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Abstract 
 

Identification of Cellular Host Factors That Associate With LINE-1 ORF1p 
and the Effect of the Zinc Finger Antiviral Protein ZAP on LINE-1 

Retrotransposition 
 

By 
 

John B. Moldovan 
 

Chair: John V. Moran 

 Long INterspersed Element-1 (LINE-1 or L1) is the only active 

autonomous retrotransposon in the human genome. The human genome 

contains over 500,000 L1 sequences, which account for approximately 17% of 

human DNA. L1 sequences mobilize throughout the human genome by a copy-

and-paste mechanism known as retrotransposition. Most genomic L1 sequences 

are incapable of mobility (i.e., retrotransposition) because they are either 5'-

truncated, internally rearranged, and/or mutated; however, it is estimated that 

each human cell contains at least 80-100 intact L1 sequences that are 

retrotransposition capable.  

 L1 retrotransposition is inherently mutagenic and on occasion can disrupt 

gene expression leading to diseases such as hemophilia A and cancer. Due to 

the mutagenic potential of L1 retrotransposition, it thus stands to reason that the 

host cell has evolved mechanisms to protect the cell from unabated 

retrotransposition. In this thesis I identified cellular host factors that associate 

with the first L1 open reading frame protein, ORF1p. I demonstrate that the zinc 

finger antiviral protein ZAP associates with L1 ORF1p and inhibits human L1 and 

Alu retrotransposition as well as the retrotransposition of LINE elements from 

mice and zebrafish. Molecular genetic, biochemical, and fluorescence 

microscopy data suggest that ZAP interacts with L1 RNA and reduces the 



 x 

expression of full-length L1 RNA and the L1-encoded proteins, thereby providing 

mechanistic insight into how ZAP may restrict retrotransposition.  

 In addition to ZAP, I show that the ORF1p-associated cellular host factors 

MOV10, hnRNPL, and PAR-4  also inhibit L1 retrotransposition. Mechanistic data 

suggest that ZAP, MOV10, hnRNPL, and PAR-4 restrict L1 retrotransposition by 

distinct mechanisms, suggesting that each of these cellular host factors may 

target different post-transcriptional steps in the L1 retrotransposition cycle.  

 Importantly, ZAP and MOV10 were first characterized as antiviral proteins 

due to their ability to suppress retroviral activity. Notably, several other host cell 

antiviral factors such as APOBEC3 proteins, TREX1, SAMHD1 and RNase L 

have recently been demonstrated to inhibit L1 retrotransposition. Thus, these 

data suggest that ZAP, MOV10 and perhaps other ORF1p-associated cellular 

host factors initially may have evolved to combat L1 and other endogenous 

retrotransposons and subsequently were co-opted as viral restriction factors. 
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Chapter 1 
 

Introduction 
 
Thesis Overview 

 The focus of my thesis addresses the question, what host cell proteins are 

involved in L1 retrotransposition? My thesis research began with a short study of 

the L1 retrotransposition mechanism in which I studied how mutations in the L1 

ORF1p protein affect the function of L1 ribonucleoprotein particles (RNPs), an 

important L1 retrotransposition intermediate. The study of L1 RNPs then 

prompted me to question whether other cellular proteins might associate with L1 

RNPs and modulate L1 retrotransposition activity. The following chapters will 

present the major results of my thesis research in the following order. Chapter 1 

is an introductory chapter that provides background information on the 

mechanism of L1 retrotransposition, how L1 retrotransposition impacts the 

human genome, and what host cell processes are known to regulate L1 

retrotransposition. Chapter 2 presents experiments that examine the role of 

ORF1p in L1 retrotransposition and how mutations in ORF1p affect the function 

of L1 RNPs. Chapter 3 describes the bulk of my thesis research where I used co-

immunoprecipitation experiments in conjunction with tandem mass spectrometry 

to identify host cell proteins that associate with L1 RNPs, and then showed that 

some of these proteins may inhibit L1 retrotransposition. These experiments led 

to the discovery that the zinc-finger antiviral protein (ZAP) restricts human L1 and 

Alu retrotransposition. Chapter 4 extends findings from Chapter 3 and presents 

experiments that show that the RNA helicase MOV10, an additional L1 RNP-

interacting protein identified in Chapter 3, also restricts L1 retrotransposition. In 

the final Chapter (Chapter 5), I discuss the significance of these findings, and 

focus on remaining questions and possible future directions.  
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Introduction to Transposable Elements 

 Transposable elements, sometimes referred to as “jumping genes,” are 

DNA sequences that can move from one DNA site to another within genomic 

DNA. Transposable elements were first discovered in maize during the 1940's by 

Barbara McClintock. She demonstrated that transposable elements could move 

to different chromosomal locations and cause heritable mutations that were 

linked to color variegation (Figure 1.1) (McClintock 1950, McClintock 1951). 

 Since their initial discovery, we have learned that transposable elements 

inhabit the genomes of virtually all organisms from each of the four kingdoms of 

life. Despite the ubiquity of transposable elements, why they exist and what 

function they might serve are puzzling and difficult questions to answer. Indeed, 

for many decades following their discovery transposable elements were 

considered a type of "junk DNA" (Ohno 1972), mainly because they do not 

appear to serve an obvious biological function for the organisms which they 

inhabit. Transposable elements also have been characterized as "selfish DNA" 

with their only purpose thought to be to spread more copies of themselves 

throughout an organisms’ genome (Doolittle and Sapienza 1980, Orgel and Crick 

1980). Regardless of whether one thinks of transposable elements as pieces of 

"junk" or as inherently "selfish" entities, research within the last twenty years has 

revealed that transposable elements make a significant impact on the genomes 

and phenotypes of their hosts (Cordaux and Batzer 2009, Beck et al. 2011, 

Richardson et al. 2015). Whether transposable elements have an ultimate 

function or purpose may never be known, but it is clear that they are more than 

just junk. The continued study of transposable elements will provide insights into 

how they influence their host genomes, which will ultimately contribute to a more 

unified and comprehensive understanding of the basic biological processes that 

govern the function of single cells and entire organisms. 

 This introductory chapter will provide a brief overview of transposable 

elements in the human genome and then focus on the biology of the human long 
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interspersed nuclear element-1 (LINE-1 or L1), the only self-autonomous 

transposable element currently active in the human genome. 

 

Transposable Elements in the Human Genome 

 The initial sequencing of the human genome revealed that nearly 50% of 

human DNA is composed of transposable elements (Lander et al. 2001) and 

more recent studies suggest that as much as 66%-69% of the human genome 

could be composed of transposable elements and other repetitive DNA 

sequences (de Koning et al. 2011). Transposable elements can be grouped into 

two main classes based on whether they mobilize via a DNA intermediate (DNA 

transposons) or an RNA intermediate (retrotransposons). The human genome 

contains a variety both DNA transposons and retrotransposons (Figure 1.2), 

which will be discussed below.  

DNA transposons  

 DNA transposons comprise roughly 3% of the human genome. DNA 

transposons mobilize (i.e., transpose) via a DNA intermediate by a cut-and-paste 

mechanism termed transposition. A classical DNA transposon typically consists 

of a pair of variable length terminal inverted repeat (TIR) sequences that 

surround a transposon-encoded enzyme called transposase (Figure 1.3A), which 

mediates the transposition reaction. During DNA transposition, transposase 

recognizes the TIR sequences on either end of the DNA transposon and 

catalyzes the excision and subsequent insertion of the DNA transposon from one 

place in DNA to another (Craig et al. 2002).  

 DNA transposons are not thought to be active in the human genome, and 

likely have been extinct (i.e., not capable of transposition) in mammals for at 

least 37 million years  (Lander et al. 2001, Pace and Feschotte 2007). Despite 

these facts, recent evidence suggests that a small group of DNA transposons 

may be active in certain bat species (Ray et al. 2007, Mitra et al. 2013). Although 

DNA transposons may not be currently active in humans, they appear to have left 
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an indelible mark on the human genome as several human proteins are thought 

to have evolved from DNA transposons including the RAG1 and RAG2 V(D)J 

recombinase enzymes, which function during B and T cell development 

(Thompson 1995, Lander et al. 2001, Kapitonov and Jurka 2005).  

Retrotransposons 

 Retrotransposons are the most numerous class of transposable elements 

in the human genome (~42% of the genome) (Figure 1.2) (Lander et al. 2001). 

Retrotransposons mobilize via an RNA intermediate by a replicative copy-and-

paste mechanism termed retrotransposition (Boeke et al. 1985, Craig et al. 2002, 

Beauregard et al. 2008, Cordaux and Batzer 2009). Retrotransposons typically 

encode a reverse transcriptase (RT) enzyme, which is required to mediate 

retrotransposition. During retrotransposition, an RNA copy of the retrotransposon 

is reverse transcribed by the retrotransposon-encoded RT to generate a 

retrotransposon cDNA copy, which is inserted into a new genomic location. The 

process of retrotransposition typically results in a net increase of +1 in 

retrotransposon copy number. In principle, the number of retrotransposon copies 

can increase over successive generations to comprise a significant portion of 

genomic DNA in some organisms, such as humans. All retrotransposons can be 

further subdivided into two main groups: long terminal repeat (LTR) 

retrotransposons (Figure 1.3B) and non-LTR retrotransposons (Figures 1.3C-D). 

 LTR retrotransposons: LTR retrotransposons are related to retroviruses in 

structure and function. Human LTR retrotransposons (also known as human 

endogenous retroviruses or HERVs) (Figure 1.3B) comprise ~8% of the human 

genome (Lander et al. 2001). Similar to retroviruses, LTR retrotransposons are 

flanked by a set of LTR sequences, which are direct repeat sequences that 

encode regulatory elements important for LTR retrotransposon function (Craig et 

al. 2002, Beauregard et al. 2008). LTR retrotransposons typically encode reverse 

transcriptase and structural genes analogous to retroviral pol and gag genes 

respectively. The LTR retrotransposition mechanism is also similar to retrovirus 
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replication; however, LTR retrotransposons lack a functional envelope (env) 

gene, which relegates them to an intracellular existence. 

 Human endogenous retroviruses are not thought to be currently active in 

humans (i.e., not retrotransposition-competent) (Lander et al. 2001). With that 

being stated, certain evidence suggests that elevated HERV RNA and protein 

expression may be associated with certain human diseases including cancer and 

diabetes (Conrad et al. 1997, Galli et al. 2005, Bannert and Kurth 2006). 

Although evidence of a retrotransposition competent HERVs has not yet been 

reported, the existence of human and chimpanzee specific endogenous retroviral 

insertions suggests the possibility that endogenous retroviruses have been active 

since the divergence of the human and chimpanzee lineages (Medstrand and 

Mager 1998, Yohn et al. 2005).  

 Non-LTR retrotransposons: As their name suggests, non-LTR 

retrotransposons do not encode LTR sequences. Non-LTR retrotransposons 

comprise about 35% of human DNA and are the only active group of 

transposable elements in the human genome (Lander et al. 2001). Examples of 

human non-LTR retrotransposons include long interspersed nuclear element-1 

(LINE-1 or L1) (Figure 1.3C) and Alu elements (also known as short interspersed 

nuclear elements (SINEs)) (Figure 1.3D). In general, non-LTR retrotransposons 

may encode one or two open reading frames and end in poly-adenosine rich 

sequences; thus, they tend to resemble cellular mRNAs in sequence 

arrangement (Richardson et al. 2015). Non-LTR retrotransposons also typically 

encode a RT enzyme that is similar to LTR retrotransposon and retroviral RT; 

however, non-LTR retrotransposon RT is often augmented by an additional 

endonuclease (EN) enzymatic activity which is important for the non-LTR 

retrotransposition mechanism (Xiong and Eickbush 1990, Feng et al. 1996, Yang 

et al. 1999).   
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Human L1 Elements 

 L1 is the only active autonomous transposable element in humans. 

Approximately 516,000 L1 sequences litter the human genome accounting for 

~17% of human DNA. Most L1 sequences are incapable of retrotransposition as 

they are either 5'-truncated, internally rearranged, or extensively mutated (Lander 

et al. 2001). It is currently estimated, however, that each diploid human genome 

contains 80 to 100 intact L1 sequences that are capable of retrotransposition 

(Sassaman et al. 1997, Brouha et al. 2003). 

Overview of L1 Structure  

 A full-length active human L1 is approximately 6 kb in length and consists 

of a 5' UTR that promotes L1 transcription (Swergold 1990), two open reading 

frames (ORFs) that are separated by a 63 bp intergenic spacer, and a short 3' 

UTR that ends in a variable length poly-adenosine tract (Scott et al. 1987, 

Dombroski et al. 1991) (Figure 1.3C). L1 ORF1 encodes an ~40 kDa nucleic acid 

binding protein (ORF1p) (Martin 1991, Martin and Branciforte 1993, Hohjoh and 

Singer 1996, Hohjoh and Singer 1997) that also exhibits nucleic acid chaperone 

activity (Martin and Bushman 2001, Khazina and Weichenrieder 2009, Khazina 

et al. 2011, Callahan et al. 2012). L1 ORF2 encodes ORF2p, which contains 

endonuclease (EN) (Feng et al. 1996, Cost et al. 2001) and reverse transcriptase 

(RT) activities (Mathias et al. 1991, Dombroski et al. 1994). Both L1 proteins are 

required for L1 retrotransposition (Moran et al. 1996).  

L1 5' UTR 

 The L1 5' UTR contains internal RNA polymerase II promoter activity that 

directs transcription of the L1 in the 5' to 3' direction at or near the first L1 

nucleotide (Swergold 1990, Becker et al. 1993, Athanikar et al. 2004). The L1 5' 

UTR also exhibits antisense (3' to 5' with respect to the L1) promoter activity, the 

function of which has not yet been defined, but in principle could direct the 

transcription of genes adjacent to the L1 5' UTR (Speek 2001, Macia et al. 2011). 

Within the 5' UTR are several transcription factor-binding sites including one Yin 

Yang 1 (YY1)-binding site (Becker et al. 1993, Athanikar et al. 2004), two SRY-
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related (SOX)-binding sites (Tchenio et al. 2000), and a Runx3-binding site 

(Yang et al. 2003). Experiments in cultured cells have shown that deletions or 

mutations of these binding sites reduce L1 transcription and/or L1 

retrotransposition efficiency (Becker et al. 1993, Tchenio et al. 2000, Yang et al. 

2003, Athanikar et al. 2004). Notably, mutations in the YY1-binding site results in 

a loss of L1 transcription fidelity suggesting that YY1 directs transcription to begin 

at the L1 +1 nucleotide (Athanikar et al. 2004). 

L1 ORF1 

 The first L1 ORF encodes ORF1p, an ~40 kDa nucleic acid binding protein 

(Martin 1991, Holmes et al. 1992, Hohjoh and Singer 1996, Hohjoh and Singer 

1997) with demonstrated nucleic acid chaperone activity (Martin and Bushman 

2001). Three ORF1p domains have been identified that are important for ORF1p 

function. The amino terminal ORF1p domain consists of a coiled-coil domain 

marked by a putative leucine zipper motif (Holmes et al. 1992, Hohjoh and Singer 

1996). Evidence suggests that the coiled-coil domain mediates the formation of 

an ORF1p trimer, which is the basic ORF1p functional unit (Martin et al. 2003, 

Basame et al. 2006, Khazina and Weichenrieder 2009). Numerous studies have 

demonstrated that mutations in the coiled-coil domain are incompatible with 

retrotransposition, and impair the ability of ORF1p to form proper trimers and to 

localize properly to L1 RNPs (Moran et al. 1996, Basame et al. 2006, Khazina 

and Weichenrieder 2009, Doucet et al. 2010, Khazina et al. 2011) 

 Early studies using mouse and human cultured cells showed that ORF1p 

binds to L1 RNA to form ribonucleoprotein particles (RNPs) (Martin 1991, Martin 

and Branciforte 1993, Hohjoh and Singer 1996, Hohjoh and Singer 1997). 

Genetic and biochemical analysis has demonstrated that the central domain of 

ORF1p, consists of an RNA recognition motif (RRM) that interacts with the 

ORF1p carboxyl terminal domain (CTD) to mediate nucleic acid binding 

(Januszyk et al. 2007, Khazina and Weichenrieder 2009, Khazina et al. 2011). 

Critically, mutation of either the RRM or CTD disrupts ORF1p nucleic acid 

binding activity, prevents proper L1 RNP formation, and renders L1 unable to 
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retrotranspose (Moran et al. 1996, Martin et al. 2000, Kulpa and Moran 2005, 

Martin et al. 2005, Goodier et al. 2007, Khazina and Weichenrieder 2009, Doucet 

et al. 2010, Khazina et al. 2011).  

 In addition to nucleic acid binding, ORF1p exhibits nucleic acid chaperone 

activity that facilitates the dissociation of mismatched DNA duplexes and/or the 

re-annealing of complimentary DNA strands in vitro (Martin and Bushman 2001, 

Martin et al. 2005, Khazina and Weichenrieder 2009, Callahan et al. 2012). 

Certain genetic and biochemical data suggest that ORF1p nucleic acid 

chaperone activity is required for L1 retrotransposition; specifically that ORF1p 

nucleic acid chaperone activity may be important for the integration of L1 into 

genomic DNA (Martin and Bushman 2001, Martin et al. 2005, Martin et al. 2008). 

Data from the study of other non-LTR retrotransposons, however, suggests that 

ORF1p is not needed for retrotransposition. For example, the zebrafish LINE 

(Zfl2-1), which like human L1 also encodes an ORF1p protein with chaperone 

activity, does not strictly require ORF1p for retrotransposition (Kajikawa et al. 

2012, Nakamura et al. 2012). Additionally, other non-LTR retrotransposons such 

as Alu elements do not strictly require ORF1p to retrotranspose (Dewannieux et 

al. 2003), although it has been proposed the ORF1p may enhance Alu activity 

(Wallace et al. 2008). It is evident that the development of in vitro systems that 

are able to test specific steps in the retrotransposition pathway (i.e., TPRT 

integration step) would provide a better test for what ORF1p functions are 

necessary for retrotransposition.  

L1 ORF2 

 The second L1 ORF encodes an ~150 kDa protein, ORF2p (Ergun et al., 

2004; Doucet et al., 2010; Goodier et al., 2010). ORF2p exhibits endonuclease 

(EN) (Feng et al., 1996) and reverse transcriptase (RT) (Dombroski et al., 1994; 

Mathias et al., 1991) activities, which are required for L1 retrotransposition 

(Moran et al. 1996). The amino terminal portion of ORF2p encodes 

apurinic/apyrimidinic (AP) endonuclease domain (Feng et al. 1996). ORF2p EN 

preferentially cleaves single stranded DNA at an AT-rich consensus sequence: 5' 
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TTTT/A 3' where the "/" indicates the cleavage site (Feng et al. 1996). Mutations 

to catalytic residues within the EN domain impair the ability for ORF2p to cleave 

DNA and renders L1 unable to retrotranspose. 

 ORF2p RT activity resides within a domain located immediately 

downstream of the EN domain. The ORF2p RT domain is similar to RT domains 

from group II introns, retroviruses, telomerase and other endogenous 

retrotransposons (Hattori et al. 1986, Xiong and Eickbush 1990, Eickbush 1997, 

Malik et al. 1999). Early experiments using ORF2 fusion proteins expressed in 

yeast first demonstrated that ORF2 exhibited RT activity (Mathias et al. 1991, 

Dombroski et al. 1994). Subsequent studies were able to purify recombinant 

ORF2p from insect cells and to demonstrate that recombinant ORF2p exhibited 

RNA-dependent and DNA-dependent DNA polymerase activities (Piskareva et al. 

2003). Notably, ORF2 RT is highly processive and lacks a detectable RNase H 

activity; traits which distinguish it from retroviral RTs (Piskareva et al. 2003, 

Piskareva and Schmatchenko 2006). Later studies went on to show that ORF2p 

RT activity co-purified with L1 RNPs and that L1 RNP-associated ORF2p RT 

activity could use the L1 RNA, and to a lesser extent other cellular RNAs, as a 

template for reverse transcription (Kulpa and Moran 2006, Doucet et al. 2010). 

 The carboxyl portion of ORF2p is rich in cysteine amino acid residues and 

is thought to encode a potential zinc-knuckle structure (Fanning and Singer 

1987). The function of the cysteine-rich (C-rich) domain is unknown; however, 

mutations in this region negatively impact L1 retrotransposition, suggesting that it 

is important for ORF2p function (Moran et al. 1996). Notably, mutations in the C-

rich domain also negatively impact ORF2 RT activity and localization of ORF2p 

to L1 RNPs (Clements and Singer 1998, Doucet et al. 2010). Evidence from a 

recent study using a purified peptide from the carboxyl portion of ORF2p 

suggests that the ORF2p carboxyl-terminus may be involved in RNA binding 

(Piskareva et al. 2013). Clearly, the development of in vitro assays to test C-rich 

domain function and/or structural analyses similar to those characterizing the 

ORF2p EN domain (Weichenrieder et al. 2004, Repanas et al. 2007) will help 

further elucidate the function of the C-rich domain in retrotransposition.  
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L1 3' UTR 

 The L1 3' UTR is ~200 bp length and is located between the stop codon of 

ORF2 and the variable length poly adenosine region at the 3' end of the element 

(Grimaldi et al. 1984, Scott et al. 1987, Dombroski et al. 1991). The 3' UTR varies 

significantly between L1s from different mammals except for a highly conserved 

G-rich polypurine tract that is predicted to form a stable secondary structure 

(Howell and Usdin 1997). The L1 3' UTR also contains a relatively weak 

polyadenylation signal that is often bypassed in favor of a stronger 

polyadenylation signal in flanking DNA (Holmes et al. 1994, Moran et al. 1996, 

Moran et al. 1999). Notably, the L1 3' UTR is not strictly required for 

retrotransposition as cell culture experiments have demonstrated that  the native 

L1 polyadenylation signal can be efficiently bypassed and that mutant L1 

elements with deletions in the 3' UTR encompassing the G-rich tract 

retrotranspose at efficiencies similar to wild-type L1 elements (Moran et al. 1996, 

Moran et al. 1999).  

 

The L1 Retrotransposition Pathway 

Overview 

 The L1 retrotransposition cycle (Figure 1.4) involves the transcription of a 

genomic L1 element, which produces a bicistronic L1 mRNA that is then 

translated in the cytoplasm by an unconventional cap-dependent mechanism 

(Leibold et al. 1990, McMillan and Singer 1993, Alisch et al. 2006, Dmitriev et al. 

2007). Following translation, ORF1p and ORF2p preferentially bind to their 

encoding L1 mRNA (a phenomenon termed cis-preference (Esnault et al., 2000; 

Wei et al., 2001)) to form a L1 ribonucleoprotein particle (RNP), which is an 

important L1 retrotransposition intermediate (Doucet et al., 2010; Hohjoh and 

Singer, 1996; Kulpa and Moran, 2005, 2006; Martin, 1991). The L1 RNP is 

thought to gain entry to the nucleus by a process that does not strictly require cell 

division (Kubo et al., 2006), although L1 retrotransposition seems to be 

enhanced in dividing cells (Shi et al., 2007; Xie et al., 2013). Once components 
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of the L1 RNP have entered the nucleus, the L1 RNA is reverse transcribed and 

is integrated into genomic DNA by a concerted process termed target-site primed 

reverse transcription (TPRT) (Cost et al., 2002; Feng et al., 1996; Luan et al., 

1993). Some of these steps will be discussed in further detail below. 

Trans-mobilization of non-autonomous elements 

 The L1-encoded proteins can work in trans to promote the 

retrotransposition of non-autonomous non-LTR retrotransposons such as Alu 

elements (Figure 1.3D) (Dewannieux et al. 2003) and SINE-R/VNTR/Alu (SVA) 

elements (Ostertag et al. 2003, Hancks et al. 2011, Raiz et al. 2012). Alu 

elements are ~300 bp sequences derived from 7SL RNA and are present in over 

one million copies in the genome (~11% of human DNA) (Deininger et al. 1981, 

Ullu and Tschudi 1984, Sinnett et al. 1991, Chu et al. 1995, Lander et al. 2001). 

SVA (SINE-R/VNTR/Alu) elements are composite sequences derived from 

retrotransposon (SINE-R), variable length tandem repeat (VNTR), and Alu 

sequences, and are present in ~2,700 copies in the human genome (Ostertag et 

al. 2003, Wang et al. 2005). Alu and SVA elements are considered non-

autonomous because they do not encode the proteins necessary to promote their 

own retrotransposition and must therefore parasitize the L1-encoded proteins in 

order to retrotranspose. 

 In addition to Alu and SVA elements, a number of other cellular RNAs also 

can be retrotransposed by the L1-encoded proteins. These RNA sequences 

include uracil-rich small nuclear RNAs (e.g., U6 snRNA (Buzdin et al. 2002, 

Gilbert et al. 2005, Garcia-Perez et al. 2007)), small nucleolar RNAs (e.g., U3 

snoRNA (Weber 2006)), and messenger RNAs (Figure 1.3E) (Esnault et al. 

2000, Wei et al. 2001). Taking into account all known RNA species that are 

mobilized in trans by the L1 machinery, the process of L1 retrotransposition  has 

generated nearly 1 billion base pairs of human DNA (Lander et al. 2001). 

L1 Translation 

 The bicistronic nature of the L1 mRNA sets it apart from other eukaryotic 

mRNAs, which typically encode a single ORF, and leads to the question of how 
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the L1 RNA is efficiently translated. Early studies demonstrated that L1 ORF1p 

was expressed in certain cancer derived human and mouse cell lines and/or cells 

transfected with L1 cDNA, which provided the initial evidence that L1 RNA was 

translated (Leibold et al. 1990, Holmes et al. 1992, McMillan and Singer 1993). In 

contrast to the relative ease in detecting ORF1p, L1 ORF2p was much more 

difficult to detect. The only evidence that supported the translation of ORF2 was 

provided by 1) indirect biochemical evidence derived from in vitro assays that 

measured ORF2p RT activity or 2) from genetic cell culture-based 

retrotransposition assays (Mathias et al. 1991, McMillan and Singer 1993, Moran 

et al. 1996). 

 Despite the inability to directly detect ORF2p, genetic and biochemical 

analyses demonstrated that human L1 mRNA was likely translated in a cap-

dependent manner that involved an unconventional termination/re-initiation 

mechanism (Alisch et al. 2006, Dmitriev et al. 2007). This model of human L1 

translation postulates that after reaching the termination codon of ORF1, a 

ribosome continues to scan beyond the end of ORF1 and then re-initiates 

translation at the first ORF2 methionine (AUG) codon (Alisch et al. 2006). 

Another model of L1 translation based on studies of mouse L1 elements 

proposes that mouse L1 translation is dependent on an internal ribosome entry 

site (IRES) located upstream of both ORFs (Li et al. 2006). Studies of human L1 

translation, however, suggest this is likely not the case for human L1 as the 

entire ORF1 sequence can be deleted or replaced by green fluorescence protein 

(GFP) without affecting ORF2 translation (Alisch et al. 2006). Recent 

development of epitope tagging strategies (Goodier et al. 2004, Doucet et al. 

2010) to aid in the purification and detection of L1 proteins should prove useful in 

future studies aimed at determining how L1 is translated.  

The L1 RNP  

 The L1 RNP minimally is composed of L1 RNA, ORF1p, and ORF2p and 

is a necessary L1 retrotransposition intermediate. Early studies first suggested 

that L1 RNA and ORF1p formed an RNP by demonstrating that L1 ORF1p and 
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L1 RNA expressed in mouse F9 cells (embryonal carcinoma cells) co-sediment 

together in sucrose gradients (Martin 1991, Martin and Branciforte 1993). 

Subsequent studies using cultured human cell lines showed that human ORF1p 

binds to human L1 RNA to form RNPs (Hohjoh and Singer 1996, Hohjoh and 

Singer 1997, Hohjoh and Singer 1997) and that L1 RNP formation was 

necessary for L1 retrotransposition (Kulpa and Moran 2005).  

 It remained unknown for some time, however, whether L1 ORF2p was 

also part of the L1 RNP due to an inability to detect ORF2p using standard 

biochemical methods  (Goodier et al. 2004). Eventually, an in vitro assay 

designed to detect L1 ORF2 RT activity (L1 element amplification protocol or 

LEAP) (Kulpa and Moran 2006) was used to show that ORF2p RT activity co-

purified with L1 RNA and ORF1p in cells transfected with engineered L1 

expression plasmids. Subsequent studies using epitope tagged engineered L1 

plasmids were able to demonstrate a direct physical interactions between ORF2p 

and L1 RNA and ORF1p, thus augmenting previous studies that used enzymatic 

assays to infer the presence of ORF2p in L1 RNPs (Doucet et al. 2010, Goodier 

et al. 2010). Despite these findings, the stoichiometry of L1 RNA and L1-encoded 

proteins within an L1 RNP and whether or not other host cell proteins are 

required for L1 RNP function remains unknown. Notably, a recent study has 

demonstrated that different types of L1 RNPs may exist, suggesting that the 

composition of L1 RNPs may change during the L1 retrotransposition cycle 

(Taylor et al. 2013). Indeed, the development of an in vitro cell-free system that 

uses purified L1 RNA and proteins could be useful in determining the 

composition and biochemical properties of functional L1 RNPs. 

TPRT 

 The reverse transcription of L1 RNA and subsequent integration of L1 into 

genomic DNA occurs at the genomic DNA target site by a process termed target 

site primed reverse transcription (TPRT), which was initially characterized for the 

R2Bm non-LTR retrotransposon from the silkworm moth (Luan et al. 1993). In 

the case of L1, once components of the L1 RNP enter the nucleus, the ORF2 EN 
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is thought to generate a single-strand endonucleolytic nick in a single strand of 

genomic DNA at a thymidine rich consensus sequence (e.g., 5’-TTTT/A, 5’-

TCTT/A, 5’-TTTA/A, etc. where the '/' indicates the cut site) (Cost and Boeke, 

1998; Feng et al., 1996; Morrish et al., 2002). This cleavage event exposes a 

free 3’ hydroxyl group, which can then be used by the ORF2p RT as a primer to 

initiate  antisense (-) strand L1 cDNA synthesis using the L1 mRNA as a 

template for the reverse transcription reaction (Cost and Boeke, 1998; Feng et 

al., 1996). Following L1 (-) cDNA synthesis, the top strand of DNA must then be 

cleaved and the L1 cDNA must be copied to complete integration. How these last 

steps of TPRT occur are not fully understood, but it is thought these steps may 

involve ORF2 EN/RT and/or host proteins involved in DNA repair  (Morrish et al., 

2002; Suzuki et al., 2009; Taylor et al., 2013). The TPRT process typically results 

in the generation of variable length target site duplications that flank new L1 

insertions, but can also result in other target site alterations including target site 

deletions (Gilbert et al. 2002, Symer et al. 2002, Gilbert et al. 2005, Richardson 

et al. 2015).  

 

The Impact Of L1 Retrotransposition On The Human Genome 

Discovery of an active human L1 

 It was the discovery that L1 retrotransposition caused hemophilia A that 

alerted researches that L1 was active in the human genome (Kazazian et al. 

1988). In 1988, researchers from the Kazazian lab conducted a screen to detect 

abnormalities in the coagulation factor VIII (F8) gene of a cohort of 240 male 

patients stricken with hemophilia A. The screen revealed L1 insertions into exon 

14 of the F8 gene in 2 out of the 240 patients. Biochemical testing revealed that 

the F8 gene was not functional in either of the affected patients suggesting that 

the L1 insertions had inactivated the F8 gene. Critically, genetic testing revealed 

that the F8 gene was normal (i.e., did not contain an L1 insertion) in the parents 

of the affected individuals. This suggested that the L1 had retrotransposed into 

the F8 genes of the affected patients either the parental germline or during 
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development (Kazazian et al. 1988). In two subsequent studies, a full-length L1 

element (L1.2)  (Dombroski et al. 1991) that likely produced one of the disease-

causing F8 gene insertions was cloned and then demonstrated to actively 

retrotranspose in cultured human cells (Moran et al. 1996). Together, these 

landmark studies confirmed that L1 was active in humans and that L1 

retrotransposition could have a profound impact on the human genome. 

L1 and human disease 

 L1 retrotransposition is responsible for at least 96 single-gene genetic 

diseases in humans (Hancks and Kazazian 2012). Insertional mutagenesis 

caused by the insertion of L1, Alu or SVA (Figures 1.5A and 1.5D) sequences 

into genes can cause mutations (e.g., nonsense mutations, frame-shift 

mutations) that can disrupt normal gene expression and lead to disease. L1-

mediated insertional mutagenesis has been documented in numerous human 

disease cases including hemophilia A (Kazazian et al. 1988), Duchene muscular 

dystrophy (Yajima et al. 1999), and cancer (Miki et al. 1992). Indeed, the 

suppression of gene expression by transposable element insertions is what lead 

to the initial discovery of transposable elements by Barbara McClintock 

(McClintock 1950, McClintock 1984) and the discovery that L1 was active in the 

human genome (Kazazian et al. 1988). Notably, L1-mediated insertional 

mutagenesis is also responsible for disease phenotypes in other animals. For 

example, mutations resulting from L1 retrotransposition are responsible for 

several mutant mouse strains including the spastic mouse (Mulhardt et al. 1994), 

med (motor endplate disease) mouse (Burgess et al. 1995, Kohrman et al. 1996) 

and black-eyed white mouse (Yajima et al. 1999). L1 retrotransposition is also 

associated with diseases in dogs including hemophilia B and narcolepsy (Lin et 

al. 1999, Brooks et al. 2003). 

 Genomic DNA deletions: L1 retrotransposition can sometimes result in 

alterations of genomic DNA at the L1 insertion site (Gilbert et al. 2002, Symer et 

al. 2002, Gilbert et al. 2005, Han et al. 2008). For example, studies using human 

cultured cells have demonstrated that L1 retrotransposition can sometimes result 
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in genomic target-site deletions ranging from 193 bp to ∼3.1 kb (Figure 1.5B) 

(Gilbert et al. 2002, Gilbert et al. 2005). Notably, L1-mediated deletions are 

associated with cases of human disease. For example, an L1 retrotransposition 

event was associated with a large interstitial deletion of ~46 kb in the PDHX gene 

of a patient diagnosed with pyruvate dehydrogenase complex  deficiency (Mine 

et al. 2007). To date, L1 and Alu retrotransposition mediated deletions are 

associated with 12/96 (~13%) of L1 retrotransposition-associated human disease 

cases (Chen et al. 2005, Hancks and Kazazian 2012).  

 Modulation of gene expression: L1 elements encode a number of active 

splice acceptor/donor sites as well as several polyadenylation signals that could 

cause the missplicing and/or premature polyadenylation of cellular genes that 

contain L1 insertions (Figure 1.5D)  (Perepelitsa-Belancio and Deininger 2003, 

Han et al. 2004, Belancio et al. 2006). Analysis of several human disease cases 

has revealed that L1 insertions may interfere with the normal processing of 

cellular RNAs. For example, in a patient diagnosed with choroideremia, an L1 

insertion into the choroideremia (CHM) gene was associated with an exon-

skipping event that deleted exon 6 from the CHM mRNA (van den Hurk et al. 

2003). Alu and SVA insertions also have been associated with diseases involving 

defects in normal RNA processing. For example, an Alu insertion was associated 

with the skipping of exon 22 of the BRCA2 tumor suppressor gene in a patient 

with breast cancer (Miki et al. 1996) and an SVA insertion into the 3' UTR of the 

fukutin gene was associated with the truncation of the fukutin mRNA in a patient 

with Fukuyama muscular dystrophy (FCMD) (Taniguchi-Ikeda et al. 2011).  

 Post-insertion genomic rearrangements: Due to the widely dispersed 

number of L1 and Alu repeats throughout the genome, unequal crossing over 

(i.e., non-allelic homologous recombination (NAHR)) between these sequences 

can sometimes occur, which can result in chromosomal DNA deletions, 

duplications and/or inversions (Figure 1.5F) (Fitch et al. 1991, Gilbert et al. 2002, 

Gilbert et al. 2005, Han et al. 2008, Lee et al. 2008). NHAR between L1 and Alu 

repeats have been documented in several human disease cases including Alport 

syndrome, Perlman syndrome, and a case of glycogen storage disease that was 
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associated with a 7574 bp deletion within the patient's phosphorylase kinase beta 

(PHKB) gene caused by an unequal cross-over event between non-allelic L1s 

(Burwinkel and Kilimann 1998, Segal et al. 1999, Hancks and Kazazian 2012, 

Higashimoto et al. 2013).  

L1 and human genome evolution 

 As discussed up to this point, L1 retrotransposition can cause mutations 

that cause diseases; clearly a negative impact on the human genome. If 

however, a new L1 insertion does not result in a life-threatening disease, the 

insertion may become a permanent feature of the human genome. This is 

evident from the large number of L1 and Alu sequences extant in the genome. 

What then, if any, is the significance of the increasing accumulation of new L1 

retrotransposition-mediated sequence insertions (e.g., L1, Alu, SVA, etc.) on the 

human genome?  

 Active L1 retrotransposition in human genomes is a mechanism that 

generates genomic sequence diversity in the human population. Indeed, it is 

currently estimated that a new L1 retrotransposition event occurs once in every 

20 to 200 live human births while the current Alu retrotransposition rate is 

estimated to occur 1 out of every 20 births (Cordaux and Batzer 2009). Recent 

comparative analyses between the human genome reference sequence (HGR) 

and individual genomes representing distinct human populations have revealed 

the existence of rare active L1 alleles in the human population that are not 

present in the HGR, which suggests that the number and diversity of active L1s 

present in the human population are likely underrepresented by the HGR (Beck 

et al. 2010, Ewing and Kazazian 2010). Notably, recent studies have uncovered 

compelling new evidence that L1 retrotransposition also occurs in adult somatic 

tissues including the human brain, which suggests that L1 retrotransposition 

contributes to somatic variation within an individual (Coufal et al. 2009, Baillie et 

al. 2011, Upton et al. 2015). Thus, L1 retrotransposition generates intra- and 

inter-individual diversity in the human population.   
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 L1-mediated insertions into coding regions could introduce novel 

regulatory elements that could potentially modulate normal gene expression 

(Cordaux and Batzer 2009). Analysis of transposable elements sequences in the 

human genome has revealed that approximately 4% of protein coding genes may 

contain transposable element insertions with L1 and Alu insertions accounting for 

nearly 70% of those insertions (Gibbs et al. 2004). L1 insertions into gene coding 

regions could provide novel transcription factor binding sites, splice sites and/or 

polyadenylation signals, which could directly affect gene expression. 

Experiments done in cultured human cells suggest that L1 insertions within 

protein coding genes can attenuate gene expression, which may involve 

premature polyadenylation and/or other transcriptional elongation defects 

(Perepelitsa-Belancio and Deininger 2003, Han et al. 2004). Additional studies 

suggest that L1 and Alu sequences could introduce alternative splice sites into 

coding regions that may affect the way cellular mRNAs are processed (Belancio 

et al. 2006, Belancio et al. 2008). Finally, recent large-scale sequence analyses 

of the human and mouse transcriptomes have revealed that retrotransposon 

sequence insertions at the 5' end of protein-coding genes can function as 

alternate promoters and that retrotransposon insertions into the 3' UTRs of 

protein coding genes are associated with decreases in gene expression 

(Faulkner et al. 2009).  

 L1 retrotransposition and genomic structural variation: Illegitimate 

recombination events  between L1 and Alu repeats have made a significant 

impact on human genome structure. Combined analyses of the human genome 

suggest that ectopic recombination between Alu sequences may have played a 

significant role in the expansion of segmental duplications in the human genome, 

which account for ~4-5% of genomic DNA (Fitch et al. 1991, Bailey et al. 2003, 

Han et al. 2008, Lee et al. 2008). A potential significant biological outcome of 

segmental duplications is that these events could result in the duplication of 

cellular genes (Bailey et al. 2002, Long et al. 2003). Notably, ectopic 

recombination between repeat sequences are postulated to have given rise to 

human fetal globin genes (Shen et al. 1981). Additionally, unequal crossing over 
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between L1 sequences is thought to be responsible for the duplication of the γ-

globin gene in the primate lineage (Fitch et al. 1991), and may have been 

responsible for the Abp gene duplication in the mouse (Janousek et al. 2013).  

 L1 and Alu-mediated deletions and inversions also have changed the 

genomic DNA landscape. Recent comparative genomic analyses between the 

human and chimpanzee have uncovered at least 73 L1 recombination-

associated deletions and 492 Alu recombination-associated deletions that are 

unique to the human genome (Han et al. 2005, Sen et al. 2006, Han et al. 2008). 

Additional sequence comparisons between the human and chimpanzee 

genomes have revealed that L1 and Alu sequences are associated with 112 out 

of 252 identified chromosomal inversions between humans and chimpanzee (Lee 

et al. 2008). Notably, 27 L1 and/or Alu associated inversions are human-specific 

and 22 are chimpanzee-specific  (Lee et al. 2008). Thus, illegitimate 

recombination events between L1 and Alu are responsible for genomic structural 

changes that may have contributed to differences between the human and 

chimpanzee genomes. 

 Retrotransposition of other cellular RNAs: L1 retrotransposition generates 

additional genomic sequence diversity through the retrotransposition of other 

cellular RNAs such as mRNA (Esnault et al. 2000, Wei et al. 2001) and non-

coding RNAs (e.g., U6 snRNA, U3 snoRNA, Y RNA) (Buzdin et al. 2002, 

Perreault et al. 2005, Weber 2006). The retrotransposition of mRNA, for 

example, can give rise to processed pseudogenes, which are typically defined as 

non-functional intronless copies of functional genes. Comprehensive sequencing 

analysis has revealed that the human genome contains approximately 8,000 

processed pseudogenes, which originate from about 2,500 different functional 

genes (Zhang et al. 2003, Pei et al. 2012). Even though processed pseudogenes 

by definition are not functional, some processed pseudogenes are expressed 

perhaps through the recruitment of adjacent promoters or as part of other 

transcripts (Strichman-Almashanu et al. 2003, Vinckenbosch et al. 2006, Pink et 

al. 2011, Pei et al. 2012).  
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 Remarkably, the retrotransposition of cellular RNAs may have given rise 

to functional genes. For example, the human phosphoglycerate kinase 2 (PGK2) 

gene is a testis specific intronless gene on chromosome 6 that likely resulted 

from the retrotransposition of an mRNA that originated from the PGK1 gene 

located on the X chromosome (McCarrey and Thomas 1987, McCarrey 1990). 

Notably, a number of retrotransposed mammalian testis-specific genes have 

been identified (Bradley et al. 2004, Marques et al. 2005). A recent analysis of 

the canine genome has revealed that a retrotransposed copy of the fibroblast 

growth factor 4 gene  (fgf4) is associated with chondrodysplasia (also known as 

short-limbed or disproportional dwarfism) in over 20 domesticated dog breeds 

(Parker et al. 2009).  

 L1 transductions: A L1 transduction involves the retrotransposition of 

genomic DNA sequences from either the 5' and 3' ends of genomic L1 (Figure 

1.5C). The retrotransposition of genomic DNA from the L1 3' end (known as an 

L1 3' transduction) can occur if L1 transcription continues past the 3' end of an L1 

into the adjoining genomic DNA. This produces a chimeric RNA transcript 

consisting of the L1 element and genomic DNA sequences from the 3' end of the 

L1. The subsequent retrotransposition of this chimeric L1/3' genomic DNA 

transcript would result in the transduction of the 3' flanking genomic DNA 

sequence to a new location in the genome (Holmes et al. 1994, Moran et al. 

1996).  

 L1-mediated 3' transductions have been detected in human disease cases 

(Miki et al. 1992, Holmes et al. 1994). For example, a L1 3' transduction was 

discovered in the dystrophin (DMD) gene of a patient that was diagnosed with 

Duchene muscular dystrophy (Holmes et al. 1994). In this case, the L1 3' 

transduction consisted of 1,400 bp of L1 sequence, followed by a 37 bp poly-

adenosine tract, and an additional 489 bp of non-L1 sequence that was followed 

by another poly-adenosine tract. The unique 489 bp sequence was mapped back 

to an identical genomic DNA sequence on chromosome 1, which resided 

immediately downstream of a full-length genomic L1 element (LRE2). Thus, the 

3' transduced DNA sequence facilitated the identification of the active progenitor 
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element (LRE2) that produced the DMD disease insertion. The subsequent use 

of cell culture based L1 retrotransposition assays demonstrated that L1 

retrotransposition could give rise to 3' transductions in cultured human cells 

(Moran et al. 1996). Notably, recent analyses of the human genome sequence 

have revealed that L1-mediated 3' transductions are responsible for 

approximately 0.6-1.0% of the human genome (Goodier et al. 2000, Pickeral et 

al. 2000) and the use of L1-mediated 3' transduction genomic DNA "tags" have 

enabled researchers to identify highly active L1 subfamilies and explore the 

dynamics of L1 lineage evolution (Brouha et al. 2002, van den Hurk et al. 2007, 

Beck et al. 2010, Macfarlane et al. 2013). 

 In addition to 3' transductions, genomic DNA at the 5' end of an L1 can be 

retrotransposed (known as an L1 5' transduction) if for example, L1 transcription 

were to initiate upstream of the L1 5' end. Indeed, analysis of the human genome 

and direct sequencing of L1 insertions derived from engineered human L1 

retrotransposition insertions in cultured cells have confirmed that L1 5' 

transductions can occur in vivo and in culture cells (Lander et al. 2001, Wei et al. 

2001, Symer et al. 2002). Notably, only two L1 5' transductions have been 

identified in the HGR, suggesting that L1 5' transductions do not occur at the 

same frequency as L1 3' transductions. This could be due to that fact that the 

majority of genomic L1 insertions are 5' truncated. Notably, a somatic L1 5' 

transduction was recently detected in the human brain (Evrony et al. 2012), and 

approximately 8% of SVA elements in the human genome are associated with 5' 

transductions (Damert et al. 2009, Hancks et al. 2009, Hancks et al. 2011). L1 5' 

transductions also have been detected in other animals. For example, an L1-

mediated 5' transduction is associated with an inactivating mutation in the NR2E3 

gene in the retinal degeneration 7 (rd7) mouse, (Symer et al. 2002, Chen et al. 

2006).  

 L1-mediated exon shuffling: The concept of exon shuffling arose from the 

recognition that genes were split into coding (i.e., exons) and non-coding (i.e., 

introns) regions and suggests that exons from different genes can be brought 

together by recombination events to generate sequences that encode novel 
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proteins (Sambrook 1977, Gilbert 1978). Experiments carried out in cultured 

human cells first demonstrated that L1-mediated transduction could in principle 

mediate exon shuffling. In these experiments, researchers demonstrated that a 

synthetic exon could be transduced into a cellular gene via L1-mediated 3' 

transduction and that the synthetic exon could then be expressed as a fusion 

product with that gene (Moran et al. 1999). Notably, three AMAC gene 

duplications are thought to have resulted from SVA-mediated 3' transductions 

(Rozmahel et al. 1997, Xing et al. 2006) and recent high-throughput sequencing 

of human cancer genomes has revealed that nearly one quarter of cancer 

associated L1 insertions contain 3' transductions, which occasionally involve 

entire exons and/or gene regulatory elements (Tubio et al. 2014).  

 The evolution of new genes via retrotransposition: Recent studies also 

have revealed that L1 retrotransposition may have played a role in the evolution 

of genes involved in HIV-1 resistance in distantly related primate species. In owl 

monkeys for example, a TRIM5-cyclophillin A fusion protein (TRIMCyp) that 

confers resistance to HIV-I was determined to have resulted from the 

retrotransposition of cyclophilin A (CypA) mRNA into exon 7 of the TRIM5 gene 

(Nisole et al. 2004, Sayah et al. 2004). In macaques, a similar TRIMCyp fusion 

protein was also discovered. Unlike the owl monkey TRIMCyp fusion, the 

macaque TRIMCyp fusion resulted from retrotransposition of CypA mRNA into 

the 3' UTR of the TRIM5 gene (Brennan et al. 2008, Virgen et al. 2008, Wilson et 

al. 2008). Thus, the L1 retrotransposition may have contributed to convergent 

evolutionary processes in separate branches of the primate lineage. 

 

Where And When Does L1 Jump?  

 L1 must retrotranspose in the germline or in cells that contribute directly to 

the germline to ensure its continued existence. Indeed many studies have 

provided evidence that L1 retrotransposition does occur in the germline as well 

as in somatic cells during embryogenesis. Recent studies now suggest that L1 
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retrotransposition also occurs in certain adult somatic tissues including cells of 

the mammalian nervous system. 

Germline retrotransposition 

 Early studies provided evidence suggesting that L1 retrotransposition 

occurs in the germline by demonstrating that L1 proteins and L1 RNA are 

expressed in cell lines derived from mouse reproductive tissues (Branciforte and 

Martin 1994, Trelogan and Martin 1995, Soper et al. 2008). Subsequent studies 

showed that L1 proteins are expressed in the reproductive tissues of human 

males (Ergun et al. 2004) and that L1 RNA is expressed in human oocytes 

(Georgiou et al. 2009). Cultured human oocytes have also been demonstrated to 

support the retrotransposition of engineered human L1 elements (Georgiou et al. 

2009). The analysis of human diseases further suggests that L1 

retrotransposition may take place in the human germline. For example, a case of 

chronic granulomatous disease (CGD) was thought to have been caused by a 

mutagenic L1 insertion into the CYBB gene during maternal meiosis I or possibly  

during early development (Brouha et al. 2002). 

 Due to the fact that it is difficult to track L1 retrotransposition events in live 

humans, transgenic animal models have been developed to facilitate the study of 

L1 retrotransposition in vivo.  (Ostertag et al. 2002, An et al. 2006, Kano et al. 

2009, O'Donnell et al. 2013). L1-transgenic animals carry an engineered L1 

transgene that is typically marked with retrotransposition indicator cassette that 

expresses a fluorescent marker protein (i.e., EGFP), which conveniently allows 

retrotransposition events to be tracked using EGFP fluorescence or by 

biochemical methods (e.g., Southern blotting, PCR, etc.) using oligonucleotide 

probes specific to the retrotransposition indicator cassette (Ostertag et al. 2002). 

Indeed, experiments using L1 transgenic mice have been used demonstrated 

that engineered L1 transgenes retrotranspose in the germline of male mice 

(Ostertag et al. 2002). 

L1 retrotransposition during development 
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 L1 retrotransposition also can occur in somatic cells during embryonic 

development. For example, cell culture studies have demonstrated that certain 

human embryonic stem cell lines (hESC), human and mouse embryonic 

carcinoma (EC) derived cell lines, as well as mouse post-implantation embryos 

express endogenous L1 RNA and proteins (Skowronski and Singer 1985, 

Skowronski et al. 1988, Martin 1991, Trelogan and Martin 1995, Garcia-Perez et 

al. 2007, Garcia-Perez et al. 2010). Additionally, studies using cell culture based 

retrotransposition assays have demonstrated that hESCs and human embryonic 

carcinoma derived cell lines support high levels of L1 retrotransposition from 

transfected engineered human L1 constructs (Garcia-Perez et al. 2007, Garcia-

Perez et al. 2010).  

 The study of human disease cases has also provided evidence that L1 

retrotransposition can occur during development. For example, an embryonic L1 

retrotransposition event is thought to be responsible for a case of X-linked 

choroideremia (van den Hurk et al. 2003, van den Hurk et al. 2007). In this 

particular case, a male patient diagnosed with X-linked choroideremia carried a 

mutagenic L1 insertion within the choroideremia (CHM) gene that caused 

aberrant splicing of the CHM mRNA (van den Hurk et al. 2003, van den Hurk et 

al. 2007). PCR analysis of the affected patient's family members revealed that 

the mother was a somatic and germline mosaic for the mutated L1 CHM allele 

that found in the patient, thus the original mutagenic CHM L1 insertion must have 

occurred in the mother during her development. 

 Studies using transgenic rodents have also demonstrated that L1 

retrotransposes during development (Prak et al. 2003, Muotri et al. 2005, Kano et 

al. 2009). In a recent study by Kano and colleagues (Kano et al. 2009), a 

comparison between genomic DNA isolated from L1 transgenic mouse sperm 

and from pooled pre-implantation embryos revealed that L1 transgene insertions 

occurred more frequently in pre-implantation embryos. This result suggested that 

L1 retrotransposition may take place more frequently during embryogenesis than 

was previously thought. Notably, it was also observed that L1 transgene RNA 

produced in germline cells could be delivered to the zygote upon fertilization and 
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subsequently inserted into genomic DNA during embryonic development (Kano 

et al. 2009). Thus, L1 transcription that takes place in the germline may generate 

L1 RNA that can be retrotransposed in the developing embryo.  

Somatic L1 retrotransposition in the brain 

 Recent evidence suggests that somatic L1 retrotransposition may 

influence nervous system development. Some of the initial evidence that L1 

retrotransposition occurs in the nervous system was provided by a study that 

examined L1 expression in the brains of rodents (Muotri et al. 2005). The 

researchers in this study demonstrated that neural progenitor cells (NPCs) 

isolated from the rat hippocampus expressed elevated levels endogenous L1 

RNA compared to other cells from the same region of the brain (Muotri et al. 

2005).  Further analyses revealed that rat NPCs were also able to support the 

retrotransposition of engineered human L1 elements. In addition to data derived 

from rat NPCs, the researchers in this study demonstrated that engineered L1 

transgene retrotransposition events could be detected in the brains of L1 

transgenic mice suggesting the somatic L1 retrotransposition occurs in the 

mammalian brain (Muotri et al. 2005). In a following study that examined L1 

retrotransposition in the human brain, researchers showed that human NPCs 

express elevated levels of endogenous L1 RNA and that human NPCs can 

support the retrotransposition of engineered human L1 elements (Coufal et al. 

2009). Quantitative PCR analysis demonstrated that genomic DNA isolated from 

the brains of adult human cadavers contained higher L1 copy numbers then 

genomic DNA isolated from heart and liver tissues (Coufal et al. 2009), 

suggesting that somatic retrotransposition occurs in the human brain.  

 A recent study using single neuron sequencing has estimated that there 

could be as many as 13.7 somatic L1 insertions per hippocampal neuron in the 

human brain (Upton et al. 2015). This estimate is in contrast to another study that 

also used single cell sequencing, which provided an estimate of <0.1 insertion 

per cortical neuron (Evrony et al. 2012) and a study that used quantitative L1 

PCR estimated that there could be as many as 80 somatic L1 insertions per brain 
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cell (Coufal et al. 2009). Despite these differences, these studies help to confirm 

that L1 is active the human brain; advances in sequencing technologies will no 

doubt improve the accuracy of future estimates of somatic L1 insertions in the 

brain. Notably, studies have shown that some somatic L1 insertions in the human 

brain map to genes with potential neurobiological functions (Baillie et al. 2011) 

and a recent study has used somatic L1 retrotransposition events to track cell 

lineages in the frontal cortex providing insight into the temporal and spatial 

patterns of mosaicism in the human brain (Evrony et al. 2015). In addition to data 

obtained from studies of the mammalian brain, a recent study in flies has 

detected elevated transposon activity in the brains of mutant flies, and has 

identified over 200 de novo brain specific transposon insertions, some of which 

occur into genes involved neuronal functions such as memory (Li et al. 2013, 

Perrat et al. 2013). These combined data suggest that genomic heterogeneity 

due to transposon activity may be a conserved feature of the central nervous 

system. Notwithstanding, the extent of L1 retrotransposition activity and whether 

L1 retrotransposition affects the development and/or function of the nervous 

system will need to be carefully addressed in future studies.  

L1 and cancer 

 Evidence also suggests that spontaneous somatic L1 insertions may be a 

feature of certain types of cancer. For example, early studies identified tumor 

specific L1 insertions into the APC gene of a patient diagnosed with colon cancer 

(Miki et al. 1992) and into the myc gene of a patient diagnosed with breast 

cancer (Morse et al. 1988). Recently, several labs have used high-throughput 

sequencing strategies to detect somatic L1 insertions in tumor tissues. 

Sequencing data from these studies have demonstrated that somatic L1 and Alu 

insertions are associated with several types of cancers including lung, colon, 

liver, prostate, ovary, and breast cancers (Iskow et al. 2010, Lee et al. 2012, 

Solyom et al. 2012, Shukla et al. 2013, Helman et al. 2014, Tubio et al. 2014). 

Notably, some tumor-specific L1 insertions have been detected within protein 

coding genes that are commonly mutated in cancer including genes that may 

function as tumor suppressors (Miki et al. 1992, Lee et al. 2012, Shukla et al. 
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2013, Helman et al. 2014). Despite these findings, whether L1 mediated 

insertions are driving tumor formation or merely benign passenger mutations 

remains to be determined. 

 

The Host Response To L1 Retrotransposition 

 As discussed in the previous sections, L1 retrotransposition can 

destabilize genomic DNA through a variety of different mechanisms (e.g., 

insertional mutagenesis, shuffling genomic sequences, NHAR, etc.). Thus, it 

stands to reason that the cells may have adapted ways to control unabated L1 

activity in order to preserve genomic DNA integrity. Some of the mechanisms 

that are thought to regulate L1 retrotransposition (Figure 1.6) will be detailed in 

this final section. 

DNA methylation 

 The methylation of cytosine nucleotides in genomic DNA is a conserved 

gene silencing mechanism that can be found in many different organisms 

including plants, animals, and bacteria (Goll and Bestor 2005). In certain plant 

and animal species the majority of cytosine methylation is associated with 

transposable element sequences, which is thought to control their expression 

(Yoder et al. 1997, Martienssen 1998, Bestor 2003, Goll and Bestor 2005). 

Notably, DNA methylation is thought to function exclusively in the silencing of 

transposable elements in the fungus species, Neurospora crassa (Selker et al. 

2003). Early L1 studies demonstrated a positive correlation between 

hypomethylation of the L1 promoter and the increased expression of L1 proteins 

in human cancer-derived cell lines (Bratthauer and Fanning 1993, Thayer et al. 

1993, Alves et al. 1996), and that the methylation of CpG dinucleotides within the 

human L1 promoter  represses L1 transcription (Hata and Sakaki 1997). More 

recent studies have shown that hypomethylation of L1 promoters is correlated 

with increase L1 expression in the human brain, and in select human induced 

pluripotent stem cells and hESC cell lines (Coufal et al. 2009, Wissing et al. 

2012). Finally, L1 hypomethylation, increased L1 expression, and increased 
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retrotransposition activity have been detected in tumors from certain forms of 

human cancers (Suter et al. 2004, Iskow et al. 2010, Tubio et al. 2014).  

 During mammalian development, genomic DNA is successively de-

methylated and re-methylated once in the early embryo and then once again in 

primordial germ cells. Once established in the early embryo, genomic DNA 

methylation patterns are thought to persist throughout development in adulthood. 

Notably, defects in establishing methylation of genomic DNA during development 

are linked to  increased expression of L1 and other transposable elements and 

abnormal phenotypes in mutant mice. For example, loss of function mutations in 

DNA methyltransferase-1 (Dnmt1), a DNA methyltransferase responsible for 

maintaining DNA methylation during development, results in a dramatic increase 

in IAP LTR retrotransposon expression in mutant mouse embryos as well as 

embryonic lethality (Walsh et al. 1998). Similar phenotypes are observed in 

mutant mice with loss of function mutations in Dnmt3L, a gene that is necessary 

for establishing de novo methylation of genomic DNA in the germline. Dnmt3L 

mutant male mice exhibit a catastrophic defect in spermatogenesis that is 

accompanied by a loss of L1 and IAP element methylation and increased L1 and 

IAP element expression in germline tissue (Bourc'his and Bestor 2004). Notably, 

a recent study suggests that derepression of L1 sequences during epigenetic 

reprogramming of the embryonic germline may be linked to oocyte attrition in 

female mice (Malki et al. 2014). Despite these data, whether the derepression of 

L1 and other transposable element sequences plays a direct causative role in 

development defects will require further study. 

Other mechanisms that silence L1 expression 

 In addition to DNA methylation, the modification of histone proteins (e.g., 

acetylation, methylation) also may help regulate L1 expression. For example, one 

study using cultured human embryonic carcinoma cell lines suggests that histone 

deacetylase enzymes may act to maintain epigenetic silencing of newly 

integrated L1 insertions (Garcia-Perez et al. 2010).  Histone modifications have 

also been suggested to regulate L1 expression in developing mouse embryos 
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and in germline cells (Di Giacomo et al. 2013, Fadloun et al. 2013, Pezic et al. 

2014).  

 A number of cellular proteins that recognize epigenetic modifications in 

genomic DNA, such as methyl DNA binding proteins and zinc-finger proteins 

have been implicated in the regulation of L1 expression. For example, the 

methyl-CpG-binding protein 2 (MECP2) associates with L1 promoters and has 

been reported to repress L1 expression in neural stem cells and in transformed 

human cell lines (Yu et al. 2001, Muotri et al. 2010). Additionally, L1 activity is 

reported to be higher in the brains of MeCP2 knockout mice and in the brains of 

patients with Rett Syndrome, a neurodevelopmental disorder typically caused by 

mutations in MeCP2 (Muotri et al. 2010). Recent studies have also  provided 

data suggesting that the several KRAB zinc-finger proteins as well as the 

promyelocytic Leukemia zinc finger protein (PLZF) may target genomic L1 and/or 

SVA elements for epigenetic silencing (Puszyk et al. 2013, Castro-Diaz et al. 

2014, Jacobs et al. 2014). 

Small RNA-mediated gene silencing 

 RNA interference (RNAi) is a highly conserved gene silencing mechanism 

in eukaryotes that is associated with gene regulation, imprinting, and silencing 

transposable elements. In RNAi, small silencing RNAs ranging between 21-31 nt 

are loaded onto Argonaute protein family members to form an RNA-induced 

silencing complex (RISC), which targets cellular mRNAs for translational 

inhibition and/or degradation. Two small RNA classes that target transposable 

elements include: small interfering RNAs (siRNAs) and PIWI-interacting RNAs 

(piRNAs).  

 siRNA: siRNAs are Dicer-dependent small RNAs (~21 nucleotide) that 

have  been demonstrated to silence transposons in certain plant and invertebrate 

species (Saito and Siomi 2010, Castel and Martienssen 2013). Recent evidence 

suggests that siRNA may also silence transposable elements in mammals. For 

example, a recent study showed that most siRNAs in developing mouse oocytes 

correspond to retrotransposon sequences, and that LTR retrotransposon 
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transcripts are increased in oocytes from Dicer knockout mice (Watanabe et al. 

2008). Finally, studies using cultured cells suggest that siRNAs may silence L1s 

in human tumor-derived cell lines (Soifer et al. 2005, Yang and Kazazian 2006) 

and possibly in mouse ESCs (Ciaudo et al. 2013).  

 piRNA and PIWI proteins: PIWI (p-element induced wimpy testis) - 

interacting RNAs (piRNAs) are short silencing RNAs (~26-31 nt) that function in a 

highly specialized RNA interference (RNAi) pathway that silences transposable 

elements in germline cells of several different animal species (Aravin et al. 2007, 

Siomi et al. 2011). In the piRNA pathway, transposable element piRNAs 

associate with PIWI  proteins, which are germline specific argonaute protein 

family members to form the piRNA induced silencing complex (piRISC). The 

piRISC targets expressed transposable element mRNA sequences for 

destruction (Aravin et al. 2006, Girard et al. 2006, Vagin et al. 2006). A 

distinguishing feature of the piRNA pathway is the existence of a piRNA 

amplification loop called the ping-pong cycle, which generates additional piRNAs 

that target transposable elements (Brennecke et al. 2007, Gunawardane et al. 

2007).  

 During the ping-pong cycle, once the piRISC cleaves transposable 

elements RNAs, the cleaved transposon RNAs, termed secondary piRNAs, are 

loaded onto a different PIWI protein family member to form a secondary piRISC 

(Siomi et al. 2011). The secondary piRISC is then thought to facilitate the 

processing of additional transposable element piRNAs, thus adding to the 

existing pool of piRISC complexes that target expressed transposable element 

RNAs. In principle, transposable element sequences that are most highly 

expressed (i.e., most active) will preferentially generate additional piRISC 

complexes that target themselves. Thus, the piRNA ping-pong pathway is 

thought to serve as an adaptive defense mechanism against active transposable 

elements in the germline (Aravin et al. 2007, Siomi et al. 2011).  

 Several studies suggest that the piRNA pathway is required to silence 

transposable elements in the mammalian germline. In mice, a substantial 
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proportion of germline pre-pachytene piRNAs are derived from actively 

transcribed L1, SINE and LTR transposon sequences (Aravin et al. 2007, Aravin 

et al. 2008).  Mouse studies have demonstrated a significant increase in L1 and 

IAP expression in the testis of mutant male mice deficient in the mouse PIWI 

protein, MILI (Piwi-Like RNA-Mediated Gene Silencing 2 (PIWIL2)) (Aravin et al. 

2007). Notably, mutant male mice that lack functional mouse PIWI proteins, MILI 

and/or MIWI2 (Piwi-Like RNA-Mediated Gene Silencing 4 (PIWIL4)) display 

phenotypes reminiscent of those observed in male mice lacking functional 

Dnmt3L (Bourc'his and Bestor 2004) including sterility, massive de-repression of  

L1 and IAP elements and a corresponding demethylation of L1 sequences 

(Carmell et al. 2007, Aravin et al. 2008, Kuramochi-Miyagawa et al. 2008). 

 The loss in methylation of L1 and IAP element sequences in MILI and 

MIWI2 mutant mice suggests that piRNAs also may be involved in establishing 

de novo methylation of genomic transposable elements sequences (Carmell et 

al. 2007, Aravin et al. 2008). Recent evidence suggests that mammalian piRNAs 

may also be involved in establishing repressive histone methylation to silence L1 

expression in the germline (Di Giacomo et al. 2013, Pezic et al. 2014). Thus 

piRNAs seem to be involved in a coordinated defense against transposable 

elements that includes posttranscriptional destruction of transposable elements 

RNAs as well as epigenetic DNA modifications that silence transposable 

elements expression. 

Posttranscriptional processing of L1 transcripts 

 Certain evidence suggests that L1 expression could be regulated by RNA 

splicing. Recent studies have demonstrated that L1 sequences encode a number 

of splice donor and acceptor sites that can result in extensive splicing of L1 RNA 

in human and mouse cells  (Belancio et al. 2006, Belancio et al. 2008). 

Examination of various human tissues and human cultured cell lines has 

revealed that L1 RNA is expressed in a range of somatic tissues  and that the 

level of L1 mRNA processing (i.e., splicing) varies significantly among different 

human tissues and cell types (Belancio et al. 2010). These data suggest that 
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although L1 RNA may be normally expressed in certain adult somatic tissues, 

that posttranscriptional RNA splicing might limit the expression of full-length L1 

RNA and thereby limit the level of L1 retrotransposition in somatic tissues. 

 

RNA-binding proteins 

 Cytoplasmic RNA binding proteins also may function in the 

posttranscriptional regulation of L1 retrotransposition. A number of studies have 

demonstrated that L1 RNPs associate with a variety of cellular RNA binding 

proteins (Goodier et al. 2007, Dai et al. 2012, Goodier et al. 2013, Taylor et al. 

2013). For example, immunofluorescence microscopy experiments have 

demonstrated that L1 ORF1p co-localizes with cytoplasmic stress granule (SG) 

proteins, including eIF3 (eukaryotic translation initiation factor 3), G3BP (GTPase 

Activating Protein (SH3 Domain) Binding Protein), and EIF2C2 (Argonaute 2 or 

Ago2) (Doucet et al. 2010, Goodier et al. 2010, Goodier et al. 2013). Stress 

granules are cytoplasmic RNP complexes that form in response to cellular stress 

and are thought to function in cytoplasmic mRNA metabolism and/or translation 

repression (Anderson and Kedersha 2008, Buchan and Parker 2009). Notably, 

SG and/or cytoplasmic processing body (PBs) formation is suppressed by some 

viruses, which suggests that  SGs and PBs may serve a protective function 

during viral infections (Reineke and Lloyd 2013). Thus, it has been hypothesized 

that SGs and/or cellular RNA binding proteins may function to modulate L1 

retrotransposition (Goodier et al. 2007). 

Host antiviral proteins 

 Antiviral proteins typically function to restrict viral infectivity by recognizing 

specific viral components (e.g., viral RNA and/or proteins) and blocking some 

aspect of the viral infectivity cycle (Goff 2004, Yan and Chen 2012, Zheng et al. 

2012). A growing number of studies have demonstrated that host cell antiviral 

proteins also are capable of restricting L1 retrotransposition and the activity of 

other endogenous retrotransposons, suggesting a possible interrelationship 
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between the host cell response to viruses and the host cell response to 

transposable elements. 

 APOBEC3 proteins: In humans, there are seven APOBEC3 

(apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like3) genes that 

encode a small family of cytidine deaminases with RNA editing and/or DNA 

mutator activity (Chiu and Greene 2008). The finding that APOBEC3G (A3G) 

could restrict the activity of vif-deficient HIV-1 provided the first evidence that 

APOBEC3 proteins function as antiviral factors (Sheehy et al. 2002).  

Subsequent studies revealed that A3G also inhibits the activity of endogenous 

retroviruses and Alu elements suggesting that APOBEC3 genes might also 

function to restrict the activity of endogenous retrotransposons. Subsequent 

characterization of APOBEC3 genes by several labs has revealed that 

APOBEC3A (A3A), APOBEC3B (A3B), APOBEC3C (A3C) and APOBEC3F 

(A3F) inhibit L1 retrotransposition (Bogerd et al. 2006, Chen et al. 2006, 

Muckenfuss et al. 2006, Stenglein and Harris 2006, Richardson et al. 2014) and 

that A3A, A3B and A3G are able to inhibit Alu retrotransposition (Bogerd et al. 

2006, Chiu et al. 2006). 

 APOBEC3 proteins may restrict retroviral activity through a deaminase-

dependent mechanism, which involves editing of viral nucleic acid sequences, or 

by a deaminase-independent mechanism, which likely involves binding to viral 

RNA and blocking the procession of retroviral RT (Chiu and Greene 2008). Cell 

culture experiments have demonstrated that A3B and A3C mutants that lack 

enzymatic activity are able to inhibit L1 retrotransposition suggesting that some 

APOBEC3 proteins may inhibit L1 by a deaminase-independent mechanism 

(Bogerd et al. 2006, Horn et al. 2013). Notably, A3G-mediated restriction of Alu 

retrotransposition may also involve a deaminase-independent mechanism (Chiu 

et al. 2006). With this being stated, the localization of APOBEC3 proteins to the 

nucleus and the extensive editing of viral sequences suggest a cytidine 

deaminase-dependent mechanism could also apply to L1. (Bogerd et al. 2006). 

Notably, a recent study suggests that A3A may inhibit L1 retrotransposition by 

deaminating transiently exposed single-strand DNA during L1 integration 



 34 

(Richardson et al. 2014) suggesting that deaminase activity may be required for 

A3A-mediated restriction.  

 Aicardi-Goutières syndrome (AGS) Genes: The three prime repair 

exonuclease 1 (TREX1) is the most abundant 3'-5' DNA exonuclease in cells. 

Mutations in the TREX1 gene are associated with several autoimmune diseases 

including Aicardi-Goutières syndrome (AGS), familial chilblain lupus, and 

Systemic Lupus Erythematosus (SLE) (Kavanagh et al. 2008, Volkman and 

Stetson 2014). In a recent study, elevated levels of single stranded DNA from L1 

and IAP elements was detected in TREX1 knockout mice suggesting that TREX1 

might be involved in regulating endogenous retrotransposon activity. 

Experiments using cultured cells further demonstrated that overexpression of 

TREX1 restricts L1 retrotransposition and that TREX1 mutants deficient in 

catalytic activity were unable to mediate L1 inhibition (Stetson et al. 2008). 
Despite these observations how TREX1 restricts L1 retrotransposition remains 

unknown, but TREX1 restriction is thought to involve exonuclease activity. 

 Another cellular AGS gene that has been demonstrated to restrict the 

activity of L1 retrotransposition is SAM Domain and HD Domain 1 (SAMHD1) 

gene. Mutations in SAMHD1 are associated with several human autoimmune 

disorders including AGS and SLE (Crow and Rehwinkel 2009). SAMHD1 was 

initially identified as an HIV-1 restriction factor in myeloid immune cells in screens 

to identify host cell factors that associate with the HIV-1 lentiviral auxiliary 

protein, Vpx (Hrecka et al. 2011, Laguette et al. 2011). The SAMHD1 protein 

catalyzes the hydrolysis of deoxynucleoside triphosphates (dNTP). SAMHD1 is 

thought to restrict retroviral activity in non-cycling cells by depleting cellular dNTP 

stores, which limits the supply of dNTPs available for the retroviral reverse 

transcription reaction (Ayinde et al. 2012). A recent study demonstrated that 

SAMHD1 restricts human and murine L1s in cell culture based retrotransposition 

assays. Interestingly, SAMHD1 mutants deficient in hydrolase activity were still 

able to inhibit L1 retrotransposition, suggesting that SAMHD1 may restrict 

retroviruses and L1 by different mechanisms (Zhao et al. 2013).  
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 MOV10 and RNase L: Moloney leukemia virus 10 (MOV10) is an RNA 

helicase that has been demonstrated to inhibit the activity of HIV-1 and other 

retroviruses (Zheng et al. 2012, Gregersen et al. 2014). Several recent studies 

have reported that MOV10 can also restrict the activity of L1, Alu and mouse LTR 

retrotransposons (Arjan-Odedra et al. 2012, Goodier et al. 2012, Li et al. 2013). 

How MOV10 restricts retrotransposition is not known; however, evidence 

suggests that MOV10 binds to L1 RNA and may interfere with the expression of 

L1 ORF1p and/or with the reverse transcription of L1 cDNA (Goodier et al. 2012, 

Gregersen et al. 2014). Notably, recent evidence suggests that the MOV10 

paralog, MOV10L, may also restrict the activity of endogenous retroelements in 

mice (Frost et al. 2010, Zheng et al. 2010). Finally, a recent study has 

demonstrated that the 2',5'-oligoadenylate (2-5A) synthetase (OAS)-RNase L 

system may also restrict endogenous retroelements (Zhang et al. 2014). In this 

study, the authors demonstrated that RNase L inhibits the activity of L1 and IAP 

elements in cultured cell assays. Mechanistic analyses showed that RNase L 

decreases the expression of L1 RNA and proteins suggesting that RNase L 

might directly target L1 RNA for degradation.  

 

Closing Remarks 

 Barbara McClintock's discovery of transposons in maize occurred at a 

time before the discovery of the DNA double helix when genes were thought to 

be arranged neatly on chromosomes like beads-on-a-string (McClintock 1950, 

McClintock 1984). The discovery and continued study of transposable elements 

has revealed that genomes are not static, but are constantly changing and 

evolving. Notably, the finding that maize transposable elements could modify the 

expression of other maize genes was one of the first studied examples of a gene 

control system (Mcclintock 1961). For many years that followed these landmark 

discoveries, transposable elements remained underappreciated and perhaps 

were mostly thought of as rather useless junk. This outdated view has been 

challenged by recent scientific advancements such as the sequencing of the 
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human genome which have shown that active transposition can have a major 

impact on genomic DNA structure and function (Lander et al. 2001). Indeed, the 

initial discovery that L1 was active humans, the subsequent development of 

assays to test retrotransposition activity, and advancements in DNA sequencing 

technologies have enabled researchers to demonstrate that L1 retrotransposition 

continues to influence the human genome through mutational processes that can 

sometimes cause genetic diseases and/or generate genomic sequence changes 

that contribute to inter- and intra-individual diversity in the human population. 

Recent studies now suggest that somatic L1 retrotransposition  may even 

influence  the developing mammalian brain (Muotri et al. 2005, Coufal et al. 

2009, Baillie et al. 2011, Evrony et al. 2012, Evrony et al. 2015, Upton et al. 

2015). Notwithstanding, there are many important questions that should be 

addressed in future L1 studies such as how L1 integration is completed, how the 

host cell regulates L1 retrotransposition, and how if at all does L1 

retrotransposition influence development of the mammalian brain. The main 

focus of this thesis is to further explore the question of what host cell factors are 

involved in regulating L1 retrotransposition. 
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Figure 1.1: Transposable elements and corn kernel variegation in maize. 
Top panel: Image of variegated (i.e., purple dots on colorless white background) 
corn kernels. The image is reproduced with permission from Dr. Gerry Neuffer 
and the maize genetics and genomics database (Lawrence et al. 2004). Bottom 
panel: The insertion of a transposable element (orange rectangle) into a gene 
that controls corn kernel color (dark purple rectangle) turns off gene expression 
resulting in colorless corn kernels (colorless corn kernels in top panel). If the 
transposable element transposes out of the gene during corn kernel 
development, gene expression is turned back on giving rise to colored sectors or 
spots on a colorless background. Large spots result from transposition occurring 
early in development and small spots result from transposition occurring late in 
development. 
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Figure 1.2: Transposable element content of the human genome. 
Approximately 46% of the human genome is comprised of transposable element 
(TE) sequences. Only ~1.5% of the genome is known to encode proteins. The 
distribution (% of total human genome) of the major types of human TE is 
indicated to the left of the pie chart (Lander et al. 2001).  
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Figure 1.3: Schematic diagram of the major transposable elements in the 
human genome. 
A) Diagram of a human DNA transposon. Human DNA transposons are ~2-3 kb 
in length and typically encode a transposase enzyme (orange rectangle) that is 
flanked by short inverted tandem repeat sequences (white triangles). B) Diagram 
of a human LTR retrotransposon (human endogenous retrovirus or HERV). 
HERVs are flanked by long tandem repeats (LTRs) that surround structural and 
reverse transcriptase genes similar to retroviral gag and pol genes respectively. 
Some HERVs may also encode a non-functional envelope (env) gene. (C-E) 
Human non-LTR retrotransposons C) Schematic of an autonomous human L1 
element. L1 is ~6 kb in length and encodes a 5' UTR that promotes L1 
transcription. The 5' untranslated region (5' UTR) is followed by two ORFs that 
are separated by a 63 bp intergenic spacer and a short 3' UTR that terminates in 
a variable length poly adenosine tract. ORF1 encodes an ~40 kDa nucleic acid 
binding protein (ORF1p) and ORF2 encodes ORF2p, an ~150 kDa protein with 
RT and EN activities. Both L1 proteins are required for L1 retrotransposition. D) 
Schematic diagram of a human Alu element. Alu is non-autonomous and 
therefore requires the L1-encoded proteins in order to retrotranspose. Human Alu 
elements are ~300 bp in length and exhibit a dimeric sequence arrangement that 
consists of diverged left and right monomers (dark green and light green 
rectangles respectively) that are derived from 7SL RNA and are separated by a 
short poly adenosine tract. Alu elements end in a variable length poly adenosine 
tail. E) Diagram of a processed pseudogene. Processed pseudogenes are non-
functional genes that result from the retrotransposition of cellular mRNAs by the 
L1-encoded protein machinery. Processed pseudogenes resemble cellular 
mRNAs and typically are comprised of 5' and 3' UTRs (grey rectangles), coding 
exons (blue boxes with numbers indicating individual exons (1-3 in this 
example)), and a variable length poly adenosine tail (see main text for 
references). 
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Figure 1.4: Diagram of the L1 retrotransposition cycle. 
Following transcription of a genomic L1 element (red rectangle), the resulting L1 
mRNA is exported to the cytoplasm. The L1 mRNA is translated in the cytoplasm 
to produce ORF1p (blue circle) and ORF2p (yellow circle), which preferentially 
bind to the L1 mRNA (cis preference) to form a L1 ribonucleoprotein particle (L1 
RNP). The L1-encoded proteins may also act in trans to retrotranspose Alu 
(green RNA structure) or other cellular RNAs (e.g., SVA, mRNA, etc.). Once 
components of the L1 RNP enter the nucleus, a new L1 copy is integrated into 
genomic DNA by the process of target site primed reverse transcription (TPRT). 
For L1 TPRT, ORF2p EN makes a single-strand nick in genomic DNA at a 
degenerate consensus sequence (5'-TTTT/A-3', where "/" denotes the nick) to 
expose a free 3'-OH that can be used by the ORF2p RT as a primer to initiate L1 
reverse transcription. The L1 ORF2p RT uses the L1 mRNA as a template to 
synthesize an antisense L1 cDNA copy (red line) directly onto the exposed 
genomic DNA strand. How the remaining steps of L1 integration occur requires 
further investigation, but may involve other host cell proteins such as DNA repair 
enzymes. 
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Figure 1.4: Diagram of the L1 retrotransposition cycle. 
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Figure 1.5: Examples of how L1 impacts human genomic DNA. 
A) L1 (blue rectangle) can insert into a gene (orange rectangle) and disrupt 
normal gene expression. B) L1 insertions can result in deletions of genomic DNA 
(black rectangle represents genomic DNA sequence that is deleted). C) L1 can 
retrotranspose genomic DNA sequences that lie adjacent to the 5' end (a 5' 
transduction; light grey rectangle) or the 3' end (3' transduction; black rectangle) 
of the L1 element. D) L1 encoded proteins (blue circle) can mobilize Alu (green 
rectangle) and/or other cellular RNAs (e.g., SVA, mRNA, etc.) in trans. E) A L1 
insertion into gene coding region such as an intron (grey rectangles; exons are 
yellow, orange, green rectangles numbered 1-3 respectively) could result in 
premature polyadenylation and produce a truncated RNA transcript 
(yellow/orange rectangle), or a missplicing event resulting in an RNA transcript 
that is missing an exon (yellow/green rectangle) F) Post-insertional illegitimate 
recombination event (zigzag arrowed line) between non-allelic L1 sequences 
(blue rectangles) could result in the duplication (bottom left) or deletion (bottom 
right) of genomic DNA segments (grey rectangle). 
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Figure 1.5: Examples of how L1 impacts human genomic DNA. 
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Figure 1.6: Host cell mechanisms that restrict L1 activity. 
Host cell mechanisms may function to regulate several phases (numbered 1-5) of 
the L1 retrotransposition cycle. 1) Epigenetic modification of genomic L1 
sequences such as cytosine methylation at L1 promoters is thought to limit L1 
expression. 2) Expressed L1 RNA may be subject to alternative splicing and or 
regulation by splicing factors such as hnRNPL, which limits expression of full-
length L1 RNA. The piRNA pathway may target the destruction of L1 transcripts 
in germline cells. 3) Host cell antiviral proteins (e.g., MOV10, RNase L) may 
prevent the accumulation of L1 RNA and/or proteins in the cytoplasm. 4) 
Cytoplasmic stress granules (SGs) may function to sequester components of the 
L1 RNP (i.e., L1 RNA and/or L1-encoded proteins) in the cytoplasm. 5) Certain 
host antiviral proteins (e.g., APOBEC3A (A3A), SAMHD1) also may target the 
production of L1 cDNA by various mechanisms (see main text).  
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Chapter 2 
 

Mutations in Human ORF1p Disrupt The Function of LINE-1 
Ribonucleoprotein Particles 

 

 It should be noted that some of the data images used in Figure 2.2 of this 

chapter were previously published in PLoS Genetics (Doucet et al. 2010) (see 

Figure 2.2 for details) and are presented here in strict accordance with PLoS  

journal policies and the  Creative Commons Attribution (CC BY) license 

(http://creativecommons.org/licenses/by/4.0/). I performed all the experiments 

pertaining to Figure 2.2. I designed and carried out all experiments pertaining to 

Figures 2.3 and 2.4. The data depicted in Figures 2.3 and 2.4 have not been 

published. 

 

Abstract 

 LINE-1 or L1 is the only active autonomous transposable element in the 

human genome. L1 mobilizes by the process of retrotransposition, which requires 

the activity of the two L1-encoded proteins (i.e., ORF1p and ORF2p). ORF1p is 

an ~40 kDa nucleic acid binding protein and ORF2p encodes an ~150 kDa 

protein with endonuclease and reverse transcriptase activities. During L1 

retrotransposition ORF1p and ORF2p bind to L1 RNA to form an L1 

ribonucleoprotein particle (RNP), which is a required L1 retrotransposition 

intermediate. To elucidate the function of L1 ORF1p, we have used a genetic cell 

culture-based retrotransposition assay to monitor the effect of mutations in 

ORF1p on L1 retrotransposition. We also have used biochemical assays to 

determine how ORF1p mutations affect the formation and function of L1 RNPs. 

We report that mutations in the ORF1p coiled-coil (CC), RNA recognition motif 

http://creativecommons.org/licenses/by/4.0/
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(RRM), and/or carboxyl-terminal (CTD) domains are incompatible with L1 

retrotransposition. Biochemical analysis of these ORF1p mutants demonstrate 

that mutations that affect ORF1p RNA binding and/or mutations within the ORF1 

CC domain impair the formation of L1 RNPs. Functional analyses of ORF1p 

mutant RNPs using an enzymatic assay to detect ORF2p RT activity indicate that 

mutations in ORF1p may result in reverse transcription of L1 RNA beginning 

within the 3' end of the L1. In sum, these data suggest that ORF1p is necessary 

for the formation of functional L1 RNPs.  

 

Introduction 

 Long Interspersed Nuclear Element-1 (LINE-1, or L1) non-LTR 

retrotransposon sequences comprise ~17% of human DNA (Lander et al. 2001). 

L1 mobilizes throughout the genome by a process termed retrotransposition 

(Richardson et al. 2015). Although most genomic L1 sequences are inactive due 

to 5' truncations (Grimaldi et al. 1984, Lander et al. 2001) and various mutations, 

it is estimated that each cell contains at least 80-100 full length L1 sequences 

that are capable of retrotransposition (Sassaman et al. 1997, Brouha et al. 2003). 

Active L1 retrotransposition is known to cause genetic diseases (Hancks and 

Kazazian 2012) such as hemophilia A (Kazazian et al. 1988) and Duchenne 

muscular dystrophy (Narita et al. 1993). L1 retrotransposition also serves as an 

ongoing source of genetic sequence diversity that contributes to intra- and inter-

individual variation in the human population (Cordaux and Batzer 2009, Beck et 

al. 2010).  

 An active full-length L1 is ~6 kb in length and consists of a 5' UTR that 

functions to promote L1 transcription (Swergold 1990, Becker et al. 1993, 

Athanikar et al. 2004), two non-overlapping open reading frames (ORFs) 

separated by a 63 bp intergenic spacer, and a 3' UTR that ends in a variable 

length stretch of poly-adenosine residues (Scott et al. 1987, Dombroski et al. 

1991). The first L1 ORF (ORF1) encodes ORF1p, a ~40 kDa nucleic acid binding 

protein (Martin 1991, Holmes et al. 1992, Hohjoh and Singer 1996, Hohjoh and 
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Singer 1997) with nucleic acid chaperone activity (Martin and Bushman 2001). 

The second L1 ORF (ORF2) encodes ORF2p, an ~150 kDa protein, which 

contains endonuclease (EN) (Feng et al. 1996) and reverse transcriptase (RT) 

(Mathias et al. 1991, Dombroski et al. 1994) activities. Both L1-encoded proteins 

are required for L1 retrotransposition (Feng et al. 1996, Moran et al. 1996). 

 During the L1 retrotransposition process, a genomic L1 is transcribed in 

the nucleus and the resulting L1 mRNA is exported to the cytoplasm for 

translation. L1 translation occurs by an unconventional cap-dependent 

mechanism that ensures translation of both L1 ORFs (Leibold et al. 1990, 

McMillan and Singer 1993, Alisch et al. 2006, Dmitriev et al. 2007). Following 

translation of the L1 mRNA, ORF1p and ORF2p bind back to their encoding L1 

mRNA (a phenomenon known as cis-preference (Esnault et al. 2000, Wei et al. 

2001)) resulting in the formation of an L1 ribonucleoprotein particle (L1 RNP), 

which is an important retrotransposition intermediate (Kulpa and Moran 2005, 

Kulpa and Moran 2006). The L1 RNP then enters the nucleus (Kubo et al. 2006, 

Xie et al. 2013) where a new L1 copy is inserted into genomic DNA by the 

process of target site primed reverse transcription (TPRT) (Luan et al. 1993, 

Feng et al. 1996).  

 L1 retrotransposition requires functional ORF1p (Moran et al. 1996). 

Recent ORF1p structural studies have identified three distinct ORF1p functional 

domains (Januszyk et al. 2007, Khazina and Weichenrieder 2009, Khazina et al. 

2011, Callahan et al. 2012). The  amino-terminal region of ORF1p is composed 

of a coiled-coil (CC) domain that is thought to mediate the polymerization of 

ORF1p into trimers, the basic ORF1p functional unit (Martin et al. 2003, Khazina 

and Weichenrieder 2009, Khazina et al. 2011). Notably, the CC domain contains 

a putative leucine zipper motif that when mutated disrupts retrotransposition 

(Holmes et al. 1992, Hohjoh and Singer 1996, Hulme 2007, Khazina and 

Weichenrieder 2009, Doucet et al. 2010, Khazina et al. 2011). The central region 

of ORF1p contains an RNA recognition motif (RRM), which interacts with the 

ORF1p carboxyl terminus domain (CTD) to mediate RNA binding (Khazina and 

Weichenrieder 2009, Khazina et al. 2011). In addition to RNA binding, ORF1p 
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also exhibits putative nucleic acid chaperone activity, which can mediate the 

dissociation and/or annealing of double strand DNA in vitro (Martin and Bushman 

2001, Martin et al. 2005, Khazina and Weichenrieder 2009, Callahan et al. 2012). 

Genetic and biochemical experiments have demonstrated that mutations in the 

ORF1p RRM or CTD domains disrupt RNA binding activity and/or nucleic acid 

chaperone activity, and thus are incompatible with L1 retrotransposition (Martin 

et al. 2005, Hulme 2007, Khazina and Weichenrieder 2009, Doucet et al. 2010, 

Khazina et al. 2011).  

 Early studies demonstrated that L1 ORF1p binds to L1 RNA and forms 

cytoplasmic RNP complexes that represent important L1 retrotransposition 

intermediates (Martin 1991, Martin and Branciforte 1993, Hohjoh and Singer 

1996, Hohjoh and Singer 1997, Kulpa and Moran 2005). The subsequent 

development of an in vitro assay that monitors ORF2p RT activity (i.e., LINE-1 

Element Amplification Protocol or LEAP) in L1 RNPs provided the first 

biochemical evidence that ORF2p is also a constituent of L1 RNPs (Kulpa and 

Moran 2006). Notably, recent studies have employed epitope/RNA-tagging 

strategies coupled with biochemical and immunofluorescence microscopy 

methods to confirm that ORF1p, ORF2p, and L1 RNA constitute an L1 RNP 

(Doucet et al. 2010, Goodier et al. 2010, Taylor et al. 2013). Herein, we have 

expanded on these studies by analyzing how mutations in ORF1p impact the 

formation and function of L1 RNPs. We show that certain mutations in the 

ORF1p RRM and CTD perturb the normal biogenesis of L1 RNPs and are 

incompatible with retrotransposition. Analysis of ORF1p mutant RNPs suggest 

that mutations in ORF1p may affect L1 RNP function by modulating ORF2p RT 

activity.  

 

Results 

Mutations in ORF1p are incompatible with L1 retrotransposition 

 To analyze ORF1p function, we tested the effect of mutations in ORF1p 

on L1 retrotransposition using a cultured cell retrotransposition assay (Moran et 
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al. 1996, Wei et al. 2000). Briefly, HeLa cells were transfected with epitope-

tagged L1 constructs (Figure 2.1) that express a T7 gene10 epitope tag on the 

carboxyl terminus of ORF1p and also contain a neomycin retrotransposition 

indicator cassette (mneoI) within the L1 3' UTR (Figure 2.1) (Kulpa and Moran 

2005). The mneoI cassette contains an antisense copy of the neomycin 

phosphotransferase gene, which is interrupted by an intron in the same 

transcriptional orientation as L1. This arrangement ensures that the neomycin 

gene is expressed only when the L1 transcript is spliced, reverse transcribed, 

and inserted into genomic DNA (Freeman et al. 1994, Moran et al. 1996). The 

resulting neomycin-resistant foci then provide a visual, quantitative readout of 

retrotransposition activity (Moran et al. 1996, Wei et al. 2000). The following L1 

mutants were used to test the effects of point mutations in specific ORF1p 

domains (Figure 2.1): pDK103 (REKG235-238AAAA); pDK105 (RR261-262AA); 

pDK106 (RR261-262KK); pDK108 (R262K); pDK109 (R261K); pDK116 (YPAKLS282-

287AAAALA); pLZC (L93, 100, 107, 114V) (Hulme 2007); and pLZC/AA (L93, 100, 107, 114V 

+ RR261-262AA) (Hulme 2007).  In agreement with previous reports (Moran et al. 

1996, Kulpa and Moran 2005, Doucet et al. 2010), retrotransposition assays 

showed that pDK103, pDK105, pDK108, pDK106, and pDK116 were incapable 

of retrotransposition whereas, pDK108 retrotransposed at ~80% of wild type 

(pDK101) levels. The pLZC and pLZC/AA were previously demonstrated to 

abolish L1 retrotransposition activity (Hulme 2007, Doucet et al. 2010). Thus, the 

data suggest that the ORF1p CC, RRM, and CTD domains are required for L1 

retrotransposition. 

The Impact Of ORF1p Mutations On The Function Of L1 RNPs 

 We next tested the effect of ORF1p mutations on the assembly and 

function of L1 RNPs.  Briefly, HeLa cells were transfected with wild type and 

mutant L1 constructs (Figure 2.1) and then L1 RNPs were isolated from 

transfected cell lysates using ultracentrifugation over sucrose cushions (Kulpa 

and Moran 2005, Kulpa and Moran 2006). Following ultracentrifugation, cellular 

RNP pellets were collected and then assayed for the presence of T7-tagged 
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ORF1p and L1 RNA. The presence of T7-tagged ORF1p and L1 RNA in the RNP 

pellet  serves as an indication of L1 RNP formation. RNP fractions defined above 

also were assayed for L1 ORF2p reverse transcriptase activity using the LEAP 

assay (Kulpa and Moran 2006), which provides a readout for the presence of 

ORF2p in L1 RNPs and serves as an indication of L1 RNP function (i.e., the 

ability to reverse transcribe L1 RNA).  

 In agreement with previous reports (Kulpa and Moran 2005, Kulpa and 

Moran 2006), RNPs derived from HeLa cells transfected with the wild type 

pDK101 contained a substantial enrichment of L1 ORF1p compared to 

untransfected HeLa cells (Figure 2.2B), thus confirming the presence of L1 RNPs 

in the crude RNP pellet fraction. In pDK101 LEAP reactions, a diffuse band 

between ~220 and ~400 bp was visualized on agarose gels indicating the 

presence of ORF2p reverse transcriptase activity (Figure 2.2C). Notably, control 

experiments showed that LEAP activity was absent from RNPs derived from 

pDK135 transfected cells (Figure 2.2C) (pDK135 contains a mutation in the 

ORF2 reverse transcriptase domain rendering the element unable to 

retrotranspose) (Moran et al. 1996, Wei et al. 2001, Kulpa and Moran 2006). 

Sequencing of pDK101 LEAP products revealed that L1 reverse transcription 

initiated at variable sites within the L1 poly-adenosine sequence, which accounts 

for LEAP product size variation (data not shown, and (Kulpa and Moran 2006)). 

Control M-MLV RT PCR reactions confirmed the presence of L1 RNA in pDK101 

RNPs (Figure 2.2C).  

 RNA binding activity mutants (pDK103 (REKG235-238AAAA); pDK105 

(RR261-262AA); pDK116 (YPAKLS282-287AAAALA)):  In agreement with previous 

reports (Kulpa and Moran 2005, Kulpa and Moran 2006), RNPs derived from 

HeLa cells transfected with pDK105, pDK116, and pDK103 contained less 

ORF1p than did wild type pDK101 control RNPs (Figure 2.2B). Similarly, whole 

cell lysates harvested from cells transfected with pDK105, pDK116, and pDK103 

contained less ORF1p than lysates from pDK101 transfected cells (Figure 2.2B). 

Notably, the R261A mutation in pDK105 has been demonstrated to impair human 

ORF1p RNA binding activity in vitro (Khazina et al. 2011) and introduction of 
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(RR261-262AA) into the homologous region of mouse ORF1p  has been shown to 

reduce the RNA binding activity and the stability of mouse ORF1p in vitro (Martin 

et al. 2005). These data suggest that mutations in the ORF1p RRM and CTD 

interfere with the ability of ORF1p to localize to RNPs and/or affect ORF1p 

stability.  

 In LEAP reactions using pDK105 RNPs, LEAP activity was marked by a 

diffuse band and the appearance of distinct lower bands (below 300bp) on LEAP 

gels (Figure 2.2C). Notably, pDK116 and pDK103 LEAP products generally 

appeared more diffuse than wild type pDK101 LEAP activity. In addition, pDK116 

and pDK103 LEAP reactions often contained lower bands in LEAP gels similar to 

the lower bands observed in pDK105 LEAP gels (Figure 2.2C). Sequencing of 

pDK105 and pDK116 LEAP products indicated frequent initiation of L1 reverse 

transcription from within the 3' end of the L1 RNA (data not shown and (Kulpa 

and Moran 2006, Doucet et al. 2010)). Similar LEAP data also was reported for 

an L1 mutant that lacks the entire ORF1 sequence (Doucet et al. 2010). These 

data suggest that ORF2p can associate with L1 mRNA and carry out reverse 

transcription of L1 mRNA independently of ORF1p; and that ORF1p likely 

promotes the initiation of L1 reverse transcription from the L1 poly-adenosine tail 

(Kulpa and Moran 2006, Doucet et al. 2010). 

 Chaperone activity mutants (pDK106 (RR261-262KK); pDK109 (R261K)):  

Mutations in pDK106 and pDK109, which have previously been shown to affect 

ORF1p nucleic acid chaperone activity (Martin et al. 2005), did not affect the 

localization of ORF1p to RNPs (Figure 2.2B) and (Kulpa and Moran 2005). LEAP 

activity was similarly unaffected in pDK106 and pDK109 RNPs (Figure 2.2C). We 

did however notice the occasional appearance of lower molecular weight (less 

than ~300 bp) LEAP products in pDK106 and pDK109 LEAP reactions that were 

not observed in pDK101 LEAP reactions (Figure 2.2C). These data therefore 

suggest that although ORF1p may not be strictly required for L1 reverse 

transcriptase activity in RNPs, that certain ORF1p mutations affect the array of 

LEAP products observed in these assays. 
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 Leucine zipper mutants (pLZC (L93, 100, 107, 114V); pLZC/AA (L93, 100, 107, 114V 

+ RR261-262AA)): RNPs derived from pLZC (L93, 100, 107, 114V) mutant transfected 

cells contained less ORF1p than pDK101 control RNPs (Figure 2.2B). LEAP 

activity from pLZC RNPs appeared to be less compared to pDK101 controls 

upon visual inspection of LEAP gels (Figure 2.2C). Quantitative LEAP 

experiments confirmed that pLZC RNP LEAP activity is decreased compared to 

wild type controls (Hulme 2007, Doucet et al. 2010).  Notably, RNPs derived from 

mutant L1s that contain the L93, 100, 107, 114V mutations in ORF1p also contain less 

ORF2p than corresponding wild-type controls (Doucet et al. 2010). These data 

suggest that the LZC domain is required for the localization of ORF1p to L1 

RNPs and that the L93, 100, 107, 114V mutations could impair either the localization of 

ORF2p to L1 RNPs and/or ORF2p RT activity.  

 Because the L93, 100, 107, 114V mutation in ORF1 appeared to exert a 

negative effect on the localization of ORF2p to L1 RNPs and/or ORF2p RT 

activity, we hypothesized that ORF1p might interact directly with ORF2p. To test 

this, we introduced the RR261-262AA  mutation into the pLZC mutant construct to 

make an L1 mutant construct (pLZC/AA) that contains both the L93, 100, 107, 114V 

and the RR261-262AA  mutation. We did so reasoning that since the RR261-262AA 

mutation impaired the localization of ORF1p to L1 RNPs without affecting the 

localization of ORF2p to RNPs, that the introduction of the RR261-262AA mutation 

into pLZC might relieve any negative effect that the L93, 100, 107, 114V ORF1 

mutation could have on the localization of ORF2p to L1 RNPs and/or ORF2p RT 

activity. In L1 RNPs collected from pLZC/AA transfected cells, western blot 

experiments revealed a loss of ORF1p from pLZC/AA mutant RNPs compared to 

pDK101 wild type control RNPs (Figure 2.2B). LEAP activity also was decreased 

in pLZC/AA RNPs compared to pDK101 controls (Figure 2.2C), which has been 

verified by quantitative LEAP experiments using similar constructs (Hulme 2007, 

Doucet et al. 2010). Western blotting further revealed that pLZC/AA RNPs 

contained less ORF2p than corresponding wild-type controls (Doucet et al. 

2010). Notably, LEAP activity from pLZC/AA RNPs exhibited lower bands in 

agarose gels similar to those observed in pDK105 LEAP gels (Figure 2.2C). 
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Thus, pLZC/AA mutant RNPs display phenotypes similar to both the pLZC and 

the pDK105 mutant RNPs. In sum, these data suggest that the ORF1p putative 

leucine zipper domain is required for the proper localization of ORF1p and 

ORF2p to L1 RNPs. 

Engineering an ORF1p/ORF2p fusion protein to study the ORF1 LZC 
mutation 

 The above data suggest that mutations in ORF1p may negatively affect 

the localization of ORF1p and/or ORF2p to the L1 RNP. I further hypothesized 

that mutations in ORF1p also could affect ORF2p function (e.g., ORF2p reverse 

transcriptase activity). Because some of the ORF1p mutations (e.g., RR261-262AA,  

L93, 100, 107, 114V) affected the localization of ORF1p and/or ORF2p to L1 RNPs, an 

ORF1p-ORF2p fusion protein was constructed to facilitate an association 

between ORF1p and ORF2p so that I could test whether ORF1p mutations 

affected ORF2p function. The ORF1p-ORF2p fusion protein was constructed by 

substituting the ORF1 stop codon and the 63 bp intervening sequence between 

ORF1 and ORF2 with a single lysine residue, which effectively tethers ORF2p to 

the carboxyl terminus of ORF1p (Alisch et al. 2006). The ORF1p-ORF2p fusion 

protein construct (p1K2_TAP) was further modified to contain a TAP epitope tag 

on to the carboxyl terminus of ORF2 to facilitate the detection of the fusion 

protein using anti-TAP antibodies (Figure 2.3A). 

 First, to determine if the ORF1p-ORF2p fusion protein was expressed we 

transfected HeLa cells with p1K2_TAP and analyzed p1K2_TAP RNPs by 

western blot using anti-TAP antibodies. A prominent band of the expected size of 

an ORF1p-ORF2p fusion peptide (~190 kDa) was detected in p1K2_TAP RNPs 

using anti-TAP antibodies (Figure 2.3B: top panel). Notably, the ~190 kDa band 

was not present in RNPs derived from untransfected HeLa cells or from HeLa 

cells transfected with a wild-type L1 control (pAD2TE1) (Doucet et al. 2010), or 

an L1 that lacks the ORF1 sequence (pAD500) (Doucet et al. 2010) (Figure 2.3B: 

top panel). Several smaller molecular weight bands were detected in p1K2_TAP 

RNPs with the anti-TAP antibody (Figure 2.3B: top panel) suggesting that the 
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fusion could be processed into smaller peptides, or that the fusion had partially 

degraded during the sample preparation process (Figure 2.3B).  

 Next, we used an antibody specific to amino acids 31-49 of ORF1p to 

detect the amino terminal ORF1p end of the fusion peptide. Similar to blots 

probed with the anti-TAP antibody, we detected an ~190 kDa band in p1K2_TAP 

RNPs using the anti-ORF1p antibody (Figure 2.3B: bottom panel). The ~190 kDa 

band was noticeably absent from untransfected HeLa, pAD2TE1, and pAD500 

RNPs (Figure 2.3B: bottom panel). A band corresponding to free ORF1p (~40 

kDa) was detected in pAD2TE1 RNPs using the anti-ORF1p antibody (Figure 

2.3B: bottom panel). In contrast, free ORF1p was not detected in p1K2_TAP 

RNPs (Figure 2.3B: bottom panel). Thus, free ORF1p is not expressed from 

p1K2_TAP and the ORF1p-ORF2p fusion peptide is not processed to produce 

free ORF1p.  

 In additional control experiments we engineered a mutant fusion peptide in 

which the nucleotide sequence corresponding to the first 255 amino acids were 

deleted from ORF1p (p1K2(RF1)) (Figure 2.3C), which would be expected to 

yield an ~160 kDa fusion peptide. Indeed, an ~160 kDa band was detected in 

RNPs derived from HeLa cells transfected with p1K2(RF1) (Figure 2.3C). We 

also introduced a mutation into the ORF1p sequence that inserted a premature 

stop codon into ORF1 of p1K2_TAP (p1K2(S119X)), which is expected to result 

in early termination of the fusion protein (Moran et al. 1996, Wei et al. 2001, 

Alisch et al. 2006). Western blots demonstrated a substantial decrease in 

expression of the fusion peptide from p1K2(S119X) compared to p1K2_TAP 

(Figure 2.3C). Notably, free ORF2p was not detected in the p1K2(S119X) lane 

suggesting that ORF2p translation does not initiate from internal sequences 

within the ORF1p-ORF2p fusion protein RNA. Northern blotting experiments 

using a probe to the L1 5' UTR (5UTR99) demonstrated L1 RNA expression 

levels were similar between p1K2(S119X), p1K2_TAP and pAD2TE1 (Figure 

2.3D). Thus, the S119X mutation in ORF1 does not affect the accumulation of L1 

RNA, and confirms previous data suggesting that the S119X mutation does not 

affect expression of L1 RNA (Moran et al. 1996, Wei et al. 2001, Alisch et al. 
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2006). In sum, the above data suggest that an ORF1p-ORF2p fusion peptide is 

expressed from p1K2_TAP. 

The impact of the LZC mutation on the function of the ORF1p/ORF2p fusion 
protein 

 Next, we tested the effect of mutation in ORF1p on the function of the 

ORF1p-ORF2p fusion peptide. Although the ORF1p-ORF2p fusion protein does 

not retrotranspose in cis, it has been demonstrated to drive the retrotransposition 

of a retrotransposition reporter plasmid in a genetic trans-complementation assay 

(Figure 2.4A) (Wei et al. 2001, Alisch et al. 2006)). The genetic trans-

complementation assay monitors the ability of an L1 construct lacking the mneoI 

retrotransposition indicator cassette (i.e., a driver L1) to trans-mobilize a reporter 

mRNA consisting of the L1 5′ UTR, ORF1, and the spliced mneoI indicator 

cassette (i.e., ORF1mneoI) (Figure 2.4A). By taking advantage of the ORF1p-

ORF2p fusion protein, we addressed whether mutations in ORF1p affected the 

ability of the ORF1p-ORF2p fusion protein to trans-mobilize RNA derived from 

ORF1mneoI.  

 To test the effect of ORF1p mutations on the function of the ORF1p-

ORF2p fusion protein in trans-complementation assays, we made the following 

ORF1p-ORF2p fusion protein constructs (Figure 2.3A): (p1K2(AA); RR261-262AA), 

(p1K2(LZC); L93, 100, 107, 114V), (p1K2(LZC/AA); L93, 100, 107, 114V + RR261-262AA), 

(p1K2(S119X); S119X), (p1K2(RF1); ORF1Δ1-255). In control western blot 

experiments we observed similar expression levels of the fusion peptide and of 

the smaller bands from each of the fusion constructs (Figure 2.3E). Thus, the 

above mutations in ORF1 do not affect the expression of the ORF1p-ORF2p 

fusion peptide. 

 To determine the affect of ORF1p mutations when tethered to ORF2p to 

drive retrotransposition of a retrotransposition reporter construct in trans, the 

ORF1p-ORF2p fusion constructs described above were co-transfected with the 

ORF1mneoI reporter construct. Similar to a previous report (Alisch et al. 2006), 

the wild type p1K2_TAP efficiently trans-complemented the retrotransposition of 
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the ORF1mneoI reporter construct (Figure 2.4B). Notably, the trans-

complementation efficiency of p1K2(LZC) was ~65% of wild type control p1K2 

levels (Figure 2.4B). Thus, the LZC mutation in ORF1 does not significantly 

impair the ability of the fusion peptide to trans-complement the ORF1mneoI 

reporter construct. In contrast to p1K2(LZC), the trans-complementation 

efficiency of the p1K2(AA) and p1K2(LZC/AA) constructs were only ~38% and 

~19% respectively of control levels (Figure 2.4B). The trans-complementation 

efficiency of the mutant fusion construct p1K2(RF1) in which the first 255 amino 

acids were deleted from ORF1p also was significantly decreased (~50% of wild 

type p1K2 control levels). Notably, within the first 255 amino acids of ORF1p are 

several amino acids that have been demonstrated to be important for in vitro 

ORF1p RNA binding activity including R235, R210, R211, K133, K137, K140, 

and R141 (Martin et al. 2005, Khazina et al. 2011). Thus, mutations that affect 

ORF1p RNA binding activity negatively affect ORF1mneoI trans-

complementation. In additional control experiments, co-transfection of 

ORF1mneoI with an empty pCEP4 vector or the p1K2(S119X) mutant, which 

contains a missense mutation in ORF1 that results in early termination of 

translation (Moran et al. 1996, Wei et al. 2001, Alisch et al. 2006), expectedly did 

not result in the production of G418 resistant colonies (Figure 2.4B). Notably, the 

trans-complementation efficiency of pAD2TE1 was only ~12% of p1K2_TAP 

levels (Figure 2.4B), which could be explained by the considerable disparity in 

protein expression between p1K2_TAP and pAD2TE1 (Figure 2.3E). Thus, the 

data suggest that the LZC mutation (L93, 100, 107, 114V) in ORF1 by itself, is 

insufficient to impair the ability of the ORF1p-ORF2p fusion peptide to trans-

complement RNA derived from the ORF1pmneoI reporter construct.  

 

Discussion 

 The L1 RNP is a critical retrotransposition intermediate (Martin 1991, 

Martin and Branciforte 1993, Hohjoh and Singer 1996, Kulpa and Moran 2005, 

Kulpa and Moran 2006, Doucet et al. 2010). We have extended recent analyses 
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of L1 RNPs (Kulpa and Moran 2005, Kulpa and Moran 2006) by examining how 

mutation of ORF1p impacts the function and formation L1 RNPs. We report that 

certain mutations in ORF1p, which are incompatible with retrotransposition, can 

affect the formation and/or stability of L1 RNPs. We have categorized these 

mutations based on how they impact L1 RNPs (Figure 2.5).  

 ORF1p RNA binding mutants (pDK103, pDK105, pDK116): Mutations that 

affect the ability of ORF1p to bind RNA result in RNPs that lack ORF1p but 

contain ORF2p and L1 reverse transcriptase activity (Type I RNPS, Figure 2.5B). 

Mutant ORF1p failed to localize to RNPs isolated from cells transfected with 

pDK105, pDK103, and pDK116. pDK105 carries the RR261-262AA mutation 

which has been shown to significantly reduce the RNA binding capacity of mouse 

(Martin et al. 2005) and human ORF1p (Khazina et al. 2011). Moreover, this 

mutation has also been shown to reduce the stability of mouse ORF1p although 

it does not appear to affect overall structure of either mouse or human ORF1p 

(Martin et al. 2005, Khazina et al. 2011). The R235A mutation in pDK103 occurs 

in the RRM domain and has also been shown to reduce the RNA binding activity 

of human ORF1p in vitro (Khazina et al. 2011).  

 Although the effect on RNA binding activity of the YPKALS282-287AAALAA 

mutation has not been directly tested, several lines of evidence support that this 

mutation impairs the RNA binding activity. First, the YPKALS282-287AAALAA 

mutation severely compromises the ability of ORF1p to localize to RNPs; second, 

the constellation of pDK116 LEAP products bear similarity to pDK105 LEAP 

products (i.e., initiation of reverse transcription from within the 3' end of the L1 

mRNA) (Kulpa and Moran 2006, Doucet et al. 2010); and third, the YPKALS282-

287AAALAA mutation impairs L1 cytoplasmic foci formation (Doucet et al. 2010). 

Thus, ORF1p RNA binding activity is important for the formation and/or stability 

of L1 RNPs.  

 RNPs that were derived from ORF1p RNA binding mutants contain 

ORF2p (Doucet et al. 2010) and exhibit robust LEAP activity (Doucet et al. 2010) 

(Figure 2.2C). In agreement with previous data (Kulpa and Moran 2006, Doucet 
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et al. 2010, Kopera et al. 2011), this result suggests that L1 ORF2p can bind to 

L1 RNA and carry out L1 cDNA synthesis in the absence of ORF1p. Notably, L1 

elements that carry the RR261-262AA mutation or that entirely lack the ORF1 

sequence are able to retrotranspose (albeit at very low levels) in Chinese 

hamster ovary cells that are deficient in the non-homologous end joining DNA 

repair pathway (Kopera et al. 2011). Interestingly, sequencing of LEAP products 

from pDK105, pDK116 and an L1 that does not express ORF1p indicated that L1 

reverse transcription frequently initiated from within the L1 mRNA 3' end in RNPs 

devoid of ORF1p (Kulpa and Moran 2006, Doucet et al. 2010). Thus, in 

agreement with previous reports  (Kulpa and Moran 2006, Doucet et al. 2010) the 

data suggest that ORF1p may help facilitate the initiation of L1 reverse 

transcription from the L1 poly-adenosine tail.  

 ORF1 chaperone activity mutants (pDK106, pDK109): The second group 

of RNPs (Figure 2.5B; Type II RNPS) includes RNPs derived from L1s that 

carried the R261K mutation (i.e., pDK106 & pDK109). The R261K affects ORF1p 

nucleic acid chaperone activity in vitro  (Martin and Bushman 2001, Martin et al. 

2005) without affecting RNA binding activity and is incompatible with 

retrotransposition (Kulpa and Moran 2005, Martin et al. 2005, Martin et al. 2008, 

Khazina et al. 2011). We showed that pDK106 and pDK109 RNPs contained wild 

type levels of ORF1p and exhibited wild type LEAP activity. Notably, 

immunofluorescence experiments also demonstrated that L1 cytoplasmic foci 

formation is unaffected by the R261K mutation (Doucet et al. 2010). Thus, the 

R261K mutation does not affect formation of L1 RNPs, which suggests that this 

mutation affects some other aspect of L1 RNP function (e.g., nucleic acid 

chaperone activity). 

 ORF1 leucine zipper mutants (pLZC and pLZC/AA):  The third category of 

RNPs includes L1s with mutations in the putative LZC motif within the ORF1p CC 

domain (Figure 2.5B; type III RNPs). Compared to wild-type controls, LZC mutant 

RNPs contained less ORF1p and ORF2p (Figure 2.2B and (Hulme 2007, Doucet 

et al. 2010). Notably, LZC mutant RNPs also and exhibited a reduction in LEAP 

activity (Figure 2.2C and (Hulme 2007, Doucet et al. 2010). These results 
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suggested the possibilities that the LZC mutation in ORF1p affected the ability of 

ORF2p to localize to RNPs and/or to reverse transcribe L1 RNA. Notably, the 

ORF1p-ORF2p fusion peptide carrying the LZC defect was able to efficiently 

drive the retrotransposition of the ORF1mneoI reporter construct (Figure 2.4). 

The data therefore suggest that the LZC mutation in ORF1p does not impair 

ORF2p reverse transcriptase function because trans-complementation of RNA 

derived from the ORF1mneoI reporter is dependent on ORF2p reverse 

transcriptase activity (Wei et al. 2001, Alisch et al. 2006). Thus, the most 

parsimonious explanation of the data is that the ORF1p LZC mutation most likely 

impairs the localization of ORF1p and/or ORF2p to RNPs. These data suggest 

the possibility that a subtle interplay between the ORF1p and ORF2p proteins 

may exist, which if disturbed disrupts the formation of functional L1 RNPs. 

 A previous report presented genetic evidence suggesting that an 

engineered ORF1p-ORF2p fusion peptide could trans-mobilize ORF1mneoI 

(Alisch et al. 2006). In this study we have provided the first empirical evidence 

that a similar engineered ORF1p-ORF2p fusion peptide (p1K2_TAP) can be 

expressed in human cells and that it is capable of trans-mobilizing other cellular 

mRNAs (i.e., ORF1mneoI). We demonstrated that an ~190 kDa ORF1p-ORF2p 

fusion protein was expressed from p1K2_TAP in HeLa cell lysates (Figure 2.3B) 

and that it could actively promote the retrotransposition of RNA derived from the 

reporter plasmid ORF1mneoI (Figure 2.4B). Our data also suggested that free 

ORF1p is not expressed from p1K2_TAP and that the resulting ORF1p-ORF2p 

fusion peptide is not processed to liberate free ORF1p. Notably, we did not 

detect any evidence of an ORF1p-ORF2p fusion peptide from cells transfected 

with pAD2TE1 with either anti-ORF1p or anti-TAP antibodies (Figure 2.3B). 

Thus, these data are consistent with previous data suggesting that L1 translation 

does not produce an ORF1p-ORF2p fusion peptide (Leibold et al. 1990, McMillan 

and Singer 1993, Ergun et al. 2004, Alisch et al. 2006).  
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Methods 

Cell culture 

 HeLa cells were grown in high-glucose DMEM (Gibco) supplemented with 

10% FBS (Gibco), 100 U/mL penicillin-streptomycin (Invitrogen), and 0.29mg/mL 

L-glutamine (Gibco). Cell lines were maintained at 37°C with 7% CO2. 

Plasmid Constructs 

 The following plasmids are based on the previously described 

pJM101/L1.3 construct (Sassaman et al. 1997). The amino acid and nucleotide 

numbers indicate the mutation position based on L1.3 accession number L19088 

(Dombroski et al. 1993). The constructs were cloned into the pCEP4 expression 

vector (Invitrogen) and are equipped with the mneoI indicator cassette in the L1 

3’UTR unless otherwise indicated. Sub-cloning was used to introduce the TAP 

epitope tag sequences onto the 3’ end of ORF2. Because of this procedure, we 

deleted a portion of the L1 3’UTR (nucleotides 5818 to 5953). All plasmid DNA 

was prepared with a Midiprep Plasmid DNA Kit (QIAGEN). 

pDK101 is identical to pDK101, but contains the REKG235-238AAAA mutations in 

the ORF1p RRM domain (Moran et al. 1996, Kulpa and Moran 2005). 

pDK105 is identical to pDK101, but contains the RR261-262AA mutations in the 

ORF1p C-terminal domain (Moran et al. 1996, Wei et al. 2001, Kulpa and Moran 

2005) 

pDK106 is identical to pDK101, but contains the RR261-262KK mutations in the 

ORF1p C-terminal domain (Moran et al. 1996, Kulpa and Moran 2005). 

pDK108 is identical to pDK101, but contains the R262K mutation in the ORF1p C-

terminal domain (Moran et al. 1996, Kulpa and Moran 2005). 

pDK109 is identical to pDK101, but contains the R261K mutation in the ORF1p C-

terminal domain(Moran et al. 1996, Kulpa and Moran 2005). 
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pDK116 is identical to pDK101, but contains the YPAKLS282-287AAAALA 

substitution in the ORF1p C-terminal domain (Moran et al. 1996, Kulpa and 

Moran 2005).  

pDK135 is identical to pDK101, but contains the D702A mutation in the putative 

ORF2p RT active site (Moran et al. 1996, Wei et al. 2001, Kulpa and Moran 

2005). 

pDK136 is identical to pDK101, but contains the H230A mutation in the ORF2p 

EN domain (Moran et al. 1996, Wei et al. 2001, Kulpa and Moran 2005). 

pLZC: is identical to pDK101, but contains four leucine to valine mutations 

(L93,100,107,114V) in the ORF1p putative leucine zipper domain (Hulme 2007).  

pLZC/AA is identical to pDK105, but also contains four leucine to valine 

mutations (L93,100,107,114V; RR261-262AA) (Hulme 2007). 

pAD2TE1 is derived from pDK101 (L1.3) and contains both the T7 gene 10 

epitope tag on the carboxyl-terminus of ORF1p and a TAP tag on the carboxyl-

terminus of ORF2p (Doucet et al. 2010).  

pORF1mneoI consists of the L1 5' UTR, ORF1, and the spliced mneoI indicator 

cassette (Alisch et al. 2006). 

p1K2_TAP is derived from GP1AAA2 (Alisch et al. 2006) and contains a TAP tag 

on the carboxyl-terminus of ORF2p. John B. Moldovan (University of Michigan 

Medical School) constructed the plasmid. 

p1K2(RR-AA) is derived from p1K2_TAP, but contains the RR261-262AA mutations 

in the ORF1p C-terminal domain John B. Moldovan (University of Michigan 

Medical School) constructed the plasmid (Kulpa and Moran, 2005; Moran et al., 

1996; Wei et al., 2001). 

p1K2(LZC) is derived from p1K2_TAP, but contains four leucine to valine 

mutations (L93,100,107,114V) in the ORF1p putative leucine zipper domain John B. 

Moldovan (University of Michigan Medical School) constructed the plasmid.  
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p1K2(LZC/AA) is derived from p1K2_TAP, but contains a putative leucine zipper 

domain as well as a C-terminal domain mutant (L93,100,107,114V; RR261-262AA) in 

ORF1p. John B. Moldovan (University of Michigan Medical School) constructed 

the plasmid. 

p1K2(RF1) is derived from p1K2_TAP, except that the amino acids 1-255 have 

been deleted from ORF1p. John B. Moldovan (University of Michigan Medical 

School) constructed the plasmid. 

p1K2(S119X) is derived from p1K2_TAP, but contains a stop codon instead of a 

serine 119 of ORF1p (Moran et al. 1996). John B. Moldovan (University of 

Michigan Medical School) constructed the plasmid. 

pCEP/GFP, is a pCEP4-based plasmid that contains the humanized renilla green 

fluorescent protein (hrGFP) coding sequence from phrGFP-C (Stratagene) under 

the control of the pCEP4 CMV promoter (Alisch et al. 2006). 

The L1 retrotransposition assay 

 The cultured cell retrotransposition assay was conducted as described 

previously (Moran et al. 1996, Wei et al. 2000). Briefly, ~2x104 HeLa cells/well 

were plated in 6 well dishes. The next day, each well was transfected with 1 μg of 

plasmid DNA using 3 μL of FuGENE 6 transfection reagent (Roche). Three days 

post-transfection, cells were grown in the presence of G418 (400 μg/mL) to 

select for retrotransposition events. The media was changed daily. After ~12 

days of selection, the resultant cells were washed with 1X Phosphate-Buffered 

Saline (PBS), fixed, and stained with crystal violet to visualize colonies. In 

parallel, HeLa cells were plated in 6 well dishes and transfected with 0.5 μg of 

the same plasmids and pCEP4/GFP. Three days post-transfection cells were 

subjected to flow cytometry and the transfection efficiency was determined based 

on the number of GFP positive cells by FACS.  

Trans-complementation assay 

 The trans-complementation assay was performed as previously described 

(Wei et al. 2001). Briefly, HeLa cells were seeded in T-175 flasks (BD Falcon™) 
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at ~6×106 cells/flask and transfected the next day with 30 μg of plasmid DNA 

using 90 μL of FuGENE 6 transfection reagent (Roche). The next day, cells were 

co-transfected with equal amounts ORF1mneoI reporter plasmid and a driver L1 

that lacked the mneoI indicator cassette. Parallel co-transfection experiments of 

both plasmids plus pCEP/GFP were used to determine the transfection efficiency 

of each sample (see above). Seventy-two hours post-transfection, the HeLa cells 

were subjected to G418 selection (400 μg/mL). After 12-14 d of selection, the 

cells were fixed as described above, and the resultant G418-resistant colonies 

were counted to determine the trans-complementation efficiency 

Isolation of L1 RNPs and western blot analysis 

 Isolation of L1 RNPs has been described previously (Kulpa and Moran 

2005, Kulpa and Moran 2006). Briefly, HeLa cells were seeded in T-175 flasks 

(BD Falcon™) at ~6×106 cells/flask and transfected the next day with 30 μg of 

plasmid DNA using 90 μL of FuGENE 6 transfection reagent. Two days post-

transfection, hygromycin B (Gibco) (200 μg/mL) was added to the media to select 

for transfected cells. After one week of hygromycin selection, cells were 

harvested, lysed, and whole cell lysates were centrifuged at 1000 x g for 5 

minutes. The cleared whole cell lysates were then centrifuged through an 

8.5%/17% (w/v) sucrose cushion at 178,000 x g for 2 hours. The resultant pellet 

was resuspended with 100 μL dH2O + 1X Complete EDTA-free protease 

inhibitor cocktail (Roche). Bradford reagent (Bio-Rad) was used to determine 

protein concentration and the RNP sample was diluted to a final concentration of 

1.5 mg/mL. Proteins were detected by western blot using the following primary 

antibodies: mouse anti-T7-Tag (Novagen), rabbit anti-TAP (Open Biosystems), 

mouse anti-α-tubulin (Sigma), rabbit anti-S6 (Cell Signaling Technology). Goat 

anti-mouse, anti-rabbit and anti-rat HRP-conjugated secondary antibodies were 

purchased from GE/Amersham. Western blots were developed using either the 

pico or femto ECL substrate (Pierce) according to manufacturer’s protocols. 
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LEAP assay 

 The LEAP assay has been described previously(Kulpa and Moran 2006). 

Briefly, an aliquot (1 μL) of the RNP sample was added to 49 μL of LEAP assay 

master mix (50 mM Tris-HCL (pH=7.5), 50 mM KCl, 5 mM MgCl2, 10 mM DTT, 

0.4 μM 3’RACE adapter primer, 20U RNasin (Promega), 0.2 mM dNTPs, and 

0.05% (v/v) Tween 20) and was incubated at 37°C for 1 hour. LEAP cDNA 

products (1 μL) were amplified in a standard 50 μL PCR reaction containing 0.4 

μM of the 3’RACE outer primer and 0.4 μM of one of the following forward 

primers: L1 3’ end; Neo promoter sense; Neo8161S; LEAP-86; LEAP-46, using 

HotStart Pfu Turbo polymerase (Stratagene) according to the manufacturer’s 

protocol. The resultant products were visualized on 2% agarose gels. LEAP PCR 

products were isolated, cloned into the pCR-Blunt vector (Invitrogen), and 

sequenced to confirm their identity. 

RNA preparation and RT-PCR analysis 

 Total RNA was isolated using an RNeasy Kit (QIAGEN) coupled to an on-

column DNase treatment (QIAGEN). The isolated RNAs were resuspended in 

Ultrapure distilled water (GIBCO) and quantified using a Nanodrop 

spectrophotometer (Thermo Scientific). For the LEAP assay controls, RNA was 

isolated from 50 μL RNP sample (1.5 mg/mL). RT-PCR was performed on 0.5 μg 

total RNA using M-MLV reverse transcriptase (Promega) followed by PCR with 

primers specific to the transfected L1 constructs or GAPDH. HotStart Pfu Turbo 

polymerase (Stratagene) then was used to amplify the resultant cDNA according 

to the manufacturer’s instructions. The PCR protocol and the L1 and GAPDH 

oligonucleotide primers were previously described (Kulpa and Moran, 2006). 

Northern Blots 

 HeLa cells were seeded in T-175 flasks (BD Falcon™) at ~6×106 

cells/flask and transfected the next day with 30 μg of plasmid DNA using 90 μL of 

FuGENE 6 transfection reagent (Roche). Two days post-transfection, hygromycin 

B (Gibco) (200 μg/mL) was added to the media to select for transfected cells. 

After one week of hygromycin selection, cells were harvested, lysed, and RNA 
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was extracted with TRIzol® reagent (Ambion), and then poly(A)+ RNA was 

prepared from total RNA using an Oligotex mRNA kit (Qiagen). RNA samples 

were then subjected to glyoxal gel electrophoresis and northern blotting using the 

NorthernMax®-Gly Kit (Ambion) according to the manufactures protocol. 

Following electrophoresis, RNA was transferred to BrightStar® Nylon 

membranes (Invitrogen) and then cross-linked using UV light. For northern blot 

detection, membranes were prehybridized for ~4 hours at 68°C in NorthernMax® 

Prehybridization/Hybridization Buffer (Ambion), and then incubated with a strand 

specific RNA probe (final concentration of probe ~3×106 cpm ml-1) over night at 

68°C. 

 Strand-specific RNA probes were generated using the MAXIscript® T3 

system (Invitrogen). The 5UTR99 probe corresponds to bases 7-99 of the L1.3 5' 

UTR (Belancio et al. 2006) of the L1.3 sequence. RNA probe templates for T3 

reactions were generated by PCR using pJM101/L1.3Δneo as a PCR template 

with the following primers:  

5UTR99 (Forward): 5'-GGAGCCAAGATGGCCGAATAGGAACAGCT-3' 

5UTR99 (Reverse): 5'-AATTAACCCTCAAAGGGACCTCAGATGGAAATGCAG-

3'  

 The T3 promoter sequence (underlined) was added to the reverse primer 

of each primer pair. The pTRI-β-actin-125-Human Antisense Control Template 

(Applied Biosystems) was used in T3 reactions as a template to generate the β-

actin RNA probe. The northern blot experiment was conducted one time. 
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Figure 2.1: Schematic diagram of engineered human L1 constructs. 
The wild type human L1 construct, pDK101 expresses a human L1 (L1.3) 
(Sassaman et al. 1997) that contains a T7 gene10 epitope tag (blue flag) on the 
carboxyl-terminus of ORF1p. The pDK101 construct also contains an mneoI 
retrotransposition indicator cassette located within the L1 3' UTR.  A CMV 
promoter (black rectangle) augments L1 expression and an SV40 
polyadenylation signal (pA) is located downstream of the native L1 
polyadenylation signal. The mneoI cassette (red rectangle) is cloned into the L1 
3' UTR antisense to the L1 and contains a neomycin phosphotransferase gene 
that is disrupted by an intron flanked by splice donor (SD) and splice acceptor 
sites (SA) in the L1 sense orientation. The neomycin phosphotransferase gene 
can only be expressed when the L1 transcript is spliced, reverse transcribed, and 
inserted into genomic DNA (Moran et al. 1996, Wei et al. 2000). The approximate 
locations of the ORF1 coiled coil (CC), RNA recognition motif (RRM), and 
carboxyl-terminal (CTD) domains are indicated. The approximate locations of the 
ORF2p endonuclease (EN) domain  and the ORF2 reverse transcriptase (RT)  
domains are shown in the diagram. The approximate location of L1 mutations 
and the corresponding name of the mutant L1 plasmids are depicted on the 
diagram.  
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Figure 2.2: Mutations in ORF1p affect the formation of functional L1 RNPs. 
A) The effect of ORF1p mutations on L1 retrotransposition. The X-axis indicates 
the name of the L1 construct. The Y-axis indicates retrotransposition efficiency  
normalized to the wild type L1 control, pDK101 (black bars). Error bars represent 
standard deviations based on a single experiment with three technical replicates. 
Beneath the graph is a single well of a representative six-well tissue culture plate, 
displaying G418-resistant colonies from retrotransposition assays. (B) Mutations 
in ORF1p affect the localization of ORF1p to L1 RNPs. Western blots of HeLa 
cells transfected with the indicated L1 plasmids (top of blots). Anti-T7 antibodies 
were used to detect the T7-tagged ORF1p expressed from L1 plasmids. Top 
panel: Western blots from transfected HeLa cell crude RNP fractions (RNPs). 
Bottom panel: Western blots from transfected HeLa cell lysates. UTF = 
untransfected HeLa cells. Ribosomal protein S6 was used as a loading control. 
The red box indicates portion of gel image previously published (Doucet et al. 
2010). C)  LEAP assay results. Top panel: Approximately 20 μL of LEAP 
reactions from the indicated crude L1 RNP preps (top of gels) was loaded onto 
agarose gels. pDK135 contains mutations in the ORF2p RT domain that render 
the element unable to retrotranspose, NoRNP = LEAP reaction did not contain 
RNPs; NTC = PCR water control. Middle panel: M-MLV RT-PCR with L1 LEAP 
PCR primers serves as a positive control for the presence of L1 RNA in RNP 
preps. Blue arrow indicates L1 cDNA band. Bottom panel: GAPDH RT-PCR 
served as a loading control. Molecular size ladders are to the left of gels. The red 
box indicates portion of gel image previously published (Doucet et al. 2010). I 
conducted all experiments shown in Figure 2.2.  
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Figure 2.3: Characterization of an L1 ORF1p-ORF2p fusion peptide. 
A) Schematic of L1 ORF1p-ORF2p fusion construct (p1K2_TAP). p1K2_TAP 
was constructed by deleting the 63 bp spacer between ORF1 and ORF2 and 
mutating the ORF1 stop codon to a lysine (K) residue (green rectangle). The 
fusion construct is cloned into a pCEP4 mammalian expression vector and 
contains a TAP epitope tag (yellow flag) on the carboxyl-terminus of ORF2p to 
facilitate detection of the fusion peptide using anti-TAP antibodies. The 
expression of p1K2_TAP is augmented by the pCEP4 CMV promoter (black 
rectangle). The approximate locations of  mutations with corresponding name of 
the mutant fusion constructs are mapped onto the p1K2_TAP diagram. B) The 
ORF1p-ORF2p fusion peptide is expressed in HeLa cells. HeLa cells were 
transfected with the indicated construct and RNPs were analyzed for the 
presence of the ORF1p-ORF2p fusion peptide using anti-TAP (top panel) or anti-
ORF1p (bottom panel) antibodies. Green arrow indicates ORF1p-ORF2p fusion 
protein band; blue arrow indicates ORF2p-TAP protein band; red arrow indicates 
ORF1p-T7 protein band. Smaller bands in the p1K2_TAP lane of top panel may 
represent smaller TAP-tagged peptides (see main text) C) Deletion of the amino-
terminal amino acids (1-255) of ORF1p results in a proportional decrease in size 
of the 1K2 fusion peptide. RNPs from transfected HeLa cells transfected with the 
indicated 1K2 fusion constructs (top of blots) were analyzed using anti-TAP 
antibodies. Red arrow indicates the approximate location of the p1K2(RF1) 
fusion peptide (~160 kDa). Tubulin was used as a loading control. D) Northern 
blot results of 1K2 fusion RNA. Top panel: Northern blots using a probe to the L1 
5' UTR (5UTR99) was used to detect L1 RNA from poly-adenosine+ RNA 
extracted from HeLa cells transfected with the indicated constructs (above blots). 
Bottom panel: actin loading control northern blots. Blue arrow indicates L1 RNA. 
HeLa UTF = untransfected HeLa cells. E) Mutations in ORF1p do not affect the 
expression of the ORF1p-ORF2p fusion peptide. RNPs from transfected HeLa 
cells were analyzed with an anti-TAP antibody. Green arrow indicates ORF1p-
ORF2p fusion protein band; blue arrow indicates ORF2p-TAP protein band. 
Tubulin was used as a loading control. 
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Figure 2.4: The effect of ORF1p mutations on 1K2 fusion trans-
complementation efficiency. 
(A) Schematic of the trans-complementation assay. HeLa cells are co-transfected 
with a driver L1 construct (i.e., p1K2_TAP) and the ORF1mneoI reporter 
construct, which carries a neomycin retrotransposition indicator cassette (mneoI). 
L1 driver constructs are not marked with mneoI indicator cassette. Successful 
trans-complementation of ORF1mneoI will confer G418 resistance to transfected 
cells. (B) Results of trans-complementation assay. The X-axis indicates the L1 
driver construct that was co-transfected with ORF1mneoI. The Y-axis on the 
graph indicates trans-complementation efficiency (black bars). Trans-
complementation efficiency values have been normalized to p1K2_TAP wild type 
controls (set to 100%). The number above each bar indicates the number of 
independent experiments (n) performed with each L1 driver construct. Error bars 
represent standard deviations. 
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Figure 2.5: Classification of ORF1p mutant L1 RNPs. 
 A) Wild type L1 RNPs (pDK101, pDK108): Robust localization of L1 ORF1p 
(blue circles), ORF2p (yellow circle), and RNA (black wavy line) to RNPs;  robust 
LEAP activity. B) TYPE I (RNA binding mutants: pDK103, pDK105, pDK116, 
pAD500): ORF1p fails to localize to L1  RNPs; RNPs contain wild type levels of 
ORF2p and exhibit wild type LEAP activity levels with an impairment in L1 RNA 
reverse transcription fidelity (i.e., L1 reverse transcription can initiate from within  
internal L1 sequences).  C) TYPE II (chaperone activity mutants: pDK106, 
pDK109): RNPs contain wild type levels of L1-encoded proteins and exhibit wild 
type LEAP activity. D) TYPE III (leucine zipper mutants: pLZC, pLZC/AA): Failure 
of ORF1p and ORF2p to localize to RNPs; decreased LEAP activity likely due to 
failure of ORF2p to localize to RNPs. Red-hatched box encloses L1 mutants that 
are not capable of retrotransposition.  
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Chapter 3 
 

The zinc-finger antiviral protein ZAP inhibits LINE and Alu 
retrotransposition 

 

 The research in this chapter was recently published as an article in PLOS 

Genetics (Moldovan and Moran 2015), and is presented here with only minor 

modifications to meet thesis formatting requirements. Use of the original article is 

in strict accordance with PLoS  journal policies and the  Creative Commons 

Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). I 

designed and carried out all experiments described in this chapter.  

 

Abstract 

 Long INterspersed Element-1 (LINE-1 or L1) is the only active 

autonomous retrotransposon in the human genome. To investigate the interplay 

between the L1 retrotransposition machinery and the host cell, we used co-

immunoprecipitation in conjunction with liquid chromatography and tandem mass 

spectrometry to identify cellular proteins that interact with the L1 first open 

reading frame-encoded protein, ORF1p. We identified 39 ORF1p-interacting 

candidate proteins including the zinc-finger antiviral protein (ZAP or ZC3HAV1). 

Here we show that the interaction between ZAP and ORF1p requires RNA and 

that ZAP overexpression in HeLa cells inhibits the retrotransposition of 

engineered human L1 and Alu elements, an engineered mouse L1, and an 

engineered zebrafish LINE-2 element. Consistently, siRNA-mediated depletion of 

endogenous ZAP in HeLa cells led to an ~2-fold increase in human L1 

retrotransposition. Fluorescence microscopy in cultured human cells 

demonstrated that ZAP co-localizes with L1 RNA, ORF1p, and stress granule 

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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associated proteins in cytoplasmic foci. Finally, molecular genetic and 

biochemical analyses indicate that ZAP reduces the accumulation of full-length 

L1 RNA and the L1-encoded proteins, yielding mechanistic insight about how 

ZAP may inhibit L1 retrotransposition. Together, these data suggest that ZAP 

inhibits the retrotransposition of LINE and Alu elements. 

 

Introduction 

 Long INterspersed Element-1 (LINE-1, also known as L1) sequences 

comprise ~17% of human DNA and represent the only class of autonomously 

active retrotransposons in the genome (Lander et al. 2001). L1s mobilize (i.e., 

retrotranspose) throughout the genome via an RNA intermediate by a copy-and-

paste mechanism known as retrotransposition (reviewed in Beck et al. 2011). 

The overwhelming majority of human L1s are retrotransposition-deficient 

because they are 5' truncated, contain internal rearrangements (i.e., 

inversion/deletion events), or harbor point mutations that compromise the 

functions of the L1-encoded proteins (ORF1p and ORF2p) (Grimaldi et al. 1984, 

Lander et al. 2001). Despite these facts, it is estimated that the average diploid 

human genome contains ~80-100 L1 elements that are capable of 

retrotransposition (Sassaman et al. 1997, Brouha et al. 2003, Beck et al. 2010). It 

is estimated that a new L1 insertion occurs in approximately 1 out of 200 live 

human births (reviewed in Cordaux and Batzer 2009). On occasion, L1 

retrotransposition events can disrupt gene expression, leading to diseases such 

as hemophilia A (Kazazian et al. 1988), Duchenne muscular dystrophy (Holmes 

et al. 1994), and cancer (Miki et al. 1992, Shukla et al. 2013). Indeed, L1-

mediated retrotransposition events are responsible for at least 96 disease-

producing insertions in man (reviewed in Hancks and Kazazian 2012). 

 A full-length human L1 is ~6 kb in length and encodes a 5' UTR that 

harbors an internal RNA polymerase II promoter that directs transcription from at 

or near the first base of the element (Swergold 1990, Becker et al. 1993, 

Athanikar et al. 2004). The 5' UTR is followed by two open reading frames 
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(ORFs) that are separated by a short 63 bp inter-ORF spacer, and a 3' UTR that 

ends in a variable length poly adenosine (poly(A)) tract (Scott et al. 1987, 

Dombroski et al. 1991). The first L1 ORF encodes an ~40 kDa protein (ORF1p) 

that has nucleic acid binding (Martin 1991, Holmes et al. 1992, Hohjoh and 

Singer 1996, Hohjoh and Singer 1997, Khazina and Weichenrieder 2009) and 

nucleic acid chaperone activities (Martin and Bushman 2001, Khazina and 

Weichenrieder 2009). The second L1 ORF encodes a much larger ~150 kDa 

protein (ORF2p) (Ergun et al. 2004, Doucet et al. 2010, Goodier et al. 2010), 

which exhibits single-strand endonuclease (EN) (Feng et al. 1996) and reverse 

transcriptase (RT) (Mathias et al. 1991, Dombroski et al. 1994) activities. 

Experiments in cultured cells have revealed that activities associated with both 

ORF1p and ORF2p are required for efficient L1 retrotransposition (Feng et al. 

1996, Moran et al. 1996).  

 During a cycle of L1 retrotransposition, a full-length L1 is transcribed and 

the resultant bicistronic L1 mRNA is exported to the cytoplasm where it 

undergoes translation. Notably, L1 RNA is translated in a cap-dependent manner 

by an unconventional termination-reinitiation mechanism that facilitates 

translation of both L1 ORFs (Leibold et al. 1990, McMillan and Singer 1993, 

Alisch et al. 2006, Dmitriev et al. 2007). Following translation, ORF1p and 

ORF2p preferentially bind to their respective encoding L1 mRNA template (a 

phenomenon known as cis-preference (Esnault et al. 2000, Wei et al. 2001)) to 

form an L1 ribonucleoprotein particle (RNP) (Martin 1991, Hohjoh and Singer 

1996, Kulpa and Moran 2005, Kulpa and Moran 2006, Doucet et al. 2010). 

Components of the L1 RNP gain access to the nucleus by a process that does 

not strictly require cell division (Kubo et al. 2006), although L1 retrotransposition 

seems to be enhanced in dividing cells (Shi et al. 2007, Xie et al. 2013). Once 

the L1 RNP has entered the nucleus, the L1 RNA is reverse transcribed and 

inserted into genomic DNA by a process known as target-site primed reverse 

transcription (TPRT) (Luan et al. 1993, Feng et al. 1996, Cost et al. 2002). 

Briefly, the ORF2p endonuclease generates a single-strand endonucleolytic nick 

in genomic DNA at a thymidine rich consensus sequence (e.g., 5'-TTTT/A, 5'-
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TCTT/A, 5'-TTTA/A, etc.) (Feng et al. 1996, Cost and Boeke 1998, Morrish et al. 

2002). The resulting 3' hydroxyl group then is used by the ORF2p reverse 

transcriptase as a primer to initiate (-) strand L1 cDNA synthesis from the L1 

mRNA template (Feng et al. 1996, Cost and Boeke 1998). The completion of L1 

integration requires elucidation, but likely involves host proteins involved in DNA 

repair and/or replication (Morrish et al. 2002, Gilbert et al. 2005, Suzuki et al. 

2009, Taylor et al. 2013). Notably, the L1-encoded proteins also can work in 

trans to retrotranspose other cellular RNAs such as Short Interspersed Elements 

(SINEs) (e.g., Alu (Dewannieux et al. 2003) and SINE-R/VNTR/Alu (SVA) 

elements (Ostertag et al. 2003, Hancks et al. 2011, Raiz et al. 2012)). L1 also 

can mobilize uracil-rich small nuclear RNAs (e.g., U6 snRNA (Buzdin et al. 2002, 

Gilbert et al. 2005, Garcia-Perez et al. 2007), small nucleolar RNAs (e.g., U3 

snoRNA (Weber 2006)), and messenger RNAs, which results in the formation of 

processed pseudogenes (Esnault et al. 2000, Wei et al. 2001)). 

 Since L1 retrotransposition can be mutagenic, it stands to reason that the 

host cell employs multiple mechanisms to restrict L1 mobilization (reviewed in 

Levin and Moran 2011). For example, cytosine methylation of the L1 5' UTR 

suppresses L1 expression (Yoder et al. 1997, Bourc'his and Bestor 2004). In 

addition, piwi-interacting RNAs (piRNAs) suppress L1 expression in germ line 

cells (Aravin et al. 2007, reviewed in Levin and Moran 2011, and Siomi et al. 

2011). Finally, emerging studies have demonstrated that several cellular proteins 

restrict L1 retrotransposition. These proteins include several APOBEC3 family 

members ( reviewed in Schumann 2007, Richardson et al. 2014), TREX1 

(Stetson et al. 2008), MOV10 (Arjan-Odedra et al. 2012, Goodier et al. 2012, Li 

et al. 2013), hnRNPL (Peddigari et al. 2013), SAMHD1 (Zhao et al. 2013), RNase 

L (Zhang et al. 2014), and the melatonin receptor 1 (MT1) (deHaro et al. 2014).  

 To gain a more complete understanding of the interplay between the L1 

retrotransposition machinery and the host cell, we used liquid chromatography-

tandem mass spectrometry (LC-MS/MS) to identify proteins that co-

immunoprecipitate with L1 ORF1p in HeLa cells, reasoning that some of these 

proteins may affect L1 retrotransposition.  We next analyzed the effects of 
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ORF1p-interacting proteins on L1 retrotransposition by overexpressing a subset 

of them in a cultured cell retrotransposition assay (Moran et al. 1996, Wei et al. 

2000). Here, we report that the zinc-finger antiviral protein ZAP (Gao et al. 2002) 

interacts with L1 RNPs and inhibits L1 retrotransposition in cultured cells. ZAP 

also inhibits human Alu retrotransposition and the retrotransposition of mouse 

and zebrafish LINE elements. Molecular genetic and biochemical analyses 

suggest that ZAP inhibits retrotransposition by suppressing the accumulation of 

full-length L1 RNA and L1-encoded proteins in the cell. 

 

Results 

Identification of L1 ORF1p-interacting proteins 

 To identify proteins that interact with L1 ORF1p, we transfected HeLa cells 

with a human L1 construct, pJM101/L1.3FLAG, which expresses a version of 

ORF1p containing a FLAG epitope at its carboxyl-terminus (ORF1p-FLAG) 

(Figure 3.1A). The pJM101/L1.3FLAG construct exhibits robust retrotransposition 

activity in HeLa cells, albeit at a lower efficiency (~50%) than the untagged L1 

construct, pJM101/L1.3 (Figure 3.8A).  

Briefly, HeLa cells were transfected with pJM101/L1.3FLAG or 

pJM101/L1.3, a similar construct that lacks the FLAG epitope sequence (Figure 

3.1A). Whole cell lysates from transfected cells then were incubated with anti-

FLAG coated agarose beads to immunoprecipitate ORF1p-FLAG (see Methods). 

Immunoprecipitated fractions were analyzed by SDS-PAGE and proteins were 

visualized by silver staining (Figure 3.1B). The analysis of silver-stained gels 

revealed a prominent band of ~40 kDa (the theoretical molecular weight of 

ORF1p) in the pJM101/L1.3FLAG immunoprecipitation lane (Figure 3.1B; 

asterisk), which was not apparent in the pJM101/L1.3 lane. Western blot analysis 

with an antibody specific to L1.3 ORF1p (amino acids 31-49) confirmed the 

enrichment of ORF1p-FLAG in the pJM101/L1.3FLAG lane (Figures 3.1C and 

3.8B; bottom panel). We also observed a complex pattern of bands between ~25 

kDa and ~150 kDa that was present in the pJM101/L1.3FLAG lane that was not 
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evident in the pJM101/L1.3 lane (Figure 3.1B; black vertical bars). A similar 

pattern of protein bands was produced on silver-stained gels from 

pJM101/L1.3FLAG immunoprecipitation reactions using different wash and/or 

lysis conditions (Figures 3.8B and 3.8C, respectively). 

 To determine the identity of cellular proteins that associated with ORF1p-

FLAG, the bands from the lanes corresponding to the pJM101/L1.3FLAG and 

pJM101/L1.3 immunoprecipitation experiments were excised from SDS-PAGE 

gels and submitted for LC-MS/MS (see Methods). An LC-MS/MS-identified 

protein was selected as an ORF1p-interacting candidate if it met the following 

criteria: 1) the protein was unique to the pJM101/L1.3FLAG immunoprecipitation, 

and 2) the protein was identified by two or more unique peptide sequences 

(peptide error rate ≤ 0.05; protein probability ≥ 0.95) (Table 3.1 and Methods). 

Thirty-nine ORF1p-interacting protein candidates were identified that met these 

criteria (Table 3.1).   

To confirm the interactions between LC-MS/MS-identified proteins and 

ORF1p-FLAG, we evaluated 13 of the 39 ORF1p-FLAG interacting proteins for 

which there were commercially available antibodies and/or cDNA expression 

clones. Western blot analyses confirmed that these proteins associated with 

ORF1p-FLAG (Figure 3.1D). The 13 ORF1p-interacting proteins are involved in a 

variety of cellular processes including antiviral defense (ZAP (Gao et al. 2002) 

and MOV10 (Burdick et al. 2010)), nonsense-mediated decay (UPF1 (Leeds et 

al. 1991)), RNA splicing (hnRNPL (Hui et al. 2003) and DHX9 (Kernan et al. 

1991, Kuroda et al. 1991)), and transcription (PURA (Bergemann et al. 1992), 

CDK9 (Grana et al. 1994), and ILF3 (Kao et al. 1994)). Notably, gene ontology 

(Ashburner et al. 2000) and global analyses of RNA binding proteins in human 

cell lines (Baltz et al. 2012, Castello et al. 2012) revealed that the 13 validated 

ORF1p-FLAG interacting proteins are RNA binding proteins (RBPs). 

Consistently, immunoprecipitation experiments of ORF1p-FLAG conducted in the 

presence of RNaseA revealed that the association between ORF1p and each of 

the 13 ORF1p-interacting proteins was sensitive to RNase A treatment (Figure 

3.1D). Thus, the majority of ORF1p-interacting proteins associate with ORF1p by 
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binding to L1 RNA and/or other RNAs present within the L1 RNP (Mandal et al. 

2013).  

ORF1p-interacting proteins restrict L1 retrotransposition in HeLa cells 

 We next investigated whether overexpression of nine of the validated 

ORF1p-interacting proteins, as well as nine unvalidated ORF1p-interacting 

proteins, affects L1 retrotransposition (Moran et al. 1996, Wei et al. 2000). 

Briefly, HeLa cells were co-transfected with a cDNA plasmid expressing one of 

the ORF1p-FLAG interacting proteins and an engineered human L1 construct 

(pJJ101/L1.3; (Kopera et al. 2011)) marked with a blasticidin retrotransposition 

indicator cassette (mblastI) (Figures 3.2A and 3.2B; top panel). The mblastI 

cassette contains an antisense copy of the blasticidin deaminase gene, which is 

cloned into the L1 3' UTR. The blasticidin deaminase gene also is interrupted by 

an intron in the same transcriptional orientation as L1. This arrangement ensures 

that the blasticidin deaminase gene is expressed only when the L1 transcript is 

spliced, reverse transcribed, and inserted into genomic DNA. The resulting 

blasticidin-resistant foci then provide a visual, quantitative readout of 

retrotransposition activity (Moran et al. 1996, Morrish et al. 2002).  

 To monitor potentially toxic side effects of cDNA overexpression, HeLa 

cells also were co-transfected in a parallel assay with a cDNA expression vector 

and a control plasmid (pcDNA6/TR) that expresses the blasticidin deaminase 

gene (Figure 3.2B; bottom panel). Following blasticidin selection, the resulting 

foci provide a visual, quantitative readout of the effect of cDNA overexpression 

on colony formation (Figure 3.2B; bottom panel). This control is essential to 

determine if a cDNA affects L1 retrotransposition or cell viability and/or growth.   

 We co-transfected HeLa cells with each of the 18 ORF1p-FLAG 

interacting candidates and pJJ101/L1.3 (Figure 3.2C). An empty pCEP4 vector 

that was co-transfected with pJJ101/L1.3 served as a normalization control 

(Figures 3.2B and 3.2C). As a negative control, we demonstrated that a plasmid 

that expresses the humanized renilla green fluorescence protein (pCEP/GFP) did 

not affect pJJ101/L1.3 retrotransposition. As a positive control, we demonstrated 
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that a plasmid that expresses human APOBEC3A (pK_A3A) reduced 

pJJ101/L1.3 retrotransposition to ~18% of control levels (Figure 3.2C), which is in 

agreement with previous studies (Bogerd et al. 2006, Chen et al. 2006, 

Muckenfuss et al. 2006, Richardson et al. 2014). Four of the cDNA-expressing 

plasmids that we tested (ZAP-S (ZAP short isoform), hnRNPL, MOV10, and 

PURA) each reduced pJJ101/L1.3 retrotransposition to less than 50% of pCEP4 

control levels. Notably, ZAP-S (~30% of control), hnRNPL (~30% of control), 

MOV10 (~13% of control), and PURA (~10% of control) inhibited 

retrotransposition to levels similar to that of pK_A3A (~18% of control) (Figure 

3.2C). By comparison, the majority of the cDNA-expressing plasmids (14/18) did 

not significantly affect pJJ101/L1.3 retrotransposition levels (less than 50% 

inhibition when compared to pCEP4 control levels) (Figure 3.2C). Thus, the data 

suggest that ZAP-S, hnRNPL, MOV10, and PURA inhibit L1 retrotransposition in 

cultured cells. 

ZAP inhibits L1 retrotransposition 

  The above data (Figure 3.2C) imply that ZAP, hnRNPL, MOV10, and 

PURA may function as host factors that restrict L1 retrotransposition. Notably, 

hnRNPL (Peddigari et al. 2013), MOV10 (Arjan-Odedra et al. 2012, Goodier et al. 

2012), and PURA (Goodier et al. 2013) previously were shown to inhibit L1 

retrotransposition. However, the effect of ZAP on L1 retrotransposition has not 

been studied; thus, we sought to determine how ZAP inhibits L1 

retrotransposition.  

 ZAP is a poly (ADP-ribose) polymerase (PARP) family member (Kerns et 

al. 2008) initially characterized as an antiviral protein that inhibits murine 

leukemia virus (MLV) replication in cultured rat cells (Gao et al. 2002). Previous 

studies identified two human ZAP isoforms that resulted from alternative splicing 

(Kerns et al. 2008) (Figure 3.3A; top panel). The long ZAP isoform (ZAP-L) is 902 

amino acids in length and contains an amino-terminus CCCH zinc-finger domain 

and an inactive carboxyl-terminal PARP-like domain (Kerns et al. 2008). The 

short ZAP isoform (ZAP-S) is 699 amino acids in length and lacks the carboxyl-
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terminal PARP-like domain (Kerns et al. 2008). The HA-tagged human ZAP-L 

isoform restricted pJJ101/L1.3 retrotransposition to ~40% of control levels 

(Figure 3.3A; black bars) and the human ZAP-S isoform restricted pJJ101/L1.3 

retrotransposition to ~30% of control levels (Figures 3.2C and 3.3A; black bars). 

Notably, overexpression of ZAP-L or ZAP-S did not dramatically affect the ability 

of HeLa cells to form blasticidin-resistant colonies in pcDNA6/TR control assays 

(Figure 3.3A, white bars). Western blot control experiments confirmed the 

overexpression of ectopic ZAP-L and ZAP-S compared to untransfected controls 

~48 hours post-transfection (Figures 3.9A and 3.9B). Thus, ZAP inhibits L1 

retrotransposition in cultured cells and the ZAP-L PARP-like domain is not 

required for L1 restriction.  

Putative ZAP orthologs are present in several species (Kerns et al. 2008); 

thus, we tested whether a rat ZAP cDNA (rZAP) (Gao et al. 2002), that is 

orthologous to human ZAP-S (Gao et al. 2002, Kerns et al. 2008) could restrict 

pJJ101/L1.3 retrotransposition. Overexpression of rZAP efficiently reduced 

retrotransposition to ~40% of control levels (Figure 3.3A; black bars). Thus, the 

ability to restrict L1 retrotransposition is not limited to human ZAP.  

The ZAP zinc-finger domain is necessary and sufficient to inhibit L1 
retrotransposition 

 The ZAP zinc-finger domain binds to RNA and is required for antiviral 

activity (Guo et al. 2004, Chen et al. 2012). To analyze the role of the ZAP zinc-

finger domain in L1 restriction, we tested the effects of a truncated ZAP-S mutant 

that expresses the ZAP zinc-finger domain (ZAP-S/1-311; containing amino acids 

1-311) as well as a ZAP-S mutant that lacks the zinc-finger domain (ZAP-S/Δ72-

372; lacking amino acids 72-372) in pJJ101/L1.3 retrotransposition assays 

(Figure 3.3A; above graph). ZAP-S/1-311 restricted retrotransposition to ~10% of 

control levels (Figure 3.3A; black bars), whereas ZAP-S/Δ72-372 had little effect 

on retrotransposition (~80% of control levels) (Figure 3.3A; black bars). The 

overexpression of the wild type or mutant ZAP-S/Δ72-372 expression constructs 

did not adversely affect the ability of HeLa cells to form blasticidin-resistant 
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colonies in pcDNA6/TR control assays (Figure 3.3A; white bars). Notably, 

transfection with ZAP-S/1-311 resulted in an ~50% decrease in the ability of 

HeLa cells to form blasticidin-resistant colonies; however, this effect has been 

accounted for through normalization (Figure 3.2B) and thus is independent of the 

ability of ZAP-S/1-311 to restrict L1 retrotransposition. Indeed, similar off-target 

effects have been reported for A3A cDNA expressing plasmids in HeLa cell-

based L1 retrotransposition assays (Richardson et al. 2014). Western blot control 

experiments revealed that wild-type ZAP-S and the two mutant ZAP-S isoforms 

were expressed at similar levels ~48 hours post-transfection (Figures 3.9B and 

3.9C). Thus, the ZAP zinc-finger domain is necessary and sufficient to inhibit L1 

retrotransposition.  

ZAP restricts the retrotransposition of various non-LTR retrotransposons 

To determine if ZAP-S was able to restrict other non-long terminal repeat 

(non-LTR) retrotransposons, we tested whether ZAP-S expression affected 

human Alu retrotransposition. Unlike L1, Alu is a 7SL-derived non-autonomous 

retrotransposon that does not encode its own proteins (Ullu and Tschudi 1984). 

Instead, Alu elements must parasitize L1 ORF2p in trans to mediate their 

retrotransposition (Dewannieux et al. 2003). Briefly, HeLa cells were co-

transfected with a full-length L1 element (pJM101/L1.3Δneo), an Alu 

retrotransposition reporter plasmid (pAluneoTet), and a ZAP-S expression 

plasmid. Notably, ZAP-S potently reduced Alu retrotransposition to ~25% of 

control levels (Figure 3.3B). In contrast, the expression of the L1 restriction-

deficient ZAP-S/Δ72-372 mutant did not negatively affect Alu retrotransposition 

(Figure 3.3B). Thus, ZAP-S is able to restrict the mobility of the two most prolific 

retrotransposons present in the human genome. 

We next tested if human ZAP-S could restrict the retrotransposition of a 

natural mouse L1 (pGF21) (Goodier et al. 2001), a zebrafish LINE-2 (pZfL2-2) 

(Sugano et al. 2006), or a synthetic mouse L1 (pCEPsmL1) (Han and Boeke 

2004) that has been extensively mutagenized to alter 24% of the nucleic acid 

sequence without disrupting amino acid sequence. Human ZAP-S inhibited the 
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retrotransposition of human L1 (pJM101/L1.3; ~43% of control levels), natural 

mouse L1 (pGF21; ~24% of control levels), zebrafish L2 (pZfL2-2; ~19% of 

control levels), and synthetic mouse L1 (pCEPsmL1; ~70% of control levels) 

(Figure 3.3C). The restriction-defective ZAP-S mutant, ZAP-S/Δ72-372, did not 

significantly affect the retrotransposition activity of these retrotransposons (Figure 

3.3C). Notably, the milder inhibition of ZAP-S on pCEPsmL1 may be due to the 

elevated efficiency of pCEPsmL1 retrotransposition, the increased steady-state 

level of pCEPsmL1 mRNA and proteins, and/or the GC-rich nature of pCEPsmL1 

(Han and Boeke 2004). Thus, ZAP-mediated restriction of retrotransposition is 

not specific to human non-LTR retrotransposons. 

Depletion of endogenous ZAP enhances L1 retrotransposition 

 To test if endogenous ZAP restricts L1 retrotransposition, we used small 

interfering RNA (siRNA) to deplete endogenous ZAP from HeLa cells. Following 

siRNA treatment, cells were transfected with an L1 plasmid (pLRE3-mEGFPI) 

tagged with an EGFP indicator cassette (mEGFPI), which allows 

retrotransposition activity to be detected by EGFP fluorescence (Ostertag et al. 

2000). As a negative control, HeLa cells were transfected with the L1 

retrotransposition-defective plasmid pJM111-LRE3-mEGFPI, which carries two 

missense mutations that adversely affect ORF1p RNA binding (Moran et al. 

1996, Martin et al. 2005, Khazina and Weichenrieder 2009). Treatment of HeLa 

cells with an siRNA pool against ZAP resulted in an ~80% and ~90% reduction of 

ZAP-L and ZAP-S protein levels, respectively, when compared to HeLa cells 

treated with a non-targeting control siRNA pool (Figure 3.3D; top left panel). ZAP 

siRNA treatment led to an approximately two-fold increase in pLRE3-mEGFPI 

retrotransposition activity when compared to assays conducted in the presence 

of a control siRNA (Figures 3.3D; bottom panel and 3.9D). We further 

demonstrated that siRNA-mediated depletion of endogenous MOV10 (Figure 

3.3D; top right panel) from HeLa cells resulted in an approximately two-fold 

increase in pLRE3-mEGFPI retrotransposition (Figures 3.3D; bottom panel and 

3.9D), which is in agreement with previous studies (Arjan-Odedra et al. 2012, 
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Goodier et al. 2012). These data suggest that endogenous ZAP may restrict L1 

retrotransposition. 

ZAP-S inhibits the accumulation of full-length LINE-1 mRNA  

 To investigate how ZAP restricts L1 retrotransposition, we analyzed the 

effect of ZAP-S expression on the accumulation of the L1 RNA. HeLa cells were 

co-transfected with pJM101/L1.3Δneo and either ZAP-S or ZAP-S/Δ72-372. 

Polyadenylated RNA from whole cell extracts then was analyzed by northern blot 

using RNA probes complementary to sequences within the L1.3 5' UTR 

(5UTR99) and ORF2 (ORF2_5804) (Figure 3.4A). Co-transfection with ZAP-S 

resulted in a reduction of full-length polyadenylated L1 RNA levels (~13% of 

pCEP4 control) compared to cells co-transfected with either the restriction-

defective ZAP-S/Δ72-372 (~47% compared to pCEP4 control) or an empty 

pCEP4 control vector (Figure 4B; black arrow in blot; black bars in graph). 

Interestingly, ZAP-S expression did not have a pronounced effect on the 

accumulation of smaller L1 RNA species, which may have resulted from cryptic 

splicing and/or premature polyadenylation (Figure 3.4B; top panel: blue and 

yellow arrows, bottom panel: blue and yellow bars) (Perepelitsa-Belancio and 

Deininger 2003, Belancio et al. 2006, Belancio et al. 2008). Finally, control 

experiments revealed that ectopic ZAP-S expression did not affect endogenous 

actin RNA levels (Figure 3.4B). Thus, ZAP-S expression reduces the 

accumulation of full-length L1 mRNA in cultured cells. 

ZAP-S inhibits the accumulation of ORF1p and ORF2p  

 We next examined the effect of ZAP-S expression on the accumulation of 

ORF1p and ORF2p. We co-transfected HeLa cells with either ZAP-S or ZAP-

S/Δ72-372 and the L1 plasmid, pJBM2TE1, which expresses an L1.3 element 

marked with a T7 gene10 epitope tag on the carboxyl-terminus of ORF1p and a 

TAP epitope-tag on the carboxyl-terminus of ORF2p (Figure 3.4C). Following co-

transfection, HeLa cells were treated with puromycin to select for cells 

expressing pJBM2TE1. Both whole cell lysates (WCL) and RNP fractions were 



 116 

collected 5 days post-transfection and subjected to western blot analyses to 

monitor ORF1p and ORF2p expression levels.  

Expression of ZAP-S led to a decrease in the level of ORF1p and ORF2p 

in both WCL and RNP fractions, whereas the expression of the restriction-

defective ZAP-SΔ/72-372 mutant or an empty pcDNA3 vector did not 

dramatically affect ORF1p or ORF2p expression levels (Figure 3.4D). The 

reduction in ORF1p and ORF2p was most evident in the RNP fraction, likely 

because both ORF1p and ORF2p are enriched in RNPs (Hohjoh and Singer 

1996, Hohjoh and Singer 1997, Kulpa and Moran 2005, Kulpa and Moran 2006, 

Doucet et al. 2010). Control experiments revealed that ZAP-S expression did not 

affect the level of eIF3 protein (Figure 3.4D) and that ZAP-S and ZAP-S/Δ72-372 

are expressed at similar levels in whole cell lysates (Figure 3.4D: top WCL 

panel).  By comparison, ZAP-SΔ/72-372 is present at much lower levels in the 

RNP fraction compared to wild-type ZAP-S (Figure 3.4D; bottom RNP panel), 

suggesting that the zinc-finger domain is responsible for ZAP-S localization to the 

RNP fraction.  

 To determine if ZAP-S affects the expression of non-L1 proteins, we 

examined the effect of ZAP-S on EGFP expression. We co-transfected ZAP-S 

with an L1 plasmid (pLRE3-EF1-mEGFPΔIntron) (Wissing et al. 2011) that 

expresses the L1 element, LRE3 and an intact copy of the EGFP gene (Figure 

3.10A). In this case, LRE3 and EGFP are under the control of convergent 

promoters, which allows the simultaneous expression of LRE3 and EGFP from 

pLRE3-EF1-mEGFPΔIntron. Thus, EGFP expression is not dependent on 

retrotransposition. Forty-eight hours post-transfection, flow cytometry was used 

to isolate EGFP-positive cells (i.e., cells expressing pLRE3-EF1-mEGFPΔIntron) 

(Figure 3.10C). Western blotting demonstrated a marked reduction in ORF1p 

when compared to EGFP levels in cells that were co-transfected with ZAP-S 

(Figure 3.10B). By comparison, ORF1p and EGFP were present at comparable 

levels in cells that were co-transfected with either an empty pCEP4 vector or the 

restriction-deficient ZAP-SΔ/72-372 mutant (Figure 3.10B). Control experiments 

revealed that ZAP-S did not affect endogenous tubulin protein levels (Figure 
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3.10B). Thus, ZAP-S expression appears to preferentially restrict the expression 

of L1 ORF1p.  

ZAP co-localizes with ORF1p and L1 RNA in the cytoplasm 

 ORF1p, ORF2p, and L1 RNA form RNP complexes that appear as 

discrete cytoplasmic foci when visualized by fluorescence microscopy (Goodier 

et al. 2007, Doucet et al. 2010, Goodier et al. 2010). Notably, previous studies 

have shown that ZAP predominantly is localized in the cytoplasm (Liu et al. 2004) 

and that ZAP antiviral activity also is localized to the cytoplasm (Gao et al. 2002). 

To determine if ZAP co-localizes with ORF1p, we co-transfected HeLa cells with 

pJM101/L1.3Δneo and a plasmid that expresses a carboxyl-terminus turbo-GFP 

tagged ZAP-S protein (ZAP-S-tGFP). Control experiments showed that ZAP-S-

tGFP restricted pJJ101/L1.3 retrotransposition to ~55% of control levels (Figure 

3.11A). Confocal fluorescence microscopy revealed that ORF1p and ZAP-S-

tGFP co-localized in discrete cytoplasmic foci in ~68% of cells that co-expressed 

both ORF1p and ZAP-S-tGFP (Figure 3.5A). To test if transfected ORF1p co-

localizes with endogenous ZAP, we transfected HeLa cells with pAD2TE1, which 

expresses a human L1 (L1.3) containing a T7 gene10 epitope-tag on the 

carboxyl-terminus of ORF1p (Doucet et al. 2010). Confocal microscopy revealed 

that endogenous ZAP co-localized with ORF1p-T7 in cytoplasmic foci in ~91% of 

cells that contained ORF1p-T7 foci (Figure 3.5B). Next, to test if endogenous 

ORF1p co-localizes with transfected ZAP-S, we transfected PA-1 cells (a human 

embryonic carcinoma-derived cell line that expresses endogenous ORF1p 

(Zeuthen et al. 1980, Garcia-Perez et al. 2010)) with ZAP-S-tGFP. Confocal 

microscopy demonstrated that endogenous ORF1p co-localized with ZAP-S-

tGFP in ~89% of PA-1 cells that expressed ZAP-S-tGFP foci (Figure 3.5C). Thus, 

ORF1p and ZAP generally localize to the same region of the cytoplasm. 

To test if the ZAP-S zinc-finger domain is critical for the co-localization of 

ZAP-S with ORF1p, we co-transfected HeLa cells with pJM101/L1.3Δneo and a 

tGFP-tagged ZAP-S mutant that expresses the ZAP-S zinc-finger domain (ZAP-

S/Δ310-645-tGFP; lacking amino acids 310-645), or a ZAP-S mutant that lacks 
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the ZAP-S zinc-finger domain (ZAP-S/Δ72-372-tGFP; lacking amino acids 72-

372) (Figure 3.11A). In control experiments, ZAP-S/Δ310-645-tGFP restricted 

pJJ101/L1.3 retrotransposition to ~32% of control levels whereas ZAP-S/Δ72-

372-tGFP did not have a significant effect (~93% of control) on retrotransposition 

activity (Figure 3.11A). Confocal microscopy revealed that ORF1p and ZAP-

S/Δ310-645-tGFP co-localized in cytoplasmic foci in ~74% of cells that co-

expressed both ORF1p and ZAP-S/Δ310-645-tGFP (Figure 3.5D). In cells 

transfected with pJM101/L1.3Δneo and ZAP-S/Δ72-372-tGFP, ORF1p and ZAP-

S/Δ72-372-tGFP co-localized in only ~14% of cells that co-expressed both 

ORF1p and ZAP-S/Δ72-372-tGFP (Figure 3.5C). Thus, the ZAP-S zinc-finger 

domain is necessary and sufficient for the co-localization of ZAP-S and ORF1p in 

cytoplasmic foci. 

To determine if ZAP co-localizes with L1 RNA, we co-transfected HeLa 

cells with pJM101/L1.3 and either ZAP-S-tGFP, ZAP-S/Δ310-645-tGFP, or ZAP-

S/Δ72-372-tGFP. To visualize L1 RNA, transfected cells were probed with 

fluorescently labeled oligonucleotide probes complementary to sequences within 

the L1 5' UTR. As a control, cells were co-transfected with pJM101/L1.3 and an 

empty pCEP4 vector. In pCEP4 control experiments, fluorescence microscopy 

revealed that ORF1p co-localized with L1 RNA in cytoplasmic foci in ~88% of 

cells that contained ORF1p cytoplasmic Foci (Figure 3.6A and Figure 3.12A). In 

HeLa cells co-transfected with pJM101/L1.3 and ZAP-S-tGFP, L1 RNA co-

localized with ORF1p and ZAP-S-tGFP in cytoplasmic foci in ~23% of foci-

containing cells (Figure 3.6B and Figure 3.12A). Thus, ZAP and L1 RNA co-

localize in cytoplasmic foci.  

Fluorescence microscopy further revealed that in cells co-transfected with 

pJM101/L1.3 and ZAP-S/Δ310-645-tGFP that L1 RNA was detected in ORF1p 

and ZAP-S/Δ310-645-tGFP foci in only ~18% of foci-containing cells (Figure 3.6C 

and Figure 3.12A). In contrast, in cells co-transfected with pJM101/L1.3 and 

ZAP-S/Δ72-372-tGFP, L1 RNA co-localized with ORF1p in ~77% of cells that 

expressed ZAP/Δ72-372-tGFP and contained ORF1p cytoplasmic Foci (Figure 
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3.6D and Figure 3.12A). Thus, the data suggest that ZAP prevents the 

accumulation of L1 RNA in cytoplasmic foci.  

We next determined the effect of ZAP-S on ORF1p expression using 

confocal microscopy. HeLa cells were co-transfected with pJM101/L1.3Δneo and 

either ZAP-S-tGFP, ZAP-S/Δ310-645-tGFP, or ZAP-S/Δ72-372-tGFP. As a 

control, cells were co-transfected with pJM101/L1.3Δneo and an empty pCEP4 

vector. In pCEP4 control experiments, confocal microscopy revealed that ~10.8% 

of cells expressed ORF1p after ~48 hours (Figure 3.12B). In contrast, only ~2.8% 

of cells that were co-transfected with ZAP-S-tGFP expressed ORF1p and ~2.8% 

of cells that were co-transfected with ZAP-S/Δ310-645-tGFP expressed ORF1p 

(Figure 3.12B). Approximately 8.0% of cells that were co-transfected with ZAP-

S/Δ72-372-tGFP expressed ORF1p (Figure 3.12B). Thus, the data suggest that 

the ZAP-S zinc-finger domain is necessary and sufficient to inhibit the 

accumulation of ORF1p in HeLa cells.  

L1 cytoplasmic foci also co-localize with an array of RNA binding proteins, 

including markers of cytoplasmic stress granules (SGs) (Goodier et al. 2007, 

Doucet et al. 2010, Goodier et al. 2013). Notably, ZAP also localizes to 

cytoplasmic SGs (Leung et al. 2011). To determine whether ZAP-S/ORF1p foci 

co-localize with cytoplasmic SGs we transfected HeLa cells with 

pJM101/L1.3Δneo and ZAP-S-tGFP. Confocal microscopy revealed that ZAP-S-

tGFP/ORF1p co-localized with the endogenous SG associated protein eIF3 

(Figure 3.11B). Additionally, endogenous ZAP also co-localized with the SG 

marker, G3BP (Figure 3.11D). In contrast, ZAP-S-tGFP/ORF1p foci did not co-

localize with endogenous tubulin (Figure 3.11C), and endogenous ZAP did not 

co-localize with the processing body associated protein, DCP1α (Figure 3.11E). 

Thus, L1 ORF1p, ZAP, and SG associated proteins partition to the same 

cytoplasmic compartment. 
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Discussion 

 In this study, we identified 39 cellular proteins that interact with L1 ORF1p 

and validated 13 of these interactions in biochemical assays. Our data showed 

that the 13 validated ORF1p-interacting proteins associate with ORF1p via an 

RNA bridge (Figure 3.1D). Notably, 33 out of 39 of the ORF1p-interacting 

proteins also were detected in recent studies (Table S1; (Goodier et al. 2013, 

Peddigari et al. 2013, Taylor et al. 2013)). Importantly, we discovered that ZAP 

restricts human L1 and Alu retrotransposition. We also showed that hnRNPL, 

MOV10, and PURA inhibit L1 retrotransposition, which is in agreement with 

previous studies (Arjan-Odedra et al. 2012, Goodier et al. 2012, Goodier et al. 

2013, Li et al. 2013, Peddigari et al. 2013). Thus, our data both confirm and 

extend those previous analyses and will help guide future studies that endeavor 

to determine how L1 retrotransposition impacts the human genome. 

 ZAP inhibits the mobility of both human and non-human non-LTR 

retrotransposons. The overexpression of the human and rat orthologs of ZAP 

restricts human L1 retrotransposition (Figure 3.3A). Human ZAP-S 

overexpression restricts the retrotransposition of an engineered human SINE 

(Alu) (Figure 3.3B), an engineered mouse L1 (GF21), and an engineered 

zebrafish LINE-2 element (ZfL2-2) (Figure 3.3C). Although our studies primarily 

involved the overexpression of ZAP, we also demonstrated that the depletion of 

endogenous ZAP in HeLa cells led to an ~2-fold increase in L1 retrotransposition 

(Figure 3.3D). This observed increase in L1 retrotransposition activity is similar to 

increases in L1 activity that were observed upon depletion of MOV10 and 

hnRNPL proteins in other studies (Arjan-Odedra et al. 2012, Goodier et al. 2012, 

Peddigari et al. 2013). Thus, in principle, physiological levels of ZAP may be 

sufficient to influence retrotransposition in certain cell types.  

The ZAP CCCH zinc-finger domain is required to both bind and mediate 

the degradation of viral RNA (Guo et al. 2004, Guo et al. 2007).  Our data 

indicate that ZAP binding to L1 RNA is critical for L1 restriction. We 

demonstrated that ORF1p-FLAG and ZAP interact via an RNA bridge (Figure 
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3.1D). Moreover, we showed that overexpression of the ZAP zinc-finger domain 

more potently inhibits L1 retrotransposition than overexpression of wild type ZAP-

L or ZAP-S (Figure 3.3A), and that the ZAP-S zinc-finger domain is required to 

inhibit L1 retrotransposition (Figure 3.3A and Figure 3.11A). In addition to our 

genetic and biochemical data, fluorescence microscopy revealed that: 1) co-

transfected ZAP-S, L1 RNA, and ORF1p co-localize in the cytoplasm of HeLa 

cells; 2) the ZAP-S zinc-finger domain is necessary and sufficient for the co-

localization of ZAP-S, L1 RNA, and ORF1p; 3) endogenous ZAP co-localizes 

with transfected ORF1p in HeLa cells; and 4) endogenous ORF1p interacts with 

transfected ZAP-S in human PA-1 embryonic carcinoma cells (Figures  3.5A-

3.5E and Figures 3.6A-3.6D). Thus, the data suggest that ZAP interacts with L1 

RNA in order to mediate L1 restriction. 

Notably, the zebrafish ZfL2-2 retrotransposon lacks a homolog to ORF1 

and only encodes a single ORF that contains an apurinic/apyrimidinic 

endonuclease-like (EN) and a reverse transcriptase (RT) domain (Sugano et al. 

2006). The finding that ZAP-S efficiently restricts ZfL2-2 retrotransposition further 

indicates that ZAP-S likely restricts retrotransposition by interacting with LINE 

RNA. Although a ZAP consensus RNA target sequence/motif has not yet been 

identified, evidence suggests that ZAP recognizes long RNA stretches (>500 

nucleotides) and/or specific RNA tertiary structure (Guo et al. 2004, Chen et al. 

2012). The ability of ZAP to inhibit non-human LINE elements suggests that ZAP 

may not recognize a particular LINE linear consensus RNA sequence, but 

instead may recognize an unidentified structural feature common to certain LINE 

RNAs (Guo et al. 2004, Chen et al. 2012).  

Evidence suggests that ZAP prevents the accumulation of viral RNAs in 

the cytoplasm (Gao et al. 2002). ZAP-S overexpression significantly reduced the 

amount of polyadenylated, full-length L1 RNA (Figure 3.4B), which would be 

expected to inhibit retrotransposition by limiting the supply of L1 mRNA available 

for translation and as a template for TPRT. Notably, while ZAP-S selectively 

inhibited the accumulation of full-length L1 transcripts, it did not dramatically 

affect the accumulation of shorter, spliced and/or polyadenylated L1 RNAs 
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(Figure 3.4B) (Perepelitsa-Belancio and Deininger 2003, Belancio et al. 2006, 

Belancio et al. 2008, Belancio et al. 2010).  Thus, ZAP does not appear to affect 

L1 transcription per se, but instead likely affects the post-transcriptional 

processing of full-length L1 mRNA. In addition to biochemical data, fluorescence 

microscopy revealed that L1 RNA was depleted from L1 ORF1p cytoplasmic foci 

in the presence of ZAP (Figure 3.11A). The depletion of RNA from L1 

cytoplasmic foci was dependent on the ZAP-S zinc-finger domain. Based on 

these data it is likely that ZAP prevents the accumulation of cytoplasmic L1 

mRNA. 

Previous studies have shown that ZAP also suppresses the expression of 

viral proteins (Bick et al. 2003, Zhu et al. 2011, Zhu et al. 2012). Western blot 

experiments demonstrated that the overexpression of ZAP-S inhibited the 

accumulation of L1 ORF1p and L1 ORF2p in whole cell lysates and RNPs 

derived from transfected HeLa cells (Figure 3.4D and Figure 3.10B). In 

agreement with western blot experiments, confocal microscopy experiments 

showed that tGFP-tagged ZAP-S inhibited the expression of ORF1p in 

transfected HeLa cells and that the ZAP-S zinc-finger domain is critical for the 

inhibition of ORF1p expression (Figure 3.12B). ZAP-S expression also inhibited 

Alu retrotransposition (Figure 3.3B), which depends on ORF2p to be supplied in 

trans by L1 (Dewannieux et al. 2003). In contrast to these data, ZAP-S 

overexpression did not significantly affect the expression and/or accumulation of 

EGFP or other endogenous proteins (e.g., eiF3 and tubulin) (Figure 3.4D and 

Figure 3.10B). Thus, ZAP may preferentially limit the accumulation of ORF1p and 

ORF2p by interacting with L1 mRNA.  

In sum, our data suggest that ZAP restricts L1 retrotransposition by 

preventing the accumulation of cytoplasmic L1 RNA. Notably, a recent study 

suggests that ZAP may interfere with translation of viral RNA, and that translation 

inhibition may precede viral RNA destruction (Zhu et al. 2012). Although a 

reduction in L1 RNA could explain the observed decrease in L1 protein 

expression, it also is conceivable that the interaction between ZAP and L1 RNA 

could interfere with L1 translation (Figure 3.7). 
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It remains unclear how ZAP might destabilize full-length L1 RNA to restrict 

retrotransposition.  Evidence suggests that ZAP recruits exosome components 

(Guo et al. 2007) along with other proteins involved in RNA degradation (Chen et 

al. 2008, Zhu et al. 2011) to destroy viral RNA. Interestingly, 

immunofluorescence microscopy experiments revealed that ORF1p and ZAP co-

localize with components of cytoplasmic SGs (Figures 3.10B and 3.10D), which 

contain numerous RNA binding proteins involved in cytosolic RNA metabolism 

(reviewed in Buchan and Parker 2009). Indeed, ZAP previously has been shown 

to localize to SGs (Leung et al. 2011) and SGs have been suggested to play a 

role in regulating L1 retrotransposition (Goodier et al. 2007) and viral 

pathogenesis (Reineke and Lloyd 2013). The co-localization of ORF1p and ZAP 

with SGs also suggests that ZAP may possibly inhibit L1 translation, as SG 

assembly is stimulated by translational arrest (reviewed in Buchan and Parker 

2009). Thus, we propose that ZAP interacts directly with L1 RNA in the 

cytoplasm, which likely results in the recruitment in SG components and/or other 

cellular factors involved in RNA metabolism to destabilize L1 RNA and/or block 

translation (Figure 3.7). 

 ZAP exhibits antiviral activity against a variety of viruses such as MLV 

(Gao et al. 2002), alphaviruses (Bick et al. 2003), filoviruses (Muller et al. 2007), 

HIV-1 (Zhu et al. 2011), and hepatitis-B virus (Mao et al. 2013). Interestingly, 

many putative L1 restriction factors also are involved in antiviral defense (i.e., a 

subset of APOBEC3 proteins, TREX1, MOV10, SAMHD1, and RNaseL). L1 

elements have been active in mammalian genomes for ~160 million years 

(Burton et al. 1986, Smit et al. 1995, Yang et al. 2014). Thus, it is tempting to 

speculate that some host factors, such as ZAP, may have first evolved to combat 

endogenous retrotransposons and subsequently were co-opted as viral 

restriction factors (Sawyer et al. 2004, Sawyer et al. 2005, Sawyer and Malik 

2006, Kerns et al. 2008). Indeed, identifying host factors that modulate L1 

retrotransposition may prove to be an effective strategy to identify host antiviral 

factors.  
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Methods 

Cell Culture 

 HeLa-JVM cells were grown in high-glucose DMEM (Gibco) supplemented 

with 10% FBS (Gibco), 100 U/mL penicillin-streptomycin (Invitrogen), and 0.29 

mg/mL L-glutamine (Gibco) (Moran et al. 1996). HeLa-HA (Hulme et al. 2007) 

and PA-1 (Zeuthen et al. 1980) cells were grown in MEM (Gibco) with 10% FBS, 

100 U/mL penicillin-streptomycin, 0.29 mg/mL L-glutamine, and 0.1 mM 

nonessential amino acids (Gibco). Cell lines were maintained at 37°C with 7% 

CO2 in humidified incubators (Thermo Scientific). 

Plasmids 

 Oligonucleotide sequences and cloning strategies used in this study are 

available upon request. All human L1 plasmids contain the indicated fragments of 

L1.3 (accession no. L19088) (Sassaman et al. 1997) DNA cloned into pCEP4 

(Invitrogen) unless otherwise indicated. A CMV promoter augments expression of 

all L1 and cDNA expressing plasmids unless noted otherwise. L1 plasmids also 

contain an SV40 polyadenylation signal that is located downstream of the native 

L1 polyadenylation signal. All plasmid DNA was prepared with a Midiprep 

Plasmid DNA Kit (Qiagen). 

 The following cDNA expression plasmids were obtained from OriGene: 

CDK9 (SC119344); DDX21 (SC108813); GNB2L1 (SC116322); hnRNPDL 

(SC107613); MOV10 (SC126015); MATR3 (SC113375); ZAP-S (ZC3HAV1 

transcript variant 2) (SC101064); ZAP-S-tGFP (GFP-tagged ZC3HAV1 transcript 

variant 2) (RG208070); hnRNPA2B1 (SC313092); IGF2BP3 (SC111161); PURA 

(SC127792); UPF1 (SC118343). 

 The following cDNA expression plasmids were obtained from Open 

Biosystems: hnRNPL (6174088); LARP2 (5164712); LARP4 (5219803); 

SYNCRIP (5495201). 

 The following cDNA expression plasmids were obtained from Addgene: 

rZAP (pcDNA4-TO-Myc-rZAP; Addgene plasmid#: 17381, kindly provided by Dr. 
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Stephen Goff) (Gao et al., 2002) and ZAP-L (pcDNA4 huZAP(L); Addgene 

plasmid#: 45907, kindly provided by Dr. Harmit Malik) (Kerns et al. 2008). 

pJM101/L1.3: is a pCEP4-based plasmid that expresses a human L1 (L1.3) 

equipped with an mneoI retrotransposition indicator cassette. L1 expression is 

augmented by a CMV promoter located upstream of the L1 5' UTR and an SV40 

polyadenylation signal that is located downstream of the native L1 

polyadenylation signal (Dombroski et al. 1993, Freeman et al. 1994, Moran et al. 

1996, Sassaman et al. 1997) 

pJM101/L1.3FLAG: was derived from pJM101/L1.3 and contains a single FLAG 

epitope on the carboxyl-terminus of ORF1p. Dr. Huira Kopera (University of 

Michigan Medical School) constructed the plasmid. 

pAluneoTet: expresses an Alu element cloned from intron 5 of the human NF1 

gene (Wallace et al. 1991) that is marked with the neoTet reporter gene. The 

reporter (Esnault et al. 2002) was subcloned upstream of the Alu poly adenosine 

tract (Dewannieux et al. 2003). 

pCEP/GFP: is a pCEP4 based plasmid that expresses the humanized renilla 

green fluorescent protein (hrGFP) coding sequence from phrGFP-C 

(Stratagene), which is located downstream of the pCEP4 CMV promoter (Alisch 

et al. 2006). 

pJJ101/L1.3: is a pCEP4 based plasmid that contains an active human L1 (L1.3) 

equipped with an mblastI retrotransposition indicator cassette (Kopera et al. 

2011). 

pJJ105/L1.3: is similar to pJJ101/L1.3, but contains a D702A missense mutation 

in the RT active site of L1.3 ORF2 (Kopera et al. 2011). 

pJM101/L1.3Δneo: is a pCEP4 based plasmid that contains an active human L1 

(L1.3) (Wei et al. 2001). 

pLRE3-EF1-mEGFPΔIntron: is a pBSKS-II+ based plasmid that expresses an 

active human L1 (LRE3) that is tagged with an EGFP cassette (mEGFPI) 

containing an antisense, intronless copy of the EGFP gene. A UbC promoter 
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drives EGFP expression. An EF1α promoter drives L1 expression (Wissing et al. 

2011). 

pAD2TE1: is similar to pJM101/L1.3 except that it was modified to contain a T7 

gene10 epitope-tag on the carboxyl-terminus of ORF1p and a TAP epitope-tag 

on the carboxyl-terminus of ORF2p. The 3′-UTR contains the mneoI 

retrotransposition indicator cassette (Doucet et al. 2010). 

pJBM2TE1: is similar to pAD2TE1 except that the pCEP4 backbone was 

modified to contain the puromycin resistance (PURO) gene in place of the 

hygromycin resistance gene.  

pLRE3-mEGFPI: is a pCEP4 based plasmid that contains an active human L1 

(LRE3) equipped with an mEGFPI retrotransposition indicator cassette (Ostertag 

et al. 2000, Garcia-Perez et al. 2010). The pCEP4 backbone was modified to 

contain a puromycin resistance (PURO) gene in place of the hygromycin 

resistance gene. The CMV promoter also was deleted from the vector; thus, L1 

expression is driven only by the native 5′ UTR (Ostertag et al. 2000). 

pJM111-LRE3-mEGFPI: is identical to pLRE3-mEGFPI except that it contains 

two missense mutations in ORF1 (RR261-262AA), which render the L1 

retrotransposition-defective (Moran et al. 1996). Mr. William Giblin (University of 

Michigan Medical School) constructed the plasmid (Zhang et al. 2014). 

pGF21: contains an 8.8 kb fragment which includes a full length mouse GF21 L1 

element that contains the mneoI indicator cassette (Goodier et al. 2001). 

pZfL2-2: is a pCEP4 based plasmid that contains the ZfL2-2 ORF (ZL15, 

accession no. AB211150) cloned upstream of the mneoI indicator cassette 

(Sugano et al. 2006). 

pCEP4smL1: contains a codon optimized full-length mouse element (derived 

from L1spa) containing the mneoI indicator cassette (Han and Boeke 2004).  

ZAP-S/1-311: encodes the ZAP-S amino acid sequence from 1-311 and the 

following sequence of non-templated amino acids 

(IIIYTGFLFCCGFFFFFFFLEGVSLCCPGWS).  



 127 

ZAP-S/Δ72-372: was derived by deleting the SfoI-XhoI fragment from ZC3HAV1 

transcript variant 2 (OriGene, SC101064), and expresses a ZAP-S mutant 

protein that lacks amino acid sequence from 72-372. 

ZAP-S/Δ310-645-tGFP: expresses a ZAP-S mutant protein that lacks amino acid 

sequence from 310-645 and contains a carboxyl terminus tGFP epitope tag. 

ZAP-S/Δ72-372-tGFP: expresses a ZAP-S mutant protein that lacks amino acid 

sequence from 72-372 and contains a carboxyl terminus tGFP epitope tag. 

LARP5: was derived by cloning LARP5 cDNA (Open Biosystems, 40118844) into 

pcDNA3 (Invitrogen). 

LARP1: was constructed by cloning the LARP1 cDNA (Open Biosystems, 

3138935) into pcDNA3 (Invitrogen).  

pK_A3A: expresses HA-tagged APOBEC3A and was a generous gift from Dr. 

Brian Cullen (Bogerd et al. 2006). 

pDCP1α-GFP: expresses  a GFP-tagged version of DCP1α and was a generous 

gift from Dr. Gregory Hannon (Liu et al. 2005). 

pG3BP-GFP: expresses a GFP-tagged version of G3BP and was a generous gift 

from Dr. Jamal Tazi (Tourriere et al. 2003). 

pcDNA6/TR: expresses the blasticidin resistance gene and was obtained from 

Invitrogen. 

Immunoprecipitation of L1 ORF1p 

 HeLa-JVM cells were seeded in T-175 flasks (BD Falcon) at ~6-8×106 

cells/flask and transfected the next day with 20 μg of plasmid DNA using 60 μL of 

FuGENE HD (Promega). Approximately 48 hours post-transfection, hygromycin 

B (Gibco) (200 μg/mL) was added to the medium to select for transfected cells. 

After approximately one week of hygromycin selection, cells were washed 3 

times with ice cold PBS and collected with a rubber policeman into 50 mL conical 

tubes (BD Falcon). Cells were then pelleted at 1,000×g and frozen at -80°C. To 

produce whole cell lysates (WCL), frozen cell pellets were rapidly thawed and 
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then lysed in ~3 mL (1 mL lysis buffer per 100 mg of cell pellet) of lysis buffer (20 

mM Tris-HCl (pH 7.5), 150 mM NaCl, 10% glycerol, 1 mM EDTA, 0.1% IGEPAL 

CA-630 (Sigma), 1X complete EDTA-free protease inhibitor cocktail (Roche)) on 

ice for 30 minutes. WCLs were then centrifuged at 15,000×g for 15 minutes at 

4°C. Supernatants were transferred to a clean tube and protein concentration 

was determined using the Bradford reagent assay (BioRad). For the IP, ~1 mL of 

the supernatant (~3 mg total protein) was pre-cleared with ~15 μL (packed gel 

volume) of mouse IgG-agarose beads (Sigma) for 4 hours at 4°C. Pre-cleared 

supernatants were then mixed with ~15 μL (packed gel volume) of EZview Red 

ANTI-FLAG M2 Affinity Gel (Sigma) and incubated overnight with rotation at 4°C. 

The beads then were rinsed 3x with 0.5 mL of lysis buffer, and then washed 3 

times with 0.5 mL of lysis buffer for 10 minutes per wash on ice with gentle 

agitation. Protein complexes were eluted from the beads by adding ~70 μL of 2X 

NuPAGE LDS Sample Buffer (Novex), supplemented with NuPAGE Sample 

Reducing Agent (Novex), directly to the washed beads and incubating for 10 

minutes at 70°C. Following incubation, the beads were pelleted and the sample 

was transferred to a fresh tube. For SDS-PAGE analysis, 20 μL of the IP were 

loaded onto a 4-15% gradient midi-gel (BioRad) and run under reducing 

conditions. Gels were silver stained using the SilverQuest Silver Staining Kit 

(Novex) to visualize proteins.  

Protein Identification by LC-MS/MS 

 The Proteomics Facility at the Fred Hutchinson Cancer Research Center 

(Seattle, WA) conducted protein identification experiments. Excised silver-stained 

gel slices were destained and subjected to in-gel proteolytic digestion with trypsin 

as described (Shevchenko et al. 1996). Following gel-slice digestion, the 

digestion products were desalted using C18-micro ZipTips (Millipore) and were 

dried by vacuum centrifugation. The resultant peptide samples were 

resuspended in 7 μL of 0.1% formic acid and 5 μL were analyzed by liquid 

chromatography coupled to tandem mass spectrometry (LC-MS/MS). LC-MS/MS 

analysis was performed using an LTQ Orbitrap XL mass spectrometer (Thermo 

Scientific). The LC system, configured in a vented format (Licklider et al. 2002), 
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consisted of a fused-silica nanospray needle (PicoTip emitter, 50 µm ID) (New 

Objective) packed in-house with Magic C18 AQ 100A reverse-phase medium (25 

cm) (Michrom Bioresources Inc.) and a trap (IntegraFrit Capillary, 100 µm ID) 

(New Objective) containing Magic C18 AQ 200A reverse-phase medium (2 cm) 

(Michrom Bioresources Inc.). The peptide samples were loaded onto the column 

and chromatographic separation was performed using a two mobile-phase 

solvent system consisting of 0.1% formic acid in water (A) and 0.1% acetic acid 

in acetonitrile (B) over 60 min from 5% B to 40% B at a flow rate of 400 

nL/minutes. The mass spectrometer operated in a data-dependent MS/MS mode 

over the m/z range of 400-1800. For each cycle, the five most abundant ions 

from each MS scan were selected for MS/MS analysis using 35% normalized 

collision energy. Selected ions were dynamically excluded for 45 seconds.   

 For data analysis, raw MS/MS data were submitted to the Computational 

Proteomics Analysis System (CPAS), a web-based system built on the LabKey 

Server v11.2 (Rauch et al. 2005) and searched using the X!Tandem search 

engine (Craig and Beavis 2004) against the International Protein Index (IPI) 

human protein database (v3.75), which included additional common 

contaminants such as BSA and trypsin. Search results were compared between 

the pJM101/L1.3FLAG lane and the pJM101/L1.3 lane to generate a list of 

candidate L1 ORF1p associated proteins unique to the pJM101/L1.3FLAG 

immunoprecipitation. The search output files were analyzed and validated by 

ProteinProphet (Nesvizhskii et al. 2003). Peptide hits were filtered with 

PeptideProphet (Keller et al. 2002) error rate ≤ 0.05, and proteins with probability 

scores of ≥ 0.95 were accepted. Suspected contaminants (e.g. keratin) were 

filtered from the final L1 RNP candidate list. 

L1 Retrotransposition Assays 

 The cultured cell retrotransposition assay was carried out essentially as 

described (Moran et al. 1996, Wei et al. 2000). For retrotransposition assays with 

L1 constructs tagged with mblastI, HeLa-JVM cells were seeded at ~1-2×104 

cells/well in a 6-well plate (BD Falcon). Within 24 hours, each well was 



 130 

transfected with 1 μg of plasmid DNA (0.5 μg L1 plasmid + 0.5 μg cDNA plasmid 

or pCEP4) using 3 μL of FuGENE 6 transfection reagent (Promega). Four days 

post-transfection, blasticidin (EMD Millipore) containing medium (10 μg/mL) was 

added to cells to select for retrotransposition events. Medium was changed every 

two days. After ~8 days of selection, cells were washed with PBS, fixed, and then 

stained with crystal violet to visualize colonies. To control for transfection 

efficiency and off-target effects of cDNA plasmids, in parallel with 

retrotransposition assays, HeLa-JVM cells were plated in 6-well plates at 500-

1,000 cells/well and transfected with 0.5 μg pcDNA6/TR (Invitrogen) plasmid + 

0.5 μg cDNA plasmid using 3 μL of FuGENE 6 transfection reagent (Promega). 

The pcDNA6/TR control assays were treated with blasticidin in the same manner 

as for retrotransposition assays.  

 For retrotransposition assays with L1 constructs tagged with mneoI, HeLa-

JVM cells were transfected as described above. Two days after transfection, 

cells were treated with medium supplemented with G418 (Gibco) (500 μg/mL) for 

~10-12 days. As a control, HeLa cells were plated at ~2×104 cells/well in a 6-well 

plate and transfected with 0.5 μg pcDNA3 (Invitrogen) plasmid + 0.5 μg cDNA 

plasmid using 3 μL of FuGENE 6 transfection reagent (Promega). The pcDNA3 

control assays were treated with G418 in the same manner as for 

retrotransposition assays. 

Alu Retrotransposition Assays 

 For Alu retrotransposition assays (Dewannieux et al. 2003), ~4×105 HeLa-

HA cells were plated per well of a 6-well plate (BD Falcon) and transfected with 

0.67 μg of pJM101/L1.3Δneo + 0.67 μg of pAluneoTet + 0.67 μg of cDNA plasmid 

using 6 μL FuGENE HD (Promega). Three days post-transfection, cells were 

grown in the presence of G418 (500μg/mL) to select for Alu retrotransposition 

events. As a control, HeLa-HA cells were plated at ~4×105 cells/well in a 6-well 

plate and transfected with 0.67 μg of pcDNA3 (Invitrogen) + 0.67 μg of pAluneoTet 

+ 0.67 μg of cDNA plasmid using 6 μL of FuGENE HD (Promega). The pcDNA3 
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control assays were treated with G418 in the same manner as for Alu 

retrotransposition assays. 

siRNA knockdown and pLRE3-mEGFPI retrotransposition assays 

 In experiments to study the effect of endogenous proteins on L1 

retrotransposition, HeLa cells (~8×105 cells) were plated in 60 mm tissue culture 

dishes (BD Falcon). The next day, the cells were transfected with 50 nM of a 

control siRNA pool (D-001810-10, ON-TARGETplus Non-targeting Pool, Thermo 

Scientific) or siRNA against ZAP (L-017449-01-0005, ON-TARGETplus Human 

ZC3HAV1 (56829) siRNA - SMARTpool, Thermo Scientific) or MOV10 (L-

014162-00-0005, ON-TARGETplus Human MOV10 (4343) siRNA - SMARTpool, 

Thermo Scientific) using the DharmaFECT 1 transfection reagent (Thermo 

Scientific). Twenty-four hours after siRNA treatment, cells were transfected with 

pLRE3-mEGFPI or pJM111-LRE3-mEGFPI (5 µg), using 15 µL of FuGENE HD 

transfection reagent (Roche). After 48 hours, cells were trypsinized and an 

aliquot of the cells (~2×106 cells) was used to monitor endogenous protein levels 

(72 hours after siRNA treatment) by western blot analysis (see below for list of 

primary antibodies). Blots were analyzed using an Odyssey CLx (LI-COR) with 

the following secondary antibodies: IRDye 800CW Donkey anti-Rabbit IgG 

(1:10,000) (LI-COR) and IRDye 680RD Donkey anti-Mouse IgG (1:10,000) (LI-

COR). Knockdown efficiencies were calculated using LI-COR Image Studio 

Software (v3.1.4) and are the average of three independent experiments. 

Endogenous tubulin was used as the normalization control. The remaining cells 

were re-plated at ~2×105 cells/well of a 6-well plate and cultured in medium 

supplemented with puromycin (5 µg/ml, Gibco/Life Technologies) to select for 

cells transfected with pLRE3-mEGFPI. After 4 days of puromycin selection, the 

percentage of GFP positive cells was determined by flow cytometry using an 

Accuri C6 flow cytometer (BD Biosciences).  

RNP Isolation 

 RNPs were isolated as previously described (Kulpa and Moran 2005). 

Briefly, HeLa-JVM cells were seeded onto 60 mm tissue culture dishes (BD 
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Falcon) and 24 hours later cells were co-transfected with 2.5 μg of pJBM2TE1 

and 2.5 μg of the indicated cDNA plasmid using 15 μL of FuGENE HD 

(Promega). Approximately two days after transfection, puromycin (5 μg/mL) was 

added to culture medium to select for cells transfected with pJBM2TE1. After ~3 

days of puromycin selection (5 days after transfection), cells were lysed in RNP 

lysis buffer (150 mM NaCl, 5 mM MgCl2, 20 mM Tris-HCl (pH 7.5), 10% glycerol, 

1mM DTT, 0.1% NP-40, and 1x complete EDTA-free protease inhibitor cocktail 

(Roche)). Following lysis, whole cell lysates were centrifuged at 12,000xg for 10 

minutes at 4°C, and then the cleared lysate was layered onto a sucrose cushion 

(8.5% and 17% sucrose) and subjected to ultracentrifugation at 4°C for 2 hours 

at 178,000xg. The supernatant was discarded and the resulting pellet was 

resuspended in water supplemented with 1x complete EDTA-free protease 

inhibitor cocktail (Roche). Approximately 20 μg (total protein) of the RNP sample 

or ~30 μg (total protein) of the cleared whole cell lysate (supernatant post 

12,000xg centrifugation) were then analyzed by western blot. Blots were 

analyzed using an Odyssey® CLx (LI-COR) with the following secondary 

antibodies: IRDye 800CW Donkey anti-Rabbit IgG (1:10,000) (LI-COR) and 

IRDye 680RD Donkey anti-Mouse IgG (1:10,000) (LI-COR).    

 To simultaneously analyze the effects of ZAP-S on ORF1p and EGFP 

protein expression, HeLa-JVM cells were seeded onto 10 cm dishes (~2.7×106 

cells/dish) (BD Falcon) and transfected with 10 μg of plasmid DNA (5.0 μg 

pLRE3-EF1A-mEGFPΔIntron + 5.0 μg cDNA plasmid or pCEP4) using 30 μL of 

FuGENE HD. After 48 hours, cells were harvested with trypsin and then 

subjected to flow cytometry to isolate GFP expressing cells. Approximately 1.2-

1.7×106 GFP positive cells were collected for each transfection condition using a 

MoFlo Astrios cell sorter (Beckman Coulter). The GFP gate was set using 

untransfected HeLa-JVM cells. The sorted cells were lysed as described in the IP 

procedure and lysates were then subjected to western blotting using standard 

procedures. For all other protein expression analyses, HeLa-JVM cells were 

seeded at ~4×105 cells/well in 6-well plates and transfected with 2 μg of plasmid 

DNA with 6 μL of FuGENE HD. Cells were collected 48 hours after transfection 
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using a rubber policeman and lysates were prepared as described above. 

Western blots were visualized using either the SuperSignal West Femto 

Chemiluminescent Substrate (Pierce) or SuperSignal West Pico 

Chemiluminescent Substrate (Pierce) and Hyperfilm ECL (GE Healthcare). 

Northern Blots 

 HeLa-JVM cells were seeded in T-175 flasks (BD Falcon) and transfected 

with 20 μg of plasmid DNA (10 μg pJM101/L.13Δneo + 10 μg cDNA plasmid) 

using 60 μL FuGENE HD. Two days after transfection, cell pellets were collected 

and frozen at -80°C. Frozen cell pellets were then thawed and total RNA was 

extracted with TRIzol reagent (Ambion), and then poly(A)+ RNA was prepared 

from total RNA using an Oligotex mRNA kit (Qiagen). Each sample (~1.5 μg of 

poly(A)+ RNA) was subjected to glyoxal gel electrophoresis and northern blotting 

using the NorthernMax-Gly Kit (Ambion) according to the manufacturer’s 

protocol. Following electrophoresis, RNA was transferred to BrightStar Nylon 

membranes (Invitrogen) and then cross-linked using UV light. For northern blot 

detection, membranes were prehybridized for ~4 hours at 68°C in NorthernMax 

Prehybridization/Hybridization Buffer (Ambion), and then incubated with a strand 

specific RNA probe (final concentration of probe ~3×106 cpm ml-1) overnight at 

68°C. For band quantification, northern blot films were analyzed using ImageJ 

software (Schneider et al. 2012).  

 Strand-specific RNA probes were generated using the MAXIscript T3 

system (Invitrogen). The 5UTR99 (Belancio et al. 2006) probe corresponds to 

bases 7-99 of the L1.3 5' UTR and the ORF2_5804 probe corresponds to 

nucleotides 5560-5804 of the L1.3 sequence. RNA probe templates for T3 

reactions were generated by PCR using pJM101/L1.3Δneo as a PCR template 

with the following primer pairs:  

(5UTR99: 5'-GGAGCCAAGATGGCCGAATAGGAACAGCT-3' and 5'-

AATTAACCCTCAAAGGGACCTCAGATGGAAATGCAG-3');  

(ORF2_5804: 5'- GACACATGCACACGTATGTTTATT-3' and 5'- 

AATTAACCCTCACTAAAGGGTGAGTGAGAATATGCGGTGTTT-3').  
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The T3 promoter sequence (underlined) was added to the reverse primer of each 

primer pair. The pTRI-β-actin-125-Human Antisense Control Template (Applied 

Biosystems) was used in T3 reactions as a template to generate the β-actin RNA 

probe. Each northern blot experiment was independently repeated three times 

with similar results. 

Immunofluorescence Microscopy 

 Immunofluorescence microscopy was performed essentially as described 

(Doucet et al. 2010) with modifications. Briefly, cells were plated on round glass 

cover slips (Fisher) in a 12-well plate or into 4-well chambered glass slides 

(Fisher) and transfected ~24 hours later with 0.5 μg of plasmid DNA using 1.5 μL 

of FuGENE 6 transfection reagent. To visualize proteins, approximately 48 hours 

post-transfection cells were washed with 1x PBS, fixed with 4% 

paraformaldehyde for 10 minutes and then treated with ice-cold methanol for 1 

minute. Next, cells were incubated for 30 minutes at 37°C in 1x PBS + 3% BSA. 

Cells then were incubated with primary antibodies in 1x PBS + 3% BSA for 1 

hour at 37°C. Cells were washed three times with 1x PBS (10 minutes per wash) 

and then incubated with appropriate, fluorescently-labeled secondary antibodies 

diluted in 1x PBS for 30 minutes at 37°C. The following secondary antibodies 

were used for indirect immunofluorescence: Alexa Fluor 488 conjugated Goat 

anti-Mouse and Goat anti-Rabbit (Invitrogen) (1:1000), Alexa Fluor 546 

conjugated Goat anti-Mouse and Goat anti-Rabbit IgG (Invitrogen) (1:1000), and 

Cy5 conjugated Donkey anti-Rabbit IgG (H+L) (Jackson ImmunoResearch) 

(1:100). To obtain images, a cover slip and/or slide was visually scanned and 

representative images were captured using a Leica SP5X confocal microscope 

(63x/1.4 objective; section thickness 1 μm).  

Combined RNA FISH (Fluorescence in situ Hybridization) and 
immunofluorescence 

 Cells were plated on round glass cover slips (Fisher) in a 12-well plate and 

transfected ~24 hours later with 0.5 μg of plasmid DNA using 1.5 μL of FuGENE 

6 transfection reagent. Approximately 48 hours after transfection, cells were fixed 
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with 4% paraformaldehyde for 10 minutes and then permeabilized with 0.2% 

Triton X-100 in 1x PBS for 7 minutes. Following permeabilization, coverslips 

were incubated for 5 minutes in FISH (fluorescence in situ hybridization) wash 

buffer (2x SSC, 10% formamide) for 5 minutes. To visualize L1 RNA, coverslips 

were then incubated with 300 nM FISH probes (sequences below) in FISH 

hybridization buffer (2x SSC, 10% formamide, 1% dextran sulphate) for ~4 hours 

at 37°C. Following hybridization, cells were incubated for 30 minutes in FISH 

wash buffer at 37°C and then incubated with FISH wash buffer + 3% BSA for an 

additional 30 minutes at 37°C. To visualize L1 ORF1p by immunofluorescence, 

coverslips then were incubated with αORF1p antibodies (1:2000) in 1x PBS + 3% 

BSA for 1 hour at 37°C. Cells were washed three times with 1x PBS (10 minutes 

per wash). Cells were  incubated with Alexa Fluor 546 conjugated Goat anti-

Rabbit IgG (Invitrogen) (1:1000) in 1x PBS + DAPI (50 ng/mL) for 30 minutes at 

37°C. Coverslips were mounted on slides with VECTASHIELD mounting media 

(Vector Laboratories). Combined RNA FISH/immunofluorescence samples were 

imaged with a Zeiss Axioplan2 microscope (63x objective; Axiovision 4.8 

software). RNA FISH/immunofluorescence images (Figures 3.6A-3.6D) were 

globally processed using the Photoshop CS6 (version 13.0 x64) Levels tool to 

adjust input levels.  The L1 RNA was labeled using 21 Quasar670-labelled anti-

sense oligonucleotide probes complimentary to sequences within the L1.3 5' 

UTR (probes were designed and produced by Biosearch Technologies, 

Petaluma, CA). The sequences of the 21 L1 probes are as follows: 5'-

aaatcaccgtcttctgcgtc-3', 5'-ggtacctcagatggaaatgc-3', 5'-cactccctagtgagatgaac-3', 

5'-ccctttctttgactcagaaa-3', 5'-aatattcgggtgggagtgac-3', 5'-cttaagccggtctgaaaagc-

3', 5'-caggtgtgggatatagtctc-3', 5'-tgctagcaatcagcgagatt-3', 5'-ttgcagtttgatctcagact-

3', 5'-tttgtttacctaagcaagcc-3', 5'-cagaggtggagcctacagag-3', 5'-ctgtctttttgtttgtctgt-3', 

5'-cacttaagtctgcagaggtt-3', 5'-ctctcttcaaagctgtcaga-3', 5'-ttgaggaggcagtctgtctg-3', 

5'-ctgcaggtctgttggaatac-3', 5'-ttctaacagacaggaccctc-3', 5'-cctttctggttgttagtttt-3', 5'-

gatgggttttcggtgtagat-3', 5'-gtctttgatgatggtgatgt-3', 5'-tttgtggttttatctacttt-3'. 

Primary Antibodies  
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 Polyclonal antibodies against peptide sequences 31-49 of L1.3 ORF1p 

(αORF1p) were raised in rabbits and affinity-purified (Open Biosystems). αCDK9 

(2316), αUPF1 (9435), and αGFP (2955) were obtained from Cell Signaling 

Technology. αhnRNPL (NBP1-67852), αILF3 (EPR3627), αLARP1 (NBP1-

19128), αMATR3 (NB100-1761), αNCL (NB100-1920SS), and αDHX9 (NB110-

40579) were obtained from Novus Biologicals. αFAM120A (ab83909), αPURA 

(ab79936), and αHA tag (ab9110) were obtained from Abcam. αMOV10 

(SAB1100141), αZAP (Anti-ZC3HAV1 (HPA047818)), and αTubulin (T9026) 

were obtained from Sigma. αZC3HAV1 (16820-1-AP) was obtained from 

Proteintech. αeIF3 (p110) (sc-28858) was obtained from Santa Cruz 

Biotechnology. αT7-Tag mouse monoclonal (69522-3) was obtained from 

Novagen. αTAP rabbit polyclonal (CAB1001) was obtained from Thermo 

Scientific. 
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Figure 3.1: The identification of host proteins immunoprecipitated with L1 
ORF1p-FLAG.  
(A) Schematic of L1 constructs:  pJM101/L1.3 expresses a human L1 (L1.3) 
(Sassaman et al. 1997) containing an mneoI retrotransposition indicator cassette 
within the L1 3' UTR.  The pJM101/L1.3FLAG construct is identical to 
pJM101/L1.3, but contains a single FLAG epitope on the carboxyl-terminus of 
ORF1p. Both constructs were cloned into a pCEP4 mammalian expression 
vector. A CMV promoter augments L1 expression and an SV40 polyadenylation 
signal (pA) is located downstream of the native L1 polyadenylation signal. (B) 
Results of immunoprecipitation experiments: Whole cell lysates from HeLa cells 
transfected with either pJM101/L1.3 or pJM101/L1.3FLAG were subjected to 
immunoprecipitation using an anti-FLAG antibody. The proteins then were 
separated by SDS-PAGE, visualized by silver staining, and subjected to LC-
MS/MS. An ~40 kDa band corresponding to the theoretical molecular weight of 
ORF1p is visible in the pJM101/L1.3FLAG lane (*). Black bars indicate the 
approximate molecular weights of the ORF1p-FLAG interacting proteins. 
Molecular weight standards (kDa) are shown on the left hand side of the gel. (C) 
Validation of the ORF1p-FLAG immunoprecipitation: Western blot experiments 
using an antibody specific to amino acids 31-49 of L1.3 ORF1p verified the 
enrichment of ORF1p-FLAG in pJM101/L1.3FLAG, but not pJM101/L1.3 
immunoprecipitation reactions. Cells transfected with the pCEP4 vector served 
as a negative control. (D) Validation of putative ORF1p-FLAG interacting 
proteins: Western blot images of the pJM101/L1.3FLAG and pJM101/L1.3 
immunoprecipitation (IP) reactions. The pCEP4 lanes denote whole cell lysates 
derived from HeLa cells transfected with an empty pCEP4 vector (~1.0% input). 
Primary antibodies used to probe western blots are indicated to the left of the 
images. Immunoprecipitation reactions were conducted in either the absence 
(left) or presence (right) of RNaseA (10 μg/mL). The putative cellular functions of 
the ORF1p-FLAG interacting proteins are indicated on the right hand side of the 
blots.  
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Figure 3.1: The identification of host proteins immunoprecipitated with L1 
ORF1p-FLAG.  
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Figure 3.2: Several of the ORF1p-FLAG interacting proteins inhibit L1 
retrotransposition.  
(A) Schematic of the cultured-cell retrotransposition assay: HeLa cells were 
transfected with an engineered human L1.3 construct (pJJ101/L1.3) marked with 
a blasticidin indicator cassette (mblastI). The pJJ101/L1.3 construct was cloned 
into a pCEP4 mammalian expression vector. A CMV promoter augments L1 
expression and an SV40 polyadenylation signal (pA) is located downstream of 
the native L1 polyadenylation signal. The mblastI cassette is cloned into the L1 3' 
UTR antisense to the L1 and contains a blasticidin deaminase gene that is 
disrupted by an intron in the L1 sense orientation. The blasticidin deaminase 
gene can only be expressed when the L1 transcript is spliced, reverse 
transcribed, and inserted into genomic DNA (Moran et al. 1996, Wei et al. 2000). 
(B) Schematic of the pJJ101/L1.3 retrotransposition screen: To analyze the effect 
of the ORF1p-FLAG interacting proteins on L1 retrotransposition, HeLa cells 
were co-transfected with equal amounts of pJJ101/L1.3 and a cDNA plasmid 
expressing one of the candidate ORF1p-FLAG interacting proteins or a pCEP4 
empty vector. To control for potential off-target effects, HeLa cells also were co-
transfected with a control plasmid (pcDNA6/TR) that expresses the blasticidin 
deaminase gene and a cDNA plasmid expressing one of the candidate proteins 
or a pCEP4 empty vector. Both assays were subjected to the same blasticidin 
selection regimen. The resultant number of blasticidin-resistant colonies in 
pcDNA6/TR control assays provides a visual, quantitative readout of the effect of 
cDNA overexpression on the ability of cells to grow in the presence of blasticidin.   
(C) Results of pJJ101/L1.3 retrotransposition screen: HeLa cells were co-
transfected with pJJ101/L1.3 and each of the indicated cDNA expressing 
plasmids. L1 retrotransposition was assayed in 6-well tissue culture plates. The 
X-axis indicates the cDNA that was co-transfected with pJJ101/L1.3. The 
bracketed number next to each cDNA indicates the number of independent 
experiments. The Y-axis indicates L1 retrotransposition activity after accounting 
for cDNA toxicity (see Figure 3.2B). Retrotransposition activity (black bars) is 
normalized to the pCEP4 empty vector control. Error bars represent the standard 
deviation for each set of experiments. The red dotted line indicates a 50% 
inhibition of retrotransposition activity. 

 

  



 140 

Figure 3.2: Several of the ORF1p-FLAG interacting proteins inhibit L1 
retrotransposition.   
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Figure 3.3: ZAP-S inhibits LINE and Alu retrotransposition.  
(A) ZAP inhibits L1 retrotransposition: Top panel: Schematics of ZAP constructs. 
Depicted are the relative positions of the zinc-finger domains (light gray 
rectangles), cysteine-histidine (CCCH) zinc-fingers (vertical black bars), and 
PARP-like domain (dark gray rectangles) of the ZAP-L and ZAP-S expression 
constructs. ZAP-L contains a carboxyl-terminal HA tag (blue rectangle labeled 
HA). The ZAP-S/1-311 construct contains an additional 31 amino acids at the 
carboxyl terminus. The ZAP-S/ 72-372 harbors a deletion that removes the 
CCCH zinc fingers (See Methods). Middle panel: Results of the retrotransposition 
assays. The X-axis indicates the cDNA co-transfected with pJJ101/L1.3 or 
pcDNA6/TR. The Y-axis indicates pJJ101/L1.3 retrotransposition activity (black 
bars), or pcDNA6/TR colony formation activity (white bars). All values have been 
normalized to the pCEP4 empty vector control (100%). The numbers above the 
bar graphs indicate the number of independent experiments performed with each 
cDNA expression construct. Error bars represent standard deviations. Bottom 
panel:  A single well of a representative six-well tissue culture plate, displaying 
blasticidin-resistant colonies from the pJJ101/L1.3 retrotransposition assay (top, 
black rectangle) and the pcDNA6/TR control assay (bottom, white rectangle). (B) 
ZAP inhibits Alu retrotransposition: The X-axis indicates the cDNA co-transfected 
with pJM101/L1.3Δneo and pAluneoTet. The Y-axis indicates the 
retrotransposition efficiency. All values are normalized to the pCEP4 empty 
vector control (100%). Control assays using a plasmid that expresses the 
neomycin phosphotransferase gene (pcDNA3) were conducted similarly to 
pcDNA6/TR control assays as outlined in Figure 3.2B. Representative images of 
G418-resistant HeLa foci from the Alu retrotransposition assay are shown below 
the bar graph. The results are the average of three independent experiments. 
Error bars indicate standard deviations. (C) ZAP inhibits the retrotransposition of 
mouse and zebrafish LINE elements. The X-axis indicates the cDNA that was co-
transfected with human L1 (pJM101/L1.3 (black bars)), mouse L1 (pGF21 (dark 
grey bars)), zebrafish L2 (pZfL2-2 (light grey bars)), or synthetic mouse L1 
(pCEPsmL1 (white bars)). The Y-axis indicates the retrotransposition efficiency. 
Representative images of G418-resistant HeLa cell foci are shown below the bar 
graph. Control assays using a plasmid that expresses the neomycin 
phosphotransferase gene (pcDNA3) were conducted similarly to pcDNA6/TR 
control assays outlined in Figure 3.2B. All values are normalized to the pCEP4 
empty vector control (100%). Error bars indicate standard deviations. (D) The 
depletion of ZAP enhances L1 retrotransposition: Top panels: Western blots of 
whole cell lysates derived from mock HeLa cell transfections or HeLa cells 
transfected with indicated siRNAs. Blue arrows point to the approximate location 
of ZAP-L and ZAP-S. Bottom panel: The bar graph depicts pLRE-mEGFP1 
retrotransposition activity following siRNA treatment. The X-axis indicates the 
siRNA. The Y-axis indicates the pLRE-mEGFP1 retrotransposition efficiency 
normalized to the control siRNA (set to 1). Retrotransposition efficiency values 
are reported as the mean from four independent experiments. Error bars indicate 
the standard deviations. Asterisks indicate statistically significant differences from 
the control siRNA experiments (two-tailed t test/p<0.05).   
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Figure 3.3: ZAP-S inhibits LINE and Alu retrotransposition.  
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Figure 3.4: The effect of ZAP-S on L1 RNA and L1 protein expression.  
(A) Schematic of pJM101/L1.3Δneo: Bold black lines indicate the approximate 
location of probes (5UTR99 and ORF2_5804) used in the northern blot 
experiments. pJM101/L1.3Δneo is expressed from a pCEP4 vector. A CMV 
promoter augments L1 expression and an SV40 polyadenylation signal (pA) is 
located downstream of the native L1 polyadenylation signal. (B) Results of 
northern blots: Top panel: HeLa cells were co-transfected with pJM101/L1.3Δneo 
and either the indicated ZAP-S expression plasmids or an empty pCEP4 vector. 
Northern blot images depict the effect of ZAP-S overexpression on 
polyadenylated L1 RNA levels. The constructs transfected into HeLa cells are 
indicated above each lane. UTF indicates untransfected HeLa cells and serves 
as a negative control. Probes (5UTR99 and ORF2_5804) are indicated in the top 
left corner of the respective blots. The black arrow indicates the position of the 
full-length L1 RNA. The blue and yellow arrows indicate shorter L1 RNA species. 
The experiment was repeated three times with similar results. Actin served as a 
loading control. RNA size standards (~kb) are shown at the right of the blot 
image. Bottom panel: Quantification of northern blot bands. The X-axis indicates 
the cDNA expression construct that was co-transfected with pJM101/L1.3Δneo. 
The Y-axis indicates relative band intensity normalized to pCEP4 controls 
(100%). Black bars represent the full-length L1 band.  Blue and yellow bars 
represent the smaller L1 RNA bands, corresponding to the colored arrows, 
respectively, in the top panel. The results are the average of three independent 
experiments. Error bars represent standard deviations. (C) Schematic of 
pJBM2TE1: The construct contains a T7 epitope tag on the carboxyl-terminus of 
ORF1p and a TAP tag on the carboxyl-terminus of ORF2p.  An mneoI 
retrotransposition indicator cassette is present in the 3’ UTR. pJMB2TE1 is 
expressed from a pCEP4 backbone, which has been modified to contain a 
puromycin selectable marker. A CMV promoter augments L1 expression and an 
SV40 polyadenylation signal (pA) is located downstream of the native L1 
polyadenylation signal. (D) ZAP-S decreases the accumulation of the L1-
encoded proteins:  HeLa cells were co-transfected with pJBM2TE1 and the 
plasmids indicated above each lane. UTF indicates untransfected HeLa cells and 
serves as a negative control. Depicted are western blots using whole cell lysates 
(WCL, top panel) or RNP fractions (RNP, bottom panel). Blue arrows indicate the 
positions of ORF2p, ORF1p, ZAP-S, and ZAP-S/ 72-372. The eIF3 protein is 
used as a loading control. Representative images are shown. The experiments 
were repeated three times with similar results. 
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Figure 3.4: The effect of ZAP-S on L1 RNA and L1 protein expression.  
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Figure 3.5: The co-localization of ORF1p and ZAP in cytoplasmic foci.  

(A) Co-localization of transfected ORF1p and ZAP-S in HeLa cells: ORF1p (red) 
expressed from pJM101/L1.3Δneo co-localizes with ZAP-S-tGFP (green). The 
experiment was repeated five times with similar results. (B) Co-localization of 
transfected ORF1p with endogenous ZAP in cytoplasmic foci in HeLa cells: 
ORF1p-T7 (green) expressed from pAD2TE1 co-localizes with endogenous ZAP 
(red). The experiment was repeated five times with similar results. (C) Co-
localization of transfected ZAP-S-tGFP with endogenous ORF1p in cytoplasmic 
foci in PA-1 cells: ZAP-S-tGFP (green) co-localizes with endogenous ORF1p 
(red). PA-1 experiments were repeated twice with similar results. (D-E) The ZAP-
S zinc-finger domain is necessary for co-localization with ORF1p in HeLa cells: 
ORF1p (red) expressed from pJM101/L1.3Δneo co-localizes with ZAP-S/Δ310-
645-tGFP (green) (panel D). ORF1p (red) expressed from pJM101/L1.3Δneo 
forms cytoplasmic foci that do not contain ZAP-S/Δ72-372-tGFP (green) (panel 
E). The right-most image of each panel represents a merged image. The cell 
type is indicated at the top left (yellow), the protein name is listed on the bottom 
left, and the name of the primary antibody used (italicized) is annotated at the 
bottom right. Nuclei were stained with DAPI (blue) and the scale bar represents 
25 μM.  
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Figure 3.6: The co-localization of ZAP with L1 RNA and ORF1p in HeLa 
cells.  
(A) Co-localization of transfected L1 RNA and ORF1p: ORF1p (red) expressed 
from pJM101/L1.3 co-localizes with L1 RNA (magenta). (B) Co-localization of 
transfected L1 RNA and ORF1p with transfected ZAP-S-tGFP in cytoplasmic 
foci: ORF1p (red) and L1 RNA (magenta) expressed from pJM101/L1.3 co-
localize with ZAP-S-tGFP (green). (C-D) The ZAP-S zinc-finger domain is 
necessary for co-localization with ORF1p: ORF1p (red) and L1 RNA (magenta) 
expressed from pJM101/L1.3 co-localize with ZAP-S/Δ310-645-tGFP (green) 
(panel C). ZAP-S/Δ72-372-tGFP (green) diffusely distributes throughout the 
cytoplasm, while ORF1p (red) expressed from pJM101/L1.3 forms cytoplasmic 
foci with L1 RNA (magenta) (panel D). The right-most image of each panel 
represents a merged image. The name of the protein or RNA is indicated at the 
bottom left, and the name of the primary antibody used (italicized) is annotated at 
the bottom right of each image. Nuclei were stained with DAPI (blue) and the 
scale bar represents 25 μM. Experiments were repeated three times with similar 
results. 
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Figure 3.6: The co-localization of ZAP with L1 RNA and ORF1p in HeLa 
cells.  
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Figure 3.7: A working model for how ZAP restricts L1 retrotransposition.  
Once a genomic L1 (black rectangle located on the green chromosome) is 
transcribed, the resultant bicistronic L1 mRNA is exported to the cytoplasm for 
translation. L1 ORF1p (blue circles) and ORF2p (yellow circle) bind back to L1 
mRNA to form an L1 RNP. The L1 RNP gains access to the nucleus where a 
new L1 copy is inserted into genomic DNA by the process of TPRT (black 
rectangle located on the blue chromosome). In ZAP-mediated restriction, ZAP 
(red hexagon) interacts with L1 mRNA in the cytoplasm (1), which we propose 
leads to the destabilization of L1 RNA (2) and/or a block in translation (?) through 
the recruitment of other cellular factors (e.g., SG associated proteins, RNA decay 
proteins) involved in RNA metabolism. 
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Figure 3.8:  Supporting data for Figure 3.1.  
(A) The FLAG epitope on ORF1p is compatible with retrotransposition: 
Constructs were tested in a transient HeLa cell retrotransposition assay (Moran 
et al. 1996, Wei et al. 2000). The X-axis indicates the L1 plasmid.  The Y-axis 
indicates the retrotransposition efficiency. Retrotransposition assays were 
normalized to pJM101/L1.3 (100%). The pJM105/L1.3 plasmid serves as a 
negative control and harbors a point mutation in the ORF2p RT domain that 
renders the element inactive (Moran et al. 1996). Representative results from a 
single experiment are depicted below the graph. The assay was repeated two 
times with similar results. (B) Immunoprecipitation reactions conducted using 
various wash conditions:  Top panel: HeLa cells were transfected with pCEP4, 
pJM101/L1.3, or pJM101/L1.3FLAG and were subjected to lysis using two 
different salt concentrations (500 mM NaCl (left gel) or 150 mM NaCl (right gel)). 
Shown are the images of silver stained gels from immunoprecipitation reactions. 
The black rectangles indicate the cropped image depicted in Figure 3.1B. 
Molecular weight standards (~kDa) are shown on the left side of the gel. Bottom 
panel: Image of full western blot used in Figure 3.1C. The black rectangle 
indicates the cropped lanes depicted in Figure 3.1C. Molecular weight standards 
(~kDa) are shown on the left side of the gel.  (C) Immunoprecipitation reactions 
under different lysis buffer conditions: Silver stained gels of IP fractions from 
untransfected HeLa (HeLa UTF) or HeLa cells transfected with 
pJM101/L1.3FLAG. Lysis buffer contained either 0.1% CHAPS (left gel) or 1.0% 
Triton X-100 (right gel). Black arrows correspond to the approximate location of 
ORF1p-FLAG; black bars indicate the approximate location of proteins enriched 
in the pJM101/L1.3FLAG lane. Molecular weight standards (kDa) are shown on 
the left side of the gels. 
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Figure 3.8:  Supporting data for Figure 1.  
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Figure 3.9:  Supporting data for Figure 3.3.  
(A-C) Transfected ZAP is expressed in HeLa cells:  Western blots of whole cell 
lysates demonstrate the expression of ZAP-L (panel A) and ZAP-S and ZAP-
S/72-372 (panels B and C) 48 hours post-transfection. UTF indicates 
untransfected HeLa cells. The antibodies are indicated at the right side of the 
blots. Blue arrows indicate the approximate locations of the ZAP proteins. 
Tubulin serves as a loading control. Molecular weight standards (kDa) are shown 
on the left side of the blots. (D) The depletion of endogenous ZAP enhances L1 
retrotransposition: Flow cytometry was used to determine the percentage of 
EGFP-positive, live-gated cells for each siRNA transfection condition (noted 
above the plots). The X-axis depicts the scattering at 533 nm; the Y-axis depicts 
the scattering at 585 nm. The EGFP-positive gate was set using the 
retrotransposition-deficient negative control, pJM111-LRE3-mEGFPI (Moran et 
al. 1996, Zhang et al. 2014). 
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Figure 3.9:  Supporting data for Figure 3.3.  
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Figure 3.10:  Supporting data for Figure 3.4  ZAP-S preferentially 
suppresses the expression of ORF1p.  
(A) A schematic of the pLRE3-EF1-mEGFPΔIntron: pLRE3-EF1-mEGFPΔIntron 
expresses a human L1 (LRE3) that is tagged with an mEGFPI expression 
cassette that lacks an intron. The human elongation factor-1 alpha (EF1α) 
promoter (arrow) augments L1 transcription. The ubiquitin C (UbC) promoter 
(upside down arrow) drives EGFP transcription. (B) ZAP-S inhibits ORF1p 
expression: Western blots were conducted using whole cell lysates derived from 
cells co-transfected with pLRE3-EF1-mEGFPΔIntron and the ZAP-S expression 
plasmid or pCEP4 indicated above each lane. UTF indicates whole cell lysates 
from untransfected HeLa cell. Antibodies are indicated on the right side of each 
blot. Tubulin is used as a loading control. Western blot images depict a 
representative experiment that was repeated three times with similar results. 
Notably, upon extended exposure times ORF1p was able to be visualized in the 
ZAP-S lane. (C) ZAP-S does not inhibit EFGP expression and/or accumulation: 
HeLa cells were co-transfected with pLRE3-EF1-mEGFPΔIntron and the 
indicated expression plasmids (noted above the plots). Flow cytometry was used 
to determine the percentage of EGFP-positive, live-gated cells for each condition. 
UTF indicates untransfected HeLa cells. The EGFP-positive gate was set using 
the UTF sample as a negative control. The X-axis depicts the percentage of 
EGFP positive cells. The Y-axis indicates the side scattering profile (SSC). 
Approximately 1.2 - 1.7 x 106 GFP positive cells were collected and analyzed for 
each transfection condition. 
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Figure 3.10:  Supporting data for Figure 3.4  ZAP-S preferentially 
suppresses the expression of ORF1p.  
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Figure 3.11: Supporting data for Figure 3.5. 

(A) ZAP-S-tGFP inhibits retrotransposition in HeLa cells: Top panel: Schematics 
of tGFP-tagged ZAP constructs. Depicted are the relative positions of the zinc-
finger domains (light gray rectangles), cysteine-histidine (CCCH) zinc-fingers 
(vertical black bars), and tGFP tag (green rectangles) ZAP-S expression 
constructs. Bottom panel: Results of pJJ101/L1.3 retrotransposition assays. The 
X-axis indicates the cDNA co-transfected with pJJ101/L1.3 or pcDNA6/TR. The 
Y-axis indicates pJJ101/L1.3 retrotransposition activity (black bars). All values 
have been normalized to the pCEP4 empty vector control (100%). The numbers 
above the bar graphs indicate the number of biological replicates performed with 
each cDNA expression construct. Error bars represent standard deviations. (B-E) 
ORF1p and ZAP co-localize with stress granules in HeLa cells: HeLa cells were 
co-transfected with pJM101/L1.3Δneo and ZAP-S-tGFP; proteins were visualized 
by direct immunofluorescence. ORF1p co-localizes with ectopic ZAP-S-tGFP and 
eIF3 in cytoplasmic foci (panel B). ORF1p co-localizes with ectopic ZAP-S-tGFP 
(panels A and B), but not with tubulin (panel C). GFP-tagged G3BP co-localizes 
with endogenous ZAP in cytoplasmic foci (panel D). GFP-tagged DCP1  forms  
cytoplasmic punctate structures, which do not appear to co-localize with 
endogenous ZAP (panel E). The right-most image in each panel represents a 
merged image. The cell type is indicated at the top left (yellow), the protein name 
is listed on the bottom left, and the name of the primary antibody used (italicized) 
is annotated at the bottom right. Nuclei were stained with DAPI (blue) and the 
scale bar represents 25 μM.  
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Figure 3.12: Supporting data for Figure 3.6.  

(A) Fluorescence microscopy was used to determine the percentage of cells that 
contained L1 RNA in cytoplasmic ORF1p foci. The X-axis indicates the plasmid 
that was co-transfected with pJM101/L1.3. The Y-axis of the graph depicts the 
percentage of cells where L1 RNA was detected in cytoplasmic ORF1p foci. 
Experiments were repeated three times. A total of ~60 visual fields (~1600 cells) 
were examined amongst all three experiments and ~33-41 ORF1p foci containing 
cells were evaluated for each experimental condition. Error bars represent 
standard deviations. (B) Confocal microscopy was used to determine the number 
of ORF1p-expressing cells ~48 hours post transfection. The X-axis indicates the 
plasmid that was co-transfected with pJM101/L1.3Δneo. The Y-axis of the graph 
depicts the percentage of cells that express ORF1p. Experiments were repeated 
twice. Each experiment contained two biological replicates and ~1100-1500 cells 
were enumerated amongst all experiments for each condition. Error bars indicate 
standard deviations.  



 159 

 
Table 3.1: L1 ORF1p-interacting protein candidates identified by LC-MS/MS. 
ORF1p-interacting proteins were selected based on the criteria that the protein 
was unique to the pJM101/L1.3FLAG IP and was identified by two or more 
unique peptides (peptide error ≤ 0.05; protein probability ≥ 0.95). Column 1 = 
protein name. Column 2 = protein mass. Column 3 = total number of identified 
peptides. Column 4 = number of unique peptides. Column 5 = the percentage of 
amino acid coverage for each of the respective proteins. Columns 6-8 = whether 
the proteins were identified in the indicated studies (Goodier et al. 2013, 
Peddigari et al. 2013, Taylor et al. 2013). Green highlighting indicates ORF1p-
interacting candidates that were verified by western blot (Figure 3.1D). "Y" in 
columns 6-8 indicate that the protein was identified as a significant L1-interacting 
protein by statistical and/or direct biochemical methods; “n.s.” in column 7 
indicates that the protein was identified in the study, but that it did not reach the 
significance threshold set by the authors.   
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