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ABSTRACT

A Linearized Free-Surface Method for Prediction of Unsteady Ship Maneuvering

by

Marc O. Woolliscroft

Chair: Kevin J. Maki

Maneuvering prediction tools are valuable resources for naval and commercial ship

designers. They estimate the ability of a ship to maintain or alter course. This en-

ables designers to characterize the maneuvering performance of multiple conceptual

hull forms and select an optimal design. A novel maneuvering prediction method is

presented in this thesis. It is an unsteady Reynolds-averaged Navier-Stokes (URANS)

approach that includes wave effects with linear free-surface boundary conditions.

Therefore, it is a single-phase approach to solving multiphase problems. The so-

lution of the URANS equations captures the viscous effects that are highly important

in maneuvering due to the complex fluid interactions between the hull, propellers,

and rudders. The linearized free-surface approximation accounts for first-order wave

effects while reducing the necessary extents of the computational domain and the level

of grid refinement required by nonlinear computational fluid dynamics (CFD) solvers.

These simplifications lead to a substantial improvement in computational efficiency

with respect to nonlinear methods, while retaining accuracy and empowering naval

architects to obtain results earlier in the design cycle.
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CHAPTER I

Introduction

Naval architects find balanced solutions between the main drivers in ship design.

Speed, weight, space, and cost are routinely of the utmost concern. Primarily gov-

erned by the need to displace enough water in relation to the ship mass in order to

float, the study of ship design uncovers a great deal of connectedness between these

core drivers. Rarely is there an improvement in one area without adversely effecting

another area to some degree. For example, new composite materials pose a great

opportunity for savings in weight while maintaining high strength properties. There-

fore, they can be ideal for high-speed applications. However, they are more expensive

than traditional materials and require different methods of fabrication. In another

case, it may be suggested that a smaller ship is generally less expensive to construct,

but this obviously limits the amount of cargo that may be transported and is in

contradiction with fundamental goals of commercial shipping companies. Also, naval

warships can be made with thick steel plating to survive damage incurred in battles,

yet this increases the weight of the ship which decreases the speed or increases fuel

consumption. This may be overcome with a higher capacity powering system, but

this in turn may require additional space and again increase weight. Clearly, ship de-

sign is a challenging problem. The inter-dependency of the engineering areas within

the overall design causes a change in one area to propagate and require consideration
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for subsequent changes in several other areas. It is the duty of naval architects to

understand these connections and satisfy the requirements issued by ship owners for

new vessel designs.

Maneuvering plays a large role within the highly-connected areas of ship design.

Interactions between water, appendages, and control surfaces are not trivial. The

boundary layer present on a hull as it moves through water accounts for a large

viscous drag force. In addition, viscous separation can be generated from chines

or sonar domes during maneuvering. Violent and chaotic flow features exist such

as propeller cavitation and turbulence from appendages. Such widely varied flow

features can be present near the transom where the most important appendages for

maneuvering - rudders, propellers, skegs, et cetera - are located. Designing these

control surfaces requires consideration of the effects they have on course-keeping, fuel

efficiency, signatures, and so on. Making the proper design decisions is important

because the maneuverability of a vessel has direct effects on safety and performance.

For instance, a dynamically unstable ship needs proper skegs and rudders for frequent

course-checking. However, large skegs and frequent use of the rudders has a negative

impact on fuel consumption. On the other hand, a vessel which is too stable can not

turn within a reasonable distance. The ability to operate in specific ports throughout

the world requires various levels of maneuverability. Similarly, certain operations such

as ship-to-ship replenishment and canal navigation necessitate a high level of vessel

control. And furthermore, emergency situations need to be considered, and it must

be demonstrated that a ship can adequately change direction and stop to help avoid

catastrophic events.

However, these requirements create conflicting goals. Simple desires such as a

low hull resistance and the ability to stop quickly do not necessarily go hand-in-hand.

This leads to a design space containing conceptual hull forms, each of which satisfy the

design requirements to various degrees. The goal of a naval architect is to evaluate the
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trade offs within the design space and deliver an optimal solution. Nevertheless, real-

world constraints such as schedules and budgets often result in a partial exploration

of novel hull forms. These design ideas resonate with those of set-based design, as

opposed to point-based design, discussed in Singer et al. (2009). Typically, historical

hull forms are used as a starting point. On one hand, it may be argued that an

existing hull can fully satisfy the requirements of a new design, but this approach

lacks a motivated effort to evolve the designs of the largest transportation vehicles in

the world. It simply does not push designs toward an optimized form. But, this is

not to suggest that high fidelity technologies are not available.

Surely, computational fluid dynamics (CFD) and structural finite-element meth-

ods (FEM) exist and are in use from time-to-time for design analysis. Even the

highly-important problem of arrangements on warships is the focus of early-stage

optimization efforts (Parsons et al., 2008; Gillespie, 2012). However, these tools can

be difficult to use requiring specially-skilled and well-trained designers. At times,

expensive licensing fees are associated with the use of high fidelity design software.

In addition, structural and fluid dynamics simulations can be very time-consuming.

These are all factors which limit the wide-spread use of such advanced tools. Still, on

rare occasions, a more original design may be pursued using high fidelity hydrody-

namic methods, but determining the maneuvering characteristics with these methods

is a difficult task.

Currently, maneuvering prediction capabilities consist of geometrically scaled model

tests and a variety of numerical methods. Model tests can provide a plethora of data,

helpful for studying ship motions as well as fluid dynamics, but they require expensive

facilities, models, and instruments, as well as methods to account for scaling effects

(Cope, 2012; Ueno et al., 2014). Numerical methods vary from inviscid potential

flow codes to multiphase CFD. Historically, the velocity potential framework pro-

vides solutions to several ship-motions problems, ranging from stability assessment

3



to the overtaking of one ship by another (Sclavounos and Thomas, 2007; Newman and

Tuck, 1974). But potential flow codes inherently lack the ability to capture viscous

separation, which is especially significant near the hull appendages that influence

maneuverability. Viscosity can not be ignored in complex, fully-inclusive simula-

tions involving rotating propellers moving a hull through a real fluid. On the other

hand, CFD and model tests can be used to obtain viscous predictions on hulls with

appendages (Broglia et al., 2013). However, these are costly and time-consuming.

Most designers do not have the computational resources necessary for unsteady CFD

simulations. Systems-based methods use equation-of-motion coefficients that have

been obtained from physical experiments or CFD to predict maneuvering capabili-

ties. These coefficients become less accurate with large motions or with changes in

hull geometry.

The main drawbacks of the existing technologies make them limited for hull form

optimization in early stages of design. Therefore, it is an important endeavor to

provide efficient and accurate tools that allow for a broad exploration of the design

space and the ability to develop more optimized designs within realistic time and

monetary constraints. A maneuvering prediction tool is presented in this thesis to

achieve this goal, but first it is necessary to define the important aspects of the ship

maneuvering problem.

1.1 Definition of Maneuvering

Maneuvering may be defined as ship motions caused by the interaction between water

and all surfaces of a vessel with which it is in contact. It is important to note just

how many surfaces this may include; the hull, bilge keels, rudders, stabilizer fins,

propellers, skegs, exposed struts and shafts, bulbous bows, gondolas, and all other

underwater appendages that interact with the water. Indeed, many of these surfaces

have been developed for the exact purpose of dictating maneuvering characteristics.
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Termed control surfaces, these may be passive, as with skegs, or active, as with

rudders. Typical maneuvers include turning, stopping, and docking.

Maneuvering consists of low frequency ship motions usually requiringO (10− 100)

seconds and O (1− 10) ship lengths, L, to perform. Other scales to consider include

oncoming waves occurring with frequencies corresponding to O (10) seconds and pro-

peller rotations every O (1) second with blade-passings occurring more frequently.

Scales of O (0.01) seconds and smaller are needed to describe turbulence. Overall,

waves and other environmental factors affect maneuvering, but motions associated

with maneuvering occur at lower frequencies than oncoming waves, making it very

different than the study of seakeeping.

1.2 Design for Maneuverability

Upon receiving owner requirements for a novel ship design, maneuverists within a

design team have several options available to begin analyzing hull forms. Unlike

airplanes or automobiles, ships are unique because full-scale prototypes are infeasible

due to the enormous cost and time associated with constructing entire ships. This

leads one to consider a more reasonable approach; one in which a hull is scaled

to a smaller size. Geometrically scaled models let designers use towing tanks and

maneuvering basins to characterize hull forms in a physical setting. Here, they can

prescribe trajectories, many of which are not even possible at full scale, in order

to obtain very specific information about the hydrodynamic forces present during

maneuvering.

A high-fidelity alternative to model testing is fully nonlinear, multiphase CFD. In

this digital setting, designers are not limited by testing facilities or machining tools,

so meshes for multiple hulls may be tested simultaneously. Obviously, this is instead

limited by the computing resources available to the designers. A patent benefit of

numerical simulations is the possibility to perform analyses at a full scale Reynolds
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number. These are not yet common, but obtaining solutions to full scale problems

while avoiding full scale construction holds great potential value.

Clearly, both physical experiments and nonlinear CFD simulations are important

tools for the study of ship maneuvering. They have been developed and improved

upon for decades, and they will remain widely-used in the future. However, the use

of these approaches comes with difficulties that can not be denied; difficulties that

hinder the idea of designing for maneuverability.

The Maritime Research Institute Netherlands (MARIN) reports constructing 150

models during the 2009 calender year using a CNC milling device which can be op-

erated 24 hours a day (de Boer, 2009). The year prior, Strock and Brown (2008)

use the U.S. Navy Advanced Ship and Submarine Evaluation Tool (ASSET) to gen-

erate 8,841 conceptual designs of a ballistic missile defense cruiser. ASSET is a

multi-platform design tool offering modules such as hull form, structures, resistance,

propulsion, machinery, weight, and spaces; but not maneuvering. Of the 8,841 de-

signs, 156 are “non-dominated,” or unique designs which should be explored further

and compared to determine strengths and weaknesses. Also in 2008, a nonlinear CFD

simulation of a bare hull 5415 model takes approximately 320 CPU hours to simulate

a 7.5 second maneuver (Miller, 2008). If the same computation is applied to the 156

non-dominated designs, nearly 50,000 CPU hours are required, and this ignores time

required for meshing, data transfer, post-processing, et cetera.

Undoubtedly, there is space for improvement. Tools such as ASSET make it pos-

sible to generate thousands of designs and truly explore a design space for optimized

solutions. However, state-of-the-art research centers such as MARIN and nonlinear

CFD simulations can not be used extensively at this stage. ASSET does provide

resistance estimation, but it is from the Holtrop-Mennen regression-based method

(Holtrop and Mennen, 1978, 1982). Certainly, the novel designs being generated may

differ greatly from the data used to construct the regression. Therefore, an oppor-
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tunity exists for the development of efficient physics-based maneuvering prediction

methods that can be used in early stages of design.

The ability of a vessel to adequately stop, change direction, and maintain course is

key to performance and safety. Navigating through the entrances of ports may require

a specific path to avoid obstructions and other vessels. In a more extreme situation,

a drastic change in direction and speed may be necessary to prevent a catastrophic

collision. Ship size and operating requirements help dictate desired maneuvering char-

acteristics. Therefore, qualifications of ideal maneuverability differ between vessels

with different purposes. For example, a small patrol boat may actually be designed

to have low stability characteristics that allow for increased agility. In addition to

intended purpose, environmental factors such as water depth, channels, waves, and

currents influence maneuverability (Lincoln et al., 1989). The combination of these

factors and conflicting operational requirements make designing vessels for maneu-

verability a truly complex problem.

In addition to owner requirements, regulatory bodies drive the design for partic-

ular maneuvering qualities. Due to the need for a certain level of low frequency ship

motion control, the International Maritime Organization (IMO) has developed ma-

neuvering requirements for vessels over 100 meters in length. Requirements consist

of turning circle, zig-zag, and crashback (stopping) tests which are intended to mea-

sure course-keeping, course-changing, and stopping abilities (IMO, 2002). The vessel

length and speed are often used as criteria to determine if these have been completed

satisfactorily. For instance, the diameter of a turning circle must be less than five

ship lengths.

Furthermore, the American Bureau of Shipping (ABS) classification society, re-

quires that vessels demonstrate the ability to successfully perform these IMO ma-

neuvers during sea trials (ABS, 2006). The standards allow owners to conduct the

maneuvers in a condition other than full load only if predictive maneuvering analysis
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has been performed at the design stage and deemed satisfactory. If trials are under-

gone in a condition other than full load, the results must agree with those obtained

with predictions. It is then assumed that the full load condition will agree with the

full load condition from the design stage. If predictions are not available, the sea

trials must be performed at the full load condition (Belenky and Falzarano, 2006).

Generally, this is not achievable due to the volume and expense of cargo that needs

to be on board, so maneuvering prediction during the design stage is almost always

necessary. Regardless, attempting to fulfill IMO maneuvering requirements only dur-

ing the full scale sea trials comes with great risk as this can lead to unsatisfactory

results causing costly hull form modifications, especially for novel designs that lack

historical data.

The linearized URANS method provides the ability for physics-based maneuvering

predictions in earlier design stages than nonlinear CFD or model tests. It relies on

first principles of free-surface boundary conditions as a basis for this novel approach.

The free-surface boundary conditions are considered in the classical linearized form,

but developed under the RANS variables for a viscous, turbulent fluid. Other state-

of-the-art technologies such as semi-automatic mesh generation, turbulence modeling,

and sliding mesh interfaces are coupled with this idea for an efficient and accurate

design solution to maneuvering prediction.

The development of the linearized URANS method herein primarily concerns ship

maneuvering problems from an inertial, Earth-fixed frame of reference. Forces and

moments are of the highest importance, but flow field information is also discussed.

In Chapter II, current state-of-the-art solutions to maneuvering problems are dis-

cussed. A theoretical presentation of the fully nonlinear free-surface boundary con-

ditions appears in Chapter III. Also in this chapter, analysis is presented of the

linear conditions for a viscous, turbulent flow. Next, Chapter IV introduces the spe-

cific numerical aspects of the linearized URANS method. This is a new formulation
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to the ship maneuvering problem, where linear free-surface boundary conditions are

solved with a RANS approach in an Arbitrary Lagrangian-Eulerian manner. This is

followed by a two-dimensional transom stern study found in Chapter V. An investiga-

tion of the magnitude of viscous and nonlinear terms at the air-water interface offers

justification for the linearization performed on the free-surface boundary conditions.

This numerical study is beneficial because previous studies of turbulent free-surface

flows do not correspond to the large Reynolds-number regime that characterizes ship

flows. In addition, a free-surface piercing body is not always the focus for these pre-

vious investigations. Chapter V also compares results computed using the linearized

free-surface conditions to those obtained with the fully nonlinear CFD solver. This

canonical study is challenging for linear free-surfaces approaches, but the linearized

URANS method performs well. The use of the linearized URANS method is ex-

panded to a variety of maneuvering tests on two versions of the David Taylor Model

Basin (DTMB) 5415 destroyer hull in Chapter VI. One version is fitted with only

bilge keels, while the other is fully appended and operates with rotating propellers.

The demonstration of this novel method on a real bare hull ship model is shown

to be accurate, and the computational cost is significantly less than for nonlinear

CFD. Lastly, this work is summarized in Chapter VII with a discussion of additional

research possibilities.
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CHAPTER II

Background

The main focus of this thesis is to present a novel approach to numerically predict the

maneuverability of bodies near or in contact with a free-surface. The unique qualities

of the work reside in the judicious linearization with conventional RANS variables to

deliver accurate and fast-running simulations. First, it is necessary to address the

common prediction techniques currently used in design.

2.1 Maneuvering Prediction Methods

Since there is a great need for maneuvering prediction capabilities in ship design,

it is important to address the common techniques currently available. In the most

basic form, maneuvering prediction requires the study of equations of motion in the

horizontal plane. Referring to the coordinate system shown in Figure 2.1, the surge

force X, the sway force Y , and the yaw moment moment N , can be expressed as a

function of the velocities and accelerations of the ship in this horizontal plane (Lincoln

et al., 1989). There exists an Earth-fixed coordinate system described with x and y,

which is initially aligned with the ship-fixed coordinate system, having origin, O. The

ship has a velocity of U with a bow-aligned component u and a lateral component

v. The angle between the velocity and the bow-aligned axis is the drift angle, β, and

the angle between the original, bow-aligned x-axis and some new bow-aligned axis is
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the heading angle, ψ. The rate with which the ship rotates in the horizontal plane

is the yaw rate, r. Lastly, the deflected position of the rudder can be described with

the rudder angle, δ.

x

N, r

X, u

y

Y, v
ψ

U

O : midship and waterline

δ

β

z

yO

O

Figure 2.1: Ship maneuvering coordinate system

X ≈ Fx

(
u1, v1, u̇1, v̇1, ψ̇1, ψ̈1

)
+ (u− u1)Xu + (v − v1)Xv + · · ·+

(
ψ̈ − ψ̈1

)
Xψ̈

Y ≈ Fy

(
u1, v1, u̇1, v̇1, ψ̇1, ψ̈1

)
+ (u− u1)Yu + (v − v1)Yv + · · ·+

(
ψ̈ − ψ̈1

)
Yψ̈

N ≈ Fψ

(
u1, v1, u̇1, v̇1, ψ̇1, ψ̈1

)
+ (u− u1)Nu + (v − v1)Nv + · · ·+

(
ψ̈ − ψ̈1

)
Nψ̈

(2.1)

Shown in Equation 2.1 are Taylor series expansions which are used to approximate

the ship forces. This is a traditional approach to analyze maneuvering. In this case,

a linear approximation is shown, but nonlinear approximations can be made with

higher-order and cross-coupled terms including the rudders. These equations include

velocity (u, v, ψ̇) and acceleration (u̇, v̇, ψ̈) terms and initial conditions, denoted with

numerical subscripts. Also included are terms referred to as either force and moment

derivatives, hydrodynamic derivatives, or maneuvering coefficients. These are shown

with Xu, Yu, Nψ̈, et cetera, and they indicate changes in the forces or moment due to

a velocity or acceleration imposed on the hull. For example, Yu represents the change

in sway force due to a surge velocity. These derivatives depend on the geometry of
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a hull, and can be zero with symmetry. A hull which is symmetric about centerline

does not induce lateral motions due to surge, so Yu = Yu̇ = Nu = Nu̇ = 0.

Solutions to these expansions can provide designers with details about the sta-

bility characteristics of a vessel. For a vessel traveling at a constant speed in calm

water, a disturbance can result in several types of stability or instability depending

on the hull form and subsequent rudder deflections. Some examples are shown in Fig-

ure 2.2. There exist several experimental and numerical approaches to determine the

maneuvering coefficients, as well as more direct methods to maneuvering prediction.

Initial course

Straight-line or
dynamic stability

Path or position
motion stability

Directional or course
stability

Disturbance

Fixed
rudder

Rudder
deflection

Various unstable
regimes

Rudder
deflection

Figure 2.2: Various types of maneuvering stability and instability

2.1.1 Experiments

A popular method for obtaining hydrodynamic derivatives is physical experiments

with a scaled model. This approach uses a tow-tank or maneuvering basin and pre-

scribed trajectories which the model is forced to follow in order to obtain the de-

sired maneuvering coefficients. Solutions can then be found to the set of equations in

Equation 2.1 to numerically model zig-zags or turning circles. However, self-propelled

12



model tests can also be performed which allow for direct prediction of the turning

circles and zig-zag maneuvers that are performed at full scale.

2.1.1.1 Captive model tests

Captive model tests are performed with either a planar motion mechanism (PMM) or

a rotating arm for circular motion tests (CMT). Prescribed motions in the horizontal

plane (surge, sway, and yaw) allow experimentalists to characterize hull forms in very

specific ways. Examples of pure sway and pure yaw tests are shown in Figure 2.3.

A pure drift test can be performed by fixing the model at a nonzero drift angle β

and running the carriage with no oscillation from the PMM. The experiments can

determine the force and moment derivatives necessary for solving the equations of

motion.

Figure 2.3: Pure sway (top), pure yaw (middle), and static drift (bottom) PMM tests

For example, to determine the change in lateral force with respect to a change

in lateral velocity, Yv, static drift tests are performed at various drift angles. A

transducer measures the force and moment on the model, and the sway velocity is

obtained with v = U sin β where U is the carriage velocity. Then, Y is expressed as

a function of v and the value of the velocity derivative, Yv, is found by calculating

the slope of the relation. One can see that the carriage velocity could be varied while

keeping the drift angle constant to acquire a range of sway velocities and replicate
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the same experiment. However, Reynolds scaling can not be achieved due to the

unattainable speeds at which the carriage is required to move. Therefore, boundary

layers are not correctly scaled between the model and ship. This difference in viscous

effects is especially important near the transom when considering the forces on the

rudder – the most influential control surface in maneuvering.

The CMT method can also be used to find the derivatives for the equations of

motion. It works by moving the model in a circle about a vertical axis fixed in a

basin. The radius of rotation, drift angle, and yaw motion can be varied to obtain

the necessary derivatives. The PMM and rotating arm methods can also be per-

formed with rudders at various deflection angles and propellers operating at the ship

propulsion point. Therefore, both are suitable in providing information that can be

used to quantify nonlinear and cross coupling effects. Cross coupling is the effect that

force derivatives have on each other.

2.1.1.2 Free model tests

Compared to captive model tests, free model tests are a more direct approach at

predicting full scale maneuvering capabilities. Turning circles, zig-zags, and reverse

spirals can be performed using a remotely operated, self-propelled model. Several

criteria must be met for these tests to scale accurately. The propeller slip ratio of the

model and full scales should be equal. To satisfy this requirement, an air propeller

can be used to provide a portion of the thrust (Ueno et al., 2014). Also, the motor

powering the model propeller should be equipped with a thrust and torque transducer

to simulate the full scale engine characteristics that change during various maneuvers

(Pivano, 2008). This is sometimes ignored, resulting in model tests that predict less

speed loss than full scale tests. The inability to satisfy Reynolds scaling produces

inconsistencies between model and full scale boundary layer thicknesses. Propellers

have even been seen operating in a laminar regime (Cope, 2012). Turbulence inducing
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measures can be implemented, but this scaling issue significantly restricts free model

tests from accurately predicting stopping maneuvers (ITTC, 2002). Overall, the

viscous force inaccuracies are even greater in free model tests than captive tests

because of the interactions between the rudder, propeller, and hull. In addition to

these difficulties, free model tests require large maneuvering basins to insure that

data are not affected by the tank boundaries and simply that there is ample space

in which to perform a full maneuver with a large model. Some facilities do not have

this capability. Thus, they are forced to perform partial maneuvers and extrapolate

data.

2.1.1.3 Systems based methods

Nonlinear maneuvering simulations in the time-domain can be performed with sys-

tems based methods. These mathematical models use force and moment derivatives

to solve the equations of motion. The derivatives can be obtained using empirical

data (Furukawa et al., 2008), model tests (Kim and Kim, 2008), or CFD (Simonsen

et al., 2012). The use of empirical data introduces uncertainty with the design of

original hull forms. Model tests and CFD are time-consuming, so while a maneu-

vering simulation may be fast with a systems based method, the data necessary to

solve the equations of motion are not easily gathered quickly. In addition, a lack of

consistency between models can be seen, showing a significant amount of sensitivity

due to different model inputs.

2.1.2 Numerical Simulations

Several state-of-the-art numerical approaches currently exist for examining the flow

around vessels undergoing steady or unsteady maneuvers. Ranging from inviscid

potential flow tools to fully nonlinear CFD, these methods vary widely in the resources

required and data attainable.
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2.1.2.1 Inviscid methods

Potential flow methods for maneuvering prediction may be efficient due to the boundary-

integral nature of the formulation, opposed to solving equations in a field. And this

efficiency may appeal to designers. However, these approaches are also inviscid in

nature. Therefore, viscous separation is not resolved. Free surface elevations at large

drift angles and fluid forces on rudders are areas where the inviscid assumption sig-

nificantly affects predictions. For example, aft of the transom, rudders are positioned

in an area of highly rotational flow. The irrotational qualities stemming from the in-

viscid assumption make for poor predictions of the forces on rudders (Söding, 1999).

These forces are very important for maneuvering. Viscous approximations can be

made using empirical data or corrections from supplemental CFD simulations. Re-

sults from Kring et al. (2011) show good prediction of maneuvering forces on a surface

effect ship in waves using a potential flow method and viscous correction from CFD.

However, empirical data are limited to similar hull forms and may not be applicable to

novel designs. The use of CFD corrections can lead to questions of whether potential

methods possess enough fidelity for a wide range maneuvering prediction despite the

possibility of fully nonlinear, time-domain solutions (Tanizawa and Naito, 1998). The

overwhelming drawback lies in viscosity being neglected and challenges encountered

in trying to overcome this shortcoming.

2.1.2.2 Viscous methods

Common viscous methods solve for flow information on boundaries as well as within

fluid domains by seeking solutions to the URANS equations. Large-eddy simulation

(LES) is another viscous approach, but the URANS method is the main concern for

this nonlinear CFD discussion. The multiphase volume-of-fluid (VOF) method solves

the URANS equations in two fluids - air and water. Sufficient accuracy and numerical

stability depend on the adequacy of the grid refinement required to capture the air-
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water interface. The computational cells (control volumes) need to be small in order

to resolve breaking waves, far-field waves, et cetera. Small time steps stem from these

highly resolved grids which are necessary even far from the hull. Work of Maki and

Wilson (2008) shows forces from a steady drift test using a VOF method that are very

comparable to experiments. Several free-running simulations on a variety of hulls are

shown in Shen et al. (2014).

A level-set approach can be used in a single phase or multiphase manner for

maneuvering prediction. Here, a signed distance function (level-set) is solved to de-

termine the location of the interface. Steep waves can be handled with this approach.

Simulations of captive model tests have been performed with a single phase level-set

to obtain maneuvering coefficients (Araki et al., 2014). In addition, free model turn-

ing circle and zig-zag tests have been simulated at model and full scale (Carrica et al.,

2012; Broglia et al., 2013).

Alternatives to surface capturing methods are surface tracking methods. These

use grid deformation to estimate an evolving free surface. Relatively simple forward-

speed resistance problems have been possible for some time (Kim, 2002). Surface

tracking has also been used for a numerical study on a constant turn maneuver (Burg

and Marcum, 2003). Small time-steps and numerical stability become issues since the

extent of grid deformations must be regulated. Surface tracking methods have issues

in the simulation of breaking waves due to the overturning of the wave and domain.

Finally, zero Froude number (double body) approximations enforce a flat free

surface. Therefore, the significant presence of the viscous effects is captured while

neglecting waves. Depending on the Froude number, this reduction in accuracy may

be accepted due to the increase in efficiency compared to multiphase approaches.

For example, maneuvering in ports or ship-to-ship operations are cases where this

method can yield accurate results. Turnock et al. (2008) suggests that double-body

simulations can be roughly 1,000% faster than a VOF approach. Low Froude number
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simulations have been shown to compare well with experimental results of static drift

tests (Wang et al., 2008) and of pure sway tests (Turnock et al., 2008). Toxopeus

(2009) shows good agreement of bare hull forces to experiments when using double

approximations with Froude numbers less than Fr = 0.2. In addition, Broglia et al.

(2008) and Hochbaum et al. (2008) have performed pure yaw simulations with a flat

free surface.

Overall, nonlinear CFD can produce impressively accurate solutions of maneuver-

ing simulations. The VOF and level-set methods are two high-fidelity, well-studied

tools that should be utilized when the expense required for them is acceptable. The

capability of modeling the viscous effects in addition to a nonlinear free surface, pos-

sibly with breaking waves, is established as state-of-the-art. But these methods do

not greatly impact design because of expense, difficulty, and time.

2.1.3 Summary

Model tests require large facilities and the construction of accurately scaled models.

For low frequency PMM tests, even long tanks may allow for only two or three periods

of motion. The inability to satisfy Reynolds scaling severely affects the accuracy of

rudder-induced motions, especially with free model tests because the interactions

between hull, propeller, and rudder are not easily scaled. Furthermore, the need to

produce physical models is expensive and time-consuming which limits the amount

of changes one can make on a hull form. The cost of materials for a single 4.9 meter

model with propellers and rudders can be approximately 70,000 USD (Cope, 2012)

This is not conducive to hull form iterations required at early stages of design. The

limitations model tests and systems based methods pose for early phase design have

motivated the development of numerical methods.

Numerical methods possess their own set of limitations. Double-body formu-

lations give little information on the shape of the free surface and force an incor-
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rect no-penetration condition on velocity. In turn, this adversely affects the solution

to the pressure in the flow which becomes problematic at Froude numbers greater

than Fr = 0.1. The use of surface tracking requires grid deformation which is time-

consuming and difficult to perform accurately, especially when breaking waves are

present. Likewise, the main drawback for each of the fully nonlinear methods is com-

putational expense. Even with recent advancements in parallel computing, the grid

refinement and computational requirements are burdening in nature. Currently, the

time and computational resources needed for these approaches make their use imprac-

tical in early stages of design. The need to include water and air portions within a

domain and the high grid resolution required, even far from the body, greatly increases

the number of cells.

The linearized URANS method aims to improve the maneuvering prediction capa-

bilities - from forward speed resistance tests to the simulation of free running model

tests - available to designers. The development of the technology embodies fast-

running simulations and simplified physics to more completely explore design spaces

for optimized solutions to modern naval architecture needs.
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CHAPTER III

Free-Surface Boundary Conditions

The linearized URANS method is a single-phase approach to solving multiphase prob-

lems. Efficiency is sought through the use of a linearized free-surface approximation.

This is opposed to solving for an air-water interface or a nonlinear free-surface and re-

quires an investigation of the kinematic and dynamic boundary conditions associated

with a free-surface as well as an appropriate procedure for linearization. A discussion

of such matters is presented in this section.

3.1 The Air-Water Interface

In a physical setting, floating bodies pierce an air-water interface at which stresses

between the the two fluids are in balance. Therefore, the jump in stress is zero,[[
σ · n̂

]]
= 0. For more detail, see Rood (1995), van Brummelen (2002), and Yeh

(1995). An all-inclusive description of these stresses contains effects from surface ten-

sion. However, this cohesive molecular property is ignored in the present investigation

of ship flows. Bubbles, droplets, and other features that depend on surface tension

are not considered significant for maneuvering prediction compared to inertial and

viscous forces. As such, the stress (and force) from the water must be in balance with
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the stress (and force) from the air at the air-water interface,

σwater · n̂− σair · n̂ = ~0 (3.1)

where n̂ is a common unit normal vector for both fluids, pointing out of the water

into the air as shown in Figure 3.1. The total stress tensor for each fluid is denoted

with σ.

σ · n̂
n̂air

water

Figure 3.1: Stress at the air-water interface

The large differences between the values of density and viscosity in air and water

are the source for free-surface assumptions. When no wind is present, the dynamic

effect from the air on the surface of the water is virtually nonexistent. Therefore, the

stress from the air is ignored, and the problem is reduced from an air-water interface

to a free-surface condition:

σwater · n̂ = ~0 (3.2)

Employing a free-surface approximation is integral to the linearized URANS method.

In addition, the free-surface boundary conditions are made linear and inviscid. The

inviscid condition is not used out of convention but rather because the role of viscous

stress is assumed small at the air-water interface. This assumption is analyzed in

detail in Chapter V, where the implications of simplifying from a multiphase ship

maneuvering environment are studied.
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3.2 Nonlinear Free-Surface Boundary Conditions

z, w

x, u

η (x, y, t) y, v
n̂

Figure 3.2: Example of nonlinear free-surface

To develop linear kinematic and dynamic free-surface boundary conditions to com-

plement the viscous URANS equations, one must first consider the fully nonlinear

forms. Referring to Figure 3.2, the origin is located at the calm-water plane. Space

is represented in a three-dimensional, Cartesian manner with x, y, and z. The fluid

velocity vector, ~U = uî + vĵ + wk̂, contains components which act along the three

spatial axes. The free-surface elevation is η and is a function of x, y, and time, t.

Lastly, the unit vector, n̂, which is normal to free-surface everywhere and at all times,

points out of the water. The kinematic boundary condition requires that a particle on

the free-surface remains on the free-surface. This is shown with the relative velocity

between the fluid and the free-surface itself:

~U · n̂− ~Ufs · n̂ = 0 (3.3)

~Ufs is the velocity of the free-surface. To express the condition in terms of the free-

surface elevation, the location of the free-surface may be defined with a function:

F (x, y, z, t) = z − η(x, y, t) = 0 (3.4)

The value of the function in 3.4 is always zero on the surface. As such, the total
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derivative of the function is also zero on the surface:

DF

Dt
=
∂F

∂t
+ ~U · ∇F = 0 (3.5)

Evaluating the total derivative of the free-surface function in terms of η results in:

−ηt + u (−ηx) + v (−ηy) + w = 0 (3.6)

By rearranging, the fully nonlinear kinematic free-surface boundary condition is ob-

tained:

w = ηt + uηx + vηy (3.7)

The dynamic free-surface boundary condition can be derived by invoking a zero

total stress condition. Since this is a free-surface, only the stresses in the water are

of concern, and the fluid subscript is dropped (σ = σwater). Deeming surface tension

insignificant for ship waves, the total stress tensor is composed of an isotropic term

and a viscous term:

σ = −PI + τ (3.8)

Here, P is the total pressure, I is the diagonal identity matrix, and the viscous stress

tensor is τ . The total pressure is composed of a hydrodynamic and a hydrostatic

part:

P = p+ ρ~g · ~x (3.9)

The gravitational acceleration vector is ~g, and the position vector is ~x. In conjunction

with the coordinate system currently in use, the hydrostatic pressure can be described
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as follows:

~g = −gk̂ (3.10)

ρ~g · ~x = −ρgz (3.11)

At the water surface, z = η. The incompressible viscous stress tensor is:

τ = µ

(
∇~U +

(
∇~U

)T)
(3.12)

The dynamic viscosity is represented by µ. Expanding the viscous stress tensor gives:

τ = µ


(
ux + ux

) (
uy + vx

) (
uz + wx

)
(
vx + uy

) (
vy + vy

) (
vz + wy

)
(
wx + uz

) (
wy + vz

) (
wz + wz

)
 (3.13)

Seeking a zero total stress boundary condition implies:

σ · n̂ = ~0 (3.14)

The unit normal vector can be written as:

n̂ = qî+ rĵ + sk̂ (3.15)

In expanded form, the total stress vector appears as:

σ · n̂ =


−
(
p− ρgz

)
q + µ

(
2uxq +

(
uy + vx

)
r +

(
uz + wx

)
s
)

−
(
p− ρgz

)
r + µ

((
vx + uy

)
q + 2vyr +

(
vz + wy

)
s
)

−
(
p− ρgz

)
s + µ

((
wx + uz

)
q +

(
wy + vz

)
r + 2wzs

)
 (3.16)

The function F = (x, y, z, t) from Equation 3.4 is used to express the normal vector
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in terms of the free-surface elevation:

n̂ =
∇F
| ∇F |

=
−ηxî− ηy ĵ + k̂√

η2
x + η2

y + 1
(3.17)

Using the normal vector from Equation 3.17 and performing the operation to ob-

tain the total stress vector, σ · n̂, results in the fully nonlinear, dynamic free-surface

boundary conditions in the x, y, and z-directions, respectively:

(p− ρgη) ηx − 2µuxηx − µ (uy + vx) ηy + µ (uz + wx) = 0

(p− ρgη) ηy − µ (vx + uy) ηx − 2µvyηy + µ (vz + wy) = 0

− (p− ρgη)− µ (wx + uz) ηx − µ (wy + vz) ηy + 2µwz = 0

(3.18)

This set of dynamic boundary conditions is nonlinear and coupled by the unknowns

of u, v, w, p, and η. They are to be satisfied on the z = η surface.

Lastly, the body boundary condition for the fully nonlinear problem states that

the velocity of the fluid is equal to the velocity of the body.

~U = ~Ubody (3.19)

The boundary conditions for the fully nonlinear ship maneuvering problem have

been presented. A free-surface assumption is made initially, and the implications of

this are shown in Chapter V with a viscous-interface study.

3.3 Linearized Free-Surface Boundary Conditions

With the goal of linearization, the free-surface boundary conditions need to be ex-

pressed in a form which is able to be satisfied on the z = 0 plane. This problem is

studied extensively within a velocity potential framework. Ship waves generated in

calm water described with the velocity potential variable by Kelvin (1887) lay the
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foundation for decades of additional work. Continuous functions describe ship waves

for large domains as discussed in Noblesse et al. (2013, 2011). These show robust-

ness and efficiency of applying a linearized free-surface approximation. Additional

work extends to ship motions in the presence of incident waves (Beck and Loken,

1989; Salvesen et al., 1970) as well as waves described in an inertial reference frame

(Noblesse and Yang, 2007). Comparisons of a linear approximation as apposed to

a nonlinear free-surface are also considered with velocity potential (Havelock, 1937,

1940). This inviscid approach is shown to provide solutions to very complex problems

such as dredging in a shallow water channel in Beck et al. (1975). Overall, the lin-

earized free-surface boundary conditions alone are not new. However, exploring the

suitability of a linearized free-surface in conjunction with a viscous, turbulent fluid is

a unique endeavor; one that is important for the viscous, unsteady problem of ship

maneuvering.

For this work, it is assumed that the waves associated with ship maneuvering

are predominantly of small height and small slope. Thus, a first-order wave approx-

imation will suffice while ignoring nonlinear and breaking waves. To display this

mathematically, the free-surface conditions must first be made dimensionless to eval-

uate the relative values of each term. Quantitatively, the small slope assumption

implies that | ηx |, | ηy |� 1. What follows is a process for linearization which one

may pursue stemming from this assumption, as well as further inviscid assumptions

within the dynamic condition resulting in wave effects that are solvable on the z = 0

plane.

Beginning again with the fully nonlinear kinematic free-surface boundary condi-

tion shown in Equation 3.7, one can consider a fluid moving past a floating body.

From the perspective of a body-fixed observer, the horizontal components of the fluid

26



velocity vector can be decomposed into a mean and perturbing component:

u = U + u∗

v = V + v∗

w = W + w∗

(3.20)

The mean components are represented with U , V , and W , while the perturbation

velocities are denoted with u∗, v∗, and w∗. For a forward speed ship resistance test,

the mean velocity may simply be the mean surge velocity with respect to time, but

a mean velocity is more difficult to define for a transient maneuver. Using decom-

posed velocities from Equation 3.20 in the fully nonlinear kinematic condition from

Equation 3.7 results in the following modified nonlinear kinematic condition:

W + w∗ = ηt + (U + u∗) ηx + (V + v∗) ηy (3.21)

In order to determine the relative magnitude of each term in Equation 3.21, each

quantity is represented non-dimensionally with U , L, and T . U is some suitable

velocity scale, possibly the ship speed; L is the ship length or possibly a wave length;
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and T is a time scale, perhaps a wave period. Each quantity is made dimensionless:

W̃ =
W

U
w̃∗ =

w∗

U
t̃ =

t

T

Ũ =
U

U
= 1 ũ∗ =

u∗

U
η̃ =

η

L

Ṽ =
V

U
ṽ∗ =

v∗

U
x̃ =

x

L

η̃x̃ =
L

L
ηx = ηx η̃ỹ = ηy ỹ =

y

L

η̃t̃ =
T

L
ηt

(3.22)

Assuming perturbation velocities, wave slopes, and wave heights are on the order of

some small value, O (ε), an order-or-magnitude analysis is performed. Substituting

the values from Equation 3.22 into the fully nonlinear condition of Equation 3.21 and

dividing by U gives the dimensionless equation:

W̃ +w̃∗ =
L

UT
η̃t̃ +Ũ η̃x̃ +ũ∗η̃x̃ +Ṽ η̃ỹ +ṽ∗η̃ỹ

O (ε) = O (ε) +O (ε) +O (ε2) +O (ε) +O (ε2)
(3.23)

Only horizontal motions are performed with the linearized URANS method. As such,

there is no mean vertical velocity, W̃ = 0. Furthermore, higher order terms, O (ε2),

are very small and neglected resulting in the linear kinematic free-surface boundary

condition, shown dimensionally:

w = ηt + Uηx + V ηy (3.24)

The magnitude of the mean velocities depends on the frame of reference in which

the maneuvering problem is described. For a forward speed resistance problem rep-
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resented in a ship-fixed reference frame, U = Uship and V = Vship = 0. Thus, the

kinematic free-surface boundary condition in this ship-fixed description is reduced to

a linearized form:

w = ηt + Uηx (3.25)

In an earth-fixed frame of reference, calm water has a zero mean velocity, U = V = 0.

Only perturbation velocities exist as the hull disturbs the calm water. Again, these

are deemed small, and the linear kinematic free-surface boundary condition in an

Earth-fixed frame of reference is obtained. It is known as the zero-speed kinematic

condition:

w = ηt (3.26)

A slightly different approach needs to be taken for the dynamic free-surface bound-

ary conditions in Equation 3.18. The wave slope and wave height are considered small,

but less can be said about the velocity gradients on the surface of the water. As a

starting point, one can again select velocity and length scales with which to charac-

terize the problem. Commonly with ship flows, the ship speed and ship length are

chosen for these scales. As such, the non-dimensional Reynolds and Froude numbers

are used, respectively,

Re =
UL

ν
=
ULρ

µ
(3.27)

Fr =
U√
gL

(3.28)

where U is the speed of the ship, L is the length of the ship, ν is the kinematic

viscosity, ρ is the water density, and g is the magnitude of gravity. In addition to

the use of Reynolds and Froude numbers for viscous and gravitational terms, each
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remaining term in Equation 3.18 can be represented non-dimensionally:

p̃ =
p

1
2
ρU2

η̃ =
η

L

∇̃~U ij =
∇~Uij

U/L

The ship speed and length are suitable quantities for non-dimensionalizing the gravity

waves which govern the hull forces. After all, the fundamental wavelength, λ, of ship

generated waves in deep water is defined using these quantities:

λ

L
=

2πU2

gL
(3.29)

However, these scales are not representative of the boundary layer flow near the hull.

To some extent, this boundary layer interacts with the water surface, so caution must

be used when using the ship length, L, as the length scale for dimensionless analysis

with this viscous problem. Applying this non-dimensional analysis to the nonlinear

dynamic conditions, and dividing by 1
2
ρU2, offers insight into the possible significance

of each term with following the dimensionless equations:

(p̃− 2Fr−2η̃) η̃x̃ − 4Re−1ũxη̃x̃ − 2Re−1 (ũy + ṽx) η̃ỹ + 2Re−1 (ũz + w̃x) = 0

(p̃− 2Fr−2η̃) η̃ỹ − 2Re−1 (ṽx + ũy) η̃x̃ − 4Re−1ṽyη̃ỹ + 2Re−1 (ṽz + w̃y) = 0

− (p̃− 2Fr−2η̃)− 2Re−1 (w̃x + ũz) η̃x̃ − 2Re−1 (w̃y + ṽz) η̃ỹ + 4Re−1w̃z = 0

(3.30)

Again, the boundary layer presents ambiguity in determining the relative magnitudes

of each quantity in Equation 3.30 because the velocity gradients may be large, and

the length and velocity scales differ significantly from those used to describe the ship

generated waves. If one assumes small velocity gradients in addition to the small wave

slopes, the products of the two are negligible or O (ε2). This assumption produces
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dynamic conditions which are linear:

2Re−1 (ũz + w̃x) = 0

2Re−1 (ṽz + w̃y) = 0

− (p̃− 2Fr−2η̃) + 4Re−1w̃z = 0

(3.31)

Furthermore, Reynolds numbers are generally large for ship flows, resulting in

small viscous terms in Equation 3.31. Neglecting all viscous terms in the dynamic

condition results in a single, zero total pressure condition.

p̃− 2Fr−2η̃ = 0 (3.32)

However, the assumption of large Reynolds number raises questions. Indeed, typical

Reynolds numbers are at least O (105) for model scale. But these scales may not be

an appropriate description for maneuvering flows. Certainly, the turbulent flow in

the wake region aft of the transom contains length and velocity scales that are much

shorter and slower than outside of the wake. Therefore, smaller lengths scales may

be a more suitable representation of the flow in this region.

A variety of work has been conducted using different forms of the dynamic bound-

ary conditions. Studies by Shen et al. (1999, 2000, 2002) implement the viscous lin-

earized boundary conditions (Equation 3.31) for investigating the flow in the wake

of a towed ship model. The model Reynolds and Froude numbers are O (103) and

O (10−2), respectively, and the beam is only four centimeters (Shen et al., 2002). It

is found that the x and y components of the dynamic condition are very small at the

water surface, but also that the wakes of real ships contain significantly more tur-

bulence. Work by Rosemurgy et al. (2012) shows good results for free-surface flows

using the inviscid, zero total pressure condition (Equation 3.32). Reynolds numbers

for this work are O (105), but submerged bodies are studied in a steady manner. In
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addition, Hong and Walker (2000) investigate free-surface flows with submerged jets.

The jet diameter Reynolds number is O (104), and the Froude number is O (101).

Viscosity is deemed negligible due to the high Reynolds number, but the absence of

no-slip boundary conditions also influences this assumption.

The various problems, approaches, and conclusions in previous work prompts the

need for a unique set of studies to determine the effect of viscosity and vorticity at the

air-water interface of maneuvering flows. The goal of the present work is to extend the

investigation of free-surface flows to large Reynolds and Froude numbers. In order to

perform a thorough investigation, the entire fully nonlinear dynamic conditions from

Equation 3.30 are studied. No a priori assumptions are made about the wave slopes,

the velocity gradients, or eddy viscosity. This allows for a quantitative examination

of the importance of each term in the zero total stress condition. The geometry

used for this problem is that of a two-dimensional ship transom and is presented in

Chapter V.
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CHAPTER IV

Linearized Free-Surface Solver

4.1 ALE Formulation

The equations that govern the free-surface elevation are linearized, i.e. first-order

kinematic and dynamic boundary conditions that are solved on the z = 0 plane.

w =
∂η

∂t
(4.1)

p− ρgη = 0 (4.2)

Due to the linearization, the computational domain where the momentum equations

are solved does not extend above the z = 0 calm-water plane. Body exact ship

motions are limited to surge, sway, and yaw. These horizontal-plane motions are

performed in an inertial, Earth-fixed reference frame that necessitates an arbitrary

Lagrangian-Eulerian (ALE) formulation of the governing equations. Equations are

solved for each computational cell that has volume V and is bounded by the surface

S with outward normal n̂. So (t) is the portion of the boundary of a computational

cell that is adjacent to the z = 0 plane, and l (t) is the contour of this area. The

development of the ALE form of the kinematic free-surface boundary condition begins
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with the Leibniz integral rule applied over a surface to the right-hand side of Eq. 4.1,

∂

∂t

∫
So(t)

η dS =

∫
So(t)

∂η

∂t
dS +

∫
l(t)

η
∂~xmesh (t)

∂t
· n̂ dl (4.3)

where,

∂~xmesh (t)

∂t
= ~Umesh = umeshî+ vmeshĵ + 0k̂ (4.4)

Equation 4.3 can be modified to appear as:

∫
So(t)

∂η

∂t
dS =

∂

∂t

∫
So(t)

η dS −
∫
l(t)

η~Umesh · n̂ dl (4.5)

With this, one can see that the mesh motion gives rise to a convective term in the

ALE formulation of the kinematic free-surface boundary condition. And the form of

the condition solved is:

∂

∂t

∫
So(t)

η dS −
∫
l(t)

η~Umesh · n̂ dl =

∫
So(t)

w dS (4.6)

Similarly, the ALE form of the momentum and continuity equations is solved,

∂

∂t

∫
V

ρ~U dV +

∫
S

ρ~U ~Urel · n̂ dS = −
∫
S

p̄ · n̂ dS +

∫
S

µeff

(
∇~U +∇~UT

)
· n̂ dS (4.7)

∫
S

~Urel · n̂ dS = 0 (4.8)

where,

~Urel = ~U − ~Umesh (4.9)

and the effective viscosity is the sum of the molecular and turbulent viscosities,

µeff = µ + µt.
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4.2 Boundary Condition at Free-Surface/Body Juncture

In physical settings and nonlinear simulations of ship maneuvering, the height of the

water level varies along the hull. If using a VOF method, a macroscopic boundary

condition for the phase indicator variable, α, on the hull is a Neumann condition

where the gradient of α is zero in the direction of the normal vector on the body:

∇α · n̂ = 0 (4.10)

The zero-gradient condition allows bow waves to force water above the calm waterline

and ventilated transom sterns to lower the surface to the depth of the transom. These

phenomena raise challenges for the linearized free-surface method, especially near the

transom. Since the free-surface elevation is calculated on a rigid z = 0 plane, the

domain level around the hull never actually changes. Therefore, a unique boundary

condition is required for the free-surface elevation on the body. Transom sterns that

become ventilated during an unsteady simulation pose the greatest risk for divergence

with the linearized URANS method. A zero-gradient condition is suitable on the

majority of the hull, but a Dirichlet condition is useful in the transom region. A

Dirichlet condition specifies the value of the free-surface elevation. As such, users may

set the free-surface elevation to the depth of a ventilated transom. The capability to

impose both Neumann and Dirichlet conditions on the hull is possible with the use

of a Robin or mixed condition, in discretized form:

η = Vf (ηbc) + (1− Vf ) ηp (4.11)

Vf is the volume-fraction that dictates the blending of a fixed-value and zero-

gradient in the condition. The volume-fraction can take values from 0 ≤ Vf ≤ 1. A

value of Vf = 1 makes the free-surface elevation on the body equal to a user-specified
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fixed-value, ηbc. A value of Vf = 0 activates a zero-gradient (Neumann) condition

which makes the free-surface elevation equal to the value at the center of the cell

adjacent to the boundary, ηp. The value of Vf is computed with Equation 4.12:

Vf = Cm

[
max

(
0,

1

1− Ct

(
−n̂f ·

~Uship

| ~Uship |
− Ct

))]
(4.12)

Here, Uship is the velocity of the body, and n̂f is the outward pointing normal of the

body. The transition coefficient, Ct, is a user-specified value ranging from 0 ≤ Ct < 1

that helps determine the location where the boundary condition will transition from

Neumann to Dirichlet. If the angle between the velocity vector of the body and the

outward-pointing normal of the body is less than arccos (Ct), Vf will be set to zero,

and the boundary condition will be fully zero-gradient (Neumann). However, if the

angle between the velocity and outward-pointing normal is greater than arccos (Ct),

the condition is partially fixed-value and zero-gradient. When the flow is aligned

with the normal, Vf = 1, the condition becomes fully fixed-value (Dirichlet). Cm is a

multiplication coefficient a user can change to further modify the boundary condition.

This approach for the boundary condition for η at the free-surface/body juncture is

very useful. A user can calculate the transom-based Froude number to determine if

a transom stern is ventilated. Then the geometry of the hull can be considered along

with the type of maneuvering test to set an angle with Ct at which the free-surface

elevation will be fixed at a certain value (perhaps the depth of the transom).

As an example, a hull with an elliptic water-plane cross-section is considered. It

translates purely in the (+x)-direction with some velocity, ushipî. Figure 4.1 shows

the region on the hull where the boundary condition is mixed for several values of

Ct. For this example, the free-surface elevation forward of midship is always governed

by the Neumann, zero-gradient condition, where Vf = 0. Depending on the value of

Ct, the condition becomes mixed at some point aft of midship. All instances of the
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condition become Dirichlet-type at the stern where the outward pointing normal is

aligned with the ship velocity.
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Figure 4.1: Free-surface body boundary condition with varying Ct values

4.3 Numerical Aspects

The linearized URANS method is a custom finite volume CFD algorithm based within

the OpenFOAM C++ library. It consists of solutions to the URANS equations and

a linear free-surface condition. At the free-surface, values for the wave elevation, η,

are solved at cell centers and interpolated onto cell faces.

Results discussed in this paper are obtained on structured and unstructured grids.

A PISO-like algorithm is used to solve for pressure and velocity. Time discretization

is performed with a first-order Euler implicit scheme. A second-order linear upwind

scheme is used for convective terms. The Spalart-Allmaras turbulence model is used

with an adaptive wall function based on the Spalding universal law of the wall.

To simulate motions in the horizontal plane, the entire computational domain

moves with rigid-body motion. The ship motion is described in an inertial, Earth-fixed

reference frame. This approach allows for a natural description of the acceleration

of the body from rest and avoids issues related to an impulsive start. Furthermore,

it closely resembles the actual motions in a physical setting (which in this validation
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is a towing tank). While the entire grid undergoes rigid body motion, propellers

and rudders rotate relative to the body with a sliding-mesh approach. A cylinder

enclosing a propeller or rudder rotates independently from the remainder of the mesh.

Figure 4.2 describes the steps of the algorithm with the unique features outlined in

red. The solution of the momentum equations provides the vertical velocity which

is used in the kinematic boundary condition. In a typical segregated manner, the

pressure equation is then solved and used to correct the velocities at cell centers.

Upon updating the boundary conditions over the computational domain, the pressure

condition on the free-surface uses the wave elevation from the kinematic condition

to apply the hydrostatic pressure. Steady problems can be modeled by using time

steps to dictate the number of iterations with no inner correctors, outer correctors,

or time-derivatives. For unsteady problems, time steps can dynamically adjust to a

user-defined Courant number restriction. For stability, inner correctors can be used

to solve the momentum equations multiple times within a single time step. Lastly,

under-relaxation may be employed in combination with outer correctors for time-

accurate solutions employing large time steps.
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Figure 4.2: Steps of the linearized URANS algorithm

4.4 KCS Validation

As an initial validation of the linearized free-surface boundary conditions, the KRISO

container ship (KCS) hull is studied at forward speed over a range of Froude num-

bers. Although the ultimate goal is maneuvering prediction, requiring the accurate

solutions to forces and moments, this relatively simple study provides an opportunity

to view the wave height along the hull as well as predictions of sinkage and trim.

Vertical motions are not performed with the linearized RANS method, but the heave

and pitch can be calculated with an approach consistent with linear theory using
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Equations 4.13 and 4.14:

Sinkage =
Fz

ρgAwp

(4.13)

Trim =
My

ρgIyy

(4.14)

The net force is the vertical direction is denoted with Fz and the net moment of

inertia about the pitch axis is My. The area of the waterplane is represented with

Awp and Iyy is the area moment of inertia about the pitch axis.

The KCS is 7.31m long, and is tested at five Froude numbers ranging from Fr =

0.152−0.282. The converged solution from Fr = 0.26 is shown in Figure 4.3 which is

colored by the free-surface elevation. The grid contains approximately 430,000 cells.

Due to the steady nature of the forward speed tests, the simulations are performed

in a steady, ship-fixed frame of reference.

Figure 4.3: Free-surface elevation for KCS at Fr = 0.26

The calculated sinkage and trim are shown in Figure 4.4 along with the measured

values from the experiments. The sinkage is predicted very well over the full range
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of Froude numbers with the linearized RANS method. The largest discrepancy com-

pared to the experimental data is approximately one millimeter occurring at the high

and low Froude number limits. The trim angles agree well at the low Froude num-

bers, but show increasing differences at higher Froude numbers. However, the largest

difference between the simulations and experiments is still roughly 0.1 degrees.
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Figure 4.4: Sinkage (top) and trim (bottom) of KCS at various Froude numbers.
Values are measured for the experiments and computed for the simulations

The wave elevation along the hull is presented in Figure 4.5 for Froude number

Fr = 0.26. The linearized data agrees well along the majority of the hull. However,

there is a noticeable under-prediction near the bow and an over-prediction at the

stern. For this study, a zero normal-gradient condition is used for the free-surface

boundary condition at the free-surface/body juncture. In Section 4.2, a custom body

boundary condition is presented which aids in mitigating the discrepancies that are

possible to produce with a zero normal-gradient condition.
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CHAPTER V

Viscous Air-Water Interface Study

5.1 Canonical Viscous Interface Study

In order to quantify the relative importance of each term in the fully nonlinear dy-

namic free-surface boundary condition, a canonical study is performed with a two-

dimensional transom stern geometry. An interface capturing approach is employed

by using a fully nonlinear VOF method. This allows one to quantify the effects of

reducing problems from an air-water interface to a free-surface, as well as the effects

of linearization and the neglect of viscous terms. A diagram of the two-dimensional

ship transom is shown in Figure 5.1.

The two-dimensional transom study is a challenging problem for the linear method.

The entire domain is filled with water below the z = 0 calm-water plane. However,

wave elevations oscillate some small value, η, about the flat free-surface. So, the

linear approximation possesses an interesting feature - the conservation of mass and

momentum is satisfied for a single phase in each computational cell, but the pressure

within these cells can correspond to being filled with either water or air. For example,

in the case of a ventilated transom stern, a trough of the wave is located at the bottom

of the transom. The linearized method has computational cells above this trough,

but the dynamic pressure within them corresponds to the hydrostatic pressure at the

base.
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Figure 5.1: Two-dimensional canonical transom stern geometry

5.1.1 VOF Numerical Method

This multiphase interface study is performed with OpenFOAM which is an open

source CFD software package. The standard collection of C++ libraries that com-

prise OpenFOAM consists of solvers for many partial differential equations governing

a variety of physics. In addition, several turbulence models, linear system solvers, and

discretization schemes can be selected to best suit the needs of a user. Modifications

and additions to the software can be made for custom applications. OpenFOAM em-

ploys the finite-volume method (FVM), calculating the value of field (non-boundary)

variables at the center of computational cells. For details of the FVM applied to fluid

flows see Jasak (1996).

Due to the FVM approach, the two-dimensional transom study is conducted on a

three-dimensional grid that has a single cell extruded in the y-direction. The incom-
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pressible URANS equations are solved in both air and water:

∂ρ~U

∂t
+∇ · ρ~U ~U = −∇p+∇ ·

[
(µ+ µτ )

(
∇~U +∇~UT

)]
(5.1)

∇ · ~U = 0 (5.2)

The dynamic eddy viscosity is represented with µτ and arises due to modeling the

fluctuating components after Reynolds-averaging. The solution to µτ is obtained

using the one-equation Spalart-Allmaras turbulence model (Spalart and Allmaras,

1992). The pressure-velocity coupling is handled in a segregated manner where these

variables are decoupled and solved implicitly. For a thorough description of this

approach see Barton (1998) and Issa (1986).

The air-water interface is captured using a VOF method. This technique is

well suited for large deformations between fluids with significant differences in den-

sity (Hirt and Nichols, 1981; Lafaurie et al., 1994). Two fluids are treated as one

continuous fluid composed of two regions with different properties of density and

viscosity:

ρ (~x, t) = ρwaterα (~x, t) + ρair (1− α (~x, t)) (5.3)

µ (~x, t) = µwaterα (~x, t) + µair (1− α (~x, t)) (5.4)

The locations of the air and water regions are determined by the value of the phase-

indicator variable, α, which varies from zero to one throughout the domain. Cells

occupied by water have a value of α = 1, and cells occupied by air have a value

of α = 0. The interface is not sharp but rather smeared across multiple cells. Those

cells at the interface have values of 0 < α < 1. The solution to the phase-indicator

variable is governed by an advection equation,

∂α

∂t
+∇ ·

(
α~U
)

+∇ ·
(
α (1− α) ~UrCα

)
= 0 (5.5)
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where ~Ur is a compression velocity which acts normal to and towards the interface. It

helps regulate the smearing of the interface, and it is only active where 0 < α < 1. The

coefficient Cα allows a relative magnitude of the compression velocity to be applied.

For this study, the value of Cα is constant, Cα = 1

Time discretization is performed with a first-order implicit Euler scheme. Inte-

gration over faces is done with a second-order midpoint rule. Lastly, the divergence

operator is discretized with a second-order upwind-biased scheme for velocity and a

van Leer limited scheme for the phase indicator variable. The equation for the phase

indicator variable is solved in an explicit manner. The linear systems of equations

are solved with a generalized geometric-algebraic multi-grid (GAMG) solver.

5.1.2 Description of Canonical Problem

The purpose of these studies is to determine the dominant terms that govern the

pressure at the water surface of an air-water interface. In particular, the effects of

viscosity and velocity gradients are of interest in order to reach a clear conclusion of

which terms to include when choosing a pressure boundary condition for the linearized

URANS method. Due to the unsteady nature of maneuvering, a variety of flow is

produced. Breaking waves, non-breaking waves, large areas of recirculation, and rel-

atively calm water can all be witnessed. To account the for range of phenomena, nine

combinations of Reynolds numbers and transom-based Froude numbers are tested as

shown in Table 5.1. The transom-based Froude number is defined in Equation 5.6.

For each simulation, the initial values of the kinematic eddy viscosity, ντ , on the inlet

are equal to the molecular kinematic viscosities shown in Table 5.1.

Table 5.1: Two-dimensional transom test viscosity and gravity variable values

Re ν [m2/s] FrT g [m/s2]
1e4 3.52e− 4 3 9.81
1e5 3.52e− 5 2 22.1
1e6 3.52e− 6 0.2 2207
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FrT =
U√
gT

(5.6)

The work of Maki (2006) studies transom stern hydrodynamics and discusses the

highly unsteady nature of the flow at particular Froude numbers. This is useful

for choosing the transom-based Froude numbers for the numerical experiments at

hand. A Froude number of FrT = 3 produces a steady wave, FrT = 2 produces

an unsteady breaking wave, and FrT = 0.2 produces a recirculation region with a

nearly flat air-water interface. Therefore, these Froude numbers display flows which

commonly occur near ship hulls during maneuvering.

The main reason behind changing the values of gravity and viscosity is to use the

same grid for each test. Since velocity, U , is a shared variable between the Reynolds

and Froude numbers, changing it requires new grids with subsequent changes of

length, l, and draft, T . The current approach avoids this issue. However, chang-

ing the value of viscosity while not changing the grid spacing adjacent to the no-slip

boundary condition presents issues with the dimensionless wall distance, y+:

y+ ≡
√

τw
ρν2

(5.7)

τw = µ

(
∂u

∂z

)
wall

(5.8)

The wall shear stress is denoted with τw and defined in Equation 5.8 using the coor-

dinate system for these experiments. With low-Reynolds number turbulence models,

the dimensionless wall distance is required to be y+ < 1. To overcome this restric-

tion, an adaptive wall function is used to account for the average y+ values for these

experiments which are within the range 0.1 < y+
mean < 50. Table 5.2 shows the mean

and maximum y+ values for each simulation.
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Table 5.2: Two-dimensional transom test y+ values

FrT = 3 FrT = 2 FrT = 0.2
Re y+

mean y+
max y+

mean y+
max y+

mean y+
max

1e4 1.49 2.46 1.87 4.16 0.71 2.31
1e5 5.41 8.38 5.13 9.28 3.29 7.49
1e6 30.13 97.39 33.27 105.42 18.21 41.48

The grid for the study is fully structured and consists of approximately 2.9M

entirely orthogonal cells. The resolution of the grid in the interface region is of great

importance due to the smearing of the interface over multiple cells with the VOF

method. To minimize the distance over which the smearing occurs, the back face

of the transom is discretized with 598 cells, each with a height of roughly 0.83mm.

Gradual stretching is employed from the bottom and back faces of the transom. A

qualitative representation of the grid appears in Figure 5.2.

z

x

∆x ∗ 89

∆z ∗ 46

Figure 5.2: Transom grid characteristics. Cell dimensions adjacent to the transom
are scaled for visualization. The stretching away from the transom is not to scale and
is only meant for a qualitative description.
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5.2 Results

The results from the two-dimensional transom stern study are divided into three sec-

tions corresponding to the three Froude numbers tested. The goal of the experiments

is the same for all cases – to measure the suitability of the linearized free-surface

conditions for maneuvering prediction. As a starting point, it must be shown that

indeed an interface condition is satisfied. Therefore, the total stress of each fluid at

the air-water interface is a concern for this investigation:

σwater,air · n̂ =
[
− (p− ρwater,airgη) I + τ

]
· n̂

=

[
− (p− ρwater,airgη) I + µeffwater,air

(
∇~U +

(
∇~U

)T)]
· n̂

(5.9)

For each Froude number, the terms which make up the total stress tensor will be

considered in slightly different ways to best describe the important flow characteristics

at hand. The beginning of each section contains a brief description of the way in which

the terms will be evaluated. First, the cases with FrT = 3 are presented. This Froude

number produces a steady wave, so two-dimensional plots are used to convey results

which show the air-water interface condition and the small role of viscosity in the

free-surface condition. Next, the cases with FrT = 2 are presented. With these, an

unsteady breaking wave is generated, so iso-surfaces are used to show the small values

of viscous stress and the balance between hydrostatic and hydrodynamic pressure at

different moments in time. Lastly, cases where FrT = 0.2 are the low Froude number

regime, and two-dimensional plots are again used to analyze this steady set of data.

Within each Froude number, the tests appear in order of increasing Reynolds

number (Re = 1e4, 1e5, and 1e6). Turbulence modeling is performed with the

Spalart-Allmaras turbulence model, so viscous terms are shown using the effective

viscosity µeff = µ + µt. The study is two-dimensional, thus only the variables cor-

responding to the x and z-directions are reported. Also, all pressure and stress
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quantities are presented in non-dimensional form, normalized by
1

2
ρwaterU

2, unless

otherwise noted. This is simply used as a stress scale that corresponds to the stagna-

tion pressure at the calm-water elevation, or the largest possible dynamic pressure in

the flow under the irrotational assumption. A tilde is used above terms to symbolize

dimensionless quantities. The downstream distance is non-dimensionalized by the

fundamental wave length, λ, which is calculated for each Froude number:

λ = 2πFr2
TT (5.10)

The cases of FrT = 3 and FrT = 0.2 include a study of the kinematic condition

by plotting the nonlinear and linear forms, respectively:

w = uηx (5.11)

w = Uηx (5.12)

The vertical velocity at the surface of the water is w. The horizontal velocity from

the solution is u, and the linear constant velocity from the inlet is U = 4.7m/s. When

presented, these quantities from the kinematic condition are normalized by U .

Lastly, each section concludes with a comparison of the canonical study computed

with the linearized URANS method, and the suitability of transferring the boundary

conditions from the z = η to the z = 0 plane is discussed. The geometry and

magnitudes of gravity of the linear simulations are equivalent to those of the nonlinear

simulations. However, the mesh does not extend beyond the z = 0 plane, and it

contains only 7,909 computational cells.
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5.2.1 FrT = 3 – Steady Wave

This section presents the results from the highest Froude number tested, FrT =

3. The wave length corresponding to this flow is λ ≈ 14.1m. As such, the water

depth corresponds to an intermediate-depth condition, but the boundary condition

employed on the bottom of the domain is not impenetrable. Instead, it is a zero

normal-gradient condition, ∂~U
∂n

. Therefore, bottom effects are not as significant as

with a physical boundary at this depth. The stress balance interface condition is

shown to be satisfied, and the linearized free-surface condition is shown to be a

reasonable assumption for this flow. Due to the steady nature of the non-breaking

wave, the common normal vector is expressed in terms of the wave elevation:

n̂ =
−ηxî+ k̂√
η2
x + 1

(5.13)

First, the wave profiles are shown. Next, the stress in each fluid is considered to

ensure that the interface condition is satisfied:

σ̃water · n̂− σ̃air · n̂ = ~0 (5.14)

From here on, the air is no longer studied, but the suitability of the free-surface

approximation is investigated by considering stress terms from the water only:

σ̃ · n̂ =

 (p̃− Fr−2η̃) ηx − 2Re−1ũxηx +Re−1 (ũz + w̃x)

− (p̃− Fr−2η̃) − Re−1 (w̃x + ũz) ηx + 2Re−1w̃z

 (5.15)

The horizontal and vertical components of the stress vector are discussed individu-

ally. The viscous terms from the rate-of-strain tensor are presented. For brevity, a

conservative approach is taken where the magnitude of each term is calculated, and

these are summed giving insight into the total effect that the viscous terms have on
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the water surface:

| −2µeffuxηx | + | µeff (uz + wx) |
0.5ρwaterU2

(5.16)

| −µeff (wx + uz) ηx | + | 2µeffwz |
0.5ρwaterU2

(5.17)

Lastly, the hydrodynamic and hydrostatic pressure are compared. Only the terms

from the vertical component of the stress vector, p and ρgη, are plotted as these are

representative of the terms from the horizontal component, pηx and ρgηηx, which are

simply scaled by the wave slope.
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Figure 5.3: Wave elevations

The wave height for all the tested Reynolds numbers is shown in Figure 5.3. This

is a steady wave that develops and remains for the duration of the simulation. One

can see that the transom, with a depth of T = 0.25m, is fully ventilated under these

conditions. The difference in Reynolds number results in no significant variation in

the wave height.

The boundary layer profiles corresponding to each Reynolds number are presented

in Figure 5.4. These are sampled one transom depth, T , forward from the transom

edge. As expected, an increase in Reynolds number shows a thinning of the boundary

layer thickness.

To investigate the accuracy with which the interface condition is satisfied, the
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Figure 5.4: Boundary layer velocity profiles

modulus of the total stress vector dotted with the common unit normal, | σ · n̂ |,

is calculated for air and water. These magnitudes are plotted in Figure 5.5. To

differentiate the two fluids, a contour of α = 0.99 is used for water and α = 0.01 for

air. As such, the finite region that contains the interface is largely ignored. These

phase-indicator variable restrictions are chosen as a conservative approach to identify

stresses which very nearly correspond to either air or water rather than the unphysical

slurry which is the interface calculated with the VOF method. It is because of this

conservative approach that the stress in the water is not in balance with the stress in

the air. Using a less rigorous approach, such as α = 0.55 and α = 0.45, produces a

balance, but not from fluid that is strictly air or water. Still, referring to Figure 5.5,

the magnitude of stress in the air is very small, being well below 1% of the of the

chosen stress scale,
1

2
ρwaterU

2. The stress in the water is greater, but still less than

1% of the irrotational stagnation pressure.

Overall, the stress exhibited at the interface from each fluid is small, motivating

the idea that a free-surface is a suitable approximation for this problem. Since water is

the main fluid of concern, the small dynamic effects from the air are deemed negligible

and the free-surface condition, σwater · n̂ = ~0, governs the stress at the water surface.

It is this condition that will now be studied to determine the dominant terms within
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Figure 5.5: Stresses at air-water interface for Re=1e4 (top), Re=1e5 (middle), and
Re=1e6 (bottom)

the total stress tensor, σwater.

This study has successfully demonstrated that the dynamic effects from the air

may be neglected, allowing for a free-surface approximation. As such, phase subscripts

are removed, and all quantities refer to the water. The expansion of the total stress

tensor dotted with the unit normal vector shows the quantities which govern the
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stress of the water at the exact free-surface in Equation 5.15. The viscous terms from

the horizontal and vertical components of the stress vector are plotted against the

downstream position in Figure 5.6 and 5.7, respectively. As a conservative approach,

the magnitudes of each term are summed. Indeed, these terms are measurable as

seen from the nonzero values along the wave. However, the values are very small

being less than 0.001% of the stagnation pressure. Dimensionally, this corresponds

to less than one-tenth of a Pascal. As a reference, changes in pressure this small

correspond to changes in depth of less than 0.01mm in water on Earth. Another

notable observation is that the viscous terms scale linearly with Reynolds number

which is evident by the fact that the variations in pressure from the viscous terms

decrease by one order of magnitude with an increase in Reynolds number by one

order of magnitude. Therefore, it may be concluded that the velocity gradients are

not affected by changes in viscosity within this range of Reynolds numbers. Instead,

the viscous terms simply scale due to the changes in µeff .
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Figure 5.6: Magnitudes of horizontal viscous stresses at air-water interface
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Figure 5.7: Magnitudes of vertical viscous stresses at air-water interface

With the insight that the viscous terms are very small in both the horizontal and

vertical components of the stress vector, it is important to investigate the dynamic

and hydrostatic pressure terms. These are shown for the vertical component of the

stress vector in Figure 5.8. Compared to the viscous terms, the pressure terms are

noticeably greater in value. They are at least O (105) times greater. Clearly, the

pressure dominates at the water surface. The static and dynamic pressure in the
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horizontal component of the stress vector are at most 10% of the vertical component,

occurring where the wave slope is greatest, ηx ≈ 0.1. It is also important to note that

the dynamic pressure is nearly identical to the hydrostatic pressure. Not only does
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Figure 5.8: Hydrodynamic and hydrostatic pressure at water surface for Re=1e4
(top), Re=1e5 (middle), and Re=1e6 (bottom)

this coincide with the small viscous values previously discussed, but it also shows

the validity of employing an inviscid, zero total pressure condition in the vertical
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direction. Indeed, this is the boundary condition solved with the linearized URANS

method:

p = ρgη (5.18)

Satisfying a pressure boundary condition on an exact free-surface requires the pressure

from both the horizontal and vertical component of the stress vector. However, the

linearized URANS method does not account for the horizontal component because

the wave elevations are approximated on a flat free-surface with a normal vector

continuously aligned with the z-axis. This approximation is valid for small wave

heights that do not deviate far from the z = 0 calm-water surface. Figure 5.9,

demonstrates this by comparing the wave elevations obtained with the VOF method

as well as those obtained by replicating the experiment with the linearized URANS

method. Only the results from the Reynolds number Re = 1e4 are compared. In

addition, at the transom the linearized URANS method uses the free-surface elevation

and pressure which coincide with the fully ventilated scenario, η = −0.25m and

p = −2452.5Pa. Due to the fixed-value pressure condition, a zero normal-gradient

condition is imposed on velocity. However, the bottom, or keel, maintains a no-slip

boundary condition. It is only the back face of the transom that requires special

consideration with the linear method. Although the two methods do not compute

wave elevations which are entirely agreeable, the results are qualitatively similar.

Those computed on z = 0 show slightly lower values at both wave crests and troughs

compared to the nonlinear results. There is also a difference in wave length, however

the linear simulations show a length which is closer to the estimated value, 2πFr2
TT ≈

14.1m.

The comparison of nonlinear and linear kinematic free-surface boundary condi-

tions appears in Figure 5.10. Each curve represents data from the VOF solution only

and is normalized by U . The linear condition is computed with the constant inlet

velocity, U = 4.7m/s, whereas the nonlinear condition uses the actual horizontal
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Figure 5.9: Wave elevations using VOF and linerized URANS for FrT = 3 and
Re = 1e4

component of velocity, u, from the solution. Lastly, w is the actual vertical compo-

nent of velocity. There is a slight difference between both conditions and the vertical

velocity along the majority of the wave. This difference decreases downstream, and

on the whole all three velocities are quite similar. Most importantly, the difference

between the linear and nonlinear conditions is very small, demonstrating that the

linear kinematic condition used with the linearized URANS method is suitable, in a

body-fixed reference frame:

w = Uηx (5.19)

It is interesting that the linear kinematic condition agrees well with the vertical

velocity at the water surface. One may not expect this to be the case when a surface-

piercing body in uniform flow possesses a boundary layer. And, in the case of a

ventilated transom stern, the boundary layer is shed at the surface of the water. So,

vorticity may be prominent at the wave surface. An explanation can be found in

Figure 5.11, which is colored by the absolute value of the vorticity in the y-direction

normalized by
U

l
. The lowest Reynolds number is considered, Re = 1e4, which

corresponds to the greatest viscous stresses for the range of Reynolds numbers studied.
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Figure 5.10: Nonlinear and linear kinematic conditions at water surface for Re=1e4
(top), Re=1e5 (middle), and Re=1e6 (bottom)
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Figure 5.11: Vorticity within boundary layer and interaction with the water surface
from VOF simulation

In this case, the boundary layer does not have a strong presence near the water

surface. In fact, using the scale shown in Figure 5.11, it is only visible aft of the

transom for less than 10% of the wavelength. These findings are consistent with

those presented for the stresses at the air-water interface as well. The viscous terms,

containing velocity gradients, are very small compared to the stresses arising from

hydrodynamic and hydrostatic pressure. Therefore, suitable kinematic and dynamic

boundary conditions are linear and inviscid, and these are adequately computed on

the z = 0 plane. For a ship at full-scale, the Reynolds number can be greater, so the

boundary layer may be relatively thinner, but the velocity gradients can be greater.

Therefore, the intensity of this turbulence may cause the gradients to persist at the

water surface further downstream than is being shown in this study.

5.2.2 FrT = 2 – Unsteady Breaking Wave

This section presents the results for FrT = 2. The results from Section 5.2.1 show

that the VOF method satisfies the stress balance interface condition and air stresses
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are negligible, so only the free-surface assumption is evaluated in this section. The

fundamental wavelength for this flow is λ ≈ 6.3m. As with the steady wave case, this

corresponds to an intermediate water depth, but the boundary condition used at the

bottom does not enforce a no-penetration condition. At this Froude number, an un-

steady breaking wave occurs aft of the transom. As such, a number of considerations

must be made to appropriately convey important flow features. First, the wave slope

varies from 0 → ∞, so the expression of the normal vector uses a standard global

description:

n̂ = qî+ sk̂ (5.20)

This results in an alternative description of the total stress vector:

σ̃ · n̂ =

 (p̃− Fr−2η̃) q − 2Re−1ũxq +Re−1 (ũz + w̃x) s

− (p̃− Fr−2η̃) s − Re−1 (w̃x + ũz) q + 2Re−1w̃zs

 (5.21)

The magnitudes of the viscous terms are again summed within each component

of Equation 5.21 for a conservative approach to investigate the viscous effects at the

free-surface. Then, the hydrodynamic and hydrostatic pressures are presented, pnz

and ρgηnz, from the vertical component of the stress vector. The simulations are

two-dimensional, but a slight rotation is performed about the x−axis to improve

visualization of the iso-surfaces. For a three-dimensional investigation of interface

stresses under breaking wave conditions see Filip (2013).

63



t = 0

t = 1 s

t = 2 s

t = 3 s

0 5e-05

t = 4 s

| 2µeffuxq | + | µeff (uz + wx) s |
1
2
ρU2

Figure 5.12: Re=1e4, Magnitudes of the horizontal viscous stresses as the wave breaks
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Five instances in time are shown, each at one second intervals, to describe the

breaking of the wave. At first, the formation of a nonlinear wave can be seen. The

crest of this wave travels towards the transom, eventually making contact with it and

splashing. As the water from the splash falls back to the surface of the water, air

entrainment is produced and then washed downstream. Therefore, the final time step

shown contains air bubbles beneath the water surface.

The summation of the magnitudes of viscous terms are presented in Figure 5.12

for the horizontal stress component and in Figure 5.13 for the vertical component.

The quantities are very small, the majority being less than 0.005% of the stagnation

pressure. So, this flow does produce viscous terms greater than those from FrT = 3

but no more than 10 times greater, indicating that a free-surface approximation is

still valid.
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Figure 5.13: Re=1e4, Magnitudes of vertical viscous stresses as the wave breaks
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The hydrodynamic and hydrostatic pressure from the vertical component of the

stress vector are displayed in Figures 5.14 and 5.15. The figures are nearly identical,

indicating that the dynamic and static pressure are in balance (p = ρgη). The

pressures are up to 80% of the stagnation pressure. Although the flow features from

this breaking wave appear much different than the steady wave from FrT = 3, the

magnitudes of the various stresses are similar. Specifically, the hydrodynamic and

hydrostatic pressure are still far greater than the viscous stresses. In addition, the

results do not change with changes in the Reynolds number, other than the linear

scaling of the viscous terms which is also seen in the afore presented case. As such, the

remaining results from this case, with Re = 1e5 and 1e6, are located in Appendix A.
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Figure 5.14: Re=1e4, Hydrodynamic pressure as the wave breaks

68



t = 0

t = 1 s

t = 2 s

t = 3 s

0

-0.5 0.8

t = 4 s

ρgηs
1
2
ρU2

Figure 5.15: Re=1e4, Hydrostatic pressure as the wave breaks

The viscous stresses are small, but the use of a linearized free-surface boundary

condition still raises questions as to whether this case can be approximated on the

z = 0 plane. In order to determine this possibility, the linearized URANS method

is used to replicate the experiment. The free-surface elevation and pressure are set

to the bottom of the transom, η = −0.25m and p = −5517.5Pa. This is the same
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approach as used in the case where FrT = 3. Again, the back face of the transom

employs a zero normal-gradient condition on the velocity, but the bottom, or keel,

uses a no-slip condition. Figure 5.16 shows the wave elevations computed with the

two methods.
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Figure 5.16: Wave elevations using VOF and linerized URANS for FrT = 2 and
Re = 1e4

The elevation shown for the VOF method is captured at several instances in time,

spanning just prior to the wave overturning through it breaking. A steady wave is

produced with the linearized URANS method. It is not to suggest that one should

use the linearized URANS method for the study of breaking waves, but it is promising

to see how well the calculation can be transferred to the z = 0 plane, even within

a regime that results in unsteady breaking waves. As is seen with FrT = 3, the

linear conditions show a wave with lower values of elevation at crests and troughs.

However, the method agrees well to VOF method in terms of the wave length which

is computed.
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5.2.3 FrT = 0.2 – Low Froude Number Regime

This section contains the results for the set of data where FrT = 0.2. A fundamental

wavelength of λ ≈ 0.063m is associated with this regime. The normal unit vector, n̂,

is expressed in terms of the water surface elevation, η. Figure 5.17 shows the water

surface elevations. Changes in Reynolds number do not significantly change the water

surface elevation.
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Figure 5.17: Wave elevations

For this discussion, the viscous terms are shown individually for both the horizon-

tal and vertical components of the stress vector in Figure 5.18. The terms are very

small. The static nature of this case presents difficulties with the smearing of the

interface. Near the back face of the transom, the fluid does not adequately convect

downstream to produce a crisp interface. Instead, a large interface exists, spanning

several cells, and contains a slurry of fluid which is much denser than air. As such,

using a rigorous phase-indicator variable cutoff of α = 0.99 results in a water surface

elevation which is too low. Therefore, a more suitable value of α = 0.5 is used for the

data presented at this low Froude number regime.
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Figure 5.18: Viscous stresses for Re=1e4 (top), Re=1e5 (middle), and Re=1e6 (bot-
tom)
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Figure 5.19 presents the hydrodynamic and hydrostatic pressures from the verti-

cal component of the stress vector. Since this case is largely governed by hydrostatic

pressure, the stress scale used for non-dimensionalization is ρgT . Indeed, air-water

interface is disturbed little, which is reflected by the small static and dynamic pres-

sures at the water surface. Also, the dynamic and static pressures are in balance.

They are at most roughly 1% different in relation to the stress scale, ρgT . The nearly

flat interface causes pressures from the horizontal component of the stress vector to

be even smaller, and, therefore, they are not plotted.
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Figure 5.19: Hydrodynamic and hydrostatic pressure from vertical component of
stress at water surface for Re=1e4 (top), Re=1e5 (middle), and Re=1e6 (bottom)
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The comparison of the linear and nonlinear kinematic conditions can be seen in

Figure 5.20. The nonlinear condition agrees slightly better with the vertical veloc-

ity from the solution close to the transom than the linear condition. Downstream,

both methods perform similarly. Any differences between the linear, nonlinear, and

actual values are small, being at most roughly 2% different in relation to the inlet

velocity, U . Figure 5.21 displays the absolute value of vorticity in the y-direction.

The recirculation region just aft of the transom corresponds to the region where the

linear kinematic condition shows the largest difference. Here, the fluid velocity is

less than the free-stream velocity, so the linear kinematic condition, using U , dis-

agrees with the nonlinear condition. Still, employing the linearized condition results

in a very agreeable solution to the free-surface elevation as depicted in Figure 5.22,

which compares the VOF solution to the linearized URANS solution. At this Froude

number, the linearized URANS simulation uses the same boundary conditions as the

fully nonlinear approach. The back face of the transom uses a zero normal-gradient

for the pressure and free-surface elevation. The velocity satisfies a no-slip boundary

condition everywhere on the transom.
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Figure 5.20: Nonlinear and linear kinematic conditions at water surface for Re=1e4
(top), Re=1e5 (middle), and Re=1e6 (bottom)
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Figure 5.21: Vorticity within boundary layer and interaction with the water surface
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Figure 5.22: Wave elevations using VOF and linerized URANS for FrT = 0.2 and
Re = 1e4

5.3 Summary of Findings

The two-dimensional viscous interface study allows for several important conclusions.

First, the stress-balance of the air-water interface condition is satisfied using the

VOF method. Any differences in stress from the air and water are very small and

can be attributed to the rigor with which the phase-indicator variable thresholds are
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implemented. In an attempt to measure values which are very nearly in air and water,

α = 0.01 and α = 0.99 are chosen. This produces a finite gap between the two fluids

where the interface resides. In addition, the magnitude of the stress in each fluid at the

interface is shown to be very small, suggesting that only consideration of the stresses

in the water through the free-surface approximation is an appropriate assumption.

From here, this free-surface condition is evaluated with nine combinations of Froude

and Reynolds numbers.

The ventilated transom produced with FrT = 3 results in a steady, non-breaking

wave. A conservative approach is taken to determine the effect of the viscous terms

in the free-surface condition by summing the magnitude of each term. It is shown

that this summation is still very small and the viscous terms can be neglected. The

hydrodynamic and hydrostatic pressure terms dominate in the horizontal and verti-

cal components of the stress vector equation. Within these, the vertical terms are

approximately ten times larger than the horizontal terms. Therefore, a zero total

pressure condition in the vertical direction is suitable for the dynamic free-surface

boundary condition. The kinematic condition is also studied with results showing

little difference between a linear and a nonlinear approach, both of which agree well

with the vertical velocity at the surface along the entire wave.

An unsteady breaking wave is produced at FrT = 2. This wave causes the venti-

lation of the transom to oscillate from fully to partially ventilated as the wave breaks

and splashes against the back face of the transom. Iso-surfaces are used to convey

important features of the data. The conservative summation of magnitudes is again

taken when visualizing the viscous terms in the horizontal and vertical components

of the stress vector. The effects of viscosity are larger in magnitude than the steady

wave case, but they are still very small. It is clear that the hydrodynamic and hydro-

static pressures dominate the zero total stress condition, and they are very nearly in

balance. A reasonable solution to this unsteady flow, transferred to the z = 0 plane,
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is shown.

The final case addresses the Froude number FrT = 0.2 in which essentially no

wave is generated. The viscous terms in the horizontal and vertical components of

the stress vector are once again very small, being on the order of those from the

case where FrT = 2. The values of the slope of the water surface, ηx, are very near

zero everywhere. Therefore, the hydrodynamic and hydrostatic pressure from the

horizontal component of the stress vector are practically zero. In addition, the static

nature of the flow produces dynamic and static pressures in the vertical component of

the stress vector which are very small. These are normalized by a static stress scale,

ρgT . Studying the kinematic condition shows the linear approach produces a small

difference in the prediction of vertical velocity within the recirculation region just aft

of the transom. The nonlinear condition agrees well with the vertical velocity in this

region. Still, the linearized URANS method produces results which are very similar

to those obtained with the fully nonlinear VOF method.
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CHAPTER VI

Maneuvering Tests

This section presents results using the linearized URANS method on two variations of

the David Taylor Model Basin (DTMB) 5415 destroyer hull form. The first variation

is the DTMB 5415, which is unappended with the exception of bilge keels. In the lit-

erature, this is referred to as the bare hull. The second variation is the DTMB 5415M,

which is fully appended with bilge keels, stabilizer fins, five-bladed inward-rotating

propellers, spade rudders, exposed propeller shafts, and A-frame shaft brackets. This

is accordingly referred to as the appended hull.

Results are mainly focused on forces and moments in the horizontal plane. These

ship-fixed forces are an axial surge force, X, a lateral sway force, Y , and a yaw

moment about midship, N . The propeller thrust force, T , acts along the propeller

shaft axis-of-rotation. Each force and moment is presented in a dimensionless manner,

as shown in Equation 6.1.

X ′, Y ′, T ′ =
X, Y, T

0.5ρU2
cAo

N ′ =
N

0.5ρU2
cAoLpp

(6.1)

The carriage speed is denoted with Uc. The length between perpendiculars is Lpp,

and the lateral underwater area, Ao, is LppT where T is the draft.
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Unstructured grids are used for both hulls with the native semi-automatic mesh

generator in OpenFOAM, snappyHexMesh, which allows for a hexahedron dominant

mesh as well as boundary layer prisms on hull surfaces. The hands-off nature of snap-

pyHexMesh coincides with the goal of design efficiency for this linearized method. The

Spalart-Allmaras turbulence model is used with an adaptive wall function. Simula-

tions are performed in an inertial, Earth-fixed reference frame. The linearization

restricts body-exact ship motions to those in the horizontal-plane (surge, sway, and

yaw). The rotation of propellers is performed with a sliding mesh communication,

or arbitrary mesh interface (AMI) in OpenFOAM. Details of this technology can be

found in Farrell and Maddison (2011), and an application is shown in McNaughton

et al. (2014).

6.1 DTMB 5415 - Bare Hull

Prescribed PMM tests are conducted with the DTMB 5415 bare hull. These consist

of static drift, pure sway, and pure yaw tests and are compared with experimental

data from the Iowa Institute of Hydraulic Research (IIHR) (Longo et al., 2006) and

from FORCE Technology in Denmark (Agdrup, 2004). The IIHR model is fixed at

the dynamic sinkage and trim, whereas the FORCE Technology model is free to sink

and trim. The hull used in the IIHR physical experiments is displayed in Figure 6.1,

and the model characteristics are shown in Table 6.1.
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Figure 6.1: DTMB 5415 bare hull model from IIHR experiments. Top photograph
shows the keel and both bilge keels

Table 6.1: IIHR DTMB 5415 model principle characteristics

Item Symbol Value Unit
Scale factor λ 46.588 –
Length Lpp 3.048 m
Waterline length Lwl 3.052 m
Beam Bwl 0.410 m
Draft T 0.136 m
Mass m 83.35 kg
Lateral area Ao 0.415 m2

Only the pure sway and pure yaw maneuvers are compared to experimental data

from FORCE Technology in Denmark. The hull used in these experiments is shown

in Figure 6.2, and the model characteristics appear in Table 6.2.

Figure 6.2: FORCE DTMB 5415 bare hull model
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Table 6.2: FORCE DTMB 5415 model principle characteristics

Item Symbol Value Unit
Scale factor λ 35.48 –
Waterline length Lwl 4.002 m
Beam Bwl 0.538 m
Draft T 0.174 m
Mass m 190.7 kg
Lateral area Ao 0.696 m2

In order to monitor spatial discretization errors, three grids are used for each PMM

test. The geometry of the hull corresponds to that of the IIHR 5415 model. A replica

of the FORCE Technology model is not tested numerically. The grid characteristics

are provided in Table 6.3. All grids contain less than one million cells, and the

average y+ values are between 40 and 60. The inertial, Earth-fixed approach to these

simulations allows the same grid to be used for each of the maneuvers herein as well

as many others.

Table 6.3: DTMB 5415 linearized URANS grid characteristics

Cell Count y+
avg

Coarse 2.02×105 60.1
Medium 3.98×105 50.0
Fine 9.18×105 41.7

A summary of the test parameters for the maneuvering simulations is provided

in Table 6.4. These correspond to the experiments performed at IIHR and those

conducted numerically.
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Table 6.4: DTMB 5415 maneuvering test parameters

Item Symbol Value Unit
Carriage speed Uc 1.531 m/s
Froude num. Fr 0.280
Reynolds num. Re 4.464×106

Gravity g 9.81 m/s2

Water density ρ 1000 kg/m3

Water viscosity ν 1.00×10−6 m2/s

Static drift
Drift angle β 10 deg

Pure sway
Sway amplitude η0 0.317 m
Sway frequency Npmm 8.021 min−1

Pure yaw
Sway amplitude η0 0.327 m
Yaw amplitude ψ0 10.2 deg
Yaw frequency Npmm 8.021 min−1

6.1.1 Static Drift

The static drift simulations are compared to experimental data from IIHR. Mesh

motion is governed by Equation 6.2 for the static drift test, where β = 10◦:

β = − tan−1
(v
u

)
Uc =

√
u2 + v2

(6.2)

The steady nature of the static drift test presents an opportunity to perform a

grid convergence study with the linearized URANS approach because determination

of the time-averaged values is straight-forward compared to the unsteady forces of the

dynamic cases. First, the ASME uncertainty procedure is used to find an observed

order of accuracy, p (ASME, 2008). However, the ASME procedure is based on

Richardson extrapolation, where the observed order of accuracy should be no greater

than p = 2. Since unrealistic super-convergence (p > 2) is observed in this static drift
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case, the ASME uncertainty procedure is departed from in favor of a procedure which

addresses this unrealistic behavior. As such, after calculating the observed order of

accuracy, the remainder of assessing the uncertainty is performed with the guidelines

in Eça (2006). The approach from Eça (2006) begins with a convergence condition

that is determined with Equation 6.3:

R =
φ2 − φ1

φ3 − φ2

(6.3)

0 < R < 1 ⇒ Monotonic convergence

−1 < R < 0 ⇒ Oscillatory convergence

R > 1 ⇒ Monotonic divergence

R < −1 ⇒ Oscillatory divergence

Here, φ3, φ2, and φ1 stand for the solutions on the coarse, medium, and fine grids.

The surge force displays monotonic divergence, so an observed curve of convergence

will not contribute to a comparison with the theoretical curve of convergence based on

Richardson extrapolation. However, the sway force and yaw moment show monotonic

convergence, so for Y ′ and N ′ such a comparison can be valuable. Both the theoretical

and observed curves of convergence can be obtained using a least squares approach

to solve for φo and α in Equation 6.4.

φi = φo + α

(
hi
h1

)p
(6.4)

Here, φo represents the extrapolated value (an estimated value corresponding to cell

size hi = 0), and α is a constant coefficient. A representative cell size for each grid

is denoted with hi, where h1 corresponds to the finest grid. Equation 6.4 results in

theoretical curves of convergence when p = pth = 2, and observed curves of conver-

gence when the observed order of accuracy is used for p. The behavior of each force
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and moment can be seen in Figure 6.3. The latter two show the sway force and yaw

moment, respectively. Here, the monotonic grid convergence can be seen, as well as

the extrapolated values as hi/h1 → 0.
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Figure 6.3: Grid convergence study for static drift

Due to the monotonic divergence and the super-convergence seen, an uncertainty

assessment based on Richardson extrapolation is not reliable. Instead, a factor of

safety is used, as presented in Equation 6.5:

Uφ = Fs∆M

∆M = max (| φi − φj |)
(6.5)

The uncertainty is represented with Uφ. The factor of safety is Fs, and ∆M is the

maximum difference in the solution among the grids. For the monotonic divergence

of the surge force, it is suggested that Fs = 3. The sway force and yaw moment show

monotonic convergence and employ a value of Fs = 1.25. These findings are summa-
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rized in Figure 6.4, where the fine grid results are plotted with the uncertainties.
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Figure 6.4: Forces and moment with numerical uncertainties for static drift

To highlight benefit of the linearized URANS method, the static drift simulation

was repeated using a double-body approximation which is a common approach to

maneuvering simulations mainly due to its simplicity and efficiency. This method

enforces a flat free-surface, and thus it does not account for wave effects. For this

reason, it is also referred to as a zero-Froude number approximation. The coarse grid

containing just over 200,000 cells is used with both approaches for the comparison.

Figure 6.5 shows the major differences in the dynamic pressure solution at the z = 0

calm-water plane. This can also be viewed as the solution to the free-surface elevation,

since dynamic pressure and elevation are directly related (p = ρgη). Both show a high

pressure zone corresponding to the bow wave on the windward side, but the linearized

URANS method accurately solves for the waves that are generated on the leeward

side. These waves dissipate rapidly away from the hull simply due to the coarseness

of the grid. Along with obtaining accurate forces, efficiency is a primary goal, so grids

containing as few cells as possible are used.
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Figure 6.5: Coarse grid pressure comparison of linearized URANS (top) and double-
body (bottom) for static drift β = 10◦

To give a more quantitative comparison, the forces obtained using both techniques

are shown in Figure 6.6. Both methods perform well in predicting the surge force

obtained with the physical experiments. However, the zero Froude approach shows a

difference of over 20% for both the sway force and yaw moment. On the other hand,

the linearized URANS method still compares well to the experiments being less than

5% different in all categories.

88



-0.04

-0.02

0.00

0.02

0.04

0.06

X ′ Y ′ N ′

Lin. URANS
Experimental
Double-body

Figure 6.6: Static drift for linearized URANS and Double-body

The computational expense of each method is also important. The linearized

URANS method requires 10% more computing time than the double-body simu-

lation. Specifically, 9.29 hours vs. 8.43 hours on 12 processors for 60 seconds of

simulated time. For a slightly greater expense, the improved accuracy of accounting

for first-order wave effects is significant and still possible to obtain with workstation

computing.

6.1.2 Pure Sway

Results for the pure sway test are compared to both IIHR and FORCE Technology

experiments. The mesh motion for the pure sway test is shown in Equation 6.6:

ηsway = −η0 sin

(
2πNPMM

60
t

)
(6.6)

The numerical carriage velocity is a constant Uc = 1.531m/s, and the corresponding

sway motion period is 7.48s. In addition to the experimental data from the two

testing facilities, results from a fully nonliner method are provided from Miller (2008).

These are obtained with CFDShip-Iowa which uses a level-set method to solve for

the location of the water surface. One set of CFDShip-Iowa results correspond to

simulations performed with a domain that is consistent with the dimensions of the
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tank at IIHR. The second set corresponds to the FORCE Technology tank dimensions.

As such, results are grouped by testing facility and the corresponding CFDShip-Iowa

data. The linearized URANS results are the same within these two groups. The fully-

nonlinear grids employ just over 4.5 million cells. Table 6.5 shows the dimensions of

the two tanks.

Table 6.5: Comparison of IIHR and FORCE tank dimensions

Length Width Depth [m]
IIHR 100 3 3
FORCE 240 12 5.5

Forces and moments compared to IIHR data over one PMM period are displayed

in Figure 6.7. The surge force from the linearized URANS results does not possess the

amount of variation that the experimental signal does, but the time-averaged values

of each are quite similar. The time-averaged values are in slightly worse agreement for

the CFDShip-Iowa results. The linear predictions of sway force show a noticeable shift

with respect to the experimental data, but they are otherwise in good agreement. The

CFDShip-Iowa prediction is in excellent agreement with the experiments. This may

indicate that the physical tank boundaries affect the forces and need to be modeled

numerically as in the CFDShip-Iowa results. Indeed, the tank is only 3m wide, so the

sway amplitude of η0 = 0.317m causes the model to traverse over 20% of the tank

width. Lastly, all methods display good agreement of the predicted yaw moment.

Forces and moments compared to FORCE Technology data over one PMM period

are displayed in Figure 6.8. The time-averaged values of the linearized URANS surge

force are in decent agreement with experimental data. Fully-nonlinear data shows

great agreement, even with prediction of the variation in amplitude of the surge

force. The linear predictions of sway force again show a noticeable phase shift with

respect to the experimental data, but they are otherwise in close agreement, and

the CFDShip-Iowa prediction is very close to the experiments. Each method shows
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Figure 6.7: Forces and moment during pure sway compared to IIHR experiments

similar predictions of the yaw moment.

A highly important feature of these results is the very little difference between

the three grids employing the linear method. Using 400,000 cells shows almost no

difference than using just over 900,000 cells. Even the coarse grid with approximately

200,000 cells provides impressive predictions. Furthermore, the coarseness of these

grids is seldom, if ever, seen being used with fully nonlinear methods. In general, far

greater resolution is needed to see the grid-to-grid agreement that is demonstrated

with the linearized URANS method. For instance, the nonlinear results compared

here are obtained on a grid with 4.5M cells.
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Figure 6.8: Forces and moment during pure sway compared to FORCE Technology
experiments

6.1.3 Pure Yaw

The motion governing the pure yaw maneuver appears in Equation 6.7:

ψyaw = −ψ0 cos

(
2πNPMM

60
t

)
ηsway = −η0 sin

(
2πNPMM

60
t

) (6.7)

For this test, the sway amplitude is η0 = 0.327m, and the maximum heading angle

is ψ0 = 10.2◦. As with the pure sway tests, results from both IIHR and FORCE

are shown along with CFDShip-Iowa data corresponding the the two tank dimen-
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sions. The three grids from the linearized URANS simulations are the same for both

comparisons.
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Figure 6.9: Forces and moment during pure yaw compared to IIHR experiments

Results for the forces and moments compared to the IIHR experiments appear

in Figure 6.9. Predictions of the surge force from the linear simulations do not fully

capture the variation in the amplitude of the signal from the experimental data. How-

ever, the time-averaged values from both agree closely. The variation in amplitude

is obtained with the CFDShip-Iowa simulation, but the average of the force is less

comparable to the experiment. All numerical methods show reasonable consistency

in predicting the sway force except for a slight shift compared to the experiments.

Finally, all numerical and experimental data is in quite close agreement for the yaw
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moment.

Results corresponding to FORCE Technology experiments are displayed in Fig-

ure 6.10. Far less variation is seen in the amplitude of the surge force compared to

the IIHR tank in Figure 6.9. The CFDShip-Iowa simulations show the closest predic-

tions to the experiments, but the linearized URANS data are also closely predictive.

A noticeable difference in the experimental sway force can been seen, as it shows a

larger amplitude than each numerical method. This may be because the model is

free to heave and pitch in the experiments. The linear simulations show the closest

agreement to this experimental force. Lastly, each method agrees well in predicting

the yaw moment.

94



-0.025

-0.020

-0.015

-0.010

-0.005

0.000

X
′

Coarse
Medium
Fine

FORCE exp.
CFDShip-Iowa

-0.015
-0.010
-0.005
0.000
0.005
0.010
0.015

Y
′

-0.015
-0.010
-0.005
0.000
0.005
0.010
0.015

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
′

t/Tpmm

Figure 6.10: Forces and moment during pure yaw compared to FORCE Technology
experiments

6.1.4 CPU Requirements

Computational efficiency is also a primary goal of the linearized URANS methodology.

The CPU expense is calculated by multiplying the walltime with the number of

processors. This expense is reported in CPU hours for the dynamic maneuvers on

each grid in Table 6.6.

The solution of one PMM period using linearized URANS simulations can re-

quire far less time than the nonlinear methods. The time step was manually set

with CFDShip-Iowa, and these simulations require the greatest amount of process-

ing time. Additionally, it should be noted that the CPU hours for the linearized
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Table 6.6: CPU hours per PMM period

Pure sway Pure yaw
Coarse 11.5 10.4
Medium 56.3 35.8
Fine 221.9 196.0
CFDShip-Iowa 322 322

URANS maneuvers correspond to conservative simulations with no under-relaxation

and maximum allowable Courant numbers of just Cmax = 2. VOF simulations re-

ported in Vukčević et al. (2014) using the IIHR model require roughly 72 CPU hours

per PMM period. This is less computationally expensive than the fine grid, but the

VOF simulations use a maximum Courant number of Cmax = 50. A similar setting

would greatly increase the speed of the linearized URANS simulations.

The low computational expense required by the linearized URANS method makes

it suitable for use on a multi-core workstation. Computing clusters are often inacces-

sible to designers. The ability to use machines already present in the workplace shows

promise that RANS-based maneuvering simulations can be brought into engineering

practice more immediately.

6.1.5 Flow Field Data

In this section, the linearized free-surface approach is used in conjunction with large

eddy simulation (LES) and a grid of approximately four million cells for the pure

sway maneuver. The turbulence model implemented is a dynamic one-equation

eddy-viscosity model. The purpose of this investigation is to determine the effect

of linearization on the flow around the hull. Results are compared to particle image

velocimetry (PIV) data from IIHR. Five categories of data are presented, all in a

ship-fixed reference frame. These are shown at four phases throughout one PMM

period, as seen in Figure 6.11. The sampling location is the same for each moment

in time and is located at x/Lpp = 0.935 from the bow. Quantities of a bow-aligned
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axial velocity, a lateral velocity, a vertical velocity, an axial vorticity, and a turbulent

kinetic energy are examined. All values have been non-dimensionalized using the

carriage speed, U = 1.531m/s and the model length, Lpp = 3.048m.

0◦

t/TPMM = 0

45◦

t/TPMM = 0.125

90◦

t/TPMM = 0.25
135◦

t/TPMM = 0.375

Figure 6.11: PIV sampling points and locations for pure sway

The effects of the linearization are most prevalent in Figure 6.12 which shows the

axial velocity. The linearization neglects the perturbation velocity which is not small

everywhere in the domain. In fact, it is equal to the ship velocity on the surface

of the hull. This results in the large difference between the experimental and LES

results. The PIV data also capture the vortex that the sonar dome generates. The

first instance of this feature is seen directly below the keel in the first contour plot of

Figure 6.12. For the most part, this vortex is not captured with the linearized LES

method. It is likely that a finer grid is necessary to more accurately resolve the flow

field data. More agreeable predictions are seen with the lateral velocity presented

in Figure 6.13. The perturbation velocity in sway is not as large as in surge, so the

effects of using a linear free-surface condition are not as noticeable. Again, the vortex

from the sonar dome is not as apparent as in the PIV data. These general conclusions

apply to the vertical velocity as well, shown in Figure 6.14. Qualitatively, the axial

vorticity in Figure 6.15 is similar to the PIV data. However, the vorticity from the

PIV shows distinct circular structures, whereas the linearized LES data are more

elongated. Again, a probable cause for this is insufficient grid resolution. Lastly, the

turbulent kinetic energy is displayed in Figure 6.16. Compared to the PIV figures,

the numerical data are rather poor, especially in the last two phases in time. This

may be due to an unresolved grid or an issue with the turbulence model.
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EFD at t/TPMM = 0 Linearized LES at t/TPMM = 0
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Figure 6.12: Axial velocity comparison
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EFD at t/TPMM = 0 Linearized LES at t/TPMM = 0

t/TPMM = 0.125

t/TPMM = 0.25

t/TPMM = 0.375

Figure 6.13: Lateral velocity comparison
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EFD at t/TPMM = 0 Linearized LES at t/TPMM = 0

t/TPMM = 0.125

t/TPMM = 0.25

t/TPMM = 0.375

Figure 6.14: Vertical velocity comparison
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EFD at t/TPMM = 0 Linearized LES at t/TPMM = 0

t/TPMM = 0.125

t/TPMM = 0.25

t/TPMM = 0.375

Figure 6.15: Axial vorticity comparison
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EFD at t/TPMM = 0 Linearized LES at t/TPMM = 0

t/TPMM = 0.125

t/TPMM = 0.25

t/TPMM = 0.375

Figure 6.16: Turbulent kinetic energy comparison
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6.2 DTMB 5415M - Appended Hull

This section contains results from a prescribed motion maneuver using the appended

5415M destroyer model. The simulation performed with the linearized URANS

method is compared to experimental data obtained at MARIN and shown in Hall-

mann (2007). A photograph showing the stern region of the model is in Figure 6.17.

The test performed is a static drift test with a drift angle of β = 10◦. The propellers

rotate during the test, but the rudders remain fixed at zero deflection angle. In ad-

dition to the many appendages, this model is approximately one meter longer than

the bare hull. The model characteristics are shown in Table 6.7.

Figure 6.17: DTMB 5415M appended hull model from MARIN experiments
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Table 6.7: MARIN DTMB 5415M model principle characteristics

Item Symbol Value Unit
Scale factor λ 35.480
Length Lpp 4.002 m
Waterline length Lwl 4.007 m
Beam Bwl 0.537 m
Draft T 0.173 m
Lateral area Ao 0.692 m2

Propeller diameter D 0.173 m
Num. of blades 5

The complex geometry arising from the many appendages presents difficulties in

grid generation as well as flow resolution. Figure 6.18 shows the hull, appendages,

and free-surface on the coarse grid obtained with the semi-automatic mesh-generator

native to OpenFOAM, snappyHexMesh. The edges of the appendages are defined

well even with this coarse grid of less than 300,000 cells. The interaction between

the appendages is an important feature of the maneuver, so a fine grid is used with a

uniform refinement block in the stern region. This fine grid consists of just over 1.7

million cells. A summary of these grids appears in Table 6.8. All results discussed in

this section correspond to those obtained with the fine grid.

Figure 6.18: Coarse grid discretization of the stern region
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Table 6.8: DTMB 5415M linearized URANS grid characteristics

Cell Count y+
avg

Coarse 2.90×105 69.1
Fine 1.77×106 41.6

Table 6.9: DTMB 5415M maneuvering test parameters

Item Symbol Value Unit
Model speed U 1.554 m/s
Froude num. Fr 0.248
Reynolds num. Re 5.19×106

Gravity g 9.81 m/s2

Water density ρ 1000 kg/m3

Water viscosity ν 1.00×10−6 m2/s

Static drift
Drift angle β 10 deg
Propeller freq. nprop 10.82 s−1

The parameters of the maneuver performed with the appended hull are displayed

in Table 6.9. The drift angle of the static drift test is the same as with the bare hull,

β = 10◦.

The dimensionless, global hydrodynamic forces from the static drift test are pre-

sented in Figure 6.19. There is a significant difference between the linearized URANS

data and the experiments. Although these experiments are difficult to perform

and replicate using physical models (for example, performing a symmetric test at

β = −10◦), there are several probable causes for the numerical forces not predicting

those of the experiment. A main concern is the refinement and modeling of turbulence

in the region of the appendages. This fine grid is likely under-resolved and poorly

modeling the turbulence. Boundary layer prisms are not present on all the surfaces as

they are difficult to generate on small, complex geometries such as the shafts, struts,

and propellers. In addition, the Spalart-Allmaras turbulence model is employed with

an adaptive wall function. These results may indicate that a wall function is not

appropriate for this geometry, and lower y+ restrictions should be implemented.
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Figure 6.19: Force and moment comparison for linearized URANS fine grid and ex-
perimental static drift case

First, the sway force, Y ′, is approximately 25% under-predictive. If indeed this

is due to the under-resolved grid, a finer grid may show a greater sway force on the

appendages. A greater force in this location corresponds with a reduction in the

yaw moment, which is currently over-predicted with the linearized URANS method.

Lastly, the experiment shows a near-zero surge force due to the propeller thrust can-

celing the drag force. The linear results show a small negative surge force, indicating

the propeller thrust is under-predicted. This is confirmed in Figure 6.20 where the

thrust from each propeller is roughly 15% less than the experiment. Again, it is pos-

sible that a finer grid and turbulence modeling or wall function treatment should be

reconsidered.
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Figure 6.20: Propeller thrust from the fine grid during static drift compared to ex-
perimental value

Adding the difference in numerical and experimental thrust force to the surge

force does result in a near-zero surge force, X ′ = 0.005. Nevertheless, the time series

from the port-side propeller in Figure 6.21 shows a steady state is achieved with a

time-averaged thrust, but there is a variation in force about this mean.
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Figure 6.21: Propeller thrust during static drift over time

Closer inspection of the variation within the propeller thrust is displayed in Fig-

ure 6.22. Here, the impulses in the signal are seen to coincide with blade-passings.

The propellers have five blades, so five impulses per revolution are produced. The

angle of the A-frame bracket supporting the propeller shaft is such that blades simul-

taneously pass behind each leg of the bracket.
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Figure 6.22: Propeller thrust during static drift showing impulses due to blade-
passings

Overall, the difficulties with modeling an actual propeller and obtaining an accu-

rate thrust suggest that alternatives such as a body force model may be a worthwhile

pursuit with the linearized URANS method.
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CHAPTER VII

Conclusions and Future Work

7.1 Summary

A linearized free-surface URANS method is shown to be a promising approach

to accurately predicting ship maneuvering. The simplification of satisfying a first-

order wave condition gives rise to computational savings compared to fully nonlinear

methods, as there is far less of a need to resolve grids near the surface of the water.

Grid convergence is more readily achieved using many fewer cells than required with

fully nonlinear methods. The single-phase approach accounts for the viscous effects

which are of great importance in maneuvering, especially the interactions between the

hull, propellers, and rudders. Ship hulls with moving rudders and rotating propellers

may be simulated with fully rigid meshes in an inertial, Earth-fixed frame of reference.

A viscous air-water interface study has been performed in a two-dimensional man-

ner with a transom stern geometry. Typical flows produced in ship maneuvering are

replicated by varying the acceleration due to gravity, g, and the molecular viscosity, µ.

The range of transom-based Froude numbers tested (FrT = 3, FrT = 2, FrT = 0.3)

result in a steady wave, an unsteady breaking wave, and a nearly flat air-water inter-

face. A range of Reynolds numbers are also tested (Re = 1e4, Re = 1e5, Re = 1e6),

but this has far less of an effect on the flow. Viscous terms are shown to simply scale

linearly with the changes in molecular viscosity, µ. The findings from this study jus-
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tify the use of linearized dynamic and kinematic free-surface boundary conditions in

conjunction with the RANS variables for ship maneuvering prediction. The suitabil-

ity of a linearized free-surface is further shown with a replication of the study using

the linearized URANS method. The wave elevations at each Froude number compare

well to those obtained with a fully nonlinear VOF method.

An initial test of the linearized URANS method in a ship-fixed reference frame

is applied to a KCS hull model performing forward speed tests at a range of Froude

numbers. The wave profile along the hull is compared against experiments, and the

agreement is quite good. Slight differences at the transom may be improved with the

use of the custom boundary condition for the free-surface elevation, imposed at the

free-surface/body juncture, which these simulations do not employ. In addition, the

sinkage and trim are calculated and shown to compare very well with the experimental

data.

A David Taylor Model Basin 5415 destroyer hull is extensive tested with a variety

of prescribed motion maneuvers. A bare hull version of the model, fitted only with

bilge keels, undergoes static drift, pure sway, and pure yaw maneuvers. For the static

drift simulations, the linearized URANS method is shown to require only a slight

increase in computational expense of 10% compared to a double-body approximation.

However, the linearized approach agrees with experimental data within 5% for the

surge force, sway force, and yaw moment. The double-body approximation differs

by over 20% for the sway force and yaw moment. The linearized URANS method

continues to agree closely with experimental predictions for the pure sway and pure

yaw maneuvers. Nonlinear simulations show little improvement in force predictions,

and at times less accurate results are displayed. The computational expense required

for the forces compared is up to 30 times less for the linearized URANS method than

a fully nonlinear level-set approach.

The appended version of the DTMB 5415 hull is analyzed with a static drift
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maneuvering test. The five-bladed propellers operate at the design speed rotation

rate for each simulation. Results are not closely agreeable to the experimental data.

It is possible that greater resolution is required near the transom which contains many

appendages with complex geometries.

The results discussed in this thesis are an initial application and validation of the

technology, but they have shown the linearized URANS method to be a viable option

for ship designers compared to model tests and fully nonlinear CFD. Time and cost

savings allow for an increased number of hull forms to be evaluated, which in turn

provides a more complete exploration of a design space. Novel hull forms may be

better suited for their needs due to a more optimized geometry. There exists much

room for improvement with the linearized URANS method, but this only provides an

opportunity for naval architects to improve the designs of the largest moving objects

in the world.

7.2 Contributions

• It is demonstrated that the VOF method satisfies the air-water interface condi-

tion, with the stresses from the air and the water being small at the interface.

The small values of stress from the air demonstrate the suitability of the free-

surface assumption for ship maneuvering prediction. The terms within the total

stress vector of the water are evaluated to determine which terms to include in a

pressure boundary condition. For each case, it is shown that the viscous terms

are extremely small and may be neglected. Furthermore, the hydrodynamic and

hydrostatic pressures are shown to dominate. Therefore, assigning an inviscid,

zero total pressure condition at the z = 0 calm-water plane is justified for the

linearized URANS method.

• The linearized kinematic condition is shown to differ little from the nonlin-
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ear condition and the actual condition from the solution of the transom stern

studies. This truly quantitative investigation has further justified the use of a

linearized kinematic condition for maneuvering simulations beyond the classical

linearization procedures.

• A URANS maneuvering prediction toolkit employing a linearized free-surface

has been developed. It is a single-phase finite-volume method built within the

OpenFOAM environment. Several unique features are implemented in a custom

fashion. A new pressure boundary condition coupled with a free-surface cell-

extrusion solves the linearized dynamic and kinematic free-surface boundary

conditions, respectively. These are solved in an inertial, Earth-fixed reference

frame. Multiple new mesh motion functions exist allowing for pure sway, pure

yaw, and free running model tests. Hulls with rotating propellers and moving

rudders are also possible, and gradual motion development over time is used

extensively in the new motion functions to aid in reducing problems associated

with impulsive starts.

7.3 Future Work

All results generated with the linearized URANS method presented in this thesis are

calculated with a maximum Courant number of just Cmax = 2. Stability issues arise

with Courant numbers greater than two. Although the exact cause is not known, it is

believed that this is from the implementation of the kinematic free-surface boundary

condition and is a problem which can be overcome. Fully nonlinear methods can

employ Courant numbers of Cmax = 50 for ship maneuvering problems. Therefore,

investigating the cause of this instability with the linearized URANS method presents

an opportunity to increase the computational efficiency of the method, possibly by

an order of magnitude.
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An additional source of instability is found within the quality of grids which may

be used with the linearized URANS method. Grids which are seemingly suitable

for computations in terms of non-orthogonality, skewness, resolution, et cetera, can

result in diverging values of the free-surface elevation. This may be directly related

to the issues previously described with increasing the maximum allowable Courant

number. It may be possible that a unique investigation is required in order to deter-

mine the discretization requirements for applying the kinematic free-surface boundary

condition.

The custom boundary condition used at the intersection of the body and the

free-surface allows users to select an angle where the condition on the free-surface

elevation transitions from a zero normal-gradient condition to a mixed condition.

The angle is the difference between the body velocity and the body normal vector.

The boundary condition should be further developed to include a another angle at

which the condition becomes fixed-value. Currently, the condition only becomes fixed-

value when the vectors are aligned. Additional development could include a feature

which dynamically changes the boundary condition based on the magnitude of the

body velocity. In other words, a dynamically changing fixed-value. This may be

useful near the transom stern of an accelerating hull, where the free-surface elevation

is initially at the calm waterline but gradually decreases as the vessel increases speed.

The linearized URANS method is studied extensively with prescribed motion ma-

neuvers resembling those performed with PMMs. Rotating arm simulations are also

of concern to designers due to the rotary maneuvering coefficients that may be ob-

tained, and this is an area where the linearized URANS method could be further

tested. In addition, free-running model tests are possible, and these self-propelled

simulations are valuable for a number of reasons. They may provide knowledge of

propeller meshing requirements for accurate thrust prediction which is important for

achieving design speed in a self-propelled model test. Also, zig-zag and turning cir-
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cle tests could indicate whether neglecting roll, heave, and pitch is still a suitable

approximation.

Results from LES simulations are provided in this thesis, but subsequent studies

may provide valuable insight about the extent to which the linearized free-surface

changes the fluid flow for ship maneuvering. The method may be suitable for studies

such as propeller inflow simulations while remaining less computationally burdensome

than fully nonlinear LES.

Lastly, waves could be added to the linearized URANS tool to provide predictions

for maneuvering in regular and irregular waves. The ability to perform these simula-

tions in an efficient manner is extremely important to designers. A goal to motivate

future work is to develop the capability to accurately and robustly perform full-scale,

self-propelled maneuvers in an irregular seaway.
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APPENDIX A

Viscous Interface Study – Unsteady Breaking

Wave

This appendix contains iso-surfaces from the unsteady breaking wave case in the

two-dimensional transom stern canonical study. The transom-based Froude number

is FrT = 2. Results are shown for Reynolds numbers of Re = 1e5 and Re = 1e6.

A discussion of the results corresponding to Re = 1e4 appears in Chapter V. Four

iso-surfaces are associated with each Reynolds number. First, two figures are used to

display the dimensionless viscous stresses from the total stress vector. One is from the

horizontal component of the of the vector and the other from the vertical component,

in this form respectively:

| 2µeffuxq | + | µeff (uz + wx) s |
1
2
ρU2

(A.1)

| µeff (wx + uz) q | + | 2µeffwzs |
1
2
ρU2

(A.2)

The main conclusion from the investigation of the viscous stresses is that they are

very small at the surface of the water. Additionally, the viscous terms scale linearly

with changes in Reynolds number within the studied range (Re = 1e5 − 1e6). The
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small magnitude of these terms suggests that they may be neglected when seeking

appropriate boundary conditions for a free-surface approximation. Next, two figures

are used to display the dimensionless hydrodynamic and hydrostatic pressures from

the vertical component of the stress vector:

ps
1
2
ρU2

(A.3)

ρgηs
1
2
ρU2

(A.4)

The most important observation from the hydrostatic and hydrodynamic pressure

is that they are much greater than the viscous stresses at the surface of the water.

They are the most influential terms when considering a suitable pressure boundary

condition to apply with a free-surface approximation. Also, the iso-surface from the

static pressure and dynamic pressure are nearly identical, indicating that they are in

balance. Thus, collecting the dominant terms from the total stress vector results in

a single, inviscid total pressure condition in the vertical direction:

p− ρgη = 0 (A.5)

This is the boundary condition used for the dynamic pressure at the free-surface of

the linearized URANS method.
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Figure A.1: Re=1e5, Magnitudes of the horizontal viscous stresses as the wave breaks
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Figure A.2: Re=1e5, Magnitudes of the vertical viscous stresses as the wave breaks
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Figure A.3: Re=1e5, Hydrodynamic pressure as the wave breaks
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Figure A.4: Re=1e5, Hydrostatic pressure as the wave breaks
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Figure A.5: Re=1e6, Magnitudes of horizontal viscous stresses as the wave breaks
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Figure A.6: Re=1e6, Magnitudes of vertical viscous stresses as the wave breaks
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Figure A.7: Re=1e6, Hydrodynamic pressure as the wave breaks

124



t = 0

t = 1 s

t = 2 s

t = 3 s

0

-0.5 0.8

t = 4 s

ρgηs
1
2
ρU2

Figure A.8: Re=1e6, Hydrostatic pressure as the wave breaks
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