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ABSTRACT

Magneto-Rayleigh-Taylor Instability: theory and simulation in planar and
cylindrical pulsed power targets

by

Matthew R. Weis

Chair: Professor Yue Ying Lau

Cylindrical liner implosions in the Magnetized Liner Inertial Fusion (MagLIF) concept

are susceptible to the magneto-Rayleigh-Taylor instability (MRT). The danger of

MRT enters in two phases, (1) during the main implosion, the outer surface of the

liner is MRT unstable, and (2) during the short time period when the liner decelerates

onto the hot fuel, the inner surface becomes unstable. Growth of MRT on the outer

surface may also feedthrough, which may seed the inner surface leading to high MRT

growth in the second phase. If MRT growth becomes large enough, confinement of

the fuel is lost.

To characterize MRT, we solve the linearized, ideal MHD equations in both pla-

nar and cylindrical geometries, including an axial magnetic field and the effects of

sausage and kink modes. To evaluate our analytic growth rates, 1D HYDRA MHD

simulations are used to generate realistic, evolving profiles (in density, pressure, and

magnetic field) during the implosion. In general, the total instability growth rates in

cylindrical geometry are larger than those in planar geometry. MRT and feedthrough

are suppressed by strong magnetic field line bending (tension). We apply our analytic

xvii



MRT growth rates to experiments on the Z-machine at Sandia National Laboratories.

Analytic MRT growth rates for a typical magnetized MagLIF-like implosion show the

kink mode to be the fastest growing early and very late in the liner implosion (during

deceleration).

Sophisticated 2D HYDRA simulations show that highly compressed axial mag-

netic fields can reduce the growth of perturbations at the fuel/liner interface during

the implosion phase, enhancing the stability of the implosion. HYDRA 2D simula-

tions also show that a non-uniform shock, driven from the liner exterior, can seed the

liner interior, leading to substantial growth of instability far in excess of feedthrough.

Large-scale perturbations on the liner interior may also feedout to the liner exterior

when a shock wave interacts with the surface, which further destabilizes the liner.

These effects are reduced when shock compression is minimized or significant per-

turbations are not present during shock compression. The feedthrough effects then

dominate.
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CHAPTER I

Introduction

1.1 Introduction

Fluid instabilities are found everywhere in nature. The Rayleigh-Taylor instabil-

ity (RT) is one of these fluid instabilities [1][2]. Interchange of light and heavy fluid

in an effective gravity is the source of RT. A slightly more general condition for RT

is the presence of opposing density and pressure gradients, stated mathematically

as ∇ρ · ∇p < 0. This relatively simple configuration is found both terrestrially and

throughout the universe. For example, this simple relation explains the instability of

water supported by air in Earth’s gravity. It also explains the stable form of RT in

deep-water waves. RT is also found in astrophysical systems such as supernovae and

their remnants [3]. Often times significant electrical currents are present, generating

strong magnetic fields. These magnetic fields can affect RT and thus the term mag-

netic or magneto-Rayleigh-Taylor instability (MRT) is coined [4][5][6]. In this case,

∇ρ · ∇p < 0 still holds, where p is now interpreted as the total pressure including

the magnetic pressure. The natural analog of water supported by air is then plasma

supported by magnetic pressure. Figure 1.1 presents a simple scenario of MRT where

a heavy fluid is supported by a ‘light fluid’ which is the magnetic field. The growth

rate of MRT for ~k · ~B > 0 (LHS of Fig. 1.1) is less than γMRT =
√
kg due to the

magnetic tension of the bent field lines. The growth rate for the case where ~k · ~B = 0
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(RHS of Fig. 1.1) is the well-known γMRT =
√
kg. The result is that MRT evolves

anisotropically which differentiates it from classic RT. While natural sources of MRT

Figure 1.1: A simple scenario of MRT where a heavy fluid is supported by a ‘light
fluid’, the magnetic field. The growth rate of MRT for ~k · ~B > 0 (LHS) is less than
γMRT =

√
kg due to the magnetic tension of the bent field lines. The growth rate for

the case where ~k · ~B = 0 (RHS) is the well-known γMRT =
√
kg.

on Earth are somewhat more limited, advances in pulsed power technology have made

MRT important to a wide range of laboratory experiments. These include but are not

limited to imploding Z-pinches[7][8][9], magnetically launched flyer plates [10][11], in-

ertial confinement fusion (ICF) [12][13], and even railguns [14]. In most planar targets,

MRT is likely the dominant instability which may be seeded by the electrothermal

instability (discussed in later paragraphs) [15][16][17][18][19][20]. Cylindrical targets

introduce additional instabilities when there is sufficient current flowing in the target.

Prime examples of this are the sausage and kink modes in Z-pinches.

Much of this thesis is devoted to the Z-pinch, one of the first attempts at controlled

nuclear fusion. In a Z-pinch, a strong axial electric current flows along the z-axis

of a cylindrical column of plasma (hence ‘Z-pinch’). The axial current generates

an azimuthal magnetic field. The combination of the axial current and azimuthal

magnetic field implodes the plasma column via the ~J× ~B force. As originally designed,

the pinch would achieve equilibrium between the hot fusing plasma and its confining

magnetic pressure (known as β = 1 plasma, where the magnetic and kinetic pressures

2



are equal). One model is the Bennett pinch [21]. In practice, the instability modes

known as the sausage and kink modes destroy confinement of the current carrying

plasma. The sausage mode is the familiar axisymmetric mode that breaks a plasma

column into what can be described as ‘sausage links’. With the tendency to increase

its inductance, a current carrying plasma column could coil up, which is the physical

basis of the kink mode [22]. The kink mode is no longer axisymmetric and is a fully

3D mode. In a Z-pinch there is also very little confinement along the z-axis leading

to end losses. To solve this problem, the Z-pinch ends were closed by looping them

into, what is now, the tokamak to achieve long timescale confinement. This field of

fusion research is called magnetic confinement fusion, where the plasma tends to be

overall stationary and the plasma is confined by a strong magnetic field on the order

of seconds (with the goal of steady-state operation).

1.1.1 History and background of ICF and Z-pinches

The Rayleigh-Taylor instability was first studied by Lord Rayleigh in 1882 [1] and

then Sir G. I. Taylor in 1950 [2]. This laid the groundwork for 60 + years of additional

theoretical, numerical, and experimental research into RT. Lord Rayleigh’s original

interest, in what is now known as the Rayleigh-Taylor instability (RT), was in ex-

plaining cirrous cloud formations (long before considering RT in laser or magnetically

accelerated ICF targets). Taylor introduced the idea that strong acceleration in the

lab could also generate RT [2] (still before ICF but probably related to uncontrolled

fusion). Even before the advent of the laser, inertial confinement fusion was con-

ceived by John Nuckolls [23]. The idea was further tested in computer simulations.

The vast majority of the remainder of the century focused on these laser driven ICF

concepts [24]. To this day, RT remains one of the greatest challenges of a successful

ICF campaign.

Early work by Kruskal and Schwarzchild [4], Tayler [25] and Chandrasekhar [5]
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began the study of Z-pinch instabilities in the 50s and early 60s. Linhart [26] and

Harris [6] later studied the magneto-Rayleigh-Taylor instability including Z-pinch

instabilities. The motivation for the work, stated by Harris, who also cites Linhart,

is, “The use of a collapsing conducting shell in a magnetic field has been proposed

as a method of producing thermonuclear power and as a method of producing high

magnetic fields”. Sixty years later the overall idea remains the same for magnetically

driven ICF at Sandia National Laboratories, the preeminent pulsed power laboratory

in world. Though the shells are thicker and a laser preheats the fusion fuel, the

Magnetized Liner Inertial Fusion (MagLIF [12]) program at Sandia (to be described

in the following section) could still be described by what Harris wrote. However,

Harris somewhat understates the importance of MRT. As with laser driven ICF, RT

or MRT is the major design consideration in any ICF target.

In its current form, laser driven ICF is very much distinct from magnetically

driven ICF. To begin, laser driven ICF almost always uses a spherical capsule, which

requires 3D compression, whereas the Z-pinch geometry is only in 2D. Though this

theoretically requires higher compression to achieve the same volumetric compression

as a spherical capsule, there are many techniques to relax this requirement [12][27].

Additionally, the Z-pinch is a part of the driver circuit itself whereas the laser is its

own element. This means the target itself must be considered with respect to the

entire driver (a simple example is that increasing the length of a cylindrical target,

increases its inductance, which reduces the total current) [28][21]. With the current

state of technology, magnetically driven ICF is more efficient in coupling the driver

energy to the target, particularly when comparing indirect radiation drive methods.

In indirect drive laser ICF there are numerous inefficiencies: laser energy is first

converted to X-rays which then must be coupled to the spherical capsule. These

inefficiencies can be very detrimental to relatively low yield targets if not enough of

the driver energy is coupled to the target. There is also indirectly driven magnetic
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ICF, where a wire array generates X-rays which then implode a target [29], however

current interest lies in directly driven magnetic ICF.

Common to both spherical and cylindrical implosions is the susceptibility to

feedthrough of RT or MRT. ICF typically includes a fairly dense material confin-

ing a lower density fuel during an implosion. As the shell implodes the exterior is

unstable to RT or MRT, the interior fuel/shell interface remains stable. However,

the ripples generated from the unstable outer shell surface might feedthrough to the

inner shell surface, so that the latter is not guaranteed to remain smooth [30]. The

amplitude of the ripple that feeds-through is exponentially reduced when the shell

thickness becomes appreciable.

Z-pinches today are used in a wide variety of experimental platforms including ra-

diation generation (X-rays, neutrons) [31][32][33], materials effects [10][11][34], equa-

tion of state measurements [35][36][37], and still inertial confinement fusion[12][38][39].

The X-rays produced can be used for a wide variety of additional measurements

including radiation effects on materials, indirect drive fusion [29][20][21], and opac-

ity measurements as related to astrophysical atmospheres [40][41]. The two Z-pinch

drivers that will be considered in this thesis are the Z-accelerator at Sandia National

Laboratories in Albuquerque, NM [42][29] and the Michigan Accelerator for Induc-

tive Z-pinch Experiments (MAIZE) [43][44][45][46][47][48]. The Z-machine stores 22

MJ of energy in its capacitor banks and can deliver a peak current of 27 MA in 100

ns for a well matched load [38]. MAIZE can drive perfectly matched loads with 1

MA on the order of 150 ns. More typical currents for ICF targets are 20 MA for

Z (cylindrical liners) and 0.6 MA for MAIZE (aluminum foils). Nevertheless, both

these current levels are sufficient to generate significant acceleration that drives MRT

growth in cylindrical and planar Z-pinch loads. Much of the work on MAIZE has fo-

cused on fundamental issues related to MRT, while work on Z has investigated both

fundamental problems as well as fully integrated magneto-inertial fusion experiments.
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1.1.2 Motivation

The magneto-Rayleigh-Taylor instability has received renewed interest as tech-

nology has improved and driver and design capabilities bring the world closer to

controlled thermonuclear fusion via ICF. The early work on MRT occurred before

the advent of multi-physics codes, sophisticated mathematical analysis software, and

versatile numerical solvers of non-linear differential equations. Advances in experi-

mental facilities and diagnostics have also occurred, certainly no more so than at the

Z-accelerator. These advances have paved the way for the current magneto-inertial fu-

sion program at Sandia, MagLIF [12]. The concept is depicted in Fig. 1.2 as originally

presented by Gomez et al. [38] with the first experimental results.

Figure 1.2: Simulation images showing the three main phases of a MagLIF implo-
sion: magnetization with a > 10 T axial magnetic field, pre-heating of the fuel via
a kiloJoule class laser, and finally compression via the pinch force. The magneto-
Rayleigh-Taylor instability is featured prominently on the liner exterior as the liner
compresses[38].
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Lindemuth and Kirkpatrick studied magnetized capsule regimes where initial fuel

densities and implosion velocities were low, known now as magnetized target fusion

(MTF) [49][50]. MagLIF, like MTF, is a hybrid between traditional ICF and magnetic

confinement fusion. Laser driven ICF typically is on the order of nanoseconds, while

magnetic confinement fusion occurs on the order of seconds with the ultimate goal

of steady state operation. As MagLIF is designed for the Z-machine, implosions on

the order of 100 ns are typical with an approximately 10 ns window of time during

which the fusion occurs. This is known as a fast Z-pinch [21][20]. A MagLIF target

is a cylindrical metallic tube, called a liner, with a fusion fuel in the center of the

tube. There are two key features of MagLIF: the initial pre-heat of the fusion fuel and

applied axial magnetic field. The preheat of the fuel reduces the compression required

to achieve fusion relevant conditions. This is particularly important since implosion

velocities are slower than at facilities such as the NIF. Since less compression is

required, this has the potential to reduce the danger of MRT as well. The pre-

magnetization helps keep the fusion fuel hot by reducing thermal conduction in the

radial direction. A strong axial magnetic field can also help to confine the burning

ions as well. This thesis will show the potential of the axial magnetic field to reduce

feedthrough and improve the stability of the implosion.

These liners are designed to be relatively thick (100s of microns) to be robust to

MRT. As with nearly any other ICF concept, the basic goal is to mitigate the impact

of MRT/RT growth but retain sufficient implosion velocity to deliver enough energy

to the fuel. The MagLIF liner straddles both of these goals as the liner is thick enough

to tolerate any MRT, yet energetic enough to achieve fusion relevant conditions [38].

Since the liner provides the inertial confinement of the fuel, it must remain intact and

increasing the thickness of the liner is one of the most straightforward ways to improve

its survivability. The ρr of the liner and fuel, respectively, at peak compression is

∼ 1 g/cm2 and 0.01 g/cm2. The ρr of the liner is the more important of the two for
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inertial confinement unlike the capsules at the NIF which require high ρr of the fuel

[12]. The combination of the preheat, premagnetization, and implosion of a MagLIF

target have generated exciting experimental results. In the four short years after the

original design paper by Slutz et al. [12], the first integrated MagLIF experiments

by Gomez et al. [38][39] obtained yields in excess of 1012 neutrons and inferred ion

temperatures of > 2 keV. Many important experiments preceded the fully integrated

experiments, a short history of which is discussed next.

In Slutz’s paper introducing MagLIF [12], MRT was already a primary concern.

One year later, Sinars et al. [51] published the first controlled measurements of MRT

evolution for a fast Z-pinch. The experiments utilized aluminum liners with machined

sinusoidal perturbations on the exterior. This fixed the axial wavelength of MRT. The

liners were then imploded on the Z-machine with a peak current of nearly 20 MA but

without any preheat or axial magnetic field. To measure the MRT growth two-frame

6.151 keV X-ray radiography was used [52]. A photograph of the seeded aluminum

liner and an example cropped radiograph is shown in Fig. 1.3. The temporal evolution

Figure 1.3: Experiments by Sinars et al. [51] imploded a seeded aluminum liner on
the Z-machine. To the right is a blown up radiograph of the 400 µm axial wavelength
region.

of the perturbations was then determined from a collection of shots (a shot in this

instance refers to a liner experiment on the Z-machine), observed at different points

in the current pulse. Single mode perturbations were observed to grow according to

linear theory for much of the evolution. Additional experiments were performed with
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liners with only the perturbations intrinsic to liner production process. These liners

showed that early-on, the growth of MRT was not azimuthally correlated (was non-

axisymmetric). Later experiments by McBride et al. examined these sort of liners in

more depth [53].

McBride et al. [53] performed experiments using unseeded beryllium liners (leav-

ing only the natural surface roughness), the liner material for the MagLIF point-

design, again, without an axial magnetic field. Beyond different material properties,

beryllium surfaces are typically characterized by overall rougher surfaces following the

liner production. The initially smaller perturbations, both in wavelength and ampli-

tude, allow higher compression to be achieved. These experiments provided strong

evidence for a large amplitude 3D growth though azimuthally correlated structure

remained. Such features could not be obtained by 2D simulations. Because beryllium

is less opaque to 6.151 keV X-rays, information on the liner inner surface could also

be obtained (see Fig. 1.4 below where the inner surface is apparent). A total of 8

radiographs were obtained and from them the evolution of the dominant MRT wave-

length and amplitude, liner ρr, and trajectories of the liner inner and outer surface

could be determined. Based on the observed axial variation in ρr it was postulated

that the yield could be reduced by 16 % due to the growth of the MRT [53].

The next step for MagLIF was to include an axial magnetic field (still without

any preheat), as was done by Awe et al. [54][55]. These experiments produced some

of the most visually stunning liner implosion data to date. An example radiograph

of such is shown in Fig. 1.4. Beryllium liners were used again but now with 7 and 10

T axial magnetic fields made possible by the new Applied Bz (known as ABZ [56])

capability on Z. The radiographs from Awe et al. [54][55], clearly showed the MRT

taking on a helical pattern wrapping around the liner; a feature not present without

the axial magnetic field. Another striking feature of the radiographs was the lack of

time integrated self-emission (TISE) from the implosion. This emission is often found
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Figure 1.4: Experiments by Awe et al. [55] imploded a pre-magnetized (10 T) beryl-
lium liner on the Z-machine and imaged by the radiography system.

at pinch points of an implosion and indicates non-uniform compression. Thus the lack

TISE may also indicate improved stability of the liner implosion. One possible source

of this enhanced stability is due to reduction of feedthrough of MRT due to successful

compression of the axial magnetic field. This is a result anticipated by Lau et al. in

2011 [57]. The major requirement for enhanced stability to MRT feedthrough is that

Bz ≈ Bθ which is achievable only with successful axial magnetic field compression.

Recently [9], we have also provided an explanation of the persistence of the observed

helical structures in [54][55] as reproduced in Fig. 1.4 here.

The most recent MagLIF shots at Sandia utilized both a 10 T axial magnetic field

and the laser preheat. These shots were found to successfully create thermonuclear

neutrons, with D-D neutron yields on the order of 1012, with additional secondary D-

T reactions present [38][39]. Strong axial magnetic field compression was also inferred

via a number of neutron diagnostics [58][59]. Spectroscopy was used to determine
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the ion fuel temperature to be on the order of 2-3 keV [60]. Overall, these results

were considered a great success but also suggested some avenues for improvement.

For example, based on integrated 2D HYDRA simulations, the measured yields were

lower than anticipated. Experimental yields were consistent with HYDRA simulations

that only deposited on the order of 100 J of laser energy into the deuterium fuel [27].

The Z-beamlet total laser energy for these shots was 2 kJ, thus only a small fraction

of the energy seems to have been coupled to the fuel. Studies of the preheat phase

are currently underway at Sandia and at the Laboratory of Laser Energetics (LLE)

at Rochester using the Omega and Omega-EP laser. Laser filamentation is a major

suspect for low coupling of laser energy [27]. These experiments seek to determine

if there is significant mix of liner material into the fuel from the preheat phase as

well as characterize the preheat itself. Mix was postulated as another mechanism for

degraded yield [27].

To reduce MRT growth in these experiments, a novel technique has been used to

reduce a seed to MRT growth, by reducing growth of the electrothermal instability

(ETI). The current theory is that the electrothermal instability provides the initial

seed for MRT and reducing the ETI growth can subsequently slow the development of

MRT. ETI is unique to current driven pulsed power loads as the instability is driven

by the temperature dependence of electrical resistivity, η [17][20]. A simple form of the

growth rate, γ, for the striation form (defined below) is γ = (J2
z ∂η/∂T − k2

zκ)/ρ0cv,

where κ is the thermal conductivity, cv is the metal heat capacity, ρ0 the metal

density, Jz the axial current density, and kz the axial wavenumber. In solid metals,

the resistivity increases with increasing temperature (∂η/∂T > 0). As the current

heats the metal, nonuniformities can lead to nonuniform heating. Because ∂η/∂T > 0,

this leads to runaway of nonuniform heating (instability). Thermal conductivity is

stabilizing since transport of heat from the hot spots limits the runaway heating of

the hot spot. This instability can also occur in plasma despite the opposite scaling,
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∂η/∂T < 0 (using Spitzer scaling), but the perturbations become azimuthally oriented

(“filamentation” form), as opposed to axially oriented (“striation” form).

ETI grows from the initial non-uniformities present on the liner surface. For alu-

minum or beryllium, these initial perturbations are very small (on the order of 100s of

nm to 1 µm [51]) but nonetheless can become quite important for the overall stability

of the liner. Experiments by Peterson et al. [17][18] have made great progress towards

solving the ETI problem by coating the exterior liner surface with a thin dielectric

coating [19]. The dielectric is theoretically stable to ETI and also provides hydrody-

namic tamping of any mass redistribution in the metal due to the current flowing

there. The exact mechanism for enhanced stability has not yet been determined be-

tween these mechanisms. These stand-alone experiments (no axial magnetic field or

preheat) have successfully shown dramatic reduction in instability growth [19].

Though there have been many successes with MagLIF, many interesting prob-

lems still remain with regard to liner stability. While the dielectric coating seems

capable of significantly improving resilience to MRT, the current in the liner drives

the sausage-like and kink-like modes. Since this is not inhibited by the coating, per-

turbations could penetrate into the bulk and potentially become more important at

high compression [9]. Most of the early design of MagLIF targets was done using 2D

(r, z) simulation codes which certainly cannot account for 3D modes such as the kink

mode which has been shown to be the dominant modes in integrated experiments

[54][55][38][39]. As mentioned above, experiments by Awe et al. [54][55] show the

kink and perhaps higher azimuthal mode number modes to be very important to the

instability structure. Currently, these helical modes can only be generated with an

ad-hoc seed on the liner in 3D simulations [55]. Since the helical modes are present

in experiment, analytic models ([6][7][9]) can also calculate their evolution. Helical

modes may also feedthrough the most strongly, however they are not captured in

2D simulations. The laser preheat is also largely not well understood, particularly
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with regard to filamentation and energy deposition at the liner surface which could

lead to ETI or other non-uniformities. Since ETI requires the presence of electrical

current, some sources are magnetic diffusion of the azimuthal field, or currents gen-

erated by axial magnetic field gradients near the liner inner surface. Even without

the sausage and kink modes there is intrinsic anisotropy to MRT due to the very

large driving field [57]. Understanding this anisotropy is the basis a large number of

experiments on MAIZE performed by previous graduate students and continue today

at the University of Michigan [48][46][61][62][63][64][65].

While there has been a great deal of experimental progress for magnetized liner

implosions, such as MagLIF, the stability theory has been slow to follow. Works by

Harris [6] (1962) and Bud’ko [7] (1990) are the most relevant for MRT in magnetized

liner implosions but of course were developed without the capabilities of modern

facilities, such as Z, in mind. One of the limitations of the work by Harris [6] is

that he did not de-couple the kinetic and magnetic pressures driving acceleration.

This also clouds the effect of field line bending (~k · ~B)2 on MRT growth rates and

feedthrough. Harris [6] also introduced the idea that MRT and sausage and kink

modes could coexist using analytic theory. However, his models did not show how.

As just mentioned, his definition of g was also too intertwined with the azimuthal

magnetic pressure to be versatile (e.g. he could not account for the deceleration phase,

since there was no kinetic pressure in his formulation). Bud’ko et al. [7] significantly

extended Harris’ work using a thick shell and adiabatic gas law, though their governing

equation was presented without any details or derivation. Analytic insight for this

work was also limited, as the solutions they provided required numerical integration of

analytic liner implosion models for the evolution of a pinch. We have improved on the

assumptions in these works in our recent publications by introducing a more general

approach [57][66][8][9]. This thesis places significant emphasis on the new analytic

formulation for MRT and feedthrough.
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1.1.3 Thesis organization

Chapter 2 builds on the work by Lau et al. [57], by fully developing the analytic

linear theory of MRT and feedthrough in the framework of ideal MHD in planar

geometry [8], including experimentally relevant boundaries, as well as comparing the

model to experiments at Sandia National Laboratories. We have also illustrated the

integration of 1D HYDRA simulations to provide realistic equilibrium models for our

analytic theory. The theory allows for an arbitrary amount of field line bending as well

as acceleration due to an arbitrary combination of kinetic and magnetic pressures.

The growth rate and feedthrough of MRT are analyzed analytically. Applications

to U-M experiments are featured. Chapter 2 also introduces the utilization of the

HYDRA MHD code [67] for implosion histories that can be used to numerically

compute our growth rates and feedthrough. The last third of Chapter 2 is devoted

to application of the growth rates and feedthrough factors to liner experiments.

Chapter 3 introduces the coupling of MRT, sausage, and kink instabilities as well

as feedthrough in cylindrical liners [9]. The sausage and kink modes are not present

in planar geometry. An exact analytic theory is presented, again in the framework

of ideal MHD. These exact solutions of instability growth rates and feedthrough are

analyzed for MRT, sausage and kink modes for a liner of arbitrary thickness (from very

thin to almost solid column). The growth rates are also applied to MagLIF relevant

liner implosions, again using the HYDRA MHD code. Several stages of evolution in

kink-MRT and sausage-MRT are identified in MagLIF. The cylindrical model is also

extended further by modeling magnetic diffusion effects in liner implosions.

Chapter 4 relies heavily on 2D HYDRA MHD simulations of liner implosions.

Many non-ideal effects not found in ideal MHD theory, such as shock compression

and non-linear MRT growth and feedthrough are examined using HYDRA. In these

cases, our linear theory of MRT growth and feedthrough is best suited to qualitative

understanding of these simulation results. Whereas in Chapters 2 and 3, many of the
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test problems for 2D HYDRA simulations were fairly linear in design, non-linear MRT

growth is the dominant process in MagLIF liner implosions on Z. We also examine

the effect of large scale perturbations at the fuel/liner interface on the stability of

a liner implosion. Additionally, Richtmyer-Meshkov-like [68][69] instabilities are also

addressed. These could be a significant issue during the preheat phase of MagLIF.

Chapter 5 summarizes the conclusions of this thesis and potential future work.

Appendix A presents a bound on MRT/RT growth in terms of wavenumber and

accelerated distance. Appendix B presents additional details on the derivation on

cylindrical MRT. Appendix C shows some preliminary 3D HYDRA simulations.
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CHAPTER II

MRT Growth Rates of a Planar Slab

2.1 Introduction

Chapter 2 introduces the magneto-Rayleigh-Taylor instability (MRT) and its

feedthrough in a Cartesian coordinate system. A theoretical model is presented and

coupled with 1D magneto-hydrodynamics (MHD) simulations. These 1D MHD simu-

lations give realistic estimates for the physical quantities needed for the model at any

required time. The model is tested against small-scale experiments and 2D magneto-

hydrodynamic (MHD) simulations which are also benchmarked to higher current

experiments on the Z-accelerator.

The development of the planar model that follows, lays much of the theoreti-

cal groundwork that permeates the remainder of this thesis. Overall, the equations

developed in planar geometry are easier to work with and analyze and yet remain

applicable to a large number of physical scenarios. In particular, application to ex-

ploding foils[47], flyer plates[10][11], and cylindrical liners [51][8][9] will be presented.

At the appropriate level of generality, many of the classic Rayleigh-Taylor solutions

can also be recovered, as the underlying equations are nearly the same. This formu-

lation of MRT also introduces many key concepts related to the effect of magnetic

fields on MRT and feedthrough. Early work focused a great deal on MRT [4][5][6]

with little discussion of feedthrough. This chapter and the model discussed herein
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will provide detailed discussion of feedthrough of MRT.

2.2 Development of an Ideal MHD model of the Magneto-

Rayleigh-Taylor Instability

The linearized ideal MHD equations, that will be the focus of this chapter, will

be used to describe the magneto-Rayleigh-Taylor instability and its feedthrough in

planar geometry. We will show the equations to be highly versatile for a number of

different experimental geometries. To begin, any MRT calculation, an appropriate

equilibrium state for the magneto-fluid is required. Once this is determined, the

ideal MHD equations are perturbed and subsequently linearized. The equilibrium

quantities themselves can be determined any number of ways, whether from theory,

simulation or experiment. They need only satisfy the MHD force balance discussed

in the next subsection. It is important to note that the physical picture of MRT

growth is that of an accelerated slab, which can be moving at some finite speed. This

is unlike an equilibrium Z-pinch where the plasma is motionless due to the balance

of magnetic and kinetic pressures. Thus, the equilibrium discussed next will be an

instantaneous equilibrium valid at some instant in time during the implosion, launch,

explosion, etc.

2.2.1 Equilibrium

A fairly general statement of force balance describes MHD equilibrium. In the

rest frame of the fluid, it reads

−∇p+ ~J × ~B + ρ~g = 0. (2.1)

When g = 0, there is no motion in the lab frame, and the various expressions de-

scribing an equilibrium pinch can be recovered (Z, θ, screw). While this is a general
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expression, we shall consider variations in equilibrium quantities in only one dimen-

sion. For the foils and imploding liners that will be discussed, the dominant motion

is generally found in one direction. In Cartesian coordinates this is taken to be in the

x̂ direction, and in cylindrical geometry (see Chapter 3) this will be the r̂ direction.

For variation only in the x̂ direction, Eq. 2.1 becomes a simple statement relating the

balance of kinetic and magnetic pressure in an effective gravity. For accelerated flyers

and foils or Z-pinches the overall dynamics are essentially 1D so these assumptions

are quite valid. Thus, we begin by simplifying Eq. 2.1 for one dimensional motion in

Cartesian coordinates, arriving at the well known equation [22][70]

∂p

∂x
=

∂

∂x

(
|B|2

2µ0

)
+ ρg, (2.2)

where |B|2 = B2
x + B2

y + B2
z . For the purposes of this work, the assumption that

Bx = 0 will be made, leaving the field components of interest as ~B = 〈0, By, Bz〉.

Equation 2.2 implies that g > 0 corresponds to acceleration in the lab frame in the

−x̂ direction, while g < 0 corresponds to acceleration in the +x̂ direction. Note that

thus far, no assumptions have been made about the plasma resistivity or equation

of state, only the assumption of the validity of the MHD equations is assumed (i.e.

no displacement current, plasma as a single fluid, etc.). These features cannot be

retained for the linearized ideal MHD equations, but this allows for the equilibrium

to be constructed from simulations or experiments where non-ideal MHD effects are

important.

The utility of this property is most easily presented via example. Let us consider

planar foil magnetically accelerated by the force produced by an axially directed

current (ẑ) and the corresponding induced magnetic field in the ŷ direction (also

know as the pinch force in planar geometry). This is also the basis for magnetically

accelerated flyer plates [10][11], except the magnetic pressure is located on only one
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side of the plate. Flyer plates are common loads on the Z-machine and are much

thicker than the foils considered on the Linear Transformer Driver (LTD) at the

University of Michigan. The foil, in addition to being accelerated, can be compressed,

ohmically heated, ablated, among many other physical processes. Many of these

effects require incorporating an equation of state, as well as thermal and electrical

conductivities. A suitably advanced resistive MHD code incorporates all of these

effects to the best abilities of the models used. For the purposes of Eq. 2.2, this means

that there is likely some density distribution (Gaussian for example) and pressure

distribution, as well as a distribution of currents and magnetic fields as described

by magnetic diffusion. However, given the x or radial dependence of p, ρ, and ~B

as determined by the MHD code, an effective gravity, g, is readily determined from

integration of Eq. 2.2, and thus accounts for all of the dynamical 1D motion introduced

by more complicated pieces of physics. Before introducing the linearized equations,

some special cases of the equilibrium will be considered.

We employ a three-region sharp boundary model for analytically determining the

instantaneous MRT growth rate for a given set of equilibrium quantities. We will use

a three region sharp boundary model (Fig. 2.1). The regions typically correspond

to a plasma region surrounded either by vacuum or a fill gas. The various magnetic

field components and densities in each region are allowed to take on arbitrary values.

In a vacuum region, there is no kinetic pressure, p, though there may be some finite

magnetic pressure. This of course is the essence of the classic MRT problem where

a magneto-fluid is supported by magnetic pressure in the vacuum that was discussed

in the introduction. For the three-region model that will be described, a finite slab of

plasma may be supported an arbitrary combination of kinetic and magnetic pressure.

To model a flyer plate, region I would be vacuum with B01 being the drive magnetic

field, region II would be the flyer plate with ρ02 and region III would be vacuum. In

the planar limit of a liner implosion, the problem would remain the same, but region
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Figure 2.1: Three region sharp boundary model surrounded by perfectly conducting
surfaces.

III could be a fuel region with finite density, ρ03. In this model, h1 and h3 may take

on arbitrary values as well, allowing for both a finite and infinite domain problem.

This model has been discussed in great depth in Lau et al. [57] and Weis et al. [8]. An

additional assumption that is required for ready analytic evaluation of the linearized

ideal MHD equations is that while the equilibrium may take on arbitrary values in

each region, those values must be constant in the region. Work by Zhang et al. [66]

considered a three region sharp boundary model where the plasma region (region II)

was allowed to contain an arbitrary current distribution in order to study magnetic

shear. While the current distribution selected was analytic, numerical calculation was

required to determine the MRT growth rate by this simple change.

For the three region model shown in Fig. 2.1, with uniform equilibrium values in

each region, the equilibrium condition can be integrated across region II (for Eq. 2.2),

from x = β− (at the top of region I) to x = α+ (at the bottom of region III), to obtain
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a relation that describes g based on a statement of continuity of total pressure,

ρg∆ =

(
~|B01|

2

2µ0

+ p01

)
−

(
~|B03|

2

2µ0

+ p03

)
, (2.3)

where ∆ is the thickness of the plasma slab. The effective gravity is then determined

by an arbitrary combination of kinetic and magnetic pressure but does rely on the

thickness of the slab for consistency. This feature is particularly important for many

of the MRT experiments performed at the University of Michigan, the reason for

which will be discussed later. Generally, a three region model will be used, but a

similar two region model equilibrium could be obtained by taking ∆→ 0

0 =

(
~|B01|

2

2µ0

+ p01

)
−

(
~|B03|

2

2µ0

+ p03

)
. (2.4)

Taking p01 = 0, ~|B03| = ~0 gives the simple equilibrium,

| ~B01|2

2µ0

= p03. (2.5)

which describes the classic Kruskal and Schwarzschild [4] case of a plasma supported

by magnetic pressure in a vacuum. Appendix A of Ref. [8] considers various limiting

cases of the 3-region model shown in Fig. 2.1.

These equilibria provide the necessary starting point for the MRT calculations

that follow and will be referenced often. Chapter 3 will again look at MHD equilibria

except in cylindrical geometry, which introduces additional complexities. This may

be anticipated considering the substantial work that has gone into understanding

equilibrium in tokamaks and Z-pinches.
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2.2.2 Linearization and perturbation

Before introducing the solutions to the sharp boundary model, the process of

linearization will first be discussed. The linearized MHD equations can be formulated

quite generally and then the appropriate approximations for our sharp boundary

model can be applied. Before the coordinate system is fixed, many of the early

results are also directly applicable to cylindrical geometry. To begin, the familiar

equations of ideal MHD are

∂ρ

∂t
= −∇ · (ρ~v) , (2.6)

ρ
∂~v

∂t
+ (~v · ∇)~v = −∇p+ ~J × ~B + ρg, (2.7)

~E + ~v × ~B = 0, (2.8)

−∂
~B

∂t
= ∇× ~E, (2.9)

∇× ~B = µ0
~J. (2.10)

For the fluid equations, only the continuity and momentum equation have been in-

cluded, leaving out the energy equation due to the additional complexity introduced.

Faraday’s law (Eq. 2.9) and Ohm’s law with infinite electrical conductivity (Eq. 2.8)

can be combined to give

∂ ~B

∂t
= ∇×

(
~v × ~B

)
, (2.11)

which is also known as the “Frozen-in” law. The interpretation of Eq. 2.11 is that

the magnetic field lines are tied to the motion of the plasma and vice-versa. The

addition of a finite resistivity, by including the term η ~J in the right-hand-side of

Eq. 2.8, allows for field lines to essentially slip out of the plasma it would otherwise

be attached to. Finite resistivity can lead to many other physical processes, such

as magnetic reconnection [22]. The assumption of ideal MHD is indeed restrictive,
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however the results that can be obtained from this model will be shown to be highly

insightful, in part because the limitations are known and the exact solutions are

possible.

The next step is to linearize the ideal MHD equations with the given equilibrium

presented in Eq. 2.2. The equilibrium quantities are denoted with a subscript, ‘0’. To

be explicit, the equilibrium quantities are the mass density, ρ0(x), kinetic pressure,

p0(x), magnetic field, ~B0(x) = 〈0, B0y(x), B0z(x)〉. Once more, the formulation is in

the moving frame of the plasma so that ~v0 = 0. To linearize, the equilibrium quantities

are modified by a small signal perturbation, f(x, y, z, t) = f0(x) + f1(x, y, z, t) where

f1 << f0. Hereafter, quantities with subscript, ‘1’, are the perturbation quantities.

The last important definition is that ~v1 = ∂~ξ
∂t

, where ~ξ1 is the perturbed displacement

of the plasma parcel. As ~ξ1 is assumed to be a small quantity, for clarity the subscript

‘1’ will be dropped. An eigenmode (normal mode) analysis will be used in this work so

that the time dependence of the perturbation quantities takes the form f1(x, y, z)eiωt.

To accomplish this, a Fourier transform from t→ ω is applied to the MHD equations,

which has the useful effect that ∂/∂t→ iω and ∂2/∂t2 → −ω2.

The linearized normal mode form for each of the perturbed equilibrium quantities

is then inserted into the ideal MHD equations. Products of first order quantities are

ignored in linear theory (e.g. p2
1, ~B2

1 , ξ2, ξB1). Following this procedure the MHD

equations can be distilled into a single linearized vector equation for the displacement,

~ξ:

ρ0
∂2~ξ

∂t2
= −∇p1 + ~J0 × ~B1 + ~J1 × ~B0 + ρ1~g, (2.12)

−ρ0ω
2~ξ = −∇p1 + (∇× ~B0)× [∇× (~ξ × ~B0)]/µ0

+ {∇ × [∇× (~ξ × ~B0)]× ~B0}/µ0 + ρ1~g, (2.13)

where we have combined the ’frozen-in’ law, Faraday’s law, and Ampère’s law, re-
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spectively, in linearized form:

~E1 = −~v1 × ~B0 = −iω~ξ × ~B0, (2.14)

~B1 = ∇× ~E1/(−iω) = ∇× (~ξ × ~B0), (2.15)

∇× ~B1 = µ0
~J1. (2.16)

Also required, is the linearized continuity equation, which relates the perturbation

density to the perturbed motion

d

dt
ρ1 = −∇ · (ρ0~v1), (2.17)

ρ1 = −∇ · (ρ0
~ξ) = −

(
~ξ · ∇ρ0 + ρ0∇ · ~ξ

)
. (2.18)

Lastly, an equation of state (EOS) is required to relate the perturbation kinetic pres-

sure to the perturbed density and motion. To this end, the perturbations in the

plasma are assumed to be incompressible, requiring that ∇ · ~v1 = 0 = ∇ · ~ξ. For

a more complicated EOS, the energy equation is needed, increasing the difficulty of

determining analytic solutions.

Note that incompressibility significantly simplifies the continuity equation by di-

rectly zeroing the second RHS term in Eq. 2.18. Note also, that if ∇ρ0 = 0 then

ρ1 = 0. This will be the case for the sharp boundary model with constant den-

sity within each region. The above equations are applicable to the plasma regions.

For the case of a vacuum, ∇ × ~B1 = 0 (no current in vacuum), the magnetic field

perturbations take the general form:

~B1 = ∇φ, (2.19)

∇2φ = 0. (2.20)

Up until this point, the force law, Eq. 2.13, and continuity equation, Eq. 2.18, are
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valid in a general coordinate system and will be needed in Chapter 3.

For the Cartesian coordinate system, a spatial Fourier transform is applied in ŷ, ẑ

directions defining ky and kz to be the wavenumber in the corresponding direction

in an eigenfunction formulation. Combining the spatial Fourier transform with the

temporal Fourier transform, perturbations quantities then have the complete Fourier

form, f1(x, y, z, t) = f1(x)eiωt−i(kyy+kzz). The spatial Fourier transform then allows

further simplification of the gradient operators on all perturbation quantities in the

linearized ideal MHD equations,
〈

0, ∂
∂y
, ∂
∂z

〉
→ 〈0,−iky,−ikz〉. At this point, the

only remaining derivatives are in the x̂ direction involving the equilibrium quantities

and ~ξ(x).

The remainder of the work to get to the analytic growth rate is a good deal

of algebra to reduce the linearized ideal MHD equations to a single second order

ordinary differential equation (ODE) for ξx(x), as ξy and ξz and their derivatives

(with respect to x) can be eliminated. The fully simplified ODE is (see Bellan [22] or

Chandrasekhar [5] for details)

∂

∂x


−ρ0ω

2 +

(
~k · ~B0

)2

µ0

 ∂ξx(x)

∂x

− k2

−ρ0ω
2 + g

∂ρ0

∂x
+

(
~k · ~B0

)2

µ0

 ξx(x) = 0,

(2.21)

where the simplified expressions for the wavenumbers is given by ~k = 〈0, ky, kz〉 and

k2 = k2
y +k2

z . Equation 2.21 is valid for general ρ0(x) and ~B0(x) = ŷB0y(x)+ ẑB0z(x).

Note further that p0(x) does not enter Eq. 2.21 explicitly. The equilibrium condition,

Eq. 2.2, is satisfied.

A key requirement for determining the analytic expressions describing the MRT

growth rate is the ability to determine the exact solution to Eq. 2.21. For a sharp

boundary model, assuming no x-dependence in each region, the planar ODE, Eq. 2.21

is substantially simplified. The term ∂ρ0/∂x drops out and the remaining coefficients
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of ξx and its derivatives drop out except for k2. The ODE then is ξ′′x = k2ξx whose

solutions are a linear combination of exponential functions. These solutions are dis-

cussed extensively in [8]. The unknowns to be determined are the eigenfunction ξx(x)

and eigenvalue, ω(~k). A very useful property of the linearized ideal MHD equations

is that ω2 is guaranteed to be real valued (by the MHD energy principle, see [22],

Chandrasekhar [5]). Thus, unstable solutions exist if and only if ω2 < 0. The un-

stable MRT modes are then those modes where Im[ω(ky, kz)] < 0. A simple example

solution is ω = −i
√
kg which then grows like e

√
kgt. Before introducing the sharp

boundary model and required boundary conditions, techniques for solving Eq. 2.21

will be briefly discussed.

A well known example for RT is that the growth of short wavelengths are stabi-

lized by a finite density gradient of scale length, L and the RT growth rate takes the

form γ =
√
kg/(1 + kL) [30]. This scaling was obtained using an exponential form for

ρ0 and determined exactly for a single interface. The situation becomes far more com-

plicated when a second interface is introduced as in [66]. Solution of Eq. 2.21 requires

experimental, theoretical or numerical density and magnetic field profiles. The basic

requirement is that the profiles and derivatives be sufficiently well behaved. Work by

Zhang et al. [66] showed that even if the density and magnetic field in the z-direction

is assumed constant (i.e. the remaining nonuniformity is only in B0y(x)), numerical

integration of Eq. 2.21 is required to determine ξx(x) between two boundaries. De-

spite using a perfectly well defined functional form for B0y(x), only for very special

cases can ξx(x) be analytically determined without some manner of approximation.

Nonetheless numerical solutions of Eq. 2.21 can incorporate more properties of the

equilibrium that can stabilize or destabilize MRT such as the magnetic shear dis-

cussed by Zhang et al. [66]. This work essentially still used a sharp boundary model

but made use of analytic solutions to determine the boundary conditions. Again, it

is reiterated that such a method requires the knowledge of the exact eigenfunctions
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outside the boundaries. This is a standard technique (see Melcher [71], Bud’ko [7]).

The most general solution of the planar ODE would be to solve a geometry like

that shown in Fig. 2.1 but containing one region with smooth profiles in density and

magnetic field between two conducting walls. The problem remains a boundary value

problem (BVP) for an undetermined eigenfunction ξx(x) and eigenvalue, ω(~k). On

the surface, the solution of this BVP may sound quite easy and the solution very en-

ticing. The true challenge lies in determining sufficiently smooth equilibrium profiles

and expediency in determining the solution of the BVP. Many techniques exist for

tackling this kind of problem, such as a shooting method or finite difference (matrix)

method or even finite element methods. The shooting method requires solving the

ODE as an initial value problem (IVP) with a known initial value at one of the bound-

aries (ξx(0) = ξ0, one of the known boundary conditions from the BVP) along with a

guess of ξ′x(0) and ω. One can easily imagine the challenges of such a technique as a

particular guess for the initial slope may not yield a solution of ξx(x) for any value of

ω. Since the equations are linear, a finite difference method can be very advantageous

as no iterative solutions of the matrix are required and the boundary conditions are

directly encoded in the matrix (depending on the form of the boundary conditions,

without approximation). Depending on the boundary conditions, in order to deter-

mine ξx(x) for a particular ω the matrix must be invertible (for non-homogeneous

boundary conditions) or singular (for homogeneous boundary conditions). Tests for

invertibility or singular-ness are theoretically very simple. Numerical tests however,

are more complicated due to finite precision computing. The author has tried both

methods and found the finite difference (matrix) method to be the most robust. This

method was implemented in Chapter 3.
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2.2.3 Boundary Conditions

Across each interface in Fig. 2.1 the underlying boundary conditions are continuity

of total pressure, continuity of the normal component of magnetic field (= 0), and

continuity of the fluid velocity which physically means there are no voids. Integration

of Eq. 2.21 across an interface effectively determines the continuity of total pressure

condition and is the most straightforward way to determine the boundary conditions.

An example of this is given for the β interface as shown in Weis et al. [8]. First, an

integral over the β interface is applied to Eq. 2.21

β+∫
β−

∂

∂x


−ρ0ω

2 +

(
~k · ~B0

)2

µ0

 ∂ξx(x)

∂x

 dx

=

β+∫
β−

k2

−ρ0ω
2 + g

∂ρ0

∂x
+

(
~k · ~B0

)2

µ0

 ξx(x)dx, (2.22)

→

−ρ0ω
2 +

(
~k · ~B0

)2

µ0

 ∂ξx(x)

∂x

∣∣∣∣∣∣∣
β+

β−

= k2gρ0ξx

∣∣∣∣β+

β−
. (2.23)

The boundary condition at x = β is then given by Eq. 2.23, where the ± means x =

β±ε and ε is small. Alternatively, ’−’ corresponds to equilibrium quantities in region

I, and ’+’ corresponding to those in region II. A similar procedure determines the

boundary condition at x = α. These two boundary conditions essentially determine

the BVP for region II. The last two boundary conditions are for the perfect conductor

walls. The wall boundary requires that ξx(xw) = 0. Alternatively, the wall can be

moved to −∞ which merely requires ξx(−∞) remains bounded (in fact, zero, as we

do not expect perturbations on a surface can affect the solution infinitely far away).

The other wall must behave similarly for x→∞. The other requirement is that the

normal component of the magnetic field to the perfect conducting wall be 0, ~B1 ·x̂ = 0.

The boundary conditions for a three-region sharp boundary model are summarized
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as

ξx(xwall) = 0 or ξx(±∞) <∞, (2.24)

~B1(x) · x̂
∣∣∣
xwall

= 0 or ~Bx(±∞) <∞, (2.25)−ρ0ω
2 +

(
~k · ~B0

)2

µ0

 ∂ξx(x)

∂x

∣∣∣∣∣∣∣
x+s

x−s

= k2gρ0ξx

∣∣∣∣x+s
x−s

xs = α, β. (2.26)

Equations 2.24 and 2.25 provide the perfect conducting wall boundary conditions for

regions I and III and Eq. 2.26 provides the boundary conditions needed for region II

and then matching regions I and III to region II. Note that the pressure matching

condition, Eq. 2.26, requires knowledge of the eigenfunction in all regions. For the case

of uniform equilibrium profiles in all three-regions, these solutions are known. The

solution methodology is discussed briefly in the next section as it has been published

elsewhere [8]. Additionally, the derivation in cylindrical coordinates proceeds similarly

and requires more attention.

2.2.4 Solution of the planar BVP for MRT and feedthrough

The previous sections have presented nearly all that is required to solve the three

region sharp boundary model for MRT and feedthrough. As stated earlier, the gov-

erning ODE (Eq. 2.21, assuming equilibrium quantities are constant in each region),

is simplified to, for each region,

∂2ξx
∂x2

= k2ξx, (2.27)

⇒ ξx(x) = Ae−kx +Bekx. (2.28)

The general solution is straightforward, with the coefficients, A and B determined

by the boundary conditions for the region. For example, if the conducting walls
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are moved to ±∞ respectively, the corresponding solutions in regions I and III are

ξαe
−k(x−α) and ξβe

k(x−β). The solutions for ξx in all regions, including the conductors,

reads [71][8]

ξx(x) = ξβ
sinh[k(x− µ)]

sinh[k(β − µ)]
, µ < x < β (region I)

(2.29)

ξx(x) = ξα
sinh[k(x− β)]

sinh[k∆]
− ξβ

sinh[k(x− α)]

sinh[k∆]
, α < x < β (region II)

(2.30)

ξx(x) = ξα
sinh[k(x− η)]

sinh[k(α− η)]
, α < x < η (region III)

(2.31)

where ∆ = β − α and we have defined ξα = ξx(α) and the same for the β interface

so that the solutions are continuous. These three solutions allow direct evaluation of

the boundary conditions which will allow exact determination of ω(~k) for nontrivial

solutions of ξα and ξβ. This leaves evaluating Eq. 2.26 at the α and β surfaces. At

the α surface, this results in the expression

−ρ0ω
2 +

(
~k · ~B0

)2

µ0

 ∂ξx(x = α)

∂x

∣∣∣∣∣∣∣
II

−

−ρ0ω
2 +

(
~k · ~B0

)2

µ0

 ∂ξx(x = α)

∂x

∣∣∣∣∣∣∣
I

=

k2gρ0ξx(x = α)|II − k2gρ0ξx(x = α)|I.

(2.32)

Recall again, the only functions having an x dependence in each region is the eigen-

function ξx and that ξx is continuous across the interface. Thus, if ρ2 = ρ1 (the

densities are the same in regions I and II) then the right-hand-side of Eq. 2.32 is

identically zero. The last step is to compute the derivatives of Eqs. 2.29-2.31 and

evaluate at x = α. A similar procedure follows at x = β. The result of these two
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evaluations is two equations containing the various equilibrium quantities, ~k and the

unknowns: ξα, ξβ, ω. In Weis et al. [8] they are known as Fa and Fb and can be

written in the very convenient form of Eq. 2.33.

ξα
ξβ

= F (ω), (2.33)

Fa =

cosh k∆ +

[
(~k · ~B03)2/µ0 − ω2ρ03

]
coth kh3 + kg(ρ02 − ρ03)

(~k · ~B02)2/µ0 − ω2ρ02

sinh k∆


−1

,

(2.34)

Fb = cosh k∆ +

[
(~k · ~B01)2/µ0 − ω2ρ01

]
coth kh1 + kg(ρ01 − ρ02)

(~k · ~B02)2/µ0 − ω2ρ02

sinh k∆ (2.35)

The ratio, ξα/ξβ is defined as the feedthrough factor. It is given by Eq. 21 or 22

of [8] and we have reproduced them here. The dispersion relation, ω = ω(~k), is

obtained by setting Fa = Fb. F is the ratio of the amplitude of the eigenfunction

(in region II) at one interface to the other. The physical interpretation is that if the

β surface contains a ripple of ξβ units in amplitude, the feedthrough factor, Fa or

Fb, describes the corresponding amplitude of the α surface [57][8][66]. It is a measure

of the relative effect of one surface on the other. Generally, it is most important

to consider the effect the MRT unstable surface has on the stable surface. F (ω)

is dependent on ω which in turn is dependent upon the equilibrium quantities and

the wavelengths under consideration. If we consider Fig. 2.1 as the purely hydro

RT case (all magnetic fields are 0 and density only in region II and regions I and

III are semi-infinite) F (ω) = F (−i
√
kg) = e−k∆ which does not at all depend on

the acceleration, only the wavelength and thickness of the slab of fluid [57]. Most

importantly, this simple expression shows that feedthrough decreases exponentially

with increasing thickness and wavenumber (or decreasing wavelength). The message

is clear in that thick slabs are robust to feedthrough and any feedthrough is dominated

by long wavelengths. To better quantify this, the most dangerous MRT modes are
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those where λ ∼ ∆ for which the feedthrough factor is also appreciable. This is well

known in the laser fusion community [30] for RT.

In order to determine the feedthrough factor exactly, ω(~k) must first be found.

Recall, the two boundary condition evaluations resulted two expressions for F (ω).

The only way these two expressions can be consistent is if ω satisfies the dispersion

relation, ω(~k), found by the equality Fa(ω) = Fb(ω) (Eqs. 2.35,2.34). The solution of

this equality yields the dispersion relation and takes the form

Aω4 +Bω2 + C = 0, (2.36)

= Aσ2 +Bσ + C = 0, (2.37)

where ω2 = σ (as a reminder, in ideal MHD σ is always real). The coefficients A, B

and C in Eqs. 2.36,2.37 are given by Eqs. 25-27 in Weis et al. [8]. The four eigenvalue

solutions, ω always come in ± pairs, denoted in the form: +ω1,−ω1,+ω3,−ω3. So ω is

either purely real or purely imaginary and marginal stability always occurs at ω = 0.

Given the Fourier form eiωt, real ω represents the purely oscillatory solution, while

imaginary ω represents the exponentially decaying and growing solutions. Using the

pure hydro RT case as an example again, the exact solutions are succinctly written

as σ = ±kg. At this point, F (ω) can also be evaluated exactly for each value of ω.

The classic RT case is again F (−i
√
kg) = e−k∆. Some simplifications can be made.

First, ω appears in F only as ω2, thus F can be written as F (σ). Often we are

only concerned with the most dangerous mode (fastest growing negative imaginary

solution) whose temporal growth rate we will refer to as γ. So we mainly consider

F evaluated for the value of ω with the largest negative imaginary part. As a final

point, as stated in Weis et al. [8], if g = 0 then γ = 0 and there is no unstable MRT

mode.

This chapter has outlined the derivation of the feedthrough factor and dispersion
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relation for MRT in Cartesian coordinates. Solutions in planar geometry are fairly

easy to write down (c.f. Eqs. 2.29-2.31). The same equations in cylindrical geometry

are substantially more complicated (see Chapter 3). Many of the techniques described

in this chapter nonetheless translate to cylindrical geometry with the result being

exact, but long and cumbersome expressions. Thus the author hopes to strike a

balance between this chapter and the next by providing enough detail to replicate

the calculations and describe the features of the equations that result without showing

lines and lines of algebra. As such, this chapter and the work found in Weis et al.

[8] will be heavily referenced in the next chapter and the more subtle details in the

derivation of MRT and feedthrough in cylindrical coordinates will be emphasized.

2.2.5 Features and scaling of MRT growth rates and feedthrough

This section will focus on reaping the benefits of obtaining the analytic expressions

for MRT growth and feedthrough in planar geometry. The original motivation [57]

for deriving these expressions was to understand the MRT experiments occurring at

the University of Michigan [47][48]. The first experiments utilized a 400 nm (= ∆)

aluminum foil (ρ2 = 2.7 g/cc) placed between the anode/cathode gap of a 1 mega-

ampere linear transformer driver (LTD). The dimensions of the foil in ŷ, ẑ were on

the order of 1 cm, thus fitting the idea of a planar slab. The driving current of the

LTD was then intended to magnetically accelerate the foil, initiating MRT growth on

one of the surfaces and hopefully observing feedthrough on the other surface. Some

problems and interpretations of these experiments from a theoretical standpoint will

be addressed later. They are given in great detail in Zier’s thesis [48][47]. The analytic

MRT growth rates and feedthrough factors will be examined quantitatively.

To understand the quantitative results, it is convenient to first quote some results

for simple limits for which the behavior of ω and F (σ) is easily interpretable. First,

consider a two region (I and II) case (∆→∞, h1 →∞ in Fig. 2.1) with perturbations
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only in ky and magnetic field ~B = 〈0, 0, Bz〉. Examining, Eq. 2.21, the current scenario

eliminates the ~k · ~B0 terms, leaving only the classic RT problem. The growth rate, γ

is given by

γ2 =
ρ2 − ρ1

ρ2 + ρ1

kg = Atkg, (2.38)

where At = ρ2−ρ1
ρ2+ρ1

is known as the Atwood number. While this looks like the classic RT

result, it is important to remember that g may arise not only from kinetic pressure, but

also magnetic pressure (c.f. Eq. 2.2). Thus, the familiar condition for RT, ∇ρ·∇p < 0

must be modified to read,

∇ρ · ∇(pkin. + pmag.) = ∇ρ · ∇ptot < 0. (2.39)

For this case (~k · ~B0 = 0), this is the only manner in which the magnetic field affects

the growth rate. Now consider perturbations in z, ky = 0, kz > 0 with the same

magnetic field configuration and the result is much different from classic RT,

γ2 = Atkg −
k2
z(B

2
z,2 +B2

z,1)

µ0(ρ2 + ρ1)
. (2.40)

This result clearly shows a direct reduction of the MRT growth rate by the magnetic

field depending on the degree of bending of the magnetic field line as measured by

(~k · ~B0)2. The reason for this is well-known and is made even clearer in taking the

limit of a vacuum region I (ρ1 → 0), with Bz,1 = Bz,2 yielding

γ2 = kg − 2(~k · ~B)2

µ0ρ02

= kg − 2(~k · ~vA)2, (2.41)

where ~vA = ~B0/
√
µ0ρ02 is the Alfvén velocity for the particular magnetic field ori-

entation. The physical interpretation of this result is that the MRT growth rate is
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reduced due to the generation of Alfvén waves which occur due to the bending of the

magnetic field line. The origin of the term, (~k ·~vA)2, derives from the magnetic tension

contribution of the ~J × ~B term in the MHD force law [22]. This term is prominent

in ideal MHD as the magnetic field is assumed to be frozen-in to the plasma. As

MRT ripples grow, the field lines trapped in the plasma are rippled and bent as well.

Magnetic field lines have tension and attempt to relax. As the field lines attempt

to relax, the plasma is pulled along as well with the overall result being that the

magnetic field lines resist being bent. In essence, in order to continue to ripple the

plasma, additional energy is required to bend magnetic field lines.

Equation 2.41 also directly shows the anisotropy introduced by MRT. Often times

in planar geometry the magnetic field is very strong in one direction and the ripples

aligned with this magnetic field are suitably stabilized. Meanwhile, in the orthogonal

direction, no field line bending is occurring, so the MRT growth looks exactly like

pure RT. Thus, in the two directions the MRT can look very different. The ability

of the magnetic field to stabilize perturbations is dependent upon the ideal MHD

condition. In a highly resistive medium, magnetic diffusion can occur very quickly.

If the plasma becomes rippled, the magnetic field lines need not be bent along with

the plasma, they can simply diffuse instead. This will be an important consideration

later. Nonetheless, the very important concept of stabilization of MRT by magnetic

field line bending has been introduced. Regardless of magnetic diffusion or magnetic

tension, it appears that the MRT (or RT) growth rate is bounded by γ =
√
kg.

The bound on the instability amplitude is exp
√

2ks, which depends only on the

wavenumber and the distance, s, over which the slab is accelerated or decelerated

and is independent of g itself (see Appendix A).

The feedthrough factor, F = Fa = Fb, depends upon the MRT growth rate

squared, γ2, so it is anticipated similar magnetic field stabilization effects appear in

F . Introduction of the feedthrough factor requires a return to the three region model
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incorporating a second interface [8][57][66] (the two region model assumes ∆ → ∞

which would have eliminated the feedthrough factor). The question to be answered

now, is how MRT growth at one interface can affect the other interface. To begin

to answer this question, a simpler case will again be examined first. Referring to

Fig. 2.1, the following simplifying assumptions are made: ρ1 = ρ3 = By2 = Bz1,2,3 = 0,

ρ2 = ρ0, h1 = h3 = ∞, By1 = −By3. This physically corresponds to a plasma region

surrounded by two vacuum regions with a magnetic field oriented in the ŷ direction.

Now, taking g > 0, the MRT unstable interface is at x = β and the concern is how

MRT growth there can feedthrough to the x = α interface. It will be sufficient to

quote the feedthrough factor for this case

F (ω2) = cosh(k∆) +

[
kg

ω2
− (kyBy)

2

µ0ρ0ω2

]
sinh(k∆). (2.42)

From the form of Eq. 2.42, the stabilizing influence of field line bending is again ob-

served. Similar to ω, the idea is to minimize F and this is accomplished by increasing

the quantity (kyBy)
2. The two interface form of ω2 shows this familiar behavior as

well, though the feedthrough factor exhibits more favorable scaling with ~k · ~B,

ω2 =
(kyBy)

2

µ0ρ0

coth(k∆)−

√
(kg)2 +

[
(kyBy)2

µ0ρ0

]2

csch2(k∆). (2.43)

One very important feature of this result (plasma surround by vacuum), is that the

finite thickness only affects the MRT growth rate if the magnetic field contributions

are non-zero. If By = 0 then the growth rate reverts to kg. The finite thickness only

affects the pure RT growth rate if the Atwood number At 6= 1, meaning that there

is at least one interface that is not next to a vacuum. It is not difficult to recover

these pure RT results from our dispersion relation but for a more thorough discussion

see Goncharov et al. [72]. For example, consider the pure RT case ( ~B0 = 0) where
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ρ03 = 0 and ρ01 > 0. The dispersion relation is then simplified to

γ2 =
kg(ρ02 − ρ01) sinh k∆

ρ02 sinh k∆ + ρ01 cosh k∆
, (2.44)

where it is clear that if ρ01 → 0, then γ2 → kg as found in Goncharov et al. [72]. The

scaling is such that at large k∆ (liner looks thick to the perturbation), the traditional

γ2 = Atkg is also recovered. Additionally, for fixed thickness ∆, the growth rate is

reduced for longer wavelengths, but only for At < 1. This is a scenario encountered

when there is low-density material ablated from the RT unstable surface. However, if

instead ρ03 > 0 (e.g. as a gas is compressed), the growth rate reverts closer to
√
kg.

For |By1| 6= |By3|, it is convenient to introduce a few normalized parameters for

the magnetic field contributions in these two regions. These will be the same as found

in Lau et al. [57] and are reproduced as follows

b2
l = b2

1 =
(~k · ~B1)2

µ0ρ2kg
, (2.45)

b2
2 =

(~k · ~B2)2

µ0ρ2kg
= 0, (2.46)

b2
u = b2

3 =
(~k · ~B3)2

µ0ρ2kg
. (2.47)

The bn then take on values between 0 and 1; 0 corresponding to no magnetic field

line bending, 1 corresponding to maximum magnetic field line bending. If bl > 1

there is no unstable root for MRT. It is also important to note that g is not equal to

zero, as there is no unstable MRT solution for the case g = 0. This ensures the good

behavior of the normalizations. A final assumption is that ρ1 = ρ3 = 0 (vacuum) and

that the plasma region is magnetic field free, ~B2 = ~0. Typically there are very few

circumstances where ρ1/ρ2 << 1 and ρ3/ρ2 << 1 do not hold. Such cases will mostly

be discussed in Chapters 3 and 4.

Three cases will be considered where bu = b3 is fixed and bl = b1 is varied. g is
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assumed positive such that the unstable surface is x = β and feedthrough occurs at

x = α (Fig. 2.1). First, bu = 0 corresponds to zero magnetic field line bending in re-

gion III and bl is subsequently varied, localizing any field line bending in region I. The

calculation of Eq. 2.37 and Eq. 2.34 are shown in Fig. 2.2. When bl= 0, there is abso-
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Figure 2.2: Normalized MRT growth rate, γ/
√
kg and feedthrough factor, ξα/ξβ, for

fixed bu = b3 = 0. The analytic asymptotic formulae for k∆ << 1 and k∆ >> 1 are
shown as the blue lines and red lines, respectively [57].

lutely no magnetic field line bending present and the problem reverts to the solution

for RT. Hence the normalized growth rate, γ/
√
kg = 1 and the feedthrough factor is

exactly e−k∆. The physical picture describing Fig. 2.2 is a plasma slab being accel-

erated from bottom (right) to top (left) (Fig. 2.1), so that the MRT unstable surface

(β) is next to a strong magnetic field with significant field line bending (bl Fig. 2.2).

The traditionally MRT stable surface (α) is next to vacuum with no magnetic field

in the region. As the magnetic field is raised at the MRT unstable surface (increasing

bl) the growth rate is continually reduced. Inspecting the feedthrough factor for this

scenario shows that while there is not magnetic field next to the feedthrough surface,

stabilization of MRT also stabilizes feedthrough. If the MRT does not grow as much
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because of the magnetic field, the feedthrough most certainly is reduced as well. The

strength of the feedthrough is directly related to the strength of the MRT. However,

this is not the only way to affect the feedthrough factor as will be presented next.

The analytic asymptotic formulae for k∆ << 1 and k∆ >> 1 shown in Figs. 2.2-2.4

are given explicitly in Eqs. 11-12 of Ref. [57].

We now set bu = b3 to 0.5 so that significant field line bending is now present

at the feedthrough surface (α, Fig. 2.1). The first feature of the results observed

in Fig. 2.3 is that magnetic field line bending present in the vacuum region next

to the feedthrough surface can only marginally reduce the MRT growth rate. In

essence, resistance of the feedthrough surface to grow feeds back to the MRT surface

and this effect disappears for large ∆. However, the most pronounced effect of the

newly included field is on the feedthrough factor. A reasonably strong magnetic field

next to the feedthrough surface can reduce the feedthrough factor independent of

any magnetic field bending present at the MRT unstable interface. This is perhaps

one of the most powerful results that will be presented. The physical picture for

this case is an accelerating plasma slab moving from bottom to top (Fig. 2.1) with

bl units of magnetic field line bending at the MRT surface and significant field line

bending at the feedthrough surface. Such a scenario is directly applicable to magnetic

flux compression experiments where an initially uniform axial magnetic field is swept

up and compressed by an imploding slab or liner. In such a scenario, the amount

of axial magnetic field in the compressed region can significantly exceed the initial

magnetic field strength. Such a scenario would then strongly resist feedthrough, a

point emphasized in Awe et al.’s experiments [54][55]. Clearly, increasing bl continues

to decrease the MRT growth rate and feedthrough as was observed in Fig. 2.2, now

with the additional contribution from nonzero bu.

In Fig. 2.4, bu is dramatically increased to 0.9 and shows that despite a large

amount of magnetic field line bending at both interfaces, MRT growth and feedthrough
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Figure 2.3: Normalized MRT growth rate, γ/
√
kg, and feedthrough factor, ξα/ξβ, for

fixed bu = b3 = 0.5. The analytic asymptotic formulae for k∆ << 1 and k∆ >> 1
are shown as the blue lines and red lines, respectively [57].

cannot be completely suppressed (though the feedthrough becomes quite small). For

bl = 0 the feedthrough factor is reduced further, from 0.8→ 0.55 for bu = 0.5→ 0.9

but not completely suppressed. The MRT growth rate remains relatively unchanged.

Once again, as bl is increased, careful consideration shows that the MRT growth rates

remain very similar, except for at the knee around k∆ = 0.7. For bu = 0.9, the knee

is slightly depressed as compared to bu = 0.5 but the change is certainly far from

dramatic. The feedthrough factor continues to exhibit stronger dependence with in-

creasing magnetic field line bending, but only for the very largest bl is feedthrough

nearly suppressed. Such strong field line bending is difficult to realize in experiments

due to magnetic diffusion effects. Nonetheless, this section has introduced the key

result of the ideal MHD model of MRT growth and feedthrough derived in the pre-

ceding section. That being, that there exists the possibility of substantial reduction

of feedthrough due to the presence of significant magnetic field line bending. More
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fixed bu = b3 = 0.9. The analytic asymptotic formulae for k∆ << 1 and k∆ >> 1
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quantitatively, such a scenario requires that

(~k · ~B)2

µ0ρ0

∼ kg (2.48)

and in many cases this is nearly equivalent to requiring that the strength of the

compressed magnetic field is on the order of the driving magnetic field since g ∼ B2.

This derives from the fact that the major force accelerating the plasma is typically

the ~J× ~B force in pulsed power experiments. Now that some features of the MRT and

feedthrough model have been presented, the next section will be devoted to applying

the analytic growth rates directly to experimental scenarios.
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2.3 Methods for analyzing MRT growth in Experiments

This section applies MRT growth rates and feedthrough factors to scenarios com-

mon to pulsed power experiments. The first question that could be asked is how to

determine ρ, Bz, etc.? What is a reasonable acceleration, g or slab thickness, ∆?

Ideally, these values would come directly from experiment and many times some of

these parameters can be extracted but typically, not all of them. This section will

discuss the use of 1D MHD simulations to deduce these values for input into the

analytic theory. This illustrates a general technique to obtain MRT growth rates and

feedthrough factors in a pulsed power experiment.

Often the simplest parameter to infer from experiment is the acceleration, which

from our equilibrium expression, Eq. 2.3, takes the form

g ≈ |B0|2

2µ0ρ0∆
, (2.49)

where the magnetic field is deduced from the current driven through the load via

Ampere’s law in integral form

∫
C

~B · d~l = µ0Itot. (2.50)

The major limitation of these expressions is that they implicitly assume that kinetic

pressure of the plasma is negligible as compared to the driving magnetic field. In

such cases g can be more difficult to determine. One of the first applications of the

MRT calculations was to such a case so this will be discussed first. Following that

discussion, for the remainder of this chapter, Eq. 2.49 will be quite sufficient. In

chapter 3, a kinetic pressure dominated g will again be discussed, as related to the

stagnation phase of an inertial confinement fusion Z-pinch concept. Lastly, in the case

where stabilization effects are absent, a simple scaling for MRT growth is described
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in Appendix A, where g is eliminated and the MRT amplitude gain dependent only

upon the distance the slab has moved.

2.3.1 MRT growth rates applied to pulsed power driven thin foils

The original application of our analytically derived MRT growth rates and feedthrough

factor was to thin foil plasma load experiments driven by the linear transformer driver

(LTD) at the University of Michigan. The LTD is a pulsed power driver capable of

delivering ∼ 650 kA to a 400 nm thick aluminum foil. A typical experimental ge-

ometry is shown in Fig. 2.5, used by Jacob Zier [47] and the subject of his thesis

[48]. In Fig. 2.5, the foil is fitted between the anode-cathode gap and surrounded by

Figure 2.5: Experimental geometry for a typical aluminum foil experiment on the
LTD as setup by Jacob Zier. The green dashed circle highlights the 400 nm thick
foil. The current flows in the vertical direction and returns along the plates to the
left and right of the foil in the circled region[48][47].

the return current plates on the left and right side, highlighted in the green dashed

region. Thus, the rectangular region in the green dashed circle is the region of in-

terest and can be modeled by our theory. The three region model in this context

is then simply two vacuum regions (regions I and III) surrounding a plasma region

of finite thickness (region II). It is most natural to consider Fig. 2.1 rotated by 90◦
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so that the foil moves either left or right as in the experiment. The return current

plates are aligned vertically with the foil and located at x = µ, η (to the far left and

right of the green highlighted region of Fig. 2.5).The current flows axially (ẑ) so that

the corresponding induced magnetic field is in the ŷ direction (into the page at the

β-surface or out of the page at the α-surface). If the foil is positioned symmetrically

at x = 0 (midway between the perfect conductors in Fig. 2.1), By,3 = −By,1 and the

magnetic pressure on either side of the foil is exactly the same. In this case, the foil

does not move as the equilibrium condition is exactly satisfied, although the ablation

plasma expands from both sides. This case is also the same as if the return plates

were at x = ±∞. The result of this experimental setup should then be that there is

limited MRT growth, as the foil should not be significantly accelerated.

If the foil is offset from x = 0 then the foil should be accelerated due to the im-

balance of magnetic pressure caused by By,1 > By,3 or vice-versa depending upon the

offset. This imbalance of course derives from the conducting walls containing mag-

netic field (Fig. 2.1). The offset scenario should then produce MRT at one interface

with corresponding feedthrough at the other interface. The results of both centered

and offset cases are presented in detail in [48][47]. The surprising observation was that

in both cases, large amounts of perturbation growth were observed on both surfaces,

clearly visible in Fig. 2.6. The dominant wavelengths, as determined by Zier [47]

were ∼ 700 µm. In retrospect these results were in fact far from surprising. The first

clue was that while the initial foil thickness was 400 nm, laser shadowgraph images

showed that very quickly the foil ablation plasma expands out to a thickness ∼ 1.5

mm (Fig. 2.6). The first implication of this is for feedthrough. At λ = 700 µm,

the RT feedthrough factor, F = e−k∆, is F (∆ = 400 nm) = 0.99 as compared to

F (∆ = 1.5 mm) = 10−6 which is practically 0. Hence, at ∆ = 1.5 mm the interfaces

are effectively decoupled for the largest observed wavelength. Also important to keep

in mind is that the shadowgraphs obtained by Zier were imaged along the magnetic
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Figure 2.6: Experimental laser shadowgraphs obtained by Jacob Zier of 400 nm alu-
minum foil plasma from [48]. Laser probes perpendicular to foil current (i.e., in the
z-direction): a) pre-shot foil, b) 38 ns, 0.215 MA, c) 199 ns, 0.6 MA.

field lines, thus observing perturbations without any field line bending present. The

images, obtained in the (x, z) plane thus integrate out any perturbations in the ŷ

direction where field line bending may be important.

The explanation for the MRT observed in these experiments (Fig. 2.6) came from

physical intuition and confirmed by 1D resistive MHD simulations utilizing the HY-

DRA code [67]. The code used for these simulations will be more adequately discussed

later, so only some key features of the code and the subsequent results are presented

here. HYDRA is able to utilize advanced equations of state and models for ther-

mal and electrical conductivities so that a load can be simulated from the solid to

the plasma phase as best as possible given the MHD functionality of the code. The

physical picture of these foils at early times is that they are rapidly ohmically heated

volumetrically as the magnetic diffusion length, Lm >> ∆.The current is initially

confined to the outer surface of the foil, but the finite resistivity of the foil allows

for ohmic heating of the surface, which further increases the resistivity and allows

more magnetic field to diffuse into the foil. Since the foil is thin, it does not take
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long for current to diffuse into the entire foil thickness. The ohmic heating of the

plasma leads to rapid increase in the kinetic pressure of the foil resulting in the ob-

served physical expansion of the foil plasma dimensions. Figure 2.7 shows a snapshot

from a 1D HYDRA simulation of a foil offset to the left in the geometry of Fig. 2.5.

At this point the foil has exploded to a thickness of 250 µm but the magnetic pres-

sure has not yet begun to accelerate the foil. Initially, as the foil plasma expands,

ρ /(0.7 g/cc) 

By /(2000 T) 

Jz /(5x1013 A/cm2) 

Ti /(8 keV) 

cm 

Figure 2.7: Snapshot of 1D HYDRA simulation at 50 ns of initially 400 nm thick
aluminum foil. The foil plasma is accelerated from left to right. Note that the
current thickness of the foil plasma is roughly 250 µm at this point, a factor of 625
times thicker but the peak density is much smaller than solid density.

the conditions required for MRT are not met as the pressure and density gradients

are in the same direction. As the plasma expands, the load current continues to

rise as the typical LTD current pulse I(t) ∼ sin2(t/trise). This corresponds to an

increasing magnetic field in the vacuum region. This leads to the source of MRT,

when ∇ρ · ∇(pkin. + pmag.) < 0 is finally satisfied. The physical picture of the MRT

growth is that it is caused by deceleration of the expansion of the foil plasma on a

strong magnetic pressure on both sides of the exploded foil. Any offset of the foil

should still show asymmetry as the MRT condition will be satisfied at different times,
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but feedthrough should not enter as the two interfaces are effectively independent

(Fig. 2.6). This was indeed observed, and certainly not the intended mechanism for

studying MRT growth, though it was certainly sufficient for showing the evolution of

MRT growth, γ ∼
√
kg. It should be noted that the growth was slightly faster on the

right side of the foil plasma, which was closer to the return electrode. Again a more

detailed presentation of the experimental results is given in [48][47] for the interested

reader.

2.3.2 Using the HYDRA code for MRT and feedthrough calculations

In many cases, the experiments on pulsed power machines involve highly dynamic

changes in pressures, densities, and magnetic fields. One way to understand how these

parameters vary in time is to consider simple 0D models such as the snowplow model

[21] or 1D self-similar solutions for implosions [7][21]. These models tend to require

fairly strict assumptions such as a perfectly conducting plasma or an ideal equation

of state for the material. To escape these restrictions, 1D HYDRA [67] simulations

can be distilled into evolving, quasi-equilibrium models needed for the planar model,

shown in Fig. 2.1. HYDRA is capable of integrating an MHD load into a circuit

described by the pulsed power machine being used. In this way a self-consistent drive

current can be determined from a voltage pulse. The work that follows relies on

experiments already performed where the experimental load current was measured

and can be used to drive the simulation. Certainly there are some uncertainties in the

load current, however, any uncertainties will be consistent between the simulations

and analytic calculations, so any differences would appear in comparisons with the

experiments themselves. Any differences between 2D MHD simulations and analytic

calculations will have to be described by other means.

The basic procedure in one of these integrated calculations is to first determine

the experimental configuration and use that to set the initial conditions for HYDRA.

47



This requires defining the foil thickness and position relative to the boundaries, ma-

terial and equation of state and conductivity models for each material and lastly the

current source (as determined by the experiment in this case) and required boundary

conditions for a 1D problem. The specified current defines the driving magnetic field.

The simulation is then run for a desired time and results are then post-processed to

determine the required parameters for the analytic MRT model. Each simulation data

dump then gives the equilibrium parameters at the simulation time and the dispersion

relation ω(ky, kz) and F (ω) can be exactly computed for that simulation time. Thus,

the instantaneous MRT growth rate (and feedthrough factor) can be determined at

any time, for any sign of the acceleration. Of course, the problem solved in this case

is a linear one, but the perturbations themselves are nonetheless 3D. The time in-

vestment in the calculation comes mostly from the 1D simulation, which most likely

will never exceed 1 hour. Once the simulation is complete, the post-processing and

calculation of the dispersion relation and feedthrough factor takes no more than 10

minutes (even less if all of the simulation results are on the same computer). Hence,

the MRT growth of 3D modes is computed on the order of an hour or less. This

is certainly not possible for a 3D MHD simulation. Despite the many assumptions

inherent in planar (and cylindrical model), this work will show that the insight gained

by this technique is very powerful and applicable to a wide variety of circumstances

and may shed light on a number of unanticipated features observed in experiments.

With the motivation in mind, an example calculation is presented next. To best

illustrate the general situations allowed by the planar model, consider the compression

of a gas and axial magnetic field (Bz by an accelerated planar plasma slab (foil, flyer

plate, etc - Fig. 2.1). The slab is accelerated in the lab frame from x < 0 towards

x = 0 due to the magnetic field generated, By(t), by an axially directed current. The

gas is located in region III and the axial magnetic field is initially uniform across the

whole problem. As the slab is accelerated, the axial field is compressed as it is confined
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by a perfectly conducting boundary. By and g increase in time in region I due to the

increasing load current. At each timestep, quantities such as ρ(x), ~B(x), p(x) must

be transformed into ρ1, ρ2, ρ3 and ~B1, ~B2, ~B3, etc.. The plasma slab thickness must

also be determined, and may possibly change in time as ρ2(t) changes. A particular

challenge of the sharp boundary model is defining ∆ and what the actual extents of

the plasma are.

A 1D HYDRA simulation can easily be run in Lagrangian mode, thus the nodes

defining the liner boundary remain the liner boundary. However, ablation or ex-

pansion/compression can introduce significant density gradients, making the concept

of a ’boundary’ much more nebulous. Large ablation can easily add millimeters to

the estimated thickness based on this simple definition. The result is that the La-

grangian boundaries determine the maximum thickness of the plasma slab but most

likely overestimate it, particularly for cases like the thin foils on the LTD [47][48].

Overestimating the thickness, may have limited impact on the MRT growth rate cal-

culation, but the feedthrough factor strongly depends on the thickness. Thus, quan-

tifying feedthrough exactly is significantly challenging but the qualitative insights

are very useful. After thorough investigation, two plausible methods emerged for

determining an effective thickness of region II. (1) Take the average density between

the Lagrangian boundaries as ρ2 and then assume the total liner mass is uniformly

distributed around the peak. (2) Take the peak density as ρ2 and assume the total

liner mass is distributed uniformly. Method 2 will give the smallest thickness, as an

effectively higher density will be used, while method (1) is somewhere in between.

With α(t) and β(t) determined, all other parameters in each region can be calculated
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as well according to the formulae:

〈f1(t)〉 =

∫ β
µ
f(x, t)dx∫ β
µ

dx
=

1

h1

β∫
µ

f(x, t)dx, (2.51)

〈f2(t)〉 =

∫ α
β
f(x, t)dx∫ α
β

dx
=

1

∆

α∫
β

f(x, t)dx (2.52)

〈f3(t)〉 =

∫ η
α
f(x, t)dx∫ η
α

dx
=

1

h3

η∫
α

f(x, t)dx, (2.53)

〈f2(t)〉 =

∫ β
α
rf(r, t)dr∫ β
α
rdr

=
2

β2 − α2

β∫
α

rf(r, t)dr, (2.54)

Equation 2.54 shows a sample calculation for 1D cylindrically symmetric problem

which is necessary for this section and will be important in Chapter 3. In either case,

f(x, t) is the 1D profile from HYDRA. The last variable to be determined is g. The

acceleration can be computed a number of ways. The acceleration of each zone can

be computed and subsequently averaged to determine the bulk motion of the foil,

however this tends to be quite noisy. A better way is to use Eq. 2.2 with all the

other equilibrium parameters determined. Oftentimes, Eq. 2.49 is sufficient, but it

is just a limit of the equilibrium condition. With these formulae, any 1D HYDRA

simulation can be reduced to an effective three regions at any time of interest to give

the instantaneous MRT growth rate ω(~k, t) and feedthrough factor, F (ω).

2.3.3 Temporal growth of MRT

The next question is how to use the information obtained from HYDRA to un-

derstand an experiment with MRT. For the most part, WKBJ solutions are very
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adequate, where the amplitude gain, G of a particular mode is given by

G = exp

 t0∫
0

γ(~k, t)dt

 . (2.55)

As pointed out by Sinars et al. [51], substituting exp→ cosh leads to a slightly more

accurate solution. The most accurate method proves to be, for a single interface,

solving the more general ODE with initial conditions

d2

dt2
ξMRT = γ2ξMRT, (2.56)

ξMRT(t = 0) = ξ0, (2.57)

d

dt
ξMRT(t = 0) = 0, (2.58)

where ξ0 is the initial amplitude of the perturbation with wavenumber ~k. With two

interfaces the ripples, ξβ and ξα are represented as a superposition of four modes given

by [8]

ξβ(t) = a1e
iω1t + a2e

iω2t + a3e
iω3t + a4e

iω4t, (2.59)

ξα(t) = F (ω1)a1e
iω1t + F (ω2)a2e

iω2t + F (ω3)a3e
iω3t + F (ω4)a4e

iω4t, (2.60)

where F (ωj), j = 1, 2, 3, 4 are the feedthrough factor of the jth mode [57][8][2]. The

coefficients, aj are determined by the initial conditions on ξα and ξβ. Often times the

initial conditions are just

ξβ(0) = ξβ0, ξ̇β(0) = 0, (2.61)

ξα(0) = ξα0, ξ̇α(0) = 0, (2.62)

stating that the ripples on each surface have some initial amplitude but zero initial

velocity. The amplitudes may also be negative, introducing a phase to the ripples.
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For example, ξα0 → ξα0e
iφ, where φ is the phase. If φ = π for α and φ = 0 for

β, then the α ripple amplitude is now “negative” or 180◦ out of phase with respect

to the β ripple. These ripple amplitudes could also depend on the perturbation

wavenumber, ~k. Thus, a linear combination of surface ripples could be applied, again

with arbitrary phase. Given an initial spectrum, f(ky, kz), the solution of ξ(y, z, t) is

easily obtained via Fourier transform. Since this analysis is linear, the modes grow

independently according to Eq. 2.59 and Eq. 2.60. Such a method can only be taken

so far as the shorter wavelengths tend to grow very quickly. These modes reach

saturation and can possibly couple with other modes to generate longer wavelengths,

which is not accounted for in linear theory. Something like Steve Haan’s saturation

model could then be used [73][72]. Early on, natural perturbations on the surface of

aluminum targets can have wavelengths as low as 1 µm and physical processes such

as melting as well as material strength can play a larger role in the development of

perturbations so long as electrical current is also present [17][18]. Because of these

factors, the planar model that has been described is best suited to longer wavelengths,

in particular, pre-seeded longer wavelengths. The Sandia experiments by Sinars et

al. [51] are an excellent example of this scenario and will be referred to frequently.

2.3.4 A brief discussion of the HYDRA code for 2D problems

1D HYDRA simulations are invaluable for our analytic MRT calculations. Moving

into 2D allows for direct comparison of HYDRA estimates of MRT growth and the

result of the analytic calculations. 2D HYDRA simulations can also be directly com-

pared to experiments following some post-processing under the right circumstances.

This provides a direct link between experiment, simulation, and theory and lays not

only the groundwork for benchmarking simulations, but also allows for understanding

of experimental results. Some further details of HYDRA are discussed to illustrate

its capabilities.
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HYDRA is a massively parallel 3D arbitrary-Lagrangian-Eulerian (ALE) code de-

veloped at Lawrence Livermore National Laboratory [67]. ALE grid motion implies

that at any time during the calculation any portion of the mesh may move with the

fluid, may be locked in place, or somewhere in between. Oftentimes the mesh moves

with the fluid and then is relaxed to some extent, depending upon the level of mesh

distortion. Along with this feature are developed packages for radiation transport,

laser propagation, and resistive MHD, amongst many others. The ion and electron

temperatures can be tracked independently with the appropriate equation of state

selected. As mentioned earlier, HYDRA can utilize tabular equations of state and

transport models (electrical and thermal conductivity, radiation opacities) which are

invaluable for modeling experiments. The major features used in this work are the

resistive MHD package and tabular EOS (equation of state) and electrical/thermal

conductivities. While HYDRA is capable of 3D calculations, 1D and 2D calculations

will be the workhorse for this thesis due to their far less demanding computational

cost. The 3D simulations also contain an extreme amount of information, signifi-

cantly more challenging to digest than the 2D results. There are certainly intrinsic

limitations as to the applicability of 2D simulations. Often a direction of symmetry

is not present. For example, consider the LTD foils discussed earlier and the often

anisotropic nature of MRT. If 2D simulation of the foil is in the (x − z) plane, with

axial current, then the 2D simulations neglect all affects of (kyBy)
2.

The major requirements to study MRT in the lab are to be able to: (1) identify the

wavelengths present with their corresponding amplitudes, and (2) follow their evolu-

tion in time. Unless perturbations are seeded, the nonlinear behavior of MRT makes

reproducibility between experiments challenging, but not impossible [53]. Of course,

knowledge of the density of the material and how diffuse it is, is also very useful.

Measurements of densities, acceleration histories, and magnetic fields, in particular,

are often very challenging [53]. The main tool for identifying (1) and (2) is the use of
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high-resolution imaging. At the University of Michigan, laser shadowgraphy is used,

which is able to view plasmas reaching densities 1021 /cc (= cm3). The laser is capable

of taking four images during a single experimental shot so that MRT growth at four

different times can be compared. At Sandia National Laboratories, the pulsed power

targets are imaged with two-frame 6.151 keV radiography [52], allowing for much

higher densities to be imaged. One of the best ways then to compare 2D simulations

and experiment, is to take a HYDRA simulation at the appropriate radiograph time

and post-process the data to generate a synthetic radiograph (or shadowgraph).

This process is relatively straightforward with the appropriate software available.

SPECT3D [74] can be used to create the experimental imaging geometry based on

an imported simulation. An example of radiography is discussed. To set up a post-

processing simulation, the X-ray source position as well as spectral intensity is spec-

ified and aligned appropriately with the imaging detector. For the Z-beamlet back-

lighter (ZBL) at Sandia, this requires that the source be 3◦ above or below horizontal

[51] and the image taken in the (x,z) plane or (r,z) in cylindrical coordinates. A 2D

MHD simulation can then be imported and appropriately extended to 3D via rotation

or extrusion. The opacity, κ, of the material to the X-rays must be specified as κ

typically depends on the density and temperature of the fluid element (and X-ray

energy itself). Opacities are usually specified in units of cm2/g, such that the trans-

mission through a material scales, in the simplest sense, as e−κρL, where L is the path

length. The detector resolution in space and time can also be set according to the

capabilities of the experiment. For ZBL, this is 20 µm and ∼ 2 ns (temporal “blur”

will be neglected for the calculations in this thesis). SPECT3D then takes care of the

rest. It performs the x-ray transport calculation and generates the synthetic image

on a transmission scale. The image can then be directly compared to experimental

images. Such comparisons can be done a number of ways and two will be discussed

next.
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Due to the high opacity of aluminum to the ZBL produced X-rays (102 cm2/g

as compared to 2.24 cm2/g for beryllium [51]), the experimental radiographs are

observed to have very rapid drop off from 0 % transmission to 100 % transmission.

This produces a very distinctive boundary, amenable to simple methods of analysis.

The easiest place to start is to identify a transmission contour level to track. For

the aluminum simulations discussed below 50 % was selected, however, there was not

a great deal of variation between that and 20 % or 80 %. With the contour level

selected, a radial line-out can be taken at each axial position and the radius recorded

of the chosen transmission level. The result of this calculation is a trace detailing

the axial variation of the surface, r0(z), for a particular transmission level. For well-

defined perturbations (e.g., single mode, kz), the minimum and maximum of r0(z)

give the peak to valley amplitude of the mode and this is often sufficient, in these

cases, for determining the MRT growth. For more complicated mode structure, r0(z)

is best analyzed by examining its Fourier components using a Fast Fourier Transform

(FFT) algorithm. Comparing planar target experiments with 2D simulations presents

additional challenges, if both ky and kz are present. Experimental images obtained in

the (x, z) integrate through any dimension in the ŷ direction, appearing as additional

opaqueness in the (x, z) image. This is less of an issue for cylindrical imaging in (r, z)

as observed MRT growth occurs at the periphery of the target. The curvature reduces

the amount of material directly imaged in the (r, z), however a similar problem would

crop up in efforts to image the (r, θ) plane. Thus, the easiest to interpret images are

those containing only preferentially seeded wavelengths or where symmetry is high.

Also important to note, is that SPECT3D can certainly account for these effects given

a proper 3D simulation, as opposed to a 2D simulation spun around an axis.

Of course, HYDRA simulations do not necessarily need to be post-processed to

such an extent in order to determine MRT growth rates, feedthrough, etc. The pre-

vious methods can provide a nice benchmark case, but the density contours from the
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simulation can easily stand in for transmission and thus eliminates any line integra-

tion effects introduced by the SPECT3D method. Often this is the simplest method

to use in (r, θ) simulations. In simulations, rippling at the inner surface is usually

much easier to characterize. This is because this interface usually sees very little

ablation, keeping the density gradient high across the interface. Thus, the interface

and feedthrough is fairly straightforward to track. While this is not always the case,

feedthrough has proven to be easier to characterize. The 3D perturbations of course

add another degree of complexity in analysis, but the interface surface, r0(θ, z) is still

straightforward to determine. Appendix C presents some preliminary 3D HYDRA

simulations of a cylindrical liner with pre-seeded wavelengths.

2.4 Comparison of analytic MRT growth rates with simula-

tion and experiments at Sandia National Laboratories

To test the analytic growth rates of the planar model, as well as the HYDRA

code’s MHD modeling capabilities, a series of experiments by Dan Sinars et al. at

Sandia National Labs is examined [13][51]. Note that Ref. [51] is an extended version

of Ref. [13], for the remainder of this Chapter we shall reference the more in-depth

work of Ref. [51]. The purpose of the experiments was to directly measure the growth

of MRT in cylindrical liner implosions on the Z-accelerator. Z implodes these liners

with a peak current, directed axially, of nearly 20 MA on the order of 100 ns risetime.

Such a pulse is shown in Fig. 2.8. The liners used in these experiments were aluminum

with sinusoidal perturbations machined on the outer surface of the liner aligned with

the axial direction (Fig. 2.9). The machined perturbations were, most importantly,

azimuthally symmetric which eliminates a great deal of uncertainty in measuring MRT

from a 2D image. Sinars et al. [51] also shows radiographs of unseeded aluminum

liners which show substantial asymmetry between the two sides of the liner indicating
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ky = kθ > 0 (lack of azimuthal symmetry). McBride et al. [53] also showed that 2D

simulations of liners with only machining level imperfections (λ ∼ 5 µm) dramatically

overestimated MRT growth. Seeded liners of the type discussed above, thus are the

best for comparing 2D simulation with experiment and will be the focus for much of

the discussion in this section.

The other important consideration is cylindrical nature of the targets. The 1/(kzr)

terms common to cylindrical geometry are minimized when kzr is large. This con-

dition holds true for all but the longest wavelengths. Thus, the majority of the

simulations were performed in 2D (r, z) with perturbations where kzr >> 1. A com-

parison with a planar geometry simulation will show this to be true. The other reason

for this is that the current HYDRA boundary conditions on the electromagnetics does

not allow for both a By and Bz in a planar problem, as has been considered in the

MRT model derived earlier. In cylindrical coordinates, such boundary conditions

have been developed (where By ∼ Bθ) which allows for more thorough comparisons

of the analytic model. Development of the 2D simulations is discussed next.

The major example that will be used throughout, are the liners containing 400

and 200 µm wavelengths which were studied in the most detail in Sinars et al. [51].

Shown in Fig. 2.9 is an axial section of such a liner from the first timestep of the

2D HYDRA simulation performed in (r, z) coordinates. The red corresponds to the

liner material (aluminum). The liner itself has the exact same dimensions as in the

experiment where rα = 2.876 mm and rβ = 3.168 mm giving a thickness, ∆ = 292 µm.

The perturbation peak to valley amplitudes are set, as in experiment, to be 5 % the

perturbation wavelength. The 400 µm and 200 µm peak-to valley amplitudes are

then, respectively, 20 µm and 10 µm. This fixes the initial value of kξ0 = const. for

any wavelength.

Both the 1D and 2D simulations were driven by the current pulse used in the

experiment, reproduced in Fig. 2.8. Both simulations also used the SESAME EOS
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Figure 2.8: Current pulse used to drive 2D HYDRA simulations. In Sinars et al.[51]
this corresponds to shot z1965.

3719 [75] and 29373 [76] for the conductivities which were the most accurate models

available. The Livermore EOS (LEOS) 130 was also used, but no substantial dif-

ferences were observed in the MRT growth. HYDRA affords the ability to conform

the grid around the perturbations so that the sinusoidal perturbations are smooth.

Purely Eulerian codes generally require some sharp corners when there is curvature.

The 1D radial grid can be gridded as finely as desired, major requirement being that

the skin depth (of order 20 µm for aluminum) is resolved in the material. In 2D, the

radial grid is non-uniform with the majority of the zones devoted to the liner mate-

rial with a radial resolution near the outer surface of under a micron. The interior of

the liner has slightly larger radial resolution. The requirement on the axial zoning is

that there are at least 20 axial zones per wavelength, which is not too intensive for

only a section of the liner. 128 axial zones is the lowest number that can be used in

the simulation geometry shown in Fig. 2.9. The corresponding resolution is 9.3 µm

giving 22 zones/200 µm wavelength. Simulations were run at this resolution as well
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Figure 2.9: Simulated geometry for seeded liner implosion, with the liner in red at
t = 0. The top portion contains 400 µm perturbations and the bottom contains
the 200 µm perturbations. The peak-to-valley amplitudes are 20 µm and 10 µm
respectively, with an unperturbed liner thickness, ∆ = 292 µm.
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as double the axial resolution (∼ 4.5 µm/zone). Both simulations were more than

sufficient for capturing the growth of both perturbations.

2.4.1 Results of the ideal MHD model and 2D HYDRA simulations for

seeded liner experiments

As shown in Sinars et al.[51], the 400 µm perturbation was the primary wavelength

under quantitative study. It was found that the shorter the seeded wavelength used,

the more complicated the behavior became. Thus, analysis of the 400 µm perturbation

will be the starting point. Both 1D and 2D HYDRA simulations were run according

to the experimental geometry and drive conditions described by Sinars et al. [51].

An additional 2D simulation was run in planar geometry (x, z) to show the validity

of applying the planar model to cylindrical implosions. In order to directly compare

the 2D simulations to the experiment results, synthetic radiographs (6.151 keV) were

generated with SPECT3D following the discussion at the end of the previous section.

The images were also post-processed, isolating the 50 % transmission contour to

identify the aluminum/vacuum boundary, which subsequently determines the ripple

amplitude. The planar geometry simulation required setting a roughly equivalent

path length for the x-rays to travel through the plasma. Lastly, the 1D simulations

were distilled into the required data for the ideal MHD MRT model.

Since the only strong magnetic field present is the azimuthal magnetic field con-

tributing to the pinch force, no appreciable magnetic field line bending is present in

these experiments/simulations. Additionally, except for during the very early cur-

rent rise, pmag >> pkinetic which makes g straightforward to determine from Eq. 2.49,

where |B0| = Bθ(t). Hence, the implosion is completely driven by the magnetic pres-

sure. The dispersion relation for this case is also very simple since all ~k · ~B terms are

zero and any magnetic field enters only in g. This would not be the case for finite

ky ≈ m/R where kyBy terms will appear. For these simulations, kz∆ ∼ 5 → 10 for
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the 400 and 200 µm wavelengths, which means feedthrough should be quite limited

until the MRT growth is very large. The growth rate and feedthrough factor are then

no more than the RT growth rate,
√
kg and RT feedthrough factor, e−k∆ [2][57][6].

With the feedthrough factor being very small, this case can essentially be considered

as a single interface. Nonetheless, the full dispersion relation, Eq. 2.36, was evalu-

ated according to the 1D data at each time step in the simulation. To compare with

400 µm data, Eq. 2.56 was solved using ω(kz, t), with kz = 2π/400 µm and the initial

condition ξ0 = 20 µm.

The comparison of the growth of the 400 µm ripple determined by the analytic

model, 2D simulations and experiment is depicted in Fig. 2.10, where excellent agree-

ment is observed between all methods. The dip in amplitude just past 20 ns corre-

sponds to the time just before the magnetic pressure exceeds the kinetic pressure.

Physically, the rippled surface is heated and material effectively explodes off of the

surface due to high pressure, generating significant ablation. It is possible that this

is a form of ablative stabilization, but it occurs on a very short timescale. This has

the effect of seemingly reducing the ripple amplitude in the radiograph. This effect

is less observable in the planar radiograph as the line integration in the ŷ direction is

not the same as in the (r, θ) simulation. So, although the dip corresponds to a time

when a physical phenomenon is occurring, it is also a small artifact of the imaging

system. Overall this effect is also not important to the later time MRT evolution.

Discrepancies between the experimental data and calculations are easily explainable

in terms of uncertainty in g. Any uncertainty in the current measurement propa-

gates into the simulations and calculations. So in this case, it may be anticipated the

current was slightly underestimated. Finite density gradients would be expected to

reduce growth rates further.

The time history of acceleration of the liner, the singularly most important pa-

rameter in the planar model, is provided in Fig. 2.11. The acceleration, a(t) is equal
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Figure 2.10: Growth of the 400 µm perturbation as determined by the analytic planar
model, 2D simulations and experiment by Sinars et al. [51]. The resolution of the
radiography system at Sandia is 20 µm, otherwise no uncertainties are given in the
amplitude measurement.
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to −g(t) by definition in the derivation of the MRT growth rate. From Fig. 2.11(a)

it clear that the thickness, ∆ (= 292 µm when unperturbed) remains roughly con-

stant, with only slight compression and expansion present. Between 20 ns and 40

ns, the outer radius position can be seen to expand slightly, while the inner surface

remains immobile for over 40 ns. The expansion corresponds to the explosive ab-

lation discussed with regard to the dip in MRT growth in Fig. 2.10. Additionally,
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Figure 2.11: HYDRA simulated 1D liner dynamics of an imploding aluminum liner
using the current in Fig. 2.8.

the liner does not implode much on the time scale of interest, up until 80 ns or so.

The convergence ratio, CR = ri(t = 0)/ri(t) does not exceed 2, where ri is the liner

inner radius (ri(t = 0) = 2.876 mm). This justifies the planar approximation for

MRT since kzr = 45.18 >> 1. Beyond 80 ns, the 400 µm mode begins to saturate

and no longer grows exponentially. From the radiographs in Sinars et al. [51], it is

interesting to note just how well the linear theory does despite the highly elongated

bubbles and spikes. This is not the case for many of the shorter wavelengths pre-

sented, particularly those below 200 µm. These modes exhibit plasma jetting as well

as some coupling between the axial modes.

The 200 µm mode is somewhat more irregular in appearance, and the jetting

makes determining the spike radius highly uncertain (see Fig. 2.18 below). The
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imaging angle may also introduce some uncertainty in the trough region as the line

of sight may be somewhat obstructed for larger amplitudes. However, it is clear

from the experimental radiographs that the amplitude is increasing. Using the scale

provided in the experimental radiographs, the amplitude of the 200 µm mode was

calculated manually. The result of this calculation is shown in Fig. 2.12 as the blue

connected dots. Before 40 ns, the amplitudes were imperceptible to the eye (likely

clouded by 20 µm resolution of the instrument), so the amplitude was set to the

initial amplitude of 10 µm. Results of the analytic calculation are plotted in black
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Figure 2.12: Growth of the 200 µm perturbation as determined by the analytic planar
model, 2D simulations and experiment by Sinars et al. [51].

and agree fairly well over the time range available for comparison. The 2D HYDRA

simulation results came from directly analyzing the HYDRA output data to illustrate

that the 200 µm amplitude continues to grow past 70 ns. The dip in amplitude at

late times in experiment, appears to be shadowing of the bubble/spike for the 3◦ line

of sight. A comparison of the radiographs with and without the offset from horizontal

in Figs. 7 and 9 of Sinars et al. [51] shows this difference for 200 µm as the trough is

considerably better defined in the 0◦ case. The shadowing effect becomes important
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only for larger amplitudes as an example shows in Fig. 2.13. Figure 2.13 shows the

3° 

0° 

(a) Comparison of viewing angle effect, dis-
playing liner density surface at time, t =
63 ns.

3° 

0° 

(b) Comparison of viewing angle effect, dis-
playing liner density surface at time,
t = 74 ns.

Figure 2.13: HYDRA simulation showing the effect of viewing angle to be the most
important at later times for large amplitude, short wavelength (200 µm) perturba-
tions.

output of a 2D HYDRA simulation at a density cutoff of 0.1 g/cc. The 2D simulations

were spun around the axis using VisIt to generate the 3D effect. The view was then

adjusted from 0◦ to 3◦ for the times 63 ns and 74 ns. From Fig. 2.12, the 63 ns image

should show very little shadowing, as all calculation methods were in agreement.

The time, t = 74 ns should show shadowing to be more important, which is indeed

observed. Assuming this effect explains the discrepancy in amplitude at later times,

it then appears that the experimental data is in agreement with the analytic linear

growth rate as they were with the 400 µm wavelength. Nonlinear effects at 200 µm

could also contribute to the slowed growth.

As wavelengths longer than 400 µm are often observed in experiments, an 800 µm

wavelength simulation was run on a 1.6 mm axial extent (two wavelengths). The

initial amplitude for the perturbation was the same as for the 400 µm case. The

results were again in excellent agreement with the analytic prediction, as shown in

Fig. 2.14, despite the amplitude dip and rebound.
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Figure 2.14: Growth of the 800 µm perturbation as determined by the analytic planar
model and 2D HYDRA simulation (no experimental data for this mode).

It is remarkable that despite the ablative dip near 30 ns for both the 400 and

800 µm cases (Figs. 2.10, 2.14), 2D HYDRA simulations retain the memory of the

linear growth rate for t > 50 ns. A possible explanation, in the scope of linear theory,

is to decompose the problem into three time periods. The first, t < 15 ns, is the very

early time before much acceleration or growth occurs at all. The second, between

roughly 15 < t < 45 ns, where the ablative dip and then rebound occurs. Lastly,

the very linear growth phase of MRT, for t > 45 ns. In general, we can write the

ripple amplitude, ξ(t) as a linear combination of the linear MRT growth, ξlinear and

additional effects, ξa.e. (denoted a.e. for legibility),

ξ(t) = ξlinear(t) + ξa.e.(t). (2.63)
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The solution for the linear MRT component is

ξ̈linear = γ2
MRT ξlinear, (2.64)

⇒ ξlinear(t) = ξ0 cosh

∫
γMRTdt. (2.65)

The modification of the linear MRT growth is then accounted for by ξa.e., which is

non-zero only for 15 < t < 45 ns where the ablative dip and rebound occurs. Outside

of this time interval, ξa.e. ∼= 0 and the growth returns to the linear MRT solution.

The additional effects can incorporate effects such as ablation. However, it is clear

that while the linear theory for MRT does not capture this somewhat transient effect,

the late time evolution remains extremely well modeled.

Overall, the agreement between analytic theory and the 2D simulations and ex-

periments is surprisingly excellent considering all of the approximations inherent in

the planar ideal MHD model. However, the effect of magnetic field line bending has,

so far, been neglected. There are two simple ways to introduce this effect: (1) to con-

sider perturbations aligned with the driving field (ky), and (2) consider perturbations

perpendicular to the driving field but including an arbitrary strength magnetic field

aligned with these perturbations (like the MagLIF pre-magnetization). The latter

will be considered next for a number of reasons. If ky were used, the value of (kyBy)
2

would not remain constant in time and thus the overall effect more difficult to assess.

Of course, in this case there is always field line bending – there is no way to turn it

off. Using kz in conjunction with an applied Bz > 0, allows for direct comparisons

with results from this section where no bending is present.

2.4.2 Effect of an applied axial magnetic field on MRT growth rates

Application of an axial magnetic field in (r, z) geometry with a seeded kz intro-

duces magnetic field line bending. This axial field has the potential to significantly
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modify the dominant MRT growth rate [57][8]. Once again, the same sort of seeded

aluminum liner will be used. Unfortunately such experiments have not been car-

ried out, therefore comparisons will be made only between analytic theory and 2D

HYDRA simulations.

To design a useful simulation, Eq. 2.41 can be utilized. Since the feedthrough

factor is small, only the MRT unstable interface is of major interest. As of this

writing, Bz = 10→ 30 T is state of the art for liner experiments at Sandia, with the

upper end requiring reducing diagnostic access for experiments. While an axial field

of 10 T is sufficient to modify very short wavelengths (∼ 10 µm), longer wavelengths

are much less affected. Considering the 200 or 400 µm perturbation and the typical

value of g from Fig. 2.11(b), it is not hard to see that the (~k · ~B)2 term is small in

Eq. 2.41 when using even up to 30 T. We evaluate Eq. 2.56 in conjunction with the

MRT mode given by Eq. 2.41, to illustrate the importance of the axial magnetic field

to the MRT growth rate (Fig. 2.15).

Early on, for large enough axial magnetic fields, the surface is oscillatory. The

phase of the velocity, ξ′(t), when g becomes large enough such that the particular kz

becomes unstable, determines whether the amplitude is out of phase, in comparison

to the initial seed. For any value of Bz there is some critical value of g such that

the mode becomes unstable (exponentially growing as opposed to oscillatory). Larger

values of g are of course, required for larger values of Bz. For a fixed wavenumber, Bz

essentially increases the time for onset of MRT, tMRT. This can have some interesting

implications. For example, if ξ(t < tMRT) > 0, yet the amplitude was decreasing

(ξ̇(t) < 0) due to oscillation, then when g becomes large enough the growth must

first overcome the oscillation reducing the amplitude leading to much slower growth.

On the other hand, if ξ(t < tMRT)) > 0 and ξ̇(t) > 0, the MRT effectively has a

‘head-start’ on growth. The result being that the MRT growth can become larger in

the same time, than if ξ̇(t) ≤ 0. This effect becomes more apparent as the wavelength
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decreases and can introduce some perplexing behavior as shown in Fig. 2.15. The

curves were generated using the combination of Eq. 2.56 and Eq. 2.41.
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Figure 2.15: Comparison of MRT growth on with increasing applied Bz for two
different wavelengths. The shorter wavelength exhibits amplitude inversion.

Figure 2.15(a) shows that very strong axial fields can actually allow larger am-

plitude MRT growth than for moderate fields. This is because of the phase effect
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discussed. Before kg exceeded the stabilizing term, the amplitude oscillated and

became negative. As kg exceeded the stabilizing term, the amplitude was still in-

creasing (with the inverted amplitude) and thus the inverted amplitude was locked

in and started to grow due to instability. Fig. 2.15(b) shows the same calculation

but for 800 µm. Here the amplitude never inverted and the expected behavior is

observed, where increasing Bz decreases the overall MRT growth. In resistive MHD

simulations of liner implosions the effect observed for the 400 µm case is not observed

(no inversion), results are more in line with the behavior of the 800 µm case. This will

be discussed further, but a small amount of dissipation, afforded by finite resistivity,

is all that is needed to limit the phase effect from the oscillations. Since, Eq. 2.56 is

essentially the ODE describing an oscillator when ω2 < 0, an additional dissipation

term can be added, phenomenologically, by incorporating a finite resistivity, η, and

corresponding diffusion length, δ. Since the axial magnetic field is initially uniform,

perturbations growing on the liner exterior would be affected by the diffusion only if

δ ≈ ξ0, where ξ0 is the perturbation amplitude (i.e. the significant magnetic field line

bending occurs near the interface).

d2

dt2
ξ(t) = γ2ξ(t)− η

µ0δ2

d

dt
ξ(t) (2.66)

η

µ0δ2
≈ 107 1/s (2.67)

The amplitude of both perturbations begin at 20 µm. Important to note, is that the

bulk resistivity of the aluminum tends to only increase as it is ohmically heated. The

majority of the liner does not enter the plasma state, so the resistivity increases with

temperature. Hence, dissipation tends to increase in time. Initially, with η = 28 nΩ,

η/µ0δ
2 = 5 × 107 1/s. Keep in mind that the dissipation-like term is completely

phenomenological as it is simply the inverse of the diffusion time. In the limit that

η → 0 ideal MHD conditions are recovered. For non time-dependent coefficients, the
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solution of Eq. 2.66 takes the form, ξ ∼ e−ζt/2 sin (γt+ φ), where ζ = η/(µ0δ
2).

Whatever the source of the dissipation, such a term is necessary to eliminate the

oscillation seen at 100 T. Performing the same calculation as for Fig. 2.15, now with

the dissipation included produces much more realistic results. Adding the dissipation
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Figure 2.16: Comparison of MRT growth with increasing applied Bz and slight dissi-
pation due to finite resistivity.
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removes the amplitude inversion for the 400 µm case, this is in agreement with 2D

HYDRA simulations that will be presented later on. However, Eq. 2.66 is only a

qualitative solution which can address how additional dissipation affects the solution.

For shorter wavelengths, some amplitude inversion remains and determining the exact

cutoff for inversion is not possible (nor physically illuminating). Ablation and density

gradients more strongly affect shorter wavelengths, which compound the difficulty

in correctly modeling them. With the above considerations in mind, results of 2D

HYDRA simulations with the addition of an axial magnetic field will be presented

next.

Whether or not dissipation is considered, from the above figures, it is clear that

a 10 T axial magnetic field is quite insufficient to affect MRT for long wavelengths,

such as 400 µm and even 200 µm based purely on the linear growth rate. To pro-

ceed, a much higher field of 100 T is used to more strongly affect the MRT growth

(such magnetic fields, or even higher values, are achieved after the seeded axial mag-

netic field is greatly compressed in MagLIF experiments [54][55][38][39]). These 2D

HYDRA simulations were run with the exact same setup as that which produced

Figs. 2.9, 2.10, 2.12 except with an additional (initially) uniform axial magnetic field

of 100 T. The MRT growth for the 400 µm perturbation is shown in Fig. 2.17 and

directly compared to the case without an axial magnetic field as the solid curves.

Figure 2.17(a) also shows the corresponding analytic solution as the dashed curves.

It is clear from Fig. 2.17(a) that the MRT stabilization is strongly overestimated

when a finite resistivity is included and there is certainly no amplitude inversion. As

a reminder, these 2D simulations were run using tabular values for the electrical resis-

tivity, which are the best available. In order to isolate the source of the discrepancy,

a second HYDRA simulation was run enforcing a constant resistivity (∼ 10x room

temperature aluminum conductivity). This essentially turns the calculation into an

almost ideal MHD calculation. The result of this simulation is shown in Fig. 2.17(b)
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Figure 2.17: Growth comparison of MRT in the presence of a strong axial magnetic
field using resistive and ideal MHD.

and the agreement is observed to be excellent between the simulation and analytic

calculation. When significant resistivity is present the magnetic field lines are no

longer frozen into the aluminum, hence bent field lines need not relax the aluminum

when the field lines themselves relax. Thus the magnetic tension can be reduced sim-

ply by magnetic diffusion, which reduces the efficacy of stabilization of MRT by field

line bending. The magnetic diffusion time scale was estimated to be 5×107 s−1. Over

70 ns, the magnetic field decays to exp [−(1/2)× (5× 107)× (70× 10−9)] = 0.174 of

the original value. The magnetic tension is reduced by a factor of (0.174)2 = 0.0303,

i.e., as if Bz ≈ 0, explaining the HYDRA results shown in Fig. 2.17 for both 0 T and

100 T applied axial magnetic field.

While overall, not a particularly surprising result, the extent of the reduction of

MRT stabilization is somewhat surprising. Of course, there are very few ways to com-

bat these resistive effects to achieve better MRT stabilization other than completely

turning most of the liner to conductive plasma or slowing the azimuthal magnetic field

diffusion wave heating the liner. As mentioned though, 100 T is somewhat beyond

any current technological capabilities for MagLIF-like implosions, so this problem

merely serves as a benchmarking one. It may also be possible to flux compress an

initially uniform axial magnetic field by a thin shell or foam located at a larger radius
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to achieve larger fields at the liner surface [66]. The implications of a finite resistivity

for feedthrough stabilization will be discussed later in this chapter.

As the last additional proof that the axial magnetic field has very little impact on

the evolution of MRT for the wavelengths considered, synthetic radiographs for Bz =

0, 10, 100 T are shown in Fig. 2.18 at 65 ns. The obvious feature for increasing axial

Figure 2.18: Synthetic radiographs compared to Sandia experiments by Sinars et
al. [51] (Bz = 0) for increasing axial magnetic field strength in the simulations at 65
ns.

magnetic field strength is that short wavelength modulation of the larger wavelength

structure is reduced and nearly vanishes at 100 T. This makes sense from what the

analytic model predicts. Despite the finite resistivity, an axial magnetic field certainly

seems to affect very short wavelengths. The 400 µm and 200 µm modes of course, look

very much the same and have nearly unnoticeable differences in amplitude. Chapter

3 will investigate the effect of an axial magnetic field on shorter wavelengths in high

convergence cylindrical targets that use only surface roughness. With some idea of

how the planar model performs with regard to MRT growth, the focus is next turned

to feedthrough of MRT.
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2.4.3 Feedthrough in seeded liner experiments

The previous sections have focused on the growth of MRT on the exterior surface

of a seeded liner. This section now focuses on the inner surface of the liner, where

feedthrough is expected to be observed. Of course, as can be seen in the experimental

radiographs by Sinars et al. [51], the opacity of aluminum is too high for 6.151 keV

x-rays to image the inner surface. While this is less of an issue for beryllium (until

high convergence), the focus will remain on aluminum, since all previous simulations

have been based on this material. The implicit assumption will be that since HYDRA

models MRT well, the feedthrough should also be well modeled. There will be no

experimental evidence to back up this claim.

The seeded liners used in the previous section will also be used here. Thus, the

feedthrough factor for the 200 and 400 µm perturbations is quite small. F (400 µm) =

0.01 which has the implication that rippling on the inner surface will only become

appreciable after significant time or MRT growth. However, an interesting result

is obtained when the amplitude of the ripple on the inner surface is plotted as a

function of time using the exact configuration of Sinars et al. [51]. Measuring the

ripple amplitude in this case is straightforward as the interface nodes are Lagrangian.

There is slight expansion of the interface zones due to the shock transmission at

the interface, but nonetheless, the Lagrangian position of the nodes, well defines the

surface. The amplitude of the ripple for a particular wavelength is just the maximum

radius minus the minimum over the appropriate axial extent. Figure 2.19 shows a

comparison of the 2D HYDRA data along with the analytic result using the planar

model using Eqs. 2.59-2.60. The agreement is far from favorable. The reason for the

large discrepancy is due to the shock compression of the liner, by the current drive.

While the incompressibility condition holds well for the perturbation growth on the

exterior of the liner, the presence of a shock in the interior of the liner invalidates that

assumption. The shock carries the initial perturbation on the exterior liner surface
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Figure 2.19: Growth of the 200 and 400 µm perturbations on the inner surface of a
292 µm thick liner driven by the Z-machine current pulse of Fig. 2.8.

to the inner surface in a finite time (∼ 40 ns). While the ripple on the shock decays

as it moves through the liner, qualitatively similar to feedthrough becoming smaller

for larger thickness, the ripple does not decay as fast as feedthrough predicts. This

leads to a substantial ripple on the inner liner surface. This effect will be discussed

in greater detail in Chapter 4 (which will concentrate on the inner liner surface), but

suffice to say, the shock ripples the liner inner surface more strongly than feedthrough

predicts. Additionally, the subsequent growth of the ripples on the inner liner surface

does not continue exponentially in time, as would be observed if feedthrough were

the source of the amplitude increase. This is more apparent for 400 µm, but the

scaling in time is roughly linear, a signature of what is known as the post-shock

Richtmyer-Meshkov instability [68][69]. This will also be explored further in Chapter

4. In order to better compare 2D simulation and analytic theory, it is easiest to reduce

the strength of the shock by modifying the load current.

A well known technique to do this, is to isentropically compress the liner [37].
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By definition no shock is produced and such a pulse also reduces the shock heating

of the liner inner surface. The method to determine an appropriate drive current

to produce isentropic compression is not so simple but has nonetheless been done

in experiments by Martin et al. [37] at Sandia. Perfect isentropic compression is

not needed for feedthrough comparisons as will be shown, only significant reduction

in shock strength such that the exponential evolution in time of feedthrough can

dominate the evolution. The general feature for such a current pulse, as compared

the shock compression pulse, is a lengthening of the rise-time of the current pulse.

This serves to keep the compression waves launched in the liner from overlapping, as

opposed over taking of the earlier launched waves by the later launched waves. Hence,

the characteristics of the waves must not intersect in order to achieve isentropic

compression. If the current rises too quickly, these characteristics intersect and a

shock is generated.

A sample empirically determined current pulse that achieves this is shown in

Fig. 2.20; note the increased pulse length but could still be used on Z. The peak cur-

rent is of less importance since the most interesting feedthrough effects occur before

this. As shown in the previous section, linear theory also begins to breakdown near

peak current as the MRT amplitude becomes large. To test analytic theory, four 2D

simulations were run each with a different wavelength seeded on the liner exterior:

200, 400, 800, and 1500 µm (all included two wavelengths per simulation except the

1500 µm case which used just one). This covers a wide range of feedthrough factors,

from 10−4 → 0.3. The result of the four simulations using the new current drive is

shown in Fig. 2.21. Plotted is the normalized amplitude of the corresponding ripple

wavelength on the liner inner surface. The dashed lines correspond to the analytic

solution for feedthrough and the solid curves are the 2D HYDRA results. The re-

sults are overall excellent, though for the agreement here, the thickness used in the

feedthrough calculation had to be reduced by 15 % indicating an effectively, thin-
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Figure 2.20: Empirically determined current pulse achieving low shock strength.
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Figure 2.21: Evolution of inner liner surface for four different seeds on the liner
exterior. The analytic calculation is shown as the dashed line, while the HYDRA
simulations are the solid curves.
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ner liner. Nevertheless, exponential-in-time scaling is observed which corresponds

exactly to the scaling predicted by the feedthrough model. While most of the wave-

lengths show very smooth behavior after the ‘shock’, the 200 µm case has the smallest

feedthrough, and is considerably more noisy due to the radial resolution required to

measure it. Note that a weak shock may still exist, but the propagation speed (and

corresponding breakout time) is only slightly greater than the ambient sound speed

in aluminum. A perfectly isentropically compressed liner would still exhibit some

finite delay time until feedthrough begins, limited by the sound speed of the mate-

rial. In the incompressible theory used, the sound speed is effectively∞. Despite the

delay time, the feedthrough theory still shows excellent agreement. In essence, we

have found that feedthrough, propagating at or near the sound speed of the material,

is very well approximated by our incompressible feedthrough factor. This platform

instills a good deal of confidence in studying feedthrough based on these results, so

once again, the next most interesting addition to the problem is an axial magnetic

field.

As shown in the previous section, as well as in the earlier figures (Fig. 2.2-2.4),

looking at the scaling of feedthrough with an axial magnetic field, an axial mag-

netic field on the order of the drive magnetic field (field providing the acceleration)

is needed to provide a noticeable effect (see Figs. 2.3,2.4). In a real experiment,

this is accomplished by compressing the axial magnetic field via the imploding liner

[54][55][38][39]. The seeded liners, however, do not survive long enough to compress

the field sufficiently, due to the initial seed of the large amplitude perturbations.

Thus, once again, an unreasonably large initial axial magnetic field is used for the

following study with initial seeds. For the current pulse described by Fig. 2.20, the

drive field is on the order of a couple hundred Tesla, thus a suitable axial field is also

a couple hundred Tesla. Important to note though, is that achieving Bz ≈ Bθ, in

unseeded liners, is not unreasonable at high convergence [54][55][38][39]. Additionally,
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at higher convergence MRT typically develops to characteristic wavelengths varying

between 500 µm and 1 mm. So the results presented next, while principally a sample

problem, are still intended to simulate reality, to a degree. We also know that the 100

T field does not strongly affect the long-wavelength growth of MRT. Though it does

reduce growth of shorter modes (Fig. 2.18), these modes do not feedthrough anyway

because their feedthrough factor is so small. Meanwhile, Fig. 2.3 showed feedthrough

reduction even for very little field bending at the exterior (note: k∆ ∼ 3).

A set of 2D HYDRA simulations were run for both 400 and 800 µm seeded wave-

lengths with Bz = 0, 100, 200 T. The 800 µm mode is the most dangerous to

feedthrough but also the least affected by the axial field. For the following cases, the

inner surface ripple amplitude is normalized by the null case where Bz = 0 T, ξα,0.

Thus, ξα,Bz/ξα,0 is the ratio of the ripple amplitude with an axial magnetic field to

without. This directly shows the magnitude of the reduction in ripple amplitude by

the axial magnetic field. The normalized amplitude of the ripple on the inner liner

surface is plotted as a function of time, first for the 800 µm perturbation (Fig. 2.22).

On average, the 100 T field reduces the amplitude by 25 % and the 200 T field reduces

the amplitude by roughly 60 %. Included in Fig. 2.22 is also a 2D simulation using

artificially low resistivity, as was done in the MRT study with an axial magnetic field.

While ideal MHD again over-predicts the reduction in amplitude of the ripple, in this

case, the magnetic field has a much larger effect on the inner surface. This qualita-

tively agrees with what was seen early on in Fig. 2.3. More importantly, for larger

axial magnetic field, even considering real resistivity values, substantial reduction in

the ripple amplitude is observed even at 800 µm. This is a highly encouraging result

as the more pristine the inner liner surface in a liner implosion, usually the better.

The 400 µm case shows even better results, shown in Fig. 2.23. This is also expected

since magnetic field line bending (tension) better stabilizes shorter wavelengths. The

200 T case actually exhibits oscillation in this scenario, which is the source of the
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Figure 2.22: Evolution of inner liner surface for an 800 µm axial wavelength pertur-
bation including two different axial magnetic field strengths. The ideal calculation
again uses an artificially large and constant resistivity in the simulation.
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Figure 2.23: Evolution of inner liner surface for a 400 µm axial wavelength perturba-
tion including two different axial magnetic field strengths.
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ripple between 280 and 300 ns. This oscillation damps quite quickly and the ripple

on the inner surface becomes quite small. The liners in these simulations also showed

marginally lower overall resistivity, which may help contribute to these key results.

In the final section of this chapter, the planar model will be applied to scenarios

where an axial magnetic field is highly compressed to illustrate further the importance

of the above results.

2.4.4 Temporal evolution of surface ripples and application to magnetic

flux compression platforms

This section will feature extensive use of Eqs. 2.59-2.60 to accomplish three things:

(1) examine the evolution of MRT from various initial surface spectra, (2) evaluate

the evolution of the feedthrough surface when ripples are already present, and (3)

determine the extent of feedthrough reduction via flux compression.

2.4.4.1 Growth of MRT from arbitrary surface perturbations

In almost any real target, there are a large number of very short wavelength

perturbations on the target surface due to the production of the target itself. These

perturbations vary by material, but wavelengths are typically on the order of 10s

of micron with amplitudes ranging from 100s of nanometers to a few micron [51]

(aluminum is typically smoother than beryllium). According to RT scaling these

short wavelengths grow the fastest. Two examples are shown next to illustrate this

effect using ky = 0 and kz > 0. Figure 2.24 shows the result of two calculations using

two different initial surface spectra, f0(kz). Figure 2.24(a) uses a Gaussian shape for

f0, centered about 100 µm, while Fig. 2.24(b) uses an initially flat profile (500 nm).

Figure 2.24 uses g(t) from the usual 1D HYDRA simulation (Fig. 2.11(b)) to calculate

the evolution of the these spectra according to Eqs. 2.59-2.60 over 85 ns. Each color

is separated by 5 ns in time. In both cases it is clear, that the shorter wavelengths can
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(b) RT evolution of an initially flat axial wavelength spectrum in
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that fall below the lowest solid curves are initially stabilized by the
axial magnetic field.

Figure 2.24: Comparison of RT growth from different initial surfaces (different ax-
ial wavelength spectra). Dashed curves were calculated with Bz = 10 T. Time is
increasing as the MRT grows. 83



quickly overtake any longer wavelengths initially present. The dashed curves show

the same calculation with a constant Bz = 10 T that slows the development of short

wavelength modes. Additionally, at early times (t < 50 ns), the mode amplitudes

are reduced from their original amplitude (as in Fig. 2.16) for both spectra. By 85

ns, the shorter wavelengths dominate the growth unless the axial field is present.

However, the amplitudes remain quite large whether there is an axial field or not. A

well-known limitation of such a calculation is the assumption of linearity. The gain

shown in Fig. 2.24 is certainly much too large for the shorter wavelengths. Without

accounting for saturation and mode coupling, the shorter wavelengths grow without

bound which is not physical. A simple solution to this problem is to simply turn off the

growth of short wavelengths once their amplitude has reached the traditional ∼ λz/10

or use the Haan saturation model [73]. Nonlinear processes, however described, may

turn short wavelengths to longer wavelengths that grow slower.

In the next set of simulations, to give the long wavelengths an advantage, a Gaus-

sian, peaked at 3 mm with a large tail to short wavelengths, was used as the initial

spectrum. The initial spectrum is the bottom (lowest amplitude) curve in Fig. 2.25.

To understand the impact of the axial field, this spectrum is evolved according to

the 1D HYDRA profile deduced growth rates for two cases, with and without a 10

T axial magnetic field. In these cases, the axial magnetic field is fixed at this value.

Figure 2.25 shows the unnormalized evolution of the spectrum for the both the un-

magnetized (solid) and magnetized case (dashed). At t = 0 the two curves (Bz,0 = 0

T, Bz,0 = 10) begin with the exact same spectrum . As time increases the MRT

grows, with the shorter wavelength’s growth being reduced the most by the 10 T

magnetic field, then each color curve steps by 10 ns. The differences between the

solid (Bz = 0 T) and dashed (Bz = 10 T) curves for the shortest wavelengths show

the unmagnetized to grow faster while the long wavelengths are minimally different.

The sloped nearly horizontal line in Fig. 2.25 at short wavelengths, shows when the
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short wavelengths reach λz/10 and are artificially stopped from growth. Since the

short wavelengths initially present on targets are most affected by the axial magnetic

field, it seems possible that the axial field can affect the later time MRT structure by

interfering at early times. The physical picture may then be that the axial magnetic

field is able to slow the nonlinear generation of longer wavelengths since the short

wavelengths do not grow quite as quickly. Though the degree to which this can occur

is difficult to estimate based on the results of the 2D HYDRA simulations including

an axial magnetic field, showing finite resistivity playing a role in reducing this sta-

bilization mechanism. Also important to note is that the perturbations are stabilized

to different degrees in the y ∼ θ direction. This can be investigated more thoroughly

in 2D simulations and eventually, 3D simulations.
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Figure 2.25: An initially gaussian spectrum peaked at 3 mm is evolved using our
MRT growth rates, with and without a 10 T axial magnetic field. The solid curves
set Bz = 0 and the dashed use Bz = 10 T. Each color is separated by 10 ns. The
mild difference in amplitude between the solid and dashed curves indicates the slower
growth of the mode due to the axial magnetic field.
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In Fig. 2.25, the total gain for the relatively long wavelengths observed in exper-

iments (0.5 to 1 mm), independent of an axial field, is overall lower than expected.

The initial amplitude at the peak (λ = 3 mm) is 0.1 µm and the amplitude after 140

ns is roughly 4 µm, yielding a gain of 40. For wavelengths around 700 µm, the gain

is a much more violent and unrealistic 3× 104. If the growth were completely linear,

this would correspond to a 15 nm amplitude perturbation growing to 500 µm. Surface

finish data from experimental targets shows that long wavelengths like 700 µm are

not present at large amplitudes, if at all. In general, it is difficult to obtain suffi-

cient growth of long wavelengths from an initially unseeded liner amplitude without

considering contributions from shorter wavelengths.

2.4.4.2 Effect of ripple phase of two surfaces

Equations 2.59-2.60 are general enough to allow for different initial phase per-

turbations to be on the two liner surfaces. Two limiting cases are considered: (1)

completely out of phase, where the peaks on one surface line up with the troughs on

the other, and (2) completely in phase, where the peaks line up at the two surfaces,

leading to a thick sinusoidal plasma slab. For these two cases, the phase is adjusted

by the sign of ξα0 relative to ξβ0 , where it will be assumed ξβ0 > 0. Once again,

the Sinars et al. [51] parameters are considered with λ = 400 µm (Fig. 2.26(a) )and

1.5 mm (Fig. 2.26(b)). The α interface will be the surface experiencing feedthrough,

while the β surface is the highly unstable MRT surface. The results of these three cal-

culations is shown in Fig. 2.26 which displays the inner surface (feedthrough surface)

as a function of time for the two different wavelength perturbations..

The results are very clear in showing that the relationship between the initial

phase of the dominant MRT mode and the state of the feedthrough surface can be

very important as well as wavelength dependent. While this is a highly idealized case,

it can be imagined that once longer wavelength MRT has developed on the exterior
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(b) Evolution of a 1.5 mm axial wavelength
perturbation seeded on the inner surface
(α) with phase relative to the 1.5 mm per-
turbation on the outer surface (β). ξα0 = 0
corresponds to a smooth inner surface.

Figure 2.26: Inner and outer surface evolution of different combinations of 400 µm
and 1.5 mm perturbations on the inner and outer liner surface.

of a target it can interact with any large scale perturbations on the inner surface

that could have arisen from poor machining or other instabilities (such as Richtmyer-

Meshkov instability that may be shock-excited during laser preheat in MagLIF, as

in section 4.3 of this thesis). These results reveal the interesting possibility that

there could be an optimum for the relationship between the two surfaces in order

to minimize feedthrough. Meanwhile, the growth of MRT on the unstable surface

remains independent of the state of the α surface for the 0.4 mm wavelength because

of the small feedthrough factor; the analytic result for ξβ similar to Fig. 2.26 would

yield the same curves (not shown). This is confirmed by 2D HYDRA simulation

results using the various seeds just discussed. The results for the MRT growth on the

exterior are plotted in Fig. 2.27(a), clearly showing the MRT growth to be independent

of the condition of the inner surface when the large perturbation is present. The inner

surface evolution is plotted in Fig. 2.27(b). 2D HYDRA simulations show very similar

qualitative behavior as found in the analytic results (Fig. 2.26). The smooth inner

surface case has a medium amount of growth while the out of phase case shows the
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Figure 2.27: HYDRA 2D simulation of the inner and outer surface evolution of dif-
ferent combinations of 400 µm perturbations on the inner and outer liner surface.
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most growth and the in phase case, the least amount of growth. Important to keep in

mind for the 2D simulations is that the liner was still shock compressed. Despite this,

the analytic model is still able to predict the qualitative behavior at both surfaces.

A more detailed look at inner surface seeding will be presented in Chapter 4.

2.4.4.3 Magnetic flux compression and feedthrough reduction

Typically, generation of a large axial magnetic field from a small seed field is

accomplished by compressing the flux contained in an imploding liner. The planar

model is capable of describing this sort of compression as the axial magnetic field in

the gas or vacuum region can take on an arbitrary value. In this way, an imploding

liner will be modeled. Chapter 3 will be devoted to this sort of geometry and look at

additional effects expected when 1/r or 1/r2 dependences are important. For now, it

is again assumed that kzr is sufficiently large and consider the faster growing modes,

which are aligned axially (m = 0 or ky = 0). Long wavelengths are again the most

important as they have the largest feedthrough factor so 1.5 mm is selected as the

axial wavelength. Dominant wavelengths observed in experiment vary from 500 µm

to 1500 µm. As these results are intended to directly illustrate effects relevant to

experiment, a mild 10 T field is used as the initial seed field. 1D simulations have no

difficulty running such a problem and can capture the flux compression that occurs.

The large Bz generated is then used in the analytic planar model in region III, while

region I remains at 10 T (no flux compression). These 1D HYDRA simulations then

are fed into Eqs. 2.59-2.60. The reader is again reminded, that while this calculation

is performed over the entirety of the implosion for a particular wavelength, nonlinear

effects as well as magnetic diffusion can easily affect the overall amplitude after such a

substantial time. However, the qualitative behavior introduced by the axial magnetic

field is anticipated to remain. Results of the full calculation are shown in Fig. 2.28

which shows the growth factor for the inner surface, α, of the liner as a function of the
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strength of the compressed axial magnetic field. The MRT growth factor is shown,

in Fig. 2.28(a) as the blue curves.
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Figure 2.28: Comparison of inner surface rippling evolution of a 1.5 mm perturbation
with and without an applied Bz.

The solid curves are for Bz,0 = 10 T, while the dashed curves depict the zero axial

field case. The evolution of the magnetic fields is shown in Fig. 2.28(b). As expected,

the axial magnetic field does not impact the MRT growth on the outer surface, β,

whereas for high flux compression, the feedthrough can be substantially reduced.

From Fig. 2.28(b), this reduction only occurs past 100 ns, otherwise the azimuthal

field is much too large (and hence acceleration). Nonetheless, during this short time

period, the compressed axial magnetic field is able to significantly reduce feedthrough

even for relatively long wavelengths. Shorter wavelengths are increasingly stabilized

as shown earlier.
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2.5 Concluding remarks

This chapter has presented an analytic planar model describing MRT growth

and feedthrough in magnetically accelerated targets. The planar model makes use

of 1D HYDRA simulation results as input to the model. This allows for a more

realistic evaluation of the instantaneous MRT growth rate. Applying this method to

seeded aluminum liner experiments by Sinars et al. [51] showed excellent agreement

between the models, 2D HYDRA simulations and Sinars’ experiments. The 200 µm

wavelength seemed to be the lower limit for long time scale linear theory growth.

Calculations also predict significant stabilization of MRT and feedthrough with a

strong axial magnetic field. 2D resistive MHD simulations show the axial field has

the strongest impact on feedthrough, while MRT stabilization could be much less

effective due to diffusion of the magnetic field lines. Feedthrough in seeded targets

is more challenging to understand when the target is shock compressed, but in the

absence of a strong shock, analytic feedthrough theory agrees well with the 2D MHD

simulations. Lastly, the analytic solutions combined with 1D HYDRA data were used

to determine the temporal evolution of surface ripples of any wavelength. Significant

reduction in feedthrough was shown to be present in flux compression platforms, while

only modest reduction in MRT on the outer surface was shown. Feedthrough is also

affected by any perturbations already present on the feedthrough surface. The relative

phase between the initial MRT and feedthrough perturbations can strongly affect the

overall evolution of the feedthrough surface. Ideally, the perturbations are in phase,

to minimize feedthrough. A more detailed look at inner surface perturbations will be

discussed in chapter 4.

While not without its limitations, the planar model contains a vast amount of

information particularly when integrated with advanced 1D resistive, compressible,

MHD simulations. The simulations help ameliorate the major weaknesses of the

model particularly in constructing the equilibrium. 2D simulations help illustrate the
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regimes the model works best and the model also provides some simple benchmarking

problems for the 2D simulations. Non-sharp boundary solutions of the planar model

are possible as well that can also help to mitigate the weaknesses of the model. Such

solutions require numerical methods, which substantially increases the calculation

time. On the other hand, the planar ODE is much better behaved than the equivalent

in cylindrical geometry. This is of course true for the sharp boundary model as well.

The next chapter will tackle one of the weaknesses of the planar model: cylindrical

geometry, especially in the coupling of MRT, kink and sausage modes.
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CHAPTER III

MRT Growth on a Cylindrical Liner

3.1 Introduction

The main reason for an analytic formulation of MRT in cylindrical geometry is

that when g = 0 in the planar formulation, there is no unstable mode under the ideal

MHD approximation. Plasma instabilities known as the sausage and kink modes

were the killers of equilibrium Z-pinch fusion in the early days [70]. So in one of the

most common scenarios in cylindrical geometry, even when g = 0 there exists the

possibility of instability. This is purely due to the current carried in the cylindrical

plasma column. Such instabilities are prime examples of MHD instabilities. Of course,

an equilibrium Z-pinch is designed to operate and burn for very long time scales. This

gives the MHD instabilities ample time to grow. Liner implosions occur on a much

faster time scale (∼ 100 ns) so the purpose of this work is to include sausage and

kink effects on MRT so that the instability calculation is valid, whether or not g is

zero (i.e., whether or not the liner is moving). For an ICF implosion, g ≈ 0 occurs

at two key times: (1) initially, as the current ramps up, the liner remains mostly

motionless due to inertia and (2) near stagnation, when the liner stops accelerating

inward and begins to decelerate on a hot fusion fuel. These two periods are certainly

not restricted to ICF type implosions, but it is a particularly relevant and important

application.
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The calculations presented here build on the seminal work by Harris [6] and more

recent work by Bud’ko [7]. Harris’ early work focused on a thin shell model concen-

trating on MRT and only considered very specific magnetic field orientations. His

description of feedthrough was similarly limited, and not presented in cylindrical ge-

ometry. The work by Bud’ko developed a MRT model for a thick liner, but the

solutions of his equations relied heavily on a self-similar model of a liner implosion

and subsequent numerical integration of the governing equations (of unknown deriva-

tion). The model that will be presented here will be completely analytic, allowing

for substantially more insight than can be found in a purely numerical solution. The

magnetic field geometry will be fairly arbitrary and the acceleration can be provided

by any combination of magnetic and kinetic pressure (as in the planar model).

This section will develop in a manner similar to that of chapter 2. The govern-

ing equations will first be discussed and appropriate boundary conditions developed.

An analytic dispersion relation will be derived along with the analytic feedthrough

factor for the growing mode. Simple scaling of the dispersion relation will again be

examined for a variety of magnetic field orientations and accelerations. The 1D HY-

DRA calculations will again support calculation of instability growth rates through

a typical liner implosion, including magnetic flux compression.

3.2 Ideal MHD model of the Magneto-Rayleigh-Taylor In-

stability

3.2.1 Equilibrium

As in Chapter 2, we begin with defining the equilibrium. The equilibrium de-

scribes the balance of magnetic and kinetic pressures with the addition of an effective

gravitational force that may be positive, negative or zero but assumed to be a con-

stant. Similar to the planar model, an initial assumption is that the equilibrium radial
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magnetic field Br is zero and variations in the equilibrium quantities occur only in

the radial variable, which is typical for a Z-pinch. The equilibrium magnetic field is

then ~B = 〈0, Bθ,0(r), Bz,0(r)〉. We assume that calculations are performed in the rest

frame of the fluid so that v0 = 0. Simplification of the ~J × ~B force, in cylindrical

coordinates, leaves the magnetic pressure term and all but a single quantity from the

magnetic tension term described by the last term on the left hand side of Eq. 3.2. In

the radial direction,

∇p0 = ~J × ~B + ρ~g = −Bθ(r)

µ0

d

dr
Bθ(r)−

B2
θ (r)

µ0r
− Bz(r)

µ0

d

dr
Bz(r) + ρg, (3.1)

→ d

dr

[
p0(r) +

(B2
θ (r) +B2

z (r))

2µ0

]
+
B2
θ (r)

µ0r
= ρ(r)g. (3.2)

In this case, a positive g will correspond to inward radial acceleration (g =

−dvr/dt), and a negative g could correspond to deceleration due to stagnation in

a Z-pinch or perhaps an exploding liner (Fig. 3.1). In general, Eq. 3.2 states that

the pressure (kinetic + magnetic) is supported by the pressure due to gravity. For

this work we will assume g is essentially uniform for the instantaneous equilibrium

described above. We may assume that p0(r) is adjusted so that g = const. is an

acceptable solution to Eq. 3.2 as in the planar model. 1D HYDRA simulations of

beryllium and aluminum liners indicate this not unreasonable for the majority of the

implosion. The generality of the equilibrium again allows for arbitrary distributions

of ρ, ~B, etc. which could come from a self-similar model as in Bud’ko et al.[7] or 1D

simulations as will be the case for this work (for additional discussion of self-similar

models for Z-pinches see Liberman et al.[21]). Such models can include additional

physics not found in ideal MHD.

The equilibrium equation can be simplified for the rather general geometry shown

in Fig. 3.1. This is an example of a three region problem, where for 0 < r < ri there

is a low density gas (fuel) with an embedded axial magnetic field (though either the
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density or magnetic field may be zero in this region). The region ri < r < re contains

the metallic liner with embedded axial magnetic field, and r > re is a vacuum region

containing only magnetic field. The prototypical sharp boundary model that will

be used throughout the remainder of this chapter is depicted in Fig. 3.1. All three

I II III 

B03z

B0θ = Bθ
re
r

constantr
d v
dt

= − =gre Δ	

 ri 

B02 zB01z

02ρ ρ03ρ01 = 0

Figure 3.1: Three region sharp boundary model for cylindrical liners including arbi-
trary axial magnetic fields.

regions will allow an arbitrary constant axial magnetic field. Region I is assumed

to be vacuum, so that ρ01 → 0 and B0θ = Bθre/r. Regions II and III allow for

arbitrary constant densities and assume that there is no diffusion of azimuthal field

(Bθ is entirely confined to region I). In the limit that ri → 0 the plasma fills the entire

cylinder and some simple solutions can be recovered that will be shown later on. The

model can further be reduced to the equilibrium Z-pinch with an axial magnetic field.

This is the classic case of a hot conducting plasma column confined by an azimuthal

magnetic field (ri → 0) and is well known. Equation. 3.2 can be integrated across

the plasma-vacuum interface (rβ = re in nomenclature similar to Chapter 2). This

produces a two-region sharp boundary model. The result of the integration across
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the outer surface is given by Eq. 3.3

B2
θ

2µ0

+
B2
z,v

2µ0

=

(
pp +

B2
z,p

2µ0

)
, (3.3)

as the last two terms of Eq. 3.2 do not contribute as the integration is carried out

across an infinitesimally thin region. In such a case, the plasma pressure is completely

supported by the magnetic pressure if the axial magnetic fields in each region are the

same. A more general equilibrium for a three region sharp boundary model is given by

Eq. 3.4, obtained by applying the integral operator,
∫ r+e
ri−

dr to Eq. 3.2 assuming ρ(r)

is constant between ri and re. The sharp boundary model assumes the axial magnetic

fields and densities are constant in each region. The axial current is assumed to flow

completely on the outer liner surface under the ideal MHD approximation.

ρ0∆g =

[
B2
θ

2µ0

−
(
pfuel +

B2
z,fuel

2µ0

)]
. (3.4)

In Eq. 3.4 and hereafter, the vacuum (I), liner (II), and fuel (III) regions, are defined

with subscripts, v, l, and f , respectively. Here, when Bθ is large, g > 0 which corre-

sponds to an implosion driven by an azimuthal magnetic field. Once the compressed

fuel pressure or axial magnetic field exceeds the azimuthal magnetic field pressure, the

acceleration switches sign (g < 0) and the equilibrium describes deceleration. Gener-

ally, g is dominated by either the large driving pressure, or the strong pressure in the

fuel (be it magnetic or kinetic). In order to determine the analytic instability growth

rates for an imploding (or stationary) cylindrical liner a sharp boundary model will

again be considered.

The largest difference between the cylindrical formulation and planar model, is

the 1/r dependence for the azimuthal magnetic field. This means that the magnetic

pressure gradient is weakened (strengthened) as the outer interface expands radially

outward (inward), which is the physical mechanism driving the sausage and kink
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mode. This behavior comes directly solution of Ampère’s law for an axial current

confined to the liner surface and is markedly different than the planar case where

By = const. (neglecting any anode/cathode or edge effects). The implication is that,

even if there is no gravity, it is energetically favorable to move down the gradient

(increasing r). Such a feature is often used to understand the physical origin of the

sausage and kink modes in Z-pinches [70] and will be briefly discussed later. As a

final point, this model also describes RT in cylindrical geometry where Bθ = B0z = 0

(currents are small, as in radiation driven implosions, where g is not required to be

driven from magnetic pressure gradients). We next linearize the ideal MHD equations.

3.2.2 Linearization and Perturbation

The linearization procedure for the ideal MHD equations in cylindrical geometry

is no different than in planar geometry but the results are far more complicated. We

begin with the same equations as in Chapter 2. They are quoted next, for convenience,

first for the force law,

ρ
∂2~ξ

∂t2
= −∇p1 + ~J0 × ~B1 + ~J1 × ~B0 + ρ1~g, (3.5)

−ω2~ξ = −∇p1 + (∇× ~B0)× [∇× (~ξ × ~B0)]/µ0

+ {∇ × [∇× (~ξ × ~B0)]× ~B0}/µ0 + ρ1~g. (3.6)

The equilibrium quantities are denoted by a subscript of ′0′. We shall assume eiωt−i(mθ+kz)

dependence for the perturbation quantities, designated with subscript ′1′. Squares

and higher powers of perturbation quantities are ignored. Besides the form of the

equilibrium the difference between planar and cylindrical geometry enters only in the

form of the gradient in Eq. 3.6. The “frozen-in law”, Faraday’s law, and Ampère’s

law in linearized form are used to express the perturbation magnetic field, ~B1 and
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current density, ~J1 in terms of the perturbation displacement, ~ξ :

~E1 = −~v1 × ~B0 = −iω~ξ × ~B0, (3.7)

~B1 = −∇× ~E1/(iω) = ∇× (~ξ × ~B0), (3.8)

∇× ~B1 = µ0
~J1. (3.9)

The above equations are applicable to the plasma regions. In vacuum, the magnetic

field perturbations take the general form:

~B1 = ∇φ, (3.10)

∇ · ~B1 = 0⇒ ∇2φ = 0. (3.11)

Additionally, the incompressible condition (∇ · ~ξ = 0) is again used as the equation

of state (EOS). The linearized continuity equation defines the perturbation density,

ρ1 in terms of ~ξ,

d

dt
ρ1 = −∇ · (ρ0~v1), (3.12)

ρ1 = −~ξ · ∇ρ0. (3.13)

Up until this point everything is the same as in planar geometry. The link to planar

coordinates involves letting ky = m/r. Formally, the planar limit is obtained by

letting m→∞ and r →∞ so that ky = m/r = constant. The perturbation is then

eiωt−i
~k·~x = eiωt−i(mθ+kz). As with the planar case the value of ω(m, k) determines the

growth or decay for a particular mode (m, k). A growing mode is found when there is

a solution for ω where Im(ω)< 0. The application of the spatial Fourier transform to

Eq. 3.6 removes the remaining spatial derivatives and what is left is three equations

for the vector components of ~ξ in terms of ω,m, k, and the equilibrium quantities.

Unlike planar geometry, the equations are significantly more complex. Nevertheless,
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the three unknowns with three equations can be combined into one governing ODE

for the radial displacement, ξr.

The most straightforward way to determine this relation begins with Eq. 3.7 by

calculating the cross product, ~E1 can be directly substituted into Faraday’s law,

Eq. 3.8. This completely defines ~B1 in terms of ~ξ. Calculating the curl of ~B1 then

completely determines ~J1 in terms of ξ (Eq. 3.9). These results were then substituted

into Eq. 3.5 to give Eq. 3.6. ρ1 is defined in terms of ξ by Eq. 3.13 and also substituted

into the force law. The incompressible condition then closes the set of three vector

equations by determining ξz in terms of ξr and ξθ (see Eq. 3.23 below). Though, the

equations are long and cumbersome, the procedure to reduce these equations down

to one is easy to describe.

1. Taking the ẑ component of the linearized force law (Eq. 3.6) and substituting

the incompressible condition for ξz (Eq. 3.23), p1 can be determined in terms

of ξr and ξθ.

2. The θ̂ component of the linearized force law is then simplified using the incom-

pressible condition for ξz and substituting the value of p1 just determined. ξθ is

then determined in terms of ξr.

3. The incompressible condition is substituted into the r̂ component of the force

law, followed by p1 from (1) and lastly ξθ from (2). This leaves ξr (and its

derivatives) defined purely by the equilibrium variables.

The remaining work is to cast the second order ODE in either the form of Eq. 3.14,

or Eq. 3.15, or Eq. 3.16. Either form can be numerically integrated easily, however,

Eq. 3.16 is much easier to work with when computing analytic derivatives. Equa-

tions 3.15 and 3.16 are directly related by expanding the derivative of Eq. 3.16. A(r)
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can be recognized as P (r) and C(r) and D(r) are related to Q(r),

d2

dr2
ξr = f(r, ~B0(r), ρ0(r), g,m, k, ξr, ξ

′
r), (3.14)

A(r)
d2

dr2
ξr + C(r)

d

dr
ξr +D(r)ξr = 0, (3.15)

d

dr

[
P (r)

r

d

dr
(rξr(r))

]
+Q(r)ξr(r) = 0. (3.16)

The third formulation, Eq. 3.16, resembles the form of the planar ODE albeit with a

much more complicated Q(r). P (r), Q(r) are functions of the equilibrium quantities

and perturbation wavevector. They are defined next

P (r) =
µ0r

2ω2ρ0 − (mB0,θ(r) + krB0,z)
2

(k2r2 +m2)
, (3.17)

Q(r) =
2B′0,θ(B0,θ(m− kr)(kr +m) + krmB0,z)

r (k2r2 +m2)

+
2kmB0,θB

′
0,z

k2r2 +m2

+
βB0,θB0,z + αB2

0,θ + κB2
0,z

r2 (k2r2 +m2)2

−
4k2B2

0,θ(mB0,θ + krB0,z)
2

(k2r2 +m2) ((mB0,θ + krB0,z)2 − µ0r2ω2ρ0)

+ µ0gρ
′
0 − µ0ω

2ρ0, (3.18)

α = k4r4
(
m2 + 2

)
+ 2k2r2m2

(
m2 − 2

)
+
(
m2 − 2

)
m4, (3.19)

β = 2krm
(
k4r4 + k2r2

(
2m2 − 3

)
+m2

(
m2 − 1

))
, (3.20)

κ = k2r2
(
k2r2 +m2

)2
, (3.21)

where a prime denotes differentiation with respect to r. This formulation for ξr(r)

remains sufficiently general to determine ω(m, k) for any arbitrary equilibrium profile

(ρ0(r), B0θ(r), B0z(r)) with appropriate boundary conditions. It is important to note

that the equilibrium pressure profile, p0(r) does not enter Eq. 3.16, so that p0(r) may

be adjusted to satisfy the equilibrium condition, Eq. 3.2, as in planar geometry.
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We now have the same sort of boundary value problem (BVP) as in the planar

case. As an example of suitable boundary conditions consider that rξr|r=0 (ξr(r = 0) is

finite) and ξr(r = rwall) = 0 at a wall boundary (if there is a wall). Numerical solution

of Eq. 3.16 requires sufficiently smooth equilibrium profiles so that the derivatives

behave reasonably well, otherwise no ODE solver can provide a reliable result for ω

or the feedthrough. Shooting methods or finite differencing can again be used to solve

the BVP however, solving the ODE itself is more difficult (takes longer) due to the

increased complexity of the equation. To continue the analysis of the solution of this

equation, the sharp boundary model will be invoked. Beginning with the derivation

of the appropriate boundary conditions linking the three regions shown in Fig. 3.1.

Region III will be referred to as the fuel or fill gas region (often with subscript ′f ′),

Region II will be the liner region (often with subscript ′l′), and Region I will be the

vacuum region (often with subscript ′v′). Alternatively, as in the planar formulation

of Chapter 2, the dispersion relation can be obtained directly from integration of

Eq. 3.16 across the interfaces at ri and re. This method is outlined in Appendix B.

We now consider the sharp boundary model with constant ρ0 and B0z in each

region. Starting with regions III (fuel) and II (liner), the spatial derivatives in ρ0

and B0z(r) and B0θ terms are zero (no axial current in fuel or liner). Following the

procedure outlined to determine Eq. 3.16, ξz and ξθ are

ξθ(r) = −im (ξr(r) + rξ′r(r))

k2r2 +m2
, (3.22)

ξz(r) =
−mξθ(r)− i (ξr(r) + rξ′r(r))

kr
. (3.23)

Equation 3.31 (below) is the perturbation plasma pressure (which is also given in

terms of ξr) and used in combination with Eqs. 3.22-3.23 to evaluate the r̂ component
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of the force law. This yields a single ODE for ξr, i.e., Eq. 3.16 simplifies to read,

ξ′′r =
ξr(r) (k4r4 + k2r2 (2m2 + 1) +m2 (m2 − 1))− r (k2r2 + 3m2) ξ′r(r)

r2 (k2r2 +m2)
. (3.24)

Perhaps the best feature of this equation is that it has an exact analytic solution

given by Eq. 3.25 [9],

ξr(r) = C1I
′
m(kr) + C2K

′
m(kr), (3.25)

where Im and Km are, respectively, the modified Bessel functions of order m of

the first and second kind, a prime denotes a derivative with respect to the argu-

ment and C1 and C2 are arbitrary constants. The relatively simple expressions,

Eqs. 3.22, 3.23, 3.25, 3.30, and 3.31 are obtained relatively easily for the liner region,

region II, with the assumption that ρ02 = const., B02z = const., and B0θ = 0 in

Eqs. 3.6 and 3.13.

These solutions would no longer be valid in region I if ρ01 > 0 (since we have

assumed the vacuum solution for B0θ). However, for the current sharp boundary

model with ρ01 = 0, the vacuum solutions are required, which are given by Eqs. 3.10-

3.11. φ is determined by the solution to the Laplacian in cylindrical coordinates

which is just the modified Bessel’s functions. The Im solution is thrown out as it is

not bounded as r → ∞. If a conducting wall at some larger radius were included,

Im must be kept. The appropriate boundary condition would then be a perfect

conductor at the wall. Proceeding on the infinite domain, for region I (r > re), the

vacuum solutions are then

φ(r, θ, z, t) = φ0
Km(kr)

Km(kre)
eiωt−imθ−ikz, r > re. (3.26)
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which then directly determines ~B1 in terms of φ0 as

~B1,v = ∇
(
φ0
Km(kr)

Km(kre)
eiωt−i(θm+kz)

)
, r > re. (3.27)

φ0 must then be determined by enforcing the perfect conductor condition at the

liner/vacuum interface. This will be discussed in the following section.

3.2.3 Boundary Conditions

The boundary conditions for each region are very similar to the planar formulation.

At the fuel-liner and liner-vacuum interface continuity of total pressure is enforced.

Secondly, the normal component of the perturbation magnetic field at these two

surfaces must be zero to satisfy the ideal MHD condition. In Appendix B, an alternate

derivation of the boundary conditions is presented using the governing differential

equation, Eq. 3.16, however, both methods yield the same final expressions.

3.2.3.1 Region III: Fuel Region

The fuel/fill gas region (region III) occupies 0 ≤ r ≤ ri. As stated earlier, for the

sharp boundary model, the density and axial field are assumed uniform and that no

azimuthal field is present (no current in the region). The validity of this assumption

is briefly discussed next. While it is assumed that both the gas and magnetic field

compress uniformly, 1D HYDRA MHD simulations have shown that the density and

axial magnetic field can build up near the inner liner surface. This can be imagined

as a snowplow like effect where the material and field cannot get out of the way of

the liner fast enough as the liner implodes onto it. For constant values in the fuel,

this means we may either take the average field and density or peak values. Peak

values tend to overestimate such physics as field line bending stabilization, while the

average value may underestimate it. The build-up of axial field also induces strong
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currents in the azimuthal direction at the interface that can enhance expansion of

the inner liner surface into the fuel region. Of course, this is accounted for in the

1D simulations but the net effect makes the averaging procedure more challenging.

Nonetheless, the sharp boundary model solution is continued.

As stated earlier, the eigenfunction solution for region III is derivative of the

modified Bessel’s functions. The first boundary condition for this region requires

regularity at the origin which eliminates the K ′m solution, leaving, (c.f. Eq. 3.25)

ξr(r) = ξα
I ′m(kr)

I ′m(kri)
, r < ri (3.28)

where ξα will be used to determine the feedthrough factor, as with the planar model.

Next, this region must be matched to region II so that ξr is continuous at the inner

interface, r = ri. The first matching condition requires continuity of total pressure

across the interface, which includes, the kinetic, magnetic, and gravitational pressures.

This is determined by linearizing the equilibrium condition, which is then evaluated

just within the fuel region (r−i ), together with the perturbation pressure and set equal

to the same expression evaluated just within the liner region r+
i . The result of the

total perturbation pressure reads:

[
p1,f +

(
~ξ · ∇ ~B0,f + ~B1,f

)
·
~B0,f

µ0

+ ρfgξr

]
r=r−i

=

[
p1,l +

(
~ξ · ∇ ~B0,l + ~B1,l

)
·
~B0,l

µ0

+ ρlgξr

]
r=r+i

(3.29)

where the subscripts f correspond to the fuel/fill gas side of the interface and sub-

scripts l correspond to the liner side. The expression for the perturbed magnetic

field is B1 = ∇ ×
(
~ξ × ~B0

)
in the two regions as derived earlier. Of course ~B0,f =

〈0, 0, Bz,f〉. Since ~B1 is defined in terms of ξr for regions III and II, no additional

boundary conditions are needed. By construction, the perturbed magnetic field sat-
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isfies the perfect conductor condition (plasma is perfect conductor). Lastly, the per-

turbed plasma pressure can be written as

p1 = iρ0ω
2ξz/k, (3.30)

p1 =
rω2ρ (ξr + rξ′r)

m2 + k2r2
, (3.31)

where ρ = (ρf , ρl) = (ρ03, ρ02) depending upon the region. Equation 3.31 is deter-

mined from substitution of Eq. 3.23 and then Eq. 3.22. As a reminder, these expres-

sions are valid only when derivatives of ρ0 and B0z in the radial direction are zero

together with B0θ = 0. With all of the terms in Eq. 3.29 determined, the matching

condition between regions III and II can be derived.

Equation 3.29 using Eq. 3.31 gives a restriction on the slope of the eigenfunc-

tion at the inner boundary in region II in terms of the eigenvalue and equilibrium

quantities. This is possible because we have also used the condition ξr(r
−
α ) = ξr(r

+
α )

which ensures continuity of velocity (since we have neglected viscosity, the fluids

should remain in contact). Combining the above results, the boundary condition

for total pressure continuity (Eq. 3.29) across the fuel/liner interface reads (defining

d
dr
ξr|r=r+i = d

dr
ξl|r=ri)

d

dr
ξl|r=ri =

ξα
(
k2riB

2
z,f − k2riB

2
z,l + µ0 (ρl − ρf ) (gk2r2

i + gm2 + ω2ri)
)

r2
i

(
k2B2

z,l − µ0ω2ρl
)

+
ξ′f (ri)

(
k2B2

z,f − µ0ω
2ρf
)

k2B2
z,l − µ0ω2ρl

, (3.32)

where ξf is the region III eigenfunction solution (fuel/fill gas region) and ξl is the

region II eigenfunction solution (liner region). The derivatives, ξ′r arise from Eq. 3.31.

This boundary condition can be further simplified using the derived solution in region
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III given by Eq. 3.28

d

dr
ξr|r=r+i =

ξα
(
−B2

z,lk
2ri + ν0 +B2

z,fk
2ri + µ0(ρl − ρf ) (g (k2r2

i +m2) + riω
2)
)

r2
i

(
B2
z,lk

2 − µ0ρlω2
) , (3.33)

ν0 =
kr2

i (Im−2(kri) + 2Im(kri) + Im+2(kri))
(
B2
z,fk

2 − µ0ρfω
2
)

2(Im−1(kri) + Im+1(kri))
. (3.34)

While this is seemingly a complicated expression, the form of the RHS is no more than

ξαf where f is just a constant depending upon the equilibrium values and the mode

under consideration. This completes the derivation for one boundary condition for

region II, given by Eq. 3.33. The second and final boundary condition is determined

via matching the liner/vacuum interface, described next.

3.2.3.2 Region I: Vacuum Region

In the vacuum, there is no material or currents, so there is only magnetic pressure

as discussed earlier. ~B1 is given by, ~B1v = ∇φ (determined by Eq. 3.26) in region I

for re < r < ∞. The total pressure balance across the outer liner surface (r = re)

then reads (compare Eq. 3.35 with Eq. 3.29; for the vacuum region, p1,v = ρv = 0)

[
p1,l +

(
~ξ · ∇ ~B0,l + ~B1,l

)
·
~B0,l

µ0

+ ρlgξr

]
r−e

=

[(
~ξ · ∇ ~B0,v + ~B1,v

)
·
~B0,v

µ0

]
r=r+e

.

(3.35)

~B1,l remains the same as in the liner region, defined in terms of the perturbation

displacement. ~B1,v is given by the Bessel function solution, Eq. 3.27, with unknown

coefficient. The boundary condition on the magnetic field must now be explicitly

invoked. A perfect conductor requires that the magnetic field to be aligned along the

conducting surface (magnetic field normal to the perturbed surface is zero). Mathe-
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matically this is stated as:

~B1 · n̂0 + ~B0 · n̂1 = 0, (3.36)

where n̂0 = r̂ is the unperturbed surface normal of the conducting plasma. Expanding

the perturbed field, this can be re-written as

[
~B1,v + ~ξ · ∇ ~B0,v

]
· n̂0 + ~B0,v · n̂1 = 0. (3.37)

The perturbation normal vector reads

n̂1 = − ∇ξr
|r̂ +∇ξr|

= −∇ξr = −
〈
ξ′r,−

imξr
re

,−ikξr
〉
, (3.38)

which may be obtained by linearizing the normal vector to the rippled β-surface,

rβ = r0 + ξr(θ, z), i.e., n̂ = ∇rβ/|∇rβ| ≡ n̂0 + n̂1. The expression, Eq. 3.36, then

links the unknown coefficient, φ0 with the equilibrium magnetic field in the vacuum,

~B0,v = 〈0, Bθre/r,Bz,v〉 and the perturbation displacement, ξβ = ξr(r = re) as shown

by Eq. 3.39

φ0 =
iξβKm (kre) (kreBz,v +Bθm)

mKm (kre) + kreKm−1 (kre)
. (3.39)

With φ0 determined, ~B1,v, given by Eq. 3.27, can be plugged back into Eq. 3.35 and

worked into a similar form as Eq. 3.33,

d

dr
ξl|r=re− =

ξβ
(
−k2r2

eB
2
z,l + (k2r2

e +m2) (B2
θ + i(φ0/ξβ) (kreBz,v +Bθm)) + µ0reρl (gk

2r2
e + ω2re + gm2)

)
r3
e

(
k2B2

z,l − µ0ω2ρl
) ,

(3.40)
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where φ0/ξβ is given by Eq. 3.39. Now, with the boundary conditions at both inter-

faces determined, the eigenfunction in region II is fully defined. All that remains is

another fair amount of algebra. As a reminder, Eqs. 3.32 and 3.40 are also obtained

with a slightly different derivation method in Appendix B.

3.2.4 Sharp Boundary Model Solutions

The eigenfunction solution has already been determined in the liner region, as

given by Eq. 3.25. Recalling the requirement that ξr(r) be continuous, the solution in

region II can be written directly in terms of ξα, ξβ which are the unknown coefficients

in the boundary conditions,

ξr(ri) = ξα = C1I
′
m(kri) + C2K

′
m(kri), (3.41)

ξr(re) = ξβ = C1I
′
m(kre) + C2K

′
m(kre). (3.42)

This effectively determines, the coefficients C1 and C2 in terms of ξα and ξβ. The

derivative of ξl(r) can then be computed from Eq. 3.25 and matched with the two

boundary conditions Eqs. 3.33 and 3.40. As with the planar model, these two bound-

ary conditions become two equations of the familiar form

ξα = ξβFa,b(ω
2) (3.43)

where ω is a function of m, k and the equilibrium quantities and F is again interpreted

as the feedthrough factor from the β-surface (r = re) to the α-surface (r = ri) for a

particular eigenvalue, ω. The dispersion relation is again found by setting Fa = Fb.

In this case, the result is not so easily written down. The structure of the dispersion
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relation remains the same though, a quadratic equation in ω2.

Aω4 +Bω2 + C = 0 (3.44)

= Aσ2 +Bσ + C = 0 (3.45)

The dispersion relation also has the same property where ω2 is real-valued. In the limit

ρ03 = ρf = 0, the analytic expression for A, B, and C were obtained independently

by Dr. Peng Zhang which was recorded in Eqs. 3-4 of our joint paper [9]. Dr.

Zhang and I have done extensive checks that out independent numerical results are

virtually identical. Most of the dispersion plots in the liner modes section such as

Fig. 3.3 can be directly compared to those figures in [9], generated by Dr. Zhang.

Most importantly, the coefficients A, B, C of Eq. 3.44 are remarkably complicated

and thus makes our checks all the more important. Note that in [9] the small signal

dependence, eiωt+imθ−ikz was used so that the m = 1 mode is the most unstable kink

mode. In this thesis eiωt−imθ−ikz is used and m = −1 is the unstable kink mode.

Unless results are explicitly stated for both m = ±1, reference to the m = 1 mode

corresponds to the fastest growing kink mode, or kink-MRT mode.

3.3 Some solutions of the cylindrical sharp boundary model

In general, the dispersion relation and feedthrough factors are very complicated.

In order to limit human error, the two roots for σ = ω2 were imported directly from

Mathematica to Matlab. For reference, σ1 takes up 140 lines in the standard Matlab

editor. To begin discussion on the properties of the equations, some simple examples

will be provided. The first place to begin is with the classic sausage and kink modes,

which are well-known.
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3.3.1 Traditional Sausage and kink modes

The traditional sausage and kink modes of a plasma column are special cases of

the dispersion relation just derived, where ri → 0. This turns the problem into a two

region sharp boundary problem with well known solutions when g = 0. The important

point here being that instabilities can still exist despite g = 0 in this simple scenario.

The pure sausage mode corresponds to m = 0 (pure referring to g = 0) and the kink,

m = ±1 (±m may have different growth rates with m = −1 being the dominant one

with Jz > 0). The appropriate limit from the general dispersion relation is found by

setting ri = 0 with uniform Bz that may take on different (constant) values inside

and outside the plasma. Additionally, Bθ is excluded from the plasma region. The

analytic dispersion relation that results from these simplifications is given by

ω2

k2
=

B2
z

µ0ρ
− [krβBz,e +mBθ(rβ)]2

µ0ρ(krβ)2

I ′m(krβ)Km(krβ)

Im(krβ)K ′m(krβ)
− B2

θ (rβ)

µ0ρ

I ′m(krβ)

krβIm(krβ)
. (3.46)

For the sake of differentiating this case from the finite thickness case, take rβ = re.

The primes indicate differentiation with respect to the quantity krβ. While this is a

fairly simple case, this dispersion relation illustrates many important aspects of the

more general dispersion relation for a finite thickness liner, without the cumbersome

algebra.

The necessary and sufficient condition for instability is ω2 < 0. With that in

mind, the interpretation of Eq. 3.46 is then straightforward. The first term is stabi-

lizing due to the axial magnetic field present in the plasma column. The mechanism

of stabilization is the same as in the planar case; magnetic field tension prevents

perturbation growth. The second term is also stabilizing, as the ratio of the Bessel

functions is negative. This represents the (~k · ~B)2 term for the vacuum region which

now includes magnetic field line bending in the azimuthal direction via the Bθ term.

This stabilization term is also scaled by a geometrical factor in terms of the Bessel
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function ratio, which has a limit of −1 for krβ → ∞ (the planar limit). The last

term is something new due to the cylindrical formulation. The last term is destabi-

lizing and is the source of the finite growth rate when g = 0. Note that unlike the

stabilizing terms, there is very limited dependence on azimuthal mode number, m.

Consider Bz = Bz,e = m = 0, then there is no magnetic field line bending and the

only remaining term is the third in the RHS of Eq. 3.46. This is the growth rate for

the sausage mode. Note that when considering the sausage mode, m = 0, therefore no

azimuthal field line bending is present. The sausage mode grows because of the form

of the magnetic pressure. At smaller radii, the magnetic pressure is higher (larger

pinch force), while at larger radii the magnetic pressure is smaller. Thus, if a plasma

element is displaced by r−δ the element feels a larger magnetic pressure (larger force)

and continues to displace inward. Since the fluid is incompressible this requires fluid

to move away from the constriction. Thus the plasma element displaced by r+ δ con-

tinues outward since the force decreases with increasing radius. This is the essence

of the sausage mode instability. The troughs (r − δ) of a sinusoidal perturbation

are pushed inward, while the peaks (r + δ) expand outward. This is much like the

physical basis behind MRT where system with a heavy fluid supported by a light fluid

minimizes its potential energy via interchange of the heavy and light fluid elements

(forming larger ripples from an initial ripple). A sufficiently strong axial magnetic

field can of course suppress the sausage mode. The well-known result for tokamaks

being Bz >
√

2Bθ to achieve stability to the sausage mode, may be obtained from

the small kre limit of Eq. 3.46.

The kink mode is a slightly more interesting example. Consider again, Bz =

Bz,e = 0 and m = ±1. For this case m = ±1 yields the same growth rate. The

kink mode retains a stabilizing term that reduces the growth rate, but can never

completely suppress the mode unless k = 0. Thus, the kink mode will have a smaller

growth rate than the sausage mode in this case, even though the growth rate remains
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relatively large. Adding a Bz can stabilize the kink mode to a certain extent, as is

the case for the sausage mode. This is well known in the tokamak community as

the Kruskal-Shafranov condition (stabilization of the kink mode) which is incredibly

important to steady-state operation of a tokamak [22]. Stabilization occurs when

krβ
Bz

Bθ

> 1, (3.47)

in the limit krβ << 1. The LHS of Eq. 3.47 becomes the calculated tokamak safety

factor, q, if we use (1/R) for k where R is the major radius of the tokamak and rβ is

the minor radius of the tokamak. Equation 3.47 then becomes q = (rβ/R)Bz/Bθ > 1

for stability. However, with a non-zero kBz term, the sign of m becomes important.

The stabilizing term, the middle term on the RHS of Eq. 3.46, is maximized for

positive m so the largest growing kink mode will correspond to m = −1. For the

sake of simplifying the discussion, for the remainder of this work, any reference to

the kink mode will use the fastest growing solution. One of the the most interesting

features of Eq. 3.46 is the relative growth rate of the sausage and kink mode when

an axial magnetic field is present. This will be important later on, but the result is

that the kink mode generally has a larger growth rate than the sausage mode when

an axial magnetic field is included. This makes sense from the tokamak perspective

as well, since the sausage mode is typically stabilized before the kink mode. Most

importantly, a similar result is obtained for a finite thickness liner as will become

clear later. Thus, in MagLIF with a seeded axial magnetic field, the kink mode may

dominate in the initial stage (similar to a tokamak), before the azimuthal magnetic

field is ramped up from the current rise.

For larger values of m (short azimuthal wavelengths) the stabilizing term begins

to dominate and eventually higher mode numbers are completely stabilized, assuming

Bθ > 0. As a Z-pinch typically has a very large azimuthal magnetic field throughout
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an implosion, large m numbers are stabilized according to this model, leaving the ma-

jor instability growth aligned more or less aligned with the z axis. For this reason the

sausage and kink modes will be the main focus of this work. These robustly growing

instabilities are also visible (most visible in beryllium at 6.151 keV) in many liner

implosion experiments at Sandia [53][37][55]. This effect does have interesting conse-

quences for laser-imploded cylinders where there is no strongly stabilizing azimuthal

field for large azimuthal mode numbers. In such a scenario, we would anticipate more

isotropic RT mode structure to develop.

Unlike a pre-seeded axial magnetic field that is initially uniform throughout the

domain of the problem, the azimuthal magnetic field must first diffuse into the liner

region. The current cylindrical model assumes this diffusion to be small on the

timescales of interest (and exactly zero for ideal MHD). Nonetheless, as the field dif-

fuses into the liner there is large competition between stabilization due to azimuthal

field line bending, reduction of this stabilization because of a magnetic diffusion, and

de-stabilization due to current present in the liner. This is a highly complicated

scenario that will be addressed later via 2D simulations and additional calculations.

Thus far in these discussions, MRT itself has been left out. So as a final example

of a simplified dispersion relation, again consider the sausage mode, setting Bz =

Bz,e = 0 and include a finite g. The resulting dispersion relation is

ω2 = −k
(

B2
θ

µ0ρ0rβ
+ g

)
I ′1(krβ)

I0(krβ)
(3.48)

where the Bessel function ratio is always positive. If Bθ = 0, Eq. 3.48 gives the result

for pure MRT when g > 0. g < 0 provides a stabilizing influence. The major point

however, is when there is a finite azimuthal field, the sausage mode is introduced

and the instability growth rate increases. Similar behavior occurs for the kink mode.

Thus, in cylindrical geometry, MRT growth rates can be enhanced in comparison to
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planar geometry. The instability growth rate of the sausage and kink modes can also

be considered to be enhanced by acceleration, if g is small. Additionally, the sign

of g can again make the difference between a stable or unstable configuration. With

these concepts in mind, growth rates for finite thickness liners are investigated in

great detail next.

However, before moving on, it is important to note that the growth rate from

Eq. 3.48, where ri = 0, can be much different than the growth rate where ri > 0 as

in the next section. In other words, introducing even the slightest sized fuel region

can change the behavior of the growth rates. Consider the deceleration (or explosion

case) where g < 0. If there is no fuel region, only a filled column, this is a stable

configuration for MRT. Now consider a finite fuel region at very small radius. When

g < 0, an RT unstable interface is now present and this small radius interface is highly

unstable. This is a dramatically different scenario than the filled column. As such, it

is difficult to directly compare Eq. 3.48 to some of the dispersion curves that follow

in the next section. Instead an asymptotic result will be given to better illustrate

the difference between ri = 0 and ri > 0. These subtleties were corroborated in the

numerical results in Dr. Zhang’s independent calculations.

3.4 Liner modes

It was shown in the last section that current carrying instabilities known as the

sausage and kink modes could increase MRT growth rates. A strong azimuthal field

can also significantly stabilize large m modes, which is common to Z-pinches. For

Bz = 0, the sausage mode has the largest growth rate for any k under nearly any

circumstance, as it has the smallest amount of magnetic field line bending (none).

When both Bz and Bθ are non-zero, axial kink modes generally have larger growth

rates than the sausage mode. Lastly, the sign of g can significantly impact the stability

of the system.
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The aspect ratio for a liner is defined as the ratio of the liner’s outer radius to its

thickness,

AR =
re
∆

=
re

re − ri
. (3.49)

A typical value is AR = 6 for liner experiments on the Z-machine and is the point

design for a MagLIF liner [12]. AR = 1 is the limit of filled column of plasma and

AR→∞ is infinitely thin. The effective gravity for the following plots will be defined

in terms of the driving magnetic pressure so that g = gmax = B2
θ/2µ0ρ0∆ (this assumes

the fuel pressure is negligible, c.f. Eq. 3.4). When |g| is maximized (including the

stagnation phase in which the pressure in the fuel region is dominant in Eq. 3.4), we

call the modes pure MRT modes. These modes with g = |g|max couple the current

carrying modes with the MRT modes. When g = 0, the equilibrium condition requires

that pIII = B2
θ/2µ0 where pIII is the total pressure in the fuel region so that the liner is

motionless. The g = 0 case will be considered the pure sausage and kink modes that

are not present in planar geometry. Since |g| is typically between 0 and its maximum

value, the mode is somewhere between pure MRT and pure sausage-kink mode.

For comparison with the previous section, where ri = 0 for the filled column, the

asymptotic growth rate for kz = 0, B0z = 0 for the liner sausage mode is presented

(in the absence of an axial field) in Eq. 3.52. This form was calculated by using the

small argument (small kz) expansion in place of the full Bessel’s functions I and K.

The major details of this calculation are provided in the appendix B.

ω2 = −B
2
0θri − gre∆µ0ρ0 + |B2

0θri − gre∆µ0ρ0|
2r2

eriµ0ρ0 ln q
, (3.50)

q =
re
ri

=
AR

AR− 1
. (3.51)

For direct comparison to the next section with normalized growth rates, the growth
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rate can be re-written as

ω̄2 =
−1 + ḡq − |1− ḡq|

2 ln q
, (3.52)

ω̄2 ≡ ω2/(B2
0θ/µ0ρ0r

2
e), (3.53)

ḡ ≡ g/(B2
0θ/µ0ρ0∆), (3.54)

where ḡ = 0.5 for g = gmax. The normalized growth rates using Eq. 3.52 are plotted

as a function of aspect ratio in Fig. 3.2. The appropriate limit of AR = 1 is recovered

for kz = 0 which is ω = 0 as expected by Eq. 3.48. Additionally, for finite thickness

liners the reduced growth for g > 0 is observed. We next consider the results using
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Figure 3.2: kz = 0 limit for the sausage mode growth rate as a function of liner aspect
ratio, AR.

the full analytic solutions.

As a direct analog to the previous section, a scan of the pure sausage and kink

modes was performed for increasing axial magnetic field. The axial field in regions

I, II, III was assumed equal and varied from 0 to Bz = Bθ to identify the points

of marginal stability (ω = 0) as function of axial field and wavenumber, for g =

0. Figure 3.3 shows the normalized growth rates for the two instabilities (γ̄) on a

logarithmic color scale for an AR = 6 liner. The jaggedness is purely an artifact of the
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finite grid to which the growth rates are mapped. The transition from reddish to deep

blue indicates a transition from instability to stability. In the long wavelength limit
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(a) m = 0 Pure sausage mode growth rate for AR = 6 liner with increasing axial magnetic field.
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(b) m = 1 Pure kink mode growth rate for AR = 6 liner with increasing axial magnetic field.

Figure 3.3: Instability growth rates for the pure sausage and kink modes (g = 0) in
an AR = 6 liner with increasing axial magnetic field. Bz = Bz,I, Bz,II, Bz,III.

for the sausage mode, the liner is stable for Bz > 0.7Bθ which is in excellent agreement

with the well-known stability criterion, Bz > (1/
√

2)Bθ. As the wavelength becomes

shorter, the simple sausage mode stability criterion no longer holds as expected. The
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kink mode also shows reasonable agreement with the kink stability criterion. The

liner, under these circumstances, behaves similarly to the plasma column with regard

to the cutoffs in the growth rate, although the growth rates themselves are higher.

We note that the required Bz for these cutoffs increases as g increases (must stabilize

MRT modes as well as sausage or kink modes), as well as if the axial field is strong

only in one region (the fuel region for example). Note also that Fig. 3.3 sets g = 0 to

examine the pure sausage and kink modes.

During the main implosion phase of a pre-magnetized liner implosion, Bz << Bθ.

In any un-magnetized liner implosion this condition holds throughout the current

pulse. The normalized growth rates for the sausage and kink modes under these

conditions are shown in Fig. 3.4. The growth rates are normalized to the Alfvén time

and the wavenumber normalized to the liner outer radius (which is always non-zero).

The solid curves show the pure sausage and kink mode growth rates for various aspect

ratios while the dashed lines take g = gmax. AR = 1.0101 is the approximately filled

plasma column, AR = 2 is a very thick liner, while AR = 10 is a rather thin liner.

Both g and the aspect ratio have the most significant effect on the growth rates for
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Figure 3.4: Instability growth rates for various aspect ratios including both g = 0
and g > 0 and Bz << Bθ.

small kre. All the curves behave similarly for large kre with the thinnest liner being

the most unstable in all cases. Shorter wavelengths are less sensitive to cylindrical
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geometry and the growth rate looks very much like
√
kg. This limit was also shown

in Eq. 3.48 for the sausage mode. For small kre, drastically different behavior is

observed between the sausage and kink modes. When g = 0, the sausage mode has a

finite growth rate in the limit as kre → 0, making its growth rate significantly larger

than the pure kink mode growth rate which goes to zero. When g is turned to gmax

this behavior is flipped. The kink mode is substantially destabilized by finite g, while

the sausage mode is actually somewhat stabilized except for the thinnest liner which

retains a finite growth rate in the long wavelength limit (Figs. 3.4(a)-3.4(b)). The

long wavelength limits are given by Eqs. 8,9 of [9].

Next an axial magnetic field is introduced in each region, where Bz,1 = Bz,2 =

Bz,3 = 0.1Bθ. The results are shown in Fig. 3.5. The shortest wavelengths begin to

be stabilized with an axial field, as was found in planar geometry for MRT. Shown

in Figs. 3.3, 3.5, the axial field also stabilizes the pure kink and sausage modes as

well. The effect on the longer wavelengths is minimal, particularly for g > 0, though

the AR = 2 liner appears to be more stable to the sausage mode. This is a case that
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Figure 3.5: Instability growth rates for various aspect ratios including both g = 0
and g > 0 and Bz = 0.1Bθ.

is likely to occur early in an implosion as the axial current is ramping up and Bz

is not yet negligible compared with Bθ. The influence of non-zero g also shows for

large kre. For g = 0 the cutoff at short wavelengths, due to the finite Bz, occurs at
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nearly the same kre for all three aspect ratios. When g > 0, the cutoff wavenumber

depends more strongly on the aspect ratio of the liner and no longer resembles the

Kruskal-Shafranov and sausage mode stability criteria.

Further increasing the axial field so that Bz,1 = Bz,2 = Bz,3 = Bθ is a case that

occurs very early in an implosion. Azimuthal fields in excess of 10 T do not take

much time to develop (less than 30 ns, but depends on the current pulse) but be-

fore that time the kink mode is easily the most dangerous instability as shown by

Fig. 3.6. Short wavelengths are essentially cut off because of the strong field line bend-

ing, which is very much related to the Kruskal-Shafranov condition. Meanwhile the

sausage mode is completely stabilized at longer wavelengths as well, as Bz > 0.7Bθ

(sausage stability criterion is met), save for the thinnest liner that is under strong

inward acceleration (g = gmax). This relationship between the axial and azimuthal
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Figure 3.6: Instability growth rates for various aspect ratios including both g = 0
and g > 0 and Bz = Bθ.

fields also can occur very late into an implosion once the liner has significantly com-

pressed the axial field. Since our instantaneous equilibrium allows for compressibility

and arbitrary distribution of magnetic fields, we can account for axial magnetic field

compression in the fuel and liner region. The field in the liner can also be mildly

compressed, but for simplicity Fig. 3.7 assumes Bz,3 = Bθ and Bz,2 = Bz,1 = 0 (i.e., a

large Bz only in the fuel region). This reduces the overall stabilization of the growth
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rates. However, the long wavelength sausage modes remain significantly depressed

and kink mode growth remains robust at long wavelengths. Thus, the kink mode is

likely to be dominant during both the very early phase and highly compressed phase

in pre-magnetized MagLIF.
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(a) m = 0 MRT/sausage mode growth rate for
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Figure 3.7: Instability growth rates for various aspect ratios including both g = 0
and g > 0 and Bz = Bθ in the fuel region only (Bz,2 = Bz,1 = 0 T).

Often coincident with, or shortly after the above conditions of Bz,fuel ≈ Bθ, as

the liner begins to decelerate onto a hot/dense fuel region, g switches sign. The MRT

unstable interface then becomes the fuel/liner interface. In the absence of feedthrough

or other instabilities, the inner surface should be nearly pristine. Thus, MRT would

be expected to begin growing at very short wavelengths as MRT generally does on the

exterior. However, any feedthrough of MRT could seed larger wavelengths on the inner

surface, thus making these wavelengths important as well. Aside from simulations,

there is little knowledge as to the state of the inner surface as the deceleration phase

begins, so a large wavenumber space will be surveyed. The deceleration phase of

an ICF implosion can be analyzed by the cylindrical model by setting g < 0. The

liner decelerates primarily due to increasing fuel pressure in region III (assuming that

pf >> B2
z/2µ0, such that the RHS of Eq. 3.4 is negative). To quantify this scenario,

we assume that the RHS of Eq. 3.4 equals −B2
θ/µ0 so that g = −|gmax| = −B2

θ/µ0ρ0∆.
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Figure 3.8 shows the growth rates for no pre-magnetization Bz,1 = Bz,2 = Bz,3 = 0

for the deceleration phase as well as the pure sausage and kink modes for refer-

ence. The kink mode was already unstable over the whole domain plotted for g > 0

(Fig. 3.4(b)) and the kink mode remains this way for g < 0 (Fig. 3.8(b)). The long

wavelength sausage mode is found to be much more unstable for g < 0 (Fig. 3.8(a) as

compared to g > 0 (Fig. 3.4(a)). The sausage and kink mode growth rates are also
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Figure 3.8: Instability growth rates for various aspect ratios including both g = 0
and g < 0 and no pre-magnetization (Bz0 = Bz1 = Bz2 = Bz3 = 0 T).

very similar with no pre-magnetization and non-zero deceleration.

The effect of high axial field compression case can again be considered. It is natural

to use Bz,3 = Bθ and Bz,2 = Bz,1 = 0 as it is the most physically realizable case. The

results are shown in Fig. 3.9. The kink mode remains unstable for long wavelengths

while the sausage modes that were unstable in the previous un-magnetized case are

now significantly stabilized. Only the thinnest liner, re/∆ = 10 = AR, remains

unstable for g = −|g|max, but the growth rate is much reduced, particularly for

long wavelengths, as there is no longer a finite limit for kre → 0 as in Fig. 3.8(a).

The kink mode remains unstable for kre < 10 with a strong finite growth rate for

long wavelengths as well as growth rates larger than the sausage mode for all re/∆

(c.f., Fig. 3.9(a) and Fig. 3.9(b)). To summarize, Figs. 3.8 and 3.9 show that the

deceleration phase appears to be dominated by the kink mode for all kre . 1 in
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Figure 3.9: Instability growth rates for various aspect ratios including both g = 0
and g < 0, Bz1 = Bz2 = 0 T, and Bz3 = Bθ.

pre-magnetized implosions while the sausage and kink are comparable without pre-

magnetization. Since the m = 0 minimizes field line bending, it is likely to dominate

over the kink mode without pre-magnetization. This is particularly true if the sausage

mode feeds through. The implication in either scenario is that if larger wavelengths

are seeded on the inner surface of the liner, they have significant potential to grow

during the deceleration phase. These wavelengths are also the most dangerous as

they can significantly impact the liner integrity. Unfortunately, while the axial field

significantly reduces the sausage mode growth rate, the long wavelength kink mode

remains unaffected despite the large axial magnetic field. If this instability becomes

a problem, it is then best managed by reducing the initial seed. Feedthrough during

the implosion phase is naturally the next consideration.

Feedthrough is most important in the implosion stage where g > 0 as the undesired

rippling of the inner surface causes poor target performance at the stagnation phase

for a variety of reasons. The primary reason is that rippling on the inner surface is the

seed for deceleration RT. Many of the same lessons learned in the planar formulation

remain here, such as stabilization due to strong field bending. The sausage and

kink mode do introduce some complications, however, as they are intrinsically long

wavelength instabilities (kyr = m = 0, 1 for sausage and kink modes) but are totally
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absent in the planar geometry. Figure 3.10 shows the feedthrough factors for the

sausage and kink modes with Bz << Bθ. Also plotted as the dashed teal (black)

curve is the pure hydro feedthrough factor e−k∆ = e−kre/AR for AR = 10 (AR = 2).

Unlike the planar case, when g = 0 there can still be instability and hence a well-

defined feedthrough factor exists. The behavior it exhibits is quite different from the

typical MRT feedthrough factor. For both the sausage and kink mode and AR = 2,

F (ω) > 1 for kre . 1. In this regime, the feedthrough is ’backward’ so F (ω) = 2

means that the inner surface ripple amplitude is twice that of the outer surface. This

effect is most prominent for thicker liners and is due to the fact that thicker liners

have an inner surface at a smaller radius, which accentuates the cylindrical effects.

When g becomes large, this behavior disappears in the kink mode, but remains for

the sausage mode to a somewhat smaller extent (Fig. 3.11(a)). In fact, for the kink

mode, g > 0 brings both AR feedthrough factors below unity and results are not

much different than the planar feedthrough factor. It is unlikely this effect makes

an appearance in experiments unless the inner surface is somehow rippled early on

(when g is small) with a long wavelength outside of feedthrough.

A possible physical interpretation of this somewhat unanticipated result is that

there is a competition between MRT and a bulk sausage mode while the acceleration

is small. A typical eigenfunction for MRT shows exponential decay away from the

MRT unstable surface where the peak is. Introduction of the sausage and kink modes

modifies the behavior of the eigenfunction such that the peak may no longer occur

at the interface, but somewhere in the liner (hence bulk). Then, as g becomes large

enough, the MRT at the outer interface dominates such that the peak has moved

from the liner interior to the outer surface.

During the majority of a pre-magnetized implosion Bz << Bθ and as shown in

the planar results the feedthrough factor is not much affected in this case. The most

important case is Bz,f ≈ Bθ, particularly for g > 0. These conditions occur as the
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Figure 3.10: Feedthrough for AR = 2, 10 including both g = 0 and g > 0. The pure
hydro feedthrough factor is included as the dashed teal (black) curve using AR = 10
(AR = 2). Bz1 = Bz2 = Bz3 = 0 T. AR = re/∆ is the aspect ratio.
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liner nears the deceleration phase and has begun to compress axial magnetic field in

the fuel region significantly, but is still accelerating inward. In general this also means

that (Bz1, Bz2) << Bθ. This scenario is considered next in Fig. 3.11. The axial field

has the greatest impact on the sausage mode as it brings the feedthrough factor be-

low unity for all k. Compared to the sausage mode, the kink mode feedthrough is

insensitive to the axial field. Only the shortest wavelengths have some reduction in

feedthrough. Interpreting these results in the context of experiments is more chal-

lenging. Experimental images (Fig. 1.4) show evidence of kink-like MRT growth that

has developed during the main phase of the implosion (where Bz << Bθ) [54][55].

Since the feedthrough factors for both the sausage and kink are similar, it is difficult

to say whether feedthrough of the kink mode, or sausage mode or both occurs. How-

ever, as the axial field is compressed, feedthrough of the kink mode becomes the most

important. X-ray measurements of the hottest fuel region in MagLIF experiments

also indicate a helical shape [38][39]. Whether this is from feedthrough of helical per-

turbations, growth of a kink-MRT mode or something else, is a subject of ongoing

research.

3.4.1 Application of analytic solutions to

1D liner implosions

As an important check, the derived growth rates can be compared to the bench-

mark problem from Sinars et al.’s experiments from Chapter 2 [51]. The same 1D

simulation used for the planar equilibrium parameters can easily be adapted for the

cylindrical model as well. The MRT amplitude can then be computed in exactly

the same way as for the planar model. The 400 µm axial wavelength calculation for

m = 0 is shown in Fig. 3.12 along with the planar calculation (ky = 0), 2D HYDRA

simulation and experiment. As expected, the cylindrical model gives slightly larger

overall growth than the planar model. While not a direct test of the cylindrical effects
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Figure 3.11: Feedthrough for AR = 2, 10 including both g = 0 and g > 0. The pure
hydro feedthrough factor is included as the dashed teal (black) curve using AR = 10
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AR = re/∆ is the aspect ratio.
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Figure 3.12: Three region sharp boundary model calculation of MRT growth of a
400 µm perturbation on a cylindrical liner using both planar and cylindrical (m =
ky = 0) with 2D HYDRA data [8] and Sandia experimental data from Sinars et al.[51].

of the sausage mode, the model gives the appropriate limit. It is very computationally

expensive to simulate a seeded kink mode with k > 0 since it is a fully 3D calculation;

nevertheless, efforts to do this are underway (see Appendix C). Instability growth in

the (r, θ) plane will be considered later in this chapter.

As with the planar model, 1D HYDRA simulations can be used to calculate ap-

propriate equilibrium quantities for the analytic model. In order to analyze both

g > 0 (implosion) and g < 0 (explosion or stagnation), a full ICF style implosion is

modeled in 1D HYDRA. This is necessary to establish a deceleration phase at high

convergence. This could also be accomplished by using a higher density material such

as liquid deuterium or even water to achieve stagnation at larger radii. Plotted in

Fig. 3.13 are the results of these 1D HYDRA simulations averaged to generate equi-

librium quantities. The initial fuel density is 2.5 mg/cc and initial axial field is 10

T. The drive current used is the Sandia z1965 pulse [51] shown in Fig. 2.8. The fuel

is preheated to roughly 250 eV on average. The liner itself is a beryllium liner with

129



AR = 6, initially at a smaller radius than the Sinars et al.[51] aluminum liner (from

3.168 mm to 2.79 mm). The azimuthal and axial magnetic fields are only comparable
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(a) Beryllium liner trajectory including the
temporal evolution of the average liner
(ρ02) and fuel densities (ρ03).
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(b) Magnetic field and acceleration history for
pre-magnetized ICF style implosion. Ini-
tially, at t = 0, Bz1 = Bz2 = Bz3 = 10 T
and B0θ = 0. For a(t) < 0, the liner is
imploding. For a(t) > 0, the liner is de-
celerating.

Figure 3.13: Time history of equilibrium quantities from 1D HYDRA simulations for
an ICF style implosion.

early on and very late into the implosion, around the time g changes sign. Recall

a(t) = −g(t). Also, ρ2 >> ρ3 which means the Atwood number is essentially unity.

Using the values from Figs. 3.13(a)-3.13(b), the instantaneous growth rate can be

calculated for a given (m, k). Of particular interest are the sausage and kink modes

which will be compared directly at each moment in the implosion. A map of this

comparison is plotted in Fig. 3.14 along with some annotations. The green dashed

curve highlights an axial wavelength of 1 mm, which is roughly the dominant axial

mode observed in liner implosion experiments [53][55]. The results can be roughly

divided into three phases for the purposes of these calculations: (1) initial current

rise (g ≈ 0, t < 55 ns), (2) implosion (g > 0, 55 ns < t < 140 ns), and (3) deceleration

(g < 0, 140 ns < t < 148 ns). The first phase is the current ramp phase, which in-

cludes Bz > Bθ until Bz ≈ 0.1Bθ. During this phase g remains small as the magnetic

drive pressure must first overcome the inertia of the liner. The shortest wavelengths
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Figure 3.14: Relative importance of sausage and kink modes throughout a typical
ICF liner implosion. The final approximately, 7 ns of the implosion is the deceleration
phase where the sign of g flips. In our model, MagLIF again behaves like a tokamak
where the sausage mode is completely stabilized by the axial magnetic field but the
kink mode remains.
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of both sausage and kink modes are initially stabilized by the relatively strong axially

magnetic field. This is a regime that does not last long. While the thickness of the

liner and wavelength do have a marginal effect on the sausage stability criterion, once

Bz < 0.7Bθ, the sausage mode turns on, even though the kink mode remains the dom-

inant mode like a tokamak. Once g becomes large, the shortest wavelengths are still

the most unstable to the kink mode (see Figs. 3.4, 3.5). MRT is known to evolve from

short wavelengths to long wavelengths through nonlinear effects. Nonetheless, nearly

every axial wavelength of interest begins as stable to the sausage and kink mode,

transitions to period of growth dominated by the kink mode, followed by sausage

dominated growth in the second, implosion, phase. Thus, the character of MRT has

the potential to be a mixture of the sausage and kink mode.

The main portion of the implosion phase is dominated by MRT with the growth

rate mostly determined by g. When g is small, the absolute growth rate of the (nearly)

pure sausage and kink modes is relatively small using the sharp boundary model at

solid density. Since the growth rate scales with 1/
√
ρ (see Eqs. 3.46, 3.48), ablated

plasma could exhibit faster growth. Very important to note is that if this same case

were run with no axial magnetic field, the vast majority of the implosion is dominated

by the sausage mode and it is never stabilized, as (kzBz)
2 = 0. Additionally, with no

Bz, the kink mode enters only in the stagnation phase where both the sausage and

kink modes are comparable, with slight preference to the kink. The effect of the axial

magnetic field on this stage is discussed next.

The final stage occurring in the last 8 ns of Fig. 3.14 is the deceleration phase

where g switches sign. At this point in the implosion the axial magnetic field is highly

compressed in the fuel region and is comparable with the azimuthal magnetic field.

This is sufficient to stabilize the sausage mode, however the kink mode remains strong,

and has almost constant growth rate over a wide range of wavelengths (Fig. 3.9). The

dominant MRT mode is experimentally observed to be between 500 to 1500 µm which
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also has a relatively large feedthrough factor. Thus, these are the modes most likely to

seed the inner liner surface. The subsequent deceleration growth is then dominated

by the kink mode due to the highly compressed Bz. The effective |g| during the

deceleration phase is about an order of magnitude larger than the implosion phase.

While the deceleration phase occurs only for a limited time, a significant number of

e-folds can occur leading to substantial instability growth. Such a calculation was

done for the sausage and kink mode and is displayed in Fig. 3.15. The amplitude
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Figure 3.15: Comparison of MRT amplitude gain for sausage and kink modes. G =
exp(

∫
γdt) when the axial magnetic field is strongly compressed.

gain is defined as G = exp(
∫ t
t0
γ(m, k, t′)dt′) where the exponent is just the number

of e-folds and t0 is the beginning of the deceleration phase (∼ 141 ns). The sausage

mode is stabilized so the amplitude gain for the sausage mode is unity. A typical

liner is on the order of 1 cm tall, which limits the maximum wavelength. So the total
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amplitude gain for the kink mode is around 5 or less which is still quite substantial.

The gain is sensitive to the value of g and the compressed Bz. The axial magnetic

field also affects where the plateau occurs at which the gain goes to unity for both

kink and sausage modes (wavelengths shorter than ∼ 1 mm in this case). If the axial

magnetic field is less successfully compressed, the kink mode is no longer stabilized

for slightly shorter wavelengths and additional amplitude gain can be found there.

For larger axial fields, the longer wavelengths can be stabilized, so the plateau moves

to the right. In reality, these 1D calculations likely overestimate the compressed Bz

since the Bz in the fuel region is radially averaged. HYDRA also does not yet include

the Nernst effect (see Slutz et al. for discussion of the impact of the Nernst term [12]),

which is another way field can leak from the fuel region through the combination of

a temperature gradient and low magnetization. Increasing the axial magnetic field

tends to decrease the Nernst effect [12]. This is one of the possibly more important

pieces of physics missing from HYDRA but is in development. However, if the 1D

profiles are sufficiently well known, they can be used to numerically integrate the

governing ODE. This would be able to account for gradients in density and axial

magnetic field, as well as any azimuthal magnetic field leaking into the fuel.

The focus of this chapter has thus far been on the m = 0, 1 modes. Unfortunately,

it is difficult to determine the true mode structure of a 3D liner from 2D radiographs.

The sausage and kink modes are effectively very long wavelength modes and very

robust, if slow growing. As m becomes larger, modes grow fastest in the absence

of an azimuthal magnetic field (just like large kz), assuming g is provided by other

means. However, in a Z-pinch, since Bθ is large, it is anticipated these modes play

a very small role, because (kθBθ)
2 becomes large. While it is unlikely modes as high

as m = 20 appear, the difference between m = 1 and m = 2 is not particularly large.

To illustrate this, the number of MRT e-folds for 80 ns and over the entire implosion

phase was calculated for |m| ≤ 20. These calculations used the same data as for the
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previous plots so that 80 ns corresponds roughly to the beginning of the implosion

phase. Direct comparison of Figs. 3.16(a)-3.16(b) shows that as time goes on the
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Figure 3.16: Total number of e-folds for instability growth for −20 ≤ m ≤ 20.

largest gain is concentrated towards smaller m numbers. Nonetheless, in the first

85 ns, Bθ has already risen to 1100 T (Fig. 3.13(b)) yet the larger m numbers still

show a substantial number of e-folds. Figure 3.16(a) also illustrates the effect of the

axial magnetic field on the dominant MRT mode. As was shown in the comparison

of the sausage and kink mode, including an axial field pre-disposes the liner to the

kink mode. Careful investigation of Fig. 3.16(a) shows the e-folds are not symmetric

about m = 0 as would be found if Bz = 0. Instead the peak is off-center. As time

goes on the sausage mode begins to dominate the growth and hence Fig. 3.16(b)

becomes more symmetric. Figure 3.17 shows the total e-folds for −20 < m < 20 for

two fixed values of λz = 300, 1000 µm after 57 and 85 ns to better illustrate these

points. The green curves plot the results for Bz = 0 T showing the symmetry of the

modes about m when no magnetization is present. At 57 ns the current is in the

ramp up phase and highlights the early dominance of the kink mode. After 85 ns,

the asymmetry begins to be overwhelmed by the sausage mode as the liner enters

the implosion phase. While it is difficult to say whether early growth of the kink
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Figure 3.17: Comparison of the asymmetry of azimuthal mode instability growth for
long and short axial wavelengths, and with and without pre-magnetization.

mode will persist, experimental radiographs directly comparing two cases with and

without an axial field do show the presence of kink-like modes with the axial field

present. Without the axial field, the images look much more azimuthally symmetric

[53][37][55]. Radiographs have not been taken during the current ramp up phase when

an axial field is present so it is currently unknown how early this kink-like structure

appears. Nonetheless, based on the present study, the presence of the kink mode is

not totally unexpected. The effect of magnetic diffusion is an important consideration

that remains, particularly in the azimuthal direction. If there is sufficient diffusion,

the stabilization of MRT can be significantly reduced even with large magnetic fields.

This allows for greater growth of any mode with |m| > 0. From a scaling standpoint,

the planar model could fairly easily be modified to include a parameter that scales the

(~k · ~B)2 terms based on fitting to HYDRA data. The cylindrical model expressions

are far more complicated and such a simple procedure is not possible.
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3.4.2 2D (r, θ) HYDRA simulations of purely azimuthal modes

In the previous chapter, the effect of finite resistivity on axially oriented modes

was considered (where m = 0). Here, the effect of finite resistivity on the growth

of purely azimuthally oriented modes will be examined. As 3D calculations are too

computationally expensive, the following section will resort to 2D (r, θ) simulations

where k = 0. As was seen in the previous section, the issue with this type of simulation

is that these growth rates tend to be small (according to ideal MHD). This geometry

also requires additional consideration as to measuring the instability growth. To

facilitate this, a very simple transformation to transmission measure is applied to the

2D data.

T (r, θ) = e−κρ(r,θ)L. (3.55)

Here κ is the opacity of the aluminum (assumed to be a constant 102 cm2/g) and L

is the axial length of the liner (0.75 cm). To model the full 2π of the liner 2048 zones

were used in the θ̂ direction. This is significantly more total zones than the previous

(r, z) simulations and are thus more computational expensive. At the initial radius of

3.168 mm, this gives an azimuthal resolution of ∼ 10 micron. Two azimuthal modes

were considered, m = 1, 6 (note that the sign does not matter in 2D, with k = 0) and

seeded on the exterior of the same liner that has been considered for the majority of

this thesis. The instability amplitudes for m = 1, 6 are shown in Fig. 3.18.

The jaggedness in the m = 1 result is a consequence of significant ablation and

higher frequency modulation. The MRT growth plotted in Fig. 3.18 is determined

from the 38 % transmission contour. This contour level was selected to image the

same density as the 50 % contours did in the (r, z) simulations (similar path lengths).

It should be noted that results were very similar over a wide range of contour levels.

While not the highest fidelity simulations, it is clear that both the m = 1 and m = 6
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Figure 3.18: Comparison of instability growth form = 1, 6 modes with kz = 0 from 2D
HYDRA simulations. The dashed analytic line sets Bθ = 0 so there is no stabilization
in the θ̂ direction, and the liner is imploded by other means.

modes grow significantly more than the analytic predictions using the ideal MHD

sharp boundary model. More interestingly, both modes grow at roughly the same

rate, both showing a gain in amplitude of approximately by a factor of 3. This

is a very unexpected result based on the analytic calculations which predict high

stabilization of the m = 6 mode since (kθBθ)
2 = (mBθ/r)

2 is large when m = 6. The

analytic result for the m = 1 mode is not shown as it reaches an amplitude of only

52 µm at 80 ns.

Growth of both m = 1, 6 modes scale in interesting ways. The m = 6 mode

behaves as though there are no magnetic field effects (Bθ = 0 as shown by the dashed

curve, g is assumed to be produced by other means) such that only MRT grows

(∼ γ2 =
√
k2
θ + k2

zg). The kink mode does not behave in this manner as kθ is six

times smaller. Thus, for the kink mode, the magnetic terms cannot be neglected

but does not solve the discrepancy, as the analytic growth rates remain too small.

The chosen density value may influence the growth rate value, particularly since the
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wavelength is long, MRT stabilization via a density gradient is relatively unimportant.

Based on the form of Eq. 3.48 for the sausage mode, the smaller density regions may

grow faster for the kink mode as the kg term is relatively small as compared to the

m = 6 case (where kθ is large). Nonetheless, there are many confounding effects

making agreement between analytic and simulation results very challenging.

As anticipated, there is significant diffusion of the azimuthal magnetic field into

the liner. While it is known that a finite current distribution in an ideal MHD Z-pinch

reduces the growth of pure sausage and kink modes, an analysis including MRT has

not been done. Since a finite g has been shown to affect sausage and kink growth

rates, a calculation including diffused azimuthal field is considered next.

In order to model this effect for ideal MHD, a technique similar to that employed

by Zhang et al. [66] is used. A sharp boundary model is still used, however, a finite

distribution of azimuthal magnetic field is allowed in the liner region but it is assumed

that B0θ is not lowered as a result of diffusion. This requires numerical solution of the

governing ODE, however, for constant density and constant axial magnetic field, the

solver is still quite fast. To model the azimuthal magnetic field in the liner, a simple

diffusion profile is used, that is parameterized via δ, which measures the distribution

of Bθ within the liner. This profile is described by Eq. 3.56 and plotted for various

values of δ in Fig. 3.19,

Bθ(r, t) = Bθ,0
sinh [(1− (re − r)/∆) /δ]

sinh (1/δ)
. (3.56)

In physical units, δ is closely related to,
√
Dm, where Dm is the magnetic diffusion

constant. Increasing values of δ correspond to increased azimuthal magnetic field

within the liner as shown by Fig. 3.19. This model assumes that the peak Bθ is

not lowered as a consequence of the diffusion. The liner outer radius for Fig. 3.19

is located at re = 3.168 mm (at the rightmost of the figure) and the liner inner
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Figure 3.19: The assumed analytic profile for the azimuthal magnetic field within a
liner with outer radius located at re = 3.168 mm, with thickness, ∆ = 0.3 mm. The
magnetic field is normalized to the value at the liner exterior.

surface is located at re − 0.3 mm (leftmost side of plot). The azimuthal magnetic

field equals to zero at the inner liner surface (re −∆). This formulation accounts for

magnetic diffusion in time, which is found in the 2D simulations while the analytic

treatment of unstable modes still uses ideal MHD. To model this, the resistivity, η,

is fixed and the diffusion length increases as time increases. Though this is still a

substantial simplification as Dm varies with r and t in resistive MHD simulations.

Also important to keep in mind, is that while the field is ‘diffused’ into the liner, the

field lines still fully bent in ideal MHD. In resistive simulations the bending of the

magnetic field lines may be reduced somewhat because of magnetic diffusion which

reduces the effective (~k · ~B)2 term.

The results for the finite current distribution in our analytic framework are shown

as the solid curves in Fig. 3.20 and the purely analytic calculation (no current in liner)

as the dots. Here there is no axial magnetic field (since kz is so small it should not

affect results anyway). These results indicate that presence of azimuthal field within

the liner has a significant impact on the m = 6 mode, while the sausage and kink
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mode growth remains nearly the same (dots are on top of solid curves). On the log

scale, the dip in the m = 6 result corresponds to a brief period of stability (σ2 = 0).

The sausage mode has a very small growth rate (σ ∼ 109s−2), but is also unaffected

by the finite current. This is a result that is difficult to interpret in the context of the

2D simulations given the large number of variables in the problem. Nonetheless, the

ideal MHD results show that the presence of azimuthal field in the liner is generally

a stabilizing configuration for these (r, θ) perturbations.
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Figure 3.20: Comparison of instability growth rates for m = 0, 1, 6 modes with kz = 0.
The solid curves include a finite current distribution in the liner using our analytic
framework, while the dots are the completely analytic model with no current in the
liner. Note that the analytic results are nearly identical for m = 0, 1. m = 6 shows
smaller growth including the finite current distribution.

An additional calculation was performed for λz = 400 µm, which is a 3D mode

when |m| > 0 (Fig. 3.21). Again, the dotted curves are from the completely analytic

case (no current in the liner), while the solid curves use the diffusion model (including

current in the liner). Bz = 0 again. Results again show that finite current in the

liner reduces the growth rates for all modes. Like the kink mode, for the k ≈ 0

case the sausage mode growth was negligible though the diffusive and surface current

case showed nearly the same growth rate. The shorter axial wavelengths of the
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sausage and kink mode appear to be more affected by the diffusive model as the

results diverge quite a bit. The m = 6 mode shows substantial growth for a shorter

axial wavelength (400 µm) but it is similarly reduced by finite current. Based on

these analytic calculations, the overall trend seems to be that the larger m modes

are affected by finite current for both long and short axial wavelengths, whereas

the sausage and kink modes are most affected by finite current for shorter axial

wavelengths.
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Figure 3.21: Comparison of instability growth rates for m = 0, 1, 6 modes with λz =
400 µm and Bz = 0. The solid curves include a finite current distribution in the liner
using our analytic framework, while the dots are the completely analytic model with
no current in the liner.

Lastly, a growth rate calculation was performed at a single time using the full

1D profiles from a HYDRA simulation. The governing ODE was solved using a

finite difference formulation in an attempt to incorporate magnetic field and density

gradients since the various azimuthal modes scale differently with each. The time

selected was 77 ns (roughly halfway through the current pulse). The density and

azimuthal magnetic field are plotted in Fig. 3.22. Bz = 0 for these calculations.

Strong and weak density gradients are apparent and significant diffusion of azimuthal

magnetic field is present. Because of the distribution of density and magnetic field
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Figure 3.22: Density and azimuthal magnetic field distribution in an aluminum liner
at t = 77 ns from 1D HYDRA simulation. At this time g = 6.8 × 1011 m/s2 and
Bz = 0.

there is the possibility of more solutions to the eigenvalue problem than just the four

modes given by Eq. 3.45. This will quickly become apparent in the following plots and

makes finding the correct eigenvalue much more challenging. To solve the eigenvalue

problem, the governing ODE is discretized and solved via matrix methods. The

boundary conditions are homogeneous the eigenvalue that solves the problem creates

a singular matrix. Numerically it is not so simple to determine whether a matrix is

singular. The method selected in this work is to compute the condition number of

the matrix. An infinite condition number corresponds to a singular matrix.

Figure 3.23 shows the first of these calculations with m = 6. The value, ω2 = σ,

in the title of the figure corresponds to the sharp boundary model solution of σ =

1.07 × 1016 in units of s−2. For λz = 400 µm, the computed σ = 8.27 × 1015 which

is slightly smaller than the sharp boundary model solution. However, for λz = 10 m

(kz ≈ 0) the computed σ = 3.75 × 1013 is slightly larger than the sharp boundary

model of σ = 3.31× 1013.

Figure 3.24 shows the results for the kink mode. The value, ω2 = σ in the title
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(a) Plot of matrix condition number for m = 6 and λz = 400 µm. The peaks correspond to
solutions of the eigenvalue problem. The largest σ = 8.27× 1015 s−2.
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(b) Plot of matrix condition number for m = 6 and λz = 10 m. The peaks correspond to
solutions of the eigenvalue problem. The largest σ = 3.75× 1013 s−2.

Figure 3.23: Complete eigenvalue problem solution using a 1D HYDRA profile for
density and azimuthal magnetic field for m = 6.
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of the figure again refers to the sharp boundary model solution. For λz = 400 µm

the computed σ = 9.7× 1015 in units of s−2, is again slightly smaller than the sharp

boundary model solution of σ = 1.2×1016. More interestingly, for λz = 10 m (kz ≈ 0)

the computed σ = 2.13× 1013 is significantly smaller than the sharp boundary model

result of σ = 1.4×1014. The growth rate is, in fact, quite similar to the m = 6 growth

rate shown in Fig. 3.23(b). From the standpoint of the 2D (r, θ) simulations this is

good news as the m = 1, 6 modes were observed to grow at roughly the same rate.

Of course, this is only at one particular time however, this result makes much more

sense when compared with the simulations (Fig. 3.18).

Lastly, Fig. 3.25 shows the results for the sausage mode. The two peaks at the

largest values of σ are at 2.13 × 1016 and 1.17 × 1016. Note that this corresponds

directly to the benchmark case that was considered earlier in this chapter and in

chapter 2. This means that the sharp boundary model solution in this case should

work remarkably well and corresponds to the second peak. The first peak is thus,

surprisingly large. Additionally, the m = 0, kz ≈ 0 case also shows a larger computed

σ = 6.67×10 than the sharp boundary model which is 8.96 × 109. This is another

subtlety of using such a general solution technique. Examination of the eigenfunc-

tion solution for each mode shows different behavior. The eigenfunction solution for

the first peak ∼ 2kg actually shows a peak in the low-density region of the profile.

Essentially, this growth rate seems to correspond to growth in the lower density ma-

terial as opposed to the bulk. The solution resembling kg shows an eigenfunction

that more closely resembles the eigenfunction for the sharp boundary model, with a

peak near the steep gradient and a decay into the bulk of the liner density. This is

the main reason growth rates were calculated for one point in time. Calculations at

additional times would likely best be served by recording multiple eigenvalues and

the corresponding eigenfunctions as well as the location of the peak of the eigenfunc-

tion to determine more information about the mode. It is also clear that the shorter
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(a) Plot of matrix condition number for m = 1 and λz = 400 µm. The peaks correspond to
numerical solutions of the eigenvalue problem. The largest σ = 9.7× 1015 s−2.
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(b) Plot of matrix condition number for m = 1 and λz = 10 m. The peaks correspond to
solutions of the eigenvalue problem. The largest σ = 2.13× 1013 s−2.

Figure 3.24: Complete eigenvalue problem solution using a 1D HYDRA profile for
density and azimuthal magnetic field for m = 1.
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(a) Plot of matrix condition number for m = 0 and λz = 400 µm. The peaks correspond to
solutions of the eigenvalue problem. The two peaks at the largest values of σ are at 2.13×1016

and 1.17× 1016 s−2.
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(b) Plot of matrix condition number for m = 0 and λz = 10 m. The peaks correspond to
solutions of the eigenvalue problem. The largest σ = 6.67×10 s−2.

Figure 3.25: Complete eigenvalue problem solution using a 1D HYDRA profile for
density and azimuthal magnetic field for m = 0.
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wavelengths show much more complicated solutions.

This is perhaps one of the most advanced calculations possible using a linearized

ideal MHD model. However, the calculations are also significantly more involved and

it is not clear the obtained growth rates are significantly more accurate. Certainly, we

have found some significant differences in growth rates between the two calculations.

The largest differences in the maximum growth rate were observed for long axial

wavelengths and for m = 0 or m = 1. Including just the finite current into the sharp

boundary model for these same modes (Fig. 3.20) did not show these differences.

However, Fig. 3.20 used a simple diffusion model as opposed to the actual HYDRA

calculated diffusion. Fig. 3.20 also did not account for the lower density material at the

exterior of the liner. If the full profile growth rate calculations can accurately model

the azimuthal modes, the method would be of substantial benefit but more work is

needed on that front. Nonetheless, the longer axial wavelengths seem more influenced

by finite azimuthal magnetic field in the liner. In these cases, the effect of density

gradients is also minimized for MRT since the effect enters the dispersion relation

as kg/(1 + kL) where L is the density scale length. Lastly we note for the shorter

400 µm axial wavelength, a large number of eigenmode solutions are introduced.

3.5 Conclusion

This chapter introduced, developed, and applied a cylindrical three-region sharp

boundary model to understand the coupling of MRT and the sausage and kink modes

in a finite thickness liner. As in the planar description, magnetic field line bending

can reduce MRT growth and feedthrough. The azimuthal magnetic field, unlike the

planar case, can also drive additional instability. In general, this effect increases the

overall instability growth rate as compared to the Cartesian formulation especially for

short axial wavelengths. With only an azimuthal magnetic field, the m = 0 sausage

mode has the dominant MRT growth rate. Introduction of an axial magnetic field
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reduces the overall growth rate of instability but makes the dominant MRT mode

helical (m > 0). As anticipated, the thinnest liners are overall the most unstable

regardless of Bz and g. High compression of an axial magnetic field in the central

region of the implosion can significantly suppress the sausage mode, however the kink

mode growth remains very robust. Thus, at high compression, the kink mode is

expected to dominate. In some sense, this is like a tokamak, where a strong axial

magnetic field is present.

Because of finite conductivity in the liner, it is possible that m = 2 and larger

modes may also be important. As was thoroughly discussed within this chapter, the

higher m numbers are stabilized in ideal MHD field due to line bending stabilization.

As azimuthal field diffuses into the liner, this current may drive instability. Yet if

there is now additional field line bending in the liner, this is also stabilizing, but again,

finite conductivity reduces this stabilizing effect. 2D (r, θ) simulations have shown

that the azimuthal modes do indeed grow faster than anticipated by ideal MHD.

However, it is difficult to separate out the effects contributing to instability growth

at this point. Finite current within an imploding liner was considered via numerical

integration of the linearized ideal MHD equations in cylindrical geometry using both

an idealized model and the full 1D radial profiles from 1D HYDRA simulations. Many

more unstable modes were obtained for the numerical results when using the full 1D

profiles than the (at most) two from the analytic theory (Eq. 3.44). The analytic ideal

MHD results predict a larger growth rate for the kink mode than for m = 6. However,

the fully integrated calculation gives very similar growth rates for both modes as was

found in 2D simulations.

Based on the challenges with the purely azimuthal modes, more work is needed to

determine how well the analytic equations describe the evolution of fully 3D modes.

Additionally, while feedthrough of the sausage mode is fairly straightforward to sim-

ulate, the kink mode is the more dangerous one when Bz is present but also may
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be more difficult to model due to the same problems with modeling MRT. What is

required to make these comparisons are accurate 3D simulations. The sharpness of

the helices and very specific mode numbers (in m and k) that were observed in the

experiments by Awe et al. [55] present the biggest challenge in comparing (unseeded)

3D simulations and experiments. We remark that, using the eigenmode solution, we

have resolved a major puzzle [9] on why the observed helices in Awe et al. [54][55]

did not wind up despite the ratio Bz/Bθ becoming increasingly smaller as the current

increased. There is still more work that can be done with understanding feedthrough.

The next chapter will change focus from the evolution of instability on the liner outer

surface to the stability of the inner surface.
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CHAPTER IV

Study of Liner Inner Surface Stability

4.1 Introduction

In the previous chapters, the magneto-Rayleigh-Taylor (MRT) instability in planar

and cylindrical geometry has been studied in depth in magnetically driven pulsed

power loads. Many of the cases were idealized to best understand the link between

the linear theory and simulation results. This chapter will focus on a number of

non-ideal and nonlinear effects in liner implosions, in particular, the effect of shock

compression on feedthrough, the generation of long wavelength MRT, subsequent

feedthrough from surface roughness, and some considerations related to the impact

of the MagLIF preheat on the inner surface. The first two physical processes are

beyond our ideal MHD model because of the incompressible equation of state (EOS)

and linearized equations used. The incompressible EOS implies an infinite sound

speed in the material such that the inner surface is instantly aware of the conditions on

the outer surface. In many cases however, loads on pulsed power machines, such as Z,

are shock compressed while concurrently accelerated. The incompressible assumption

has actually worked quite well for the MRT unstable surface as was presented in the

previous two chapters, even if a more sophisticated EOS is used in the simulations.

However, a sufficiently strong shock would create a very different scenario at the

inner surface depending upon its initial conditions. Such a shock effectively isolates
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the perturbed and accelerating material from un-perturbed material. This, in essence,

limits the communication between the outer and inner surface until the shock reaches

the inner surface, at which point feedthrough can occur between the two interfaces.

The net effect is to introduce a time delay to feedthrough. Additionally, when a shock

is driven non-uniformly in the material, whether from initial surface perturbations or

non-uniform drive, more complications are introduced at the inner surface. Lastly, in

the MagLIF concept, preheating the fuel deposits 0.1-4 kJ of energy into a deuterium

fill gas, launching a blast wave towards the liner surface [38][39][27]. This hot gas can

then deposit considerable energy in the liner inner surface when the blast wave reaches

it. The heating itself can lead to ETI [17]-[19] if there is significant axial or induced

azimuthal current at the surface. Non-uniform heating of the surface can introduce

large perturbations to the inner surface due to ablation of material. From our results

in Chapter 2, we know that perturbations on the inner surface can feed back to the

outer surface seeding additional MRT growth. These issues will be examined in this

chapter.

Once again, aluminum will be the material of choice though a few beryllium

simulations will be presented to understand some material dependent effects. The

organization of this chapter is as follows. (1) First we will examine feedthrough of

MRT in roughened liners, where the roughness emulates that found in machined liners

with wavelengths on the order of 1-10 micron. These wavelengths are too short to feed-

through, for sufficiently thick liners, but as the liner is accelerated, nonlinear effects

cause the dominant wavelength to increase to the point where the feedthrough factor

becomes large. Feedthrough will be compared with and without an axial magnetic

field, as this field is found to reduce feedthrough from ideal MHD calculations. (2) We

will consider pre-seeded liners in concert with shock compression, with well-defined

wavelengths machined on the inner surface. For long enough wavelengths, this can

drastically alter the stability of liner. The effect of a water fill to hasten deceleration
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RT, as well as other effects will also be reported.

Lastly, as we will be considering a variety of different initial conditions on the inner

surface, it is best to provide early definitions here. In this chapter, we will use ‘seeded

liners’ when relatively large amplitude, long wavelengths are seeded sinusoidally on

one or both of the liner surfaces (λz ∼ 100s of microns). For our purposes, a ‘seeded

liner’ will have, at most one or two seeded wavelengths present. When the seeded

sinusoidal perturbation is not present on the surface we will call the surface ‘smooth’.

If necessary, we can also ‘roughen’ any smooth surface to include the quasi-random

small amplitude, short wavelength perturbations naturally found on a liner. We will

avoid use of the word ‘seed’ as related to these random perturbations and do not

consider additional roughening of sinusoidal perturbations. Lastly, a ‘clean’ surface

is a surface with absolutely no perturbations present on the surface.

4.2 Rough liners

In 2D (or 3D) simulations, a perfectly smooth liner is a liner without any initial

surface perturbations. Liners fielded in experiments always have some sort of ini-

tial roughness depending on the material and method used to prepare the liner. In

laser fusion, the ultimate goal is to produce a spherical capsule with as small per-

turbations as possible, on both inner and outer surfaces, to reduce the initial seed

for the Rayleigh-Taylor instability [30]. Liner implosions at Sandia have shown that

the initial surface condition may not be so important due to the presence of other

early-time instabilities such as the electrothermal instability (ETI) [17][18]. However,

the ability of 3D codes to show the same insensitivity is somewhat in question [55].

In order to obtain the helical structure observed in experiments [55], 3D simulations

had to be initially seeded with the helix. Additionally, the resolution requirements

to model ETI growth are substantial due to the very short wavelengths intrinsic to

ETI and the following simulations will not attempt to model this effect. The goal of
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this section is to then understand whether feedthrough of MRT can be reduced by an

axial magnetic field. It will be shown this can be accomplished so long as reasonable

long wavelength MRT appears on the liner exterior. This is captured in 2D HYDRA

simulations by the nonlinear evolution of MRT from short to long wavelengths.

Roughening a liner surface may provide a seed for ETI. This instability may be the

precursor to MRT, however resolving the instability is beyond the resolution of the

simulations presented for the most part as already mentioned. The shock breakout

can also heat the inner surface; perhaps driving ETI if axial current diffuses to the

surface, or it is also possible that ablation may effectively anneal the inner surface.

Some simulations of this sort of scenario are presented in Peterson et al. [18]. ETI at

the inner surface could lead to mix of liner material into the gas leading to subsequent

Bremsstrahlung losses. An in-depth study of ETI at the inner surface is necessary

to determine whether it can be more detrimental than feedthrough. Our focus is on

feedthrough of longer wavelengths on the order of the liner thickness, where e−k∆

is appreciable. These modes are the most dangerous for the overall liner integrity

since they can significantly deform the whole liner; as opposed to smaller λz which

have much smaller feedthrough and affect only the outer surface. In these rough

liners, feedthrough is initially predicted to be quite small as MRT wavelengths are

very short and the liner is thick. Over the course of the implosion, MRT tends to

evolve to longer wavelengths, on the order of 0.5 to 1 mm [53][55]. These wavelengths

have much larger feedthrough factors and are also the most dangerous MRT modes

as the wavelengths are of the order of the liner thickness. In general, this requires

following the liner implosion through fairly large convergence ratios while maintaining

resolution in the liner, increasing the computational requirements. The result is that

these simulations are the most computationally taxing presented thus far.

The common materials of interest for MagLIF are aluminum and beryllium. Both

have been used extensively for direct study of MRT, though beryllium is the current
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material of choice for ICF implosions. There are many benefits to using beryllium.

It is low-Z (smaller Bremsstrahlung losses if material mixes into the fuel), can be

made thicker for the same mass (more robust to feedthrough), and can have a higher

implosion velocity (more energy into the fuel) [12]. A useful property of Be for the

purposes of studying MRT is that both the inner and outer surface of the liner are

visible to the 6.151 keV x-ray radiography used on the Z-accelerator due to its much

lower opacity (2.24 cm2/g compared to 102 cm2/g).Beryllium does tend to have higher

amplitude surface irregularities due to machining the liner [51]. The surfaces of targets

made out of both materials have been extensively characterized [51][53] and show

typical wavelengths on the order of microns, with RMS amplitudes on the order

of 10s-100s of nanometers, with larger divots on the order of microns. Beryllium

typically has overall larger amplitude modulations [51]. HYDRA 2D simulations will

be extensively employed so we will assume azimuthal (m = 0) symmetry for all axially

machined modes, or λz →∞ for (r,θ) simulations.

Before progressing further, some limitations of 2D (r, z) simulations are acknowl-

edged. The first being m = 0 azimuthal symmetry is strictly enforced. Implosions of

these targets also show no discernible azimuthal symmetry [51][53] early on, before

the long wavelengths develop. In essence, these 2D simulations likely overestimate

short wavelength MRT growth and as such we consider this the worst case for these

liner implosions [53]. The goal of these 2D simulations is to show enhanced stabil-

ity to the feedthrough of MRT when an axial magnetic field is compressed. Flux

compression of the field is the main method of achieving such high field strengths

on MagLIF without covering the whole experiment in high current coils to achieve

100s of Tesla throughout the experiment. As was shown in the previous chapter, the

sausage mode is affected most strongly by Bz. However, the kink mode is known to

be extremely important for pre-magnetized implosions and cannot be modeled in 2D.

The importance of the kink mode has been extensively discussed in chapter 3, in our
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paper [9], and shown in Sandia experiments [54][55].

4.2.1 Simulations of roughened cylindrical liners

We begin with 2D (r,z) simulations of ‘roughened’ Al liners with inner radius,

ri = 2.876 and outer radius, re = 3.168 mm which gives a thickness of ∆ = 292 µm,

the same as in Sinars et al. [51]. The liners are also driven with the same current

pulse from Z-machine (Fig. 2.8). Redrawn in Fig. 4.1, shot z1965 obtained a peak

current of nearly 20 MA pulse in 150 ns. Note that all times in subsequent figures

in this chapter refer to the current timing in Fig. 4.1. The tube is filled with a 2.5

mg/cc deuterium gas at room temperature. As in previous chapters, this pulse will
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Figure 4.1: Current drive of shot z1965 [51].

be used for the remainder of the paper as it is representative of a typical pulse on Z.

To impose a surface roughness on the liners we simply deform the mesh slightly at

the outer boundary (or inner for roughness on both sides) along the axial direction,

according to either random noise, or assigned from an FFT spectrum. We will present

the results of two different resolution simulations using a random surface. By virtue

of the different resolution, this effectively compares two very different initial surfaces.
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The lower resolution simulations were designed to be fast and a proof of concept.

They used an axial length of 1.2 mm with an axial resolution of ∼10 µm. The

higher resolution simulation had an axial length of 0.8 mm with axial resolution of

∼1.5 µm. For the high-resolution case, this is sufficient to resolve wavelengths as

short as 15 µm taking at least 10 zones/wavelength. For low resolution, the shortest

wavelength resolved is ∼ 100 µm. This low resolution case still has higher axial

resolution than most 3D simulations [53][55]. The first simulation includes longer

possible wavelengths to feedthrough, while the second better simulates the evolution

of shorter wavelengths to longer. It is possible the high resolution simulation can

capture some amount of ETI [17] at early times. The random surface was constructed

by the formula r = r0 + a0(2ζ − 1) where r0 = 3.168 mm is the unperturbed radius,

a0 = 37.5 nm and ζ is a random number between 0 and 1. The lower resolution

simulation used 2a0 to accommodate better gridding. The result is a very small

initial random perturbation on the liner outer surface, sufficient to initiate MRT

from very small amplitude, short wavelength perturbations. The two surface spectra

are presented in Fig. 4.2. Note, these spectra are not from actual measurements.

Based on the results found in previous chapters, the 10 T magnetic field is expected

to minimally impact the development of axial MRT modes on the exterior of the liner

in 2D. The greatest potential for impact exists for the shortest wavelengths since they

exhibit the strongest stabilization. Though it is possible magnetic diffusion effects

could overwhelm this. Consider an initial wavelength perturbation with amplitude

ξ =∼ 5 µm, then the diffusion time is (ηAl/(µ0ξ
2))−1 ≈ 1 ns. As the aluminum

heats, increasing the resistivity, the diffusion time reduces further and subsequent

field line bending is reduced. Experimental results for beryllium liners also show a

fairly consistent axial wavelength, independent of the applied axial magnetic field. Of

course, the axial magnetic field does affect the overall MRT development in 3D, but

such interesting problems are outside the scope of this chapter.
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Figure 4.2: Initial liner surface spectra used as seeds for roughened liner implosions.
FFT units are cm−1.

We begin by examining the early time growth of MRT as the current begins ris-

ing and the bulk of the liner is not yet moving. During this phase there is rapid

heating of the rough liner surface and azimuthal field begins to diffuse through the

liner. As the current ramps up through to 45 ns (Fig. 4.1), initial evolution of the

outer surface remains nearly identical with and without an axial field. If we neglect

stabilization by magnetic tension, MRT unstable regions require ∇ptot ·∇ρ < 0. This

condition is satisfied through the majority of the liner surface due to very large mag-

netic pressure exterior to the liner. This is a complicated period of growth as the liner

is expanding and being decelerated by magnetic field which eventually becomes large

enough to implode the material. The ablating/expanding material can carry axial

magnetic field. This induces a small azimuthal current on the order of 106 A/cm2,

corresponding to ∇ × ~B, however, this seems to contribute very little to the overall

heating of the liner exterior. However, this could contribute to the larger amplitudes

at longer wavelengths for the Bz = 30 T case. This is evidenced in Fig. 4.3 where

the MRT is again analyzed by looking at a 50 % transmission contour and subse-
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quent FFT plotted. The data are analyzed directly from the HYDRA simulation so

as not to include any instrumental resolution limits though the resolution is bounded

by the grid resolution. As anticipated, the shortest wavelengths grow the quickest

but transition to longer wavelengths as the current continues to ramp. By 45 ns,

the largest perturbations have wavelengths just under 100 µm. Thus, in about 25

ns the dominant wavelength has moved from ∼ 10 µm to ∼ 100 µm. At 45 ns, the
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Figure 4.3: Structure of outer surface perturbations during current ramp up phase
for high resolution case (1.5 µm axial resolution).

only difference between three cases occurs for very long wavelengths (where the 10

T case shows slightly less growth) and for very short wavelengths where the 30 T

case shows overall smaller mode amplitudes if the spectra are integrated. The effect

seems negligible at this point. Otherwise the differences between the simulations for

the MRT structure are minute this early in time.

As the MRT is developing over this time period, a shock wave develops from the

liner exterior and propagates through the bulk of the liner. For these rough liners

with random small seeds, the shock is relatively unimportant from the standpoint of

feedthrough. However, it is important in the sense that our feedthrough theory is

incompressible, which precludes a shock. Only once the shock has broken out of the
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inner surface can we consider the two surfaces linked. Ahead of the shock the inner

surface is motionless and unaware of the shock compression of the liner. Hence, there

is an intrinsic delay time for feedthrough to begin. In the incompressible limit, there

is no shock (the sound speed, cs → ∞) and the two surfaces are in communication

instantly. Additionally we note that upon shock breakout the liner inner surface

temperature is raised to roughly 0.1 eV (4x ambient temperature) in 4 ns which is

above the melting temperature of aluminum. In terms of Fig. 4.1, shock breakout

occurs at roughly 45 ns. The remainder of the discussion of the shock dynamics is

deferred to the section on seeded liners.

Once the shock breaks out, feedthrough can occur at the inner surface. Figure 4.4

plots the FFT of the inner surface just after shock breakout (at the same time as

Fig. 4.3(b)). Keep in mind, just before this time, the inner surface is completely

flat. While it is possible that some longer wavelengths could ride on the shock front

(see next section), the short wavelengths present on the exterior are effectively cutoff

by the thickness of the liner and cannot feedthrough. The very short wavelengths

observed in the FFT cannot be differentiated between noise and ETI, however the

inner surface is RT stable at this point. The axial current density is on the order of

∼ 0.5 × 107 A/cm2 near the interface. The axial field marginally reduces the inner

surface amplitudes at this point. The differences at longer wavelengths are nearly

imperceptible. Long wavelengths are also near the axial length of the simulation so

the amplitudes are likely somewhat under-estimated but nonetheless are indicative of

the start of feedthrough.

The effective feedthrough factor is the ratio of the inner surface FFT to the outer

surface FFT and would roughly scale as F (k) = exp(−k∆), neglecting any magnetic

field line bending. Although the rippling on the inner surface is very low ampli-

tude, it is clearly dominated by long wavelengths, as we would expect. These long

wavelengths are much harder to see in the MRT structure as it is still dominated
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Figure 4.4: Liner inner surface FFT after shock breaks out for the high resolution case
(1.5 µm axial resolution). The long wavelengths present are traced to feedthrough,
while the short wavelengths are likely a combination of ETI from the shock heated
surface and grid noise. The axial current density is on the order of ∼ 0.5×107 A/cm2

near the interface. Note that wavelengths shorter than 100 µm cannot feedthrough
substantially. Note, there is no preheat, just fill gas as in Awe et al. [55].

by large wavenumbers. Nonetheless, the ratio of the 400 µm mode amplitude from

inner to outer surface is 0.75 % ≈ F (ω(k)). This is essentially the instantaneous

feedthrough factor for the 2D simulation at 400 µm wavelength. Because the liner

expands and compresses in these simulations the density is non-uniform, making the

determination of ∆ for the analytic feedthrough factor difficult. This is particularly

a problem when MRT can deform the liner enough via mass redistribution, such that

the thickness significantly varies with axial position (something not captured in a

1D simulation). Plugging in F (400 um) = 0.0075 the effective thickness is 311 µm

(293 µm) for the uniform roughness (peaked) case, which is quite reasonable. The

analytic feedthrough factor also goes to zero much faster for short wavelengths than

found in the simulations which is consistent with the conjecture that they are present

due to a combination of ETI and grid resolution limits. Direct comparison between

the analytic feedthrough factor and simulation results becomes more difficult as the
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MRT bubble and spikes grow and become more diffuse (as time increases). When

this happens the concept of a liner ‘thickness’ becomes more ambiguous which re-

duces the efficacy of our sharp boundary model. This not only introduces additional

uncertainty into what we call the liner thickness, but also the true MRT amplitude.

The longest wavelengths’ amplitude are also the most difficult to measure accurately

via the FFT.

Another useful metric for the inner surface is the time evolution of the RMS

amplitude. Since HYDRA can maintain a Lagrangian interface and the inner surface

is not very diffuse, this is a simple calculation. This is plotted in Fig. 4.5(a) and

displays some rather interesting features, some best illustrated by plotting versus the

convergence ratio, CR, (see Fig. 4.5(b))

CR =
ri(t = 0)

ri(t)
. (4.1)

Over the majority of the implosion, the RMS amplitude does not vary much between

the magnetized and un-magnetized cases. In fact, there is a short period of time where

the magnetized cases exhibit larger amplitude perturbations. The mechanism behind

this appears to rely on the additional ohmic heating of the inner surface by azimuthal

current induced by spatially (and temporally) varying axial magnetic field. This tends

to heat and ablate the inner surface leading to additional motion and larger density

gradient scale lengths. As time continues on, the axial magnetic field is compressed

and the RMS amplitude of the un-magnetized case overtakes the magnetized cases

as anticipated. When plotted against CR, it is very clear that the axial field can

strongly suppress growth of ripples on the inner surface. The highest published CR

of a liner implosion observed via radiography thus far at Sandia is CR = 7 and

included a 10 T axial magnetic field [55]. Recent experiments have reached CR = 20

(via private communication with Kyle Peterson). However, even for aluminum at
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Figure 4.5: RMS amplitude of liner inner surface of the high resolution case over
duration of the liner implosion for various degrees of pre-magnetization. Note, there
is no preheat, just fill gas as in Awe et al. [55].

CR = 3.4 there is a noticeable impact on the inner surface evolution. For the slower

aluminum implosion, the 30 T case begins to affect the overall implosion dynamics

of the simulations (i.e., the three simulations have slightly different CR at the exact

same time). This means that the magnetic pressure due to the compressed axial

magnetic field (for 30 T) in the fuel region begins to slow the implosion. This is

one potential explanation for why the 30 T case does not show significantly more

stabilization of the inner surface. Additionally, the consequences of finite resistivity

may also play a role in allowing the tension in the bent magnetic field lines to relax.

Lastly, the distribution of axial magnetic field is different between the 10 and 30 T

cases.

In order to directly compare the three simulations we will compare the inner

surface conditions at CR = 3.4. Figure 4.6 shows the inner surface FFT at CR = 3.4

for all three axial field levels and shows markedly different behavior than observed

early on in the implosion (c.f., Fig 4.4). An important feature of the simulations

is that the axial magnetic field is not distributed uniformly in the fuel region. On

163



average, the 10 T field is compressed to ∼ 100 T and the 30 T case is compressed to

roughly 340 T. The peak axial field is actually found to be largest for the 10 T case,

however, the average axial field is smaller. This is because, for the 10 T case, the

magnetic pressure remains a smaller fraction of the total pressure in the fuel region

is thus easier to compress. Despite a three-times larger axial field for the 30 T case,

both 10 and 30 T cases’ surfaces look nearly the same as shown in Fig. 4.5(b). The
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Figure 4.6: FFT of inner surface of aluminum liner at CR = 3.4 for Bz = 0, 10, 30 T
for high-resolution case (1.5 µm axial resolution). Note, there is no preheat, just fill
gas as in Awe et al. [55].

initial flux in the fuel region, Bz,0πr
2
i can be compared to the flux in the fuel region

at CR = 3.4 for an estimate of flux compression efficiency. For both Bz,0 = 10, 30

T, at CR = 7, the fuel retains 80 % of the initial flux. This does not account for

losses due to the Nernst effect [12] which could be present in a pre-heated MagLIF

experiment where the temperature gradients between the fuel and liner can be large.

The net result is that the axial magnetic field strength could overall be smaller in the

fuel region in a fully integrated experiment; for these cases without preheat, this is a
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small effect. As discussed in Chapter 3, the kink mode could be the most dangerous

mode feeding through, but these results show that feedthrough of the sausage mode is

reduced for pre-magnetized implosions. For the sausage mode, both growth rate and

feedthrough are less than the kink mode. So the kink mode dominates at stagnation.

This is most important for seeding perturbations that may grow during deceleration.

Additional complications may arise when preheat of the fuel is considered and will

be briefly discussed later in this chapter.

Similar trends are obtained for the lower resolution case where the axial resolution

is 10 µm instead of 1.5 µm. Figure 4.7(a) shows the FFT of the inner surface again

at CR = 3.4 and once again shows that with increasing axial magnetic field strength

mode amplitudes are reduced. However, the Bz = 10 T is significantly different from

the 30 T case unlike the higher resolution case (Fig. 4.6). The RMS amplitude of

the inner surface also shows somewhat different results for the two magnetization

levels, shown in Fig. 4.7(b). Additionally, the lower resolution case, Fig. 4.7(b),

shows amplitudes rough twice that of the higher resolution case (Fig. 4.5(b)). This

is likely due to a few factors. First, the lower resolution simulation contains a larger

axial extent, allowing longer wavelength MRT to develop and to feedthrough (longer

wavelengths feedthrough more). Secondly, the initial surface seeds were different. The

average RMS amplitude of the initial perturbations was about a factor of two larger

for the low-resolution case. The initial factor of two could persist to later times and

could contribute to the difference between the two simulations. A factor of two would

be apparent in linear theory, however it is more difficult to predict the nonlinear

interactions. Lastly, the lower resolution simulation implosions were slightly faster,

marginally changing the dynamics of the implosion (higher acceleration for the lower

resolution case). In this respect, one way the resolution can influence the implosion is

by affecting the magnetic pressure felt by the liner which then affects the trajectory

of the liner (i.e., if the peak field is slightly larger, this results in larger acceleration).
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Certainly, additional high-resolution simulations should be performed with varying
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(a) RMS amplitude of inner liner surface as
a function of time for low resolution case
(10 µm axial resolution).
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Figure 4.7: RMS amplitude of liner inner surface of the low resolution case over
duration of the liner implosion for various degrees of pre-magnetization. Note, there
is no preheat, just fill gas as in Awe et al. [55].

surface seeds to test how sensitive the amplitudes are to the simulation resolution. The

expected result is that the same large wavelengths would appear, however, noticeable

differences may be important if inner surface ripple amplitudes can be reduced by a

significant fraction (i.e. the seed for deceleration RT is reduced by 1/2). Nonetheless,

these two very different resolution simulations do confirm that highly compressed

axial magnetic fields can reduce the ripples on the inner liner surface.

The results shown in this section are certainly encouraging, but in a MagLIF

implosion, the kink mode is present and may also feedthrough, the danger of which

must be assessed. Despite the presence of the kink mode, feedthrough reduction

is one explanation for the improved stability of magnetized liners (no pre-heat) ob-

served by Awe et al [55]. Though, stabilization by the axial field on feedthrough does

not necessarily guarantee a successful implosion with high yield. With current axial

magnetic field strengths it may be possible to reduce the aspect ratio of the liner

without detrimental performance. However, with stronger fields, it may be possible
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to reduce the aspect ratio of the liner to take advantage of this feedthrough reduction

to achieve higher yield. It will be necessary to develop a metric that can deter-

mine how the perturbations on the inner liner surface influence the final yield of a

MagLIF implosion. At present, the stability of the MagLIF inner surface in integrated

experiments may be influenced strongly by feedthrough or other sources of pertur-

bations; the relative importance is unknown. Some possible scenarios are: (1) other

deleterious effects emerge despite any mitigation of ripple growth from feedthrough

reduction, such as ETI or preheat effects, (2) other 3D modes may be more dangerous,

or (3) feedthrough reduction is indeed helping improve target performance. Future

experiments are needed to address these possibilities and quantify a sufficiently small

amplitude on the inner surface to maximize target performance.

4.3 Seeded liners - Effect of shocks

While whole chapters could be devoted to the above topics relating to roughened

liners, the simulations are very computationally expensive. To further the discussion

and analysis of feedthrough in liner implosions, we return to pre-seeded liners as

there are some crucial questions from the previous chapters requiring answers. The

terminology ‘seeded liner’ again refers to sinusoidal seeds of a single wavelength on

one or both of the liner surfaces. This section will more thoroughly examine the

effect shock waves have on feedthrough, particularly on long wavelength perturbations

present on the liner outer and inner interfaces.

4.3.1 Shock waves in metallic liners

Shock compression of the liner coincides with the initial ramp up of the drive

current. This occurs before bulk motion of the liner begins. From the rise of the

voltage pulse an axial current is driven on the exterior of the metallic cylindrical liner

that induces an azimuthal magnetic field. Initially, the current is confined to the skin
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depth and rapid deposition of energy in this small area heats and ablates a layer of

material. Ohmic heating (P = IR → ηJ2) raises the resistivity, which allows faster

diffusion of the azimuthal magnetic field. This positive feedback mechanism drives a

nonlinear magnetic diffusion wave into the liner, the timescale of which is determined

by the resistivity of the material [37]. Meanwhile, on the liner exterior, there is a rapid

increase in magnetic pressure that eventually overtakes the material pressure, truly

beginning the implosion. The magnetic drive pressure launches a stress wave into

the liner that forms a shock that propagates to the inner liner surface. In quasi-ideal

MHD simulations, there would be minimal magnetic field diffusion as the current is

confined to the outer surface. Material choice also plays a part, as the resistivity and

sound speed strongly contribute to the formation of the magnetic diffusion wave and

shock wave. We begin our analysis with the initial surfaces perturbations present on

the liner exterior.

4.3.2 Seed on liner exterior

A very useful way to study MRT, as we have seen, is to pre-seed a liner with

known wavelengths. For example, the work by Sinars et al. [51], multiple sinusoidal

perturbations were machined on the exterior of cylindrical aluminum liner such that

each wavelength could grow nearly independently and compared easily with linear

theory. At the same time, feedthrough can also be studied. As the liner implodes

the inner surface is MRT stable while the exterior surface is subjected to MRT. The

longest wavelength examined, 400 µm, is predicted to feedthrough to the greatest

extent, as classic RT theory has feedthrough scaling like ∼ e−k∆ where k is the

wavenumber of the perturbation and ∆ is the thickness of the liner. However, the

interior surface of the aluminum liner is opaque to the 6.151 keV x-rays used to image

the implosion and unfortunately masks the evolution of that surface. We have already

used the MRT data provided to benchmark our analytic MRT growth rates and MHD
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code, HYDRA so we turn our attention to the inner surface.

As in chapter 2, the simulations will consider a 1.2 mm long aluminum liner with

two wavelengths a piece of 400 and 200 µm sinusoids defining the exterior surface, the

peak-to-valley amplitudes being 20 µm and 10 µm respectively (5 % their wavelength).

The maximum radius for both ripples is the same, so the center of the two sinusoids

is offset. The average radius of the 400 µm section is then located 5 µm inward as

compared to the 200 µm section. Without the sinusoidal part of the perturbation,

just the offset, the outer surface of the liner would then take the form

r(z) = 3.158 mm 0 < z < 0.8 mm, (4.2)

r(z) = 3.163 mm − 0.4 < z < 0 mm (4.3)

whose Fourier coefficients will contribute to the Fourier spectrum when including the

sinusoidal perturbations. The 400 µm data was extensively studied by Sinars et al.

[51]. The 200 µm MRT growth is more difficult to analyze due to jetting that occurs,

however, this does not affect the feedthrough greatly, as we will see. The axial zoning

maintained greater than 30 zones/200 µm wavelength, and ratioed zoning within the

liner kept the radial resolution at ∼1 µm. The simulations are again driven with the

z1965 (see Fig. 4.1) current pulse.

Our analytic ideal MHD model (both in cylindrical and planar geometry) allows

us to calculate the evolution of the inner and outer surface ripple as a function of

time. Here we may use the planar or cylindrical model interchangeably. It was shown

in Chapters 2 and 3, that the perturbations, being azimuthally symmetric (m = 0

or ky = 0) and satisfy the planar limit where kzr >> 1. Thus, the sausage mode

only slightly contributes to the instability growth (c.f., Fig. 3.12 and Fig. 3.4(a) in

Chapter 3). The simulation begins with the two wavelength perturbations described

above applied to the liner outer surface. The inner surface is assumed completely
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smooth initially. A direct comparison of the inner surface ripple amplitude straight

from 2D HYDRA simulations with our analytic model shows dismal agreement, with

the HYDRA results showing some striking features. The remainder of this section
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Figure 4.8: Comparison of growth of 400 and 200 µm perturbations on the inner liner
inner surface using analytic feedthrough theory and 2D HYDRA simulations.

addresses the differences observed in more detail. The quick summary is that the large

magnetic pressure drives a rippled shock wave and the ripple on the shock persists to

the inner surface on which the ripple is subsequently seeded. The rapid increase in

amplitude just after 40 ns (around 12 MA current, c.f. Fig. 4.1) corresponds to the

shock breakout time (or the time when the shock reaches the inner surface).

Additional simulations were run with the LEOS 130 EOS for aluminum to confirm

the shock seeding. Figure. 4.9 shows a comparison of the growth of both 400 and

200 µm perturbations on the inner liner surface for both SESAME and LEOS tabular

EOSs. Results are relatively independent of EOS used, though the LEOS tables

seem to exhibit slower growth at later times. Prior to ∼40 ns, the amplitude is

approximately zero. Up until this time, a rippled shock is propagating through the
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Figure 4.9: Comparison of growth of 400 and 200 µm perturbations on the inner liner
surface for both the SESAME 3719 and LEOS 130 tables.

liner. The survival of the perturbation on the shock is highly dependent upon the

wavelength. As was shown in the previous section, the RMS amplitude of the inner

surface of the randomly seeded liners at shock breakout was well below 1 micron.

As the current ramps up on the liner’s exterior, a shock develops as in the ‘rough’

case, however the larger wavelength perturbations cause the shock to be significantly

deformed to the shape of the perturbations. Thus, the shock is initially strongly

rippled as it begins to propagate inward. The initial ripple amplitude of the shock is

roughly the amplitude of the perturbation it came from. There is some uncertainty

as to the initial position of the shock front and the exact amplitude of the ripple, as

we will show below. Both ripples decay as the shock moves through the liner but the

200 µm case clearly decays faster. This observation is in line with predictions from

classical fluid theory, discussed next. The initial ripple amplitude is also much larger

than expected from feedthrough theory. The ratio of the inner surface to outer surface

amplitude, F (ω, k) = 0.25 >> exp(−2π∆/λz). The corresponding effective thickness
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would have to be 88 µm (not 292 µm) to satisfy feedthrough theory. There is a

rapid increase in ripple amplitude on the inner surface after 40 ns seconds when the

rippled shock arrives at the inner surface. The amplitude seeded on the inner surface

is roughly 60 % the amplitude of the shock as it just reaches the inner surface. As

the shock is moving from metal to the central region, there is competition between a

transmitted (depending on the fill material or whether the central region is vacuum)

and reflected shock, as well as sound waves at the interface, reducing the effective seed.

The magnitude of these effects is also tied to the tabular EOS as well as ablation and

heating of the inner surface. Following the breakout of the shock, the inner surface

continues to evolve and the ripple amplitude increases with time.

We will consider next the three phases of this process in more detail: (1) prop-

agation of the rippled shock in the liner, (2) rippled shock breakout, (3) post-shock

evolution of the interface.

4.3.2.1 Details of the propagation of a magnetically driven rippled shock

in a liner

We first focus on the propagation of a rippled shock in metallic liners, driven by

a magnetic pressure. In this subsection, we assume no axial magnetic field. Similar

to laser driven targets, the ripple amplitude decay rate increases with wavenumber as

well as with propagation distance. Thus, the effect of this seeding mechanism for the

inner surface for a typical ‘smooth’ liner target is negligible if the liner is sufficiently

thick.

Stability of a rippled shock has been studied for more than half a century in

fluid dynamics. Early work in the 50s by D’yakov [77] and Kantorovich [78] showed

the conditions for which ripples on shocks grow. More recent work has focused on

application laser driven targets. Work by Bates [79] has shown exact solutions for

shocks in aluminum to be stable. In other materials, this is not necessarily true
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and the amplitude of a rippled shock can grow. For ideal materials, the superstable

behavior of a propagating shock is due to the flow fields set up in the post-shock

material. For a shock propagating in the ± x direction in the x-z plane, flow is also

generated in the z direction due to pressure variations directly behind the shock front.

This axial flow directs material away from the peaks of the ripple into the troughs,

essentially smoothing the shock ripple. We also point out that this flow is primarily

along an imposed axial magnetic field, such as in MagLIF, weakening the effects of

an axial field on this behavior. This is illustrated in a later subsection in Fig 4.17(b).

Depending on the timescale of the shock propagation, this flow can cause inversion

of the ripple amplitude, and hence, the ripple tends to oscillate while its overall

amplitude decays. In laser driven experiments, this can be a very important and

pronounced effect [80]. This effect is accentuated at small wavelengths giving the

faster decay. Linearized solutions have been developed for laser driven targets where

the additional complication of magnetic fields is not needed. These models rely on

an ideal gas equation of state with an arbitrary specific heat ratio (γ). We quote an

asymptotic solution from Goncharov et al. [80] in Eq. 4.5. These are derived from the

linearized, purely, hydrodynamic equations allowing for a compressible fluid. In this

case, the perturbations have an e−ikz dependence (no temporal Fourier transform).

The perturbation pressure is described by the wave equation

∂2p1

∂t2
= c2

s

∂2p1

∂x2
− k2c2

sp1. (4.4)

After applying the linearized shock jump conditions at the free surface and shock

front to Eq. 4.4, the temporal evolution of the shock ripple amplitude, ξs(t), is deter-

mined. The analytic solution for ξs(t) is given by Eq. 4.5. As the solutions are made

up of a superposition of Bessel’s functions, the solutions admit a number of zeros

corresponding to the oscillations of the shock ripple surface, as well as an amplitude
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decaying in time.

ξs(t) ∼= η0

[
J0(rs) +

2(M2
s + 2)

3M2
s + 1

J2(rs)

]
,

= η0 [J0(rs) + aJ2(rs)] . (4.5)

rs = kcpst
√

1− [(vs − vps)/cps]2 (4.6)

Here Jn is the Bessel function of order n, and Ms = vs/c0 is the Mach number, where

vs is the shock speed, and c0 is the un-shocked material’s sound speed. The subscript

‘ps’ refers to post-shock values. The quantity, re − vst gives the average position of

the shock front as a function of time. For a finite thickness liner, the shock position

is bounded by vst ≤ ∆.

Analysis of these equations shows that with increasing Mach number and post-

shock sound speed, the ripple decay rate increases. Similarly, with increasing wavenum-

ber, the ripple decay rate increases. While the structure of Eq. 4.5 allows for damped

oscillations, we will see that for our current problem, the liner is much too thin to

observe these. The times of interest thus occur before the first zero of the sum of

the above Bessel’s functions. The derivation of Eq. 4.5 also requires that the various

sound speeds and Mach numbers remain constant in time. For the liner implosions

of interest, this is not the case, as we will show next.

In order to determine the shock dynamics, without considering any non-uniformity,

1D HYDRA simulations were run. First we present the drive pressure (from the

azimuthal magnetic field) as well as the shock front trajectory in Fig. 4.10. The

shock develops over a finite distance just within the liner and the initial start time of

the shock is difficult to pinpoint. From Fig. 4.10 the shock forms at roughly 8 ns. The

initial compression wave appears approximately 45 µm inside the aluminum, with the

material behind it, compressed by a factor of 1.04. This region is initially moving

subsonically (cs,0 ≈ 5300 m/s but quickly surpasses the sound speed within 10 ns.
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(c) 1D shock speed from liner exterior.

Figure 4.10: Shock parameters from 1D simulations for z1965 current, times corre-
spond to Fig. 4.1. The shock begins roughly at time, t = 8 ns.
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Post-shock values such as the sound speed, cs,ps must be averaged in the post-shock

region to determine a uniform value as a function of time.

As we can surmise from Fig. 4.10, the post-shock quantities evolve in time. During

this timeframe the current rises linearly in time, so the magnetic pressure (square

of the current) increases quadratically. If we again reference averaged post-shock

quantities, their scaling in time is easily obtainable from these 1D results based on

the quadratic pressure drive. Equations 4.7-4.12 reflect these scalings.

rs(t) ∝ t2, (4.7)

vs(t) ∝ t, (4.8)

Pmag(t) ∝ t2, (4.9)

Pps(t) ∝ t2, (4.10)

cs,ps(t) ∝ t2, (4.11)

ρps(t)/ρ0 ∝ t2. (4.12)

Because these physical quantities vary significantly in time, Eq. 4.5 cannot be ex-

pected to give accurate results as it assumes only non-temporally evolving quantities.

Some of these quantities do exhibit different regimes, where the quadratic scaling is

weak, but all vary at least linearly in time.

Time averaged values of all of the relevant physical quantities required in Eq. 4.5,

ξs(t) can be computed. With the aforementioned in mind, we first directly compare

ξs(t), derived from the averaged 1D HYDRA data, to our 2D simulations for aluminum

in Fig. 4.11(a). The calculation for the 400 and 200 µm perturbations overestimates

the damping of the perturbations in comparison to the 2D HYDRA results shown as

the dots. As the various parameters have been averaged, there is clearly some “wiggle

room” for the appropriate weighting of the averaging. Introducing a simple scaling

factor, κ, and then scanning κMps as input into Eq. 4.5 shows κ = 1.47 results in
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a much better fit of ξs(t) (see Fig. 4.11(b)). Similarly, the post-shock velocity and

post-shock sound speed can also be modified. The overall requirement to obtain

better agreement is that Mps must be increased from the mean value. Additionally,

cps increases faster in time than vs − vps, hence, the Mach number early on is much

larger than later in time. The temporal dependence of the decay for both 400 and

10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

Time [ns]

N
o

rm
a

liz
e

d
 S

h
o

c
k
 r

ip
p

le
 a

m
p

lit
u

d
e

 

 

2D HYDRA: λ = 400 µm

Analytic: 200 µm
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(a) Application of Eq. 4.5 using averaged phys-
ical parameters from 1D HYDRA simula-
tions. Solid curves are computed from
Eq. 4.5, while the dots are from 2D HYDRA
simulations.
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2D HYDRA: λ = 400 µm

Analytic: 400 µm

2D HYDRA: λ = 200 µm

Analytic: 200 µm

(b) Application of Eq. 4.5 using averaged phys-
ical parameters from 1D HYDRA simula-
tions, with the post-shock Mach number in-
creased by a factor of 1.47. Solid curves are
computed from Eq. 4.5, while the dots are
from 2D HYDRA simulations.

Figure 4.11: Comparison of 2D HYDRA and analytic calculations describing the
temporal evolution of the shock ripple amplitude for both 400 and 200 µm axial
wavelengths, as it moves through an aluminum liner.

200 µm are fit quite well by a quadratic function during the main propagation of the

shock. The initial startup up of the shock occurs more slowly. The fits are given by

Eqs. 4.13 and 4.14,

ξ400/ξ0 = −4.39× 10−4t2 + 5.27× 10−3t+ 1.027 10 < t < 40 ns, (4.13)

ξ200/ξ0 = −2.19× 10−4t2 − 0.0255t+ 1.34 10 < t < 40 ns. (4.14)

where the time, t is in nanoseconds and directly corresponds to the simulation times

that have been presented. If we extrapolate the HYDRA results of Fig. 4.11 to shorter
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wavelengths, it is anticipated that wavelengths shorter than 200 µm will quickly reach

the point where they do not shock seed the inner surface. An example of this is shown

next in Fig. 4.13.

While there appears to be a finite seeding amplitude for the 200 µm perturbation,

wavelengths shorter than this become increasingly difficult to properly resolve with

2D simulations. However, keeping in mind the analytic calculations tend to over

predict the damping rate for the temporally changing drive pressure, we perform the

same calculation for 100 µm and 50 µm perturbations. These calculations are shown

in Fig. 4.12 with the 400 and 200 µm HYDRA data shown for comparison. Clearly,
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2D HYDRA: λ = 400 µm

Analytic: 100 µm

2D HYDRA: λ = 200 µm

Analytic: 50 µm

Figure 4.12: Application of Eqn. 4.5 using averaged physical parameters from 1D
HYDRA simulations for 100 and 50 µm perturbations.

the 100 and 50 µm perturbations damp much faster than the longer wavelengths we

have looked at in depth. As additional evidence, we also present a density plot from

a 2D simulation at 21 ns, when the ripples are anticipated to be damped. (Fig. 4.13).

From Fig. 4.13 we can see limited rippled structure remaining on the shock and

any remaining structure is on the order of 1 µm, which is the approximate radial

resolution. Based on these results it is unlikely that any random surface perturbations
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0.3 mm 

Figure 4.13: Color plot of density, in units of g/cm3, from a 2D HYDRA simulation
showing the ‘rippled’ shock at 21.7 ns with 100 and 50 µm perturbations initially
seeded on the liner exterior. The shock front is located just past 0.3 cm and is nearly
smooth.
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of short wavelength could shock seed the liner interior. Axial non-uniformities seem

to require wavelengths greater than 100 µm to have any impact. Unfortunately, this

cutoff is not a completely general result, as the survival of the ripples depends not

only on the liner thickness, but the material properties and the drive current as well.

Additional non-uniformities in pressure, density, and magnetic field, may also

contribute to the discrepancy beyond the time dependent drive. The radial non-

uniformity of the post-shock region also poses a significant challenge for analyzing

the shock behavior. In particular, a large fraction of the post-shock region is unstable

to magneto-Rayleigh-Taylor instability. There are a few distinct regions where the

∇ptot · ∇ρ < 0 condition for MRT instability holds. These regions are highlighted

in the liner density plot in Fig. 4.14 with the purple hue and purple arrows. The

rippled shock front is located at the transition from green to red (∼ 0.296 cm). The

liner density is overlaid with the color blue in the MRT unstable regions yielding

the purple-ish color. The MRT stable regions are the bright red and green regions

over most of the left side of Fig. 4.14. There is also a small localized area unstable

to MRT where the axial current density contour concentrate, just past 0.3 cm. The

liner inner and outer radii are off the scale, at ri = 2.876 mm and re ≈ 3.168 mm

(approximate due to ablation). The shock front itself is stable to MRT, however,

the post-shock region is almost completely unstable to MRT all the way through to

the liner exterior (minus the bright red region already mentioned in Fig. 4.14). In

the post-shock region, the magnetic pressure is significantly higher than the fluid

pressure and since the post-shock dρ(r)/dr < 0, this leads to the MRT instability

which can help slow the ripple decay rate on the shock. MRT drives material into the

peaks/troughs and perpetuate the ripple as in any other instance of MRT. Behind

the shock front, the fluid pressure gradient is such that material is directed from the

peaks to the trough, smoothing the ripple. The blue arrows detail the axial fluid

velocity, vz that directs material away from the bulges at the shock front. This is the
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MRT 
Unstable 

MRT  
Stable 

Figure 4.14: Color plot of liner density in 2D, at 30 ns, showing the MRT stable and
unstable regions according to ∇ptot · ∇ρ < 0. The contours plot the axial current
density Jz in units of A/cm2. The MRT unstable regions are overlaid with the color
blue, creating the purple-ish regions in the color plot. Bright red regions are MRT
stable, as well as the green region on the left (the un-shocked liner material). The
density is in units of g/cc. Initially, ri = 2.876 mm and re = 3.168 mm. The blue
arrows show the fluid velocity in the ẑ direction which directs fluid away from the
bulges at the shock front. Note that the z-velocity in the 200 µm section is much
smaller since the ripple amplitude is significantly damped already.
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typical mechanism responsible for smoothing ripples on shocks [81]. In the post-shock

region the fluid flow is also directed radially inward and can reinforce the ripples.

Thus, there is competition between destabilization by MRT and stabilization by the

flow patterns. Complicating matters is the diffusion of the azimuthal magnetic field

which is illustrated by the strong axial current density contours in Fig. 4.14. The

azimuthal magnetic field can retard velocity in the ẑ direction and strong compression

of azimuthal field lines can launch magneto-sonic waves.

The above issues also appear when a roughly constant (in time) drive pressure is

used. In this case, the important variables such as the post-shock sound speed, are

also roughly constant in time. However, it is not simple to keep the magnetic pressure

perfectly constant in time. As the current diffuses into the liner and ablates material

the peak magnetic pressure at the liner/vacuum interface can change. Nonetheless,

again using 1D HYDRA simulations to determine the shock parameters, Eq. 4.5 can

be evaluated, now for nearly constant in time parameters. For these simulations a

drive pressure of 0.3 Mbar was selected. This corresponds to ρs/ρ0 ≈ 1.2, cs,ps ≈

7.9 µm/ns, and vs ≈ 8.5 µm/ns. Figure 4.15 plots ξs(t)/ξ0 for analytic formula (solid

curves) and 2D HYDRA (dots). In this case, the 2D HYDRA simulations show faster

decay of the ripples. The agreement between the analytic results and HYDRA data

is good early on, but deteriorates later on. In particular, the oscillation for 200 µm

perturbation observed in HYDRA is not captured by the analytic model. In this

constant drive case, reducing the post-shock Mach number results in slightly better

agreement with the 400 µm perturbation, but not the 200 µm case. The shock decay

for both wavelengths can again be parameterized rather well by quadratic fits. For

the 200 µm case, this fit works only for the non-oscillatory phase. The fit of the
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2D HYDRA: λ = 400 µm

Analytic: 400 µm

2D HYDRA: λ = 200 µm

Analytic: 200 µm

Figure 4.15: Application of Eqn. 4.5 using averaged physical parameters from 1D
HYDRA simulations and a temporally constant magnetic drive. 2D HYDRA results
are shown as the dots.

HYDRA results in Fig. 4.15 read (t in ns),

ξ400/ξ0 = −5.078× 10−4t2 − 1.78× 10−3t+ 1.06 7 < t < 35 ns, (4.15)

ξ200/ξ0 = −1.23× 10−3t2 − 7.21× 10−3t+ 1.15 7 < t < 25 ns, . (4.16)

Overall, the shock ripples decay faster with the reduced drive pressure (and constant

in time) of 0.4 Mbar, as compared to the increasing drive pressure case (Fig. 4.11).

Our 2D simulations also show that the amplitude of the shock ripple just as it

reaches the inner surface is not the same as the seeded amplitude there. This is

due to the transition from nearly solid aluminum to a low-density gas (or vacuum).

As we discussed above, the effective transmission for the 400 µm perturbation is

roughly 60 %, that is, a 10 µm ripple amplitude just before reaching the interface

will impart a 6 µm seed after breakout. The breakout time for the 200 and 400 µm

perturbations is also not precisely the same but very small (∼ 0.5 ns), since the
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400 µm perturbation has a larger amplitude by 5 µm (10 µm peak to valley). This

means the average position of the 400 µm wave is slightly ahead of the 200 µm wave

since the perturbation itself is machined 5 µm deeper. Thus, it is best to compare

the shock amplitude before any interface complications can occur.

The shock propagation described in the preceding paragraphs in (r,z) geometry

is also found in (r,θ) geometry. Here, k = 0 effectively due to the 2D symmetry

of the problem. Again, these calculations assume a relatively large initial seed on

the liner outer surface. In this case, the sinusoid modulating the outer surface is

determined by ∼ eimθ and for our current problem take m = 6. Another example

would be m = 1 which effectively corresponds to more mass on one side of the liner as

compared to the other. For these (r, θ) problems we may consider this also as a case of

non-uniform drive current. As we saw in the (r, z) plane, the longer the wavelength,
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(a) Shock seeding of k = 0, m = 6 mode and
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surface for k = 0, m = 6 mode.

Figure 4.16: Shock seeding of the inner surface from azimuthal perturbations.

the larger the shock seed amplitude, all things being equal. The equivalent planar

mode is ky = m/r0 = 6/(3 mm) and thus λy = π mm >> 400 µm. This mode should

then seed much stronger than the previous modes we considered and this is exactly

what we observe in Fig. 4.16(a). The amplitude has been normalized to the initial

m = 6 ripple seeded on the liner exterior. While the shock seeding remains strong,
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the overall growth of the shock seeded ripple on the inner surface is observed to be

much slower than in the (r, z) case. Similarly, Fig. 4.16(b) shows very slow MRT

growth as well, though this is somewhat expected given the liner is only beginning

to implode and ky = kθ is small. In fact, the inner surface grows marginally faster

than the outer surface, indicating Richtmyer-Meshkov-like instability is responsible

and will be discussed further in the next section.

Besides the long wavelength being considered, the other major difference is that

these simulations include bending of the azimuthal magnetic field lines though kθ is

relatively small. As mentioned earlier, the azimuthal magnetic field diffuses in directly

behind the shock front and these field lines, depending on the magnetic diffusion time,

can be rippled as well, adding to the stabilization. Again, as shown in the previous

chapter, the presence of current within the liner can affect the m = 6 mode growth.

Most importantly, the azimuthal field is also much stronger than the 100 T axial

field we considered earlier for the (r, z) simulations. As the shock begins to form,

the azimuthal field, Bθ = 120 T and increases to nearly 750 T at the shock breakout

time. This is a far more realistic scenario than a constant 100 T axial magnetic field.

Despite all of these complicated effects, qualitatively, the shock seeding is strong as

expected and could be an important effect if there is something like a non-uniform

current drive.

4.3.2.2 Effects of axial magnetic field, fill density, and material on the

shock seeded amplitude of liner inner surface

The previous sub-section focused on the dynamics of shock propagation within a

metallic liner up until shock breakout. A primary result showed that the wavelength

strongly affected the strength of the seed on the inner liner surface. In particular,

longer wavelengths tend to lead to larger amplitude shock seeding. In this section we

will investigate the effects of an axial magnetic field, fill density, and material on the
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amount of shock seeding.

The first result we will show is that under a variety of circumstances, the shock

seeding mechanism is very robust. Common scenarios for imploding liners include

a fill gas and a seed magnetic field. 2D HYDRA simulations using a D2 fill gas of

various densities were run, as well as with and without an axial magnetic field. The

expectation for the fill gas is that increasing the fill density can reduce the amplitude

of the shock seed since the Atwood number at the gas/liner interface is reduced. The

magnetic field may affect the propagation of the shock, via generation of magneto-

sonic waves, and perhaps the amplitude of the shock seed due to strong bending of

field lines.

Results for these two cases are shown in Fig. 4.17(a). These curves, around 45 ns,

show nearly the exact same shock seeding amplitude over two orders of magnitude

of fill gas density (D2). The fill density does have an effect on the evolution of the

interface, post shock breakout. This is similar to what is expected from Richtmyer-

Meshkov instability (RMI), however this is not the exact definition of RMI since we

have a rippled shock interacting with a smooth surface. Nonetheless, a simple scaling

for the RMI growth rate is dξs(t)/dt = kAvpsξs0, where k is the wavenumber, ξs0

the initial seeded ripple amplitude, and vps is the post-shock velocity[81]. For the

highest fill density, 100 mg/cc corresponds to the Atwood number, A = 0.93 which

is sufficient to reduce the surface growth by almost 58 % as shown in Fig. 4.17(a)

for the 2D simulation. We can estimate the product, kAvpsξs0 from 1D simulations

as well. Both 1D and 2D simulations show the average inner surface velocity for

the 100 mg/cc fill is roughly 80 % the 2.5 mg/cc case and 2D simulations show that

ξs0 = 5 µm (1 µm smaller). Then the product kAvpsξs0 = 0.62 µm/ns for the 100

mg/cc fill and is in reasonably good agreement with the growth reduction observed

in our 2D simulations which capture much more complicated physics.

A final point is that a 100 mg/cc fill density also begins to interfere with the
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(a) Comparison of growth of 400 µm perturba-
tions on the inner liner surface for increasing
fill density.
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(b) Comparison of growth of 400 and 200 µm
perturbations on the inner liner surface with
a 100 T axial magnetic field with ρfill = 0.

Figure 4.17: Even relatively extreme conditions show shock seeding is very robust
and consistent.

implosion dynamics of the liner. Cryogenic deuterium is liquid with a density of

0.163 g/cc. This material can provide a substantial backpressure that can stagnate

an implosion far earlier. A potential application of this is for study of deceleration RT

[82]. In such a case, a magnetically imploded liner stagnates on a relatively cool dense

fluid as opposed to a hot compressed plasma in a typical inertial fusion experiment.

Clearly, such a liner will implode to a larger radius, which is easier to diagnose via

radiography. If the shock seed can be applied, with limited growth due to RMI, then

this would provide an excellent surrogate for seeding the inner liner interior. The key

piece of knowledge is knowing how appreciable the RMI-like growth is and whether

deceleration RT growth observed is truly attributable to it. The inner liner surface

could also be seeded initially, though this would still lead to RMI growth, and such

seeding may be more mechanically difficult to apply.

An axial magnetic field plays a very small roll in the evolution of a shock seeded

surface (Fig. 4.17(b)). We consider a 100 T seed field with no fill gas to emphasize

this. As we see in Fig. 4.17(b) such a Bz does very little to the evolution of the

interface as well as the shock seed itself. The negligible impact on the shock seed
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also suggests that the rippled shock propagation is minimally impacted. A finite Bz

could slow the shock since the axial field is being slightly compressed (magnetosonic

waves) or damp the ripple via field line bending (Alfvén wave). Additional axial

magnetic field cases were also run including a fill gas and a fill gas with an artificially

high conductivity. The high conductivity was intended to mimic preheating of the

fuel without any additional effects introduced with the blast wave. We have already

seen magnetic diffusion can severely impact the effect the axial magnetic field has on

instabilities in these liners. A more conductive fuel helps keep the field better tied

to the gas and comes closer to expected results from ideal MHD. Figure 4.18 again
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Figure 4.18: Comparison of growth of 400 µm perturbations on the inner liner surface
with 100 T axial magnetic field, fill gas, and highly conductive fill gas.

shows minimal change in seed amplitude for all cases, the maximum reduction is no

more than a micron at about 43 ns. However, the conductivity of the fuel does play

an important role in the evolution of the interface at later times, similar to what we

saw for increasing fill densities. HYDRA runs also suggested the diffusion of Bθ into

the interior increases the growth rate past 50 ns, than when Bθ exists only in the

exterior region.
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Next, we move on to beryllium targets. For the same liner dimensions there will

be roughly half the mass in a Be target as compared to Al. This means that the

liner will implode faster and experience higher acceleration. In addition, important

parameters for this problem such as sound speed and electrical resistivity are different.

The electrical resistivity of beryllium at room temperature is roughly 30 % larger than

Al, and has a sound speed twice that of Al. From a materials standpoint, the bulk,

shear, and Young’s modulus of Be are all much larger than Al, but such material

properties will not be considered here. However, the material strength of beryllium

may be important for longer pulse lengths, when it is attempted to keep the beryllium

in the solid phase. We will assume, as with aluminum, that the material strength is

quickly exceeded. We can directly compare the decay of the two ripple wavelengths

in the two materials since the target dimensions and current pulse are the same. This

is plotted in Fig. 4.19. The results are consistent with the level of shock seeding. The
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Figure 4.19: Comparison of the evolution of the two shock ripples as they move
through aluminum and beryllium liners. The horizontal portion of the curve illus-
trates the amplitude of the ripple just before shock breakout.

200 µm perturbations actually decay quite similarly in both materials early on and
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eventually reach nearly the same amplitude upon reaching the inner liner surface. The

difference between the materials with the 400 µm perturbation is much starker. The

uncertainty in the amplitudes is on the order of 1 µm, limited by the radial resolution

in the liner and uncertainty in determining the exact shock front as the shock is

spread over a few zones. The most interesting and useful result would have been

the case where beryllium, because of its higher resistivity and sound speed, would

show predominantly feedthrough behavior as opposed to shock-dominated behavior.

We stress that persistent shock dominated behavior is observed in both materials.

Of course, liners could be made thicker to reduce these shock effects but this would

require more current to drive the implosion if the liner remains at its original radius.

Increased current of course potentially strengthens the shock.

4.3.2.3 Post-shock evolution in seeded targets

We now consider the evolution of the inner liner surface after the shock has reached

and rippled the inner surface. This time also corresponds roughly to the beginning of

bulk implosion of the liner. In general, no more shocks are generated during the im-

plosion and one might expect feedthrough to dominate the evolution of perturbations

on the inner surface. Important to keep in mind is that these targets were initially

seeded with very long wavelengths and much larger amplitude perturbations than

those found naturally. Such targets are typically designed for the study of MRT and

feedthrough (depending upon material and imaging capability). For a given material

and drive conditions, the amplitude of perturbation seeded on the interior was found

to be in nearly all cases dependent only on the perturbation wavelength, amplitude,

and liner thickness. Figures 4.17-4.18 also show the subsequent evolution of the inner

surface post-shock breakout.

Since the beginning of the current pulse, the liner has been shock compressed.

The material ahead of the shock is unaware of any material motion, hence the inner

190



surface remains motionless. This all changes once the shock reaches the inner surface

and the two interfaces finally can communicate at the post-shock sound speed. As the

liner implodes it is continually accelerated and no more shocks are driven. This is not

to say the original shock does not partially reflect from the inner surface interface,

but any effect is much reduced given the large perturbations already on the liner

exterior. Focusing on the inner surface ripple amplitude after 55 ns, we find the

scaling to be roughly linear, shown in Fig. 4.20. Upon closer inspection of the various

0 10 20 30 40 50 60 700

5

10

15

20

25

30

35

40

Time [ns]

In
ne

r s
ur

fa
ce

 ri
pp

le
 a

m
pl

itu
de

 [µ
m

]

Bz = 0 T

 

 

2D HYDRA: hz = 200 µm
2D HYDRA: hz = 400 µm
Analytic: hz = 200 µm
Analytic: hz = 400 µm

Shock break-out 

Slope ≅ 2.3 µm/ns 

Figure 4.20: Simple linear fit of the post-shock evolution of the inner surface 400 µm
shock-seeded perturbation.

fill gas/magnetic field combinations shown in Fig. 4.18 of the previous section, the

inner surface evolution post-shock breakout is remarkably similar. All cases show

the dip in amplitude, which is a transient not found in simple RMI theory. The

dip occurs as the interface briefly rebounds after the shock breaks out and then is

partially reflected. This is followed by rapid growth for about 10 ns, and then the

slope changes and growth is somewhat slower only for the high conductivity fill gas.

The combination of high conductivity and strong axial magnetic field is the only

191



configuration that affects the amplitude at later times in any significant way. This

is expected in the sense that the high conductivity maximizes stabilization due to

magnetic field line tension.

Depending on the exact timeframe fit, arguments can be made for ξs(t) ∼ t, t2, et.

Linear-in-time scaling agrees with Richtmyer-Meshkov like instability, while ∼ et is

similar to feedthrough scaling. The slope indicated on Fig. 4.20 agrees fairly well

with RMI scaling:

dξα
dt

= Avpskξ0 = 1.8 µm/ns, (4.17)

where A is the Atwood number at the interface, k the axial wavenumber, vps the post-

shock velocity, and ξ0 the initial amplitude. This sort of scaling does not account for

the dip that occurs just after shock breakout, but the overall scaling of the interface

growth. This dependence on the Atwood number and post-shock velocity help explain

the results with increasing fill density. (The dependence on wavenumber can also be

viewed in (r, θ) geometry where k = m/r. The more rapid growth of the inner surface

shown in Fig. 4.16 as compared to the MRT is also explainable by additional RMI

growth).

Beryllium implosions can be faster and thus illustrate the faster RMI growth

due to increased post-shock velocity. Figure 4.21 directly compares the previous

aluminum results for 200 and 400 µm perturbations with the target material switched

to beryllium. A number of features are quickly apparent. First, the shock speed is

much higher in the beryllium target as evidenced by the shock seeding occurring about

7 ns earlier. Second, the seeded amplitudes for the 200 µm perturbation are roughly

the same between the two materials, while the 400 µm shows slightly larger seeding

in aluminum. The post-shock evolution of the surface follows an opposite trend. The

200 µm perturbation shows larger growth in beryllium at later times. The 400 µm
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Figure 4.21: Comparison of evolution of inner surface for both beryllium and alu-
minum pre-seeded targets from 2D HYDRA simulations.

perturbation behaves a bit more erratically, with mild oscillation in beryllium.

A hallmark of classic Richtmyer-Meshkov (RMI) growth is that axial fluid flow

directs material from the troughs to the peaks, causing the overall amplitude to

grow [81]. The classic Richtmyer-Meshkov problem has a flat shock interacting with

a rippled surface. However, our cases examined rippled shocks interacting with flat

surfaces. Our 2D HYDRA simulations show that the flows are observed to be directly

opposite that typically found in classic RMI. Minimizing the diffusion of the driving

azimuthal field that otherwise follows the shock shows a dramatic reduction in growth

of perturbations on the inner surface (Fig. 4.22). The low η cases model ideal MHD

and show the shock seed remains but the subsequent growth of the perturbations once

shock-seeded is minimal. We will show in the next section that this shock-seeded

scenario is actually the more dangerous as compared to classic RMI. Nonetheless,

these simulations indicate that these liners should not be multiply shocked, especially

once MRT has begun to grow on the exterior of the liner. Shock seeded perturbations

are found to be incredibly robust and grow quite quickly. In the next section we
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Figure 4.22: Comparison of evolution of inner surface aluminum pre-seeded targets
from 2D HYDRA simulations using both realistic resistivities (LMD) and approxi-
mately ideal MHD.

will see how perturbations seeded on the inner surface are also dangerous but behave

much differently.

4.3.3 Other seeds on liner interior

We next consider how perturbations located only on the liner inner surface affect

the stability of implosions. Removing the large single sinusoidal perturbation from

the liner exterior but keeping a seeded inner surface is, comparatively, a more stable

configuration. This is because the inner surface is MRT stable during the implosion

phase unlike the outer surface. A ripple on the inner surface of the liner can de-

velop in a number of ways unrelated to MRT. In an ICF-like implosion this could be

through electrothermal instability (ETI) or via interaction with a preheated gas. The

preheat may be an important consideration because anywhere from 100 - 2000 J of

energy is expected to be deposited in the fusion fuel in about 2 ns, right before the

liner begins to implode [27]. The preheat generates a blast wave in the fuel that can
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interact with the inner surface. Depending upon the degree of non-uniformity of the

preheat, the blast wave can non-uniformly interact with the inner surface. This can

perturb the surface with large wavelengths (significant fractions of the liner height).

If the circumstances are right, this can even lead to RT development if the preheat

is effectively pressing on the liner. However, bulk implosion of the liner is likely to

overwhelm this. Modeling this in a completely consistent way is very challenging [27]

so we settle on a simple case where the inner surface is pre-seeded and no preheat is

present. This neglects many effects such as ablation and heating of the inner surface.

Heating of the inner surface can initiate ETI, which can ripple the inner surface with

much shorter wavelengths. We anticipate, that the surface being MRT stable and

the initial ripple amplitude being very small, these very short wavelengths will not

be subject to much growth via RMI. Our focus will be on longer wavelength seeds as

we have seen in the previous section. The ripples on the inner surface can not only

directly degrade the fuel/liner interface of MagLIF but can also impact the exterior

surface as well. This is a situation analogous to ‘feedout’ in laser driven capsules

where roughness on the DT ice layer inside the capsule can feedback to the outer sur-

face which are subsequently amplified by the unstable RT surface [80]. Unless stated

otherwise, the outer liner surface in this subsection will be of the ‘rough’ variety,

with small random perturbations. The conditions of the inner surface will either be

sinusoidally seeded (200 or 400 µm axial wavelength) or perfectly smooth. We will

not consider small random perturbations on the inner liner surface.

The presence of an initial seed on the inner liner surface and subsequent interaction

with, in this case, a uniform shock wave subjects the interface to Richtmyer-Meshkov

instability (RMI). This is in direct contrast to the previous section where a rippled

shock interacted with a smooth surface. With a smooth (or even mildly rough)

exterior the propagating shock front should be nearly smooth based on the arguments

earlier in this chapter (short wavelengths on the shock front damp very quickly). Once
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the shock interacts with the interface, RMI is initiated. The potential danger to the

outer liner surface is then a rippled reflected shock and feedback from the inner

surface. Three cases will be considered with the same 400 and 200 µm perturbations

now seeded on the aluminum liner inner surface. The first contains a 2.5 mg/cc fill

gas (D2), the second adds a 100 T field to the gas, and the last fills the fuel region

with water and no axial field. Based on the results from the previous section, it is

anticipated that the fill gas will have a very limited impact on growth of the inner

surface. Since the implosion should be more stable, it should also reach a higher CR

which should accentuate any effects due to compression of the axial field or fill gas.

The water fill serves a duel purpose: first, to see how it might affect RMI growth early

on (whether the reduced Atwood number quenches RMI) and second to determine

how the implosion speed affects the inner surface growth. The original goal was to

also capture some deceleration growth. Unfortunately, to see that phase, the liner

had to be moved to too large a radius to be adequately compared to the other cases.

Lastly, an unseeded liner compressing a 2.5 mg/cc fill gas will be used as a control case

and is denoted as ‘smooth’. The ‘smooth’ case has only small random perturbations

on the exterior, as with the seeded liners.

Figure 4.23 shows the temporal evolution of the 400 and 200 µm sinusoidal ripples

on the liner inner surface for the various seeded cases discussed (outer surface has only

small random perturbations). The two gas fill cases, overall, behave quite similarly,

despite the strong axial field present in one case. Both simulations show oscillations

of the inner surface, with the oscillation frequency dependent on the wavenumber of

the perturbation. See Eq. 4.18 below. The first peak for the 200 µm perturbation

occurs roughly 10 ns before the peak of the 400 µm perturbation. While there is

clearly a strong influence of the shock, the shock may also excite the stable RT

oscillations (recall the general dispersion relation and feedthrough factors contain both

the unstable and stable mode solutions, ω3 denotes the stable mode). RT oscillations
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would then scale as,

ξosc ∝ sin (ω3t) = sin
(√
|kg|t

)
(4.18)

The axial magnetic field enters in ω3 via (kzBz)
2 terms and modify the oscillation

frequency. For the water fill, the Atwood number is significantly less than unity at

the inner surface, which can reduce the oscillation frequency further.

The overall amplitudes of the two modes are relatively small in comparison to the

shock seeded cases considered in the previous section (Fig. 2.27(b)). By 70 ns the

400 µm shock seeded perturbation already attained an amplitude of over 30 µm (c.f.

Figs. 4.20) where as the inner seeded case is still oscillating. The important difference

in the shock seeded case is that there is very substantial MRT growth at 400 µm by

that point as well. It takes longer for the random perturbations to develop to such

long wavelengths with substantial amplitude. The axial magnetic field does damp

20 40 60 80
0

5

10

15

20

25

30

35

40

Time [ns]

In
n
e
r 

s
u
rf

a
c
e
 a

m
p
lit

u
d
e
 [

µ
m

]

λ = 200 µm

 

 

Gas Fill: 2.5 g/cc, B
z
 = 0 T

Gas Fill: 2.5 g/cc, B
z
 = 100 T

Water fill, B
z
 = 0 T

(a) Comparison of growth of 200 µm perturba-
tion on the inner aluminum liner surface.

20 40 60 80
0

10

20

30

40

50

60

Time [ns]

In
n
e
r 

s
u
rf

a
c
e
 a

m
p
lit

u
d
e
 [

µ
m

]

λ = 400 µm

 

 

Gas Fill: 2.5 g/cc, B
z
 = 0 T

Gas Fill: 2.5 g/cc, B
z
 = 100 T

Water fill, B
z
 = 0 T

(b) Comparison of growth of 400 µm perturba-
tion on the inner aluminum liner surface.

Figure 4.23: Evolution of seeded ripples on the inner liner surface. Only the water
fill shows substantial reduction of RMI.

the amplitude of the ripples on the inner surface and also marginally modifies the

phase of the oscillations with respect to the Bz = 0 T case. In this case, the strong

197



100 T field affects the short wavelength MRT growth on the exterior (Fig. 4.25(a))

but does not significantly alter wavelengths such as 400 µm (see Fig. 2.17(a)). The

impact of the axial field on the two different wavelengths appears very similar. As

in Ref. [8], magnetic diffusion can also reduce the stabilizing effect of a strong axial

magnetic field. We have also seen that a strong axial magnetic field did not impact

the shock seeded perturbation (Fig. 4.18), so the minimal impact on the inner surface

is not too surprising with that in mind. The water fill behaves much differently once

the shock breaks out from the inner surface due to the high density and relatively

incompressible nature of the water. While the inner surface of the liner is free to

expand somewhat into the fill gas, the water severely restricts this motion. This also

seems to tamp the growth of perturbations on the inside surface as well for the water

fill (see Figs. 4.25(b),4.26(b)). Overall, we find in the gas fill cases, the amplitude of

the inner surface ripples grow in time via RMI but the ripples slowly oscillate due to

MRT and feedthrough effects. The presence of the water fill is enough to reduce the

oscillations but not RMI.

Figure 4.24 compares the average (axially averaged) density gradient in the radial

direction over the first few liner zones of the inner surface. At the shock breakout

time the water fill and gas fill cases behave very similarly. At later times, as the liner

moves inward, there is significantly more pile-up of aluminum at the liner inner radius

due to the water pressure. This maintains a much steeper density gradient than for

the gas fill, where the liner material is still free to expand into the low-density gas.

We next introduce the ‘smooth’ liner (roughened liner exterior but completely

smooth interior) as a comparison case for how much long wavelength growth occurs

naturally on the liner exterior (unrelated to feedout or the perturbation on the inte-

rior). Figure 4.25 shows the inner and outer surface FFT just after shock breakout.

Already the smooth liner and seeded liner exhibit much different structure. This

is a fairly surprisingly result given the thickness of the liner and theoretically small
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Figure 4.24: Comparison of the density gradient of the inner liner surface, quantifying
expansion of the surface.

feedthrough. Downstream of the shock there are significantly larger axial pressure

modulations in the inner seed case which can be propagated to the outer surface, a

process known as feedout. Passage of the shock excites smaller wavelength pertur-

bations on the inner surface but the dominant perturbations are certainly the seeded

ones. At this point the inner surfaces of the three seeded cases are all very nearly

the same, whereas significant feedthrough has not yet occurred for the ‘smooth’ case.

The smooth liner and seeded liner also already exhibit much different structure on

the liner exterior. This is a fairly surprisingly result given the thickness of the liner

and theoretically small feedthrough. As mentioned earlier, downstream of the shock

there are significantly larger axial pressure modulations in the inner seed case which

can be propagated to the outer surface, a process known as feedout. There is also

reduction in the short wavelength mode strength on the liner outer surface for the 100

T axial magnetic field case as expected since (kzBz)
2 is very large. Nevertheless, the

long wavelength modes on the outer surface are much stronger for the inner seeded

case, than just the randomly seeded perturbations (‘smooth’ in Fig. 4.25).
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Figure 4.25: FFTs of inner and outer liner surface comparing seeded and unseeded
cases at shock breakout.

One of the main goals of these simulations was to assess whether perturbations

on the inner surface can strongly affect liner stability during an implosion. Over the

timescale shown in Fig. 4.23, g remains positive, thus the growth of the inner surface in

these cases can be accounted for primarily by RMI or feedthrough. The inner surface

should otherwise be stable. We also performed what will be referred to as a ‘clean’

simulation of the Bz = 0 T sinusoidally seeded case (dashed blue in Fig. 4.26(a)),

where the outer surface of the inner seeded liner was completely smooth but inner

surface seeded. This substantially reduces the short wavelength perturbations that

naturally evolve to longer wavelengths on the outer surface and completely isolates

the feedout effects.

Plotted in Fig. 4.26 are the inner and outer surface FFTs at roughly peak current.

Overall, the MRT growth shown in Fig. 4.26(a), is actually quite similar at longer

wavelengths for most of the wavelength space, though larger in the inner seed case

with a fill gas (up to 50 % larger). The ‘clean’ case shows dramatically reduced short
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wavelength growth as expected, but very similar 400 µm growth (the feedout effect) as

the other cases. Because the ‘clean’ case has much less mode structure, feedout of the

200 µm perturbation is also noticeable. Based on these results it is also possible that

feedout can be washed out by naturally occurring MRT, depending on the wavelength,

but should nonetheless still add to any MRT growth as opposed to subtract. Including

the surface roughness in the solid curves shows that the liner is quite unstable, as

expected, but the feedout mechanism at the seeded wavelengths on the interior, is a

very important contribution to the MRT structure on the exterior. Most importantly,
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Figure 4.26: Late time FFTs of liner inner and outer surfaces. The initially smooth
liner is observed to be significantly more stable than the inner seeded liners.

the inner surface of the smooth liner is far more stable as expected; the growth of

the longer wavelengths from feedthrough does not catch up to the seeded case. From

these results it is clear that the presence of inner surface perturbations before shock

breakout can significantly reduce the stability of a liner implosion by both generating

instability at the seeded interface as well as increasing MRT growth on the exterior.
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The second mechanism is a manifestation of feedout, where the reflected shock from

the rippled inner surface “seeds” the MRT at the liner outer surface during implosion.

There can also be a contribution from feedthrough from the inner to outer surface.

Such a process is only visible when the inner surface perturbations are initially much

larger than any perturbations on the outer liner surface. Under these circumstances,

we can take ξα = 20 µm and ξβ = 0 µm for our analytic formulation (via Eqs. 2.59,2.60

or see Eqs. 36 and 37 of Ref. [8]). The evolution of the two surfaces, ξβ(t) and ξα(t)

is then plotted for this case in Fig. 4.27 including other, very small, initial conditions

for ξ0β. In this case, the feedthrough contribution is small. However, it does not

require a very large perturbation at all to instigate strong MRT growth (40 nm initial

amplitude was sufficient to show similar growth purely due to MRT). Here we’ve

used the ‘clean’ case for the 2D HYDRA simulation, which has the most accurate

estimate for the amplitude of the perturbation. The perturbations, as introduced
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Figure 4.27: Temporal evolution of outer surface 400 µm perturbations using
Eqs. 2.59,2.60 for various initial conditions on the outer surface. The initial con-
dition on the inner surface is ξ0α = 20 µm in all case.

in these simulations, are entirely artificial, understanding the impact of the preheat
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(in addition to ETI and feedthrough) on the liner for these purposes is thus the next

frontier. From this standpoint it is easy to see that the timing, uniformity, and energy

of the laser preheat could have a substantial impact on liner stability. In particular,

uniformity of the preheat is key. Figures 4.23-4.26 point out the potential danger

when the liner is perturbed by non-uniform preheat of a long wavelength nature, or

some other mechanism before shock breakout. This is likely the worst-case scenario

for liner stability as RMI can grow alongside perturbations from feedthrough. It is

currently unknown whether the relative phase between the feedthrough perturbations

and RMI could impact one another. Some indication of the importance of the phase

effect was shown in Figs. 2.26, 2.27(b) of Chapter 2.

4.4 Conclusions

Feedthrough was examined in 2D randomly seeded aluminum liner implosions with

increasing amounts of pre-magnetization. These 2D simulations show that stronger

axial magnetic fields can significantly reduce the amplitude of ripples forming on the

inner liner surface. For initial axial magnetic field strengths of 10 and 30 T, reduction

of these ripples began to manifest past CR = 2. One major difficulty of applying

these results to experiments is that 2D limits results to m = 0 modes only. Based

on the results from Chapter 3, the sausage mode is anticipated to be the fastest

growing mode when Bz = 0 T. For increasing strength of axial magnetic field the

dominant MRT mode tends to shift from azimuthally symmetric to helically oriented

modes. Feedthrough for these helically oriented modes is also larger than for m = 0

with pre-magnetization present. Thus, while the sausage mode can be somewhat

stabilized by an axial magnetic field, it is not clear how significantly the kink mode

can be stabilized, particularly with respect to feedthrough. Also unknown is the link

between feedthrough reduction and overall target performance. If the inner surface

rippling is reduced by 10 % how much better does the target perform? This is one of
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many open questions remaining.

Studying MRT is particularly straightforward in liners with perturbations seeded

on the liner exterior as seen in Chapters 2 and 3. Studying feedthrough in these

liners is much more challenging. This is due to seeding of perturbations by a rippled

shock. Rippled shocks in aluminum were found to be superstable, however the longer

the wavelength the perturbation, the slower the ripple decays. This is in agreement

with laser fusion simulations and experiments. 400 and 200 µm wavelengths were

found to survive to the inner surface of 300 µm thick liners and seed ripples of those

wavelengths on the inner surface. These ripples then proceeded to grow robustly

and quickly independent of axial magnetic field and fill gas. Only fills nearing liquid

deuterium densities affected the post-shock evolution of the perturbations.

The seeded perturbation was then imposed on the inner surface with the outer

surface smooth. Such a scenario may actually be quite important for integrated

MagLIF-like experiments. Sources of perturbations on the inner surface could arise

from shock heating of the inner surface and pre-heat non-uniformity. These per-

turbations on the inner surface can also perturb the smooth exterior based on our

feedthrough theory of Chapters 2 and 3 as well as the “feedout” effect explored in

this chapter. This can lead to the development of longer wavelengths on the liner

exterior, seeding additional MRT growth. Additionally, if there are perturbations on

the liner interior before shock breakout, RMI can occur. After shock breakout, the

inner surface ripples are found to oscillate, with a general increase in the amplitude

of the ripples. The maximum amplitude grows slower than the shock seeded per-

turbations from the liner exterior (which did not oscillate at all). A water fill was

not found to be sufficient to eliminate the growth of the inner surface, despite the

high density. However, the amplitude was found to oscillate only once and then grow

monotonically in time. If the liner can enter the deceleration phase before significant

growth can occur on the inner surface, it may be possible to observe deceleration RT
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growth. Future work will have to examine rippling applied to the liner inner surface

after shock breakout either via an accurate preheat model or artificially depositing

energy at the inner surface. This would eliminate any RMI growth and hopefully

focus on the feedthrough like physics from the inner to the outer surface.
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CHAPTER V

Conclusion

5.1 Conclusions and Future Work

This thesis describes the development, application, and results of an ideal MHD

model of the magneto-Rayleigh-Taylor instability and its feedthrough in planar and

cylindrical geometries. Between the planar and cylindrical model, the vast majority

of pulsed power driven targets can be analyzed for stability. Most importantly, in

cylindrical geometry, both MRT and Z-pinch instabilities such as the sausage and

kink mode were combined for a more complete description of the dominant instabili-

ties in imploding liners. Under the assumptions of ideal MHD, the linear growth rates

and feedthrough factors for the sharp boundary model are calculated exactly. Both

geometries were thoroughly tested against 2D resistive magneto-hydrodynamics sim-

ulations using the HYDRA code as well as experimental results where available. The

analytic models were further used to interpret results of simulations and experiments

where non-ideal effects are prevalent. Chapter 2 provided detailed benchmarking

of the MRT and feedthrough theory and introduced the concept of mitigation of

feedthrough via strong magnetic field line bending. Chapter 3 merged MRT with

the intrinsic current carrying instabilities in cylindrical liners, known as the sausage

and kink mode, and showed the combined MRT-kink mode to be most important

in magnetized implosions. Chapter 4 exercised the HYDRA MHD code to test our
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linear ideal MHD models. These models showed feedthrough reduction is a real pos-

sibility for strongly compressed axial magnetic fields. Simulations of aluminum liners

showed over a factor of two reduction in the RMS amplitude of inner surface ripples

at CR = 3.4. Several novel scenarios were presented to show that inner liner surface

perturbations can impact the overall liner stability, despite being present at a stable

interface.

5.1.1 On magneto-Rayleigh-Taylor instability in planar systems

Exact growth rates for the development of magneto-Rayleigh-Taylor instabilities

(MRT) were formulated from the linearized ideal MHD equations in a Cartesian

coordinate system. The analytic growth rates were computed for an equilibrium con-

figuration consisting of an arbitrary combination of magnetic and kinetic pressure in

an effective gravity. The equilibrium is formulated in the most general form, without

some of the simplifying assumptions of the linearized equations, such as an incom-

pressible equation of state. This allows the equilibrium quantities to be determined

from 1D HYDRA simulations, which incorporate resistivity, thermal conductivity, and

advanced equations of state. Post-processing of the simulations averages the equilib-

rium quantities in the plasma and vacuum regions of interest. The instantaneous

growth rate and feedthrough factor of MRT can then be determined as a function of

the simulation times for realistic, evolving plasma and magnetic fields. Some example

applications of these growth rates are to experiments using accelerated planar foils

and low convergence metallic liner implosions. The form of the analytic growth rates

and feedthrough factors show that magnetic fields aligned with a perturbation wave

vector, ~k have a tendency to reduce growth of that perturbation due to the additional

energy required to bend the field lines. This is a direct consequence of the frozen-in

law of ideal MHD. Finite resistivity reduces this effect [8].

The results of Chapter 2 show that our growth rate estimates can be most suc-
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cessfully applied to experiments with strong initial seeds on the MRT unstable sur-

face. The first direct application of the theory was to seeded aluminum liners where

kzr >> 1. For single wavelength perturbations of 200 µm or longer, the growth was

very well modeled by linear theory. Agreement was reached between experiments on

the Z-machine at Sandia National Laboratories and 2D HYDRA simulations of these

experiments. Simulations show that pre-magnetization (Bz) of these long wavelength

seeded liners has limited impact on MRT growth (for 2D perturbations) due to strong

magnetic diffusion of the axial field. For these same liners, feedthrough was compli-

cated by shock compression, which is not modeled with our incompressible analytic

calculations. To validate our feedthrough calculations, the same seeded liners were

used but the current pulse modified to reduce the shock strength. Using this new

pulse, the evolution of the inner surface in 2D simulations was found in excellent

agreement with the analytic theory. Additionally, feedthrough was significantly re-

duced by strong axial magnetic fields in these simulations. Though the stabilizing

effect was weaker than predicted by the analytic ideal MHD formulation, the model’s

insight was still viable.

The analytic growth rates were also applied to arbitrary 3D surface perturbations

on both plasma surfaces under the linear approximation. Initial perturbations on

both interfaces were considered and showed that the phase of the perturbations can

strongly affect MRT growth and feedthrough, particularly with longer wavelengths.

One implication of this is that, perturbations present on the otherwise stable liner

inner surface during implosion can instigate MRT growth on an otherwise pristine

unstable surface. The growth rates were also applied to quasi-random surfaces fin-

ishes to show that an axial magnetic field could slow the typical transition of short

wavelength MRT to long wavelength MRT.

The ideal MHD sharp boundary model of MRT growth and feedthrough was found

to be a very insightful tool for examining liner implosions and other magnetically
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accelerated targets. Its most accurate results are for those situations where relatively

large and well-defined perturbations are present on the unstable surface. The model

produces only qualitative results when strong magnetic field line bending is present

in resistive materials and with very short wavelength initial perturbations (which can

quickly become nonlinear). Similarly, feedthrough was most accurately modeled with

longer wavelength perturbations on the liner exterior and without shock compression.

An isentropic or at least quasi-isentropic pulse would be an ideal platform for studying

feedthrough and even deceleration phase RT.

The most apparent future work for this model is to mitigate some of its weak-

nesses. Accounting for the effect of resistivity is important, particularly for the case

of diffusion of the driving magnetic field and strongly compressed axial field. Since

the driving field is strong, it may substantially reduce growth rates of perturbations

aligned with it, making perturbations closer to 2D (in r − z). The effect of finite

resistivity could be determined empirically from 2D simulation comparisons with the

ideal MHD growth rates. For cases where two different magnetic field orientations of

different strength are present, this is an increasingly important calculation. It would

also be interesting to continue to add a number of seeded perturbations to determine

how long the linear aspects of the model apply. Good success has been achieved

with two different wavelength perturbations but of course there can be an arbitrary

number on any given pulsed power target.

5.1.2 On magneto-Rayleigh-Taylor and current driven instabilities in

cylindrical systems

As an important extension of the results of Chapter 2, an ideal MHD formulation

containing the combination of MRT and current driven instabilities of a Z-pinch was

presented (such as sausage and kink modes which cannot be accounted for in the

planar model). Growth rates are completely analytic and dependent on the same set
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of equilibrium quantities, including density, magnetic field and effective gravity, now

in cylindrical force balance. The majority of the calculations were performed with a

three-region sharp boundary formulation with a fuel, liner, and vacuum region, with

the current confined to the outer liner surface. The most important feature of this

model is that when there is no acceleration (g = 0) there can still be instability if

there is axial current flow. The well-known instabilities are the sausage and kink

modes (m = 0 and m = 1), and when g = 0 we call these the pure sausage and

kink modes. In the planar formulation when g = 0, the growth rate, γ = 0 and the

pure sausage and kink modes are completely absent. In cylindrical geometry, growth

rates of these instabilities are reduced by substantial magnetic field line bending,

but are increased due to the current driving the liner in addition to the instability

caused by the acceleration of the liner (when applicable). In general, this tends to

increase the growth rate of instability for any given (kθ, kz), in comparison to the

planar formulation.

The model was applied to magnetized liner implosions on the Z-machine, similar to

MagLIF, again using results from 1D HYDRA simulations to determine the required

equilibrium parameters of the model. The kink mode was found to be particularly

important in magnetized liner implosions where there is a strong azimuthal magnetic

field imploding a liner with an initially uniform, 10 T axial magnetic field. In the equi-

librium Z-pinch, the sausage mode can be stabilized by a strong axial magnetic field,

and the kink mode can be stabilized if it satisfies the Kruskal-Shafranov condition.

In a magnetized liner implosion, the kink mode is found to be the dominant mode

early on due to stabilization of the sausage mode by the axial magnetic field. During

this period the acceleration is small which means the MRT growth is small. As the

axial current increases, the azimuthal magnetic field increases as well and continues

to destabilize the sausage and kink modes. The increasing azimuthal field also corre-

sponds to an increase in acceleration and as the liner implodes at high acceleration
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the MRT-sausage mode is the dominant mode. At high compression, the initial axial

magnetic field is significantly compressed (scaling with ∼ 1/r2 as opposed to 1/r for

Bθ) in the fuel region and again begins to stabilize the sausage mode. The liner then

decelerates on the highly compressed fuel and the acceleration changes direction. At

this point the sausage mode is completely stabilized and kink mode remains. Over

the entire deceleration phase, the kink mode is found to grow by roughly a factor

4 depending upon the axial wavelength present. These results appear in agreement

with experimental results from the Z-machine. The MRT growth on the exterior is

observed to be helically oriented and the stagnating fuel column is possibly helical as

well.

In order to extend the cylindrical results beyond the sharp boundary model, the

governing ODE for the linearized ideal MHD equations was numerically integrated

incorporating the full 1D HYDRA radial profile. While significantly more computa-

tionally expensive, the results are theoretically more accurate given that they account

for finite density and magnetic field gradients as found in HYDRA and experiment.

Presence of finite current in the liner is particularly important in the θ̂ direction as

that is where the strongest field is. 2D (r, θ) simulations were run with m = 1 and

m = 6 to test the numerical integration. The sharp boundary results predict the

kink mode to have the faster growth over m = 6, due to strong stabilization for high

azimuthal mode numbers, however both modes grew roughly the same in simulation.

This is also what the numerical integration indicates; however this methodology has

not yet been applied to the entire 1D simulation. Future work with this upgraded

model requires a sensitivity study of these growth rates to the profile used. However

this numerical approach does seems to be a feasible method to determine more so-

phisticated growth rates, certainly much faster than any 2D or 3D MHD simulation.

Seeded 3D simulations would be ideal test cases for these more advanced growth rate

calculations, as well as for the sharp boundary model. A preliminary set of 3D HY-
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DRA simulations with seeded perturbations is given in Appendix C. Additionally,

effects of finite resistivity are likely again important, particularly in the azimuthal

direction due to the strong diffusion of the azimuthal field. Quantifying this would

be exceedingly useful to better understand the dominant mode at any given time.

The sausage, kink and other non-axisymmetric MHD modes (m ≥ 2) are not the

only instabilities that occur when g = 0. There is additionally the electrothermal

instability. Proper inclusion of ETI requires the energy equation of MHD as ETI

is driven by temperature perturbations and the dependence of resistivity on tem-

perature. As such it is significantly more difficult to include in the linearized fluid

equations. It is nonetheless extremely important to liner implosions, as it is believed

to seed MRT. Incorporating ETI with the sausage and kink modes even with g = 0

may be very beneficial in understanding how MHD modes in magnetized liner implo-

sions are seeded.

5.1.3 On the 2D simulation of fuel/liner interface stability in magnetized

liner implosions

Chapters 2 and 3 of this thesis have illustrated both the strengths and weaknesses

of the ideal MHD models. Chapter 4 was devoted to the use of these limited models

to understand some of the more complex and non-ideal behavior that is observed

in experiments and resistive MHD simulations. The workhorse of this chapter was

HYDRA, run in 2D (r, z) geometry.

The first approximation addressed was the linear approximation. Based on the

results of Chapters 2 and 3 it was clear that the most dramatic and successful effect

of the axial magnetic field (outside of 3D structure since we are considering 2D only)

was to reduce feedthrough. Reducing feedthrough is tantamount to reducing the seed

of deceleration RT on the inner surface. A typical MagLIF liner is shock compressed

and only machining roughness modulates the surfaces. The key physics here is the
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evolution of instabilities from short to long wavelengths. Initially, the feedthrough

is small due to the short wavelengths, but as the longer wavelengths develop over

time, the inner surface can become increasingly rippled by stronger feedthrough.

This transition from short to long wavelengths is a nonlinear process that the code

handles. Two very different initial surface perturbations were run for aluminum liner

implosions with increasingly levels of pre-magnetization (0, 10, 30 T). Even at very

small convergence ratio (CR = 3.5) significant reduction in ripple amplitude on the

inner surface was observed in all magnetized simulations as anticipated by analytic

theory. Interestingly, the 30 T field did not seem to give significantly more benefit

than the 10 T field (for the purposes of feedthrough). However, additional beryllium

simulations are needed to assess this effect at higher CR. Due to the lower mass of

beryllium these liners implode faster and could exhibit additional differences between

the 10 and 30 T at higher CR. Some future work is to examine the feedthrough of

3D modes which are likely very important to magnetized implosions. As it stands,

only the sausage mode was determined to be stabilized by the axial magnetic field

via 2D simulations, however, we know the kink mode is present in these implosions.

Nonetheless, this was a highly encouraging result given that the experimental evidence

points to the axial magnetic field as increasing the stability of the implosion.

The second half of Chapter 4 was devoted to the shock compression of the liner. In

seeded liners, shock compression introduces the complexity of the Richtmyer-Meshkov

instability in various forms. It was found that shock waves in liners with long wave-

length seeds on the exterior are driven non-uniformly and can significantly deteriorate

the liner interior. The non-uniform shock wave is initially rippled with the seeded

wavelength and amplitude and then propagates towards the liner interior. Shorter

wavelengths damp faster than long, but any left over amplitude seeds the inner liner

surface with a ripple that then proceeds to grow linearly in time. This is very similar

to traditional RMI growth. Both the amplitude of the seed and growth rate of the
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perturbation were found to be quite insensitive to the strength of the axial magnetic

field and fill gas density. Only significant impact on the seed and growth was observed

for fill densities near liquid water and highly conductive fluid. The high Atwood num-

ber reduces RMI and highly conductive fluid increases the field line bending. Overall,

this could be a very dangerous perturbation for the fuel/liner interface.

In order to include an initial perturbation but also in a more stable configuration,

the initial rippling was instead imposed on the inner surface (leaving the outer surface

smooth). The inner surface ripples were expected to grow due to RMI as well as

oscillate due to feedthrough and stable MRT effects (oscillating solutions are the stable

form of feedthrough/MRT). This was observed in 2D simulations and additionally,

the overall growth of the ripples was observed to be smaller than the previous shock

seeded case. Trading a fill gas for water fill substantially increases the Atwood number

at the inner liner surface, which can reduce both feedthrough and RMI. We found the

water fill in the central region was able to eliminate the oscillations from feedthrough,

however, it could not completely subdue the RMI growth. In the future, it may

be interesting to investigate the potential to use a water fill with a larger radius

liner to examine deceleration RT in detail. The deceleration phase would ideally

begin before any RMI growth is significant as maintaining the initial condition of

the surface is imperative. The larger radius reduces the magnetic pressure and liner

velocity, which can reduce RMI. The inner surface perturbation was also observed to

increase MRT growth on the liner exterior, which may be very important for MagLIF.

This is particularly the case if the laser preheat is non-uniform. However, in a well-

implemented implosion shock breakout occurs before the non-uniform preheat would

interact with the liner surface. At least in the worst-case scenario, the presence of

perturbations on the liner interior can lead to destabilization of a liner implosion.

Better modeling of the preheat phase will likely lead to better understanding of the

influence of the preheat on the liner inner surface.
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HYDRA has many capabilities beyond just the resistive MHD package. As a multi-

physics code its material strength models and radiation diffusion packages could also

introduce important (neglected) physics in certain scenarios. For example, one of the

primary reasons to isentropically compress targets (besides not introducing a shock)

is to keep the material as close to the solid phase as possible. In such a scenario,

material strength may play a significant role. Radiation generated in the preheat

could also heat the liner inner surface (if it does not escape and cool the fuel). The

effect of radiative cooling on ETI has also been examined [17] but not in the context

of a MagLIF target. All of these packages require additional computing time and

the physical models are just that, models, and may not necessarily represent the

true physics occurring. Similarly, the resistive MHD package has its own limitations

due to its neglect of the Nernst term and some of the underlying framework of the

MHD package itself. The simple Ohm’s law of resistive MHD neglects many terms

that could be important in a wide variety of pulsed power experiments. Extended

MHD models that can eliminate the “floor” density values and can better model lower

density plasma is a very important goal to move towards. This can hopefully improve

the robustness of such codes.

5.1.4 Future work and possible experiments

Finally, avenues for future work and experimental considerations for key results

can now be summarized. Both Chapters 2 and 3 analytically predicted the stabiliza-

tion of MRT and feedthrough, dependent upon the perturbation wavenumber ~k, due

to the stabilizing influence of bent magnetic field lines. Ideal MHD can over predict

the amount of stabilization that occurs even in seeded liners. Seeded experiments

with a pre-imposed axial magnetic field can then give confidence to our simulation

results and further our understanding of the impact of finite resistivity on our ideal

MHD model. The ultimate goal then is to improve the accuracy of the linear model by

215



incorporating finite resistivity and answering the question, for a given axial magnetic

field, what modes are actually stabilized?

For liners where there is only initial surface roughness, it is would also be extremely

valuable to determine how early the helical MRT structure appears in experiments.

This refers not only to the early tokamak-like behavior of MagLIF but perhaps the

interplay between MRT and ETI that would be present early in the current pulse.

Such studies could also illuminate the extent of nonlinear generation of modes in

3D when a helical magnetic field is present. Further quantifying the effect of the

axial magnetic field on the stability of the inner liner surface as well the 3D nature

of feedthrough that occurs is also important for MagLIF. Identifying any difference

between feedthrough at high and low CR also would provide valuable insight into

the true impact of modes introduced by cylindrical geometry. This could be done by

moving the liner to an initially larger radius; however, the thickness of the liner and

corresponding acceleration history would have to be carefully considered. A larger

initial radius would also allow for more axial magnetic field compression if there were

a central metal rod that confines the axial flux in an annulus. The other major

question is whether or not feedthrough is the dominant mechanism responsible for

perturbations on the inner surface. One culprit could be the preheat blast wave,

however, this phase requires significantly more investigation.
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APPENDIX A

A note on the Taylor instability

In his classic paper [2], Taylor considered the instability on the surfaces of a fluid

slab of a finite thickness that is accelerated by a much lighter fluid on either side of

the fluid slab. He found that there is always an unstable mode in which the ripples

on both surfaces of this fluid slab grow exponentially in time. This is called the

Taylor instability or the Rayleigh-Taylor instability (RT). The RT growth rate of the

unstable mode is given by,

γ =
√
ka (A.1)

where k is the wavenumber of the surface ripples and a (a > 0) is the acceleration.

This growth rate is independent of ∆, the thickness of this accelerating fluid slab. For

the unstable mode, the amplitude of the ripple at the back surface of the accelerated

fluid slab is a factor of e−k∆ smaller than the amplitude of the ripple at the front

surface of this accelerated fluid slab, and this factor is known as the “feedthrough

factor” in the literature of RT [6][30][57]. Thus, over a time t, the slab will undergo a

distance s = at2/2, during which the unstable mode will gain an amplitude on both
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surfaces of the fluid slab,

G = eγt = e
√

2ks. (A.2)

In writing Eq. A.2, we have assumed that the fluid slab does not have any initial

velocity. As written, Eq. A.2 is independent of a, independent of ∆, but depends

only on the accelerated distance, s, and the wavenumber, k. Equation A.2 was in

fact given by Taylor [2]. We shall next show that Eq. A.2 actually gives the bound on

the maximum amplitude gain over a distance s. This bound depends only on k and

s, and is independent of the magnitude or sign of a.

Suppose now that at t = 0, there is an initial velocity v, v > 0, in the fluid slab.

After a time t, the slab travels a distance, s = vt + at2/2. We may easily solve for t

in terms of s, and the amplitude gain during time t may then be expressed as,

G = eγt = e
√

2ksf(ξ), (A.3)

where ξ = v/
√

2as, and f(ξ) =
√

1 + ξ2 − ξ. Figure A.1 plots f(ξ) as a function of

ξ, showing that f(ξ) ≤ 1, regardless of the value of v, a, or s. Comparing Eq. A.3

with Eq. A.2, we see that Eq. A.2, is the bound for the RT growth over a distance

s, regardless of v, a, or s. Suppose that a changes sign, so that a = −|a|. Assume

that at t = 0, the slab also has an initial velocity v, v > 0. After a time t, this slab

travels a distance, s = vt − |a|t2/2. This slab will be decelerated to zero velocity at

time tst = v/|a|, after traveling the distance sst = v2/2|a|. Likewise, we may solve for

t in terms of s for this a < 0 case. During time t, before s reaches sst, the amplitude

gain may be expressed as,

G = eγt = e
√

2ksh(ξ), (A.4)
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Figure A.1: The functions f(ξ) and h(ξ). Both f(ξ) and h(ξ) approach (1/2)ξ for
ξ >> 1 .

where ξ = v/
√

2|a|s =
√
sst/s > 1, and h(ξ) = ξ −

√
ξ2 − 1. Figure A.1 plots h(ξ)

for all ξ > 1, showing that h(ξ) ≤ 1, regardless of the value of v, a, or s (< sst).

Comparing Eq. A.4 with Eq. A.2, we see that Eq. A.2 is again the bound for RT

growth over a distances, regardless of v, a, or s (< sst). After tst, Eq. A.2 applies

because the slab has a zero velocity at t = tst.

In general, acceleration of a fluid slab, a in the lab frame, may be provided by a

magnetic pressure [6], a kinetic pressure [2][30], or some combination of the two [57].

Regardless of what causes the acceleration of this slab, the maximum growth rate,

γ, is still given by
√
ka, when all stabilization mechanisms are absent. Stabilizing

influence may come from surface tension [30], magnetic tension [6][57], magnetic shear

[66], etc. The maximum amplitude gain in the unstable mode after the slab travels a

distance s is, therefore, always bounded by Eq. A.2, regardless of the magnitude or

sign of a, of the magnitude or sign of the initial velocity v of the slab, of the thickness

of the fluid slab, and of the degree of the stabilization influence, according to the

linear theory.
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The simple scaling described in this appendix can sufficiently describe the evolu-

tion of single mode MRT with one modification. We return to the simple single mode

MRT experiments run by Sinars et al. [51] for the 400 µm axial wavelength pertur-

bation. Using the 1D HYDRA implosion data, the trajectory of the individual fluid

elements of the liner can be tracked. The position of the fluid then feeds directly into

the estimate of the MRT growth rate, γ =
√

2k(r(t)− r0) and then the overall MRT

gain. The MRT gain can be calculated with the exponential as shown by Eq. A.2

but can also be more accurately calculated using the hyperbolic cosine function, cosh

instead [51][57]. Figure A.2 shows this comparison for the MRT amplitude evolution,

using the hyperbolic cosine function in Fig. A.2(a) and the simple exponential func-

tion (Eq. A.2) in Fig. A.2(b). The calculation plots the MRT growth for every five

zones. The evolution is best estimated by the central zones of the liner as opposed

to the ablating regions near the liner exterior and interior interfaces. These ablating

zones are annotated in Fig. A.2. These fluid elements tend to be very low density

and strongly accelerated but do not contribute to MRT growth in the bulk mass of

the liner. One implication of this result is that g can be substituted in both the

planar and cylindrical models described in Chapters 2 and 3 by the transformation

to the displacement of the fluid elements. As a result this technique works not only

for RT but the pure MRT as well (in the absence of stabilizing mechanisms and of

the sausage and kink modes).
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(a) Calculation of MRT growth for 400 µm axial wavelength by the formula
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Figure A.2: Comparison of MRT growth estimates for the 400 µm perturbation of
the experiment by Sinars et al. [51]. The exponential scaling clearly shows the largest
growth. Curves are plotted for every five zones in the liner.
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APPENDIX B

Alternate derivations and details of the cylindrical

eigenmode solutions

B.1 Alternate derivation of boundary conditions for cylin-

drical MRT formulation

It is possible to construct the boundary conditions for the cylindrical sharp bound-

ary model directly from the governing ODE in cylindrical coordinates. The ODE

recorded in Chapter 3 is given by (c.f.,. Eq. 3.16)

d

dr

[
P (r)

r

d

dr
(rξr(r))

]
+Q(r)ξr(r) = 0, (B.1)
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P (r) =
µ0r

2ω2ρ0 − (mB0,θ(r) + krB0,z)
2

(k2r2 +m2)
, (B.2)

Q(r) =
2B′0,θ(B0,θ(m− kr)(kr +m) + krmB0,z)

r (k2r2 +m2)
,

+
2kmB0,θB

′
0,z

k2r2 +m2

+
βB0,θB0,z + αB2

0,θ + κB2
0,z

r2 (k2r2 +m2)2

−
4k2B2

0,θ(mB0,θ + krB0,z)
2

(k2r2 +m2) ((mB0,θ + krB0,z)2 − µ0r2ω2ρ0)

+ µ0gρ
′
0 − µ0ω

2ρ0, (B.3)

α = k4r4
(
m2 + 2

)
+ 2k2r2m2

(
m2 − 2

)
+
(
m2 − 2

)
m4, (B.4)

β = 2krm
(
k4r4 + k2r2

(
2m2 − 3

)
+m2

(
m2 − 1

))
, (B.5)

κ = k2r2
(
k2r2 +m2

)2
, (B.6)

It is difficult to verify whether the ODE in Bud’ko et al.[7] is similar to or the same

as the one derived here (after taking the limit of their gas index, γ → ∞), given

there is no explanation of the derivation. There also seems to be at least one typo

in Eq. 3 of Bud’ko, otherwise the limit of γ → ∞ is unbounded. The limit can

be repaired by changing the right square bracket around ρ2σ2 (first term on second

line) to encompass all terms up until the −r d
dr

term. However, the author cannot

guarantee this is the ODE that Bud’ko intended. The boundary conditions there

take a much different form as well. Additionally, when all derivatives are set to zero

for the equilibrium quantities, a fairly complex ODE remains, requiring numerical

integration. It is possible there are some “tricks” that could provide an analytic

result, though there is nothing obvious to the author.

The derivation of the boundary conditions in Chapter 3 summed the perturbation

kinetic, magnetic and gravity pressures at both sides of each interface and then set

equal. The perturbation quantities were determined from simplifying the governing

ODE, Eq. B.1, using the fact that the densities and magnetic fields were constant.
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Like the planar formulation of Chapter 2, Eq. B.1 can be integrated across the two

interfaces over an infinitesimally thin region. The appropriate operator for this pro-

cedure is

lim
ε→0

r0+ε∫
r0−ε

dr, (B.7)

where r0 is the radial position of the interface (either ri or re for the liner problem).

Calculation of this integral is fairly straightforward. Applying the integral to the first

term of Eq. B.1 at re (interface of regions I and II), yields

P (re+)

re

d

dr
(rξr(r))

∣∣∣∣
re+

− P (re−)

re

d

dr
(rξr(r))

∣∣∣∣
re−

, (B.8)

where re+ corresponds to evaluating the equilibrium quantities in the vacuum region

(region I), and re− corresponds to the liner region (region 2). In this case, for example,

B0θ(re−) = 0, ρ0(re+) = 0. The same procedure can be applied to the interface at ri.

Recall that ξr,f is known in the fuel region and that ξ′r,v must be determined from the

condition ~B1 · n̂0 + ~B0 · n̂1 = 0 and ~B1 = ∇ × (~ξ × ~B0) (linearized Faraday’s law).

Using the definitions provided in chapter 3, ξv(r) in region I is (compare with the

simple planar solution, e−kx)

ξv(r) =
ξβr[krKm−1(kr) +mKm(kr)](mB0θ +Bz,vkre)

[kreKm−1(kre) +mKm(kre)] (mB0θre +Bz,vkr2)
, (B.9)

where ξv(re) = ξβ.

Application of Eq. B.7 to Q(r)ξr(r) of Eq. B.1 at the vacuum/liner interface

(regions I and II) retains only the first two terms of Q(r), and the last term with ρ′0,

as only those terms contain derivatives in Eq. B.3. The simplified terms of Q(r) at
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the liner/vacuum interface then become

2B′0,θ(B0,θ(m− kr)(kr +m) + krmB0,z)

r (k2r2 +m2)
→ B0θ [(Bz,l +Bz,v)krim+B0θ(m

2 − k2r2
i )]

ri(m2 + k2r2
i )

,

(B.10)

2kmB0,θB
′
0,z

k2r2 +m2
→ kmB0θ(Bz,v −Bz,l)

k2r2
e +m2

, (B.11)

µ0gρ
′
0 → −µ0gρ0,l. (B.12)

Equations B.10 and B.11 are identically zero at the fuel/liner interface (i.e. terms

proportional to B0θ, which is zero in the liner and fuel region). At the fuel/liner

interface the final term yields

µ0gρ
′
0 → µ0gρ0,l − µ0gρ0,f (B.13)

The form of the boundary conditions found in Chapter 3 is then found by combining

Equations. B.8,B.10,B.11,B.12 or Eq. B.13 for the appropriate interface. Keeping

in mind that dξr,l(r)/dr is the remaining unknown, while the eigenfunction ξr(r) is

known in regions I and III.

The result of the integration at the fuel/liner interfaces gives

(ξα + riξ
′
l(ri))

(
µ0ρlr

2
i σ −B2

z,lk
2r2
i

)
ri (k2r2

i +m2)
−
(
ξα + riξ

′
f (ri)

) (
µ0ρfr

2
i σ −B2

z,fk
2r2
i

)
ri (k2r2

i +m2)

+ gµ0ξα(ρl − ρf ) = 0, (B.14)
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and the result at the liner/vacuum interface

− (ξβ + reξ
′
v(re)) (B0θm+Bz,vkre)

2

re (k2r2
e +m2)

−
(ξβ + reξ

′
l(re))

(
µ0ρlr

2
eσ −B2

z,lk
2r2
e

)
re (k2r2

e +m2)
+

ξβ

(
B0θkm(Bz,v −Bz,l)

k2r2
e +m2

+
B0θ (B0θ (m2 − k2r2

e) + kmre(Bz,l +Bz,v))

re (k2r2
e +m2)

− gµ0ρl

)
= 0.

(B.15)

Plugging in the expressions for ξ′f (ri) (from Eq. 3.28) and ξ′v(re) (Eq. B.9) and

solving for ξ′l then give the boundary conditions developed in Chapter 3 (Equa-

tions. 3.32, 3.40) but derived in a completely different manner.

B.2 Derivation of long wavelength (kz << 1) limit of m = 0

mode with Bz = 0

To derive the long wavelength limit m = 0 dispersion relation, series expansions

are needed for the modified Bessel’s functions, Im and Km. These are found in most

any mathematical physics reference and can also be computed to arbitrary order

in the Mathematica program as was done here. The appropriate long wavelength

expansions are

I0(kr) = 1 +
(kr)2

4
+O((kr)3), (B.16)

K0(kr) =(
− log(kr)− log

(
1

2

)
− γ
)

+
1

4
(kr)2

(
(− log(kr))− γ + 1− log

(
1

2

))
+O

(
(kr)3

)
, (B.17)
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where γ ≈ 0.577216 is the Euler’s constant. Recalling the exact solution for ξr(r) in

the liner region is with boundary conditions is given by

ξr(ri) = ξα = C1I
′
m(kri) + C2K

′
m(kri), (B.18)

ξr(re) = ξβ = C1I
′
m(kre) + C2K

′
m(kre), (B.19)

the asymptotic solution for ξr(r) in the liner region can be computed as

ξl(r) =
ξαri (k

2r2r2
e log(re/r) + 2r2 − 2r2

e)

r (k2r2
er

2
i (log(re/ri))− 2(re − ri)(re + ri))

+
ξβre (k2r2r2

i log(r/ri)− 2r2 + 2r2
i )

r (k2r2
er

2
i (log(re/ri))− 2(re − ri)(re + ri))

. (B.20)

The same boundary conditions at ri and re, as found in the main text of Chapter

3 for the sharp boundary (c.f. Equations. 3.32 and 3.40), are applied to B.20 with

the asymptotic expressions inserted for the full Bessel’s functions. From these two

boundary conditions, two equations for ξα/ξβ can again be determined in the long

wavelength limit.

ξα/ξβ =
reω

2 (k2r2
i − 4)

(−k2r2
eri(log(re/ri)) (gk2ri + 2ω2) + 2gk2∆(re + ri) + riω2 (k2r2

e − 4))
,

(B.21)

ξα/ξβ =
k2r2

er
2
i (log(re/ri)) (k2 (χ) + 2µ0ρω

2)− 2k2∆(re + ri) (χ) + µ0ρr
2
eω

2 (k2r2
i − 4)

µ0ρreriω2 (k2r2
e − 4)

,

(B.22)

χ = B2
θ + gµ0ρre. (B.23)

which are also known as the feedthrough factors. Equations B.21 and B.22 can then

be set equal to determine the dispersion relation. For kre << 1, the dispersion

relation, ω(m = 0, k), remains highly cumbersome even in this limit. The solution of
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which is shown in Equations. B.24-B.27.

ω2 =
−2k2r2

eri log
(
re
ri

)
(B2

θ + gµ0ρτ) +B2
θri (k

2r2
e − 4) + ∆gµ0ρre (k2reri + 4)−

√
ψ

8µ0ρr2
eri log

(
re
ri

) ,

(B.24)

ψ =
(
B2
θri
(
k2r2

e − 4
)

+ ∆gµ0ρre
(
k2reri + 4

))2

+ 4k2r2
eriχ log

(
re
ri

)[
B2
θri
(
4− k2r2

e

)
+ gµ0ρreτ

(
4− k2reri

)
+ k2r2

eriχ log

(
re
ri

)]
,

(B.25)

τ = re + ri, (B.26)

χ = B2
θ + gµ0ρre. (B.27)

However, at this point the limit of k → 0 can be taken directly, which is quoted in

chapter 3 (Eq. 3.52) and reproduced here in Eq. B.28 (un-normalized) and B.30.

ω2 = −B
2
0θri − gre∆µ0ρ0 + |B2

0θri − gre∆µ0ρ0|
2r2

eriµ0ρ0 ln (re/ri)
, (B.28)

q =
re
ri

=
AR

AR− 1
. (B.29)

ω̄2 =
−1 + ḡq − |1− ḡq|

2 ln q
, (B.30)

ω̄2 ≡ ω2/(B2
0θ/µ0ρ0r

2
e), (B.31)

ḡ ≡ g/(B2
0θ/µ0ρ0∆), (B.32)

Similar procedures can be performed for the |m| > 0 modes as well, but the solutions

become increasingly more complicated.
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APPENDIX C

Initial 3D simulations of seeded liners

C.1 Initial simulations of 3D seeded modes

The computational cost of 3D simulations is very high. With the resources at

hand it is not possible to perform 3D simulations of the roughened liners of Chapter

4 in a reasonable amount of time. Seeded liners are somewhat more forgiving. Here,

we present the initial results of seeded 3D aluminum liner simulations. The setup for

these simulations is very similar to the seeded aluminum liners in Chapters 2,3,4 where

the aluminum liner is seeded on the exterior with a sinusoidal perturbation. In this

case, the axial extent is 1.6 mm, with axially seeded wavelength with λz = 800 µm. We

consider both the m = 0 and m = ±1 modes so that the total perturbation is e−imθ−ikz

and the peak-to-valley amplitude is 40 µm. For the m = ± modes, the perturbation

is helical and the sign determines the sense of the helix. The axial resolution is

12.5 µm. In the azimuthal direction, there are 128 zones, which corresponds to 2.8◦

azimuthal sectors. At the initial liner outer radius (2.79 mm) this corresponds to

azimuthal resolution of 136 µm for the full circumference. The liner inner surface

is set at 2.325 mm and there is only a vacuum fill. The aspect ratio of the liner is
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6 (thicker than the Sinars et al. liner [51] which corresponds to lower acceleration).

The radial resolution is highly weighted towards the outer surface of liner to give

roughly 10 µm resolution early on. The cells are clearly far from the ideal shape

(roughly dx ≈ dy ≈ dz). There are nonetheless, a significant number of cells per

seeded wavelength. In total, there are 1.5 million zones, many times larger than the

high-resolution 2D simulations presented in the main text. And yet, while the radial

and axial resolutions are reasonable, the azimuthal resolution is lower than what

would be ideal.

To measure the MRT growth in 3D, the full 3D data is used. For each (r, z)

plane the transmission contours are calculated, as was done for the 2D cases where

the opacity for aluminum is assumed constant (102 cm2/g). Since aluminum is very

opaque to the X-ray energy considered, this reduces the impact of the azimuthal

asymmetry (one cannot see through the aluminum, unlike the beryllium radiographs

[55]). The ripple amplitude of the (r, z) plane is computed and the next θ+dθ plane is

computed. The result is that at each simulation time, we have the ripple amplitude as

a function of θ. As in the 2D results measuring the ripple amplitude in this way works

quite well so long as the mode of interest is very clean (i.e. no shorter wavelength

modulations). Additionally, for each (r, z) plane we can compute the FFT of the

surface and store the amplitudes of the wavelengths of interest.

From our linear theory we expect negligible differences between the three different

modes, even with a 10 T axial magnetic field, since we initially have kzre = 21 for

kz = 2π/800 µm. The simulation and analytic results are shown in Fig. C.1 including

a 10 T axial magnetic field. The analytic results (using 1D HYDRA) for m = 0,±1

modes were so similar, we include only m = 0 as the dashed curve. The MRT

amplitudes for the 3D simulations were computed as briefly discussed above, using

50 % transmission contours. The variation in amplitude between each azimuthal

sector remained small, particularly for the sausage mode. Figure C.1(a) shows the
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results for the 800 µm ripple computed directly for each azimuthal mode for the 3D

simulations. The MRT growth in the 3D HYDRA simulation was observed to be

substantially higher for the kink modes, while the analytic result agrees well with the

3D simulation for m = 0 mode (the analytic m = ±1 results were nearly identical to

m = 0). This was a surprising result given our analytic theory. The result makes more
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(a) Evolution of MRT amplitude for the λz =
800 µm perturbation for the m = 0,±1
modes measured from the minimum to
maximum of the 50% transmission contour.
The dashed curves show the cylindrical an-
alytic model result for m = 0.
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(b) Evolution of MRT amplitude for the λz =
800 µm perturbation for the m = 0,±1
modes measured from the FFT of the 50%
transmission contour. The dashed curves
show the cylindrical analytic model result
for m = 0.

Figure C.1: Evolution of MRT amplitude for the λz = 800 µm perturbation for the
m = 0,±1 modes measured by two different methods. The initial amplitude is 20 µm
so that a growth factor 15 corresponds to 300 µm.

sense when the FFT results are examined. Figure C.1(b) shows the FFT measurement

of the 800 µm which shows the growth to be very similar, as expected, between

the three modes. The discrepancy between the two measures is easily explainable

when the FFT measure of the amplitude at 400 µm is examined (Fig. C.2). Both

kink modes show very substantial growth of an additional, apparently nonlinearly

generated, 400 µm mode, which is nearly absent in the sausage mode. In fact the

400 µm mode growth is so strong for the kink mode, is on the order of seeded 800 µm

mode.

Figure C.3 shows snapshots of the liner density at 77 ns for the three perturbations.
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Figure C.2: Evolution of MRT amplitude for the λz = 400 µm perturbation for the
m = 0,±1 modes measured from the FFT of the 50% transmission contour.

Densities below 1 g/cc were cutoff to better show the MRT structure. As Fig. C.3

shows, the amplitudes are very similar for λz = 800 µm but the helical, unseeded,

λz = 400 µm perturbations that have developed are clearly visible. The origin of this

λz = 400 µm mode is unknown and higher resolution simulations should be run to

verify the result. But nonetheless, it is strongly present only for the kink mode.

The inner surface ripple evolution was also calculated for completeness. The shock

seeding in all cases was strong and occurred at 57.5 ns, as shown in Fig. C.4. As a

reminder, the initial amplitude on the outer surface was 20 µm. As in the main text,

this corresponds to the shock breakout time as well as the beginning of the bulk

implosion of the liner. This is also around the time the MRT growth really begins

to take off. Interestingly, the kink modes showed slightly stronger shock seeding of

the inner surface, by roughly 3 µm. The source of this difference again seems to be

related to the additional 400 µm mode present in the kink mode cases. However, this
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(a) MRT growth of seeded m = 0 with λz = 800 µm, Bz = 10 T after
77 ns.

(b) MRT growth of seeded m = 1 with λz = 800 µm, Bz = 10 T after 77
ns.

(c) MRT growth of seeded m = −1 with λz = 800 µm, Bz = 10 T after
77 ns.

Figure C.3: Seeded 3D aluminum liner implosions with an axial 10 T magnetic field.
All densities below 1 g/cc were cutoff to better show the MRT structure.
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Figure C.4: Evolution of inner surface ripple for the λz = 800 µm perturbation for
the m = 0,±1 modes.

is a very small difference overall, considering the resolution of the simulations. More

importantly, this liner is thicker than the liner in Sinars et al.[51] and yet significant

shock seeding remains.

These preliminary results suggest that our analytic models can be successfully

applied to 3D scenarios. Additionally, many of the effects we saw in 2D carry over

to 3D, such as the shock seeding. Though the 3D simulations themselves are low

resolution, results seem consistent with our 2D results as well as our analytic model.

Higher resolution simulations should certainly be performed and there are many other

modes that can be examined.
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