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(a) Σ = diag(10, 2), c = 1, k̂ = k = 2 so that keff = 2. (b)

Σ = diag(10, 2, 0.5, 0.1), c = 10, k̂ = k = 4 so that keff = 1. Each
figure plots empirical ROC curves for n = 50, 200, 1000. Theoreti-
cal ROC curves were computed as described in Section 2.7. As n
increases, the empirical ROC curves approach the theoretically pre-
dicted one. However, this convergence is slower for larger k and c. . 35
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2.4 Empirical and theoretical ROC curves for the plug-in and RMT de-
tectors. Empirical ROC curves were simulated using 10000 test vec-
tors and averaged over 100 trials with n = 1000, m = 500, and
Σ = αdiag (10, 5). The theoretical ROC curves were computed as
described in Section 2.7. (a) Stochastic testing setting. Results are

plotted for α = 1, 0.5, 0.25. For α = 1 and α = 0.5, k̂ = k = keff = 2
by (2.16). For α = 0.25, keff = 1.Since k̂ > keff when α = 0.25,
we observe a performance gain when using the RMT detector. (b)
Deterministic testing setting. Results are plotted for α = 1 so that
keff = 2. Three values of the deterministic signal vector were used:
x = [1, 1]T , x = [0.5, 0.5]T , and x = [0.25, 0.25]T . The resulting ROC

curves depend on the choice of x, however, since k̂ = keff, the plug-in
and RMT detector achieve the same performance for all x. For both
the stochastic and deterministic detectors, the theoretically predicted
ROC curves match the empirical ROC curves, reflecting the accuracy
of Corollary 2.5.1 and the Lugannani-Rice formula. . . . . . . . . . 36

2.5 Empirical and theoretical ROC curves for the plug-in and RMT
stochastic detectors. Empirical ROC curves were computed with
10000 test samples and averaged over 100 trials. Here, n = 5000,
k̂ = k = 4 and Σ = diag(10,3,2.5,2). The empirical oracle ROC
curve is provided for relative comparison purposes. (a) m = 5000 so

that c = 1 and keff = k̂ = 4. The plug-in and RMT detectors achieve
relatively the same performance. (b) m = 250 so that c = 20 and

keff = 1 < k̂ = 4. The RMT detector avoids some of the performance
loss realized by the plug-in detector. As seen in Section 2.3, limited
training samples degrades detector performance. However, the new
RMT detector does not suffer as badly as the plug-in detector be-
cause it accounts for subspace estimation errors due to finite training
data. The disagreement between the theoretical and empirical ROC
curves is attributed to finite dimensionality. . . . . . . . . . . . . . 37

2.6 Theoretically determined number of training samples, m, needed to
achieve a desired performance loss, ε, as defined in (2.13). The re-
quired false alarm rate is PF = 0.1 with n = 200, Σ = diag(10, 0.1),

and k̂ = k = 2. (a) Results for the stochastic detectors. We see that
for a given ε, the new RMT detector requires less training samples.
(b) Results for the deterministic detectors when x = [0.75, 0.75]T .
Again, for a given ε, the new RMT detector requires less training
samples. In the deterministic setting, the limiting performance loss
is different (and non-zero) for the plug-in and RMT detectors. This
arises in estimation errors of x in the GLRT. . . . . . . . . . . . . . 38
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2.7 Empirical exploration of the achieved probability of detection, PD, for
a fixed probability of false alarm, PF = 0.01, for various k̂. Empirical
ROC curves were computed using 10000 test samples and averaged
over 100 trials with n = 1000, m = 500, and Σ = diag(10,5,4, 0.75, 0.5, 0.25)

so that keff = 3. Results for the stochastic detectors. The optimal k̂
resulting in the largest PD is not the true k, but rather keff. . . . . . 39

3.1 Algorithm to determine kuseful. This is computable in an oracle setting
where δ is known. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Probability density function (p.d.f.) of Λ(w) |H0 and Λ(w) |H1 for
three combinations of the number of components d and non-centrality
parameter λd. (a) Baseline: d = 1, λd = 2 (b) Increases d but keeps
λd fixed. The distributions are less separable. (c) Increases both d
and λd. The distributions are more separable. . . . . . . . . . . . . 47

3.3 The corresponding ROC curves to the three choices of d and λd in
Figure 3.2. ROC curves were generated from (3.4). When adding an
additional subspace component, the non-centrality parameter must
increase sufficiently in order to achieve improved detection. . . . . 48

3.4 Minimum increase in non-centrality parameter necessary for increased
detector performance. Results are shown for multiple choices of PF .
λ1 indicates the non-centrality parameter when d = 1 and ∆λ indi-
cates the increase in non-centrality parameter when increasing the
number of components to d = 2. . . . . . . . . . . . . . . . . . . . . 49

3.5 Deterministic energy detector performance as a function of the num-
ber of training samples. In this experiment n = 200, Σ = diag(5, 2, 0.5),
x = [1.5, 1.5, 1.5]T , and the required false alarm rate is PF = 0.1.
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RMT, and useful detectors. PD(PF ) is calculated in (3.4). The plug-
in detector sets d = k, the RMT detector sets k = keff as defined in
(3.16), and the useful detector sets d = kuseful as calculated in Figure
3.1 using the non-centrality parameter defined in (3.19). The use-
ful detector achieves the optimal performance. (b) The number of
subspace components used by the plug-in, RMT, and useful detec-
tors. Whenever keff 6= kuseful, the RMT detector realizes a suboptimal
detector performance. Even though these subspace components are
informative, there is not enough training data to make them useful
in detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
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3.6 Empirically achieved probability of detection (PD) as a function of
the weighting coefficient a for a fixed false alarm rate of PF = 0.1.
(a) Two detectors, one using the deterministic vector δ = [1, 1]T and
the second using δ = [1, 0]T . The first detector achieves its maxi-
mum performance around a = 0.5 indicating that both components
are equally informative. The second detector achieves its maximum
performance at a = 1 indicating the second subspace component is
not useful in detection. (b) Two detectors, one using δ = [1, 0.75]T

and the other using δ = [1, 0.5]T . The maximum performance of each
detector is no longer achieved at a = 0.5 or a = 1 as the entries
of δ are non-zero and are not equal. The maximum performance is
indicated by a black circle. . . . . . . . . . . . . . . . . . . . . . . . 56

3.7 Empirical and theoretical ROC curves for the plug-in and RMT
matched subspace detectors. Empirical ROC curves were simulated
with n = 500, m = 500, k = 2, Σ = diag(3, 0.1), and p = 0.8.
However, as σ2 is below the critical threshold, keff = 1. The empirical
ROC curves were computed using 5000 test samples and averaged
over 25 trials. x was generated randomly for training samples but
fixed for test samples. The theoretical ROC curves were obtained
using (3.4). Note the excellent agreement and the performance gain
realized by the RMT detector. . . . . . . . . . . . . . . . . . . . . . 60

3.8 Empirically computed probability of detection, PD, for a fixed prob-
ability of false alarm, PF = 0.1, for various p. Here, n = 1000,
m = 1000, k = 2, Σ = diag(3, 0.1). PD was computed using (3.4)
and x was generated as described in Figure 3.7. For values of p ≤ 1/9,
keff = 0 and performance degrades to PD = PF + o(1) for both de-
tectors. As p increases, keff = 1 allowing the detectors to achieve
better than random guessing performance. When keff > 0 the plug-in
detector is sub-optimal for all values of p. . . . . . . . . . . . . . . . 61

4.1 We generate data from (4.1) for p = q = 150, kx = ky = 1, k = 1, and

various ρ = Pxy and sweep over θ = θ
(x)
1 = θ

(y)
1 and n. We compute k̂x

and k̂y as outlined in Appendix D for a significance value of α = 0.01.

Using these estimates, we compute ρ̂
(1)
cca as the largest singular value

of Ĉcca as in (4.8) and ρ̂
(1)
icca as the largest singular value of Ĉicca as in

(4.12). We then estimate the number of correlated signals k̂cca and

k̂icca via (4.14) for a significance level of α = 0.01. We repeat this

for 10000 trials and compute the percentage of trials where k̂cca = 1
and k̂icca = 1. We plot log10 of these percentages for multiples values
of θ and n. We plot the theoretical consistency boundary of CCA
(given in Theorem 4.6.2 that relies on [2]) in a solid white line and the
theoretical consistency boundary of ICCA (given in Theorem 4.6.2)
in a dashed white line. . . . . . . . . . . . . . . . . . . . . . . . . . 87
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4.2 Contour lines for minimum 1/c necessary for reliable detection of
k = 1 correlated component. The quantity 1/c = n/p is equivalent
to the number of samples per dimension of data. Figure 4.2(a) plots
the contours for empirical CCA and Figure 4.2(b) plots the ICCA
contours using the limits give in Theorem 4.6.2 for c = cx = cy.
We plot the contours for 1/c = 10 to 1/c = 3. These plots clearly
demonstrate the ICCA limits are independent of ρ = Pxy while CCA
is highly dependent on ρ = Pxy. For a fixed number of samples (fixed
c), ICCA is reliably detect the presence of a correlated signal at lower
SNR values than empirical CCA. . . . . . . . . . . . . . . . . . . . 88

4.3 Theoretical detection regions for ICCA for a rank-1 setting where
cx = cy = 1. In this setting, θ > 1 implies that the corresponding
subspace is informative. Therefore, in light of Theorem 4.6.2, we see
that when both θx < 1 and θy < 1, neither subspace component is
informative and we cannot detect the presence of a correlated signal.
This corresponds to the blue region. When only one of θx or θy is
above the phase transition (green region), we still cannot detect the
presence of a correlated signal even though we have one informative
signal. However, when both θx and θy are above the phase transition
(yellow region), we can detect the presence of a correlated signal
between the datasets. This detection ability is independent of the
value of correlation between the datasets. . . . . . . . . . . . . . . 88

4.4 We generate data from (4.1) for p = q = 150, kx = ky = 1, k = 1,

θ
(x)
1 = θ

(y)
1 = 2, Pxy = 1, and k̂x = k̂y = 1. We compute ρ̂

(1)
cca as

the largest singular value of Ĉcca as in (4.8) and ρ̂
(1)
icca as the largest

singular value of Ĉicca as in (4.12). We then estimate the number of

correlated signals k̂cca and k̂icca using the Wilks test in (4.10) and our
new test in (4.14) for a significance level of α = 0.01. We repeat this

for 250 trials and compute the percentage of trials where k̂cca = 1
and k̂icca = 1 for each significance test. We repeat this for multiple
values of n and plot the results. We observe that the classical Wilk’s
Lambda test is suboptimal and results in a large number of false alarms. 89
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4.5 We generate data from (4.22) for p = q = 150, kx = ky = 1, k = 1,

n = 1200, and various ρ = Pxy and sweep over θ = θ
(x)
1 = θ

(y)
1 and

γ = γx = γy. We compute k̂x and k̂y as outline in Appendix D for
a significance value of α = 0.01. Using these estimates, we compute
ρ̂

(1)
cca as the largest singular value of Ĉcca as in (4.8) and ρ̂

(1)
icca as the

largest singular value of Ĉicca as in (4.12). We then estimate the

number of correlated signals k̂cca and k̂icca via (4.14) for a significance
level of α = 0.01. We repeat this for 10000 trials and compute the
percentage of trials where k̂cca = 1 and k̂icca = 1. We plot log10 of
these percentages for multiples values of θ and n. We plot the the-
oretical consistency boundary of empirical CCA (given in Theorem
4.7.1) in a solid white line and the theoretical consistency boundary
of ICCA (given in Theorem 4.7.1) in a dashed white line. . . . . . . 92

4.6 Left and right camera views of our experiment with boxes manu-
ally identifying each source. Both cameras share a common flashing
phone, outlined in a red rectangle. Each camera has two independent
sources besides the shared flashing phone. . . . . . . . . . . . . . . . 93

4.7 Singular value spectra of Xleft and Yright for the flashing light experi-
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4.8 (a)-(c) Left singular vectors of Xleft corresponding to the top 3 sin-
gular values in Figure 4.7(a). (d) Thresholded singular vectors from
(a)-(c) overlayed onto original scene. We use a threshold of log(p)/

√
p

where p = 32400 pixels. These correspond to the 3 light sources vis-
ible in the left camera.The green pixels identify BPL; the magenta
pixels identify PH1; the red pixels identify PH2. . . . . . . . . . . . 94

4.9 (a)-(c) Left singular vectors of Yright corresponding to the top 3 sin-
gular values in Figure 4.7(b). (d) Thresholded singular vectors from
(a)-(c) overlayed onto original scene. We use a threshold of log(p)/

√
p

where p = 32400 pixels. These correspond to the 3 light sources visi-
ble in the right camera. The dark blue pixels identify PH2; the cyan
pixels identify T1; the white pixels identify RPL. . . . . . . . . . . . 95

4.10 (a) Top three singular values returned by empirical CCA as defined
in (4.8). As we are in the sample deficient regime, these singular
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4.11 Significance of the top singular value returned by ICCA in Figure
4.10(b) using (4.14) with α = 0.01. A value of zero represents that
the singular value is not significant. A value of one represents that
the singular value is significant. (a) Significance over all 800 frame.
(b) Zoomed in to the first 50 frames in (a). . . . . . . . . . . . . . . 97
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4.12 Top 3 threholded empirical CCA canonical vectors overlayed on the
original scene after 800 frames as computed in (4.9). The red pixels
correspond to the vector with the highest correlation, the green pixels
correspond to the vector with the second highest correlation, and the
blue pixels correspond to the vector with the third highest correlation.
We use a threshold of log(p)/

√
p where p = 32400 pixels. . . . . . . 97

4.13 Top 2 threholded ICCA canonical vectors overlayed on video after
800 frames as computed in (4.13). The red pixels correspond to the
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4.16 Top 3 threholded PCA vectors overlayed on each video after 800
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the right is amplitude modulate at 2.15 Hz, which is different than
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4.30 (a) Full spectrogram of a1(t) defined in (4.28). (b) Zoomed in spec-
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5.2 Accuracy plots as a function of n for a rank-2 setting where kx = ky =
2, p = 200, q = 250, Θx = Θy = diag(16, 1), Pxy = diag(0.9, 0.9),
VK = I2, and non-identity UK . Accuracy is defined in (5.16). The left
figure plots the accuracy of the first canonical vector and the right
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5.3 Convergence plots of the first canonical vector of each estimate for
three values of p. Results are plotted for three fixed values of cx =
0.5, 1, 2. The simulation setting is the same as Figure 5.2 for a rank-2
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Pxy = diag(0.9, 0.9), VK = I2, and non-identity UK . Errorbars are 1
standard deviation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
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p = 200, q = 250, Θx = Θy = diag(16, 1), Pxy = diag(0.9, 0.9),
VK = I2, and non-identity UK . Errorbars are 1 standard deviation. . 140

5.5 Accuracy convergence plots for the top two canonical vectors of the
orthogonal and empirical CCA estimates. Results are plotted for
three fixed values of cx = 0.5, 1, 2 for three different values of p.
The simulation setting is the same as Figure 5.3 for a rank-2 setting
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Pxy = diag(0.9, 0.9), VK = I2, and non-identity UK . Errorbars are 1
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of k̂x for c = 1. The simulation setting is the same as Figure 5.3
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5.9 First canonical vector estimates for the left camera at frame 5. This
corresponds to a total capture time of 1/6 of a second. (a)-(d) show
the absolute value of the vectors displayed in an image so that large
values indicate correlated pixels. (e)-(f) plot the difference between
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ABSTRACT

Informative Data Fusion:
Beyond Canonical Correlation Analysis

by

Nicholas A. Asendorf

Chair: Raj Rao Nadakuditi

Multi-modal data fusion is a challenging but common problem arising in fields such

as economics, statistical signal processing, medical imaging, and machine learning.

In such applications, we have access to multiple datasets that use different data

modalities to describe some system feature. Canonical correlation analysis (CCA) is

a multidimensional joint dimensionality reduction algorithm for exactly two datasets.

CCA finds a linear transformation for each feature vector set such that the correlation

between the two transformed feature sets is maximized. These linear transformations

are easily found by solving the SVD of a matrix that only involves the covariance and

cross-covariance matrices of the feature vector sets. When these covariance matrices

are unknown, an empirical version of CCA substitutes sample covariance estimates

formed from training data. However, when the number of training samples is less

than the combined dimension of the datasets, CCA fails to reliably detect correlation

between the datasets.

This thesis explores the the problem of detecting correlations from data modeled

by the ubiquitous signal-plus noise data model. We present a modification to CCA,

which we call informative CCA (ICCA) that first projects each dataset onto a low-

dimensional informative signal subspace. We verify the superior performance of ICCA

on real-world datasets and argue the optimality of trim-then-fuse over fuse-then-trim

correlation analysis strategies. We provide a significance test for the correlations

returned by ICCA and derive improved estimates of the population canonical vectors

using insights from random matrix theory. We then extend the analysis of CCA to

regularized CCA (RCCA) and demonstrate that setting the regularization parameter

xxxii



to infinity results in the best performance and has the same solution as taking the SVD

of the cross-covariance matrix of the two datasets. Finally, we apply the ideas learned

from ICCA to multiset CCA (MCCA), which analyzes correlations for more than two

datasets. There are multiple formulations of multiset CCA (MCCA), each using

a different combination of objective function and constraint function to describe a

notion of multiset correlation. We consider MAXVAR, provide an informative version

of the algorithm, which we call informative MCCA (IMCCA), and demonstrate its

superiority on a real-world dataset.
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CHAPTER I

Introduction

Multi-modal data fusion is a ubiquitous problem in signal processing and machine

learning. In many applications, we have access to multiple datasets, possibly of

different modalities, each of which describe some feature of the system. This setup is

becoming increasingly common today as data collection becomes cheaper and easier.

We are no longer limited by the amount or variety of data that we can collect, but

instead by how quickly and accurately we can process such a wide variety of data.

The underlying assumption in such settings is that each dataset contains signals

that are correlated with signals of the other datasets. Correlation analysis algorithms

hope to leverage this fact to extrude these correlated signals jointly from the datasets

more accurately than from the individual datasets alone. Of course, every applica-

tion has a different goal. Sometimes we want to detect the presence of the correlated

signals. Other times, we may wish to predict one modality from the other. In other

applications, we may desire to classify or cluster observations. Despite the differing

objectives, all of these applications rely on the ability to accurately detect and extract

the correlated signals between the datasets. This thesis focuses on developing theo-

retically justified, robust correlations analysis algorithms to use as a pre-processing

step before learning algorithms that perform data fusion, as motivated by Figure 1.1.

1.1 Canonical Correlation Analysis (CCA)

1.1.1 What is it? What is it not?

Canonical correlation analysis (CCA) is a joint dimensionality reduction algorithm

for exactly two datasets that finds a linear transformation for each dataset such that

the correlation between the two transformed feature sets is maximized [4]. CCA,

however, is not a data fusion algorithm. CCA returns two linear transformations and
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Correlation Analysis

Learning Algorithm

Figure 1.1: Illustration of multi-modal data fusion

a set of correlations. In this light, CCA is extremely similar to principle component

analysis (PCA), which returns a linear transformation that accounts for the directions

of largest possible variance in a dataset. These principle components are typically

used as features vectors in a variety of machine learning algorithms. Just as PCA is a

dimensionality reduction algorithm and not the final machine learning algorithm that

uses the principle components, CCA is a joint dimensionality reduction algorithm

whose dimensionality reduction ensures that datasets are maximally correlated in

their reduced spaces. These maximally correlated features may then be used however

a learning algorithm desires.

The solution to CCA is easily found by solving a quadratic optimization problem.

This solution is a closed form expression relying on the singular value decomposition

(SVD) of a matrix product involving the covariance matrices of each dataset and the

cross-covariance between the two datasets. As these covariance matrices are rarely

known a priori, practical uses of CCA rely on substituting sample covariance matrices

formed from training data, which we call empirical CCA.

The performance of empirical CCA has been studied previously, but insufficiently.

When the number of training samples is large compared to the dimensions of the

datasets, the performance is well understood [5]. When the number of training sam-

ples is less than the sum of the dimension of each dataset (sample deficient regime),

[6] proves that empirical CCA completely breaks down and always reports a perfect

correlation between the datasets.

This extremely undesirable characteristic of empirical CCA has lead many to

abandon CCA as a reliable statistical analysis technique. Pezeshki, L.L. Scharf et al.

argue that in this sample deficient regime

... the empirical canonical correlations are defective and may not be used

as estimates of canonical correlations between random variables.[6]
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Similarly, Ge et al. conclude that

... CCA provide(s) reliable information about spatial correlations existing

among pairs of data sets only when SNRs ... are reasonably high, and the

sample support is significantly larger than the data dimensions.[7]

1.1.2 Variations on CCA

Due to this undesirable breakdown of CCA in the low-sample high-dimensionality

regime, many researchers proposed variations of CCA to avoid this performance loss.

Most notably, [8] used recent results from random matrix theory to demonstrate

that this performance breakdown may be avoided by trimming the sample covariance

matrix estimates to only include informative components. This algorithm is the crux

of this thesis. We will study its performance and develop theoretical tools in order

to use it for real-world applications. Throughout the thesis, we use the ubiquitous

low-rank signal-plus-noise model for datasets

X = UV H + Z,

where X = [x1, . . . , xn] is our observed data matrix whose columns are individual

multidimensional observations, U is a low-rank signal subspace, V is a low-rank signal

matrix, and Z is a noise matrix. Surprisingly, correlation analysis for this classical low-

rank signal-plus-noise model is not completely studied. This thesis seeks to complete

the discussion. Here, we briefly touch on other variations based on CCA that do not

assume the above linear low-rank signal-plus-noise model. Many of these algorithms

are tuned for a specific application or seek to avoid the performance loss of CCA in

a certain regime.

Regularized CCA (RCCA) [9] adds a penalty term to the magnitude of the canon-

ical vectors. This results in adding a scaled copy of the identity matrix to the sample

covariance matrix of each dataset, which allows each matrix to be inverted. There-

fore, RCCA returns non-trivial results in the sample-deficient regime. However, this

approach introduces a parameter to the algorithm; the effect of this parameter is not

well studied. Other variations of RCCA, such as supervised RCCA [10], fast RCCA

[11], and a multi-block RCCA [12], have also been proposed.

Kernel CCA (KCCA) [13] was proposed to deal with non-linear correlations ex-

isting between datasets. However, KCCA also introduces regularization parameters

so as to not return trivial solutions (see [14] for an excellent derivation). Besides the

choice of regularization parameter, there is also ambiguity in the choice of the kernel
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function, which is a common problem among kernel methods. Other variations of

KCCA have also been proposed, such as penalized KCCA [15], alpha-beta divergence

[16], and CCA based on kernel target alignment [17].

Sparse CCA [18] finds linear transformations such that the number of features

used is minimized. This problem is often motivated by the need for interpretable

canonical vectors that is often driven by the application, such as in brain imaging

[19]. There are many variations on sparse CCA, typically motivated by application or

mathematical intrigue. Sun and Keates [20] explore CCA in the context of censoring,

Shin and Lee examine sparse functional data [21], Tao et al. consider joint sparse

data in [22], Gao et al. explore efficient sparse CCA for high-dimensional data [23],

and Zhang et al. extend the analysis to multi-class group sparse CCA [24]. Other

formulations include a penalized decomposition [25], Bayesian CCA via group sparsity

[26], and recursive sparse CCA [27].

1.1.3 Applications

CCA and its variants are widely used in a variety of fields where multiple datasets

naturally arise, the most common of which is machine learning and computer vision.

In [28], CCA is used to learn semantics of multimedia content by fusing image and

text data. Related, [29] uses CCA to learn word embeddings for supervised natural

language processing tasks. CCA has been widely applied to pose estimation [30, 31],

as this is a natural examples where we have multiple views (image) of the same

object. Other computer vision related tasks where correlation methods are natural

fits include matching people across cameras [32], clustering social event images [33],

automatic image annotation [34], and audio-visual speaker clustering [35].

Medical analysis is another field where there are ripe opportunities for correlation

analysis due to the vast number of modalities (EEG, MRI, CT, fMRI, MEG, etc.).

CCA is often used to determine interactions, or connectivities, between brain areas

in fMRI data [36, 37, 38, 39] and used to fuse fMRI, sMRI, and EEG data [40]. CCA

based methods have also been used to examine genetic connections [41, 42, 43], relying

heavily on sparse methods due to the high dimensionality of gene data and need to

interpret which genes are “on”. CCA is also a popular way to detect frequencies

in steady-state visual evoked potential (SSVEP) in brain-computer interfaces (BCIs)

[44, 45, 46]. Still further, CCA is used in de-noising and analysis of EEG, MEG and

ECG data [47, 48, 49, 50].

CCA also has roots in classical signal processing applications. The authors of

[51] apply CCA to to the common communications problem of blind equalization
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of single-input multiple-output (SIMO) channels. Pezeshki et al. [52] showed that

the CCA coordinates are the correct coordinates for low-rank Gauss-Gauss detection

and estimation. Scharf and Thomas [53] provide a wonderful exposition on using the

canonical coordinates for Wiener filters, transform coding, filtering, and quantizing.

CCA and multiset CCA have been used to achieve joint blind source separation (BSS)

in [54]. CCA has also been applied to hyperspectral imaging [55], array processing

[7], Gaussian channel capacity [56], and cognitive radio networks [57].

Other fun and interesting applications include climatology, finance, and music.

Todros and Hero define a new measure transformed based CCA and show its utility

on financial data in [58]. Torres et al. [59] use sparse CCA to label portions of musical

songs with meaningful words or phrases. In the field of climatology, CCA has been

used to study sea temperatures [60], forest planning [61], and tropical cyclones [62].

Finally, I would be remiss if I didn’t share my personal favorite application of CCA

to date: using CCA to analyze bovine growth [63].

1.2 Contributions of this thesis

In many of the application presented above, researchers either have access to

many samples, or have designed an algorithm tuned specifically for a their particular

application. This thesis considers the performance of empirical correlation algorithms

in the low-sample, high dimensional setting. These algorithms are not geared toward

a particular application but are general and may be applied to any application. We

will demonstrate, both theoretically and empirically, that multi-modal correlation

analysis in this regime is a possibility. We remark that statements labeled as theorems

represent, to the best of our knowledge, new results while important results from

literature are labeled as propositions or lemmas. Chapters II-III are self contained

and may be read independently. Chapters IV-X consider the problem of correlation

analysis.

Chapters II and III consider the classical problem of matched subspace detectors.

We use insights from random matrix theory on the accuracy of subspace estimates

to derive new, optimal detectors that demonstrate the sub-optimality of the classical

plug-in detectors that simply substitute maximum likelihood estimates for unknown

parameters. Under both a stochastic and deterministic data model, we argue that

only the informative subspace components should be used in a detector. We extend

this analysis to the case where our observations may contain missing data.

In Chapters IV and V, we explore the performance of CCA and re-derive infor-
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mative CCA (ICCA). We demonstrate the extreme sub-optimality of CCA in the

low-sample, high dimensionality regime. Specifically, we provide a statistical test for

both CCA and ICCA that determines whether the correlations returned by the algo-

rithms do indeed represent a true underlying correlation in the datasets. We prove

when each of these statistics are consistent to showcase the superiority of ICCA. We

also provide an analogous statistical test and consistency theorem to use when the

datasets have missing data entries. We create 3 new real-world, multi-modal datasets

involving video and audio to verify the performance of ICCA. We then showcase that

the canonical vectors returned by ICCA are more accurate than the CCA vectors

in the low-sample regime. Finally, we provide a new algorithm for estimating the

canonical vectors that asymptotically optimal.

Next, we explore the performance of regularized CCA (RCCA) in Chapter VI.

When the number of training samples is limited but correlation analysis is still de-

sired, a common strategy is to regularize CCA by adding a penalty to the magnitude

of the linear transformation. However, we demonstrate that setting the regularization

parameter to infinity results in the best performance. In fact, in this setting, the solu-

tion to RCCA may be found by taking the SVD of the sample cross-covariance matrix

between the two datasets. We then predict the behavior of the largest singular values

of this cross-covariance matrix assuming a low-rank signal-plus-noise model on the in-

dividual datasets. We argue that using the top singular values of this cross-covariance

matrix to detect correlations is sub-optimal because the correlation coefficients are

coupled with the individual data signal strengths.

Using a similar proof technique, we predict the behavior of the largest singular

values of the projection of low-rank signal plus noise matrices to a smaller dimension

in Chapter VII. Specifically, we consider two types of projection matrices: one with

standard complex Gaussian entries and one with orthonormal columns. We are able

to provide a closed form expression for the largest singular values in the case where

the projection matrix is unitary. Through numerical simulations, we demonstrate

the superiority of the unitary projection matrix over the Gaussian projection matrix.

The unitary projection matrix can reliably detect the signals at a lower signal-to-noise

ratio than the Gaussian projection matrix.

In Chapter VIII we apply CCA and ICCA to the classical problems of detection

and regression. First, we consider the low-rank signal-versus-noise subspace detection

problem given two datasets. We prove that the standard likelihood ratio test (LRT)

detector may be written using the canonical basis returned by CCA. We show that

when using empirical parameter estimates, the CCA detector is extremely suboptimal
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but that the ICCA detector is equivalent to the plug-in LRT detector. We then

show that the classical Gaussian regression problem may be written in terms of the

CCA basis. However, similar to the detection problem, empirical CCA degrades the

performance significantly while ICCA matches the classical plug-in detector. We show

this via mean squared error prediction plots.

We then consider the joint problems of image retrieval and image annotation

in Chapter IX. Correlation based methods are typically overlooked as solutions to

such problems due to the problems with CCA outlined in this thesis. We show that

using ICCA to solve these problems results in non-trivial solutions. We compare the

performance of CCA and ICCA on four different image-text datasets and describe

the capabilities and limitations of ICCA in this application. When the datasets

contain multiple images of the same objects and meaningful captions, ICCA is able

to capture correlations between images and text. However, ICCA fails to capture

semantic meanings between documents and captions. We argue that with clever

feature engineering and improved NLP techniques, correlation based methods may

be relevant for image retrieval and image annotation.

Lastly, we consider multi-set CCA (MCCA) in Chapter X. Unfortunately, un-

like CCA, there is no clear objective function to use in an optimization problem;

Kettenring [64] proposes five such objective functions. Nielsen also provides a nice

formulation of MCCA in [65] where he proposes four constraint functions. We pro-

vide derivations for these 20 formulations, in both a theoretical and empirical setting.

We then choose to consider the MAXVAR problem as we are able to directly apply

our insights from ICCA to create an informative version of it, which we call infor-

mative MCCA (IMCCA). We demonstrate the superior performance of IMCCA on a

real-world video dataset that we created.
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CHAPTER II

Performance of Matched Subspace Detectors

Using Finite Training Data

2.1 Introduction

Many signal processing [66] and machine learning [67] applications involve the

task of detecting a signal of interest buried in high dimensional noise. A matched

subspace detector (MSD) is commonly used to solve this problem when the target

signal is assumed to lie in a low-rank subspace. The low-rank signal buried in noise

model is ubiquitous in signal processing. In array processing, [68] and [69] use mul-

tiple array snapshots to detect a low-rank signal in the presence of both interference

and noise when the noise power is known and unknown, respectively. Similarly in

adaptive radar detection, [70] and [71] adaptively detect distributed low-rank targets

given multiple snapshots of primary (signal plus noise) and secondary (noise only)

data under partially homogeneous and homogeneous noise assumptions, respectively.

Low rank signal models are also used in electroencephalography (EEG) and mag-

netoencephalography (MEG) source localization as in [72] and [73], respectively. In

[68, 69, 70, 71], the signal subspace is known. The performance of a MSD when

the signal subspace is known was studied in [74] and [75] under deterministic signal

assumptions and in [76] and [77] under stochastic signal assumptions. This chapter

considers the performance of a MSD in the less studied setting where the signal sub-

space is unknown and must be estimated from finite, noisy, signal-bearing training

data.

The setting we have in mind arises from machine learning related applications

where the low-rank signal model is reasonable but the signal subspace is not parame-

terizable. This is in contrast to the array processing applications that motivated the

original MSD work [74] where the signal subspace is explicitly parameterizable when-
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ever the array geometry is known. The inferential problem is made tractable by the

availability of a training dataset consisting of signal-bearing observations that have

been collected in a variety of representative experimental (and thus noisy) conditions.

In such a scenario, the truncated eigen-decomposition of the sample covariance ma-

trix of this training data yields an estimate of the unknown low-rank signal subspace,

which may then be used for signal versus noise discrimination.

An illustrating example of this is the classical problem of handwriting recognition

[78, Chapter 10] where a MSD can be used to determine if an area of an image con-

tains a digit 0− 9 or is pure noise. Here, a database [79], containing a large number

of handwritten samples of each of the digits written by many different writers, is used

to form a low-rank subspace estimate of each digit. The samples are noisy because

of digitization effects and the inherent variation between writers. A nearest-subspace

classifier based on retaining only the first few (10 − 12, in this example) principal

components (or leading eigenvectors of the digit’s training data sample covariance

matrix) associated with each digit yields greater than 93% classification performance

[78, Table 10.1, pp. 121], indicating that the low-rank signal buried in noise model

is appropriate. The motivating setting described also arises in the context of image

or wavefront recognition applications (e.g. license plate character recognition) where

the target and the camera are separated by a dynamic random medium and in hy-

perspectral imaging based anomaly detection [80, 81, 82] relative to a statistically

stationary scene (e.g. toxic gas detection). Here too, a practitioner might have ac-

cess to training samples collected over a variety of experimental conditions and might

employ the MSD in a similar manner.

In these applications, the standard plug-in detector, which substitutes an estimate

of the signal subspace into the expression for the oracle MSD that was derived as-

suming the subspace is perfectly known, realizes a performance loss because additive

noise and finite training data decrease the accuracy of the estimated subspace. This

motivates questions such as: What is the expected plug-in detector performance? Is

it possible to avoid some of this performance loss? How does the estimation of the

signal subspace dimension influence detector performance? Is the “play-it-safe” over-

estimation of subspace dimension, to compensate for the potential underestimation

of schemes discussed in [83] , a good idea?

Our performance analysis, which relies on insights from random matrix theory

(RMT), highlights the importance of using no more than keff informative signal sub-

space components, where keff is a number that depends on the system dimensionality,

number of training samples, and eigen-SNR (signal-to-noise-ratio). We derive a new
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RMT detector that only utilizes the keff informative signal subspace components,

thereby avoiding some of the possible performance loss suffered by the plug-in detec-

tor. Given the number and quality (i.e. SNR) of the training samples, our analysis

also allows a practitoner to predict the expected receiver operating characteristic

(ROC) performance of a general class of detectors. An outcome of this analyis is that

we can accurately predict how many training samples are needed to get to within

ε of the oracle MSD’s performance (see Figures 2.2, 2.6(a), and 2.6(b)). This per-

formance characterization can provide the practitioner with experimental guidance

and might be a starting point for the formulation of achievable system performance

specifications.

This chapter differs from previous works in several aspects. The focus and main

contribution is analytically quantifying the performance of a general class of MSD’s as

a function of the system dimensionality, number of training samples, and eigen-SNR.

Theorem 2.5.1 and Corollary 2.5.1 extend recent results from RMT [84, 85, 86] to

precisely quantify the accuracy of the subspace estimate. This quantification yields

approximations that appear to hold for moderate system dimensions even though

the theory is asymptotic, in the limit of large dimensionality and relatively large

training sample size. We provide a first-principles derivation of a new RMT detector

that incorporates this knowledge of the accuracy of the estimated subspace, thereby

illuminating the asymptotic form of a detector that mitigates some of the potential

performance loss suffered by the plug-in detector. These RMT insights also allow

us to characterize the ROC performance of a MSD under both a deterministic and

stochastic model for the test vector. This work builds on [87] by providing the proofs

of Theorem 2.5.1 and Corollary 2.5.1, analyzing the performance of the general class

of detectors given in (2.14), considering the deterministic test vector setting, and

unifying the performance analysis of the stochastic and deterministic MSD’s.

This chapter is organized as follows. We describe the generative models for the

training data and test vector and also estimate unknown parameters in Section 2.2.

In Section 2.3, we derive standard oracle and plug-in detectors for each testing setting

and highlight how finite training data causes subspace estimation errors and subse-

quent performance loss. We formally pose the questions addressed herein in Section

2.4. Section 2.5 contains pertinent results from RMT and our definition in (2.16)

of keff. In Section 2.6 we derive RMT detectors for the stochastic and deterministic

test vector models. Aided by RMT and a saddlepoint approximation of the CDF of

a weighted sum of chi-square random variables, we predict ROC performance curves

for a general detector in Section 2.7. We validate our asymptotic ROC predictions
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and demonstrate the importance of using the keff informative subspace components

in Section 2.8. We provide concluding remarks in Section 2.9.

2.2 Data Models and Parameter Estimation

Given an observation, we wish to discriminate between the H0 hypothesis that

the observation is purely noise and the H1 hypothesis that the observation contains a

target signal. We assume that the signal of interest lies in a low dimensional subspace

as in [68, 69, 70, 71, 72, 73, 80, 81, 82]. However, this low-rank subspace and the SNR

governing the subspace components are unknown. To design a detector to distinguish

between the H0 and H1 hypotheses, we have access to a training dataset, recorded

under similar noisy conditions, whose observations are known to contain the signal

of interest (see, for example, [81, 82]). We use this training data to form estimates

of the unknown low-rank subspace and each component’s SNR. This section will

mathematically describe the training data models, how we estimate any unknown

parameters, and a stochastic and deterministic model for the testing data. Both

testing models share the same training data model.

2.2.1 Training Data Model

We model our unknown subspace with the complex matrix U = [u1, . . . , uk] such

that dimui = n and 〈ui, uj〉 = uHi uj = δij for i, j = 1, . . . , k. Here δij is the delta

function such that δij = 0 for i 6= j and δij = 1 for i = j. We are given m signal-

bearing training vectors yi ∈ Cn×1, i = 1, . . . ,m, modeled1 as yi = Uxi + zi where

zi
i.i.d.∼ CN (0, In) and xi

i.i.d.∼ CN (0,Σ) where Σ = diag(σ2
1, . . . , σ

2
k) with σ1 > σ2 >

· · · > σk > 0 unknown. Similar gaussian priors appear in [70, 71, 80, 81]. Σ models

the SNR of each subspace component and zi models the additive noise. For each

observation, xi and zi are independent. The dimension, k, of our subspace is unknown

and we assume throughout that k � n so that we have a low-rank signal embedded

in a high-dimensional observation vector.

2.2.2 Parameter Estimation

The parameters k, U , and Σ are all unknown in our training model. For the rest

of the paper, we assume that we are given a dimension estimate, k̂; this may have

been estimated from the training data or provided by a domain expert. Typically, k̂

1For expositional simplicity, we have assumed that all our matrices and vectors are complex-
valued; our results also hold for real-valued matrices and vectors.
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is an overestimation of a dimension estimate provided by percent variance, scree plots

[88], or robust techniques [89, 90, 91]. This overestimation, or “play-it-safe” strategy,

strives to include all signal subspace components at the expense of possibly including

non-signal subspace components.

Given k̂ and the signal bearing training data Y =
[
y1 . . . ym

]
, we form the

sample covariance matrix S = 1
m
Y Y H . The covariance matrix of yi is UΣUH + In

and it follows that the (classical) ML estimates (in the many-sample, small matrix

setting) for U and Σ are given by [92]

Û = [û1 . . . ûk̂]

σ̂2
i = max(0, λ̂i − 1) for i = 1, . . . , k̂

(2.1)

where λ̂1, . . . , λ̂k̂ are the k̂ largest eigenvalues of the sample covariance matrix, S, and

û1, . . . , ûk̂ are the corresponding eigenvectors. Define the signal covariance matrix

estimate as Σ̂ = diag(σ̂2
1, . . . , σ̂

2
k̂
). We are now able to use the parameter estimates

Û and Σ̂ in detectors where necessary.

2.2.3 Testing Data Model

We will consider both a stochastic and deterministic model for a test vector. In

both settings, parameter estimates are formed as described in (2.1) from training data

modeled in Section 2.2.1.

In the stochastic setting, the test vector y ∈ Cn×1 is modeled as

Stochastic Model: y =

 z y ∈ H0 : Noise only

Ux+ z y ∈ H1 : Signal-plus noise
, (2.2)

where U , z, and x are modeled as described in Section 2.2.1. This assumes that the

signal, Ux, may lie anywhere in the subspace and whose position in the subspace is

governed by the signal covariance matrix Σ.

In the deterministic setting, the test vector y ∈ Cn×1 is modeled as

Deterministic Model: y =

 z y ∈ H0 : Noise only

UΣ1/2x+ z y ∈ H1 : Signal-plus noise
, (2.3)

where U , Σ, and z are modeled as described in Section 2.2.1. Here, in contrast to the

stochastic setting, x is a non-random deterministic vector. Thus the signal, UΣ1/2x,

lies at a fixed point in the unknown subspace. Note that Σ still controls the SNR of
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each subspace component and that placing a mean zero, identity covariance Gaussian

prior on x in (2.3) yields the stochastic model described in (2.2).

2.3 Standard Detector Derivations

In this chapter, we focus on the Neyman-Pearson setting (see [93]) where, given

a test observation from (2.2) or (2.3), a MSD is a likelihood ratio test (LRT) taking

the form

Λ(y) :=
f(y|H1)

f(y|H0)

H1

≷
H0

η (2.4)

where Λ(y) is the test statistic, η is the threshold set to achieve a given false alarm

rate, and f is the appropriate conditional density of the test observation. In the

following section, for both testing data models we derive the standard oracle detector

(assuming all parameters are known) and plug-in detector (formed by substituting

the parameter estimates of (2.1) in the oracle detector). The oracle detectors, while

unrealizable, give an upper bound for the performance of a MSD. We will see that

when only finite training data is available (as is the case in real applications), the

plug-in detector will realize a performance loss relative to this bound.

2.3.1 Stochastic Testing Model

The LRT in (2.4) depends on the conditional distribution of the test vector, y.

By properties of Gaussian random variables, when using the stochastic test model in

(2.2), these distributions are y|H0 ∼ N (0, In) and y|H1 ∼ N
(
0, UΣUH + In

)
. The

resulting LRT statistic is

Λ(y) =
N (0, UΣUH + In)

N (0, In)
. (2.5)

We derive an oracle detector by assuming that k, Σ, and U are all known in (2.5).

After simplification of this expression (see Section 4.14 of [66]), the oracle statistic

becomes

Λoracle(y) = yHU
(
Σ−1 + Ik

)−1
UHy. (2.6)

Note that the oracle statistic depends on the sufficient statistic w := UHy. Using this

notation, the oracle statistic is

Λoracle(w) = wH
(
Σ−1 + Ik

)−1
w =

k∑
i=1

(
σ2
i

σ2
i + 1

)
w2
i (2.7)
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and the oracle detector is Λoracle(w)
H1

≷
H0

γoracle where the threshold γoracle is chosen in

the usual manner, i.e., so that it satisfies P (Λoracle(w) > γoracle|H0) = α with α a

desired false alarm rate.

However, as the parameters U and Σ are unknown, the oracle statistic in (2.7)

cannot be computed. Given a dimension estimate k̂, we substitute the ML estimates

of U and Σ given in (2.1) for the unknown parameters in (2.6) as similarly done

in [76] and [77]. This results in the plug-in detector’s LRT statistic: Λplugin(y) =

yHÛ
(

Σ̂−1 + Ik̂

)−1

ÛHy. Simplifying this expression using the statistic ŵ = ÛHy,

yields the plug-in statistic

Λplugin(ŵ) = ŵH diag

(
σ̂2
i

σ̂2
i + 1

)
ŵ =

k̂∑
i=1

(
σ̂2
i

σ̂2
i + 1

)
ŵ2
i (2.8)

and the plug-in detector takes the form Λplugin(w)
H1

≷
H0

γplugin where the threshold γplugin

is chosen in the usual manner.

The plug-in detector assumes that the estimated signal subspace, Û , is equal to

the true signal subspace, U , and that the estimated signal covariance, Σ̂, is equal to

the true signal covariance, Σ. In other words, the plug-in detector derivation assumes

that ÛHU = Ik̂, σ̂
2
i = σ2

i for i = 1, . . . , k̂, and the provided subspace dimension

estimate, k̂, is equal to the true underlying dimension of our signal subspace, k.

Perhaps unsurprisingly, (as discussed in Section 2.5) incorrectly choosing k̂ degrades

the performance of the plug-in detector.

2.3.2 Deterministic Testing Model

We now consider the alternative deterministic test vector model (2.3), which re-

sults in the following conditional distributions of the test vector y|H0 ∼ N (0, In)

and y|H1 ∼ N (UΣ1/2x, In). We begin by deriving an oracle detector, which as-

sumes that U , Σ, x, and k are all known. The LRT statistic for such a scenario is

Λ(y) = N (UΣ1/2x,In)
N (0,In)

. Simplifying this expression leads to the oracle statistic

Λoracle(y) = xHΣ1/2UHy. (2.9)
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As in the stochastic setting, w = UHy is a sufficient statistic and the oracle statistic

simplifies to

Λoracle(w) = xHΣ1/2w =
k∑
i=1

xiσiwi. (2.10)

However, as the parameters U , Σ, and x are unknown, the oracle statistic in (2.10)

cannot be computed. Since we must estimate x from the test vector, we employ the

generalized likelihood ratio test (GLRT) where Λ(y) = maxx f(y|H1)
f(y|H0)

, resulting in the

GLRT statistic

Λ(y) =
maxxN (UΣ1/2x, In)

N (0, In)
. (2.11)

Employing maximum likelihood estimation on x in (2.11) yields the estimate x̂ =

Σ−1/2UHy. Proceeding as in the stochastic setting, we substitute x̂ for the unknown

x in (2.9) and then substitute the ML estimates of U and Σ given in (2.1) for the

unknown U and Σ (see Section 4.11 of [66] for a similar treatment). This results in

the plug-in statistic Λplugin(y) = yHÛ ÛHy. Again, ŵ = ÛHy is a statistic that can be

used to write the plug-in statistic as

Λplugin(ŵ) = ŵHŵ =
k̂∑
i=1

ŵ2
i , (2.12)

resulting in the detector Λplugin(ŵ)
H1

≷
H0

γplugin, where the threshold γplugin is chosen in

the usual manner. The deterministic plug-in detector is an ‘energy detector’, which

sums the energy of the test observation lying in the subspace Û .

2.3.3 Effect of the Number of Training Samples

In both the stochastic and deterministic testing settings, ŵ = ÛHy is a statistic

used in the plug-in statistics (2.8) and (2.12). This statistic relies on the estimated

subspace Û formed from the top k̂ eigenvectors of the sample covariance matrix, S, of

the training data. The stochastic detector also relies on the subspace-SNR estimate Σ̂

formed from the top k̂ eigenvalues of S. For a fixed Σ, the accuracy of these estimates

depends on the number of training data samples, m; we will mathematically show this

in Section 2.5. If we had access to an infinite amount of training data, the parameter

estimates would be exact (Û → U and Σ̂ → Σ). However, when we have access

to only a finite amount of training data, Û and Σ̂ are inaccurate and will degrade

the performance of the plug-in detectors with respect to the oracle detector, which
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(b) Deterministic Setting

Figure 2.1: Empirical ROC curves for the plug-in and oracle detectors. Empirical ROC
curves were simulated with n = 200, k̂ = k = 2, and Σ = diag (10, 0.1). The empirical
ROC curves were computed using 10000 test samples and averaged over 100 trials using
algorithms 2 and 4 of [1]. (a) Shows results for the stochastic MSD. (b) Shows results
for the deterministic MSD when x = [0.75, 0.75]T . For both settings, as m decreases, the
performance of the plug-in detector degrades.

provides an upper bound on detector performance.

To illustrate this performance loss, we consider a moderately sized system where

n = 200 and Σ = diag(10, 0.1). We consider five detectors: the oracle detector and

four plug-in detectors each using parameter estimates formed from varying amounts

of training data. Figures 2.1(a) and 2.1(b) plot the empirical ROC curves for the

stochastic and deterministic testing settings, respectively. The amount of training

data drastically affects the performance of the plug-in detector. As m decreases, the

plug-in detectors realize a significance performance loss. However, as m → ∞, the

plug-in detectors realize improved performance, closer to that of the oracle detectors.

For the stochastic detector, as m → ∞, the plug-in detector achieves the same
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performance as that of the oracle detector. Examination of the statistics (2.7) and

(2.8) shows that these statistics will be identical when Û → U and Σ̂ → Σ, which

is the case when infinite training data is available. However, this is not the case for

the deterministic plug-in detector. Even with an infinite amount of training data, the

plug-in detector will not achieve the oracle detector’s performance. The deterministic

plug-in detector must estimate x given a noisy test observation y, which is independent

from the training data. Even with infinite training data causing Û → U and Σ̂→ Σ,

x̂ does not converge to x. Therefore, the deterministic plug-in detector cannot achieve

the performance bound of the oracle detector, which assumes that x is known.

For a fixed probability of false alarm (PF ), we can explore this performance loss

by comparing the achieved probability of detection (PD) of the plug-in detector to

that of the oracle detector. Let

ε = 1− P plugin
D

P oracle
D

(2.13)

be the performance loss of the plug-in detector. Figure 2.2 empirically plots the

number of training samples needed to achieve a desired performance loss ε for the

stochastic plug-in detector. There is an exponential relationship between ε and m

indicating that we need infinite training samples to achieve zero performance loss

(ε = 0). However, in any practical application we will never have an infinite amount

of training data and so the plug-in detector will realize some non-zero performance

loss. The rest of the paper will mathematically predict how finite training data affects

detector performance and will derive new detectors to avoid some of this performance

loss.

2.4 Problem Statements

We saw in Section 2.3 that the plug-in detectors rely on the statistic ŵ = ÛHy.

When only finite training data is available, the subspace estimate Û is inaccurate and

subsequently degrades the performance of the plug-in detector. Motivated by this

observation, we formulate the problems addressed in this paper.

2.4.1 Problem 1: Derive a New Detector that Exploits Predictions of

Subspace Accuracy

We know that subspace estimation errors degrade the performance of the plug-in

detector. Recent results from RMT specifically quantify the accuracy of Û relative
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Figure 2.2: Empirically determined number of training samples, m, needed for the stochas-
tic plug-in detector to achieve a desired performance loss, ε, as defined in (2.13). The re-
quired false alarm rate is PF = 0.1. Empirical ROC curves were generated for n = 200,
Σ = diag(10, 0.1), k̂ = k = 2 using 10000 testing samples and averaged over 100 trials using
algorithms 2 and 4 of [1].

to U . By deriving a new detector that accounts for this accuracy of the estimated

subspace, we hope to avoid some of the performance loss associated with the plug-in

detector. For both the stochastic and deterministic testing settings our goal is to

Design a new detector that exploits RMT predictions of subspace estima-

tion accuracy.

The detector derivations in Section 2.6 will provide insights on when, if, and how

the performance of plug-in detectors that do not exploit the knowledge of subspace

estimation accuracy can be improved.

2.4.2 Problem 2: Characterize ROC Performance Curves

We saw in Section 2.3 that both plug-in detectors took the form

ŵHDŵ
H1

≷
H0

η (2.14)

where D is the appropriate diagonal matrix and the test statistic Λ(ŵ) = ŵHDŵ is

compared against a threshold, η, set to achieve a prescribed false alarm rate. After

solving Problem 1, we will see that the RMT detectors derived in Section 2.6 also

take the form of (2.14). In order to compare detectors of this form without training

data or empirically generated test samples, we wish to analytically predict their ROC

performance. Formally, for detectors with the form of (2.14) and for test vectors

modeled as (2.2) or (2.3), our goal is to
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Predict PD := P(Detection), for every PF := P(False Alarm) = α ∈ (0, 1) given n,

m, k̂, D and Σ.

For this problem, we assume that we are given Σ. We derive this theoretical pre-

diction of ROC performance curves in Section 2.7 and show that this performance

prediction also relies on RMT results quantifying the accuracy of the subspace es-

timate Û , specifically the entries of the matrix ÛHU . In Section 2.5 we provide an

asymptotic diagonal approximation to this matrix that makes the ROC prediction

possible.

2.5 Pertinent Results from Random Matrix Theory

In Section 2.2.2 we formed estimates Û and Σ̂ of the unknown U and Σ by taking

the eigen-decomposition of the sample covariance matrix S of the training data matrix

Y . These estimates are inaccurate because the training data is noisy and contains

only a finite number of observations. The following analysis specifically quantifies

the accuracy of these estimates and is necessary to derive a new detector and predict

ROC performance curves of detectors with the form of (2.14).

2.5.1 Eigenvector Aspects

The subspace estimate Û is formed from the eigenvectors corresponding to the k̂

largest eigenvalues of S. For an arbitrary non-random diagonal matrix D, we will be

particularly interested in the matrix ÛHUDUHÛ that appears in detector derivations

and the ROC performance analysis in Sections 2.6 and 2.7. The following proposition

characterizes the limiting behavior (up to an arbitrary phase) of the diagonal entries

of the matrix ÛHU .

Proposition 2.5.1. Assume that the columns of the training data matrix Y were

generated as described in Section 2.2.1. Let ûi denote the eigenvector associated with

the i-th largest eigenvalue of S. Then for i = 1, . . . , k and n,m −→∞ with n/m→ c,

we have that

|〈ui, ûi〉|2
a.s.−→


σ4
i − c

σ4
i + σ2

i c
if σ2

i >
√
c

0 otherwise

. (2.15)

Proof. This follows from Theorem 4 of [84] when γ = c, `ν − 1 = σ2
ν , ẽν = uv, and

pν = ûν . This result also appears in Theorem 2.2 of [85].
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We note that
a.s.−→ denotes almost sure convergence. The key insight from Proposi-

tion 2.5.1 is that only the eigenvectors corresponding to the signal variances, σ2
i , lying

above the phase transition
√
c are informative. When a signal variance drops below

this critical threshold, the corresponding eigenvector estimate is essentially noise-like

(i.e. |〈ui, ûi〉|2 = op(1) meaning |〈ui, ûi〉|2
p→ 0 as n → ∞, denoting convergence in

probability) and thus uninformative. Decreasing the amount of training data, m,

increases c, thereby decreasing the value of |〈ui, ûi〉|2; if this quantity became 0, the

associated subspace component would become uninformative.

The term |〈ui, ûi〉|2 quantifies mismatch between the estimated and underlying

eigenvectors and will play an important role in deriving a new RMT detector and in

characterizing detector performance; a similar term also appears in the analysis of

the resolving power of arrays due to model mismatch such as in [94].

Following [83], we define the effective number of (asymptotically) identifiable sub-

space components keff as:

keff = Number of σ2
i >
√
c . (2.16)

We can form an estimate of keff, k̂eff, using ‘Algorithm 2’ of [89]. This algorithm

assumes the same model of a low-rank signal buried in high dimensional noise as our

training data. Given a desired significance level, the algorithm estimates the number

of signals present in a finite number of samples. When the noise covariance matrix is

not known a priori, we would instead use ‘Algorithm 1’ of [89]. Both algorithms rely

on the Tracy-Widom distribution. Note that k̂eff ≤ k but that we allow k̂ ≥ k̂eff so

we may understand the impact of a play-it-safe overestimation of the signal subspace

dimension estimate k̂eff returned using RMT based detectors [89, 90, 91].

Proposition 2.5.1 only characterizes the limiting behavior (up to an arbitrary

phase) of the diagonal entries of the matrix ÛHU . We now state a new theorem

characterizing the limiting behavior of the off-diagonal entries in ÛHU .

Theorem 2.5.1. Assume the same hypothesis as in Proposition 2.5.1. Let k̂ =

keff = k. For i = 1, . . . , k̂, j = 1, . . . , k, and i 6= j, as n,m → ∞ with n/m → c,

〈uj, ûi〉
a.s.−→ 0.

Proof. This is a new result. See Appendix A for proof.

Conjecture 2.5.1. Assume the same hypothesis as in Proposition 2.5.1. For i =

1, . . . , k̂, j = 1, . . . , k, and i 6= j, as n,m→∞ with n/m→ c, 〈uj, ûi〉
a.s.−→ 0.
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Remark 2.5.1. See Appendix for a brief discussion of this conjecture.

Together, Proposition 2.5.1 and Conjecture 2.5.1 characterize the limiting behavior

of the entries of ÛHU . This permits approximation, in the large matrix limit, of

ÛHUDUHÛ by a suitable diagonal matrix.

Corollary 2.5.1. Suppose k̂ ≤ k and let D be a k×k (non-random) diagonal matrix

such that D = diag(d1, . . . , dk), independent of Û . Then as n,m −→∞ with n/m→
c, we have that

ÛHUDUHÛ
a.s.−→ diag(d1|〈u1, û1〉|2, . . . , dk̂|〈uk̂, ûk̂〉|

2)

where for i = 1, . . . , k̂ the quantity |〈ui, ûi〉|2 is given in Proposition 2.5.1.

Proof. This follows directly by applying Proposition 2.5.1 and Conjecture 2.5.1 to the

entries of the matrix UHÛ .

This diagonal approximation of ÛHUDUHÛ will be used in detector derivations

and ROC performance analyses in Sections 2.6 and 2.7.

2.5.2 Eigenvalue Aspects

The signal covariance estimate Σ̂ is formed from the largest k̂ eigenvalues of S. To

characterize the ROC performance curves of plug-in detectors that use Σ̂ as the signal

covariance estimate, we will also need to characterize the limiting behavior of Σ̂. The

following proposition gives the limiting behavior of these signal variance estimates.

Proposition 2.5.2. As n,m −→∞ with n/m→ c we have that:

σ̂2
i

a.s.−→

σ2
i + c+ c

σ2
i

if σ2
i >
√
c

c+ 2
√
c if σ2

i ≤
√
c
.

Proof. This follows from Theorems 1 and 2 in [84] for the real setting for c < 1 when

γ = c, `ν − 1 = σ2
ν , and ̂̀ν − 1 = σ̂2

ν . See Theorem 2.6 in [86] for the complete

result.

These limiting values will be used in Section 2.7 when deriving the ROC perfor-

mance of the plug-in detectors.

When only finite training data is available, c is non-zero and Proposition 2.5.2

shows that σ̂2
i is biased. We wish to derive an improved signal variance estimate to
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use in a new RMT detector and to estimate |〈ui, ûi〉|2 in (2.15). As seen in Propo-

sition 2.5.1, when σ2
i ≤
√
c the eigenvector estimate is uninformative and we would

not want to include that subspace component in a detector; the associated signal

variance estimate is therefore unnecessary. For the k̂eff subspace components that are

informative (i.e. when σ2
i >
√
c) we form an improved signal variance estimate using

the following proposition that characterizes the fluctuations of these signal variance

estimates.

Proposition 2.5.3. As n,m −→∞ with n/m→ c, we have that for i = 1, . . . , keff

√
n

(
σ̂2
i −

(
σ2
i + c+

c

σ2
i

))
⇒ N

(
0,

2 (σ2
i + 1)

2

β

(
1− c

σ4
i

))
,

where β = 1 when the data is real-valued and β = 2 when the data is complex-valued.

Proof. This follows from Theorem 3 in [84] for the real setting for c < 1 when γ = c,

`ν − 1 = σ2
ν ,
̂̀
ν − 1 = σ̂2

ν , and pν is the limit of Theorem 2 of [84]. See Theorem 2.15

in [86] for the complete result.

For the k̂eff informative subspace components we form an improved estimate, σ̂2
irmt

,

of the unknown signal variance, σ2
i , by employing maximum-likelihood (ML) estima-

tion on the distribution in Proposition 2.5.3. Specifically, for only the k̂eff signal

eigenvalues, we form the RMT estimate:

σ̂2
irmt

= argmax
σ2
i

log
(
fσ̂2

i
(σ2

i )
)

(2.17)

where

fσ̂2
i
(σ2

i ) := N

((
σ2
i + c+

c

σ2
i

)
,
2 (σ2

i + 1)
2

nβ

(
1− c

σ4
i

))
.

We may then estimate |〈ui, ûi〉|2 in (2.15) by substituting the improved signal variance

estimates, σ̂2
irmt

, for the unknown σ2
i in Proposition 2.5.1. We refer to this estimate as

|〈ui, ûi〉|2rmt. For the k̂− k̂eff uninformative subspace components, we set |〈ui, ûi〉|2rmt =

0.

2.6 Derivation of New RMT Matched Subspace Detectors

We saw in Section 2.3 that the plug-in detectors rely on the statistic ŵ = ÛHy.

Instead of deriving the LRT statistic using the conditional distributions of y, we will
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instead use the conditional distributions of ŵ; this will reveal the importance of the

matrix ÛHU . The plug-in detectors assume that ÛHU = Ik̂, however, the analysis

in Section 2.5.1 shows that this assumption is incorrect. Knowing the importance

of only using keff subspace components and armed with the asymptotic diagonal

approximation of Corollary 2.5.1 and the improved signal variance estimates in (2.17),

we are now in position to answer Problem 1 and derive a new RMT detector for both

testing settings.

2.6.1 Stochastic RMT Detector

We begin with the stochastic test setting and form the test vector ŵ = ÛHy

where Û is the subspace estimated from (2.1) and y is generated from (2.2). The

LRT statistic using ŵ depends on the conditional distributions under each hypothesis,

which by properties of Gaussian random variables are simply

ŵ|H0 ∼ N
(
0, Ik̂

)
and ŵ|H1 ∼ N

(
0, ÛHUΣUHÛ + Ik̂

)
. (2.18)

We immediately see the matrix of interest, ÛHUΣUHÛ . The plug-in detector

substitutes Û for U and Σ̂ for Σ; this results in ŵ|H1 ∼ N (0, Σ̂ + Ik̂). However,

Corollary 2.5.1 shows that this is incorrect by providing the asymptotic limit of the

covariance matrix in (2.18):

ÛHUΣUHÛ + Ik̂
a.s.−→ diag

(
|〈ui, ûi〉|2σ2

i + 1
)
. (2.19)

If σ2
i were assumed known, this limit would suffice because we could plug in the

results in Proposition 2.5.1 to get the desired statistic. However, the signal variances

are unknown so σ2
i and subsequently |〈ui, ûi〉|2 must be estimated from data. For the

k̂eff subspace components estimated from ‘Algorithm 2’ of [89], we form an improved

signal variance estimate, σ̂2
irmt

, obtained via (2.17) and use it to estimate |〈ui, ûi〉|2,

denoted by |〈ui, ûi〉|2rmt. Of course, there are correction terms due to finite system size

effects, which we ignore, that affect the convergence properties but not the asymptotic

form of the detector.

We obtain the RMT detector by computing the LRT statistic using the conditional

distributions of (2.18). The covariance matrix of ŵ|H1 is computed by substituting

|〈ui, ûi〉|2rmt and σ̂2
irmt

into the diagonal covariance matrix (2.19). After some straight-
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forward algebra we obtain the desired RMT statistic

Λrmt(ŵ) =
k̂∑
i=1

(
|〈ui, ûi〉|2rmtσ̂

2
irmt

|〈ui, ûi〉|2rmtσ̂
2
irmt

+ 1

)
ŵ2
i .

As seen in Proposition 2.5.1, when i > keff, |〈ui, ûi〉|2
a.s.−→ 0. The sum on the right

hand side (asymptotically) discards the uninformative subspace components. Thus

the RMT detector only uses the k̂eff informative components given by (2.16). Conse-

quently, we obtain the test statistic

Λrmt(ŵ) =

k̂eff∑
i=1

(
|〈ui, ûi〉|2rmtσ̂

2
irmt

|〈ui, ûi〉|2rmtσ̂
2
irmt

+ 1

)
ŵ2
i (2.20)

and the RMT detector becomes Λrmt(ŵ)
H1

≷
H0

γrmt where the threshold γrmt is chosen

in the usual manner. Note that the stochastic RMT detector also takes the form of

(2.14). The principal difference between the RMT test statistic in (2.20) and the plug-

in test statistic in (2.8) is the role of k̂eff in the former. The scaling factors associated

with each ŵ2
i for both detectors are about the same; this is why the plug-in detector

that uses k̂eff components exhibits the same (asymptotic) performance as the RMT

detector, which incorporates knowledge of the subspace estimate accuracy. However,

our analysis shows that overcompensating and “playing-it-safe” by setting k̂ > k̂eff

can lead to performance loss.

Detector Detector Statistic Λ(ŵ)

Plug-in
∑k̂

i=1

(
σ̂2
i

σ̂2
i+1

)
ŵ2
i

RMT
∑k̂eff

i=1

( |〈ui,ûi〉|2rmtσ̂
2
irmt

|〈ui,ûi〉|2rmtσ̂
2
irmt

+1

)
ŵ2
i

Table 2.1: Summary of the plug-in and RMT stochastic MSDs. See Sections 2.3.1 and
2.6.1 for derivations.

2.6.2 Deterministic RMT Detector

When forming ŵ with y generated from (2.3), the conditional distributions of ŵ

under each hypothesis are ŵ|H0 ∼ N (0, Ik̂) and ŵ|H1 ∼ N (ÛHUΣ1/2x, Ik̂). Again,

as x is unknown, we use a GLRT. Employing maximum likelihood estimation on x

yields the estimate x̂ =
(

Σ1/2UHÛ ÛHUΣ1/2
)†

Σ1/2UHÛ ŵ where † denotes the Moore-
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Detector Distribution of Λ|H0 Distribution of Λ|H1

Plug-in
∑k̂

i=1

(
σ̂2
i

σ̂2
i+1

)
χ2

1i

∑k̂
i=1

(
σ̂2
i (σ2

i |〈ui,ûi〉|2+1)
σ̂2
i+1

)
χ2

1i

RMT
∑k̂eff

i=1

(
σ̂2
irmt
|〈ui,ûi〉|2rmt

σ̂2
irmt
|〈ui,ûi〉|2rmt+1

)
χ2

1i

∑k̂eff

i=1

(
σ̂2
irmt
|〈ui, ûi〉|2rmt

)
χ2

1i

Table 2.2: Summary of the conditional distributions of the plug-in and RMT stochastic
MSDs.

Penrose pseudoinverse. After simplifying using x̂ and using the natural logarithm

operator as a monotonic operation, the GLRT statistic becomes

Λ(ŵ) = ŵH
(
ÛHUΣ1/2

(
Σ1/2UHÛ ÛHUΣ1/2

)†
Σ1/2UHÛ

)
ŵ.

Consider the term ÛHU . By Proposition 2.5.1 and Conjecture 2.5.1 and by noting

that the eigenvectors are unique up to a phase, we have that ÛHU
a.s.−→ BA where B

is a k̂ × k matrix and A is a k × k matrix defined as

Bi` :=

bi = exp(jψi) i = `

0 otherwise
, Ai` :=

ai = |〈ui, ûi〉| i = `

0 otherwise
.

For some ψi, bi denotes the random phase ambiguity in the eigenvector computation

(since eigenvectors are unique up to a phase).

The plug-in detector assumes that A = B = Ik̂, that is bi = 1 and |〈ui, ûi〉| = 1 .

However, as seen in Section 2.5, we have knowledge of |〈ui, ûi〉| which we may exploit

in deriving a new detector. Using the notation just developed, the GLRT statistic

may be written as

Λ(ŵ) = ŵHBAΣ1/2(Σ1/2AHBHBAΣ1/2)†Σ1/2AHBHŵ.

We use (2.17) and Proposition 2.5.1 to estimate ai =
√
|〈ui, ûi〉|2rmt. Recall that k̂eff

is an estimate for the number of σ2
i above the phase transition and note that ai = 0

when σ2
i ≤
√
c. Incorporating this into the detector, and noting that A, B, and Σ

contain only diagonal elements, the GLRT simplifies to

Λrmt(ŵ) =

k̂eff∑
i=1

ŵ2
i (2.21)
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and the deterministic RMT detector is Λrmt(ŵ)
H1

≷
H0

γrmt where the threshold γrmt is

chosen in the usual manner. This addresses the problem posed in Section 2.4.1 for

the deterministic test vector setting. We note that this deterministic RMT detector

also takes on the form of (2.14). In fact, in the deterministic setting, the plug-in and

RMT detectors are both ‘energy detectors’ and have the same statistic except for the

upper bound in the summation. As in the stochastic setting, the principal difference

between the RMT test statistic in (2.21) and the plug-in test statistic in (2.12) is

the role of k̂eff in the former. This is also why the plug-in detector that uses k̂eff

components exhibits the same performance as the RMT detector, which incorporates

knowledge of the subspace estimates.

Detector Detector Statistic Λ(ŵ)

Plug-in
∑k̂

i=1 ŵ
2
i

RMT
∑k̂eff

i=1 ŵ
2
i

Table 2.3: Summary of the plug-in and RMT deterministic MSDs. See Sections 2.3.2 and
2.6.2 for derivations.

Detector Distribution of Λ|H0 Distribution of Λ|H1

Plug-in χ2
k̂

χ2
k̂

(∑k̂eff

i=1 σ
2
i |〈ui, ûi〉|2x2

i

)
RMT χ2

k̂eff
χ2
k̂eff

(∑k̂eff

i=1 σ
2
i |〈ui, ûi〉|2x2

i

)
Table 2.4: Summary of the conditional distributions of the plug-in and RMT deterministic
MSDs.

2.7 Theoretical ROC Curve Predictions

We saw in Sections 2.3 and 2.6 that the plug-in and RMT detectors under both

testing settings are (exactly or asymptotically) of the form given by (2.14). Thus

by answering the ROC curve prediction problem posed in Section 2.4.2, we have

characterized the asymptotic (or large system) performance of the detectors consid-

ered herein. For the following analysis, we are given n, m, k̂, D, Σ, and x (in the

deterministic setting).

We first note that each previously derived detector corresponds to a specific choice

of the diagonal matrix D in (2.14), which can be discerned by inspection of Tables

2.1 and 2.3. In what follows, we solve the ROC prediction problem for general D;
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direct substitution of the relevant parameters for D will yield the performance curves

for individual detectors.

Recall that the ROC curve [1] for a test statistic Λ(ŵ) is obtained by computing

PD = P (Λ(ŵ) ≥ γ|ŵ ∈ H1), PF = P (Λ(ŵ) ≥ γ|ŵ ∈ H0) (2.22)

for −∞ < γ <∞ and plotting PD versus PF . To compute these expressions in (2.22)

for the deterministic and stochastic test vector setting, we need to characterize the

conditional cumulative distribution function (c.d.f.) under H0 and H1 for a detector

with a test statistic of the form (2.14). The results in Section 2.5, especially an

application of Corollary 2.5.1, simplify this analysis in the large system limit. The

following analysis shows that the conditional distributions are a weighted sum of chi-

square random variables. For general D, we use a previous algorithm to compute

the c.d.f. of this weighted sum of chi-square random variables necessary in the ROC

derivation. However, for the deterministic plug-in and RMT detectors, the theoretical

ROC curves may be computed in closed form.

2.7.1 Stochastic Testing Setting

In the stochastic setting, the conditional distributions of our test samples under

each hypothesis are ŵ|H0 ∼ N (0, Ik̂) and ŵ|H1 ∼ N (0, ÛHUΣUHÛ + Ik̂). Because

the covariance matrix of ŵ|H0 is diagonal, for i = 1, . . . , k̂, ŵi|H0
i.i.d.∼ N (0, 1), which

implies that ŵ2
i |H0

i.i.d.∼ χ2
1. By Corollary 2.5.1, the covariance matrix of ŵ|H1 is

asymptotically diagonal. Therefore for i = 1, . . . , k̂, ŵi|H1
i.i.d.
≈ N (0, σ2

i |〈ui, ûi〉|2 + 1)

and
w2
i |H1

σ2
i |〈ui, ûi〉|2 + 1

∼ χ2
1.

Using this analysis, for a stochastic detector with the form of (2.14), the conditional

distributions of its test statistic under each hypothesis are

Λ(ŵ)|H0 ∼
k̂∑
i=1

diχ
2
1i

Λ(ŵ)|H1 ∼
k̂∑
i=1

di(σ
2
i |〈ui, ûi〉|2 + 1)χ2

1i

(2.23)

where χ2
1i are independent chi-square random variables. Table 2.2 uses this general

analysis to summarize the sample conditional distributions of Λ(ŵ) under each hy-

pothesis for the stochastic plug-in and RMT detectors. An analytical expression for
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the asymptotic performance in the large matrix limit is obtained by substituting ex-

pressions from (2.17) and Propositions 2.5.1 and 2.5.2 for the pertinent quantities in

these distributions.

Note that the conditional distributions in (2.23) are a weighted sum of independent

chi-square random variables with one degree of freedom. The c.d.f. of a chi-square

random variable is known in closed form. However, the c.d.f. of a weighted sum of

independent chi-square random variables is not known in closed form. To evaluate

(2.22), we use a saddlepoint approximation of the conditional c.d.f. of Λ(ŵ) by em-

ploying the generalized Lugannani-Rice formula proposed in [95]. To then compute

a theoretical ROC curve, we sweep γ over (0,∞) and for each value of γ, we com-

pute the saddlepoint approximation of the conditional c.d.f. under each hypothesis

using this method. This generates a set of points (PF , PD) which approximate the

(asymptotic) theoretical ROC curve.

2.7.2 Deterministic Testing Setting

In the deterministic setting, the conditional distribution of a test sample un-

der H0 is ŵ|H0 ∼ N (0, Ik̂). The conditional distribution under H1 is ŵ|H1 ∼
N (ÛHUΣ1/2x, Ik̂). By Proposition 2.5.1 and Conjecture 2.5.1, ÛHU

a.s.−→ BA is

asymptotically diagonal with B and A defined in Section 2.6.2. Therefore, ŵi|H1
i.i.d.
≈

N (aibiσixi, 1) for i = 1, . . . , k̂. Using this approximation, for a detector with the form

of (2.14), the conditional distributions of its test statistic are

Λ(ŵ)|H0 ∼
k̂∑
i=1

diχ
2
1i and Λ(ŵ)|H1 ∼

k̂∑
i=1

diχ
2
1i(δi) (2.24)

where δi = σ2
i |〈ui, ûi〉|2x2

i is the non-centrality parameter for the noncentral chi-square

distribution. The deterministic plug-in and RMT detectors are a special case of these

conditional distributions. For the plug-in detector, di = 1 for i = 1, . . . , k̂. For the

RMT detector di = 1 for i = 1, . . . , k̂eff and di = 0 for i = k̂eff + 1, . . . , k̂.

For the plug-in and RMT detectors, Λplugin(ŵ)|H0 ∼ χ2
k̂

and Λrmt(ŵ)|H0 ∼ χ2
k̂eff

.

Similarly, Λplugin(ŵ)|H1 ∼ χ2
k̂
(δ) and Λrmt(ŵ)|H1 ∼ χ2

k̂eff
(δ) where

δ =
k̂∑
i=1

σ2
i |〈ui, ûi〉|2x2

i =

k̂eff∑
i=1

σ2
i |〈ui, ûi〉|2x2

i . (2.25)

Because di = 1 for i = 1, . . . , k̂eff for both the plug-in and RMT detectors, the resulting
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non-centrality parameter is the sum of all the individual non-centrality parameters.

An analytical expression for the asymptotic performance in the large matrix limit

is obtained by substituting expressions from Proposition 2.5.1 in (2.25). Unlike the

stochastic setting, we can obtain a closed form expression for the deterministic plug-in

and RMT ROC curves by solving for γ in terms of PF and substituting this into the

expression for PD in (2.22). Doing so yields

PDplugin
= 1−Qχ2

k̂
(δ)

(
Q−1
χ2
k̂

(1− PF )

)
PDrmt = 1−Qχ2

k̂eff

(δ)

(
Q−1
χ2
k̂eff

(1− PF )

) (2.26)

where Q is the appropriate c.d.f. function.

2.8 Discussion and Insights

We use numerical simulations to verify our theoretical ROC curve predictions

from Section 2.7 that rely on RMT approximations presented in Section 2.5. We also

demonstrate properties of the new RMT detectors that we derived in Section 2.6, as

described next.

2.8.1 Simulation Protocol

To compute an empirical ROC curve, we first generate a random subspace, U ,

by taking the first k left singular vectors of a random matrix with i.i.d. N (0, 1)

entries. Using this U , we generate training samples as described in Section 2.2.1 from

which we form estimates Û and Σ̂ from the eigenvalue decomposition of the sample

covariance matrix as described in (2.1).

We then generate a desired number of test samples from each hypothesis using

either (2.2) or (2.3). For each test sample, we compute the test statistic for each

detector. Using Fawcett’s [1] ‘Algorithm 2’, we compute an empirical ROC curve by

first sorting the test statistics. At each statistic, we log a (PF, PD) pair by counting

the number of lower scores generated from each hypothesis. This is repeated for

multiple realizations of U , generating multiple empirical ROC curves. We refer to a

single empirical ROC curve corresponding to a realization of U as a trial. We then

average the empirical ROC curves over multiple trials using Fawcett’s [1] ‘Algorithm

4’. This performs threshold averaging by first uniformly sampling the sorted list of

all test scores of ROC curves and then computing (PF, PD) pairs in the same way as

‘Algorithm 2’.
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2.8.2 Convergence and Accuracy of ROC Curve Predictions

The theoretical ROC curve predictions for the plug-in and RMT detectors rely

on the asymptotic approximations that ignore finite n and m correction terms. To

examine the validity of the asymptotic approximations (Propositions 2.5.1 and 2.5.2,

Theorem 2.5.1, and Corollary 2.5.1) and the rate of convergence, we consider two

different settings for the stochastic plug-in detector. Figures 2.3(a)-2.3(b) plot three

empirical ROC curves for n = 50, 200, 1000 as well as the theoretically predicted

plug-in ROC curve. Each figure uses different values of k and c but in each case,

k̂ = k.

For both figures, as n increases, the empirical ROC curves approach the theoretical

prediction, attesting to the asymptotic convergence of the RMT approximations.

Analyzing the rate of convergence (which we conjecture to be n1/2 for fixed k and

c) is an important open problem that we shall tackle in future work. As evident in

Figures 2.3(a)-2.3(b) the values of k and c play an important roll in the convergence

of the empirical ROC curves. For the larger value of k and c (corresponding to

the sample starved regime where the amount of training data is smaller than the

system dimensionality i.e. n > m) the convergence is also slower. We see that for

larger k and c, when n is small the empirical ROC curve is not well approximated

by the asymptotic theoretical predictions. However, as n increases, the deviation of

the empirically generated ROC curve from the theoretically predicted one decreases.

Conjecture 2.5.1 suggests that the off diagonal terms of ÛHU asymptotically tend

to zero. However, in the finite n and m case these terms are O(1/
√
n) and thus

not identically zero. For larger rank systems (increased k), there are more of these

non-identically-zero terms that worsen the approximation quality for fixed, relatively

small n. As n increases, this bias vanishes.

The ROC predictions developed in Section 2.7 also depend on parameters such

as Σ and the deterministic vector x. To test the accuracy of the ROC predictions

with respect to these parameters, we consider a setting where k̂ = k = 2. Figure

2.4(a) plots empirical and theoretical ROC curves for the plug-in and RMT stochastic

detectors for Σ = αdiag(10, 5) for three choices of α. As intuition suggests, smaller

values of Σ decrease the performance for both the plug-in and RMT detectors. For

each choice of α, the empirical ROC curves match the ROC predictions that rely on

random matrix theoretic approximations presented in Section 2.5. Using α = 1 or

α = 0.5 results in keff = k = k̂ = 2 but using α = 0.25 results in keff = 1. As k̂ > keff

for this last case, the plug-in detector realizes a performance loss compared to the

RMT detector.
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In the deterministic setting, x is an additional parameter that affects detector

performance. Figure 2.4(b) plots empirical and theoretical ROC curves for the plug-

in and RMT deterministic detectors for Σ = diag(10, 5) for three choices of the

deterministic test vector x. Larger values of |x| result in better detector performance

but for each choice of x, the theoretically predicted ROC curves match their empirical

counterparts. As x does not affect the value of keff = k̂ = k = 2, the plug-in and

RMT detectors achieve the same performance because they have identical statistics.

For both test vector models, the theoretical ROC curves match the empirical ROC

curves thereby validating the accuracy of the random matrix theoretic approximations

employed and the accuracy of the saddlepoint approximation to the c.d.f. used in the

stochastic derivation.

2.8.3 Effect of the Number of Training Samples

We saw in Section 2.3.3 that finite training data degraded the performance of the

plug-in detector relative to that of the oracle detector. The analysis of Section 2.5

mathematically justifies this observation showing that, for a fixed Σ, the number of

training samples, m, directly affects keff via (2.16). While the plug-in detector ignores

this analysis, we derived a new RMT detector that accounts for subspace estimation

errors due to finite training data. By only using the keff informative signal subspace

components, we hope that the RMT detector will avoid some of the performance loss

associated with the plug-in detector. To explore how the number of training samples

affects the relative performances of the plug-in and RMT detectors, we first consider

the setting where k̂ = k = 4 with Σ = diag(10, 3, 2.5, 2).

Figure 2.5(a) investigates the performance when m = n so that c = 1 for the

stochastic setting. This choice of m results in keff = k̂ = 4. As expected, the plug-in

and RMT detectors achieve relatively the same performance because k̂ = keff. A sim-

ilar phenomenon occurs in the deterministic setting. Figure 2.5(b) chooses 20m = n

so that c = 20 and keff = 1 for the stochastic settings. This corresponds to the

sample starved regime where m < n. In this second experiment, the plug-in detector

becomes suboptimal because it uses 4 = k̂ > keff = 1 subspace components. A similar

phenomenon occurs in the deterministic setting. Whenever keff < k̂ the RMT detec-

tors avoid some of the performance loss (compared to the oracle detectors) realized

by the plug-in detectors. We could have observed this same effect by instead varying

Σ as both of these quantities drive the value of keff. The disagreement between the

theoretical and empirical stochastic ROC curves for the plug-in detector is attributed

to the finite n and m correction terms, which we have discussed previously.
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Figure 2.5 shows that the number of training samples helps to drive the perfor-

mance of matched subspace detectors. In Section 2.3, we mathematically defined

the performance loss of a detector relative to its oracle detector as ε in (2.13) and

empirically plotted the number of training samples needed to achieve a desired per-

formance loss for the stochastic plug-in detector in Figure 2.2. Figures 2.6(a) and

2.6(b) theoretically plot this same curve for the plug-in and RMT detectors for each

testing setting, respectively.

These figures show that when keff < k̂, the RMT detector achieves a much smaller

performance loss for a fixed number of training samples. Put another way, to achieve

the same performance loss, the RMT detectors need significantly fewer training sam-

ples when keff < k̂. Figure 2.6(a) shows that the stochastic detectors can achieve

an arbitrarily small performance loss given a particularly large number of training

samples. However, Figure 2.6(b) shows that there is a performance loss limit for the

deterministic detectors. As discussed in Section 2.3, this arises because the oracle

deterministic detector assumes that x is known. As m → ∞, Û → U and Σ̂ → Σ,

however, the plug-in detector’s estimate of x̂ still depends on the noisy observed data

y. Therefore, unlike the stochastic detectors that can achieve an arbitrarily small

performance loss, the deterministic plug-in and RMT detectors can never achieve the

same performance as the deterministic oracle detector.

2.8.4 Effect of k̂

We discussed in Section 2.2.2 that we are given a dimension estimate k̂ when

deriving our detector. From our perspective, we don’t know how k̂ was estimated

(possibly from the training data or by a domain expert) but simply use it when

forming our subspace and signal covariance estimates. Figure 2.7 empirically examines

the performance of the plug-in and RMT detectors as a function of k̂ for the stochastic

setting. A similar phenomenon arises in the deterministic setting. Here, we relax the

constraint that k̂ ≥ k. The figures plot the achieved probability of detection for a

constant false alarm rate of 0.01. The result confirms that keff is the optimal choice

for k̂. When the plug-in detectors use k̂ = keff they achieve an equivalent performance

as that of the RMT detector.

Setting k̂ < keff drastically degrades performance for all detectors. In this regime,

the plug-in and RMT detectors realize the same ROC performance, demonstrating

that quantification and exploitation of the subspace estimation accuracy (|〈ui, ûi〉|2rmt

and σ2
irmt

), while useful in ROC performance prediction, does not noticeably enhance

detection performance. When k̂ > keff, the performances of the plug-in detectors de-
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grade while those of the RMT detectors are stable as if k̂ = keff. In other words, we do

not pay a price for overestimating the subspace dimension with the RMT detectors.

This makes sense (and is slightly contrived) because the RMT detectors will only sum

to a maximum of keff indices as evident in (2.20) and (2.21). In many applications,

practitioners might employ the “play-it-safe” approach and set k̂ to be significantly

greater than keff. The performance loss caused by adding each uninformative sub-

space, as seen in Figure 2.7, constitutes evidence to the assertion that overestimating

the signal subspace dimension is a bad idea. When keff < k, even perfectly estimating

the subspace dimension (i.e. setting k̂ = k) is suboptimal.

2.9 Conclusion

In this chapter, we considered a matched subspace detection problem where the

low-rank signal subspace is unknown and must be estimated from finite, noisy, signal-

bearing training data. We considered both a stochastic and deterministic model for

the testing data. The subspace estimate is inaccurate due to finite and noisy training

samples and therefore degrades the performance of plug-in detectors compared to an

oracle detector. We showed how the ROC performance curve can be derived from the

RMT-aided quantification of the subspace estimation accuracy.

Armed with this RMT knowledge, we derived a new RMT detector that only

uses the effective number of informative subspace components, keff. Plug-in detectors

that use the uninformative components will thus incur a performance degradation,

relative to the RMT detector. In settings where a practitioner might play-it-safe and

set k̂ > k̂eff, the performance loss in significant (see Figures 2.6(a) and 2.6(b) for a

demonstration of how much training data such a play-it-safe plug-in detector would

need to match the performance of a keff-tuned RMT detector). This highlights the

importance of robust techniques [89, 90, 91] for estimating keff in subspace based

detection schemes as opposed to estimating k, particularly in the regime where keff <

k. We showed in Tables 2.2 and 2.4 that the distributions of the test statistics could

be expressed as a weighted sum of independent chi-squared random variables. The

associated ROC curves can then be computed using a saddlepoint approximation.

The results in this chapter can be extended in several directions. We note that

the stochastic detector setting assumed normally distributed training and test data.

We can extend the analysis to the Gaussian training data but non-Gaussian test

vector setting by ‘integrating-out’ the deterministic detector performance curves with

respect to the non-Gaussian distribution of the test-vector. Our results relied on
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characterization of the quantity 〈uj, ûi〉. Thus analogous performance curves can

be obtained for any alternate training data models for which this quantity can be

analytically quantified. To that end, the results in [86] facilitate such an analysis for

a broader class of models including the correlatted Gaussians training data setting.

An extension to the missing data setting might follow a similar approach and appears

within reach. Aspects related to rate of convergence are open and will be the subject

of future work.
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Figure 2.3: Empirical and theoretical ROC curves for the stochastic plug-in detector.
Empirical ROC curves were simulated using 10000 test samples and averaged over 50 trials
using algorithms 2 and 4 of [1]. (a) Σ = diag(10, 2), c = 1, k̂ = k = 2 so that keff = 2. (b)
Σ = diag(10, 2, 0.5, 0.1), c = 10, k̂ = k = 4 so that keff = 1. Each figure plots empirical
ROC curves for n = 50, 200, 1000. Theoretical ROC curves were computed as described in
Section 2.7. As n increases, the empirical ROC curves approach the theoretically predicted
one. However, this convergence is slower for larger k and c.
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Figure 2.4: Empirical and theoretical ROC curves for the plug-in and RMT detectors.
Empirical ROC curves were simulated using 10000 test vectors and averaged over 100 trials
with n = 1000, m = 500, and Σ = αdiag (10, 5). The theoretical ROC curves were
computed as described in Section 2.7. (a) Stochastic testing setting. Results are plotted
for α = 1, 0.5, 0.25. For α = 1 and α = 0.5, k̂ = k = keff = 2 by (2.16). For α = 0.25,
keff = 1.Since k̂ > keff when α = 0.25, we observe a performance gain when using the RMT
detector. (b) Deterministic testing setting. Results are plotted for α = 1 so that keff = 2.
Three values of the deterministic signal vector were used: x = [1, 1]T , x = [0.5, 0.5]T , and
x = [0.25, 0.25]T . The resulting ROC curves depend on the choice of x, however, since
k̂ = keff, the plug-in and RMT detector achieve the same performance for all x. For both
the stochastic and deterministic detectors, the theoretically predicted ROC curves match
the empirical ROC curves, reflecting the accuracy of Corollary 2.5.1 and the Lugannani-Rice
formula.
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Figure 2.5: Empirical and theoretical ROC curves for the plug-in and RMT stochastic
detectors. Empirical ROC curves were computed with 10000 test samples and averaged
over 100 trials. Here, n = 5000, k̂ = k = 4 and Σ = diag(10,3,2.5,2). The empirical
oracle ROC curve is provided for relative comparison purposes. (a) m = 5000 so that c = 1
and keff = k̂ = 4. The plug-in and RMT detectors achieve relatively the same performance.
(b) m = 250 so that c = 20 and keff = 1 < k̂ = 4. The RMT detector avoids some of the
performance loss realized by the plug-in detector. As seen in Section 2.3, limited training
samples degrades detector performance. However, the new RMT detector does not suffer
as badly as the plug-in detector because it accounts for subspace estimation errors due to
finite training data. The disagreement between the theoretical and empirical ROC curves
is attributed to finite dimensionality.

37



0 0.1 0.2 0.3 0.4 0.5
0

2000

4000

6000

8000

10000

ε

m

 

 

Plug−in

RMT

(a) Stochastic

0 0.2 0.4 0.6 0.8
0

2000

4000

6000

8000

10000

ε

m

 

 

Plug−in

RMT

(b) Deterministic

Figure 2.6: Theoretically determined number of training samples, m, needed to achieve a
desired performance loss, ε, as defined in (2.13). The required false alarm rate is PF = 0.1
with n = 200, Σ = diag(10, 0.1), and k̂ = k = 2. (a) Results for the stochastic detectors.
We see that for a given ε, the new RMT detector requires less training samples. (b)
Results for the deterministic detectors when x = [0.75, 0.75]T . Again, for a given ε, the
new RMT detector requires less training samples. In the deterministic setting, the limiting
performance loss is different (and non-zero) for the plug-in and RMT detectors. This arises
in estimation errors of x in the GLRT.
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Figure 2.7: Empirical exploration of the achieved probability of detection, PD, for a
fixed probability of false alarm, PF = 0.01, for various k̂. Empirical ROC curves were
computed using 10000 test samples and averaged over 100 trials with n = 1000, m = 500,
and Σ = diag(10,5,4, 0.75, 0.5, 0.25) so that keff = 3. Results for the stochastic detectors.
The optimal k̂ resulting in the largest PD is not the true k, but rather keff.
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CHAPTER III

Extensions of Deterministic Matched Subspace

Detectors: Missing Data and Useful Subspace

Components

3.1 Introduction

A ubiquitous problem in signal and array processing is designing multi-dimensional

signal-plus-noise versus noise detectors. In such applications, an observation w may

belong to either the noise only hypothesis (H0) or the signal-plus-noise hypothesis

(H1), via the model

w =

z w ∈ H0

δ + z w ∈ H1,
(3.1)

where δ is the unknown signal vector and z is additive noise. When modeling δ as

a fixed deterministic vector and z as Gaussian noise, the standard detector statistic

is ‖w‖2, the squared norm (magnitude) of the observed vector w. This detector is

commonly referred to as an energy detector because the squared norm measures the

amount of energy contained in the observation. Energy detectors arise in applications

such as incoherent radar detection [96], Global Navigation Satellite Systems (GNSS)

[97], and MIMO radar [98, 99].

In this chapter, we analyze the performance of the energy detector, starting from

first principles. Using a receiver operating characteristic (ROC) performance analysis,

we investigate the conditional distributions of the energy detector’s test statistic and

showcase how these distributions shift depending on the number of signal components

that the energy detector uses. We saw in the previous chapter that including more

than the keff number of subspace components degrades detector performance. In

this chapter we show that, surprisingly, even if a signal component is one of the keff
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informative components, if its signal strength is too small, including it in an energy

detector actually degrades detector performance. Using this observation, we define

the number of signal components that maximize detector performance as kuseful, which

is dependent on the desired false alarm rate of the energy detector. Our goal is to

bring this phenomenon into focus so that effort can be spent on designing better real

world detectors.

We are motivated by the more specific problem of deterministic matched subspace

detection. A matched subspace detector (MSD) is commonly used to detect a signal

buried in high dimensional noise under the assumption that the signal lies in a low-

rank signal subspace. Many applications in signal and array processing use such

low-rank signal-plus-noise models, including incoherent radar detectors [96], direction

detection [100, 101, 102], GNSS [97], MIMO radar [103, 98, 99] and target detection

[104]. A deterministic signal model, which assumes that the target signal lies at an

unknown but fixed point in the signal subspace, occurs in array processing [68, 71, 70],

MIMO radar [105], and cognitive radio [106]. When the signal subspace is known a

priori, the performance of such deterministic MSDs has been extensively studied (see,

for example, [74, 75, 69]). In a recent paper [107], we considered the performance of a

MSD in the alternative setting where the signal subspace is unknown and estimated

from finite, noisy, signal-bearing training data.

Under a deterministic signal model and appropriate noise assumptions, a MSD is

an energy detector that projects a observation onto this estimated signal subspace

and uses the squared norm of the projection as the detector’s statistic. In [107],

we used random matrix theory (RMT) to showcase that using more than the keff

informative subspace components decreases detector performance. In this chapter,

we show that even though a subspace component may be informative (as defined by

keff), including it in a detector may degrade performance. Using exactly the kuseful

subspace components results in the best detector performance. However, as kuseful is

computed assuming knowledge of the unknown deterministic vector, keff provides a

realizable upper bound for kuseful.

Finally, we consider the deterministic MSD setting where the training data is

noisy and has missing entries. The missing entry context is motivated in [108] by

distributed detection scenarios where it might be prohibitive to collect and transmit

only a (randomly chosen) fraction p of the training data entries. Alternately one

might think of 1 − p ∈ (0, 1) as a compression factor as in compressed sensing.

We precisely quantify the performance of the MSD with missing data. We uncover

a phase transition phenomenon by showing that there is a critical fraction, pcrit,
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which is a simple function of the eigen-SNR, the number of training samples, and

the number of sensors, below which detection performance deteriorates to random

guessing. Compressing the training dataset below this critical fraction is undesirable.

The chapter is organized as follows. In Section 3.2, we formulate the standard

signal versus noise detection problem and derive the standard energy detector. We

discuss the energy detector’s conditional distributions, define kuseful, and discuss its

properties in Section 3.3. In Section 3.4, we apply these insights to deterministic

MSDs and highlight the relationship between keff and kuseful through numerical simu-

lations. In Section 3.5, we discuss the weighted energy detector as a natural extension

to this work. We extend the results to the setting where our original data matrix may

have missing data in Section 3.6. Finally, we provide concluding remarks in Section

3.8.

3.2 Problem Formulation

We wish to design a detector that discriminates between the H0 hypothesis that

an observation is purely noise and the H1 hypothesis that the observation contains

an unknown signal. We model the observation w ∈ Rk×1 as in (3.1) where δ =

[δ1, . . . , δk]
T ∈ Rk×1, with δi 6= 0, is an unknown deterministic vector, z ∼ N (0, Ik)

is additive white Gaussian noise (AWGN), and k is known. See [96, 100, 97, 103, 98,

99, 104, 101, 102] for similar signal-plus-noise models in signal and array processing.

In the Neyman-Pearson detection setting (see [93]), the detector for this data model

is the likelihood ratio test (LRT)

Λ(w) =
f (w |H1)

f (w |H0)

H1

≷
H0

η. (3.2)

Here f (·) is the appropriate conditional probability density function (p.d.f.) of the

observation and η is a scalar threshold set so that P (Λ(w) > η |w ∈ H0) = α where

α ∈ [0, 1] is a desired false alarm rate.

The conditional distributions of w modeled as in (3.1) are w|H0 ∼ N (0, Ik) and

w|H1 ∼ N (δ, Ik). However, as δ is unknown, we cannot substitute the p.d.f. of w|H1

into (3.2). Instead, we use the generalized LRT (GLRT), which maximizes f(w|H1)

with respect to any unknown parameters. The GLRT for our problem is

Λ(w) =
maxδ f (w |H1)

f (w |H0)

H1

≷
H0

η.
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The conditional p.d.f. of w under the H1 hypothesis is

f (w |H1) = (2π)−k/2 exp

{
−1

2
(w − δ)T (w − δ)

}
.

This p.d.f. is maximized when δ = w with the maximum value of (2π)−k/2. Substi-

tuting this into the GLRT yields

Λ(w) = exp{1

2
wTw}

Taking the natural logarithm results in the test statistic

Λenergy(w) = wTw =
k∑
i=1

w2
i (3.3)

where w = [w1, . . . , wk]
T . This is an energy detector as its test statistic sums the

energy residing in each component (or dimension) of the given observation.

3.2.1 ROC Curve Analysis

To compare the performance of multiple detectors, we will compare their receiver

operating characteristic (ROC) curves. A ROC curve is a collection of points (PF , PD)

where for −∞ < η <∞,

PF = P (Λ(w) > η |w ∈ H0) ,

PD = P (Λ(w) > η |w ∈ H1) .
(3.4)

For 0 ≤ PF ≤ 1 we want to express the probability of detection PD as a function of

the false alarm rate, PF , while noting that PF is a function of η. To make analytical

progress, we assume that δ is known for ROC derivations. First, we compute the

conditional distributions of the statistic in (3.3). The conditional distributions of the

components in w are simply wi|H0
i.i.d.∼ N (0, 1) and wi|H1

i.i.d.∼ N (δi, 1). Therefore,

w2
i |H0

i.i.d.∼ χ2
1 and w2

i |H1
i.i.d.∼ χ2

1 (δ2
i ) where χ2

1 is a chi-square random variable with

one degree of freedom and χ2
1(δ2

i ) is a non-central chi-square random variable with

one degree of freedom and non-centrality parameter δ2
i . As each component wi is

independent,

Λ(w)|H0 ∼ χ2
k,

Λ(w)|H1 ∼ χ2
k

(
δT δ
)
,

(3.5)
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where χ2
k is a chi-square random variable with k degrees of freedom and χ2

k(δ
T δ) is a

non-central chi-square random variable with k degrees of freedom and non-centrality

parameter δT δ =
∑k

i=1 δ
2
i . Armed with these characterizations in (3.5) and solving

for η in (3.4), we can relate PD to PF using the expression

PDenergy(PF , k) = 1−Qχ2
k(λk)

(
Q−1
χ2
k

(1− PF )
)
. (3.6)

In (3.6), Qχ2
k
(λk) is the cumulative distribution function (c.d.f.) of a non-central

chi-square random variable with k degrees of freedom and non-centrality parameter

λk =
∑k

i=1 δ
2
i and Qχ2

k
is the c.d.f. of a chi-square random variable with k degrees of

freedom. See [96, 97, 99] for similar ROC performance curve derivations.

3.2.2 Problem Statement

As practitioners, we can control which signal components that the energy detector

in (3.3) uses. Without loss of generality, we assume that the entries of δ are ordered

(i.e. |δ1| ≥ |δ2| ≥ . . . |δk|). With this assumption, we can decide how many signal

components, d, to use in the energy detector

Λd(w) =
d∑
i=1

w2
i . (3.7)

Specifically, we wish to answer the following question:

Given a signal vector δ and a desired false alarm rate PF , how many signal

components, d, maximize PDenergy(PF , d) in (3.6) for an energy detector

with the form of (3.7) derived from observations as in (3.1)?

Answering this question will provide some surprising results. We will show that if

the components δi are too small in magnitude, including them in a detector actually

degrades performance. The setting where δi equals zero is a special case where not

including it will always yield a performance gain.

3.3 Useful Components In Energy Detectors

In this section, we answer the question posed at the end of Section 3.2 by defining

kuseful, the number of useful signal components. We show that kuseful is dependent

on δ and the desired false alarm rate PF . We provide some intuition behind our

definition by discussing how the conditional distributions of the energy detector’s test
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statistic shift when adding additional components. If an additional signal component

further separates the conditional distributions, it is one of the kuseful components in

detection; otherwise, including that component would degrade detector performance.

Of particular importance, kuseful may be less than the inherent dimension, k, of the

observed data, even when δi 6= 0.

3.3.1 Definition and Computation of kuseful

We define the number of useful detection components at a false alarm rate PF as

the solution to the following optimization problem

kuseful = argmax
d∈{1,...,k}

PDenergy(PF , d) (3.8)

where PDenergy(PF , d) is defined in (3.6). This is the optimal number of components

to include in an energy detector in (3.7) to maximize detector performance. Using

exactly kuseful components includes all components that improve detection ability and

excludes all components that degrade detection ability.

To determine kuseful, we propose the greedy “algorithm” in Figure 3.1. The algo-

rithm relies on the fact that the components of δ are ordered (i.e. |δ1| ≥ . . . |δk|). It

adds one component at a time and searches for the last component that resulted in

an increase in detection ability. This algorithm relies on knowledge of δ and so by

definition kuseful is an oracle quantity. Therefore, a realizable detector using exactly

kuseful components is currently beyond reach. Estimating kuseful is a topic for future

work and may involve placing a prior distribution on the test vector. In Section 3.4,

we discuss using the effective number of subspace components, keff, as an estimate for

kuseful.

3.3.2 Discussion of Test Statistic Distributions

In order to provide intuition behind the definition of kuseful, we examine the con-

ditional distribution of the test statistic in (3.7):

Λd(w) |H0 ∼ χ2
d,

Λd(w) |H1 ∼ χ2
d(λd)

(3.9)

where

λd =
d∑
i=1

δ2
i . (3.10)
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Input: PF , δ
Compute PD(PF , 1) from (3.6)1

for h = 2, . . . , k do2

Compute PD(PF , h) from (3.6)3

if PD(PF , h) < PD(PF , h− 1) then4

kuseful = h− 15

Return: kuseful6

kuseful = k7

Output: kuseful

Figure 3.1: Algorithm to determine kuseful. This is computable in an oracle setting
where δ is known.

Clearly, both distributions and the non-centrality parameter depend on d. Therefore,

a closed form expression for kuseful is not possible and we rely on the greedy algorithm

in Figure 3.1. Adding an additional component presents a tradeoff between adding δ2
i

to the non-centrality parameter and adding 1 to the degrees of freedom in the c.d.f’s

in (3.9).

This tradeoff becomes more evident when using (3.6) to rewrite the optimization

problem in (3.8) as

kuseful = argmin
d∈{1,...,k}

Qχ2
d(λd)

(
Q−1
χ2
d

(1− PF )
)
. (3.11)

By fixing the signal distribution Qχ2
d(λd), solving (3.11) is equivalent to minimizing

Q−1
χ2
d

(1− PF ), which is achieved when d = 1. This minimizes the variance contribution

from the noise distribution. However, by fixing the noise distribution Qχ2
d
, solving

(3.11) is equivalent to minimizing Qχ2
d(λd) (·), which is achieved when d = k. This

maximizes the variance contribution from the signal distribution. The solution to

(3.11) is dependent on how much each additional component contributes to the overall

non-centrality parameter. If the contribution is large enough, the added variance in

the noise distribution from the extra degree of freedom is overcome by the distribution

shift induced by the increase in non-centrality parameter.

To illustrate how the conditional distributions shift when adding components to

the energy detector, Figure 3.2 plots the distributions of Λd(w)|H0 and Λd(w)|H1 for

three choices of d and λd. Figure 3.2(a) sets d = 1 and λd = 2 and is used as a

baseline. Figure 3.2(b) increases the number of components to d = 2 while keep-

ing the non-centrality parameter fixed at λd = 2. The added component increases
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(a) d = 1, λd = 2
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(b) d = 2, λd = 2
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(c) d = 2, λd = 3

Figure 3.2: Probability density function (p.d.f.) of Λ(w) |H0 and Λ(w) |H1 for three
combinations of the number of components d and non-centrality parameter λd. (a) Baseline:
d = 1, λd = 2 (b) Increases d but keeps λd fixed. The distributions are less separable. (c)
Increases both d and λd. The distributions are more separable.

the noise variance by 2. However, as there is no increase in the non-centrality pa-

rameter, the signal variance also increases by 2. Thus, the signal-to-noise ratio is

effectively decreased. Therefore, the second component causes the conditional distri-

butions to become more similar and thus degrades detector performance; therefore,

kuseful = 1. Figure 3.2(c) keeps the number of components at d = 2 but increases

the non-centrality parameter to λd = 3. In this setting, the increase in non-centrality

parameter increases the signal variance, which overcomes the resulting increase in

noise variance. The second component further separates the conditional distributions

and improves detection performance; therefore, kuseful = 2. Figure 3.3 plots the corre-

sponding ROC curves for the three choices of parameters in Figure 3.2. When adding a

component causes the conditional distributions to better separate as in Figure 3.2(c),

the resulting ROC curve shows an improvement in detection. For an additional com-

ponent to be one of the kuseful components, the resulting increase in noise variance

must be overcome by a sufficiently large enough increase in non-centrality parameter.

Finally, we explore the minimum increase in non-centrality parameter needed to

improve detection ability. Consider a setting with d = 1 component and correspond-

ing non-centrality parameter λ1. Let λ2 be the resulting non-centrality parameter by

adding a second component, d = 2, and let ∆λ = λ2 − λ1 be the resulting increase

in non-centrality parameter. Figure 3.4 plots the minimum increase in non-centrality

parameter needed to improve detection as a function of λ1 for a few choices of PF .

If the increase in non-centrality parameter exceeds this minimum threshold, that

component is one of the kuseful components.

We observe that the minimum increase in non-centrality parameter is dependent

both on the desired false alarm rate, PF , and the first non-centrality parameter, λ1.
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Figure 3.3: The corresponding ROC curves to the three choices of d and λd in Figure
3.2. ROC curves were generated from (3.4). When adding an additional subspace compo-
nent, the non-centrality parameter must increase sufficiently in order to achieve improved
detection.

The minimum increase in non-centrality parameter is larger for smaller false alarm

rates and is larger for larger λ1. This is intuitive because larger values of λ1 separate

the conditional distributions very well, indicating that the first component is an excel-

lent discriminant between the two hypotheses H0 and H1. For the second component

to improve detection ability, its contribution to the non-centrality parameter must be

larger for larger λ1. Otherwise, the second component only adds more noise to the

detector. More generally, for the ith component to be one of the kuseful components,

δ2
i must exceed a critical threshold that is dependent on

∑i−1
j=1 δ

2
j .

3.4 Useful Components in Deterministic Matched Subspace

Detectors

This section will apply the results in Section 3.3 about useful components to de-

terministic matched subspace detection. In this detection setting, we are given a

high dimensional test observation and wish to discriminate between the H0 hypoth-

esis that the observation is purely noise and the H1 hypothesis that the observation

contains a low-rank-k signal that lies at a fixed point in an unknown subspace. To

design a detector, we have access to a training dataset of signal bearing observations.

We assume that the training data was collected in a variety of representative experi-

mental conditions, allowing each observation’s signal component to lie at a different

location in the signal subspace. This setup is the similar to that in [107] and the
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Figure 3.4: Minimum increase in non-centrality parameter necessary for increased detector
performance. Results are shown for multiple choices of PF . λ1 indicates the non-centrality
parameter when d = 1 and ∆λ indicates the increase in non-centrality parameter when
increasing the number of components to d = 2.

resulting standard matched subspace detector is an energy detector with the same

form as (3.7). We use random matrix theory to determine the number of informative

subspace components, keff, which is an upper bound for kuseful. Through a numerical

example, we demonstrate the relationship between the standard plug-in detector us-

ing exactly k subspace components, a detector using keff subspace components, and

a detector using exactly kuseful subspace components.

3.4.1 Training Data Model

Let U = [u1, . . . , uk] ∈ Rn×k be an unknown signal subspace matrix with pairwise

orthonormal columns ui ∈ Rn×1. To estimate U , we are provided a dataset containing

m signal-bearing training vectors yi ∈ Rn×1, i = 1, . . . ,m, modeled as

yi = Uxi + zi (3.12)

where zi
i.i.d.∼ N (0, In) and xi

i.i.d.∼ N (0,Σ) where Σ = diag(σ2
1, . . . , σ

2
k) ∈ Rk×k with

σ1 > σ2 > · · · > σk > 0 known. For each observation, xi and zi are independent. In

the training data, xi is modeled stochastically to represent the variety of conditions

under which the training data may be collected. We assume that the dimension, k, of

our subspace is known and that k � n so that we have a low-rank signal embedded

in a high-dimensional observation vector. Applications in which training datasets

arise include MIMO radar [103], GNSS receivers [97], source localization [109], DOA
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[102], and target detection [104]. In such applications, we may think of the entries of

yi received data from an antenna array, U as the channel response matrix, xi as the

transmitted waveform, Σ as the signal-to-noise ratio (SNR) matrix, and zi as additive

noise.

3.4.2 Testing Data Model

In the testing setting, we are given an unlabeled observation y ∈ Rn×1 modeled as

y =

{
z y ∈ H0 : Noise only

UΣ1/2x+ z y ∈ H1 : Signal-plus noise
, (3.13)

where U , Σ, and z are modeled the same as the training data as described in Section

3.4.1. However, for the test observations, x = [x1, . . . , xk]
T is a non-random, unknown

deterministic vector. Thus the signal, UΣ1/2x, lies at a fixed point in the unknown

subspace. Note that Σ controls the SNR of each subspace component.

3.4.3 Subspace Estimation and Accuracy

In the testing model, the signal subspace U is unknown and must be estimated

from the provided training data. Given the signal bearing training data

Y = [y1, . . . , ym] ∈ Rn×m,

we form the sample covariance matrix S = 1
m
Y Y T . The covariance matrix of a

training observation is E
[
yiy

T
i

]
= UΣUT + In and it follows that the (classical)

maximum likelihood estimates (in the many-sample, small matrix setting) for U is

given by

Û = [û1 . . . ûk] (3.14)

where û1, . . . , ûk are the eigenvectors of S corresponding to the largest k eigenvalues

[92] .

In any real world setting, we have finite training data and finite SNR. Therefore,

Û is inaccurate and degrades the performance of any detector that relies on it. Propo-

sition 5.1 of [107] characterized the asymptotic accuracy of the eigenvectors of the
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sample covariance matrix S stating that as n,m→∞ with c = n/m

|〈ui, ûi〉|2
a.s.−→


σ4
i − c

σ4
i + σ2

i c
if σ2

i >
√
c

0 otherwise

. (3.15)

We note that
a.s.−→ denotes almost sure convergence. The key insight to (3.15) is that

only the eigenvectors corresponding to the signal variances, σ2
i , lying above the phase

transition
√
c are informative. Following [107, 83], we define the effective number of

(asymptotically) identifiable subspace components keff as:

keff = Number of σ2
i >
√
c. (3.16)

3.4.4 Plug-in and RMT Detectors

If U was known, the matched subspace detector is the GLRT using the test statistic

(see [74, 75, 110])

Λ(w) = yTUUTy = wTw

where w = UTy ∈ Rk×1. This is clearly an energy detector of the same form as

(3.7) where each component of w is the energy of y residing in that direction of

the subspace. However, this detector is not realizable as U is unknown and so we

substitute Û for the unknown U , resulting in the plug-in detector [107]

Λplugin(ŵ) = ŵT ŵ =
k∑
i=1

ŵ2
i (3.17)

where ŵ = ÛTy is the projection of the test observation onto the estimated sub-

space. Similar plug-in techniques using sample covariance matrices occur in direction

detection [100] and GNSS receivers [97]. The plug-in detector incorrectly assumes

that Û = U and consequently that all k subspace components are informative. To

avoid some of the performance loss of the plug-in detector associated with including

uninformative subspace components, we derived a RMT detector that only includes

the informative subspace components (see [107] for a derivation). The RMT detector

statistic is

Λrmt(ŵ) =

keff∑
i=1

ŵ2
i . (3.18)

Clearly, both the plug-in and RMT detectors are energy detectors of the form in

51



(3.7) and so we may use (3.6) to analyze the performance of each detector. In the

MSD application, δi = σi|〈ui, ûi〉|sixi where si ∈ {1,−1} represents the random phase

ambiguity in the eigenvector computation. Therefore, the non-centrality parameter

for this problem is

λd =
d∑
i=1

σ2
i |〈ui, ûi〉|2x2

i (3.19)

where the plug-in detector uses d = k subspace components and the RMT detector

uses d = keff subspace components. In [107], we demonstrated that the plug-in

detector is suboptimal and that the RMT detector will always achieve the same or

better performance.

3.4.5 Relationship between kuseful and keff

We first note that kuseful ≤ keff. If a subspace component is uninformative

(|〈ui, ûi〉|2 = 0 as determined by (3.16)), that component contributes nothing to

the non-centrality parameter as defined in (3.19). From the analysis in Section 3.3,

including this subspace component in a detector would degrade detector performance.

Therefore, a subspace component must be informative to be one of the kuseful subspace

components.

However, the number of useful subspace components may be strictly less than the

number of informative subspace components. As demonstrated in Figure 3.4, when

adding an additional subspace component, the increase in non-centrality parameter

must exceed a minimum value. Examining (3.19), the non-centrality parameter de-

pends on Σ, x, and the accuracy of the eigenvectors of the sample covariance matrix

(|〈ui, ûi〉|2). Depending on these values, adding the i-th component may not increase

the non-centrality parameter enough to improve detection, even when the subspace

component is informative (|〈ui, ûi〉|2 > 0). Thus, it is possible for informative sub-

space components to not be useful in detection.

Besides the desired false alarm rate, PF , kuseful also depends on Σ and x for

the matched subspace detector. Larger values of |xi| and σi lead to larger non-

centrality parameters as defined in (3.19), making it more likely for that component

to be useful. This is intuitive because the larger |xi| and σi force the mean of the

conditional distribution of ŵi|H1 further from 0, which is the mean of the conditional

distribution of ŵi|H0. If we instead fix Σ, n , and x and allow m to change, we

observe that more training data increases the accuracy the subspace estimate as seen

in (3.16). Therefore, increasing m increases δi, which may make subspace components
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useful.

The number of informative subspace components, keff, is an upper bound for

the number of useful subspace components, kuseful. As mentioned earlier, we cannot

compute kuseful in closed form because the deterministic vector x, which drives the

non-centrality parameters δi, is unknown. Therefore, kuseful is an oracle statistic as

so we use keff as a proxy for kuseful in a realizable detector. However, as keff does not

depend on x, whenever keff 6= kuseful, detectors using keff subspace components will be

suboptimal.

Finally, we note that the derivation and computation of kuseful for the matched sub-

space detection application relies on random matrix theory. Without these insights,

we would have no expression for |〈ui, ûi〉|2 and subsequently could not compute the

non-centrality parameter in (3.19) to use in the algorithm in Figure 3.1.

3.4.6 Numerical Example

In Figure 3.5 we compare the performance of the plug-in and RMT detectors to

the performance of a detector that uses d = kuseful subspace components. We consider

the setting when k = 3, n = 200, Σ = diag(5, 2, 0.5), and x = [1.5, 1.5, 1.5]T . For a

fixed PF = 0.1, Figure 3.5(a) plots the theoretical detection probability (as computed

in (3.6) using (3.16) and (3.19)) given various amounts of training data. Results

are shown for the plug-in (d = k), RMT (d = keff), and useful (d = kuseful) detectors.

Figure 3.5(b) plots the corresponding number of subspace components each uses given

various amounts of training data.

Evident in Figure 3.5(a), the detector using kuseful subspace components achieves

the maximum detection ability of all detectors for every amount of training samples.

This is slightly contrived because kuseful is optimized to do just this. More impor-

tantly, we empirically see that using keff subspace components is not always optimal.

However, examination of Figure 3.5(b) reveals why this occurs. For 50 ≤ m ≤ 160,

keff = 2 > kuseful = 1. Therefore, even though the second subspace component is infor-

mative by definition, it is not useful in detection. Including it in an energy detector

decreases detector performance. A similar phenomenon occurs at m = 800 when

keff increases to 3 but kuseful remains constant at 2. Unlike the RMT detector, the

detection performance of the useful detector increases monotonically with an increase

in training samples. Both the RMT and useful detectors outperform the standard

plug-in detector which uses all k subspace components.
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Figure 3.5: Deterministic energy detector performance as a function of the number of
training samples. In this experiment n = 200, Σ = diag(5, 2, 0.5), x = [1.5, 1.5, 1.5]T ,
and the required false alarm rate is PF = 0.1. (a) The theoretical probability of detection
achieved by the plug-in, RMT, and useful detectors. PD(PF ) is calculated in (3.4). The
plug-in detector sets d = k, the RMT detector sets k = keff as defined in (3.16), and
the useful detector sets d = kuseful as calculated in Figure 3.1 using the non-centrality
parameter defined in (3.19). The useful detector achieves the optimal performance. (b) The
number of subspace components used by the plug-in, RMT, and useful detectors. Whenever
keff 6= kuseful, the RMT detector realizes a suboptimal detector performance. Even though
these subspace components are informative, there is not enough training data to make them
useful in detection.

3.5 Extension - Weighted Energy Detector

The energy detector in (3.3) may be generalized by adding a non-negative weight

to each component in the sum. The statistic for the weighted energy detector is

Λweighted(w) = wTAw =
k∑
i=1

aiw
2
i . (3.20)

where A = diag(a1, . . . , ak) ∈ Rk×k and ai ≥ 0. We constrain
∑k

i=1 ai = 1 so that

the weights reside on the (k − 1)-simplex. This reduces the set of possible weights

by eliminating those that are multiples of each other, which results in equivalent

detectors. The weighted energy detector gives practitioners additional design freedom

to maximize detector performance. Using a similar analysis as in Section 3.2, the

54



conditional distributions of the weighted energy detector’s statistic in (3.20) are

Λ(w)|H0 ∼
k∑
i=1

aiχ
2
1i,

Λ(w)|H1 ∼
k∑
i=1

aiχ
2
1i

(
δ2
i

)
,

(3.21)

where χ2
1i are independent chi-square random variables with one degree of freedom

and χ2
1i (δ

2
i ) are independent non-central chi-square random variable with one degree

of freedom and non-centrality parameter δ2
i . We can relate PD to PF using the

expression

PDweighted
(PF , A) = 1−QΛ|H1

(
Q−1

Λ|H0
(1− PF )

)
(3.22)

where QΛ|H1 is the c.d.f of Λ(w)|H1 in (3.21) and QΛ|H0 is the c.d.f. of Λ(w)|H0 in

(3.21).

The definition of Λweighted(w) in (3.20) raises the natural question

Given δ and a desired PF , what is the optimal choice of weighting matrix,

A, that maximizes PDweighted
(PF ) for a weighted energy detector with the

form of (3.20) using observations generated from (3.1)?

While the c.d.f. of chi-square and non-central chi-square random variables are known

in closed form, the c.d.f. of a weighted sum of chi-square random variables is not

known in closed form and therefore (3.22) cannot be computed analytically. It is

common to use saddlepoint approximation techniques [95] to compute the c.d.f. of

such sums in (3.21), however, such techniques must be computed for many thresholds,

η, to generate a ROC curve for one weighting matrix A. To optimize over A in (3.22),

this process would need to be repeated over a discretization of the (k − 1)-simplex.

Developing a more efficient algorithm to optimize over the weighting matrix, A, is an

important topic for future work.

To illustrate how weighted energy detectors can improve detection performance,

consider a rank-2 setting where the desired false alarm rate is PF = 0.1. Optimizing

A = diag(a1, a2) on the simplex a1 + a2 = 1 results in one degree of freedom and so

Λ(w)weighted = aw2
1 + (1− a)w2

2

where a ∈ [0, 1]. Figure 3.6 plots the empirically achieved (see [1]) probability of

detection as a function of the weighting parameter a for four detectors each with a
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Figure 3.6: Empirically achieved probability of detection (PD) as a function of the weight-
ing coefficient a for a fixed false alarm rate of PF = 0.1. (a) Two detectors, one using the
deterministic vector δ = [1, 1]T and the second using δ = [1, 0]T . The first detector achieves
its maximum performance around a = 0.5 indicating that both components are equally
informative. The second detector achieves its maximum performance at a = 1 indicating
the second subspace component is not useful in detection. (b) Two detectors, one using
δ = [1, 0.75]T and the other using δ = [1, 0.5]T . The maximum performance of each detector
is no longer achieved at a = 0.5 or a = 1 as the entries of δ are non-zero and are not equal.
The maximum performance is indicated by a black circle.

different signal vector δ. Figure 3.6(a) shows results for detectors using δ = [1, 1]T

and δ = [1, 0]T . The detector with δ = [1, 1]T achieves maximum performance when

a = 0.5, which weights both components equally. As δ1 = δ2 = 1 both w1 and w2 have

the same conditional distributions and it is intuitive that we weight both components

equally. However, the detector using δ = [1, 0]T achieves maximum performance

when a = 1 indicating that the second component is not useful in detection. As

δ2 = 0, w2 has the same distribution under both the H1 and H0 hypotheses, giving

it no discriminatory power. For these values of δ, the optimal a is obvious and the

performance of the weighted energy detector is the same as that of the standard

energy detector.

Figure 3.6(b) considers detectors using δ = [1, 0.75]T and δ = [1, 0.5]T . Both

choices place δ1 > δ2 so we only consider the regime a ∈ [0.5, 1], which weights

the first component stronger than the second. The maximum performance of each

detector is indicated by a black circle. Unlike the detectors in Figure 3.6(a), the

maximum PD is not achieved at a = 0.5 or a = 1; both components are needed to

achieve optimal performance. For these choices of δ, the weighted energy detector is

able to achieve a better performance than a standard energy detector using either one
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(a = 1) or both (a = 0.5) components. Developing an efficient algorithm to compute

these optimal weights is an important extension of the work in this chapter.

3.6 Deterministic Matched Subspace Detectors with Missing

Data

We consider the same detection setting as described in Section 3.4 using the train-

ing data model in (3.12). However, we only observe a fraction p ∈ (0, 1) of the entries

of our training matrix Y = [y1, . . . , ym]; p is independent of n and m. Define our

observed training data matrix, Ỹ , as

Ỹ = Y �M (3.23)

where

Mij =

1 with probability γy

0 with probability 1− γy

and � denotes the Hadamard or element-wise product. Finally we make the following

assumption about our signal subspace, U .

Assumption 3.6.1. In the missing data setting, assume that the columns of U satisfy

a ‘low-coherence’ condition in the following sense: we suppose that there exist non-

negative constants η, C independent of n, such that for i = 1, . . . , k

max
i
‖ui‖∞ ≤ η

logC n√
n

.

We form a signal subspace estimate as in (3.14), except that we use our partially

observed training matrix Ỹ to form the sample covariance matrix S . Call this signal

subspace estimate Ũ .

3.6.1 Pertinent Results from RMT

By modifying an argument in [86], we obtain the following result.

Theorem 3.6.1. Assume that xi ∼ CN (0,Σ2) as in (3.12) and that U in (3.12) obeys

the low coherence condition in Assumption 3.6.1. Then as n,m→∞ with n/m→ c
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we have that for i, j = 1, . . . , k:

|〈ui, ûi〉|2
a.s.−→

1− c (1 + pσ2
i )

pσ2
i (pσ2

i + c)
if σi >

c1/4

√
p

0 otherwise

|〈ui, ûj〉|2
a.s.−→ 0 for i 6= j.

.

where ûi are the left singular vectors of Ỹ .

The low coherence condition appears in, for example, [108] with the idea being

that the matrix U
[
x1 . . . xm

]
has entries of about the same magnitude. With the

Gaussianity assumption for x, all we need is U to have low coherence. Recall that

the coherence of a matrix with orthonormal columns is maxi,j |Ui,j|. When a matrix

is spiky, random sampling of its entries may result in a loss of information; matrices

with low coherence behave better under random sampling and it is this setting that

we focus on in this chapter.

The key insight from Theorem 3.6.1 is that only the singular vectors corresponding

to signal singular values above the phase transition c1/4√
p

are informative. The fraction

of missing entries p regulates this phase transition point as O(1/
√
p). When a signal

singular value drops below this critical threshold, the corresponding singular vector

estimate is essentially noise-like (i.e. |〈ui, ûi〉|2 = op(1)) and thus uninformative. The

term |〈ui, ûi〉|2 quantifies mismatch between the estimated and underlying singular

vectors; when p < pcrit. :=
√
c/maxi(σ

2
i ) then all singular vectors are uninformative.

Intuitively we expect a degradation in the performance of detectors that utilize sub-

space components for which |〈ui, ûi〉|2 = op(1). We refer to the estimate in Theorem

3.6.1 as |〈ui, ûi〉|2rmt.

3.6.2 Plug-in and RMT Detectors

Using the estimate of our signal subspace, Ũ , formed from our partially observed

training data matrix Ỹ , we define

w̃ = ŨTy

where y is a testing vector from (3.13). Note that in this setup, we don’t assume that

our testing observation has any missing entries. Following a similar derivation from
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Chapter 2 and the previous section, we have our plug-in and RMT test statistics are

Λplugin(w̃) = w̃Hw̃
k∑
i=1

w̃2
i (3.24)

Λplugin(w̃) = w̃Hw̃

keff∑
i=1

w̃2
i (3.25)

where we define keff as the number of signal singular values above the phase transition
c1/4√
p

shown in Theorem 3.6.1. We may use either test statistic to form a detector of

the form

Λ(w̃)
H1

≷
H0

ln(η) (3.26)

where η satisfies P (Λ(w̃) > ln (η) |H0) = α.

3.6.3 Theoretical ROC Curve Derivation

A standard way to compare the plug-in and RMT detectors derived in (3.24) and

(3.25) respectively is to compute their ROC curves. For a particular statistic Λ(w̃),

to compute theoretical ROC curves, we must compute

PD = P (Λ(w) > γ|w ∈ H1)

PF = P (Λ(w) > γ|w ∈ H0)
(3.27)

for −∞ < γ <∞. To do this, we explore the conditional CDF under each hypothesis

for the statistics (3.24) and (3.25).

This derivation is the same as in Chapter 2 except that we replace |〈ui, ûi〉|2rmt

with the expression in Theorem 3.6.1.

3.7 Simulation Results and Discussion

3.7.1 ROC Curves

We consider a setting where keff = 1 < k = 2. For this setting, as seen in Figure

3.7, for any false alarm rate (PF ), the RMT detector achieves a higher probability

of detection (PD), demonstrating the sub-optimality of the plug-in detector. This is

expected because keff < k so that the plug-in detector is employing uninformative

subspace components. The theoretical ROC curves in (3.4) match the empirically

generated ROC curves validating the performance predictions of (3.4) which rely on
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Figure 3.7: Empirical and theoretical ROC curves for the plug-in and RMT matched
subspace detectors. Empirical ROC curves were simulated with n = 500, m = 500, k = 2,
Σ = diag(3, 0.1), and p = 0.8. However, as σ2 is below the critical threshold, keff = 1. The
empirical ROC curves were computed using 5000 test samples and averaged over 25 trials.
x was generated randomly for training samples but fixed for test samples. The theoretical
ROC curves were obtained using (3.4). Note the excellent agreement and the performance
gain realized by the RMT detector.

Theorem 3.6.1.

3.7.2 Effect of Missing Data

Figure 3.8 examines the performance of each detector as a function of p. Again we

observe the sub-optimality of the plug-in detector. The theoretical PD prediction in

(3.4) matches empirically achieved PD for both detectors. As expected, as p decreases,

the achieved probability of detection decreases. We note the presence of a critical

pcrit. :=
√
c/maxi(σ

2
i ) obtained from Theorem 3.6.1, below which (in the large system

limit) we may only achieve PD = PF ; the rounding in Figure 3.8 is attributed to finite

system approximation error.

3.8 Conclusion

In this chapter, we considered the problem of designing a signal-plus-noise versus

noise detector when the signal is assumed to be a fixed deterministic vector. In such

a setting, the GLRT detector is an energy detector, whose statistic is the squared

norm of the observation. By examining how the conditional distributions of this test

statistic shift when adding additional components, we derived and defined the number

of useful components, kuseful, that maximize detection ability.

When adding a component to an energy detector, there is a tradeoff between

increasing the noise variance and increasing the signal variance by increasing the
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Figure 3.8: Empirically computed probability of detection, PD, for a fixed probability of
false alarm, PF = 0.1, for various p. Here, n = 1000, m = 1000, k = 2, Σ = diag(3, 0.1).
PD was computed using (3.4) and x was generated as described in Figure 3.7. For values
of p ≤ 1/9, keff = 0 and performance degrades to PD = PF + o(1) for both detectors.
As p increases, keff = 1 allowing the detectors to achieve better than random guessing
performance. When keff > 0 the plug-in detector is sub-optimal for all values of p.

non centrality parameter. For a component to be one of the kuseful components, the

increase in non-centrality parameter must overcome the added noise variance. We

explored the necessary increase in non-centrality parameter needed for a component

to be useful in Figure 3.4.

We applied the idea of using only kuseful components to deterministic matched sub-

space detection where the unknown signal subspace is estimated from finite, noisy,

signal-bearing training data. Both the standard plug-in detector using k subpsace

components and RMT detector using keff subspace components (as defined by (3.16))

are energy detectors. We demonstrated that the new useful subspace detector out-

performs both the plug-in and RMT detectors. Importantly, we showed that while a

subspace component may be informative (|〈ui, ûi〉|2 > 0), using that component in a

detector may decrease performance.

As detectors using kuseful components assume knowledge of the unknown signal

vector, they are not realizable. We showed that keff may be used as an upper bound

for kuseful, however, deriving other estimates for kuseful that can be used in applications

other than matched subspace detection is a focus of future work. We also provided

a disucssion about the more general weighted energy detector and showed that such

a detector can improve detection performance. Determining an efficient algorithm to

compute the optimal weighting matrix to use in the weighted energy detector is an

important area of future research. Extending the performance analysis of the useful

matched subspace detector to the case of unknown Σ or complex valued data is within

reach. The work in [107] on eigen-SNR accuracy, estimating keff, and estimating
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|〈ui, ûi〉|2 is directly applicable.

Finally, we considered a deterministic MSD problem where the unknown low-

rank signal subspace is estimated from noisy, limited, signal-bearing training data

with missing entries. We used RMT to characterize the resulting performance and

showed that using keff ≤ k subspace components is optimal. The relationship between

keff and p was made explicit in Theorem 3.6.1 and we showed that detection better

than random guessing (in the large system limit) is only achievable for p > pcrit. :=
√
c/maxi(σ

2
i ).
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CHAPTER IV

Using CCA and ICCA to Detect Correlations in

Low-Rank Signal-Plus-Noise Datasets

4.1 Introduction

Canonical correlation analysis (CCA) is a joint multidimensional dimensionality

reduction algorithm for exactly two datasets [4]. CCA finds a linear transformation

for each dataset such that the correlation between the two transformed features is

maximized. While CCA itself is not a data fusion algorithm, the correlated features

that it returns may be used in data fusion algorithms. Such data fusion algorithms

are becoming a necessity with the increased ability to capture high-dimensional multi-

modal datasets, arising in fields such as computer vision [28, 29, 30, 31, 32, 33, 34, 35],

medical signal processing, [36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50],

economics [58], climatology [60, 61, 62], and classical signal processing like Wiener

filters [53], array processing [7], and cognitive radio [57].

At the heart of the CCA algorithm is a SVD of a matrix product involving the

individual covariance matrices of the datasets and the cross-covariance matrix be-

tween them. When these matrices are known a priori, the non-zero singular values

of this matrix represent correlated components between the datasets. These singular

values are bounded between zero and one; a larger singular value indicates a stronger

correlation. However, in all of the above applications, the true covariance matrices

are unknown and must be estimated from data. When using CCA with sample co-

variance estimates from fewer samples than the combined dimensions of the datasets,

the largest singular value of this matrix is deterministically one [6], falsely reporting

a perfect correlation between the datasets. In this low-sample, high-dimensionality

regime, CCA fails to reliably detect correlations between the datasets and because of

this, many have abandoned CCA as a correlation analysis tool.
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This chapter shows that detecting correlations in this low-sample high-dimensionality

regime is feasible. We first empirically showcase the performance loss of CCA in this

regime, provide a statistical significance test for CCA correlations, and derive a con-

sistency bound that elucidates when this test can reliably detect correlations. We then

present informative CCA (ICCA), which uses insights from random matrix theory to

first trim the number of components used in the singular value decomposition used in

CCA [8]. We provide a similar statistical test and consistency bound for ICCA and

showcase that it is able to reliably detect correlations in the sample deficient regime.

Importantly, we see that while the consistency boundary for CCA depends on the

correlation between the datasets, the ICCA consistency boundary is independent of

the underlying correlation.

This chapter assumes that each dataset is modeled with a low-rank signal-plus-

noise data model, which is ubiquitous in signal processing applications. Surprisingly,

the performance of CCA has not been extensively studied for this data model and

therefore we use this chapter to complete the discussion by examining the data model

in the presence of missing data. To showcase the improved performance of ICCA,

we create three real-world audio-video datasets. We note that depending on the

application, the linear, low-rank signal-plus-noise data model may be inappropriate.

In such a setting, kernel CCA (KCCA) [14, 111], uses the kernel trick to map the data

into a higher dimensional space. We leave the performance analysis of such kernel

methods for non-linear data models as important future work.

This chapter is organized as follows. We provide the linear low-rank signal-plus-

noise data model in Section 4.2. We then derive the solution of CCA in Section 4.3

and show how to estimate the number of correlated components from its solution. In

Section 4.4, we derive the empirical version of CCA using sample covariance matrices

and discuss the standard Wilk’s Lambda Test for correlation detection. This deriva-

tion gives rise to the ICCA algorithm. We then provide statistical tests to estimate

the number of correlated components between the datasets for both CCA and ICCA.

We provide previous known results for empirical CCA in Section 4.5 and then state

and prove new results for CCA and ICCA consistency in Section 4.6. In Section 4.7,

we extend the consistency analysis to the missing data setting and provide an analo-

gous consistency bound. Finally, we verify our theorems both on simulated data and

real-world datasets in Section 4.8.
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4.2 Data Model

Let xi ∈ Cp×1 and yi ∈ Cq×1 be modeled as

xi = Uxsx,i + zx,i

yi = Uysy,i + zy,i,
(4.1)

where UH
x Ux = Ikx , U

H
y Uy = Iky , zx,i

i.i.d.∼ CN (0, Ip) and zy,i
i.i.d.∼ CN (0, Iq). Further-

more, assume that

sx,i ∼ CN (0,Θx)

sy,i ∼ CN (0,Θy),

where Θx = diag

((
θ

(x)
1

)2

, . . . ,
(
θ

(x)
kx

)2
)

and Θy = diag

((
θ

(y)
1

)2

, . . . ,
(
θ

(y)
ky

)2
)

.

Assume that zx,i and zy,i are mutually independent and independent from both sx,i

and sy,i. Finally, assume that

E
[
sx,is

H
y,i

]
=: Kxy = Θ1/2

x PxyΘ
1/2
y

where the entries of Pxy are −1 ≤ ρkj ≤ 1 and represent the correlation between s
(k)
x,i

and s
(j)
y,i . For reasons to be made clear later, define

K̃xy = (Θx + Ikx)
−1/2Kxy

(
Θy + Iky

)−1/2

and define the singular values of K̃xy as κ1, . . . , κmin(kx,ky). Under this model, we

define the following covariance matrices

E
[
xix

H
i

]
= UxΘxU

H
x + Ip =: Rxx

E
[
yiy

H
i

]
= UyΘyU

H
y + Iq =: Ryy

E
[
xiy

H
i

]
= UxKxyU

H
y =: Rxy.

(4.2)

Assumption 4.2.1. Let Z
(n)
x = [zx,1, . . . , zx,n] be the p×n matrix formed by stacking n

observations of our noise. Let Z
(n)
x have singular values σ1

(
Z

(n)
x

)
≥ · · · ≥ σp

(
Z

(n)
x

)
.

Let µ
Z

(n)
x

be the empirical singular value distribution defined by the probability measure

µ
Z

(n)
x

=
1

p

p∑
i=1

δ
σi

(
Z

(i)
x

).

We assume that the probability measure µ
Z

(n)
x

converges almost surely weakly as p, n→
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∞ with p/n→ cx to a non-random compactly supported probability measure µZx that

is supported on [ax, bx]. We assume that σ1
a.s.−→ bx.

Similarly, we assume that the empirical singular value distribution for the noise

matrix of Y converges almost surely to the non-random compactly supported probabil-

ity measures µZy that is supported on [ay, by] and that σ1
a.s.−→ by.

4.3 Canonical Correlation Analysis

Canonical Correlation Analysis (CCA) is a dimensionality reduction algorithm

that finds linear transformations for xi and yi such that in the projected spaces, the

transformed variables are maximally correlated. Specifically, CCA solves the following

optimization problem

ρcca = argmax
wx,wy

wHx Rxywy√
wHx Rxxwx

√
wHy Ryywy

, (4.3)

where wx and wy are called canonical vectors and ρcca is called the canonical cor-

relation coefficient. Notice that we can scale wx and wy and still achieve the same

objective function. Therefore, we may constrain the canonical variates to have unit

norm, resulting in

argmax
wx,wy

wHx Rxywy

subject to wHx Rxxwx = 1

wHy Ryywy = 1.

(4.4)

Substituting the change of variables w̃x = R
1/2
xx wx and w̃y = R

1/2
yy wy in (4.4) results

in the following optimization problem

argmax
w̃x,w̃y

w̃Hx R
−1/2
xx RxyR

−1/2
yy w̃y

subject to w̃Hx w̃x = 1

w̃Hy w̃y = 1.

(4.5)

Examining the optimization problem in (4.5), we can immediately see that the solu-

tion to CCA may be solved via the SVD of the matrix

Ccca = R−1/2
xx RxyR

−1/2
yy . (4.6)
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Define Ccca = FKGT as the SVD of Ccca where F is an unitary p × p matrix with

columns f1, . . . , fp, G is a unitary q × q matrix with columns g1, . . . , gq, and K =

diag(k1, . . . , kmin(p,q)) is a p × q matrix whose diagonal elements are the singular

values of Ccca. Therefore, the solution to (4.5) is

w̃x = f1

w̃y = g1

ρcca = k1.

We can obtain higher order canonical correlations and vectors by taking sucessive

singular value and vector pairs. From this solution, it is clear that the number of non-

zero canonical correlation coefficients is exactly equal to the rank of Ccca. Noticing

that Rxx and Ryy are non-singular and recalling the definition of Rxy, we have that

# canonical correlation coefficients = rank(Ccca)

= rank(R−1/2
xx RxyR

−1/2
yy )

= rank(Rxy)

= rank(Kxy)

=: k.

Therefore, when we know all parameters, k is exactly the number of non-zero singular

values of Kxy. We note that k ≤ min(kx, ky).

4.4 Empirical CCA for Correlation Detection

In many applications, we do not know the covariance matrices Rxx, Ryy, and

Rxy a priori. In this section, we assume that all parameters in (4.1) are unknown.

Therefore, we cannot simply determine the number of canonical correlation coefficient

by examining the rank of Rxy. Instead, we are given multiple observations of each

dataset that we stack columnwise to form the data matrices

X = [x1, . . . , xn]

Y = [y1, . . . , yn],

where for i = 1, . . . , n, xi and yi are modeled in (4.1). It is important to note

that the number of observations of each dataset must be the same and that the

observations come in pairs. Defining Zx = [zx,1, . . . , zx,n], Zy = [zy,1, . . . , zy,n], Vx =
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[sx,1, . . . , sx,n]H , and Vy = [sy,1, . . . , sy,n], we may write our data matrices as the sum

of a low-rank signal matrix and noise matrix

X = UxV
H
x + Zx

Y = UyV
H
y + Zy.

(4.7)

Given these data matrices, we form estimates of our unknown covariance matrices via

R̂xx =
1

n
XXH

R̂yy =
1

n
Y Y H

R̂xy =
1

n
XY H .

Define the data SVDs
X = ÛxΣ̂xV̂

H
y

Y = ÛyΣ̂yV̂
H
y

and trimmed matrices
Ũx = Ûx (:, 1 : min(p, n))

Ṽx = V̂x (:, 1 : min(p, n))

Ũy = Ûy (:, 1 : min(q, n))

Ṽy = V̂y (:, 1 : min(q, n)) .

Given these definitions, substituting the sample covariance estimates into Ccca yields

the estimate (see [8])

Ĉcca = ŨxṼ
H
x ṼyŨ

H
y .

We denote the singular values of this matrix for j = 1, . . . ,min(p, q) ρ̂
(j)
cca, which are

the empirical CCA correlation coefficient estimates. Empirical CCA can return up to

min(p, q) canonical correlations, however, we know from the data model in (4.1) that

X and Y have kx and ky underlying signals, respectively. As kx and ky are unknown,

let k̂x and k̂y be estimates of the number of underlying signals in each dataset. It is

common to return only min(k̂x, k̂y) canonical correlations. Therefore, define the top

min(k̂x, k̂y) singular values of Ĉcca as

ρ̂(1)
cca, . . . , ρ̂

(min(k̂x,k̂y))
cca . (4.8)

For now, we assume that we are given k̂x and k̂y, but we will return to the problem

of estimating these parameters from data. To estimate the canonical vectors, we use
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the corresponding left and right singular vectors of Ĉcca, fi and gi to form

w(i)
x = R̂−1/2

xx fi

w(i)
y = R̂−1/2

yy fi.
(4.9)

4.4.1 Classical Wilks Lambda Correlation Test

To test the significance of the empirical CCA canonical correlation estimates,

classical methods [112] employ the Wilks likelihood ratio statistic,

k∏
i=1

(
1−

(
ρ̂(i)

cca

)2
)
.

However, the distribution of this statistic is very unwieldy. For large n it is common

to instead use the statistic [113]

Λ
(
ρ̂(1)

cca, . . . , ρ̂
(min(p,q))
cca

)
= −

(
n− p+ q + 3

2

)
log

(
k∏
i=1

(
1− ρ̂(i)2

cca

))

because this test statistic approximately follows a chi-square distribution

Λ
(
ρ̂(1)

cca, . . . , ρ̂
(min(p,q))
cca

)
∼ χ2

pq.

This statistic tests whether the first canonical correlation, ρ̂
(1)
cca, is significant (i.e.

whether the two datasets are uncorrelated). To determine significance, we compare

the statistic against a threshold to achieve a desired false alarm rate via

Λ
(
ρ̂(1)

cca, . . . , ρ̂
(min(p,q))
cca

) sig

≷
not sig

η, (4.10)

where η = Q−1
χ2
pq

(1− α), α is a desired probability of false alarm and Q is the inverse

cumulative distribution function of the chi squared distribution with p× q degrees of

freedom. To test the significance of successive empirical CCA correlation estimates,

we modify the statistic to

Λ
(
ρ̂(s+1)

cca , . . . , ρ̂(min(p,q))
cca

)
= −

(
n− p+ q + 3

2

)
log

(
k∏

i=s+1

(
1− ρ̂(i)2

cca

))
,
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which is approximately

Λ
(
ρ̂(s+1)

cca , . . . , ρ̂(min(p,q))
cca

)
∼ χ2

(p−s)(q−s).

Comparing this statistic to an appropriate threshold tests whether the first s + 1

canonical correlation are significant.

4.4.2 Informative CCA (ICCA)

When the number of samples is less than the combined dimension of the datasets

(n < p + q), the largest singular value of Ĉcca is deterministically one [6], regard-

less of whether an underlying correlation actually exists between the datasets. This

observation led Pezeshki and Scharf et al. to correctly conclude that in this regime

... the empirical canonical correlations are defective and may not be used

as estimates of canonical correlations between random variables.

This is a very unfortunate property of empirical CCA as many of the motivating ap-

plications operate in this low-sample, high-dimensionality regime. A key observation

by [8] shows that the singular values of Ĉcca are exactly the same as the singular

values of Ṽ H
x Ṽy. This is a min(p, n) × min(q, n) matrix that uses all right singular

vectors of each dataset corresponding to a non-zero singular value. However, under

the low-rank signal-plus-noise model, [8] shows that only a few of the right singular

vectors actually contain informative signal. Therefore, by trimming Ṽx and Ṽy to have

only k̂x and k̂y columns, we can avoid the performance loss of CCA in the sample

deficient regime. Define the trimmed data SVDs

◦
Ux = Ûx

(
:, 1 : k̂x

)
◦
Vx = V̂x

(
:, 1 : k̂x

)
◦
Uy = Ûy

(
:, 1 : k̂y

)
◦
Vy = V̂y

(
:, 1 : k̂y

)
.

(4.11)

Given these definitions, we define the informative CCA (ICCA) matrix

Ĉicca =
◦
Ux

◦
V H
x

◦
Vy

◦
UH
y .
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Similar to CCA, define the top min(k̂x, k̂y) singular values of Ĉicca as,

ρ̂
(1)
icca, . . . , ρ̂

(min(k̂x,k̂y))
icca . (4.12)

To estimate the canonical vectors, we use the corresponding left and right singular

vectors of Ĉicca, fi and gi to form

w(i)
x = R̂−1/2

xx fi

w(i)
y = R̂−1/2

yy fi.
(4.13)

4.4.3 New Statistical Tests for Correlation Detection

Given the canonical correlation estimates from CCA and ICCA, we can estimate

the number of canonical correlations using the test statistics

k̂cca =

min(p,q)∑
i=1

1{(
ρ̂

(i)
cca

)2
>ταcca

}

k̂icca =

min(k̂x,k̂y)∑
i=1

1{(
ρ̂

(i)
icca

)2
>ταicca

},
(4.14)

where 1{·} is the indicator function and

ταcca = F−1
cca(1− α)

ταicca = F−1
icca(1− α).

(4.15)

Here Fcca and Ficca are the distributions of the square of the largest singular value of

Ĉcca and Ĉicca for the null setting where Ṽx and Ṽy are the min(n, p) and min(n, q)

columns of two independent Haar (or isotropically random) distributed n×n matrices.

The exact distribution of the squared singular values of Ĉcca and Ĉicca in the null model

is given in [114]. The distributions of the square of the largest singular value of Ĉcca

and Ĉicca in the null model may be approximated to second-order by the Tracy-Widom

law [115] as

ταcca ≈ σn,p,qTW−1
C (1− α) + µn,p,q,

ταicca ≈ σn,k̂x,k̂yTW−1
C (1− α) + µn,k̂x,k̂y ,

where σn,p,q is a scaling parameter and µn,p,q is a centering parameter. See Appendix

D for values of these parameters as well as a derivation of the Tracy-Widom distribu-

tion for CCA and ICCA. The appendix also plots the accuracy of the Tracy-Widom
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approximation for CCA and ICCA for finite sized systems.

4.5 Empirical CCA Theory

In this section, we provide important, but previous results about empirical CCA.

The first proposition specifically quantifies the conditions on when the largest canon-

ical correlation reported by empirical CCA is deterministically one.

Proposition 4.5.1. Let n, p, q →∞ such that p/n→ cx and q/n→ cy. Let p+q ≤ n.

Then the largest singular value of Ĉcca generated from data modeled in (4.1) behaves

as

ρ̂(1)
cca = 1.

Proof. See [6].

This important result shows that the canonical correlation estimates of empirical

CCA in the sample deficient regime are unable to detect the presence of correlation

between datasets. The proof of this proposition motivates the ICCA algorithm.

The second proposition provides the limiting behavior of the empirical canonical

correlations. This very recent result makes contact with a natural phase transition,

below which the empirical canonical correlations behave as if the underlying datasets

were noise only. Below, we provide a proof to transform our data model in (4.1) to

the one used in the original theorem. Because this is such a new result, we provide

an similar proof in Appendix C using our own notation. A key insight to this result

is that the phase transition boundary is dependent on the underlying correlations

between the datasets, which is an another undesirable property of CCA.

Proposition 4.5.2. Let n, p, q →∞ such that p/n→ cx and q/n→ cy. Assume that

p+ q < n. For i = 1, . . . ,min(kx, ky) let ρ̂
(i)
cca be the largest singular singular values of

Ĉcca generated from data modeled in (4.1). Then these singular values behave as

ρ̂(i)
cca

a.s.−→


√
κ2
i

(
1− cx + cx

κ2
i

)(
1− cy + cy

κ2
i

)
κ2
i ≥ rc

√
dr κ2

i < rc

(4.16)

where κi are the singular values of K̃xy and

rc =
cxcy +

√
cycy(1− cx)(1− cy)

(1− cx)(1− cy) +
√
cxcy(1− cx)(1− cy)

dr = cx + cy − 2cxcy + 2
√
cxcy(1− cx)(1− cy).

(4.17)
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Proof. Bao et al. [2] proved this result for a slightly simplified model. Here we provide

the linear transformations to recover their model. We may write our data matrices

X and Y jointly via, [
X

Y

]
=

[
Rxx Rxy

RH
xy Ryy

]1/2 [
W1

W2

]

where W1 is a p×n matrix with independentN (0, 1) entries and W2 is an independent

q× n matrix with independent N (0, 1). As p+ q < n, Rxx and Ryy are non-singular.

Define[
X̃

Ỹ

]
=

[
R
−1/2
xx 0

0 R
−1/2
yy

]1/2 [
X

Y

]
=

[
Ip R

−1/2
xx RxyR

−1/2
yy .

R
−1/2
yy RH

xyR
−1/2
xx Iq

][
W1

W2

]
.

With the definitions of the covariance matrices in (4.2)

R−1/2
xx RxyR

−1/2
yy = Ux (Θx + Ikx)

−1/2 Θ1/2
x PxyΘ

1/2
y

(
Θy + Iky

)−1/2
UH
y

= UxK̃xyU
H
y .

From this expression, it is clear why we defined K̃xy as we originally did. Let

UK̃xyKVK̃xy be the SVD of K̃xy, where K is the kx × ky matrix with κj along the

diagonal. Define F =

[(
UxUK̃xy

) (
UxUK̃xy

)⊥]
and G =

[(
UyVK̃xy

) (
UyVK̃xy

)⊥]
.

Then  ˜̃
X˜̃
Y

 =

[
FH 0

0 GH

]1/2 [
X̃

Ỹ

]
=

[
FHR

−1/2
yy 0

0 GHR
−1/2
yy

]1/2 [
X

Y

]

=

[
Ip K

KH Iq

]1/2 [
W1

W2

]
.

Transforming X and Y to
˜̃
X and

˜̃
Y preserves the canonical correlation estimates

because our transformation matrix is non-singular. After this transformation, we

follow the proof from Bao et al. [2] with

√
ri = κi
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4.6 New Results for CCA and ICCA Consistency

The main result of this section is Theorem 4.6.2, which provides conditions on

when the statistical tests for CCA and ICCA canonical correlations in (4.14) provide

consistent estimates of the true underlying number of canonical correlations, k. In

order to prove this theorem, we rely on Corollary 4.6.1, which gives the almost sure

convergence of the entries of the ICCA matrix
◦
V H
x

◦
Vy. We being with a technical

lemma.

Lemma 4.6.1. Let U = [u1, . . . , uk] ∈ Cp×k and V = [v1, . . . , vk] ∈ Cn×k be inde-

pendent matrices with orthonormal columns. Let X ∈ Cp×n satisfy the hypotheses in

Assumption 4.2.1. Then as n, p→∞ with p/n→ c, for i 6= j

uHi
(
z2In −XXH

)−1
uj

a.s.−→ 0.

Similarly, for all i, j,

ui
(
z2In −XXH

)−1
Xvj

a.s.−→ 0.

Proof. The proof of Lemma 4.1 in [116] proves both of these statements.

This lemma is needed in the proof of the following theorem, which we will use to

prove Corollary 4.6.1. The result of this theorem may be of interest outside of this

thesis for analysis of similar low-rank signal-plus-noise matrix models.

Theorem 4.6.1. Let ũi and ṽi be the left and right singular vectors associated with

the i-th singular value, θ̃i, of the p× n matrix

X̃ =
k∑
i=1

θiuiv
T
i︸ ︷︷ ︸

P

+X.

Assume that X satisfies the hypotheses in Assumption 4.2.1 and suppose that θi > c1/4

for c = p/n. Let w be an arbitrary unit norm vector that is orthogonal to ui for some

i ∈ {1, . . . , k}. Then as n, p→∞ such that p/n→ c, we have that

〈w, ũi〉
a.s.−→ 0.

Proof. If w ∈ span(u1, . . . , uk), then Theorem 2.10 c) of [116] proves our result. If

w 6∈ span(u1, . . . , uk), then we may write

w = wu + w⊥u ,
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where wu ∈ span(u1, . . . , uk) and w⊥u is in the orthocomplement of span(u1, . . . , uk).

Therefore applying Theorem 2.10 c) of [116]

〈w, ũi〉 = 〈wu, ũi〉+
〈
w⊥u , ũi

〉 a.s.−→
〈
w⊥u , ũi

〉
,

so we only must focus on w⊥u .

Based on their definitions, X̃X̃H ũi = θ̃2
i ũi and X̃H ũi = θ̃iṽ. Using the fact that

X̃ = P +X, we have

(
PPH + PXH +XPH +XXH

)
ũi = θ̃2

i ũi (4.18)

and
(
XH + PH

)
ũi = θ̃iṽ. Multiplying both sides of this second expression by P , we

have

PXH ũi + PPH ũi = θ̃iP ṽi.

Substituting this expression in (4.18) gives

θ̃iP ṽi +XPH ũi +XXH ũi = θ̃2
i ũi.

Rearranging terms gives

ũi =
(
θ̃2
i Ip −XXH

)−1 (
θ̃iP ṽi +XPH ũi

)
.

Therefore

〈w⊥u , ũi〉 = w⊥Hu

(
θ̃2
i Ip −XXH

)−1 (
θ̃iP ṽi +XPH ũi

)
= θ̃iw

⊥H
u

(
θ̃2
i Ip −XXH

)−1
k∑
j=1

θj〈vj, ṽi〉uj

+θ̃iw
⊥H
u

(
θ̃2
i Ip −XXH

)−1

X
k∑
j=1

θj〈uj, ũi〉vj.

By Theorem 2.7 c) in [116], we have that for i 6= j, |〈uj, ũi〉|
a.s.−→ 0 and |〈vj, ṽi〉|

a.s.−→ 0.

Therefore

〈w⊥u , ũi〉 =
(
θ̃iθi〈vi, ṽi〉

)
w⊥Hu

(
θ̃2
i Ip −XXH

)−1

ui

+
(
θ̃iθi〈ui, ũi〉

)
w⊥Hu

(
θ̃2
i Ip −XXH

)−1

Xvi.
(4.19)
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By Lemma 4.6.1,

w⊥Hu

(
θ̃2
i Ip −XXH

)−1

ui
a.s.−→ 0

and

w⊥Hu

(
θ̃2
i Ip −XXH

)−1

Xvi
a.s.−→ 0.

Therefore,

〈w⊥u , ũi〉
a.s.−→ 0.

An important corollary to the above theorem allows us to characterize the asymp-

totic behavior of the entries of the matrix
◦
V H
x

◦
Vy, which is used in ICCA. We need to

characterize these entries in order to prove our consistency result in Theorem 4.6.2.

Corollary 4.6.1. Let
◦
Vx and

◦
Vy be the trimmed right singular vectors defined in

(4.11) of the data matrices generated from the data model in (4.1). In the asymptotic

setting of Theorem 4.6.1 with p/n→ cx and q/n→ cy∣∣∣∣[ ◦V H
x

◦
Vy

]
ij

∣∣∣∣ a.s.−→
∣∣kxyij ∣∣αx,iαy,j,

where

αx,i =


√

1− cx+θ
(x)
i

θ
(x)
i (θ

(x)
i +cx)

θ
(x)
i > c

1/4
x

0 otherwise

αy,j =


√

1− cy+θ
(y)
j

θ
(y)
j (θ

(y)
j +cx)

θ
(y)
j > c

1/4
y

0 otherwise

(4.20)

and kxyij are the entries of Kxy.

Proof. The entries of the matrix are the inner products between the columns of
◦
Vx

and
◦
Vy ∣∣∣( ◦V H

x

◦
Vy

)∣∣∣
ij

=
∣∣∣ ◦V H
x (:, i)

◦
Vy(:, j)

∣∣∣ .
Notice that we may write

◦
Vx(:, i) = aVy(:, j) + bwy

Vy(:, j) = kxyij Vx(:, i) + cwx
(4.21)

for some arbitrary unit-norm vector wx that is orthogonal to Vx(:, i), some arbitrary

unit-norm vector wy that is orthogonal to Vy(:, j), and constants a, b, and c. With
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these observations, we have

◦
V H
x (:, i)

◦
Vy(:, j) = (aVy(:, j) + bwy)

H ◦
Vy(:, j)

= aV H
y (:, j)

◦
Vy(:, j) + bwHy

◦
Vy(:, j).

By Theorem 4.6.1, wHy
◦
Vy(:, j)

a.s.−→ 0. As derived in [8],

∣∣∣V H
y (:, j)

◦
Vy(:, j)

∣∣∣ a.s.−→ αy,j =:


√

1− cy+θ
(y)
j

θ
(y)
j (θ

(y)
j +cx)

θ
(y)
j > c1/4

0 otherwise

.

Therefore,
∣∣∣ ◦V H
x (:, i)

◦
Vy(:, j)

∣∣∣ a.s.−→ aαy,j. Using the expression for
◦
Vx(:, i) in (4.21), we

observe that

Vy(:, j)
H
◦
Vx(:, i) = a.

Using the expression for Vy(:, j) in (4.21), we have

a = Vy(:, j)
H
◦
Vx(:, i)

=
(
kxyij Vx(:, i) + cwx

)H ◦
Vx(:, i)

= kxyij V
H
x (:, i)

◦
Vx(:, i) + cwHx

◦
Vx(:, i).

By Theorem 4.6.1, wHx
◦
Vx(:, i)

a.s.−→ 0. As derived in [8],

∣∣∣Vy(:, j) ◦Vy(:, j)∣∣∣ a.s.−→=: αx,i


√

1− cx+θ
(x)
i

θ
(x)
i (θ

(x)
i +cx)

θ
(x)
i > c1/4

0 otherwise

.

Therefore, |a| a.s.−→
∣∣kxyij ∣∣αx,i. Therefore,∣∣∣ ◦V H

x (:, i)
◦
Vy(:, j)

∣∣∣ a.s.−→
∣∣kxyij ∣∣αx,iαy,i.

Armed with this corollary, we are now in position to prove the consistency of the

CCA and ICCA estimates of the number of correlated signals in (4.14). This result

directly allows us to compare the performance of CCA and ICCA across various

regimes and showcases the superiority of ICCA.

Theorem 4.6.2. Let p, q, n→∞ with p/n→ cx and q/n→ cy. Given data modeled
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in (4.1), the estimates of the number of correlated components given in (4.14) are

consistent under the following conditions

k̂cca
a.s.−→ k if κ2

k > rc and n > p+ q

k̂icca
a.s.−→ k if min

i=1,...,kx
θ

(x)
i > c1/4

x and min
i=1,...,ky

θ
(y)
i > c1/4

y

where κi are the singular value of K̃xy and rc is given in (4.17).

Proof. The conditions for the consistency of the CCA estimate follows from (4.16).

From this equation, we observe that the square of the smallest non-zero singular value

of K̃xy, κk, must be larger than the constant rc for the canonical correlation estimate

to be different statistically from noise.

For ICCA, recall that

k̂icca =

min(k̂x,k̂y)∑
i=1

1{(
ρ̂

(i)
icca

)2
>ταicca

}.

First we show that k̂x → kx and k̂y → ky under the conditions stated in the theorem.

Estimating the number of signals present in such signal-plus-noise models has been

extensively studied in [116, 85, 84]. These works show that when the signal-to-noise

ratio is larger than a threshold, we can reliably detect the presence of signals in noisy

measurements. Specifically, we refer the reader to Algorithm 2 of [89] for a practical

implementation using the Tracy Widom approximation of the largest eigenvalues of

the sample correlation matrix to detect the number of signals. These results show that

the individual estimates of the number of signals are consistent under the following

conditions
k̂x

a.s.−→ kx if min
i=1,...,kx

θ
(x)
i > c1/4

x

k̂y
a.s.−→ ky if min

i=1,...,ky
θ

(y)
i > c1/4

y .

In Appendix D we verify the Tracy-Widom approximation for the detection of signals

in individual datasets. When these conditions on Θx and Θy are met, the estimate of

the number of correlated signals becomes

k̂icca
a.s.−→

min(kx,ky)∑
i=1

1{(
ρ̂

(i)
icca

)2
>ταicca

}.
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To prove the theorem, we want to show that

P
(
k̂icca = k

)
a.s.−→ 1

under the above conditions on Θx and Θy. Momentarily, we assume that k =

min(kx, ky). The singular values of
◦
V H
x

◦
Vy are ordered and so this probability sim-

ply becomes

P
(
k̂icca = k

)
= P

((
ρ̂

(min(kx,ky))
icca

)2

> ταicca

)
.

From Corollary 4.6.1, we also know that∣∣∣∣[ ◦V H
x

◦
Vy

]
ij

∣∣∣∣ a.s.−→
∣∣kxyij ∣∣αx,iαy,i.

Using this fact we define

Ax = diag(αx,1, . . . , αx,kx)

Ay = diag(αy,1, . . . , αy,ky)

so that we may write
◦
V H
x

◦
Vy = AxKxyAy + ∆,

where ∆ = [δij] such that δij
a.s.−→ 0. Examining (4.20), we see that under the above

conditions on Θx and Θy, Ax and Ay are both full rank. Define

αx,min = min
i=1...,kx

αx,i

αy,min = min
i=j...,ky

αy,j.

By properties of singular values

σmin(AxKxyAy)− σmax(∆) ≤ σmin(AxKxyAy + ∆) ≤ σmin(AxKxyAy) + σmax(∆).

Examining σmax(∆), we observe that

σmax(∆) ≤ ‖∆‖F =

√√√√ kx∑
i=1

ky∑
j=1

|δij|2.
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Using the fact that δij
a.s.−→ 0, we have that σmax(∆)

a.s.−→ 0. Therefore, almost surely

σmin(AxKxyAy) ≤ σmin(AxKxyAy + ∆) ≤ σmin(AxKxyAy),

which implies that

ρ̂
(min(kx,ky))
icca

a.s.−→ σmin(AxKxyAy)

By properties of singular values

ρ̂
(min(kx,ky))
icca = σmin(kx,ky)

( ◦
V H
x

◦
Vy

)
a.s.−→ σmin(kx,ky) (AxKxyAy)

≥ σkx (Ax)σmin(kx,ky) (Kxy)σky (Ay)

= αx,minκmin(kx,ky)αy,min.

Next we turn to our statistical test in the asymptotic setting. Unlike Ĉcca, whose

dimension scales with n, the dimension of Ĉicca remains kx × ky even as n increases.

Therefore, in the null setting as n→∞ the entries Ĉicca converge almost surely to 0.

Therefore, in the asymptotic setting our test becomes

k̂icca =

min(kx,ky)∑
i=1

1{(
ρ̂

(i)
icca

)2
>0

}.

Therefore,

P
((
k̂icca = k

))
= P

((
ρ̂

(min(kx,ky))
icca

)2

> 0

)
≥ P

((
αx,minκmin(kx,ky)αy,min

)2
> 0
)

= 1.

The last equality comes from the fact that under our conditions on Θx and Θy, the α

terms are non-zero and from the fact that we momentarily assumed k = min(kx, ky)

so that κmin(kx,ky) is non-zero. We note that this holds for all significance levels.

Lastly, we argue that the above analysis holds when k < min(kx, ky). In this

setting, the last min(kx, ky) − k singular values of AyKxyAy are zero. The above

analysis holds for the largest k canonical correlations, showing that they are non-zero

in the asymptotic limit. Therefore, the asymptotic statistic will correctly mark these

top k singular values as an indicator of the k correlations and correctly identify the

smallest min(kx, ky)− k singular values as not containing correlation as they are zero

in the asymptotic limit.
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Finally, we provide a general version of the consistency theorem above for a noise

that is not assumed Gaussian as in (4.1).

Corollary 4.6.2. As in Assumption 4.2.1, let µZx and µZy be the non-random com-

pactly supported probability measures modeling the singular values of the noise ma-

trices X and Y . Let bx and by be the supremums of the supports, respectively. Let

p, q, n→∞ with p/n→ cx and q/n→ cy. Relax the constraint in (4.1) that the noise

is Gaussian but instead drawn from the probability measures above. ICCA returns a

consistent estimate of the number of correlated components under the following con-

ditions

k̂icca
a.s.−→ k if min

i=1,...,kx
θ

(x)
i >

1

DµX (b+
x )

and min
i=1,...,ky

θ
(y)
i >

1

DµY (b+
y )

where DµX and DµY , the D-transforms of µX and µY , are the functions, depending

on cx and cy, defined by

DµX (z) =:

[∫
z

z2 − t2
dµX(t)

]
×
[
cx

∫
z

z2 − t2
dµX(t) +

1− cx
z

]
for z > bx

DµY (z) =:

[∫
z

z2 − t2
dµY (t)

]
×
[
cy

∫
z

z2 − t2
dµY (t) +

1− cy
z

]
for z > by.

Define the notation

Dµ(b+) =: lim
z↓b

Dµ(z).

Proof. This result follows from the proof of Theorem 4.6.2 using the analysis in [116]

for the D-transform.

This is the more general result to Theorem 4.6.2 as it is applicable to non-Gaussian

noise. See Chapter 5 or [117] for a discussion on computing D-transforms in practice.

4.7 Extension to Missing Data

We now consider the setting where our data matrices X and Y have missing en-

tries. In such as setting, our matrices are modeled similar to (4.7) but with additional

masking matrices

X =
(
UxV

H
x + Zx

)
�Mx

Y =
(
UyV

H
y + Zy

)
�My

(4.22)
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where

Mx
ij =

1 with probability γx

0 with probability 1− γx
My

ij =

1 with probability γy

0 with probability 1− γy

and � denotes the Hadamard or element-wise product. Throughout this section

we make the following assumption on the entries of Ux, Uy, Vx, Vy. This assumption

ensures that the columns of these matrices are not “spiked”. For our simulations, we

sample columns from the unit hypersphere so that these conditions are met.

Assumption 4.7.1. In the missing data setting, assume that the columns of Ux,

Uy, Vx, and Vy satisfy a ‘low-coherence’ condition in the following sense: we sup-

pose that there exist non-negative constants ηu,x, Cu,x, ηu,y, Cu,y, ηv,x, Cv,x,ηv,y, Cv,y

independent of n, such that for i = 1, . . . , kx and  = 1, . . . , ky,

max
i
‖u(x)

i ‖∞ ≤ ηu,x
logCu,x p
√
p

, max
i
‖u(y)

j ‖∞ ≤ ηu,y
logCu,y q
√
q

max
i
‖v(x)

i ‖∞ ≤ ηv,x
logCv,x n√

n
, max

i
‖v(y)

j ‖∞ ≤ ηv,y
logCv,y n√

n
.

In the same manner of Section 4.6, we wish to know when the estimates in (4.14)

are consistent in the presence of missing data. The theorem below characterizes this

behavior. We proceed similarly to the proof of [117] and then invoke the proof of

Theorem 4.6.2. The two theorems are very similar except that in the case of missing

data, we simply replace Θx with γxΘx and Θy with γyΘy. Therefore, missing data

has the effect of decreasing the SNR of our problem.

Theorem 4.7.1. Let p, q, n→∞ with p/n→ cx > 0 and q/n→ cy > 0 and assume

the coherence conditions given in Assumption 4.7.1. Given data modeled in (4.22),

the estimates of the number of correlated components given in (4.14) are consistent

under the following conditions

k̂cca
a.s.−→ k if min

i=1,...,k

◦
κ2
i > rc and n > p+ q

k̂icca
a.s.−→ k if min

i=1,...,k̂x

θ
(x)
i >

c
1/4
x√
γx

and min
i=1,...,k̂y

θ
(y)
i >

c
1/4
y√
γy

where
◦
κi are the singular values of

(γxΘx + Ikx)
−1/2 (γxΘx)

1/2 Pxy (γyΘy)
1/2 (γyΘy + Iky

)−1/2
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and rc is given in (4.17).

Proof. Defining Px = UxV
H
x We may write (4.22) as

X = Px �Mx︸ ︷︷ ︸
P̂x

+Zx �Mx︸ ︷︷ ︸
Ẑx

= E
[
P̂x

]
+ Ẑx + ∆P̂x

= γxPx + Ẑx︸ ︷︷ ︸
X̃

+∆P̂x
.

Similarly, we may write Y = Ỹ + ∆P̂y
where Ỹ = γyPy + Ẑy.

First we show that the maximum singular value of ∆P̂x
and ∆P̂y

converge almost

surely to 0. Under the low-coherence assumption, we have that

max
ij
|Px|ij ≤ max

i
θ

(x)
i max

k
‖u(x)

k ‖∞max
`
‖v(x)

` ‖∞ = max
i
θ

(x)
i O

(
log n, p factors

√
np

)
.

(4.23)

By assumption that cx > 0, we have that n = O(p). This fact, coupled with the fact

that θ
(x)
i is not dependent on n gives

max
ij
|Px|ij ≤ O

(
log n factors

n

)
. (4.24)

To characterize the largest singular value of ∆P̂x
, we want to use Latala’s theorem

[118], which states that for a matrix A with independent mean zero random entries

with bounded fourth moment

E [σ1 (A)] ≤ C

max
i

(∑
j

E
[
A2
ij

])1/2

+ max
j

(∑
i

E
[
A2
ij

])1/2

+

(∑
i,j

E
[
A4
ij

])1/4


for some universal constant C that does not depend on n or p. Through basic calcu-

lation, one can show that

E
[(

∆P̂x

)2

ij

]
= γx (1− γx) (Px)

2
ij

E
[(

∆P̂x

)4

ij

]
=
(
−3γ4

x + 6γ3
x − 4γ2

x + γ
)

(Px)
4
ij .

These expressions satisfy the conditions on Latala’s theorem. Therefore, by substi-
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tuting these expressions into Latala’s theorem with the bound in (4.24), we have

E
[
σ1

(
∆P̂x

)]
≤ O

(
log n factors√

n

)
.

By concentration and convexity of the largest singular value (see [117]), we have that

in our asymptotic regime

σ1(∆P̂x
)

a.s.−→ 0.

Using a similar argument

σ1(∆P̂y
)

a.s.−→ 0.

Therefore we have that
X → γxPx + Ẑx

Y → γyPy + Ẑy.

Examining Ẑx, we have

E
[
Ẑ

(x)
ij

]
= E

[
Ẑ

(x)
ij |M

(x)
ij = 0

]
P
(
M

(x)
ij = 0

)
+ E

[
Ẑ

(x)
ij |M

(x)
ij = 1

]
P
(
M

(x)
ij = 1

)
= 0

and

E
[(
Ẑ

(x)
ij

)2
]

= E
[(
Ẑ

(x)
ij

)2

|M (x)
ij = 0

]
P
(
M

(x)
ij = 0

)
+

E
[(
Ẑ

(x)
ij

)2

|M (x)
ij = 1

]
P
(
M

(x)
ij = 1

)
= 0 + γx.

Therefore, Ẑ
(x)
ij are i.i.d. zero mean with variance γx and Ẑx →

√
γxZx. Using this

observation,

X
a.s.−→ γxPx + Ẑx

→ γxPx +
√
γxZx

=
√
γx (
√
γxPx + Zx) .

Similarly, Y → √γy
(√

γyPy + Zy
)
.

From this we can conclude that eigenvector expressions of the form 〈u, û〉 behave

as if we replace Θx with γxΘx and Θy with γyΘy. Consider∣∣∣uHi (zI − (Zx + ∆P̂x
)(Zx + ∆P̂x

)H
)−1

uj − uHi
(
zI − ZxZH

x

)−1
uj

∣∣∣ , (4.25)

which as a a consequence of the variational characterization of the largest singular
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value is upper bounded by

σ1

((
zI − (Zx + ∆P̂x

)(Zx + ∆P̂x
)H
)−1 −

(
zI − ZxZH

x

)−1
)
.

Following a similar argument in [117], we have that (4.7) is upper bounded by

3σz(Zx)

=w
σ1(∆P̂x

),

where =w > 0. Using the facts that σ1(Zx)
a.s.−→ √γxbx by the above relationship and

σ1(∆P̂x
)

a.s.−→ 0 combined with Assumption 4.2.1, we have that (4.25) converges to 0.

Using a similar argument, one can prove the same result for quadratic forms with Zy

and ∆P̂y
.

Therefore, an analogous version of Theorem 4.6.1 holds for the missing data sec-

tion, as the quadratic forms used by Lemma 4.6.1 still hold. Therefore, we prove the

theorem following the same rank argument as Theorem 4.6.2, except that we replace

Θx with γxΘx and replace Θy with γyΘy.

4.8 Empirical Results

4.8.1 Simulated Data

We first showcase the accuracy of the consistency boundary for both CCA and

ICCA described in Theorem 4.6.2. We consider a rank-1 setting (kx = ky = 1) and

generate data from (4.1) for fixed p = q = 150 over various number of samples n,

signal-to-noise ratio (SNR) θ = θ
(x)
1 = θ

(y)
1 , and various ρ = Pxy. In this setting, there

is only one correlated signal so k = 1 and the consistency boundary becomes a phase

transition. We then the data into data matrices X and Y , and compute ρ̂
(1)
cca and ρ̂

(1)
icca

from the SVD of of Ĉcca and Ĉicca, respectively. Using these correlation estimates, we

compute the estimated number of correlated components via (4.14) for a significance

level of α = 0.01. For a fixed set of parameters (n, θ, ρ) we repeat the above process

for 10000 trials and determine the percentage of trials where we detect k̂cca = 1 and

k̂icca = 1. In all simulations, we use Algorithm 2 of [89] to estimate k̂x and k̂y using

a significance level of α = 0.01 (See Appendix D for discussion). Figure 4.1 plots the

log10 of this percentage for empirical CCA and ICCA for two values of ρ. On each

plot, we overlay the consistency boundary given by Theorem 4.6.2 using a solid white

line for empirical CCA and a dashed white line for ICCA..

From these figures, we see that for smaller ρ, it is more difficult for empirical CCA
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to detect the presence of the correlated signal. However, ICCA is very robust to the

underlying correlation; the ICCA consistency boundary in (4.6.2) does not depend

on the value of ρ. We also verify Proposition 4.5.1 showing that when n < 300, it is

impossible to detect the presence of correlated signals using empirical CCA because

ρ̂cca = 1 deterministically. With ICCA, we avoid this undesirable property and can

still detect the presence of a correlated signal for very small n and θ.

Next, we explore the minimum 1/c for c = cx = cy needed to reliably detect k = 1

correlated signal in the experiment setting described for Figure 4.1. As c = p/n = q/n,

the minimum 1/c is equivalent to the minimum number of samples needed for fixed

dimensions. Using the theoretical phase transitions in Theorem 4.6.2, we have that

this critical value of c is ccrit = θ4 for ICCA and ccrit = min
(

rcrit
c

1+rcrit
c
, 0.5

)
for empirical

CCA, where

rcrit
c =

(
−ρ+

√
ρ2 + 4θ2ρ2(1 + θ2ρ2)

2(1 + θ2ρ2)

)2

.

Figure 4.2 plots level sets of ccrit for empirical CCA and ICCA for various values of

θ = θ
(x)
1 = θ

(y)
1 and ρ = Pxy. Recall that if c > 0.5, empirical CCA fails entirely, so

for comparison we only show contour lines for 1/c = 10 and 1/c = 3.

From this figure, we once again observe that the performance of ICCA is inde-

pendent of the value of ρ = Pxy, while the performance of empirical CCA is highly

dependent on the correlation. This figure allows us to showcase that ICCA is the-

oretically better than empirical CCA in all parameter regimes as ICCA can achieve

the same performance of empirical CCA given fewer samples at a lower SNR.

Finally, we show the detection ability of ICCA as a function of θx and θy for a rank-

1 setting with cx = cy = 1 in Figure 4.3. This figure succinctly summarizes Theorem

4.6.2. When either θx or θy is less than the critical value of 1, we cannot reliably

detect the presence of correlation between the two datasets. This corresponds to

the blue and green regions in the figure. The blue region corresponds to when both

SNRs are below the phase transition and neither signal is detectable. The green

region corresponds to when only one SNR is above the phase transition; however, as

the other SNR is below the phase transition, we still cannot detect the presence of

correlation. Only when both SNRs are above the phase transition (yellow region) can

we reliably detect the presence of correlation. Most importantly, the regions in this

figure are independent of the correlation between the two datasets.
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(a) Empirical CCA ρ = 0.7
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(b) Empirical CCA ρ = 0.9
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(c) ICCA ρ = 0.7
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(d) ICCA ρ = 0.9

Figure 4.1: We generate data from (4.1) for p = q = 150, kx = ky = 1, k = 1, and various

ρ = Pxy and sweep over θ = θ
(x)
1 = θ

(y)
1 and n. We compute k̂x and k̂y as outlined in

Appendix D for a significance value of α = 0.01. Using these estimates, we compute ρ̂
(1)
cca as

the largest singular value of Ĉcca as in (4.8) and ρ̂
(1)
icca as the largest singular value of Ĉicca as

in (4.12). We then estimate the number of correlated signals k̂cca and k̂icca via (4.14) for a
significance level of α = 0.01. We repeat this for 10000 trials and compute the percentage of
trials where k̂cca = 1 and k̂icca = 1. We plot log10 of these percentages for multiples values
of θ and n. We plot the theoretical consistency boundary of CCA (given in Theorem 4.6.2
that relies on [2]) in a solid white line and the theoretical consistency boundary of ICCA
(given in Theorem 4.6.2) in a dashed white line.
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Figure 4.2: Contour lines for minimum 1/c necessary for reliable detection of k = 1
correlated component. The quantity 1/c = n/p is equivalent to the number of samples per
dimension of data. Figure 4.2(a) plots the contours for empirical CCA and Figure 4.2(b)
plots the ICCA contours using the limits give in Theorem 4.6.2 for c = cx = cy. We plot
the contours for 1/c = 10 to 1/c = 3. These plots clearly demonstrate the ICCA limits are
independent of ρ = Pxy while CCA is highly dependent on ρ = Pxy. For a fixed number of
samples (fixed c), ICCA is reliably detect the presence of a correlated signal at lower SNR
values than empirical CCA.
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Figure 4.3: Theoretical detection regions for ICCA for a rank-1 setting where cx = cy = 1.
In this setting, θ > 1 implies that the corresponding subspace is informative. Therefore,
in light of Theorem 4.6.2, we see that when both θx < 1 and θy < 1, neither subspace
component is informative and we cannot detect the presence of a correlated signal. This
corresponds to the blue region. When only one of θx or θy is above the phase transition
(green region), we still cannot detect the presence of a correlated signal even though we
have one informative signal. However, when both θx and θy are above the phase transition
(yellow region), we can detect the presence of a correlated signal between the datasets. This
detection ability is independent of the value of correlation between the datasets.
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Figure 4.4: We generate data from (4.1) for p = q = 150, kx = ky = 1, k = 1, θ
(x)
1 =

θ
(y)
1 = 2, Pxy = 1, and k̂x = k̂y = 1. We compute ρ̂

(1)
cca as the largest singular value of Ĉcca

as in (4.8) and ρ̂
(1)
icca as the largest singular value of Ĉicca as in (4.12). We then estimate the

number of correlated signals k̂cca and k̂icca using the Wilks test in (4.10) and our new test
in (4.14) for a significance level of α = 0.01. We repeat this for 250 trials and compute the
percentage of trials where k̂cca = 1 and k̂icca = 1 for each significance test. We repeat this
for multiple values of n and plot the results. We observe that the classical Wilk’s Lambda
test is suboptimal and results in a large number of false alarms.

4.8.2 Comparison to Wilks Lambda Test

Next we compare the classical Wilk’s Lambda Test presented in Section 4.4.1 to

the statistical tests developed in this section in (4.14). We create two synthetic rank-1

signal-plus-noise data matrices of dimension p = 150 and q = 200. We set the SNR

of the signal in each dataset to θ
(x)
1 = θ

(y)
1 = 2 and the correlation between the signals

to ρ = Pxy = 0.9. For multiple value of n, we compute the correlations returned by

both ICCA and CCA. Using these correlations, we use our statistical tests in (4.14)

to determine whether the largest correlations, ρ̂
(1)
cca and ρ̂

(1)
icca, are significant. Similarly

we use the Wilk’s test in (4.10) to determine for both CCA and ICCA whether the

largest correlation is significant. We note that for the Wilk’s test, we need all min(p, q)

correlations returned by CCA and all min(kx, ky) correlations returned by ICCA. We

repeat this process for 250 trials for each values of n. Figure 4.4 plots the average

percentage of trials where the correlation was significant for each statistical test for

each algorithm.

From this figure, we observe that the classical Wilk’s Lambda test is suboptimal
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for testing the presence of a correlation in the low-rank signal-plus-noise model for

both empirical CCA and ICCA. We know from our analysis in Theorem 4.6.2 and

the empirical exploration on synthetic datasets from the previous section that the

empirical CCA and ICCA test statistics that we developed consistently estimate the

presence of correlated signals in low-rank signal-plus-noise datasets. Examining the

performance of the Wilk’s test for determining the significance of the top ICCA cor-

relation, we observe that it predicts the presence of correlation before our consistent

test statistic. Therefore, using the Wilk’s test statistic for ICCA will result in a high

false alarm rate. Similarly for empirical CCA, we see that the Wilk’s test is very

bad in the sample-starved regime. Here our test statistic correctly predicts that the

top empirical CCA correlation is not significant because it is deterministically one.

However, the Wilk’s test returns that the correlation is significant. Even worse, once

we have enough samples so that the top empirical CCA correlation is indeed signif-

icant, the Wilk’s test does not always predict a that the correlation is significant.

Therefore, for empirical CCA, the Wilk’s test will have a large false-alarm rate in the

low-sample regime and a lower detection rate in the moderate-sample regime. The

classical Wilk’s test is suboptimal for determining the significance of correlations of

both empirical CCA and ICCA and we encourage practitioners to instead use our

consistent test statistics.

4.8.3 Simulated Missing Data

Next, we demonstrate the accuracy of the consistency bound for both empirical

CCA and ICCA in the setting of missing data described in Theorem 4.7.1. Again,

we consider a rank-1 setting (kx = ky = 1) but generate data from (4.22) for fixed

p = q = 150 over various number of samples n, signal-to-noise ratio (SNR) θ = θ
(x)
1 =

θ
(y)
1 , various ρ = Pxy (so that k = 1), and also various percentages of missing data

γ = γx = γy. In all simulations, we use Algorithm 2 of [89] to estimate k̂x and k̂y

using a significance level of α = 0.01. We stack the data into matrices X and Y , and

compute ρ̂
(1)
cca and ρ̂

(1)
icca from the SVD of of Ĉcca and Ĉicca, respectively. Using these

correlation estimates, we compute the estimated number of correlated components

via (4.14) for a significance level of α = 0.01. For a fixed set of parameters (n, θ, ρ,

γ) we repeat the above process for 10000 trials and determine the percentage of trials

where we detect k̂cca = 1 and k̂icca = 1. Figure 4.5 plots the log10 of this percentage

for empirical CCA and ICCA, respectively. On each plot, we overlay the consistency

boundary given by Theorem 4.7.1.

From these figures, we observe that Theorem 4.7.1 accurately predicts the phase
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transition for both empirical CCA and ICCA in the presence of missing data for a

wide array of parameters. When n < p + q empirical CCA is unable to detect the

correlated signal while ICCA can reliably detect the correlated signal, even in the

presence of missing data. In this missing data setting, we once again observe that

the value of ρ affects the phase transition for empirical CCA but not for ICCA; it is

harder for empirical CCA to detect signals with small correlations.

4.8.4 Controlled Flashing Lights Experiment

To verify the effectiveness of ICCA for real world applications, we conducted a

controlled experiment consisting of 5 stationary flashing lights and two stationary

iPhone cameras. Figure 4.6 shows the left and right camera views at one time point

of our experiment and manually identifies each source. The 5 sources are a blue

flashing police light (BPL) outlined in the green rectangle, one phone with a flashing

strobe light (PH1) outlined in the dark blue rectangle, another phone with a flashing

strobe light (PH2) outlined in a red rectangle, a tablet with a flashing screen (T1)

outlined in the magenta rectangle, and a red flashing police light (RPL) outlined in

the cyan rectangle. From left to right, the left camera can see BPL, PH1, and PH2.

From left to right, the right camera can see PH2, T1, and RPL. Therefore, both

cameras share the common signal of PH2.

To synchronize the cameras we used the RecoLive MultiCam iPhone app 1. After

turning on all light sources, we recorded 30 seconds of video at 30 frames per second.

The resolutions of the iPhone’s cameras were both 1920× 1080 pixels.

To post-process the video data, we first converted the video streams to grayscale

and then downsampled each spatial dimension by a factor of 8, resulting in a reso-

lution of 240× 135. We then vectorized each image and stacked the 900 frames into

data matrices, both of dimension 32400 × 900. Finally, we subtract the mean from

each dataset so that we may run PCA, empirical CCA, and ICCA on the zero-mean

datasets, Xleft and Yright.

First, we run PCA on Xleft and Yright to identify the number of signals in each

dataset. We know from our setup that each camera has 3 independent sources.

Figure 4.7 plots the singular values of Xleft and Yright. Figures 4.8 and 4.9 plot the

singular vector heatmaps corresponding to the top 3 singular values of Xleft and Yright,

respectively. Each figure also overlays a thresholded version of the singular vectors

onto the raw video. The threshold that we use is
√

log(n)/n. From these figures,

PCA does a good job at identifying the pixels containing a signal (flashing light).

1http://recolive.com/en/
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(d) ICCA ρ = 0.9

Figure 4.5: We generate data from (4.22) for p = q = 150, kx = ky = 1, k = 1, n = 1200,

and various ρ = Pxy and sweep over θ = θ
(x)
1 = θ

(y)
1 and γ = γx = γy. We compute k̂x and

k̂y as outline in Appendix D for a significance value of α = 0.01. Using these estimates, we

compute ρ̂
(1)
cca as the largest singular value of Ĉcca as in (4.8) and ρ̂

(1)
icca as the largest singular

value of Ĉicca as in (4.12). We then estimate the number of correlated signals k̂cca and k̂icca

via (4.14) for a significance level of α = 0.01. We repeat this for 10000 trials and compute
the percentage of trials where k̂cca = 1 and k̂icca = 1. We plot log10 of these percentages for
multiples values of θ and n. We plot the theoretical consistency boundary of empirical CCA
(given in Theorem 4.7.1) in a solid white line and the theoretical consistency boundary of
ICCA (given in Theorem 4.7.1) in a dashed white line.
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(a) Left Camera (b) Right Camera

Figure 4.6: Left and right camera views of our experiment with boxes manually identifying
each source. Both cameras share a common flashing phone, outlined in a red rectangle. Each
camera has two independent sources besides the shared flashing phone.
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Figure 4.7: Singular value spectra of Xleft and Yright for the flashing light experiment.
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Figure 4.8: (a)-(c) Left singular vectors of Xleft corresponding to the top 3 singular values
in Figure 4.7(a). (d) Thresholded singular vectors from (a)-(c) overlayed onto original scene.
We use a threshold of log(p)/

√
p where p = 32400 pixels. These correspond to the 3 light

sources visible in the left camera.The green pixels identify BPL; the magenta pixels identify
PH1; the red pixels identify PH2.
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Figure 4.9: (a)-(c) Left singular vectors of Yright corresponding to the top 3 singular values
in Figure 4.7(b). (d) Thresholded singular vectors from (a)-(c) overlayed onto original scene.
We use a threshold of log(p)/

√
p where p = 32400 pixels. These correspond to the 3 light

sources visible in the right camera. The dark blue pixels identify PH2; the cyan pixels
identify T1; the white pixels identify RPL.
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Figure 4.10: (a) Top three singular values returned by empirical CCA as defined in (4.8).
As we are in the sample deficient regime, these singular values are deterministically 1. (b)
Top three singular values returned by ICCA as defined in (4.12). ICCA correctly identifies
two sources of correlation.

However, PCA does not provided any information about whether the identified

signals are correlated across cameras. To identify correlated pixels between the cam-

eras, we run empirical CCA and ICCA after each new video frame. For frame `,

we construct the 32400 × ` submatrices X`
left and Y `

right by taking the matrix of the

first ` original vectorized frames and zero meaning it. We then use these matrices as

the input to empirical CCA and ICCA. Using our knowledge of 3 sources present in

each camera, we set k̂x = k̂y = 3. Figure 4.10 plots the top 3 correlation coefficients

returned by empirical CCA and ICCA over the first 800 frames. Intuitively, empirical

CCA returns perfect correlation as we have only a few frames but a large dimension

(pixels).

Using these correlation coefficients, we determine which ones are significant for a

significance level of α = 0.01 using (4.14). Unsurprisingly, all correlations returned

by empirical CCA are insignificant and we do not plot the results. However, we

plot whether the ICCA correlations are significant in Figure 4.11. After about 20

frames, ICCA identifies 2 significant correlations. Similar to Figures 4.8(d) and 4.9(d),

we overlay the thresholded unit-norm canonical vectors onto the original images in

Figures 4.12 and 4.13 for empirical CCA and ICCA, respectively. The empirical

CCA canonical vectors appear to be very random and noisy. The canonical vector

corresponding to the largest ICCA correlation selects the pixels of the shared flashing

camera.
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(b) ICCA - first 50 frames

Figure 4.11: Significance of the top singular value returned by ICCA in Figure 4.10(b)
using (4.14) with α = 0.01. A value of zero represents that the singular value is not
significant. A value of one represents that the singular value is significant. (a) Significance
over all 800 frame. (b) Zoomed in to the first 50 frames in (a).

(a) Left Camera (b) Right Camera

Figure 4.12: Top 3 threholded empirical CCA canonical vectors overlayed on the original
scene after 800 frames as computed in (4.9). The red pixels correspond to the vector with
the highest correlation, the green pixels correspond to the vector with the second highest
correlation, and the blue pixels correspond to the vector with the third highest correlation.
We use a threshold of log(p)/

√
p where p = 32400 pixels.
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(a) Left Camera (b) Right Camera

Figure 4.13: Top 2 threholded ICCA canonical vectors overlayed on video after 800 frames
as computed in (4.13). The red pixels correspond to the vector with the highest correlation
and the green pixels correspond to the vector with the second highest correlation. We use
a threshold of log(p)/

√
p where p = 32400 pixels.

Given that our experiment setup has only one shared flashing light, it is initially

surprising that ICCA returns a second significant correlation. Examining the canon-

ical vector overlay in Figure 4.13, we observe that this correlation corresponds to

RPL and BPL. Figure 4.14 examines the right singular vectors returned by PCA

corresponding to RPL and BPL. We observe that these light sources have approxi-

mately the same period and even though they were started at random times, they

are in approximate antiphase, making them correlated. This is especially interesting

because neither camera can see both sources, but ICCA is still able to reveal a latent

correlation inherent in the period and phase of these lights.

4.8.5 Controlled Flashing Lights with Missing Data

Using the same dataset in the previous section, we add missing data to each frame

independently. We set γ = γx = γy = 0.75 so that about 25% of the pixels are set to

0. We generate the missing pixels independently for each camera and for each frame.

We then process the data exactly as above without missing data. We note that in

this setup, our light sources do not obey the low-coherence condition, but we still

run ICCA to demonstrate it’s robustness. Particularly, source PH1 is very small and

it’s signal is very spiked and violates the low-coherence assumption the most. It is

unsurprising that it is not detected by PCA, as we will see.

Figure 4.15 plots an example of a frame for each camera with missing data. It is

much more difficult to make out the scene even while retaining 75% of the data. Figure

4.16 overlays the thresholded PCA vectors onto each camera after 800 frames. For the

right camera, these vectors still identify all three visible sources. However for the left
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Figure 4.14: A portion of the right singular vectors of Xleft (blue) and Yright (red) cor-
responding the flashing police lights in each camera view. Both sources have very similar
periods and are approximately in antiphase and therefore are correlated.

(a) Left Camera (b) Right Camera

Figure 4.15: Left and right camera views of our five sources in the presence of missing
data.

camera, we only identify BPL and PH2. This makes sense because PH1 drastically

violates the low-coherence condition. However, as this signal is not correlated with

the others, we can still attempt to use ICCA to find correlated signals.

Figure 4.17 overlays the thresholded canonical vectors corresponding to the top 2

empirical CCA canonical correlations onto the original scene after 800 frames. Unsur-

prisingly, empirical CCA is still unable to detect the two correlated signals because

in this regime the top correlations are deterministically one and the corresponding

canonical vectors are uninformative. However, ICCA is able to detect our correlated

signals even in the presence of missing data. Figure 4.18 overlays the thresholded

canonical vectors corresponding to the top 2 ICCA canonical correlations onto the

original scene after 800 frames. The colored pixels clearly identify our two sources of
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(a) Left Camera (b) Right Camera

Figure 4.16: Top 3 threholded PCA vectors overlayed on each video after 800 frames.
This is analogous to Figures 4.8 and 4.9 but with missing data. Again we use the threshold
log(p)/

√
p for p = 32400. A different color is used for the every vector. We note that the

middle source of the left camera violates the low-coherence assumption in Assumption 4.7.1
and so PCA does not detect it.

correlation.

Figure 4.19 plot the top 3 canonical correlations for empirical CCA and ICCA.

Unsurprisingly, the correlations reported by empirical CCA are 1 and are not sig-

nificant. We plot the corresponding significance of the ICCA correlations in Figure

4.20. From these two figures, we see that ICCA is very quickly able to determine that

the shared source PH1 is correlated. At first, this is the only significant correlation.

However, after about 200 frames (about 7 seconds), the correlation corresponding to

the police lights becomes significant.

4.8.6 Controlled Audio Visual Experiment

Similar to the flashing light experiment, we verify the effectiveness of ICCA with

an audio visual controlled experiment. In this experiment, we play an audio sequence

containing three different pure-tones, each amplitude modulated (AM) at a different

frequency. In addition, we add uncorrelated coffee shop noise 2. In the video sequence

there are two flashing block-M’s, one of which is flashing at the same AM frequency

as one of the pure tone audio signals. The audio sequence is sampled at 44.1kHz and

the images are each 553 × 1000 pixels, for a total of 20 seconds. Figure 4.21 shows

the images and identifies the two sources. Figure 4.22 plots the full spectrogram of

our audio signal and zooms in on a smaller portion of the spectrum to see the three

AM signals, which are described in Table 4.1. Our audio waveform is

2https://www.youtube.com/watch?v=TpdFVSi7PZ8
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(a) Left Camera (b) Right Camera

Figure 4.17: Top 2 threholded empirical CCA canonical vectors overlayed on missing data
video as computed in (4.9). Again we use the threshold log(p)/

√
p for p = 32400. The red

pixels correspond to the vector with the highest correlation and the green pixels correspond
to the vector with the second highest correlation in Figure 4.19(a).

(a) Left Camera (b) Right Camera

Figure 4.18: Top 2 threholded ICCA canonical vectors overlayed on missing data video
as computed in (4.13). Again we use the threshold log(p)/

√
p for p = 32400. The red pixels

correspond to the vector with the highest correlation and the green pixels correspond to
the vector with the second highest correlation in Figure 4.19(a).
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Figure 4.19: (a) Top three singular values returned by empirical CCA as defined in (4.8).
As we are in the sample deficient regime, these singular values are deterministically 1. (b)
Top three singular values returned by ICCA as defined in (4.12). ICCA correctly identifies
two sources of correlation. As our data matrices now have missing data, it takes more
frames for ICCA to identify the two sources of correlations.
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Figure 4.20: Significance of the top singular value returned by ICCA in Figure 4.19(b)
using (4.14) with α = 0.01. A value of zero represents that the singular value is not
significant. A value of one represents that the singular value is significant.
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Figure 4.21: Still shot of the video. The block M on the left is amplitude modulated at 1
Hz, the same rate as s1(t) in (4.27), while the block M on the right is amplitude modulate
at 2.15 Hz, which is different than all other audio and visual sources.
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(a) Full Spectrogram
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(b) Zoomed Spectrogram

Figure 4.22: (a) Full spectrogram of the audio signal in (4.26). (b) Zoomed in spectrogram
of (a) to see the 3 audio sources at 250 Hz, 400 Hz, and 550 Hz. Each sources is also
amplitude modulated at a different frequency as described in (4.27).

a(t) =
1

4
s1(t) +

1

4
s2(t) +

1

4
s3(t) +

1

4
n(t) (4.26)

where
s1(t) = | sin(2πt/2)| sin (2π (250t))

s2(t) = | cos(2π(3/2t))| sin (2π (400t))

s3(t) = | cos(2π(5/2t))| sin (2π (550t))

n(t) = coffee shop noise.

(4.27)

To post-process the video data, we first converted the video streams to grayscale

and then downsampled each spatial dimension by a factor of 4, resulting in a resolution

of 133×250. We then ignore the first and last second of data and vectorized the image
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Type Source AM Frequency

Visual Left Block M 1 Hz
Right Block M 2.15 Hz

Audio 250 Hz pure tone 1 Hz
400 Hz pure tone 3 Hz
550 Hz pure tone 7 Hz
coffee shop noise

Table 4.1: Summary of the audio and visual sources and their amplitude modulated
signals. The audio sources are described in (4.27) and the video sources are shown in
Figure 4.21. The 250 Hz pure tone is amplitude modulated at the same frequency as the
left block M and is thus correlated with it.

and stacked the resulting 540 frames into a data matrix of dimension 33250 × 540.

Finally, we subtract the mean from the video dataset so that we may run PCA,

empirical CCA, and ICCA on the zero-mean dataset, Xvideo.

To post-process the audio data, we separate the audio stream into equal window

sizes of 1470 time points centered on every 1/30 second of data. On each 1470 time

point segment, we run a 2048 point FFT and take the magnitude of the first 1025

points as a feature vector. We process the 18 seconds of data, stack the feature vectors

into a matrix, and then subtract the mean, resulting in a 1025× 540 matrix Yaudio.

First, we run PCA on Xvideo and Yaudio. Figure 4.23 plots the singular value of each

dataset. From our setup, we know that the video dataset has 2 signals and the audio

dataset has 3 sources. Figure 4.24 plots the singular vector heatmaps corresponding

to the top 2 singular values of Xvideo. These heatmaps clearly identify the two block

M’s. We then threshold the absolute value of the singular vectors with the threshold

1/
√
p and overlay it on top of the original scene. Similarly, Figure 4.25 plots the

singular vectors of Yaudio corresponding to the top 3 singular values. By thresholding

these singular vectors, we create audio filters, as Figure 4.25(c) shows.

However, PCA does not provide any information about whether the identified

audio visual signals are correlated. To identify such correlations, we run empirical

CCA and ICCA after each new video frame. For frame `, we construct the 33250× `
submatrix X`

video and 1025 × ` submatrix Y `
audio by taking the matrix of the first `

original vectorized frames and zero meaning it. We then use these matrices as the

input to empirical CCA and ICCA. Using knowledge of our experimental setup, we

set k̂x = 2 and k̂y = 3. Figure 4.26 plots the top 2 correlation coefficients returned

by empirical CCA and ICCA over the first 540 frames. Intuitively, empirical CCA

returns perfect correlation as we have only a few frames but a large dimension (pixels).
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Figure 4.23: Singular value spectra of Xvideo and Yaudio.
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Figure 4.24: (a)-(b)) Left singular vectors of Xvideo corresponding to the top 2 singular
values. (c) Thresholded singular vectors from (a)-(b) overlayed onto original scene with
pixels from (a) in red and pixels from (b) in green. We use the threshold log(p)/

√
p for

p = 33250. These vectors correspond to the 2 block M’s.
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Figure 4.25: (a) Left singular vectors of Yaudio corresponding to the top 3 singular values.
(b) Zoomed in version of (a) to see the three audio sources. (c) Masked principle component
formed by thresholding the singular vectors with

√
log(q)/q for q = 1025.
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Figure 4.26: (a) Top two singular values returned by empirical CCA as defined in (4.8).
As we are in the sample deficient regime, these singular values are deterministically 1. (b)
Top two singular values returned by ICCA as defined in (4.12). ICCA correctly identifies
the one source of correlation present in the audio-video dataset.

While the canonical correlation coefficients returned by CCA are insignificant be-

cause we operate in the sample deficient regime, we may use (4.14) to determine

whether the canonical correlation coefficients returned by ICCA are significant. Us-

ing a significance level of α = 0.01, Figure 4.27 plots whether the ICCA canonical

correlations are significant. Unsurprisingly, after 20 frames (2/3 seconds) we identify

the only correlated source and show that the second correlation is insignificant. The

only significant correlation corresponds to the one correlated audio-visual signal.

Figure 4.28 uses the first empirical CCA canonical vectors to filter both the audio

and video stream to highlight the correlated component. Using the thresholded first

audio canonical vector as a bandpass filter, we filter the original audio stream using

the overlap-save method and plot the resulting spectrogram in Figures 4.28(a) and

4.28(b). From the spectrogram, we see that the canonical vectors filters random

frequencies and as time goes on, filter almost everything. Similarly, we threshold

the video canonical vector and plot the pixels that are above the threshold in Figure

4.28(c). The pixels congregate around the text in both block M’s, which is not

correlated. These figures demonstrate that empirical CCA fails to identify the pixels

that are correlated to any audio source and instead returns random filters for both

the audio and video sources.

However, ICCA is able to find the underlying correlated audio-video source, as

shown in Figure 4.29. Just as in the empirical CCA analysis, we use the thresholded
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(b) ICCA - first 75 frames

Figure 4.27: Significance of the top singular value returned by ICCA in Figure 4.26 using
(4.14) with α = 0.01. A value of zero represents that the singular value is not significant.
A value of one represents that the singular value is significant. (a) Significance for all 540
frames. (b) Zoomed in of (a) to examine the first 75 frames.

first ICCA audio canonical vector to bandpass filter the original audio stream using

the overlap-save method and plot the resulting spectrogram in Figures 4.29(a) and

4.29(b). Unlike empirical CCA, the ICCA audio filter correctly filters the audio to

contain the correlated 250 Hz audio tone. Figure 4.29(c) plots the pixels in our scene

that are correlated with the audio source and ICCA is able to correctly identify the

left block M.

4.8.7 Controlled Audio Audio Experiment

Our final experiment explores the inherent correlation between two audio streams.

In this experiment, we generate two 30 second audio sequences. Each sequence con-

tains two pure-tones, which are amplitude modulated (AM) at different frequencies.

In addition we add uncorrelated coffee shop noise, which is independent between each

audio sequence. One pure-tone in each sequence is AM at a shared rate, inducing cor-

relation between the audio sequences. The remaining pure-tones are AM at different

rates, making them independent of the shared AM tones. Our waveforms are

a1(t) =
1

3
s1(t) +

1

3
s2(t) +

1

3
n1(t)

a2(t) =
1

3
s3(t) +

1

3
s4(t) +

1

3
n2(t)

(4.28)
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(b) Audio - zoomed

(c) Video

Figure 4.28: Thresholded canonical vectors (as computed in (4.9)) corresponding to the
top singular value returned by empirical CCA in Figure 4.26(a). We use a threshold of
log(p)/

√
p for p = 33250 and p = 1025 for video and audio vectors, respectively. (a)

Spectrogram of the original audio stream filtered using the thresholded empirical CCA top
canonical vector and the overlap-save filter method. (b) Zoomed in spectrogram of (a). (c)
Red colored pixels represent the pixels that empirical CCA marks as correlated to the audio
stream in (a).
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(a) Audio
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(b) Audio - zoomed

(c) Video

Figure 4.29: Thresholded canonical vectors (as computed in (4.13)) corresponding to the
top singular value returned by ICCA in Figure 4.26(b). We use a threshold of log(p)/

√
p

for p = 33250 and p = 1025 for video and audio vectors, respectively. (a) Spectrogram
of the original audio stream filtered using the thresholded ICCA top canonical vector and
the overlap-save filter method. (b) Zoomed in spectrogram of (a). (c) Red colored pixels
represent the pixels that ICCA marks as correlated to the audio stream in (a).
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where

s1(t) =
(1 + sin(2πt))

2
sin (2π (250t))

s2(t) =
(1 + cos(2π(3t))

2
sin (2π (400t))

s3(t) =
(1 + sin(2πt))

2
sin (2π (300t))

s4(t) =
(1 + cos(2π(5t))

2
sin (2π (550t))

n1(t) = independent coffee shop noise

n2(t) = independent coffee shop noise.

(4.29)

All time sequences are generated with a sample rate of 44.1 kHz. Figure 4.2 plots

the spectrogram of each sequence and zooms in on a smaller portion of the spectrum

to see the AM sequences. Table 4.30 summarizes each of our signals in each audio

sequences.

View Source AM Frequency

a1(t) 250 Hz pure tone 1 Hz
400 Hz pure tone 3 Hz

coffee shop noise 1

a2(t) 300 Hz pure tone 1 Hz
550 Hz pure tone 5 Hz

coffee shop noise 2

Table 4.2: Summary of the audio sources in (4.28) and their components in (4.29). The
250 Hz pure tone in a1(t) is amplitude modulated at the same frequency as the 300 Hz pure
tone in a2(t) and is thus correlated with it.

To post-process the data, we separate the audio streams into equal window sizes of

2940 time points, corresponding to a time interval of 1/15 second. On each window,

we run a 4096 point FFT and take the magnitude of the first 2049 points as a feature

vector. We then stack the feature vectors for all windows into a matrix and subtract

the mean, resulting in 2049× 450 matrices Xa1 and Ya2 .

First, we run PCA on Xa1 and Ya2 . Figure 4.31 plots the singular values of each

dataset. From our setup, we know that each audio sequence has 2 pure-tone signals

plus coffee shop noise. Figure 4.32 plots the corresponding singular vectors for the

top 2 singular vectors of each audio dataset.

While the PCA vectors in Figure 4.32 can identify sources within a dataset, by

themselves, they do not provide any information about whether the sources are cor-

related between datasets. To identify such correlations, we run empirical CCA and
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(a) Full Spectrogram of a1(t)
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(b) Zoomed Spectrogram of a1(t)
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(c) Full Spectrogram of a2(t)
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(d) Zoomed Spectrogram of a2(t)

Figure 4.30: (a) Full spectrogram of a1(t) defined in (4.28). (b) Zoomed in spectrogram
of a1(t) to see the 2 sources at 250 Hz and 400 Hz. (c) Full spectrogram of a2(t) defined in
(4.28) (d) Zoomed in spectrogram of a2(t) to see the 2 sources at 300 Hz and 550 Hz. The
250 Hz signal in a1(t) is amplitude modulated at the same frequency as the 300 Hz signal
in a2(t).
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Figure 4.31: Singular value spectra of Xa1 and Ya2 .

ICCA after each new video frame. For frame `, we construct the 2049× ` submatrix

X`
a1

and 2049× ` submatrix Y `
a2

by taking the matrix of the first ` original vectorized

frames and zero meaning it. We then use these matrices as the input to empirical

CCA and ICCA. Using knowledge of our experiment setup, we set k̂x = k̂y = 2.

Figure 4.33 plots the top 5 correlation coefficients returned by empirical CCA and

ICCA over the first 450 frames.

Intuitively, empirical CCA returns perfect correlation as we have only a few frames

but a large dimension (frequencies). These correlations are insignificant because we

operate in the sample deficient regime. However, we may use (4.14) to determine

whether the ICCA canonical correlations are significant. Using a significance level of

α = 0.01, Figure 4.34 plots the binary decision (0 is insignificant, 1 is significant).

Finally, we threshold the audio canonical vectors for empirical CCA and ICCA

to create bandpass filters. Similar to the above experiments, we use the threshold√
log(p)/p. Using these filters, we filter the original audio streams using the overlap-

save method and plot the resulting empirical CCA filtered spectrograms in Figure

4.35 and ICCA filtered spectrograms in Figure 4.36.

From these spectrograms we observe that once again, empirical CCA fails to de-

tect the correlated 1 Hz AM signals in each of the datasets. Examining 4.35, we see

that the correlated filter that empirical CCA returns keeps much of the frequency

content below 1000 Hz. However, ICCA is able to very quickly detect the presence

the correlated signals, while determining that the second canonical vector is insignif-

icant. Thus ICCA detects exactly the number of underlying correlated components.
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(a) Xa1
principle components
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(b) Xa1
zoomed-in principle components
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(c) Ya2 principle components
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(d) Ya2 zoomed-in principle components

Figure 4.32: (a) Left singular vectors of Xa1 corresponding to the top 2 singular values in
Figure 4.31(a). (b) Zoomed in version of (a). (c) Left singular vectors of Ya2 corresponding
to the top 2 singular values in Figure 4.31(b). (d) Zoomed in version of (c).
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(a) Empirical CCA
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(b) ICCA

Figure 4.33: (a) Top two singular values returned by empirical CCA as defined in (4.8)
for the audio-audio experiment. As we are in the sample deficient regime, these singular
values are deterministically 1. (b) Top two singular values returned by ICCA as defined in
(4.12). ICCA correctly identifies the one source of correlation present in the audio-audio
dataset.

0 100 200 300 400

0

0.2

0.4

0.6

0.8

1

frame

s
ig

n
if
ic

a
n
c
e

 

 

ρ
1

ρ
2

(a) ICCA
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(b) ICCA - first 75 frames

Figure 4.34: Significance of the top singular value returned by ICCA in Figure 4.33 using
(4.14) with α = 0.01. A value of zero represents that the singular value is not significant.
A value of one represents that the singular value is significant. (a) Significance for all 450
frames. (b) Zoomed in of (a) to examine the first 75 frames.
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Examining Figure 4.36, we see that ICCA correctly filters all but the 250 Hz pure-

tone in a1 and the 300 Hz pure-tone in a2, which are both amplitude modulated at 1

Hz.
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(a) a1(t) filtered with empirical CCA
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(b) Zoomed in of (a)
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(c) a2(t) filtered with empirical CCA
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(d) Zoomed in of (c)

Figure 4.35: (a) Full spectrogram of a1(t) (as defined in (4.28)) filtered using the thresh-
olded top canonical vector of empirical CCA computed via (4.9). We use a threshold of
log(p)/

√
p for p = 2049 and use the overlap-save filter method. (b) Zoomed in spectrogram

of (a). (c) Full spectrogram of a2(t) (as defined in (4.28)) filtered using the thresholded top
canonical vector of empirical CCA computed using (4.9). We use a threshold of log(p)/

√
p

for p = 2049 and use the overlap-save filter method. (d) Zoomed in spectrogram of (c).
Empirical CCA fails to detect the correlated 250 Hz signal in a1(t) and the 300 Hz signal
in a2(t). Instead, empirical CCA has random bandpass filters across the spectrum.
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(a) a1(t) filtered with ICCA
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(b) Zoomed in of (a)
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(c) a2(t) filtered with ICCA

0 5 10 15
0

200

400

600

800

1000

Time (s)

F
re

q
u
e
n
c
y
 (

H
z
)

 

 

−140

−120

−100

−80

−60

−40

(d) Zoomed in of (c)

Figure 4.36: (a) Full spectrogram of a1(t) (as defined in (4.28)) filtered using the thresh-
olded top canonical vector of ICCA computed using (4.13). We use a threshold of log(p)/

√
p

for p = 2049 and use the overlap-save filter method. (b) Zoomed in spectrogram of (a). (c)
Full spectrogram of a2(t) (as defined in (4.28)) filtered using the thresholded top canonical
vector of ICCA computed using (4.13). We use a threshold of log(p)/

√
p for p = 2049 and

use the overlap-save filter method. (d) Zoomed in spectrogram of (c). ICCA correctly de-
tects the correlated 250 Hz signal in a1(t) and the 300 Hz signal in a2(t) without including
any spurious frequencies.
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CHAPTER V

On Estimating Population Canonical Vectors

5.1 Introduction

In Chapter IV, we presented statistical tests for empirical CCA and informative

CCA. This analysis showed that in the sample deficient regime, the canonical correla-

tions returned by ICCA can reliably detect the presence of correlated signals between

two datasets. In this chapter, we complete the analysis of empirical CCA and ICCA

by examining the accuracy of the canonical vectors associated with the canonical

correlations.

Using the same data model as Chapter IV, we begin by deriving the CCA popu-

lation canonical vectors if all parameters are known. From this analysis we see that

the canonical vectors are a linear combination of signal vectors that form the linear

subspace of each dataset. This linear combination involves the eigen-structure of the

cross-correlation matrix and the inverse signal-to-noise ratios (SNRs) of the individual

correlation matrices. We show that the canonical vectors returned by empirical CCA

are very inaccurate in the low-sample, low-SNR regime while the canonical vectors

returned by ICCA are able to properly estimate the true population canonical vectors

in this regime.

This analysis of the canonical vector accuracy leads to some nice observations.

First, we notice that the canonical vector estimation is very sensitive to the estima-

tion of the underlying SNRs since we need to use their inverses. With this observation

in mind, we form an asymptotically optimal estimator, which we call ICCA+ , that

provides an optimal linear combination of the estimated components of the signal

subspaces, where these weights incorporate the accuracy each component of the es-

timated signal subspace. These weights make contact with the accuracy of subspace

components that we used in Chapters II and III to improve matched subspace detec-

tion. We finally consider an orthogonal estimate to the canonical vectors and discuss
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when this estimate is equivalent to ICCA and ICCA+ .

5.1.1 Data Model

We use the same data model in Chapter IV, but repeat it here to facilitate expo-

sition. Let xi ∈ Cp×1 and yi ∈ Cq×1 be modeled as

xi = Uxsx,i + zx,i

yi = Uysy,i + zy,i,
(5.1)

where UH
x Ux = Ikx , U

H
y Uy = Iky , zx,i

i.i.d.∼ CN (0, Ip) and zy,i
i.i.d.∼ CN (0, Iq). Further-

more, assume that

sx,i ∼ CN (0,Θx)

sy,i ∼ CN (0,Θy),

where Θx = diag

((
θ

(x)
1

)2

, . . . ,
(
θ

(x)
kx

)2
)

and Θy = diag

((
θ

(y)
1

)2

, . . . ,
(
θ

(y)
ky

)2
)

.

Assume that zx,i and zy,i are mutually independent and independent from both sx,i

and sy,i. Finally, assume that

E
[
sx,is

H
y,i

]
=: Kxy = Θ1/2

x PxyΘ
1/2
y

where the entries of Pxy are −1 ≤ ρkj ≤ 1 and represent the correlation between s
(k)
x,i

and s
(j)
y,i . For reasons to be made clear later, define

K̃xy = (Θx + Ikx)
−1/2Kxy

(
Θy + Iky

)−1/2

and define the singular values of K̃xy as κ1, . . . , κmin(kx,ky). Under this model, we

define the following covariance matrices

E
[
xix

H
i

]
= UxΘxU

H
x + Ip =: Rxx

E
[
yiy

H
i

]
= UyΘyU

H
y + Iq =: Ryy

E
[
xiy

H
i

]
= UxKxyU

H
y =: Rxy.

(5.2)

Finally, define the random matrices Zx
n and Zy

n formed by stacking n realizations

of zx,i and zy,i columnwise via

Zx
n = [zx,1, . . . , zx,n]

Zy
n = [zy,1, . . . , zy,n] .
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Denote the singular values of these matrices as

σ1(Zx
n) ≥ · · · ≥ σp(Z

x
n)

σ1(Zy
n) ≥ · · · ≥ σq(Z

y
n)

where without loss of generality we let p < n and q < n to simplify the definition of

the empirical singular value distribution. Let µZxn and µZyn be the empirical singular

value distribution defined as

µZxn =
1

p

p∑
i=1

δσi(Zxn)

µZyn =
1

q

q∑
i=1

δσi(Zyn)

.

Assume that the probability measures µZxn and µZyn converge almost surely as p, q, n→
∞ to non-random compactly supported probability measures µZx and µZy respec-

tively. Finally, we assume that σ1(Zx
n)

a.s.−→ bx and σ1(Zy
n)

a.s.−→ by.

5.2 Canonical Correlation Analysis

Canonical Correlation Analysis (CCA) is a dimensionality reduction algorithm

that finds linear projections for xi and yi such that in the projected spaces, the vari-

ables are maximally correlated. Specifically, CCA solves the following optimization

problem

ρcca = argmax
wx,wy

wHx Rxywy√
wHx Rxxwx

√
wHy Ryywy

, (5.3)

where wx and wy are called canonical vectors and ρcca is called the canonical cor-

relation coefficient. Notice that we can scale wx and wy and still achieve the same

objective function. Therefore, we may constrain the canonical variates to have unit

norm, resulting in

argmax
wx,wy

wHx Rxywy

subject to wHx Rxxwx = 1

wHy Ryywy = 1.

(5.4)
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Substituting the change of variables w̃x = R
1/2
xx wx and w̃y = R

1/2
yy wy in (5.4) results

in the following optimization problem

argmax
w̃x,w̃y

w̃Hx R
−1/2
xx RxyR

−1/2
yy w̃y

subject to w̃Hx w̃x = 1

w̃Hy w̃y = 1.

(5.5)

Examining the optimization problem in (5.5), we can immediately see that the solu-

tion to CCA may be solved via the SVD of the matrix

Ccca = R−1/2
xx RxyR

−1/2
yy . (5.6)

Define Ccca = FKGT as the SVD of Ccca where F is an unitary p × p matrix with

columns f1, . . . , fp, G is a unitary q × q matrix with columns g1, . . . , gq, and K =

diag(k1, . . . , kmin(p,q)) is a p × q matrix whose diagonal elements are the singular

values of Ccca. Therefore, the solution to (5.5) is

w̃x = f1

w̃y = g1

ρ = k1.

We can obtain higher order canonical correlations and vectors by taking successive

singular value and vector pairs. Thus our canonical correlations are simply the singu-

lar values of Ccca and the canonical vectors are transformations of the singular vectors

of Ccca

wx = R−1/2
xx w̃x wy = R−1/2

yy w̃y. (5.7)

5.3 Empirical CCA

In many applications, we do not know the covariance matrices Rxx, Ryy, and Rxy

a priori. Therefore, we cannot know the true canonical vectors in (5.7) and must

estimate them from training data. Typically, we are given multiple snapshots that

we stack columnwise to form the data matrices

X = [x1, . . . , xn]

Y = [y1, . . . , yn],
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where for i = 1, . . . , n, xi and yi are modeled in (5.1). Defining Zx = [zx,1, . . . , zx,n],

Zy = [zy,1, . . . , zy,n], Vx = [sx,1, . . . , sx,n]H , and Vy = [sy,1, . . . , sy,n], we may write

X = UxV
H
x + Zx

Y = UyV
H
y + Zy.

Given these data matrices, we form estimates of our unknown covariance matrices via

R̂xx =
1

n
XXH

R̂yy =
1

n
Y Y H

R̂xy =
1

n
XY H .

Define the data SVDs
X = ÛxΣ̂xV̂

H
y

Y = ÛyΣ̂yV̂
H
y

and trimmed matrices

Ũx = Ûx (:, 1 : min(p, n))

Σ̃x = Σ̃x (1 : min(p, n), 1 : min(p, n))

Ṽx = V̂x (:, 1 : min(p, n))

Ũy = Ûy (:, 1 : min(q, n))

Σ̃y = Σ̃y (1 : min(q, n), 1 : min(q, n))

Ṽy = V̂y (:, 1 : min(q, n)) .

Given these definitions, substituting the sample covariance estimates into Ccca yields

(see [8])

Ĉcca = ŨxṼ
H
x ṼyŨ

H
y .

The singular values of this matrix are exactly the canonical correlation estimates, ρ̂cca,

returned by CCA. Empirical CCA can return up to min(p, q) canonical correlations.

However, X and Y have kx and ky underlying signals, respectively, based on the

model in (5.1). As kx and ky are unknown, let k̂x and k̂y be estimates of the number of

underlying signals in each dataset. It is common to return only min(k̂x, k̂y) canonical

correlations.

However, we showed in Chapter IV that empirical CCA fails in the sample deficient

regime. When n < p+ q, the top estimated canonical correlation is deterministically
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one. Instead we showed that ICCA [8], an algorithm that first trims the singular

vectors of the individual datasets to only include informative singular vectors, can

reliably detect correlations in the sample starved regime. Define the trimmed data

SVDs
◦
Ux = Ûx

(
:, 1 : k̂x

)
◦
Σx = Σ̂x

(
1 : k̂x, 1 : k̂x

)
◦
Vx = V̂x

(
:, 1 : k̂x

)
◦
Uy = Ûy

(
:, 1 : k̂y

)
◦
Σy = Σ̂y

(
1 : k̂y, 1 : k̂y

)
◦
Vy = V̂y

(
:, 1 : k̂y

)
.

Given these definitions, we define the ICCA matrix

Ĉicca =
◦
Ux

◦
V H
x

◦
Vy

◦
UH
y .

Similar to CCA, the SVD of this matrix gives the ICCA canonical correlations and

vectors. Define Ĉicca = FKGT as the SVD of Ĉicca where F is an unitary p×p matrix

with columns f1, . . . , fp, G is a unitary q × q matrix with columns g1, . . . , gq, and

K = diag(k1, . . . , kmin(p,q)) is a p× q matrix whose diagonal elements are the singular

values of Ĉicca. We note that by construction, there will be at most min(k̂x, k̂y)

non-zero singular values of Ĉicca. Then ICCA canonical correlation and vector pairs

are
ρ̂icca = k1

ŵicca
x = R̂−1/2

xx f1

ŵicca
y = R̂−1/2

yy g1.

Again, successive canonical correlation and vectors are found via successive singular

value and vectors pairs from Ĉicca.

5.4 Estimating Population Canonical Vectors

In this section, we derive the population canonical vectors of CCA assuming known

parameters. We observe that these population canonical vectors are a linear combina-

tion of the signal vectors Ux and Uy of the individual datasets. This linear combination

is dependent on the individual SNRs Θx and Θy and the eigen-structure of the previ-

ously alluded to matrix K̃xy. We then show that ICCA is equivalent to substituting
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plug-in estimates for unknown quantities in these estimates. Finally, we provide the

definition for a new asymptotically optimal estimate, which we cal ICCA+, of these

vectors that uses the accuracy of the estimated subspaces Ux and Uy.

5.4.1 Population canonical vectors

We first determine the population canonical vectors of our data model in (5.1).

To do so, we need the singular vectors of Ccca.

Ccca = R−1/2
xx RxyR

−1/2
yy

=
(
UxΘxU

H
x + Ikx

)−1/2
UxKxyU

H
y

(
UxΘyU

H
y + Iky

)−1/2

= Ux (Θx + Ikx)
−1/2Kxy

(
Θy + Iky

)−1/2
UH
y

= UxK̃xyU
H
y .

Define UK̃KK̃V
H
K̃

as the SVD of K̃xy. First note that from this observation the

rank of Ccca is k =: min(kx, ky). Recall that wx = R
−1/2
xx w̃x and wy = R

−1/2
yy w̃y.

Therefore if we define the matrices of the canonical vectors Wx = [w
(1)
x , . . . , w

(k)
x ] and

Wy = [w
(1)
y , . . . , w

(k)
y ], we have that

Wx = Ux (Θx + Ikx)
−1/2 UK̃

Wy = Uy
(
Θy + Iky

)−1/2
VK̃ .

(5.8)

Therefore, we see that the individual canonical vectors w
(i)
x and w

(i)
y are linear com-

binations of Ux and Uy dependent on Θx, Θy, UK̃ , and VK̃ .

5.4.2 Empirical CCA canonical vector estimates

We may use empirical CCA to estimate the population CCA canonical vectors.

This requires taking the SVD of Ĉcca. Notice that inner matrix product of this matrix

is Ṽ H
x Ṽy. Define the SVD of this min(p, n) × min(q, n) matrix as ŨK̃K̃K̃ Ṽ

H
K̃

. Then

the empirical CCA canonical vector estimates are

ŵcca
x,i = R̂−1/2

xx w̃x

=
(
ŨxΣ̃

−1
x ŨH

x

)(
ŨxŨK̃(:, i)

)
= ŨxΣ̃

−1
x ŨK̃(:, i)
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Stacking these empirical CCA canonical vectors estimates in a matrix yields

Ŵ cca
x = Ũx

(
Σ̃x

)−1

ŨK̃

Ŵ cca
y = Ũy

(
Σ̃y

)−1

ṼK̃ .
(5.9)

We can immediately expect that empirical CCA will do a very poor job at estimating

the canonical vectors because it uses the entire left singular vectors Ũx and Ũy of each

data matrix. CCA assumes that the SVD of Ṽ H
x Ṽy is very accurate. However, when

we have high dimensions and low samples, this matrix is incredibly inaccurate, as we

will see. We note here that the singular values of the individual data matrices may be

used to estimate the SNRs via Θ̂x = Σ̃2
x− I and Θ̂y = Σ̃2

y − I. In empirical CCA, the

above canonical vector estimates use the full data SVDs, which assumes that the rank

of underlying signals are min(p, n) and min(q, n). This is obviously quite incorrect.

5.4.3 ICCA canonical vectors

In (5.8), we do not know Ux, Uy, Θx, Θy, UK̃ , or VK̃ . Therefore, in the spirit

of many algorithms, we may plug-in estimates of all of these parameters. From the

above sections we obtain the estimates Ûx,Ûy, Θ̂x, and Θ̂y from the individual data

SVDs of X and Y . We obtain estimates ÛK̃ and V̂K̃ from the left and right singular

vectors of
◦
V H
x

◦
Vy. Then our plug-in estimate of the canonical vectors is

Ŵ icca
x =

◦
Ux

(
Θ̂x + Ik̂x

)−1/2

ÛK̃

Ŵ icca
y =

◦
Uy

(
Θ̂y + Ik̂y

)−1/2

V̂K̃ .

(5.10)

These plug-in estimates are exactly the ICCA canonical vector estimates. Recall that

the key matrix in ICCA, Ĉicca, has an inner matrix product of exactly
◦
V H
x

◦
Vy. The

process of trimming the individual singular vectors causes Ĉicca to be rank min(k̂x, k̂y),

which in turn causes the ICCA canonical vector estimates to correctly take only a

linear combination of the top k̂x and k̂y signal vectors.

5.4.4 ICCA+

We expect the estimates in (5.10) to greatly outperform the estimates in (5.9)

for reasons mentioned above. However, we still expect the estimates in (5.10) to be

sub-optimal because they substitute parameter estimates without considering their

accuracy. To consider an improved estimate, we first assume that ÛK̃ and V̂K̃ are
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consistent estimators of the true UK̃ and VK̃ , respectively.

The population, empirical CCA, and ICCA canonical vector estimates all take a

linear combination of the known or unknown signal subspace. With this observation,

we consider the following canonical vector estimates

W̃ icca+
x =

◦
UxΛ

opt
x ÛK̃

W̃ icca+
y =

◦
UyΛ

opt
y V̂K̃ ,

(5.11)

where Λopt
x = diag(λopt

x ) and Λopt
y = diag(λopt

y ) such that λopt
x =

[
λ

(1)
x , . . . , λ

(kx)
x

]
and

λopt
y =

[
λ

(1)
y , . . . , λ

(ky)
y

]
and are the solutions to the following optimization problems

λopt
x = argmin

λx

∥∥∥Wx − Ûx diag(λx)ÛK̃

∥∥∥
F

λopt
y = argmin

λy

∥∥∥Wy − Ûy diag(λx)V̂K̃

∥∥∥
F
.

(5.12)

This matrix approximation is similar to [117], which examines the optimal ap-

proximation to a signal matrix from noisy observations. Nadakuditi shows that the

classical Eckart-Young-Mirsky (EYM) low-rank matrix approximation is suboptimal

when trying to estimate a low-rank signal matrix from a low-rank signal-plus-noise

matrix. The EYM approximation is the optimal low-rank approximation of the low-

rank signal-plus-noise matrix but not the low-rank signal matrix. Similarly here,

the ICCA estimates find the best representation of noisy canonical vectors and not

the true underlying canonical vectors. Instead we want the optimal estimates of the

population canonical vectors.

5.5 Main Results

In this section we state our main results in the form of theorems and corollar-

ies. We prove all these results in Sections 5.9 and 5.10. We begin by providing the

asymptotic limit of the optimal weights to use in the ICCA+ canonical vector esti-

mates. The general form of these weights is independent of the data model and so

we provided closed form expressions of these weights when using data modeled in

(5.1). In the general case, we provide an algorithm to compute the optimal weights

using the spectrum of our individual data matrices. We then define a notion of vec-

tor accuracy and provide results for the accuracy of the different estimates proposed

herein. Finally, we provide the closed form expressions for the optimal weights when
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our data modeled in (5.1) also contains missing data.

Theorem 5.5.1. The solutions to (5.12) are given by

λopt
x = diag

( ◦
UH
x Ux (Θx + Ikx)

−1/2
)

λopt
y = diag

( ◦
UH
y Uy

(
Θy + Iky

)−1/2
)
.

(5.13)

The proof of this is very straightforward. The key observation is that the optimal

weights are dependent on the matrix products
◦
UH
x Ux and

◦
UH
y Uy. We made contact

with these weights in Chapters II and III. The diagonal elements of these matrices are

the accuracies of the estimated components of our signal subspaces. It makes sense

then that the optimal weights tell us to place less weight on inaccurately estimated

signal subspaces. Next we provide the asymptotic limit of these weights, which relies

on the asymptotic limit of entries of the matrices
◦
UH
x Ux and

◦
UH
y Uy. This theorem is

for a general noise distribution and does not assume that the noise is Gaussian.

Theorem 5.5.2. For the data model in (5.1) without the Gaussian noise assumption,

the solution in (5.13) exhibits the following behavior in the asymptotic regime where

p, q, n→∞ with p/n→ cx and q/n→ cy.

a) For i = 1, . . . , kx,

λ
(i)
x,opt

a.s.−→


DµZx

(
σ

(i)
x

)√ −2ϕµZx

(
σ

(i)
x

)
D′µZx

(
σ

(i)
x

)(
1+DµZx

(
σ

(i)
x

)) if
(
θ

(x)
i

)2

> 1/DµZx
(b+
x )

0 otherwise

and for i = 1, . . . , ky,

λ
(i)
y,opt

a.s.−→


DµZy

(
σ

(i)
y

)√ −2ϕµZy

(
σ

(i)
y

)
D′µZy

(
σ

(i)
y

)(
1+DµZy

(
σ

(i)
y

)) if
(
θ

(y)
i

)2

> 1/DµZy
(b+
y )

0 otherwise

where σ
(i)
x = D−1

µZx

(
1/
(
θ

(x)
i

)2
)

, σ
(i)
y = D−1

µZy

(
1/
(
θ

(y)
i

)2
)

and

DµZx
(z) =:

[∫
z

z2 − t2
dµZx (t)

]
×
[
cx

∫
z

z2 − t2
dµZx (t) +

1− cx
z

]
for z 6∈ supp µZx

DµZy
(z) =:

[∫
z

z2 − t2
dµZy (t)

]
×
[
cy

∫
z

z2 − t2
dµZy (t) +

1− cy
z

]
for z 6∈ supp µZy
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b) The weights used by the ICCA canonical vector estimates exhibit the following

behavior

λ
(i)
x,icca =

1√(
θ̂

(x)
i

)2

+ 1

a.s.−→


1

D−1
µZx

(
1/
(
θ
(x)
i

)2
) if

(
θ

(x)
i

)2

> 1/DµZx
(b+
X)

1√
b2X+1

otherwise

and

λ
(i)
y,icca =

1√(
θ̂

(y)
i

)2

+ 1

a.s.−→


1

D−1
µZy

(
1/
(
θ
(y)
i

)2
) if

(
θ

(y)
i

)2

> 1/DµZy
(b+
Y )

1√
b2Y +1

otherwise

This theorem highlights some key similarities between the ICCA and optimal

weights used in ICCA+ . First, both sets of weights exhibit a phase transition. When

the corresponding SNR for a subspace component is below the critical, the weights are

constant. When the SNR is below this phase transition, the corresponding subspace

component is uninformative. Below this phase transition, the ICCA weights are a

non-zero constant, however, the optimal weights are zero. We expect the optimal

weights to perform better in this uninformative regime since they place no weight on

estimated subspaces that are simply noise.

Theorem 5.5.1 motivates Algorithm 5.1 to compute the ICCA+ canonical vectors

estimates given two data matrices. These data matrices are assumed to be noisy

observation of low-rank signals, but we place no model on the noise. To estimate the

D transform and its derivative we follow [117]. For a matrixp× n matrix X, define

D̂ (z,X) =:
1

p
tr
(
z
(
z2Ip −XXH

)−1
)
· 1

n
tr
(
z
(
z2In −XHX

)−1
)

(5.14)

and

D̂′(z;X) =:
1

p
tr
(
z
(
z2Ip −XXH

)−1
)
· 1

m
tr
(
−2z2

(
z2Im −XH

)−2
+
(
z2In −XHX

)−1
)

+

1

m
tr
(
z
(
z2Im −XHX

)−1
)
· 1

n
tr
(
−2z2

(
z2Ip −XXH

)−2
+
(
z2Ip −XXH

)−1
)
.

(5.15)

Next, we characterize the limiting behavior of the weights when using Gaussian

noise.
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Input: Zero-meaned Dataset 1: X = p× n matrix
Input: Zero-meaned Dataset 2: Y = q × n matrix
Input: Rank estimates k̂x,k̂y
Compute individual data SVDs X = ÛxΣ̂xV̂

H
x , Y = ÛyΣ̂yV̂

H
y1

Compute Σ̂k̂x
x = diag(σ̂k̂x+1, · · · , σ̂)2

Compute Σ̂k̂x
x = diag(σ̂k̂x+1, · · · , σ̂)3

for i = 1, . . . , k̂x do4

Compute D̂(σ̂
(x)
i , Σ̂k̂x

x ) using (5.14) and D̂′(σ̂
(x)
i , Σ̂k̂x

x ) using (5.15)5

Compute λ
(i)
x,opt using Theorem 5.5.26

for i = 1, . . . , k̂y do7

Compute D̂(σ̂
(y)
i , Σ̂

k̂y
x ) using (5.14) and D̂′(σ̂

(y)
i , Σ̂

k̂y
x ) using (5.15)8

Compute λ
(i)
y,opt using Theorem 5.5.29

Compute ÛK̃ and V̂K̃ from the SVD of
◦
V H
x

◦
Vy10

Compute ŵ
(i)
x,icca+ =

◦
Ux diag(λ

(1)
x,opt, . . . , λ

(k̂x)
x,opt)ÛK̃11

Compute ŵ
(i)
y,icca+ =

◦
Uy diag(λ

(1)
y,opt, . . . , λ

(k̂y)
y,opt)V̂K̃12

Output: Ŵ icca+
x =

[
ŵ

(1)
x,icca+, . . . , ŵ

(k̂x)
x,icca+

]
Output: Ŵ icca+

y =
[
ŵ

(1)
y,icca+, . . . , ŵ

(k̂y)
y,icca+

]
Figure 5.1: Algorithm to compute the ICCA+ canonical vectors.
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Corollary 5.5.1. In the data model of (5.1), we have that

λ
(i)
x,opt

a.s.−→


√√√√ (

θ
(x)
i

)4
−cx(

θ
(x)
i

)2
((

θ
(x)
i

)2
+cx

)((
θ
(x)
i

)2
+1

) if
(
θ

(x)
i

)2

> c
1/2
x

0 otherwise

and for i = 1, . . . , ky,

λ
(i)
y,opt

a.s.−→


√√√√ (

θ
(y)
i

)4
−cy(

θ
(y)
i

)2
((

θ
(y)
i

)2
+cy

)((
θ
(y)
i

)2
+1

) if
(
θ

(y)
i

)2

> c
1/2
y

0 otherwise

and

λ
(i)
x,icca

a.s.−→


θ
(x)
i√(

1+
(
θ
(x)
i

)2
)(

cx+
(
θ
(x)
i

)2
) if

(
θ

(x)
i

)2

> c
1/2
x

1
1+
√
cx

otherwise

and

λ
(i)
y,icca

a.s.−→


θ
(y)
i√(

1+
(
θ
(y)
i

)2
)(

cy+
(
θ
(y)
i

)2
) if

(
θ

(y)
i

)2

> c
1/2
y

1
1+
√
cy

otherwise

Under the Gaussian noise assumption, we see that the phase transition is the same

as the consistency results in Chapter IV. We also notice that the limiting behavior

of these weights may be calculated simply from the system parameters Θx, Θy, n, p,

and q.

We next turn toward the accuracy of the estimates using these weights. We define

the accuracy of the canonical vector estimates of w
(i)
x using weights, λ = [λ1, . . . , λkx ]

as

ACC(i)(λ) =

∣∣∣∣∣ w
(i)H
x ŵ

(i)
x (λ)

‖w(i)
x ‖‖ŵ(i)

x (λ)‖

∣∣∣∣∣
2

=

(
U

(i)H

K̃
(Θx + Ikx)

−1/2 UH
x

◦
UxΛÛ

(i)

K̃

)2(
U

(i)H

K̃
(Θx + Ikx)

−1 U
(i)

K̃

)(
Û

(i)H

K̃
Λ2Û

(i)

K̃

) (5.16)

We may similarly define the accuracy for the canonical vector estimates of w
(i)
y . We

do not report the analogous theorem to save space. Simply replace all x subscripts
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with y.

Theorem 5.5.3. Assume that for i = 1, . . . , kx θ
(x)
i > 1/DµZx

(b+
X) and that for i =

1, . . . , ky, θ
(y)
i > 1/DµZy

(b+
Y ). Then in the asymptotic regime considered in Theorem

5.5.2, the accuracy defined in (5.16) exhibits the following behavior:

ACC(i)(λ)
a.s.−→

∑kx
j=1

(
U

(i)

K̃

)2

j

αjλj√(
θ
(x)
j

)2
+1

2

(∑kx
j=1

(
U

(i)

K̃

)2

j

1(
θ
(x)
j

)2
+1

)(∑kx
j=1

(
U

(i)

K̃

)2

j
λ2
j

) ,

where

αj =

√√√√√−2φµZx

(
σ

(j)
x

)
DµZx

(
σ

(j)
x

)
D′µZx

(
σ

(j)
x

) .

Consequently,

a)

ACC(i)(λx,opt)
a.s.−→

∑kx
j=1

(
U

(i)

K̃

)2

j

α2
j

√
DµZx

(
σ

(j)
x

)
√(

θ
(x)
j

)2
+1

√
DµZx

(
σ

(j)
x

)
+1

2

(∑kx
j=1

(
U

(i)

K̃

)2

j

1(
θ
(x)
j

)2
+1

)(∑kx
j=1

(
U

(i)

K̃

)2

j

α2
jDµZx

(
σ

(j)
x

)
1+DµZx

(
σ

(j)
x

)
) ,

b)

ACC(i)(λx,icca)
a.s.−→

∑kx
j=1

(
U

(i)

K̃

)2

j

αj√(
θ
(x)
j

)2
+1

√(
σ

(j)
x

)2
+1

2

(∑kx
j=1

(
U

(i)

K̃

)2

j

1(
θ
(x)
j

)2
+1

)(∑kx
j=1

(
U

(i)

K̃

)2

j

1(
σ

(j)
x

)2
+1

) .

Similar expressions exist for ACC(i)(λy,opt) and ACC(i)(λy,icca) and are found by re-

placing the quantities dependent on X with those dependent on Y .

This theorem holds for low-rank signals with non-Gaussian noise. Similar to

Corollary 5.5.1, we may explicitly solve the D-transforms for the Gaussian settings

to recover closed form expressions of the accuracy in terms of Θx, Θy, p, q, and n. A

similarly corollary exists for the accuracy of the canonical vector estimates of w
(i)
y by
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replacing the quantities dependent on x with those dependent on y.

Corollary 5.5.2. In the same setting as Theorem 5.5.3, under the data model of

(5.1), we have that,

ACC(i)(λ)
a.s.−→

∑kx
j=1

(
U

(i)

K̃

)2

j

αjλj√(
θ
(x)
j

)2
+1

2

(∑kx
j=1

(
U

(i)

K̃

)2

j

1(
θ
(x)
j

)2
+1

)(∑kx
j=1

(
U

(i)

K̃

)2

j
λ2
j

) ,

where

αj =

(
θ

(x)
i

)4

− cx(
θ

(x)
1

)4

+
(
θ

(x)
i

)2

cx

.

Consequently,

a)

ACC(i)(λx,opt)
a.s.−→

∑kx
j=1

(
U

(i)

K̃

)2

j

α2
j(

θ
(x)
j

)2
+1(∑kx

j=1

(
U

(i)

K̃

)2

j

1(
θ
(x)
j

)2
+1

) ,
b)

ACC(i)(λx,icca)
a.s.−→

∑kx
j=1

(
U

(i)

K̃

)2

j

αj(
θ
(x)
j

)2
+1

θ
(x)
j√(

θ
(x)
j

)2
+c

2

(∑kx
j=1

(
U

(i)

K̃

)2

j

1(
θ
(x)
j

)2
+1

)(∑kx
j=1

(
U

(i)

K̃

)2

j

1(
θ
(x)
j

)2
+1

(
θ
(x)
j

)2

(
θ
(x)
j

)2
+c

)

Conjecture 5.5.1. Based on the observations by Bao et. al [2], we believe that

the canonical vectors used by empirical CCA will be uninformative when κ2
i < rc.

In this regime, we believe that ACC(λ) = 0. See Appendix C for a proof of the

empirical CCA canonical vector accuracy. There is still one term that we cannot

approximate in closed form but using a numerically simulation for this term in the

accuracy approximation yields good results.
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5.5.1 Extension to missing data

We now consider the setting where our data matrices X and Y have missing

entries. In such as setting, our matrices are modeled as

X =
(
UxV

H
x + Zx

)
�Mx

Y =
(
UyV

H
y + Zy

)
�My

(5.17)

where

Mx
ij =

1 with probability γx

0 with probability 1− γx
My

ij =

1 with probability γy

0 with probability 1− γy

and � denotes the Hadamard or element-wise product. Similar to Chapter IV, we

make the following low-coherence assumption about our data.

Assumption 5.5.1. In the missing data setting, assume that the columns of Ux,

Uy, Vx, and Vy satisfy a ‘low-coherence’ condition in the following sense: we sup-

pose that there exist non-negative constants ηu,x, Cu,x, ηu,y, Cu,y, ηv,x, Cv,x,ηv,y, Cv,y

independent of n, such that for i = 1, . . . , kx and  = 1, . . . , ky,

max
i
‖u(x)

i ‖∞ ≤ ηu,x
logCu,x p
√
p

, max
i
‖u(y)

j ‖∞ ≤ ηu,y
logCu,y q
√
q

max
i
‖v(x)

i ‖∞ ≤ ηv,x
logCv,x n√

n
, max

i
‖v(x)

j ‖∞ ≤ ηv,y
logCv,y n√

n
.

In the missing data setting, we consider the analogous optimization problem to

(5.12. The main difference is assuming that the entries of our population canonical

vectors are observed with the same probability as our data.

λopt
x = argmin

λx

∥∥∥γxWx − Ûx diag(λx)ÛK̃

∥∥∥
F

λopt
y = argmin

λy

∥∥∥γyWy − Ûy diag(λx)V̂K̃

∥∥∥
F
.

(5.18)

Using these optimization problems, we have an analogous Theorem to Corollary 5.5.1

for missing data. Again, these weights may be computed in closed form with knowl-

edge of Θx, Θy, p, q, and n. A key observation of this theorem is that missing

data only decreases the relative SNR and therefore we may still use Algorithm 5.1 to

compute these weights if the noise is non-Gaussian.
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Theorem 5.5.4. Let p, q, n → ∞ with p/n → cx and q/n → cy and assume the

coherence conditions given in Assumption 5.5.1. Given data modeled in (5.17), then

the solution to (5.18) exhibits the following behavior for γx, γy ∈ (0, 1]

λ
(i)
x,opt

a.s.−→


√√√√ γ2

x

(
θ
(x)
i

)4
−cx

γx
(
θ
(x)
i

)2
(
γx
(
θ
(x)
i

)2
+cx

)(
γx
(
θ
(x)
i

)2
+1

) if
(
θ

(x)
i

)2

> c
1/2
x

γx

0 otherwise

and for i = 1, . . . , ky,

λ
(i)
y,opt

a.s.−→


√√√√ γ2

y

(
θ
(y)
i

)4
−cy

γy
(
θ
(y)
i

)2
((

θ
(y)
i

)2
+cy

)(
γy
(
θ
(y)
i

)2
+1

) if
(
θ

(y)
i

)2

>
c
1/2
y

γy

0 otherwise

and

λ
(i)
x,icca

a.s.−→


√
γxθ

(x)
i√(

1+γx
(
θ
(x)
i

)2
)(

cx+γx
(
θ
(x)
i

)2
) if

(
θ

(x)
i

)2

> c
1/2
x

γx

1√
γx(1+

√
cx)

otherwise

and

λ
(i)
y,icca

a.s.−→


√
γyθ

(y)
i√(

1+γy
(
θ
(y)
i

)2
)(

cy+γy
(
θ
(y)
i

)2
) if

(
θ

(y)
i

)2

>
c
1/2
y

γy

1
√
γy(1+

√
cy)

otherwise

5.6 Orthogonal Canonical Vector Estimates

Algorithm 5.1 requires the entire spectrum of both X and Y , which requires

computing a p × n and q × n SVD. As p, q, n → ∞, these SVDs become more

expensive. Motivated by this drawback of computing the optimal weights, we are

curious to explore the performance of an orthogonal approximation to (5.8). Define

the orthogonal canonical vector estimates as

Ŵ orth
x =

◦
UxÛK̃

Ŵ orth
y =

◦
UyV̂K̃ .

(5.19)
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In light of our optimal weighting matrices Λopt
x and Λopt

y , the orthogonal approximation

set Λopt
x = Ik̂x and Λopt

y = Ik̂y . With this observation, we determine the asymptotic

accuracy of the orthogonal estimates with the following Theorem.

Theorem 5.6.1. In the same setting as Theorem 5.5.3, we have the limiting accuracy

of the orthogonal approximation is

ACC(i)(λx,orth)
a.s.−→

∑kx
j=1

(
U

(i)

K̃

)2

j

αj√(
θ
(x)
j

)2
+1

2

(∑kx
j=1

(
U

(i)

K̃

)2

j

1(
θ
(x)
j

)2
+1

)(∑kx
j=1

(
U

(i)

K̃

)2

j

) .

A similar expression exists for the accuracy of the canonical vectors of Y by substi-

tuting the appropriate parameters.

A natural question arises: When are the orthogonal canonical correlation vectors

equivalent to the ICCA and ICCA+ estimates? By examining the accuracy expression

in Theorems 5.5.3 and 5.6.1, we have the following conditions for equivalency between

the estimates:

1. UK̃ = Ikx

2. Θx = αIkx

Similar conditions hold for the canonical vectors of Y . The first condition is the

most interesting. The matrix UK̃ controls how the signals between datasets interact.

Therefore, when UK̃ = I, each canonical vector is a scaled version of a column of

Ux, representing one signal component from the dataset. While this scaling will be

different for each estimate, it does not affect the accuracy of the estimates, which are

all the same. When the SNRs are all the same, a similar behavior occurs and the

weights on each component of UK̃ are all the same regardless of estimate.

5.7 Empirical Results - Synthetic Data

In this section we explore the empirical accuracy of the four estimates of the

population canonical vectors, empirical CCA, ICCA, ICCA+, and orthogonal. In our

experiments, we show the extreme sub-optimality of the empirical CCA estimates;

all other estimates outperform empirical CCA in the sample deficient regime. More

interestingly, we compare the performance of the other three estimates for a few

parameter choices to highlight key differences.
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5.7.1 Performance on non identity UK̃

As discussed in Section 5.6, when UK̃ is identity, the ICCA, ICCA+, and orthog-

onal estimates all return a scaled version of the same estimate. Therefore in this

section, we consider the case where UK̃ is not identity. We consider a rank-2 setting

where kx = ky = 2, p = 200, q = 250, Θx = Θy = diag(16, 1), Pxy = diag(0.9, 0.9),

VK = I2, and

UK =
1√
5

[
1 −2

2 1

]
.

In this setup,

UK̃ =

[
−0.8559 −0.5172

−0.5172 0.8559

]
.

In this simulation, we sweep over n and compute the accuracy given in (5.16) of our

four estimates for each of the two canonical vectors. For each value of n, we average

over 750 different generated data matrices from (5.1). Figure 5.2 plots the results.

For this parameter setup, we see that the ICCA+ estimate performs well through-

out all values of n. Because UK̃ is non-identity, we get the strange behavior that,

when the second subspace component is uninformative, the orthogonal estimate out-

performs the ICCA estimate. This occurs for low values of n, around 100-200. Once

n is large enough that the second component is informative, the orthogonal approxi-

mation becomes suboptimal but still outperforms the empirical CCA estimate. The

beauty of the ICCA+ estimate is that it knows when the subspace estimates are in-

accurate. In this low n regime, it does not give much weight to the inaccurate second

subspace and so outperforms the ICCA estimate, which places a non-zero weight on

the second very noisy subspace estimate. However for large values of n where both

subspace estimates are accurate, the ICCA estimate outperforms the orthogonal ap-

proximation and achieves the same performance as the ICCA+ estimate.

5.7.2 Convergence

The theorems presented in this chapter state their results for the asymptotic

regime of p, q, n → ∞ with p/n → cx and q/n → cy. Here, for three fixed values

of cx = 0.5, 1, 2, we generate data from (5.1) with the parameters from Figure 5.2

for 3 values of p = 100, 500, 1000 to ensure that the estimates do indeed converge.

Figure 5.3 plots the accuracy as defined in (5.16) for the first canonical vector for all

four estimators. We also plot one standard deviation errorbars from the simulation.

Figures 5.4 and 5.5 plot the accuracy convergence for the individual estimates for
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Figure 5.2: Accuracy plots as a function of n for a rank-2 setting where kx = ky = 2,
p = 200, q = 250, Θx = Θy = diag(16, 1), Pxy = diag(0.9, 0.9), VK = I2, and non-identity
UK . Accuracy is defined in (5.16). The left figure plots the accuracy of the first canonical
vector and the right figure plots the accuracy of the second canonical vector.

both the first and second canonical vectors.

These three figures paint a nice picture of the different estimators. We first see that

the CCA estimator fails for all three values of cx. This gives credence to Conjecture

5.5.1 that when n < p + q the canonical vectors returned by empirical CCA are

random. For the other three estimators, we see accuracy increase as cx decreases.

This makes sense as we expect our estimates to perform better given more samples

relative to the dimension size. Next we note that as p increases, the errorbars on all

estimates decrease, empirically verifying the belief that the accuracy does indeed have

an asymptotic limit. Finally, we note that these figures reinforce the fact that the

optimal weights are optimal in the asymptotic regime. For small p, the orthogonal

estimate slightly outperforms the ICCA+ estimate. However, when p = 1000, we

see that this gap closes and that the ICCA+ estimate starts to outperform all other

estimates.

5.7.3 Robustness to k̂x

Finally we explore the performance of our estimators when we change the estimate

of the number of subspace components, k̂x. The theorems presented in this chapter

assume that k̂x = kx. However, we explore the performance of these estimates when

this assumption is not valid. Figure 5.6 and 5.7 plot the performance of the estimates

while sweeping over k̂x = k̂y for cx = 0.2 and cx = 1, respectively. We use a different
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Figure 5.3: Convergence plots of the first canonical vector of each estimate for three
values of p. Results are plotted for three fixed values of cx = 0.5, 1, 2. The simulation
setting is the same as Figure 5.2 for a rank-2 setting where kx = ky = 2, p = 200, q = 250,
Θx = Θy = diag(16, 1), Pxy = diag(0.9, 0.9), VK = I2, and non-identity UK . Errorbars are
1 standard deviation.

simulation setting than Figure 5.2. Here we set setting kx = ky = 3, p = 200, q = 250,

Θx = Θy = diag(3, 2, 1), Pxy = diag(0.9, 0.5, 0.3),Vk = I3 and

Uk =

 1√
3

 1

1

1

 , 1√
2

 1

0

−1

 , 1√
6

 1

−2

1


 .

From these Figures we see that all estimates suffer greatly when k̂x < kx = 3. This

makes sense as we don’t use all of the possible signals that are present. The more

interesting behavior occurs when we overestimate kx, which is a common practice

in many applications. We see that the first canonical vector in both cases remains

robust to overestimating k̂x. This first canonical vector corresponds to the largest

singular value of K̃xy and so the corresponding singular vector estimate is accurate.

However, the higher order canonical vectors are less accurate as we overestimate k̂x.

This accuracy suffers more for w
(3)
x with increasing k̂x. For the case of c = 0.2 in

Figure 5.6, we see that for these parameters, ICCA+ is the most robust even as we

greatly overestimate k̂x and that the orthogonal estimate is more accurate than the

ICCA estimate when we overestimate k̂x. This makes sense as Θx and Θy are very

close to identity. For all cases though, the CCA estimate is very bad and all of the

ICCA, orthogonal, and ICCA+ estimates greatly outperform it. In Figure 5.7 when

c = 1, we see that the accuracy is much lower for all estimates; this makes sense as a

larger c corresponds to fewer samples. Still though, the ICCA+ estimate is the most

robust estimate and the CCA estimate is completely random.
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Figure 5.4: Accuracy convergence plots for the top two canonical vectors of the ICCA
and ICCA+ estimates. Results are plotted for three fixed values of cx = 0.5, 1, 2 for three
different values of p. The simulation setting is the same as Figure 5.3 for a rank-2 setting
where kx = ky = 2, p = 200, q = 250, Θx = Θy = diag(16, 1), Pxy = diag(0.9, 0.9),
VK = I2, and non-identity UK . Errorbars are 1 standard deviation.
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Figure 5.5: Accuracy convergence plots for the top two canonical vectors of the orthogonal
and empirical CCA estimates. Results are plotted for three fixed values of cx = 0.5, 1, 2 for
three different values of p. The simulation setting is the same as Figure 5.3 for a rank-2
setting where kx = ky = 2, p = 200, q = 250, Θx = Θy = diag(16, 1), Pxy = diag(0.9, 0.9),
VK = I2, and non-identity UK . Errorbars are 1 standard deviation.

141



0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

khat

a
c
c
.

 

 

ICCA

Orth

ICCA+

CCA

(a) w
(1)
x

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

khat
a
c
c
.

 

 

ICCA

Orth

ICCA+

CCA

(b) w
(2)
x

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

khat

a
c
c
.

 

 

Plug−in
Orth
ICCA+
CCA

(c) w
(3)
x

Figure 5.6: Accuracy plots of the first two canonical vector estimates a function of k̂x
for c = 0.2. The simulation setting is the same as Figure 5.3 for a rank-2 setting where
kx = ky = 2, p = 200, q = 250, Θx = Θy = diag(16, 1), Pxy = diag(0.9, 0.9), VK = I2, and
non-identity UK . Errorbars are 1 standard deviation.
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Figure 5.7: Accuracy plots of the first two canonical vector estimates a function of k̂x
for c = 1. The simulation setting is the same as Figure 5.3 for a rank-2 setting where
kx = ky = 2, p = 200, q = 250, Θx = Θy = diag(16, 1), Pxy = diag(0.9, 0.9), VK = I2, and
non-identity UK . Errorbars are 1 standard deviation.
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5.8 Empirical Results - Real-World Data

To compare the performance of these canonical vector estimates on real world

applications, we reuse two of the controlled experiments we created in Chapter IV.

These examples showcase quite well the very nuanced behavior of the ICCA, orthog-

onal, and ICCA+ estimates. We recall that the ICCA+ estimate is optimal in an

asymptotic sense and so that, as in some of these examples, finite p, q, n cause the

ICCA+ estimates to perform slightly worse than the ICCA or orthogonal estimates.

The ICCA canonical vector estimate requires the inversion of R̂xx and R̂yy (or equiv-

alently computing the SVD of X and Y ), which involves inverting the estimated

singular values of Rxx and Ryy. In some cases, inaccurate singular value estimates

actually improve the weightings applied to the singular vectors, which thus improves

the canonical vector accuracy. While the orthogonal estimate works quite well when

UK̃ is identity, it suffers a performance loss when this assumption is not true. There-

fore, even in the finite p, q, n applications, the ICCA+ canonical vector estimate is the

most robust estimator.

5.8.1 Video-Video Experiment

First, we use the video-video experiment consisting of 5 stationary flashing lights

and two stationary iPhone cameras. Figure 5.8 shows the views from the left and

right cameras and manually identifies each source. The 5 sources are a blue flashing

police light (BPL) outlined in the green rectangle, one phone with a flashing strobe

light (PH1) outlined in the dark blue rectangle, another phone with a flashing strobe

light (PH2) outlined in a red rectangle, a tablet with a flashing screen (T1) outlined

in the magenta rectangle, and a red flashing police light (RPL) outlined in the cyan

rectangle. From left to right, the left camera can see BPL, PH1, and PH2. From left

to right, the right camera can see PH2, T1, and RPL. Therefore, both cameras share

the common signal of PH2. As we saw in Chapter IV, the police lights RPL and BPL

are in antiphase and thus also correlated. Therefore, for this experiment each view

has 3 signals, two of which are correlated.

To synchronize the cameras we used the RecoLive MultiCam iPhone app 1. After

turning on all light sources, we recorded 30 seconds of video at 30 frames per second.

The resolutions of the iPhone’s cameras were both 1920 × 1080 pixels. To post-

process the video data, we first converted the video streams to grayscale and then

downsampled each spatial dimension by a factor of 8, resulting in a resolution of

1http://recolive.com/en/
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(a) Left Camera (b) Right Camera

Figure 5.8: Manual source identification of each camera. Both cameras share a common
flashing phone, outlined in a red rectangle. Each camera has two independent sources
besides the shared flashing phone.

240 × 135. We then vectorized each image and stacked the 900 frames into data

matrices , both of dimension 32400 × 900. Finally, we subtract the mean from each

dataset so that we may run PCA, CCA, and ICCA on the zero-mean datasets, Xleft

and Yright.

To run these algorithms, we use knowledge of the simulation setup and set k̂x =

k̂y = 3. Figures 5.9 - 5.11 plot the first canonical vector estimates for the left camera

after frame 5, 30, and 600, respectively. Each figure plots the absolute value of the

ICCA, orthogonal, ICCA+, and empirical CCA canonical vector estimates. We plot

the absolute value or each vector to discover correlated pixels; a left canonical vector

gives more weight to left camera pixels it believe are correlated with the pixels in the

right camera. Each figure also plots the difference between the ICCA and ICCA+

canonical vectors and the difference between the orthogonal and ICCA+ canonical

vectors. In these difference figures, pixels with negative values represent pixels that

the ICCA+ estimate believes are more correlated while positive values represent pixels

that the ICCA+ estimate believes are less correlated. We plot the ICCA, orthogonal,

and ICCA+ estimates on the same scale, but plot the CCA estimates on its own scale

because they vary widely (i.e. are inaccurate).

We can draw a number of conclusions from Figures 5.9 - 5.11. First, the empirical

CCA canonical vector estimates are meaningless. This gives credence to Conjecture

5.5.1 because we are in the sample deficient regime where the number of pixels is

much larger than the number of frames that we have. Second, the first population

canonical vector identifies the shared camera PH2, which is the rightmost source in

the left camera. As we get more frames, these canonical vector estimates become

more “accurate”, i.e. identify only that source. Third, the ICCA, orthogonal, and
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ICCA+ canonical vectors estimates are all very similar. Each estimate places a large

weight on pixels around the shared source, PH2. However, there are slight differences

between the estimates as seen in the sub-figures (e) and (f). We note that the scale

of these differences in on the order of 10−3, which is fairly small compared to the

magnitude of the pixels. First we see that the ICCA estimate places more weight

on the middle source PH1 than the ICCA+ estimate. This is not desirable as source

PH1 is not correlated with any source in the right camera. Second, we see that the

orthogonal estimate places less weight on source PH1 and less weight on source BPL

than the ICCA+ estimate. This is desirable as these sources are not correlated with

the shared source PH2.

Therefore, we can conclude for this first canonical vector, the orthogonal estimate

performs the best and that the ICCA+ estimate performs better than the plug-in

estimate. We attribute this behavior to the fact that there is no mixing of principle

components in this example, as each source is identified as a principle component (see

Chapter IV). This results in a UK̃ very close to identity, which is when the orthogonal

estimate is known to perform well.

Figures 5.12 - 5.14 plot the second canonical vector estimates for the left camera

after frame 5, 30, and 600, respectively. Each figure again plots the absolute value of

the ICCA, orthogonal, ICCA+, and empirical CCA canonical vector estimates. Each

figure also plots the difference between the ICCA and ICCA+ canonical vectors and

the orthogonal and ICCA+ canonical vectors. In these figures, pixels with negative

values represent pixels that the ICCA+ estimate believes are more correlated while

positive values represent pixels that the ICCA+ estimate believes are less correlated.

Similar to the estimates of the first canonical vector, we see that the empirical

CCA canonical vector estimate is just simply noise. The ICCA, orthogonal, and

ICCA+ estimates are all very similar and all identify source BPL, which is correlated

to source RPL in the right camera. Again, these estimates improve as we get more

samples (frames). Examining the difference plots in (e) and (f), we once again see

that the ICCA estimate is suboptimal as it places more weight on the independent

source PH1 than the ICCA+ estimate. The difference between the orthogonal and

ICCA+ estimates is fairly interesting. The orthogonal estimate places more weight

on source PH2, while the ICCA+ estimate places more weight on source PH1. Both

of these sources are not correlated with the police lights and so we conclude that

the orthogonal and ICCA+ estimates do equally well estimating the second canonical

vector.

146



 

 

0

0.05

0.1

0.15

0.2

(a) ICCA

 

 

0

0.05

0.1

0.15

0.2

(b) Orthogonal

 

 

0

0.05

0.1

0.15

0.2

(c) ICCA+

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(d) CCA

 

 

−2

−1

0

1

2

3

4

x 10
−4

(e) ICCA minus ICCA+

 

 

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

(f) Orthogonal minus ICCA+

Figure 5.9: First canonical vector estimates for the left camera at frame 5. This corre-
sponds to a total capture time of 1/6 of a second. (a)-(d) show the absolute value of the
vectors displayed in an image so that large values indicate correlated pixels. (e)-(f) plot the
difference between the ICCA estimate and the ICCA+ estimate and the orthogonal estimate
and the ICCA+ estimate. Positive values indicate pixels that the ICCA+ estimate thinks
are less correlated while negative values indicate pixels that the ICCA+ estimate thinks are
more correlated.
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Figure 5.10: First canonical vector estimates for the left camera at frame 30. This
corresponds to a total capture time of 1 second. (a)-(d) show the absolute value of the
vectors displayed in an image so that large values indicate correlated pixels. (e)-(f) plot the
difference between the ICCA estimate and the ICCA+ estimate and the orthogonal estimate
and the ICCA+ estimate. Positive values indicate pixels that the ICCA+ estimate thinks
are less correlated while negative values indicate pixels that the ICCA+ estimate thinks are
more correlated.
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Figure 5.11: First canonical vector estimates for the left camera at frame 600. This
corresponds to a total capture time of 20 seconds. (a)-(d) show the absolute value of the
vectors displayed in an image so that large values indicate correlated pixels. (e)-(f) plot the
difference between the ICCA estimate and the ICCA+ estimate and the orthogonal estimate
and the ICCA+ estimate. Positive values indicate pixels that the ICCA+ estimate thinks
are less correlated while negative values indicate pixels that the ICCA+ estimate thinks are
more correlated.
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Figure 5.12: Second canonical vector estimates for the left camera at frame 5. This
corresponds to a total capture time of 1/6 of a second. (a)-(d) show the absolute value
of the vectors displayed in an image so that large values indicate correlated pixels. (e)-(f)
plot the difference between the ICCA estimate and the ICCA+ estimate and the orthogonal
estimate and the ICCA+ estimate. Positive values indicate pixels that the ICCA+ estimate
thinks are less correlated while negative values indicate pixels that the ICCA+ estimate
thinks are more correlated.
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Figure 5.13: Second canonical vector estimates for the left camera at frame 30. This
corresponds to a total capture time of 1 second. (a)-(d) show the absolute value of the
vectors displayed in an image so that large values indicate correlated pixels. (e)-(f) plot the
difference between the ICCA estimate and the ICCA+ estimate and the orthogonal estimate
and the ICCA+ estimate. Positive values indicate pixels that the ICCA+ estimate thinks
are less correlated while negative values indicate pixels that the ICCA+ estimate thinks are
more correlated.

151



 

 

0.05

0.1

0.15

0.2

0.25

(a) ICCA

 

 

0.05

0.1

0.15

0.2

0.25

(b) Orthogonal

 

 

0.05

0.1

0.15

0.2

0.25

(c) ICCA+

 

 

0.01

0.02

0.03

0.04

0.05

(d) CCA

 

 

−1

0

1

2

3

4

5

6

x 10
−3

(e) ICCA minus ICCA+

 

 

−6

−4

−2

0

2

4

6
x 10

−3

(f) Orthogonal minus ICCA+

Figure 5.14: Second canonical vector estimates for the left camera at frame 600. This
corresponds to a total capture time of 20 seconds. (a)-(d) show the absolute value of the
vectors displayed in an image so that large values indicate correlated pixels. (e)-(f) plot the
difference between the ICCA estimate and the ICCA+ estimate and the orthogonal estimate
and the ICCA+ estimate. Positive values indicate pixels that the ICCA+ estimate thinks
are less correlated while negative values indicate pixels that the ICCA+ estimate thinks are
more correlated.
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5.8.2 Audio-Audio Experiment

We also explore the accuracy of the canonical vectors estimates on the audio-

audio experiment created in Chapter IV. In this experiment, we generate two 30

second audio sequences. Each sequence contains two pure-tones, which are amplitude

modulated (AM) at different frequencies. In addition we add uncorrelated coffee

shop noise, which is independent between each audio sequence. One pure-tone in

each sequence is amplitude modulated at a shared rate, inducing correlation between

the audio sequences. The remaining pure-tones are amplitude modulated at different

rates, making them independent of the shared AM tones. Our waveforms are

a1(t) =
1

3
s1(t) +

1

3
s2(t) +

1

3
n1(t)

a2(t) =
1

3
s3(t) +

1

3
s4(t) +

1

3
n2(t)

where

s1(t) =
(1 + sin(2πt))

2
sin (2π (250t))

s2(t) =
(1 + cos(2π(3t))

2
sin (2π (400t))

s3(t) =
(1 + sin(2πt))

2
sin (2π (300t))

s4(t) =
(1 + cos(2π(5t))

2
sin (2π (550t))

n1(t) = independent coffee shop noise.

n2(t) = independent coffee shop noise.

All time sequences are generated with a sample rate of 44.1 kHz. Figure 5.15 plots

the spectrogram of each sequence and zooms in on a smaller portion of the spectrum

to see the AM sequences. Table 5.1 summarizes each of our signals in each audio

sequences.

To post-process the data, we separate the audio streams into equal window sizes of

2940 time points, corresponding to a time interval of 1/15 second. On each window,

we run a 4096 point FFT and take the magnitude of the first 2049 points as a feature

vector. We then stack the feature vectors for all windows into a matrix and subtract

the mean, resulting in 2049× 450 matrices Xa1 and Ya2 .

Figures 5.16 and 5.17 plot the first canonical vector estimates for the first and sec-

ond audio steams, respectively. Each figure plots the absolute value of the canonical

vectors, whose entries correspond to frequencies. Thus, large weights correspond to

frequencies that are correlated between the two audio streams. Each figures plots the
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(a) Full Spectrogram of a1(t)
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(b) Zoomed Spectrogram of a1(t)
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(c) Full Spectrogram of a2(t)
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(d) Zoomed Spectrogram of a2(t)

Figure 5.15: (a) Full spectrogram of a1(t). (b) Zoomed in spectrogram of a1(t) to see the
2 sources at 250 Hz and 400 Hz. (c) Full spectrogram of a2(t) (d) Zoomed in spectrogram
of a2(t) to see the 2 sources at 300 Hz and 550 Hz. The 250 Hz signal in a1(t) is amplitude
modulated at the same frequency as the 300 Hz signal in a2(t).
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View Source Frequency

a1(t) 250 Hz pure tone 1 Hz
400 Hz pure tone 3 Hz

coffee shop noise 1

a2(t) 300 Hz pure tone 1 Hz
550 Hz pure tone 5 Hz

coffee shop noise 2

Table 5.1: Summary of the audio sources. The 250 Hz pure tone in Audio 1 is amplitude
modulated at the same frequency as the 300 Hz pure tone in Audio 2 and is thus correlated
with it.

canonical vector estimates for 3 different frames, corresponding to 1/6 of a second, 1

second, and 20 seconds.

From these figures, we once again see that the empirical CCA estimates are very

inaccurate in the low-sample regime, lending credence to Conjecture 5.5.1. We also

observe that the ICCA, orthogonal, and ICCA+ estimates are all very similar for this

experiment. Each identifies the correlated AM signal at 250 HZ (Figure 5.16) and

300 Hz (Figure 5.17). In each figure, we plot a zoomed in version of canonical vector

estimates at the independent AM frequencies of 400 Hz (Figure 5.16(d)) and 550

Hz (Figure 5.17(d)). In both figures we observe a slight difference in the orthogonal

estimate. In both cases, it places a larger weight on this independent AM signal than

the ICCA and ICCA+ estimates. This is not desirable as this signal is not correlated

across the audio streams.

Therefore, in this application, the orthogonal estimate performs the worst while

the ICCA and ICCA+ estimates perform equally. This is due to the fact that the

principle components for the audio streams contain frequency components from both

present signals (see Figure 4.32). Therefore, UK̃ is not identity, and we empirically

see the sub-optimality of the orthogonal estimate that we theoretically predicted.

5.9 Proof of Theorem 5.5.1, Theorem 5.5.2, Corollary 5.5.1,

and Theorem 5.5.4

We will prove Theorem 5.5.1 for λopt
x and by a similar argument assume the result

for λopt
y . By the unitary invariance of the Frobenius norm, we have

‖Wx − Ûx diag(λx)ÛK̃‖F = ‖ÛH
x WxÛ

H
K̃
− diag(λx)‖F .
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(b) Frame 15
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(d) Frame 300 - Zoomed

Figure 5.16: Canonical vectors estimates for the first audio stream at 3 different frames.
One frame corresponds to 1/15 seconds. Frequencies with large weights are those that the
algorithms mark as correlated with frequencies with large weights in Figure 5.17.
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Figure 5.17: Canonical vectors estimates for the second audio stream at 3 different frames.
One frame corresponds to 1/15 seconds. Frequencies with large weights are those that the
algorithms mark as correlated with frequencies with large weights in Figure 5.16.
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Substituting the definition of the population canonical vectors in (5.8), we have

‖ÛH
x WxÛ

H
K̃
− diag(λx)‖F = ‖ÛH

x Ux (Θx + Ikx)
−1/2 UK̃Û

H
K̃
− diag(λx)‖F .

Let A = ÛH
x Ux (Θx + Ikx)

−1/2 UK̃Û
H
K̃

. By assumption, we have that ÛK̃ is a con-

sistent estimator of UK̃ so that UK̃Û
H
K̃

= Ikx . Therefore A = ÛH
x Ux (Θx + Ikx)

−1/2.

Therefore, our optimization problem is

λopt
x = argmin

λx

‖A− diag(λx)‖F .

By Lemma 4.1 and Corollary 4.1 from [117], we have that

λopt
x = diag(A),

which completes the proof of Theorem 5.5.1.

We next turn toward Theorem 5.5.2. First, Theorem 5.5.2 b) follows immediately

from Theorem 2.9 in [116]. To prove part a), we note that by Theorem 5.5.1, we have

that

λ
(i)
x,opt = Aii,

where A is defined above. Examining the diagonal entries of this matrix, we have

Aii =
û

(i)H
x u

(i)
x√(

θ
(x)
i

)2

+ 1

.

To complete the proof, we must characterize the limiting behavior of these quantities.

Let

σ(i)
x = D−1

µZx

(
1/
(
θ

(x)
1

)2
)
. (5.20)

Theorem 2.10 a) of [116] showed that

∣∣〈û(i)
x , u

(i)
x 〉
∣∣2 a.s.−→

−2ϕµZx

(
σ

(i)
x

)
(
θ

(x)
i

)2

D′µZx

(
σ

(i)
x

) ,
where for any probability measure µ,

ϕµ(z) =

∫
z

z2 − t2
dµ(t).
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We note that there is a ambiguity in the sign (or phase, when complex value) of

these singular vectors. While we use the consistency assumption to get UK̃Û
H
K̃

= Ikx ,

we note that the sign of Ûx is coupled with the sign of ÛK̃ and so we may take the

positive square root of the above expression. Finally, we know that by definition in

(5.20),

1/
(
θ(x)
u

)2
= DµZx

(
σ(i)
x

)
.

Substituting these expressions into the diagonal elements of A, we arrive at our the-

orem conclusion,

λ
(i)
x,opt

a.s.−→

√
−2DµZx

(
σ

(i)
x

)
ϕµZx

(
σ

(i)
x

)
D′µZx

(
σ

(i)
x

)√
1

DµZx

(
σ

(i)
x

) + 1

= DµZx

(
σ(i)
x

)√√√√√ −2ϕµZx

(
σ

(i)
x

)
D′µZx

(
σ

(i)
x

)(
DµZx

(
σ

(i)
x

)
+ 1
)

A similar argument proves the result for λ
(i)
y,opt.

Next, we prove Corollary 5.5.1 by providing the explicit forms of the D transform

and its derivative when we have Gaussian data as in (5.1). From [84, 107], we have

that ∣∣〈û(i)
x , u

(i)
x 〉
∣∣2 a.s.−→


(
θ
(x)
i

)4
−cx(

θ
(x)
1

)4
+
(
θ
(x)
i

)2
cx

if θ
(x)
i > c

1/4
x

0 o.w.

, (5.21)

and (
θ̂

(x)
i

)2 a.s.−→


(
θ

(x)
i

)2

+ cx + cx(
θ
(x)
i

)2 if θ
(x)
i > c

1/4
x

cx + 2
√
cx o.w.

. (5.22)

Substituting these expressions into Aii and the plug-in weights and performing some

minor algebra yields the result. A similar argument proves the result for the y weights.

Finally, we prove Theorem 5.5.4. To prove this theorem, we follow the same steps

as the proof for Theorem 4.7.1 of Chapter 4. We omit the steps here to save space

as they are exactly the same. The main result of these proof steps is that we replace

Θx with γxΘx and Θy with γyΘy. We additionally notes that when we are below the
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phase transition, this analysis shows that

X → γxZx

Y → γyZy

and so the estimates of θ
(x)
i and θ

(y)
i below the phase transition change by a factor

of γx and γy, respectively. Making these substitutions in Corollary 5.5.1 yields the

expressions in Theorem 5.5.4.

5.10 Proof of Theorem 5.5.3, Corollary 5.5.2, and Theorem

5.6.1

We begin with our definition of accuracy in (5.16)

ACC(i)(λ) =

(
U

(i)H

K̃
(Θx + Ikx)

−1/2 UH
x

◦
UxΛÛ

(i)

K̃

)2(
U

(i)H

K̃
(Θx + Ikx)

−1 U
(i)

K̃

)(
Û

(i)H

K̃
Λ2Û

(i)

K̃

) .
Using the assumption that ÛK̃ is a consistent estimator of UK̃ , we have that in the

considered asymptotic regime, ÛK̃ → ÛK̃ . Therefore, the numerator of the above

expression becomes kx∑
j=1

(
U

(i)

K̃

)2

j
〈u(j)

x , û
(j)
x 〉λj√(

θ
(x)
j

)2

+ 1

+
kx∑
j 6=`

(
U

(i)

K̃

)
j

(
U

(i)

K̃

)
`
〈u(j)

x , û
(`)
x 〉λ`√(

θ
(x)
j

)2

+ 1


2

.

In [116], it was shown that for j 6= ` when
(
θ

(x)
i

)2

> 1/DµZx
(bx) that 〈u(j)

x , û
(`)
x 〉 a.s.−→ 0.

Therefore, the numerator becomes kx∑
j=1

(
U

(i)

K̃

)2

j
〈u(j)

x , û
(j)
x 〉λj√(

θ
(x)
j

)2

+ 1


2

.
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In this regime, we have that from our Proof of Theorem 5.5.1

〈u(j)
x , û(j)

x 〉 = αj
a.s.−→

√√√√√−2φµZx

(
σ

(j)
x

)
DµZx

(
σ

(j)
x

)
D′µZx

(
σ

(j)
x

) . (5.23)

Again using the assumption that ÛK̃ is consistent, we have that terms in the denom-

inator are

U
(i)H

K̃
(Θx + Ikx)

−1 U
(i)

K̃
=

kx∑
j=1

(
U

(i)

K̃

)2

j√(
θ

(x)
j

)2

+ 1

Û
(i)H

K̃
Λ2Û

(i)

K̃
=

kx∑
j=1

(
U

(i)

K̃

)2

j
λ2
j .

Combining all of these terms we have that

ACC(i)(λ)
a.s.−→

∑kx
j=1

(
U

(i)

K̃

)2

j
αjλj√(

θ
(x)
j

)2
+1

2

∑kx
j=1

(
U

(i)

K̃

)2

j√(
θ
(x)
j

)2
+1

(∑kx
j=1

(
U

(i)

K̃

)2

j
λ2
j

) .

Theorem 5.5.3 a) and b) immediately follow from substituting the limiting values of

λx,opt and λx,icca given in Theorem 5.5.1. Analogous expressions for the accuracy of

the canonical vectors for Y may be derived in a similar fashion.

To prove Corollary 5.5.2, we use (5.21) and (5.22) to substitute the necessary

quantities such as α. This gives the general form for arbitrary λ. We then may

substitute the closed form expressions derived for Corollary 5.5.1 to complete the

proof. Specifically, we note that we can write

λ
(j)
x,opt =

αj√(
θ

(x)
i

)2

+ 1

,

and

λ
(j)
x,icca =

θ
(x)
j√((

θ
(x)
i

)2

+ 1

)(
c+

(
θ

(x)
j

)2
) ,
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which simplifies the expressions for ACC(i)(λx,opt) and ACC(i)(λx,icca).

Finally, we prove Theorem 5.6.1. This proof is straightforward by noting that the

weights of the orthogonal approximation are λj = 1. Substituting this into the result

from Theorem 5.5.3 we get

ACC(i)(λx,orth)
a.s.−→

∑kx
j=1

(
U

(i)

K̃

)2

j
αj√(

θ
(x)
j

)2
+1

2

∑kx
j=1

(
U

(i)

K̃

)2

j√(
θ
(x)
j

)2
+1

(∑kx
j=1

(
U

(i)

K̃

)2

j

)

where αj is either the general form in (5.23) or the specific form by taking the square

root of the expression in (5.21). Again, we note that the derivation may be repeated

to obtain the accuracy for the canonical vectors associated with the Y dataset.
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CHAPTER VI

The Top Singular Values of XY H

6.1 Introduction

Correlation analysis is a ubiquitous problem in statistical signal processing. In

many applications, we have access to multiple datasets each using a different feature

space to describe a system. In image annotation [34] and image retrieval [28] we

assume that both image features and textual captions describe the depicted scene. In

speaker identification, we assume that the video of a speaker is correlated with his/her

audio [35]. In medical signal processing, we assume that different modalities such as

EEG, MEG, MRI, fMRI, and genetic data (SNPs, QTs) capture a shared signal of

interest in a patient [36, 40, 119, 44, 120, 19, 47, 121, 48]. With the increasing

ability to collect such a variety of data, multimodal datasets even make appearances

in non-classical statistical signal processing applications such as economics [58, 122],

climatology [60, 61], and psychology [123, 124].

In many of these applications, we model observations using a low rank signal-plus-

noise model. This model assumes that observations from a dataset lie in an unknown

low-rank subspace and that the signal vectors between datasets are correlated. We

obtain estimates of the unknown signal subspace and signal-to-noise ratios (SNR)

of signals in a particular dataset via the eigenvalue decomposition of its sample co-

variance matrix. The accuracy of this eigenvalue decomposition has been extensively

studied [84, 85] and applied to applications such as matched subspace detection [107].

This analysis has been extended to examine the accuracy of the singular values and

singular vectors of the original rectangular data matrix [116].

When given multiple datasets, one hopes to leverage the correlations existing

between the datasets. Canonical Correlation Analysis (CCA) is a dimensionality

reduction algorithm for exactly two datasets that finds a linear transformation for each

dataset such that the datasets are maximally correlated in their reduced dimensional
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representations [4]. These linear transformations are found through a SVD of a matrix

product involving each dataset’s covariance matrix and the cross covariance matrix.

However, these covariance matrices are typically unknown and estimated from data.

When the number of training samples is relatively small compared to the dimension of

the datasets, the correlations and linear transformations returned by empirical CCA

are very inaccurate [6, 8]. We are interested in this sample deficient regime that is

becoming increasingly present with increased dimensions of datasets.

In this chapter, we begin by exploring the performance of regularized CCA (RCCA).

RCCA is a common variant of CCA that adds a multiple of the identity to each sample

covariance matrix to better condition these matrices in the sample deficient regime.

We explore the empirical performance of RCCA in the signal-plus-noise model and

observe that the performance of RCCA improves with increased regularization pa-

rameter. We then prove that, when setting the regularization parameter to infinity,

the solution of RCCA may be found by simply taking the SVD of the sample cross

covariance matrix between the two datasets. We name this algorithm limit RCCA

(LRCCA). This algorithm is more desirable than RCCA not only because it offers

better performance but because it does not have a tunable parameter.

We then use random matrix theory proof techniques to derive the almost sure

convergence of the top singular values of the matrix product used in LRCCA. We

show the existence of a phase transition below which the largest singular values of

LRCCA behave exactly as if the matrices were simply noise, i.e. containing no signal.

This critical threshold is dependent on the dimensionality of each dataset, the number

of observations, the SNRs of each dataset, and the correlation between the datasets.

The SVD of the sample covariance matrix is often used to determine the presence

of correlated signals between datasets. This technique arises in direction of arrival

(DOA) [125, 126, 127, 128], nerual network models [129], and brain connectivity

analysis using fMRI [130]. We are motivated by Figure 6.1, which plots the singular

value spectra of the cross-covariance matrix for three different rank-1 data matrices.

Figure 6.1(a) has a high correlation between low-SNR signals; Figure 6.1(b) has a

medium correlation between medium SNR signals; Figure 6.1(c) has no correlation

between high SNRS signals. We see that in the first two settings, one singular value

separates from the bulk and that this singular value is about the same for both

settings. In the last setting, two singular values separate from the bulk of the singular

values. From these settings, we see the difficulty in using the spectrum of the cross

covariance matrix to detect correlations. Our analysis throughout this chapter will

explore this in more detail concluding with the observation that it is better to use
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(d) Combined

Figure 6.1: Motivational example of the singular value spectra of 1
nXY

H for three different
sets of parameters. In all figures p = q = 200, n = 500, and θ = θx = θy. In the settings in
(a) and (b), the singular value spectra are very similar, with one singular value separating
from the bulk of the singular values. In the setting in (c) where there is no correlation
between the datasets, two singular values separate from the bulk of the singular values.

informative CCA (ICCA), which we presented in Chapter IV.

This chapter is organized as follows. In Section 6.2 we provide the signal-plus-

noise data model that we use throughout the chapter and provide the optimization

problems used by CCA, RCCA, and ICCA. In Section 6.3, we present our two main

theorems describing the performance of LRCCA. We then empirically demonstrate

the performance of RCCA as a function of its regularization parameter, showcase the

singular value prediction accuracy, and compare LRCCA to ICCA in Section 6.4. We

provide the proofs of our main results in Section 6.5.
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6.2 Data Model and Background

In this section we provide the data model that we will use throughout the chapter.

This model emulates the linear signal-plus-noise model used in many applications. We

then provide the optimization problems and solutions to canonical correlation anal-

ysis (CCA), regularized CCA (RCCA), informative CCA (ICCA), and limit RCCA

(LRCCA).

6.2.1 Data Model

Let X̃n = [x̃1, . . . , x̃n] and Ỹn = [ỹ1, . . . , ỹn] be two datasets with observations

x̃i ∈ Rp and ỹi ∈ Rq. Throughout, we model the datasets as

X̃n = UxΘxV
T
x +Xn,

Ỹn = UyΘyV
T
y + Yn

(6.1)

where Ux ∈ Rp×r, Uy ∈ Rq×r are independent orthonormal matrices, Vx ∈ Rn×r and

Vy ∈ Rn×r are orthogonal matrices such that E
[
V T
x Vy

]
= P = diag (ρ1, . . . , ρr) with

0 ≤ ρi ≤ 1, and Θx = diag(θx1, . . . , θxr) and Θy = diag(θy1, . . . , θyr). We denote p

as the dimension of the first dataset, q as the dimension of the second dataset, n as

the number of training samples, and r as the maximum number of signals in either

dataset. Xn ∈ Rp×n and Yn ∈ Rp×n model the system noise and are assumed to

be independent. In this regard, our model accounts for different dimensional signal

subspaces in X̃ and Ỹ by setting the appropriate θ and ρ to zero. Finally, define

R̂xx = 1
n
X̃nX̃

T
n , R̂yy = 1

n
ỸnỸ

T
n , and R̂xy = 1

n
X̃nỸ

T
n as the sample covariance matrices.

6.2.2 Empirical CCA

The goal of CCA is to find a linear transformation for each dataset that maxi-

mizes the correlation between the datasets in the projected spaces. We represent the

linear transformations with the canonical vectors wx ∈ Rp×1 and wy ∈ Rq×1 and the

projection with the canonical variates zx = wHx x and zy = wHy y. The objective is

to find the canonical vectors wx and wy that maximize the correlation between the

canonical variates zx and zy. Formally, the optimization problem is

argmax
wx,wy

ρ = E [zxzy]

subject to E
[
z2
x

]
= 1,E

[
z2
y

]
= 1.

(6.2)
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We may obtain a closed form solution for (6.2) through the SVD of

Ĉcca = R̂−1/2
xx R̂xyR̂

−H/2
yy ,

which relies on estimates of the unknown covariance matrices. Let FKGH be the

SVD of Ĉcca where F = [f1, . . . , fp], K = diag(k1, . . . , kmin(p,q)), and G = [g1, . . . , gq].

Then the solution for the canonical vector pair corresponding to the largest canonical

correlation is
ρ = k1

wx = R̂−1/2
xx f1

wy = R̂−1/2
yy g1.

(6.3)

To find higher order canonical vector and correlation pairs we take successive singular

vector and value pairs of Ĉcca.

6.2.3 RCCA

When n < p+ q, CCA reports a perfect correlation of ρ = 1 regardless of the true

correlation [6]. To overcome this performance loss, RCCA introduces a regularization

parameter, η, that adds a multiple of the identity matrix to the sample covariance

matrix of each dataset. Formally, the RCCA optimization problem is

argmax
wx,wy

ρ = E[zxzy]

subject to E[z2
x] + ηwHx wx ≤ 1

E[z2
y ] + ηwHy wy ≤ 1.

(6.4)

We solve (6.4) by taking the SVD of Creg =
(
R̂xx + ηIp

)−1/2

R̂xy

(
R̂yy + ηIq

)−1/2

.

Let FKGH be the SVD of Creg where F = [f1, . . . , fp], K = diag(k1, . . . , kmin(p,q)),

and G = [g1, . . . , gq]. The solution to RCCA is

ρ = k1

wx = (R̂xx + ηIp)
−1/2f1

wy = (R̂yy + ηIq)
−1/2g1.

(6.5)

Higher order canonical vector and correlation pairs are again computed using succes-

sive singular value and vector pairs of Creg.
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6.2.4 ICCA

We repeat the informative CCA (ICCA) algorithm presented in Chapter IV, first

proposed by Nadakuditi [8]. ICCA can avoid the performance loss in the sample

deficient regime by first trimming the individual data matrices to only include infor-

mative subspace components. Let X̃ = FxKxG
T
x and Ỹ = FyKyG

T
y be the data SVDs

for our data matrices. Define the trimmed data matrices

F̃x = Fx(:, 1 : rx) G̃x = Gx(:, 1 : rx)

F̃y = Fy(:, 1 : ry) G̃y = Gy(:, 1 : ry)

where rx and ry are the number of informative components in the first and second

datasets, respectively. To determine the number of informative components one may

employ techniques in [107, 83]. Using these trimmed data matrices, we form the

matrix used for ICCA,

C̃ = F̃xG̃
T
x G̃yF̃

T
y , (6.6)

with SVD C̃ = F̃ K̃G̃H , where F̃ = [f̃1, . . . , f̃rx ], K̃ = diag(k̃1, . . . , k̃min(rx,ry)), and

G̃ = [g̃1, . . . , g̃ry ]. ICCA returns the following informative correlation estimate and

canonical vectors
ρ = k̃1

wx = R̂−1/2
xx f̃1

wy = R̂−1/2
yy g̃1

(6.7)

Higher order canonical vector and correlation pairs are computed using successive

singular value and vector pairs of C̃.

6.3 Main Results

Figure 6.2 shows the empirical performance of RCCA for various regularization

parameters. Evident in this figure, we observe that increasing the regularization pa-

rameter increases the performance of RCCA. The following theorem gives the solution

of RCCA when taking η →∞.

Theorem 6.3.1. Let X̃n and Ỹn be modeled as in (6.1). Let Clrcca = 1
n
X̃nỸ

T
n have

SVD FKGT where F = [f1, . . . , fp], K = diag(k1, . . . , kmin(p,q)), and G = [g1, . . . , gq].
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When η →∞, the solution to the RCCA optimization problem in (6.4) is

ρ ∝ k1

x1 ∝ f1

x2 ∝ g1.

(6.8)

Proof. See Section 6.5.1.

We call the above algorithm limit RCCA (LRCCA), which is preferred over RCCA

as it both offers better performance and has no tuning parameter. Next we charac-

terize the asymptotic limit of the top singular values of Clrcca.

Theorem 6.3.2. Let X̃n and Ỹn be modeled as in (6.1) and define Cn = 1
n
X̃nỸ

T
n .

Let p → ∞, q → ∞, and n → ∞ such that p
n
→ cx and q

n
→ cy. Given the noise

matrices Xn and Yn, define Rn = 1
n
XT
nXn and Sn = 1

n
Y T
n Yn. Let µRn and µSn be

the respective empirical eigenvalue distributions and assume that each converges al-

most surely weakly, as n, p, q →∞ as above, to the non-random compactly supported

probability measures µR and µS, respectively. Similarly, let M1 = 1
n2XnY

T
n YnX

T
n ,

M2 = 1
n2YnX

T
nXnY

T
n , and M3 = M1 (σ2

i −M1)
−1

have limiting eigenvalue distribu-

tions µM1, µM2, and µM3 respectively. For i = 1, . . . , r, let σi be the larest singular

values of Cn. Then, almost surely, σi are the solutions to the following equation

0 =
r∏
i=1

(
ϕH(σi)ϕF (σi)−

1

θ2
yi

)(
ϕJ(σi)ϕG(σi)−

1

θ2
xi

)
−ρ2

iϕH(σi)ϕG(σi) (1 + ϕK(σi))
2

(6.9)

where
ϕF (σi) = −σiE

[
xmµRS|R

(
σ2
i , x
)]

µR

ϕJ(σi) = −σiE
[
xmµRS|S

(
σ2
i , x
)]

µS

ϕG(σi) = −σimµM1
(σ2

i )

ϕH(σi) = −σimµM2
(σ2

i )

ϕK(σi) = cxE [x]µM3

and

mµM (z) =

∫
1

t− z
dµM(t)

is the Stieltjes transform of µM and

mµXY |X (x, y) =

∫
1

y − z
kXY |X(x, z)dz
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where kXY |X is the Markov transition kernel density function.

Proof. See Section 6.5.2.

6.4 Empirical Simulations

In this section we first motivate the need for LRCCA by exploring the performance

of RCCA for various regularization parameters. We then explore the accuracy of

Theorem 6.3.2. While this theorem gives an asymptotic limit, we show that the

finite-sized approximation holds for moderately sized systems.

For all of the following simulations, we generate correlated signal datasets by

X̃signal =
[
x̃signal

1 , . . . , x̃signal
n

]
Ỹ signal =

[
x̃signal

1 , . . . , ỹsignal
n

]
where

x̃signal
i = UxΘxv

(i)
x + xi

ỹsignal
i = UyΘyv

(i)
y + yi,

where xi ∼ N (0, Ip) and yi ∼ N (0, Iq) and[
v

(i)
x

v
(i)
y

]
∼ N

([
Ir P

P T Ir

])
.

P = diag(ρ1, . . . , ρr) with 0 ≤ ρi ≤ 1 and Θx = diag(θx1, . . . , θxr) and Θy =

diag(θy1, . . . , θyr) with θxi ≥ 0 and θyi ≥ 0. We generate Ux by taking the eigen-

vectors corresponding to the top r eigenvalues of a random p× p matrix with N (0, 1)

entries. We generate Uy independently in a similar manner.

We then generate noise only datasets

X̃noise =
[
x̃noise

1 , . . . , x̃noise
n

]
Ỹ noise =

[
x̃noise

1 , . . . , ỹnoise
n

]
where

x̃noise
i ∼ N (0, Ip)

ỹnoise
i ∼ N (0, Iq).
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6.4.1 Performance of RCCA

First we explore the effect of the regularization parameter in RCCA. For the above

simulation setup we generate both correlated signal data matrices and with r = 1 and

noise only data matrices. We are interested the distribution of the correlation esti-

mate, ρ̂, returned by RCCA when there is a correlation present (X̃signal and Ỹ signal),

and when there is no correlation present (X̃noise and Ỹ noise).

For a fixed p = 100, q = 150, and ρ1 = 0.9 we compute this RCCA corre-

lation estimate under each hypothesis for 500 trials giving
[
ρ̂signal

1 , . . . , ρ̂signal
500

]
and[

ρ̂noise
1 , . . . , ρ̂noise

500

]
. We then compute the empirical ROC (receiver operating charac-

teristic) curve for these two statistics and the resulting AUC (area under the ROC

curve). We repeat this process by varying θ = θx1 = θy1 and n. We plot AUC

heatmaps for four different values of the RCCA regularization parameter in Figure

6.2. AUC values close to 0.5 indicate the distributions of ρ̂signal and ρ̂noise are not

separable while values close to 1 indicate that they are perfectly separable.

As evident in this figure, the ability of RCCA to detect the presence of a signal

increases with the regularization parameter. This is a non-intuitive result as typical

regularized algorithms‘ have an optimal regularization parameter that maximizes per-

formance. The non-monotonicity of the AUC heatmaps evident in Figures 6.5(a) and

6.5(b) also give credence to the difficulty in selecting an appropriate regularization pa-

rameter. In certain regimes, increasing the number of samples reduces performance,

which is a very undesirable property. Based on these empirical observations about

the effect of the regularization parameter in RCCA, we conclude that setting η →∞
results in optimal performance of RCCA. As is stated in Theorem 6.3.1, in this regime

the solution RCCA is found by simply taking the SVD of 1
n
X̃Ỹ T .

6.4.2 Numerical Accuracy of Theorem 6.3.2

For p = 200, q = 400, n = 400, and ρ = 1 we compute the largest singular

value returned by LRCCA for various θ = θx1 = θy1. This is repeated and for 100

trials and compared to the theoretical prediction. Results are shown in Figure 6.3

and confirm the accuracy of our theoretical prediction. As evident in Figure 6.3, if

θ is below a critical value, the largest singular value does not change and remains

constant. This phase transition phenomenon arises in similar analyses of eigenvalue

decomposition and SVDs of signal-plus-noise models [85, 116, 84]. This limiting

value is the largest singular value of the noise matrix 1
n
XY T , which we define as
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(d) η = 1000

Figure 6.2: AUC performance of RCCA for various regularization parameters. For all
figures, p = 100, q = 150, r = 1, and ρ1 = 0.9. Each figure plots an AUC heatmap while
sweeping over θ = θx1 = θy1 and n. AUC points are generated from an ROC formed
from 500 points of each distribution. Increasing the regularization parameter increases the
performance of CCA. This gives rise to LRCCA, which sets η →∞.

b = σ1

(
XY T

)
. Substituting b into (6.9) we have the following equality

0 =

(
ϕH(b)ϕF (b)− 1

θ2
y1

)(
ϕJ(b)ϕG(b)− 1

θ2
x1

)
− ρϕH(b)ϕG(b) (1 + ϕK(b))2 . (6.10)

This equation may be solved for any desired parameter cx, cy, θx1, θy1, ρ, while keeping

the rest fixed. We note that the ϕ functions and b are implicitly dependent on cx and

cy.

Figure 6.4 plots the top singular value returned by LRCCA when the datasets

contain r = 1 signal each, empirically averaged over 500 trials. Each heatmap sweeps

over two parameters while keeping the rest constant. We then solve (6.10) by substi-

tuting our constant parameters to achieve a function of the two parameters that we

sweep. We overlay this line in each heatmap. Below this line the top singular value
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Figure 6.3: Top singular value prediction for the rank-1 case for p = 200, q = 400, n = 400,
and ρ = 1.

is indistinguishable from that returned by LRCCA with noise only datasets.

Next we explore the phase transition in Figure 6.4(e) for a fixed n = 400 and

numerous ρ. Instead of plotting the top singular value returned by LRCCA, we

instead plot the log of the KS-statistic between the singular values in the signal

bearing case and the singular values in the noise bearing case. A KS statistic of 1

represents perfectly distinct distributions while a KS statistic of 0 represents the same

distribution. We plot the results in Figure 6.5 and it is evident that our theoretical

phase transition in (6.10), which relies on Theorem 6.3.2, is very accurate even though

we apply the asymptotic result to the finite dimensional setting.

6.4.3 Comparison to ICCA

We now compare the performance of LRCCA to that of ICCA. As shown in [8] and

presented in Theorem 4.6.2, the correlation coefficient does not affect the performance

of ICCA. The consistency phase transition of ICCA for the rank-1 setting is

θx > c1/4
x and θy > c1/4

y .

We plot this phase transition against the phase transitions of LRCCA for a variety

of ρ in Figure 6.6.

173



200 400 600 800 1000
0

1

2

3

4

n

θ

 

 

5

10

15

20

theory
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(e) ρ = 0.5, n = 400

Figure 6.4: Top singular value of LRCCA plotted for pairs of parameter sweeps. In all
plots, p = 200 and q = 400. The theoretical boundary where the top singular value is
indistinguishable from a noise only setting is plotted for each. Below this line, the top
singular value is asymptotically identical to the noise only setting. Above this line, the top
singular value is asymptotically different from that of the noise only setting.

174



0 1 2 3
0

0.5

1

1.5

2

2.5

3

θ
x

θ
y

 

 

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

theory

(a) ρ = 1

0 1 2 3
0

0.5

1

1.5

2

2.5

3

θ
x

θ
y

 

 

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

theory

(b) ρ = 0.8

0 1 2 3
0

0.5

1

1.5

2

2.5

3

θ
x

θ
y

 

 

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

theory

(c) ρ = 0.6

0 1 2 3
0

0.5

1

1.5

2

2.5

3

θ
x

θ
y

 

 

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

theory

(d) ρ = 0.4

0 1 2 3
0

0.5

1

1.5

2

2.5

3

θ
x

θ
y

 

 

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

theory

(e) ρ = 0.2

0 1 2 3
0

0.5

1

1.5

2

2.5

3

θ
x

θ
y

 

 

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

theory

(f) ρ = 0

Figure 6.5: KS statistic between the top singular value of LRCCA in signal bearing and
noise only settings. In all plots, p = 200, q = 400, and n = 400. The theoretical boundary
where the top singular value is indistinguishable from a noise only setting is plotted for
each.
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We begin our discussion by comparing what these phase transition boundaries

represent for each algorithm. The ICCA phase transition boundary represents when

we reliably detect the presence of a correlated signal. Above this boundary, the

largest singular value of C̃ used in ICCA is used to statistically detect the presence

of a correlated signal. We direct the reader to Chapter IV for a discussion of this

process. However, if either SNR drops below its individual phase transition, ICCA is

not able to detect a correlated signal. The LRCCA phase transition boundaries, on

the other hand, represent when the largest singular value of Clrcca represents a signal,

not necessarily a correlated signal. As we saw in Figure 6.1(c), even uncorrelated

datasets will cause the largest singular value to separate from the rest of the singular

value. Therefore, these phase transition boundaries represent different boundaries.

One may incorrectly conclude from Figure 6.6 that for LRCCA is superior to

ICCA since the boundary of LRCCA includes the regime when θx is very small but

θy is large, and vice versa. However, this singular value only indicates the presence

of a signal, not that it is correlated. We saw in Figure 6.1 that different values of

θx, θy, ρ can result in the same largest singular value. Thus, simply using the largest

singular value of 1
n
XY H to determine whether correlation exists between the dataset

is incorrect. As Figure 6.1(c) shows, the cross covariance matrix will have a large

singular value even if the individual datasets are independent.

One may then want to use the relative individual SNRs of X and Y to determine

whether this leading singular value is large because of correlation or individual large

SNRs. However, this process of pre-whitening the data matrices X and Y is exactly

the process used in CCA and ICCA. Therefore, to use the cross-covariance matrix

XY H to detect the presence of correlation between the datasets, one would perform

the equivalent analysis as CCA, which is suboptimal to ICCA. Therefore, we urge

users to reconsider using the cross covariance matrix to screen for correlation and

instead use ICCA.

6.5 Proofs of Theorems 6.3.1 and 6.3.2

6.5.1 Proof of Theorem 6.3.1

We begin with the RCCA matrix Creg = (Rxx + ηIp)
−1/2Rxy (Ryy + ηIq)

−1/2. Re-

call the data SVDs X̃ = FxKxG
H
x and Ỹ = FyKyG

H
y . Substituting these into Creg
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Figure 6.6: Phase transition for LRCCA (dahsed lines) for various ρ and ICCA. The
performance of ICCA is independent of ρ. The setting shown in for cx = 0.5 and cy = 1.

yields

Creg =
(
FxKxK

H
x F

H
x + ηIp

)−1/2
FxKxG

H
x GyK

H
y F

H
y

(
FyKyK

H
y F

H
y + ηIq)

)−1/2

= Fx
(
KxK

H
x + ηIp

)−1/2
KxG

H
x GyK

H
y

(
KyK

H
y + ηIq

)−1/2

Define F̃x = Fx(:, 1 : min(p, n)), F̃y = Fy(:, 1 : min(q, n)), G̃x = Gx(:, 1 :

min(p, n)), and G̃y = Gy :, 1 : min(q, n)). Then

Ĉreg = F̃x diag

(
kxi√
k2
xi + η

)
G̃H
x G̃y diag

 kyi√
k2
yi + η

 F̃H
y . (6.11)

Clearly, as η → ∞, this matrix becomes the zero matrix. However, the ratio of the

diagonal entries as η →∞ dictates the limiting form of Creg. Examining this ratio of

adjacent diagonal elements yields

lim
η→∞

√
k2
xi

σ2
xi+η√

k2
x(i+1)

k2
x(i+1)

+η

= lim
η→∞

√√√√k2
xi

(
k2
x(i+1) + η

)
k2
x(i+1) (k2

xi + η)
=

kxi
kx(i+1)

Thus, as η →∞, the ratio of entries along the diagonal matrix approaches the ratio
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between the singular values. Therefore,

lim
η→∞

diag

(
kxi√
k2
xi + η

)
∝
(
KxK

H
x

)1/2
.

A similar analysis yields an analogous results for the diagonal matrix of the singular

values of Ỹ . Therefore,

lim
η→∞

Ĉreg ∝ F̃x
(
KxK

H
x

)1/2
G̃H
x G̃y

(
KyK

H
y

)1/2
F̃H
y = X̃Ỹ H .

Therefore, as η →∞, the largest singular value of Ĉreg is proportional to the largest

singular value of 1
n
X̃Ỹ H .

To complete the proof, we must show that the canonical vectors are proportional

to the singular vectors of 1
n
X̃Ỹ H . The top canonical vector for dataset X returned by

RCCA is wx = (Rxx + ηId)
−1/2 f1, where f1 is the top left singular vector of Ĉreg. As

η → ∞, (Rxx + ηId)
−1/2 → 1√

η
Id. Therefore, x1 ∝ f1. Similarly, x2 ∝ g1. Therefore,

when η →∞, the solution to RCCA is

ρ ∝ k1

x1 ∝ f1

x2 ∝ g1,

where k1 is the top singular value of 1
n
X̃Ỹ H with corresponding left and right singular

vectors f1 and g1. Successive canonical correlation and vector pairs are found via

successive singular value-vector pairs.

6.5.2 Proof of Theorem 6.3.2

We remove the scaling 1
n

for proof simplicity as this only scales the singular value.

The singular values of Clrcca = X̃Ỹ H are the positive eigenvalues of

Cn =

[
0 X̃nỸ

H
n

ỸnX̃
H
n 0

]

=

[
0

(
UxΘxV

H
x +Xn

) (
UyΘyV

H
y + Yn

)H(
UyΘyV

H
y + Yn

) (
UxΘxV

H
x +Xn

)H
0

]

=

[
0 XnY

H
n

Y XH 0

]
+ UnΛUH

n ,
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where

Un =

[
Ux XnVy 0 0

0 0 YnVx + UyΘyP Uy

]
, Λ =


0 0 Θx 0

0 0 0 Θy

Θx 0 0 0

0 Θy 0 0

 .

If σ is an eigenvalue of Cn, it must satisfy det (σIp+q − Cn) = 0. Using our expression

above, this is

det

(
σIp+q −

[
0 XnY

H
n

YnX
H
n 0

]
− UnΛUH

n

)
= 0. (6.12)

Define

Bn =

(
σIp+q −

[
0 XnY

H
n

YnX
H
n 0

])
.

Using properties of determinants, we may re-write (6.12) as

det
(
Bn − UnΛUH

n

)
= det (Λ) det

(
Λ−1

)
det
(
B − UnΛUH

n

)
= det(Λ) det

([
Λ−1 UH

n

Un Bn

])
= det (Bn) det(Λ) det

(
Λ−1 − UH

n B
−1
n Un

)
.

If σ > 0 is an eigenvalue of Cn, it is not a singular value of XnY
H
n as by assumption

Λ 6= 0. Therefore, Bn is not singular and its inverse exists and it has a nonzero

determinant. Therefore for (6.12) to hold,

det
(
Λ−1 − UH

n B
−1
n Un

)
= 0. (6.13)

Expanding B−1
n yields

B−1
n =

[
σIp −XnY

H
n

−YnXH
n σIq

]−1

=

[ (
σIp − 1

σ
XnY

H
n YnX

H
n

)−1 1
σ

(
σIp − 1

σ
XnY

H
n YnX

H
n

)−1
XnY

H
n

1
σ
YnX

H
n

(
σIp − 1

σ
XnY

H
n YnX

H
n

)−1 (
σIq − 1

σ
YnX

H
n XnY

H
n

)−1

]

=

[
σ
(
σ2Ip −XnY

H
n YnX

H
n

)−1 (
σ2Ip −XnY

H
n YnX

H
n

)−1
XnY

H
n

YnX
H
n

(
σ2Ip −XnY

H
n YnX

H
n

)−1
σ
(
σ2Iq − YnXH

n XnY
H
n

)−1

]
.
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Define An =
(
σ2Ip −XnY

H
n YnX

H
n

)−1
and Ãn =

(
σ2Iq − YnXH

n XnY
H
n

)−1
. Next, we

explore Qn = UH
n B

−1
n Un, which is a 4r × 4r matrix. Denote its block-columns Qn =

[q1, . . . , q4]. These block-columns are

q1 =


σUH

x AnUx

σV H
y X

H
n AnUx

V H
x Y

HYnX
H
n AnUx + PΘyU

H
y YnX

H
n AnUx

UH
y YnX

H
n AnUx



q2 =


σUH

x AnXVy

σV H
y X

H
n AnXnVy

V H
x Y

H
n YnX

H
n AnXnVy + PΘyU

H
y YnX

H
n AnXnVy

UH
y YnX

H
n AnXnVy



q3 =


UH
x AnXnY

H
n YnVx + UH

x AnXnY
H
n UyΘyP

V H
y X

H
n AnXnY

H
n YnVx + V H

y X
H
n AnXnY

H
n UyΘyP

σ
(
V H
x Y

H
n + PΘyU

H
y

)
Ãn
(
V H
x Y

H
n + PΘyU

H
y

)H
σUH

y ÃnYnVx + σUH
y ÃnUyΘyP



q4 =


UH
x AnXnY

H
n U

H
y

V H
y X

H
n AnXnY

H
n U

H
y

σV H
x Y

H
n ÃnU

H
y + σPΘyU

H
y ÃnU

H
y

σUH
y ÃnU

H
y

 .
Define

Gn = UH
x AnUx

Fn = V H
y X

H
n AnXnV

H
y

Hn = UH
y ÃnUy

Kn = V H
x Y

H
n YnX

H
n AnXnVy

Jn = V H
x Y

H
n ÃnYnVx.

Note that in the large matrix limit (n, p, q → ∞), matrices of the form UH
x MUy,

V H
x MUy, U

H
x MVy, U

H
x MVx, U

H
y MVy are zero in the large matrix limit because Ux,

Uy, Vx, and Vy are pairwise independent except for Vx and Vy. Therefore in the large
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matrix limit,

Qn =


σGn 0 0 0

0 σFn KH
n 0

0 Kn σJn + σPΘyHnΘyP σPΘyHn

0 0 σHnΘyP σHn

 .

Then define

Mn(σ) = Qn − Λ−1 =


σGn 0 −Θ−1

x 0

0 σFn KH
n −Θ−1

y

−Θ−1
x Kn σJn + σPΘyHnΘyP σPΘyHn

0 −Θ−1
y σHnΘyP σHn

 ,

which is a 4r × 4r matrix. Then the solution to (6.13) is

det (M(σ)) = 0.

We would like to compute this determinant in closed form. To do so, we first note

that in the large matrix limit,

σGn → ϕGIr, ϕG =
σ

p
tr(An)

σFn → ϕF Ir, ϕF =
σ

n
tr(XH

n AnXn)

σHn → ϕHIr, ϕH =
σ

q
tr(Ãn)

σJn → ϕJIr, ϕJ =
σ

n
tr(Y H

n ÃnYn)

Kn → ϕKP, ϕK =
1

n
tr(Y H

n YnX
H
n AnXn)

Note that the expressions for ϕ are implicitly dependent on σ. To simplify this

determinant we will rely on the following property of determinants of block matrices,

det

([
A B

C D

])
= det(A) det(D − CA−1B).
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Using this,

det(M) = det

([
ϕGIr 0

0 ϕF Ir

])
·

det

([
ϕJ + PΘyϕHΘyP PΘyϕH

ϕHΘyP ϕH

]

−

[
−Θ−1

x ϕKP

0 Θ−1
y

][
1
ϕG
Ir 0

0 1
ϕF
Ir

][
−Θ−1

x 0

ϕKP −Θ−1
y

])

=(ϕGϕF )r det


ϕJIr + ϕHPΘ2

yP −
1

ϕG
Θ−2
x −

ϕ2
K

ϕF
P 2︸ ︷︷ ︸

a

ϕHPΘy +
ϕK
ϕF

PΘ−1
y︸ ︷︷ ︸

b

ϕHΘyP +
ϕK
ϕF

θ−1
y P︸ ︷︷ ︸

c

ϕHIr −
1

ϕF
Θ−2
y︸ ︷︷ ︸

d


= (ϕGϕF )r

r∏
i=1

(
ϕH −

1

ϕF θ2
yi

)
det
(
a− bd−1c

)
= (ϕGϕF )r

r∏
i=1

(
ϕHϕF θ

2
yi − 1

ϕF θ2
yi

) r∏
i=1

(
ϕJϕGθ

2
xi − 1

ϕGθ2
xi

− ρ2
i

ϕHθ
2
yi (1 + ϕKi)

2

ϕHϕF θ2
yi − 1

)

= (ϕGϕF )r
r∏
i=1

(
ϕHϕF θ

2
yi − 1

ϕF θ2
yi

)(
ϕJϕGθ

2
xi − 1

ϕGθ2
xi

− ρ2
i

ϕHθ
2
yi (1 + ϕKi)

2

ϕHϕF θ2
yi − 1

)

= (ϕGϕF )r
r∏
i=1

[(
ϕHϕF θ

2
yi − 1

)
(ϕJϕGθ

2
xi − 1)

ϕFϕGθ2
xiθ

2
yi

−
ρ2
iϕHϕGθ

2
xiθ

2
yi(1 + ϕK)2

ϕFϕGθ2
xiθ

2
yi

]

=
r∏
i=1

(
ϕHϕF −

1

θ2
yi

)(
ϕJϕG −

1

θ2
xi

)
− ρ2

iϕHϕG (1 + ϕK)2

This is the form of (6.9). To evaluate det(M(σ) and to complete the theorem

proof, we need closed form expressions for ϕH , ϕF , ϕJ , ϕG, and ϕK that do not rely

on the noise matrices Xn and Yn. To accomplish this, we use proposition 10.11 in

[131].
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6.5.2.1 Expression for ϕF

By definition,

ϕF =
σ

n
tr
(
XH
n AnXn

)
=
σ

n
tr
(
AnXnX

H
n

)
=
σ

n
tr
((
σ2Ip −XnY

H
n YnX

H
n

)−1
XnX

H
n

)
.

Let UXΣXV
H
X be the SVD of Xn. Using this definition,

ϕF =
σ

n
tr
((
σ2Ip − UXΣXV

H
X Y

H
n YnVXΣH

XU
H
X

)−1
UXΣXΣH

XU
H
X

)
=
σ

n
tr
((
σ2Ip − ΣXV

H
X Y

H
n YnVXΣH

X

)−1
ΣXΣH

X

) (6.14)

Now define Rn = XH
n Xn and Sn = Y H

n Yn and the functions h(Ln) = (σ2In − Ln)
−1

and g(Ln) = Ln. Let µRn and µSn be the empirical eigenvalue distribution and

assume that each converges almost surely weakly, as n, p, q → ∞ as above, to the

non-random compactly supported probability measures µR and µS, respectively.With

these definitions and the SVD of Xn, note that

E = tr(h(R1/2
n SnR

1/2
n )g(Rn))

is equivalent to

E = tr

((
σ2In −

(
XH
n Xn

)1/2
Y H
n Yn

(
XH
n Xn

)1/2
)−1

XH
n Xn

)
= tr

((
σ2In − VX

(
ΣH
XΣX

)1/2
V H
X Y

H
n YnVX

(
ΣH
XΣX

)1/2
V H
X

)−1

VXΣH
XΣXV

H
X

)
= tr

((
σ2In −

(
ΣH
XΣX

)1/2
V H
X Y

HY VX
(
ΣH
XΣX

)1/2
)−1

ΣH
XΣX

)
(6.15)

We now show that (6.14) and (6.15) are equivalent. We break this into two cases,

one where n > p and one where p ≥ n. Define Σ̃X to be the min(n, p) × min(n, p)

diagonal matrix of the non-zero singular values found along the diagonal of ΣX . Also

define ṼX to be the corresponding min(n, p) right singular vectors of X.

In case 1, n > p. Here

(
ΣH
XΣX

)1/2
=

[
Σ̃X 0

0 0n−p

]
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and ΣXΣH
X = Σ̃2

X . Using these expressions, (6.15) becomes

tr

([ σ2Ip 0

0 σ2In−p

]
−

[
Σ̃X Ṽ

H
X Y

H
n YnṼXΣ̃X 0

0 0

])−1 [
Σ̃2
X 0

0 0

]
= tr

((
σ2Ip − Σ̃X Ṽ

H
x Y

H
n YnṼXΣ̃X

)−1

Σ̃2
X

)
.

Because n > p, ΣXV
H
X = Σ̃X Ṽ

H
X and therefore (6.14)=(6.15).

In case 2, n ≤ p. Here

(
ΣXΣH

X

)1/2
=

[
Σ̃X 0

0 0n−p

]

and ΣH
XΣX = Σ̃2

X . In this setting, ΣXV
H
X = Σ̃XV

H
X . Using these expressions,

(6.15) becomes

σ

n
tr

([ σ2In 0

0 σ2Ip−n

]
−

[
Σ̃XV

H
X Y

H
n YnVXΣ̃H

X 0

0 0

])−1 [
Σ̃X 0

0 0n−p

]
=

σ

n
tr

((
σ2In − Σ̃XV

H
X Y

H
n YnVXΣ̃H

X

)−1

Σ̃2
X

)
Therefore, in this second setting, (6.14)=(6.15) as well. Therefore,

ϕF =
σ

n
tr(h(S1/2

n BnS
1/2
n )g(Sn)).

By Proposition 10.11 of [131], as n→∞,

ϕF → σ

∫
g(x)h(y)ρRS(x, y)dxdy

where ρRS(x, y) = kRS|R(x, y)fR(x), where fR(x) is the limiting eigenvalue density

function of R and kRS|R(x, y) is the Markov transition kernel density function. Using
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these definitions yields

ϕF =
σ

n
tr
(
h
(
R1/2
n SnR

1/2
n

)
g(Rn)

)
→ σ

∫
g(x)h(y)ρRS(x, y)dxdy

= σ

∫
g(x)h(y)kRS|R(x, y)fR(x)dxdy

= σ

∫ ∫
x

σ2 − y
kRS|R(x, y)fR(x)dxdy

= σ

∫
xfR(x)

(
1

σ2 − y
kRS|R(x, y)dy

)
dx

= −σ
∫
xmµRS|R

(
σ2, x

)
fR(x)dx

= −σE
[
xmµRS|R

(
σ2, x

)]
µR

6.5.2.2 Expression for ϕJ

Using an analogous derivation,

ϕJ → −σE
[
xmµRS|S

(
σ2, x

)]
µS
.

6.5.2.3 Expression for ϕG

Let µM1 be the limiting eigenvalue distribution of XnY
H
n YnX

H
n . By definition,

ϕG =
σ

p
tr
((
σ2Ip −XnY

H
n YnX

H
n

)−1
)

→ σ

∫
1

σ2 − x
µM1

= −σmM1(σ2)

6.5.2.4 Expression for ϕH

Let µM2 be the limiting eigenvalue distribution of YnX
H
n XnY

H
n . By definition,

ϕH =
σ

p
tr
((
σ2Ip − YnXH

n XnY
H
n

)−1
)

→ σ

∫
1

σ2 − x
µM2

= −σmM2(σ2)
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6.5.2.5 Expression for ϕK

Let µM2 be the limiting eigenvalue distribution ofXY HY XH
(
σ2Ip −XY HY XH

)−1
.

Note that µM3 is a mobius transform of µM1 . By definition,

ϕK =
1

n
tr
(
Y HY XHAX

)
=

1

n
tr
(
XY HY XH

(
σ2Ip −XY HY XH

)−1
)

→ p

n

∫
xµM3

= cxE [x]µM3
.

This establishes the proof of Theorem 6.3.2.
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CHAPTER VII

The Largest Singular Values of a Random

Projection of a Low-Rank Perturbation of a

Random Matrix

7.1 Introduction

In Chapters II-VI, we stack observations in a data matrix that is assumed low-rank

plus noise, modeled as

X̃n =
r∑
i=1

θiuiv
T
i +Xn. (7.1)

In the above equation, for i = 1, . . . , r, ui ∈ Cn×1 and vi ∈ CN×1 are independent unit

norm signal vectors, θi > 0 are the associated signal values and Xn is a noise-only

matrix. Assume that uHi uj = δ{i=j} and vHi vj = δ{i=j}. Let Xn ∈ Cn×N be a real or

complex random matrix. Let σ1, . . . , σmin(n,N) be the singular values of Xn. Let µXn

be the empirical singular value distribution, i.e, the probability measure defined as

µXn =
1

min(n,N)

min(n,N)∑
i=1

δσi .

Assume that as n→∞, n/N → c1.

In many signal processing applications, we treat the columns of X̃n as noisy ob-

servations of a desired target signal lying in the span of {u1, . . . , ur}. In this light, we

treat θi as the signal-to-noise ratio (SNR) for its corresponding subspace component,

n as the intrinsic dimension of the problem, and N as the number of samples (or

snapshots or observations) we have at our disposal. To recover the underlying sig-

nal subspace, span {u1, . . . , ur}, it is common to take the left singular vectors of X̃n

corresponding to the largest r singular values. The accuracy of this estimate is well
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studied (see [84, 85, 107, 116]). Specifically, when Xn has independent CN (0, 1) en-

tries, the individual subspace component estimates are known to have a non-random

estimate when θi >
(
n
N

)1/4
.

However, in many such applications the intrinsic dimension, n, of the system

is so large that taking the SVD of X̃n may not be tractable. In this chapter, we

explore the performance of signal detection when randomly projecting X̃ into a lower

dimensional space using either a Gaussian or unitary projection. Specifically for

m < n, let Gn ∈ Cn×m be a random matrix with independent CN (0, 1) entries and

let Qn ∈ Cn×m be a unitary matrix such that QH
n Qn = Im. Define the m×N complex

matrices
Y G
n = GH

n X̃n

Y Q
n = QH

n X̃n

(7.2)

Since m < n, taking the SVD of Y G
n and Y Q

n is more tractable than taking

the SVD of X̃n. Since m < n, taking the SVD of Y G
n and Y Q

n is more tractable

than taking the SVD of X̃n. Such compressed sensing strategies for both unitary

[132, 133, 134] and Gaussian [135, 136, 137] sensing matrices have been extensively

studied. These algorithms have been extended to include Gaussian-like strategies

that employ matrices with partially observed entries [138, 139] as well as unitary-

like strategies that use a discrete Fourier transform matrix [140] or discrete cosine

transform [141]. For excellent reviews of such compressed sensing algorithms please

see [142, 143, 144], for example.

These works examine the ability of such matrices to approximate the original

data matrix as low rank. In this chapter, we consider the fundamental limits of the

resulting singular values when used to detect low-rank signals. We quantify how the

dimensions of our matrices, m,n,N , and the SNR θ affect the behavior of the largest

singular values of Y G
n and Y Q

n . Finally, we compare the detection performance of

these two specific choices of the projection matrix and show that a unitary projection

matrix can more reliably detect low-rank signals than a Gaussian projection matrix.

Our main conclusion is summarized in Figures 7.1 and 7.2. In both figures, we

consider a rank-1 setting where r = 1. In Figure 7.1, the SNR of the lone signal

is large enough so that the largest singular value of both Y G
n and Y Q

n separate from

the bulk of the singular values. The top singular values of these matrices detect the

presence of our lone signal. In Figure 7.2, we decrease the SNR of the lone signal. In

this simulation, the largest singular value of Y Q
n continues to separate from the bulk

distribution but the largest singular value of Y G
n no longer separates from the bulk

distribution. The unitary projection can reliably detect the presence of signal vectors
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Figure 7.1: Singular value spectra for the full matrix (a), orthogonal projection matrix (b),
and Gaussian projection matrix (c). This example uses a rank-1 setting where n = 1000,
m = 100, N = 1000, θ = θx = θy = 4.
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Figure 7.2: Singular value spectra for the full matrix (a), orthogonal projection matrix (b),
and Gaussian projection matrix (c). This example uses a rank-1 setting where n = 1000,
m = 100, N = 1000, θ = θx = θy = 2.2.

at a lower SNR than the Gaussian projection.

This chapter is organized as follows. In Section 7.2, we provide the main results of

this chapter including the almost sure limit of the top singular values of the projection

matrices in (7.2). We then provide corollaries to the main result that highlight a phase

transition below which signal detection is impossible and a closed form expression of

our main theorem for unitary projections. We provide the proof of our main theorem

in Section 7.3 and the proof of the main corollary in Section 7.4. In Section 7.5, we

verify our asymptotic results on finite sized systems and highlight the accuracy of our

predictions. We make the following assumptions and definitions about the random

matrices needed throughout the rest of the chapter.

Assumption 7.1.1. The probability measures µXn, µGn, and µQn converge almost

surely weakly to a non-random compactly supported probability measures µX ,µG, and
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µQ, respectively.

Definition 7.1.1. Let MG
n = GH

n Xn be the product of the random matrices Gn and

Xn and let MQ
n = QH

n Xn be the product of the random matrices Qn and Xn.

Assumption 7.1.2. The probability measure µMG
n

converges almost surely weakly to

a non-random compactly supported probability measure µMG
. The probability measure

µMQ
n

converges almost surely weakly to a non-random compactly supported probability

measure µMQ
.

Assumption 7.1.3. Let aG be the infimum of the support µMG
. The smallest singular

value of MG
n converges almost surely to aG. Let aQ be the infimum of the support µMQ

.

The smallest singular value of MQ
n converges almost surely to aQ.

Assumption 7.1.4. Let bG be the supremum of the support µMG
. The largest singular

value of MG
n converges almost surely to bG. Let bQ be the supremum of the support

µMQ
. The largest singular value of MQ

n converges almost surely to bQ.

7.2 Main Results

Our main result of this chapter characterizes the asymptotic behavior of the largest

singular values of the projection matrices defined in (7.2).

Theorem 7.2.1. Let Yn be the projection of X̃n onto either Gn or Qn as in (7.2).

The largest r singular values of the m×N matrix Yn exhibit the following behavior as

n,m,N →∞ with n/N → c1 and m/N → c2. We have that for each fixed 1 ≤ i ≤ r,

σi (Yn) solves

σ2
iϕF (σi)ϕH(σi) =

1

θ2
i

, (7.3)

where
ϕF (σi)

a.s.−→ −E
[
xmµRS|R

(
σ2
i , x
)]

µR

ϕH(σi)
a.s.−→ − n

N
mM3(σ2

i )−
1

σ2
i

n−N
N

where mµM is the Stieltjes transform of a matrix M defined as

mµM (z)

∫
1

x− z
µM(x),

and µR is the limiting eigenvalue density of either GnG
H
n or QnQ

H
n , µS is the limiting

eigenvalue density of XnX
H
n , mµRS|S is the Stieltjes transform of the limiting condi-

tional density and mµM3
is the Stieltjes transform of GnG

H
n XnX

H
n or QnQ

H
n XnX

H
n .
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When using Gn, mµRS|S(z, x) solves the following equation

0 =
(
−n2z2

) (
mµRS|S(z, x)

)3

+
(
Nnz +mnz − 2n2z

) (
mµRS|S(z, x)

)2

+
(
Nn+mn+Nmz − n2 −Nm

)
mµRS|S(z, x) +Nm.

(7.4)

When using the Gaussian projection matrix, Gn, we do not get a closed form of

the top singular values. Solving (7.4) for mµRS|S(z, x) is unwieldy as we must solve a

cubic polynomial. Furthermore, we must take the expectation of the resulting solution

with respect to the distribution µR. To solve the expressions ϕF and ϕH when using

a Gaussian projection matrix, we use RMTool [3]. We discuss this process in Section

7.5 but note here that this process still yields an analytic solution, although not

closed form. However, when using a unitary projection matrix, we do get a closed

form expression for the largest singular values.

Corollary 7.2.1. When Yn is a generated using a unitary matrix Qn, we have that

for each fixed 1 ≤ i ≤ r,

σi
a.s.−→


√

c1
θ2
i

+ c2θ2
i + 1 + c1c2 if θi ≥

(
c1
c2

)1/4

√
c1c2 + 1 if θi <

(
c1
c2

)1/4 .

This corollary nicely gives the almost sure limit of the top singular values as a

function of the system parameters n, m, N , and θi. This corollary also makes contact

with a natural phase transition. When the SNR of a component is below a critical

value depending only on n,m,N , the corresponding top singular value behaves as if

Yn is a noise only matrix. Such phase transitions appear in other matrix analyses

(see [84, 85, 107, 116]). Similarly, we may solve for the phase transition when using

a Gaussian matrix, although we do not get a closed form expression as we do in the

unitary case.

Corollary 7.2.2. When

θi ≤ θcrit =
1

b
√
ϕF (b)ϕH(b)

then

σi
a.s.−→ b,

where b is either bQ or bG depending on our projection matrix.
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7.3 Proof of Theorem 7.2.1

To simplify the notation, we use the matrix Gn to represent both Gn and Qn. We

break this notation only where we need to differentiate between the two. Define the

matrices

Θ = diag(θ1, . . . , θr), Un = [u1, . . . , ur] , VN = [v1, . . . , vr] .

The singular values of Yn are the positive eigenvalues of

Cn =

[
0 Yn

Y H
n 0

]
=

[
0 GH

n UnΘV H
N +GH

n Xn

VNΘUH
n Gn +XH

n Gn 0

]

=

[
0 GH

n Xn

XH
n Gn 0

]
+QnΛQH

n ,

where

Qn =

[
GH
n Un 0

0 Vm

]
, Λ =

[
0 Θ

Θ 0

]
.

If σi is an eigenvalue of Cn, it must satisfy det (σiIN+m − Cn) = 0. Using our expres-

sion above, this is

det

(
σiIN+m −

[
0 GH

n Xn

XH
n Gn 0

]
−QnΛQH

n

)
= 0. (7.5)

Define

Bn =

(
σiIN+m −

[
0 GH

n Xn

XH
n Gn 0

])
.

Using properties of determinants, we may re-write (7.5) as

det
(
Bn −QnΛQT

n

)
= det (Λ) det

(
Λ−1

)
det
(
Bn −QnΛQH

n

)
= det(Λ) det

([
Λ−1 QH

n

Qn Bn

])
= det (Bn) det(Λ) det

(
Λ−1 −QH

n B
−1
n Qn

)
.

If σi > 0 is an eigenvalue of Cn, it is not a singular value of GT
nXn as by assumption

Λ 6= 0. Therefore, Bn is not singular and its inverse exists and it has a nonzero
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determinant. Therefore for (7.5) to hold,

det
(
Λ−1 −QH

n B
−1
n Qn

)
= 0. (7.6)

Expanding B−1
n using the properties of block diagonal matrices yields

B−1
n =

[
σiIm −GH

n Xn

−XH
n Gn σIN

]−1

=

[
σi
(
σ2
i Ip −GH

n XnX
H
n Gn

)−1 (
σ2
i Ip −GH

n XnX
H
n Gn

)−1
GH
n Xn

XH
n Gn

(
σ2
i Ip −GH

n XnX
H
n Gn

)−1
σi
(
σ2
i Iq −XH

n GnG
H
n Xn

)−1

]
.

Define An =
(
σ2
i Im −GH

n XnX
H
n Gn

)−1
and Ãn =

(
σ2
i IN −XH

n GnG
H
n Xn

)−1
. There-

fore

B−1
n =

[
σiAn AnG

H
n Xn

XH
n GnAn σiÃn

]
.

Therefore

QH
n B

−1
n Qn =

[
σiU

H
n GnAnG

H
n Un UH

n AnG
H
n XnVN

V H
N X

H
n GnAnG

H
n Un σiV

H
N ÃnVN

]
.

By Proposition 10.11 of [131], for smooth functions, h and g, on R and asymptot-

ically free random matrices An and Bn,

1

n
tr
(
h
(
A1/2
n BnA

1/2
n

)
g (An)

)
→
∫
g(x)h(y)ρAB(x, y)dxdy

where ρAB(x, y) is a bivariate probability density function of R2 that may be decom-

posed

ρAB(x, y) = kAB|A(x, y)fA(x),

where fA(x) is the limiting eigenvalue density function of A and kAB(x, y) is the

Markov transition kernel density function.

Armed with this proposition, define Rn = GnG
H
n and Sn = XnX

H
n and the func-

tions h(Ln) = (σ2
i Im − Ln)

−1
and g(Ln) = Ln. With these definitions,

tr
(
GnAnG

H
n

)
= tr(h(R1/2

n SnR
1/2
n )g(Rn)).

Therefore by the above proposition and Assumption 7.1.1,

1

n
tr
(
GnAnG

H
n

)
→
∫
g(x)h(y)ρRS(x, y)dxdy,
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where ρRS(x, y) = kRS|R(x, y)fR(x), where fR(x) is the limiting eigenvalue density

function of R and kRS|R(x, y) is the Markov transition kernel density function. There-

fore almost surely we have that

σiU
H
n GnAnG

H
n Un → σi

∫
g(x)h(y)ρRS(x, y)dxdy︸ ︷︷ ︸

ϕF (σi)

· Ir.

In a similar manner, by Assumption 7.1.2

σi
N

tr(Ãn)→
∫

σi
σ2
i − t2

dM(t).

Therefore, almost surely we have that

σiV
H
N ÃnVn → σi

(∫
1

σ2
i − t2

dM(t)

)
︸ ︷︷ ︸

ϕH(σi)

· Ir.

In the same way, almost surely,

UH
n AnG

H
n XnVN → 0

V H
N X

H
n GnAnG

H
n Un → 0

Therefore, it follows that almost surely,

QH
n B

−1
N Qn →

[
σϕF (σi)Ir 0

0 σϕH(σi)Ir

]
.

Then

det(Λ−1 − UH
n B

−1
n Un)

a.s.−→ det

([
−σϕF (σi)Ir Θ−1

Θ−1 −σϕH(σi)Ir

])
= det (−σiϕF (σi)Ir) ·

det
(
−σiϕH(σi)Ir −Θ−1 (−σiϕF (σi)Ir)

−1 Θ−1
)
.

Then the solution to (7.6) is

0 =
r∏
j=1

(
1

θ2
jσiϕF (σi)

− σiϕH(σi)

)
,
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which implies that σi must solve

1

θ2
i

= σ2
iϕF (σi)ϕH(σi).

This completes the general statement of the theorem. We now next develop the

expressions for ϕF (σi) and ϕH(σi) stated in the theorem.

7.3.1 Expression for ϕF

Using these definitions for R, S, h, and g above, we have

ϕF (σi) =

∫
g(x)h(y)ρRS(x, y)dxdy

=

∫
g(x)h(y)kRS|R(x, y)fR(x)dxdy

=

∫ ∫
x

σ2
i − y

kRS|R(x, y)fR(x)dxdy

=

∫
xfR(x)

(
1

σ2
i − y

kRS|R(x, y)dy

)
dx

= −
∫
xmµRS|R

(
σ2
i , x
)
fR(x)dx

= −E
[
xmµRS|R

(
σ2
i , x
)]

µR
.

7.3.2 Expression for ϕH

By Assumption 7.1.2, the matrix product Mn = GH
n Xn has the limiting distribu-

tion µM . Define M
(2)
n = XH

n GnG
H
n Xn, which by the same assumption has limiting

distribution, which we denote µM2 . By definition,

ϕH(σi) =

∫
1

σ2
i − x

µM2(x)dx

= −mµM2
(σ2

i )

where mµM is the Stieltjes transform of a matrix M .

To compute ϕH , we consider the matrix M
(3)
n = GnG

H
n XnX

H
n = RnSn, which has

the same non-zero eigenvalues as M
(2)
n = XH

n GnG
H
n Xn and depending on whether n

or N is larger, one has |n−N | extra zero eigenvalues. Therefore,

fµM2
(x) =

n

N
fµM3

(x)− n−N
N

1{x=0}.
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Using this relationship, we can rewrite

ϕH(σi) =

∫
1

σ2
i − x

fµM2
(x)dx

=

∫
1

σ2
i − x

(
n

N
fµM3

(x)− n−N
N

1{x=0}

)
dx

=
n

N

∫
1

σ2
i − x

fµM3
(x)dx− 1

σ2
i

n−N
N

= − n
N
mM3(σ2

i )−
1

σ2
i

n−N
N

.

7.3.3 Proof of Corollary 7.2.2

Equation (7.3) gives the relationship to find the largest singular value of Yn. We

can also use this equation to derive a boundary, below which this largest singular

value behaves exactly as the noise-only case where θ = 0. By Assumption 7.1.4, b

is the supremum of the largest singular value of the noise only matrix. For a given

c1 = n
N

and c2 = m
n

, we must compute θcrit such that (7.3) has the solution σ = b.

Thus

θcrit =
1

b
√
ϕF (b)ϕH(b)

. (7.7)

This is a function of c1 and c2 and changes depending on the type of random matrix

G used.

7.4 Proof of Corollary 7.2.1

In this section, we develop closed form expressions for ϕF , ϕH when using a unitary

projection. To determine these expressions, we rely on free probability theory and

the utility RMTool [3]. This allows us to expression a random matrix, A, as bivariate

polynomials LAmz(m, z) such that the Stieltjes transform of A, mA(z), is the solution

to the equation LAmz(m, z) = 0. This representation is extremely convenient because it

allows us to perform standard matrix operations, such as addition and multiplication,

in the polynomial space.

To compute ϕF and ϕH , we need the Stieltjes transform of M2 = QQHXXH ,

the Stieltjes transform of the kernel function of R = QQH and S = XXH and the

eigenvalue distribution of R. We consider X to be an appropriately scaled random

Gaussian matrix whose entries are independent standard Gaussian random variables.

The scaling is such that S is a Wishart random matrix with parameter c1. The
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bivariate polynomial for this matrix is

LSmz(m, z) = −c1zm
2 + (1− z − c1)m− 1.

For the orthogonal setting, we assume that Q is a unitary matrix such that

QHQ = Im. With this formulation of Q, R = QQH has a simple atomic eigenvalue

distribution,

fµR(x) =
n−m
n

1{x=0} +
m

n
1{x=1},

where 1 is an indicator function. With this, we can easily compute the expected value

needed for ϕF .

ϕF (σi) = −E
[
xmµRS|R

(
σ2
i , x
)]

µR

=
m

n
mµRS|R

(
σ2
i , 1
)
.

We may use the RMTool function AtimesBkernel to compute mµRS|R . Doing so

results in the following expression

ϕF (σi) =
σ2
i − `(σi) + c1c2 − 1

2c1σ2
i

, (7.8)

where

`(σi) =
√
c2

1c
2
2 − 2c1c2σ2

i − 2c1c2 + σ4
i − 2σ2

i + 1. (7.9)

Similarly, we can use the RMTool function AtimesB to compute mµM2
, needed for

ϕH . Doing so results in the following expression,

ϕH(σi) =
2c1 + σ2 − `(σ)− c1c2 − 1

2σ2
− c1 − 1

σ2
i

=
σ2
i − `(σi) + c1c2 − 1

2σ2
i

,

(7.10)

where `(σ) is defined in (7.9). Substituting (7.10) and (7.8) into (7.3) and performing

the necessary algebra to solve for σi results in

σi
a.s.−→

√
c1

θ2
+ c2θ2 + 1 + c1c2.

Next we solve for bQ, the largest singular value of QHX, so that we may compute the

phase transition. First we note that the largest singular of QHX is the square root of

the largest eigenvalue of M2. This is convenient because we can compute the Stieltjes
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transform of M2 using RMTool. The command

solve(feval(symengine,’polylib::discrim’,lmzM2, m),’z’)

gives the possible largest eigenvalues of M2, the largest of which is the correct solution.

This results in

bQ =
√
c1c2 + 1. (7.11)

Substituting b into ϕF and ϕH and using algebra to simplify results in

ϕH(bQ) = 1, ϕF (bQ) =

√
c2

c1

.

Substituting these expressions into (7.7), results in the phase transition

θcrit =

(
c1

c2

)1/4

. (7.12)

We may summarize all results via

σi
a.s.−→


√

c1
θ2 + c2θ2 + 1 + c1c2 if θ ≥

(
c1
c2

)1/4

√
c1c2 + 1 if θ <

(
c1
c2

)1/4 . (7.13)

7.5 Empirical Results

In this section we verify the singular value prediction given in (7.3) that relies

on the asymptotic approximations ϕF and ϕH . We consider two different types of

projection matrices. In the first setting, we use a matrix Gn with independent N (0, 1)

entries. In the second setting, we use a unitary matrix Qn such that QH
n Qn = Im.

In both settings, we let the noise matrix Xn be an appropriately scaled random

Gaussian matrix whose entries are independent standard Gaussian random variables.

In matlab, we generate Xn with

X = randn(n,N)/sqrt(N).

We first provide the necessary matlab code to solve for ϕF and ϕH in the Gaussian

case. We then provide empirical results that showcase the accuracy of Theorem 7.2.1

for both the Gaussian and unitary matrices. Finally we compare the performance of

each to showcase that the unitary projection matrix is uniformly better.
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syms m;

lmzX = wishartpol(n/N);

lmzG = wishartpol(n/m param);

lmzP = AtimesB(lmzX,lmzG);

kerA = AtimesBkernel(lmzG,lmzX);

m kerA = solve(kerA,’m’);

num points = 2500;

max g pdf point = (sqrt(n/m param) + 12)^2+1;

pdfA = Lmz2pdf(lmzG,linspace(0,max g pdf point,num points));

spacing = max g pdf point/num points;

yintA = -subs(m kerA,’z’,(sig lim^2));

yintxA = real(subs(yintA,pdfA.range));

yintxA(isnan(yintxA)) = 0;

yintxA(isinf(yintxA)) = 0;

phiF = yintxA*((pdfA.range’).*(pdfA.density))*(spacing);

phiF = real(phiF(3));

Figure 7.3: matlab code to compute ϕF and ϕH for a Gaussian projection matrix and
Gaussian noise matrix. This relies on function provided in RMTool [3].

7.5.1 Gaussian Projection, G

In this setting, we generate G in the same way that we generate X. In matlab,

this is accomplished with

G = randn(n,m)/sqrt(m).

With G defined this way, R = GGH and S = XXH are independent Wishart ran-

dom matrices with parameters c1 = n
m

and c2 = nN . To compute ϕF and ϕH ,

we use RMTool. We numerically approximate the expected value using RMTool to

approximate the density of R and to compute the Stieltjes transform of the kernel.

We use 2500 points in the approximation. To compute ϕH , We consider the matrix

M2 = GGHXXH = RS, which is a product of Wishart matrices. This is desirable as

M2 is a product of Wishart random matrices and we can use RMTool to compute the

Stieltjes transform as above for ϕH . The matlab code to for these approximations

is given in Figure 7.3.

Figure 7.4(a) shows the performance of our theoretical prediction when using a
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Figure 7.4: (a) Singular value prediction for Gaussian G and X for a rank-1 setting
with fixed n = 1000, N = 1220 and m = 100. The theoretical prediction uses (7.3)
with approximations from Figure 7.3. Empirical results are averaged over 500 trials. (b)
Singular value prediction for Gaussian-like G and Gaussian X for a rank-1 setting with
fixed n = 1000, N = 1220 and m = 100. Here, the entries of G are either ±1 with equal
probability. The theoretical prediction is the same for (a). Empirical results are again
averaged over 500 trials.

Gaussian projection matrix, G, for a rank-1 setting with a fixed n = 1000, N = 1220,

m = 100. In our empirical setup, we generate 500 matrices from (7.1) and 500 noise

only matrices. We then generate a random G selected as above. The figure plots

the empirical and theoretically predicted top singular value for a number of θ1 = θ.

The theoretical prediction does a good job except for one inaccurate point, which we

attribute to the numerical instability of the process outlined in Figure 7.3 around the

phase transition.

In Figure 7.4(b) we consider a Gaussian-like projection matrix for the same rank-1

setting as Figure 7.4(a). For this figure, the entries of G are

Gij =

1 w.p. 1/2

−1 w.p. 1/2

so that they have zero mean and unit variance. We see that the theoretical prediction

from (7.3) for the Gaussian setting is still valid for this Gaussian-like projection

matrix.

We then explore the accuracy of the phase transition boundary for the Gaussian

setting in Figure 7.5. In the first row of this Figure, we plot the KS-statistic between

200



the largest singular values from these 500 signal and noise only matrices. In the

second row we plot the average top singular value of the signal matrix. All figures set

n = 1000. The left column sweeps over θ and N while the right column sweeps over

θ and m. In all figures, we plot our theoretical phase transition prediction in solid

white line. Using a dashed white line, we plot the theoretical phase transition when

no projection is used; this is θ =
(
n
N

)1/4
.

From this figure, we observe that the phase transition prediction is very accurate.

Similarly we notice that the phase transition when using the Gaussian projection is

significantly worse that that when not projecting. The figures in the left column set

m = 100 so that we reduce our SVD dimension by one order of magnitude. Inter-

estingly, and perhaps most importantly, when using a Gaussian projection matrix,

setting m = n = 1000 results in worse performance than the non-projecting case even

though we aren’t reducing the dimension of the problem. This is evident in the right

column.

7.5.2 Unitary Projection, Q

In this setting, we a unitary projection matrix Q using a QR decomposition of a

random matrix. In matlab this is accomplished with

[Q,~] = qr(randn(n)); Q=Q(:,1:m).

Figure 7.6(a) plots the performance of our theoretical prediction when using a

unitary projection matrix, Q, for a rank-1 seeting with a fixed n = 1000, N = 1220,

m = 100. In our empirical setup, we generate 500 matrices from (7.1) and 500 noise

only matrices. We then generate a random Q selected as above. The figure plots the

empirical and theoretically predicted top singular value for a number of θ1 = θ. The

theoretical prediction uses the result from Corollary 7.2.1 and does an excellent job

at the singular value prediction.

In Figure 7.6(b), we consider a specific choice of unitary matrix. Here, we ran-

domly select columns from the n× n discrete Fourier matrix F with entries

Fkj =
1√
n

exp

{
−2πi(k − 1)(j − 1)

n

}
(7.14)

for k = 1 . . . , n and j = 1, . . . , n. To generate Q we then select m columns from F .

We see that the theoretical prediction from Corollary 7.2.1 still does an excellent job

at the singular value prediction for this specific choice of unitary matrix.
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Figure 7.5: Performance of theoretical phase transition prediction for Gaussian G and
X for a rank-1 setting with fixed n = 1000. The theoretical prediction uses (7.3) with
approximations from Figure 7.3. The first row plots the KS statistic between singular
values generated from 500 signal bearing and 500 noise only matrices. The bottom row
plots the average empirical singular value averaged over 500 trials. The left column sweeps
over both θ and N for a fixed m = 100 while the right column sweeps over θ and m for a
fixed N = 1000.
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Figure 7.6: (a) Singular value prediction for unitary projection matrix Q and Gaussian
noise matrix X for a rank-1 setting with fixed n = 1000, N = 1220 and m = 100. The
theoretical prediction uses Corollary 7.2.1. Empirical results are averaged over 500 trials.
(b) Singular value prediction for unitary-like matrix Q and Gaussian noise matrix X for a
rank-1 setting with fixed n = 1000, N = 1220 and m = 100. Here, the columns of Q are
sampled from the n×n discrete Fourier matrix defined in (7.14). The theoretical prediction
is the same as (a) and uses Corollary 7.2.1. Empirical results are averaged over 500 trials.

Figure 7.7 plots the performance of our theoretical prediction when using a uni-

tary projection matrix, Q. Our parameter sweep is the same as described for Figure

7.5, except that here we use the phase transition prediction given in Corollary 7.2.1.

Again, we notice that our phase transition prediction is very accurate. A key ob-

servation is that for a unitary projection matrix, as m → n, the phase transition

approaches that of not using a projection matrix. This is very desirable as we don’t

want to suffer much performance loss for only slightly reducing the dimension of the

problem.

7.5.3 Comparison

Here we discuss the difference between the two choices of projection matrices.

Figure 7.8 shows the empirical difference of the KS statistic plots from Figures 7.5

and 7.7. On each plot we overlay the theoretical phase transition lines. The solid

white is the prediction for a Gaussian projection matrix from (7.3) using the method

in Figure 7.3; the dashed white is the prediction for an unitary projection matrix from

Corollary 7.2.1; the solid black is the prediction when not using a projection (θ = c1/4).

Positive values in these plots indicate that the top singular value using a Gaussian
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Figure 7.7: Performance of theoretical phase transition prediction for unitary projection
matrix Q and Gaussian noise matrix X for a rank-1 setting with fixed n = 1000. The
theoretical prediction uses Corollary 7.2.1. The first row plots the KS statistic between
singular values generated from 500 signal bearing and 500 noise only matrices. The bottom
row plots the average empirical singular value averaged over 500 trials. The left column
sweeps over both θ and N for a fixed m = 100 while the right column sweeps over θ and m
for a fixed N = 1000.
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projection matrix can more reliably detect our one signal; negative values indicate

that the top singular value using a unitary projection matrix can more reliably detect

our signal. The first column sweeps over N and θ for a fixed m = 100 and n = 1000

while the second column sweeps over m and θ for a fixed N = 1000 and n = 1000.

We see that the unitary projection matrix performs uniformly better than the

Gaussian projection matrix above the phase transition. Below their respective phase

transitions, all methods fail. Importantly, even when setting m = n so that the

projection doesn’t reduce the dimension, the unitary projection keeps the same phase

transition while the Gaussian projection changes the phase transition so that it is

harder to detect the presence of a signal. This allows us to conclude that in terms

of detection performance, the unitary projection matrix is better than the Gaussian

projection matrix.

However, we do note that generating these projection matrices, particularly for

large dimensions, is important. Generating the Gaussian projection matrix G is very

easy as every entry is an independent Gaussian random variable. However, generating

a n ×m unitary matrix Q for high dimensions may be prohibitive. The analysis in

this chapter gives the practitioner the ability to choose the projection matrix that

best fits his or her needs. Given system parameters, the practitioner can select the

projection dimension m to achieve a certain detection ability. The decision may be

driven by the ease of creating each projection matrix.
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Figure 7.8: Performance difference between using a Gaussian projection matrix, G, and a
unitary projection matrix, Q, for a rank-1 setting with fixed n = 1000 and Gaussian noise
matrix X. Positive values indicate that the Gaussian projection can more reliably detect
the signal while negative values indicate that the unitary projection can more reliably detect
the signal. We observe that the unitary projection outperforms the Gaussian projection.
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CHAPTER VIII

CCA and ICCA for Regression and Detection

8.1 Introduction

In this chapter, we consider the classical problems of detection and regression

in the multi-modal data setting. In such a setting, we assume that each dataset

embeds signals in a low-rank subspace, but that the observations reside in a much

higher dimensional space and are corrupted with noise. In this chapter, we show

that when we know all parameters in the data model, the classical solutions to the

detection and regression problems may be written in terms of the CCA canonical

vectors and correlations. However, we show that empirical CCA, which relies on

sample covariance estimates, fails to solve these problems in the low-sample, low-SNR

regime. We then showcase that the ICCA solution to the detection and regression

problems are equivalent to the standard plug-in solutions.

When there is only one dataset present, the detection problem reduces to the

classical matched subspace detector (MSD). MSDs are used in fields such as array

processing [69, 68], radar detection [71, 70], and handwriting recognition [78]. The

performance of matched subspace detectors (MSDs) has been studied extensively

when the signal subspace is known [76, 75, 74, 77] and in this thesis when the signal

subspace is unknown. Here we explore the theory of MSDs when two multi-modal

sets of observations are available. Since these datasets both describe the same system,

one would hope that theoretically fusing feature vectors to account for correlations

will result in better detection ability.

We are motivated by the work in [52], which shows that the canonical basis is the

right basis to use in low-rank detection and estimation. Here, Pezeshki et al. consider

the signal plus noise model where an observation from one dataset is available. This

observation is a sum of a unknown low rank signal and Gaussian noise. They apply

CCA using the observation as the first modality and the unknown signal as the second
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modality. We are interested in the different setting where we are presented with two

datasets, each possibly containing a low rank signal buried in high dimensional noise.

Their work on estimation is directly applicable and we extend their result to analyze

the performance for a low-rank signal plus noise model when the model parameters

are unknown.

We begin by providing the data model used throughout the rest of the thesis and

the classical (maximum likelihood) estimates of unknown parameters. We then first

consider the case when we know all of the parameters to show that classical regression

and detection solutions may be written in terms of the CCA basis. We then predict

mean squared error for different estimators when using parameter estimates. Finally,

we use numerical simulations to demonstrate the extreme sub-optimality of empirical

CCA compared to the plug-in LRT detector and estimator. Instead, using the ICCA

basis in such algorithms results in the same performance as the plug-in LRT algorithm,

giving credence to the previous idea that using only the informative components in

data fusion is extremely important.

8.2 Data Model and Parameter Estimation

8.2.1 Training Data

Similar to the previous chapters in this thesis, we model our multi-modal data via

xi = Uxsx,i + zx,i

yi = Uysy,i + zy,i
(8.1)

where UH
x Ux = Ikx , U

H
y Uy = Iky , zx,i

i.i.d.∼ CN (0, Ip) and zy,i
i.i.d.∼ CN (0, Iq). Further-

more, assume that

sx,i ∼ CN (0,Θx)

sy,i ∼ CN (0,Θy),

where Θx = diag

((
θ

(x)
1

)2

, . . . ,
(
θ

(x)
kx

)2
)

and Θy = diag

((
θ

(y)
1

)2

, . . . ,
(
θ

(y)
ky

)2
)

.

Assume that zx,i and zy,i are mutually independent and independent from both sx,i

and sy,i. Finally, assume that

E
[
sx,is

H
y,i

]
=: Kxy = Θ1/2

x PxyΘ
1/2
y
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where the entries of Pxy are −1 ≤ ρkj ≤ 1 and represent the correlation between s
(k)
x,i

and s
(j)
y,i . For reasons to be made clear later, define

K̃xy = (Θx + Ikx)
−1/2Kxy

(
Θy + Iky

)−1/2

and define the singular values of K̃xy as κ1, . . . , κmin(kx,ky). Under this model, we

define the following covariance matrices

E
[
xix

H
i

]
= UxΘxU

H
x + Ip =: Rxx

E
[
yiy

H
i

]
= UyΘyU

H
y + Iq =: Ryy

E
[
xiy

H
i

]
= UxKxyU

H
y =: Rxy.

(8.2)

Let wi =
[
xHi y

H
i

]H
be the joint observation vector, d = p+ q be the dimension of wi,

and k = kx + ky � d be the combined rank of the two low rank signal subspaces.

8.2.2 Parameter Estimation

Assume that we are given n observations of each dataset, x1, . . . , xn, and y1, . . . , yn.

We stack these observations into two training data matrices X = [x1, . . . , xn], and

Y = [y1, . . . , yn]. We assume that kx and ky are known. Let QxDxV
H
x be the SVD of

1√
n
X and let QyDyV

H
y be the SVD of 1√

n
Y . The maximum likelihood (ML) estimates

of our unknown parameters are
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Ûx = Qx(:, 1 : kx)

Ûy = Qy(:, 1 : ky)

Û =

[
Ûx 0

0 Ûy

]
Θ̂x = D2

x(1 : kx, 1 : kx)− Ikx
Θ̂y = D2

y(1 : ky, 1 : ky)− Iky

Θ̂ =

[
Θ̂x 0

0 Θ̂y

]
P̂xy = Θ̂−1/2

x ÛH
x

1

n
XY HÛyΘ̂

−1/2
y

= Θ̂−1/2
x Dx(1 : kx, :)V

H
x VyDx(1 : ky, :)

HΘ̂−1/2
y

= Θ̂−1/2
x

(
Θ̂x + Ikx

)1/2

V H
x Vy

(
Θ̂y + Iky

)1/2

Θ̂−1/2
y

̂̃
P =

[
Ikx P̂xy

P̂H
xy Iky

]
.

(8.3)

8.2.3 Testing Data

For the regression problem, we generate testing observations x and y from (8.1).

However, we only observe y and our goal is to estimate x from y. In the detection

problem, we generate testing observations x and y from either a noise only or signal

plus noise model

Noise only, H0 :

{
xi = zx,i

yi = zy,i

Signal plus noise, H1 :

{
xi = Uxsx,i + zx,i

yi = Uysy,i + zy,i

(8.4)

where the parameters are modeled the same as the training model in (8.1).

8.3 Standard Regression Techniques

In this section, we will explore standard regression techniques using the prior

information of our data model and using canonical correlation analysis (CCA) and

informative CCA (ICCA). Specifically, we will compute the theoretical mean squared

error (MSE) of each method. A key observation of these derivations is that the MSE

210



computation relies on insights from random matrix theory even if the predictor does

not. In the Gaussian setting of our testing data, the maximum likelihood estimator

of x given y is

x̂ = RxyR
−1
yy y. (8.5)

Based on data model in (8.1), this estimator is

x̂ = UxKxyU
H
y

(
UyΘyU

H
y + Iky

)−1
y

= UxKxy

(
Θy + Iky

)−1
UH
y y.

(8.6)

8.3.1 Plug-in Predictor

By substituting the parameter estimates in (8.3) into the ML estimator in (8.6)

we arrive at the standard plug-in predictor

x̂plugin = ÛxΘ̂
1/2
x P̂xyΘ̂

1/2
y

(
Θ̂y + Iky

)−1

Ûyy. (8.7)

8.3.2 Prediction using CCA, empirical CCA, and ICCA

We first use basic definitions of Canonical Correlation Analysis (CCA) to rewrite

(8.5) in terms of canonical vectors and canonical correlations. Recall from previous

chapters that CCA takes the SVD of the matrix

Ccca = R−1/2
xx RxyR

−1/2
yy ,

and we write this SVD as Ccca = FKGH . The singular values of the matrix are

exactly the canonical correlations. To recover the corresponding canonical vectors,

we make the transformations
Wx = R−1/2

xx F

Wy = R−1/2
yy G,

where Wx ∈ Cp×p and Wy ∈ Cq×q. The columns of these matrices are exactly the

canonical vectors. Therefore, we may estimate x using the canonical basis by observ-
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ing that

x̂ = RxyR
−1
yy y

R−1/2
xx x̂ = R−1/2

xx RxyR
−1/2
yy R−1/2

yy y

R−1/2
xx x̂ = CccaR

−1/2
yy y

R−1/2
xx x̂ = FKGHR−1/2

yy y

FHR−1/2
xx x̂ = KGHR−1/2

yy y

WH
x x̂ = KWH

y y.

From this derivation, we see that the canonical correlation basis is the correct basis

to use for regression. Essentially, CCA gives a linear prediction model for each of the

canonical variates

w(i)H
x x = ρ(i)w(i)H

y y.

We know from our model in (8.1) that the datasets have at most r =: min(kx, ky)

correlated components. With this observation and abusing notation, redefine K =

K(1 : r, 1 : r), Wx = Wx(:, 1 : r), and Wy = Wy(:, 1 : r). Therefore, the CCA

predictor when the canonical correlations and canonical vectors are known a priori is

x̂cca =
(
WH
x

)†
KWH

y y.

However, we do not know the canonical correlations and canonical vectors a priori

and must estimate them from data. This results in the following empirical predictors,

x̂cca =
(
ŴH
x,cca

)†
K̂ccaŴ

T
y,ccay

x̂icca =
(
ŴH
x,icca

)†
K̂iccaŴ

H
y,iccay,

where the estimated canonical correlations and vectors for CCA and ICCA are found

in a similar manner as in Chapters IV and V.

8.4 Random Matrix Theory Preliminaries

In this section, we state previous results in random matrix theory to help us

characterize the accuracy of our parameter estimates in (8.3). Our first proposition

characterizes the accuracy of our subspace estimates Ûx and Ûy.

Proposition 8.4.1. Given our training data model in (8.1), as n, p, q → ∞ with
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p/n→ cx and q/n→ cy,

∣∣〈u(i)
x , û

(i)
x

〉∣∣2 a.s.−→


θ
(i)4
x −cx

θ
(i)4
x +θ

(i)2
x cx

if
(
θ

(i)
x

)2

>
√
cx

0 otherwise

∣∣〈u(i)
y , û

(i)
y

〉∣∣2 a.s.−→


θ
(i)4
y −cy

θ
(i)4
y +θ

(i)2
y cy

if
(
θ

(i)
y

)2

>
√
cy

0 otherwise
.

(8.8)

Proof. See Theorem 4 of [84] and Theorem 2.2 of [85].

A key observation in the proposition is that if the SNR governing a subspace

component drops below a critical value, dependent only on the dimension of the

dataset and the number of samples, then that estimated subspace component in

uninformative. A similar results characterizes the accuracy of the SNR estimates Θ̂x

and Θ̂y.

Proposition 8.4.2. Given our training data model in (8.1), as n, p, q → ∞ with

p/n→ cx and q/n→ cy,

θ̂(i)
x

a.s.−→


√
σ

(i)2
x + cx + cx

θ
(i)2
x

if θ
(i)2
x >

√
cx√

cx + 2
√
cx otherwise

θ̂(i)
y

a.s.−→


√
θ

(i)2
y + cy + cy

θ
(i)2
y

if θ
(i)2
y >

√
cy√

cy + 2
√
cy otherwise

.

(8.9)

Proof. See Theorems 1 and 2 in [84] for the real setting for cx < 1 and cy < 1. See

Theorem 2.6 in [86] for the complete result.

Propositions 8.4.1 and 8.4.2 both reveal a phase transition in our estimates. When

the SNR is below a critical value, our estimates behave truly randomly and our signal

subspace estimates contain no information and our SNR estimates behave as the

largest singular value of a noise-only matrix. Next we present two propositions to

characterize the limit of the CCA and ICCA canonical correlations.

Proposition 8.4.3. Let n, p, q →∞ such that p/n→ cx and q/n→ cy. Assume that

p+ q < n. For i = 1, . . . ,min(kx, ky) let ρ̂
(i)
cca be the largest singular singular values of
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Ĉcca generated from data modeled in (8.1). Then these singular values behaves as

ρ̂(i)
cca

a.s.−→


√
κ2
i

(
1− cx + cx

κ2
i

)(
1− cy + cy

κ2
i

)
κ2
i ≥ rc

√
dr κ2

i < rc

(8.10)

where κi are the singular values of K̃xy and

rc =
cxcy +

√
cycy(1− cx)(1− cy)

(1− cx)(1− cy) +
√
cxcy(1− cx)(1− cy)

dr = cx + cy − 2cxcy + 2
√
cxcy(1− cx)(1− cy).

(8.11)

Proof. Bao et al. [2] proved this result for a slightly simplified model. See Chapter

4 for a short derivation and Appendix C for a lengthy derivation using our own

notation.

The estimated empirical canonical correlations also exhibit a phase transition that

is dependent on the dimensions of both datasets and the number of samples available.

An important consequence, first shown by [6] shows that when n < p + q, ρ̂
(i)
cca = 1.

Next we characterize the ICCA canonical correlation estimates.

Proposition 8.4.4. Let p, q, n→∞ with p/n→ cx and q/n→ cy. Define

ϕ(i)
x =


√

1−
(
cx + θ

(i)2
x

)
/
(
θ

(i)4
x + θ

(i)2
x

)
if
(
θ

(i)
x

)2

>
√
cx

0 otherwise

ϕ(i)
y =


√

1−
(
cy + θ

(i)2
y

)
/
(
θ

(i)4
y + θ

(i)2
y

)
if
(
θ

(i)
y

)2

>
√
cy

0 otherwise

Then [
V H
x Vy

]
ij

a.s.−→ ϕ(i)
x [Pxy]ij ϕ

(i)
y .

The singular values of this matrix limit are the almost sure limit of the ICCA canonical

correlation estimates ρ̂
(i)
icca.

Proof. See [8] for a derivation of this result for the rank 1 case. See Corollary 4.6.1

of this thesis for a complete result.

Both ICCA and CCA exhibit a phase transition where the canonical correlation

is deterministic. In this regime, the ICCA correlation estimate is 0 while the CCA
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correlation estimate is non-zero. Finally, we characterize the accuracy of the canonical

vectors in ICCA and CCA. We derive the CCA accuracy in Appendix C, but do not

have a closed form expression for this result yet. Below is the accuracy for the ICCA

vector as derived in Chapter 5.

Proposition 8.4.5. Let p, n→∞ with p/n→ cx. Then

∣∣∣∣∣
〈

w
(i)
x

‖w(i)
x ‖2

,
ŵ

(i)
x

‖ŵ(i)
x ‖2

〉∣∣∣∣∣
2

a.s.−→

∑kx
j=1

(
U

(i)

K̃

)2

j

αj√(
θ
(x)
j

)2
+1

√(
θ̂
(j)
x

)2
+1

2

(∑kx
j=1

(
U

(i)

K̃

)2

j

1(
θ
(x)
j

)2
+1

)(∑kx
j=1

(
U

(i)

K̃

)2

j

1(
θ̂
(j)
x

)2
+1

) ,

where θ̂
(j)
x is defined above and

αi =
∣∣〈u(i)

x , û
(i)
x

〉∣∣
A similar results holds for the accuracy of ŵy.

Proof. See Chapter 5 for a derivation of this result

8.5 Theoretical MSE Derivations

In this section, we derive the theoretical mean squared error (MSE) for the plug-

in, CCA, and ICCA predictors derived in Section 8.3. These derivations rely on the

expressions presented in Section 8.4. Given a predictor, the MSE is

MSE = E
[
(x− x̂)T (x− x̂)

]
= E

[
xTx

]
− 2E

[
xT x̂

]
+ E

[
x̂T x̂

]
.

(8.12)

The first term above is only dependent on our data model,

E
[
xTx

]
= E

[
(Uxsx + zx)

H (Uxsx + zx)
]

= E
[
sHx sx

]
+ 2E

[
sHx U

H
x zx

]
+ E

[
zHx zx

]
=

kx∑
i=1

(
θ

(x)
i

)2

+ 0 + p

= p+
kx∑
i=1

(
θ

(x)
i

)2

.

(8.13)
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The other terms are dependent on the individual predictors and we compute them

individually next. To do so, we make the following definitions to ease notation.

Aux = diag
(∣∣〈u(i)

x , û
(i)
x

〉∣∣)
Auy = diag

(∣∣〈u(i)
y , û

(i)
y

〉∣∣)
Avx = diag

(
ϕ(i)
x

)
Avy = diag

(
ϕ(i)
y

)
.

Also, where it is clear, we drop the ICCA and CCA subscripts.

8.5.1 ICCA

Before computing the necessary terms in MSE, we note that

V H
x Vy = ÛK̃KV̂K̃ ,

and our canonical vectors are

Wx = R̂−1/2
xx ÛxÛK̃ = Ûx

(
Θ̂x + Ikx

)−1/2

ÛK̃

Wy = R̂−1/2
yy ÛyV̂K̃ = Ûy

(
Θ̂y + Iky

)−1/2

V̂K̃

so that (
WH
x

)†
= Wx

(
WH
x Wx

)−1

= Ûx

(
Θ̂x + Ikx

)−1/2

ÛK̃

(
ÛH
K̃

(
Θ̂x + Ikx

)−1

ÛK̃

)−1

= Ûx

(
Θ̂x + Ikx

)1/2

ÛK̃
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Therefore, the first ICCA MSE component is

E
[
xH x̂icca

]
= E

[
(Uxsx + zx)

H (WH
x

)†
KWH

y (Uysy + zy)
]

= E
[
sHx U

H
x

(
WH
x

)†
KWH

y Uysy

]
= E

[
tr
(
sHx U

H
x

(
WH
x

)†
KWH

y Uysy

)]
= E

[
tr
(
UH
x

(
WH
x

)†
KWH

y Uysys
H
x

)]
= tr

(
UH
x

(
WH
x

)†
KWH

y UyΘ
1/2
x PxyΘ

1/2
y

)
= tr

(
UH
x Ûx

(
Θ̂x + Ikx

)1/2

ÛK̃KV̂
H
K̃

(
Θ̂y + Iky

)−1/2

ÛH
y UyΘ

1/2
x PxyΘ

1/2
y

)
= tr

(
Aux

(
Θ̂x + Ikx

)1/2

AvxPxyA
v
y

(
Θ̂y + Iky

)−1/2

AuyΘ
1/2
x PxyΘ

1/2
y

)
.

Similarly, we have the following equivalencies for E
[
x̂Hiccax̂icca

]
,

= E
[((

WH
x

)†
KWH

y (Uysy + zy)
)H ((

WH
x

)†
KWH

y (Uysy + zy)
)]

= E
[
zHy WyK

H
(
WH
x

)†H (
WH
x

)†
KWH

y zy

]
+

E
[
sHy U

H
y WyK

H
(
WH
x

)†H (
WH
x

)†
KWH

y Uysy

]
= tr

(
WyK

H
(
WH
x

)†H (
WH
x

)†
KWH

y

)
+

tr
(
UHy WyK

H
(
WH
x

)†H (
WH
x

)†
KWH

y UyΘy

)
= tr

(
WyK

HÛH
K̃

(
Θ̂x + Ikx

)
Û
K̃
KWH

y

)
+

tr
(
UHy WyK

HÛH
K̃

(
Θ̂x + Ikx

)
Û
K̃
KWH

y UyΘy

)
= tr

(
Ûy

(
Θ̂y + Iky

)−1/2
V̂
K̃
KHÛH

K̃

(
Θ̂x + Ikx

)
Û
K̃
KV̂ H

K̃

(
Θ̂y + Iky

)−1/2
ÛHy

)
+

tr

(
UHy Ûy

(
Θ̂y + Iky

)−1/2
V̂
K̃
KHÛH

K̃

(
Θ̂x + Ikx

)
Û
K̃
KV̂ H

K̃

(
Θ̂y + Iky

)−1/2
ÛHy UyΘy

)
= tr

((
Θ̂y + Iky

)−1/2
AvyPxyA

v
x

(
Θ̂x + Ikx

)
AvxPxyA

v
y

(
Θ̂y + Iky

)−1/2
)

+

tr

(
Auy

(
Θ̂y + Iky

)−1/2
AvyPxyA

v
x

(
Θ̂x + Ikx

)
AvxPxyA

v
y

(
Θ̂y + Iky

)−1/2
AuyΘy

)
.

We substitute these expressions and (8.13) into (8.12) to arrive at the ICCA MSE

prediction.
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8.5.2 CCA

CCA does not first trim data matrices and so our canonical vectors are more

complicated as they contain all components of our original data matrices. In this

setting, our canonical vectors are

Wx = QxDxÛK̃

Wy = QyDyV̂K̃

where here ÛK̃ ∈ Cp×k and V̂K̃ ∈ Cq × k are the first k left and right singular vectors

of the min(n, p) ×min(n, q) matrix V H
x Vy. Unlike in ICCA, this matrix is large and

contains all right singular vectors of our original data matrix. In Appendix C, we

derive (non-closed form) expressions for the accuracy of the CCA canonical vectors.

The expressions derived in the appendix are for unit norm vectors, but the steps in

the derivations solve for the expressions WH
x Ŵx and ŴH

x Ŵx, and similarly for the

canonical vectors of dataset Y . Therefore, in the following derivations, we leave these

expressions in this form and refer the reader to the appendix. Again, we note that we

do not have closed form expressions for these types of terms and leave this to future

work. We have the following equivalencies for E
[
xH x̂cca

]
= E

[
(Uxsx + zx)

H
(
ŴH
x

)†
KŴH

y (Uysy + zy)

]
= E

[
sHx U

H
x

(
ŴH
x

)†
KŴH

y Uysy

]
= E

[
tr

(
UH
x

(
ŴH
x

)†
KŴH

y Uysys
H
x

)]
= tr

(
UH
x

(
ŴH
x

)†
KŴH

y UyΘ
1/2
y PH

xyΘ
1/2
x

)
= tr

(
UH
x Ŵx

(
ŴH
x Ŵx

)−1

KŴH
y UyΘ

1/2
y PH

xyΘ
1/2
x

)
= tr

(
(Θx + Ikx)

1/2 UK̃W
H
x Ŵx

(
ŴH
x Ŵx

)−1

KŴH
y WyV̂

H
K̃

(
Θy + Iky

)1/2
Θ1/2
y PH

xyΘ
1/2
x

)
.

The above expression relies on the model parameters Θx, Θy, Pxy, UK̃ , VK̃ and CCA

expressions that we know by proposition (K) or appendix derivations (canonical vec-

tor accuracy). Next we derive an expression for the last term needed in the CCA
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MSE derivation. We have the following equivalencies for E
[
x̂Hccax̂cca

]
= E

[((
ŴH
x

)†
KŴH

y (Uysy + zy)

)H ((
ŴH
x

)†
KŴH

y (Uysy + zy)

)]

= E
[
sHy U

H
y ŴyK

(
ŴH
x

)†H (
ŴH
x

)†
KŴH

y Uysy

]
+ E

[
zHy ŴyK

(
ŴH
x

)†H (
ŴH
x

)†
KŴH

y zy

]
= E

[
tr

(
UH
y ŴyK

(
ŴH
x

)†H (
ŴH
x

)†
KŴH

y Uysys
H
y

)]
+

E
[
tr

(
ŴyK

(
ŴH
x

)†H (
ŴH
x

)†
KŴH

y zyz
H
y

)]
= tr

(
UH
y ŴyK

(
ŴH
x

)†H (
ŴH
x

)†
KŴH

y UyΘy

)
+

tr

(
ŴyK

(
ŴH
x

)†H (
ŴH
x

)†
KŴH

y

)
= tr

(
UH
y ŴyK

(
ŴH
x Ŵx

)−1

KŴH
y UyΘy

)
+

tr

(
K
(
ŴH
x Ŵx

)−1

KŴH
y Ŵy

)
= tr

((
Θy + Iky

)1/2
VK̃W

H
y ŴyK

(
ŴH
x Ŵx

)−1

KŴH
y WyV

H
K̃

(
Θy + Iky

)1/2
Θy

)
+

tr

(
K
(
ŴH
x Ŵx

)−1

KŴH
y Ŵy

)
.

We substitute these expressions and (8.13) into (8.12) to arrive at the CCA MSE

prediction.
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8.5.3 Plug-in

For the first expression needed in the MSE derivation, we have the following

equivalencies for E
[
xH x̂plugin

]
,

= E
[
(Uxsx + zx)

H Ûx

(
Θ̂x + Ikx

)1/2

V H
x Vy

(
Θ̂y + Iky

)−1/2

ÛH
y (Uysy + zy)

]
= E

[
sHx U

H
x Ûx

(
Θ̂x + Ikx

)1/2

V H
x Vy

(
Θ̂y + Iky

)−1/2

ÛH
y Uysy

]
= E

[
tr

(
sHx A

u
x

(
Θ̂x + Ikx

)1/2

AvxPxyA
v
y

(
Θ̂y + Iky

)−1/2

Auysy

)]
= E

[
tr

(
Aux

(
Θ̂x + Ikx

)1/2

AvxPxyA
v
y

(
Θ̂y + Iky

)−1/2

Auysys
H
x

)]
= tr

(
Aux

(
Θ̂x + Ikx

)1/2

AvxPxyA
v
y

(
Θ̂y + Iky

)−1/2

AuyΘ
1/2
y PH

xyΘ
1/2
x

)
.

For the second expression, we have the following equivalencies for E
[
x̂Hpluginx̂plugin

]
,

= E
[
sHy U

H
y Ûy

(
Θ̂y + Iky

)−1/2

V H
y Vx

(
Θ̂x + Ikx

)
V H
x Vy

(
Θ̂y + Iky

)−1/2

ÛH
y Uysy

]
+

E
[
zHy Ûy

(
Θ̂y + Iky

)−1/2

V H
y Vx

(
Θ̂x + Ikx

)
V H
x Vy

(
Θ̂y + Iky

)−1/2

ÛH
y zy

]
= tr

(
Auy

(
Θ̂y + Iky

)−1/2

AvyP
H
xyA

v
x

(
Θ̂x + Ikx

)
AvxPxyA

v
y

(
Θ̂y + Iky

)−1/2

AuyΘy

)
+

tr

((
Θ̂y + Iky

)−1/2

AvyP
H
xyA

v
x

(
Θ̂x + Ikx

)
AvxPxyA

v
y

(
Θ̂y + Iky

)−1/2
)

We substitute these expressions and (8.13) into (8.12) to arrive at the plugin MSE

prediction. Most importantly, when examining these expressions, we see that the

ICCA predictor achieves the same MSE as the plug-in predictor.

8.6 Rank-1 Empirical Results

To verify our theoretical MSE predictions, we generate data from (8.1) in a rank-1

setting where kx = ky = 1. We set θ
(x)
1 = 3, θ

(y)
1 = 4, p = 100, q = 200 and ρ = 0.9. In

the rank-1 setting, UK̃ = VK̃ = 1. We then sweep over various values of the number

of training samples we are given, n. For each value of n, we use the training samples

from (8.1) to train the plug-in, CCA, and ICCA parameters. Then, for 1000 testing

points, we generate both x and y from (8.1) and use y and our estimated parameters

to predict x. We repeat this process 250 times for each value of n to average over
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noise and different subspaces. We plot the empirical and theoretical MSE curves in

Figure 8.1.

Our predictions do a decent job at predicting the MSE for all three estimators.

First, we note that empirically and theoretically, the ICCA estimator achieves the

same performance as the plug-in estimator. This is wonderful as it matched our

theoretical observation. Second, we note that the CCA estimator is extremely sub-

optimal, not only because it achieves a larger MSE than the other two estiamtors,

but also because its MSE does not monotonically decrease with increased n. This

non-monotonicity is centered around n = q = 200. Examining the second term in

the expression for x̂Hccax̂cca, we see that we need the expression for ŴH
y Ŵy. When

n < p+q, the singular vectors, f and g, of UxV
H
x VyU

H
y used in the CCA computation

of Ŵy are random. Therefore, in this regime

ŴH
y Ŵy = gHR̂−1

yy g

=
1

q

n∑
i=1

σi

((
1

n
Y Y H

)−1
)

→ E

[
σi

((
1

n
Y Y H

)−1
)]

= max

(
1

1− cy
,

1

cy − 1

)
.

As n→ q, cy → 1 and this above expression tends to infinity. We empirically observe

this singularity, which we are able to predict. Finally, we note that in certain regimes

our empirical CCA prediction is not entirely accurate. We attribute this to the fact

that for empirical CCA, we do not have closed form expressions for the accuracy

of the canonical vectors. The appendix makes a number of approximations for the

unknown quantities and for these plots, we simulated random matrices to generate

these unknown quantities.

8.7 LRT Detector Derivation

Formally, we are given two observation vectors, x and y, of different modalities

(having different features). The goal is to design a detector to distinguish between

the H1 hypothesis that the observations contain a target signal and the H0 hypothesis

that the observations are purely noise.

We consider the Neyman-Pearson setting for detection (see [93]) where, given
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(b) Zoomed-in

Figure 8.1: Empirical and theoretically predicted MSE for the plug-in, CCA, and ICCA

estimators. We use a rank-1 setting where kx = ky = 1, θ
(x)
1 = 3, θ

(y)
1 = 4, p = 100, q = 200

and ρ = 0.9. In the rank-1 setting, U
K̃

= V
K̃

= 1. The plot on the right is a zoomed in
version of the plot on the left. The ICCA and plug-in curves lie on top of each other, as we
showed that the two are equivalent.

a test observations from (8.4), we form w = [xHyH ]H by stacking the individual

observations in a column vector. The Neyman-Pearson lemma states that such a

detector takes the form of a LRT

Λ(w) :=
f (w |H1)

f (w |H0)

H1

≷
H0

γ, (8.14)

where Λ(w) is a test statistic, γ is a threshold set to achieve a desired false alarm

rate, and f is the appropriate conditional density of the observation.

The conditional distributions of w under each hypothesis are

w|H0 ∼ N (0, Id)

w|H1 ∼ N (0, Rw),

where Rw = E
[
wwH

]
. Substituting these conditional distributions in (8.14) , the

LRT statistic is

Λ(w) =
N (0, Rw)

N (0, Id)
,

which can be simplified to

Λ(w) = wH
(
Id −R−1

w

)
w. (8.15)
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The covariance matrix of the observation vector is

Rw =

[
Rxx Rxy

RH
xy Ryy

]
=

[
UxΘxU

H
x + Ip UxKxyU

H
y

UyK
H
xyU

H
x UyΘyU

H
y + Iq

]

=

[
Ux 0

0 Uy

]
︸ ︷︷ ︸

U

[
Θ

1/2
x 0

0 Θ
1/2
y

]
︸ ︷︷ ︸

Θ1/2

[
Ikx Pxy

PH
xy Iky

]
︸ ︷︷ ︸

P̃

[
Θ
H/2
x 0

0 Θ
H/2
y

]
︸ ︷︷ ︸

ΘH/2︸ ︷︷ ︸
Θ̃

[
UH
x 0

0 UH
y

]
︸ ︷︷ ︸

UH

+Id

= UΘ1/2P̃ΘH/2UH + Id

= UΘ̃UH + Id.

Substituting this covariance matrix into the LRT statistic in (8.15) yields (using the

matrix inversion lemma)

Λlrt(w) = wH
(
Id −R−1

w

)
w

= wH
(
Id −

(
UΘ̃UH + Id

)−1
)
w

= wH
(
Id −

(
Id − U

(
Θ̃−1 + UHU

))−1

UH

)
w

= wHU
(

Θ̃−1 + Ik

)−1

Uw

= wHU
(

Θ−1/2P̃−1Θ−1/2 + Ik

)−1

UHw

= wHUΘ1/2
(
P̃−1 + Θ

)−1

ΘH/2UHw.

The LRT detector is

Λlrt(w)
H1

≷
H0

γlrt (8.16)

where γlrt is a threshold set to satisfy

P (Λlrt(w) > γlrt |H0) = α,

where α is a desired false alarm rate.

Writing the LRT statistic in this form is desirable for computational reasons.

Instead of inverting Rw, which is a d× d matrix of high dimension, we only need to

invert k × k matrices.
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8.8 CCA Detector Equivalency

In this section, we will show that the LRT derived above in (8.16) can be written

using the canonical vectors and correlation coefficients found by CCA.Recall that the

matrix of interest in CCA is Ccca = R
−1/2
xx RxyR

−1/2
yy and that the canonical vectors

and correlation coefficients are found by solving the SVD of Ccca = FKGH . We begin

by manipulating the covariance matrix of w.

Rw =

[
Rxx Rxy

RH
xy Ryy

]
=

[
R

1/2
xx 0

0 R
1/2
yy

][
Ip Ccca

CH
cca Iq

][
R
H/2
xx 0

0 R
H/2
yy

]

=

[
R

1/2
xx 0

0 R
1/2
yy

][
F 0

0 G

][
Ip K

KH Iq

][
FH 0

0 GH

][
R
H/2
xx 0

0 R
H/2
yy

]
.

Using this decomposition, the inverse of the covariance matrix of w is

R−1
w =

[
R
−1/2
xx 0

0 R
−1/2
yy

][
F 0

0 G

][
Ip K

KH Iq

]−1 [
FH 0

0 GH

][
R
−H/2
xx 0

0 R
−H/2
yy

]
.

Recall that the i-th canonical vectors returned by CCA are

w(i)
x = R−1/2

xx fi

w(i)
y = R−1/2

yy gi

where fi and gi are the left and right singular vectors of C corresponding to the i-th

largest singular value, ki, respectively. Define the matrices

Wx =
[
w(1)
x , . . . , w(p)

x

]
= R−1/2

xx F

Wy =
[
w(1)
y , . . . , w(q)

y

]
= R−1/2

yy G

to be the matrices of canonical vectors returned by CCA. Using this notation and

substituting the expression for R−1
y in the LRT statistic in (8.15), we arrive at

Λ(w) = wH
(
Id −R−1

w

)
w

= wH

Id − [ Wx 0

0 Wy

][
Ip K

KH Iq

]−1 [
WH
x 0

0 WH
y

] y.
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The above expression is written in terms of the observation w, the canonical vectors

Wx and Wy and the correlation coefficients K returned by CCA. This statistic is

exactly equivalent to the LRT statistic derived earlier. Therefore, we conclude that

the CCA basis is the correct basis to use in such low-rank Gauss-Gauss detection

with two datasets.

We can write this detector slightly differently by recalling that the canonical

variates are ξ
(i)
x = w

(i)H
x x and ξ

(i)
y = w

(i)H
y y. Let ξx =

[
ξ

(1)
x , . . . , ξ

(p)
x

]H
, ξy =[

ξ
(1)
y , . . . , ξ

(q)
y

]H
, and define

ξ =

[
ξx

ξy

]
=

[
WH
x 0

0 WH
y

]
w.

Using this definition and defining

W =

[
Wx 0

0 Wy

]
,

the above detector may be written

Λcca(ξ) = ξH

(WHW
)−1 −

[
Ip K

KH Iq

]−1
 ξ. (8.17)

In conclusion, we derived a detector that takes the canonical variates as inputs and

uses only the canonical vectors X and the canonical correlation coefficients K in its

test statistic. This detector is

Λcca(ξ)
H1

≷
H0

γcca (8.18)

where Λcca(ξ) is defined in (8.17) and γcca is a threshold set to satisfy

P (Λcca(ξ) > γcca |H0) = α,

where α is the desired false alarm rate. The CCA detector in (8.18) is equivalent to

the LRT detector in (8.16). This is a general proof and is independent of any data

models placed on w. That is, in this proof, we did not refer to the data model in

(8.4) that motivated the problem.
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8.8.1 CCA Detector for Data Model (8.4)

The above CCA detector was derived for a generic data model. Here we find the

canonical vectors and correlation coefficients for the data model described in (8.4).

Under this model, the data covariance matrices are defined in (8.2) and their inverses

are

R−1
xx =

[
Ux U⊥x

] [ (Θx + Ikx)
−1 0

0 Ip−kx

][
UH
x

UH⊥
x

]

R−1
yy =

[
Uy U⊥y

] [ (Θy + Iky
)−1

0

0 Iq−ky

][
UH
y

UH⊥
y

]
.

It follows that the CCA matrix Ccca is

Ccca = R−1/2
xx RxyR

−1/2
yy

= Ux (Θx + Ikx)
−1/2 Θ1/2

x KxyΘ
1/2
y

(
Θy + Iky

)−1/2
UH
y

= UxK̃xyU
H
y .

(8.19)

Clearly, when expressed in (8.19), Ccca is a min (kx, ky) rank matrix. This implies that

there are only r := min (kx, ky) non-zero correlation coefficients. Therefore, there are

only r canonical vectors that should be used in a detector. Define

W̃x = Wx(:, 1 : r)

W̃y = Wy(:, 1 : r)

K̃ = K(1 : r, 1 : r)

as the trimmed canonical vectors and correlation coefficients. Finally define

W̃ =

[
W̃x 0

0 W̃y

]

and ξ̃ = W̃Hw. Then the CCA detector is

Λcca(ξ̃) = ξ̃H

(W̃HW̃
)−1

−

[
Ir K̃

K̃H Ir

]−1
 ξ̃, (8.20)

which only uses the r nonzero CCA correlation coefficients and corresponding canoni-

cal vectors. The matrix inverses here are also much easier to compute as the matrices

are only 2r × 2r instead of d× d.
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8.9 Empirical Detectors

In many applications, the signal matrices Ux, Uy, their SNR matrices Θx, Θy,

and the correlation matrix between datasets Pxy are unknown and thus the resulting

data covariance matrices are unknown. Therefore, neither the LRT statistic in (8.16)

or the CCA statistic in (8.20), which relies on Ccca in (8.19), can be computed.

In such settings, we are given training data to estimate any unknown parameters.

This section will describe how to estimate these unknown parameters and use these

estimates in the previously derived detectors. We then will describe how to use ICCA

for detection and show its equivalence to the plug-in LRT detector. Finally, we close

with numerical simulations demonstrating that the ICCA detector achieves the same

performance as the plug-in LRT and that the empirical CCA detector is extremely

suboptimal.

8.9.1 Plug-in Detector

To form a realizable LRT detector, we plug-in the parameter estimates in (8.3)

into the statistic in (8.15). This results in the plug-in LRT statistic

Λplugin(w) = wHÛΘ̂1/2

(̂̃
P
−1

+ Θ̂

)−1

Θ̂H/2Ûw. (8.21)

8.9.2 Empirical CCA Detector

Similarly, we create a realizable CCA detector by performing empirical CCA as

described in Section 8.3.2 by forming

Ĉcca = R̂−1/2
xx R̂xyR̂

−1/2
yy = QxIp×nV

H
x VyIn×qQ

H
y .

We then use the largest r singular values and corresponding left and right singular

vectors of Ĉcca to form estimates of the canonical vectors and correlation coefficients.

Specifically, let F̂ = [f̂1, . . . f̂r] and Ĝ = [ĝ1, . . . , ĝr] be the left and right singular

vectors corresponding to the largest r singular values κ̂1, . . . , κ̂r. Then the estimates
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of the canonical vectors and correlation coefficient are

̂̃
K = diag(κ̂1, . . . , κ̂r)̂̃
W =

[
R̂
−1/2
xx F̂ 0

0 R̂
−1/2
yy Ĝ

]

ξ̂ =
̂̃
W

H

w.

(8.22)

We then substitute these estimates into the CCA detector in (8.20). This results in

the empirical CCA detector statistic

Λcca(ξ̂) = ξ̂H

(̂̃WĤ̃
W

)−1

−

 Ir
̂̃
K̂̃

K Ir

−1 ξ̂. (8.23)

8.9.3 ICCA Detector

We saw in Chapter 4 that empirical CCA is suboptimal and that we can avoid

much of the performance loss of CCA by informatively trimming data components

before computing the canonical vectors and correlations. We apply these insights here

to form an ICCA detector. We instead form the matrix

Ĉicca = Qx(:, 1 : kx)Vx(:, 1 : kx)
HVy(:, 1 : ky)Qy(:, 1 : ky)

H

and take the top r singular values κ̃1, . . . , κ̃r and corresponding singular vectors

F̃ = [f̃1, . . . , f̃r] and G̃ = [g̃1, . . . , g̃r]. Using this rank-r SVD, we form informa-

tive canonical vectors and correlation coefficient similarly as in (8.22). Substituting

these informative parameters into the CCA detector in (8.20) results in the ICCA

detector statistic

Λicca(ξ̃) = ξ̃H

(̂̃WĤ̃
W

)−1

−

 Ir
̂̃
K̂̃

K Ir

−1 ξ̃. (8.24)

8.9.4 Proof that Λicca(ξ̃) ≡ Λplug-in(w)

In this section, we prove that the ICCA detector statistic in (8.24) is equivalent to

the plug-in LRT statistic in (8.21). We begin by manipulating the plug-in detector,

relying heavily on the Woodbury matrix inversion lemma. First we re-write the plug-
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in detector statistic

Λplugin(w) = wHÛΘ̂1/2

(̂̃
P
−1

+ Θ̂

)−1

Θ̂H/2Ûw

= wHÛ

(
Θ̂−1/2 ̂̃P−1

Θ̂−1/2 + I2r

)−1

Ûw

= wHÛ

(
I2r −

(
Θ̂1/2 ̂̃P Θ̂1/2 + I2r

)−1
)
Ûw.

Next we manipulate the ICCA detector statistic. To do this, we need expressions for

the canonical vectors and correlations in terms of our estimated parameters. First

define

C̃icca = Vx(:, 1 : kx)
HVy(:, 1 : ky)

and its SVD C̃icca = ÛK̃
̂̃
KV̂K̃ . Note that these singular values are exactly the singular

values of Ĉicca. Therefore, we have that

̂̃
W = Û

(
Θ̂ + I2k

)−1/2
[
ÛK̃ 0

0 V̂K̃

]
︸ ︷︷ ︸

Q
K̃

.

Therefore ̂̃
W

Ĥ̃
W = QH

K̃

(
Θ̂ + I2k)

)−1

QK̃

and (̂̃
W

Ĥ̃
W

)−1

= QH
K̃

(
Θ̂ + I2k)

)
QK̃ .

Also note that

ξ̃ =
̂̃
W

H

w.
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Substituting these expressions into (8.24), we have

Λicca(w) = ξ̃H

(̂̃WĤ̃
W

)−1

−

 Ir
̂̃
K̂̃

K Ir

−1 ξ̃.

= wH
̂̃
W

(̂̃WĤ̃
W

)−1

−

 Ir
̂̃
K̂̃

K Ir

−1̂̃WH

w.

= wHÛ
(

Θ̂ + I2r

)−1/2

QK̃

QH
K̃

(
Θ̂ + I2r)

)
QK̃ −

 Ir
̂̃
K̂̃

K Ir

−1 ·
QH
K̃

(
Θ̂ + I2r

)−1/2

ÛHw

= wHÛ
(

Θ̂ + I2r

)−1/2

(Θ̂ + I2r

)
−QK̃

 Ir
̂̃
K̂̃

K Ir

−1

QH
K̃

 ·
(

Θ̂ + I2r

)−1/2

ÛHw

= wHÛ

I2r −
(

Θ̂ + I2r

)−1/2
[

Ir C̃icca

C̃H
icca Ir

]−1 (
Θ̂ + I2r

)−1/2

 ÛHw

= wHÛ
(
I2r − (M + I2r)

−1) ÛHw

where

M =

 Θ̂x

(
Θ̂x + I2r

)−1/2

C̃icca

(
Θ̂y + I2r

)1/2(
Θ̂y + I2r

)−1/2

C̃H
icca

(
Θ̂x + I2r

)1/2

Θ̂y

 .
Therefore, we must show that M = Θ̂1/2 ̂̃P Θ̂1/2. The block diagonal entries of

Θ̂1/2 ̂̃P Θ̂1/2 are exactly Θ̂x and Θ̂y. Therefore, to complete the proof, we must show

that

Θ̂1/2
x P̂xyΘ̂

1/2
y =

(
Θ̂x + I2r

)1/2

C̃icca

(
Θ̂y + I2r

)1/2
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Substituting the definition of P̂xy, we have

Θ̂1/2
x P̂xyΘ̂

1/2
y = Θ̂1/2

x

(
Θ̂−1/2
x

(
Θ̂x + Ikx

)1/2

V H
x Vy

(
Θ̂y + Iky

)1/2

Θ̂−1/2
y

)
Θ̂1/2
y

=
(

Θ̂x + Ikx

)1/2

V H
x Vy

(
Θ̂y + Iky

)1/2

=
(

Θ̂x + Ikx

)1/2

C̃icca

(
Θ̂y + Iky

)1/2

,

which completes the proof.

8.9.5 Rank 1 Numerical Simulations

We now use numerical simulations to explore the performance of the plug-in LRT

detector in (8.21), the empirical CCA detector in (8.23), and the ICCA detector in

(8.24) in the rank-1 setting where kx = ky = 1. Specifically, we wish to empirically

verify that the plug-in LRT detector is equivalent to the ICCA detector. We also

wish to explore how the performance of the CCA detector in compares to that of the

plug-in LRT detector.

To compare the performance of these detectors, we compute empirical ROC curves.

To compute an empirical ROC curve, we first generate two random signal vectors,

Ux = ux and Uy = uy, by taking the first left singular vector of two appropriately

sized random matrices with i.i.d. N (0, 1) entries. In this simulation we make the

simplifying assumption that θ
(x)
1 = θ

(y)
1 = θ. Given a desired SNR, correlation ρ =

Pxy, and random ux and uy, we generate n training samples of xi and yi from the H1

hypothesis in (8.4). Using these training samples, we form estimates Û , Θ̂, ρ̂, R̂xx,

R̂yy, and R̂xy as described in Section 8.2.2.

We then generate a desired number of test samples from each hypothesis using

(8.4). For each test sample, we compute the test statistic for the plug-in LRT, em-

pirical CCA, and ICCA detectors in (8.21), (8.23), and (8.24), respectively. Using

Fawcett’s [1] ‘Algorithm 2’, we compute an empirical ROC curve by first sorting the

test statistics for a given detector. At each statistic, we log a (PF , PD) pair by count-

ing the number of lower scores generated from each hypothesis. This is repeated for

multiple realizations of ux and uy, generating multiple empirical ROC curves for each

detector. We refer to a single empirical ROC curve corresponding to a realization of

ux and uy as a trial. We then average the empirical ROC curves for a detector over

multiple trials using Fawcett’s [1] ‘Algorithm 4’. This performs threshold averaging

by first uniformly sampling the sorted list of all test scores of ROC curves and then

231



computing (PF , PD) pairs in the same way as ‘Algorithm 2’.

To compare the ROC curves of different detectors, we use the area under the

ROC curve (AUC) statistic. The AUC statistic ranges between 0.5, which represents

a random guessing detector, and 1.0, which represents a detector that can perfectly

distinguish between the two hypotheses. We compute the ROC curves and their

respective AUC for many values of the number of training samples, n, and SNR

θ = θ
(x)
1 = θ

(y)
1 . We present the AUC results in the form of a heatmap for two

different values of ρ for each of the detectors. Figure 8.2 presents results for ρ = 0.8

and Figure 8.3 presents results for ρ = 0.2.

Evident in both Figures 8.2 and 8.3, the ICCA detector exhibits the same AUC

performance as the plug-in LRT for both values of ρ. This confirms the derivation

in the above section. In Figure 8.2, we observe that the CCA detector is extremely

suboptimal in the sample and SNR regime presented. When n < 350 = p + q,

the CCA detector degrades to random guessing, evident in an AUC of 0.5. The

results presented in Chapter 4 show that in this sample poor regime, the correlation

coefficient estimate returned by CCA is deterministically 1. It is of no surprise that

the subsequent CCA detector is useless in this regime. Even when n > p + q, the

CCA detector achieves a lower AUC than the ICCA detector. The ICCA detector

can tolerate a much lower SNR to achieve the same AUC performance as the CCA

detector.

When decreasing ρ in Figure 8.3, the CCA detector observes an even further

performance loss. In the training sample and SNR parameter regime presented, the

CCA detector achieves an AUC of 0.5, indicating it is useless in detection. We plot the

difference between the ICCA AUC heatmaps for the two choices of ρ in Figure 8.4. For

small values of θ, the larger value of ρ results in the better performance while for large

values of θ, the smaller value of ρ results in better performance. Decreasing ρ makes

the observations x and y more independent, thereby containing more information and

increasing detection performance. Therefore, this observation is intuitive. When the

SNR is large, we have more reliable information for larger ρ. When the SNR is small,

the correlation between the datasets helps to better detect the signal. We can think

of this as SNR boosting.

These results are particularly surprising because we began this chapter by deriving

the fact that the LRT detector is equivalent to the CCA detector. However, when

using parameter estimates, the empirical CCA detector no longer is equivalent to the

plug-in detector. As many applications require estimating the covariance matrices

used in CCA, this is an extremely undesirable property of CCA. However, using
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(b) ICCA
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(c) Empirical CCA

Figure 8.2: AUC results for the plug-in LRT, empirical CCA, and ICCA detectors in
(8.21), (8.23), and (8.24), respectively. Empirical ROC curves were simulated using 2000
test samples for each hypothesis and averaged over 50 trials using algorithms 2 and 4 of [1].
Simulations parameters were p = 200, q = 150, and ρ = 0.8. Each figure plots the AUC for

the average ROC curve at a different values of SNR, θ = θ
(x)
1 = θ

(y)
1 , and training samples,

n.
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(b) ICCA
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Figure 8.3: AUC results for the plug-in LRT, empirical CCA, and ICCA detectors in
(8.21), (8.23), and (8.24), respectively. Empirical ROC curves were simulated using 2000
test samples for each hypothesis and averaged over 50 trials using algorithms 2 and 4 of [1].
Simulations parameters were p = 200, q = 150, and ρ = 0.2. Each figure plots the AUC for

the average ROC curve at a different value of SNR, θ = θ
(x)
1 = θ

(y)
1 , and training samples,

n.
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Figure 8.4: Difference between ICCA AUC heatmaps in Figures 8.3(c) and 8.2(c). Positive
values indicate when the setting of ρ = 0.8 achieves a higher AUC. Negative values indicate
when the setting of ρ = 0.2 achieves a higher AUC.

only the informative components from our training data, as ICCA does, results in

equivalent performance as the plug-in LRT detector. This performance loss of the

empirical CCA detector can be avoided by instead using ICCA.
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CHAPTER IX

Content Based Image Retrieval and Automatic

Image Annotation Using Correlation Methods

9.1 Introduction

In this chapter we evaluate the performance of linear correlation methods based

on eigen-analysis when applied to the related problems of image retrieval and image

annotation. In both problems, we have a corpus of images with corresponding text

captions or text keywords. We may also have a text document or article associated

with each image-caption pair. Image retrieval allows a user to enter a text query to

retrieve relevant images from the corpus. Automatic image annotation allows a user

to enter an image as a query to retrieve relevant keywords about that image. These

interrelated machine learning problems require a way of transforming both words and

images into objects that are understandable by machines [145]. For such problems,

we naturally assume that the words in a caption are correlated with features of the

image and also representative of the (possibly) associated text document. Therefore,

correlation detection algorithms are natural candidates to help solve these problems.

Using regression techniques relying on these correlated components, we can predict

relevant image features given a set of words. Similarly, given a set of image features,

we can predict relevant keywords.

Canonical Correlation Analysis (CCA) is a dimensionality reduction algorithm

for two datasets. For each dataset, CCA learns a linear transformation such that

the transformed datasets are maximally correlated. Representing data in a lower-

dimensional, maximally correlated space allows learning algorithms to more easily

and more efficiently exploit such naturally existing correlations. Image retrieval and

image annotation are natural applications for CCA as there are exactly two datasets,

images (or text documents) and text captions, that are assumed to have correlated
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features.

CCA and various modifications have been previously applied to information re-

trieval problems. In [35], the authors use CCA to cluster Wikipedia articles based

on their text and incoming and outgoing links. In [28], the authors implemented a

CCA based image retrieval system on a limited set of image types (sports, aviation,

and paintball). The authors in [34] used a kernel version of CCA for automatic image

annotation on a more varied set of images.

While these papers report moderate performance when using CCA for information

retrieval tasks, CCA is fundamentally flawed. When the number of image-caption

pairs is less than the combined dimension of the textual and image features, CCA

returns random linear transformations and a perfect correlation between datasets [6].

For this reason, CCA is often overlooked when considering appropriate algorithms

for machine learning problems. However, as was shown in Chapter 4 in this thesis,

Informative CCA (ICCA) overcomes the massive performance loss of CCA in the low-

sample regime. By applying insights from random matrix theory to eliminate noisy

subspaces, ICCA can detect correlations in the low-sample low-SNR regime where

CCA would otherwise fail to do so.

The purpose of this chapter is to showcase that intelligent correlation algorithms

are indeed worthy of further investigation by the information retrieval community.

In Section 9.2, we provide a brief overview of CCA and ICCA including their math-

ematical formulations and solutions. In Section 9.3, we outline how to use linear

correlation algorithms for image retrieval and automatic image annotation. For cap-

tions and articles/documents, we create feature vectors using tf-idf weightings. For

images, we construct visual word feature vectors based on SIFT features. We de-

scribe how to train a correlation model on a corpus and how to use the model to

predict one modality from the other. In Section 9.4, we apply our image retrieval and

annotation system on four datasets. First, we visually compare the performance of

CCA and ICCA based image retrieval and image annotation on the Pascal dataset.

Second, we specifically consider the image annotation problem on the University of

Washington Ground Truth dataset, the Gold Standard Web dataset, and the BBC

News dataset. These datasets allow us to compare the performance of eigen-based

correlation algorithms to standard NLP and IR techniques on three datasets of vary-

ing difficulties. We provide a discussion of the benefits and limitations of eigen-based

correlation algorithms in Section 9.5 and concluding remarks in Section 9.6.
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9.2 Correlation Methods

Canonical correlation analysis (CCA) is a popular algorithm to identify features

of maximal correlation between exactly two multi-modal datasets. CCA is a dimen-

sionality reduction algorithm that finds a linear transformation for each dataset such

that the correlation between the two transformed feature sets is maximized [4]. These

linear transformations are easily found by solving a quadratic optimization problem;

this solution is a closed form expression relying on the singular value decomposition

(SVD) of a matrix product involving the covariance matrices of each dataset and the

cross-covariance matrix between the two datasets. As these covariance matrices are

rarely known a priori, practical uses of CCA rely on substituting sample covariance

matrices formed from training data; we call this algorithm empirical CCA.

While we will apply CCA to image retrieval and annotation, CCA is commonly

used in a variety of other disciplines. In [28], CCA is used to learn semantics of

multimedia content by fusing image and text data. CCA is applied to to the com-

mon communications problem of blind equalization of single-input multiple-output

(SIMO) channels in [51]. In the field of medical imaging, CCA is used to determine

interactions, or connectivities, between brain areas in fMRI data [36] and used to fuse

fMRI, sMRI, and EEG data [40]. CCA has also been applied to clustering speakers

given an audio-video dataset [35]. In the more abstract problems of Gauss-Gauss

detection and estimation, [52] shows that standard detectors and estimators can be

written in terms of the solution to CCA.

9.2.1 Mathematical Formulation of CCA

Assume that observations y1 ∈ Rdx×1, y2 ∈ Rdy×1 are drawn from two distributions

y1 ∼ X , y2 ∼ Y . Furthermore, assume that the distributions have zero mean, i.e.

E [y1] = E [y2] = 0. We will use the following notation for the covariance matrices of

the distributions: E
[
y1y

T
1

]
= R11, E

[
y2y

T
2

]
= R22, E

[
y1y

T
2

]
= R12.

The goal of CCA is to find a linear transformation for each dataset that maximizes

the correlation between the datasets in the projected spaces. We represent the linear

transformations with the canonical vectors x1 ∈ Rdx×1 and x2 ∈ Cdy×1 and the

projection with the canonical variates w1 = xT1 y1 and w2 = xT2 y2. The objective is

to find the canonical vectors x1 and x2 that maximize the correlation between the
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canonical variates w1 and w2. Formally, the optimization problem is

argmax
x1,x2

ρ = E [w1w2]

subject to E
[
w2

1

]
= 1,E

[
w2

2

]
= 1.

(9.1)

Substituting the expressions for the canonical variates and the correlation matrices,

this optimization problem may be written as

argmax
x1,x2

ρ = xT1R12x2

subject to xT1R11x1 = 1, xT2R22x2 = 1.

(9.2)

Standard Lagrange multiplier techniques can be used to solve (9.2). The proof is

omitted here but please reference [55, 8, 14, 64, 65] if interested. The solution is the

following eigenvalue system

R−1
11 R12R

−1
22 R

T
12 x1 = ρ2x1 (9.3)

with the relationship

x2 =
1

ρ
R−1

22 R
T
12 x1. (9.4)

Solving (9.3) for the eigenvector corresponding to the largest eigenvalue solves

(9.2). Substituting this eigenvalue/eigenvector pair in (9.4) gives the complete solu-

tion (x1, x2, ρ) for the transformations and maximum correlation between the datasets.

Multiple canonical basis vectors may be found by recursively finding the next largest

eigenvalue and corresponding eigenvector in (9.3). In many learning applications, it

is common to project onto multiple canonical basis vectors.

Using a similarity transform, we can frame the eigen-system in (9.3) as an SVD

problem. Define f = R
1/2
11 x1 and g = R

1/2
22 x2. Then (9.3) may be rewritten as

R
−1/2
11 R12R

−1
22 R

T
12R

−T/2
11 f = ρ2f. (9.5)

Defining C = R
−1/2
11 R12R

−T/2
22 , (9.5) can be rewritten as

CCTf = ρ2f. (9.6)

Clearly, from (9.6), we may obtain a closed form solution for f , g, and ρ through

the SVD of C. Let FKGT be the SVD of C where F = [f1, . . . , fdx ], K ∈ Cdx×dy =
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diag(k1, . . . , kmin(dx,dy)), and G = [g1, . . . , gdy ]. Then the solution for the canonical

vector pair corresponding to the largest canonical correlation is

ρ = k1

x1 = R
−1/2
11 f1

x2 = R
−1/2
22 g1

(9.7)

with successive pairs of canonical vectors obtained from successive singular vectors

and singular value pairs.

9.2.2 Empirical CCA

The above derivation assumes that the covariance matrices R11, R22, and R12 are

all known. However, in most applications these covariance matrices are unknown and

must be estimated from data. In such an empirical setting, we assume that we are

given n observations, or samples, from each dataset y
(i)
1 and y

(i)
2 for i = 1, . . . , n such

that y
(i)
1 and y

(i)
2 each represent the same object. In the application for this chapter,

y
(i)
1 will be a text caption and y

(i)
2 will be the corresponding image or article features.

We may stack these observations in training data matrices

X =
[
y

(1)
1 , . . . , y

(n)
1

]
, and Y =

[
y

(1)
2 , . . . , y

(n)
2

]
and use these training data matrices to estimate the unknown covariance matrices

via

R̂11 =
1

n
XXT

R̂22 =
1

n
Y Y T

R̂12 =
1

n
XY T .

(9.8)

We may then substitute these covariance matrix estimates in the expression for C,

resulting in the estimator

Ĉ = R̂
−1/2
11 R̂12R̂

−1/2
22 . (9.9)

Defining Ĉ = F̂ K̂ĜT as the SVD of Ĉ, the solution to empirical CCA is

ρ̂ = k̂1

x̂1 = R̂
−1/2
11 f̂1

x̂2 = R̂
−1/2
22 ĝ1.

(9.10)
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9.2.3 Informative CCA

A main drawback to CCA is that when then number of samples is less than the

combined dimension of the two datasets (n < dx + dy), CCA always reports a perfect

correlation, no matter how correlated the datasets actually are [6].

In earlier chapters, we demonstrated that informative CCA (ICCA) avoids this

drastic performance loss associated with CCA. Assuming a linear signal-plus-noise

model, ICCA uses random matrix theory insights to trim data SVDs to only include

informative subspaces. Formally, let UxΣxV
T
x be the SVD of X and UyΣyV

T
y be the

SVD of Y . Define
Ũx = Ux(:, 1 : kx) Ṽx = Vx(:, 1 : kx)

Ũy = Uy(:, 1 : ky) Ṽy = Vy(:, 1 : ky)

where kx and ky are the number of informative components in the first and second

datasets, respectively. These may be estimated using standard random matrix theory

principles, as we proposed in earlier chapters. Using these trimmed data matrices,

we form the matrix used for ICCA,

C̃ = ŨxṼ
T
x ṼyŨ

T
y . (9.11)

Let C̃ = F̃ K̃G̃H be the SVD of this matrix. ICCA returns the following informative

correlation estimate and canonical vectors

ρ̃ = k̃1

x̃1 = R̂
−1/2
11 f̃1

x̃2 = R̂
−1/2
22 g̃1.

(9.12)

As we theoretically showed in earlier chapters, ICCA is able to detect correlations

in the low-sample and low-SNR regimes where CCA would not. In these regimes,

the linear transformations that CCA returns are random and contain no information,

while the linear transformations returned by ICCA contain information. With these

observations, ICCA may return meaningful results in image retrieval and annotation

where CCA was previously ignored due to random performance.

9.3 System Implementation

In this section we describe how to use CCA and ICCA for content based image

retrieval and automatic image annotation. A common training stage learns the corre-
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lation model necessary to perform both tasks. Figure 9.1 outlines the training phase

when the two datasets are captions and associated images. Figure 9.2 outlines the

training phase when the two datasets are captions and associated text documents.

Each block is a sub-task that will be described in more detail below. Depending on

our dataset, one pipeline will be more appropriate. For example, the University of

Washington Ground Truth dataset only has images and captions so we will use the

pipeline in Figure 9.1. However, in the Gold Standard Web dataset, we have access

to captions, images, and associated documents. For this dataset, we only have a few

samples of a large variety of images and so we will used the pipeline in Figure 9.2.

The output of both pipelines are canonical bases Wx and Wy and the corresponding

canonical correlations, P . After training, we may use the correlation model to re-

trieve images, which is outlined in Figure 9.4, or annotate images, which is outlined

in Figure 9.5. These sub-tasks will also be described below.

9.3.1 Text Processing

Both training pipelines form feature vectors from text (either captions or docu-

ments). To transform text into a machine understandable object, we create a feature

vector whose length is the size of the vocabulary of the training data and whose entries

are tf-idf weights. Once these vectors are created for each caption, we have a caption

dataset, X ∈ Rdx×n where dx is the size of the vocabulary and n is the number of

training captions associated with images. Each vector is then normalized to have an

`2 norm of 1, so as not to penalize shorter documents. With this type of processing,

feature vector entries represent the importance that the corresponding word carries

in the document. When processing a text query for image retrieval, the text query

is transformed into a dx × 1 vector using the same tf-idf weighted scheme used to

generate the training dataset. When generating the vocabulary, we used stopword

removal and Porter stemming 1.

9.3.2 Image Processing

The training system in Figure 9.1 takes an image database as its second input. To

transform an image into a machine understandable object, we propose to use visual

words, which is an extension of the vector space model for text documents to images.

Here, a feature vector for an image has entries corresponding to the total occurrences

of a “visual word” in that image. Each visual word is a cluster of image features

1http://tartarus.org/ martin/PorterStemmer/python.txt
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Figure 9.1: Shared training pipeline for image retrieval and annotation when using raw
images as the second dataset. The system takes training images and captions as inputs and
returns the canonical bases Wx and Wy and the correlation coefficients P .

extracted across all training data [146]. For our implementation, we use SIFT image

features vectors as the feature vectors to cluster.

The Scale Invariant Feature Transform (SIFT) was first introduced in [147]. This

algorithm transforms an image into a collection of local feature vectors such that

each feature vector is invariant to translation, scaling, and rotation. The algorithm

may be broken down into two parts. First, keypoints (pixels) are identified using

a difference-of-Gaussian function. See Figure 9.3 for an example of SIFT keypoint

generation. Second, a descriptor (feature vector) is generated for each keypoint using
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Figure 9.2: Shared training pipeline for image retrieval and annotation when the second
dataset is associated text documents. The system takes an training captions and associ-
ated documents as inputs and returns the canonical bases Wx and Wy and the correlation
coefficients P .

weighted magnitude and orientation histograms in pixel neighborhoods in a region

around each keypoint. The visual word training process can be broken down into the

following steps:

1. Create SIFT features for all training images

2. Use k-means to cluster all SIFT features into 1000 “visual words”

3. Assign each SIFT keypoint in every image to the closest (`2 distance) visual
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(a) Original Image (b) SIFT Keypoints

Figure 9.3: (a) Original image. (b) Original image with SIFT keypoint identification.

word

4. Count the number of occurrences of each visual word in each image

Given the training images, the visual word image processing returns a dy × n

matrix Y , where dy is the number of visual words and n is the number of images.

Each vector in Y is then normalized to have an `2 norm of 1. When processing a test

image for automatic image annotation, the image’s feature vector is created using the

same method as the training data.

When creating a feature vector for a query image, we generate the SIFT features

for that image and then assign each feature to the closest visual word in the training

set. Since we create 1000 clusters, the dimension of our image feature vectors for visual

words is dy = 1000. We note that the visual words feature vector is highly dependent

on the training data. Each image’s feature vector is dependent on the clusters found

in the training images. Therefore, we cannot pre-compute each image’s feature vector

without knowing all training images.

We follow the implementation of visual words provided in [148] using some of the

code. The main changes we made were applying tf-idf weight to the visual words

and changing how we represent the vocabulary of the visual words. We also make

each visual word feature vector unit norm. For the SIFT implementation, we use

the publicly available C code at http://www.vlfeat.org/install-shell.html. We made

some minor changes to how the visual word implementation interfaced with the SIFT

feature creation.
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ẑy

Figure 9.4: Image retrieval pipeline. This system takes a text query as input and the
correlation model from the training pipeline and will return relevant images.

9.3.3 Correlation Algorithm

After the datasets have been processed into a caption data matrix X and an image

or document data matrix Y , we train the CCA or ICCA as described in Section

9.2. Regardless of the correlation algorithm, the output at this stage in the training

pipeline are two linear transformations Wx ∈ Rdx×kx and Wy ∈ Rdy×ky and a diagonal

matrix of canonical correlations, P ∈ Rkx×ky . The parameters kx and ky are the

number of canonical vectors to use for each dataset, respectively. As any uncorrelated

canonical vectors carry no prediction power, we simply set the number of parameters

to k = kx = ky and so P is a square matrix.

Once we learn the canonical basis vectors Wx and Wy, we then form the dimen-

sionality reduced datasets of canonical variates. This is accomplished with the simple

linear transformations

Zx = W T
x X Zy = W T

y Y

where Zx ∈ Rkx×n and Zy ∈ Rky×n. These are dimensionality reduced datasets

that are maximally correlated. The beauty of these correlation algorithms is that by

solving for Wx, Wy and P , we automatically solve a regression problem in the domain

of the canonical variates. This relationship is given by

E [wx |wy] = Pwy and E [wy |wx] = Pwx.
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Figure 9.5: Image annotation pipeline when using the raw image as input. This system
takes an image and correlation model from the training system as inputs and will return a
list of words that are most relevant for the image.

Notice that there is no linear offset needed as the datasets are zero mean. We also

note that this above equation is correct and that in both predictions we scale down

the known canonical variate. This makes sense by considering the following example.

If ρi = 1, then the variates wix and wiy are perfectly correlated and predict each other:

wx = wy. However if ρi = 0, then the variates contain no information and the best

guess that we have is the mean, which is zero. For any 0 < ρi < 1, we scale the

prediction toward zero depending on the strength of the correlation.

9.3.4 Image Retrieval

After training the system on a corpus, a user may perform image retrieval. Given

a text query, we first process it using the same tf-idf weighting scheme used in the

training model, resulting in the vector q ∈ Rdx×1. To obtain an estimate of our image

feature, we perform the following sequence of linear transformations, learned by one

of the correlation algorithms,

ẑy = PW T
x q

To return relevant images, we use a nearest neighbor classifier in the canonical variate

domain. We can pre-compute all possible images to return via Ztrain
y = W T

y Y . The

output of the search is

yguess = argmin
zy∈Ztrain

y

‖zy − ẑy‖2
2, (9.13)
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ẑx

Figure 9.6: Image annotation pipeline when using associated text documents. This system
takes a text document and correlation model from the training system as inputs and will
return a list of words that are most relevant for the associated image.

which is repeated for as many results the user desires, excluding previously returned

results from the search set each time. A nice benefit of using correlation methods is

that additional images may be added to the set of returnable images, even if they

do not have a caption associated with them. All we need is the low dimensional

representation of these additional images using the transformation learned from the

training set, whether that be image features or document vectors.

9.3.5 Image Annotation

The trained system can also handle automatic image annotation. Given a query

image or associated document, we first process it using the same image or text pro-

cessing that was used in training, resulting in a query vector q ∈ Rdy×1. To obtain

an estimate of our text features, we perform the following linear transformation

ẑx = PW T
y q

using the correlation model learned in the training phase. To return relevant words,

we use a nearest neighbor classifier in the canonical variate domain. However, instead

of using the captions as the vectors to compare against, we consider dx documents,

each of which contains exactly one of the words in the vocabulary. Let D ∈ Rdx×dx

be a diagonal matrix with entries equal to the tf-idf score of that word. Define
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Ztrain
x = W T

x D to be the canonical variate vectors of each word. Then the output of

the nearest neighbor classifier is

xguess = argmin
zx∈Ztrain

x

‖zD − ẑx‖2
2. (9.14)

We then return the words corresponding to the vectors returned by the nearest neigh-

bor classifier.

9.4 Experiments

To compare the performance of CCA and ICCA in image retrieval and annotation,

we test our system on four different datasets. For the Pascal Image Dataset, we wrote

a command line interface to perform both image retrieval and image annotation. This

allows for us to qualitatively determine how each method works. For the University

of Washington Ground Truth dataset, we run the training and testing pipelines in

Figures 9.1 and 9.5 and compare the R-precision for the image annotation task. For

the Gold Standard Web dataset, we only have a few image-caption pairs but also have

associated text documents and so we use the training pipelines in Figures 9.2 and 9.6.

We compare our eigen-based annotation methods to previous NLP methods using the

evaluation framework in [149]. Finally, we use the training pipelines in Figures 9.2

and 9.6 to test the image annotation performance of CCA and ICCA on the BBC

News dataset. This dataset is particularly challenging first because the images are

extremely varied and may only be tangentially related to the associated document,

and second because the accompanying caption is often extremely nuanced, containing

few keywords. These challenges present many latent variables, which CCA and ICCA

will not handle very well.

9.4.1 Pascal Image Dataset

The Pascal Image dataset 2 was created using Amazon’s Mechanical Turk [150].

The dataset consists of 1000 images, each with 5 captions. The average image has

26.67 caption words and the total vocabulary size of the corpus is 2393. The 5

captions for each image are unique, but they may repeat keywords or use synonyms.

For example, airplanes in the dataset can be described as airplanes, planes, fighter

planes, jets, and even their model. See Figure 9.7 for an example image-caption pair.

2http://nlp.cs.illinois.edu/HockenmaierGroup/pascal-sentences/
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• A D-ERFW-6 in flight.

• An army green plane flying in the sky.

• An old fighter plane flying with Ger-
man military markings.

• A small green and yellow plane in the
sky.

• A WWII fighter plane with its landing
gear down.

Figure 9.7: Example of an image and its captions in the Pascal dataset

(a) CCA Results (b) ICCA Results

Figure 9.8: (a) CCA results for query ”airplane”. (b) ICCA results for query ”airplane”.

To qualitatively evaluate the performance of CCA and ICCA using visual words,

we implemented the image retrieval and image annotation systems described in Sec-

tion 9.3. Figure 9.8 shows the first four images retrieved for the search query “air-

plane” using both CCA and ICCA correlation models. We plot the scores used to

return these images in Figure 9.9. The largest four scores correspond to the images

in Figure 9.8 as computed via (9.13). Figure 9.10 shows the first ten words returned

for the image in Figure 9.10(a), which was taken from the Pascal dataset. Figure

9.11 plots the corresponding scores for all words in the database as computed via

(9.14). The top scores correspond to the words returned in Figure 9.10. For both

tasks, we used all 1000 image-caption pairs in the Pascal dataset for training. Thus,

any image in the dataset may be returned in the image retrieval task. Similarly, any

Porter-stemmed vocabulary word in the entire caption dataset may be returned in

the image annotation task.
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Mean R-precision Mean k
CCA 0.024 63
ICCA 0.232 20

Table 9.1: Average R-precision values and correlation basis dimension, k, for image anno-
tation of the University of Washington Ground Truth Dataset

9.4.2 Ground Truth Image Dataset

To quantitatively compare the performance of CCA and ICCA, we used the Uni-

versity of Washington Ground Truth Image Dataset 3. This dataset contains 1109

images with an average of 5.57 keywords per image and a total of 346 unique words.

We randomly split the dataset into 3 sets: a training set of 550 images, a validation

set of 250 images and a testing set of 309 images. This was repeated to obtain 10

such partitions.

For each partitioning, the training dataset was used to learn the correlation model

for CCA, and ICCA. This model was learned for values of k =10,25,50,75,100. The

validation dataset was then used to determine the best value of k for each algorithm,

using R-precision as our evaluation metric. In this setting, R-precision is equal to

the percentage of correctly predicted keywords for an image. Once the best k was

determined, that partition’s R-precision value for each algorithm was determined on

the testing datasets. The R-precision values were then averaged across partitions.

Figure 9.12 plots the probability density function of R-precision for CCA and ICCA

and Table 9.1 shows the mean R-precision and average k values.

9.4.3 Gold Standard Web Dataset

Next, we evaluate our eigen-based image annotation methods on the Gold Stan-

dard Web Dataset [149]. This dataset contains 300 image-text pairs that was collected

from the web. The average text document length is 278 tokens and the vocabulary

size is 8,409 words. Each image also has a gold standard of manually assigned tags

labeled by five human annotators. We consider these manually assigned tags as the

caption. However, as we only have 300 images and these images contain many differ-

ent objects, we use the associated text document as the second modality. Hence, our

goal is to predict the captions given the text document, which is essentially keyword

identification.

We use the same four evaluation metrics as [149] to be able to make direct com-

parisons with previous methods. As CCA and ICCA can return an arbitrary number

3http://www.cs.washington.edu/research/imagedatabase/groundtruth/
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Metric Expression

Best Normal 1
|I|
∑

i∈I
1

riRi

∑ri
j=1 f

j
i

Best Mode 1
|IM|

∑
i∈IM 1{top tag = mode}

oot Normal 1
|I|
∑

i∈I
1
Ri

∑ri
j=1 f

j
i

oot Mode 1
|IM|

∑
i∈IM 1{any tag = mode}

Table 9.2: Image annotation for the Web Image-Article dataset.

Models Best Normal Best Mode oot Normal oot Mode
CCA 0.01 0.00 1.49 35.23
ICCA 0.19 9.09 16.11 76.7

Flickr picturability 6.32 78.57 35.61 92.86
Wikipedia Salience 6.40 7.14 35.19 92.86
Topic modeling 5.99 42.86 37.13 85.71

Doc Title 6.40 75.00 18.97 82.14
tf*idf 5.94 14.29 38.40 78.57

Table 9.3: Image annotation for the Web Image-Article dataset.

of keywords, we choose to always predict keywords equal to the number of true key-

words. Therefore, for our methods, these metrics are variations on R-precision. Some

images are considered Mode images when there is a unique keyword selected by more

annotators than any other keyword. The metrics are given in Table 9.2. Let I be the

set of all images, IM be the set of mode images, f ji be the number annotators who

labeled image i with keyword j, ri be the number of keywords selected for image i,

and Ri =
∑ri

j=1 f
j
i . Table 9.3 reports the performance of CCA and ICCA in generat-

ing keywords given these 4 metrics using leave-one-out testing. We also provide the

performance of models used in [149] for comparison.

9.4.4 BBC News Dataset

Finally, we evaluate CCA and ICCA based image annotation on the BBC News

dataset [151]. Similar to the Gold Standard Web dataset, this dataset contains image-

caption-document tuples that are separated into 3121 training examples and 240

testing examples. The images in this dataset are again very varied and the captions

are sometimes nuanced and very specific to the image and not very related to the

accompanying document. For the CCA and ICCA annotations, we again will use the

accompanying documents to predict keywords in the caption. We report the precision

and recall when returning the top 10, 15 and 20 predicted keywords in Table 9.4. In
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Top 10 Top 15 Top 20
Models P R P R P R

CCA 0.08 0.11 0.08 0.22 0.08 0.28
ICCA 0.79 1.48 0.72 1.95 0.73 2.63

tf*idf 4.37 7.09 3.57 8.12 2.65 8.89
DocTitle 9.22 7.03 9.22 7.03 9.22 7.03
Lavrenko03 9.05 16.01 7.73 17.87 6.55 19.38
ExtModel 14.72 27.95 11.62 32.99 9.72 36.77

Flickr picturability 12.13 22.82 9.52 26.82 8.23 29.80
Wikipedia Salience 11.63 21.89 9.28 26.20 7.81 29.41
Topic Modeling 11.42 21.49 9.28 26.20 7.86 29.57

Table 9.4: Image annotation for the Web Image-Article dataset.

the table we also report methods from [151] and [149] for comparison. We follow

implementations reported in [151] and [149] to not Porter stem the words but instead

use Tree Tagger[152] to include only nouns, verbs, and adjectives.

9.5 Discussion

9.5.1 Pascal Results

For the Pascal dataset, we can qualitatively see the performance increase that

ICCA gives. Examining Figure 9.8(a), we see that CCA returns random images

associated with the query “airplane”. This is the case with any other query entered.

However this is expected with CCA as it returns a correlation of 1 between all images

and tokens as we are operating in the sample deficient regime. Any positive results

returned by CCA can be attributed to random luck. On the other hand, using ICCA

to train a retrieval system results in better overall performance than CCA. This

can be seen specifically in Figure 9.8(b), which shows images for the same query

of “airplane”. Using ICCA, two of the first four results are planes. By only using

informative singular vectors, ICCA is able to return more relevant images.

Specifically, if we examine Figure 9.9, we can compare the scores returned for each

image for CCA and ICCA. The top scores for ICCA seem to separate from the bulk

of the others, while for CCA, the top scores seem to be part of the bulk distribution.

This gives support to the notion that ICCA is able to identify images that are relevant

to the desired keyword.

Image annotation using CCA also returns random keywords for any image query.
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An example of this is shown in Figure 9.10. The query image is an airplane but

the top 10 words returned by CCA are all irrelevant. This once again reinforces the

idea that CCA only returns random results in the sample deficient regime. However,

examining the top 10 words returned by ICCA for the same image, we observe mean-

ingful annotations such as “plane”, “blue”, “fly”. Examining Figure 9.11, we see the

corresponding scores to the words returned in Figure 9.10. Again we notice that a

majority of the words fall into the bulk distribution for CCA and ICCA. The words

in the bulk part of the distribution are not informative. However, in ICCA, there are

a number of words that separate from the bulk distribution, which we show in Figure

9.10. However, the scores for CCA do not separate as nicely from the distribution.

This further gives support that CCA randomly returned words/images in the sample

deficient regime.

A näıve image retrieval system may perform a search using only the captions and

then return the image associated with the most notable caption. This produces very

good results for the Pascal dataset because the captions are very clean and noise-free.

Every caption with the word sheep will have a sheep in the image. However, correla-

tion based approaches have a few main advantages over such a näıve method. First,

correlation methods solve both the image retrieval and image annotation problem

simultaneously. The näıve image retrieval method cannot solve the image annota-

tion problem. Second, correlation methods can handle adding images to the corpus

post training, even if it does not have an associated caption. For the image retrieval

problem, the correlation methods will return images with low-dimensional represen-

tation that are close to the predicted vector. Adding additional images (even without

captions) requires transforming the images into the low-dimensional representation

using the trained transformation and then adding them to the set of possible images

to be returned. The näıve method needs a caption for every image and if a new

image-caption pair was added, the entire inverted index and vocabulary would need

to be recomputed.

9.5.2 Image Annotation of Ground Truth Dataset

We use the Ground Truth Dataset to provide a more quantitative comparison of

CCA and ICCA based image annotation. The captions for this dataset only consist

of keywords and is thus easier to assess the quality of the image annotations. We

did not clean up the dataset by removing misspelled words or words appearing only

once. Therefore, the reported results are a nice lower-bound that one could expect

by doing such clever pre-processing steps. As evident in Table 9.1, CCA performs
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very poorly on the image annotation task. This R-precision corresponds to random

guessing, which matches the results of [6] stating that in the sample starved regime,

the CCA bases are random projections. However, using ICCA to informatively trim

data matrices results in improved annotations. Examining the figures in Figure 9.12,

we see that when using CCA, approximately 85% of the images result is an R-precision

of 0. However, ICCA returns zero relevant images only 35% of the time. Clearly,

ICCA is able to uncover true correlations to return relevant annotations. This gives

credence to using correlation methods for image annotation tasks.

9.5.3 Annotation of Gold Standard Web Dataset

The Gold Standard Web dataset is a more difficult dataset than the Ground

Truth dataset. First, there are only 300 examples in the dataset. Using leave-one-out

testing gives a training dataset of only 299 examples. Second, the dimensions of our

dataset increases because we use tf-idf weights from the associated documents instead

of visual words from the image. Therefore, we are in a very sample deficient regime

where our dimension of each dataset is on the order of 8000 and we only have 299

samples. Compounding issues, these vectors are very sparse as documents only have a

subset of the total words in the vocabulary. However, ICCA is indeed able to recover

meaningful annotations even in this regime.

Examining the difference between the Best Mode and oot Mode performance met-

rics, we see that ICCA has a very large gap. This indicates that the ICCA retrieval

method is very often able to retrieve the mode annotation, just not label it as the

best annotation.

9.5.4 Annotation of BBC News Dataset

The BBC News dataset is the most difficult dataset we consider in this chapter.

Here, we have a large number of training data, however, our captions are very “noisy”.

Unlike the Gold Standard Web dataset, the BBC captions may contain words that

do not appear in the accompanying document. These captions are also very nuanced

and may describe an image that is only tangentially related to the main article. For

example, consider Figure 9.13. The image is of two men shaking hands, however, the

caption describes this very abstractly. In addition, the caption highlights a very subtle

point of the main article, as we can see by the title. Similar to the Gold Standard

Web dataset, our feature vectors are both very high dimensional and sparse. We see

from the results in Table 9.4 that both CCA and ICCA do a poor job at retrieving
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relevant annotations given the BBC article. However, we do observe the behavior

that CCA returns completely random results and ICCA is able to perform slightly

better (non-randomly).

The BBC News dataset breaks many of the assumptions of ICCA and therefore

causes its performance to decrease. First, the dataset breaks the linear correlation

assumption of ICCA. As we saw in Figure 9.13, captions are can be very nuanced,

indicating many latent variables interacting in most likely nonlinear ways. Due to

the size of the vocabulary of the BBC dataset, our text feature vectors are incredibly

sparse, which as we saw in previous chapters, requires a larger SNR to detect corre-

lations. The nonlinear correlations most certainly decrease the SNR in our dataset,

which, coupled with the sparse data, stretches ICCA based image annotation to the

limit of decent operation.

Clever feature engineering and alterations of ICCA could yield potential new av-

enues to improve the performance on difficult datasets such as the BBC News dataset.

One possible extension is to use a kernel version of ICCA to account for nonlinear

correlations. Similarly, extending ICCA to better handle sparse vectors could improve

performance. Finally, using more intelligent IR and NLP techniques to create more

informative feature vectors than tf*idf weights could increase the relative SNR high

enough to allow for more reliable correlation detection.

9.6 Conclusion

In this chapter, we applied CCA and ICCA based correlation detection methods

to image retrieval and annotation. By trimming data matrices to only include infor-

mative subspace components, ICCA is able to avoid the performance loss of CCA in

the sample deficient regime. We demonstrated through multiple datasets that ICCA

is able to outperform CCA on both image retrieval and image annotation tasks, both

qualitatively and quantitatively.

For all datasets, CCA failed completely while ICCA was able to return meaningful

results. Depending on the difficulty of the dataset, the performance of ICCA ranged

from acceptable (Ground Truth dataset) to poor (BBC News Dataset). The more

difficult datasets tend to break many of the assumptions that ICCA makes. The

vectors in these datasets are very sparse, which ICCA does not account for directly.

ICCA is also a linear method and so any nonlinear correlations will not be detected.

For these more difficult datasets, the captions contained very nuanced language or

words not even used in the main article.
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The purpose of this chapter is to spark a discussion for using eigen-based correla-

tion methods for image annotation, image retrieval, and possibly other NLP problems.

While ICCA performs worse than the current NLP techniques it is able to capture un-

derlying meaning between words and images. By applying NLP techniques to create

better feature vectors than tf*idf weights and extending ICCA to allow for non-linear

sparse correlations, one could hope for improved performance. While CCA was right-

fully overlooked as a possible solution to such information retrieval problems, we hope

that practitioners will reconsider eigen-based correlation approaches in the future.
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(a) CCA Results (b) CCA Results Zoomed

(c) ICCA Results (d) ICCA Results Zoomed

Figure 9.9: (a) Scores for all 1000 Pascal images for the query “airplane” for CCA. (b)
Zoomed in version of (a) to highlight the top scores returned in Figure 9.8(a). (c) Scores
for all 1000 Pascal images for the query “airplane” for ICCA. (d) Zoomed in version of (c)
to highlight the top scores which are returned in Figure 9.8(b). All scores are the norm in
(9.13).
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(a) Image Query

CCA Annotation

1. hairless

2. buddi

3. swan

4. leaf-less

5. bnsf

6. desert

7. fluffi

8. salad

9. majest

10. memorabilia

ICCA Annotation

1. plane

2. ship

3. cruis

4. fly

5. blue

6. jet

7. airplan

8. dock

9. fighter

10. through

Figure 9.10: CCA vs ICCA annotation results for the image query shown in 9.10(a).
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(a) CCA Results (b) CCA Results Zoomed

(c) ICCA Results (d) ICCA Results Zoomed

Figure 9.11: (a) CCA scores for all words in the Pascal database for the image query in
Figure 9.10(a). (b) Zoomed in version of (a) to highlight the top scores returned in Figure
9.10. (c) ICCA scores for all words in the Pascal database for the image query in Figure
9.10(a). (d) Zoomed in version of (c) to highlight the top scores which are returned in
Figure 9.10. All scores are the norm in (9.14).
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(a) CCA (b) ICCA

Figure 9.12: Empirical probability density functions of R-precision of image annotation
of the University of Washington Ground Truth Dataset.

Caption

• Agreement came despite reservations
on both sides

Title

• UN Secretary General Kofi Annan has
called on the Sudanese government to
allow a UN assessment team into the
war-torn region of Darfur

Figure 9.13: Example of an image, its caption, and title in the BBC News dataset
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CHAPTER X

Multiset CCA (MCCA)

10.1 Introduction

The correlation algorithms considered thus far are useful only when there are

exactly two datasets. However, in many applications, we may have access to multi-

ple datasets of high dimensional features that we believe contain correlated signals.

Access to more than two datasets arises in applications such as handwritten digit

classification [111], multi-temporal hyperspectral imaging [55], and medical imaging

[40, 36].

The theory of multiset canonical correlation analysis (MCCA) has evolved over

the past decades. The earliest work on extending CCA to three datasets was con-

ducted by Vinograde [153]. This work found the canonical form of the three dataset

correlation matrix but made no attempts at finding the canonical vectors. In [154],

Steel considers the particular objective function of minimizing the generalized vari-

ance between the canonical variates of an arbitrary number of datasets. In 1961,

Horst first considered the practical problem of fusing features from multiple datasets

[155, 156]. He provides a solution for two particular objective functions originally

called the “maximum correlation method”, which is now called the sum of correla-

tions method, and the “rank one approximation method”, which is now called the

maximum variance method. A decade later, Kettenring [64] considered a more general

extension of Hotellings’s [4] original CCA work. He considers five objective functions

that extend CCA to multiple datasets. Each objective function represents some no-

tion of multiset correlation. All five formulations of multiset CCA return canonical

vectors for each dataset and correlation coefficients and each reduce to CCA when

only two datasets are present. Two decades later, Nielsen [65] extended Kettenring’s

analysis by also considering four constraint functions placed on the canonical vectors

in the optimization problem.
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The five objective functions posed by Kettenring and four constraint functions

posed by Nielsen give rise to twenty different optimization problems and thus twenty

different formulations of MCCA. In this section, we consider all twenty such opti-

mization problems. We begin by deriving the theoretical solution to each of these,

unifying the works above and completing any formulations previously unsolved. As

the performance of empirical MCCA has not previously been studied, we also de-

rive empirical versions of each MCCA formulation using training data SVDs of each

dataset. In Appendix B, we derive a solution to each of the twenty optimization

problems formed by choosing one objective function and one constraint function. We

then consider empirical version of each MCCA formulation.

We then consider the performance of one particular optimization problem, MAX-

VAR. We show that, similar to empirical CCA, the solution to this problem is a SVD

of matrix with block entries of the pairwise product of right singular vectors of the

individual datasets. We then apply the same principles used in ICCA to develop

an informative version of MAXVAR, which we call IMCCA. Using the idea of trim-

then-fuse, we propose to trim all data SVDs to include only the informative singular

vectors. We provide some analysis of the behavior of these algorithms and provide

a test statistic to use to determine the number of correlations present in multiple

datasets. We discuss why multi-dataset correlation analysis is difficult but showcase

on a real world dataset that IMCCA greatly outperforms MAXVAR and can robustly

identify sources of correlation.

10.2 Mathematical Formulation of MCCA

Let y1, y2, . . . , ym be observations drawn from m distributions yi ∼ Yi with yi ∈
Cdi . Assume, without loss of generality, that yi is zero mean. Define the covari-

ance between distributions as E
[
yiy

T
j

]
= Rij for i, j = 1, . . . ,m. Define the joint

observation vector y and its covariance R = E
[
yyH

]
as

y =


y1

...

ym

 ∈ Cd×1, R =


R11 . . . R1m

...
. . .

...

Rm1 . . . Rmm

 ∈ Cd×d

where d =
∑m

i=1 di.

The goal of MCCA is to find canonical coefficient vectors, xi ∈ Cdi×1 for i =

1, . . . ,m, such that the canonical variates, wi = xHi yi, are optimal with respect to
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an objective function J(·) and constraint function h(·). We consider five objective

functions [64] in Section 10.2.2 and four constraints functions [65] in Section 10.2.1.

Define the vector of canonical vectors as x =
[
xH1 , . . . , x

H
m

]H ∈ Cd×1 and the vector

of canonical variates as w = [w1, . . . , wm]H ∈ Cm×1. The covariance matrix of w is

Φ(x) = E
[
wwH

]
=


xH1 R11x1 . . . xH1 R1mxm

...
. . .

...

xHmRm1x1 . . . xHmRmmxm

 .
Using this notation, the MCCA optimization problem is

optimize
x

J(Φ(x))

subject to h(x,R).
(10.1)

10.2.1 Constraint Functions, h(x,R)

In [55, 65], Nielsen describes four constraints placed on the canonical vectors that

are natural to use in MCCA. Using our notation and new naming scheme, these

constraint functions are:

a) NORM - The canonical coefficient vectors each have unit norm.

h(x,R) = xHi xi = 1, 1 ≤ i ≤ m

This objective function has the same flavor as other machine learning algorithms

such as PCA.

b) AVGNORM - The vector of canonical vectors, x, has unit norm.

h(x,R) = xHx =
m∑
i=1

xHi xi = 1

c) VAR - The canonical variates each have unit variance.

xHi Riixi = 1, 1 ≤ i ≤ m.

This is the natural extension of the CCA constraint functions.
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d) AVGVAR - The canonical variates have average variance of 1/m.

m∑
i=1

xHi Riixi = 1.

This may be written tr(XHRX) = 1, where X = blkdiag(x1, . . . , xm).

10.2.2 Objective Functions, J(Φ(x))

In [64], Kettenring describes five objective functions, each used to detect a differ-

ent form of linear relationship among the datasets. Under the VAR and AVGVAR

constraints above, each of the objective functions reduces to the standard CCA for-

mulation and thus the standard CCA solution. Using our notation, these objective

functions are:

1. SUMCORR - Maximize the sum of the correlations between each of the canon-

ical variates.

J(Φ(x)) = max
x1,...,xm

m∑
i=1

m∑
i=1

xHi Rijxj = max
x1,...,xm

1HΦ(x)1

This is the natural extension of the CCA objective function. It was first pro-

posed by Horst in [155].

2. SSQCORR - Maximize the sum of the squares of the correlations between

each of the canonical variates.

J(Φ(x)) = max
x1,...,xm

m∑
i=1

m∑
j=1

(xHi Rijxj)
2 = max

x1,...,xm
‖Φ(x)‖2

F = max
x1,...,xm

m∑
i=1

λ2
i (Φ(x)).

where λi are the eigenvalues of φ(x). This is very similar to SUMCORR except

that it penalizes small pairwise correlations more than SUMCORR does. Under

the VAR constraint, the m × m identity matrix is the least informative Φ(x)

as this denotes no correlation between any of the canonical variates. Therefore,

we want Φ(x) to be as different as possible from the identity matrix. Under the

VAR constraint, this is what the SSQCORR objective function accomplishes.

It was first proposed in 1971 by Kettenring [64].
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3. MAXVAR - Maximize the largest eigenvalue of Φ, λ1(Φ(x)).

J(Φ(x)) = max
x1,...,xm

λ1(Φ(x))

MAXVAR was created by Horst in [155] to find the canonical vectors that

give Φ(x) the best approximation (in the Frobeneus norm) to a rank-1 ma-

trix. Horst’s original name for this method was the “rank one approximation

method”. The corresponding largest eigenvalue, λ1(Φ(x)) is a notion of variance

and thus the new name.

4. MINVAR - Minimize the smallest eigenvalue of Φ, λm(Φ(x)).

J(Φ(x)) = min
x1,...,xm

λd(Φ(x))

Instead of maximizing the energy in the top eigenvalue, we wish to minimize

the energy in the last eigenvalue. In [157], MINVAR is shown to have the

desired property that the minimal eigenvalue has a fixed range in [0, 1] whereas

the maximal eigenvalue found by MAXVAR has a range dependent on the

dimensions of the variables. It was first proposed in 1971 by Kettenring [64].

5. GENVAR - Minimize the generalized variance of w, which is equivalent to

minimizing the determinant of the correlation matrix of w.

J(Φ(x)) = min
x1,...,xm

|Φ(x)| = min
x1,...,xm

m∏
i=1

λi(Φ(x))

This is the oldest of the five criterion and was proposed by Steel in 1951 [154].

This seems to involve a tradeoff between choosing x to have large leading eigen-

values and small tail eigenvalues.

10.3 Theoretical and Empirical MCCA Derivations

In this section, we provide a solution for each of the twenty MCCA formulations

based on the five objection functions described in Section 10.2.2 and four constraint

functions described in Section 10.2.1. Some of these solutions have been previously

reported in [64, 65]. We complete the analysis and unify the results. We provide

the empirical solution for each algorithm provided training data matrices Y1, . . . , Ym.

In such a setting, we are given n samples (observations) from each data distribution.
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yi Observation from dataset i
y [yH1 , . . . , y

H
m ]H

di Dimension of yi
d =

∑m
i=1 di Dimension of y

m Number of datasets
n Number of observations
xi ∈ Cdi Canonical coefficient vector
x ∈ Cd [xH1 , . . . , x

H
m]H

wi ∈ C Canonical variate
w ∈ Cm [w1, . . . , wm]H

X ∈ Cd×m blkdiag(x1, . . . , xm)
Φ(x) Correlation matrix of w
RD ∈ Cd×d blkdiag(R11, . . . , Rmm)
R ∈ Cd×d Matrix of [Rij]ij
R̃(x) ∈ Cd×d Matrix of[(xHi Rijxj)Rij]ij
Yi ∈ Cdi×n Training data matrix
Ui ∈ Cdi×di Left singular vectors of Yi
U ∈ Cd×m blkdiag(U1, . . . , Um)
Σi ∈ Cdi×n Singular values matrix of Yi
Σ ∈ Cd×nm blkdiag(Σ1, . . . ,Σm)
Vi ∈ Cn×n Right singular vectors of Yi
V ∈ Cn×nm [V1, . . . , Vm]
Λ ∈ Cm×m Diag matrix of Lagrange multipliers
ΛD ∈ Cd×d blkdiag (λ1Id1 , . . . , λmIdm)

Σ̃ ∈ Cd×d blkdiag(Σ1(:, 1 : d1), . . .Σm(:, 1 : dm))

Ṽ ∈ Cn×d [V1(:, 1 : d1), . . . , Vm(:, 1 : dm)]
1 [1, . . . , 1]

Table 10.1: Notation used in MCCA

Using these n samples, we form m training data matrices by stacking the observations

as columns in a matrix. We denote these training data matrices Y1 =
[
y

(1)
1 , . . . y

(n)
1

]
∈

Cd1×n, . . . , Ym =
[
y

(1)
m , . . . , y

(n)
m

]
∈ Cdm×n.

For all empirical derivations, we assume that we are given n samples in each train-

ing dataset. We denote the SVD of each training dataset as Yi = UiΣiV
H
i and form

the matrices U ∈ Cd×d = blkdiag(U1, . . . , Um), Σ ∈ Cd×nm = blkdiag(Σ1, . . . ,Σm),

and V ∈ Cn×nm = [V1, . . . , Vm]. Using these data SVDs, we form sample covariance

matrices, R̂ij = 1
n
YiY

H
j = 1

n
UiΣiV

H
i VjΣ

H
j U

H
j with which we form R̂ = UΣV HV ΣHUH

and R̂D = UΣΣHUH . Please refer to Table 10.1 for a summary of the notation used

throughout the MCCA derivations.

The derivations are provided in Appendix B. Table 10.2 in the following section
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summarizes the solution to each problem. It assigns a number-letter pair to each

MCCA optimization problem (1-5 for the objective function, a-d for the constraint

function). This label can be used to look up the appropriate derivation in Appendix

B. The table provides the appropriate eigen-system used to solve the problem if all

the covariance matrices are known. The table also provides the appropriate eigen-

system used to solve the problem in the empirical setting where we are given training

datasets to estimate unknown covariance matrices. The last column in the table

provides references that use, discuss, or derive the MCCA formulation.

10.3.1 Manopt Software for Optimization on Manifolds

Many of the problems discussed in Appendix B do not yield closed form solutions

because either the cost function is unwieldy or because the constraint functions com-

plicate the derivations. For these problems we use the Manopt software provided at

www.manopt.org. The Manopt software specializes in solving constrained optimiza-

tion problems when the constraints are manifolds. This software package is able to

solve nonlinear optimization problems. For reference, see [158]. To use the solvers,

we must provide a cost function and its associated gradient.

All of our constraints will be of the form ‖x‖ = 1 where x ∈ Rp. The asso-

ciated manifold that we use for this constraint is the sphere manifold called via

spherefactory(p,1). If we have multiple of such constraints, then we use the

productmanifold to ensure all constraints are satisfied. See the Manopt documen-

tation and provided code for an example.

After selecting the appropriate manifold and providing the cost and gradient func-

tions, we use the trustregions solver to find a solution for our problems. This returns

the minimized cost and the point that achieved the minimum cost. If our objective

function has a cost function that seeks a maximum, we provide the negative of the

true cost function and the gradient is computed from this negative cost.

10.3.2 Successive Canonical Vectors

The derivations in Appendix B show how to compute the first stage canonical

vectors and canonical correlation. We may compute r = min(d1, . . . , dm, n) canonical

vector and correlation pairs. We use the standard constraint on successive canonical

variates

E
[
w

(k)
i w

(k−j)
i

]
= 0, for j = 1, . . . , k − 1, ∀i.
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Here, the subscript i indexes the canonical variates and the superscript (k) indexes

the stage of the canonical vector and correlation pair. This requires the next stage

canonical variates to be uncorrelated to all previous canonical variates for a given

dataset. Using the definition for canonical variates, this constraint becomes

E
[
x

(k)H
i yiy

H
i x

(k−j)
i

]
= x

(k)H
i Riix

(k−j)
i = 0, for j = 1, . . . , k − 1, ∀i.

To enforce this constraint, we run the following algorithm

1. Form X ∈ Cd×mk = blkdiag(X1, . . . , Xm) where Xi = [x
(1)
i , . . . , x

(k)
i ]

2. Project the canonical vectors onto RD via B = RDX ∈ Cd×mk

3. Compute a basis for the span of B via the rank-k SVD, B = UBΣBV
H
B

4. Form the projection matrix onto the orthogonal completment of this basis P =

I − UBUH
B

5. Project the training data onto P via Ỹ = PY

6. Recompute covariance matrices used in optimization using Ỹ

10.3.3 MCCA Summary

Table 10.2 summarizes the solution to each of the twenty optimization problems

and shows for which ones we must use the Manopt software package and which ones we

have closed form solutions in terms of eigen-systems. All of the empirical eigenvalue

systems rely on the matrix product V HV . This is wonderful news because it directly

makes contact with the similar V H
x Vy matrix used in CCA. In Chapter 4 we saw that

by trimming this matrix to only include informative singular vectors of the individual

datasets we can greatly improve correlation detection. This observation will drive

our derivation of IMCCA. We note that in this thesis we only do so for MAXVAR,

but this V HV matrix appears in many of the optimization problems and other such

informative versions of these algorithms are within reach. Many of the SUMCORR

and SSQCORR theoretical eigen-systems are non-normal, using multiple Lagrange

multipliers. Some of these problems can be solved with Manopt, however, some

result in non-unique solutions. Obviously, such formulations of MCCA should be

avoided.
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# J(x) h(x,R) Eigenvalue Prob Empirical Prob Ref

1a SUMCORR NORM Rx̃ = ΛDx̃ Manopt [55, 65]
x = Λx̃x̃

1b SUMCORR AVGNORM Rx = ρx R̂x̂ = ρ̂x̂ [65]
1c SUMCORR VAR Rx̃ = ΛDRDx̃ Manopt [55, 64, 65]

x = R
−1/2
D Λx̃x̃

1d SUMCORR AVGVAR R
−1/2
D RR

−1/2
D x̃ = ρx̃ Ṽ T Ṽ f̂ = ρ̂f̂ [36, 55, 51]

x = R
−1/2
D x̃ x̂ = U Σ̃−1f̂ [65, 111]

2a SSQCORR NORM R̃(x)x = ΛDx Manopt [65]

2b SSQCORR AVGNORM R̃(x)x = λx Manopt [65]

2c SSQCORR VAR R̃(x)x = ΛDRDx Manopt [40, 64, 65]

2d SSQCORR AVGVAR R̃(x)x = λRDx Manopt [65]

3a MAXVAR NORM Rã = ρã R̂f̂ = ρ̂f̂ [65]

x = Λ−1
ã ã x̂ = Λ−1

f̂
f̂

3b MAXVAR AVGNORM xi = u1i x̂i = u1i [65]

3c MAXVAR VAR R
−1/2
D RR

−1/2
D ã = ρã Ṽ H Ṽ f̂ = ρ̂f̂ [64, 65]

x = R
−1/2
D Λ−1

ã ã x̂ = U Σ̃−1Λ−1

f̂
f̂

3d MAXVAR AVGVAR Non-unique Non-unique [36, 51, 65]
x = ui/σi x̂ = ui/σi

4a MINVAR NORM Rã = ρminã R̂â = ρ̂minâ [65]

x = Λ−1
ã ã x̂ = Λ−1

â â
4b MINVAR AVGNORM Non-unique Non-unique [65]

xi = u1i x̂i = u1i

4c MINVAR VAR R
−1/2
D RR

−1/2
D ã = ρminã Ṽ H Ṽ f̂ = ρ̂minf̂ [64, 65]

x = R
−1/2
D Λ−1

ã ã f̂ = U Σ̃−1Λ
f̂
f̂

4d MINVAR AVGVAR Non-unique Non-unique [65, 157]
x = ui/σi x̂ = ui/σi

5a GENVAR NORM Non-eigen prob Manopt [65]
5b GENVAR AVGNORM Non-eigen prob Manopt [65]
5c GENVAR VAR Non-eigen prob Manopt [64, 65]
5d GENVAR AVGVAR Non-eigen prob Manopt [65]

Table 10.2: Summary of MCCA optimization problems. The objective functions are de-
scribed in Section 10.2.2. The constraints are described in section 10.2.1. The eigenvalue
problem column is the theoretical solution while the Empirical problem column describes
how to solve the problem given empirical data. All eigenvalue problems solve for the max-
imum eigenvalue-eigenvector pair except for the MINVAR problems, which solves for the
minimum eigenvalue-eigenvector pair. The final column lists references which describe the
MCCA optimization problem.

10.4 Proposed Informative MCCA Algorithm

We choose to focus our attention on two of the above problems, 3c and 4c, MAX-

VAR and MINVAR with the VAR constraint. We choose to examine these because
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they are a very natural extension from CCA. One can show that each of the objective

functions is equivalent to the CCA objective function when m = 2. To draw a natural

connection from CCA to MAXVAR, we first recall that the canonical correlations of

empirical CCA are exactly the singular values of

C = V H
1 V2, (10.2)

where V1 and V2 are the right singular vectors of the data matices Y1 and Y2, respec-

tively. Define the SVD of C = FKGH . Consider the matrix

Rcca =

[
V H

1

V H
2

] [
V1 V2

]
=

[
Id1 V H

1 V2

V H
2 V1 Id2

]
. (10.3)

As shown in [157], R has eigenvalues that come in pairs

{1 + ki, 1− ki, } .

More specifically, the eigenvalue decomposition of Rcca is

Rcca =

[
F −F
G G

][
I +

(
KKH

)−1/2
0

0 I −
(
KHK

)−1/2

][
F −F
G G

]H
.

From the eigenvalue decomposition of this matrix, we can exactly recover the canon-

ical correlations ki and the needed transformations F and G. These transformations

appear in a very specific block structure. Each eigenvector contains the correspond-

ing block components of the transformation for each dataset. In addition, just as the

eigenvalues come in pairs, the eigenvectors come in pairs. Comparing the eigenvectors

corresponding to the eigenvalues 1 + ki and 1− ki we see that the component corre-

sponding to the second dataset is the same while the component of the first dataset

simply changes sign.

Therefore, the CCA solution by taking the SVD of C in 10.2 is equivalent to

maximizing the largest min(d1, d2) eigenvalues of R in (10.3). However, we can also

uncover the same solution by minimizing the smallest min(d1, d2) eigenvalues of R as

well. We note that the CCA optimization problem explicitly uses the VAR constraint

function.

From this discussion it is clear that MAXVAR and MINVAR using the VAR

constraint are extremely natural extensions for the CCA optimization problem. We

simply concatenate the right singular vectors of any additional datasets to the matrix
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product in (10.3) to form

Cmcca =


V H

1

V H
2
...

V H
m


[
V1 V2 · · · Vm

]
=


Id1 V H

1 V2 · · · V H
1 Vm

V H
2 V1 Id2 · · · V H

2 Vm
...

...
. . .

...

V H
m V1 V H

m V2 · · · Idm

 . (10.4)

If our datasets are completely noise free, then examining the eigenvalues of Cmcca

directly gives us the correlation structure. Any eigenvalues ki 6= 1 represent correlated

components. We can have at most

r =

⌊∑m
i=1 di
2

⌋
correlations. Having this many number of correlated components would require all

correlations to be pair-wise.

Interpreting the eigenvalues and eigenvectors of Cmcca is much more complicated

than CCA. While any eigenvalue not equal to 1 conveys a correlation between datasets,

the strength of this correlation is coupled with the eigenvector structure. Consider

the following examples both for m = 3 and d1 = d2 = d3 = 1

C(1)
mcca =

 1 1 0

1 1 0

0 0 1

 , C(2)
mcca =

 1 0.5 0.5

0.5 1 0.5

0.5 0.5 1

 .
C

(1)
mcca corresponds to a setting where the only component of dataset 1 and 2 are

perfectly correlated and dataset 3 is independent. C
(2)
mcca corresponds to the setting

where all three components are weakly mutually correlated. However, the largest

eigenvalue of both of these matrices is 2. This eigenvalue is not one so it represents

correlation in our datasets. However, the structure of our correlation is very different.

To determine the structure of our correlation, we must examine the associated

eigenvectors of Cmcca. The eigenvectors corresponding to the largest eigenvalues of

these matrices are

u(1) =
1√
2

[1, 1, 0]T , u(2) =
1√
3

[1, 1, 1]T .

From these eigenvectors, we directly can see the correlation structure revealed by the

eigenvector. This ambiguity in correlation structure is never a problem in vanilla CCA
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as there are only two datasets. Components are either correlated or they are not and

so the eigenvalue in CCA directly gives our correlation structure and we can determine

our necessary transformations directly from the eigenvectors. In MAXVAR, after

determining that our eigenvalue represents a correlation, we then need to inspect the

corresponding eigenvector to determine the correlation structure.

Similar to the result by [6], we would like to determine when the eigenvalues

returned by empirical MAXVAR erroneously represent false correlation. In CCA, we

had the result that when n < d1 + d2, k1 = 1 deterministically. For MAXVAR and

MINVAR, we provide the following two Theorems and Conjecture.

Theorem 10.4.1. If 2n < mini 6=j 6=k(di + dj + dk) then the largest eigenvalue of Cmcca

is equal to m.

Proof. By definition, Vi is a n×di matrix. Without loss of generality, let Vi be ordered

such that d1 ≤ d2 ≤ dm. When n < d1 + d2, then V1 and V2 must span a shared

subspace of dimension d1 + d2 − n. By a similar geometric argument, this shared

subspace of dimension d1 + d2 − n will intersect the span of V3 if

(d1 + d2 − n) + d3 > n.

Re-arranging terms means that

d1 + d2 + d3 > 2n

implies that V1, V2 and V3 all span a common subspace of dimension (d1+d2+d3)−2n.

In this setting we have that d1 + d2 > n and d1 + d2 + d3 > 2n which implies that

d3 > n. Therefore for any i > 3, di > n. By induction, we have that for any i > 3, Vi

will intersect the common subspace of dimension (d1 + d2 + d3)− 2n if

(d1 + d2 + d3 − 2n) + di > n,

which holds if di > n, which we just showed was true. Therefore, when

2n < min
i 6=j 6=k

(di + dj + dk)

all Vi span a common subspace of at least dimension 1.

With this observation in mind, we may write

Vi =
[
q q⊥i

]
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where q is a basis vector for this shared subspace and q⊥i is the orthogonal complement

representing the rest of Vi. With this definition, we have that for any i 6= j,

V H
i Vj =

[
1 0

0 Qij

]
,

where Qij =
(
q⊥i
)H

q⊥j . With this block structure we can observe that the first column

and row of Cmcca is

w =
[
eH1 , e

H
2 , . . . , e

H
m

]H
,

where eHi = [1, 0, . . . , 0] ∈ C1×di . Therefore, it is clear that 1
m
w is an eigenvector of

Cmcca associated with the eigenvalue m.

Theorem 10.4.2. If n <
∑m

i=1 di then the smallest eigenvalue of Cmcca is zero.

Proof. We provide a short proof by simply geometric and rank arguments. Recall

that Vi ∈ Cn×di . Then

V =


V H

1

V H
2
...

V H
m


is a

∑m
i=1 di × n matrix. When n <

∑m
i=1 di, this matrix can have a maximum rank

of n. Therefore

rank(Cmcca) = rank(V HV ) ≤ n <
m∑
i=1

di.

Therefore, Cmcca is not full rank and has at least 1 zero-eigenvalue. As Cmcca is

symmetric positive semi-definite, the smallest eigenvalue is therefore zero.

Conjecture 10.4.1. We conjecture that when n <
∑m

i=1 di, the largest eigenvalue

of Cmcca is determined entirely based on n and
∑m

i=1 di and not on the underlying

correlation.

The intuition behind Conjecture 10.4.1 is based on the observation from CCA

that the eigenvalues of Rcca come in pairs {1 + ki, 1− ki}. MAXVAR returns the

eigenvalues above 1 and MINVAR returns the eigenvalues below 1. However, unlike

in CCA, the eigenvalues of Cmcca are not symmetric about 1 and so we do not have an

elegant closed form relationship. Our intuition leads us to believe that these eigen-

values of Cmcca are coupled and represent the same correlation structure. Theorem

10.4.1 states that if we are in a certain sample deficient regime, the largest eigenvalues
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are deterministic. Similarly, Theorem 10.4.2 states that in a different sample deficient

regime, the smallest eigenvalues are deterministic. These sample deficient regimes are

different for the largest and smallest eigenvalues; the regime is larger for the smaller

eigenvalues. Therefore, due to the hypothesized coupling of the largest and smallest

eigenvalues we believe Conjecture 10.4.1 holds. In this setting, like in empirical CCA,

we conjecture that the canonical vectors are simply random and we would not like to

use them in an algorithm.

10.4.1 Low-Rank Multi-dataset Model

Let y
(i)
1 ∈ Cd1×1, . . . , y

(i)
m ∈ Cdm×1 be modeled as

y
(i)
j = Ujs

(i)
j + z

(i)
j (10.5)

where for j = 1, . . . ,m, UH
j Uj = Ikj z

(i)
j

i.i.d.∼ CN (0, Idj). Furthermore, assume that

s
(i)
j

i.i.d.∼ CN (0,Θj)

where Θj = diag

((
θ

(1)
j

)2

, . . . ,
(
θ

(kj)
j

)2
)

. Assume that for all i and j, z
(i)
j are

mutually independent and independent from all s
(i)
j . Finally, assume that

E
[
s

(i)
j s

(i)H
`

]
=: Kj` = Θ

1/2
j Pj`Θ

1/2
`

where the entries of Pj` are between −1 and 1 and represent the correlation between

the entries of sj and s`. For reasons to be made clear later, for j, ` = 1, . . . ,m define

K̃j` =
(
Θj + Idj

)−1/2
Kj` (Θ` + Id`)

−1/2 .

Under this model, we define the following covariance matrices

E
[
yjy

H
j

]
= UjΘjU

H
j + Idj =: Rjj

E
[
yjy

H
`

]
= UjKj`U

H
` =: Rj`.

(10.6)

With this model we have that our target matrix in MAXVAR is

Cmcca = R
−1/2
D RR

−1/2
D
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where

R = E



y

(i)
1

y
(i)
2
...

y
(i)
m


[
y

(i)H
1 y

(i)H
2 · · · y

(i)H
m

]


=


R11 R12 · · · R1m

R21 R22 · · · R2m

...
...

. . .
...

Rm1 Rm2 · · · Rmm


and

RD = blkdiag(R11, R22, . . . , Rmm).

With these definitions, the block diagonal elements of Cmcca are Idj and the block

off-diagonal elements are R
−1/2
jj Rj`R

−1/2
`` . Using our model in (10.5), we have that

R
−1/2
jj Rj`R

−1/2
`` =

(
UjΘjU

H
j + Idj

)−1/2
UjKj`U

H
`

(
U`Θ`U

H
` + Id`

)−1/2

= Uj
(
Θj + Idj

)−1/2
Kjk (Θ` + Id`)

−1/2 UH
`

= UjK̃j`U
H
` .

Therefore, by defining U = blkdiag(U1, . . . , Um), we have that

Cmcca = U


Ik1 K̃12 · · · K̃1m

K̃21 Ik2 · · · K̃2m

...
...

. . .
...

K̃m1 K̃m2 · · · Ikm


︸ ︷︷ ︸

K̃

UH .

Finally, let UK̃KK̃U
H
K̃

be the eigenvalue decomposition of K̃ where

KK̃ = diag(κ1, . . . , κk),

where k =
∑m

j=1 kj. The number of correlated components is thus equal to the number

of eigenvalues of Cmcca that are greater than one,

# of correlated components =: t =
k∑
i=1

1{κi>1}.
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10.4.2 Informative MCCA

In many applications, however, we do not know the covariance matrices Rj`.

Therefore, we cannot determine the number of correlated components by examin-

ing the rank of Cmcca. Instead, we are given multiple snapshots from (10.5) that we

stack columnwise into data matrices

Yj =
[
y

(1)
j , . . . , y

(n)
j

]
.

Using these data matrices, we form estimates of the unknown covariance matrices via

R̂j` =
1

n
YjY

H
` .

Define the data SVDs as

Yj = ÛjΣ̂jV̂
H
j ,

the trimmed matrices as
Ũj = Ûj(:, 1 : min(dj, n))

Ũj = V̂j(:, 1 : min(dj, n)),

and the matrices

Ũ = blkdiag(Ũ1, . . . , Ũm), Ṽ =
[
Ṽ1, . . . Ṽm

]
.

Empirical MAXVAR examines the eigen-decomposition of the matrix

R̂mcca = Ũ Ṽ H Ṽ Ũ .

Define the eigenvalues of this matrix as κ̂1, . . . , κ̂d,which are the MAXVAR estimates

of the correlations present in the multiple datasets. MAXVAR may return up to a

maximum of

r =

⌊∑m
i=1 di
2

⌋
correlations. However, based on the model in (10.5), we know that our datasets are

low-rank and it is common to return

r̂ =

⌊∑m
i=1 k̂i
2

⌋

where k̂j are estimates of the number of underlying signals in each dataset.
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In the spirit of the ICCA algorithm and motivated by the low-rank data model in

(10.5), we propose the following informative version of MAXVAR. We know that not

all right singular vectors are informative and so we trim our data matrices

◦
Uj = Ûj

(
:, 1 : k̂j

)
◦
Vj = V̂j

(
:, 1 : k̂j

)
and define

◦
U = blkdiag(

◦
U1, . . . ,

◦
Um),

◦
V =

[ ◦
V1, . . .

◦
Vm

]
.

Using these trimmed estimates, we define the informative MAXVAR (IMCCA) matrix

as

R̂imcca =
◦
U
◦
V H

◦
V
◦
UH .

Define the eigenvalues of this IMCCA matrix as κ̃1, . . . , κ̂r̂.

To estimate the number of correlated signals present in our datasets, we examining

the eigenvalues of the matrices R̂mcca and R̂imcca. We know from the population model

that the number of eigenvalues above 1 represent correlations. Therefore, we can set

a threshold to estimate the number of correlations via

t̂mcca =
r̂∑
i=1

1{κ̂1>1+ταmcca}

t̂imcca =
r̂∑
i=1

1{κ̂1>1+ταimcca},

(10.7)

where the thresholds ταmcca and ταimmca are set to achieve a desired false alarm rate α.

Similar to the ICCA Theorems, we make the following two conjectures.

Conjecture 10.4.2. Let d1, . . . , dm, n → ∞ with dj/n → cj. Given the data model

in (10.5), the IMCCA estimate of the number of correlated components in (10.7)

converges to the actual number of correlated components under the following condition

t̂imcca
a.s.−→ t if ∀j = 1, . . . ,m, min

i=1,...,kj
θ

(i)
j > c

1/4
j

Conjecture 10.4.3. Consider the missing data setting where our the entries of our

data matrices may only be partially observed as

Yj =
(
UjΘ

1/2
j V H

j + Zj

)
�Mj
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where

M j
k` =

1 with probability γj

0 with probability 1− γj
.

Let d1, . . . , dm, n → ∞ with dj/n → cj. Then the estimated number of correlated

components in (10.7) converges to the actual number of correlated components under

the following condition

t̂imcca
a.s.−→ t if ∀j = 1, . . . ,m, min

i=1,...,kj
θ

(i)
j >

c
1/4
j√
γj

10.5 Controlled Video-Video-Video Experiment

To verify the effectiveness of IMCCA for real world applications, and to showcase

the extreme sub-optimality of empirical MCCA, we setup a controlled experiment

consisting of four stationary flashing lights and three stationary iPhone cameras.

Figure 10.1 shows the left, middle, and right camera views for one frame of the video

experiment. Figure 10.2 manually identifies each source in each camera view by

drawing a colored box around it. The left camera can see a flashing laptop screen

(L1), a flashing phone light (PH1), and a flashing tablet screen (T1). The middle

camera has only one source, the flashing tablet screen (T1). The right camera can

see the flashing tablet screen (T1), the flashing laptop screen (L1) via an external

monitor, and a flashing police light (PL1). We summarize these sources in Table 10.3.

Based on our setup, all cameras share the T1 source, while the left and right views

share the L1 source. The left and right views also each have an independent source

in their view.

To synchronize the cameras we used the RecoLive MultiCam iPhone app 1. After

turning on all light sources, we recorded 20 seconds of video at 30 frames per second.

The resolutions of the iPhone’s cameras were all 1920× 1080 pixels.

To post-process the video data, we first converted the video streams to grayscale

and then downsampled each spatial dimension by a factor of 8, resulting in a resolution

of 240 × 135. We then vectorized each image and stacked the 600 frames into data

matrices, all of dimension 32400 × 600. Finally, we subtract the mean from each

dataset so that we may run PCA, MCCA, and IMCCA on the zero-mean datasets,

Yleft, Ymiddle, and Yright.

First, we run PCA on the individual datasets Yleft, Ymiddle, and Yright to identify

1http://recolive.com/en/
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(a) Left Camera (b) Middle Camera (c) Right Camera

Figure 10.1: Left, middle, and right camera views of our four sources for the controlled
MCCA flashing light experiment.

(a) Left Camera (b) Middle Camera (c) Right Camera

Figure 10.2: Manual identification of each source in each camera. All three sources share
a common flashing tablet, outlined in red. The left and right camera views share a common
flashing laptop screen, outlined in green. The left camera has an independent flashing
phone light, outlined in dark blue. The right camera has an independent flashing police
light, outlined in cyan.
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Camera Source

Left Laptop L1
Phone PH1
Tablet T1

Middle Tablet T1

Right Tablet T1
Laptop L1
Police Light PL1

Table 10.3: Visual sources for each camera view. All three cameras share Tablet T1.
The left and right cameras share Laptop L1. The left and right cameras each have an
independent flashing light source.
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(c) Right Camera

Figure 10.3: Singular value spectra of Yleft, Ymiddle, and Yright

the signals residing in each dataset. We know from our setup that the left and

right cameras both have three sources. Figure 10.3 plots the singular values of Yleft,

Ymiddle, and Yright. Figures 10.4, 10.5 and 10.6 plot the singular vector heatmaps

corresponding to the top 3 singular values of Yleft, Ymiddle, and Yright, respectively.

Each figure also overlays a thresholded version of the singular vectors onto the raw

video. The threshold that we use is
√

log(di)/di. From these figures, PCA does a

good job at identifying the pixels containing a signal (flashing light).

While PCA does a nice job at identifying pixels in each view with a flashing light,

it does not provide any information about whether these pixels are correlated across

cameras. To accomplish this, we turn to MCCA and IMCCA. In an adaptive setting,

we can run these algorithms after every new frame. Specifically, for frame `, we

construct the 32400 × ` submatrices Y `
left, Y

`
middle, and Y `

right by taking the matrix of

the first ` original vectorized frames in each view and then subtracting the mean of

the resulting submatrix. We then use these resulting submatrices as inputs to MCCA
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Figure 10.4: (a)-(c) Left singular vectors of Yleft corresponding to the top 3 singular values.
(d) Thresholded singular vectors from (a)-(c) overlayed onto the original scene. These pixels
correspond to the flashing light sources visible in the left camera.
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(a) u1 (b) Overlay

Figure 10.5: (a) Left singular vector of Ymiddle corresponding to the top singular value.
(b) Thresholded singular vector from (a) overlayed onto the original scene. These pixels
correspond to the flashing light source visible in the middle camera.
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Figure 10.6: (a)-(c) Left singular vectors of Yright corresponding to the top 3 singular
values. (d) Thresholded singular vectors from (a)-(c) overlayed onto the original scene.
These pixels correspond to the flashing light sources visible in the right camera.

and IMCCA. Using our knowledge of the number of sources in each camera, we set

k̂left = 3, k̂middle = 1, and k̂right = 3. Figure 10.7 plots the top 3 correlation coefficients

returned by MCCA and IMCCA over the 600 frames of the video. As expected due to

our extreme sample deficient regime, MCCA returns coefficients equal to 2 = m− 1.

Figures 10.8 and 10.9 overlay the thresholded canonical vectors corresponding to

the correlations in Figure 10.7 onto the original scene for MCCA and IMCCA, re-

spectively. Unsurprisingly, the MCCA canonical vectors appear extremely random

and noisy while the IMCCA canonical vectors correctly identify the two sources of

correlation in our video. Additionally, IMCCA identifies that once source of correla-

tion appears in all three camera views (red pixels) and that one source of correlation

appears in only two camera views (green pixels).

To overlay the thresholded canonical correlations on the original scene, we use a

different threshold than
√

log(n)/n. The main reason for this is that our eigenvector

returned by MCCA is unit norm and contains information for all three canonical

vectors. Therefore, the energy may be dispersed across all views. Consider the fol-

lowing examples of (possible) canonical vectors returned by IMCCA for our situation
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Figure 10.7: Top 3 correlations returned by MCCA and IMCCA.

of k = 7 signals,

u1 =
[
1/
√

3, 0, 0, 1/
√

3, 1/
√

3, 0, 0
]T

u2 =
[
0, 1/
√

2, 0, 0, 0, 1/
√

2, 0
]T

u3 = [0, 0, 1, 0, 0, 0, 0, ]T .

In these examples, the first three components could correspond to the left camera

signals, the fourth component could correspond to the middle camera, and the last

three components could correspond to the right camera. Examining u1, we see that

this vector structure tells us that there is a correlation between all three cameras.

Examining u2, this vector structure tells us that there is a correlation between only

the left and right cameras. Finally, u3 shows that there is no correlation between the

cameras. In this noise-free setting, it is easy to see that components with zero weight

are not correlated. However, in the noisy settings, these non-correlated components

will be small but non-zero. Therefore, we propose the following thresholding technique

1. ũi =
√
mui

2. Extract the components for each dataset from ũi, resulting in ũ
(j)
i for j =

1, . . . ,m.

3. If ‖ũ(j)
i ‖2 > 1, then ũ

(j)
i = ũ

(j)
i /‖ũ(j)

i ‖2

The resulting ũji now have at most norm 1, but uncorrelated components still remain

small. Therefore, using ũji to weight the principal component vectors, we may use

our normal threshold of
√

log(di)/di. The above steps are a heuristic to determine

the number of views that a large correlation represents. The worst case is when
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(a) Left Camera (b) Middle Camera (c) Right Camera

Figure 10.8: Top 2 thresholded MCCA canonical vectors overlayed onto the original scene.
The red pixels are the pixels corresponding to the largest correlation and the green pixels
correspond to the pixels with the second largest correlation. Since we are in the sample
deficient regime, MCCA returns random pixels as the canonical vectors are random.

(a) Left Camera (b) Middle Camera (c) Right Camera

Figure 10.9: Top 2 thresholded IMCCA canonical vectors overlayed onto the original
scene. The red pixels correspond to the largest correlation and the green pixels correspond
to the second largest correlation. Clearly, the red pixels identify the shared flashing tablet
light in all 3 views and the green pixels identify the shared flashing laptop in the left and
right views.

all m datasets are correlated and the energy in ui is distributed evenly across the m

components. The first step accounts for this by scaling all components by
√
m. In our

toy example, the subvectors of u1 each have unit norm for each dataset. However,

in cases where only a subset of the datasets are correlated, as in u2, this scaling

overcompensates and so we use step 2 to make all subvectors at most unit norm.

However as we don’t normalize all subvectors, those with small norm will stay small,

correctly indicating their dataset is not correlated.
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CHAPTER XI

Afterword

In the first part of this dissertation, we considered the classical problem of matched

subspace detection. Using insights from random matrix theory about the accuracy of

subspaces in the low-sample, high dimensional regime, we showcased the suboptimal-

ity of the standard plug-in detector and derived a new detector that can avoid some

of the performance loss of the plug-in detector. It is amazing that random matrix

theory reveals new surprises is classically solved problems. We hope this applica-

tion will continue to accelerate this trend and that others will similarly reconsider

other classical signal processing applications to find such surprises in the low-sample

high-dimensionality regime.

In the second part of this dissertation, we explored correlation detection in multi-

modal datasets. Motivated by the suboptimality of canonical correlation analysis in

the sample deficient regime, we considered informative CCA (ICCA). Using insights

from random matrix theory, ICCA first trims data SVDs to contain only informative

singular vectors. This allows ICCA to robustly detect correlations in the sample

deficient regime. We provided a statistical significance test for the ICCA correlation

estimates and derived a consistency bound for it. We then considered the accuracy

of the canonical vector returned by ICCA and used insights from random matrix to

derive improved estimates of the canonical vectors. Finally, we extended these ideas

to algorithms that detect correlations in more than two datasets and proposed an

informative version, IMCCA, that is able to robustly detect correlations for multiple

datasets in the sample deficient regime. We verified these informative correlation

algorithms on new low-rank real-world datasets that we created.

The correlation algorithms considered herein are all linear. The work presented

in this thesis unifies and completes much of the theory on linear correlation detection

in the sample deficient regime. However, if there are nonlinear correlations present
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between the datasets, ICCA and IMCCA are the wrong algorithms to use. An im-

portant area of future research is to extend these insights from random matrix theory

to the kernel versions of CCA (KCCA). While KCCA has been used in practice, the

theoretical limits of it are generally unknown. An important first step is to develop

a universal data model that encodes non-linear correlations. Ideally, similar to the

work present in this thesis, we would like to see a fundamental limit dependent on

the system dimensionality, number of samples, data SNR, and choice of kernel pa-

rameters. Similarly to CCA, one can expect KCCA to behave poorly in this sample

deficient regime and so an informative version of KCCA seems within reach.

Finally, we hope that the work on MCCA presented in the final chapter will

serve as a springboard for future research in the area. We showcased that reliable

detection of correlations between more than two datasets is possible in the sample

deficient regime. However, further investigation into the theoretical properties of such

algorithms is necessary. In the thesis we touched on the close relationship between

the algorithms MAXVAR and MINVAR. Further exploration of this relationship is

very important as it may reveal structure in the problem that we can exploit. Similar

to the work presented for ICCA, improving the estimates of MCCA canonical vectors

seems within reach.

Today’s technological landscape offers the ability to collect as much data as pos-

sible. It is our job as machine learning and statistical signal processing specialists to

theoretically fuse such a wide variety of data. We hope that the work presented in

this thesis serves as a starting point for such a discussion.
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APPENDIX A

Proof of Theorem 2.5.1

We restate the theorem for exposition:

Assume the same hypothesis as in Proposition 2.5.1. Let k̂ = keff = k.

For i = 1, . . . , k̂, j = 1, . . . , k, and i 6= j, as n,m → ∞ with n/m → c,

then 〈uj, ûi〉
a.s.−→ 0.

Proof. Let Un,k be a n× k real or complex matrix with orthonormal columns, ui for

1 ≤ i ≤ k. Let Σ = diag (σ2
1, . . . , σ

2
k) such that σ2

1 > σ2
2 > · · · > σ2

k > 0 for k ≥ 1.

Define Pn = Un,kΣU
H
n,k so that Pn is rank-k. Let Zn be a n×m real or complex matrix

with independent CN (0, 1) entries. Let Xn = 1
m
ZnZ

H
n , which is a random Wishart

matrix, have eigenvalues λ1(Xn) ≥ · · · ≥ λn(Xn). Let X̂n = Xn (In + Pn). Xn and

Pn are independent by assumption. Define the empirical eigenvalue distribution as

µXn = 1
n

∑n
j=1 δλj(Xn). We assume that as n→∞, µXn

a.s.−→ µX .

For i = 1, . . . , k̂ = k, let v̂i be an arbitrary unit eigenvector of X̂n. By the

eigenvalue master equation, X̂nv̂i = λ̂iv̂i, it follows that

UH
n,k

(
λ̂iIn −Xn

)−1

XnUn,kΣU
H
n,kv̂i = UH

n,kv̂i. (A.1)

Let Xn = VnΛnV
H
n be the eigenvalue decomposition of Xn such that

Λn = diag(λ1(Xn), . . . , λn(Xn))

and λ1(Xn) ≥ · · · ≥ λn(Xn). Using this decomposition and defining Wn,k = V HUn,k,

(A.1) simplifies to

WH
n,k

(
λ̂iIn − Λn

)−1

ΛnWn,kΣU
H
n,kv̂i = UH

n,kv̂i. (A.2)
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Define the columns of Wn,k to be w
(n)
j = [w

(n)
1,j , . . . , w

(n)
n,j ]

T for j = 1, . . . , k. These

columns are orthonormal and isotropically random. We can rewrite (A.2) as[
T
µ

(n)
r,j

(
λ̂i

)]k
r,j=1

ΣUH
n,kv̂i = UH

n,kv̂i (A.3)

where for r = 1, . . . , k, j = 1, . . . , k, µ
(n)
r,j =

∑n
`=1 w

(n)
`,r w

(n)
`,j δλ`(Xn) is a complex measure

and T
µ

(n)
r,j

is the T-transform defined by Tµ (z) =
∫

t
z−tdµ (t) for z 6∈ supp µ. We may

rewrite (A.3) as (
Ik −

[
σ2
jTµ(n)

r,j

(
λ̂i

)]k
r,j=1

)
UH
n,kv̂i = 0.

Therefore, UH
n,kv̂i must be in the kernel of Mn

(
λ̂i

)
= Ik −

[
σ2
jTµ(n)

r,j

(
λ̂i

)]k
r,j=1

. By

Proposition 9.3 of [85]

µ
(n)
r,j

a.s.−→

µX for i = j

δ0 o.w.

where µX is the limiting eigenvalue distribution of Xn. Therefore,

Mn

(
λ̂i

)
a.s.−→ diag

(
1− σ2

1TµX

(
λ̂i

)
, . . . , 1− σ2

kTµX

(
λ̂i

))
.

As keff = k, for i = 1, . . . , k, σ2
i > 1/TµX (b+), where b is the supremum of the support

of µX . As λ̂i is the eigenvalue corresponding to the eigenvector v̂i, by Theorem 2.6 of
[85] λ̂i

a.s.−→ T−1
µX

(1/σ2
i ). Therefore,

Mn

(
λ̂i

)
a.s.−→ diag

(
1− σ2

1

σ2
i

, . . . , 1−
σ2
i−1

σ2
i

, 0, 1−
σ2
i+1

σ2
i

, . . . , 1− σ2
k

σ2
i

)
(A.4)

Recall that UH
n,kv̂i must be in the kernel of Mn

(
λ̂i

)
. Therefore, any limit point of

UH
n,kv̂i is in the kernel of the matrix on the right hand side of (A.4). Therefore, for

i 6= j, i = 1, . . . , k̂, j = 1, . . . , k, we must have that
(

1− σ2
j

σ2
i

)
〈uj, v̂i〉 = 0. As σ2

i 6= σ2
j ,

for this condition to be satisfied we must have that for j 6= i, i = 1, . . . , k̂, j = 1, . . . , k,

〈uj, v̂i〉
a.s.−→ 0.

Recall that our observed vectors yi ∈ Cn×1 have covariance matrix Un,kΣU
H
n,k+In =

Pn + In. Therefore, our observation matrix, Yn which is a n × m matrix, may be

written Yn = (Pn + In)1/2 Zn. The sample covariance matrix, Sn = 1
m
YnY

H
n , may

be written Sn = (In + Pn)1/2Xn (In + Pn)1/2. By similarity transform, if v̂i is a

unit-norm eigenvector of X̂n then ŝi = (In + Pn)1/2 v̂i is an eigenvector of Sn. If
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ûi = ŝi/‖ŝi‖ is a unit-norm eigenvector of Sn, it follows that

〈uj, ûi〉 =

√
σ2
i + 1〈uj, v̂i〉√

σ2
i |〈uj, v̂i〉|2 + 1

As 〈uj, v̂i〉
a.s.−→ 0 for all i 6= j, i = 1, . . . , k̂, j = 1, . . . , k, it follows that 〈uj, ûi〉

a.s.−→ 0

for all i 6= j i = 1, . . . , k̂, j = 1, . . . , k.

Claim 5.1: We conjecture that this result holds for the general case of i 6= j,

i = 1, . . . , k̂, j = 1, . . . , k, not just when k̂ = keff = k. Consider the case when

k = 1. For i > 2, if λ̂i is an eigenvalue of X̂n = Xn(In + σ2uuH), then it satisfies

det(λ̂iIn −Xn(In + σ2uuH)) = det(λ̂iIn −Xn) det(In − (λ̂iIn −Xn)−1Xnσ
2uuH) = 0.

Therefore, if λ̂i is not an eigenvalue of Xn, the corresponding unit norm eigenvector

v̂i is in the kernel of In − (λ̂iIn −Xn)−1Xnσ
2uuH . Therefore

|〈v̂i, u〉|2 =
1

σ4uHXn

(
λ̂iIn −Xn

)−2

Xnu
.

Recall that Weyl’s interlacing lemma for eigenvalues gives λi(Xn) ≤ λ̂i ≤ λi−1(Xn).

Letting Xn = VnΛnV
H
n and w = V H

n u, we see the importance of the asymptotic

spacing of eigenvalues of Xn in

uHXn(λ̂iIn −Xn)−2Xnu =
n∑
`=1

|w`|2λ2
`(Xn)(

λ̂i − λ`
)2

≥
minj λ

2
j(Xn) minj |wj|2

maxj |λj−1 − λj|2

In [159] it is shown that minj λ
2
j(Xn) = λ2

n(Xn)
a.s.−→ (1 −

√
c)2. The typical

spacing between eigenvalues is O(1/n) while the typical magnitude of w2
j is O(1/n)

[160]. Therefore, the right hand side of the above inequality will typically be O(n)

and we get the desired result of |〈v̂i, u〉|2
a.s.−→ 0. More generally, it is the behavior of

the largest eigenvalue gap and the smallest element of wi that drives this convergence.

Thus, so long as the eigenvector whose elements are wi are delocalized (i.e. having

elements of O(1/
√
n)) and the smallest gap between k successive eigenvalues is at least

as large as O(1/(n(0.5+ε)), the right hand side of the inequality will be unbounded with

n. The claim follows after applying a similarity transform as in the proof of Theorem

5.1.
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APPENDIX B

Theoretical and Empirical MCCA Derivations

We use the following notation. Let Yi for i = 1, . . . ,m denote the di×n data ma-

trix, with each column an observation from the ith dataset. Let Y = [Y H
1 . . . Y H

m ]H ∈
Cd×n be the entire observation matrix made by stacking Yi on top of each other. Let

UiΣiV
H
i be the individual data SVDs of Yi. Let R̂ = 1

n
Y HY be the sample covariance

matrix. Defining U = blkdiag(U1, . . . , Um) ∈ Cd×dm, Σ = blkdiag(Σ1, . . . ,Σm) ∈
Cd×nm, V = [V1, . . . , Vm] ∈ Cn×nm, we can write R̂ = UΣV HV ΣUH . Similarly, define

R̂D = 1
n

blkdiag(Y T
i Yi) = UΣΣHUH . Recall that x = [xH1 . . . x

H
m]H is the vector of

canonical vectors.

B.1 Problem 1a

B.1.1 Theory

Our optimization problem is

argmax
x1,...,xm

m∑
i=1

m∑
j=1

xHi Rijxj = xHRx

s.t. xHi xi = 1, i = 1, . . . ,m.

(B.1)

The Lagrangian for this problem is

L(x, λ) = xHRx−
m∑
i=1

λi
(
xHi xi − 1

)
.
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Define Λ = blkdiag(λ1Id1 , . . . , λmIdm) to be the matrix with the Lagrange multipliers

on the diagonal. The derivative of the Lagrangian is

∂L

∂x
= 2Rx− 2ΛDx.

Setting the derivative equal to the zero vector results in the following non-normal

generalized eigensystem.

Rx̃ = ΛDx̃,

where x̃ is a unit norm vector that may be decomposed as x̃ = [x̃H1 , . . . , x̃
H
m]H with

x̃i ∈ Cdi Therefore, the canonical vectors are

x =


‖x̃1‖−1Id1 0 0

0
. . . 0

0 0 ‖x̃m‖−1Idm

 x̃.
To obtain the canonical correlation, we substitute the canonical vectors into the

objective function.

B.1.2 Empirical

As shown in the previous section, the solution to (B.1) is a non-normal eigenvalue

system. To solve this problem, we use the manopt software package to solve cost

functions on manifolds. The manifold for this problem is the product of m sphere

manifolds constraining the canonical vectors xi to lie on the Cdi unit sphere. We use

the SUMCORR cost function and its gradient

∂

∂x
= 2Rx

in the manopt solution.
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B.2 Problem 1b

B.2.1 Theory

Our optimization problem is

argmax
x1,...,xm

m∑
i=1

m∑
j=1

xHi Rijxj = xHRx

s.t. xHx = 1.

The Lagrangian for this problem is

L(x, λ) = xHRx+ λ(1− xHx).

The derivative of the Lagrangian is

∂L

∂x
= 2Rx− 2x.

Setting the derivative equal to the zero vector results in the following eigensystem.

Rx = λx (B.2)

From this relationship, if we substitute this solution into the objective function, we

obtain

ρ = xHRx = xH(λx) = λ. (B.3)

B.2.2 Empirical

We plug in R̂ into (B.2) for R and solve the eigenvalue decomposition. The

eigenvector x is the canonical vector and the eigenvalue λ is the canonical correlation.

This problem is typically ill-posed as the maximum solution is typically found by

setting only one xi to be nonzero corresponding to the Rii with the largest variance.

We advise to not use this formulation of MCCA.
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B.3 Problem 1c

B.3.1 Theory

Our optimization problem is

argmax
x1,...,xm

m∑
i=1

m∑
j=1

xHi Rijxj = xHRx

s.t. xHi Riixi = 1.

The Lagrangian for this problem is

L(x, λ) = xHRx−
m∑
i=1

λi
(
xHi Riixi

)
.

Define ΛD ∈ Cd×d = blkdiag(λ1Id1 , . . . , λmIdm). The derivative of the Lagrangian is

∂L

∂x
= 2Rx− 2ΛDRDx.

Setting the derivative equal to the zero vector results in the non-normal generalized

eigensystem.

Rx̃ = ΛDRDx̃.

To obtain the canonical vectors, we make the transformation

xi =
R
−1/2
ii x̃i
‖x̃i‖

.

B.3.2 Empirical

Making the transformation

xi = R
−1/2
ii x̃i,

our optimization problem becomes

argmax
x̃

x̃HR
−1/2
D RR

−1/2
D x̃

s.t. x̃Hi x̃i = 1.

As shown in the previous section, the solution to this problem is a non-normal

eigenvalue system. To solve the above problem, we use the manopt software package

to solve cost functions on manifolds. The manifold for this problem is the product of
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m sphere manifolds constraining each canonical vector to lie on the Cdi unit sphere.

We use the SUMCORR cost function and the derivative

∂

∂x̃
= 2R

−1/2
D RR

−1/2
D x̃.

We substitute the empirical sample covariances

R̂ =
1

n
Y Y T , R̂D =

1

n
blkdiag(YiY

T
i )

for the unknown R and RD in the cost and gradient functions. To obtain the canonical

vectors xi, we make the transformation

xi = R
−1/2
ii x̃i.

Using our notation for R and RD from the data SVDs, we have

R
−1/2
D RR

−1/2
D = UV HV UH

and

x = UΣ−1UH x̃.

The canonical correlation is

ρ̂ = xHR
−1/2
D RR

−1/2
D x = x̃HUV HV UH x̃.

B.4 Problem 1d

B.4.1 Theory

Our optimization problem is

argmax
x1,...,xm

m∑
i=1

m∑
j=1

xHi Rijxj = xHRx

s.t. xHRDx = 1.

The Lagrangian for this problem is

L(x, λ) = xHRx+ λ(1− xHRDx).
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The derivative of the Lagrangian is

∂L

∂x
= 2Rx− 2λRDx.

Setting the derivative equal to the zero vector results in the following generalized

eigensystem.

R−1
D Rx = λx.

Let x̃ = R
1/2
D x so that the eigensystem becomes

R
−1/2
D RR

−1/2
D x̃ = λx̃

where ‖x̃‖2 = 1. The canonical vectors are x = R
−1/2
D x̃ and the canonical correlation

is ρ = λ.

B.4.2 Empirical

Our empirical eigen-problem is R̂
−1/2
D R̂R̂

−1/2
D x̃ = λx̃. Using data SVDs,

R̂
−1/2
D R̂R̂

−1/2
D = UV HV UH .

LetQΛQH be the eigenvalue decomposition of UV HV UH . To obtain canonical vectors

consistent with the the constraint function, we make the transformation

x = UΣ−1UHQ.

Substituting this expression into the objective function, we obtain

ρ̂ = λ.

B.5 Problem 2a

B.5.1 Theory

Our optimization problem is

argmax
x

m∑
i=1

m∑
j=1

(xHi Rijxj)
2 = ‖XHRX‖2

F

s.t. xHi xi = 1, i = 1, . . . ,m.
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To calculate the gradient of the cost function, we use the double summation version

of the cost function. We have that

∂

∂xi
= 4

m∑
j=1

(xHi Rijxj)Rijxj

= Ri,:X(XHRX):,i

(B.4)

where

Ri,: = [Ri,1, . . . , Ri,m], (XHRX):,i = [xH1 R1,ixi, . . . , x
H
mRm,ixi]

H .

Thus

∂

∂x
=


∂
∂x1
...
∂

∂xm

 .
If we try to use a Lagrangian method to solve this problem, we end up with an

eigenvalue problem of the form R̃(x)x = ΛDx. As the matrix R̃(x) is dependent

on the eigenvector x and ΛD = diag(λ1Id1, . . . , λmIdm), this is a highly non regular

eigenvalue problem.

B.5.2 Empirical

To solve the problem above, we use the manopt software package to solve cost

functions on manifolds. Each of our canonical vectors are constrained on the di

unit sphere. We use the SSQCORR cost function and the derivative in (B.4). We

substitute the empirical sample covariance

R̂ =
1

n
Y Y T

for the unknown R in the cost and gradient functions.
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B.6 Problem 2b

B.6.1 Theory

Our optimization problem is

argmax
x

m∑
i=1

m∑
j=1

(xHi Rijxj)
2

s.t. xHx = 1

The derivative of our cost function is the same as in (B.4). If we try to use a

Lagrangian method to solve this problem, we end up with an eigenvalue problem of

the form R̃(x)x = λx. As the matrix R̃(x) is dependent on the eigenvector x, this is

a highly non regular eigenvalue problem.

B.6.2 Empirical

To solve the problem above, we use the manopt software package to solve cost

functions on manifolds. Our manifold is simpler as we only have one constraint that

xHx = 1. We use the SSQCORR cost function and the derivative in (B.4). We

substitute the empirical sample covariance

R̂ =
1

n
Y Y T

for the unknown R in the cost and gradient functions. However, the solution to this

problem will typically set the only one xi to be non-zero corresponding to the Rii

with the largest eigenvalue. We advise not to use this formulation of MCCA.

B.7 Problem 2c

B.7.1 Theory

Our optimization problem is

argmax
x

m∑
i=1

m∑
j=1

(xHi Rijxj)
2

s.t. xHi Riixi = 1.

The derivative of our cost function is the same as in (B.4). If we try to use a

Lagrangian method to solve this problem, we end up with an eigenvalue problem of
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the form R̃(x)x = ΛDRDx. As the matrix R̃(x) is dependent on the eigenvector x and

and ΛD = diag(λ1Id1, . . . , λmIdm), this is a highly non regular eigenvalue problem.

B.7.2 Empirical

We first make the transformation

xi = R
−1/2
ii x̃i.

Our optimization problem becomes

argmax
x̃

‖X̃HR
−1/2
D RR

−1/2
D X̃‖2

F

s.t. x̃Hi x̃i = 1, i = 1, . . . ,m

This is the same type of optimization problem as Problem 2a if we replace R with

R
−1/2
D RR

−1/2
D .

To solve this problem above, we use the manopt software package to solve cost

functions on manifolds. Our manifold consists of m constraints, x̃Hi x̃i = 1, that is m

vectors constrained on the di unit sphere. We use the SSQCORR cost function and

the derivative in (B.4). We substitute the empirical sample covariances

R̂ =
1

n
Y Y T , R̂D =

1

n
blkdiag(YiY

T
i )

for the unknown R and RD in the cost and gradient functions.

To obtain the canonical vectors xi, we make the transformation

xi = R
−1/2
ii x̃i.

Using our notation for R and RD from the data SVDs, we have

R
−1/2
D RR

−1/2
D = UV HV UH

and

x = UΣ−1UH x̃.
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B.8 Problem 2d

B.8.1 Theory

Our optimization problem is

argmax
x

m∑
i=1

m∑
j=1

(xHi Rijxj)
2

s.t. xHRDx = m.

The derivative of our cost function is the same as in (B.4). If we try to use a

Lagrangian method to solve this problem, we end up with an eigenvalue problem of

the form R̃(x)x = λRDx. As the matrix R̃(x) is dependent on the eigenvector x and,

this is a highly non regular eigenvalue problem.

B.8.2 Empirical

We first make the transformation

xi = R
1/2
ii x̃i.

Our optimization problem becomes

argmax
x̃

‖X̃HR
−1/2
D RR

−1/2
D X̃‖2

F

s.t. x̃H x̃ = 1

This is the same type of optimization problem as Problem 2b if we replace R with

R
−1/2
D RR

−1/2
D .

To solve this problem above, we use the manopt software package to solve cost

functions on manifolds. Our manifold consists of only one constraint, x̃H x̃ = 1, which

is a vector constrained on the Rd unit sphere. We use the SSQCORR cost function

and the derivative in (B.4). We substitute the empirical sample covariances

R̂ =
1

n
Y Y T , R̂D =

1

n
blkdiag(YiY

T
i )

for the unknown R and RD in the cost and gradient functions.

To obtain the canonical vectors xi, we make the transformation

x = R
−1/2
d x̃
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Using our notation for R and RD from the data SVDs, we have

X̃HR
−1/2
D RR

−1/2
D = UV HV UH

and

x = UΣ−1UH x̃.

B.9 Problem 3a

B.9.1 Theory

Our optimization problem is

argmax
x

λ1

s.t. xHi xi = 1, i = 1, . . . ,m

Φ(x)a = λ1a

aHa = 1.

We may write Φ(x) = XHRX. Using this fact and third constraint of this optimiza-

tion, the second constraint may be written as aHXHRXa = λ1. Define ã = Xa. As

a consequence of the first constraint function,

‖ã‖2 = aHXHXa = aHa = 1.

Our modified optimization problem is

argmax
ã

λ1

s.t ãHRã = λ1

ãH ã = 1.

Therefore, ã is the unit norm eigenvector corresponding to the largest eigenvalue of

R. To solve for the canonical coefficients, we have ã = Xa which implies xi = ãi
ai

.

As ai is a scalar, and xi is required to have unit norm, we have that xi = ãi
‖ãi‖ . This

implies x = Λ−1
ã ã where Λã ∈ Cd×d = blkdiag(‖ãi‖Idi). The canonical correlation is

simply ρ = λ1.
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B.9.2 Empirical

Our empirical eigen-system is R̂ã = λ1ã where R̂ = 1
n
Y Y H is the sample covari-

ance matrix. Let QΛQH be the eigenvalue decomposition of R̂. Let q be the leftmost

column of Q and decomposed as qH = [qH1 , . . . , q
H
m ] with qi ∈ Cdi . Then

ρ̂ = λ1

x̂ = Λ−1
q̃ q

where Λq̃ ∈ Cd×d = blkdiag(‖q̃i‖Idi).

B.10 Problem 3b

B.10.1 Theory

Our optimization problem is

argmax
x

λ

s.t. xHx = 1

Φ(x)a = λa

aHa = 1.

We may write Φ(x) = XHRX. Using this fact and third constraint of this optimiza-

tion, the second constraint may be written as aHXHRXa = λ.

Let R = UΣV HV ΣHUH be a decomposition of R using the block SVDs of the

individual covariance matrices Rii. Let ã = Xa. We wish to maximize λ = ãHRã,

with ‖ã‖ = 1. This is equivalent to

argmax
ã

‖R1/2ã‖2

s.t. ‖ã‖ = 1.

Now

‖R1/2ã‖2 = ‖PΣUH ã‖2

where P ∈ Cd×d is composed of sub-matrices Pij ∈ Cdi×dj = corr(yi, yj). Note that

Pii = Idi . The entries of P are all between −1 and 1. Now since U is an orthonormal

matrix and the largest entries in P have norm 1, to maximize this norm, ã should be

the column of U corresponding to the largest value in Σ. Since U is block diagonal,
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ã = [0H . . . 0HuHi10H ]H where ui1 is the leftmost left singular vector of Rii where i

is the dataset with the largest singular value. Therefore, ρ = ãHUΣPP TΣHUH ã =

σ2
i1Pii = σ2

i1 as Pii = 1. Therefore, the canonical vectors are

xi =

ui1 dataset i has largest singular value

0 otherwise

This is obviously undesirable as all but one canonical vector is 0. We advise to not

use this formulation of MCCA.

B.10.2 Empirical

In the empirical setting, we substitute R̂ as the sample covariance estimate. Recall

that R̂ = UΣV HV ΣHUH . Letting ã = Xa, our optimization problem is

argmax
ã

‖R1/2ã‖2

s.t. ‖ã‖ = 1

We can rewrite this as

‖R1/2ã‖2 = ‖V ΣUH ã‖2.

Now since U is an orthogonal matrix and the columns of V are unit norm, to maximize

this norm, ã should be the column of U corresponding to the largest value in Σ. Since

U is block diagonal, ã = [0H . . . 0HuHi10H ]H where ui1 is the leftmost left singular

vector of Rii where i is the dataset whose sample covariance matrix has the largest

singular value. The value of ρ̂ is the value of the largest singular value squared.

This formulation of MCCA results in canonical vectors that are 0 for all but one

dataset. This obviously is very undesirable and we advise to not use this formulation

for MCCA.
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B.11 Problem 3c

B.11.1 Theory

Our optimization problem is

argmax
x

λ

s.t. xHi Riixi = 1 , 1 ≤ i ≤ m

Φ(x)a = λa

aHa = 1.

We may write Φ(x) = XHRX. Using this fact and third constraint of this opti-

mization, the second constraint may be written as aHXHRXa = λ. If we assume

that RD is positive definite (which requires it to be full rank), we can rewrite this as

aHXHR
1/2
D R

−1/2
D RR

−1/2
D R

1/2
D Xa = λ. Let ã = R

1/2
D Xa. Now by the first and third

constraints

‖ã‖2 = aHXHRDXa = aHIma = aHa = 1.

Our modified optimization problem is

argmax
ã

λ

s.t ãHR
−1/2
D RR

−1/2
D ã = λ

ãH ã = 1.

Therefore, ã is the eigenvector corresponding to the largest eigenvalue ofR
−1/2
D RR

−1/2
D .

To solve for our original canonical coefficients, recall that ã = R
1/2
D Xa. As RD and

X are block diagonal, we have ãi = R
1/2
ii xiai, implying xi = 1

ai
R
−1/2
ii ãi. By the first

constraint,

xHi Riixi =
ãHi ãi
a2
i

= 1.

Letting ai = ‖ãi‖ satisfies this constraint. Therfore, the canonical vector is

xi =
R
−1/2
ii ãi
‖ãi‖

.

Thus

x = Λ−1
ã R

−1/2
D ã

where Λã ∈ Cd×d = blkdiag(‖ãi‖Idi).
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B.11.2 Empirical

Our empirical eigen-system is R̂
−1/2
D R̂R̂

−1/2
D ã = ρ̂ã. Using the SVD notation for

our empirical data matrices, we have that

R̂
−1/2
D R̂R̂

−1/2
D =

(
UΣΣHUH

)−1/2 (
UΣV HV ΣHUH

) (
UΣΣHUH

)−1/2

= U(ΣΣH)−1/2UHUΣV HV ΣHUHU(ΣΣH)−1/2UH

= U(ΣΣH)−1/2ΣV HV ΣH(ΣΣH)−1/2UH

= UṼ H Ṽ UH

where Ṽ ∈ Cn×d = [V1(:, 1 : d1), . . . , Vm(:, 1 : dm)]. Defining Ĉ = Ṽ H Ṽ and its eigen-

value decomposition Ĉ = F̂ K̂F̂H , then we have that the MCCA empirical solution

is
ρ̂ = k̂1

x̂ = UΣ̃−1Λ−1

f̂1
f̂1

where Σ̃ = blkdiag (Σ1(1 : d1, 1 : d1), . . . ,Σm(1 : dm, 1 : dm)).

B.12 Problem 3d

B.12.1 Theory

We proceed very similarly as above. Our optimization problem is

argmax
x

λ

s.t. xRDx = 1

Φ(x)a = λa

aHa = 1.

Substituting x̃ = R
1/2
D x into the above problem yields

argmax
x

λ

s.t. x̃H x̃ = 1

X̃HR
−1/2
D RR

−1/2
d X̃a = λa

aHa = 1.
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This is now the same problem as 3b except we replace R with R
−1/2
D RR

−1/2
D . Using

the SVD notation as in 3b, we have that R
−1/2
D RR

−1/2
D = UP TPUH . Recall that the

diagonals of P are 1 and that every entry of P has a norm of no greater than 1. We

can clearly see that this problem does not have a unique solution. We can set any

xi = ui/σi where ui is any left singular vector or Rii corresponding to the singular

value σi. We then set all other xi = 0. Choosing canonical vectors in this fashion

results in ρ = 1. This solution is non-unique and clearly undesirable. Therefore, the

canonical vectors are

xi =

ui/σi for one dataset

0 for all others
.

We advise to not use this formulation of MCCA.

B.12.2 Empirical

The solutions to this problem are not unique. Take the data SVD of one dataset

Yi and set xi = ui/σi and all others equal to 0.

B.13 Problem 4a

The optimization problem is

argmin
x

λ

s.t. xHi xi = 1, i = 1, . . . ,m

Φ(x)a = λa

aHa = 1.

Here we proceed exactly as in problem 3a except that we choose the eigenvector

corresponding to the smallest, (potentially zero) eigenvalue.
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B.14 Problem 4b

B.14.1 Theory

The optimization problem is

argmin
x

λ

s.t. xHx = 1

Φ(x)a = λa

aHa = 1.

Choosing the canonical vectors the same way as in 3b makes Φ(x) singular. Therefore

we can achieve an eigenvalue of 0. This is optimal as Φ(x) is positive semi-definite.

This solution is not unique and undesirable.

B.14.2 Empirical

The solutions to this problem are not unique. Take the data SVD of one dataset

Yi and set xi = ui/σi and all others equal to 0 for any dataset and any singular

vector/value pair.

B.15 Problem 4c

The optimization problem is

argmin
x

λ

s.t. xHi Riixi = 1, i = 1, . . . ,m

Φ(x)a = λa

aHa = 1.

Here we proceed exactly as in problem 3c except that we choose the eigenvector

corresponding to the smallest, nonzero eigenvalue.
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B.16 Problem 4d

B.16.1 Theory

The optimization problem is

argmin
x

λ

s.t. xHRDx = 1

Φ(x)a = λa

aHa = 1.

Choosing the canonical vectors the same way as in 3d makes Φ(x) singular. Therefore

we can achieve an eigenvalue of 0. This is optimal as Φ(x) is positive semi-definite.

This solution is not unique and undesirable.

B.16.2 Empirical

The solutions to this problem are not unique. Take the data SVD of one dataset

Yi and set xi = ui/σi and all others equal to 0 for any dataset and any singular

vector/value pair.

B.17 Problems 5a-d Theory

The GENVAR problem does not offer a closed form solution. To solve these

problems we use the manopt software package. The cost function is

|XHRX| (B.5)

where X = blkdiag(x1, . . . , xm). The gradient with respect to the matrix X is

∂

∂X
= 2|XHRX|RX(XHRX)−1.

Let 1di ∈ Cdi be the vector of all ones. Let A = blkdiag(1d1 , . . . ,1dm). Then the

gradient with respect to the vector x can be extracted via

∂

∂x
= 2|XHRX|RX(XHRX)−1 � A (B.6)

where � represents element-wise multiplication. Choosing the appropriate cost func-

tion manifolds completes the solution using manopt as we see below in the empirical
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versions.

B.18 Problem 5a Empirical

The canonical vectors are each constrained on the Cdi unit sphere. The manifold

for the problem is the product of m of these sphere manifolds. We use the sample

covariance matrix R̂ for the unknown R in (B.5) and (B.6).

B.19 Problem 5b Empirical

The canonical vectors are each constrained on the Cd unit sphere. The manifold

for the problem is therefore one sphere manifolds. We use the sample covariance

matrix R̂ for the unknown R in (B.5) and (B.6).

B.20 Problem 5c Empirical

The constraints for this problem are xHi Riixi = 1 for i = 1, . . . ,m. Here we make

the transformation

x̃ = R
1/2
ii x

which results in the constraints x̃Hi x̃i = 1 for i = 1, . . . ,m. The cost function becomes

|XHRX| = |X̃HR
−1/2
D RR

−1/2
D X̃|.

We see that this is the same type of problem as 5a with x̃ replacing x and R
−1/2
D RR

−1/2
D

replacing R. We make this substitution and use the sample covariance matrices R̂

and R̂D in (B.5) and (B.6). The manifold for this problem is the product of m Cdi

sphere manifolds.

B.21 Problem 5d Empirical

The single constraint for this problem is xHRDx = 1. Here we make the transfor-

mation

x̃ = R
1/2
ii x

which results in the constraint x̃H x̃ = 1 for i = 1, . . . ,m. The cost function becomes

|XHRX| = |X̃HR
−1/2
D RR

−1/2
D X̃|.

We see that this is the same type of problem as 5a with x̃ replacing x and R
−1/2
D RR

−1/2
D

replacing R. We make this substitution and use the sample covariance matrices R̂
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and R̂D in (B.5) and (B.6). The manifold for this problem is one Cd sphere manifold.
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APPENDIX C

Derivations of Empirical CCA Canonical

Correlations and Accuracy of Canonical Vectors

In this appendix we first derive the almost sure limit of the top empirical CCA

correlation estimates using the low-rank signal-plus-noise data model presented in

Chapter 4. This is a recent result by [2] but we present a similar derivation using our

data model and our random matrix theory notation. We then consider the accuracy

of the corresponding canonical vectors returned by empirical CCA. We derive a non-

closed form expression for this vector accuracy and discuss the approximations we

make to compute the needed terms. Finding a closed form expression for the canonical

vector accuracy remains future work.

C.1 Model

We repeat the data model from Chapter 4 for simplicity. Let xi ∈ Cp×1 and

yi ∈ Cq×1 be modeled as

xi = Uxsx,i + zx,i

yi = Uysy,i + zy,i,
(C.1)

where UH
x Ux = Ikx , U

H
y Uy = Iky , zx,i

i.i.d.∼ CN (0, Ip) and zy,i
i.i.d.∼ CN (0, Iq). Further-

more, assume that

sx,i ∼ CN (0,Θx)

sy,i ∼ CN (0,Θy),

where Θx = diag

((
θ

(x)
1

)2

, . . . ,
(
θ

(x)
kx

)2
)

and Θy = diag

((
θ

(y)
1

)2

, . . . ,
(
θ

(y)
ky

)2
)

.

Assume that zx,i and zy,i are mutually independent and independent from both sx,i
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and sy,i. Finally, assume that

E
[
sx,is

H
y,i

]
=: Kxy = Θ1/2

x PxyΘ
1/2
y

where the entries of Pxy are −1 ≤ ρkj ≤ 1 and represent the correlation between s
(k)
x,i

and s
(j)
y,i . For reasons to be made clear later, define

K̃xy = (Θx + Ikx)
−1/2Kxy

(
Θy + Iky

)−1/2

and define the singular values of K̃xy as κ1, . . . , κmin(kx,ky). Under this model, we

define the following covariance matrices

E
[
xix

H
i

]
= UxΘxU

H
x + Ip =: Rxx

E
[
yiy

H
i

]
= UyΘyU

H
y + Iq =: Ryy

E
[
xiy

H
i

]
= UxKxyU

H
y =: Rxy.

(C.2)

We define the rank of Rxy to be k.

C.2 Almost Sure Limit of CCA Eigenvalues

Bao et. al [2] solve for the canonical correlation estimates in the following setting[
X

Y

]
=

[
Ip R

RH Iq

]1/2 [
W1

W2

]
(C.3)

whereW1 has independent columns that areN (0, Ip) andW2 has independent columns

that are N (0, Iq); W1 is independent of W2 and R = diag(
√
r1, . . . ,

√
rk, 0, . . . 0). In

this setup, [XH Y H ]H has covariance matrix[
Ip R

RH Iq

]

and we may view (C.3) as a sample from this covariance matrix. Here, we first show

that the above data model in (C.1) can be transformed via invertible transformations

to achieve the form of (C.3). Using our own notation, we then provide an alternative

but equivalent derivation to Bao et al. for the almost sure limit of the correlation

estimates of empirical CCA. In this setting, we assume that n > p + q as below this

limit, we know via simple geometric arguments that ρ̂cca = 1 deterministically.

We now show that our data model in (C.1) may be formulated as (C.3). In our
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model, [
X

Y

]
=

[
Rxx Rxy

Ryx Ryy

]1/2 [
W1

W2

]
where W1 and W2 are the same as above. This views the data matrices as a sample

from a covariance matrix. Define[
X̃

Ỹ

]
=

[
Rxx 0

0 Ryy

]−1/2 [
X

Y

]
.

In this setup, [XH Y H ]H has covariance matrix[
Ip M

MH Iq

]

where

M = R−1/2
xx RxyR

−1/2
yy .

With the definitions of the population covariance matrices for our data model,

M = Ux (Θx + Ikx)
1/2 Θ1/2

x PxyΘ
1/2
y

(
Θy + Iky

)−1/2
UH
y .

Define FMDMG
H
M to be the SVD of M, noting that DM has at most k nonzero singular

values. Then make the transformation ˜̃
X˜̃
Y

 =

[
FH
M 0

0 GH
M

]1/2 [
X̃

Ỹ

]
=

[
FH
MR

−1/2
xx 0

0 GH
MR

−1/2
yy

]1/2 [
X

Y

]

=

[
Ip DM

DH
M Iq

]1/2 [
W1

W2

]
.

Therefore, from this transformation, we are in the same setting as Bao et al. with,

for i = 1, . . . , k,

di =
√
ri.

We note that di are the singular values of K̃xy, which we defined as κ1, . . . , κk. If we

are in the special case where Pxy = diag(ρ1, . . . , ρk), then

di =
θ

(x)
i θ

(y)
i ρi√(

θ
(x)
i

)2

+ 1

√(
θ

(y)
i

)2

+ 1

.

314



Next we proceed with an analogous proof of Bao et al. As noted in their paper,

transforming X and Y to
˜̃
X and

˜̃
Y preserves the canonical correlation estimates

because the transformation matrix is non-singular. Our target matrix in CCA is

Ccca = R−1
xxRxyR

−1
yy R

H
xy. (C.4)

Clearly, making invertible transformations of X and Y preserves the eigenvalues of

(C.4). We proceed assuming X and Y are the transformed versions
˜̃
X and

˜̃
Y to ease

notation.

First for i = 1, . . . , k, define

αi =

√
1 + di +

√
1− di

2
, βi =

√
1 + di −

√
1− di

2

and the matrices

P1 =

[
diag(α1, . . . , αk) 0

0 Ip−k

]
, P2 =

[
diag(α1, . . . , αk) 0

0 Iq−k

]
,

P3 =

[
diag(β1, . . . , βk) 0

0 0

]
.

With these definitions, we observe that[
Ip DM

DH
M Iq

]1/2

=

[
P1 P3

PH
3 P2

]
.

Defining the transformation (again re-using notation for simplicity)[
X

Y

]
=

[
P−1

1 0

0 P−1
2

][
X

Y

]
,

we have that [
X

Y

]
=

[
Ip P

P Iq

][
W1

W2

]
,

where

P =

[
diag(τ1, . . . , τk) 0

0 0

]
,

315



with τi = βi/αi. Next, define

Q =

[
diag(2τ1/ (1 + τ 2

1 ) , . . . , 2τk/ (1 + τ 2
k )) 0

0 0

]
,

and

W =
(
I −QPH

)
W1 + (P −Q)W2,

so that by construction W and Y are independent and

X = W +QY.

The covariance matrices for Y and W are

RW = E
[

1

n
WWH

]
=

[
diag(1 +

τ4
1−3τ2

1

1+τ2
1
, . . . , 1 +

τ4
k−3τ2

k

1+τ2
k

) 0

0 Ip−k

]

RY = E
[

1

n
Y Y H

]
=

[
diag(1 + τ1, . . . , 1 + τk) 0

0 Iq−k

]
.

Finally making the transformation[
X̃

Ỹ

]
=

[
R
−1/2
W 0

0 R
−1/2
Y

][
X

Y

]
,

yields

1. Ỹ has independent columns that are N (0, Iq)

2. W̃ = R
−1/2
W W has independent columns that are N (0, Ip).

3. X̃ has independent columns that are N (0, R
−1/2
W QRYQ

HR
−1/2
W )

4. W̃ and Ỹ are independent.

Denoting

T = R
−1/2
W QR

1/2
Y =

[
diag(t1, . . . , tk) 0

0 0

]
,

with ti = 2τi/(1− τ 2
i ), we finally arrive at the setting (again dropping the tildes)[

X

Y

]
=

[
W + TY

Y

]
. (C.5)

316



This is wonderful because we now have a perturbation model for X and Y . Defining

the sample covariance matrices of our matrices as

Sxx =
1

n
XXH

Syy =
1

n
Y Y H

Sxy =
1

n
XY H

Syx =
1

n
Y XH

Sww =
1

n
WWH

Swy =
1

n
WY H

Syw =
1

n
YWH ,

we have the relationship. that

Sxx = Sww + TSyw + SwyT
H + THSyyT

H

Sxy = Swy + TSyy

Syx = Syw + SyyT
H .

Therefore the CCA matrix in (C.4) becomes a low rank matrix plus a product of

independent noise matrices. We show this beginning with the characteristic equation

for (C.4).

0 = det
(
S−1
xx SxyS

−1
yy Syx − λI

)
= det

(
SxyS

−1
yy Syx − λSxx

)
= det

(
(Swy + TSyy)S

−1
yy

(
Syw + SyyT

H
)
− λ

(
Sww + TSyw + SwyT

H + THSyyT
H
))

= det

SwyS−1
yy Syw − λSww + (1− λ)

(
TSyw + SwyT

H + TSyyT
H
)︸ ︷︷ ︸

∆


This give a nice low rank perturbation of a random matrix product. Therefore, if λ

is not an eigenvalue of S−1
wwSwyS

−1
yy Syw. we have

0 = det
(
Ip + (1− λ)

(
SwyS

−1
yy Syw − λSww

)−1
∆
)
.

Examining T , we see that the rank of T is at most k as therefore ∆ will be low rank.
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The structure of ∆ is ugly but necessary for the remainder of the proof and we slightly

alter the notation of Bao et al. We have that

∆ = UV H

where
U = [A1, . . . , Ak, F1, . . . , Fk]

V = [B1, . . . , Bk, C1, . . . , Ck]

where
Ai = [χiiei, tiei, tiui]

Bi = [ei, ui, ei]

Ci =

ei, . . . , ei︸ ︷︷ ︸
k−1


F1 = [χ12e1, . . . , χ1kek]

Fi = [χi1e1, . . . χi,i−1ei−1, χi,i+1ei+1, . . . , χikek]

where ei is i-th elementary vector, ui is the i-th column of Swy and χij = titjSyy(i, j).

With these definitions, and using the identity that det(I + AB) = det(I + BA), we

have that

0 = det(Ik2+2k + (1− λ)V H
(
SwyS

−1
yy Syw − λSww

)−1
U).

In this form, we have our standard characteristic equation of a low rank perturba-

tion of a random matrix. In this case ∆ is our perturbation and S−1
wwSwyS

−1
yy Syw is

the random matrix. This highlights the importance of the previous transformations

needed to write X = W + TY . The random matrix product is now of independent

components and we can therefore compute statistics on its eigenvalues.

First define

M(λ) = Ik2+2k + (1− λ)V H
(
SwyS

−1
yy Syw − λSww

)−1
U (C.6)

and based on the structure of U and V , we have that

M(λ) = Ik2+2k + (1− λ) blkdiag(G1(λ), . . . , Gk(λ), 0, . . . , 0),
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where

Gi(λ) =

 t2i f(λ) tif(λ) 0

0 0 tih(λ)

t2i f(λ) tif(λ) 0


with

f(λ) = eHi
(
SwyS

−1
yy Syw − λSww

)−1
eHi

h(λ) = uHi
(
SwyS

−1
yy Syw − λSww

)−1
uHi .

We get such a nice structure for M(λ) in (C.6) due to many cancellations of terms

such as
eHi
(
SwyS

−1
yy Syw − λSww

)−1
eHj

uHi
(
SwyS

−1
yy Syw − λSww

)−1
uHj

eHi
(
SwyS

−1
yy Syw − λSww

)−1
uHj .

Therefore, to solve our characteristic equation, we may look at the sub-blocks of M

of the form I3 + (1− λ)Gi(λ). The determinant of this 3× 3 matrix is

1 + (1− λ)t2i f(λ)− (1− λ)2t2i f(λ)h(λ). (C.7)

To complete the proof, we must find closed form expressions for f(λ) and h(λ) and

substitute them into (C.7) to solve for λ.

First, define the projection matrix PY = Y H
(
Y Y H

)−1
Y and the matrices E =

1
n
WPYW

H and H = 1
n
W (I − PY )WH . Therefore, with these definitions

(
SwyS

−1
yy Syw − λSww

)−1
= (E − λ(E +H))−1 = ((1− λ)E − λH)−1 .

These definitions are wonderful because E and H are independent by construction

and
E ∼Wishartp(Ip, q)

H ∼Wishartp(Ip, n− q).

This formulation is sufficient for f(λ) but not h(λ). Examining h(λ), we have that

h(λ) = uH1
(
SwyS

−1
yy Syw − λSww

)−1
u1 = eH1 Syw

(
SwyS

−1
yy Syw − λSww

)−1
Swye1.

Next, we attempt to get a similar expression for this additional matrix product.

Defining

Φ(λ) = Syw
(
SwyS

−1
yy Syw − λSww

)−1
Swy
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and applying the Woodbury matrix identity, we have

Φ(λ) = SywS
−1/2
ww

(
S−1/2
ww SwyS

−1
yy SywS

−1/2
ww − λIp

)−1
S−1/2
ww Swy

= SywS
−1/2
ww

[
−1

λ
− 1

λ2
S−1/2
ww Swy

(
Syy −

1

λ
SywS

−1
wwSwy

)−1

SwyS
−1/2
ww

]
S−1/2
ww Swy.

Next define A = SywS
−1
wwSwy = 1

n
Y PwY

H and B = 1
n
Y (I − Pw)Y H , similar to above.

Recall that with these definitions,

A ∼Wishartq(Iq, p)

B ∼Wishartq(Iq, n− p).

With these definitions, we have

Syw
(
SwyS

−1
yy Syw − λSww

)−1
Swy = −1

λ
A+

1

λ
A (A− λ(A+B))−1A

= −1

λ
A+

1

λ
A ((1− λ)A− λB)−1A

After another application of the Woodbury matrix identity, we have that

Φ(λ) = −1

λ
A+

1

λ
A

[
1

1− λ
A−1 − 1

(1− λ)2
A−1

(
−1

λ
B−1 +

1

1− λ
A−1

)−1

A−1

]
A

=
1

1− λ
A− 1

λ(1− λ)2

(
−1

λ
B−1 +

1

1− λ
A−1

)−1

=
1

1− λ
A+

1

1− λ
(
(1− λ)B−1 − λA−1

)−1
.

While this may look ugly, it is quite useful.

Recall that the Stieltjes transform of a spectral distribution of a matrix X with

eigenvalues γ1, . . . , γn is

mµX (z) =

∫
1

γ − z
dµX

=
1

n
tr((X − zI)−1) in the finite case

=
1

n

n∑
i=1

1

γi − z

(C.8)
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In addition, recall the R-transform of a spectral distribution is

RµX (z) = KµX (z)− 1

z
, (C.9)

where KµX is the Blue function of the spectral distribution with the property

−mµX (KµX (z)) = KµX (−mµX (z)) = z. (C.10)

Specifically, we have the relationship that

RµX (−mµX (z)) = KµX (−mµX (z)) +
1

mµX (z)

= z +
1

mµX (z)
.

Therefore we can recover the Stieltjes transform from the R-transform. A very nice

property of the R-transform is free additive convolution. Mainly, if we have matrices

X1 and X2,

RX1+X2(z) = RX1(z) +RX2(z). (C.11)

With these definitions in mind, we first note that mµX (0) = 1
n

tr(X−1). This is

extremely helpful for our problem! Define the matrices

J = (1− λ)E + λH

J̃ = (1− λ)B−1 + λA−1.

To solve for f(λ) and h(λ), we need so solve for the Stieltjes transforms of J and J̃ .

To accomplish this, we first will solve for the Stieltjes transforms of the component

matrices, find the associated R-transform, use (C.11) to find the R-transform of the

sum, and then transform back to Stieltjes transforms. Recall that E,H,A,B are all

Wishart random matrices. The basic Stieltjes transform for a Wishart random matrix

X with parameter c is

mµX (z) =
(1− c)− z +

√
(z − 1− c)2 − 4c

2cz
.

We define Ẽ = (1−λ)E, H̃ = −λH, B̃ = (1−λ)B−1, and Ã = −λA−1. The Stieltjes

transforms of the limiting spectral densities of these matrices are (through change of
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variables and some calculation)

mµ
Ẽ

(z) =
(1− λ)(cy − cx)− z +

√
(z − (1− λ)(cx + cy))2 − 4(1− λ)2cxcy
2(1− λ)cxz

mµ
H̃

(z) =
λ(1− cy − cx) + z −

√
(z + λ(1 + cx − cy))2 − 4cx(λ)2(1− cy)

2λcxz

mµ
Ã

(z) = −z−1 −
cx − cy + λz−1 −

√
(z−1λ+ cx + cy)2 − 4cxcy
2cyz

mµ
B̃

(z) = −z−1 −
1− cx − cy − (1− λ)z−1 +

√
(z−1(1− λ)− (1− cx + cy))2 − 4(1− cx)cy

2cyz

Using (C.9) and (C.10), we have that the R-transforms of these expressions are

Rµ
Ẽ

(w) =
(1− λ)cy

1− (1− λ)cxw

Rµ
H̃

(w) = −λ(1− cy)
1 + λcxw

Rµ
Ã

(w) =
cx − cy −

√
(cx − cy)2 + 4λcyw

2cyw

Rµ
B̃

(w) =
1− cx − cy −

√
(1− cx − cy)2 + 4(λ− 1)cyw

2cyw

By observation we have that

f(λ)→ mµJ (0).

We know by definition of J and using (C.11), (C.9), and (C.10) that

RµJ (w) = Rµ
Ẽ

(w) +Rµ
H̃

(w)

RµJ (−mµJ (0)) = Rµ
Ẽ

(−mµJ (0)) +Rµ
H̃

(−mµJ (0))

KµJ (−mµJ (0)) +
1

mµJ (0)
=

(1− λ)cy
1 + (1− λ)cxmµJ (0)

− λ(1− cy)
1− λcxmµJ (0)

1

mµJ (0)
=

(1− λ)cy
1 + (1− λ)cxmµJ (0)

− λ(1− cy)
1− λcxmµJ (0)

Solving the above for mµJ (0) yields an expression for f(λ)

f(λ) =
−(cy − cx + 2λcx − λ)−

√
λ2 + (4cxcy − 2cx − 2cy)λ+ (cx − cy)2

2λ(1− λ)(c2
x − cx)

. (C.12)
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We proceed similarly to get an expression for h(λ). However, we note that

h(λ) =
1

1− λ
eHi Aei +

1

1− λ
e1

(
(1− λ)B−1 + λA−1

)−2
e1

→ cx +
1

1− λ
mµ

J̃
(0)

as eHi Aei converges to the expected value of the limiting spectral density of A. As A

is Wishart with parameter cx, we know that this expectation is simply cx. Therefore,

we are left to solve for mµ
J̃
(0). We solve this again via the R-transform

Rµ
J̃
(w) = Rµ

Ã
(w) +Rµ

B̃
(w)

Rµ
J̃
(−mµ

J̃
(0)) = Rµ

Ã
(−mµ

J̃
(0)) +Rµ

B̃
(−mµ

J̃
(0))

Kµ
J̃
(−mµ

J̃
(0)) +

1

mµ
J̃
(0)

= −
cx − cy −

√
(cx − cy)2 − 4λcymµ

J̃
(0)

2cymµ
J̃
(0)

−
1− cx − cy −

√
(1− cx − cy)2 − 4(λ− 1)cymµ

J̃
(0)

2cymµ
J̃
(0)

1

mµ
J̃
(0)

= −
cx − cy −

√
(cx − cy)2 − 4λcymµ

J̃
(0)

2cymµ
J̃
(0)

−
1− cx − cy −

√
(1− cx − cy)2 − 4(λ− 1)cymµ

J̃
(0)

2cymµ
J̃
(0)

.

Solving the above for mµ
J̃
(0) yields

mµ
J̃
(0) =

cx + cy − 2cxcy − λ+
√
λ2 + (4cxcy − 2cx − 2cy)λ+ (cx − cy)2

2cy

Therefore, we have

h(λ) =
cx

1− λ
+
cx + cy − 2cxcy − λ+

√
λ2 + (4cxcy − 2cx − 2cy)λ+ (cx − cy)2

2cy(1− λ)
.

(C.13)

To conclude, we must substitute (C.13) and (C.12) into (C.7) and solve for λ. This is

largely an algebra problem and we point the reader to Bao et al. if interested. After
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some calculation we arrive at the final result

ρ̂(i)
cca

a.s.−→


√
d2
i

(
1− cx + cx

d2
i

)(
1− cy + cy

d2
i

)
d2
i ≥ rc

√
dr d2

i < rc

where

rc =
cxcy +

√
cycy(1− cx)(1− cy)

(1− cx)(1− cy) +
√
cxcy(1− cx)(1− cy)

dr = cx + cy − 2cxcy + 2
√
cxcy(1− cx)(1− cy).

C.3 Canonical Vectors

We now solve for the accuracy of the canonical vectors in empirical CCA. We

consider, without loss of generality, the accuracy of the canonical vector of only one

dataset. Let X and Y be drawn from (C.1). With the same definition of the target

matrix Ccca, the estimated canonical vectors, ŵ
(i)
x solves the generalized eigenvalue

problem Cŵ
(i)
x = ρ̂2

ccaŵ
(i)
x . Recall from Chapter 5 that the unit-norm population

canonical vector that we are trying to estimate is

w(i)
x =

R
−1/2
xx UxUK̃(:, i)√

UK̃(:, i)HUH
x R

−1
xxUxUK̃(:, i)

where UK̃ are the left singular vectors of K̃xy. In this section, we want to find a closed

form expression for |〈w(i)
x , ŵ

(i)
x 〉|2. We first introduce the change of variables similar

to the correlation computation

X̃ = FH
MR

−1/2
xx X

Ỹ = GH
MR

−1/2
yy Y

where FMDMG
H
M is the SVD of M , defined above. Then with this transformation,

we have

Ccca =
(
R1/2
xx FM

) (
X̃X̃H

)−1

X̃Ỹ H
(
Ỹ Ỹ H

)−1

Ỹ X̃H︸ ︷︷ ︸
C̃

(
FH
MR

1/2
xx

)
.
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Then, if ũ(i) is a unit-norm eigenvector of C̃, via the similarity transform,

ŵ(i)
x =

(
FH
MR

1/2
xx

)−1

ũ(i)√
ũ(i)H

(
FH
MR

1/2
xx

)−H (
FH
MR

1/2
xx

)−1

ũ(i)

.

Therefore

|〈w(i)
x , ŵ

(i)
x 〉|2 =

(
UK̃(:, i)HUH

x R
−1/2
xx

(
FH
MR

1/2
xx

)−1

ũ(i)

)2

(
UK̃(:, i)HUH

x R
−1
xxUxUK̃(:, i)

)(
ũ(i)H

(
FH
MR

1/2
xx

)−T (
FH
MR

1/2
xx

)−1

ũ(i)

)
=

(
UK̃(:, i)HUH

x R
−1
xxFM ũ

(i)
)2(

UK̃(:, i)HUH
x R

−1
xxUxUK̃(:, i)

)
(ũ(i)HFH

MR
−1
xxFM ũ

(i))
.

(C.14)

Now due to the structure of K̃xy and M , we have that

FM =
[
UxUK̃

(
UxUK̃

)⊥]
,

which allows us to rewrite

|〈w(i)
x , ŵ

(i)
x 〉|2 =

(
eHi F

H
MR

−1
xxFM ũ

(i)
)2

(eHi F
H
MR

−1
xxFMei) (ũ(i)HFH

MR
−1
xxFM ũ

(i))
.

Also note that we can write our unit norm eigenvector as

ũ(i) =

p∑
j=1

(ũ(i)Hej)ej.

We note that by the Theorem 4.6.1, for j = 1, . . . , kx, j 6= i, (ũ(i)Hej)
a.s.−→ 0. Exam-

ining the structure of the population covariance matrix of our data model, the final

p − kx eigenvalues of Rxx are 1 so we have that the last term in the denominator

above is

ũ(i)HFH
MR

−1
xxFM ũ

(i) a.s.−→
(
eHi F

H
MR

−1
xxFMei

) (
ũ(i)Hei

)2
+
[
1−

(
ũ(i)Hei

)2
]
.

By a similar argument, the term in the numerator is

eHi F
H
MR

−1
xxFM ũ

(i) a.s.−→ eHi F
H
MR

−1
xxFMei

(
ũ(i)Hei

)
.
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Therefore, (C.14) becomes

|〈w(i)
x , ŵ

(i)
x 〉|2

a.s.−→
γi
(
ũ(i)Hei

)2

(γi − 1) (ũ(i)Hei)
2

+ 1
, (C.15)

where

γi = eHi F
H
MR

−1
xxFMei.

Thus, it suffices to find the accuracy of ũ(i) with respect to ei to solve (C.15).

We proceed by first noting that in the above CCA correlation derivation, we

first transformed X̃ and Ỹ by a series of invertible linear transformations to get

the final matrix perturbation form. While this does not affect the eigenvalues of

the target matrix, it does affect the eigenvectors and so we correct for that here

via similarity transformations. These transformations may be done in one step and

since the transformation matrices are all diagonal, it makes the story a little easier.

Specifically we have ˜̃
X = MxX̃˜̃
Y = MyỸ

where

Mx =

[
diag(mx1, . . . ,mxkx) 0

0 Ip−kx

]
,My =

[
diag(my1, . . . ,myky) 0

0 Iq−ky

]

with

mxi =
1

αi

√
1 +

√
τ4
i −3τ2

i

1+τ2
i

, myi =
1

αi
√

1 + τ 2
i

,

where these parameter were defined in the correlation derivation. After these trans-

formations, our target matrix is

C̃ = M−1
x
˜̃
CMx.

Again via a similarity transform, we see that if ˜̃u is an eigenvector of
˜̃
C, then ũ =
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Mx
˜̃u√˜̃uHM2
x
˜̃u . Then via a similar computation, we have

∣∣〈ei, ũ(i)〉
∣∣2 =

m2
xi

(
eHi
˜̃u(i)
)2

(m2
xi − 1)

(
eHi
˜̃u(i)
)2

+ 1

.

Therefore, solving for the eigenvector accuracy of ˜̃u we can recover the accuracy of

our canonical vector via

∣∣〈w(i)
x , ŵ

(i)
x 〉
∣∣2 =

γim
2
xi

∣∣∣∣〈ei, ˜̃u(i)
〉
∣∣∣∣2∣∣∣∣〈ei, ˜̃u(i)

〉
∣∣∣∣2 (m2

xi (γi − 1) +m2
xi − 2) + 1

. (C.16)

As γi and mxi are parameters of our problems, what is left is to determine the eigen-

vector accuracy of ˜̃u(i)
. We proceed using the same matrix perturbation model as in

the eigenvalue derivation. Our master equation is

˜̃
C˜̃u = λ˜̃u
SxyS

−1
yy Syx

˜̃u = λSxx˜̃u
We made these specific transformations to achieve the setting of (C.5). Using similar

derivations as the eigenvalue setting, we arrive at the low-rank matrix we desire,

which just so happens to have a component of ei.

(
SwyS

−1
yy Syw − λSww + (1− λ)UV H

) ˜̃u(i)
= 0

The low rank matrix UV H will contain terms of the form eiu
H
i , uie

H
i , and eie

H
i . As

shown in Theorem 2.7 c) in [116], the energy of ˜̃u(i)
lying in orthogonal components

of ej 6=i will be zero and hence for notational simplicity, we ignore them going forward.

Proceeding, we have

(
SwyS

−1
yy Syw − λSww + (1− λ)ti(eiu

H
i + uie

H
i ) + (1− λ)t2iSyy(i, i)eie

H
i

) ˜̃u(i)
= 0

(
SwyS

−1
yy Syw − λSww + (1− λ)ti(eiu

H
i + uie

H
i )
) ˜̃u(i)

= (λ− 1)t2iSyy(i, i)eie
H
i
˜̃u(i)

.
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Noticing that the right hand side is a scaled version of the vector e1, we have that

˜̃u(i)
=
(
SwyS

−1
yy Syw − λSww + (1− λ)ti(eiu

H
i + uie

H
i )
)−1

ei,

but this vector may not be unit norm, and we divide by it’s norm. Define Ψ(λ) =

SwyS
−1
yy Syw − λSww. Then

∣∣∣∣〈ei, ˜̃u(i)
〉
∣∣∣∣2 =

(
eHi
(
Ψ(λ) + (1− λ)ti(eiu

H
i + uie

H
i )
)−1

ei

)2

eHi (Ψ(λ) + (1− λ)ti(eiuHi + uieHi ))
−2
ei

. (C.17)

We notice that the matrix inverse is a rank-2 addition to Φ(λ) and so can be simplified

with the matrix inversion lemma. Also, define Φ(λ) = A−1 and f(λ) = eHi Φ(λ)e1,

h(λ) = uHi Φ(λ)ui with ui = Swy(:, i), q(λ) = eHi Φ(λ)2ei and s(λ) = uHi Φ(λ)2ui. From

the correlation derivation above, we recall that eH1 Φ(λ)u1 = 0. With this notation

and the Woodubry inversion lemma, we have that the numerator is

eHi
(
Ψ(λ) + (1− λ)ti(eiu

H
i + uie

H
i )
)−1

ei =
f(λ)

1− (1− λ)2t2i f(λ)h(λ)
(C.18)

and that the denominator

eHi
(
Ψ + (1− λ)ti(eiu

H
i + uie

H
i )+

)−2
ei = q(λ)+

2f(λ)h(λ)q(λ)
1

(1−λ)2t2i
− f(λ)h(λ)

+

(
1

(1− λ)2t2i
− f(λ)h(λ)

)2(
f(λ)2h(λ)2q(λ) +

f(λ)2s(λ)

(1− λ)2t2i

)
(C.19)

We derived expressions for f(λ) and h(λ) in the correlation derivation, specifically,

(C.12) and (C.13). Therefore, we need expressions for q(λ) and s(λ). Let’s begin

with q(λ).

Similar to our correlation derivation, define the projection matrix

PY = Y H(Y Y H)−1Y,

and matrices B1 = WPWH and B2 = W (I − P )WH . Then Ψ = (1 − λ)B1 − λB2.

As discussed before, B1 and B2 are independent Wishart matrices. Then

q(λ) = eH1 ((1− λ)B1 − λB2)−2 e1.
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Let (1− λ)B1 − λB2 have limiting eigenvalue distribution σ(w). Then

q(λ)
a.s.−→

∫
1

x2
dµΨ

(x).

Let mµΨ
(z) be the Stieltjes transform of Ψ. Then we see that

mµΨ
(z) =

∫
1

x− z
dµΨ

(x), m′µΨ
(z) = −

∫
1

(x− z)2
dµΨ

(x)

Therefore,

q(λ)→ −m′µΨ
(0).

To compute this, we use the R-transform trick that we employed in the correlation

derivation. First define Rb1(w) and Rb2(w) as the R-transforms of (1 − λ)B1 and

−λB2. From Bao et al. and above, we have

Rb1(w) =
(1− λ)cy

1− (1− λ)cxw

Rb2(w) =
−λ(1− cy)
1 + λcxw

By (C.11), RΨ = Rb1 + Rb2 . Substituting w = −mµΨ
(z) and using the relationship

(C.10), we have

RΨ(−mµΨ
(z)) = Rb1(−mµΨ

(z)) +Rb2(−mµΨ
(z))

z +
1

mµΨ
(z)

= Rb1(−mµΨ
(z)) +Rb2(−mµΨ

(z)).
(C.20)

Plugging in the expressions for the individual R-transforms into (C.20), and doing

some algebra yields the following equality

λ(1− λ)(c2
x − cx)m2

µΨ
(z)+(cy − cx+ 2λcx − λ)mµΨ

(z)− 1 =

zmµΨ
(z)
(
1 + cxmµΨ

(z)− 2λcxmµΨ
(z)− λ(1− λ)c2

xm
2
µΨ

(z)
)
.

Taking the derivative of both sides with respect to z, setting z = 0 and solving for

m′µΨ
(0) yields

q(λ) = m′µΨ
(0) =

mµΨ
(0) + cxm

2
µΨ

(0)− 2λcxm
2
µΨ

(0)− λ(1− λ)c2
xm

3
µΨ

(0)

λ(1− λ)(c2
x − cx)2mµΨ

(0) + cy − cx + 2λc1 − λ
.

We know from the correlation derivation that mµΨ
(0) = f(λ), which completes the
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derivation for q(λ).

A closed form expression for s(λ) remains an open problem. However, substituting

empirically realizations of 1
p
tr(eHi Φ(λ)2ei) into (C.19) combined with the other closed

form expressions to complete (C.19) and (C.18) result in a good approximation of

(C.17). This good approximation then can be used to solve for the canonical vector

accuracy in (C.16)
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APPENDIX D

Significance Test for Canonical Correlations

D.1 Problem Setup

Let X be a zero-mean p×n matrix and let Y be a zero-mean q×n matrix. Define

Ccca =
(
XXH

)−1
XY H

(
Y Y H

)−1
Y XH . (D.1)

The largest eigenvalue of Ccca is the largest canonical correlation between X and Y

returned by CCA. Note that Ccca is a p× p matrix.

Define Ṽx and Ṽy as the n × kx and n × ky matrices of the right singular vectors

corresponding to the largest kx and ky singular vectors of X and Y , respectively.

Similarly, define

Cicca =
◦
V H
x

◦
Vy
◦
V H
y

◦
Vx (D.2)

The largest eigenvalue of Cicca is the largest canonical correlation between X and Y

returned by ICCA. Note that Cicca is a kx × ky matrix. In this framework, kx and ky

represent the number of informative signals individually present in X and Y .

Here, we would like to determine a statistical test to determine when the the

canonical correlations returned by ICCA are statistically different from noise, which

indicates the presence of correlated signals between X and Y . In our null model,

we assume that X and Y are independent and that the entries of X and Y are

independent N (0, 1) or CN (0, 1). We derive the distribution of the top eigenvalue

of Cicca in this null model. This distribution then allows us to set a threshold to

achieve a desired significance level when detecting the presence of correlated signals

with ICCA (and consequently with empirical CCA).
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D.2 Distribution of Largest eigenvalue of ICCA

The distribution of the largest canonical correlation in CCA was previously derived

in [115]. We provide a similar derivation using our notation for completeness. We

then use this to provide a significance test for CCA. We begin with a classical result

for the largest eigenvalue of a double Wishart model that will give the distribution of

our top canonical correlations in the null model for both empirical CCA and ICCA.

Proposition D.2.1. [Johnstone 2008] Let A ∼ Wp(I,m) and B ∼ Wp(I, n) where

Wp(Σ, n) denotes a Wishart matrix formed by the product of XXT where X is a p×n
matrix with i.i.d. Np(0,Σ) columns. Assume that m ≥ p and that A and B are

independent. Denote the largest eigenvalue of (A+B)−1B as θ1(p,m, n). Then

log
(

θ1
1−θ1

)
− µp(p,m, n)

σp(p,m, n)

D⇒ F1 (D.3)

where F1 is the Tracy-Widom Distribution and

µp(p,m, n) = 2 log tan

(
ϕ+ γ

2

)
σ3
p(p,m, n) =

16

(m+ n− 1)2 sin2(ϕ+ γ) sinϕ sin γ

(D.4)

and

sin2
(γ

2

)
=

min(p, n)− 1/2

m+ n− 1

sin2
(ϕ

2

)
=

max(p, n)− 1/2

m+ n− 1

(D.5)

Proof. See [115] for the result.

As stated and proved by Johnstone [115], empirical CCA falls into this double

Wishart model. We state the result as a proposition but provide a proof using our

notation. We note that both empirical CCA and ICCA fall into this model and

the only difference between the two is the dimension of the problem. An important

consequence of this result is that we may use the result in Proposition D.2.1 to find

the distribution of the largest canonical correlations in empirical CCA and ICCA.

Proposition D.2.2. Let X be a p × n matrix with N (0, 1) entries and let Y be an

independent q×n matrix with N (0, 1) entries. Assume that p ≤ q and that n > p+q.

Let λ1 be the largest eigenvalue of Ccca. Then

λ1 ∼ θ1(p, n− q, q). (D.6)
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Proof. Johnstone shows the result for empirical CCA in [115].

This proposition will allow us to determine whether the correlations returned by

empirical CCA are statistically different from the correlations returned when the data

matrices are uncorrelated. We provide an analogous result for ICCA.

Theorem D.2.1. Let X be a p × n matrix with N (0, 1) entries and let Y be an

independent q×n matrix with N (0, 1) entries. Assume that p ≤ q and that n > p+q.

Let 0 < kx ≤ p and 0 < ky ≤ q be two integers. Let λ1 be the largest eigenvalue of

Cicca. Then

λ1 ∼ θ1(kx, n− ky, ky). (D.7)

Proof. Recalling Cicca, define X̃ = ŨT
x X and Ỹ = ŨT

y Y , where Ũx and Ũy are the

left singular vectors corresponding to the largest kx and ky singular values of X and

Y , respectively. Define P = Ỹ T
(
Ỹ Ỹ T

)−1

Ỹ , which is a n × n projection matrix of

rank ky. Let P⊥ = I − P be the orthogonal complement of P . Note that P⊥ is

also a projection matrix of dimension n− ky and that P and P⊥ are independent by

construction. Define B = X̃PX̃T and A = X̃P⊥X̃T . Then Cicca may be written

Cicca = (A+B)−1B.

Using these definitions of A and B, it is clear that A ∼ Wkx(I, ky) and B ∼ Wkx(I, n−
ky). Applying Johnstone’s Theorem gives the desired result.

This theorem allows us to similarly determine whether the correlations returned

by ICCA are statistically different from the ICCA correlations returned when the

data matrices are uncorrelated. As Theorem D.2.1 is a new result, we summarize the

necessary parameters needed from Proposition D.2.1 in Tables D.1 and D.2. These

propositions and theorems allow us to complete the statistical tests in (4.14). Recall

that the thresholds needed for these tests, first given in (4.15), are

ταcca = F−1
cca(1− α)

ταicca = F−1
icca(1− α).

(D.8)

In Chapter 4, we approximated these thresholds as

ταcca ≈ σn,p,qTW−1
C (1− α) + µn,p,q,

ταicca ≈ σn,k̂x,k̂yTW−1
C (1− α) + µn,k̂x,k̂y .
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µ{·} (kx, ky, n) σ{·} (kx, ky, n)

xi, yi ∈ R 2 log tan
(
ϕ+γ

2

) (
16

(n−1)2
1

sin2(ϕ+γ) sin(ϕ) sin(γ)

)1/3

xi, yi ∈ C
µN
τN

+
µN−1
τN−1

1
τN

+ 1
τN−1

2
1
τN

+ 1
τN−1

Table D.1: Parameters for distributions of ICCA correlation coefficients. See Table D.2
for related parameters necessary for computation.

Related parameters

xi, yi ∈ R
γ = 2 sin−1

(√
min(kx,ky)−1/2

n−1

)
ϕ = 2 sin−1

(√
max(kx,ky)−1/2

n−1

)

xi, yi ∈ C

N = min(kx, ky)
α = n− kx − ky
β = |kx − ky|

γN = 2 sin−1
(√

N+1/2
2N+α+β+1

)
ϕN = 2 sin−1

(√
N+β+1/2

2N+α+β+1

)
µN = 2 log tan ϕN+γN

2

τN =
(

16
(2N+α+β+1)2

1
sin2(γN+ϕN ) sin(ϕN ) sin(γN )

)1/3

Table D.2: Related parameters for distributions of ICCA correlation coefficients presented
in Table D.1.

These approximations are a direct consequence of the propositions and theorem above.

We note that the logit transform is used by Johnstone and one would similar want

to use these in practice. We provide the inverse CDF values of the Tracy-Widom

distribution for a number of significance levels in Table D.3. A practitioner would

select a value best fit for the specific application.

D.3 Empirical Results

Figures D.1 D.3 explore the accuracy of Theorem D.2.2 where our matrices are

real valued and imaginary, respectively. Each figure plots the theoretical cumulative

distribution function (c.d.f.) in a red dashed line and empirically generated cdf in a

blue line. Figures D.2 and D.4 plot the corresponding probability density function

(p.d.f.) for real and complex data, respectively. For these figures, we plot the the-

334



α 1− α TW−1
R (1− α) TW−1

C (1− α)

0.990000 0.010000 -3.895432673064243 -3.724445946400548
0.950000 0.050000 -3.180379976937733 -3.194166732158107
0.900000 0.100000 -2.782427905695298 -2.901350938475908
0.700000 0.300000 -1.910379746199262 -2.266182039849163
0.500000 0.500000 -1.268574616581076 -1.804912408936580
0.300000 0.700000 -0.592287191016136 -1.324859556060199
0.100000 0.900000 0.450143289058243 -0.596851297117349
0.050000 0.950000 0.979316053469545 -0.232474469763996
0.010000 0.990000 2.023449281380126 0.477636047390792
0.001000 0.999000 3.272196059001973 1.314419480086017
0.000100 0.999900 4.359420343910324 2.034691754570250
0.000010 0.999990 5.344295940484186 2.682207321677930
0.000001 0.999999 6.256354429605480 3.278588282048362

Table D.3: Percentiles of the Tracy-Widom real and complex distribution.

oretical pdf in a red line and plot the empirical pdf as a histogram. All theoretical

predictions are Tracy Widom distributions that use the scaling and mean parameters

given in the theorem. For the empirical results, we employ the inverse logit transform

of 10000 realizations of the largest eigenvalue of (D.2) generated from random X and

Y .

Each figures sweeps over various values of kx and ky. For large kx and ky, the

approximation is very good (Figures 4.2(a), 4.2(c)). We lose some accuracy as these

values decrease (Figures 4.2(d), 4.2(e)). Interestingly, the approximation is better on

the upper tail than the lower tail, which is good for our application since we will use

the c.d.f. on the upper tail.

Finally, we make a quick note on estimating kx and ky. Following [83], we use a

Algorithm 2 to determine the number of signals present in each dataset. As Nadaku-

diti et al. showed that the largest eigenvalues of the sample covariance matrices in

Gaussian noise-only setting follow the Tracy-Widom distribution and derived a statis-

tical test to determine the rank of a data matrix. We use these tests to find estimates

k̂x and k̂y from the top eigenvalues of the individual sample covariance matrices R̂xx

and R̂yy.

The parameters in Tables D.1 and D.2 employ a correction term of 0.5 that is

shown to increase the convergence of the approximation. Figures D.5, D.6, D.7,and

D.8 plot the convergence as a function of n for a fixed false alarm rate of 0.01 and 0.05

for real, imaginary data. These convergence plots are shown for the PCA statistical

test [83] and ICCA statistical test presented here.
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Figure D.1: Empirical and theoretically predicted cumulative distribution functions (cdf)
for ICCA under various parameters kx, ky and n for real valued X and Y .
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Figure D.2: Empirical and theoretically predicted probability density functions (pdf) for
ICCA under various parameters kx, ky and n for real valued X and Y .
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Figure D.3: Empirical and theoretically predicted cumulative distribution functions (cdf)
for ICCA under various parameters kx, ky and n for complex valued X and Y .
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Figure D.4: Empirical and theoretically predicted probability density functions (pdf) for
ICCA under various parameters kx, ky and n for complex valued X and Y .
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Figure D.5: Convergence plots for the false alarm rate of the proposed ICCA test statistic
for real data. The false alarm rate is plotted as a function of n for fixed kx/n, ky/n. The
black line shows the desired false alarm rate. The absolute error is also plotted. We show
plots for α = 0.05 and α = 0.01. We show convergence plots when using the test statistic
with and without the correction term.
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Figure D.6: Convergence plots for the false alarm rate of the proposed ICCA test statistic
for complex data. The false alarm rate is plotted as a function of n for fixed kx/n, ky/n.
The black line shows the desired false alarm rate. The absolute error is also plotted. We
show plots for α = 0.05 and α = 0.01. We show convergence plots when using the test
statistic with and without the correction term.
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Figure D.7: Convergence plots for the false alarm rate of the PCA test statistic for real
data. The false alarm rate is plotted as a function of n for fixed p/n. The black line shows
the desired false alarm rate. The absolute error is also plotted. We show plots for α = 0.05
and α = 0.01. We show convergence plots when using the test statistic with and without
the correction term.
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Figure D.8: Convergence plots for the false alarm rate of the PCA test statistic for complex
data. The false alarm rate is plotted as a function of n for fixed p/n. The black line shows
the desired false alarm rate. The absolute error is also plotted. We show plots for α = 0.05
and α = 0.01. We show convergence plots when using the test statistic with and without
the correction term.
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