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ABSTRACT

Essays on Environmental and Natural Resource Economics

by

Evan Matthew Herrnstadt

Chair: Ryan M. Kellogg

This dissertation addresses issues in the economics of the environment and natural resources.

The first chapter pertains to the inclusion of environmental objectives into contracts between the

government and private firms. In particular, it considers the possibility that conservation restric-

tions may undermine the goal of fostering competition among private logging firms in timber

auctions. Empirically, the policy is costly but is found to be borne primarily by the state without

substantial competitive distortions. Importantly, that state can reduce the impact of the policy on

revenues by setting reserve prices optimally.

The second chapter is joint work with Professor Erich Muehlegger. We use data on Google

search activity related to climate change and shocks to local weather to demonstrate that unusual

weather increases the salience of climate change as an issue. Further, we find that recent weather

shocks have a significant effect on Congressional votes pertaining to environmental regulation.

The third chapter makes a methodological contribution to the analysis of auction data. Many

auctions have a reserve price, below which the seller simply keeps the object of interest. However,

it is typically taken for granted that the object will not be re-auctioned later. Empirical researchers

x



should account for the fact that bidders may respond to this possibility. I present a simple model

of repeat auctions, discuss what information can be identified from bidding data, and provide a

Monte Carlo simulation of an estimator that addresses this issue. Finally, I examine data on repeat

auctions of logging contracts to see whether bidding behavior is consistent with the model. These

data could provide a context in which to estimate the model and analyze counterfactual auction

policies.
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CHAPTER 1.

Conservation Versus Competition? Environmental
Objectives in Government Contracting

1.1 Abstract

Government contracts with private firms increasingly incorporate environmental objectives or pref-

erences for sustainable products and producers. At the same time, the government often solicits

competitive bids to reduce the rents captured by the firms due to private information. In this paper,

I show how environmental objectives can influence equilibrium contract bids through changes to

firm costs, strategic bidding behavior, and bidder participation decisions. Using data from Michi-

gan state logging contracts, I find that conservation objectives reduce bidder participation in the

contract auctions by up to 35 percent and depress winning bids by up to 17 percent. To disentangle

compliance costs from logger margins, I estimate a structural model of the auctions. Simulations

based on the estimates imply that the policy imposes economically and statistically significant

compliance costs. Loggers are able to completely pass these costs on to the government because

compliance costs do not substantially affect the dispersion of private values. However, the use of

optimal reserve prices partially mitigates the revenue disparity between more- and less-restricted

contracts. Finally, loggers capture a larger share of total auction surplus for restricted contracts,

indicating that the policy undermines the state’s ability to harness competition to capture surplus.
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1.2 Introduction

Increasingly, governments are leveraging the scale and scope of their contracts with private firms

to reduce the environmental impact of large projects and purchases. At the same time, contracts

issued by the government are often awarded to firms through competitive bidding to increase rev-

enues (in the case of a sale) or reduce costs (in the case of a purchase). While the pursuit of

environmental objectives will likely impose additional costs on the firms, the economic incidence

of these costs will be determined by the intensity of competitive pressure among bidders. Indeed,

previous work has recognized that the pursuit of social objectives in government auctions, such as

small-business preferences or bids based on estimated contract completion time, can distort com-

petition and affect government revenues, bidder surplus, and efficiency.1 Unlike these policies that

typically modify the rules of the allocation mechanism, environmental objectives often affect the

value of the contract itself. However, such objectives can still undermine or bolster competition.

In this paper, I estimate the effect of environmental objectives on competitive pressure in auc-

tions for natural resource extraction contracts. In particular, I analyze competition for timber con-

tracts auctioned by the State of Michigan Department of Natural Resources (DNR) in the presence

of varying seasonal operating restrictions. The restrictions are implemented to mitigate the im-

pacts of logging in the state forests on the surrounding ecology and recreational use. I identify a

large, negative effect on equilibrium bids and logger participation by exploiting the structure of the

seasonal restrictions and a rich set of controls.2 To quantify the relative importance of the cost of

complying with the restrictions versus that of weakened competition, I estimate a structural model

of the DNR-administered first-price timber auctions. The bidders’ value distribution is parameter-

ized so that it depends flexibly on the seasonal restrictions. I find that most of the effect on bids is

driven by lower valuations, and that the loggers are able to pass nearly the full cost of compliance

1Examples of this literature include Marion (2007); Krasnokutskaya and Seim (2011); Athey, Coey, and Levin
(2013); and Bajari and Lewis (2011).

2Throughout the paper, I refer to all potential bidders as “loggers” for narrative simplicity. In several other papers
that model timber auctions (Athey, Levin, and Seira, 2011; Roberts and Sweeting, 2013), the authors distinguish
between loggers and mills. Conversations with DNR employees suggest that there are few large-scale mills operating
in this market.
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through to the DNR.

The reduced-form analysis demonstrates that environmental objectives have a negative effect

on bids and auction participation and suggests that differential competition could play an important

role. Specifically, I estimate that the winning bid is 17 percent lower for the most-restricted timber

contracts and that these contracts receive 35 percent fewer bids above the reserve price. However,

these effects are highly nonlinear; if the contract is restricted for fewer than 5 months, the bids

are not significantly different from bids for the unrestricted contracts. Moreover, these estimates

are robust to controlling for the underlying reasons for the restrictions, which mitigates concerns

about omitted variable bias. Finally, controlling for the number of participating bidders accounts

for half of the effect of restrictions on the winning bid, which suggests that the participation margin

matters, but is not driving the entire effect of restrictions.

Although the reduced-form analysis of equilibrium bids estimates the effect of restrictions on

government revenue, it cannot generally reveal how costly the restrictions are or who bears the

economic burden of these costs. If the restrictions cause logger valuations for a contract to become

more dispersed, loggers will be more insulated from competition and the winning bidder’s equilib-

rium surplus will increase. In contrast, if the restrictions compress the distribution of valuations,

loggers will expect more intense competition and the winning bidder’s equilibrium surplus will

decrease.

To disentangle these effects, I specify a model of the DNR’s first-price auctions and analyze

the three channels through which restrictions result in lower bids. First, the bidders’ values could

be lower, directly resulting in reduced bids. Second, the bidders would further depress their bids

if they face less competition locally because of increased dispersion in private values. Third, firms

may change their decision to participate in the auction altogether.

I structurally estimate the auction model and find that compliance with stringent environmental

objectives is costly. These costs are almost completely borne by the government. Compliance costs

are very close to zero for contracts that are restricted for less than 4 months. However, restrictions

covering 10 months of the year create compliance costs amounting to 15 percent of the government

3



revenue or 54 percent of the firm surplus from an unrestricted sale. Even when the sale is restricted

for only 6 months, the compliance costs amount to 5 percent of government revenue or 17 percent

of firm surplus. I find that loggers are able to depress their bids enough to fully pass through the

compliance costs to the state. The change in average firm surplus is precisely estimated and very

close to zero for most levels of restrictions. I also find that setting optimal reserve prices can close

some of the revenue gap between more- and less-restricted sales.

The full passthrough finding is driven by two factors. First, I assume that the DNR is perfectly

inelastic to expected bids in supplying timber contracts. This assumption is supported by the timing

of and institutional criteria driving the timber harvest process. Second, my estimates suggest that

compliance costs do not affect the dispersion of contract values. Thus, firms face a similar “local”

distribution of opponents. These mechanisms are related to those discussed by Fabra and Reguant

(2014), who estimate full pass-through of carbon permit costs in the wholesale Spanish electricity

market.

A different way to evaluate the effect of restrictions on auction competition is to calculate the

share of total surplus (government revenue plus firm surplus) captured by loggers. I find that for

an average contract, loggers capture a 5.2 to 6.6 percent larger share of surplus for more restricted

sales relative to unrestricted sales; the difference is statistically significantly different from zero.

This indicates that the restrictions do undermine the competitive performance of the timber auc-

tions, even though the level of firm surplus falls slightly.

To better understand the relative importance of various mechanisms, I decompose the effect

of restrictions on bids. Holding bidding strategies fixed for a logger with a given valuation, I find

that lower valuations due to restrictions directly account for 73 to 82 percent of the decrease in

bids. Allowing loggers to revise their bidding strategies and participation decisions in response to

their opponents’ now-lower valuations accounts for the remaining 18 to 27 percent. This decom-

position shows that the change in winning bids reflects a substantial adjustment by loggers to the

compliance costs of their competitors.

Although these results apply to a particular policy, seasonally-differentiated regulations are
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used in a variety of settings. For example, drilling for oil and gas on government-issued leases

is seasonally restricted, both onshore and offshore, for a variety of environmental reasons. Past

and existing ozone regulations have often had seasonal components, such as the NOx Budget

Program/SIP call and various gasoline content requirements. Finally, seasonal restrictions also

arise frequently in the context of regulated fisheries to prevent adverse effects on non-target species.

Furthermore, environmental objectives are increasingly embedded in a wide variety of govern-

ment contracting settings. While the Competition in Contracting Act of 1984 sets out conditions

and exceptions regarding free and open bidding on federal contracts, various statutes allow the

federal government to relax the Act’s requirements to pursue goals related to the environment and

sustainability. For instance, the Obama Administration has issued a series of executive orders

that promote consideration of environmental factors in federal procurement. In addition, the Gen-

eral Services Administration is considering incorporating bidders’ greenhouse gas emissions as a

criterion in the federal procurement process. Finally, the planning and completion of contracted

projects (e.g., highway construction) may be subject to broader environmental regulation, such as

the National Environmental Protection Act, the Clean Air Act, and the Clean Water Act.

Governments should be aware that environmental objectives can distort the competitive struc-

ture of the contracting process, rendering simple policy predictions and evaluations inaccurate.

Strategic firm responses can be an important consideration when evaluating the impacts of various

environmental policies (Busse and Keohane, 2007; Brown, Hastings, Mansur, and Villas-Boas,

2008; Ryan, 2012). An ex ante prediction of future bids based on estimated compliance costs

assumes exact one-to-one pass-through, which does not have to be the case. Conversely, an ex

post regulatory cost calculation from a simple comparison of bids with and without the environ-

mental policy ignores the potential impact of changing firm margins. An understanding of the

competitiveness of the market is crucial for an accurate evaluation.

I organize the remainder of the paper as follows: In Section 2, I describe the market for logging

contracts in Michigan and outline the role of seasonal operating restrictions. In Section 3, I describe

the contract data and discuss my measure of seasonal restrictions. In Section 4, I establish reduced-
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form effects of the restrictions on equilibrium bid outcomes. In Section 5, I develop and explain the

implementation of the structural model. In Section 6, I present the structural parameter estimates,

discuss the magnitude of compliance costs and the incidence of the seasonal restrictions, consider

an optimal reserve price policy that depends on the restrictions, and decompose the reduced-form

effect to shine light on the importance of various mechanisms at play. Section 7 concludes the

paper.

1.3 Policy and Empirical Setting

To provide context for the empirical analysis, I describe the widespread inclusion of environmental

objectives in government contracting. I also outline my specific context: Michigan DNR logging

contract auctions. These contracts include seasonal operating restrictions that protect the ecologi-

cal integrity of the forest and promote multiple uses, but may impose costs on loggers by reducing

scheduling flexibility.

1.3.1 Environmental Objectives and Fostering Competition

Governments rely heavily on goods and services outsourced from private firms. When they contract

with such firms, there is an information asymmetry: the firms have better information about their

own productivity levels, costs, or values for the contract. The government often uses a competitive

bidding process to extract this information; however, firms will still capture some information

rents. One indicator of the competitiveness of this process is the share of total surplus that the firm

manages to capture in information rents.

Although government contracting is generally carried out with a priority of fostering compe-

tition, environmental responsibility is one competing concern. In the federal context, the Compe-

tition in Contracting Act of 1984 states that contracts are to be awarded through “full and open

competition”, with potential exceptions for small business set-asides, an urgent and compelling

need, a service with a sole supplier, small purchases, or other reasons authorized in statute. Envi-
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ronmental preferences and objectives are justified under a number of statutes across a wide variety

of contracting settings. While the competitive impact of the small business exception has been

well-studied (Marion, 2007; Krasnokutskaya and Seim, 2011; Athey, Coey, and Levin, 2013), en-

vironmental objectives have not.3

Such environmental objectives are becoming more pervasive: many federal government agen-

cies have established broad “Green Procurement Programs” to comply with a variety of relevant

executive orders and congressional acts (Manuel and Halchin, 2013). Some agencies have ex-

pressed concerns that these practices will considerably shorten the list of acceptable contractors or

products (United States Department of Defense, 2008). An important, and not easily measured,

component of evaluating these programs is whether they affect the competitive performance of the

bidding process in terms of the division of surplus. I analyze conservation and multiuse require-

ments in Michigan state forest logging contracts to illustrate the possible effects of environmental

objectives on competition for government contracts.

1.3.2 Timber Contracts and Seasonal Restrictions

The Michigan DNR is mandated with maintaining the ecological integrity and promoting the recre-

ational use of the state forests, while supporting the timber and timber products industry by auc-

tioning logging contracts.4 These logging contracts often include clauses that disallow operations

during certain times of the year during which the forests are ecologically-sensitive or subject to

high recreational demand. The restrictions are known prior to the competitive bidding process.

Loggers claim that these restrictions can be quite costly to their operations and affect their bids.

The DNR tracks the condition of the Michigan state forest system on an ongoing basis. Foresters

survey each forest compartment (roughly 2000 acres) every 10 years. This survey includes infor-

3Aral, Beil, and Wassenhove (2014) theoretically analyze a company that decides whether to audit possible suppli-
ers for sustainable practices prior to a private procurement auction. Smith, von Haefen, and Zhu (1999) compare the
cost per mile of highway construction in states with a higher or lower likelihood of triggering federal environmental
and cultural preservation review requirements.

4This mandate is similar in spirit to the federal Multiple Use-Sustained Yield Act governing the mission of the U.S.
Forest Service.

7



mation about the basic mix, density, and health of the compartment to be used in a statewide timber

inventory. Each year, the foresters determine which stands of trees will be contracted for harvest

using a combination of inventory and aerial data. According to conversations with DNR officials,

the timber is chosen for harvest to pursue forest-management goals. That is, trees are harvested

to maintain proper age balance, density, and disease and pest resistance. Once a stand of trees is

selected for commercial harvest, the DNR sends a forester out to the stand to obtain more precise

measurements of the timber to be harvested. In the process, the forester may determine that there

are grounds for seasonal operating restrictions. For instance, if the ground is particularly wet in the

summer, operations may not be allowed during that time of year to prevent damage to the forest’s

root structure.

Once the survey is completed, the DNR holds an auction for the obligation to harvest the timber.

A contract is made public, including any seasonal restrictions. There is usually a 4-6 week bidding

period before the bid opening date. During the interim, loggers often conduct a “cruise” of the sale

to get a first-hand look at the area in which the harvest will take place. The auctions are sealed-

bid first-price auctions with public reserve prices. The bids, bidder identities, and number of bids

submitted are considered confidential until the results are made fully public at the bid opening. The

highest bidder wins the contract, pays a down payment, and is obligated to harvest the specified

timber before a contract deadline. Failure to fulfill the contract terms results in a financial penalty

and possible exclusion from future sales.5

Seasonal operating restrictions are added to timber contracts to help protect the ecological

integrity and recreational accessibility of the state forests while they are harvested. To this end,

the contracts will often specify certain dates during which the loggers cannot operate on the sale.

There are a number of reasons that a sale might be restricted in such a way; Table 1.1 provides

the frequency with which the main reasons are cited. Many of these restrictions are related to

environmental conservation and resource management. For instance, many sales are restricted in

the spring/summer due to “bark slip”. From April through July, tree bark tends to loosen from the

5Further, contracts are transferred between firms in less than 1 percent of contracts.
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trunk. Thus, it is easy to damage trees when cutting and hauling nearby timber. An example of

such a contract clause is displayed in Figure 1.1. Another example is the presence of an endangered

bird, which would require operations to cease during nesting season. There are also restrictions

related to the multiuse mandate of the state forest system: areas with popular snowmobile trails

are sometimes restricted during winter months, while an area with a large deer population might

be restricted during hunting season.

There is some existing empirical evidence that such restrictions influence a logger’s bidding

decision for a given contract. Using data from Minnesota state forest auctions, Brown, Kilgore,

Coggins, and Blinn (2012) find that sales that allow harvesting activity during the summer or

fall garner winning bids that are 7 percent higher. Taking a different approach, Brown, Kilgore,

Coggins, Blinn, and Pfender (2010) surveyed loggers and DNR foresters in Michigan, Minnesota,

and Wisconsin. Loggers cited seasonal restrictions as the most important factor for determining

their bids, aside from the volume and type of timber included in the contract.

Conversations with Michigan loggers and DNR foresters suggest that these restrictions are

costly primarily because they impose scheduling constraints. Loggers attempt to keep their equip-

ment running year-round for three main reasons. First, many loggers have quotas and contracts

with sawmills and pulpmills that they need to meet at some frequency. Second, logging can be

quite capital-intensive, and consistent revenues are needed to stay up-to-date on loan payments.

Third, loggers simply want to provide consistent employment for their workers. This desire to

schedule jobs throughout the year leads to a difficult scheduling problem.6 The scheduling prob-

lem becomes more complicated when the sales are seasonally restricted. Essentially, a restricted

sale embodies less option value than one that can be cut at any time of year.

These types of restrictions would be less costly if there was a well-functioning short-term

equipment rental market. However, a survey of loggers located in the Eastern half of the Upper

Peninsula and the Northern Lower Peninsula suggests that rental activity is limited. In 2009, firms

used self-owned equipment for an average of 89 percent of their total operations. An average of

6One DNR employee likened the scheduling problem to “the worst linear programming problem [he] can imagine.”
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19 percent of operations was performed using subcontracted equipment, but this question was only

answered by about half of the respondents and the minimum response was 1 percent. Assuming

that the non-responding firms did not subcontract at all, 10 percent of total operations used some

subcontracted equipment. Although the share is non-negligible, it is small. Furthermore, the cost

of the restrictions is likely related to unexpected shocks. Such short-run rentals would be even

more difficult to transact.

1.4 Features of the DNR Contract Data

In this section, I outline the key outcomes and covariates from the contract data. I also construct a

measure of seasonal restrictions, which shows that there is considerable variation in the number of

months for which a contract is restricted. I will use this variation to estimate a flexible relationship

between restriction intensity and bidding behavior, private values, and participation costs.

1.4.1 Contract Characteristics and Auction Outcomes

I obtained the contract text and auction outcomes for all Michigan state commercial timber sales

from April 2004 - March 2013. The data include extensive information about the contract and

auction outcomes, such as all bids, bidder identities, reserve prices, DNR volume estimates of

each product-species combination in the sale, acreage, DNR cost factor estimates, and precise sale

location. To scale bids and reserve prices in a way that makes sales more comparable, I re-express

bids and reserve prices in dollars per thousand board feet (MBF).7 Reserve prices are set using a

formula based on recent prices paid for the same species in the same state forest.

Table 1.2 presents a summary of the sample auctions. Of the 5207 sample auctions, 457 receive

zero bids. Conditional on receiving at least one bid, the mean sale receives a winning bid of

$92.2/MBF; in total dollar terms, the DNR earns $66,000 in revenue from the average contract

7For reference, 1 MBF of lumber would be a stack of boards that is 10 feet long, 4 feet wide, and just over 2 feet
tall. To convert pulpwood, which is measured in cords, to MBF, I use a conversion rate of 2 cords per MBF (Mackes,
2004). I include controls for the composition of the sale in all specifications.
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transaction.8 The mean reserve price is $61.6/MBF, or roughly $43,000. The median number of

bidders is 3, and the mean is 3.9, reflecting a long right tail (the maximum number of bidders in a

single auction is 19). I measure potential bidders by identifying the set of loggers that are active in

similar auctions. Specifically, I define a potential bidder to be any logger who bids for a state forest

contract in the same calendar quarter and DNR management unit as the contract of interest.9 This

definition seems reasonable: 87 percent of bidders in a given auction bid in at least one other state

timber auction in the same calendar quarter-management unit. There are a mean of 18 potential

bidders for the contracts, and the participation rate in a typical auction is approximately 20 percent.

The value of a contract will vary based on the type of timber required to be harvested and

the attributes of the harvest site itself. The average sale is about 83 percent pulpwood by volume.

Pulpwood comes from smaller-diameter trees and parts of trees and is sold to make paper products.

Sawlogs, which are used to make lumber and utility poles, account for the other 17 percent. There

is considerable variation in the sample, both in terms of the proportion of pulpwood versus sawlogs

and the proportion of softwood (such as pine) versus hardwood (such as walnut). The cost factor

variable captures attributes such as wetness, slope, and distance to a road. It is generated by the

forester appraising the sale on the ground, and is used to help inform the appraisal/reserve price.

I restrict the sample slightly to exclude especially unusual sales. I exclude sales with reserve

prices less than $20/MBF or greater than $250/MBF or areas less than 20 acres or greater than

640 acres. These roughly represent the 1st and 99th percentiles of these variables. I also drop all

salvage sales, which specifically market fire-, wind-, or pest-damaged timber. Figure 1.2 presents

the number of sample auctions that took place each quarter in the Lower and Upper Peninsulas.

Clearly there is some cyclicality in both peninsulas – there are generally more sales held in spring

and summer than in winter and fall. Given that the median contract lasts nearly 2.5 years, season

of the auction itself should not play a large role in the value of the contract. Still, I include quarter-

of-year dummy variables in my primary specification to control for this pattern and find that it does

8All dollar figures are deflated to 2009 USD.
9A management unit is usually a 2 to 3 county area: see Figure 1.3 for a map. This general approach is similar to

existing work that analyzes entry in timber auctions, such as Roberts and Sweeting (2013) and Athey, Coey, and Levin
(2013).
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not have a large effect on my results.

1.4.2 Seasonal Restrictions

The DNR does not maintain a database variable that indicates when harvesting operations are

allowed. However, the information is written into the contract that describes the sale to potential

bidders. Thus, I analyzed all relevant contract clauses and constructed such a variable. Specifically,

I calculated the number of months that a sale is restricted.10 This variable captures the first-order

driver of lost option value: the number of months during which a sale is inaccessible.11

There is considerable variation in the average number of months for which a sale is restricted.

Among sales with any restrictions, the median is 3 months, which reflects that many sales are

restricted for a single season. However, there are 536 contracts (10.2 percent of the full sample) that

are restricted for 6 or more months. Figure 1.4 displays the conditional distribution of restrictions.

The spike at the 2-3 month bin reflects that the most common restriction (bark slip) generally lasts

between 2 and 3 months, from mid-April to mid-July.

1.5 The Effect of Restrictions on Equilibrium Bidding

In this section, I show that seasonal restrictions have a negative effect on equilibrium bidding and

participation. First, I estimate the effect of seasonal restrictions on winning bids and the number of

bidders participating in an auction, controlling for a rich vector of auction characteristics. Second,

I demonstrate robustness of this base specification to omitted variables by exploiting the structure

of the seasonal restrictions. Third, I establish suggestive evidence that some of the effect on bids

is driven by changes in competition.

10Sales are divided into “payment units”, which may be subject to different restrictions. For each calendar month, I
determine the fraction of the month that each payment unit is restricted. Then I calculate the average across payment
units, weighting them by appraisal value.

11One concern with this measure is that if a contract takes a few weeks to fulfill, then a short window of availability
is essentially a restriction. Less than 1 percent of contracts have any windows between restrictions that last for 15 days
or less. Treating these windows as restrictions or omitting such sales from the analysis entirely has no effect on the
results. In Appendix A, I also consider seasonality as a possible mechanism.
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1.5.1 Main Specification

I estimate a large, negative effect of restrictions on bids and participation. When the restrictions

are allowed to enter nonlinearly into the regression, I find that the effects are concentrated among

the more-restricted sales.

The main specification is given by:

Outcomea = h(MonthsRestricteda) + βXa + εa

where Outcomea is the number of bidders or the logarithm of the winning bid per MBF in auction

a, h(·) is a function of the number of months for which a contract is restricted, andXa is a vector of

controls. These controls contain standard characteristics used in previous work on timber auctions,

such as the Herfindal-Hirschman Index of the value of the species in the sale, the size of the

sale in acres, and the mix of sawlogs (lumber) versus pulpwood (a paper input).12 A particularly

important and new control variable is a cost index developed by the DNR. This index is meant to

capture otherwise difficult-to-capture characteristics, such as the topography of the land, the soil

conditions, road and construction requirements, the distance to the nearest road and mill, and an

assessment of the timber quality. Importantly, seasonal restrictions are not directly accounted for

in these cost factors. Table 1.3 further describes the criteria used in developing the cost factors.

Note that this variable is defined such that a larger value corresponds to a less costly sale.

Although seasonal restrictions may be correlated with other determinants of a contract’s value,

I address much of the omitted variable problem with a comprehensive set of controls and proxies.

For example, if a wet stand of timber is more likely to be restricted to preserve the root structure

of the stand, but loggers also find working in wet areas more costly due to higher equipment main-

tenance costs, this would introduce negative bias into the treatment effect. Most of these concerns

can be eliminated by controlling for observable auction characteristics. The DNR-calculated cost

index is a particularly crucial control variable for this reason. In Section 1.5.2, I also leverage the

12The full contents of the control vector can be seen in Table 1.4.
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structure of the restrictions. In particular, contracts are frequently restricted for multiple reasons,

which allows me to control for the underlying basis for the restrictions.

When I specify h(·) as a linear function of the months of restrictions, I find that restrictions

have a significant negative effect on the logarithm of winning bids and the number of bidders (see

Tables 1.4 and 1.5, respectively).13 The effect of an additional month of restriction is quite robust

across different sets of controls and location, quarter-of-year, and year fixed effects. I focus on

Column 4 as my preferred specification for both the reduced-form and structural estimates. This

specification indicates that that the most-restricted contracts attract 8 percent less revenue and 0.8

fewer bidders out of an average of 3.9.

Although the linear functional form implies that the additional effect of each month of restric-

tions is the same, estimates from a more flexible specification suggest that the state should be

primarily concerned about losing revenues due to the most stringent restrictions. When I specify

h(·) as a restricted cubic spline with knots at 0, 3, 6, and 10 months of restrictions, the effects are

strikingly different from the linear effect.14 Figures 1.5 and 1.6 present the cumulative effect of

restrictions as the number of months increases from zero to 10 (the maximum in the sample) on

the logarithm of the winning bid and the number of bidders, respectively.15 The first four months

of restrictions have zero marginal effect on winning bids, while the average marginal effect over

restriction months 5-10 is about 4 percent per month. In contrast, the linear specification implies

that each additional month of restrictions is associated with a 0.8 percent decline in the winning

bid. For a contract that is restricted for 10 months, the effect is quite large: it receives 1.5 fewer

bids (the mean is 3.9) and a winning bid that is 17 percent lower relative to an unrestricted contract.

The effect on the number of bidders suggests that the differences in winning bids might be

driven by differences in market thickness. Suppose that seasonal restrictions are more prevalent in

areas with fewer active loggers. Then we would expect more restricted sales to attract a different

number of bidders and level of bids even without a causal effect of restriction on bidding behavior.

13As contracts in the same area around the same time are likely to be subject to similar shocks, I calculate clustered
standard errors at the county-by-year level.

14The results are robust to other similar sets of knots.
15The underlying regressions are analogous to Column (4) of Tables 1.4 and 1.5.
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Figure 1.7 shows that a lower share of potential bidders actually participate in auctions for the

more-restricted sales. Furthermore, in Figure 1.8 I replicate the regression in Figure 1.5, except

that I control for a flexible polynomial of the number of potential bidders. The treatment effect

does not change appreciably, indicating that the reduced-form results are not driven by differential

market thickness.

1.5.2 Robustness: Identification from Multiple Restriction Types

To this point, the identification assumption has been that, conditional on control variables, the re-

strictions only affect values directly through the scheduling constraint and are also uncorrelated

with other unobserved determinants of bids. Given that the restrictions do not require specific

procedures during the time that the sale is accessible, this seems reasonable. To further address

potential omitted variable bias, I exploit the fact that a single contract could be restricted for mul-

tiple unrelated reasons. Specifically, I control for the rationales behind the restrictions with a set

of dummy variables.16 The new weaker identification assumption is that the interactions between

restriction categories do not directly affect logger valuations and are uncorrelated with other un-

observed determinants of bids, conditional on controls. Indeed, conversations with DNR foresters

and industry participants suggest that these interaction effects are zero or at most second-order.

Because multiple regulation types “stack” on top of each other, I can include restriction-type

dummies to control for restriction-specific unobservables, leaving only idiosyncratic variation and

the (potential) effect of interactions between restriction types. The regression equation is now:

Outcomea = h(MonthsRestricteda) + βXa +
∑

γraI
r
a + εa

where Ira is an indicator variable equal to one if contract a is restricted for reason r.

In practice, this identification strategy requires combinations of different restriction categories

16One possible alternative identification strategy would be to exploit the arbitrary assignment of foresters to different
sales and use DNR foresters’ idiosyncratic tendencies as an instrumental variable. This approach is discussed in
Appendix B. Unfortunately, there is not sufficient variation in this instrument to identify the treatment effect.
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in the data, which is satisfied in this context. Table 1.6 presents the number of sales characterized

by each pairwise combination of restriction categories. There are 32 unique pairwise combinations

of restrictions, and 28 percent of the contracts in the sample are restricted for at least two reasons.

This abundance of combined restrictions should allow me to reliably apply the identification strat-

egy.

If unobserved factors correlated with individual restriction types are driving the equilibrium

treatment effects, these estimates should shrink toward zero when I control for restriction type.

Of course, if the restriction categories are positively correlated with valuable unobserved contract

characteristics, then the estimates would be larger in magnitude. The linear specifications are

presented in Table 1.7: the treatment effect does increase slightly. In Figure 1.9, I estimate a

spline specification with the restriction categories. The magnitude of the treatment effect actually

increases a small amount: for the most restricted sales, the effect on winning bids is 19 percent,

compared with 17 percent in Figure 1.5. The effect on the number of bidders in Figure 1.10 is also

slightly different from the base spline specification in Figure 1.6. In both cases, the difference is

well within the 95 percent confidence interval, and I take this as evidence that the reduced-form

estimates are robust to omitted variable bias.

1.5.3 Importance of the Participation Margin

Given the significant effect of restrictions on the number of bidders, I re-estimate the effect of re-

strictions on the winning bid, but control for the number of participating bidders. In the presence

of a binding reserve, a change in the unobserved distribution of values will directly supress partic-

ipation because fewer bidders will draw values above the threshold necessary to justify bidding.

Figure 1.11 presents the estimated restriction spline: although there is still a significant negative

impact, accounting for the number of bidders accounts for roughly half of the restriction treatment

effect. This result underlines the importance of directly modeling the reserve price and estimating

participation costs.
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1.6 A Structural Model of DNR Timber Auctions

The reduced-form effects establish that bids are affected by seasonal restrictions; however, such

an approach cannot recover compliance costs, surplus, and incidence of the costs. To that end,

I specify a structural model of a first-price auction with costly participation based on Samuelson

(1985). I describe the various channels through which restrictions could affect bidding behavior,

parameterize the model such that these channels can be estimated, and outline the actual estimation

procedure. The model allows me to estimate the extent to which the equilibrium bid effects are

driven by lower valuations versus weakened competition.

1.6.1 Main Assumptions

To introduce the basic components of the structural model, I specify a model of a first-price auction

with endogenous participation and characterize the equilibrium.

The model is a first-price auction with costly participation; the equilibrium is a participation

rule combined with a bid function. There are N potential bidders that draw independent private

values (IPV) vi from a common distribution F (v). Given this draw, each bidder decides whether

to undertake a costly bid-preparation process, which costs K. Participants then submit bids in a

first-price auction with public reserve price R, without observing the other potential bidders’ par-

ticipation decisions. I restrict my analysis to symmetric perfect Bayesian Nash Equilibria. Given

my assumptions, the equilibrium is characterized by a cutoff type v∗(N,R) and equilibrium bid-

ding function b(v;N,R).17 That is, a potential bidder with valuation v will incur the bid preparation

cost and submit a bid b(v) if and only if v ≥ v∗.

A key informational assumption is that bidders learn their valuations before making the partic-

ipation decision. This information structure (Samuelson, 1985) implies that the types entering the

auction will represent draws from an advantageously selected portion of the value distribution. The

main alternative in the literature is a model with no selection (Levin and Smith, 1994), in which
17I suppress N and R going forward to simplify notation.
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firms know only the distribution F (v) when they pay their entry cost. In terms of entry, a marginal

firm and an inframarginal firm draw their private values from the same distribution.

I choose the selective entry model for two reasons. First, in my setting loggers tend to bid

only on nearby tracts of timber and have often been working in the same small area for years.

This suggests that firms probably have a fairly precise signal about their private value prior to

incurring any sunk cost. Second, the selective entry model is preferred by Li and Zheng (2012),

who formally test the selective and non-selective entry models against one another using Michigan

DNR timber auctions and find that that the selective entry model is a much better fit for the data.18

The choice of entry model has important consequences for the model’s implications, and the

validity of the structural estimates.19 The difference between the models can be understood be

considering a policy that subsidizes entry. In expectation, this policy will induce some marginal

firms to bid that would not have otherwise done so. In the selective entry model, these marginal

firms will have lower private values than those that would have entered without the subsidy. In

contrast, the non-selective entry model implies that the marginal entrant will have the average

value of the existing participants in expectation.

The entry model will also affect the structural estimation of the private value distribution. If

the non-selective entry model is estimated and there is actually selection in the entry process, firm

value estimates will be too high and underdispersed because the bids are assumed to be repre-

sentative draws of the unconditional (on entry) value distribution. This could lead to misleading

estimates of firm surplus.

The model does not allow for dynamic considerations, such as contract backlog. Most stud-

ies that have estimated dynamic procurement auctions have done so in the context of highway

construction (Jofre-Bonet and Pesendorfer, 2003; Balat, 2013; Groeger, 2014). In their setting,

constructing a backlog measure is reasonable: most comparable jobs are observed as state or fed-

18A third option is the affiliated signal model introduced empirically by Roberts and Sweeting (2013). In this model,
firms receive a noisy signal of their value and decide whether to pay a cost to reveal their true valuation: the S and LS
models are limiting cases. Roberts and Sweeting find that participation in U.S. Forest Service auctions is moderately
(but not perfectly) selective.

19 Roberts and Sweeting (2010) provide a relevant discussion, which I outline here.

18



eral projects and the contracts must generally be completed by the end of the year. In my setting,

state forest contracts represent only a quarter of total timber cut in Michigan; private and federal

forestland compose the balance. Firms located in the Upper Peninsula may also bid on jobs in Wis-

consin. Further, DNR contracts last for 2 to 3 years and I am unable to obtain the true completion

date. Thus, any inventory measure I could construct based solely on state forest auctions would be

uninformative.

1.6.2 Potential Effects of Seasonal Restrictions on Bids

I present a closed-form expression for the equilibrium described in the previous subsection and

describe in detail the three channels through which restrictions could affect bidding: the value

effect, the competition effect, and the participation threshold effect. I will quantify the relative

importance of these three channels using the structural model. While I apply this model to high-

bid first-price auctions in the Michigan timber market, the basic intuition can be extended directly

to any contract allocated using an auction mechanism. The implications for identifying compliance

costs and changes in firm surplus solely from equilibrium transaction prices will still apply as long

as the expected firm information rents can be affected by the policy.

To simplify the explanation of the various channels, I start with a model of costless participa-

tion. In this model, there areN potential bidders, who will always bid if their valuation is above the

reserve price, R. In this case, Holt (1980) and Riley and Samuelson (1981) derived a closed-form

solution for the equilibrium bidding function, which I adapt into an expression for the expected

winning bid:

Evw [bi(v
w;F−i(·; r)] =

∫ v̄

R

[
vw −

∫ vw
R

F−i(u; r)N−1du

F−i(vw; r)N−1︸ ︷︷ ︸
markdown

]
fN(vw; r)dvw

where FN(v; r) and fN(v; r)) are the distribution and density, respectively, of the highest value

draw (vw) among the N bidders. F−i(v; r) is the distribution from which a bidder expects their

competitors to draw. Note that FN(v; r) and F−i(v; r) are functions of seasonal restrictions r.
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This equilibrium assumes bidder symmetry, i.e., that F−i(v; r)N = FN(v; r). However, I make

the distinction between a bidder’s own and opponents’ distributions to allow a clear decomposition

of the change in the expected winning bid with respect to restrictions. There are two main ways

that a change in restrictions could change the equilibrium bid vector: the value effect and the

competition effect. These are evident from the derivative with respect to the restrictions:

dEvw [bi(v
w;F−i(·; r)]
dr

=

Value Effect︷ ︸︸ ︷∫ v̄

R

[
vw

d

dr
[fN(vw; r)]dvw

]
︸ ︷︷ ︸

Compliance Cost

−
∫ v̄

R

[∫ vw
R
F−i(u; r)N−1du

F−i(vw; r)N−1

d

dr
[fN(vw; r)]dvw

]

−
∫ v̄

R

d

dr

[∫ vw
R

F−i(u; r)N−1du

F−i(vw; r)N−1

]
fN(vw; r)dvw︸ ︷︷ ︸

Competition Effect

Value Effect A change in the distribution of the highest valuation, FN , due to restrictions will

affect the expected winning bid. Even without any change in the markdowns associated with a

given valuation, the expected winning bid would be different. This difference is the mechanical ef-

fect of changing the mix of private values without allowing firms to re-optimize their bid functions

accordingly.

This expression demonstrates that a simple comparison of bids cannot identify compliance

costs or pass-through without further assumptions. The compliance costs are the cost to society

due to the policy; without costly participation, this is simply the change in the expected highest

value draw. In the expression above, this is the first bracketed term. However, even without

changes in the bid function, the expected markdown associated with the winning bid will change

because different values are associated with different markdowns along the bid function. This is

the extent to which compliance costs would be passed through even if loggers did not realize their

competitors also face compliance costs.

Thus, the expression for the value effect reveals two facts. First, the relative importance of
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compliance costs and changes in markdowns cannot be estimated using reduced form relationships

between bids and restrictions. Second, the value effect only corresponds exactly to the compliance

cost if bidders happen to fully pass costs through along the relevant interval of the bid function.

Competition Effect There is also a direct effect on the expected winning bid due to a change in

the distribution of a bidder’s competitors. In describing the competition effect, I hold the winning

value distribution fixed, and allow the bid strategy to change in response to the change in F−i.

The markdown term, conditional on a private value, is affected by a change in the distribution of

opposing bidders. The numerator of the competition effect roughly corresponds to the expected

margin between a given level of vw and the second-highest value, conditional on vw being the high-

est value. That is, if the dispersion of the distribution changes in the neighborhood of the bidder’s

value, this margin will change for a given vw. This is a change in the intensity of competition that is

“local” to the bidder within the value distribution. The denominator is the probability that a given

value will win the contract. This is less intuitive: the incentive compatibility constraint means that

a high-value firm’s markdown is disciplined by the possibility that a lower-valued bidder will want

to bid like them.

Altogether, an effect on competition can arise even in the absence of endogenous participation.

However, endogenous participation fits the setting and reduced-form evidence more convincingly

and allows for an additional mechanism.

Participation Threshold Effect Incorporating a bid preparation cost complicates the equilib-

rium bidding function and reveals a new channel through which restrictions can affect bidding

behavior. Because bidders are symmetric, the expected winning bid can still be expressed in

closed form given the marginal type v∗, which is an implicit function of K and the distribution

of opposing bidders, F−i(v; r) (Hubbard and Paarsch, 2009):
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Evw [bi(v
w;F−i(·; r)] =

∫ v̄

v∗

[
vw −

∫ vw
v∗

F−i(u; r)N−1du

F−i(vw; r)N−1
− F−i(v

∗; r)N−1

F−i(vw; r)N−1
(v∗ −R)

]
fN(vw; r)dvw

K(r) = (v∗ −R)[F−i(v
∗; r)]N−1

The reserve price R has been replaced in the second term of the bid function by the threshold type

v∗ in the closed-form bid function. This reflects the fact that the participation cost, K, discourages

bidders with valuations very close to the reserve price from participating.

The zero-profit condition in the second equation determines the relationship between restric-

tions and participation behavior. The marginal type v∗ will vary with restrictions because the

expected payoffs to a participating bidder with a given value draw will change. These changes

will arise because restrictions could affect the distribution of opponents, F−i(·; r), or the cost of

participation, K(r).

Endogenous changes in participation through v∗ will create a feedback effect that may partially

counteract the competition effect. Intuitively, if the expected mix of opposing bidders is weaker

than before, some types that barely decided not to participate before will now find it worthwhile

to submit a bid. In contrast, if the restrictions increase the cost of participation, then loggers will

require a higher value draw to justify bidding.

This change in v∗ effects markdowns through the second and third terms. There will be a new

group of terms in the derivative of the expected winning bid corresponding to the effect of r on

v∗.20 A different type will now be bidding the reserve price, so the equilibrium bids associated

with types above v∗ must also change in response.

1.6.3 Parameterizing the Model

I take a parametric approach to estimation similar to Roberts and Sweeting (2013), which allows

me to incorporate rich observed and unobserved auction heterogeneity. The observed heterogene-

20For conciseness, I omit the actual expression.
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ity is analogous to the controls in the reduced form section and allows me to isolate the effect

of seasonal restrictions, while the unobserved heterogeneity plays an important role in obtaining

realistic bidder margins.

The objects of interest are closely related to the intensity of competition within an auction.

Therefore, it is important that I allow for auction-specific unobserved heterogeneity. To understand

this, suppose that all auctions appear identical to the econometrician and that the variance of value

draws within an auction is quite small. Then bidders will want to bid close to their valuations

in equilibrium because they expect their competitors to have very similar valuations. However,

if the auctions differ in an unobservable way that is known to the bidders, their bids will vary

considerable across auctions. When I pool data across these ostensibly identical auctions, my

model and estimates will imply that the value distribution has a relatively large variance. Thus, in

simulations, bidder markdowns and profits would be overestimated.21

To avoid these issues, I assume the parameters characterizing auction a are drawn from distri-

butions based on observable characteristics and an auction-specific random effect. Each auction

a is characterized by a vector of observable characteristics Xa, a participation cost Ka and a dis-

tribution of bidder values Fa ∼ TLN(µa, σa, 0, v̄). TLN(·) is a lognormal distribution truncated

above at v̄.22

The random effects are assumed to be uncorrelated with the observable characteristics, which

is consistent with the reduced-form discussion above. Specifically, I assume the following distri-

butions for θa = {µa, σa, Ka}, conditional on Γ = {β,h,ω}:

µa ∼ N(βµXa + hµ(MonthsRestricteda), ω
µ)

σa ∼ Weibull (exp[βσXa + hσ(MonthsRestricteda)], ω
σ)

Ka ∼ Weibull (exp[βKXa + hK(MonthsRestricteda)], ω
K),

21Krasnokutskaya (2009) details this argument further and presents nonparametric identification results in an envi-
ronment without selective entry.

22In practice, I set v̄ = 1500, which exceeds any observed bid by 300 percent.
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where Xa are observable auction characteristics. The distributions for σ and K must have non-

negative support. I specify these parameters using a Weibull distribution, which is bounded below

at zero and can take on a variety of shapes. For simplicity, I only allow the scale parameter to vary

with Xa and h(·); the shape parameter is common to all types of auctions.

Given the discussion in the previous subsection and the reduced-form evidence, the restrictions

could nonlinearly affect auction outcomes. I will allow the months of seasonal restrictions to en-

ter all three distributions as a restricted cubic spline, mirroring the regressions already presented.

Despite the parametric assumptions, this flexibility within the distribution should help capture the

true effects of regulation on auction outcomes and readily allow the decomposition of the equilib-

rium effects. In practice, I estimate the structural model with the vector of covariates included in

Column (4) of Table 1.4 and Figure 1.5. The X vector includes all of these covariates. I again

specify h(·) as a restricted cubic spline in months of restrictions.

Informally, identification of the parameters comes from a combination of the data and the

distributional assumptions.23 The parameters of the value distribution are identified by the covari-

ances of the observed auction characteristics, including seasonal restrictions, with features of the

bid data. In particular, the level of the observed bids, the distances among the bids, and the dis-

tance from bids to the reserve price are informative. The participation costs are identified by the

probability of bidder participation. The number of potential bidders, which is determined in the

long run and assumed exogenous to a given auction, provides additional variation. The unobserved

heterogeneity is identified by the distributional assumptions and the variation in bidding patterns

among observably similar auctions.

1.6.4 Empirical Implementation of the Model

Given the parametric assumptions and the equilibrium bid functions, I derive the likelihood of a

vector of parameters conditional on the observed auction data and describe the Maximum Simu-

23 Xu (2013) considers nonparametric identification and estimation of the selective entry model, but does not ac-
commodate unobserved heterogeneity.
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lated Likelihood (MSL) estimator. Simulating the equilibrium is computationally non-trivial, so I

use importance sampling to reduce the computational burden.

I observe vectors of bids and participation decisions; however, the goal of the structural esti-

mation is to recover the latent distributions of bidder values and auction participation costs. The

equilibrium of the auction implies an inverse-bid function that maps bids and participation deci-

sions into valuations, given a value distribution and participation costs. Thus, I can calculate the

likelihood of observing a given vector of bids and participation decisions conditional on auction-

specific variables, θ = {µ, σ,K}.24

To accommodate the unobserved heterogeneity in θ, I simulate the integral representing the

likelihood of observing a given vector of bids and bidder participation decisions given a guess of

the parameter vector Γ. I maximize the log-likelihood function with respect to Γ:

max
Γ

1

A

∑
a

La

where La = log
(∫

`a(θ|ba)p(θ|Γ, Xa)dθ

)
≈ log

(
1

S

S∑
s=1

˜̀
a(θas|ba, Xa)

)
where ba is a vector of bids and participation decisions observed in auction a, A is the number of

auctions in my sample, and θas is drawn from the density p(θ|Xa,Γ).25 It is well-known that MSL

is consistent only when the number of draws grows sufficiently quickly relative to the sample size.

To minimize this concern, I use 1000 simulation draws per observation.

Although I can express the equilibrium bid function in closed form, traditional Monte Carlo

simulation is still computationally burdensome. Each evaluation of the likelihood for the full

dataset requires solving for the inverse bid function for hundreds of thousands of auctions for each

guess of Γ, which takes a non-trivial amount of computing power and time. Therefore, I adopt an

importance sampling approach: Ackerberg (2009) outlines the technique and demonstrates a num-

24A derivation of the bid density is available in Appendix C.
25These likelihoods are conditional on the number of potential bidders (N ) and the reserve price (R). However, N

and R do not enter the importance sampling process because there are no parameters that explicitly depend on them.
Thus, I suppress them for notational clarity.
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ber of applications in empirical industrial organization, including structural estimation of auctions.

Such an approach has been successfully used to estimate similar auction models by Roberts and

Sweeting (2013); Bhattacharya, Roberts, and Sweeting (2014); and Gentry and Stroup (2014).

Importance sampling involves a change of variables in the integral above:

∫
˜̀
a(θ|ba, Xa)

p(θ|Γ, Xa)

g(θ|Xa)
g(θ|Xa)dθ ≈

1

S

S∑
s=1

˜̀
a(θas|ba, Xa)

p(θ|Γ, Xa)

g(θ|Xa)

where θas are now drawn from an initial importance sampling distribution, g(θ|X). As the guess

of the parameter vector Γ changes, the likelihood that a given simulation would have been drawn

changes through p(θ|Γ, X). However, no other terms are affected. Essentially, for a given param-

eter guess, I re-weight the pool of simulation draws by p(θ|Γ,X)
g(θ|X)

to match the density defined by

that guess. For instance, if a given simulation was an unlikely draw from g(θ|X), but a very likely

draw from p(θ|Γ, X), this simulation would receive a large weight. This specification allows me

to incorporate substantial auction heterogeneity without needing to solve hundreds of thousands of

auctions for every candidate parameter vector. Instead, I simply solve for the appropriate vector of

weights, which is an inexpensive operation and has an easily-calculated gradient.

The initial importance sampling densities g(θ|X) are:

µ ∼ Uniform (0, 6)

σ ∼ Uniform (0.01, 2)

K ∼ Uniform (0, 4)

The intervals are chosen to include all sets of auction parameters that are reasonable upon inspec-

tion of the bid data. I obtain similar results when the initial importance sampling distributions are

normal (for µ) and Weibull (for σ and K) distributions based on OLS regressions of the bid data. I

simulate a new set of auctions based on these first-stage estimates and re-estimate the model. This

two-step procedure can help reduce simulation error, as noted in the literature (Ackerberg, 2009).
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1.7 Results of the Structural Estimation

In this section, I simulate auctions using the estimated structural parameters. The model fits well,

and the simulations demonstrate that firms almost fully pass through the compliance costs associ-

ated with the restrictions. I also perform decompositions to further assess which mechanisms are

most important in explaining changes in winning bids.

1.7.1 Parameter Estimates and Model Fit

I discuss the implications of the parameter estimates for the relationship between the seasonal

restrictions and the distribution of valuations and verify the fit of the model. The structural param-

eters are presented in Table 1.8, along with standard errors derived from 100 bootstrap replications.

The signs of the elements of βµ are as expected, although the restriction splines are difficult to in-

terpret directly. Thus, Figure 1.12 shows the effect of restrictions on the mean, standard deviation,

and participation cost of a contract with otherwise typical observable characteristics. The mean

falls by roughly 12 percent for the most-restricted sales. The standard deviation does not vary

appreciably, except for a slight (but statistically insignificant) decline for the most restricted sales.

The within-auction standard deviation gives some indication of the degree to which a bidder will

be able to shade their bid in equilibrium. If the spread is large, then there is less chance of a more

heavily shaded bid being undercut because each bidder is more isolated in the distribution of pri-

vate values. Because the expected markdown is roughly the expected gap between the first and

second-highest valuations, it is difficult to predict the outcome from the first two moments only.

Finally, the mean participation cost rises from $65 for a typical sale ($0.095/MBF*687 MBF) when

unrestricted to $82 and $272 when restricted for 6 and 10 months, respectively. The decomposi-

tion in the next subsection will provide a quantitative breakdown of how these effects influence

equilibrium bids.

For reference, Figure 1.13 presents the distributions of µ, σ, andK for a representative auction.

In the case of σ and K, as the observable characteristics of the auction change, the location of the
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distribution will change through β, but the general shape (determined by ω) will remain the same.

There is considerable unobserved auction heterogeneity in terms of µ and σ. The distribution

of µ implies that a one standard deviation change in this parameter will change the median of

the value distribution by 25 percent. In the case of the participation cost, K, there is also some

variation. Most sales have very small participation costs. In the mean auction, the participation cost

is approximately 0.5 percent of the median private value; this is consistent with the loggers’ general

familiarity with and close proximity to the sales. Still, bidding on some contracts is considerably

more costly than bidding on others, which could reflect some particularly poorly known or isolated

sales.

I draw parameters and calculate bids for 10 auctions per observation in the data, and find

that my simulated data fit the real dataset quite well. Table 1.9 demonstrates that I match the mean

observed bid, government revenue, winning bid conditional on at least one bidder, and participation

rate fairly closely. Figure 1.14 compares the densities of simulated and true winning bids across

auctions, conditional on receiving a bid.

The fit conditional on observable characteristics is also very good. In Table 1.10, I show the

results of a regression of all non-zero winning bids on covariates; the coefficients are extremely

similar for simulated and true winning bids.26 Because the restriction spline coefficients are diffi-

cult to interpret, I plot the spline functions in Figure 1.15. The simulated spline does a relatively

good job matching the data. In effect, this relationship is the bid effect that I will be decomposing.

1.7.2 Effect of Restrictions on Agent Payoffs

I simulate a representative set of auctions while varying the extent of seasonal restrictions and

directly calculate differences in compliance costs, government revenues, and firm surplus.27 The

levels of various auction outcomes are shown in Figure 1.16. The government revenue from an

26This specification is analogous to the regression that generates Figure 1.5.
27In this section of the paper, I assume the DNR’s reservation value for the sale is zero. The main results are similar

if the DNR values sales at the observed reserve prices. Section 1.7.3 explores this further in the context of optimal
reserve prices.
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average (687 MBF) sale falls from $57,000 to $50,000 moving from 0 to 10 months of restrictions.

Point estimates of firm surplus appear relatively constant across months of restrictions, except for

the most-restricted sales.

One measure that summarizes the effect of restrictions on auction performance is the share

of surplus captured by the bidders. I calculate the percentage of combined firm surplus and gov-

ernment revenue captured by firms and find that it increases slightly with more restrictions: the

firm share is 21.2 percent for unrestricted sales, 22.6 percent at 6.5 months, and 22.3 percent at

10 months. The share is significantly different from the unrestricted share for all but the most

restricted sales. This occurs because the firm surplus falls by less than government revenues in

percentage terms. Thus, in terms of reducing information rents, the auction performs slightly

worse for more restricted sales. This represents a 5.2 to 6.6 percent increase in the firm’s relative

share of surplus.

I calculate compliance costs as the decrease in the expected valuation of the winning bidder,

plus any increase in the total bidder participation costs. These compliance costs, shown in the top

panel of Figure 1.17, are pointwise significantly different from zero at a 95-percent confidence

level for the interval between 7 and 9 months of restrictions, inclusive. The imprecision beyond

that interval reflects the lack of data in the far right tail, but the pointwise estimate still has a p-value

of 0.103 at 10 months. For an average-sized sale, point estimates suggest that compliance costs

are $2609 for a sale restricted for 6 months and $8258 for a sale restricted for 10 months, which

amount to 5 percent and 15 percent of average unrestricted government revenues, respectively.

These compliance costs translate to 17 percent of firm surplus if restricted for 6 months and 54

percent of firm surplus if restricted for 10 months.

Changes in government revenues are roughly equal to the compliance costs, suggesting that

the costs of the policy are borne almost entirely by the state. Firm surplus is estimated to be

very similar across the full range of restriction intensity. Overall, this estimate is fairly precise:

as shown in Figure 1.18, for restrictions up to 8 months of the year, the 95 percent confidence

interval does not include firm surplus increases or decreases of more than 12 percent. For sales
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restricted for 10 months, the point estimate is a decrease in firm surplus of 7 percent. However, this

pointwise estimate is less precise: the 95 percent confidence interval is bounded by an increase in

firm surplus of 17 percent and a decrease of 31 percent.

Why is there approximately full pass-through? One reason is that contract supply is modeled

as inelastic. Timber is exogenously sold in the medium-run: the timber stands sold for harvest are

those most necessary for forest management, subject to the minimum set out by the legislature.

Further, the main margin for adjustment is the reserve price, which is set largely through historical

prices, with some objective adjustments based on the DNR cost assessment. This exogeneity is

clear in 2006-2007, when reserve prices were still quite high despite the housing market crash.

Thus, there is no mechanism by which the state’s behavior would result in changes in markdowns.

Given these supply conditions, there still could have been greater than or less than full pass-

through. As described before, markdowns are determined by the extent to which firms are isolated

in the distribution. Because the cost of complying with the restrictions does not substantially affect

the within-auction dispersion of private values, the costs are passed through to the state at nearly a

one-to-one rate.

1.7.3 Optimal Reserve Prices

The government could attempt to recover revenues lost due to seasonal restrictions using the auc-

tion reserve prices. To allow a consistent comparison across different levels of restriction intensity,

I simulate the optimal reserve price separately at each level and compare outcomes.28 First, I ran-

domly select 500 auctions from the data (i.e., the X vector and number of potential bidders N )

with replacement. At each level of restrictions, I draw auction parameters {µ, σ,K} and associ-

ated valuations for 50 simulations per observed auction. Holding these draws constant, I calculate

28For the purpose of this section, “optimal reserve price” refers to the reserve price that maximizes the government’s
expected auction surplus given a reservation value v0, as is typical in the optimal auction literature. In this section, I
consider different values for v0, but consistently refer to the government’s expected take (including some chance of
receiving v0) from the auction as “revenue”. Of course, the true government objective function may balance a number
of competing criteria.
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the outcomes of each simulated auction over a fine grid of possible reserve prices.29 I then average

the outcomes across the 50 simulations to find the optimal reserve price for each observed auction.

In most circumstances, it is difficult to infer the auctioneer’s true value for the object. Since

the DNR has no in-house capacity for timber harvesting, in the preceding analysis, I assumed

that the value of not contracting is zero. However, this assumption is less innocuous in the case

of an optimal reserve price. Past papers have assumed that the reservation value is the reserve

price (Paarsch, 1997; Roberts and Sweeting, 2013), or have considered a range of values between

zero and the reserve price (Haile and Tamer, 2003; Roberts, 2013). This assumption impacts the

effects of moving to an optimal reserve price. I perform the optimal reserve price analysis assuming

that the government’s reservation value (v0) is either zero or the observed reserve price (Robs).

When the government’s valuation is zero, the simulations suggest that the DNR is typically

setting reserve prices above the optimum. This is perhaps not surprising given that the reserve

prices are typically benchmarked using scaled-down winning bids from recent comparable auc-

tions. Table 1.11 compares the mean reserve price, government revenue, firm surplus, and number

of participating bidders for auctions using the observed reserve prices versus the simulated optimal

reserve prices at 0, 3, 6, and 10 months of restrictions. The average optimal reserve price decreases

with the restrictions as the typical bidder’s valuation falls. The optimal reserve price entices ap-

proximately one additional bidder into the auctions on average. Because the current reserve prices

are too high on average, setting an optimal reserve actually improves firm surplus as well as gov-

ernment revenue. In contrast, if v0 = Robs, the observed reserve price is too low, as shown in

Table 1.12. The state gains from setting a higher reserve price, but this comes at the expense of

firm surplus.

Optimal reserve prices can be used to blunt the revenue impact of seasonal restrictions. Fig-

ures 1.19 and 1.20 compare the share of revenues lost due to restrictions when using observed

reserve prices versus optimal reserve prices if v0 = 0 and v0 = Robs, respectively. That is, at each

level of restrictions, the revenue is compared to the revenue from an unrestricted sale under same

29In practice, this grid ranges from 0 to 600 percent of the observed reserve price at 0.1 percent increments.

31



reserve price regime. When v0 = 0, the gap between restricted and unrestricted sales narrows from

12.2 percent to 9.6 percent. When v0 = Robs, the effect is much smaller, but still positive. This

suggests that for reasonable values of v0, flexible reserve prices allow the state to run the auction

in a way that best accommodates the costs of the restrictions.

Further, an optimal reserve price policy can increase revenues by a magnitude comparable to

the losses incurred due to restrictions. Figures 1.21 and 1.22 present the average revenues in levels,

comparing the different reserve price regimes. Unrestricted sales using observed reserve prices

bring in revenues comparable to 8-month-restricted sales using optimal reserve prices. Similarly,

10-month-restricted sales using optimal reserve prices bring in revenues similar to those captured

by 5-month-restricted sales using the observed reserve prices.

1.7.4 Decomposing the Bid Effect

In this subsection, I delve further into the quantitative importance of different mechanisms in ex-

plaining the differences in equilibrium bids. Specifically, I decompose the equilibrium bid effect

into the value, competition, and participation threshold effects described in Section 1.6.2 using

several sets of auction simulations. Each set involves simulating 10 auctions corresponding to

each data observation over a grid of seasonal restrictions from 0 to 10 months.

I vary three objects: the distribution of value draws, Fi(v; r); the perceived distribution of oppo-

nents values, F−i(v; r) as it directly affects the bidder markdowns; and the participation threshold,

v∗(r). The participation threshold varies because of changes in F−i(v; r) and K(r). First, I es-

timate auctions fixing all three objects as though the auctions are unrestricted. Second, I allow

the value draws to reflect the level of seasonal restrictions but do not vary the perceived opponent

distribution or participation threshold. A heuristic description is that loggers know their valuation

including compliance costs, but don’t realize that other firms would also face compliance costs.

This isolates the value effect. Third, I allow the perceived opponent distribution to reflect seasonal

restrictions, but still hold the participation threshold constant. Here, the heuristic is that firms

observe their values and compliance costs and make their participation decision. Then, before de-
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termining their actual bid, they find out that their competitors are drawing from a distribution with

affected by compliance costs. This change isolates the competition effect. Fourth, I recalculate the

participation threshold to reflect the effect of seasonal restrictions on F−i(v; r) and K(r), thus en-

dogenizing the entirety of the bidding decision; this incremental change isolates the participation

threshold effect. Table 1.13 summarizes my approach.

The decomposition in Figure 1.23 indicates that the value effect is the most important mech-

anism at play. The value effect accounts for 73 to 82 percent of the effect on bids throughout the

grid of seasonal restrictions. It does not fully account for compliance costs, however. On net, the

adjustment of bidding strategies and participation decisions contribute 18 to 27 percent of the total

effect on bids. Breaking this strategic change down further, the competition effect depresses bids

by 20 to 38 percent of the net bid effect. Unlike the other two effects, the participation threshold ef-

fect increases the bids. When bidders observe that their competitors will be weaker on average, this

increases the expected profits of previously marginal participants and reduces the threshold value

draw needed to participate. In this case, the participation of these additional bidders pushes bids

back up 0 to 15 percent of the net bid effect. Taking an average contract restricted for 10 months

as an example, the value effect is -$5882, the competition effect is -$2312, and the participation

threshold effect is +$1035.

1.7.5 Policy Implications

These results have immediate implications for DNR conservation policy. First, the costs and rev-

enue effects of seasonal restriction are highly nonlinear in the number of months restricted. The

mean compliance costs for a contract amount to $918. Taken across the entire sample, the com-

pliance costs amount to $4.8 million. The mean revenue lost due to restrictions is $874 per sale.

Overall, the seasonal restrictions program reduced Michigan DNR timber revenue by $4.5 million,

or roughly 1.4 percent of the $313 million in timber sale revenues collected over the 10-year period.

However, much of the burden is due to the most restricted contracts. The marginal compliance cost

of the 8th through 10th months of restrictions on a typical sale is roughly $1600 per month and the
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loss in revenue is roughly $1100 per month. In benefit-cost terms, if the marginal conservation and

recreational benefit of the tenth month of restrictions is less than $1600, then the state should con-

sider relaxing these restrictions. However, I estimate the costs of the first 4 months of restrictions

are quite small and not distinguishable from zero. The state need not consider relaxing these less

stringent restrictions.

Second, firm surplus is somewhat affected. The level of firm surplus is $1010 lower for the

most-restricted contracts, although this point estimate is not statistically significantly from zero.

The compliance cost is much larger: it is $8258 for these contracts. This difference suggests that

most of the costs are passed through to the state. Still, in terms of political economy, this loss in

surplus lends credence to complaints from loggers regarding the most-restricted sales. However,

simulated optimal reserve prices suggest that the DNR could increase its returns from all contracts,

and that the improvements are even more pronounced for the more-restricted sales. If the DNR’s

reservation values for the contracts are sufficiently high, this optimal reserve policy would reduce

firm cost passthrough.

From a standpoint of fostering competition, the auctions for restricted contracts are less effec-

tive for the state. The loggers capture a larger share of the surplus for contracts restricted 6 or more

months per year: they capture a share of auction surplus that is 1 to 1.5 percentage points larger

relative to a baseline of 21.2 percent for an unrestricted sale. In percentage terms, the firms are

slightly more successful in capturing auction rents for more restricted contracts, even though the

level of rents has fallen slightly. This suggests that the competitive performance of the auction is

undermined somewhat by the restrictions.

1.8 Conclusion

Government contracts are often competitively allocated; however, this process could be under-

mined by a recent proliferation of environmental objectives. I detail the mechanisms by which

compliance with conservation restrictions could either weaken or intensify competitive pressure
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in auctions for Michigan timber contracts. I find that the restrictions are associated with lower

winning bids and fewer bidders. I use a structural model to disentangle the various mechanisms

and welfare impacts of the policy. In this context, loggers are able to fully pass the costs of the

policy on to the government by modifying their bidding strategies. Importantly, I estimate that

compliance costs are nearly zero for all but the most severe restrictions. These findings highlight

the need to consider the presence of strategic firm behavior and nonlinear compliance costs when

predicting or evaluating the effects of environmental policy.

These results have broader implications for assessing and predicting the impacts of environ-

mental contracting objectives. Policy evaluations and projections that ignore strategic behavior

could not inform the political economy discussion. They also could not assess the extent to which

the auction leverages the benefits of competition for the state. A simple ex post estimate of the cost

of the DNR policy would also require strict assumptions about pass-through: a basic comparison

of bids would have underestimated the full costs of the policy by roughly 10 percent. Conversely,

using cost estimates to project the impact on bids before implementing the program would also be

uninformative. Furthermore, like seasonal restrictions, many policies are characterized by implicit

or opportunity costs, which must be estimated using revealed behavior.

There are two reasons that one might expect the impacts of environmental goals to be even

larger in other settings. My results suggest that seasonally-differentiated regulations can impose

costs on firms by reducing flexibility or forcing production to shift to less-profitable times of year.

However, the timber contract restrictions still allow loggers to operate on at least some land year-

round; one might expect that a uniformly timed seasonal restriction would be even more costly.

This situation applies to other markets in which all production is constrained in the same season,

such as oil and gas drilling, commercial fisheries, or any number of industries affected by seasonal

ozone regulation.

In addition, the competitive implications of environmental objectives could be more severe if

a market is particularly thin. In that case, heterogeneity in firms’ compliance costs could play

a larger role in distorting rents. Furthermore, different methods of implementation would likely
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have varying effects on firm competition. For instance, if an agency only considered bids from

environmentally-certified firms, as is the case for LEED green building requirements, firms would

have to incur a large fixed cost simply to participate. The resulting effect on market structure could

negatively impact competition. Future analysis of different types of environmental objectives in a

variety of settings could further inform the contracting process.
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1.9 Figures

Figure 1.1: Sample seasonal restriction

Figure 1.2: Sales per quarter, by peninsula
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This displays the number of sample contracts auctioned in each quarter from 2004Q2-2013Q1.
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Figure 1.3: Michigan DNR Forest Management Units

Source: Michigan DNR. I define a logger to be a potential bidder if they bid on a contract in the same
quarter-management unit combination as the contract of interest.
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Figure 1.4: Distribution of months of restrictions
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This histogram excludes 1933 auctions with no restrictions.
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Figure 1.5: Log winning bid
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Note: Figure displays the results of regressing the logarithm of the winning bid on a cubic spline in
months restricted with knots at 0, 3, 6, and 10 months. The specification is analogous to column (4) of
Table 1.4. The shaded area is the 95% confidence interval implied by standard errors that are clustered
by county-year. Sample size is 4750 auctions.
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Figure 1.6: Number of bidders
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Note: Figure displays the results of regressing the number of bidders (up to 10) on a cubic spline in
months restricted with knots at 0, 3, 6, and 10 months. The specification is analogous to column (4) of
Table 1.5. The shaded area is the 95% confidence interval implied by standard errors that are clustered
by county-year. Sample size is 5207 auctions.
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Figure 1.7: Participation rate
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Note: This figure regresses the bidder participation rate (number of bids received/number of potential
bidders) on a cubic spline in months restricted with knots at 0, 3, 6, and 10 months. A potential bidder
is defined as any logger than bids in an auction in the same calendar quarter and management unit as
the auction of interest. The specification is analogous to column (4) of Table 1.5. The shaded area is
the 95% confidence interval implied by standard errors that are clustered by county-year. Sample size
is 5207 auctions.
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Figure 1.8: Log winning bid, controlling for potential bidders
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Note: Figure displays the results of regressing the logarithm of the winning bid on a cubic spline in
months restricted with knots at 0, 3, 6, and 10 months. The specification is analogous to column (4) of
Table 1.4, except that it includes a fifth-degree Chebyshev polynomial in potential bidders. The shaded
area is the 95% confidence interval implied by standard errors that are clustered by county-year. Sample
size is 4750 auctions.
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Figure 1.9: Log winning bid, controlling for restriction categories
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Note: Figure displays the results of regressing the logarithm of the winning bid on a cubic spline in
months restricted with knots at 0, 3, 6, and 10 months. The specification is analogous to column (4)
of Table 1.7, and includes dummies for restriction categories. The shaded area is the 95% confidence
interval implied by standard errors that are clustered by county-year. Sample size is 4750 auctions.
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Figure 1.10: Number of bidders, controlling for restriction categories
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Note: Figure displays the results of regressing the number of bidders (up to 10) on a cubic spline in
months restricted with knots at 0, 3, 6, and 10 months. The specification is analogous to column (4)
of Table 1.7, and includes dummies for restriction categories. The shaded area is the 95% confidence
interval implied by standard errors that are clustered by county-year. Sample size is 5207 auctions.
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Figure 1.11: Log winning bid, controlling for number of bidders
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Note: Figure displays the results of regressing the logarithm of the winning bid on a cubic spline in
months restricted with knots at 0, 3, 6, and 10 months. The specification is analogous to column (4) of
Table 1.7, except that it includes dummies for the number of bids received. The shaded area is the 95%
confidence interval implied by standard errors that are clustered by county-year. Sample size is 4750
auctions.
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Figure 1.12: Moments of value distributions at mean X values

Note: These are the means and standard deviations of the truncated log-normal value distribution and
the participation cost implied by the structural estimates in Table 1.8. They are evaluated for an auction
with mean covariate values as the number of months during which the sale is restricted varies. The
unobservable components of µa, σa, Ka are set equal to their mean values. 95% confidence intervals
are derived using standard errors from 100 bootstrap replications.
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Figure 1.13: Distribution of auction-specific valuation parameters
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Note: These are the distributions of µa, σa, and Ka implied by the structural estimates in Table 1.8 for
an auction with mean values of the auction covariates. Recall that µa has a normal distribution, while
σa and Ka have Weibull distributions.
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Figure 1.14: Comparing winning bids in all auctions receiving bids
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Note: These figures compare the outcomes of auctions simulated according to the distributions implied
by Table 1.8 to those in the data. I simulate 10 auctions per data observation.
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Figure 1.15: Splines from log winning bid regressions
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Note: This figure compares the estimated effect of restrictions in an OLS regression of ln(winning bid)
using the real data and the data simulated using the structural estimates in Table 1.8. 95% confidence
interval is for the data (reduced-form) estimate, and are OLS standard errors to be conservative regarding
model fit.
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Figure 1.16: Mean auction outcomes, by level of seasonal restrictions

Note: These are the mean outcomes of auctions simulated according to the distributions implied by
Table 1.8. I simulate 10 auctions per data observation, holding restrictions fixed at zero months. I
repeat this at each level of restrictions {0.5, 1, . . . , 9.5, 10}. 95% confidence intervals are derived using
standard errors from 100 bootstrap replications.
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Figure 1.17: Changes in mean auction outcomes, by level of seasonal restrictions

Note: These are the level changes in auction outcomes as seasonal restrictions vary. Compliance costs
are the (negative) change in the valuation of the winning bidder, plus any change in the total participation
costs incurred by bidders. I simulate 10 auctions per data observation, holding restrictions fixed at zero
months: these simulated outcomes are normalized to 0 for the purposes of the figure. I repeat this
at each level of restrictions {0.5, 1, . . . , 9.5, 10}. 95% confidence intervals are derived using standard
errors from 100 bootstrap replications.
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Figure 1.18: Relative changes in surplus

Note: These are the relative changes in surplus measures as seasonal restrictions vary. I simulate
10 auctions per data observation, holding restrictions fixed at zero months: these simulated out-
comes are normalized to 100 for the purposes of the figure. I repeat this at each level of restrictions
{0.5, 1, . . . , 9.5, 10}. 95% confidence intervals are derived using standard errors from 100 bootstrap
replications.
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Figure 1.19: Relative impact of restrictions under different reserve price regimes, v0 = 0

Note: I assume the government’s value of keeping the contract is equal to zero. These are the relative
changes in government revenues as seasonal restrictions vary with optimal reserve prices. I simulate 50
auctions for 500 randomly-drawn data observations, holding restrictions fixed at zero months. I repeat
this at each level of restrictions {1, . . . , 10}.
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Figure 1.20: Relative impact of restrictions under different reserve price regimes, v0 = Robs

Note: I assume the government’s value of keeping the contract is equal to the observed reserve price.
These are the relative changes in government revenues as seasonal restrictions vary with optimal reserve
prices. I simulate 50 auctions for 500 randomly-drawn data observations, holding restrictions fixed at
zero months. I repeat this at each level of restrictions {1, . . . , 10}.
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Figure 1.21: Revenues across reserve price regimes, v0 = 0

Note: I assume the government’s value of keeping the contract is equal to zero. These are the average
government revenues as seasonal restrictions vary with and without optimal reserve prices. I simulate 50
auctions for 500 randomly-drawn data observations, holding restrictions fixed at zero months. I repeat
this at each level of restrictions {1, . . . , 10}.
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Figure 1.22: Revenues across reserve price regimes, v0 = Robs

Note: I assume the government’s value of keeping the contract is equal to the observed reserve price.
These are the average government revenues as seasonal restrictions vary with and without optimal re-
serve prices. I simulate 50 auctions for 500 randomly-drawn data observations, holding restrictions
fixed at zero months. I repeat this at each level of restrictions {1, . . . , 10}.
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Figure 1.23: Decomposition of equilibrium bid effect: Mechanisms
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Note: This figure decomposes of the full effect of seasonal restrictions on bidding. The top panel
shows the mean winning bid as the number of months restricted vary, as the value, competition, and
participation threshold effects are iteratively added in. The bottom panel shows the changes in the mean
winning bid due to each individual effect.
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1.10 Tables

Table 1.1: Major restriction categories

Restriction Sample auctions affected Share of sample

Bark slip 1720 33%
Oak wilt concern 847 16%
Soil/wet ground restrictions 642 12%
Winter recreation 295 6%
Forest regeneration 279 5%
Wildlife/endangered species protection 234 4%
Other recreation 87 2%
Nearby private landowner requests 24 < 1%
Misc. others 136 3%

No restrictions 1933 37%

Source: Author’s calculations from Michigan DNR timber contracts.
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Table 1.2: Summary statistics

Obs Mean Std. Dev. P10 P25 P50 P75 P90

Auction Outcomes
Winning bid ($/MBF) 4750 92.2 50.2 46.8 60.2 79.4 111.3 151.2
Number of bidders 5207 3.9 2.7 1 2 3 6 8
Participation rate 5207 0.2 0.2 0 0.1 0.2 0.3 0.5

Contract Characteristics
Reserve price ($/MBF) 5207 61.6 32.5 30.3 39.3 53.1 75.4 103.6
Potential bidders 5207 17.8 7 9 13 17 22 27
Months restricted (if > 0) 3274 3.7 2.1 1.3 2.4 3 4.5 7.5
Total volume (MBF) 5207 687.4 565.1 189.7 304.9 527 887.9 1371.5
Share soft pulpwood 5207 0.5 0.3 0 0.2 0.6 0.8 0.9
Share soft sawlogs 5207 0.1 0.1 0 0 0 0.1 0.3
Share hard pulpwood 5207 0.3 0.3 0 0 0.2 0.6 0.9
Share hard sawlogs 5207 0.1 0.1 0 0 0 0.1 0.2
Acres 5207 90.4 65.6 30 44 72 116 176
DNR cost factors 5207 0.7 0.1 0.6 0.6 0.7 0.8 0.9
Contract length (years) 4878 2.5 0.6 1.9 2.1 2.4 3 3.3

Notes: Statistics for “Winning bid” exclude 457 auctions that received no bids above the reserve price.
Statistics for “Months restricted (if > 0)” exclude the 1933 sales with zero months of restrictions.
Contract length is missing for 329 observations; the vast majority of these auctions receive no bids.

Table 1.3: DNR Cost Factor Criteria

Factor Determinants

Felling & Bucking (cutting trees into logs) Logs per tree, density of underbrush and uncut trees
Skidding (moving logs) Problems Slope and rockiness of terrain, wetness of area
Skidding Distance
Road Maintenance and Minor Construction Filling in damaged roads or considerable snow plowing
Distance to High Quality Road Distance, terrain, forest road quality
Distance to Mill or Processing Plant
Quantity MBF/acre
Quality Tree quality grade

Note: adapted from DNR internal Information Circular #4207
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Table 1.4: Linear regressions, log winning bid

(1) (2) (3) (4) (5)
VARIABLES

Months restricted -0.010*** -0.010*** -0.010*** -0.008*** -0.007***
(0.003) (0.003) (0.003) (0.002) (0.002)

Share Softwood: sawlogs 2.016*** 1.938*** 1.721*** 1.682*** 1.703***
(0.118) (0.100) (0.093) (0.087) (0.087)

Share Hardwood: sawlogs 1.542*** 1.407*** 1.181*** 1.207*** 1.270***
(0.046) (0.047) (0.050) (0.046) (0.047)

Share Hardwood: pulpwood 0.403*** 0.196*** 0.175*** 0.151*** 0.174***
(0.033) (0.031) (0.032) (0.029) (0.026)

Upper peninsula 0.347*** 0.297*** 0.296*** 0.303***
(0.030) (0.027) (0.028) (0.020)

DNR cost factors 1.122*** 1.106*** 1.115*** 0.804*** 0.908***
(0.082) (0.078) (0.068) (0.061) (0.055)

Log acres 0.052*** 0.037*** 0.040*** 0.046***
(0.010) (0.009) (0.008) (0.007)

Species-product HHI 0.635*** 0.678*** 0.694*** 0.683***
(0.042) (0.042) (0.038) (0.036)

Percent bid species 0.733*** 0.812*** 0.695*** 0.607***
(0.095) (0.089) (0.070) (0.066)

Constant 3.062*** 2.023*** 1.907*** 2.369*** 2.315***
(0.063) (0.099) (0.096) (0.086) (0.090)

Observations 4,750 4,750 4,750 4,750 4,750
R-squared 0.414 0.521 0.574 0.645 0.663
Major species dummies - - X X X
Quarter dummies - - - X X
Year dummies - - - X X
Management Unit dummies - - - - X

Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard errors are clustered by county-year.
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Table 1.5: Linear regressions, number of bidders

(1) (2) (3) (4) (5)
VARIABLES

Months restricted -0.113*** -0.111*** -0.106*** -0.077*** -0.102***
(0.022) (0.022) (0.021) (0.017) (0.016)

Share Softwood: sawlogs -2.092*** -2.687*** -2.475*** -2.248*** -1.450***
(0.645) (0.643) (0.675) (0.550) (0.526)

Share Hardwood: sawlogs -0.351 -0.760* -1.380*** -1.404*** -1.154***
(0.452) (0.445) (0.464) (0.431) (0.432)

Share Hardwood: pulpwood -1.507*** -1.990*** -2.094*** -2.105*** -1.781***
(0.225) (0.241) (0.253) (0.227) (0.222)

Upper peninsula 1.146*** 0.944*** 1.053*** 0.964***
(0.216) (0.214) (0.225) (0.167)

DNR cost factors 2.065*** 2.076*** 2.056*** 0.770* 0.918**
(0.486) (0.475) (0.463) (0.411) (0.416)

Log acres 0.516*** 0.593*** 0.587*** 0.677***
(0.073) (0.070) (0.060) (0.057)

Species-product HHI 1.109*** 0.757** 0.785*** 0.995***
(0.281) (0.295) (0.248) (0.236)

Percent bid species 2.681*** 2.141*** 1.894*** 1.517***
(0.658) (0.620) (0.548) (0.533)

Constant 2.891*** -1.894*** -1.285* 0.847 0.797
(0.364) (0.717) (0.727) (0.724) (0.721)

Observations 5,207 5,207 5,207 5,207 5,207
R-squared 0.084 0.114 0.133 0.282 0.319
Major species dummies - - X X X
Quarter dummies - - - X X
Year dummies - - - X X
Management Unit dummies - - - - X

Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard errors are clustered by county-year.
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Table 1.6: Pairwise combinations of restrictions

Oak Bark Priv. Winter Other Regrowth Soil/ Misc. Sole
Wilt Slip Prop. Rec. Rec. Wetness Other Restr.

Oak Wilt . . . . . . . . 494
Bark Slip 207 . . . . . . . 703
Priv. Prop. 0 8 . . . . . . 4
Winter Rec. 29 116 1 . . . . . 58
Other Rec. 12 21 2 31 . . . . 13
Regrowth 22 57 1 39 10 . . . 64
Soil/Wetness 65 268 15 34 12 78 . . 234
Misc. Other 4 2 0 1 0 2 0 . 129
Wildlife 17 69 3 14 9 17 26 2 91

Note: 1471 out of 5207 sales (28%) in the sample have more than one major type of restriction.
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Table 1.7: Linear regressions controlling for restriction categories

(1) (2) (3) (4)
VARIABLES Ln(win bid) Ln(win bid) # Bidders # Bidders

Months restricted -0.008*** -0.013*** -0.077*** -0.123***
(0.002) (0.003) (0.017) (0.023)

Share Softwood: sawlogs 1.682*** 1.691*** -2.248*** -2.126***
(0.087) (0.087) (0.550) (0.551)

Share Hardwood: sawlogs 1.207*** 1.190*** -1.404*** -1.446***
(0.046) (0.046) (0.431) (0.438)

Share Hardwood: pulpwood 0.151*** 0.147*** -2.105*** -2.119***
(0.029) (0.029) (0.227) (0.225)

Upper peninsula 0.303*** 0.297*** 0.964*** 0.936***
(0.020) (0.020) (0.167) (0.165)

DNR cost factors 0.804*** 0.798*** 0.770* 0.730*
(0.061) (0.061) (0.411) (0.410)

Log acres 0.040*** 0.038*** 0.587*** 0.575***
(0.008) (0.008) (0.060) (0.060)

Species-product HHI 0.694*** 0.695*** 0.785*** 0.790***
(0.038) (0.038) (0.248) (0.249)

Percent bid species 0.695*** 0.690*** 1.894*** 1.902***
(0.070) (0.069) (0.548) (0.550)

Constant 2.369*** 2.390*** 0.847 0.938
(0.086) (0.086) (0.724) (0.733)

Observations 4,750 4,750 5,207 5,207
R-squared 0.645 0.648 0.282 0.287
Restriction Categories - X - X

Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard errors are clustered by county-year.
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Table 1.8: Estimated structural parameters

µ ∼ Normal σ ∼Weibull K ∼Weibull

Covariate Param SE Param SE Param SE
β

Constant 1.136 ( 0.117) 0.005 ( 0.156) 0.773 ( 0.995)
Restr. Spline 1 0.024 ( 0.113) -0.063 ( 0.139) 0.091 ( 0.895)
Restr. Spline 2 -0.765 ( 0.580) 0.812 ( 0.696) 0.250 ( 5.011)
Restr. Spline 3 1.979 ( 1.939) -2.413 ( 2.298) 6.154 (16.186)
Upper Peninsula 0.491 ( 0.025) -0.258 ( 0.036) -0.604 ( 0.173)
Ln (Acres) 0.074 ( 0.010) -0.019 ( 0.015) -0.344 ( 0.101)
Softwood Sawlogs 1.867 ( 0.088) -0.181 ( 0.120) 2.914 ( 0.758)
Hardwood Pulp 0.198 ( 0.037) -0.084 ( 0.047) 2.596 ( 0.250)
Hardwood Sawlogs 1.406 ( 0.051) -0.303 ( 0.076) 1.573 ( 0.487)
Pct. Bid Species 0.866 ( 0.100) -0.255 ( 0.143) -2.249 ( 0.805)
Species-Product HHI 0.679 ( 0.048) 0.058 ( 0.060) -0.033 ( 0.354)
DNR Cost Factors 0.902 ( 0.069) -0.140 ( 0.087) -2.399 ( 0.479)

ω 0.254 ( 0.004) 5.978 ( 0.217) 0.938 ( 0.040)

Notes: Spline variables are the basis functions for a restricted cubic spline on restrictions
with knots at 0, 3, 6, and 10 months. Standard errors are calculated from 100 bootstrap
replications. µ is normally distributed, while σ and K have Weibull distributions. The β
vectors also include parameters for year, quarter of year, and tree species dummies. In the
case of the Weibull distributions, the scale parameter is exp(βX) and the shape parameter
is ω. Estimation is based on 5,207 auctions, which receive a total of 20,502 non-zero bids.

Table 1.9: Model fit: sample moments

Moment Data Simulation

Mean Observed Bid 79.2 81.4
Mean Auction Revenue 84.1 81.8
Mean Observed Winning Bid 92.2 95.8
Mean Participation Rate 0.24 0.21
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Table 1.10: Model fit: Winning bid OLS

Covariate Data Simulation

Constant 2.37 2.37
Restr. Spline 1 -0.05 -0.04
Restr. Spline 2 0.18 -0.06
Restr. Spline 3 -1.34 -0.24
Upper Peninsula 0.30 0.31
Ln (Acres) 0.04 0.04
Softwood Sawlogs 1.66 1.77
Hardwood Pulp 0.15 0.17
Hardwood Sawlogs 1.21 1.21
Pct. Bid Species 0.69 0.66
Species-Product HHI 0.69 0.71
DNR Cost Factors 0.80 0.87

Notes: Dependent variable is the log of the
winning bid. Includes only auctions with at
least one bidder.

Table 1.11: Mean outcomes considering optimal reserve prices, v0 = 0

None 3 Months 6 Months 10 Months

Reserve Price Used Data Optimal Data Optimal Data Optimal Data Optimal

Reserve Price ($1000s) 42.3 37.5 42.3 37.1 42.3 35.7 42.3 33.5
Gov. Revenue ($1000s) 57.9 61.9 57.2 61.3 55.1 59.4 50.9 55.9
Firm Surplus ($1000s) 15.3 16.6 15.2 16.5 15.6 17.2 14.2 16.0
Number of bidders 3.6 4.5 3.5 4.5 3.4 4.4 3.1 4.4

Notes: Optimal reserve price refers to the reserve price that maximizes expected government revenue.
“Revenue” is the winning bid if any bidders participate, and v0 = 0 if not.
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Table 1.12: Mean outcomes considering optimal reserve prices, v0 = Robs

None 3 Months 6 Months 10 Months

Reserve Price Used Data Optimal Data Optimal Data Optimal Data Optimal

Reserve Price ($1000s) 42.3 67.0 42.3 66.8 42.3 68.3 42.3 67.4
Gov. Revenue ($1000s) 64.6 66.0 64.1 65.5 62.7 64.2 59.8 61.3
Firm Surplus ($1000s) 15.3 12.6 15.2 12.4 15.6 12.5 14.2 11.1
Number of bidders 3.6 2.2 3.5 2.2 3.4 2.0 3.1 1.8

Notes: Optimal reserve price refers to the reserve price that maximizes expected government surplus.
“Revenue” is the winning bid if any bidders participate, and v0 = Robs if not.

Table 1.13: Decomposition schematic: Mechanisms

Value Perceived Participation
What varies? Realization Opponent Threshold

1 Unrestricted Fi(v; 0) F−i(v; 0) v∗(0)
2 + Own values Fi(v; r) F−i(v; 0) v∗(0)
3 + Opponents’ value distribution Fi(v; r) F−i(v; r) v∗(0)
4 + Participation threshold Fi(v; r) F−i(v; r) v∗(r)

Channel Derivation
Value effect 2-1
Comp effect 3-2
Participation threshold effect 4-3
Net effect 4

Notes: This table summarizes the decomposition of the equilibrium bid effect. Func-
tions with an argument of zero are evaluated for auctions using the unrestricted pa-
rameters. Functions with an argument of r are evaluated over a grid of restrictions
from 0 to 10 months. The results of this decomposition are presented in Figure 1.23.
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CHAPTER 2.

Weather, Salience of Climate Change, and

Congressional Voting

2.1 Abstract

Climate change is a complex long-run phenomenon. The speed and severity with which it is occur-

ring is difficult to observe, complicating the formation of beliefs for individuals. We use Google

search intensity data as a proxy for the salience of climate change and examine how search patterns

vary with unusual local weather. We find that searches for “climate change” and “global warming”

increase with extreme temperatures and unusual lack of snow. Furthermore, we demonstrate that

effects of abnormal weather extend beyond search behavior to observable action on environmental

issues. We examine the voting records of members of the U.S. Congress from 2004 to 2011 and

find that members are more likely to take a pro-environment stance on votes when their home state

experiences unusual weather.

2.2 Introduction

Anthropogenic climate change is one of the most difficult policy problems that humanity faces

today. The costs and benefits of mitigating carbon emissions are highly uncertain. The relevant

pollutants are globally mixing, which creates an enormous collective action problem. Finally, the

process of climate change unfolds over several decades. Because the impacts of climate change
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manifest themselves as gradual changes in the distribution of weather outcomes, it can be difficult

for individuals to observe whether climate change is occurring. In addition, climate change is a

one-time event, and individuals cannot possibly draw on prior experience to guide their percep-

tions. However, public support and understanding are vital to the successful creation and imple-

mentation of climate change mitigation and adaptation policies.

Given these complications, people may seek a proxy by which to update their opinion. Unusual

weather could be used (rightly or wrongly) as an observable, short-term analog to climate change.

Indeed, Hansen, Sato, and Ruedy (2012) describe the effect of climate change as changing the

weights on a pair of dice that determine short-run realizations of weather. In this paper, we estimate

the effect of unusual weather conditions on salience of climate change. We proxy for salience using

a search intensity index created by Google for the terms “climate change” and “global warming”.

Controlling for a wide variety of fixed effects to account for spurious geographic and seasonal

relationships and broad temporal trends, our results are remarkably robust and suggest that short-

run weather phenomena do in fact affect the extent to which people think about climate change.

Furthermore, we demonstrate that the effects of weather extend beyond search behavior to the

voting records of U.S. Congressional members. Examining within-member variation in support

for 207 environmental votes tracked by the League of Conservation Voters (LCV) between 2004

and 2011, we find evidence that voting on environmental issues is correlated with recent unusual

weather in a representative’s home state. Reassuringly, the correlation between weather and voting

does not extend to votes unrelated to the environment. Although the effect is modest in size,

our results suggest that that search intensity may provide a useful proxy for voter and legislator

concerns and demonstrates an important link between unusual weather and political action on

environmental policy.

Our work relates to several other papers. A series of papers estimate the extent to which

individuals respond to short-run weather in forming their beliefs about climate change. Deryugina

(2013) uses an annual Gallup poll to determine whether individuals respond to weather fluctuations

by Bayesian updating their expectations about climate change. She finds that while short-term
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weather fluctuations do not affect individuals’ beliefs, longer spells of unusually warm weather do

have an impact. She also examines heterogeneity by political affiliation and finds that the effect

is confined largely to conservative respondents. Hamilton and Stampone (2013) analyze a series

of polls of New Hampshire residents. Interestingly, they find that political independents are the

only subgroup that respond to recent weather cues in forming their opinions regarding climate

change. Owen, Conover, Videras, and Wu (2012) find that respondents to a pair of surveys in

August 2009 and October 2007 are more likely to support environmentally-protective policy if

their state experienced a heat wave or drought during the most recent summer. They also find

that people who regularly access more sources of news information are less responsive to weather

cues. Egan and Mullin (2012) also find evidence of a response.

A separate literature demonstrates the value of internet search data in modeling economic be-

havior. Choi and Varian (2009) demonstrate that Google Insights data can be used to predict de-

mand for automobiles, retail sales, home sales, and travel behavior. After several papers demon-

strated the efficacy of using Google searches to predict flu outbreaks, Google itself established

the Google Flu Trends tool.1 Most relevant to our analysis is Kahn and Kotchen (2011). They

find that when a state’s unemployment rate increases, Google search activity for “global warming”

decreases and search activity for “unemployment” increases. That is, concerns about economic

conditions “crowd out” attention to the issue of climate change. These results focus on unrelated

trends that compete with climate change for attention. In contrast, we examine a factor (weather)

that directly attracts attention to climate change because it is a series of realizations of the broader

climate process.

Our paper makes two contributions. Previous studies of climate beliefs and weather use survey

waves that are either infrequent or limited to a specific geographic location. In contrast, search

intensity is reported weekly for each state – higher frequency reporting provides us much more

identifying variation with which to estimate the relationship between weather and search inten-

sity flexibly and to better control for unobserved heterogeneity that might be correlated with both

1http://www.google.org/flutrends
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weather and search activity.

Our empirical results suggest this flexibility is important along several dimensions. First, the

variation in the data allows us to simultaneously estimate the effects of temperature, precipitation

and snowfall. For instance, given a response to an unusually warm winter, we can estimate the

relative contributions of warmer-than-average temperatures separately from the effect of a lack of

snow. These various channels may have completely different implications. For example, if the

response is entirely due to lack of snow and not higher temperatures, this could limit the relevant

geographic (and climatic) range to that in which snowfall now regularly occurs. Further, snowfalls

are easily-observed individual events; in contrast, an increased frequency of extreme temperatures

might not be as discernible. Second, we find evidence that the search intensity responds asymmet-

rically to unusually high and low temperatures and snowfall. For instance, in the winter, unusually

cold and warm weather are both correlated with increased search; this would be obscured by a

fully-linear specification. Third, the effects of weather on search intensity vary by season.

Our second contribution to is to provide an important link between weather and search behavior

to observable actions related to the environment – specifically, the voting behavior of members of

the U.S. Congress on environmental bills. Previous work has focused on individual attitudes as

the explanatory variable of interest, but has not established a link between weather and tangible

changes in behavior. Our work helps to fill an important gap. Controlling for member fixed

effects, we find that U.S. congressional members are more likely to cast a pro-environment vote

when their home state experiences unusual weather and search intensity in their home state is high.

Reassuringly, the effects are specific to environmental legislation, and in particular, environmental

regulation most closely related to climate change – we do not find similar effects of weather or

search intensity on non-environmental legislation, nor do we find strong effects for environmental

legislation unrelated to climate policy or industrial emissions. Although the effects we estimate

are modest in size (as would be expected) and may not affect the ultimate outcome of the vote, our

results suggest that extreme local weather (or the issue salience it generates) is a factor legislators

may consider when voting on environmental issues. Furthermore, our results suggest that internet
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search intensity may provide a useful proxy for the salience of issues to the broader public.

Our paper proceeds as follows. Section 2.3 describes the data and econometric approach. Sec-

tion 2.4 presents the empirical results related to weather and search intensity. Finally, Section 2.5

examines the relationship between extreme weather, individual search behavior and voting of mem-

bers of Congress on environmental issues. In the online appendix, we demonstrate the robustness

of our results to a number of different specifications.

2.3 Methodology

2.3.1 Data

Search intensity data Our proxy for climate change salience uses the Google Insights (now part

of Google Trends) search index. This tool is outlined in Stephens-Davidowitz (2013). Essentially,

Google Insights tracks the relative frequency with which a given search term is submitted. In most

of our specifications, we use the index for searches of (“global warming”+“climate change”) at

the state-week level. The index is constructed to facilitate accurate comparisons across periods

and locations; that is, a given search term is scaled by the overall level of search activity in each

state. The advantage of this approach is that a populous state, such as California, will not have

a mechanically higher search index than a less populous state, such as Iowa. Thus, our measure

of the search term corresponds to search intensity, conditional on overall search activity. Google

censors search terms that do not surpass a certain threshold in terms of absolute search volume.

This affects approximately 20% of our sample from 2004-2011, but is most relevant in 2004-2006

for sparsely populated states in the Great Plains and Rocky Mountain regions.2

We can use several data sources to get a sense of nationwide search magnitudes during our

study period. Google Adwords, a service for potential advertisers, reports that U.S. users googled

“climate change” or “global warming” approximately 185,000 time per month in 2013. To estimate

2In the online appendix, we re-run our regressions using only state-years for which complete data is available and
find that our results do not change substantively.
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total search volumes for our study period, we adjust total searches in 2013 for changes in search

intensity (tracked by Google Trends) and changes in nationwide Google search volumes from

comScore, a market research company that tracks media and internet trends. Although total Google

searches rose from 134 billion searches in 2011 to 154 billion searches in 2013, search intensity for

“climate change” and “global warming” fell by approximately 20 percent during the period. The

two changes roughly offset each other - our best guess is that relevant searches averaged roughly

two hundred thousand per month in 2011. Using a similar methodology, we estimate that at the

peak, searches for the two terms averaged approximately half-a-million searches in January and

February of 2007.

Weather data Our weather data come from the National Climatic Data Center (NCDC). The

NCDC collects daily weather station data for over 10,000 U.S. weather stations. The typical sta-

tion records minimum and maximum daily temperature, precipitation and in some cases, snowfall,

snow depth and other meteorologic variables. For purposes of this paper, we limit our analysis to

6,624 stations with data on minimum and maximum temperatures from 2004 to 2011. The sta-

tions are located throughout the 50 states – Rhode Island has the fewest stations (8) and California,

the most (370). For each daily station record, we calculate the deviation of maximum daily tem-

perature, precipitation, snowfall and snow depth from a 10-year baseline from 1994 to 2003 and

matched by day of the year. To match the search intensity data, we aggregate up to the state-week

level.

Summary Statistics To illustrate one dimension of our weather variation, we plot monthly av-

erage temperature deviations from the 1994-2003 baseline in Figure 2.1 going back to 1974. The

solid line is the lagged 12-month moving average deviation. The dotted line is a linear trend and

illustrates that temperatures have been increasing on average since 1974. This trend is less pro-

nounced if we focus solely on the last two decades. Although average temperatures have risen

since 1974, the warmest 12-month period in U.S. history prior to 2012 stretched from late-1999 to
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late-2000, during our 10-year baseline period.3

We present summary statistics of the weather and search variables for our regression sample in

Table 2.1. The weather variables are presented as deviations from the 10-year baseline covering

1994-2003, matched by state-calendar week. Relative to baseline, the period from 2004 through

2011 was similar in terms of temperature and slightly snowier, on average. As one would expect,

there is substantial week-to-week variation around the baseline.

The relationship between our sample and the baseline differs by season. Relative to the 10-

year baseline, winter has been slightly colder than normal, while spring, summer, and fall have

been slightly warmer. The standard deviation of the temperature variable is of the same order of

magnitude for all seasons, and suggests that there is considerable variation around the mean. As

one would expect, snowfall and snow depth are most variable in the winter, somewhat less variable

in the spring and fall, and quite tightly distributed in the summer.

2.3.2 Empirical Approach

In essence, we want to identify the effect of unusual short-run weather on the relevance of climate

change in the eye of the general public, using the Google search intensity index outlined above as

a proxy for salience. We take a largely agnostic stance on the mechanisms underlying a possible

relationship. Weather could affect search intensity through channels such as personal experience,

exposure to news coverage of extreme weather, or interactions with friends and family.

We simultaneously estimate effects for the maximum temperature, precipitation, snowfall, and

snow depth. Table 2.2 presents basic correlations among the explanatory variables. As one would

expect, deviations in temperature, snowfall, and snow depth are correlated with one another. How-

ever, the frequency of our panel provides sufficient independent variation to estimate the coeffi-

cients on each precisely.

3Source: http://www1.ncdc.noaa.gov/pub/data/cmb/images/us/2012/jul/warmest 12months.png
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The base specification for state s, week w, month m, year y can be expressed as:

INDEXs,wmy =
∑
j

βjDEV j
s,wmy + αmy + γsm + εs,wmy (2.1)

where j indexes the four weather variables, DEV j
s,wmy is the deviation from the historical mean

for measure j, βj is the effect of measure j on the climate change search intensity index, and αym

and γsm are fixed effects. In our main specification, we relax the linearity of the relationship of the

index on the deviation variables by allowing for asymmetric effects depending on the sign of the

deviation:

INDEXs,wmy =
∑
j

βnjNEGDEV j
s,wmy +

∑
j

βpjPOSDEV j
s,wmy +αmy +γsm+εs,wmy (2.2)

where NEGDEV j = I(DEV j < 0) ∗ |DEV j| and POSDEV j = I(DEV j > 0) ∗ |DEV j|.

Thus, the coefficients {βnj, βpj} are the effect of the magnitude of negative / positive deviation

from the 10-year weather baseline on search intensity.

We graphically illustrate the basic idea behind our empirical strategy. Figure 2.2 plots kernel-

smoothed time trends of the residuals of search index and average snowfall for Colorado from

October 2006 through April 2007 after conditioning on year-month and state-month of year fixed

effects. Through early December, snowfall tracks close to the 10-year baseline. In late December,

relative search activity is halved during a series of weeks with unusually high snowfall. However,

as snowfall becomes more scarce in late January and February, search activity increases again.

A first potential concern with our analysis that Google searchers may not be representative of

the general public. Past analyses such as Choi and Varian (2009) and Kahn and Kotchen (2011)

suggest that Google search is sufficiently in the mainstream to be useful for this sort of analysis.

In addition, we are not making claims as to whether local weather will help support for climate

change reach some crucial electoral threshold. Rather, we examine whether very short-run weather

events have the capability to affect the salience and prominence of climate change. Compared with

2010 Census data, the distribution of Google searchers skews away from those over 65 years of
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age, and toward those 18-25. The shares in the 25-44 and 45-65 age groups are roughly the same

as in the population.4

In addition, one might be concerned that there may be underlying seasonal or geographic cor-

relations that are purely coincidental. For instance, as displayed in Table 2.1, recent summers have

been hot compared with baseline means while recent winters have not. During our sample period,

the Conference of the Parties to the United Nations Framework Convention on Climate Change

convened during November and December in each year. If this highly climate-relevant event re-

sults in a spike in news coverage and search activity, we would incorrectly estimate a negative

relationship between maximum temperature and climate search intensity. Similarly, if states with

more urban areas have had systematically different weather deviations than more rural states, we

might misattribute a correlation between weather differences and differences in political ideology

as reflected in interest in climate change.

To address these concerns, we employ a variety of fixed effects to control for such possible

sources of bias. In our preferred specification, we include year-month fixed effects and state-month

of year fixed effects. The variation identifying our primary estimates controls for broad national

trends during a given month, and monthly seasonality at the state level. For a given January week

in Iowa, we consider the covariance in how unusual search and weather are among all January

weeks in Iowa, controlling for nationwide means in that specific month. The year-month effects

capture changes in nationwide attitudes toward climate change, average internet penetration, and

changes in the makeup of internet users over time. The state-month of year effects control for

state-specific seasonality in weather deviations and climate change search intensity.

Finally, search activity by climate skeptics could affect the implications of our results. In Figure

4, we compare the national time-series of our primary search with one that nets out several poten-

tial skeptical searches. As is clear from the figure, these explicitly skeptical searches comprise a

small fraction of the total searches. The window indicated in the figure does display one week

of particularly high skeptical search activity: it corresponds to the “Climategate” incident. Our

4Google search demographics from comScore, via http://blog.pmdigital.com/2010/08/who-uses-google-yahoo-
and-bing. Census demographics from http://www.census.gov/prod/cen2010/briefs/c2010br-03.pdf
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results are robust to omitting this period. Of course, we cannot hope to identify all such searches;

there exists a strong current of skepticism among parts of the U.S. population. Our results do en-

compass the causal effect of weather shocks on the search habits of such skeptics. However, our

interpretation of changes in search intensity as a proxy for issue salience does not change.

2.4 Weather and Search Intensity Results

The results from the base specification are presented in Panel A of Table 2.3. The first column

is a simple specification in which climate-related search intensity is modeled as a linear function

of deviations from historical weather patterns. Perhaps surprisingly, in the aggregate, higher tem-

peratures (relative to the baseline) are associated with lower search intensity. The coefficient on

snowfall is as expected, in that unusually low snowfall is related to more climate change searches.

We relax the initial specification in two ways. First, we run our analysis separately for each

season of the year in columns (2) through (5) of Panel A. This allows the effects of unusual weather

on search intensity to have different magnitudes and signs across seasons. For example, unusually

warm weather in the winter might be far more noticeable in the winter than in the spring. We find

that the effects vary considerably by season. While lower temperatures are still negatively related

to search in the winter, the opposite is true in the summer. The effect of unusually low snow depth

is now statistically significant in the winter and fall, but not in the spring (or summer).5

Second, we allow the effect of weather to vary asymmetrically with respect to positive and

negative deviations from the 10-year baseline. Although results from Panel A of Table 2.3 provide

evidence that short-run weather shocks are correlated with search intensity, if search intensity re-

sponds differently to positive and negative deviations from the baseline, these specifications may

mask the true effect. The bias would be particularly pronounced if search intensity is a function

of the absolute deviation of weather from the long run average. To this end, Panel B of Table 2.3

5For completeness, we also present coefficients for each month of the year in the online appendix. Providing
further flexibility in estimate the coefficients by month does not provide any additional insights beyond the estimation
by season.
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presents results that allow positive and negative weather deviations to have asymmetric linear ef-

fects on search intensity. To be clear, our specification regresses search intensity on the absolute

value of positive and negative deviations. If the coefficients for the positive and the negative devi-

ation in snowfall are both positive, then the relationship between snowfall and search intensity is

“V”-shaped.

Both positive and negative deviations from the baseline average temperature are positively

associated with search intensity. The negative temperature deviation coefficient from column (1)

of Panel A is driven by the fact that the search-inducing effect of a negative deviation dominates the

effect of a positive deviation. Search intensity seems to respond weakly to unusually dry weather.

The coefficients on snowfall and snow depth especially illustrate the importance of allowing for

asymmetric effects. The negative snowfall and snow depth coefficients from column (1) of Panel A

would suggest that there is more search activity in normal weeks than in especially snowy weeks.

However, when we allow asymmetric effects, we find that weeks of abundant snowfall and snow

depth do not seem to differ from a normal week in terms of search intensity. Instead, the flexible

specification demonstrates that the effect in Panel A is driven by weeks with a notable lack of snow.

The coefficients on negative deviations in snowfall and snow depth are roughly four times larger

than their counterparts in Panel A, and the coefficient on snow depth is now statistically significant.

We again run separate regressions for each season and present the results in columns (2)

through (5) of Panel B. We interpret the magnitude of the coefficients in the following manner. The

search index is simply the number of searches involving climate change or global warming as a

share of total search activity, scaled by some unknown coefficient. We assume that climate-related

searches are a small proportion of total search activity. Thus, a 10% increase in the search index

corresponds to a 10% increase in climate-related searches. We will consider the effect of weather

shocks on the mean week in percentage terms. For instance, in the winter, the mean search index

is 43.02. An 4.302-unit increase in the search index during the winter would correspond to a 10%

increase in climate-related search over the mean week.

As before, we find substantial variation in the effect of abnormal weather across seasons. In the
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winter, search intensity responds positively to both unusually cold and warm weather. In particular,

a winter week that is 4◦C colder than normal (1 standard deviation of our temperature variable)

would result in an increase in the search index of 6.54, or a 15.2% increase in climate-related

search activity relative to the mean week. Similarly, a week that is 4◦C warmer than normal would

result in an increase in the search index of 2.20, or about 5.1%. Much of the effect of warm winter

weather operates through a lack of snowfall. Indeed, a winter week that has less snowfall than

average by only 10mm (roughly 1 standard deviation) is also associated with an increase of roughly

2.56 (6.0%) in the search index; a week in which the average snow depth is lower than usual by 1

standard deviation (roughly 70mm each day) is associated with an increase of 5.32 (12.4%) in the

search intensity. These magnitudes suggest that weather shocks are actually responsible for fairly

large movements in climate-related search activity relative to the mean week.

Responses during other seasons demonstrate different patterns. In the spring, weather does

not actually seem to have much of an impact: none of the coefficients are statistically significant.

This confirms a main result of Deryugina (2013), who finds that beliefs elicited in a March survey

are not affected by very short-run weather deviations. In the summer, search responds strongly

to extremely hot temperatures, but not to cool temperatures. Negative deviations in summer pre-

cipitation are associated with less search. Finally, in the fall search increases with unusually low

snowfall and snow depth. This is consistent with search responding to steadily warm fall weather

that delays the first snowfall or a heat wave that results in unexpectedly extreme temperatures.

In the online appendix, we provide a number of robustness checks. We run separate regressions

for each month of the year. We also repeat our analysis including several different of combinations

of fixed effects. Finally, we perform our analysis at the city level for the 25 largest cities in the

U.S. Our results prove to be quite robust to all of these alternative specifications.

It is important to note that these results are consistent with several alternative models of eco-

nomic behavior and belief updating. Despite the high temporal frequency, the aggregate nature

of the search data does not allow us to make strong conclusions about the particular method by

which people adjust their beliefs. As an example, our results may reflect rational re-evaluation
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of beliefs of climate change by individuals who were previously skeptical. Unusual weather may

cause them to update their beliefs and search online for more information about climate change.6

Equally plausible, though, are alternative explanations for relationship between unusual weather

and search activity. Evidence in favor of some of these explanations already exists in the literature.

Kahn and Kotchen (2010), for example, propose that concerns about environmental concerns fight

for individuals’ limited attention - they find evidence that concerns about climate change may be

crowded out by economic concerns. More generally, we think it unlikely that a single explanation

would fully explain the relationship between abnormal weather and search behavior. Thus, we

refrain from advancing a particular story or explanation for the results, although we believe that

this is an interesting avenue for future research.

2.5 Weather, Search Intensity and Voting Behavior

We now pivot from examining the relationship between abnormal weather and internet search

activity to examining observable action on environmental issues, specifically the voting behavior

of members of the U.S. Congress. In this section, we extend our approach from the previous

section demonstrate that atypical weather is correlated with the voting behavior of members of the

U.S. Congress on environmental issues.

Our analysis directly relates to two literatures. A long literature in political science suggests

“issue salience” plays an important role in voter engagement (Brians and Wattenberg, 1996), at-

titudes towards elected officials (George Edwards and Welch, 1995) and policymaking (Burstein,

2003). Specifically, issues which voters perceive as particularly relevant are correlated with elec-

tion turnout, approval ratings and political action on issues. Second, our results relate to the liter-

ature on classic political economy originating with Stigler (1971) and Peltzman (1976) that postu-

6If we believe, though, that this is the only driver of search activity and that there is an initial stock of “climate
skeptics,” we might expect that stock to deplete over time and more unusual weather occurs and consequently, the
effect of unusual weather may diminish. In our data, we do not find strong statistical evidence that the effects of
unusual weather on search behavior diminish over time, although we acknowledge that this does not provide definitive
evidence against this explanation.
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late that voting behavior is driven both by individual ideology and the need to represent constituent

interests.

Our primary source of voting data comes from the League of Conservation Voter (“LCV”)

scorecards. For each member of Congress and each vote on bills, resolutions, motions and amend-

ments related to the environment, the LCV records a member’s vote and identifies whether the vote

represents a pro- or anti-environment position. LCV scorecards (and voting scorecards more gen-

erally) have been used extensively in the literature (see Kahn, 2002; Levitt, 1996; Kalt and Zupan,

1984) to identify members of Congress who tend to take pro- or anti-environmental stances. For

our analysis, we use constructed a panel of all the members of the U.S. House of Representative

or the U.S. Senate. For each congressperson, we track his or her vote on 207 environmental votes

scored by the LCV between 2004 and 2011.7 Democrats tend to receive high LCV ratings and

Republicans tend to receive low LCV ratings – the mean ratings for Democrats and Republicans

are 89.7 and 14.1 on a scale of 0 (uniform voting against environmental positions) to 100 (uniform

voting in favor of environmental positions), but LCV scores vary within political party substan-

tially. Of congressional members in office for more than a single year in the 2004-2011 period,

Dan Boren (House, OK) was the lowest rated Democrat at 32.7 and Christopher Shays (House,

CT) was the highest rated Republican at 88.1.

We consider a linear probability model and regress pro-environment voting as a function of

weather in a member’s home state.8 All specifications include congressional member fixed effects.

Consequently, identification comes from within-member variation – we test whether member i’s

vote on environmental vote v is correlated with anomalous weather conditions in their home state

s at a similar point in time t. We also include varying sets of time fixed effects to flexibly control

for state-invariant shifts in the propensity to vote in favor of environmental regulation.

We use two approaches to test for the relationship between anomalous weather and congres-

sional voting. First, we directly regress voting on the weather variables from the previous section.

7We exclude eight votes that are tracked by the LCV, but not directly related to environmental issues, such as the
reauthorization of the Childrens’ Health Insurance Program or the nomination of federal judges. Our results are robust
to the inclusion of these six votes.

8We obtain qualitatively similar results using a probit model.
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As before, we allow for an asymmetric relationship between the dependent variable and positive

and negative weather deviations. Formally, our we consider the specification

Pro− Env. V otei,v = αi +
∑
j

βnjNEGDEV j
s,t +

∑
j

βpjPOSDEV j
s,t + εi,v (2.3)

where j denotes each weather variable and NEGDEV j
s,t and POSDEV j

s,t represent positive and

negative deviations from the 10-year baseline.

Table 2.4 presents the main results relating voting on environmental issues to weather and

search intensity. Panel A presents the results of the linear probability model of pro-environment

voting on weather, member fixed effects and successive sets of time fixed effects. Unusually low

temperatures in a member’s home state are correlated with a greater likelihood of voting against

environmental legislation or motions. Unusually low snowfall in a member’s home state is corre-

lated with an increased likelihood of voting in favor. The magnitudes are modest but significant and

persist with the inclusion of year-month fixed effects that subsume the effect of national weather

or news spuriously correlated with weather that occurs in the month of the environmental vote.

Snowfall one standard deviation below the mean during winter months in associated with an 1.5

percentage point increase in the likelihood of voting in favor of environmental legislation. The

eight weather variables are highly significant, collectively, in the specifications in columns (1) and

(2). In the specification in column (3), the p-value on the F-test of the weather variables is 0.147,

slightly above conventional levels for significance.

As a second approach, we construct an “index” of the abnormality of recent weather in a

state. For our index, we project search intensity onto four lags of the local climate deviations for

temperature, precipitation, snowfall and snow depth.9

In essence, the projection consolidates unusual rainfall, temperatures and snowfall into a single

summary statistic. This procedure creates a more parsimonious measure of abnormal weather; we

use this measure to clarify the relationship with voting behavior and allow heterogeneity to enter

9The F-statistic for the joint test of the coefficients on the weather variables in equation (2.4) is 26.53.
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in a concise way. As a result, we interpret the coefficient on the projected weather variables as

the reduced-form effect of any combination of collectively abnormal weather variables that would

induce a one-point change in search intensity.

It is important to note that the interpretation of the coefficient in this context differs from that

of an instrumental variable regression. A true IV regression would estimate the causal effect of

one particular channel (in our case, search intensity) on voting. Rather, our approach measures the

collective effect of weather through a number of different channels. The projection allows us to

treat unusual realizations of temperature, precipitation and snowfall comparably.

Our approach is similar to a number of recent papers that project one or more covariates onto

a single variable to analyze a reduced-form effect. Madestam, Shoag, Veuger, and Yanagizawa-

Drott (2013) examine political protests and representative voting. They project the size of Tea

Party tax day protests on rainfall but cautiously interpret the coefficient on protest size, noting

that rainfall may affect both the size of the protest and “quality” of the protest. Chodorow-Reich

(2014) compares post-financial crisis employment at firms as a function of the exposure of a firms’

banking partners to the financial crisis. As a proxy for a bank’s exposure, the paper projects the

change in annualized loans between 2005 and 2009 onto a set of pre-crisis covariates plausibly

related to a bank’s financial strength. Again, the author notes that the “second stage” does not

identify a particular causal pathway. Rather, the projected change in annualized loans is interpreted

as a summary statistic for a number of factors related to the financial strength of the bank.

A second advantage of the projection of search intensity onto the weather variables is to miti-

gate concerns of reverse causality. If internet searches related to climate change are partially driven

by actions taken by Congress or by the voting of particular members, a positive correlation between

search intensity and Congressional voting may simply reflect constituents’ interest in the position

taken by their representative. In contrast, the projection only relies on variation in search intensity

correlated with lagged weather variables.

Formally, we estimate the following:
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SIs,t = γs +
4∑

k=1

∑
j

λnjkNEGDEV j
s,t−k +

4∑
k=1

∑
j

λpjkPOSDEV j
s,t−k + νs,t (2.4)

Pro− Env. V otei,v = αi + βŜIs,t + εi,v (2.5)

In Panel B, we present the coefficients estimated by (2.5), using member fixed effects and a sim-

ilar series of time fixed effects to those in Panel A. 10 Again, we find that the weather-correlated

component of search intensity is correlated with voting in favor of environmental legislation – a

one standard deviation increase in scaled search intensity (.28) is associated with a 8.4 percentage

point increase in the likelihood of voting in favor of environmental legislation. As with the weather

variables, the magnitude of the coefficient declines with the inclusion of finer time fixed effects.

Month by year fixed effects subsume the effect of national weather events, such as the 2012 U.S.

summer heatwave. Identifying the coefficient off of this within-month variation only, a one stan-

dard deviation increase in search intensity is associated with a 2.3 percentage point increase in the

likelihood of voting in favor of environmental legislation. As a point of reference, Hussain and

Laband (2005) examine 33 LCV votes whose costs are confined to a small set of states. Sena-

tors who represent one of those states are 15% less likely to cast a pro-environment vote. Given

the extreme political circumstances involved in those votes, our effect (one-eighth as large for a

1 standard deviation increase in search, one-quarter as large for a 2 standard deviation increase in

search) appears non-negligible.

While we find evidence of a strong positive correlation between weather-driven search intensity

and likelihood of pro-environmental voting, as we note able we are not interpreting the regression

results above as an IV estimate of the causal effect of search intensity on voting behavior. Rather,

there are several possible pathways that could be driving this correlation. First, the weather might

directly affect the Congressperson’s ideology/beliefs in the same way that it affects his/her con-

stituents’ beliefs. Second, the weather might directly affect voting through Congressional beliefs,

10For ease of presentation, we rescale the Google Search Intensity a scores by a factor of 100 - values of 0 and 100
in the original index correspond to values of 0 and 1 in the rescaled index.
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thus leading to increased search through increased constituent awareness or local media cover-

age. Third, the increased search activity could indicate increased constituent pressure on the Con-

gressperson to vote in an environmentally-favorable way. Our data do not allow us to distinguish

among these three effects, but they are all relevant in that they reflect an impact (whether direct or

indirect) of weather shocks on legislative behavior.

One concern with these results is that the timing of votes may be endogenous. All of our

previous results condition on an environmental vote being held – for endogeneity to spuriously

drive our results, Congress would have to schedule favored environmental votes in weeks following

extreme weather and unfavored environmental votes in other weeks. Because we only include

year-month and member fixed effects, our identification strategy would be vulnerable to such a

phenomenon. Although we cannot observe whether a particular environmental vote is preferred

for other reasons, we can examine whether the timing of environmental votes seems to follow

extreme weather overall. We regress contemporaneous and one-week lagged weather deviations on

an indicator for whether an LCV vote occurred, controlling for year-month and state fixed effects.

The idea is to compare weeks within a calendar month, and see if LCV votes happen following

weeks with more extreme weather. We do not find evidence that this is the case. Given this finding,

reverse causality would only be problematic if those environmental votes that are inherently more

favored overall also tend to be scheduled after especially extreme weeks of weather.

A second concern is other factors that might drive a spurious relationship between the timing

of votes and unusual weather. It is still possible that local weather is spuriously correlated with

changing political preferences at the state-level and hence, within-member voting on environmen-

tal legislation. As a placebo test, we examine voting data from the American Conservative Union

(ACU). Similar to the LCV, the ACU tracks “a wide range of issues before Congress to deter-

mine which issues and votes serve as a dividing line to help separate those members of the U.S.

House and Senate who protect liberty as conservatives and those who are truly liberal.”11 For the

placebo test, we use the 350 non-environmental votes tracked by the ACU from 2004 to 2011.12

11http://conservative.org/legislative-ratings/
12The ACU tracks votes related to immigration, the minimum wage, family planning, religious freedom and other
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If general political preferences are shifting at the same time as unusual weather, we should ex-

pect that the weather-correlated variation in search intensity would be correlated with voting on

non-environmental votes tracked by the ACU. Table 2.5 presents the results of an identical speci-

fication to Panel B of Table 2.4 using Congressional member voting on non-environmental issues

tracked by the ACU rather than environmental votes tracked by the LCV. Columns (1) through (3)

use all of the non-environmental votes tracked by the ACU; columns (4) through (6) use only the

non-environmental votes tracked by the ACU that occur in the same week as the environmental

votes tracked by the LCV. We do not find the weather-correlated component of search intensity to

be strongly correlated with taking liberal or conservative positions on votes unrelated to the envi-

ronment, even when restricting the set of votes to those occurring in the same week as the LCV

votes. Thus, we do not find strong evidence that suggests that our results are driven by changes in

general voter preferences that are spuriously correlated with unusual weather.

Finally, we consider two possible sources of heterogeneity in the response of voting to unusual

weather, drawing on the political economy literature originating with Stigler (1971) and Peltzman

(1976) that postulate that voting behavior is driven both by individual ideology and the need to

represent constituent interests. Similar to more recent empirical articles on voting behavior, such

as Kalt and Zupan (1984) and Levitt (1996), we posit that the weight a representative places on

individual ideology and constituent interests vary with respect to the position of the representative

and the nature of the issue on which the vote is taken. For example, incumbents facing re-election

may weight constituent interests highly as might a representative facing a vote that demonstrates

dedication to his or her district.

In our context, we examine two sources of heterogeneity. First, we allow the response to

extreme weather to vary by congressional member characteristics. If left-leaning constituents care

more about environmental issues, we posit that representatives from these districts may face greater

pressure in response to abnormal weather. Moreover, we might expect that representatives facing

issues unrelated to the environment. In addition, the ACU tracks 44 votes related to the environment issues that are
also tracked by the LCV (e.g. HR 2643: Allowing the Dept. of the Interior to issue new leases for offshore natural gas
development); we omit these 44 votes from the placebo test.
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2-year re-election cycles in small, geographically contained districts may face greater re-election

pressure from constituents than senators and consequently, may be more responsive to short-lived

weather anomalies.

The specifications in Table 2.6 test whether the strength of the correlation between search in-

tensity and voting behavior differs by the characteristics of the Congressional member. We interact

the weather-correlated component of search intensity with whether the member of Congress is a

Democrat, a member of the Senate, and with the member’s LCV score over the 2004-2011 pe-

riod. In one of the three specifications, we find that the correlation between anomalous weather

in a member’s home state and voting on environmental legislation is significantly stronger in the

House than the Senate. This is consistent with the hypothesis that six-year terms in the Senate

that may make Senators less responsive to short-lived changes in constituent interests. We also

find strong evidence that the response to unusual weather also differs by political affiliation. The

correlation between voting and home-state search intensity is significantly stronger for Democrats

than Republicans. As a refinement, we allow for the response to unusual weather to differ for

each ten-percentage point bins of LCV ratings. These coefficients are plotted with 95% confidence

intervals in Figure 2.5.13 As before, positive values indicate that a member is more likely to take

a pro-environment stance when home-state search intensity is high and less likely to take a pro-

environment stance when home-state search intensity is low. Although we find little evidence of

correlation between voting and home-state search intensity for members with LCV ratings below

50 percent, we find a positive and strongly significant relationship for members that take a pro-

environment stance slightly more than half the time. Unsurprisingly, the correlation diminishes for

members with very high LCV ratings – these members almost always vote in favor of environment

legislation.

A second source of heterogeneity examines the characteristics of the votes themselves. The

LCV tracks a wide variety of votes related to the environment, only a subset of which relate to

climate change or air pollution more generally. If a congressional member’s vote acts as a verifiable

13The specification generating the coefficients estimates in the figure is a refinement of specification (3), and in-
cludes member fixed effects.
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signal to constituents, we might expect the effect of unusual weather to be greater for policies that

directly relate to climate change or pollution. To test this hypothesis, we hand-classify the 207

votes into three categories: (1) 18 votes directly related to climate change or carbon policy, (2)

84 votes related to industrial pollution or regulation, and (3) 105 votes related to the environment,

but unrelated to industrial policy or carbon emissions, such as wetland protection.14 A second

hypothesis relates to the votes that are particularly close to passage. As opposed to votes on

issues with more clear bipartisan support or resistance, party leadership may “coordinate” caucus

voting behavior on issues that are very close to passage or defeat. Thus, we would expect that

Congressional members may have increased latitude when voting on bills or motions that are

expected to handily pass or fail. Although no clear guidelines exist for what constitutes a “close”

vote, we define votes that passed or failed by less than five percent of the vote to be “close.” Figure

2.4 plots the histogram of pro-environment vote share for all 207 of the issues tracked by the LCV

between 2004 and 2011. Graphically, the votes falling between the dotted lines represent the issues

close to passage. Using this criterion, 73 of the 207 the votes are classified as close votes. Votes

that are close are roughly equally distributed across all three categories of environmental votes.

Table 2.7 presents the results allowing for the effects of anomalous weather to vary based

on vote characteristics. As before, the three columns correspond to specifications without fixed

effects, with year fixed effects, and with month-year fixed effects. Focusing on our preferred

specification in column (3), we find that anomalous weather is uncorrelated with voting for the

least-relevant group of environmental issues. In contrast, we find a significant, positive correlation

between anomalous weather and voting on bills and motions that are more closely related to carbon

emissions or industrial pollution. We estimate that a one standard deviation increase in the search

intensity is correlated with a 8.4 percentage point increase in the likelihood of a representative

taking a pro-environment stance on a vote related to industrial pollution and an 11 percentage

point increase in the likelihood related to carbon emissions policy. Although we cannot distinguish

whether anomalous weather affects voting through constituent preferences or a representative’s

14A list of all the votes and classifications are available from the authors by request.
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own beliefs, we find the strongest correlation between voting and extreme weather exactly where

political economy would suggest. In addition, we find suggestive evidence of diminished influence

of unusual weather on bills and motions very close to passage.

It is important to qualify the results above in two respects. First, the correlation between voting

and search intensity reflects the voting of individual members, conditional on the actual legislation

brought to a vote. While we find that members of Congress (and in particular, Democrats) are

more likely to vote in favor of environmental regulation when home-state relative search intensity

for global warming or climate change tends to be high, we cannot assess whether this implies dis-

crete changes in the passage of legislation or the changes in the content of legislation brought to

a vote. Most of the votes tracked by the LCV were passed or defeated with substantial support;

in these cases, the vote of a single member is unlikely to be marginal ex-ante and members of

Congress may have more latitude to take a position contrary to the position of their party. Only 15

percent of the votes tracked by the LCV were passed (or defeated) by less than a five percentage

point margin. Members (and caucuses) may behave differently for votes close to passage or de-

feat. We nonetheless feel that the observed relationship to marginal voting behavior is meaningful.

The relationship illustrates that abnormal weather or high search intensity is related to important,

observable behavior on environmental issues. Although the political economy of the legislative

process makes it unlikely that the marginal effect of an individual Congressional member would

translate into discrete changes in policy, our results suggest that search activity may be a useful

proxy for constituent concern and the salience of particular policy issues.

Second, while we identify an effect of abnormal weather on pro-environment voting, it is be-

yond the reach of our existing data to map a clear causal chain from weather to legislative action.

As we note above, we are not arguing that search activity itself is solely responsible for the changes

in voting behavior we identify, but rather that search activity (once instrumented) represents a pos-

sible proxy for the abnormality of weather. As the previous literature (Kahn, 2002; Levitt, 1996;

Kalt and Zupan, 1984) notes, many factors drive the voting of legislators, from ideological pref-

erences and interactions with concerned constituents to longer-run concerns about re-election and
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the ability to generate campaign contributions. Whether the link to voting behavior arises because

constituents express greater concern for the environment or legislators themselves change their

personal views is a topic for future research. That said, the short run nature of our identifying vari-

ation does suggest that the effect is not entirely driven by a long-run shift in ideological preferences

or a desire to demonstrate a consistent pro-environment stance to voters.

2.6 Conclusion

Anthropogenic climate change remains a societal threat and major policy challenge. Public opinion

on the existence and severity of climate change has fluctuated considerably over recent decades.

Forming accurate beliefs about a long-term one-time event such as climate change places an enor-

mous informational burden on the actor. Unusual weather is an observable, short-term analog that

could be used to update one’s opinion regarding climate change.

This paper tests the extent to which the salience of climate change is affected by such short-run

weather deviations. We use Google Insights search data to proxy for salience, which allows us to

perform our analysis at the state-week level. We find that search intensity does indeed respond to

weather deviations. Further, the high temporal resolution of our data allows us to provide a number

of novel insights. The effect of weather on search intensity varies substantially across the seasons.

Unusually cold temperatures have a large effect only in the fall and winter; unusually warm weeks

are associated with increased search only in the winter and summer. There does not appear to be

much of a relationship between spring weather and search.

We demonstrate that similar patterns exist in the environmental voting record of members of

the U.S. Congress. We find that members, and in particular Democrats, are more likely to vote

in favor of environmental legislation when their home state experiences anomalous weather or

high search activity related to global warming and climate change. The effect of unusual weather

is stronger for environmental regulation closely related to climate change or industrial emissions

than environmental regulation unrelated to industrial or carbon policy and absent for votes unre-
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lated to environmental policy. In addition, the effects are less strong for “close” votes for which

political concerns and vote coordination by party leadership seem to outweigh the effects of un-

usual weather. While modest in size, the results provide an important, policy-relevant link between

anomalous weather and observable action on environmental issues. In addition, the results suggest

that search activity may be a useful proxy for the salience of particular policy issues, an important

political consideration that is typically difficult to assess.

2.7 Figures

Figure 2.1: Average temperature deviations, 1974-2011
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Figure 2.2: Plot of residuals: Colorado, Oct. 2006-Apr. 2007
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Figure 2.3: All climate-related searches compared to skeptical searches

Climategate
0

5
10

15
S

ke
pt

ic
al

 s
ea

rc
he

s

0
20

40
60

80
10

0
S

ea
rc

h 
in

de
x

01jul2004 01jul2006 01jul2008 01jul2010 01jul2012
date

 'Global warming'
 Explicitly skeptical searches

92



Figure 2.4: Environmental vote share for LCV-tracked votes
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Figure 2.5: Estimated effect of search on voting by member’s overall LCV score
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2.8 Tables

Table 2.1: Descriptive Statistics, Full Sample

Max. Temp. Precip. Snowfall Snow Depth Google
(◦C) (mm) (mm) (mm) Search Index

Full sample: Mean -0.0331 0.1044 0.4892 4.3219 39.651
(N = 16546) SD 3.2633 2.7115 6.0449 42.619 28.284

Winter: Mean -0.7083 -0.0260 1.7908 14.411 43.021
(N = 4269) SD 4.0552 2.4107 10.141 73.259 29.640

Spring: Mean 0.2705 0.1031 0.0685 2.8974 47.101
(N = 4320) SD 3.2284 2.7223 4.8793 37.368 30.495

Summer: Mean 0.1994 0.1362 0.0006 0.2317 23.318
(N = 3485) SD 2.1956 2.6152 0.0525 3.7803 16.440

Fall: Mean 0.1371 0.2055 0.0337 -0.7467 41.964
(N = 4472) SD 3.0479 3.0242 3.4447 10.026 27.114

Notes: All weather variables are deviations from the 10-year baseline covering 1994-2003.
Sample period is from 2004-2011.

Table 2.2: Weather correlations

Max temp Precip Snowfall
Max temp · · ·
Precip -0.1077 · ·
Snowfall -0.3204 0.1248 ·
Snow depth -0.2704 0.0312 0.4760

Notes: All weather variables are deviations
from the 10-year baseline covering 1994-
2003. Sample period is from 2004-2011.
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Table 2.3: Effect of weather deviations on search intensity

Panel A: Linear Specification
(1) (2) (3) (4) (5)

All Seasons Winter Spring Summer Fall

Max Temp, deg. C -0.240*** -0.654*** -0.074 0.232* -0.046
(0.064) (0.112) (0.089) (0.120) (0.088)

Precip., mm -0.007 0.177* 0.020 0.106* -0.026
(0.047) (0.097) (0.086) (0.058) (0.091)

Snowfall, mm -0.042* -0.094*** 0.025 5.690* 0.065
(0.021) (0.023) (0.052) (3.384) (0.090)

Snow Depth, mm -0.018* -0.024** -0.001 -0.009 -0.118***
(0.009) (0.009) (0.022) (0.020) (0.040)

Constant 23.781*** 22.758*** 62.722*** 93.443*** 58.605***
(1.541) (1.572) (1.256) (1.974) (1.607)

Observations 16,546 4,269 4,320 3,485 4,472
R-squared 0.761 0.684 0.780 0.781 0.737

Panel B: Asymmetric Specification
(1) (2) (3) (4) (5)

All Seasons Winter Spring Summer Fall

Pos dev, Max Temp, deg. C 0.292*** 0.547*** -0.110 0.707*** 0.082
(0.078) (0.155) (0.142) (0.163) (0.178)

Neg dev, Max Temp, deg. C 0.806*** 1.634*** -0.026 0.322* 0.246*
(0.101) (0.172) (0.139) (0.192) (0.133)

Pos dev, Precip., mm 0.057 0.844*** -0.096 0.018 -0.080
(0.073) (0.160) (0.133) (0.074) (0.110)

Neg dev, Precip., mm 0.122 1.048*** -0.311 -0.285** -0.159
(0.124) (0.244) (0.203) (0.139) (0.161)

Pos dev, Snowfall, mm 0.003 -0.047 0.024 7.961* 0.132*
(0.029) (0.029) (0.066) (4.055) (0.070)

Neg dev, Snowfall, mm 0.285*** 0.256** -0.039 11.321 0.774**
(0.088) (0.101) (0.117) (29.207) (0.317)

Pos dev, Snow Depth, mm -0.007 -0.003 -0.032* 0.027 0.019
(0.009) (0.009) (0.019) (0.037) (0.055)

Neg dev, Snow Depth, mm 0.045** 0.076*** -0.067 0.540 0.300**
(0.020) (0.023) (0.060) (0.527) (0.122)

Constant 21.408*** 16.192*** 27.028*** 90.708*** 60.040***
(1.662) (1.874) (1.218) (2.086) (1.416)

Observations 16,546 4,269 4,320 3,485 4,472
R-squared 0.763 0.696 0.781 0.783 0.741

Notes: *** p<0.01, ** p<0.05, * p<0.1. Dependent variable is the Google search index. All regressions
also include year * month FE and state * month of year FE. Standard errors are clustered at the state level.
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Table 2.4: Environmental Votes, Local Weather and Search Intensity

(1) (2) (3)

Panel A: Weather variables

Pos Dev, Max Temp 0.00004 0.00032 -0.00092
(0.00208) (0.00195) (0.00166)

Neg Dev, Max Temp -0.00467∗∗∗ -0.00588∗∗∗ -0.00257
(0.00148) (0.00150) (0.00159)

Pos Dev, Snowfall -0.00048 -0.00024 -0.00040
(0.00038) (0.00036) (0.00032)

Neg Dev, Snowfall 0.00385∗∗ 0.00265 0.00190
(0.00189) (0.00181) (0.00186)

Pos Dev, Precipitation 0.00194 0.00075 0.00053
(0.00139) (0.00128) (0.00124)

Neg Dev, Precipitation -0.00116 0.00024 -0.00113
(0.00234) (0.00219) (0.00260)

Pos Dev, Snow Depth 0.00002 0.00003 0.00004
(0.00006) (0.00007) (0.00005)

Neg Dev, Snow Depth 0.00012 0.00013 -0.00001
(0.00021) (0.00020) (0.00021)

F-test p-value <0.001 <0.001 0.147

Observations 61173 61173 61173
R-Squared 0.654 0.657 0.672

Panel B: Weather-correlated with Search Intensity

Climate Change Search Intensity/100 0.313∗∗∗ 0.254∗∗∗ 0.111∗∗

(0.0601) (0.0557) (0.0475)

Observations 61148 61148 61148
R-Squared 0.655 0.657 0.672

Notes: *** p<0.01, ** p<0.05, * p<0.1. Dependent variable is a binary vari-
able indicating whether a representative voted for the LCV-endorsed position.
All specifications include representative fixed effects. In addition, column (2)
includes year * month fixed effects and column (3) includes year * week fixed
effects. Standard errors are clustered at the state level.
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Table 2.5: ACU Votes, Local Weather and Search Intensity

All ACU-tracked votes Same-week ACU-tracked votes

(1) (2) (3) (4) (5) (6)

Climate Change Search Intensity/100 -0.0253 -0.00977 0.0500∗ 0.0249 -0.0165 -0.00344
(0.0258) (0.0265) (0.0280) (0.0349) (0.0375) (0.0494)

Observations 90143 90143 90143 41509 41509 41509
R-Squared 0.551 0.554 0.569 0.542 0.549 0.573

Notes: *** p<0.01, ** p<0.05, * p<0.1. Dependent variable is a binary variable indicating whether a
representative voted for the ACU-endorsed position. All specifications include representative fixed effects.
In addition, columns (2) and (5) include year * month fixed effects and columns (3) and (6) include year *
week fixed effects. Standard errors are clustered at the state level.

Table 2.6: Environmental Votes and Search Intensity, by Repre-
sentative Characteristics

(1) (2) (3)

Climate Change Search Intensity/100 0.167∗∗ 0.104 -0.0584
(0.0770) (0.0742) (0.0684)

Senate * Search Intensity/100 -0.111 -0.131∗ -0.0461
(0.0709) (0.0712) (0.0687)

Democrat * Search Intensity/100 0.276∗∗∗ 0.289∗∗∗ 0.298∗∗∗

(0.0959) (0.0950) (0.0888)
Observations 61148 61148 61148
R-Squared 0.655 0.658 0.672

Notes: *** p<0.01, ** p<0.05, * p<0.1. Dependent variable is a binary
variable indicating whether a representative voted for the LCV-endorsed
position. All specifications include representative fixed effects. In ad-
dition, column (2) includes year * month fixed effects and column (3)
includes year * week fixed effects. Standard errors are clustered at the
state level.
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Table 2.7: Environmental Votes and Search Intensity, by Vote Character-
istics

(1) (2) (3)

Other Vote * Search Intensity/100 0.295∗∗∗ 0.213∗∗∗ -0.0191
(0.0710) (0.0660) (0.0667)

Industrial Regulation * Search Intensity/100 0.370∗∗∗ 0.316∗∗∗ 0.310∗∗∗

(0.0783) (0.0779) (0.0853)

Climate Change * Search Intensity/100 0.290∗∗∗ 0.283∗∗ 0.395∗∗

(0.102) (0.112) (0.172)

Close vote * Search Intensity/100 -0.0969∗∗∗ -0.0654∗∗∗ -0.101∗∗∗

(0.0172) (0.0159) (0.0211)
Observations 61148 61148 61148
R-Squared 0.655 0.658 0.672

Notes: *** p<0.01, ** p<0.05, * p<0.1. Dependent variable is a binary variable
indicating whether a representative voted for the LCV-endorsed position. All spec-
ifications include representative fixed effects. In addition, column (2) includes year
* month fixed effects and column (3) includes year * week fixed effects. Standard
errors are clustered at the state level.
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CHAPTER 3.

Seller Commitment and the Empirical Analysis of

First-Price Auctions

3.1 Abstract

The empirical auction literature focuses on recovering firm valuations, which are used to calculate

surplus division, optimal reserve prices, and the impacts of an increased number of competing

bidders. In the case of a binding reserve price, the standard assumption is that the auctioneer keeps

the object if the reserve price is met. In this paper, I consider a model in which the seller may

re-auction object once if the initial reserve price is not met. I argue that the value distributions are

nonparametrically identified without additional modeling assumptions using standard arguments

in the literature. However, the distribution of shocks to values between the first- and second-round

auctions is not identified using only bid data. I impose a parametric assumption and propose a

semiparametric estimation procedure. A Monte Carlo simulation shows that the estimator performs

well, and demonstrates that ignoring the seller commitment problem will lead to biased estimates

of bidder valuations. Finally, I discuss how previous methods using reserve prices can be adapted

to identify the first-round distribution of unobserved heterogeneity and allow it to persist into the

second round. Future work will relax some of the model’s assumptions and apply the estimator to

data from timber auctions.
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3.2 Introduction

Sellers will often use an auction in order to organize and increase competition for their assets.

In this context, features such as reserve prices and entry fees can be used to improve the expected

payoff to the seller. Much of the theoretical literature and all of the empirical literature has assumed

that the potential bidders believe the seller will permanently withhold the object in the event that

no bidder meets the reserve price.

Unfortunately, this assumption fails in many important settings, especially in the context of

auctions for natural resource extraction rights. Porter (1995) notes that 47% of federal offshore oil

and gas leases that do not receive a sufficient bid are eventually re-auctioned. According to McAfee

and Vincent (1997), the US Forest Service responds to a no-bid auction by re-auctioning the tract

and reducing the reserve price by 10 percent. The Michigan Department of Natural Resources

(DNR) typically reduces a timber sale’s reserve price by roughly 20 to 40 percent in response to a

no-bid auction (Heym, 2013). Beyond natural resources, another example of re-auctioning arises

in FDIC sales of distressed real estate assets (McAfee, Quan, and Vincent, 2002) that do not receive

bids at the initial reserve price. The theoretical literature that has addressed this issue has shown

that the optimal choice of auction parameters can be considerably different when this assumption

is relaxed.

In this paper, I consider the importance of this assumption in the empirical analysis of first-

price auctions. I specify and solve a two-round model in which potential bidders decide whether to

participate in a first-round auction based on the probability that the item may be re-auctioned in the

future. Using tools from the structural empirical auction literature, I find that bidder valuations are

nonparametrically identified identified in my model, as is the cutoff valuation that makes a bidder

indifferent between bidding and waiting. However, I find that if valuations receive shocks between

the first- and second-round auctions, the distribution of those shocks is not nonparametrically iden-

tified. Instead, I explore an alternative semiparametric approach and test its performance using a

Monte Carlo simulation. I also describe a potential application to Michigan state timber auctions

and discuss how first-round reserve prices can be used to identify the distribution of persistent un-
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observed heterogeneity. In future work, I will extend the model, apply the estimation procedure to

the Michigan timber data, and examine the implications of the model for optimal auction design.

When bidders know the object may be re-auctioned, some may decide that it is better not

to bid, in hopes that they are able to bid in a second auction in which they have a (possibly)

higher valuation, against weaker revealed competition, and a lower reserve price. The possibility of

waiting for a future auction will bias naive estimates of the value distribution. Intuitively, without

re-auctioning, a bidder with a value at the reserve price is indifferent between bidding and not

bidding. When re-auctioning is possible, the bidder who is indifferent between bidding and waiting

will typically have a value strictly above the reserve price. Thus, the model will make different

predictions about how bids near the reserve price are mapped back into their corresponding values.

Further, bidding behavior in the second-round auction will be conditioned on the knowledge

that competitors’ values are adversely selected from the original value distribution. While non-

parametric techniques that invert bids into values using necessary conditions (Guerre, Perrigne,

and Vuong, 2000) will still recover the correct valuations for both rounds of the auction, these

techniques will not provide sufficient information for the evaluation of most counterfactual poli-

cies in this context. For example, these dynamic considerations change the calculus of important

outcomes such as the optimal reserve price and the total surplus in the market; the distribution of

between-period shocks is a key element to these analyses. Any changes to the mechanism that

affects the types of firms willing to eschew bidding in the first round (for instance, changes in

number of potential bidders, entry fees, or reserve prices) requires estimates of how equilibrium

bidding will change, and what the new distribution of second-round values will be.

As noted by Athey, Cramton, and Ingraham (2002) in their guide to setting reserve (upset)

prices in British Columbia Timber auctions,

“When a tract does not sell at auction, the Ministry acquires certain information. If
bidders’ values for a particular tract are forever constant, and if the bidders are bidding
under the equilibrium described above, then the Ministry learns that the value of the
tract is less than the upset it set...overall, the expected future resale value of a tract that
fails to sell today depends on the correlation between today’s values and tomorrow’s
values by firms...if bidder values are correlated over time, little is gained by setting a
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high upset price and continually reoffering a tract in the hopes it will sell at that high
price.”

This excerpt emphasizes the importance of recovering the relationship between bidder valuations

for a tract today and valuations for a tract at a future re-auctioning date. The correlation between

first- and second- price values is necessary for any sort of counterfactual policy simulation.

If the government cannot commit to keeping the object off the market after the first auction,

it needs to set an optimal pair of reserve prices. The first-round reserve price obviously affects

revenue in the first round; however, it also changes the distribution of firms associated with an

auction that receives no bid, and thus the maximum revenue that can be extracted in the case that

a second-round auction is held. Similarly, the second-round reserve price affects both first- and

second-round bidding behavior.

I discuss applying the estimation procedure to Michigan DNR timber auctions, and future work

will carry out the full analysis. The data are quite rich: all firm identities, bids, and a comprehensive

set of observable characteristics are available. Of the 4616 first-round auctions, 480 receive no bids.

This is a modest share, but it provides enough data to estimate a distribution of second-auction bids.

Further, the possibility of multiple rounds could also substantially affect bidding behavior in the

742 auctions that only receive one bid and the 846 auctions that only receive two. The DNR’s

reserve price process is relatively well-defined. The general procedure following a no-bid auction

is to post the sale at the original reserve price for 60 days, then re-auction (roughly 6 months after

the original auction) with a reserve price that is 20 to 40 percent lower than before (Heym, 2013).

Given that the bidders know that a no-bid auction is very likely to be sold again, this setting is an

example in which we would expect bidding to be influenced by the seller commitment problem.

This paper relates to several strands of the existing auction literature. First, there is a theoretical

literature pertaining to the design of optimal auctions when the auctioneer cannot commit to the de-

sign of the auctions. An early paper in this area is by McAfee and Vincent (1997), who characterize

the equilibrium sequence of reserve prices and show that revenues are eroded by this inability to

commit in a sense similar to the Coase conjecture. Burguet and Sákovics (1996) show that when
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value discovery is costly, an auctioneer can increase welfare and revenues by announcing that a

second auction without a reserve price will be held if no bids are submitted. More recently, Skreta

(2013) extended McAfee and Vincent’s result when the seller can choose any mechanism. Varti-

ainen (2011) considers an even more extreme version of non-commitment: the seller cannot even

commit to honor the current mechanism; that is, a valid bid above the reserve price might not result

in a transaction.

My approach complements and extends these studies in two ways. First, I approach the prob-

lem from an empirical angle. I do not assume that sellers set optimal reserve prices; however,

my structural model assumes bidding behavior that is optimal when bidders account for the re-

auctioning of an unsold contract. Second, my model allows for shocks to bidder valuations over

time. The aforementioned papers assume that bidders have constant valuations. In an empirical

context, this is not realistic: firm and market conditions change over time, and bidding behavior

in a follow-up auction will reflect this. Future work will use structural estimates to calculate the

optimal seller strategies characterized in the existing theoretical work, and empirically quantify the

importance of the commitment problem.

A second strand of related literature is the literature on the structural empirical analysis of first-

price auction data. The approach pioneered by Guerre, Perrigne, and Vuong (2000) uses necessary

conditions to map observed bids into valuations without directly calculating the equilibrium of the

game. This approach has been generalized to account for dynamics (Jofre-Bonet and Pesendorfer,

2003; Balat, 2013), endogenous participation (Xu, 2013), and unobserved auction heterogene-

ity (Krasnokutskaya, 2009; Roberts, 2013). I will contribute to this literature by showing how to

extend this approach to the common case where a seller cannot credibly commit to keep an object

off the market.

Finally, this issue is of particular interest in the context of natural resource extraction. As noted

above, sales of timber stands and oil/natural gas leases often go unsold and are re-auctioned. These

are the settings of many economic policies of consequence. Analyses based on bid data in this case

could be limited if there is a strategic incentive to withhold one’s bid. I consider this in the context
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of timber, but the approach could be applied in other contexts, such as oil lease auctions, perhaps

exploiting recent identification approaches for auctions with interdependent costs (Somaini, 2014).

3.3 Model Setup and Equilibrium

To empirically address these issues, I specify a simple model of a first-price auction with (poten-

tially) two rounds of bidding. Bidders are ex ante homogeneous, and draw independent private

values. If no one is willing to meet the reserve price in the first round, the object is re-auctioned

in the next period. If no one is willing to meet the reserve price in this auction, then the object

remains with the auctioneer, as is assumed in a typical one-period model.1

3.3.1 Model

The model proceeds under the following assumptions:

1. Bidder valuations: Bidder values in the first round are independent private values, v1i ∼
F1. Bidders receive i.i.d. shocks, ω ∼ Fω, to their valuations between rounds such that
v2(v1i, ωi) ∼ F2, with E[v2i] = v1i.

2. Reserve Prices: R2 ≤ R1 (the auctioneer sets a lower reserve in the second round).

3. Discounting: Bidders and the auctioneer discount the second period at rate δ.

4. Timing:

(a) N potential bidders observe reserve price R1 their own valuations v1i, and the distribu-
tion of other bidders’ valuations F1.

(b) Bidders submit a bid b1(v1i) in a sealed-bid first-price auction.

(c) If no bids above R1 are received, the auctioneer sets a new reserve price R2.

(d) The same N potential bidders receive shocks ωi, learn their new values v2(v1i, ωi), and
observe the distribution of shocks Fω.

(e) Bidders submit bids b2(v2i) in a second-round sealed-bid first-price auction.

1In section 3.8, I discuss relaxing several of these assumptions.
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I restrict the analysis to increasing symmetric bidding equilibria within each auction. The full

equilibrium will be a first-round cutoff value, v∗; and two bidding functions, b1 and b2. Typically,

v∗ will exceed the reserve price R1. This is driven partially by the option value associated with

the shocks to valuations; that is, a bidder with valuation just above R1 will be willing to forgo

their small expected profit from bidding in the first-round auction in favor of receiving a (possibly

favorable) shock to their valuation. In the absence of value innovations, a lower second-round

reserve price could also be enough to push v∗ above R1.

In this context, the cutoff value will be defined as the bidder that is indifferent between bidding

and not bidding in the first round.

(v∗ −R1)F1(v∗)N−1 = δE[(v2 − b2(v2))F2(v2|v1 < v∗)N−1]F1(v∗)N−1

v∗ −R1 = δE[(v2 − b2(v2))F2(v2|v1 < v∗)N−1] (3.1)

where the expectation is taken over the second-period valuation conditional on having a value

v1 = v∗. Given v∗, the equilibrium bid function is as follows:

b1(v1) = v1 −
∫ v1
v∗
F1(u)N−1du

F1(v1)N−1
− (v∗ −R1)

F1(v∗)N−1

F1(v1)N−1
(3.2)

which, conditional on v∗, is identical to the equilibrium bid function in Samuelson (1985).2

The second-round equilibrium is standard for a first-price auction with a binding reserve price;

note that the bidders update to account for the adversely selected set of competitors:

b2(v2) = v2 −
∫ v2
R2
F2(u|v1 < v∗)N−1du

F2(v2|v1 < v∗)N−1
(3.3)

3.3.2 Proof of Cutoff Equilibrium

Going forward, I will operate under an additional structural assumption:

2In his model, bid preparation costs drive the wedge between the reserve price and v∗.
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5. Multiplicative shock: v2 = v1ω, and ω ∈ [0,∞).

For expository purposes, I initially assume that E[ω] = 1; however, I will present a more general

condition on the distribution of ω that is sufficient to guarantee an equilibrium.3

The equilibrium strategies have been defined in the previous subsection. Here, I show that

these strategies actually admit a cutoff equilibrium under certain conditions. Specifically, I will

show that the derivative of the gain from bidding in the first round rather than waiting is positive

for all values of v1; thus, the gain is increasing in the bidder’s first-round valuation.

Consider a potential bidder with some valuation v ≥ R1. Suppose that all other agents are

playing the strategies outlined in Section 3.3. Then the bidder’s best expected payoff from bidding

in the first auction is

(v1 − b1(v1))F1(v1)N−1, if v1 ≥ v∗

(v1 −R1)F1(v∗)N−1, if v1 ∈ [R1, v
∗).

The derivative of this payoff with respect to v is F (v)N−1 if v ≥ v∗ and F1(v∗)N−1 if v ∈ [R1, v
∗).4

Note that this derivative is always ≥ F (v∗)N−1. The expected payoff from waiting for a second

auction is:

δF (v∗)N−1

∫ ∞
R2
v1

(v1ω − b2(v1ω))F2(v1ω; v∗)N−1dFω.

3In Appendices C.1 and C.2, I also establish that the equilibrium exists with any additive shock or in the absence
of a shock.

4 ∂
∂v1

(v1−b1(v1))F1(v1)N−1 = F1(v1)N−1−b′1(v1)F1(v1)N−1 +(N−1)(v1−b1(v1))F1(v1)N−2f1(v1), which
is equal to F1(v1)N−1 because the last two terms are equal to the first-order condition for a payoff-maximizing bid.

106



When differentiated with respect to v1, this gives:

δF (v∗)N−1

∫ ∞
R2−v1

{ω(1− b2
′(v1ω))F2(v1ω; v∗)N−1

+ ω(v1ω − b2(v1ω))F2(v1ω; v∗)N−2f2(v1ω; v∗)(N − 1)dFω}

+
R2

v2
1

(R2 − b2(R2))︸ ︷︷ ︸
=0

F (R2)N−1

= δF (v∗)N−1

∫ ∞
R2−v1

ωF2(v1ω; v∗)N−1

− ωb2
′(v1ω)F2(v1 + ω; v∗)N−1

+ ω(v1 + ω − b2(v1ω))F2(v1 + ω; v∗)N−2f2(v1ω; v∗)(N − 1)dFω}

= δF (v∗)N−1

∫ ∞
R2−v1

ωF2(v1ω; v∗)N−1dFω

The final equality holds because the last two lines of the previous expression equal zero: they are

ω times the first order condition for optimal bidding in the second-round auction for a given value

of v2 = v1ω. Now I can confirm that the relative gains from bidding are increasing in v1:

d

dv1

E[Payoff from bidding in auction 1] ≥ F (v∗)N−1

> δF (v∗)N−1

= δF (v∗)N−1E[ω]

> δF (v∗)N−1E

[
ω|ω ≥ R2

v1

] [
1− Fω(

R2

v1

)

]
> δF (v∗)N−1

∫ ∞
R2
v1

ωF2(v1ω; v∗)N−1dFω

=
d

dv1

E[Payoff from waiting for auction 2]

Thus, given that a bidder with v1 = v∗ is indifferent between bidding in auction 1 and not bidding,

all v < v∗ prefer to wait, and all v > v∗ prefer to bid in auction 1. Comparing the second line to
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the fourth line, a more general sufficient condition for the equilibrium arises:

1 ≥ δE

[
ω|ω ≥ R2

v1

] [
1− Fω(

R2

v1

)

]
︸ ︷︷ ︸

“Contribution” of right tail to E[ω]

= δ

∫ ∞
R2
v1

ωdFω ≥ δ

∫ ∞
R2
v1

ωF2(v1ω; v∗)N−1dFω (3.4)

The second term (labeled with the brace below) is the expectation integral of ω truncated be-

low at R2/v1. It is increasing in v1 and approaches E[ω] as v1 → ∞.5 In fact, as v1 → ∞,

F2(v1ω; v∗)N−1 → 1 ∀ω and, therefore:

lim
v1→∞

δF (v∗)N−1

∫ ∞
R2
v1

ωF2(v1ω; v∗)N−1dFω = δE[ω] (3.5)

Thus, a more general sufficient condition is thatE[ω] < 1/δ. Essentially, if the first-round bidders’

discounted expectation of their second-round valuations is less than their current valuation, there is

a cutoff equilibrium. Depending on the specifics of reserve prices, the discount rate, and the value

distributions, this cutoff might be below R1, in which case all bidders with valuations above the

first-period reserve price would bid. Interestingly, the validity of the cutoff equilibrium does not

directly depend on the second-period reserve price, because the potentially problematic valuations

are in the right tail of the distribution.6

3.4 Identification

From this point forward, I assume that the increasing symmetric cutoff equilibrium outlined in

Section 3.3 exists and is played. The structural objects of interest are the first-round distribution

of values (F1), the second-round distribution of values (F2), and the distribution of innovations

linking the right-truncated version of F1 with F2 (i.e., Fω). In this section, I find that F1 and

5The expression is decreasing in the lower limit of integration: ∂
∂aE [ω|ω ≥ a] [1− Fω(a)] = ∂

∂a

∫∞
a
ωdFω =

−afω(a) < 0. Since the lower limit is decreasing in v1, the expression is increasing in v1.
6The actual levels of the equilibrium bid functions and the cutoff value will still depend on the relative values ofR1

and R2. It is simply the case that the monotonicity of the relative payoffs of bidding versus waiting does not directly
depend on the reserve prices.
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F2 are nonparametrically identified for valuations above v∗ and R2, respectively, as is the cutoff

value v∗. However, because the values in the second period derive from unobserved first-round

values (v1 < v∗), there is no information about the density that can be used to deconvolve the

two distributions. Because Fω determines the link between first- and second-round valuations, it

is crucial to simulating any counterfactual scenario that affects the cutoff value v∗.7 The cutoff

value v∗ links F1 to F2 through the indifference condition and does provide one moment that can

be used to characterize Fω. Still, a distributional assumption on F1 is necessary to fully identify Fω

using the distribution of second-round pseudovalues ξ2. In Section 3.8, I discuss potential sources

of exogenous variation that could identify Fω.

3.4.1 Nonparametric Identification

The first-round equilibrium of this model is very similar to that of Samuelson (1985). Xu (2013)

shows that the Samuelson model is identified for all values above v∗, as is the value of v∗. I use

similar arguments to show that components of the present model are identified.

Let G∗(b) be the distribution of bid data on [R1, b̄], where b̄ is the upper bound of the bid

distribution. Also, let p1 = 1−F1(v∗) be the probability that a given bidder bids. Then conditional

on bidding (i.e., if v1 ≥ v∗), the bidder maximizes:

(v1 − b1)(p1G
∗
1(b1) + (1− p1))N−1

The first order condition gives the following relationship between values and bids:

ξ1(b1) = b1 +
1

N − 1

p1G
∗
1(b1) + (1− p1)

p1g∗1(b1)
(3.6)

7Such scenarios include changes in the number of potential competitors, the reserve price policy, and the introduc-
tion of an entry fee or subsidy.
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These pseudovalues identify the distribution F1 for values greater than v∗. We know that

ξ1(R1) = v∗ (3.7)

and G∗1(R1) = 0. (3.8)

Inverting the bid function at R1, I get that:

v∗ = ξ1(R1) = R1 +
(1− p1)

p1g∗1(R1)(N − 1)

which, combined with the zero-profit condition from Equation (3.1), implies that:

v∗ −R1 =
(1− p1)

p1g∗1(R1)(N − 1)
= δE

[
(v2 − b2(v2))F2(v2|v1 < v∗)N−1

]
(3.9)

Thus, v∗ is identified, and can be estimated with a consistent estimate of the bid density at R1.

This involves nonparametric estimation at the boundary of the observed bids. Possible approaches

for estimating this object have been discussed in the empirical auction literature by Xu (2013)

and Hickman and Hubbard (forthcoming).

Using the approach of Guerre, Perrigne, and Vuong (2000), I can identify the distribution

F2(v2|v1 < v∗) for all v2 ≥ R2:

ξ2(b2) = b2 +
1

N − 1

p2G
∗
2(b2) + (1− p2)

p2g∗2(b2)
(3.10)

where p2 = 1− F2(R2). However, ξ2(R2) = R2 if and only if g∗2(b)→∞ as b→ R2 from above.

Thus, Guerre, Perrigne, and Vuong (2000) suggest a transformation, b̃2 =
√
b2 −R2, which leads

to:

ξ2(b̃2) = R2 + b̃2
2 +

2b̃2

N − 1

p2G̃
∗
2(b̃2) + (1− p2)

p2g̃∗2(b̃2)
(3.11)

Given these pseudovalues ξ1 and ξ2, one can follow the nonparametric second stage of Guerre,
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Perrigne, and Vuong (2000) or the recent semiparametric approach in Aryal, Gabrielli, and Vuong

(2014). In this latter paper, a parametric value distribution is assumed. The second step chooses the

parameters governing the value distribution to best match the distribution of pseudovalues using

GMM with the optimal moments (the score function).

Note that if the researcher assumes that there is only one round of bidding possible, then theory

predicts that b1(R1) = R1. This leads to the transformation discussed above. However, given

the equilibrium predicted by my model, this approach will fail. In most cases, the possibility of a

second-round auction result in b1(v∗) = R1, with v∗ > R1. The model must incorporate expecta-

tions about the second period into the first-round bidding strategy through this cutoff point. In the

Monte Carlo simulations, I demonstrate that the usual estimator will generally perform poorly in

recovering first-round valuations. However, as long as the researcher acknowledges that bids reflect

the possibility of a second-round auction, F1 can be consistently estimated nonparametrically.

Unfortunately, the full distribution of ω is not nonparametrically identified using only observed

bids.8 Intuitively, the only information about ω comes through the indifference condition on a

bidder with a first-period value of v∗. Given estimates of F2 and F1, one could assume a one-

parameter distribution for ω and use the indifference moment to estimate it. Alternatively, one

could assume a two-parameter distribution and add a constraint, such as assuming that valuations

do not change on average (i.e., E[ω] = 1). Suppose that ω is log-normally distributed, with

location µ and scale σ. Then the mean-one assumption means that the parameters µ and σ are

univariate functions of the variance of the distribution, which could potentially be estimated using

the indifference condition for a bidder with the already-identified cutoff value v∗.

3.4.2 The Importance of Estimating Fω

The calculation of the optimal reserve price clearly illustrates the importance of estimating the

relationship between first- and second-round valuations. The second-round optimal reserve price

is straightforward; it is simply the standard formula, accounting for the impact of the first-round

8In the conclusion, I discuss the possibility of using an instrumental variable approach to gain identification.
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reserve price on the second-round value distribution. Taking the first-order condition of the auc-

tioneer’s expected revenue and rearranging gives:

max
R2

v0F2(R2;R1)N +N

∫ v̄

R2

[vF2(v;R1)N−1 −
∫ v

R2

F2(u;R1)N−1du] f2(v;R1)dv

⇒R∗2(R1) = v0 +
1− F2(R∗2;R1)

f2(R∗2;R1)

However, the first-round is much different. Since the first-round reserve price affects second-

round seller profits and endogenously determines the cutoff bidder type, the seller’s optimization

problem (and first-order condition) is more complicated:

max
R1

E1[π0,2(R1)]F1(R1)N +N

∫ v̄

v∗
[v1F1(v1)N−1−

∫ v1

v∗
F1(u)N−1du−(v∗−R1)F (v∗)N−1] f1(v1)dv1]

s.t. v∗ = R1 + δE[(v2 − b2(v2))F2(v2;R1)N−1]

where π∗0,2(R1) is the seller’s optimal expected second-round payoff, given that R1 is chosen in the

first round. The first source of complication is that the cutoff valuation is endogenously determined,

which affects the probability that there are no bids. The second source of complication is that

the cutoff value affects the distribution of firms bidding in the case of a second-round auction.

Therefore, the seller’s no-bid payoff is also an endogenous function of the reserve price choice,

which is not normally the case.

The transition probabilities between first-round and second-round valuations are crucial here

because they govern the impact of the first-period reserve price on (1) the lowest type willing to bid

in the first-period and (2) the distribution of types in the second period, conditional on the cutoff.
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3.4.3 A Semiparametric Approach

Adding a constraint, such as E[ω] = 1, is a substantive assumption, and not simply a normaliza-

tion. Rather than impose this type of constraint, I take a semiparametric approach similar to that

developed by Aryal, Gabrielli, and Vuong (2014). I assume parametric distributions for F1 and

Fω, with associated parameter vectors θ1 and θω. Conditional on the estimate of v∗ and a guess of

θ1 and θω, I can write the likelihood of observing pseudovalues ~ξ1 and ~ξ2. Estimates of θ1 and θω

can be obtained using maximum likelihood or GMM with optimal moments (the score function).

The estimation procedure follows these steps, where estimates of variables and distributions are

denoted with hats:

1. Calculate the empirical probabilities of submitting a bid, p̂1 and p̂2.

2. Nonparametrically estimate the density and distribution of first- and second-round bids (ĝ∗1 ,
Ĝ∗1, ĝ∗2 , Ĝ∗2) using a kernel estimator.

3. Plug these estimated bid densities and distributions into Equations 3.6 and 3.11 to recover
the pseudovalues ~ξ1 and ~ξ2 for the first- and second-round auctions.

4. Obtain an estimate of the first-round density of bids at the reserve price (ĝ∗1(R1)) using the
one-sided nearest neighbor estimator outlined in Xu (2013).

5. Use this estimate of g∗1(R1) to evaluate Equation 3.9 to obtain v̂∗ = ξ1(R1).

6. Guess candidate parameters θ1 and θω, and calculate the likelihood of the pseudosample
{~ξ1, ~ξ2}.

7. Search for parameters that minimize the chosen objective function.

As shown in Aryal, Gabrielli, and Vuong (2014), such an approach circumvents the curse of

dimensionality with respect to covariates and is similar to parametric assumptions that are often

informally made in applying the method proposed in Guerre, Perrigne, and Vuong (2000).

3.5 Monte Carlo Simulation

In this section, I test the performance of the estimator outlined above and compare it to naive

estimates that ignore the strategic implications of re-auctioning. A few practical issues need to be
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addressed. First, there is the matter of bandwidth selection. I use the “rule-of-thumb” bandwidth

from Silverman (1986), adjusted for the triweight kernel. Guerre, Perrigne, and Vuong (2000) note

that the kernel density estimator used to recover g∗(·) will not perform well near the boundaries

of the bid data. In practice, I use the boundary-correction approach of Hickman and Hubbard

(forthcoming), and estimate the density at the first-round reserve price, g∗(R1), using the one-

sided nearest neighbor approach in Xu (2013).

I parameterize the model such that the first-round values come from a truncated lognormal

distribution with location parameter µ1 and scale parameter σ1. The shock to values that occurs

between rounds is log-additive, and comes from a truncated lognormal distribution with location

parameter µω and scale parameter σω.9 I also choose the first and second-round reserve prices, R1

and R2; the number of potential bidders, N ; the number of auctions in the simulated dataset, A.

These parameter values are listed in Table 3.1.

The results of the 1000 simulations are presented in Table 3.2. In the first panel, I present

the results from the joint estimation process. The distribution of first-period values are very well

estimated. The bias is nearly zero, and the standard deviation across replications is quite low.

The estimate of the point of truncation v∗ via ξ1(R1) is pretty close on average, though biased

slightly upward. The estimates of the innovation parameters are less accurate. In particular, the

median (location) of the distribution is underestimated, while the scale is overestimated. Figure 3.2

compares the density associated with the mean parameter estimates compared with the density

from the true data-generating process.

Although this seems a bit off, it is informative to examine the accuracy of the implied second-

round distribution, F2. I calculate and plot the estimated and true densities of v2 = v1ω. In

Figure 3.3, the densities are based on an untruncated F1 (i.e., v∗ = 0). In Figure 3.4, the truncation

point is the true value of v∗ for the true distribution and the estimated value of v∗ for the estimated

value. These figures illustrate that the second-round distribution is still being captured fairly well

by the estimates of the first-round values and value innovations.

9For technical reasons, these distributions are truncated above at v̄ = 200, a value that is extremely unlikely to
arise given the other parameters.
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The results also highlight the danger of entirely ignoring the possibility of re-auctioning. I

estimate the first-period valuation distribution assuming the “naive” one-period model and list the

results for comparison. I find that these estimates are well off the mark; the severity of the problem

is clear from the plotted densities in Figure 3.1. The naive model misspecifies the lower bound of

the recovered valuations at R1 = 12 instead of near v∗ = 14.15. Thus, the naive estimator recovers

a wider distribution with a smaller median to explain the observed bids.

3.6 Application: Auctions for DNR Timber Contracts

In this section, I present a description of institutions and data related to Michigan DNR timber

auctions. In particular, I focus on the extent to which these auction are an appropriate setting to

apply my estimation procedure.

3.6.1 DNR Timber Auctions and the Reserve Price Policy

The Michigan DNR is tasked with managing the state forest system with the threefold aim of main-

taining ecological integrity, providing recreational opportunities, and supporting the local timber

industry and earning revenue through timber sales. The DNR holds roughly 500 auctions each

year at various field offices scattered throughout the Northern Lower Peninsula and the Upper

Peninsula.

When a stand of trees is ready to be auctioned, the contract terms are made public and there

is usually a 4-6 week bidding period before the bid opening date. During the interim, loggers

often conduct a “cruise” of the sale to get a first-hand look at the area in which the harvest will

take place.10 The auctions are sealed-bid first-price auctions with public reserve prices. The bids,

bidder identities, and number of bids submitted are held confidential until the results are made

fully public at the bid opening. The highest bidder wins the contract and is obligated to harvest the

10Conversations with DNR officials and estimates in Herrnstadt (2015) suggest that bid preparation costs are quite
small in this context.
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specified timber before a contract deadline. Failure to fulfill the contract terms results in a financial

penalty and possible exclusion from future sales.

There is a reserve price based on the winning bid on nearby timber of the same tree species.

The DNR forester then uses a rubric to set the reserve price based on factors related to the cost of

cutting and transporting the logs to market, as well as a “market conditions” adjustment to allow

for room to bid (Heym, 2013). In the case that the sale “goes no-bid” (i.e., it does not receive any

bids), the DNR follows a well-known procedure. First, the sale is made available at the reserve

price for about 60 days.

If there are no interested parties (or multiple interested parties), then the sale will be re-

auctioned at a reserve price that is roughly 20-40 percent lower than the original. Figure 3.5 shows

the distribution of second-round auction reserve prices as a share of the corresponding first-round

reserve price. Clearly there is quite a bit of variation, but the 10th and 90th percentiles are 55% and

80%, respectively, so the data are fairly consistent with the 20-40% discount cited in conversations

with the DNR. This second-round auction typically takes place 3-9 months after the initial auction,

as shown in Figure 3.6.

In Table 3.3, I provide some evidence that suggests firms are bidding differently in second-

round auctions than first-round auctions. For first- and second-round auctions, I regress the log of

the winning bid on various sets of controls. In Column 1, I control for a rich set of sale charac-

teristics. The R2 is 0.915, so these are explaining most of the variation in winning bids. Second-

round auctions receive bids that are roughly 27 log points lower. This could be driven by three

phenomena. First, the reserve prices are lower in second-price auctions, which we know from

Figure 3.5. This structural factor will affect bidding behavior. Second, in a second-round auc-

tion, bidders know that their competitors are draws from a weaker distribution; this is analogous to

F2(v2|v1 < v∗) in the model. This will reduce the aggressiveness with which loggers bid. Third,

if there is unobserved auction heterogeneity, the sales that make it to the second round could be

adversely selected on this basis. Thus, we would expect a sale with a vector of observables that

receives a bid in the first round to garner higher bids than one that is auctioned in the second round.
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I can address the first factor directly by including the reserve price in Column 3. To the extent

that the DNR incorporate the unobserved auction heterogeneity into their reserve-price setting

procedure, this will also help address the third factor. In this specification, the second-round effect

is reduced by about 50 percent, but is still 14 log points. When I control for the first-round reserve

price in Column 5, this helps control for the truncation process driven by the no-bid first-round

auctions. When the first-round reserve price is higher independent of the second-round reserve

price, the bids in the second round are slightly higher. This may suggest that bidders recognize

that a higher first-round reserve price will result in stronger second-round competition on average.

These regressions are largely consistent with the predictions of the theoretical model; structural

estimation is necessary to parse out the true impacts of the commitment problem.

3.6.2 Is the Model Appropriate?

The preceding discussion is a simple model of re-auctioning. However, the empirical context is a

bit more complicated in two ways. First, the model simplifies by assuming the seller is willing to

hold the contract off the market after the second round. This is empirically untrue: Table 3.4 shows

the outcomes of each round of auctions in the data. Of the 283 second-round auctions, 199 receive

bids, but 52 reach a third round, 8 reach a fourth round, and a single auction reaches a fifth round.

Further, on 47 occasions, a no-bid contract is never actually re-auctioned, even if no logger buys

them at the reserve price. Although the fact that 19 of these come from the last 3 quarters of my

data indicates that truncation may be driving much of this, the model may still need to model the

time gap as stochastic. More simply, I could just estimate the probability of not being re-auctioned

and incorporate that directly into the loggers’ objective function.

Second, the DNR allows firms to purchase the contract at the reserve price for 60 days. If zero

or more than one bidder shows interest, then the sale is re-auctioned. In the data, a contract is

issued at the reserve price after the fact in roughly one-third of all no-bid auctions.

The model I have outlined predicts that we would never observe firms buying the sale at the

reserve price between auctions. If their valuation was above v∗, they would have bid. If their
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valuation was between R1 and v∗, they would not have bid above the reserve price in the auction.

In fact, the calculus does not change after the auction has resolved itself. When such a bidder has

the opportunity to buy the contract at the reserve price, they will compare (v − R1) to δE[(v2 −

b2(v2))F2(v2|v1 < v∗)N−1]. In fact, this is exactly the indifference condition for a bidder with

a valuation of v∗. Having shown that the benefits of waiting are increasing in v1, it is clear that

any loggers involved a no-bid auction would prefer to wait rather than buy the sale at R1. Even

for a logger with a valuation of v∗, the current gains from buying at R1 still do not outweigh the

expected surplus from waiting.

However, suppose that new information arises as a result of concurrent auctions. In particular,

suppose that bidders who buy up the no-bid contracts have placed bids in other concurrent auctions.

If the marginal value of the no-bid auction is a function of the other auction outcomes because the

sales are complements or substitutes, then this could certainly lead to a bidder snapping up the

no-bid auction. For instance, suppose a firm only wants either sale 1 or sale 2, but expects to make

a bigger surplus on sale 1. Then they lose the auction for sale 1. Sale 2 now looks like a good deal

at the reserve price.

In this case, modeling the process of the posted-price sale becomes very important. In practice,

the DNR assesses whether there is more than one firm interested in the sale in determining whether

to allow a posted-price sale or to re-auction the sale. When there are zero or one interested parties,

it is clear how to proceed. When there are multiple interested parties, three possible modeling

approaches are to assume that (1) another auction is automatically held, (2) the contract is randomly

assigned among all willing to buy it (first-come, first-served), or (3) the contract is assigned to the

interested party with the highest value (efficient rationing). The first option is closest to the policy

officially outlined, but conversations with DNR officials will hopefully reveal how this situation is

handled in practice.

Incorporating interdependent values seems like it could be a promising approach: perhaps

learning about other bidders signals leads to updating of one’s expected value and results in a

purchase above the reserve price. However, this alone cannot rationalize the purchases at R1, for
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reasons similar to those just outlined. The equilibrium in the first-price auction with a reserve

price and interdependent values involves the following cutoff condition: b1(x∗) = R1, where

x∗ = inf{x : E[v1|X = x, Y1 < x] ≥ R1}, x is the realization of the bidder’s private signal X , and

Y1 is the highest opponent’s signal. That is, the expected value for a bidder with the cutoff signal

x∗, conditional on having the highest signal, is exactly R1. So even after the auction has resolved

itself, the new information is the information the marginal type was already conditioning on to

begin with; this outcome already led them to an expected value of exactly R1. Given that all other

bidders refused to bid above the reserve price, x∗ remains exactly the cutoff type for which buying

the sale at R1 makes sense economically. Still, this dynamic could be important for accurately

recovering valuations from second-round auctions: when the auction receives no bids, loggers

would use this information to update their own expected valuation, as well as the distribution of

their competitors’ signals.

3.7 Incorporating Unobserved Auction Heterogeneity

If I can assume that sales that go no-bid are the same as those that do receive a bid and are observ-

ably similar, then there is no problem identifying the valuations. However, if there is unobserved

heterogeneity that persists from round one to round two, things are a more difficult. In this section,

I outline an approach that would control for unobserved differences across auctions. Descriptive

results from the DNR data suggest that this approach would be valid in this context.

It would likely be a poor assumption that the distribution of unobservable auction character-

istics are the same ex ante for auctions that receive bids and those that do not. Thus, differences

between first-round bids and second-round bids are jointly driven by (1) the truncation of the

first-round valuation distribution, (2) the lower reserve price, and (3) different realizations of un-

observed heterogeneity.

This would be problematic for the desired counterfactuals. For example, consider observably

similar auctions, one that went no-bid (auction 1) and most of which that received bids (auctions
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{2...A}). Without unobserved heterogeneity, the only difference between auctions 1 and {2...A} is

that bidders in auction 1 received idiosyncratically low values. The optimal reserve policy would

call for the same reserve price for these observably identical auctions. However, if the no-bid was

driven by unobserved auction heterogeneity, the distribution of values is actually lower in auction

1. Thus, the response to a change in the reserve price could be wildly different.

Solving this problem is uniquely complicated in this setting. Since there are no bids observed

in the no-bid auction, I cannot apply the now-standard deconvolution approach put forth by Kras-

nokutskaya (2009). First, it requires multiple bids per auction, but I observe zero bids from the

first-round. Second, it identifies the distribution of heterogeneity, but does not allow the econome-

trician to associate a given observation with a particular realization of the unobservable. Thus, even

if I recovered a distribution of unobserved auction heterogeneity separately for the two rounds, I

would be observing an advantageously selected distribution for the first round, and an adversely

selected distribution for the second round.

Despite the lack of first-round bids in these no-bid auctions, I still observe the reserve price and

the auction characteristics. The approach in Roberts (2013) leverages an observable seller choice

variable that is determined by unobserved heterogeneity. In his case, it is the auction reserve price.

Under some assumptions, the residual from a regression of the reserve price on observable auction

characteristics can identify the quantile of the unobserved heterogeneity for a given observation.

Assuming that unobserved heterogeneity is perfectly persistent within the same sale across rounds,

it can be identified for all auctions using first-round reserve prices.

One assumption that is necessary for this approach to work is that there cannot be any un-

observed factors entering into the seller’s reserve price-setting equation that do not enter into the

bidding equation. One way to test for this is to look at whether, controlling for other observables,

the reserve price affects the probability an auction receives no bids. Columns 1-3 of Table 3.5 are

logit regressions of a dummy for whether a sale went no-bid or not. Unfortunately in Column 2,

the reserve price is significantly related to a higher likelihood of going no-bid.

However, this can be explained by the manner in which the DNR sets their reserve prices. The
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final reserve price is a benchmark appraisal based on historical winning bids, multiplied by an

index of “appraisal factors”. If prices are on a downward trajectory, then the high historical bids

would lead to reserve prices that are too high in the present. Thus, higher reserve prices could be

mechanically linked to auctions that go no-bid. In Column 3, I separate out the two components

and find that the result is indeed driven by the benchmark price. The choice variable of the DNR

is actually the appraisal factors, which is not correlated with a higher likelihood of going no-bid.

Finally, the approach hinges on the idea that the DNR and loggers are responding similarly

to the unobserved heterogeneity. As seen by comparing Column 4 of Table 3.5 with Column

1 of Table 3.3, bidders and the DNR respond similarly to observable characteristics in setting

their appraisal factors and bids, respectively. With the exception of the percentage bid species

variables, the significant effects have the same signs in the appraisal factors regression as they

did in the winning bid regressions. The fact that both sides of the market respond similarly to

observable differences in sales lends some credence to the hypothesis that they respond similarly

to unobserved differences as well.

3.8 Conclusion and Future Work

This paper outlines the importance of accounting for seller commitment in empirically analyzing

auction data. First, I develop a theoretical model that gives the seller an option to re-auction

the object once, and incorporates intertemporal shocks to bidder valuations. Second, I discuss

identification of key distributions and structural objects and find that a semiparametric approach

is be necessary to fully identify the model with only bid data. Third, I propose a semiparametric

estimator, demonstrate that it performs well in a Monte Carlo simulation, and discuss a strategy

for dealing with unobserved auction heterogeneity. Fourth, I explore Michigan timber auctions as

a possible empirical setting.

Future work will apply the estimator to the empirical DNR setting. This will require some

modifications to the model. Although simply extending the model to allow for two periods of
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bidding is an improvement, it ignores the fact that contracts are often re-auctioned multiple times.

Further, I will need to formally model the period during which the sale is available at the reserve

price, as this is empirically important.

Further, while the semiparametric approach is appealing from a practical standpoint, the method

would be more credible if the nonparametric identification of Fω was established. One possible

avenue that I have not fully explored is the use of an instrumental variable. The essential identi-

fication problem is that I do not observe first-round bidders with valuations below v∗. However,

if there is a variable that exogenously shifts v∗, this will reveal a new portion of the distribution.

Assuming that the ω is independent of the instrument and the first-round valuation v1, comparing

the second-round distributions should allow identification of the distribution of ω. One particularly

promising candidate is variation in the reserve price that is mechanically driven by bids in past auc-

tions. As noted in Section 3.7, the benchmark price seems to have a large impact on the likelihood

of a sale receiving zero bids, conditional on a rich set of other covariates. This indicates that past

shocks to winning bids, either through market conditions or idiosyncratic auction outcomes, are

indeed shifting v∗. Two other candidates that have been used in past papers for a similar purpose

are the number of potential bidders or the distance from potential bidders to the sale.
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3.9 Figures

Figure 3.1: Performance of Naive Estimator of F1
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Figure 3.2: Monte Carlo Estimates of Fω
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Figure 3.3: Monte Carlo Estimates of F2 (Untruncated)
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Figure 3.4: Monte Carlo Estimates of F2 (Truncated at true or mean estimated v∗)
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Figure 3.5: DNR reserve prices in second-round auctions relative to first round
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Figure 3.6: Time gap between first and second round
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3.10 Tables

Table 3.1: Parameterization of Monte Carlo

Parameter µ1 σ1 µω σω R1 R2 N A

Value 2 0.5 -0.02 0.2 12 9 10 500

Table 3.2: Monte Carlo Results

Parameter µ1 σ1 v∗ µω σω

Truth 2 0.5 14.15 -0.02 0.2

Joint Estimation
Mean 2.001 0.501 14.210 -0.123 0.265
SD 0.095 0.050 0.474 0.081 0.028
RMSE 0.095 0.050 0.478 0.131 0.071

Naive Estimation
Mean 1.464 0.793 12 - -
SD 0.057 0.030 - - -
RMSE 0.539 0.294 - - -
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Table 3.3: DNR Regressions

(1) (2) (3) (4)
VARIABLES

Second round dummy -0.273*** -0.216*** -0.137*** -0.478***
(0.025) (0.013) (0.014) (0.130)

ln(Reserve price) 0.983*** 0.754*** 0.752***
(0.004) (0.013) (0.013)

ln(First-round reserve price) 0.034***
(0.012)

ln(Total timber volume) 1.071*** 0.279*** 0.279***
(0.011) (0.015) (0.015)

Share Softwood: sawlogs 1.978*** 0.225*** 0.223***
(0.067) (0.054) (0.054)

Share Hardwood: sawlogs 1.358*** 0.104*** 0.106***
(0.038) (0.032) (0.032)

Share Hardwood: pulpwood 0.108*** -0.082*** -0.083***
(0.024) (0.017) (0.017)

ln(Acres) -0.019 0.022*** 0.022***
(0.013) (0.008) (0.008)

Species-product HHI 0.751*** 0.249*** 0.248***
(0.029) (0.021) (0.021)

Percent bid species 0.622*** 0.227*** 0.229***
(0.060) (0.044) (0.044)

Constant 2.772*** 0.588*** 0.853*** 0.867***
(0.070) (0.040) (0.062) (0.062)

Observations 5,353 5,353 5,353 5,353
R-squared 0.917 0.934 0.959 0.959
Major species dummies Y N Y Y
Quarter-by-year dummies Y N Y Y
Management Unit dummies Y N Y Y

Notes: *** p<0.01, ** p<0.05, * p<0.1. Robust standard errors are in parentheses.
Dependent variable is the log of the winning bid. Sample includes only first- and
second-round auctions.
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Table 3.4: Round-by-Round Contracting Outcomes

Round
Outcome 1 2 3 4 5 Total

Bid Received 5136 199 34 7 1 5377
Purchased at Reserve 161 25 6 0 0 192
Not Purchased 319 59 12 1 0 391
Total 5616 283 52 8 1 5960
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Table 3.5: Exploring unobserved heterogeneity assumptions

(1) (2) (3) (4)
VARIABLES No-bid Logit No-bid Logit No-bid Logit Determinants of Factors

ln(Reserve price) 0.420**
(0.198)

ln(Appraisal Factors) -0.003
(0.350)

ln(Benchmark Valuation) 0.619*** -0.032***
(0.229) (0.010)

ln(Total timber volume) -0.633*** -1.094*** -1.266*** 0.091***
(0.118) (0.245) (0.263) (0.012)

Share Softwood: sawlogs 0.831 -0.140 -0.495 0.243***
(0.649) (0.765) (0.805) (0.038)

Share Hardwood: sawlogs 1.237** 0.598 0.372 0.181***
(0.481) (0.574) (0.587) (0.025)

Share Hardwood: pulpwood 0.927*** 0.855*** 0.780*** -0.041***
(0.272) (0.280) (0.288) (0.013)

ln(Acres) -0.025 0.010 -0.017 -0.062***
(0.127) (0.128) (0.130) (0.007)

Species-product HHI -0.322 -0.606 -0.699* 0.107***
(0.364) (0.382) (0.388) (0.016)

Percent bid species -1.211* -1.411** -1.499** 0.014
(0.707) (0.717) (0.718) (0.032)

Constant 0.077 -0.968 -1.729 -0.279***
(1.056) (1.163) (1.262) (0.050)

Observations 5,491 5,491 5,491 5,615
R-squared 0.315
Major species dummies Y Y Y Y
Quarter-by-year dummies Y Y Y Y
Management Unit dummies Y Y Y Y

Notes: *** p<0.01, ** p<0.05, * p<0.1. Robust standard errors are in parentheses. In Columns 1-3, the
dependent variable is whether the sale receives a bid or not. In Column 4, the dependent variable is the
logarithm of the appraisal factors. Sample includes only first- and second-round auctions.
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APPENDIX A.

Appendices for Chapter 1

A.1 Examining seasonality in restrictions

Certain seasons are more likely than others to be restricted. Figure A.1 shows the average months

of restrictions in each season. The average sale has nearly one month of restrictions in the spring

and summer, while it is restricted for only one week in fall and winter each. Conditional on

having any restrictions, the average number of months restricted is about 1.5 months in spring

and summer each, and 0.4 months in fall and winter each. Figure A.2 shows that there is also

substantial variation in the number of months restricted in each season as the total annual number

increases.

One potential concern is that there is a particular season that loggers prefer to have available

(i.e., a “good” season). If that good season is only restricted when most other months are re-

stricted, this could drive the sort of results that I produce. To examine this possibility, I estimate

the following specification:

ln(winning bida) =
4∑
s=1

αsMonthsRestrictedsa +

4∑
s=1

πsMonthsRestrictedsa ∗MonthsRestricted−sa + βXa + εa

where MonthsRestrictedsa is the number of months during season s that auction a is restricted,
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and MonthsRestricted−sa is the number of months in seasons other than s that auction a is re-

stricted. The results are presented in Table A.1. If restricting a particular season has an impact on

bids even when there are essentially no other restrictions, this would suggest that the reduced-form

effect is driven by a good season. Figure A.3 plots the marginal effects by month, as a function of

the number of months restricted in other seasons. In all seasons, the marginal effect of an addition-

ally month is very close to zero when other seasons are lightly restricted. This suggests that there

is no good season driving the effect on bids.

Of the four seasons, only fall has a marginal effect that is statistically significantly difference

from zero. Most of the variation in restrictions beyond 6 months is a tradeoff between fall and

winter months. Thus, I cannot rule out that winter is a particularly costly season to cut. Unfor-

tunately, the data are not rich enough to determine whether the effect of heavy restrictions arises

because loggers particularly dislike having to harvest during winter, or because of the loss of flex-

ibility emphasized by the loggers and DNR foresters. In the exposition of the paper, I emphasize

the flexibility explanation. Although the policy design implications of the two mechanisms would

be different, my analyses of effects on bids, costs, and surplus still reflect the impact of seasonally

restricting a contract for most of the year.

A.2 IV estimation of reduced-form results

The identification of the effects implied by the reduced-form regressions is discussed in the main

body of the text. However, in this section, I attempt to perform an instrumental variables analysis

as a robustness check to see if some omitted variables may be biasing the reduced-form regressions

that establish the equilibrium effects.

Conversations with the DNR revealed that the assignment of appraising foresters to different

sales within a management unit is done without regard to individual skills or preferences; i.e.,

conditional on the management unit, forester assignment should be quasi-random. Following the

discussion in Maestas, Mullen, and Strand (2013), I generate an instrumental variable based on
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the mean number of months of restrictions that a given forester places on their sales observed in

the sample. For each auction, the instrumental variable is the mean of the potentially endogenous

“Months Restricted” variable for all of that forester’s observations except the observation of inter-

est. This “leave-one-out” approach is necessary to prevent the observation from influencing its own

constructed instrument. I only include foresters that appraise at least 5 sales in my data, leaving

124 foresters over 5098 sales (4647 of which receive bids). Figure A.4 shows how many sales my

sample foresters appraised.

Figure A.5 shows the distribution of the instrument. There is substantial variation; however,

it is primarily in the 0-4 month range. In the OLS specification, the results primarily arise within

the 5-10 month range. This is likely to attenuate any IV results, but the analysis could still inform

as to whether the estimates among less-regulated are obviously tainted by endogeneity. As the

randomization takes place at the management unit level, we want to actually look at how much

variation there is within management unit. That is, much of the variation in Figure A.5 could be

due to cross-unit differences. I demean the instrument within-management unit (Figure A.6) and

scale by the within-management unit standard deviation (Figure A.7)

The results are shown in Table A.2 with standard errors clustered on the forester. The instru-

ment is quite strong, with first stage F-statistics of over 100. The point estimate of the coefficient

of interest is similar to the OLS estimate, but is considerably less precise. The lack of precision

makes it difficult to draw rigorous conclusions. However, given that the instrument lies mostly

in the 0-4 month range, this is not particularly surprising. The nonlinear OLS effects presented

before suggest that most of the action is in the right tail; thus, it is unsurprising that this instrument

attenuates the linear effect. Still, the treatment effect implied by the TSLS point estimate of 4

months of restrictions (-1.6 percent) roughly corresponds to the treatment effect along that portion

of the distribution in the main specification.
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A.3 Derivation of bid likelihood

Given the bid function the distribution of values, and the entry threshold, the bid likelihood follows

easily. Let the inverse bid function be denoted b−1(b). Then the CDF of observed bids will simply

be equal to the CDF of the value associated with the bids through the inverse bid function. Thus,

the bid density can be derived by the standard transformation using the Jacobian:

G(b) = F (b−1(b))

g(b) = f(b−1(b))b−1′(b)

g(b) =
f(b−1(b))

b′(v)

Given the closed-form solution for the equilibrium bid function, this density can be expressed as:

g(b) =
F (b−1(b))N

(N − 1)
[∫ b−1(b)

v∗
F (u)N−1du+ F (v∗)N−1

]
The likelihood of observing a given bid conditional on a vector of parameters is:

`a(bia|θ) =


F (v∗), bidder i did not participate

g(b), R ≤ b ≤ b(v̄)

0, b > b(v̄)

The likelihood of observing a given vector of bids (or non-participation) ba is the within-auction

product of these bid-specific likelihoods. To calculate the likelihood of a given observation, I

average the likelihoods across simulation draws.

Although the upper bound of the bid support, b(v̄) varies depending on the specific simulation

draw of θ, it does not actually vary with guesses of the parameters Γ. Because Γ essentially

determines the weights of a mixture distribution over θ, the support is actually independent of Γ in

the limit: bids anywhere in the interval [R, v̄) could always arise given enough simulation draws. In

practice, I take 1000 draws per data point, which proves sufficient to ensure a non-zero likelihood
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for every observation. Further, Monte Carlo simulations based on this importance sampling MSL

procedure perform quite well.
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A.4 Figures and Tables

Figure A.1: Average months of restrictions, by season
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Figure A.2: Restrictions in various seasons, by total months restricted
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Figure A.3: Marginal effect of an additional month in a given season
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Figure A.4: Number of sales appraised by each forester
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Figure A.5: Distribution of instrumental variable
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Figure A.6: Distribution of instrumental variable, demeaned within MU
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Figure A.7: Distribution of instrumental variable, standardized within MU
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Table A.1: Linear regressions, effects of different seasons

(1) (2) (3) (4)
VARIABLES Ln(win bid) Ln(win bid) Ln(win bid) Ln(win bid)

Spring Months Restr. -0.001 -0.008 -0.023 -0.009
(0.018) (0.017) (0.016) (0.012)

X Other Months Restr. 0.004 -0.002 0.000 -0.001
(0.011) (0.010) (0.009) (0.008)

Summer Months Restr. 0.023 0.024 0.009 0.006
(0.020) (0.018) (0.017) (0.013)

X Other Months Restr. -0.001 0.005 0.004 0.005
(0.009) (0.008) (0.007) (0.006)

Fall Months Restr. -0.049 -0.004 0.001 -0.002
(0.047) (0.039) (0.034) (0.028)

X Other Months Restr. -0.010 -0.016* -0.011 -0.010
(0.012) (0.010) (0.009) (0.007)

Winter Months Restr. -0.010 -0.016 -0.006 -0.003
(0.016) (0.015) (0.014) (0.012)

X Other Months Restr. 0.001 0.004 0.003 0.000
(0.006) (0.005) (0.005) (0.005)

Share Softwood: sawlogs 1.896*** 1.846*** 1.704*** 1.659***
(0.115) (0.100) (0.094) (0.088)

Share Hardwood: sawlogs 1.515*** 1.389*** 1.183*** 1.208***
(0.045) (0.046) (0.050) (0.046)

Share Hardwood: pulpwood 0.405*** 0.204*** 0.179*** 0.157***
(0.032) (0.030) (0.032) (0.028)

Upper peninsula 0.346*** 0.300*** 0.294*** 0.301***
(0.029) (0.026) (0.028) (0.020)

DNR cost factors 1.134*** 1.112*** 1.110*** 0.805***
(0.081) (0.077) (0.068) (0.061)

Log acres 0.049*** 0.036*** 0.039***
(0.010) (0.009) (0.008)

Species-product HHI 0.631*** 0.676*** 0.691***
(0.042) (0.042) (0.038)

Percent bid species 0.724*** 0.804*** 0.684***
(0.094) (0.089) (0.070)

Constant 3.042*** 2.025*** 1.918*** 2.376***
(0.063) (0.100) (0.097) (0.087)

Observations 4,750 4,750 4,750 4,750
R-squared 0.424 0.528 0.576 0.647
Major species dummies - - X X
Quarter dummies - - - X
Year dummies - - - X

Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard errors are clustered by county-year.
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Table A.2: TSLS regressions

(1) (2) (3) (4) (5) (6) (7)
VARIABLES OLS OLS

Months restricted -0.0296 -0.0205 -0.0212 -0.0189 -0.0040 -0.0105*** -0.0083***
(0.023) (0.018) (0.019) (0.019) (0.016) (0.002) (0.002)

Pine bark beetle note 0.0507 0.0475 0.0286 0.0403** 0.0311*
(0.041) (0.041) (0.032) (0.018) (0.017)

Beech scale note -0.0557 -0.0611 -0.0286 -0.0273 -0.0485
(0.042) (0.042) (0.036) (0.035) (0.032)

Share Softwood: sawlogs 1.8104*** 1.8156*** 1.8107*** 1.7437*** 1.7567*** 1.7143***
(0.118) (0.120) (0.121) (0.118) (0.119) (0.112)

Share Hardwood: sawlogs 1.3358*** 1.3185*** 1.3266*** 1.3384*** 1.3342*** 1.2502***
(0.068) (0.072) (0.070) (0.063) (0.062) (0.056)

Share Hardwood: pulpwood 0.1554*** 0.1427*** 0.1426*** 0.1381*** 0.1372*** 0.1641***
(0.030) (0.030) (0.030) (0.028) (0.028) (0.025)

Log acres 0.0309*** 0.0316*** 0.0321*** 0.0393*** 0.0390*** 0.0454***
(0.010) (0.010) (0.010) (0.008) (0.008) (0.008)

Percent bid species 0.6888*** 0.6928*** 0.6942*** 0.6268*** 0.6211*** 0.6084***
(0.107) (0.109) (0.107) (0.087) (0.084) (0.081)

Species-product HHI 0.7509*** 0.7456*** 0.7453*** 0.7318*** 0.7301*** 0.6759***
(0.049) (0.049) (0.049) (0.050) (0.050) (0.045)

DNR cost factors 0.9042***
(0.061)

Constant 4.5610*** 2.8495*** 2.8448*** 2.8095*** 3.0510*** 3.0670*** 2.3186***
(0.077) (0.143) (0.144) (0.147) (0.118) (0.106) (0.109)

Observations 4,647 4,647 4,647 4,647 4,647 4,647 4,646
R-squared 0.617 0.664
Major species dummies X X X X X X X
Quarter dummies - - - X X X X
Year dummies - - - - X X X
Management Unit dummies X X X X X X X
First stage F-Stat 143.5 150.3 128.7 126.9 118.9

Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard errors are clustered by forester ID.

144



APPENDIX B.

Appendices for Chapter 2

B.1 Robustness to missing data

As noted earlier in the paper, the algorithm that Google Insights uses to distribute data publicly

induces a censoring problem. There is no suitable instrument that varies at the week-state level

that we could use for an exclusion restriction in a selection model. Hence, we carefully analyze

the patterns of missing observations and rerun our main specification on several subsamples. First,

Figure B.1 shows year-by-year maps depicting the number of weeks of missing data in each of the

lower 48 states. After the first couple of lower search volume years, the missing observations are

largely confined to the northern Rocky Mountain states (which are sparsely populated). The most

severe case is Wyoming, which never appears in our sample.

In Table B.1, we restrict our sample to state-years in which there are no missing observations.

That is, this sample consists only of the state-years on the maps that appear in the lightest shade of

red. For convenience, the corresponding columns from Panel B of Table 2.3 are interspersed: these

are the columns in which “Full sample” is labeled “Y”. The results are broadly similar; the main

exception is that the effect of an unusually warm winter week is no longer significant. However,

the effect of unusually little snow remains.

In Table B.2, we construct a balanced panel for the years 2007-2011. We determined that

this set of years gave us the best balance between panel length (5 years) and inclusion of states

(32). The set of states covers a broad swath of the country, both politically and geographically.
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The columns in which the panel is unbalanced are the full sample from 2007-2011 to facilitate

comparison. Again, the results of the balanced panel analysis are broadly comparable to those

with the unbalanced panels, whether the unbalanced sample starts in 2004 or 2007.

B.2 Other Robustness Checks

Our main specifications include year-month and state-month of year fixed effects. The impact of

weather on search has been identified off of within-state variation, controlling for state-specific

seasonality and nationwide variation for the month. This is our preferred specification because it

allows us to effectively compare observations with similar local conditions, while controlling for

broad trends in weather and search intensity. However, we present the results using other sets of

fixed effects in Table B.4.

Although the coefficients do change in magnitude across the specifications, they are remarkably

robust. By comparing magnitudes, we can explore the relative importance of local and national

variation in weather. Internet searches related to climate change may be driven by a combination

of local and national weather. In addition, weather is likely to be correlated in the cross-section.

If there is a heatwave in Iowa, it is likely that Ohio will be experiencing unusually hot weather

as well. In this case, part of the search response in Iowa will be due to personal experience with

the unusual weather and local media coverage. However, some of the response will also be due

to interactions with family and friends in Ohio and regional or national news coverage of the

broader heatwave. Our preferred specification includes year-month fixed effects and does not

exploit national variation in weather. By comparing estimates with different sets of fixed effects,

we can gauge the relative importance of local versus national trends.

In Column 4, we reproduce our preferred specification, with year-month fixed effects. These

control for short-run nationwide events, such as a major heatwave or drought. Relative to the

specification in column 3 which only include year fixed effects, the coefficients on the temperature

deviation variables fall in magnitude by roughly 20%. This suggests that a part of our estimated
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weather-search effect may be driven by spillovers from national events and trends.

As we move through the columns, we add various richer combinations of fixed effects. We

present our most flexible specification in Column 7. Here we allow for unobservables at the year-

week and state-week of year level. Even after netting out all national variation in search intensity

and weather, we get very similar results to our preferred specification.

In Figure B.3, we plot the year-week fixed effects from Column 7 in Panel A. Panel B shows

the weekly average deviation in maximum temperature across the sample. Clearly, some level of

nationwide time fixed effect is important for proper estimation. The four red lines signify peaks

in the fixed effects corresponding to important climate-related news events: Hurricane Katrina, the

release of the 2007 IPCC report1, the Massachusetts v. EPA Supreme Court Clean Air Act ruling,

and the “Climategate” scandal of late 2009.

Looking at Panel B, it is clear that Hurricane Katrina happened in a week that was unusually

warm across the county, while Climategate (coincidentally) was followed by an unusually cold

week. Controlling for such correlations ensures that we do not pick up search activity driven by

contemporaneous nationwide news coverage and weather events.

Finally, our main specification uses state-level variation in weather and search intensity. Be-

cause the weather stations are not weighted by nearby population or search activity, we may mea-

sure weather with measurement error. In the case of small states such as Rhode Island, a state-level

analysis might be a reasonable aggregation; however, a state like California is climatically, politi-

cally, and economically diverse. Luckily, the Google Insights tool also reports search intensity at

the city level for major U.S. metropolitan areas. As a check, we also perform our analysis on the 25

largest U.S. cities as grouped by Google Insights. Table B.5 presents estimates from regressions

that include year-month and city-month of year fixed effects; that is, they are analogous to our

preferred state-level estimates from Table 2.3. The results reveal that the city-level relationships

are quite similar to those found at the state level. That is, even when we restrict our data to a set of

metropolitan areas, the relationship between weather and search intensity holds.

1This report stated that recent climate change is anthropogenic with greater than 90% confidence.
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B.3 Figures and Tables

Figure B.1: Missing observations, 2004-2007
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Figure B.2: Missing observations, 2008-2011
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Figure B.3: Year-week fixed effects
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Table B.4: Sensitivity to the Inclusion of Various Fixed Effects

(1) (2) (3) (4) (5) (6) (7)

Pos dev, Max Temp, deg. C 0.808** 0.912*** 0.381*** 0.292*** 0.483*** 0.367*** 0.229***
(0.317) (0.0859) (0.0858) (0.0785) (0.0803) (0.0684) (0.0785)

Neg dev, Max Temp, deg. C 1.899*** 1.505*** 1.050*** 0.806*** 0.887*** 0.537*** 0.420***
(0.293) (0.119) (0.107) (0.101) (0.114) (0.102) (0.112)

Pos dev, Precip., mm -0.220 0.132 0.134 0.0570 0.0572 -0.0257 -0.0853
(0.309) (0.0862) (0.0843) (0.0733) (0.107) (0.0782) (0.0841)

Neg dev, Precip., mm -0.469 0.294* 0.206* 0.122 0.102 0.0286 -0.0812
(0.616) (0.167) (0.116) (0.124) (0.127) (0.108) (0.117)

Pos dev, Snowfall, mm -0.0131 0.111*** -0.0293 0.00341 -0.0476 -0.00165 -0.00185
(0.0848) (0.0302) (0.0345) (0.0289) (0.0427) (0.0364) (0.0388)

Neg dev, Snowfall, mm 1.492*** 0.962*** 0.419*** 0.285*** 0.436*** 0.281*** 0.294***
(0.382) (0.124) (0.0851) (0.0883) (0.0868) (0.0727) (0.0858)

Pos dev, Snow Depth, mm 0.0609*** 0.00432 -0.00291 -0.00705 0.00938 0.00877 0.0123
(0.0200) (0.00911) (0.0102) (0.00866) (0.0125) (0.0104) (0.0108)

Neg dev, Snow Depth, mm 0.168*** 0.0460** 0.0434** 0.0446** 0.0547** 0.0596** 0.0640**
(0.0392) (0.0203) (0.0200) (0.0202) (0.0246) (0.0247) (0.0244)

Constant 33.93*** 25.04*** 25.99*** 21.41*** 16.13*** 12.31*** 12.78***
(2.452) (0.936) (0.854) (1.662) (0.874) (1.796) (2.969)

Observations 16,546 16,546 16,546 16,546 16,546 16,546 16,546
R-squared 0.072 0.597 0.695 0.763 0.737 0.811 0.837
Year FE - X X - X - -
Year-Month FE - - - X - X -
Year-Week FE - - - - - - X
State FE - X - - - - -
State-MOY FE - - X X - - -
State-WOY FE - - - - X X X

Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard errors are clustered at the state level. Dependent variable is the
Google search index.
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Table B.5: Asymmetric effects of weather deviations: 25 Largest Cities

(1) (2) (3) (4) (5)
All Seasons Winter Spring Summer Fall

Pos dev, Max Temp, deg. C 0.477*** 0.598*** 0.187 0.948*** 0.280**
(0.0904) (0.170) (0.177) (0.223) (0.128)

Neg dev, Max Temp, deg. C 0.715*** 1.464*** -0.111 0.0826 0.466***
(0.106) (0.175) (0.160) (0.162) (0.153)

Pos dev, Precip., mm -0.0145 0.0889 -0.0809 0.0787 0.0558
(0.0527) (0.141) (0.115) (0.0700) (0.0634)

Neg dev, Precip., mm 0.214* 0.666*** 0.0560 0.0118 -0.0851
(0.119) (0.176) (0.260) (0.156) (0.215)

Pos dev, Snowfall, mm -0.0283 -0.0140 -0.0877** -0.220 0.0630*
(0.0189) (0.0247) (0.0346) (0.490) (0.0333)

Neg dev, Snowfall, mm 0.231** 0.197** -0.0450 12.94 1.906***
(0.0933) (0.0885) (0.167) (21.82) (0.652)

Pos dev, Snow Depth, mm 0.000300 -0.00916 0.00472 0.00507** -0.00198
(0.00510) (0.00944) (0.00405) (0.00185) (0.0138)

Neg dev, Snow Depth, mm 0.0259* 0.0316** 0.0212 -0.000867 -0.135
(0.0139) (0.0146) (0.0213) (0.0357) (0.144)

Constant 17.65*** 9.426*** 25.53*** 25.70*** 40.16***
(1.245) (1.704) (2.472) (1.006) (1.594)

Observations 8,868 2,201 2,248 2,072 2,347
R-squared 0.738 0.635 0.791 0.658 0.687

Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard errors are clustered at the city level. Depen-
dent variable is the Google search index. Regression includes 25 largest metro areas, as grouped
by Google: Atlanta, Baltimore, Boston, Chicago, Dallas/Fort Worth, Denver, Detroit, Hous-
ton, Los Angeles, Miami, Minneapolis/St. Paul, New York, Orlando, Philadelphia, Phoenix,
Pittsburgh, Portland, Sacramento, San Antonio, San Diego, San Francisco, Seattle/Tacoma, St.
Louis, Tampa, Washington (DC). All regressions also include year-month FE and city-month
of year FE.
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APPENDIX C.

Appendices for Chapter 3

C.1 Proof of cutoff equilibrium with an additive value shock

Suppose that v2 = v1 + ω, where ω ∼ Fω is a firm-specific shock independent of v1. Let F2(v; v∗)

be the distribution of v2, given that only firms with v1 < v∗ would be bidding in the second auction.

Consider some valuation v ≥ R1. Then the best expected payoff from bidding in the first

auction is

(v1 − b1(v1))F (v1)N−1, if v1 ≥ v∗

(v1 −R1)F (v∗)N−1, if v1 ∈ [R1, v
∗)

The derivative of this payoff with respect to v is F (v)N−1 if v ≥ v∗ and F (v∗)N−1 if v ∈ [R1, v
∗).

Note that this derivative is always ≥ F (v∗)N−1.

The expected payoff from waiting is given by

δF (v∗)N−1

∫ ∞
R2−v1

(v1 + ω − b2(v1 + ω))F2(v1 + ω; v∗)N−1dFω
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Differentiating this with respect to v gives:

δF (v∗)N−1

∫ ∞
R2−v1

{(1− b2
′(v1 + ω))F2(v1 + ω; v∗)N−1

+ (v1 + ω − b2(v1 + ω))F2(v1 + ω; v∗)N−2f2(v1 + ω; v∗)(N − 1)dFω}

+ (R2 − b2(R2))F (R2)N−1︸ ︷︷ ︸
=0

= δF (v∗)N−1

∫ ∞
R2−v1

{F2(v1 + ω; v∗)N−1

− b2
′(v1 + ω)F2(v1 + ω; v∗)N−1

+ (v1 + ω − b2(v1 + ω))F2(v1 + ω; v∗)N−2f2(v1 + ω; v∗)(N − 1)dFω}

= δF (v∗)N−1

∫ ∞
R2−v1

F2(v1 + ω; v∗)N−1dFω

The final equality holds because the last two lines of the previous expression equal zero: they

are the first order condition for optimal bidding in the second-round auction for a given value of

v2 = v1 + ω. Using this new expression, I can confirm that the relative gains from bidding are

increasing in v1:

d

dv1

E[Payoff from bidding in auction 1] ≥ F (v∗)N−1

> δF (v∗)N−1

> δF (v∗)N−1(1− Fω(R2 − v1))

= δF (v∗)N−1

∫ ∞
R2−v1

fω(ω)dω

> δF (v∗)N−1

∫ ∞
R2−v1

F2(v1 + ω)N−1dFω

=
d

dv1

E[Payoff from waiting for auction 2]

Thus, given that a bidder with v1 = v∗ is indifferent between bidding in auction 1 and not bidding,

all v < v∗ prefer to wait, and all v > v∗ prefer to bid in auction 1.
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C.2 Proof of cutoff equilibrium with no shocks to values

In this subsection, I will prove that a version of the strategies outlined above is an equilibrium in

the case of constant valuations (i.e., v2(v1, ω) = v1).

Suppose that bidder strategies are the following: In auction 1, a firm bids above zero only if it

has a valuation v ≥ v∗. These bids are of the form

b1(v) = v −
∫ v
v∗
F (u)N−1du

F (v)N−1
− (v∗ −R1)

F (v∗)N−1

F (v)N−1
.

Otherwise the firm bids zero.

In the second auction, it must be that only firms with valuations v < v∗ are competing. These

firms bid as follows:

b2(v) = v −
∫ v
R2
F2(u)N−1du

F2(v)N−1
,

where F2(v) = F (v|v < v∗) is the distribution of values once it is known that no bidder has a

valuation above the cutoff. In the case that a bidder at or above the cutoff strays from equilibrium

and bids in the second round auction, she bids according to the above expression evaluated at v∗.

The cutoff v∗ is the type that is exactly indifferent between bidding in auction 1 and waiting

for auction 2:

(v∗ −R1)F (v∗)N−1 = δF (v∗)N−1

(
v∗ − v∗ +

∫ v∗
R2
F2(u)N−1du

F2(v∗)N−1

)

⇒ (v∗ −R1)F (v∗)N−1 = δF (v∗)N−1

(∫ v∗

R2

F2(u)N−1du

)

because F2(v∗) = 1.

Consider some bidder with value v > v∗. For this to be an equilibrium, this bidder must prefer

to bid in auction 1, rather than hoping for auction 2 to arrive. If the bidder bids, they get the
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following expected payoff:

(v − b1(v))F (v)N−1 =

∫ v

v∗
F (u)N−1du+ (v∗ −R1)F (v∗)N−1

If the bidder waits for the second auction, it arrives with probability F (v∗)N−1. This bidder does

best by placing the same bid that a bidder with v = v∗ would. The expected payoff is then:

δF (v∗)N−1F2(v∗)N−1(v − b2(v∗)) = δF (v∗)N−1

(
v − v∗ +

∫ v∗
R2
F2(u)N−1du

F2(v∗)N−1

)
F2(v∗)N−1

= δF (v∗)N−1

(
(v − v∗) +

∫ v∗

R2

F2(u)N−1du

)

Differentiating the relative gain from bidding in the first auction establishes that the gain is

increasing in v:

d

dv
Ψ1(v) =

d

dv

∫ v

v∗
F (u)N−1du+ (v∗−R1)F (v∗)N−1−δF (v∗)N−1

(
(v−v∗) +

∫ v∗

R2

F2(u)N−1du

)
= F (v)N−1 − δF (v∗)N−1 > 0.

Since Ψ1(v∗) = 0, Ψ1(v) > 0 for any v > v∗, proving the result.

Establishing a similar result for v < v∗ follows similar logic. For any v < R1, the result is

trivial. For v ∈ [R1, v
∗], this type of bidder will do best when bidding in auction 1 by submitting

the reserve price. So the relative gain from bidding in the first auction is given by:

Ψ2(v) = (v −R1)F (v∗)N−1 − δF (v∗)N−1(v − b2(v))F2(v)N−1

= (v −R1)F (v∗)N−1 − δF (v∗)N−1(v − b2(v))F2(v)N−1

= (v −R1)F (v∗)N−1 − δF (v∗)N−1

∫ v

R2

F2(u)N−1du
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Differentiating Ψ2 with respect to v reveals that this function is increasing in the bidder’s valuation:

d

dv
Ψ2(v) = F (v∗)− F (v∗)δF2(v)N−1 > 0.

Since Ψ2(v∗) = 0, Ψ2(v) < 0 for any v < v∗, proving the result.
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