of driver state is motivated 

by the increased interest in vehicle driver assistance 
features such as antilock brakes, automatic cruise 
control, collision warning and road departure warning. 
These driver assistance features are centered around the 
ability to perform a control-type task while at the 
same time keeping the driver in the control loop. 
Antilock brake systems (ABS) are a current example. 
ABS works in conjunction with the driver brake pedal 
input to prevent wheel lock. Automatic cruise conno1 
and the potential application of collision avoidance 
takes over the function of headway control, but it 
remains the duty of the driver to steer the vehicle. 
Road departure warning can be viewed as a further 
extension where an additional driver support system 
acts as a co-pilot to monitor lane keeping 
performance. 

One way to realize such a lane keeping system is 
to approach it as an automatic steering control 
problem, which augments the driver's steering 
commands with steering commands generated by a 
controller algorithm that seeks to keep the vehicle 
centered in the lane. With this approach, warnings are 
not needed and intervention is essentially continuous. 
On the other hand, it also assumes that the driver 
desires to drive like a controller, i.e., tracking the lane 
center. Typically, though, most drivers view lateral 
lane position control with a pseudo-deadband 
approach. Some drivers have a large deadband while 
others keep the deadband tight - as far as the driver is 

concerned, lateral lane position is satisfactory as long 
as the vehicle does not run off the road. 

A variation of the automatic steering system 
which includes driver behavior may make it possible 
to accommodate different driving styles. If driver 
actions can be monitored, it would be possible to 
"personalize" the warning to adapt to different driving 
styles. In addition, it would also be possible to track 
changing driver parameters during a long drive. This 
would enable a driver assistance system to provide 
warning as a function of changing driver state (e.g., 
alertness or fatigue). 

Background 
Taken from the perspective of driver modeling, 

the literature is rich wiih examples. There is a n  
optimal preview model [MacAdam 19811 which 
internalizes a vehicle model as pan of the driver 
response to the upcoming road path, a multiple input 
system [McRuer and Weir 19691 which closes the 
loop on lateral position and heading angle errors, and a 
control theoretic model [Modjtahedzadeh and Hess 
19931 which uses previewed lateral position as the 
feedback term with internal "driver" states. These 
models represent the starting point for driver model 
identification for this paper. Additionally, there are 
examples of statistics-based driver models [Knipling 
and Wierwille 19931 that seek to capture anomalies in 
driver behavior such as fatigue. And finally, there are 
neural network approaches to driver modeling for 
vehicle control [Thorpe et. a1 19921 where driver 
model steering angle output is mapped from vision- 
based road views. 

Purpose and Scope 
We seek a method to detect changes in driving 

patterns so that an assessment of driver 
alertness/performance can be made. This assessment 
will be used first as an input to a road departure 
warning system. Our hypothesis is that system 
identification techniques can be used to form a set of 
driver parameters that can be correlated with various 
levels of lane keeping performance. Variations in 
these key parameters will then permit us to monitor 
driver state. 



Driver Models vs. Simulator Data 
Driver models found in the literature are used 

primarily for vehicle dynamics studies for maneuvers 
such as lane changes, emergency maneuvers and 
general tracking. The function of the driver model is 
to approximate driver tracking performance so that o 100 500 6~ 

vehicle dynamics models can be evaluated. They are 
"control" models, and as such, they assume the - 0 5 -  
"driver" goal is to follow the road reference to the best 5 
of its ability. An example is seen in Figure 1 where Q 
an optimal driver model [MacAdam 19811, seeking to : O -  
minimize the error between the future road trajectory $ 
and the predicted vehicle trajectory, controls the " 4 5 -  

vehicle model to a standard deviation of approximately o I W  200 300 400 500 €03 
Em0 (sec) 

0.001 m with steering wheel motions in the 1 hz 
region. Figure 2 Driver simulator on straight road (asphalt) 

x loJ The implications are that driver models for 
handling experiments do not replicate driving behavior 
seen in highway-type lane keeping tasks. There may 
be simpler structures that can capture changing driver 
behavior, and while the identification effort may not 
produce a driver model capable of stand-alone 

I . , 

.3 ' I simulation, the main purpose here is to support driver 
0 100 200 3M) 400 503 800 

state assessment. 
x loJ 

Identification A~proach to Driver 
State Assessment 

We are currently pursuing a system identification 
approach (see Figure l) ,  and have assumed an ARX 
structure as the candidate model structure: 

0 1W 200 300 400 800 
time (set) A(q))l(t) = B(q)u(t - nk) (1) 

Figure 1 Optimal driver model on straight road 

(asphalt) 
Data from a driving simulator with a similar road 

surface, but now with a real person at the steering 
wheel, is shown in Figure 2. The lane tracking 
performance is quite different; the lateral position 
standard deviation is 0.25 m with steering wheel 
motions under 0.25 hz. 

One can observe a "complacency zone" in the 
steer angle data in Figure 2 which is not evident in 
Figure 1 .  The steering position remains constant 

where y(t) is the driver model steering position output 
(8 )  and u(t-nk) is the delayed driver model input <in 
this case lateral vehicle position, y). 

Driver :+P-? 
while small lane deviation-(and heading angle) errors 
build. Past some threshold the driver makes a Figure 3 Driver Identification Framework 

correction. The complacency zone is a function of Figure 3 describes the closed loop system where 
disturbance level, and will also depend on other factors the driver n~odel Parameters are estimated on-line in a 
such as traffic density and road curvature. recursive algorithm. Before this can be achieved, 

preliminary driving simulator data is to be tested for 
informative value (data collected in feedback loops 
should be handled with care). The data can then be 



tentatively fitted to ARXlARhIAX models with delay 
to examine suitability with standard system 
identification techniques. Proposed inputs to the 
driver model are lateral deviation, y ,  and heading 
angle, W .  Noise inputs, wi allow the model to 
represent sensor uncertainties. Additional te!t data 
with driving subjects in various degrees of subjective 
alertness is then needed to examine driver parameter 
variations from test to test. Final validation tests will 
then occur with the on-line system with a comparison 
to subject alertness level (either subjective or 
measured). Indicators such as parameter values and 
polelzero locations can be used to track changes in 
driver state. We will compare this approach with 
results shown in [Thorpe et, a1 19921 to demonstrate 
the ability to detect driver fatigue. 

Before proceeding further, the existence of 
persistent and sufficiently rich excitation must be 
considered. Since identification needs to occur during 
normal driving, we are not able to perturb the system 
to induce "interesting" driver behavior (or wait for 
high demand driving tasks). Rather, it is assumed that 
normal driver tasks will provide sufficient excitation 
for identification. This assumption requires further 
investigation. Figure 2 showed typical driver steer 
patterns, and the plots in Figure 4 show the effect of 
adding road surface noise to the simulator vehicle 
dynamics model. It shows improved steering power 
spectra in the 0.5 hz range. The advantage to adding 
disturbances through the road surface is that the 
surface is a realistic representation of vibration induced 
i n  the vehicle and is propagated through the vehicle 
dynamics model. The disadvantage is that road inputs 
require a vehicle dynamics model with sufficient 
degrees of freedom to allow tire displacement inputs. 
The simulator runs in the remainder of this paper use 
the asphalt road surface shown in Figure 4 (middle). 

Figure 4 Driving Simulator steering position spectra 
(top) perfectly smooth road, (middle) and (bottom) 

asphalt and concrete road surfaces 
In this paper, we report preliminary results from 

this proposed approach where only y (not y and y) in 
Figure 3 is fed back to the driver model, and the 
parameter estimates are obtained using off-line least 
square estimates from driver simulator data. An 
ARX(3,3,1) model (i.e., the order of polynomials A 
and B are both 3, and delay n = l  in Eq. 1) was 
determined to be adequate. 

Results & Discussion 
Using straight-line driving simulator data, we 

have been able to fit ARX models using lateral lane 
deviation as the input with steering position as the 
output. The standard deviation of y is observed to 
vary over the course of a one hour driving test as 
shown in Figures 5-7. Figure 5 shows the steering 
wheel angle, heading angle and lateral position for a 
portion of a straight-line driving test. The overall (for 
the entire test) trend that can be seen in lateral 
deviation variance (second trace in Figure 6) that are 
similar to variations found in [Thorpe er. a1 19921. 
No trends related to driver fatigue are evident from the 
mean value of y (the first trace in figure 6). Figure 7 
is an example of an ARX(3,3,1) model fit to non- 
overlapping portions of the test run with lateral 
position as the input and steering position as the 
output. 



The results in Figure 7 show a 3-step ahead 
prediction of the steering wheel angle using the ARX 
model, compared to actual steering wheel angular 
position. The model fit, and the output prediction are 
quite good. 

Careful analysis of the poles and zeros of this 
ARX(3,3,1) model revealed that two of the poles and 
zeros in the model were related to the quantization 
error (evident in Figures 2 and 5) associated with the 
measurement of the angular position of the steering 
wheel. This is due to the limited resolution of the 
steering angle sensor used in the driving simulator. 
Consequently, the third (dominant) pole only was 
found to be directly related to driver steering behavior. 
Figure 8 shows the value of this dominant pole versus 
the simulation time. Initially the pole is at z E 0.94, 
and near the end of the simulation is at z 2 0.96. 
This corresponds to a change in the effective "time 
constant" of the driver from z E 0.8 sec to 7 z 1.2 
sec, and correlates well with the increased standard 

e a l  J 
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Figure 6 Lateral position mean and standard 
deviation for 1000 sample-wide non-overlapping 

windows 
deviation of y as shown in the second trace of Figure 
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A system identification approach to driver state 
assessment has been proposed and evaluated using 
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Figure 5 Portion of driving simulator data 



driving simulator tests. The approach uses an ARX 0.96 

model to represent the relationship between vehicle 
lateral position y and the driver steering wheel 0.955 

angular position 6.  The ARX model parameters are 
then continually estimated during the driving task. 

0.95 
The results are encouraging in that good ARX model 
fi t  is obtained, and changes in driver behavior (i.e., 5 

H O.w increased standard deviation of y due to driver fatigue) - 
can be detected from changes in the poles of the i 
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2 
0.935 

1.5 
0.93 

- 

J 

o.w\/ 

- 

- - 0 503 loo0 1560 2W6 2 x 0  
$ hme (sec) 
0 
.t 0.5 
rn Figure 8 Dominant ARX pole locations 

i o 
% 
F-o.5 References 
= 
P MacAdam, C. C. "Application of an Optimal Preview 
5 -1 Control for Simulation of Closed-Loop Automobile 

.1.5 
Driving." IEEE Transactions on SMC, 198 1, 1 l(6). 

McRuer, D.; Weir, D. H. "Theory of Manual 
-2 Vehicular Control." Ergonomics. 1969; 12(4). 

-2.5 
0 50 100 150 2M) 250 300 350 400 445 x0 

Modjtahedzadeh, A.; Hess, R. "A Model of Driver 
Samples at 20iv Steering Control Behavior for Use in Assessing Vehicle 

Handling Qualities." J. of Dynamic Systems, 
Figure 7 3-step ahead steering angle prediction Measurement and Control, S ~ P ,  1993. 

Knipling, R.; Wierwille, W. "U.S. IVHS Research: 
Vehicle-Based Drowsy Driver Detection". Vigilance and 
Transport Conference. INRETSILTSTRB; 1993 Dec. 

Thorpe, C.; Hebert, M.; Kanade, T.; Shafer, C. "The 
New Generation System for the CMU Navlab". Vision- 
based Vehicle Guidance, Springer-Verlag; 1992. 





Appendix H 

"Vehicle Steering Intervention 
Through Differential Braking" 
T.E. Pilutti, A. G. Ulsoy, and D. Hrovat 

Proceedings of the 1995 American Control 
Conference 





Vehicle Steering Intervention Through Differential 
- 

Braking 

Tom Piluttil, Galip ulsoy2 and Davor I-Irovat3 

Abstract 

This paper examines the usefulness of a brake steer system (BSS) which uses differential brake forces for 
steering intervention in the context of Intelligent Vehicle Highway Systems. The resulting moment on the 
vehicle affects yaw rate and lateral position, thereby providing a limited steering function. The steering 
function achieved through BSS can then be used to control lateral position in an unintended road departure 
system. Models for the vehicle and the brake system are presented. A state feedback regulator and PID 
controller are developed to explore BSS feasibility and capability. Computer simulation results are 
included. In addition, we define a region of allowable steady state differential braking forces for given ranges 
of steering angle, vehicle speed and road coefficient of friction. We use multiple simulations of a nonlinear 
vehicle model (nonlinear tire model) to determine stable control regions. We assume steady state steering 
and brake steer force inputs, and use non-constant yaw rate as the stability criterion. The resulting 
maximum steady state brake forces form a conservative upper bound on brake steer operational regions. 

1 Introduction 
The use of differential brake forces has been applied to increase handling performance during a combined 

braking and cornering maneuver [Nakazato et al. 19891. Their results show that a decreased yaw moment in 
the direction of the turn can be achieved by altering the lefthight brake dismbution such that the brakes on 
the inside of the turn have less braking force that those on the outside of the turn. The distribution is 
controlled by hydraulic valves which operate as a function of vehicle roll. The concept has been extended to 
control the brake force distribution as a function of steering wheel input during the turn [Matsumoto er al. 
19921. A yaw rate model reference controller establishes the desired yaw rate given the steering wheel 
input, and then makes corrections to the anti-lock brake system pressure in order to track the reference yaw 
rate. 

This paper explores the use of differential braking as a means to perform limited steering functions. 
The proposed brake steer system (BSS) is motivated by Intelligent Vehicle Highway Systems (IVHS) 
Advanced Vehicle Control Systems (AVCS) research into systems such as anti-road departure, collision 
avoidance and intelligent cruise control. In these systems it is feasible that limited steering capabilities 
would provide an enhanced degree of system performance. In anti-road departure and collision avoidance, for 
example, a driver over-rideable course correction could be performed after an appropriate warning in response 
to an impending dangerous condition such as under-driving a turn in the case of anti-road departure, or an 
oncoming vehicle in the case of collision avoidance. Intelligent cruise control may benefit from the ability 
to react to conditions where a vehicle cuts in front of the autonomous cruise control vehicle. Each of these 
examples show the usefulness of limited steering ability to intervene and alter vehicle course. There are 
numerous technical, legal and social issues involved in altering the course of the vehicle beyond that 

'Research Engineer, Ford Research Laboratories, Dearborn, MI and Student Member of ASME 
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specified by the driver. This paper assumes that the legal and social issues can be contained, and that some 
degree of steering intervention is deemed desirable. 

The key idea with steering intervention is that the driver remains in the loop, and that any control 
efforts only augment those given by the driver. The driver provides the primary steering commands, with 
intervention providing additional assistive lateral control efforts. This level of control is contrasted with 
automatic lateral control where the driver is effectively out of the loop, and at most provides override input 
[Peng et al. 19921. 

Intervention can be implemented in the "conventional" sense by viewing intervention as a subset of 
steer-by-wire actuation. Steer-by-wire enables additive augmentation of the driver steer command, and can 
be done using either a series or parallel approach [Peng et al. 19921 [Tran 19911. The series approach 
performs the additive function after the driver, at the actuator, where the driver does not receive feedback 
regarding the augmenting commands. The parallel approach performs the additive function before the 
actuator, and provides feedback in the form of steering wheel movement, regarding the augmenting 
commands. The series and parallel approaches assume, however, that a steering-augmentation-type system 
is on board the vehicle. For applications such as Program on Advanced Technology for the Highway 
(PATH) [Shladover et al. 19911 where autonomous driving is the goal, such an assumption is valid. 
Systems seeking to perform at most intervention, on the other,hand, permit other less expensive forms of 
actuation to be considered. 

One such alternative is the use of differential braking to perform intervention steering maneuvers. 
Such a brake steer system (BSS) has an advantage over steer-by-wire implementations in that the steering 
system remains intact, while the required anti-lock brake system (ABS) modifications have been shown to 
be minimal [Matsumoto et al. 19921, and will be discussed in the section on control. Brake steer, however, 
is not as efficient as pure steering. The brakes actuated to induce the yaw moment will also serve to 
decelerate the vehicle. Despite the initial reaction to this side effect, it is possible that the effect will serve 
a purpose in the psychology of the road keeping problem, and motivate the driver to eliminate the condition 
prompting road departure intervention. 

Sections 2 and 3 discuss the bicycle vehicle model with the brake steer input used in system design, 
and the simple ABS model that seeks to reflect dynamic as well as saturation effects. Section 4 uses the 
model to form PID-type and state variable feedback controllers, and discusses the issues in implementation. 
Two appendices provide ABS and traction control system (TCS) background. 

2 Vehicle Model 
The brake steer moment imposed on the linearized, 2 degree of freedom (DoF) vehicle model is 

implemented by adding the external moment, M,, to the vehicle diagram (Figure I), and then summing 
forces in the Y direction and moments about the Z direction to yield [Segel 19921 [Asgari and Hrovat 19901: 

ZF,: r n ( v + r u ) = ~ ; , + ~ , ,  (la) 

where 
m = vehicle mass (kg)  
v = relative lateral velocity (mls )  
r = yaw rate (radls) 
u = forward velocity (m/s )  

I ,  = yaw moment of inertia (kg - m 2 )  

F;,  , F,, = respective front and rear lateral tire forces ( N )  

a, b = respective lengths from mass center tofront and rear ( m )  

CF is not included since longitudinal forces play a minor role in the lateral response if vehicle forward 
speed, u ,  remains constant (i.e., steady turn conditions). This is a reasonable assumption if the braking 
due to brake steer does not cause an appreciable decrease in vehicle speed. This assumption will be 



investigated using a nonlinear model, and may require consideration during conaoller design [Hessburg et al. 
1991al. The linearized vehicle model is useful for control design, and has been shown to provide accurate 
response characteristics compared to more complex models for conditions up to 0.3g lateral acceleration 
[Segel 19921. 

Figure 1 2 DoF Bicycle Model Figure 2 Brake Steer Application 

The input brake steer moment, M B S ,  is generated by different braking forces on the left as compared to 
the right of the vehicle (Figure 2). Longitudinal braking forces can be applied to the front, the rear or both 
to achieve differential braking. Possible detrimental issues involved in only using the rear brakes will be 
discussed later. The main point is that the input moment is formed by the braking differential through 

where 
T = vehicle width or track (m) 
F,, F, = respective right and lefi longitudinal tire forces ( N )  

MBS produces yaw rate, r, which in turn affects the front and rear sideslip angles, a, and a, respectively, 
through 

v  + ar  v - b r  a, =-- S and a, =- 
U U 

The resulting lateral forces are determined by the front and rear sideslip angles and the tire cornering 
coefficients, C, , i = l ,2 ,  

F;Y = Calal and 4, = Ca2a2 
where 6, and 4, reflect the lateral tire forces due to both the brake steer input, M B S ,  as well as the 
normal steering input, 8. C,. in (4) are expressed in units of 2, and represent the cornering stiffness for 
combined left and right tires of the bicycle model. In the case where there is no steering input 8, the 
lateral forces generated by the sideslip angles provide acceleration needed to vary the lateralpoition of the 
vehicle. Although yaw moment does not directly impact (la), the magnitude of differential braking forces 
affects the sideslip angles through the yaw rate. 

Making the substitutions for lateral forces, 6 and &,, into (la)-(lb), and replacing MBS with the 
longitudinal tire forces in (2), yields the state equations in the form: 



with the output equation: 

where the inertial lateral acceleration, jcM = v + ru, and the yaw rate, r, are the outputs. Using the 
following numerical parameter val es show in Table 1 for a nominal Ford Taurus, the dimensionless 

m'4ca'-bCaR = 0.0267, and the characteristic polynomial, understeer coefficient. v = CIIC 0 2 , 0 1  bl 

A(s) = s2 + 12.2s + 61.6 with dlstinct roots -6.1 f j4.9. The steering input, 6, is expressed in 
degrees and is converted to radians inside the model. The transfer function matrix for the system is: 

coefficient (2  tires), 

Table 1 Taurus Nominal Vehicle Parameters for 2 DoF Linear Model 

Note that KBs is a brake steer scaling factor where normally KBS = 1. The introduction of KBS 
permits sensitivity to be examined. For this system, the steady state gain of Y'S)&,, from the final value 
theorem with a unit step input is 2.8%:, (0.29ge,). To have comparable gain as for the steering 
input 6 ,  KBS = 3490 is required for the brake steer. Factors such as brake system capability and tire 
adhesion will affect realization of braking forces, therefore, this K,, is meant only for comparative 
illustration. As an aside, it is interesting to note that " ,%B, ( , ,  is nonminimum phase for v < 0 .  

Figure 3 provides a comparison of achieving a lane change using the steering wheel and using brake 
steer. The three meter lane change maneuver is accomplished using a sinusoidal input to the front wheels 
of amplitude 0.5 degree (9 degrees at the steering wheel using a static steering mechanism gain of 18). The 
same lane change is done by a sinusoidal brake steer input of amplitude 1745 N ( K ~ d ) .  The negative 
portions of each input create the change in path curvature needed to straighten the vehicle in the new lane. 
The positive half of the brake steer command, FBs, is generated by braking on the right side of the vehicle. 
From simulation results, if the desired response frequency is doubled to 0.5 Hz, the steer effort is 
quadrupled; 2 degrees for wheel steer and 6980 N for brake steer. Again, the tirelroad interface will constrain 
the achievable response in terms of achievable longitudinal braking forces. The next section on brake 
modeling describes brake steer limitations in terms of maximum possible braking forces. 
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Figure 3 Comparison of Steering using Front Wheels vs. Brake Steering 
for 3 meter Lane Change Maneuver (hypothetical) 

3 Brake Svstem Model 
Three aspects of a hydraulic ABS system have been modeled. They comprise (1) the saturation effect of 

the ABS controller in which brake pressure to the wheels is limited to prescribed wheel slip and 
acceleration, (2) a dynamic lag term introduced to represent the hydraulic system response to an input 
signal, and (3) the overall brake gain from hydraulic pressure to brake force (Figure 4). Rotational wheel 
effects are not considered. 

The saturation effect of the ABS controller is the result of seeking a control performance where the 
maximum longitudinal braking force is imparted to the road without excessive longitudinal slip and wheel 
acceleration. The saturation threshold is assumed to be constant for a given vertical tire load and road 
condition using F',,,, = p FZ where p for the road is generally in the range [0.1, 1.01 (0.8 nominal) and 
vertical load is: 

for one front comer (5  160 N )  
F, = 

for one rear comer (3000 N )  

Additional assumptions are that the roll and pitch dynamic effects, as well as unsprung dynamics and 
passenger loading, are neglected. From the Taurus data using a nominalp of 0.9, F,,,, = 4125N for 
one front comer and 2700N for one rear corner. The saturation effect is modeled as unity gain for 
FB < FB,s,f such that 

FB limited = max(-~B.Sal 9 min(~6.des,nd 9 + '6,Sat)) (9) 

As applied in this model, the saturation force is translated into a saturation pressure to reflect hydraulic 
system pressure and its effects at the wheel via the brake caliper. 



Figure 4 BSS System Model 
The hydraulic system response is modeled as a first order lag with time constant TMS = 0.1 seconds 

[Bowman and Law 19931 such that 

ABS effec: lami: 
llnear vehicle plant 

on Pre~sure ABS lag ~ w e 1  

The model can be i n t e ~ e t e d  as the dynamic lag between a hydraulic pressure command Phvd and the 
resulting brake pressure evd Pure delay effects (computational) are not considered. 

brake pressure kPa P allowed k P e  

The overall brake gain has been represented as a scalar value based on the physical dimensions of the 
hydraulic system with the assumption that disk brakes are used. The brake gain describes the steady state 
gain from the desired hydraulic brake pressure in the disk brake caliper cylinder to an ideal longitudinal 
braking force applied at the tirelroad interface. This ideal brake force, the result of hydraulic pressure desired 
by the BSS controller, may not be attainable due to road surface conditions and vertical tire loading. That 
does not present a problem since the ABS will saturate, and preclude the desired hydraulic pressure from 
creating an unachievable brake force. The static brake gain, K g ,  used in this paper is KB = 0.58 yuO. It 
is derived from brake caliper and rotor dimensions. 

The first order lag and brake gain model is only applicable when combined with the ABS saturation 
effect. The saturation element corrects brake pressures that would otherwise result in inaccurate or 
unachievable longitudinal brake forces at the tire. 

4 Brake Steer Controller 

u, 
1 

0.1s r 1 

Design of a suitable controller begins with combining the brake model and a corresponding brake 
pressure input to the vehicle model with lateral deviation output. Proportional plus derivative (PD) and 
state variable feedback controllers are examined. The addition of integral action i.e., proportional plus 
integral plus derivative (PID) to improve tracking ability is also considered. 

r 

P delayed kpa 

vdot 

Ns : ycmdotdo: 

4.1 Model Alterations 
The system has been augmented with two free integrators to take inertial lateral acceleration, yo in 

(7), and generate lateral deviation in meters for the mass center. The states v and r are the relative lateral 
velocity and yaw rate from the original 2 DoF model, and ycM and jcM are the augmented-states 
representing the inertial lateral position and velocity. A fifth state corresponding to the pressure, <,, , in 
the brake model is then prepended to the brake steer input to complete the linear plant model. The 
augmented scalar system representation with input FBS and output yCM takes the form: 

r 1 



The system described in (1 1)-(12) is used in the linear controller design, and does not include the ABS 

saturation term. It does include the brake state, and is therefore suitable for state feedback design as well as 

PD or PID design. Example block diagrams of a PD and a state feedback controller for BSS are shown in 

Figures 5 and 6 .  

I 

Figure 5 PD Controller 
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Figure 6 State Feedback Controller 

The controller design problem is arranged to be single-input single-output (SISO) by considering the 
steering input 6 as a disturbance input to the plant and lateral deviation as the only output as shown in 
Figure 4. This approach treats the model as a deviation model where the input steering angle is the 
difference between the actual steering input and required steering input as determined by knowledge of road 
curvature. The lateral deviation output reflects the error between the desired and actual paths. Road 
curvature is provided by a system outside of the brake steer system. This information is necessary to 
differentiate between the change in inertial lateral position as the result of following a curve and the lateral 
position as the result of steering error . An alternative to this approach is to adjust each state equation to 
the curvature or speed specified yaw rate, yaw angle and lateral acceleration [Peng and Tomizuka 1990al. 



The deviation model is motivated by the nature of the regulator (i.e., the desire to drive the system 
states to zero). Without road curvature information, it would not be possible to feed back the system states 
that represent the deviation from the desired trajectory. For straight-line travel this is not an issue. Travel 
along a curve, on the other hand, would result in the states, whether measured or observed, reflecting not 
only lateral lane deviation, but the overall effect (e.g., centripetal acceleration) of negotiating the curved road 
section as well. Implementation of a compensator such as PD with a lateral deviation sensor as feedback 
does not require such consideration. 

The effect of vehicle forward speed can be observed in simulations by modifying the linear vehicle 
model to incorporate a time varying vehicle speed effect. A non-constant speed model is formed by 
assuming vehicle forward momentum is dissipated by the applied braking force. The CF, term left out 
of (la)-(lb) is reintroduced using 

Additional external forces are neglected, and it is assumed that the engine torque remains nearly constant in 
comparison to the braking torque at the wheels. The system of equations in (5) changes to 

4.2 Controller Design 
The brake steer controller performance criteria are to achieve short settling time with minimal 

overshoot. Constraints on control effort are secondary criteria. Table 2 shows a summary of PD, pole 
placement and LQ design results for a 1 meter initial lateral deviation. The summary is based on results 
from the linear vehicle model combined with the ABS model with the nonlinear saturation element. Values 
within { j ' s  correspond to 0.5 meter initial lateral deviation results. The values are determined by analysis 
of the closed loop systems and from examination of model simulation output. Figures 5 and 6 are 
examples of block diagram representations of the PD and state feedback controllers. 

Table 2 Controller Design Summary for 1 m Disturbance *{...J's for 0.5 m Disturbance 

Design criteria 

Pole Placement 

ITAE pole pattern 
rad 

W ,  = 4- 
sec 

LQ 

Q = diag[0 0 0 lo4 01 

R=0.00001 

-, 

h s e  time (10-90%, sec) 

Settling time (270, sec) 

Overshoot (%) 

~ ~ o s e ~ ~ o o p e v ~ s  

Gains (ld) 

PD 

30TM 

1 .1  {0.6)* 

3.2 (3.1 ) 

5.8 ( 10) 

[-12.9, -1.1 f j1.6, 

-8.0 k j5.8, -1.11 

K ,  = 2.00, 

K ,  = 3.05 

0.8 (0.5) 

1.6 I1.3) 

1.7 { I . ] )  

[-3.6, -2 .3f  j2.1, 

-1.5 + j 5.21 

[-0.0011, -4.6, 14.5, 

3.6, 3.01 

0.8 (0.5) 

2.3 (1.8) 

6.0 (2.6) 

[-lo, -2.55 j2.9, 

-6.1 f j 4.81 

[0.00052, -10.2, 31.1, 

31.6, 20.11 



PD control design provides a satisfactory rise time and overshoot, however, settling time for the PD 
controller is greater than for the other two approaches. Increased performance with PD is constrained by the 
degree to which closed loop poles can be altered by the design. The pole placement and LQ methods 
performed better than PD in all categories. Figures 7a-c show simulation results using the linear vehicle 
model with the nonlinear brake model. 
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Figure 7a PD Figure 7b Poleplace Figure 7c LQ 

PD, Poleplace and LQ Response to 1.0 and 0.5 m Initial Conditions 

Figure 8a shows a comparison between controller responses for the linear vehicle model and a nonlinear 
vehicle (2 DoF bicycle) model with a Pacejka tire model [Asgari and Hrovat 19901 [Bakker et al. 19871. 
The three pairs of traces closely overlay each other, indicating negligible difference between results (rise 
time, settling time, overshoot) obtained from the linear tire assumption and the nonlinear tire for each of 
the controllers. The linear and nonlinear traces are not explicitly labeled in Figure 8a since the overlap is 
close. A more graphically evident effect of the tire nonlinearity is seen in Figure 8b where step brake steer 
inputs are compared. A 2800 N step input results in a 11 per cent error in lateral acceleration when the 
linear tire model is used. The error diminishes as the response becomes more linear. Since the tested 
controllers operate in the nonlinear (ABS) range for brief periods, the effect of the nonlinearity is reduced. 

time Iwc) time (wc) 

Figure 8a Controller Comparison with Figure 8b Step Responses of Linear and Non- 

Linear and Nonlinear Tire Models linear Tire Models (step size: 0:400:2800 N) 

The pole placement design is based on the integral of the time absolute error - ITAE [Franklin and 
Powell 19861. The LQ method is an output weighting form which places performance emphasis on the 



lateral deviation, while placing a low penalty on control effort. Both methods assume a sufficient supply of 
control effort. Typically this is not feasible, however, due to the saturating effect of ABS, and it is 
possible to use ABS to achieve a bang-bang type response in brake hydraulic pressure as shown in Figures 
7b and 7c. The saturation effect is shown by the clipped pressure waveform (threshold set in the brake 
model). The negative and positive values represent brake pressures for the respective left and right brakes 
on the vehicle. ABS saturation constrains control effort, and makes the response similar to the time- 
optimal bang-bang response possible for the state feedback methods. The PD methods do not have the 
necessary design freedom to achieve this type of control response. 

The saturation effect also manifests itself in the rise and settling times of each controller design 
depending on the initial lateral deviation. Figure 7b illustrates the nonlinear effect of ABS saturation where 
the initial lateral deviation of 0.5 meters is not clipped. For deviations less than 0.5 meters the controller 
has a linear response. The nonlinear effect is also apparent from the performance criteria in Table 2. The . 
values within curly brackets ( J ' s  show that the controller performance is improved with the 0.5 meter 
initial deviation with the exception that overshoot is steadily increased in the PD controller as initial 
deviation is decreased. Performance would not change once in the linear range. 

The controllers pertain to a nominal linear vehicle model where the tire cornering coefficient and 
vehicle speed are assumed constant. Previous work [Peng and Tomizuka 1990al describes controller 
sensitivity to changes in vehicle speed and cornering coefficient, and has employed an adaptive approach 
using gain scheduling [Astrom 19871 to compensate for variations in these two parameters. The process 
involves prior determination of the PD gains (or state feedback gains) over a range of expected vehicle speed 
and cornering coefficients. Vehicle speed can be measured from existing onboard systems. The cornering 
coefficient, on the other hand, must be estimated. Peng and Tomizuka assume that C,, = Ca2, which 
permits C, to be estimated on-line from (5) (6) using measured vehicle data. The braking requirement of 
BSS will test the application of this assumption since it has been shown that longitudinal slip (as the 
result of bralung) reduces the cornering coefficient of the braking wheel [Asgari and Hrovat 19921. More 
elaborate parameter estimation method have been applied that do not require C,, = Ca2 [Bowman and Law 
19931, however, on-line computational overhead would be increased, and the gain scheduling table would 
increase in complexity given the need to accommodate different front and rear cornering coefficients 
simultaneously. 

Observer design requirements for the state feedback controllers combine the state estimation problem 
with the parameter estimation problem. It is possible to gain schedule controller gains, however, the 
observer requires a system model that reflects the time-varying vehicle speed and cornering coefficient. 
Thus, gain scheduling the observer is not practical given the changes in the system model during normal 
vehicle operation. A possible solution may be found using an extended Kalman filter which requires on- 
line computation of the filter gains and covariance matrix [Gelb 19891. The problem of nonlinear observer 
design would need to be further addressed in a brake steer implementation. 

4.3 Steering Wheel Disturbance Rejection 
Thus far, the brake steer controller design evaluations have been made using an initial lateral deviation. 

If the steering wheel forcing function is considered the source of the lateral deviation as compared to the free 
response of a perturbed vehicle state, it becomes apparent that the controller has limitations as to the type 
of steering wheel error it can reject. An examination of system type using Figure 8 shows that the brake 
steer system is able to track a ramp reference input with zero steady state error ( 5  = &), but is unable 

-G 
to reject a step steering disturbance steady state error ( 5  = *) without an integral term in the 
controller, Gc. 
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Figure 8 System Type Examination 

But before integral action is considered, non-persistent steering wheel disturbances can be appreciably 
reduced using the controllers as they are currently designed. The systems can deal with a brief steering error 
as would be generated by a pulse movement of the steering wheel. Modeled as a pulse of 1 sec duration 
through a lag filter of 0.2 sec time constant, the steering error is applied to the BSS controller to see the 
limits of intervention authority. If maximum control effort is exerted to maintain heading, Figure 9 shows 
that a pulse steer error of 0.5 degree (9 degree at the steering wheel) can be controlled to approximately 0.16 
m lateral deviation error using the ITAE controller. Left uncorrected, the pulse steer error results in 0.3 m 
lateral deviation at t = 1.5 second, and 0.8 rn at t = 2.0 second. When this test is extended to include a 
constant steer angle error, there is a constant lateral deviation error proportional to steer angle error. 

Addition of an integral term removes the lateral deviation error due to a constant steer input. The 
implementation is straightforward in the PID formulation using 

or via the state space formulation where an additional state is added to the system in (1 1)-(12) [Franklin and 
Powell 19861 to represent the integral of the output error using: 

In both cases, the existence of the saturation element representing the effect of ABS presents the need 
for an anti-reset windup mechanism [Franklin and Powell 19861. A typical implementation is to compare 
the relative magnitudes between desired brake pressure and actual pressure. If a saturation condition exists 
(desired > saturation limit), the integrator state is held to its last value before saturation, and this prevents 
the integrator state from building up. The anti-reset windup effect creates a nonlinear effect in addition to 
the ABS saturation element. 

Figure 10 is a simulation of the 0.5 degree steering error extended over a period of 4.5 seconds using 
the augmented ITAE controller. Although the brakes do not saturate, the effect of the integral term can be 
seen during the period when the steer error is constant. The lateral deviation is reduced to a minimal 
amount using the integral error state, and does not experience the offset when no integral state is used. 

Rejection of a constant steer input has implications regarding the abilityldesirability of the controller to 
null out a persistent steer error. The addition of integral-type control adds the capability of controlling 
steering errors of a more persistent nature than those which can be addressed without the integral error state. 
This application remains constrained to the braking forces that can be developed, and must also consider 
excessive brake wear due to the duration of brake operation during persistent steer errors. In practice this 
would require brake temperature monitoring either through direct measurement or estimation. 



Figure 9 BSS Pulse-Type Steering Wheel Error Rejection (no integral state) 

Figure 10 BSS Persistent Steering Wheel Error Rejection (with integral state) 

4.4 Regions of Allowable Operation 
So far we have considered a limit placed on differential force imposed by the braking forces which can 

be generated by the front and rear wheels on either the left or right sides. This is a longitudinal constraint 
imposed on differential braking. 

It has been shown [Asgari 931 that there is also a bound on differential braking from the standpoint of 
steady state vehicle stability. The bound is illustrated in Figures I l(a) and (b) where vehicle trajectories 



with and without brake steer are compared. In Figure 1 I(a), the vehicle is in a steady turn of approximately 
0.5 deg on snow. The maximum achievable brake steer effort results in almost a doubling of "effective" 
steer angle. In Figure 1 l(b) the steer angle is increased to approximately 2.3 deg. In this case, the 
maximum achievable brake steer effort has a negligible incremental impact on the effective steer angle. The 
vehicle is able to perform a brake steer maneuver with the smaller steer angle (0.5 deg), but when the steer 
angle is increased (to 2.3 deg with all other conditions held constant) the vehicle can withstand only very 
minor brake steer efforts. If additional braking forces are applied, the vehicle can be forced to spin out. 
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Figure 11 Vehicle Trajectories on Snow with and without Brake Steer 
(a) S = 0.5, ,U = 0.3, Max = 250N .m, and u = 15% 

(b) 6 = 2.3, ,u = 0.3, Mas = 30N .m, and u = 15% 

The spin out instability is caused by a rapid increase in rear side slip angle, a2 resulting in reduced 
cornering force capability at the rear tires. A steady state turn in the direction of the desired brake steer turn 
reduces the amount of differential braking by "using up" containable yaw rate, resulting in reduced brake 
steer range of authority. This would occur when the desired effect is to yaw rate to the steady turn when 
additional effective steer angle is required during a turn (driver not steering enough). If less effective steer 
angle is required, yaw rate from differential braking is subtracted (imposed yaw moment is opposite that of 
turn), and does not present the spin-out risk experienced when yaw moment is added. 

Similarly, reduced road friction, /.l, results i n  lower overall containable yaw rate and results in lower 
allowable brake steer force. The sensitivity of allowable differential brake steer forces to road friction and 
steady turns suggests that it would be helpful to determine the regions of allowable differential brake 
operation. Toward this goal, a brake steer region of operation can be defined as a function of p and 6 ,  as 
well as vehicle speed, u, based on known vehicle dynamics sensitivity to vehicle speed. 

For this investigation, a 2 DoF bicycle model with a nonlinear Pacejka tire model is used. The 
parameters ranges are selected according to conditions that can be expected during highway driving. The 
following ranges are used: 0 5 6 I 2degrees, (50 I u 5 70mph) and 0.1 I ,U I 1.0. The steer 



ratio assumed is 18: 1. The speed range was selected to reflect typical highway driving. The road friction 
coefficients range covers the gamut from ideal to polished ice. The stability criterion chosen is defined as 
the boundary where yaw acceleration, r ,  is non-zero for steady state input conditions. Since this is a steady 
state examination, r should be zero for constant 8, u and p along with steady brake steer force. 

The results (Figure 12) show that maximum differential braking is found at low speeds and zero 
steering angle, and the minimum is found at high speed and high steering angle. Steering angle has a 
greater effect on maximum differential braking than vehicle speed. Reduction in road friction serves to shift 
the region of operation down along the z axis ( FBSm) until brake steer capability reduces to zero. This is 
especially the case with non-zero steer angle. Overall, the road coefficient of friction exerts the largest 
impact on allowable brake effort, with steer angle being next, and vehicle speed being the least influential 
of the selected set. 

It is important to note that the differential brake force is a "generic" force, and has not been specified in 
terms of being generated from the front andlor rear brakes. Thus the yaw rate instability described here is 
independent of to front or rear braking. Furthermore, the yaw instability is only seen in nonlinear tire 
model simulations. When the linear tire assumptions hold, the lateral stability is always maintained. 
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Figure 12 Maximum steady state brake forces 
(a) p=l .O, (b) p=0.7, (c) p=0.4 and (d) p=0.2 

One must keep in mind that the region of operation is determined using a steady state assumption 
where the steer angle and braking effort are constant inputs. Actual brake steer controller simulations, 
however, typically do not involve constant differential braking efforts. In this simulation, brake steer forces 
up to 5000N are exerted for a short period of time. This is almost twice the allowable steady state limit. 
The command signal quickly changes sign reflecting braking on the opposite side of the vehicle. In this 
case, negative brake steer (negative yaw moment, z axis into the page) acts to reduce the instability by 
taking yaw rate out of the vehicle. Therefore, it would seem to be conservative to constrain the controller 
to the allowable steady state limits. 



A possible extension of the control region concept would be to schedule controller gains designed to 
ensure local stability for each 6,,uj and &. where i, j and k represent increments in the ranges of steer 
angle, vehicle speed and road coefficient, respectively. Gain scheduling has been done for linear vehicle 
model parameter variation [Peng and Tornizuka goal, but this new approach would involve linearizing the 
nonlinear vehicle at the same i, j and k inputs used to form the steady state control regions. But instead of 
computing a surface of maximum differential brake forces, a control design algorithm would be applied to 
each of the 6 i , u .  and p, linearized operating points to determine a surface of locally stable control gains. 
Then, 6, u andp would be used as inputs to the gain scheduler with the continuing good input 
knowledge assumption. The end result is hypothesized to allow brake commands in excess of the steady 
state control region limits defined here, yet still ensure that the system is locally stable. 

4.5 Additional Considerations 
The BSS results in Sections 4.2 and 4.3 use only the left or right rear wheel (as limited by the brake 

system model) to generate the yaw moment for brake steer. The reason for that is two-fold. First, it makes 
for a more conservative design since rear wheels have less braking capability than the front, and second, it 
readily applies to rear wheel drive vehicles with traction control. Additional brake steer effect can be gained 
by applying brake force to both wheels on a given side. Front brakes are capable of considerably more 
(app. 70 per cent) braking force than the rear as the result of greater tire vertical load. Proportioning of 
foretaft brake pressure during brake steer maneuvers could be addressed using a method similar to the 
proportioning used for ABS to ensure that both wheels on a given side approach saturation at an 
approximately even rate. However, the effect at the steering wheel of applying brake pressure to one front 
wheel and not the other front wheel have not been simulated. 

So far, there has been no discussion of what happens to vehicle speed as the brakes are applied during a 
brake steer maneuver. One approach is to think of cruise control, and consider maintaining speed during the 
brake steer maneuver. A second approach is to avoid the situation where the engine increases power output 
to maintain speed, and either turn off cruise control if it is engaged or close the throttle directly (the latter 
assumes throttle-by-wire hardware capability). This second approach decelerates the vehicle using ABS-like 
action while providing steering intervention to prevent road departure. 

From the control design standpoint, the change in vehicle speed affects the system around which the 
controller is designed. As speed is reduced the steady state gain V(s&a(,, is reduced. This may require 
adjustments in controller implementation in terms of gain scheduling, with regard to the ability to respond 
during an intervention maneuver. Efforts to make the linear design more robust would improve 
insensitivity to parameter changes due to deceleration. Figure 13 shows the amount of deceleration for the 
pole placement design as compared to the LQ design for the 1 meter initial lateral deviation. The change in 
vehicle speed is - 2 . 5 5  ( - 5 . 6 e ) .  For persistent steer errors the decrease in vehicle speed is greater. 
and will increase controller sensitivity. 



Figure 13 Effect of BSS on Vehicle Speed 

Using the controllers described, the longitudinal acceleration u experienced by the vehicle during brake 
steer maneuvers does not exceed 0.15 g's during maximum brake effort for the rear wheel only. This is a 
moderate, yet acceptable amount of deceleration. Addition of front and rear wheel braking, however, has the 
ability to exceed moderate braking levels. If front and rear braking is used, additional steps in controller 
design may be necessary to limit longitudinal deceleration. One possible solution may be to augment the 
performance criteria in an LQ approach similar to the index on ride quality (lateral acceleration) [Peng and 
Tomizuka 1990al. This approach would permit longitudinal acceleration to be augmented into the system 
and incur a cost penalty which would serve to inhibit overly aggressive action that exceed performance 
requirements. 

The deceleration that will be felt during brake steer will also serve as an unmistakable form of feedback 
to the driver, and may aid in increasing or calling attention to the driver alertness level. 

5 Summarv and Conclusions 
A preliminary feasibility investigation of a steering intervention system based on differential braking 

has been demonstrated in simulation. A simple vehicle model for control design and simulation has been 
used. Controllers have been developed using linear design methods, and represent examples of both 
traditional PDPID as well as state feedback designs. The simple 2 DoF vehicle model has been modified to 
include an ABS model containing a saturation effect and a lag. The simulation model shows the effect of 
brake steer commands where the brake actuator (ABS) is frequently saturated. 

The response times of BSS are within useful bounds in terms of providing steering intervention for 
maneuvers to avoid road departure. BSS is limited by achievable tire braking forces, and will have reduced 
performance in poor road conditions much the same way normal steering is affected by road conditions. 

The use of brakes to perform steering maneuvers also provides a level of capability that up until now 
could only be achieved by altering the steering system. This can be a costly approach, as compared to the 
functionality gained by less obtrusive modifications to the brake system for brake steer. 

5 Future Work 



As stated earlier, this represents a preliminary investigation of BSS. Open issues remain, and several 
have been either directly or indirectly referred to in the course of the paper. This section seeks to summarize 
work that will need to be addressed in subsequent levels of controller development and system 
implementation. 

Existing issues in controller development involve parameter estimation and observer design. At the 
heart of these issues is the tirelroad interface: Variations in the effective tire cornering coefficient for a 
given road condition are a nonlinear function of side slip angle and longitudinal tire slip. When road 
conditions alter the friction coefficient (an uncertain measurement), an additional dimension is added to the 
controller. Changes in vehicle speed add yet another dimension. The regulatorlobserver system, therefore, 
must be able to adjust gains (gain scheduling) to accommodate a wide range of operating conditions as well 
as be insensitive to model variations within each selected gain (robust design techniques). Aditionally, the 
existence of allowable regions of steady state operation will require consideration to perform brake steer 
maneuvers in a stable manner. The results of previous work [Peng et al. 19921 will need to be incorporated 
into the BSS design and tailored to accommodate specific BSS operational requirements. 

Implementation issues involve what it takes to get the BSS idea into a functional hardware prototype. 
Examples of differential braking hardware tests [Matsumoto et al. 19921 show that the ability to impose a 
moment on the vehicle is a workable concept, however, the context of steering by brakes alone is untested. 
BSS adds the additional requirement of knowing the vehicle lateral position with respect to the road edge. 
Upcoming road curvature is also used by BSS. In this paper, perfect road edge and road curvature sensors 
are assumed to be available. In terms of actuators, the ABS saturation effect has been only simulated. 
Actual tests on the ability of ABS to maintain lateral stability in the presence of BSS command will have 
to be examined. BSS will also require the brake actuator to control pressure from the saturation limit 
(normal ABS operation) down to near zero pressure (not normal ABS operation). 

Operational issues must also be addressed. For example, a maximum acceptable amount of 
longitudinal deceleration may be incorporated into the design to prevent the vehicle from extreme brake 
maneuvers. Another issue is the interaction between the driver and BSS. Since the driver is not removed 
from the loop, balanced cooperation is important. This cooperation comes in the form of the system 
having the ability to correct an errant steer input as well as the ability of the system to transition from an 
intervention state back to an idled or disabled state. These are formidable issues, and there are certainly 
more to address. 
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ABSTRACT 

LANE SENSING AND PATH PREDICTION 
FOR 

PREVENTING VEHICLE ROAD-DEPARTURE ACCIDENTS 

by 

Chiu-Feng Lin 

Chair : A. Galip Ulsoy 

This dissertation focuses on the estimation of the time to lane crossing, a metric to 

assess the lane tracking margin of a vehicle. Characterization of the uncertainty in 

calculating the time to lane crossing is also studied. The result is used by a dnver 

assistance system to prevent road-departure accidents. For time to lane crossing 

estimation, algorithms for down range road geometry perception and vehicle path 

prediction are also developed. Furthermore, uncertainty characterization for the vehicle 

path prediction and road geometry perception are also studied such that the uncertainty of 

the time to lane crossing can be characterized. 

The time to lane crossing is obtained by first acquiring the intersection of the 

predicted vehicle path and the perceived road geometry and then estimating the time 

required for the vehicle to reach the intersection. The predicted vehicle path and the road 

geometry are expressed with polynomial equations. The uncertainty characterization for 

time to lane crossing estimation utilizes the uncertainty of the polynomial coefficients to 

assess the uncertainty of the acquired time to lane crossing. 

To acquire down range road geometry, a least square curve fit and two Kalman 

filter algorithms are developed. The uncertainty characterization for the acquired geometry 

is developed based on Kalman filtering theory. For the vehicle path prediction, a two 

degree of freedom vehcle model is used. Front wheel steering angle and vehicle yaw rate 

are assumed to be measured. The lateral vehicle velocity and external disturbances acting 



on the vehicle are estimated through an observer. Uncertainty characterization is associated 

with the equation for path projection; the measurementlestimation covariance for the vehlcle 

dynamics and the front wheel steering angle are assumed. 

The results show that the developed algorithms are successful for assessing the time 

to lane crossing for typical highway driving. Results also show that an accurate road 

geometry perception is more significant than an accurate path prediction. However, an 

accurate path prediction is also necessary to obtain a satisfactory time to lane crossing. 

Simulations also show that time to lane crossing seems to be a good metric for an active 

safety system, whlch is yet to be verified in the future study. 
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CHAPTER I 

INTRODUCTION 

This dissertation focuses on the estimation of time to lane crossing, a metric that cari 

be used to assess the lane tracking ability of a vehicle. Characterization of the uncertainty 

in the time to lane crossing assessment is also studied. To estimate time to lane crossing, 

and characterize its associated uncertainty, perception of the down range road geometry , 

prediction of the future vehicle path, and the associated uncertainties for these two curves 

are necessary. 

Motivation 

Among the traffic accidents in 1991 in the USA, road departure accidents account 

for 25% of the total. If  fatalities are considered, road departure accidents account for 

almost one-third [The Hansen Report, 19921. Such accidents usually involve a single 

vehicle which does not follow the roadway and runs into a roadside infrastructure, and they 

occur mainly due to driver impairment (e.g., drowsiness or drunkenness) rather than 

vehicle malfunction. Thus, it  is postulated that an effective on-board system can help to 

prevent such accidents. 

To solve this problem, two different system concepts have been proposed. The 

first one is a fully automatic vehicle control system on a restricted roadway. In such 

systems, the driver is expected to ride in a "hands-offVashion and hislher role is to 

provide the high level commands to the controller such as the destination of the journey. 

Such a system concept has received attention from several researchers([Fenton, 19911, 

[Shladover, 19911, [Okuno, 19921, [Graefe, 19921). Another system concept is an active 



safety system. This system acts like a "pilotN for the vehicle with the human driver. It 

monitors driver performance, issues warning signals, intervenes, or takes over control of 

the vehicle when a dangerous situation is encountered. By intervention, or even only 

issuing a warning signal, it is expected that accidents can be significantly reduced m k e r ,  

19931. 

Both the fully automatic control system and the active safety system seem 

technically promising. However, the active safety system is attractive because it can be 

developed as an evolutionary improvement to current vehicles where drivers are still the 

primary controller. Having the driver as the primary controller has two advantages : 1) 

most people feel safer when their lives are in their own hands, 2) it can keep the auto 

manufacturers from assuming too much liability [Dingle, 19931, which in turn enhances 

manufacturers' interest in developing such a system. Therefore, developing an active 

safety system has been adopted as the goal of our research group at the University of 

Michigan to solve the road departure accident problem [Huh et.al., 19921. 

A proposed active safety system structure is shown in Fig. I. 1. This system uses 

the time to lane crossing (TLC) (i.e., the time required for vehicle to run off the roadway) 

as a metric for assessing the "lane trachng margin" of a vehicle. A "lane tracking margin" 

refers to any suitable metric appropriate for characterizing how well the vehicle motion 

tracks the lane that the vehicle occupies on the roadway. Based on the TLC and the 

assessment of the driver physical status, a decision is made regarding whether to issue a 

warning signal, to intervene, or to take over control of the vehicle. 

Pnor to the TLC calculation, two elements are necessary : (1) forward vehicle path 

prediction, and (2) down range road geometry perception. The TLC is obtained by first 

finding the intersection of the predicted forward vehicle path and the down range road 

boundary and then estimating the time span for the vehicle to reach the intersection. 

However, as shown in Figure 1.2, due to the limitation of the on-board sensing system, the 

perceived roadway geometry deviates from the true geometry. This situation also occurs 



with the predicted forward vehicle path, where the uncertainty is mainly caused by the 

unknown future external disturbances on the vehicle and the unknown future dnver input. 

These errors subsequently lead to incorrect estimation of the time to lane crossing. Since 

these errors are not deterministic, they are modeled statistically and referred to as 

uncertainty. 

This study focuses on the development of three elements of the active safety 

system: (1) an algorithm for geometrically modeling the previewed roadway, (2) an 

algorithm for future vehicle path prediction, and (3) an algorithm for time to lane crossing 

calculation. Since the decision module is expected to be sensitive to the TLC level, the 

uncertainty of TLC becomes an important element for the active safety system. Therefore, 

the associated uncertainty for each element is also characterized. For the lane geometry 

modeling module, lane marker locations along the lane boundary are assumed to be 

available from image processing (whlch is also true for the active safety system design). 

The other elements; the driver physical status assessment module, the decision module, and 

the vehicle lateral motion controller are being studied by another member in the road- 

departure active safety research team ([Pilutti, 1995a1, [Pllutti, 1995bl). 

Literature Review 

Lane Tracking Margin Assessment 

In the past, several different schemes have been utilized for "lane tracking margin" 

assessment. One is the lateral deviation of the vehicle from the desired trajectory (usually 

lane center) ([Shladover, 19911, [Fenton, 19911, [Dickmanns, 19881 ). Beside lateral 

deviation, Kamada [I9921 and Turk [I9881 include the relative angle between vehicle 

heading and the tangent of the instantaneous desired trajectory. Furthermore, instead of 

using the instantaneous relative vehicle displacements, Okuno [I9921 uses the predicted 

relative location of the vehicle from the lane boundary at a future time. A common feature 

in these schemes is that, from these methods, the decision module can only assess the lane 



tracking margin at a specific time (i.e., either the current time or a future time) and will have 

no information about what happens at other times. This feature is satisfactory for an 

automated vehicle control system which is to follow a desired trajectory; the controller 

responds to the deviation from the desired trajectory at a specific point. However, such 

metrics may mislead an active safety system because a large deviation from the desired 

trajectory does not always mean a dangerous maneuver 

A metric called Time to Lane Crossing (TLC) is more appropriate for an active 

safety system. This is a metric which describes the required time for the vehicle to reach 

either edge of the roadway. It is obtained by finding the intersection of the vehicle path and 

the road boundary and then estimating the time span for the vehicle to reach the 

intersection. Thus, compared to vehicle lateral deviation, TLC is less ambiguous for the 

decision module to use in judging the safety of the vehicle motion. It is postulated that a 

simpler rules for the decision module can be attained with TLC because it contains rich 

information. The TLC calculation explicitly includes all of the following factors which are 

important for assessing whether a vehicle might run off the road : 1) the down range 

roadway geometry, 2) the lateral position (and velocity) of the vehicle in the lane, 3) the 

vehicle heading angle (and yaw rate), 4) the vehicle fonvard velocity, and 5) driver's 

response. The advantages of TLC for "lane tracking margin" assessment over other 

metric's can also be realized through Fig. I .3. If  the instantaneous lateral deviation is used 

as a metric for assessing "lane trachng margin", the situation in Fig. 1.3(a) will be easy to 

trigger many false alarm, which is a common situation in highway driving because some 

people tend to drive closely to the lane edge. On the other hand, if the lateral deviation and 

heading angle are used only but neglect the driver's maneuver (steering angle) at the 

moment, the situation in Fig. I.3(b) may introduce false alarm. Finally, if the down range 

road geometry is neglected, a missed alarm will happen and cause an accident. Therefore, 

by using all the information as necessary, a more accurate decision can be made and by 



combining these information into a metric, as TLC, a simpler rule base for decision module 

should be able to attain. 

One way to locate the intersection between the perceived roadway and the projected 

vehicle path is to evaluate the future vehicle path in a "brute force" manner until a projected 

point lies outside of the road boundary [Godthelp, 19841. Then, the time required for the 

vehicle to travel along the projected path to the intersection is the time to lane crossing. 

This method features simplicity and has been widely adopted. Other ways involve solving 

polynomial equations (i.e., finding the intersection of two polynomial equations). Such 

methods require additional logic to identify the correct solution and become complex when 

the order of the polynomial equation is large. 

When the "brute force" method is used to calculate TLC, the time step associated 

with the Qscrete vehicle path projection introduces errors in the TLC. These errors can be 

improved by interpolation. An interpolation can be implemented by fitting a polynomial 

equation to the discrete vehicle locations in the vicinity of the intersection point. Then this 

polynomial equation and the road boundary are used to reduce the TLC error. There are 

basically three different polynomial fitting schemes: 1) the interpolating polynomial fit 

which requires that every data points lie on the polynomial equation ,2) the least square 

polynomial fit which has minimum variance between the data points and the curve, and 3) 

the minimax principle which minimizes the maximum distance between the data points and 

the curve [lo]. 

There are several issues related to TLC which are important for active safety 

systems, but have not been investigated previously. The first issue is the bandwidth of 

TLC. An understanding of TLC bandwidth is important such that an appropriate sampling 

rate (i.e., TLC calculation speed) can be determined. Another issue is the accuracy of the 

TLC, which was noted but not characterized in previous TLC studies [Godthelp, 19841. 

As shown in Figure 1.2, there are errors in the predicted future vehicle path and the 

perceived road geometry, which subsequently cause errors in the TLC. The vehicle 



prediction error mainly comes from unknown future external disturbances (e.g, wind gust 

and superelevation) and the driver steering input during the projection time. The lane 

geometry perception error is substantially affected by the vehicle vibration. For an 

automated vehicle control system,'these errors are generally not significant withn the range 

of interest and controllers are often able to reduce their effects. However, for the decision 

module to make a good decision, such erron must be explicitly characterized because the . 

possible errors in the range of interest for the proposed active safety system (about 100 m 

ahead of the vehicle) is usually too large to be ignored. 

Road Geometry Perception 

The issue of down range roadway geometry perception has been widely studied 

using various sensing principles. For instance, there are systems using magnetic field, 

laser, radar, and computer vision principles. The main purpose in using different sensing 

principles is to develop a robust system for different environments (e.g., road surface, 

weather, shadows). Among the candidate sensing systems, computer vision has received 

the most attention due to its flexibility; it does not need substantial roadway infrastructure 

support (most of the time i t  only requires a painted white line). For this reason, computer 

vision is the sensing system chosen for the proposed active safety system. The following 

sections briefly introduce these techniques and the existing systems. 

Magnetic field principle 

The magnetic field principle has been used by the Partners for Advanced Transit 

and Highway (PATH) program at the University of California at Berkeley [Shladover, 

19911, and the Automated Kghway System (AHS) program at Ohio State University 

[Fenton, 19911. The PATH program uses roadway embedded magnetic markers for 

vehicle position referencing and for coding the roadway geometry information. On the 



other hand, the AHS program used roadway embedded magnetic wires for vehicle position 

referencing. 

The magnetic reference and sensor system of the PATH program is an Intelligent 

Roadway Reference System [Shladover, 19911. Permanent magnetic markers are 

discretely installed along the lane center line. The vehicle-borne sensing system acquires 

the pertinent information while passing over these markers, thus determining the vehicle 

deviation and road geometry that lies ahead. Lateral deviation of the vehicle from the center 

line can be expressed as a function of the magnetic field strength. Additionally, roadway 

information can be coded in a binary system which incorporates a series of magnetic 

markers so that the sensing system can describe the future roadway geometry. 

The magnetic wire-reference systems of the AHS program [Olson, 1m can only 

detect the vehicle's latexal deviation. Three different system configurations have been 

utilized. The first one is a two-wire amplitude sensing configuration and the second one is 

a one-wire amplitude sensing configuration. Both of these two configurations have a 

sensing system to measure the magnetic field strength of the vehicle location to calculate the 

lateral deviation and relate magnetic field strength to lateral deviation The third 

configuration is different from the previous method. This method uses the phenomenon 

that when a sensor crosses the magnetic wire, there is a phase (sign) change of the 

magnetic field. The sensing system consists of a lateral array of equally spaced sensors. 

By counting the total number of phase (sign) changes, the number of sensors crossing the 

magnetic wire can be obtained, which in turn measures the lateral displacement of the 

vehlcle. This configuration is less affected by conductive sheets under the surface of the 

guided path such as the steel-reinforang mats and bridge structure materials. 

Laser - 
Currently, only the Environmental Research Institute of Michigan (ERIM) 

Autonomous Land Vehicle (ALV) laser sensing system [Beyer, 19871 can be classified as a 



laser-based lane sensing system. This system is installed on ALVIN, the Autonomous 

Land Vehicle at Marietta Denver Aerospace [Turk, 19881. It uses a phase modulation 

method to calculate the range from the sensor to the target. However, alternative laser 

ranging methods are also suitable for this purpose. These ranging methods include time of 

flight, frequency modulation, and active triangulation. Detailed discussions of these 

methods can be found in pu,  19871 and [Everett, 1987]. 

The ERIM ALV consists of two parts : (i) an optical device for image acquisition, 

and (ii) a software system for image processing. The optical device includes a laser diode 

source operating in the near infrared region (820 nm) and a photodetector to receive 

reflected signals. The laser is scanned across the field of view using a nodding mirror and 

a rotating polygon mirror (80 deg horizontal and 30 deg vertical). In every direction, 

signals are sent out, hit the target, reflect back to the sensing system, and are received by 

the photodetector. RI ght after the photodetec tor receives a reflected signal, the traveling 

distance is calculated in real-time using a phase modulation method. This range is assigned 

to an image pixel which corresponds to the direction. The image size is a 256 by 64 array 

and the range is digitized using an 8 bit binary system. This is called a range image in 

which every pixel is assigned a range value instead of an intensity value. 

The next step is to extract roadway configuration information from the range image. 

There are four substeps required to complete this step. The first substep is to remove 

unreliable range data from the image and to smooth out noise by using edge preserving 

morphological smoothers. The second substep is to find and label the ambiguity range, 

which is the range larger than half the signal wave length. The third substep is to transform 

the forward looking range image into a topdown view plan map. Then, a simple rule is 

used: "the road is a flatter and smoother 3-D surface than the NOT road", to extract the 

roadway configuration to the surrounding environment. This system does not actually 

generate a model for the road geometry. 



Radar - 
A radar is similar to a laser in the sense that both of them utilize electromagnetic 

waves. However, radar it is not as collimated as a laser and its operating frequency range 

is a lot smaller than a laser. It c& also be utilized to measure the range from an object to 

the sensor. The ranging methods suitable for radar are time of flight, phase modulation, 

and frequency modulation. However, only frequency modulation has been applied to lane . 

sensing Nayhan, 19821. Furthermore, this system can detect the lateral deviation of the 

vehicle, but not the previewed roadway. 

In the frequency modulation method, the transmitted optical frequency is 

repetitively swept linearly between [v+dv/2, v-dvl21 to create a total frequency deviation of 

dv during the period llf (f is the linear sweep modulation frequency), the reflected signal 

can be mixed coherently with a reference signal at the detector to create a beat frequency 

signal that depends on the range to the object R. This process is known as FM coherent 

heterodyne detection. 

Computer vision 

The process of down range road geometry perception with a vision system can be 

typically divided into three stages. The first stage extracts the desired object from the image 

(usually the painted white line or the road edge). The second stage calculates several 

imaginary lane marker locations along the painted white line (or the road edge). These two 

stages are usually referred as image processing. In the final stage the acquired lane marker 

locations are used to generate a model for the down range road geometry. Studies have 

been focused on these three stages. 

For the first stage, the extraction of the desired object is difficult when the contrast 

between the object and its environment is not sharp ([Thorpe, 19921, [Kenue, 19891, 

[Waxman, 19851, [Liou, 19861). A monochrome camera is usually used for its low cost 

and its ability to handle the well-conditioned (straight, evenly illuminated, well marked) 



roadway (Eenue, 19891, [Okuno, 19921). On the other hand, a monochrome camera 

system usually has difficulty in detecting an ill-illuminated or ill-conditioned roadway. The 

RGB camera system can give better results in this kind of situation ([Thorpe, 19921, [Turk, 

19881). Processing speed is also crucial, wcular iy  for a high speed automated vehicle 

[Graefe, 19921. Thus, different computer system have been utilized for the processing. 

The problem associated with the second stage is generally called the inverse optics . 

problem, which arises because the image is in a 2-D plane and the acquired scene is in a 3- ' 

D space; the mapping between them is essentially one to multiple (poggio, 19851, pu, 

19871). Many factors can cause inaccurate perception of the 3-D location of a spatial 

object. Two substantial factors are the superelevation of a roadway and vehicle vibration. 

A typical method for solving the inverse optics problem is the flat-earth assumption which 

eliminates the extra degree of freedom [Turk, 19881. Binocular camera system has also 

been used to solve this problem; however, the image processing is time consuming [Jain, 

19921. People also impose constmnts on the perceived lane marker locations to improve 

the perception accuracy ( [Waxman, 1983, rurk,  19881, [DeMenthon, 1987]), which is 

usually called the forward-geometry solution. Another method to solve this problem is 

called the inverse-geometry solution which uses the location within the image plane of a 

point whose 3-D location is known to solve for the coordinates of the other objects ([Turk, 

19881, [Chatila, 19851). 

For road geometry modeling, two schemes are typically considered; ( 1) least square 

curve fitting (which includes Hough Transform [Kenue, 19891) and (2) Kalman filtering. 

The down range road geometry is usually expressed by a polynomial equation or a set of 

polynomial equations. This is because a polynomial equation contains enough information 

for the automated control system (generally the curvature, lateral deviation, and heading 

angle are needed) ; also, it is natural to describe a curve with a polynomial equation. The 

difference is the order of the polynomial equation; for example, Kenue [I9891 and Kamada 

[I9921 use a first order equation, Thorpe [I9921 uses a second order equation and 



Dickmanns [1988] and Franke [I9911 use a third order equation. The equation order is 

chosen based on the adequacy of describing the previewed roadway in the field of view of 

interest; a large area generally requires a higher order. Both the least square curve fitting 

and Kalman Filtering approaches find an optimal polynomial equation (with a pre-chosen 

order) which minimizes the variance between the equation and the acquired lane marker 

locations. There are two ways to do least square curve fitting. One way is to simply fit an . ' 

polynomial equation to the lane marker array contained in the current image. The other 

utilizes the knowledge of the vehicle kinematics to transform all the lane marker locations 

from several images to a global reference frame to create a lane marker array which contains 

historical information for curve fitting (Kenue, 19891, phorpe, 19921). In a sense, a 

Kalman filter is similar to the latter least square curve fitting scheme; it also utilizes the 

information from the previous images and the vehicle kinematics [Dickmanns, 19883. 

However, the Kalman Filter approach uses a recursive algorithm which is more time and 

memory efficient than the second least square curve fitting scheme([Dickmanns, 19881, 

[Broida, 19861, [Rves, 19861, [Knegman, 19891). Previously, no comparison between 

the least square curve fit using only current image information and the Kalman filter 

schemes has been conducted. Furthermore, Kalman filter were tested on typical highways; 

its performance for some irregular road geometry and surfaces than typical highway 

conditions have never been discussed. 

Examples of existing lane sensing systems using computer vision are summarized 

in Table 1.1. Some of the listed systems are not directly for detecting outdoor roadway 

geometry, but perform similar tasks. 



Table 1.1 Examples of Vision Lane Sensing Systems 

Vision System 
for MARS 

Systems 

Vision System 
for VaMoRs 

Optical Device Compute? Lane Marker 3-D Cwve Reference 
bcan'ng W n  

SCARF 

YARF 

A Vision 
System by 
Kamada e t .a1 . 

- 
&ator 

RGB monocular no description inverse geometry do not [Twk, 19881 
solution and generate curve 
fonvardgeometry equation 
solution 

monochrome VAX 1 11750 no description do not [ K n e e ,  
binocular generate curve 19891 

equation 
monochrome BVV2 (a flatearth Kalman filter [ W e ,  
monocular multi- assumption 

microcom- 
19921 

puter system 

RGB monocular Sun 31 160 fornardgeometry Hough IThorpe, 
solution transfan 19881 

RGB monocular Sun 31 160 forwardgeometry least-square morpe, 
solution fit using 1 m I  

monochrome Digital VAX flatearth Hough [Kenw, 
monocular 8600 assumption transfan 1989aI 

monochrome Digital VAX flat earth least-square [Kenue, 
monocular 8600 assumption line fitting 1989bI 

RGB monocular Intel 80286 flat earth Hough -4 
CPU assumption fxamform 1 W l  

Vision System monochrome NEC PC flat earth no description [Okuno, 
for MOVER-2 monocular 9801 LS assumption 19921 

One important issue for road geometry sensing is the field of view of a sensing 

system. The camera field of view directly influences the robustness of the vehicle control 

system. This is because there are certain situations in which the object is outside the field 

of view of a camera, which leads to loss of information to the controller and subsequent 

robustness problems. Usually, a multi-far-field-sensor system is implemented to extend 

the perception area ([Graefe, 19921, [Tsugawa, 1984). For a single-far-field-sensor 

system, an algorithm which utilizes the information located in the field of view of the 

camera is necessary to extend the range of the perceived road geometry. 



Besides down range road geometry acquisition, an explicit form of the perceived 

road geometry uncertainty range is also necessary for the uncertainty characterization of 

TLC. This issue has never been studied previously. The perception error in the range of 

interest of an autonomous vehicle system is usually small, and its effect on the system 

performance can be successfully reduced by the control system. Most of the studies on 

perception uncertainty are at the level of characterizing the uncertainty for a spatial point 

([Knegman, 1989],[ Matthies, l w ) ,  as needed by a Kalman Filter. Such studies are for 

the guidance of a mobile robot in an indoor environment; therefore, the uncertainty 

characterization does not consider vehicle pitch and roll effects since they are relatively 

small in this situation. Furthermore, these studies on the uncertainty characterization are 

associated with the computer vision process. No study for other sensing principles have 

been conducted. In such studies, the uncertainty range is usually modeled in statistical 

form and typically as Gaussian purrant-Whyte, 19881. Other methods for uncertainty 

characterization are scalar weights [Moravec, 19801 and uncertainty manifolds [Brooks, 

19851. The Gaussian Distribution is widely used because of its convenience for analysis. 

Vehicle Path Prediction 

Accurate path prediction requires accurate initial conditions (i.e., vehicle lateral 

velocity, yaw rate, and front wheel steering angle), vehicle model, knowledge of future 

maneuvering, and future external disturbances. Usually, yaw rate and front wheel steering 

angle can be measured; however, a considerable measurement error may appear in the 

steering angle signal. On the other hand, lateral velocity, future maneuvers and external 

disturbances are usually unknown. To atmn satisfactory path prediction, effective 

algorithms must be developed to estimate these variables. For most of the previous 

studies, the external disturbances are simply omitted. As to the future maneuver, some 

people simply ignore the possible future steering variation by assuming a fixed steering 

angle for path projection (Godthelp [I9841 and Okuno [1992]). Many people have 



developed different models to predict the possible maneuver of a human driver (e.g., the 

preview-predictor models ([Johnson, 1%3, [Sheridan, 1%4], [MacAdam, 1988]), the 

describing function models WcRuer, 19751). Finally, for the projection model, Hayward 

[I9721 uses a kinematics projection (i.e., use the current velocities and accelerations and 

assume these variables remain constant in the projection period). Godthelp [lW] and 

Okuno [I9921 consider the dynamics of the vehicle by utilizing the steady state path 

curvature gain which relates the curvature of the vehicle path in steady state motion with the 

front wheel steering input [Gillespie, 19921. Transient dynamics are omitted in these 

studies for the purpose of simplicity and such an approach seems to work reasonably well 

in mild maneuvers (i.e., straight road driving with mild external disturbances). In a 

cornering maneuver, or a maneuver involving a severe external disturbance, the transient 

dynamics must be considered. To consider transient dynamics, a vehicle dynamics model 

is used. A commonly used vehicle dynamics model is a 2 Degree of Freedom (DoF) 

vehicle model [Gillespie, 199211, which only considers lateral and yaw motion. Typically, 

this model is utilized for lateral motion controller design ( [Fenton, 19911, [Shladover, 

19911) and driver modeling ([MacAdam, 19881, mess, 19901). However, it is not 

adequate for many detailed vehicle dynamics studies. Usually extra DoF or nonlinearity are 

added to this simple vehicle model. A common addition is the roll motion, resulting in a 3 

DoF linear vehicle dynamic model. Furthermore, nonlinear vehicle models have been 

derived to fully represent the vehicle dynamics in particular studies ([Allen, 19931, 

[Shladover, 19911, [Vedamuthu, 19931). On the other hand, a nonlinear vehicle dynamic 

model (including, for example, tire dynamics [Gillespie, 19921 or lateral load distribution 

[Clover, 199'31) is used for simulation and validation purposes. 

The estimation of the lateral velocity and external disturbances can be attained 

through an observer; a state and unknown disturbance estimation problem. This problem 

was first discussed by Johnson [1971] in which the disturbances are characterized with 

differential equations (which means that the disturbances are combinations of some known 



frequency but unknown amplitude sinusoidallexponential functions). Then these noise 

dynamics models are augmented into the system dynamics model to form a new model. 

Finally, observer technique like pole placement method w i n ,  19901 is designed to 

obtain the magnitude of the external disturbance and the system dynamics states. Similar 

scheme was discussed by Gourishankar [lw, in which the disturbance is expressed as a 

polynomial function and necessary and sufficient conditions were derived for such a 

model. The same technique was extended by Johnson [I9841 to accommodate 

disturbances which contains both waveform-type and noise-type components. The noise- 

type disturbances are modeled as the output of a filter with random white noise as the input. 

For observer design, Kalman filter technique [Brown, 19831 is used to accommodate for 

noisy measurements. The same modeling techmque were also used by Park [ l w  and the 

subsequent researchers (mou, 19921, [Maquin, 19941). However, for observor design, 

they apply singular value decomposition methods, in which the state equation is 

decomposed into two subsystems: one is unknown input dependent and the other is not. 

Through algebraic manipulation, the estimated states of the unknown input free subsystem 

and the measurement vector are used to reconstruct the other states and the unknown 

inputs. Because the results depend on the first derivative of the measurements, for a 

system with noisy measurement, these methods may not be applicable. 

Beside the estimation of external disturbances, models to characterize these 

disturbances are necessary for prediction. The models for disturbances are various, and 

include sinusoidal, step, and impulse functions as well as stochastic models [Astrom, 

19921. Since two substantial components of the disturbances acting on vehicle come from 

superelevation of the roadway and wind, stochastic models seem most appropriate to 

account for the characteristics of the wind force. 



outline Of The Dissertation 

The main theme of this dissertation is to develop algorithms for time to lane 

crossing calculation and its associated uncertainty characterization. To accomplish this 

goal, two algorithms for (i) the down range road geometry, and (ii) vehicle path prediction 

are also developed. Thus, this dissertation is divided into three portions; 1) time to lane 

crossing calculation algorithm and the characterization of its associated uncertainty 

assuming the road geometry and vehicle path and their associated uncertainties are 

available, 2) vehicle path prediction and the characterization of the associated uncertainty, 

and 3) down range road geometry perception and the associated uncertainty. Three 

subjects are discussed in three subsequent chapters in the order as described; each is in the 

format of a paper for a conference ( [Lin and Ulsoy, 1995a1, [Lin and Ulsoy , 1995b1, and 

[Lin et.al, 19951) and will also be submitted to appropriate journals. 

Chapter I1 discusses the time to lane crossing calculation algorithm and the 

characterization of its associated uncertainty. It also contains studies of some 

characteristics of time to lane crossing. Chapter 111 introduces the vehicle path prediction 

algorithm and the characterization algorithm of its associated uncertainty. Simulations are 

included and discussed regarding the performances of these algorithm in different driving 

environments. Chapter IV discusses the down range road geometry perception and the 

characterization of its associated uncertainty. I t  contains the introduction of the algorithms 

and simulation results in several different situations. Finally, chapter V summaries the 

studies discussed in this dissertation and presents conclusions. 



Original Contributions 

This section summaries the original contributions of this research. 

The following are the original contributions regarding the time to lane crossing calculation 

(Chapter 11) : 

1) An algorithm to characterize the uncertainty in the time to lane crossing estimate, 

which is able to predict the standard deviation of the TLC uncertainty with k10 % 

accuracy for typical highway driving is developed. 

2) Time to lane crossing bandwidth for typical highway driving is identified as 2.5 

Hz. 

3) A linear interpolation scheme is developed to reduce the time to lane crossing error 

caused by the discrete time span for vehicle path projection. 

The following are the original contributions regarding the vehicle path prediction (Chapter 

111) : 

1) A Kalman filter is developed to simultaneously estimate the external disturbances 

acting on the vehicle and the vehicle dynamics. It significantly improves the 

results of the time to lane crossing calculation. 

2) A piecewise constant model, to characterize external disturbances for path 

prediction, is shown to be adequate for the TLC calculation. 

3) An uncertainty characterization algorithm is developed for the predicted vehicle 

path. 

4) A fixed Kalman filter gain is shown to be adequate for disturbances estimation for 

typical highway driving expect when the vehicle encounters a tight curve, 

5 )  A linear path projection model, which includes a two degree of freedom vehicle 

dynamics model, is shown to be adequate for path projection for the purpose of 

time to lane crossing calculation. 



The following are the original contributions regarding the down range road geometry 

perception (Chapter IV): 

1) It is found that, in general, a Kalman filter has a better performance for road 

geometry reconstruction than a least square curve fit because it successfully fil ters 

out the perception noise; however, its performance is worse than a least square 

curve fit in the transition period because of filtering lags. 

2) A Kalman filter can be developed to recover the road curvature on a significant 

superelevation, the reason being that it uses the knowledge of the vehicle kinematics 

and recursively averages the perceived road geometry. 

3) It is shown that a fourth order Kalman filter (which models the road geometry with 

3rd order polynomial equation) is generally better than a3rd order Kalman filter 

(which models the road geometry with 2nd order polynomial equation) because : i) 

a 4th order Kalman filter allows the curvature to vary along the curve, and ii) a 3rd 

order polynomial equation have a better fit to the acquired lane marker locations 

than a 2nd order polynomial equation. 

4) An uncertainty characterization scheme is developed for the perceived down range 

road geometry and is able to predict the standard deviation of the perception error in 

a good accuracy. 

5 )  An algorithm is developed to resolve the field of view problem of a single-far-field 

sensor lane sensing system. 
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Margin" Assessment For A Vehicle 



' CHAPTER I1 

TIME TO LANE CROSSING CALCULATION AND CHARACTERIZATION 
OF ITS ASSOCIATED UNCERTAINTY 

Abstract 

This chapter presents an algorithm to calculate Time to Lane Crossing(TLC). 

Several factors which may affect the accuracy of TLC are investigated, among which, the 

vehicle vibration, external disturbances acting on a vehicle, and vehicle state measurement 

errors are found to be the most significant. The bandwidth of time to lane crossing for 

typical highway driving is also studied; a bandwidth of 2.5 Hz is identified. Finally, an 

algorithm is proposed to characterize the uncertainty in the TLC estimate. 

Introduction 

Thls chapter lscusses an algorithm to calculate Time to Lane Crossing (TLC) and 

presents the analysis of its frequency content. Furthermore, it also discusses an algorithm 

to characterize the uncemnty in the perceived TLC. Time to lane crossing in this context 

describes the time required for a vehicle to run off the road boundary assuming no further 

steering intervention will be taken by the driver (i.e., the current steering wheel angle is 

held constant). Such a metric is important for an adaptive safety system being developed at 

the University of Michigan to prevent road-departure accidents. It  provides an appropriate 

way for the active safety system to assess the "lane tracking margin" of a vehicle. A 

characterization of the TLC uncertamty is also necessary to provide a reliability index for 

the active safety system decision mAng [LeBlanc et.al., 19951. 

To calculate TLC, down range road geometry and the future vehicle path are 

necessary such that the intersection of the vehicle path and road boundary can be located 



and the time to reach thls point can be calculated(see Fig. 11.1). The current study assumes 

that two polynomial equations which represent the down range road boundaries will be 

available from a road geometry reconstruction module b n  e t d ,  19951. It also assumes 

that an array which contains discite points along a predicted future vehicle path will be 

available from a vehicle path prdction module, which is the result of a discrete vehicle 

path projection [Lin and Ulsoy, 19951. The calculation algorithm uses thls information to . . -  

calculate TLC. It further applies an interpolation scheme to reduce the error caused by the 

time resolution for discrete vehicle path projection. On the other hand, the uncertainty 

characterization algorithm uses uncertainties of the perceived down range road geometry 

and the predicted future vehicle path to characterize the perceived TLC uncertainty. Here, 

the uncertainty range refers to statistical characteristics (one standard deviation) of the 

possible deviation of the perceived values from the real values. The uncertainties of the 

perceived road geometry and the predicted vehicle path are also assumed to be available 

from the road geometry reconstruction and vehicle path prediction modules. 

In the past, several different schemes have been utilized for "lane tracking margin" 

assessment. These schemes include instantaneous lateral deviation ([Shladover, 19911, 

[Fenton, 19911, [Dickrnanns, 1988]), instantaneous vehicle heading angle([Kamada, 

19921, [Turk, 1988]), and predicted relative location of the vehicle from the lane boundary 

at a future time [Okuno, 19921. These rnetrics only provide lane tracking margin at a 

specific time (i.e., either the current time or a future time) and have no information about 

what happens at other times. However, such metrics may mislead an active safety system 

because a large deviation from the desired trajectory does not always mean a dangerous 

maneuver. On the other hand, TLC is less ambiguous for the active safety system decision 

malung because it  evaluates the entire predicted vehicle path. The current study defines 

TLC as the time for the vehicle to reach a road edge assuming no future driver intervention 

(i.e., the steering wheel is help constant). Such a definition reduces the effect of human 

factors on TLC, a decoupling wh~ch benefits the active safety system design. Furthermore, 



it also eliminates the uncertainty in the estimation caused by inaccurate pdc t ion  of the 

future driver maneuvers. 

There are several issues related to TLC which are important for active safety 

systems, but have not been investigated previously. The first issue is the bandwidth of 

TLC. An understanding of TLC bandwidth is important such that an appropriate sampling 

rate (or the cycle time for a TLC calculation) can be determined. Another issue is the 

accuracy of the TLC, which was noted but not characterized in previous TLC studies 

[Godthelp, 19841. The study of this accuracy issue should involve two aspects. The first 

aspect is to improve the TLC accuracy (i.e., to develop algorithms to compensate for TLC 

errors). The second aspect is that an uncertainty characterization algorithm must be 

developed to establish the expected reliability of TLC estimates. In this study, several 

different factors which may affect the accuracy of TLC are studied. Then, based on the 

results, an algorithm to chamcterize the TLC uncertainty is proposed. 

The following section presents the TLC calculation scheme including'the 

interpolation scheme used to refine TLC. The next section discusses the study of the TLC 

bandwidth. Then, the studies of the significance of different factors on TLC accumcy is 

presented. These are followed by an algorithm to characterize the TLC uncertainty. A 

summary and conclusions is included at the end of the chapter. 

Time To Lane Crossing Calculation Algorithm 

This section discusses a "brute force" approach to TLC calculation. With such a 

scheme, the vehicle path projection time step affects the TLC accuracy. An interpolation 

algorithm is introduced to minimize this time-step effect. 

As shown in Fig. 11.2, time to lane crossing is obtained byevaluating the discrete 

points along the vehicle path until a point lies outside of the road boundary. Then, an 

interpolation scheme is applied to refine the result. In this figure, ( x i ,  y,) is a location of 

the vehicle in the down range predicted path, f, ( x i )  , f , ( x , )  represent the lateral locations of 



the left and right lane boundaries evaluated at xi , At is the itemtion time step for the 

discrete model, and TLC denotes time to lane crossing. Suppose that the vehicle location 

lies outside the road boundary at time step i , a rough estimate of the TLC is then iAt . 

Then, based on this TLC estimate, a linear interpolation scheme [Carnahan, 19n] is 

applied to refine the TLC. 

The previous step shows that the intersection lies between (x, , y, ) and (x,-, , y,_, ) . 
Thus, a linear polynomial equation can be developed to represent the vehicle path 

connecting these two points; 

Then, Equation (11.1) can be used, along with the road boundary which the vehicle path 

intersects, to refine the TLC. A time efficient way is to use a binary search for a more 

accurate intersection. A binary search evaluates the middle point of a possible intersection 

area to reduce the area. For example, after Equation (11.1) is developed, the middle point 

between (x,, y, ) and (x, _, , y,_, ) is calculated; 

Then (x', y') is evaluated to see if it  lies outside of the road boundary or not. If it is, then a 

new area of possible intersection is between (x,-I , yl-, ) and (x',yl). If it is not, then the 

possible intersection is between ( x ' , ? ' )  and (x,,y,) . The same procedure continues until 

the area of possible intersection is smaller than a specified threshold. Suppose (xn,yn)is 

the final point of this procedure, then a refined TLC can be obtained by 



Table 11.1 shows the improvement in TLC error by applying this interpolation scheme to a 

TLC simulation in which the TLC's are generally small (about 3.0 sec). The time step for 

vehicle path projection is 0.1 sec. The results show that a reduction of about W o  of the 

error can be achieved. However, for a large TLC, the performance is somewhat degraded. 

Under such situations, the real TLC does not fall within the time period of the rough 

estimation (see Figure 11.2) and the interpolation scheme causes a larger error. 

Table 11.1 : Improvement In Time To Lane Crossing With A Linear 
Interpolation Scheme 

A typical TLC is shown in Figure 11.3, which simulates the TLC with an 

"intoxicated"driver driving at a speed of 90 Kmlh on a typical highway geometry (i.e., a 

straight section connected by a curve). During driving, the vehicle experiences a strong 

wind disturbance. An "intoxicated" driver is simulated with an optimal driver model 

developed by MacAdam [1988], in which the delay time is assigned longer than the typical 

delay (i.e., 3.0 sec. for an "intoxicated" dnver versus 2.0 sec. for a normal driver). 

During the initial period, the driver tries to regulate the vehicle under the effect of the wind 

disturbance; however, because the driver is "intoxicated", which causes a longer response 

time, the regulation takes a longer time to settle down the vehicle motion (about 4 sec). For 

a normal driver, i t  may take only about 2 sec. Then, the vehicle encounters a curved road 

geometry and the curvature serves as a disturbance to the vehicle dynamics. The same 

regulation phenomenon happens, which is shown by the ripples at the end. 

RMS Value Of The TLC 
Error 

Time To Lane Crossing Frequency Distribution 

This section describes a study of the frequency distribution of TLC in typical 

highway driving. Identification of the maximum significant frequency component of TLC 

With Interpolarion Without Interpolation 
0.06 sec. 0.10 sec. 



is the goal of this study. Subsequently, the requirement on sampling rates for TLC is 

discussed. 

Since TLC is determined by the predicted vehicle path and the down range road 

geometry, the variation of TLC is affected by the variation of roadway geometry and the 

projected vehicle path. For roadway geometry, a dramatic variation occurs at the 

intersection of two roadway segments with different curvatures (e.g., a straight line 

connected to a pure curve). On the other hand, the vehicle path has more variety. The 

variation of the vehicle path depends on the variation of the dynamic states, the steering 

input, and the external disturbance. Furthermore, vehicle dynamic states are functions of 

steering input and external disturbances (e.g. wind disturbance and superelevation). 

Therefore, the variation of the external disturbances and steering input in driving are the 

two fundamental sources of the geometric variation of the predicted path. In summary, the 

variation of steering input, external disturbance and roadway geometry must be considered 

while studying the frequency distribution of the TLC. 

For this study, the external disturbance and roadway geometry are selected to have 

relatively fast variations compared to what a driver is generally expected to see in highway 

driving. The superelevation, roadway geometry, and the constant component of a wind 

force are ignored in the simulations because these factors change gradually, and, thus only 

affect the low frequency component of TLC. 

On the other hand, the dnver maneuver (i.e., variation of steering input) is divided 

into four typical conditions such that the TLC bandwidth in these situations can be 

compared. The driver maneuvering is simulated with an optimal dnver model developed 

by WacAdam, 19881. The first maneuver features a normal driver following the center of 

the lane, a common maneuver for most people in highway driving. Although some people 

may dnve at an offset from the center of the lane, it is expected that the frequency response 

of this situation does not differ from the situation of lane center tracking. The second 

maneuver features an "intoxicated" driver following the center of the lane. For simulating 



an intoxicated driver, a longer time delay in the optimal driver model is applied and the 

preview time is kept the same as for the normal driver model. The third maneuver 

simulates driving with additional tasks such as locating a scenic point on the map, which 

also simulates dnving with a drowsy driver. For such simulation, a fixed steering angle is 

assigned. The validity of using a fixed steering angle to simulate such maneuvers is 

discussed in [Godthelp, 19841 and [McDonald, 19801. Then, frequency analyses are 

conducted to locate the TLC bandwidth for each of the different maneuvers. The results a& 

shown in Table 11.2. Finally, an emergency maneuver is simulated as the fourth case. A 

driving simulator with a steering wheel is used for the experiment. In the study, the 

subjects were asked to make a sharp turn of the steering wheel and the same procedures 

were repeated several times. No external disturbance is assigned in order that the effect 

from the maximum variational speed of the driver input can be manifested. The emergency 

maneuver case has the most rapid variation in TLC with a bandwidth of about 3.0 Hz, and 

is also included in Table 11.2. 

Table 11.2 : Time To Lane Crossing Bandwidth In Different Maneuvering 
Situations 

Maneuvering l Normal Driver "lntoxic~ted" Drowsv Driver Emernencv 

The results show that the possible maximum frequency component is about 3.0 Hz, which 

~ o n d i t i o k  
TLC Bandwidth 

occurs in an emergency steering maneuver. According to Shannon's sampling theorem, 

" ,  
Dn'ver Maneuver 

2.5 Hz 2.5 Hz 1.0 Hz 3.0 Hz 

the corresponding sampling Frequency must be at least 6 Hz. However, in practice, 4 to 

10 times the signal bandwidth is usually required for sampling the signal. Therefore, in 

order to successfully track the TLC variation for every different situation, the above 

maximum value sets a minimum of about 12 Hz, and preferably 30 Hz, sampling rate for 

the TLC. However, since the emergency maneuver situation is not a scenario in which the 

active safety system is expected to operate, this requirement can be somewhat relaxed. The 



results from the f i t  three simulations show that the maximum possible frequency 

component in the scenario of the active safety system is located at about 2.5 Hz 

Therefore, it is desired that the sampling frequency for the TLC is at least 10 Hz but 

preferably at about 25 Hz. Since the TLC sampling rate is expected to be dominated by the 

image processing for the previewed scene. The above result suggests that a desired image 

processing rate is at about 10 Hz or higher. 

Significant Factors For Time To Lane Crossing Accuracy 

This section studies the significance of some of the factors which may affect the 

accuracy of time to lane crossing. The results will be considered when developing 

algorithms to compensate for the errors or to characterize the uncertainty of TLC. An 

assumption in this study is that the vehicle characteristics (e.g., vehicle mass, tire pressure, 

etc.) will not change while driving on the road. Also, the vehicle is assumed to be traveling 

at a speed of 90 Kmlh under cruise control. 

The factors which may affect the accuracy of TLC are categorized into two: (1) 

those which affect road geometry perception, and (2) those which affect future vehicle path 

prediction. For the road geometry perception, there are mainly three factors : 1) pixel 

resolution, 2) vehlcle vibration (which causes a sensor to lose its orientation), and 3) 

superelevation (due to insufficient infonnation to recover 3-D geometry from a 2-D image). 

On the other hand, there are also three factors which may cause inaccurate vehicle path 

prediction : 1) unknown future external disturbances, 2) linear 2 Degree of Freedom (DoF) 

vehicle model for path projection (the real system is nonlinear and higher order), 3) 

measurement error (or no measurement) for the initial conditions (i.e., lateral vehicle 

velocity, yaw rate, and front wheel steering angle). This section discusses the significance 

of these factors on TLC accuracy. 

Figure 11.4 shows the effects of pixel resolution, vehicle vibration, and 

superelevation on TLC accuracy. For the values considered, Fig. 11.4 shows that pixel 



resolution has a negligible effect on the accuracy. Here, the pixel resolution features a 

512(horizontal) x 256 (vertical) resolution in a 10 mm x 10 mm CCD chip. On the other 

hand, the effect of vehicle vibration introduces significant error in the TLC perception. 

This is because vehicle vibration causes unknown changes in the vision sensor orientation 

and leads to incorrect perception of the road geometry. Here, the vehicle vibration is 

excited by a typical highway road surface (smooth asphalt). A worse result is obtained 

when the vehicle runs on a rougher surface. The effects from typical highway 

superelevation (for the simulation, it is 0.5 deg) is less substantial than the vehicle 

vibration. However, simulation results show that superelevation introduces a significant 

error when it  is large enough (e.g. a 2.5 deg superelevation). 

The effects of model simplification, unknown external disturbances, and 

measurement errors for the initial conditions for vehicle path projection are shown in Fig. 

11.5. To study the model simplification effect, a 3 DoF vehicle model which considers a 

roll degree of freedom and the nonlinearity of the tires is compared with the 2 DoF model. 

To simulate the nonlinearity of a tire, a nonlinear tire model generally known as the magic 

formula [Bakker, 19891 is used. The results shows that for highway driving under a 

substantial external disturbance, a 2 DoF model works satisfactorily. The initial condition 

measurement error effects are studied by assuming a random error with 0.1 degls standard 

deviation for the yaw rate, 0.1 deg at the front wheel steering angle, and no lateral velocity 

measurement. This result shows that such measurement errors are significant in terms of 

TLC accuracy. Finally, the unknown external disturbance effect is studied by adding a 

wind force featuring a 4 m/s side wind velocity in the vehicle path prediction. Such a wind 

force is considerably strong for typical highway driving [DeHarpporte, 19831. The results 

show that an estimation of the external disturbance under this situation for path prediction is 

substantial. 

The above simulations show that for TLC calculation in typical highway driving, 

schemes must be developed to compensate for the TLC error due to the following effects : 



1) vehlcle vibration, 2) superelevation, 3) external disturbances, and 4) path projection 

initial condition measurement errors. Otherwise, these effects must be considered when 

developing an algorithm to characterize TLC uncertainty. Among these four factors, 

vehicle vibration is the most significant factor, which causes about twice the TLC error as 

the path projection initial condition measurement errors do. Therefore, an accurate road 

geometry perception will be more important than an accurate vehicle path projection. 

However, it is still necessary to develop an accurate vehicle path algorithm to reduce the 

TLC uncertainty for the TLC to be successfully utilized by the active safety system. 

Characterization Of Time To Lane Crossing Uncertainty 

This section discusses an algorithm to characterize the p s i b l e  deviation of the 

perceived TLC from the real TLC. The result is a statistical characteristics (the standard 

deviation) of the possibleerrors and is called the uncertainty range in this context. This 

algorithm assumes that the uncertainties of the perceived roadway geometry and predicted 

vehicle path will be available. The uncertainty characterization schemes for the perceived 

roadway geometry and the predicted vehicle path consider those significant factors 

discussed in the previous section ([Lin et.al., 19951, [Lin and Ulsoy, 19951). 

To characterize TLC uncemnty, both the road boundary and predicted vehicle path 

are represented with 2nd order polynomial equations : 
2 

Yr - Cro + CrlXr + 'rzXr 

where (x,, y,) is a point on the lane boundary, and 

where ( x , ,  yv)is a point in the predicted vehicle path. A t  the intersection point, 

(xr,yr) - (x,,y,); therefore, 

Denote x, = x, = 1 and rearrange Equation (11.6) to obtain 



The solution of Equation (11.3, I, can be obtained in one of two ways; the first one is to 

solve Equation (11.7) and the other way is to calculate I from 

TLC=Ilu (11.8) 

by assuming constant forward velocity, u, of the vehicle. The time to lane crossing in 

equation (11.8) is obtained from the time to lane crossing calculation algorithm. Then, the 

error analysis for 1 can be conducted by 
(cr0 +bero-cvo -h ,o )+ (c ,  +Ac,,-c,, -&.,XI +w + 

(11.9), 
(c,, + Acr2 - cV2 - kV2xl  + 602 - 0 

By assuming A 's << 1 and denoting 

= (c,, - Cr l )  + 21(cv2 - cr2) 

the following equation can be obtained 

A1 - ( l16) ( (kro-  +(Acrl - k V l V +  (Acr2 -Acv2)12) (11.11). 

Furthermore, assume the mean values of the coefficient errors are zero, 

mkr,  f mkvo -"?'tl m ~ l l  m ~ r 2  = m b l  1 0  (11.12), 

then the mean value of the I deviation, m,, is also zero. Equation (11.11) can be rewritten 

as the product of two vectors; 

A1 = A,,C,,, 

where 
1 2 1  

A = 1 1 )  -(l/O) (1IB)l -(116)1 (-)12 -(-)i 
1 6 @ 1 

and 

Vanance of A l ,  which is also the variance of I ,  can be obtained by 

o2 = A*~~c,,,c,~ 1~ &IT 

where QC,C,*] is a covariance matrix with the variance of 

Ac,, ,Acvo ,Acrl, AcvI,Acr2, Ac,, located along the diagonal. Finally, the variance of the time 

to lane crossing can be calculated from 

a2( ATLC) = a2 ( Al) 1 u 



To validate the above algorithm, Monte Carlo simulations are conducted at different 

nominal down range road geometry and future vehicle paths (which yield different nominal 

TLCs). For the Monte Carlo simulations with respect to a nominal TLC, random errors are 

assigned to the coefficients based on typical road geometry perception and vehicle path 

prediction errors. Then, the standard deviation of the TLC errors for a nominal TLC case 

from the Monte Carlo simulation is compared with the prediction using the algorithm 

discussed above and the results are shown in Fig. 11.6. The TLC uncertainty values in 

Fig. 11.6 feature road geometry perception in typical highway driving and a wind 

disturbance of 5 mls for constant component and 0.6 mls standard deviation for the 

stochastic component. The results show that the proposed algorithm predicts the TLC 

uncertainty to w i t h  an acceptable accuracy; the maximum difference between the predicted 

value and the result from Monte Carlo simulation is about 10% of the real value (i.e., the 

value from Monte Carlo simulation). From Fig. 11.6, one can see that the assumption of 

small A1 causes differences between the Monte Carlo simulation and model prediction 

results when the nominal TLC is large. For a more accurate TLC uncertainty prediction, no 

assumption on A1 should be used, whch leads to a more complex model, however, the 

small A1 assumption is satisfactory. This algorithm is then applied to simulate the TLC 

uncertamty in typical highway driving. The simulation has an "intoxicated" (e.g., drunk) 

driver experiencing a strong side wind acting on the vehicle between 1 and 2 seconds. It  is 

assumed that disturbance characterization and vehicle dynamics estimation schemes are 

applied, which lead to small uncertainty in the predicted vehicle path. The result is shown 

in Fig. 11.7, which shows that, for the conditions described, a minimum TLC of about 2.0 

sec, and a maximum TLC uncertainty of about 0.25 sec. are obtained. 

Summary And Conclusion 

This chapter presents an algorithm to calculate time to lane crossing which includes 

an interpolation scheme to refine time to lane crossing. Then, several factors which may 



affect time to lane crossing are studied to understand their sipficance for TLC accuracy. 

Subsequently, a study of the frequency distribution of typical time to lane crossing values 

in highway dnving is presented. Finally, an algorithm is proposed to characterize the 

perceived TLC uncertainty under the assumption that effective algorithms are developed to 

compensate for major errors in the r o d  geometry perception and vehicle path prediction 

errors (i.e., the polynomial equations for the perceived road geometry and the prdcted 

vehicle have small deviation from the polynomial equations representing the real geometry). 

The results show that the interpolation scheme improves the TLC error by about 

40%. Results also show that among the factors considered, vehicle vibration, 

superelevation, external disturbances, and path projection initial condition measurement 

errors significantly influence TLC error. Among these four factors, vehicle vibration, 

which causes the sensing system to lost its orientation, is the most significant factor. 

Vehicle vibration causes about twice the TLC error as the path projection initial condition 

measurement errors do. Therefore, an accurate road geometry perception will be more 

important than an accurate vehicle path projection. However, it is still necessary to develop 

an accurate vehicle path algorithm to reduce the TLC uncertainty for the TLC to be 

successfully utilized by the active safety system. Furthermore, a 2.5 Hz bandwidth is 

identified for typical TLC for hlghway driving. This bandwidth leads to a requirement of 

at least 10 Hz for the TLC sampling rate (i.e., TLC must be calculated every 0.1 sec). On 

the other hand, the proposed time to lane crossing uncertainty characterization algorithm is 

validated through a comparison between the model predicted values and the Monte Carlo 

simulated values; a maximum difference of about 10% of the real value is obtained. 

Finally, a typical time to lane crossing and its associated uncertainty are simulated,~which 

shows that when an " intoxicated" driver maneuvers a vehicle on a typical highway 

geometry and experiences a strong side wind, the minimum TLC is about 2.5 sec, and the 

maximum TLC uncemnty is about 0.4 sec. The value of the TLC uncertainty is obtained 



under the assumption that the vehicle dynamics (i.e., lateral velocity and yaw rate) and 

external disturbances and the front wheel steering angle can be accurately obtained. 
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Figure 11.3 : Time to Lane Crossing ("Intoxicated" Driver Experiencing A 
Strong Side Wind) 
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Figure 11.7 : A Typical (a) Perceived Time To Lane Crossing And (b) Its 
Associated Uncertainty (661ntoxicated" Driver Experiencing A Strong Wind 

Gust Between 1 - 2 seconds) 



CHAPTER I11 

VEHICLE PATH PREDICTION AND THE CHARACTERIZATION OF ITS 
ASSOCIATED UNCERTAINTY 

Abstract 

This chapter discusses a vehicle path prediction scheme and an algorithm to 

characterize the prediction uncertainty. For the path prediction, a linearized model is 

utilized. Furthermore, for accurate path prediction, a steady state Kalman filter which uses 

perceived lane marker locations, obtained from an on-board near field sensor, is developed 

to simultaneously estimate vehcle lateral velocity and external disturbances and is shown to 

significantly improve the result. It is concluded that a fixed constant Kalman filter gain is 

quite adequate for typical hghway dnving except when the vehicle encounters a relatively 

tight curve. Subsequently, different schemes for disturbance characterization to predict 

future disturbance inputs to the vehicle are discussed. Studies show that a piecewise 

constant model is adequate for obtaining accurate path prediction. Finally, an algorithm to 

characterize path prediction uncertainty is proposed. The algorithm assumes that the 

statistical characteristics of the measurement/estimation errors of the vehicle lateral velocity, 

yaw rate, and front wheel steering angle are available from off-line characterization. 

Introduction 

This chapter discusses a future vehicle path predction algorithm and a scheme to 

characterize the associated uncertainty. A vehicle path prediction is important for an active 

safety system being developed at the University of Michigan to prevent road-departure 

accidents [LeBlanc et.al., 19951. The predicted path is used to estimate the time to lane 

crossing of a vehicle. Furthermore, the uncertainty range of the predicted path provides a 



reliability index for the predicted path and is used to characterize the uncertainty of the 

assessed time to lane crossing. 

The vehicle path prediction algorithm includes a linearized path projection model 

and an external disturbance characterization scheme. The linearized path projection model 

encompasses a 2 Degree of Freedom (DoF) vehicle model and a linear equation to calculate 

vehicle path. The external disturbance characterization algorithm has a steady state Kalman - ' 

filter to estimate the external disturbances. Furthermore, based on the estimated data, a 

system identification scheme is implemented to characterize the extemal disturbance and to 

predict future values. The inputs to the Kalman filter are lane marker locations from a near- 

field sensor and measurements of the vehicle yaw rate and the front wheel steer. Since no 

lateral velocity measurement is available for the active safety system (which is needed for 

path projection), the Kalman filter simultaneously estimates thls variable. Finally, the 

uncertainty characterization uses the statistical characteristics of the lateral velocity, yaw 

rate, and front wheel steering angle measurementlprediction errors to characterize the 

uncertainty of the predicted path (the predicted path is expressed by a 2nd order polynomial 

equation and the uncertrunty of the coefficients are characterized). Here, the uncertainty 

refers to the standard deviation of the possible deviation. 

Accurate path prelction requires accurate initial conditions (i.e., vehicle lateral 

velocity, yaw rate, and front wheel steering angle), an accurate path projection model, and 

knowledge of (future) maneuvers and external disturbances that will occur during the 
- -  - 

projection time. Previously, the transient dynamics of a vehicle and the external 

disturbances acting on a vehicle were simply ignored in path projection ([Godthelp, 19841, 

[Okuno, 19921). Such an assumption is valid only for a mild environment (i.e., small 

wind force and superelevation) and introduces significant path projection errors in more 

severe conditions. This study considers the transient vehicle dynamics by utilizing a 2 DoF 

vehicle model. The 2 DoF model provides vehicle lateral velocity and yaw rate at each time 

step. To obmn vehicle path, a nonlinear equation is involved. This study linearized the 



nonlinear equation to improve the computational speed. The validity of the linearization is 

discussed. Furthermore, the external disturbances are also considered here to improve the 

path prediction by characterizing the variation of the disturbances and then predicting the 

future values. On the other hand, the future driver steering inputs are usually assumed to 

be constant because of difficulties in predicting these values, which require a good driver 

model, accurate perception of the down range road geometry, and current vehicle 

dynamics. The same assumption (i.e., constant driver input) is also adopted in thls study. 

It offers an advantage in that it reduce the effects of driver related human factors on time to 

lane crossing calculation. Finally, simulations also show that initial condition measurement 

errors introduce significant errors in the prdcted vehicle path. Such errors are noted but 

not characterized in previous studies [Godthelp, 19841. Since the path prediction errors 

introduced by measurement errors are usually not deterministic, they are characterized 

statistically in th~s study and the result is an uncertainty m g e  of the possible deviation of 

the predicted path from the actual path. 

The estimation of the lateral velocity and external disturbances can be achieved 

through a dynamic state observer. This problem is typically known as the problem of state 

observation with unknown inputs. The problem of state estimation with unknown inputs 

has been intensely studied in the past; a literature review can be found in [Park, 19881. 

However, simultaneous estimation of the states and unknown inputs did not appear until 

the works of [Park, 19881 and subsequent researchers ([Hou, 19921, waquin. 19941). 

These studies apply singular value decomposition methods to accomplish their goals. One 

important feature in these schemes is that the first derivatives of the measurements are 

needed; for a system with noisy measurements, these methods may not be applicable. In 

the current study, a Kalman filter scheme is utilized, in which the measurement noise effect 

on the estimation is minimized. 

The following section discusses the linearized model for path projection. The 

development of the Kalman filters for lateral velocity and external disturbance estimation is 



discussed in the next section, which is followed by a discussion of the external dsturbance 

characterization schemes. Then, an uncertainty characterization scheme is described, which 

is followed by simulation results to validate the linearized path projection model, to show 

the performance of the external disturbance characterization scheme (which includes the 

studies of using a fixed Kalman filter gain for different road surface and geometry), and to 

validate the uncertainty characterization scheme. Finally, a summary and conclusions are . ' 

included at the end of the chapter. 

Linearized Vehicle Path Projection Model 

The vehicle path projection includes a vehicle dynamics model to simulate the 

variation of the lateral velocity and yaw rate. Furthermore, an equation is used to calculate 

the vehicle path based on the vehicle kinematics. Such an equation is nonlinear and is 

linearized in this study to improve computational speed. The result and the 2 DoF model 

are augmented into a state space model for path projection. 

The vehicle lateral dynamics can be approximately described by a 2 DoF lateral 

dynamics model : 

where v and r and 6 are the vehicle lateral velocity, yaw rate, and the front wheel steering 

angle respectively; cf and C, are the cornering stiffness of the front and rear tires 

respectively, which relate wheel s l~p angle and lateral forces on the tires; m is the lumped 

vehicle mass, u is the constant vehicle forward speed, and 1 is the length of the vehicle 

wheel base; I ,  is the moment of inertia about the z axis of the vehicle fixed coordinate 

system; a and b are the distances from the front tire axis and rear tire axis to the vehicle's 

center of gravity respectively; e,, and eMl represent lumped disturbances leading to vehicle 



lateral and yaw accelerations respectively. This model can be used to simulate vehicle 

lateral velocity and yaw rate with respect to the vehicle fixed coordinate system defined as 

the standard SAE coordinate system [Gillespie, 19921. The vehicle velocity in the 

reference frame of the predicted vehicle path is then calculated as 

whereq, is the heading angle of the vehicle with respect to the reference frame. Then, the 

vehicle location at a time, t, can be obtained by integrating the velocities; 

where(x,,, y,,) is the initid condition for the path projection. Suppose the heading angle 

and the lateral velocity of the vehicle are small along the whole curve and that the forward 

velocity is constant, equation (111.2) can then be simplified to 

By combining equation (111.1) and equation (111.4) and augmenting heading angle into the 

dynamics model, the following model can be obtained; 

x = u  

For path prediction, equation (111.5) is further discretized using an algorithm described in 

[Franklin, 19901, which features a modified version of the partial Taylor expansion 

method. 



Kalman Filter For Vehicle Dynamics And External Disturbance Estimation 

This section discusses the derivation of the model for Kalman filter implementation 

to estimate vehicle lateral velocity and external disturbances for the usage of predicting 

vehicle path. Assumptions are that lane marker locations from an on-board near-field 

sensor and measurements of yaw rate and front wheel steering angle will be available, The 

idea is to estimate the vehicle lateral velocity with the perceived variation of the previewed ' 

lane geometry and, subsequently, to estimate the disturbances acting on the vehicle with the 

knowledge of lateral velocity and yaw nte. The estimation of the lateral velocity is 

necessary for the disturbances to be observable. 

For the purpose described above, the following model is developed; 

where cr o,crl,cr, are the coefficients of a 2nd order polynomial equation to model the 

previewed road geometry. In other words, the road geometry is modeled as 

2 
~r(xr )  Cro + C r l X r  + Crzxr (111.7), 

where (x,, yr) is a point on the curve, which is referred to a vehicle fixed frame (see Fig. 

111. I ) .  The vehicle-fixed frame is defined according to the SAE standard coordinate system 

[Gillespie, 15921. The other parameters are associated with the 2 DoF model introduced 

previously (see equation (111. I)). Essentially, this model contains two subsystems; one 

subsystems describes the relation between the vehcle kinematics and the perceived 

geometry variation and the other subsystem is a two DoF vehicle model which describes 

lateral vehlcle dynamics. The reason for this construction is to use the perceived geometry 

variation to estimate the vehicle lateral velocity and subsequently use the estimated lateral 



velocity and the measure yaw rate to assess external disturbances. With a Kalman filtering 

process, a better (smoother) perception of the geometry variation can be achieved to acquire 

better lateral velocity and external disturbances estimation. 

Basically, a 2nd order polynomial equation assumes a constant curvature (see Fig. 

111. 1) ; 

= 2cr2 (111.8) 

where 1 is a spatial parameter along the curve, ~(1)means the curvature at I, andc,, is a 

constant value. As shown in Fig. 111.1, the radius of the curve, P , is constant across the 

curve. With the assumption of small curvature, the tangential angle at 1 is obtained by 

integrating equation (111.8); 

Furthermore, the y coordinate of the curve at a location 1 is obtained by; 

In equations (111.8) - (111. lo), 1 can be replaced by x, ,  the x coordinate of the curve at I, 

under the assumption of small curvature to obtain equation (111.7). For a more detailed 

discussion regarding to the derivation of equations (111.8) - (111. lo), the reader is referred 

to [Dickmanns, 19861. From equation (111.7, one can observe that 

c r o  - ~~b,- ' ,  
Thus, 

Furthermore, equation (111.9) shows that 

Therefore, 



Finally, because of the constant curvature assumption, 

Besides the relation between the perceived lane geometry and vehicle kinematics, a 2 degree 

of freedom vehicle lateral dynamics model can be developed under the assumption that the 

tire forces are linearly proportional to the tire slip angle as in equation (111.1). Assume that 

the external disturbances are piecewise constant, then 

&, - 0  
(111.16) 

e ,  - 0  

By combining equations (111. I), (III.12), (III.14), (111. IS), and (III.16), equation (111.6) 

can be obtained. 

Equation (111.6) is then discretized and is expressed as 

x (k + 1) = cPx (k) + Tu(k) (111.17) 

The implementation of the Kalman filter to estimate lateral velocity and external 

disturbances can be achieved with 

where 

The coefficients (i.e., cr,,cr,,cr,) are obtained by least square curve fitting of the 2nd order 

polynomial equation to the lane marker locations from the near-field sensor. Suppose a lane 

marker array (i.e., ( x , , y , ) . . , . ( x , ,  yn)) is available from the near-field sensor, the least square 

curve fitting is conducted as 

where 



In equation (II1.18), H is the output matrix, and L is the Kalman Filter gain. The Kalman 

Filter gain is obtained from a process noise covariance matrix and a measurement error 

covariance matrix. To obtain these two matrices, a more sophisticated vehicle dynamics 

model is utilized to simulate the perception error of the sensors and the accuracy of the 

model in equation (111.6) [Venhovens, 1993. The process noise also depends on the front 

wheel steering angle measurement error and the measurement noise also depends on the 

yaw rate measurement error. The usage of the perceived lane marker locations by the near- 

field sensor is important for accurate lateral velocity estimation and consequently accurate 

external disturbance estimation. 

External Disturbance Characterization For Prediction 

Once the external disturbances are estimated, they need to be characterized for 

prediction. This section discusses three different schemes to characterize the estimated 

values from the previous section. 

One simple model for the external disturbances is to assume that they are piecewise 

constant: 

e - 0 (111.22) 

Thus, the disturbances in the path projection period are assumed the same as estimated at 

each time t. The second model characterizes the external disturbances by assuming they 

vary linearly with time. In  other words, 

e( t )  = k,t + k, (111.23) 



To obtain the coefficients in equation (111.23) (i.e., k, and k,), thls equation is fitted to the 

estimated data in a previous time span in a least square sense. The goal here is to catch the 

trend of the signal. For this reason, the effects from the stochastic component need to be 

minimized. Since a main contribution to the stochastic component of the disturbances is 

wind force which typically has a bandwidth of 0.25 Hz WacAdam, 19891, the data in a 

prior time span of 4 second are used, and equation (111.23) is fitted to the data to obtain the ' 

coefficients. In this case, the time at t-4 (suppose the current time is t )  is reinitialized to 0, 

the current time is 4 and the prediction is to estimate the values from 4 to 8 second which 

correspond to t and t+4 second in real time axis. Suppose that the estimates of a 

disturbance from t-4 second to t second are 

~ = { e ,  el . . e n r  (111.24) 

and 

t - { t o  t, . . t n IT  (111.25) 

is the corresponding times for each estimation in the reinitialized time axis, then 

k = { k ,  k0jT (111.26) 

can be obtruned by 

k - ( T T T ) - ' T T ~  

where 

.,. 

Beside characterivng the trend of the signal, the third scheme described below 

further characterizes the stochastic component of the disturbances. The stochastic 

component of the signal is obmned by subtracting the trend from the estimated data from 

the Kalman filter. In other words, suppose e ( t )  is theestimated dataand e,,(t) is the 

estimated trend from the previous scheme, the stochastic component is obtained by 



d(t) = e(t) - e,, ( t) (111.29) 

Then, a stochastic model is used to characterize d (t) . Essentially, thls assumes that d (t) is 

the output from a filter with random white noise as the inputs; 

q(q-l)d(t) = w(t) (111.30) 

where q-' is a backward shift operator and q(q-l) is a polynomial with q-' as its 

parameter [Box, 19941. Through various model selection tests (i.e., frequency plot 

comparison, Akike's Final Prediction Error test, and residual test) [Ljung, 19873, it is 

found that the disturbances can be characterized using a 3rd order filter. Therefore, 

equation (111.30) has the following form; 

(1 + q q - I  + a2q-2 + %q3)d(t) - w(t) 

which is rewritten as 

where dl-, represents d(t - nAt)and At is the discrete time span [Box, 19941. To obtain 

the coefficients of the model (i.e., al,a2,(5), initial n data (i.e., (d0,4, d, .... dn) is used to 

obmn the initial estimation of the model parameters and a recursive scheme Franklin, 

19901 is implemented to update the estimate every time a new data is obtained. Thus, the 

initial parameter estimate is 

where 

To implement recursive least square algorithm, denote 



P - (ere)-' (111.35) 

Suppose, a new estimated disturbance value is provided from the Kalman filter, d,,,, then 

a new parameter estimate can be calculated as 

where 

and P is updated as 

The same procedure is conducted repeatedly to update the parameter estimates. A 

derivation of this procedure for general models is described in [Franklin, 19901. At each 

time step, t, the prediction of the future stochastic component is calculated from 

however, if 1 s 1,  the following equation is used ; 

An estimate of the disturbance magnitude at a future time is then the combination of the 

estimates from the trend prediction (i.e., 2nd scheme) and the stochastic model prediction. 

Predicted Path Uncertainty Characterization 

The predicted vehcle path is characterized by a 2nd order polynomial equation. 

Ths  section is to develop a model to generate uncertainty ranges for the polynomial 

coefficients. The inputs are statistical characteristics of the measurement/prediction errors 

of the lateral velocity, yaw rate, and front wheel steering angle, which are assumed to be 

available from off-line characterization. The results are the covariance of the possible 

deviation of the coefficients from the actual values. 



Suppose the discretized form of equation (111.5) is expressed as 

where the subscript p means that its a model for prediction. Furthermore, assume that there 

is an initial condition measurement error, Ax,,  and errors in the inputs, A u p ( k )  . Then the 

prediction error at step k is 

Thus, the autocorrelation of A x p ( k )  and A x p ( k  - m) is 

E [ A x , ( ~ ) A x , ~  ( k  - m)]  
t t - m  (111.43) 

= ~ k ~ ~ x p o A x p o T ] ( @ p ' ~ m ) T  + 2 q ~ - l ~ , ~ [ A u , ( k  - j ) ~ u , ' ( k  - m - 1)3(0d-11'p)T 
J-1 1-1 

where E [ . ]  represent the expected value of a random process. Generally, the influence 

from Axpo is more substantial than that from A u p ( k )  ; thus the second term on the right 

hand side of equation (111.43) can be ignored for an initial rough estimate. From equation 

(III.43), the covariance of the lateral displacement prediction error, E[Ay, (k )Ay , (k  - m ) ]  , 

can be obmned. Since the coefficients of the polynomial equation for the predicted path is 

obtained by 

cv = YvYv 

where 



and (x,  ,, y,,) is a discrete point in the predicted vehicle path, the covariance of the 

coefficients can be obmned by 

E[AC,AC,~] - Y,~AY,AY,~]Y,~  

where the E[~Y,AY,'] was obtained previously. 

Simulations And Discussion 

This section presents a simulation result to show the validity of the linearized path 

projection. Then, simulation results for lateral velocity and external disturbances estimation 

with the steady state Kalman filter are discussed, The Kalman filter gain is designed for a 

typical highway geometry (i.e., typical curvature) and road surface featuring smooth 

asphalt (whch accounts for 80% of the US highway [Sayer, 19861) and a forward vehicle 

speed of 90 Kmh. The simulations show the performance of the Kalman filter for tracking 

different levels of lateral velocity and external disturbances. For this purpose, various 

external disturbances are considered. Then the same Kalman filter gain is applied to 

various other situations (e.g., road geometry, road surface, and vehicle velocity) to study 

the possibility of using only one Kalman filter gain for typical highway driving. 

Subsequently, different disturbance characterization schemes for predicting future 

disturbance values are discussed. The improvements in TLC assessment achieved with 

external disturbance characterization are also discussed. Finally, vehicle path prediction 

uncemnty is studied, with the uncertainty characterization scheme, in terms of its 

contribution to the TLC uncertainty. 

To validate the linearized path projection model (i.e., equation (111.5)). Two TLC 

simulations under the same driving conditions (i.e., same vehicle dynamics and roadway 

geometry) are conducted using the nonlinear path projection equation (i.e. equation (111.2)) 

and the linearized model. Fig. 111.2 shows the results of these two simulations, in which 

the positive values represent a tendency for left land boundary crossing and vice versa. 

From Fig. 111.2 , one can see that the linearized model is adequate for path projection. 



To study the performance of the Kalman filter for different external disturbances, 

three simulations are conducted. Among these simulations, the road geometry, road 

surface, and vehicle velocity are the same and the Kalman filter gain is designed for such 

conditions. However, they have different superelevation and wind force. The road 

geometry has a straight section which transitions to a curve, the road surface features a road 

roughness typical of smooth asphalt (which accounts for about 80 % the typical US 

highway), and the vehicle velocity is 90 Kmlh. Figures 111.3 to 111.5 show the simulation 

results. The simulation shown in Fig. 111.3 has a large superelevation and a strong wind 

force. Fig. 111.4 shows results for a large superelevation but a small wind force. The 

results in Fig. 111.5 are for a small superelevation and a small wind force. Then, the 

estimated lateral velocity and external disturbances are applied to the path prediction under 

the assumption that the disturbance magnitude holds constant during the path projection 

period. The results are compared with the predictions which use no estimation scheme. 

For the latter predictions, the vehicle lateral velocity and external disturbances are assumed 

to be zero. The comparison is shown in Fig. 111.6 in terms of the resulting time to lane 

crossing estimation error from these two different path predictions in different cases. A 

detailed discussion of the time to lane crossing calculation methods is given in [Lin and 

Ulsoy, 19951. The results show that for the first two cases, the time to lane crossing 

estimation error is significantly improved by the estimated values. However, for the third 

case, no improvement is seen. This is because under this condition (i.e., a mild external 

d~sturbance), the lateral velocity and external disturbance is already very small and the 

assumption of zero values is adequate. 

A fixed Kalman filter gain which is designed for smooth road surface and a 

particular highway geometry (a stmght section transitions to a pure curve with a clothoid in 

between) is next applied to other highway driving conditions to study the possibility of 

using one fixed Kalman filter gain for typical highway driving. The first simulation has the 

same conditions as in Fig. 111.4 except that the road surface is much rougher than the 



smooth asphalt (usually accounts for local roadway or some unrepred highway). The 

result of the estimation is shown in Fig. 111.7. The following two simulations study the 

effect of the road geometry (which also affect the lane marker location perception). The 

results in Fig, 111.8 are for the same conditions as in Fig. 111.4 but the radius of the curved 

section is much smaller (281 m in Fig. 111.8 versus 380 m in Fig. 111.4). On the other 

hand, Fig. 111.9 has only a straight section during the simulation. Fig. 111.10 shows the 

time to lane crossing estimation errors in these three simulations. Figure 111.7 and the 

corresponding time to lane crossing error in Fig. 111.10 show that the nominal Kalman filter 

gain works successfully even when the lane marker location perception is significantly 

affected by vehicle vibration. Similar results are obtained for straight road dnving. 

However, if the vehicle encounters a relatively tight curve, such as the one shown in Fig. 

111.8, the performance of the Kalman filter is degraded. However, the time to lane crossing 

value is still better than that with no Kalman filter estimation. 

Finally, the performance of the Kalman filter when the forward vehicle velocity is 

different from the nominal speed is studied. For this purpose, the Kalman filter gain 

designed for 90 krnlh is applied to a vehicle dynamics simulation with a forward velocity of 

110 kmlh. The result is compared with the estimation with a Kalman filter gain designed 

for the 110 Kmlh simulation. Fig. 111.11 shows the result of this study, which shows 

similar estimation results for the two systems. Thus, the Kalman filter gain is not sensitive 

to the forward velocity variation. 

After the external disturbances are estimated, the disturbance characterization 

schemes discussed in a previous sect~on are applied to characterize the disturbances and to 

predict future values, which are then considered in the path projection. The results are 

shown in Fig. 111.12, in which the perceived TLC's are compared with the true TLC. In 

order to see the benefit of disturbance characterization, the result with no disturbance 

characterization is also included. Fig. 111.12 has a vehicle driven on a straight road and 

approaching a curve section under the effect of a substantial side wind force. When t = 16 



sec., a fixed steering wheel is assigned to simulate a drowsy driver falling asleep. This 

situation becomes apparent at about t = 2 1 sec. and TLC starts to decrease to zero from that 

point on. Fig. 111.12 shows that disturbance characterization significantly improves the 

perceived TLC; however, there is no substantial difference between the three 

characterization schemes. This is mainly due to the fact that the trend of the disturbance 

varies slowly; a piecewise constant model introduces only limited differences from the 

linear variation model. Furthermore, additional characterization of the stochastic 

component provide a better result than considering the steady disturbance trend only. 

However, the benefit is limited, and is not visually obvious in Fig. 111.12. However, since 

the piecewise constant disturbance model scheme is satisfactory, no further study of 

modeling the stochastic component was conducted. 

Finally, vehicle path prediction uncertainty is studied in terms of its contribution to 

the TLC uncertainty. Due to the fact that the influence on the predicted path uncertainty 

from the measurement/es~mation errors of the vehicle lateral velocity, yaw rate, and front 

wheel steering angle (i.e. Ax, in equation (111.42)), are more substantial than that from the 

prediction errors due to future disturbance(i.e. Aup(k) in equation (III.42)), only the 

uncemnty introduced by Ax, is considered. Table 111.1 shows the results, in which, 

a,,,a, ,a, represent standard deviations of the measurement/estimation errors of the 

vehicle lateral velocity, yaw rate, and front wheel steering angle respectively. Furthermore, 

in these simulations, the road geometry perception is accurate. Thus, the contribution to 

the TLC uncertainty comes from vefucle path prediction uncertainty only. The results show 

that the TLC uncertainty values are large when the front wheel steering angle measurement 

errors are large. Thus, an accurclte measurement on the front wheel steering angle is 

required or the results may not be useful for the proposed active safety system. If 

satisfactory measurement errors can not be obtained, an effective algorithm must be 

developed to reduced the uncertiunty (e.g., check the consistency of the obtained TLC). 



Table 111.1 : Time To Lane Crossing Uncertainty Of Some Vehicle Path 
Prediction Uncertainties With A Nominal Time To Lane Crossing Of 3.0 

sec 

I a*,-0,02(mIs) a,, = 0.02(ml s) a,, = 0.02 (m 1 s) 

Summary And Conclusions 

This chapter discusses a future vehicle path prdction scheme and an algorithm to 

characterize the prediction uncemnty. For the path prediction, a linearized model is 

utilized. Its validity is discussed. Furthermore, for an accurate path prediction, a steady 

state Kalman filter which uses perceived lane marker locations, obtained from an on-board 

near field sensor, is developed to simultaneously estimate vehicle lateral velocity and 

external disturbances. The possibility of using one fixed Kalman filter gain for typical 

highway driving is also investigated. Subsequently, different schemes for disturbance 

characterization to predict future disturbance inputs to the vehicle are discussed. Finally, an 

algorithm to characterize path prediction uncemnty is proposed at the end of the chapter, 

which assumes that the statistical characteristics of the measurement/estimation errors of the 

vehicle lateral velocity, yaw mte, and front wheel steering angle are available from off-line 

characterization. 

Simulation result show that the linearized model is adequate for TLC calculation, 

which allows a more efficient computation of the TLC. Simulation results also show that, 

by applying the estimation scheme discussed in this chapter, the predicted future vehicle 

path, and consequently the time to lane crossing, are significantly improved for conditions 

where the vehicle is subjected to significant external disturbances. However, when the 

external disturbances are small, an assumption of negligible vehlcle lateral velocity and 

external disturbance is adequate. 

TLC Uncertainty 
0, (sw) 

aAr = 0.0l(deg/ s) UA, = 0.03(degi s) a,, = 0.03(deg/ s) 
a,, = O.Ol(deg) a,, = 0.03(deg) UA, = O.OS(deg) 

0.19 0.56 0.93 



It is also shown that a Kalman filter @n which is designed for a typical road 

geometry (i.e., curvature), road surface (i.e., smooth asphalt accounting for 80% of the 

typical US highway), and forward vehicle speed at 90 Krnh can accommodate a much 

rougher surface (which introduces severe vehicle vibration), a foward speed variation up 

to 110 Kmlh, and a road curvature smaller than the designated curve. However, another 

Kalman filter gain (or gain scheduling) is needed when the vehicle encounters a much 

tighter curve (e.g., an exit ramp on typical highway). 

On the other hand, study results indicate that a piecewise constant model is the most 

appropriate for predicting future disturbance values. The main reason being the variation of 

the future disturbance trend is slow and prediction of the stochastic component can not be 

satisfactorily achieved with a simple order model. Finally, the TLC uncertainties 

corresponding to some path prediction uncertainties are studied. The results show that 

accurate front wheel angle measurement is required to limit the TLC uncertainty to a useful 

level. 

Usage of lateral accelerometers rather than yaw rate sensors and a more complex 

model for the external disturbances for the Kalman filter may be suitable areas for future 

research. The prediction error for future disturbance inputs can also be studied to improve 

the prediction of the path prediction uncertainty. 
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Figure 111.1 : Geometrical Relation For A 2nd Order Polynomial Equation 
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Figure 111.2 : Comparison Of The Nonlinear And Linear Equations For 
Vehicle Path Projection In TLC Calculations 
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Figure 111.3 : Lateral Velocity And External Disturbances Estimation In A 
Large Superelevation And Strong Wind Condition 
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Figure 111.4 : Lateral Velocity And External Disturbances Estimation In A 
Large Superelevation And Small Wind Condition 
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Figure 111.5 : Lateral Velocity And External Disturbances Estimation In A 

No Superelevation And Small Wind Condition 
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Figure 111.6 : Time To Lane Crossing Estimation Errors Under Different 
External Disturbances 
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Figure 111.7 : Lateral Velocity And External Disturbances Estimation Under 
Significant Vehicle Vibration Effect 
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Figure 111.8 : Lateral Velocity And External Disturbances Estimation In 
Tight Curve Driving 
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Figure 111.9 : Lateral Velocity And External Disturbances Estimation In 
Straight Section Driving 

Figure 111.10 : Time To Lane Crossing Errors Under Different Effects 
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Figure 111.11 : Lateral Velocity And External Disturbances Estimation 
Under Vehicle Forward Velocity Variation Effect 
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Figure 111.12 : Comparison Of Different Disturbance Characterization 
Model For Future Value Prediction; (a) No Disturbance Estimation, (b) 

Piecewise Constant Model, (c) Linear Model, (d) Linear Model Plus 
Stochastic Model 



CHAPTER IV 

LANE GEOMETRY PERCEPTION AND THE CHARACTERIZATION OF 
ITS ASSOCIATED UNCERTAINTY 

Abstract 

This chapter presents a process for down range road geometry reconstruction from 

measurements (e.g., using computer vision) of lane markings. Here, lane markers refer to 

imaginary points along the lane edges (usually referred to the painted white lines). Lane 

marker information from both near-field and far-field cameras is assumed. Subsequently, 

an algorithm to chmcterize the road geometry perception uncertainty is proposed. The 

down range road geometry reconstruction is composed of three steps; 1) acquisition of lane 

marker locations (which is assumed to be available in this study), 2) perception range 

extension to alleviate the field of view problem associated with using a single-far-field 

sensor, and 3) road geometry modeling to generate a model for the down range road 

geometry. Two steady state Kalman filters (a 3rd order Kalman filter and a 4th order 

Kalman filter) and a least square curve fitting scheme are developed for road geometry 

modeling. For the least square curve fit and the 3rd order Kalman filter, the down range 

road geometry is expressed with a 2nd order polynomial equation. For the 4th order 

Kalman filter, a 3rd order polynomial equation is used to model the road geometry. 

Simulations are conducted with these three separate road modeling schemes and the results 

are compared in terms of their ability to reconstruct the down range road geometry. These 

results show that the Kalman filter approach offers significant advantages over least square 

curve fitting in smooth road geometry. However, a least square curve fit gives better 

results in transitions (between different curves). This is because a Kalman filter always has 

a lag in variable estimation due to its filtering effect. Furthermore, simulation results show 



that a 4th order Kalman filter has better performance than a 3rd order Kalman filter because 

it assumes a road model which allows the curvature to linearly vary along the cuwe (a 3rd 

order Kalman filter assumes constant curvature for road geometry). Finally, an algorithm 

to characterize the road geometry pkrception uncertainty is proposed and validated. Road 

geometry perception uncertainty for typical highway driving is simulated using the 

proposed algorithm. 

Introduction 

This chapter discusses the problems of road geometry perception, by generating a 

model for the down range road geometry and characterizing the associated uncertainty, with 

lane marker locations acquired through image processing. Characterization of the down 

range road geometry is necessary for an active safety system being developed at the 

University of Michgan to estimate the "lane tracking margin" of a vehicle, and to prevent 

run-off-road accidents [LeBlanc et-al., 19951. For this purpose, an algorithm for down 

range road geometry reconstruction is developed. The procedure for down range road 

geometry reconstruction in the proposed active safety system is to first acquire lane marker 

locations from the image. Then a perception range extension algorithm is applied to assess 

lane marker locations outside the far-field sensor field of view and the result is an extended 

lane marker array. Subsequently, the extended lane marker array is used by a road 

geometry modeling module to reconstruct the road geometry. The results of the road 

geometry reconstruction are two polqnomial equations representing right and left road 

edges. In the current study, i t  is assumed that lane marker locations will be available from 

an on-board sensing system and the focus is on the subsequent processes (i.e., 

development of a perception range extension algorithm and road geometry modeling 

algorithm). Furthermore, since an understanding of the reliability of the road geometry 

acquisition is also important, so that the reliability of the "lane tracking margin" can be 

assessed, uncertainty charactenzation of the perceived road geometry is then conducted 



after the road geometry reconstruction. The results are the covariance of the possible 

deviation of the perceived polynomial coefficients from coefficients which represents the 

true geometry. 

The reason for including a rjerception range extension algorithm is that the field of 

view of the sensing system is limited and, under certain circumstances, the desired objects 

(i.e., lane markers) lie outside of the perception range of the sensors. Such a situation can . . 
lead to a lack of sufficient information for road geometry reconstruction and subsequently, 

affect the robustness of the proposed active safety system. For this purpose, an algorithm 

to extend the down range road geometry perception range, by utilizing information from a 

2nd near-field camera and the fact that the lane width is constant, is proposed. 

On the other hand, since least square curve fitting and Kalman filtering approaches 

are typically used for road geometry modeling, three algorithms including 1) a 3rd order 

Kalman filter modeling the road geometry with a 2nd order polynomial equation, 2) a 4th 

order Kalman filter modeling the road with a 3rd order polynomial equation, and 3) a least 

square curve fitting scheme modeling road geometry with a 2nd order polynomial equation 

are developed and then compared in terns of their ability to recover road geometry. 

In the research literature, two schemes for road geometry modeling are typically 

considered: (1) least square curve fitting and (2) Kalman filtering. The down range road 

geometry is usually represented by a low-order polynomial equation, or a set of polynomial 

equations. The main differences between specific implementations are typically in the order 

of the polynomial equations. Essentially, a first order polynomial equation assumes the 

road is straight, a 2nd order polynomial equation assumes constant curvature for the road 

geometry, and a 3rd order polynomial equation allows the curvature to vary linearly 

[Dickrnanns, 19881. The lowest polynomial order which is adequate for describing the 

previewed roadway in the field of interest is typically chosen; a large area generally requires 

a higher order. Both the least square curve fit and Kalman filtering approaches find an 

optimal polynomial equation (with a pre-selected order) which minimizes the variance 



between the equation and the acquired lane marker locations. There are two ways to do 

least square curve fitting. One way is to simply fit a polynomial equation to the lane marker 

array contained in the current image. The other utilizes the knowledge of the vehicle 

kinematics to transform all the lane marker locations from several images to a global 

reference frame to create a lane marker array which contains historical information for curve 

fitting ([Kenue, 19891, [Thorpe, 19921). A Kalman filter also utilizes the information from . 

the previous images and the vehicle kinematics pickmanns, 19881. However, the Kalman 

filter approach uses a recursive algorithm which is more time and memory efficient than the 

second least square curve fitting scheme (pickmanns, 19881, [Broida, 19861, mves, 

19861, megman, 19891). Therefore, for the proposed active safety system, the first least 

square curve fitting scheme (i.e., using only the information contained in the current image) 

and the Kalman filter are considered as candidates and then evaluated under different 

conditions (e.g., road geometry and road unevenness). 

For the problem raised by the limited sensor field of view, a multiple-far-field- 

sensor system is usually implemented such that the area of interest can be covered ([Graefe, 

19921, [Tsugawa, 19841). For a single-far-field-sensor system, as will be implemented on 

the proposed active safety system, an algorithm is necessary to effectively extend the range 

of the perception. In this study, an algorithm, whlch uses the information provided by a 

single-far-field-sensor and a near-field-sensor and knowledge on highway construction, is 

proposed to improve the perception range. 

Furthermore, the perceived down range road geometry deviates from the true 

geometry due to the limitations of the sensing system (e.g., resolution of the sensors, 

insufficient knowledge of sensor orientation). Since the perception errors in the down 

range roadway geometry are not deterministic, the possible deviation of the perceived 

geometry from the true geometry is usually characterized by an uncertainty range. The 

issue of road geometry perception uncertainty has never been studied. This is because the 

perception error in the range of interest of an autonomous vehicle system is usually small, 



and its effect on the system performance can be successfully reduced by the control system. 

Most of the studies on perception uncertainty characterize the uncertainty range of a spatial 

point location ([Knegman, 1989],[ Matthies, 1987j), as needed by Kalman filters for 

mobile robot guidance. Such studies are for indoor environments; therefore, the 

uncertainty characterization does not consider vehicle pitch and roll effects since they are 

relatively small in this situation. In such studies, the uncertainty range is usually modeled . . 

in a statistical form and typically as Gaussian [Durrant-Whyte, 19881. Other methods for 

uncertainty characterization are scalar weights Woravec, 19801 and uncertainty manifolds 

[Brooks, 1989. The Gaussian distribution is widely used because of its convenience for 

analysis. 

The next section provides a detailed explanation of the procedure for down range 

road geometry reconstruction. The perception range extension algorithm is discussed in 

the subsequent section. Then, the least square curve fit, the 3rd order Kalman filter, and 

the 4th order Kalman filter for road geometry modeling are introduced. The discussions on 

road geometry modeling are followed by an introduction of an algorithm to characterize the 

perception uncemnty. These are then followed by a section containing comparative 

simulation results and discussions for the Kalman filter and least square curve fit. The 

same section also contains validation of the proposed uncertainty characterization algorithm 

and simulation results for typical geometry perception uncertainty in highway driving. The 

final section contains the main conclusions of this study. 

Down Range Road Geometry Reconstruction 

The down range road geometry reconstruction task is to generate models for the 

road boundaries in the vehicle previewed scene up to a range of interest. In this study, 

polynomial equations are chosen to model the down range road geometry for their 

simplicity to represent the road geometry and consequently their convenience to manipulate. 

Different orders (i.e., 2nd order and 3rd order) of the polynomial equations are studied to 



see their adequacy for road modeling for "lane tracking margin" assessment purpose. The 

reconstruction finds the corresponding polynomial coefficients for the down range road 

boundaries. 

The down range road geometry reconstruction involves three steps (see Fig. IV. 1). 

The first step has a sensing system which captures the desired objects and locates these 

objects in the reference frame. Generally, the desired objects are imaginary points, referred . 

to here as lane markers, along the painted white lines. In the proposed active safety system 

a sensor provides lane marker locations from the right and left lane edges in the far field 

and a second sensor provides lane marker location from the right lane edge in the near field. 

Due to the field of view constmnt, the perceived far field lane marker locations 

from each edge are not always sufficient to generate accurate models for the corresponding 

curves. Thus, an algorithm to extend the perception range is necessary. To extend the 

perception range along the right edge, the second step in the module (see Fig. IV. 1) uses 

the information from the far field left edge and the near field right edge to extend the 

perception range. The result is a modified lane marker array for the right edge. A more 

detail explanation is included in the next section. 

Finally, the modified lane marker array is fitted to a polynomial equation (either a 

2nd order polynomial equation or a 3rd order polynomial equation). Three different 

algorithms are developed for road geometry modeling; 1) a 3rd order Kalman filter (which 

models road geometry as a 2nd order polynomial equation), 2) a 4th order Kalman filter 

(whlch models road geometry as a 3rd order polynomial equation), and 3) a least square 

curve fit (which models the road geometry as a 2nd order polynomial equation). The least 

square curve fit uses only the information from the current image. On the other hand, the 

Kalman filter further utilizes the knowledge of vehcle kinematics and the information from 

previous images. Both of these methods find an optimal polynomial equation which 

minimizes the variance between the perceived and predicted lane marker locations. The 

results of the curve fitting to the modified lane marker array are coefficients of the 



polynomial equation which accounts for the right lane edge; for a 2nd order polynomial 

equation, it is 
2 Y(x)  = C,,, + c,,x + Cr2X 

for a 3rd order polynomial equation, it is 
2  3  f i x )  = C m  + C r l X  + Cr2X + C,X 

where they and x are the coordinates of a point on the curve with respect to the vehicle- 

fixed coordinate system as shown in Fig. IV.2. The vehicle-fixed coordinate system is 

defined according to the Society of Automotive Engineering (SAE) standard coordinate 

system [Gillespie, 19921. Suppose the road has only one lane, the left road edge can be 

approximated by 
2  2  y ( x )  = C b  + CllX + C12X = (cro - w&) + CrlX + C r Z X  

for 2nd order polynomial equation road model and 
2  3  2  3  y ( x )  = C b  + C 1 , X + C 1 * X  +C13X = (c ,  - w,)+crlx+ C,X +C13X ( I  V.4) 

for 3rd order polynomial equation road model with the constant lane width assumption, 

where the w,,, represents the lane width. For a multi-lane roadway, thew, is multiplied 

by the number of the lanes. 

Perception Range Extension Algorithm 

The perception of the sensing system for each lane edge is sometimes insufficient 

for accurate reconstruction of the geometry of the curve. This is particularly true when the 

vehicle is maneuvered through a curve as shown in Figure IV.2. This section presents an 

algorithm to extend the perception range for an edge such that a more accurate model for the 

down range geometry can be obtained. 

In Figure IV.2, the perceived right lane edge is between c and d and the perceived 

left lane edge is between a and b. The right edge markers are represented by the stars and 

the left edge markers are represented by the squares. With the constant lane width 

assumption the left marker locations (i.e., the squares) can be mapped into the right edge 



and the results are the triangles. Furthermore, the information from the near field sensor 

can also the utilized to supplement the right lane marker array. The result is a modified 

array which ranges from e to f. Thus, the perception range for the right edge is extended 

from cd to ef. 

To map the left markers to the right edge, the tangential angles at the markers must 

be known. This is accomplished by least square curve fitting a polynomial equation to the 

perceived left lane marker locations from the sensors. If the result is 

Y = f(x) (IV.51, 

then the tangential angle at a marker is determined from 

Least Square Curve Fitting Scheme For Lane Geometry Modeling 

This section dscusses the third step (i.e., road geometry modeling) of down range 

road geometry reconstruction as mentioned previously (see Fig. IV. 1). The input to this 

module is the modified right lane marker array from the second step (i.e., the perception 

range extension module) and the results are two polynomial equations representing the right 

and left lane edges. 

Suppose a modified right lane marker array (i.e., (x,,y,) ....( x,, y,)) is available 

from the second step, then the acquisition of an optimal 2nd order polynomial equation 

using a least square curve fi t  can be obtained by first calculating 

S = (xTx)-' X ~ Y  (IV.7) 

where 

and 
[f0(x1> X(X,)  f2(x,)l 



and then obtaining the optimal coefficients from 
2 

c, + qx + c2x = sofo(x> + s,f,(x) + s,f,(x) (IV. 10) 

In equation (IV. lo), the c's are the coefficients of the polynomial equation as shown in 

equation (I V. 1). Furthermore, the 1 ( x )  's are orthogonal basis functions used to avoid 

numerical ill-conditioning of the lane marker array. The orthogonal functions can be 

obtained using the three-term recurrence relation algorithm discussed in [Conte, 19721. For . . 

the particular arrangement of the lane marker locations, the three orthogonal functions are ' 

= 1 

f , ( x )=x -% (IV. 11) 

f , ( x )  = x2 - lOOx + 1700 

Using orthogonal functions is important for h s  purpose because the x coordinate of the 

lane markers usually ranges from a few meters to several hundred meters but the y 

coordinate usually ranges from zero to less than 50 meters, leading to numerical ill 

conditioning. 

Kalman Filter For Lane Geometry Modeling 

An alternative for down range road way geometry modeling is to use a Kalman 

filter. Again, a lane marker array is assumed will be available from the perception 

extension module. The results are, again, the estimated polynomial equations for the right 

and left lane edges. 

To implement the Kalman filter, two models which relates the perceived geometry 

and the vehicle kinematics are developed; one model corresponds to modeling the road 

geometry with a 2nd order polynomial equation and the other model corresponds to 

modeling the road geometry with a 3rd order polynomial equation. The model 

corresponding to the 2nd order polynomial equation is developed as 

(IV. 12) 



where v and r are vehicle lateral velocity and yaw rate in a body-fixed coodnate system, 

c, ,c, ,c2 are the coefficients of the polynomial equation for the lane edge (see Equation. 

(IV.l)), and u is the vehicle forward velocity. 

In equation (IV. 12), the 2nd order polynomial equation is relative to a vehicle fixed 

coordinate system (see Fig. IV.3) defined as the standard SAE coordinate system 

[Gillespie, 19921. Essentially, a 2nd order polynomial equation assumes a constant 

curvature; 

~ ( 1 )  = 2% (IV. 13) 

where 1 is a parameter along the curve, ~ ( 1 )  denotes the curvature at 1, and c, is a constant 

value. As shown in Fig. 3, the radius of the curve, p,  is constant along the curve. With 

the assumption of small curvature, the tangential angle at 1 is obtained by integrating 

equation (IV. 13); 
I 

Furthermore, the y coordinate of the curve at a location 1 is obtained from; 
I I 

(IV. 14) 

(IV. 15) 

In equations (I V. 13) - (I V. 15),1 can be replaced by x, the x coordinate of the curve at 1, 

under the assumption of small curvature, which changes equation (IV. 15) to 
2 ~ ( x ) = c , + ~ , x + c ~ x  (IV. 16) 

For a more detailed discussion regarding the derivation of equations (IV. 13) - (IV. 16) the 

reader is referred to [Dickmanns, 19861. From equation (IV. 16), one can observe that 

Co I Yx-o (IV. 17) 

Thus, 

C,, = yxmo = (C,X + 2C2nr)r-0 - V = CIU - v 

Furthermore, equation (IV. 14) shows that 

c, = e x - 0  

Therefore, 

(IV.18) 

(IV. 19) 



Finally, because of the constant curvature assumption, 

6, = 0 (IV.21) 

Then, equation (IV. 12) is obtained with the combination of equations (IV.18), (IV.20), 

and (IV.21). 

On the other hand, the model corresponding to a 3rd order polynomial equation is 

developed as 
fa) 10 0 0 1 1 ~ ~ 1  1-1 0 1  

where v and r are vehicle lateral velocity and yaw rate in a body-fixed coordinate system, 

co , c, , c2 , c3 are the coefficients of the polynomial equation for the lane edge (see 

Equation. (IV.2)), and u is the vehlcle forward velocity. 

Essentially, a 3rd order polynomial equation assumes a linear variation for the 

curvature along the forward distance; 

k(1) = 2c2 + 6c31 

Again, 1 is a parameter along the curve, ~ ( 1 )  denotes the curvature at I, and c2 and c3 are 

constant values. With the assumption of small curvature along the curve, the tangential 

angle at 1 is obtained by integrating equation (IV.23) and yield 
I 

Finally, the y coordinate of the curve at a location 1 is obmned from; 
I I 

under the assumption of small tangential angle along the curve with respect to the reference 

frame. With the same small tangential angle assumption, the parameter 1 can be replaced by 

x, the x coordinate of the curve at 1 ,  and yield 
2 3 y(x) = c o  +c,x+c,x +c3x 



Using a similar derivation as that for the 3rd order Kalman filter, the following equations 

can be obtained; 

do = C,U - v (IV.27) 

c, = 2c2u-r  (IV.28) 

d2 = 6u (IV.29) 

d 3 = 0  (IV.30) . . 
Equation (IV.22) can then be obtained by combining equation (IV.27)-(IV.30). For 

Kdman filtering implementation in discrete domain, equations (IV. 12) and (IV.22) are then 

discretized. Denote the results as 

C(k + 1) = W ( k )  + ru(k)  (IV.3 1)  

The implementation of the Kalman filter to obtain an optimal polynomial equation, which 

minimizes the variation between the perceived lane marker locations and the predicted 

locations, can be achieved using 

where 

H is the output matrix; for the 3rd order Kalman filter 
[l 10 10'1 

11 30 30' 1 
H-11 50 50'1 

I1 70 7oz1 

for the 4th order Kalman filter 
11 10 lo2 10'1 

L is the Kalman filter gain. The initial estimate can be obtained using the least square curve 

fit to the initial lane marker locations; this improves the convergence rate of the estimator. 



The Kalman filter gain is obtained from a process noise covariance matrix and a 

measurement error covariance matrix. To obtain these two matrices, a more sophisticated 

model is utilized to simulate the error associated with the sensors and the accuracy of the 

model in equation (IV. 12) and (1V.22) [Venhovens, 1995). Essentially, the process noises 

come from the residuals of a polynomial equation (here, it is either 2nd order or 3rd order) 

to approximate the real road geometry (e.g., a straight section connected by a pure curve). . . 

The measurement noise is associated with the perception errors due to vehicle vibration and 

roadway superelevation. This covariance matrix is obtained from the lane marker locations 

perception error by the sensors in a simulation. The measurement in the near field 

(i.e., y,.,,) is important in order to obtain accurate latelal deviation estimate of the vehicle 

from the lane edge. Whereas, the measurements in the far field are significant for capturing 

the upcoming geometry variation while the vehicle is in a transition period (i.e., on a 

straight section approaching a curve or vise versa). 

Characterization Of The Road Geometry Perception Uncertainty 

The perceived road geometry deviates from the true geometry mainly due to the 

influence of vehicle vibration and superelevation. In the proposed active safety system, an 

algorithm is developed to estimate vehicle pitch and roll to compensate the perception error 

due to vehicle vibration [Venhovens, 19951. However, it can only compensate part of the 

constant level error; there are still bias and stochastic components in the perception error. 

In this study, the bias is assumed to be negligible. The proposed uncertainty 

characterization algorithm on1 y characterizes the perception error associated with the 

stochastic component. The results are the error covariance's of the perceived polynomial 

coefficients (i.e., the covariance's of the possible deviation of the perceived coefficients 

from the true geometry). Furthermore, the proposed algorithm is to characterize the steady 

state perception uncertainty associated with Kalman filtering process. This algorithm is 

validated in the following section. 



Essentially, the estimate update of a Kalman filter can be divided into two steps; 

measurement update and time update [Brown, 19831. The measurement update is made 

when a new set of data is acquired; 

&(k) - e k )  + L(Y(k) - ~ 6 ( k ) )  (IV.36) 

where 6 k) represents the best estimate using previously available information. Suppose 

e(k)  - C(k) - k(k)  (IV.37) . 

in which C(k) represents the true values, then the error covariance matrix associated with 

the best estimate can be written as 

P(k) = a e ( k ) e T  (k)l 

and the update of the error covariance associated with equation (IV.36) is 

P-(k)  = ~ ( k )  - P ( ~ ) H ~  ( H P ( ~ ) H ~  + R,)- 'HP(~) (IV.39) 

where R, is the covariance matnx for the measurement noise. The time update is 

associated with the motion equations (i.e., equation (IV.31)); 

e ( k  + 1) = @-(k) + h ( k )  

The update of the error covariance matrix associated with equation (IV.40) is 

P(k + 1) - @P-(k)O + R, (IV.41) 

where R, is the process noise covariance matrix. Equations (IV.39) and (IV.41) are then 

com bind to yield 

~ ( k  + I) - @ ( ~ ( k )  - P ( ~ ) H ~ ( H P ( ~ ) H ~  + R,)-'HP(~))o + R, (IV.42) 

which is a first order difference equation. To find the covariance matrix at every step, only 

the initial condition is required. The steady state value of equation (IV.42) can be obtained 

by solving the eigenvectors of 

The steady state solution of equation (IV.42) is 

where 



are the eigenvectors of S associated with its stable eigenvalues. 

Since the initial estimate of the state vector, q 0 ) ,  is obtained by least square curve 

fitting a polynomial equation to the acquired lane marker locations, the initial covariance 

matrix, P(0) , is the error covariance matrix of the least square curve fit. This matrix is 

obtained by conducting a simulation with typical highway geometry and road surface 

conditions and then calculating the error covariance of the least square curve fit results with 
A 

respect to the true geometry. In other words, suppose C, is the estimate of the 

polynomial coefficients using least square curve fit, the initial covariance matrix for the 

Kalman filter is obwned from 

p(O) - mc - eWxc - GQ)r~ (IV.46) 
,. 

where the perception error vector, C - CUQ , is assumed to be stationary and zero mean. 

Results And Discussion 

This section first discusses the simulation results obtained by implementing the 

three different road geometry modeling algorithms introduced in previous sections. For 

simulations, the road geometry (a typical highway geometry) and vehicle velocity are the 

same in all the cases. The vehicle is driven at 90 Kmlh from a straight section to a curve 

with curvature typical of hlghway driving. Three different cases are conducted. The 

differences between the first two cases are the road unevenness; one has a typical highway 

road unevenness and the other one has relatively rough surface. The last case has a slight 

different geometry and relatively significant superelevation from the previous cases. The 

Kalman filter gain is designed based on the road geometry and vehicle velocity. Finally, 

road geometry perception uncertainty in typical highway driving is presented. 

Figure IV.4 shows the results from the Kalman filter and least square curve fit for a 

relatively good (i.e., smooth asphalt and small superelevation) road condition. Such a road 

unevenness profile accounts for 80% of the typical US highway road unevenness. The 



road geometry has a straight section connected by a curve with a transition in between. 

Fig. IV.5 shows the deviation of the perceived curve from the true curve, which is 

calculated with the following equation; 

where 

Y, 0) = f,(x) 

is the location of the true road geometry evaluated at x and 

is the location of the perceived road geometry evaluated at x . The results indicate that the 

Kalman filter has better performance than the least square curve fit under steady state 

conditions. However, it is important to note that a lag in the geometry estimation is evident 

in the results for the Kalman filter. This estimation lag causes the Kalman filter to have 

worse performance than the least square curve fit in the transition period. This is because 

of the filtering effects of a Kalman filter; for the 3rd order Kalman filter, the constant 

curvature assumption (i.e., equation (IV.21)) for the previewed road geometry is the main 

reason and for the 4th order Kalman filter, the constant curvature changing rate (i.e., 

equation (IV.30)) is the main reason. However, due to the allowance of curvature variation 

along the curve, the 4th order Kalman filter has a better performance than the 3rd order 

Kalman filter in the transition period. Fig. IV.5 shows that the 4th order Kalman filter has 

a faster adaptation than the 3rd order Kalman filter. An overshoot of the 4th order Kalman 

filter larger than the magnitude of the 3rd order Kalman filter is evident. Such a lag in 

geometry estimation is not serious for the conditions in the current simulation; however, it 

introduces a substantial error when the down range road geometry exhibits rapid change. 

For example, if the down range road geometry has a straight section connected by a curve 

with small radius (e.g., a ramp), a substantial "lane trachng margin" assessment error 



occurs in the transition period. Under such conditions, the results from a least square curve 

fit are also unsatisfactorily. 

In the next case, a vehicle is again driven from a straight section to a curve. 

However, the road surface is relatively rougher than in the previous case to introduce 

significant vehicle pitch and roll. When the vehicle pitchlroll, an on-board sensor loses 

track of its orientation and consequently provides inaccurate lane marker locations. Fig. 

IV.6 shows the road geometry reconstruction between the three different algorithms and 

Fig. IV.7 shows the deviation of the perceived geometry from the true geometry. The 

same conclusions from the previous case can also be drew from th~s case; 1) a Kalman 

filter has a better performance than a least square curve fit in steady state condition, 2) a 

least square curve fit is better in transition period than a Kalman filter, 3) a 4th order 

Kalman filter has a better result than the 3rd order Kalman filter in transition period. 

Furthermore, the simulations show that road geometry perception error due to significant 

vehicle vibration effect (usually of a high frequency (e.g., > 1 Hz)) can be successfully 

attenuated by the Kalman filter. 

The last case has a road geometry similar to the previous cases; however, the 

superelevation gradually increases (from the straight section to the curve) up to a value of 6 

degrees. Figure IV.8 shows the results of this simulation. Obviously, the Kalman filter 

has a performance superior to that of the least square curve fit in this simulation. The 

results in this simulation is mainly because of the fact that the Kalman filter has a recursive 

weighted least square curve fit. I n  other words, an appropriately recursive weighted least 

square curve fi t  would be expected to have similar performance as the Kalman filter in the 

similar simulation conditions. In the current case, the 3rd order Kalman filter imposes 

significant gains for errors associated with the near field data (i.e. yXl,, and yXl,,), which 

implies that for a steady state situation, only the near field data may be adequate for 

recovering the down range curve. The 4th order Kalman filter gain has a relatively larger 

weight on the far field data such that it has a better performance in the transition period. 



The mechsrn of a Kalman filter to cope with superelevation can be explained in 

more detail with Fig. IV. 10. Essentially, superelevation causes a previewed curve to 

appear as a straight line to the sensors, as is shown by the result from the least square curve 

fit in Fig. I V.8. However, because of the knowledge of vehicle kinematics, and the 

recursive averaging of the images, the road curvature is detected by the Kalman filter. As 

the vehicle proceeds through the curve, the curve appears to the sensor as a straight line at 

every instant (i.e., the perceived road geometry is a straight line with respect to the vehicle- 

fixed coordinate system). However, since the vehicle kinematics is known, these straight 

lines have different orientations with respect to a global reference frame. Thus, it appears 

to the Kalman filter that a curvature exists in the previewed curve. Fig. IV.9 also shows 

that a 4th order Kalman filter can have a better performance than a 3rd order Kalman filter 

in steady state. This is simply because that a 3rd polynomial equation (associated with a 

4th order Kalman filter) can have a better fit to the acquired data than a 2nd order 

polynomial equation (associated with a 3rd order Kalman filter). 

Finally, the road geometry perception uncertanty characterization algorithm is 

validated and a typical result is simulated for both of the 3rd order and 4th order Kalman 

filters. For this purpose, two simulations using the 3rd order Kalman filter and the 4th 

order Kalman filter for road geometry reconstruction are conducted and the results are 

shown in Fig. IV. 11 and Fig. IV. 12 respectively. The simulations have road surface 

characterizing smooth asphalt unevenness which accounts for about 80% the typical US 

highway [Sayer, 19861. As described previous1 y, the assumption for the uncemnty 

characterization is that the perception error is stationary and zero mean. This says that if 

there is a bias in the road geometry estimation as shown in Fig. IV. 11 and Fig. IV. 12, i t  

can be ignored. This assumption is validated with simulations which investigate how much 

the bias in the polynomial coefficients estimation affect the "lane trachng margin" 

assessment. For the proposed active safety system, Time to Lane Crossing (TLC) is used 

for the "lane tracking margin" assessment, which describes the expected time for the 



vehicle to cross the lane boundary. The reader is referred to Fn and Ulsoy, 1993 for a 

detailed description of the TLC estimation algorithm. Table IV. 1 and Table IV.2 show the 

effect of the geometry perception bias shown in Fig. IV. 1 1 and Fig. IV. 12 to the TLC 

estimation at different TLC level respectively. The results show that it is reasonable to 

ignore the bias in geometry perception. 

Table IV.l : Validation Of Zero Mean Assumption For Geometry Perception 
Of A 3rd Order Kalman Filter 

Table IV.2 : Validation Of Zero Mean Assumption For Geometry Perception 
Of A 4th Order Kalman Filter 

TLC (sec) 
Bias In TLC Estimation With The Bias In 
Geometry Perception Of A 3rd Order 
Kalman Filter (sec) 

2.44 3.10 3.50 3.82 
0 -0.04 -0.08 -0.14 

Subsequently, the ability of the proposed algorithm to predict the geometry 

perception uncertainty is validated. Simulations for the covariance matrix of the coefficient 

perception errors are conducted for the 3rd order and 4th order Kalman filters and the 

results are shown in Fig. IV. 13 and Fig. IV. 14, which corresponds to the geometry shown 

in Fig. IV.  1 1 and Fig. IV. 12 respectively. These results are then compared with the 

standard deviation of the steady state error in Fig. IV. 11 and Fig. IV. 12. Table IV.3 

compares the results from the 3rd order Kalman filter and Table IV.4 compares the results 

from the 4th order Kalman filter. Then the effect of the differences between the predicted 

values and the true values to the TLC uncemnty prediction is studied. Table I V.5 

compares the difference in TLC uncertainty characterization with the true standard deviation 

and the predicted standard deviation of the geometry perception error associated with the 

TLC (sec) 
Bias In TLC Estimation With The Bias In 
Geometry Perception Of A 4th Order 
Kalman Filter (sec) 

2.19 3.27 3.75 4.14 
0.02 -0.01 -0.08 -0.19 



3rd order Kalman filter. Table IV.6 shows the results associated with the 4th order 

Kalman filter. The results show that the proposed algorithm is satisfactory for predicting 

the geometry perception uncertainty. However, this algorithm can only characterize the 

geometry perception uncertainty in steady state condition. For the perception uncertainty 

characterization in transition period, a more sophisticated algorithm which can reset the 

covariance matrix when encounters a transition period is necessary. Furthermore, the 

results in th~s section only validate the proposed uncertainty characterization algorithm in a ' 

smooth road surface condition (which accounts for about 80% the typical US highway). 

Further study must be conducted for significant superelevation condition (which causes 

significant bias in the measurement and thus may introduce substantial bias in the Kalman 

filter estimation). 

Table IV.3 : Comparison Of The True And Predicted Values Of The 
Coefficient Perception Errors Standard Deviation Of A 3rd Order Kalman 

Filter 

Table IV.4 : Comparison Of The True And Predicted Values Of The 
Coefficient Perception Errors Standard Deviation Of A 4th Order Kalman 

Filter 

True Standard Deviation Of A 3rd Order 
Kalman Filter 
Predicted Standard Deviation For The 
3rd Order Kalrnan Filter 

O C *  Oc, Oc, 
0.0052 4.9372e-04 1.9373e-05 

0.0072 4.9229e-04 2.6882e-05 

True Standard Deviation Of A 
4th Order Kalman Filter 
Predicted Standard Deviation For 
The 4th Order Kalman Filter 

O C o  O C 2  

0.0029 3.1524e-04 1.367%-05 1.3621e-07 

0.0069 6.987%-04 1.7612e-05 1,9368e-07 



Table IV.5 : Comparisons Of The TLC Uncertainty Prediction Between The 
Results With The True Geometry Perception Uncertainty And The Predicted 

Geometry Perception Uncertainty Associated With A 3rd Order Kalman 
Filter 

Table IV.6 : Comparisons Of The TLC Uncertainty Prediction Between The 
Results With The True Geometry Perception Uncertainty And The Predicted 

Geometry Perception Uncertainty Associated With A 4th Order Kalman 
Filter 

TLC(sec) 
Prdcted a, with True Geometry 

Perception Uncertainty (sec) 
Predicted a, with Predicted Geometry 

Perception Uncertainty (sec) 

2.6000 3.1000 3.5000 3.8200 
0.0674 0.1182 0.1782 0.2361 

0.0905 0.1601 0.2425 0.3223 

Summary And Conclusions 

This chapter presents a process for down range road geometry reconstruction with a 

sensing system which contains a far-field sensor and a near-field sensor. The road 

geometry reconstruction includes three steps : (1) lane marker location acquisition , (2) 

perception range extension, and (3) road geometry modeling. This context assumes the 

first step (i.e., the lane marker location acquisition) is available and proposes a perception 

range extension algorithm to solve the field of view problem. Furthermore, a 3rd order 

Kalman filter, a 4th order Kalman filter, and a least square curve fit are developed for road 

geometry modeling. Simulations with the Kalman filter and the least square curve fit are 

conducted under several different conditions. The results are compared. Finally, an 

algorithm to characterize the perception uncemnty for the down range road geometry is 

presented, its validity is discussed and perception uncertainty is simulated for a typical 

highway geometry and road surface. 

TLC(sec) 
Predicted a,, with True Geometry 

Perception Uncertainty (sec) 
Pred~cted a, with Predicted Geometry 

Perception Uncertainty (sec) 

2.1900 3.2700 3.7500 4.1400 
0.0361 0.1479 0.2557 0.3920 

0.0344 0.1514 0.2685 0.4190 



The simulation results show that for a typical highway, the Kalman filters provide 

better road geometry estimation performances than the least square curve fit under steady 

state conditions. However, due to the lag introduced by the filtering effect of the Kaiman 

filters, the least square curve fit is expected to perform better during transition periods. The 

performance of a 4th Kalman filter is better than a3rd order Kalman filter in transition 

period because it relax the assumption of constant curvature for down range road geometry. . . 
The simulation results also show that a Kalman filter which can successfully cope with 

superelevation and vehicle vibration can be developed. The mechanism of a Kalman filter 

to cope with superelevation is its recursive averaging the perceived road geometry which is 

essentially a straight line at every instance. Generally, a Kalman filter has better 

performance than a least square curve fitting scheme, and a much better performance than 

the least square curve fit in steady state. A 4th order Kalman filter can have a better 

performance than a 3rd order Kalman because it assumes a linear variation for the down 

range curvature, which improve the results in transition period, and it can be a better fit to 

the acquired data, which improve the results in steady state. Although the least square 

cunie fit perform better during transitions, its advantages are limited. The main reason for 

the superiority of the Kalman filter is because it uses the information from both the image 

and vehicle hnematics and recursively averages the perceived road geometry. 

Finally, the uncemnty characterization scheme is shown valid for predicting the 

standard deviation of the possible error of the road geometry perception for about 80% of 

the typical highway. The maximum error in predicting the TLC uncertainty with the 

proposed algorithm for a typical highway driving is about 0.09 sec for a 3rd order Kalman 

filter and is about 0.02 sec for a 4th order Kalman filter. 

In future research, the issue of the performance of a Kalman filter using only the 

near field lane marker information can be investigated. It is expected that it would yield 

similar steady state results as the current design. However, its ability to recover road 

geometry in a transition penod will be limited. Furthermore, a more sophisticated 



algorithm to characterize the geometry perception uncertainty in transition is also 

interesting. 
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Figure IV.2 : Field Of View Constraint Of A Sensor 



Figure IV.3 : Geometrical Relation For A 2nd Order Polynomial Equation 



x 104 a 
15 

10 

5 

0 
4th ada lGlmm fil(er 

-5 
0 20 40 

t (=I 

least square curve fit 

-A-. 3rd order Kalman filter 

Figure IV.4 : Road Geometry Reconstruction Under A Good Road 
Condition 



Figure IV.5 : Deviation Of The Perceived Road Geometry From the True 
Road Geometry Associated With The Road Geometry Reconstruction In 

Fig. IV.4; (a) Kalman filter, (b) least square curve fit 
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Figure IV.6 : Road Geometry Reconstruction Under A Rough Road Surface 
Condition 



Figure IV.7 : Deviation Of The Perceived Road Geometry From the True 
Road Geometry Associated With The Road Geometry Reconstruction In 

Fig. IV.6; .(a) Kalman filter, (b) least square curve fit 
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Figure IV.8 : Road Geometry Reconstruction Under A Superelevated Road 
Condition 
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Figure IV.9 : ~eviation Of The Perceived Road Geometry From the True 
Road Geometry Associated With The Road Geometry Reconstruction In 

Fig. IV.8 

Figure IV.10 : Road Geometry Perception In A Superelevated Roadway 
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Figure IV . l l  : Road'Geornetry Reconstruction With A 3rd Order Kalrnan 
Filter 

Figure IV.12 : Road Geometry Reconstruction With A 4th Order Kalrnan 
Filter 
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Figure IV.13 : Road- Geometry Perception Uncertainty Associated With A 
3rd Order Kalrnan Filter 

Figure IV.14 : Road Geometry Perception Uncertainty Associated With A 
4th Order Kalman Filter 



CHAPTER V 

SUMMARY AND CONCLUSIONS 

This chapter summaries the contents of this dissertation. Conclusions from the 

study are discussed subsequently discussed. 

Summary 

This study focuses on the development of an algorithm to assess the lane tracking 

margin of a vehicle. This information will be utilized by an active safety system developed 

at the Uniirersity of Michlgan to preirent road-departure accidents. Such an algorithm is to 

calculate Time to Lane Crossing (TLC), a metric which predicts the time for a vehicle to 

cross the road boundarq.. In order to calculate time to lane crossing, future vehicle path and 

donrn range road geometrq. are needed. Therefore, an algonthm to predict future vehicle 

path and another algorithm to assess the down range road geometry are developed. 

Furthermore, an algorithm to characterize the uncertainty of TLC estimation is also 

proposed. Such an algorithm requires the kno\rrledge of the perception uncertainty of the 

roaduray geometry and the prediction uncertainty of the ~'ehicle path. Thus, algorithms 

\frhich characterize the associated uncertainties of these two curves are also proposed. 

Before the developments of the uncertainty characterization algorithms, factors which 

substantially influence TLC accuracy are identified. Based on such information, algorithms 

are developed to compensate the errors in the predicted vehicle path and the perceived road 

geometry and consequently reduce the error in the TLC. Then, algorithms are developed to 

characterize the uncertainties associated nith the residual effects. 



Essentially, the TLC estimation scheme assumes a 2nd order polynomial equation 

to model the down range road geometry. The predicted vehicle path is obtained by 

projecting the vehicle path forward in a "brute force" manner. The time to lane crossing is 

obtained by first identifying the point where the vehicle path intersect with the road 

boundary and then calculating the time for the vehicle to reach the intersection. Since the 

projection time span of the vehicle path affect the accuracy of the TLC, this error is 

attenuated by introducing an interpolation scheme to increase the accuracy of the 

intersection and subsequently the accuracy of the TLC. Beside the development of the 

calculation algorithm, the frequency content of TLC for some highway driving are also 

studied to identify its bandwidth and subsequently the required sampling speed for 

TLC(l.e., the required speed for TLC calculation). On the other hand, the TLC uncertainty 

characterization scheme uses the knowledge of the uncertainty of the perceived down range 

road geometry and uncertainty of the predicted vehicle path. In other words, it uses the 

covariance matrices which characterize the possible deviation of the perceived coefficients 

from the true coefficients. In the system, the predicted vehicle path is also modeled as a 

2nd order polynomial equation. The result of the TLC uncertainty characterization is the 

standard deviation of the possible deviation of the perceived TLC from the true value. 

The vehicle path prediction algorithm has a linearized model for path projection, 

which includes a 3, Degree of Freedom (DoF) vehicle dynamics model such that the 

transient response can be accounted. Such a model is compared with a more sophisticated 

model in terms of the accuracy for path prcyection to see its validity. For path projection, i t  

is assumed that the front wheel steering angle, irehicle yaw rate, and lane marker locations 

in the near-field of the vehicle will be pro\.ided. S~nce a stud!. show that the future external 

disturbance must be considered for path prediction, a Kalman filter which uses the 

information of the near-field road geometry \ranation to estimate the vehicle lateral velocity 

and simultaneously estimate the external disturbance acting on a vehicle. The possibility of 

using one fixed Kalman filter gain for typical highway driving is also studied. 



Furthermore, the estimated disturbances are characterized such that the future values can be 

predicted. Three different models (i.e., a piecewise model, a linear model, and a m d e l  

containing a linear model and a stochastic model) are considered. The results of path 

prediction using these models are compared. On the other hand, the uncemnty 

characterization scheme for the predicted vehicle path assumes that the statistical 

characteristics of the measurementiestimation errors of the vehicle lateral velocity, yaur rate, 

and front wheel steering angle are available from off-line characterization. The result is an 

error covariance matrix for the 2nd order polynomial coefficients for the predicted vehicle 

path. 

Finally, the down range road geometry perception module reconstructs the 

geometry with lane marker locations from an on-board sensing system which includes a 

far-field and a near-field sensors. The road geometry is model with a polynomial equation 

(either a 2nd order polynomial or a 3rd order polynomial equations). The road geometry 

reconstruction includes three steps ; 1)  acquisition of the lane marker locations through 

image processing, 2) extension of the perception range of a single-far-field-sensor system 

to enhance the robustness of the system, and 3) road geometry modeling using the 

extended lane marker arra).. The results are the coefficients of the polynomial equation. 

The perception range extension algorithm utilizes the knowledge of constant lane width for 

typical highway and the information from the near-field sensor. For road geometry 

modeling, three different algorithms are de\,eloped: 1 )  a least square curve fit modeling the 

road geometry as a 2nd order polynom~al equation, 2) a 3rd order Kalman filter modeling 

the road geometry tvith a 2nd order pol!~nornlal equation, and 3) a 4th order Kalman filter 

modeling the road geometry umith a 3rd order pol!~nomial equation. Simulations are 

conducted using these three road modeling algorithms and the results are compared. Since 

the actilre safety system will be demonstrated on superele\lated road which introduces 

significant difficulty for the sensor to perce1t.e correct lane marker locations, simulations is 

conducted to see the ability of the different road modeling schemes to cope with the 



superelevation. Furthermore, an algorithm is developed to characterize the steady state 

geometry perception uncertainty associated with Kalman filtering process. Off-line 

simulations are conducted to obtain the steady state uncemnty. The result is an error 

covariance for the perceived polynomial'coefficients. This algorithm is validated and 

simulation for a typical highway driving is conducted. 

Conclusions 

The results from the study of TLC calculation algorithm show that the interpolation 

scheme improves the TLC error by about 40%. Results also show that among the factors 

considered, vehicle vibration, superelevation of the roadway, external disturbances, and 

path projection initial condition measurement errors significantly influence TLC error. 

Among these four factors, vehicle libration, which cause the sensing system to lost its 

orientation, is the most significant factor. Vehicle vibration causes about twice the TLC 

error as the path projection initial condition measurement errors do. Therefore, an accurate 

road geometry perception will be more important than an accurate vehicle path projection. 

However, it is still necessary to de\,elop an accunte \'ehicle path algorithm to reduce the 

TLC uncermnty for the TLC to be successfully utilized by the active safety system. 

Furthermore, a 2.5 Hz bandividth is identified for typical TLC for highway driving. This 

band~vidth leads to a requirement of at least 10 Hz for the TLC sampling rate (i.e., TLC 

must be calculated every 0.1 sec). I t  is also shonrn that the proposed uncertainty 

characterization scheme is able to prcd~ct the standard deviation of the possible time to lane 

crossing estimation error in a 10% accuracy on typical highway driving. Finally a 

simulation result shows that \+,hen an " ~nto\;~wtcd" dri\,er maneuvers a vehicle on a typical 

highivay geometry and experiences a strong side wind gust, the minimum TLC is about 2.0 

sec. and the maximum TLC uncermnty is about 0.25 sec when the TLC is about 4.0 sec. 

These values are obtained under the assumption that the vehicle dynamics (i.e., lateral 



velocity and yaw rate) and external disturbances and the front wheel steering angle can be 

accurately assessed. 

For the study of the vehicle path prediction, it is shown that the linearized model is 

adequate for TLC calculation, which alldws a more efficient computation of the TLC. 

Simulation results also show that, by applying the external disturbance estimation scheme, 

the predicted future vehicle path, and consequently the time to lane crossing, are 

significantly improved for conditions where the vehicle is subjected to significant external 

disturbances. However, when the external disturbances are small, an assumption of 

negligible vehicle lateral velocity and external disturbance is adequate. 

I t  is also shown that a Kalman filter gain which is designed for a typical road 

geometry (i.e., curvature), road surface (smooth asphalt, which accounts for about 80% 

the typical US highway), and forward vehicle speed at 90 Kmlh can accommodate a much 

rougher surface (which introduces severe vehicle vibration), a forward speed variation up 

to 110 Km/h, and a road curvature smaller than the designated curve. However, another 

Kalman filter gain is needed when the vehicle encounters a much tighter curve (e.g., an exit 

ramp on typical highway). 

On the other hand, study results indicate that a piecewise constant model is the most 

appropriate for predicting future disturbance values. The main reason being the variation of 

the future disturbance trend is slow and the predicting of the stochastic component can not 

be satisfactorily achieved with a simple order model. A higher model to characterize the 

stochastic component of the disturbance for prediction may improve the result. However, a 

higher order model needs more computat~onal tlme and may not be appropriate for on-line 

application. 

For the study of the road geometry reconstruction, it is shown that for typical 

highways, the Kalman filters has a better performance than the least square curve fit under 

steady state conditions. However, due to the lag introduced by the filtering effect of the 

Kalman filter, the least square curve fi t  performs better for transition penods. Simulation 



results also show that a Kalman filter which can successfully cope with superelevation and 

vehicle vibration can be developed. Furthermore, simulation results show that a 4th order 

Kalman filter (which models the road geometry as a 3rd order polynomial equation) can 

yield better performance than a 3rd order Kalman filter (which models the road geometry as 

a 2nd order polynomial equation). The reason being that a 3rd order polynomial equation 

assumes a linear varying curvature along the down range curve. Also, for superelevated 

roadway, a 4th order Kalman filter performances better than a 3rd order Kalman filter 

because a 3rd order polynomial equation fits the acquired data better than a 2nd order 

polynomial equation. Generally, a Kalman filter has better performance than a least square 

curve fitting scheme. The main reason for the superiority of the Kalman filter is because it 

uses information from both the image and vehlcle kinematics and recursively averages the 

perceived road geometry. 

On the other hand, the uncermnty characterization scheme is shown be the valid for 

predicting the road geometry perception uncertainty for typical highways. Such validation 

is performed with simulations featuring smooth road surface and low superelevation. Its 

validity must be further studied for significant superelevation and road unevenness 

situations. 

Finally, several simulations shows that time to lane crossing, along with the 

existing decision module, driver physical status assessment module, and the intervention 

controller, seems to be capable of pre~renting many of the road-departure accidents. 

Ho\i,e\,cr, the capability of the ivhole system must be studied in a more systematic way. 

Many worst case conditions must be considered. A comparison between using time to lane 

crossing and other metnces for the decision module in terms of the computational issue and 

the simplicity of the decisions rule base is also interested. 




