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CHAPTER 1

Collusion Along the Learning Curve:
Theory and Evidence

from the Semiconductor Industry

This paper posits a theory of collusion with learning-by-doing and multiproduct compe-
tition and tests it with an explicit price fixing cartel. It introduces a novel repeated game
model in which firms collude across products with time-varying learning. The model shows
that collusion is harder to sustain in the early stage of a product life cycle, when learning
is high, than in the later stage of a life cycle, as learning declines. By raising the price of
an older product generation, successful collusion will shift demand toward a frontier prod-
uct generation. The model’s predictions are tested using data from the Dynamic Random
Access Memory (DRAM) industry, which features frequent, repeated learning curves with
each new product generation. Major manufacturers in the DRAM market also recently pled
guilty to charges of illegal price fixing. Empirical analysis exploits variation between col-
lusive and competitive time periods to show that collusion increased price by up to 25% for
products at the end of their life cycle. In contrast, it reduced the price of new generations
by up to 70%. Firms increased their output of new generations while cutting their output
of older generations. The evidence implies that the DRAM cartel successfully colluded on
mature products, which shifted demand toward newer products. Increased output of new
products in collusion relative to competition allowed firms to learn faster in the collusive
period.
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1.1 Introduction

Since the turn of the century, cartels discovered in multibillion dollar high-technology mar-

kets have resulted in several of the largest antitrust fines in U.S. history.1 Global manufac-

turers of LCD panels, cathode ray tubes, optical disk drives, and three different types of

memory chips have settled criminal or civil claims for price fixing. These markets feature

several characteristics long known to enable collusion, among them product homogeneity,

cooperative research and development, and high barriers to entry. Yet they also share two

additional characteristics. First, manufacturing displays learning-by-doing: a firm’s cumu-

lative output reduces the marginal cost of its future output. Second, firms steadily release

new product generations based on technological advancements, such as those predicted

by Moore’s Law. Multiple product generations therefore overlap at the same time on the

market.2

The discovery of such cartels raises a natural question: what is the impact of learning-

by-doing on the damage attributable to collusion? Collusion is well understood to generate

inefficiency by raising price above marginal cost. At first glance, learning raises this in-

efficiency: by restricting output, firms forfeit some of the gains to learning and inhibit

cost reduction. This paper’s contribution is to highlight that collusive equilibria in high-

technology markets are determined by the rate at which firms learn and the extent of multi-

product demand linkage. It develops a repeated game model of learning with multiproduct

competition to evaluate collusive equilibria relative to competitive equilibria at the product

general level. It then uses data from an illegal price fixing cartel in the Dynamic Random

Access Memory (DRAM) market to find evidence consistent with both the theory and its

mechanism.

The model builds three insights in succession. First, collusion is at least as effective

1AU Optronics, LG Display, and Samsung Electronics have each received penalties of $300 million or
more since 2006. AU Optronics’ $500 million fine is the largest Sherman Act corporate fine to date; see
http://www.justice.gov/atr/public/criminal/sherman10.html.

2In 2014, for exampe, buyers could choose between 2Gb, 4Gb and other generatons of chips. See http:
//www.forbes.com/sites/jimhandy/2014/06/27/dram-asps-soften-is-that-important/.
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in an older product generation as a newer generation. This is because firms learn more

early in the life cycle than later, and learning increases the incentive to defect from a col-

lusive equilibrium. Second, collusion in the older generation shifts demand to the newer

generation, which is an (imperfect) substitute. Third, if the demand shift is great enough

for the newer generation, firms sell more of its units during collusion than competition.

Counterintuitively, learning then creates efficiency gains from collusion, and such gains

are transferred to buyers through lower prices if firms pass on enough cost savings.

DRAM presents an ideal application for several reasons. The product’s explosive inno-

vation has helped fuel the computer and electronics revolution, making it a critical part of

the world’s economy. DRAM production is a classic example of learning-by-doing: output

allows firms to reduce cost-per-chip by reducing the rate of defective chips in manufac-

turing. Moreover, chip generations are released every two to three years, and the learning

process repeats with each new generation. Because the product life cycle is several years,

multiple generations overlap at any given time.

These three features—collusion, learning, and multiproduct competition—allow the

model to be naturally tested. I employ firm-level data on the DRAM market before, during,

and after dates of admitted cartel activity.3 I estimate the change in price from competition

to collusion separately for five DRAM generations active during the cartel period. I identify

the cartel overcharge by exploiting variation between cartel and non-cartel time periods as

well as variation in the stage of the product life cycle during the cartel time period.

The empirical results are strikingly consistent with the model’s predictions. In the two

most mature cartel generations, 4Mb and 16Mb, the overcharge is positive and as high as

26%. The overcharge among newer 64Mb, 128Mb and 256Mb generations, however, is

sharply negative and as low as -70%. Results are robust to industry-wide capacity utiliza-

tion and heterogeneity in underlying DRAM technology. Output data implies that firms

sold significantly more 128Mb and 256Mb chips during the cartel period than they would

3Dates are based on publicly available litigation evidence from the Department of Justice (DOJ), European
Commission (EC), and Noll (2014). See Section 1.3 for a full description.
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otherwise, consistent with a demand shift toward frontier generations and more overall

learning. Overall, the cartel’s welfare effect was ambiguous.

This paper bridges a gap between two distinct groups of research in industrial organiza-

tion: learning-by-doing and collusion. It contributes to both theory and empirical evidence

in each of these two areas. It extends the theory of oligopolistic competition with learn-

ing to include the possibility of tacit or explicit coordination. Similarly, it adds learning

within a realistic multiproduct setting to standard models of repeated game collusion. On

the empirical side, it extends literature on the learning-intensive semiconductor industry

as it enters an era of increased concentration, intellectual property disputes and antitrust

scrutiny. It also joins literature that studies a “hard core” price fixing cartel to isolate the

impact of collusion on welfare, which is otherwise difficult.

The model of learning-by-doing is closest to Siebert (2010) and Fudenberg and Tirole

(1983): firms choose quantities of one product in a learning period knowing that they gain

a cost reduction as a function of output in a post-learning period.4 Products generations are

imperfect substitutes for one another. The model is embedded within an infinite horizon

game, as in Cabral and Riordan (1994) and Besanko et al. (2010). It differs from existing

models of learning-by-doing in focusing on collusive equilibria rather than long-run indus-

try dynamics such as increasing dominance, natural monopoly and predatory pricing.5

The model’s fundamental contribution is to illustrate how collusion on the product mar-

ket with learning and multiproduct demand linkages can lead to welfare-enhancing as well

as welfare-reducing outcomes. Brod and Shivakumar (1999) and Fershtman and Pakes

(2000) find a range of such equilibria when firms invest in R&D. It also adds to literature

that assesses the sustainability of collusion with a dynamic variable more generally (Benoit

and Krishna, 1987, Davidson and Deneckere, 1990 and Compte, Jenny and Rey, 2002).

4The Cournot framework is apt because capacity for semiconductors and other high-technology prod-
ucts is fixed within a product life cycle. Other quantity-setting models of learning include Spence (1981),
Ghemawat and Spence (1985), Dasgupta and Stiglitz (1988) and Cabral and Riordan (1997).

5Mookherjee and Ray (1991) propose a model of collusion with scale economies and learning-by-doing.
I expand on their results by adding demand linkages between product generations in a quantity-setting frame-
work, which characterize numerous high-technology industries with capacity constraints.
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These papers show that adding dynamics to standard models of collusion can fundamen-

tally change equilibrium incentives and welfare outcomes.

The empirical analysis adds to a number of studies that test the theory of oligopolistic

competition with learning using empirical data from the semiconductor industry. Irwin and

Klenow (1994) specify a quantity-setting model to estimate that a firm’s marginal cost of

chip production is reduced by an average of 20% following a 100% increase in output,

but that there is no significant learning effect between new product generations. Zulehner

(2003) and Siebert and Zulehner (2013) examine the rate of learning and competitiveness

in DRAM using data from the 1970s to the mid-1990s, before firms began explicitly col-

luding.6 Gardete (2014) uses more recent data to estimate a structural model of imperfect

information and finds that DRAM manufacturers share demand information in equilib-

rium.7

Finally, this paper contributes to empirical evidence of how cartels meet collusive in-

centive compatibility constraints (Levenstein, 1997; Scott Morton, 1997; Genesove and

Mullin, 2001; Roller and Steen, 2006; Mariuzzo and Walsh, 2013; and Clark and Houde,

2013, 2014) by explicitly accounting for learning and multiproduct competition.8 Unlike

other studies that directly estimate cartel damages (Porter and Zona, 1999; Bolotova, Con-

nor and Miller, 2008), it finds strong evidence that the DRAM cartel benefited some con-

sumers through lower prices while harming others through higher prices.9 It remains vital

to understand the welfare impacts of collusion using data from modern cartels, which op-

erate in vastly different legal and technological settings from those in the past.

The remainder of the paper is outlined as follows. Section 1.2 presents a multi-period,

6Several additional studies have found evidence consistent with significant learning effects in DRAM and
other memory chips. See Dick (1991), Nye (1996), Gruber (1998), and Cabral and Leiblein (2001).

7The role of memory and microprocessor chips, as well as technology standards in memory chips, is
explained in Section 3.2.1.

8See Levenstein and Suslow (2006) for a broader review of empirical literature examining incentive com-
patibility in cartels.

9Asker (2010) is a notable exception in estimating damages from a bidding ring for stamp collection auc-
tions. He finds that bidders have incentives to inflate their private valuations in knockout auctions, sometimes
resulting in higher stamp payments to sellers relative to the competitive counterfactual.
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infinite horizon model of collusion over the product life cycle and generates testable pre-

dictions for prices during collusion. Section 1.3 and Section 1.4 describe the features of the

industry and the data for estimation, respectively. Section 1.5 examines price and output

effects of collusion between generations. I conclude in Section 1.6 by discussing the results

and implications for antitrust policy.

1.2 Theoretical Model

I embed a discrete time quantity-setting model of learning based on Siebert (2010) and

Fudenberg and Tirole (1983) into an infinitely-repeated duopoly game. Two firms, i and j,

produce two products kr, r ∈ {1, 2}. The game has three phases, and product kr+1 enters

exogenously one phase after product kr’s entry. Firms compete in quantities and face linear

demand for products that are imperfect substitutes.

Learning occurs between the game’s first and second phases: output in the first phase

reduces marginal cost in the second phase at the rate λ ∈ [0, 1]. Between the second and

third phases, any further learning effects diffuse to both firms. From phase three onward,

firms play a static Cournot game with identical costs. Marginal cost is c1 for both firms in

phase one, ci2 = max {c1 − λqik1, c3} for firm i in phase two, and c3 ≡ c < c1 in phase

three to infinity. Profits are discounted at a common rate δ ∈ [0, 1] per period.

Firms simultaneously select quantities qikt at the start of each period, and the total

quantity Qkt determines the market-clearing price Pkt. After each period and before the

next, firms observe the quantity decision of the other with perfect information.

This model captures the salient features of the product life cycle of DRAM and many

other computer components.10 Every several years, chip makers invest in costly new plants

with fixed capacity.11 Firms enter each DRAM product generation with high cost, reduce

10Examples include microprocessors, static random access memory (SRAM), flash memory, hard disk
drives (HDD’s), solid state drives (SSD’s), optical disk drives (ODD’s), servers, LCD panels, and graphics
cards.

11Building a new plant to increase capacity requires about two years (“Memory Indus-
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Figure 1.1: Timing of Product Life Cycles and Learning

cost by learning as a function of cumulative output, exploit a cost advantage over rivals

if it develops, and eventually exhaust learning. This process repeats for every product

generation.12

1.2.1 Model Preliminaries

Assume that demand for DRAM is linear and generations are imperfect substitutes:

Pkt =


a− η2Qk2t − γ2Qk1t if k = k2

b− η1Qk1t − γ1Qk2t if k = k1

ηk represents product k’s own-price inverse elasticity of demand and γk represents its cross-

price inverse elasticity of demand with respect to −k. Results will make use of the relative

difference in own- and cross-price demand elasticities between products, but not absolute

try Shakeup: Q & A with Jim Handy,” CBS News, 4/4/2009 http://www.cbsnews.com/news/
memory-industry-shakeup-q38a-with-jim-handy/).

12Entry is assumed exogenous to focus on firms’ strategic incentives to collude once they have entered a
generation. The data show that major DRAM manufacturers generally enter each generation within one year
of each other.
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values of such elasticities. Firm i’s profit maximization function in noncooperative play is:

max
qikt

Πit =
∞∑
t=τ

k2∑
k=k1

δt−τ [P (Qkt;Q−kt) qikt − C (qikt, qikt−1; c1, c)] (1.1)

Firm i’s first-order condition for product k2 in period τ is:

⇒ ∂Πi

∂qik2τ
: Pk2τ +

∂Pk2τ
∂qik2τ

qik2τ =
∂Cik2τ
∂qik2τ

+ δ · ∂Cik2τ+1

∂qik2τ
− ∂Pk1τ
∂qik2τ

qik1τ

= c1 − δλ · qik2τ+1︸ ︷︷ ︸
Learning

+ γ1 · qik1τ︸ ︷︷ ︸
Cannibalization

The first-order condition illustrates the competing production incentives that firm i faces

during a product’s first phase. Learning-by-doing, which is based on the learning rate

and discount factor, induces it to produce more than it would if cost were static.13 It is

constrained from selling output as if cost were at its end-phase minimum c3, however, by

the presence of its own competing product. The cross-price elasticity parameter γ1 indexes

the extent to which output of k2 reduces the price of k1.

Firms i and j play a supergame comprised of an infinite sequence of ordinary games.

At the start of each period t, i’s action is the value of the vector of strategic variables

sit ≡ (qik1t, qik2t)
′. The normal form strategy of the ordinary game at period t is st ∈ <2,

the vector of strategies across firms (sit, sjt). Per-period payoffs are Πit (st; Ω), where Ω is

the parameter vector. The supergame strategy of the supergame is σi, where:

σi =


sit = fit(s1, . . . , st−1) if t ≥ 2

si1 if t = 1

13To focus on the central relationship between learning and incentive compatibility, this model excludes
intertemporal strategic effects of firm i’s output of k in τ on firm j’s output of k and −k in {τ + 1 . . .∞}.
To the extent that firms play as intertemporal strategic substitutes, incentives to deviate are even stronger
than those represented in the model. Zulehner (2003) and Siebert (2010) find evidence consistent with this
phenomenon in DRAM.
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Definition 1.1 A supergame strategy is a sequence of functions which map all preceding

ordinary game strategies of both players into the tth ordinary game strategy of player i.

Call the supergame strategy characterized by playing the one-shot Nash-Cournot action

in each period σNCi . A collusive equilibrium exists if firms can raise their joint profits

higher than Π∗
(
sNC1 , sNC2 , . . .

)
≡ Π∗NC by playing a supergame strategy σ−NCi . To be

credible, such strategies must form a Subgame Perfect Equilibrium.14

Definition 1.2 σi is a subgame perfect equilibrium (SPE) if the firms’ strategies constitute

a Nash equilibrium in every subgame of the original game.

1.2.2 Collusion with Single-Market Punishments

To proceed, it is necessary to understand how learning and multiproduct competition shape

the nature of collusion. This section begins the analysis by restricting firms to play as if

k1 and k2 are non-interacting markets and if the only supra-competitive equilibrium that

is possible is the one that maximizes the discounted sum of joint profits (i.e., the most

profitable equilibrium). It compares the minimum discount factor necessary to sustain

collusion for k1 with the corresponding minimum discount factor for k2.

Assume that the game is at period τ , where k1 is in the second phase of its product

life cycle and k2 is in its first. Section 1.2.3 extends the analysis to the more realistic

multiproduct punishment case by following the logic of Bernheim and Whinston (1990).

Section 1.2.4 generalizes to allow firms to play the full range of equilibria between one-shot

Nash and perfect collusion.

Consider the strategy in which each firm maximizes the discounted sum of joint profits

at τ and punishes deviation on generation k at τ with Cournot reversion on k (but not −k)

forever after.15 Call this the joint profit maximizing collusive strategy and denote it σ′i.
14The equilibria discussed are not necessarily Markov Perfect only because intertemporal strategic effects

are assumed away; see footnote 13. Firm i’s payoff-relevant state variables at t are (1) its parametrically
determined marginal cost; (2) a zero/one vector denoting firms’ adherence to the collusive strategy in periods
{1, . . . , t− 1}.

15See Abreu, 1986, 1988 for analyses of optimal trigger and stick-and-carrot punishments in supergames.
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Firm i’s joint profit maximization function at period τ is:

max
Qkt

Πit =
∞∑
t=τ

k2∑
k=k1

δt−τ [P (Qkt;Q−kt)Qkt − C (Qkt, qikt−1; c1, c)] (1.2)

Note that i’s cost reduction for generation k is still based on its own previous-period

output qikt−1, not total previous-period output Qkt−1. Firms can collude in the product

market but they cannot collude in the learning process to share gains from output across

the two firms.16 In contrast to noncooperative play (1.1), in cooperative play (1.2) i in-

cludes j’s output decision in its own optimization problem. It therefore accounts for the

strategic substitutability inherent in Cournot competition and restricts output relative to the

noncooperative case.

The following definition establishes a necessary condition for σ′i constituting a subgame

perfect equilibrium.

Definition 1.3 Define ∗D and ∗J as deviation and joint profit maximization actions of the

normal form game, respectively. σ′i is a subgame perfect equilibrium for product k at period

τ if:

∞∑
t=τ+1

δt−τ
(
Π∗Jikt − Π∗Dikt

)
≥
(
Π∗Dikτ − Π∗Jikτ

)
The collusive strategy σ′i must satisfy the incentive compatibility constraint at period τ .

This implies that the profits from remaining on the collusive path at τ are greater than or

equal to the profits from deviating at τ .

Next, I illustrate the fundamental difference between collusion on k1 and collusion on

k2 by highlighting the difference in punishments for deviation between the two generations.
16Hatch and Mowery (1998) and Macher and Mowery (2003) model the different engineering processes

underlying cost reduction in semiconductors and find that learning is shaped more by organizational manage-
ment, data analysis and equipment technology than explicit knowledge held by individual engineers. Firms
are limited in the learning they can successfully translate between plants; it is unlikely that they could increase
diffusion between firms without costly effort, planning, team-oriented communication and problem solving.
There is no evidence to suggest any attempt was made in the DRAM cartel. See section 1.3 for more details
on the learning process.
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If i deviates from k2’s collusive path in period τ fixing j’s output, the profits i earns on k2

in τ + 1:

q∗Dik2τ+1 =
1

3η1

(a− c1 + λq∗Dik2τ︸ ︷︷ ︸
cik2τ+1

) + (λq∗Dik2τ − λq
∗J
jk2τ

)︸ ︷︷ ︸
λ(q∗Dik2τ

−q∗Jjk2τ )

−(γ1 + γ2)Qk1τ+1

 (1.3)

Equation 1.3 illustrates that i obtains greater market share than j on generation k2 in

period τ + 1 if it deviates in period τ . Deviation increases its next-period profits relative

to playing a static symmetric Cournot game in a direct way and a strategic way. Directly,

cik2τ+1 < cjk2τ+1 because λq∗Dik2τ > λq∗Jjk2τ : i’s second period costs are lower following

deviation than following adherence because i has learned more in the first period. Conse-

quently, (λq∗Dik2τ − λq
∗J
jk2τ

) < 0: j knows that i’s costs are lower, prompting j to back off

and i to push forward. Firm i gains a strategic advantage over j that further increases its

profits.

If i deviates on k2 in period τ , it faces profit loss relative to foresaken collusive profits

for k2 in periods τ + 1, . . . ,∞. i’s foresaken profits in period τ + 1 are mitigated by its

profit gains from the strategic advantage it generates by deviating. If i deviates on k1 in

period τ , in contrast, it forsakes future collusive profits but gains no mitigation in τ + 1 or

any future periods. This logic leads to the following result.

Proposition 1.1 Define δ∗kt as the minimum discount factor that satisfies σ′i’s ICC at t.

If |η1| ≤ |η2| and |γ1| ≤ |γ2| ⇒ δ∗k1τ < δ∗k2τ

δ < δ∗k1 < δ∗k2 ⇒ neither k1 nor k2 enforcable

δ∗k1 < δ < δ∗k2 ⇒ only k1 enforcable

δ∗k1 < δ∗k2 < δ ⇒ both k1 and k2 enforcable
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Proof 1.1

See Appendix A.1.

Result 1.1 conveys the intuition that it is strictly more difficult to collude in the early

phase of a product life cycle relative to a later phase. The sufficient condition establishes

that as long as the same-period gain to deviating on k1 is not substantially greater than the

same-period gain to deviating on period k2, the ICC requires a higher minimum discount

factor for k1 (δ∗k1τ ) than k2 (δ∗k2τ ).17

The next portion of Result 1.1 depicts the relationship between the firm-invariant dis-

count factor and the minimum discount factor necessary to enforce σ′i. Observed conduct

at τ depends on δ: if it is sufficiently or high or sufficiently low, firms are equal in their

conduct toward both generations. If δ is in between the range of values, however, collusive

strategy σ′i is enforcable on k1 but not k2.

This result is also robust to the inclusion of learning spillovers betwen firms, as long

as learning does not reduce rivals’ costs more than a firm’s own costs (see Appendix A.2).

Section 1.2.3 considers the multiproduct punishment case, and section 1.2.4 generalizes to

the full range of collusive strategies.

1.2.3 Collusion with Multiproduct Punishments

In this section I allow firms to coordinate collusive strategies across separate products

linked by demand substitution.18 Specifically, consider the strategy in which each firm

maximizes the discounted sum of joint profits at τ but punishes deviation in generation k

with Cournot reversion in k and −k. Call this strategy σ′′i .

How will the minimum discount factor necessary to sustain collusion on generations k1

and k2 change when firms play σ′′i rather than σ′i? Computing equilibrium output expres-
17The same-period gain to deviating could be higher for k1 than k2 if, for example, demand is substantially

less elastic for k2 than k1. As the opposite result is generally the case in high-technology products—where
new generations spur obsolescence—this possibility is assumed away.

18The analysis mirrors the treatment of multimarket collusion in Bernheim and Whinston (1990) and sub-
sequent papers.
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sions shows that the disparity in incentives to deviate between products k1 and k2 remains.

Specifically, equation 1.3 still holds: firm i’s punishment on k2 from deviating on k2 is

weakened by its learning advantage over firm j.

The difference is that i’s deviation triggers punishment in period τ + 1 on k1 as well as

k2. As the marginal cost of k1 has reached its minimum c by τ + 1, foresaking collusive

profits on this generation raises the punishment to deviating relative to σ′i. The following

result depicts when and how σ
′
i can rectify the disparity between collusion.

Proposition 1.2 Define δ∗∗kt as the minimum discount factor that satisfies σ′′i ’s ICC at t.

If |η1| ≤ |η2| and |γ1| ≤ |γ2|, ⇒ δ∗k1τ = δ∗∗k1τ ≤ δ∗∗k2τ

Proof 1.2

See Appendix A.1.1.

Result 1.1 showed that the sustainability of collusion in single-product punishments

depends on how high the discount factor is, and that there is a “window” in which the

discount factor is high enough to sustain collusion on k1 but not k2. Result 1.2 shows that

under the same conditions, multiproduct punishments are identical except for one change.

The new critical discount factor for k2 is bounded by the older critical discount factor for

k2 and the critical discount factor for k1. Collusion is therefore at least as sustainable for

k1 as it is for k2.

The key insight is that firms can use slack enforcement power from the incentive com-

patibility constraint on k1 to enforce collusion on k2–but only if k1’s incentive compatibil-

ity constraint has enough slack. The amount of slack depends on where the discount factor

falls, so the imbalance between minimum discount thresholds necessary to sustain collu-

sion may be unchanged, reduced, or completely eliminated. Under the same conditions as

Result 1.1, collusion will always be at least as easy to sustain for k1 as it is for k2.

Two additional points are worth noting. First, if firms can choose between only σNi

and σ′′i , deviation on k2 would always imply deviation on k1 as well. Result 1.2 highlights
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the fact that multiproduct punishments do not necessarily make collusion equally feasible

across markets, but it is necessary to allow firms to reach a range of equilibria between

the one-shot Nash and the perfectly joint profit maximizing strategies to generate more

complete results. Second, although the strategies σ′i and σ′′i are only two among a set of

infinite strategies that may support collusion at levels above the one-shot Nash equilibrium,

they have the feature that punishments depend on marginal costs, which in turn depend

on firms’ accrued learning. Other types of trigger and stick-and-carrot punishments also

possess this feature and therefore render collusion at least as sustainable for k1 as k2. Both

of these points suggest that a fuller model of conduct will provide a testable prediction to

take to the data.

1.2.4 Collusion and the Conduct Parameter

The preceding section has shown the conditions under which the minimum discount factor

necessary to sustain collusion at the optimal collusive equlibrium is at least as high for the

newer product at the first phase of its life cycle as the older product at its second phase.

What does this result imply for observed prices and markups for firms in collusion when

supra-competitive equilibria of various degrees can be reached? To answer this question, I

cast the model in conjectural variation terms as follows.

Reconsider firm i’s profit function and first order condition at period τ :

Pkτ +
∂Pkτ
∂qikτ

qikτ +
∂P−kτ
∂qikτ

qi−kτ︸ ︷︷ ︸ =
∂Cikτ
∂qikτ

+ δ · ∂Cikτ+1

∂qikτ
(1.4)

Pkτ + θkτ︸︷︷︸
[
Qkτ

(
∂Pkτ
∂Qkτ

+
∂P−kτ
∂Qkτ

qi−kτ
qikτ

)]
︸ ︷︷ ︸ = ′′ (1.5)

θkτ︸︷︷︸ =

(
1 +

∂qjkτ
∂qikτ

)
qikτ
Qkτ

(1.6)

In this framework, θkτ is the conduct parameter that aggregates the average strength of
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collusion between firms i and j in period τ for product k. As 1.6 shows, θkτ is based on the

conjecture that i holds about j’s response to a change in i’s output in period t. Marginal

cost is composed of the static effect and the dynamic (learning) effect as before.

Bresnahan (1989) demonstrates that the conduct parameter has a clear interpretation

for several specific supply types. In Cournot equilibrium, firms in competition hold their

rival’s output fixed, so ∂qjt
∂qit

= 0 ⇒ θkt = 1
2
. In the joint profit maximizing equilibrium,

where firms collude perfectly, an output increase by i is met with an equal output increase

by j. In that scenario, ∂qjt
∂qit

=
qjt
qit
⇒ θkt = 1. In other supra-competitive equilibria, it takes

values between 1
2

and 1 corresponding to the “average strength of collusion.” θkt = 3
4
, for

example, implies that an increase in i’s output is met by a corresponding (but not equal)

increase in j’s output.19

The preceding analysis suggests that firms are less likely to reach the minimum dis-

count factor necessary to sustain collusion at τ for k2 relative to k1, but cannot rule out the

possibility that collusion is equally successful or unsuccessful. The following result estab-

lishes a testable prediction of the hypothesis by aggregating the effectiveness of collusion

into the conduct parameter.

Proposition 1.3 If |γ1| ≤ |γ2| and |γ̄| ≤ |γ2| , θk1τ > θk2τ ⇒ Q∗Jk2τ > Q∗NCk2τ

Proof 1.3 See Appendix A.1.2.

Result 1.3 provides conditions under which the possibility of collusion in both products

leads demand to shift toward the newer product, k2. If the strength of collusion, indexed

by the conduct parameter, is at least as high in k1 as k2, and the relative demand elasticities

take the same inequalities as before, then the demand curve for k2 shifts outward because of

its substitutability. Firms therefore face two competing forces in their optimization decision

for k2. Collusion induces them to restrict output via strategic substitutability, but consumer

19Corts (1999) shows that the empirical estimation of θ depends upon untestable functional form assump-
tions on the curvature of demand. I consider only θ’s value in theory and do not empirically test for it.
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preferences induce them to expand output. In equilibrium it is ambiguous whether i and j

will jointly produce more in the collusive arrangement than they would in competition.

The result provides one further sufficient condition under which this ambiguity is re-

solved. There exists a cross price elasticity of demand |γ̄| such that the output expansion

effect dominates the output restriction effect. This constitutes a testable prediction of the

model presented thus far. Figure 1.2 depicts the result graphically.

The possibility of i and j increasing output in response to collusion changes its welfare

implications in a dynamic setting, which is not captured in this model. Costs in τ + 1 are

c∗Ji2 < c∗Ci2 . Further conditions about the nature of competition in τ + 1 in a dynamic model

would establish whether or not firms pass this cost saving on to consumers.

1.3 DRAM Industry and Market

Semiconductors are crystals—usually silicon—that serve the essential role of connecting

the electronic circuits that make up a microchip. Microchips are a bedrock of the elec-

tronics revolution and provide the processing, memory, speed, and performance ability of

computers and many electronic devices. A critical feature of the microchip is its capacity:

the number of transistors per square inch. Increases in capacity reduce the effective cost

of a microchip, or, equivalently, increase its speed. Capacity has risen sharply since the in-

dustry’s inception in the 1970s, famously corresponding to “Moore’s Law”: the maximum

capacity of an individual chip doubles every 18-24 months.

Memory chips store and release data that is used in microprocessor chips such as the

computer’s central processing unit. DRAM operates at a specific level of the micropro-

cessor by refreshing the transistor repeatedly. The two chips are complementary: higher

processing speed is forfeited unless the device has enough memory to continuously access

data and perform operations. To maximize efficiency, DRAM is sold as a package of chips

attached to a circuit board to create a module. The total capacity of the chips in a mod-
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(a) Output Restriction on k1

(b) Demand Shift for k2

Figure 1.2: Collusion on k1 Affects Demand for k2
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ule represents its bit density (“density”), and DRAM product generations are measured by

density. Like most microchips, it is within generations that intensive learning-by-doing

takes place.20 DRAM products are largely homogeneous goods within a density genera-

tion, and are substitutable between density generations based on the customer’s preferences

for memory speed.21 Several different density generations are available at any time, and

because of the sequential nature of releases, they are always sequentially ordered between

different points in their life cycles.

The only way to increase capacity is through photolithography, a fabrication process

in which hundreds of chemical reactions are layered onto the underlying silicon wafer that

produces microchips.22 While finer-grain etching tools or more complex chemical reac-

tions can advance the lithography process to increase capacity, they also require very pre-

cise light, air and dust conditions. For each duplication in capacity, the new lithographic

process initially produces a yield of zero chips because such conditions are unknown. Pro-

ducing a batch of chips requires hundreds of precise steps conducted at the nanoscale level.

Engineers continuously fine tune chemical conditions, employ alternative techniques, phase

in higher-technology equipment, and analyze the resulting data in a trial-by-error process.

As Hatch and Mowery (1998) find, the most important adjustments are in parametric pro-

cessing, determining the minute range of chemicals to be applied at each step, followed by

adjustments in air particle contamination, which are impacted by the type of lithography

being conducted. Problem diagnoses in these two areas gradually increase numbers of us-

able chips as engineers learn which factors are most conducive to functionality and obtain

the technical tools to implement them. Increasing yield drives the cost of each chip down

as a direct function of output, consistent with classic models of learning-by-doing.

In addition to the capacity level, DRAM innovation also occurs along the technology

20See Gruber (1998) for evidence of intergenerational learning in EPROM memory chips.
21Noll (2014)
22The other way to reduce cost per chip—but not capacity per chip—is to increase the size of the wafer

itself, which allows more chips per lithographic batch. Such changes occurred about half as frequently as
capacity advancements during the 1980s and 1990s; see Kang (2010) Table 3-2, citing Brown & Linden
(2009).
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level. Unlike the capacity innovation process, technology standards are jointly developed

by fabricators with input from the largest microprocessor provider, Intel.23 The JEDEC

Solid State Technology Association (“JEDEC”) is the industry’s Standard Setting Orga-

nization, and it typically negotiates technology design, patents and licensing conditions

several years in advance of a new rollout. In the early 2000s, two different types of new

technologies were competing to become the next industry standard. In addition to JEDEC-

sponsored Double Data Rate Synchronous DRAM (“DDR”), the Silicon Valley design firm

Rambus developed and patented Rambus DRAM (“RDRAM”). Appendix A.3 shows that

neither technology began to proliferate until after the cartel period, which rules out the pos-

sibility of competition over technologies confounding any of the empirical cartel results to

follow.

The market for DRAM has greatly expanded since its start in the 1970s, primarily

through increasing demand, processing speed and proliferation of computer products. DRAM

chips are used directly by original equipment manufacturers (OEM’s) for the memory re-

quired in personal computer (PC) desktops and notebooks, and are also purchased as stand-

alone products to enhance the memory of existing PC’s.24 For the data period under study,

PC’s were the dominant application of DRAM. They were the only significant end use

throughout the 1980s and early 1990s (Flamm and Reiss, 1993); they comprised about 90%

of the market in the late 1990s and early 2000s (Third Amended Class Action Complaint,

MDL No. 1486, pg 76); and 80% of the market in 2006 (Kang, 2010).25

Because of the large capital outlays for new fabrication plants and variability in demand

growth for computers, the DRAM industry has been highly cyclical since its inception.26

23Source: private correspondence with Jim Handy, Director at Objective Analysis (May 19, 2014).
24Memory manufacturers contract with OEM’s on a biweekly or monthly basis.
25In recent years, the market for DRAM has begun to shift from traditional PC’s to-

ward mobile smart phones and computer tablets, which use lower-power memory but sell
many times the units as PC’s. See “Why Growth in Mobile Devices Will Fuel Micron’s
DRAM Shipments,” Forbes, 1/15/2013 http://www.forbes.com/sites/greatspeculations/2013/01/15/
why-growth-in-mobile-devices-will-fuel-microns-dram-shipments/

26Capital depreciation accounted for about 50% of marginal cost in the 1990s and 80% in the 2000s.
Source: see Footnote 11.
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Figure 1.3: Events During Cartel Period
Sources: Noll (2014), DOJ and EC Press Releases, and US Indirect Purchaser litigation

In the late 1990s, the industry faced significant overcapacity despite steady PC growth.27

After several firms exited the market amid falling prices and steep losses, in 1998 the largest

firms formed a cartel to cut production, raise prices and restore profitability.28

Figure 1.3 details the events surrounding the cartel period. After intermittent communi-

cation in 1997, the cartel operated from the second quarter of 1998 through the first quarter

of 2001. Noll (2014) relates that it disbanded when South Korean firm Hynix applied for

bankruptcy protection, and restarted after state-controlled banks bailed out the company

for $6-7 billion.29 The cartel ended with DOJ subpoenas in June 2002 following a public

accusation of collusive behavior by the CEO of Dell Inc., Michael Dell.

27“But too many new plants were built several years ago in a rush to benefit from a boom many thought
would never end...The glut led to a free fall in prices. In-Stat expects a 21 percent decline in revenue this
year, to $15.6 billion.”—Dallas Morning News, June 1998 http://articles.chicagotribune.com/1998-06-29/
business/9807100053 1 memory-in-personal-computers-dram-memory-chip-business

28See http://europa.eu/rapid/press-release IP-10-586 en.htm for further information.
29“DRAM Rivals Question Korean Government’s Role in Hynix Bailout,” EE Times, 11/5/2001 http://

www.eetimes.com/document.asp?doc id=1131477.
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1.4 Data

I use a proprietary dataset from industry-leading market research firm Gartner Research

that lists quarterly shipments by firm and density generation, and quarterly market price by

density generation, for all firms in the DRAM market from 1974-2011. I narrow the data

to the period for which downstream demand data is reliably available: 1988-2011. DRAM

demand is proxied by a time series of worldwide quarterly PC shipments obtained from

Gartner research reports. This data is available annually from 1988-1996 and quarterly

from 1997-2011.

All prices are given in US dollars and subsequently deflated to year 2000 values by

the Consumer Price Index (CPI). Additionally, the Gartner data includes output per firm

by DRAM technology after 2001, when it began tracking individual technology shipments

within generations. Firm names allow accurate tracking of mergers, entry, and exit through-

out the data sample.

In the empirical work to follow, I make use of two subtly different measures of the

market price. The first (employed in previous literature) is the price per module of DRAM

generation k sold at time t. Because DRAM chips are sold as modules, it is the actual price

that buyers pay for a given DRAM generation. Another way to represent DRAM price is

through the price of an individual chip standardized by its capacity. The DRAM price per

MB is the market-wide price of a chip divided by its number of megabytes (MB’s). Both

price definitions are equivalent.

Figure 1.4 plots the price per module by generation for all 11 generations of DRAM

from 1988-2011. The pattern is clear: price is high in initial periods, and it declines in a

logarithmic shape as a generation ages. The most significant price changes occur within

the first five to ten years of a generation. This is consistent with classic models of learning-

by-doing.

Figure 1.5 shows the price per MB averaged and weighted by sales across genera-

tions, from 1988-2011. The standardized price declined through the sample because a
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Figure 1.4: DRAM Module Log Price Trends By Generation

Figure 1.5: Overall DRAM Price Trend with Cartel Periods
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Figure 1.6: Aggregate DRAM Price Change against PC Shipment Change

fixed DRAM chip becomes cheaper as density increases. However, there were multiyear

cycles of sharp price decreases interspersed with price plateaus or slight increases. The

shaded area represents periods of cartel activity. The figure shows that price vacillated dur-

ing the cartel period, staying roughly constant from 1998-2000 before dropping in 2001.

The drop coincides with the period at which the dot-com bubble burst and the cartel dis-

banded. Price increased in the first two quarters of 2002, when the cartel regrouped, before

declining again after mid-2002 as the DOJ initiated its investigation.

Figure 1.6 plots the change in aggregate DRAM price per MB against the change in

worldwide PC shipments. It shows that most of the variation in DRAM price can be ex-

plained by variation in PC shipments. The effects of the 2001 dot-com bubble crash are

particularly striking: both series reach their troughs in concert. Regression specifications

make use of the change in PC shipment rates in explaining generation-level DRAM price

throughout the product life cycle.

Forty-eight different firms appear in the dataset, with a maximum of 24 active firms in
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1996.30 As many as seven different product generations were active at any given cross-

sectional point in the dataset, although two to three accounted for most of the sales.31

Eleven different product generations, from 256Kb to 2Gb, appear with sufficient frequency

to include in the analysis.32 Table A.1 lists each DRAM generation and its years active

within the sample period. At the market level, the industry is a classic oligopoly: ten

firms accounted for 85% of output across generations in 2000. The four largest firms—

Samsung, Infineon, Micron, and Hynix—held 63% of the market.33 See Table A.2 for C4

concentration ratios by generation from 1994-2004.

1.5 Empirical Results

The theoretical model presented above generates testable predictions for the effect of col-

lusion on market prices and outcomes. It is based on the intuition that collusive equilibria

are at least as difficult to sustain on new generations as old generations. The larger is the

disparity in average strength of collusion between generations, the larger is the demand

shift toward newer generations. This leads to a sufficient condition that is testable: newer

generations during the cartel period sell more output than they would in competition. It

also implies that the cartel period overcharge is higher for older generations than newer

generations, and ambiguous in sign for newer generations.

I provide two types of estimates: (1) the effect of collusion on the dependent variable,

output or price; (2) the effect of collusion on the dependent variable with respect to prod-

uct cycle age. The first relationship is identified by repeated product life cycles among

generations before, during, and after the cartel. I compare observations a given amount

30See Siebert and Zulehner (2013) for an empirical analysis of firm entry and shakeout in the DRAM
industry.

31See fig. A.3 for the evolution in market shares between five DRAM generations active during the cartel
period.

32I also discard two minor “mini-generations,” 2Mb and 8Mb, that briefly appear between industry standard
generations in the 1990s.

33I pool the sales of LG Semiconductor with Hynix, which purchased the company in 1999.
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Figure 1.7: DRAM Output by Generation, First 12 Quarters

of quarters from generation or firm entry within the cartel period to other observations the

same amount of quarters from generation or firm entry outside the cartel period, adding a

time-varying proxy for demand.

The second relationship is the differential effect of collusion with respect to generation

age. Its identification arises from two sources. First, because the cartel was active for 12

quarters, each active generation provides time-series variation in age. Second, five differ-

ent generations were at sequentially ordered stages of their product cycle at each point in

time during the cartel. This provides cross-sectional variation between generations. The

latter source is especially strong in ruling out the possibility that changes in firms’ dis-

count factors over time—through macroeconomic conditions, firm-specific financial health

or management changes—bias the results.
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1.5.1 Cartel Output Effects

Figure 1.7 plots logged generation-level output of DRAM for the first 12 quarters of each

generation. It displays data from the 11 even generations under study, with each dot rep-

resenting one quarter of output. Output generally increases from quarter to quarter during

the early stage of production, as existing firms increase their output and new firms enter.

Firms started selling units of 128Mb and 256Mb chips during the cartel period, which is

shaded. 128Mb was the newest generation from 1998 until 1999, when firms began produc-

ing 256Mb chips. These two generations were therefore in the early stage of their product

cycles during the cartel period. Sales of the 128Mb and 256Mb generations immediately

stand out: initial output values are orders of magnitude greater than the corresponding val-

ues during non-cartel periods before and after the conspiracy.34 It is especially noteworthy

that 128Mb and 256Mb output is greater than post-cartel generations, because the increas-

ing market for DRAM over time implies gradually increasing overall output.35

To further investigate the hypothesis that cartel output increased for the newer genera-

tions, I estimate the following regression:

Log(qikt) = β1FirmAgeikt + β2FirmAge
2
ikt + β3GenAgekt + β4GenAge

2
kt

+ β5Yt + β6Yt ×GenAgekt + β7Yt ×GenAge2kt + βk1(Coll)kt + εikt

(1.7)

This specification regresses the log of a firm’s output for generation k at time t on mea-

sures of firm age, generation age, demand, and an indicator variable for the cartel period.

FirmAgeikt and its square denote the elapsed quarters since firm i began production in

generation k. GenAgekt and its square represent the elapsed quarters since the first firm in

generation k began output. These variables account for the positive trend in output during

34Initial output values for the three pre-1982 generations, 4Kb, 16Kb and 64Kb, are also far lower than
those for 128Mb and 256Mb.

35Figure A.5 shows that peak-stage output indeed increases greatly between generations over time.
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the early phase of a product cycle, when cost decreases and firms pursue learning gains, to

the negative trend later in the product life cycle, when output crosses its peak and firms shift

production to a newer generation. 1(Coll)kt is an indicator variable equal to one during

generation k’s cartel period and zero otherwise. This variable permits separate estimation

of the effect of cartelization on output by generation.

Yt is a demand shifter representing the growth rate of worldwide PC shipments. De-

partures from the baseline rate of PC growth, which is mostly positive through the sample

period, are taken as exogeneous changes in the demand for DRAM.36 Interactions between

Yt and GenAgejt allow the effect of a change in PC shipments to be stronger in the ini-

tial phase of a product cycle, when OEM’s may increase production of memory-intensive

computers, than later stages.

Table 1.1 shows that the robust industry-level effect observed in Figure 1.7 carries over

to the firm level as well. It displays the results of regression 1.7 with and without controls

for demand. The coefficients for firm and generation age take the expected signs, with

primary terms positive and squared terms negative signaling the pre- and post-peak phases

of the product life cycle. The demand proxies in the right hand side panel also take the

expected signs, with the PC Growth Rate positively associated with output levels at the

earliest stages of the product cycle.

The cartel binary variables are strongly positive and consistent for the 64Mb, 128Mb

and 256Mb generations in both specifications, but negative in the 16Mb generation and

negatively significant in the 4Mb generation. Wald tests for equality reject the joint hy-

potheses that either of the latter two coefficients arise from the same distribution as either

of the former three coefficients. These results provide strong evidence that the cartel’s ef-

fect was twofold: participants restricted output on older generations and raised output on

newer generations.

36The proliferation of PC’s from the 1980s through the 2000s was due to the decreasing overall cost of
the computer’s components, of which DRAM only comprises 5-10%. There is no evidence that DRAM
prices themselves drive a significant portion of PC sales. See fig. 1.6 for the correlation between Yt and the
aggregate price of DRAM.
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Table 1.1: Log Firm Output on Covariates, 1988-2011

(1) (2)

Coefficient (Std. Err.) Coefficient (Std. Err.)

Firm Age 0.138∗∗∗ (0.007) 0.143∗∗∗ (0.007)

Firm Age2 -0.002∗∗∗ (0.001) -0.002∗∗∗ (0.001)

Gen Age 0.347∗∗∗ (0.005) 0.348∗∗∗ (0.006)

Gen Age2 -0.004∗∗∗ (0.001) -0.004∗∗∗ (0.001)

PC Growth Rate 0.256∗∗∗ (0.008)

PC Growth Rate × Gen Age -0.013∗∗∗ (0.001)

PC Growth Rate × Gen Age2 0.001∗∗ (0.000)

I(Coll)4 -0.379∗∗∗ (0.101) -0.314∗∗∗ (0.089)

I(Coll)16 -0.117 (0.079) -0.058 (0.073)

I(Coll)64 3.122∗∗∗ (0.191) 2.141∗∗∗ (0.174)

I(Coll)128 4.852∗∗∗ (0.257) 2.569∗∗∗ (0.241)

I(Coll)256 3.743∗∗∗ (0.365) 1.628∗∗∗ (0.335)

R2 0.914 0.9273
N 6640 6640

***p < 0.01, **p < 0.05, *p < 0.1. The dependent variable is logged firm-level
output of DRAM units, by quarter. Firm- and generation-age represent the elapsed
quarters since the first firm in generation k began output. I(Coll)k estimates the aver-
age change in output for generation k during the cartel period.
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Figure 1.8: DRAM Price/MB Trend During First Cartel Period

1.5.2 Cartel Price Effects

I now describe and estimate the effect of the DRAM cartel on the price of each active

generation. Figure 1.8 uses DRAM prices per MB to represent all five cartel generations at

the same time on the same axis. The shaded area depicts the cartel period. By inspection,

the price of the older, outgoing 4Mb and 16Mb chips steadily rise, while 64Mb price rises

and falls jaggedly to stay roughly equal on average. The prices of the newer two chips

continue to fall.

Figure 1.9 restricts the price series to the 128Mb and 256Mb generations, which entered

during the first period of collusion and accounted for the majority of market share by the

second period. It extends the x-axis to show the price trend within these generations over

the first and second periods of collusion. Prices decline in the first phase of collusion but

rise sharply in the second phase before the cartel is disbanded. The visual evidence in

figures 1.8 and 1.9 is consistent with the results of the model: the effect of collusion on

price appears to be larger as the product cycle progresses.
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Figure 1.9: DRAM Price/MB Trend From First to Second Cartel Period

I test this intuition more formally by controlling for the product cycle phase in the

following regression.

ln(Pjt) = α + β1LogGenAgejt + β2 Yt + β3 Yt ×GenAgejt + β4 Yt ×GenAge2jt

+ β51(Coll) + εjt

(1.8)

This regression differs from 1.7 in two ways. First, the dependent variable ln(Pjt) is the

logged industry-level price of generation k at time t. Second, the regression is run sepa-

rately for each of the five cartel generations. The sample for each regression is restricted to

a total of 24 quarters before, during, and after the quarters of cartel activity for the cartel

generation in question. This procedure is conducted to maximize the statistical power of

the test because all variation is at the generation-quarter level. 1(Coll) therefore estimates

the average effect of the cartel on the price of k.
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Table 1.2: Log Module Price Level on Covariates, 1988-2011

4Mb 16Mb

Intercept 6.360∗∗∗ 5.088∗∗∗ 5.316∗∗∗ 2.841∗∗∗

(0.501) (0.833) (0.496) (0.757)

Log Gen Age -1.551∗∗∗ -1.218∗∗∗ -1.301∗∗∗ -0.597∗∗∗

(0.131) (0.218) (0.141) (0.215)

PC Growth Rate 0.502∗∗ 10.214 1.488∗∗∗ 13.482∗∗

(0.234) (7.124) (0.141) (5.917)

PC Growth Rate × Gen Age -0.367 -0.527
(0.313) (0.336)

PC Growth Rate × Gen Age2 0.003 -0.005
(0.003) (.005)

I(Collusion) 0.067 0.081 0.243∗∗ 0.262∗∗

(0.077) (0.078) (0.122) (0.120)

Quarters 34-57 34-57 24-47 24-47
N 173 173 200 200
R2 0.477 0.490 0.350 0.405

***p < 0.01, **p < 0.05, *p < 0.1. The dependent variable is logged industry-level
deflated price in USD, by generation and quarter. The indicator variable I(Collusion) esti-
mates the average price change in the given generation during the cartel period.
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Table 1.3: Log Module Price Level on Covariates, 1988-2011

64Mb 128Mb 256Mb

Intercept 7.642∗∗∗ 7.033∗∗∗ 5.651∗∗∗ 5.524∗∗∗ 5.629∗∗∗ 5.494∗∗∗

(0.298) (0.553) (0.234) (0.172) (0.173) (0.233)

Log Gen Age -2.091∗∗∗ -1.882∗∗∗ -1.353∗∗∗ -1.280∗∗∗ -1.335∗∗∗ -1.258∗∗∗

(0.100) (0.189) (0.066) (0.099) (0.066) (0.100)

PC Growth Rate 3.903∗∗∗ 4.933∗ 4.160∗∗∗ 1.865 4.030∗∗∗ 1.740
(0.477) (2.965) (0.617) (1.676) (0.621) (1.660)

PC Growth Rate × Gen Age 0.024 0.710∗∗∗ 0.732∗∗∗

(0.291) (0.269) (0.267)

PC Growth Rate × Gen Age2 -0.003 -.034∗∗∗ -.036∗∗∗

(0.007) (0.010) (0.010)

I(Collusion) -0.263∗ -0.289∗ -0.644∗∗∗ -0.701∗∗∗ -0.294 -0.260
(0.160) (0.160) (0.197) (0.190) (0.208) (0.199)

2-Sided Eq. Test w/ 4Mb (∗∗) (∗∗∗) ()
2-Sided Eq. Test w/ 16Mb (∗∗∗) (∗∗∗) (∗∗∗)
2-Sided Eq. Test w/ 64Mb (∗) ()

Quarters 7-30 7-30 1-23 1-23 1-23 1-23
N 201 201 178 178 178 178
R2 0.718 0.722 0.720 0.748 0.720 0.758

***p < 0.01, **p < 0.05, *p < 0.1. The dependent variable is logged industry-level deflated price in USD, by generation and quarter.
The indicator variable I(Collusion) estimates the average price change in the given generation during the cartel period.
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Table 1.2 and table 1.3 show the results from regression 1.8 with and without inter-

actions of DRAM demand over the product cycle. Generation age enters negatively and

significantly in all specifications, consistent with a decreasing effect of the product cycle

phase on price. The coefficients for Yt and its interactions indicate that the effect of PC

growth on DRAM price is positive and significant, that it increases in magnitude in the

ramp-up phase of a product cycle, and that its effect attenuates as a cycle passes its peak.

The second-to-bottom row in all specifications highlights the average effect of collusion

on price for generation k. The estimates are consistent with the model’s predictions: the

average effect of collusion on price appears positively for the 4Mb and 16Mb generations,

but significantly lower for the 64Mb, 128Mb and 256Mb generations.37

In fact, while the collusion coefficient is about 25% and significantly different from zero

for the 16Mb generation, it is negative and significantly different from zero in the 64Mb,

128Mb and 256Mb generations.38 The magnitudes of the price decreases are particularly

noteworthy: the 128Mb generation, for example, is estimated to price 70% lower during

the cartel than the competitive counterfactual. The bottom row of table 1.3 displays the

p-value from a joint test of equality between the collusion coefficient for each generation

and its follower. Equality is rejected strongly for 128Mb, while the p-value ranges from

about 10-20% for 64Mb and 256Mb.

These findings lend further credence to table 1.1’s result that successful collusion on

older DRAM generations shifted demand to newer generations, which produced more dur-

ing the DRAM cartel than they would have in competition. They imply that increased

output created increased overall learning, and that firms passed on a component of cost

savings to consumers in the 64Mb, 128Mb, and 256Mb generations.

Regression 1.8 identifies the effect of collusion on price for generation k under the fol-

37Figure A.4 shows that while the share of generation market share that cartel members comprised was
relatively constant and at least 80% for the 16Mb through 256Mb generations, it was only 50% and declining
for the 4Mb generation. Insider market share declined as the largest firms exited the generation and smaller
fringe firms entered. It is therefore unclear whether to expect a positive or zero effect on cartel price for the
4Mb generation.

38The 256Mb generation entered in Q1-1999. It therefore has only nine quarters of cartel activity.
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lowing assumptions: (1) PC shipment growth affects k and −k’s price equally at equal

generation age; (2) supply-side factors vary as a function of generation age and not time,

age-time or age-firm-time. Examples of violations of (2) include differential levels of ca-

pacity utilization between periods (systematic over- or under-capacity) or tacit collusion

in non-cartel periods. If industry-wide changes in supply-side behavior vary over time—

and not over the product cycle—they bias the 1(Collusion) coefficient equally in all five

regressions. Because multiple generations are always on the market at the same time,

industry-wide changes apply to generations at the beginning, middle and end of their prod-

uct cycles simultaneously.

Regressions of average price level do not capture any time trend in price during the

cartel period. If the rate of price overcharge increases as a function of product age, as the

model predicts it does, then the average price level understates the price effect of collusion.

To account for these possibilities, I add a cartel indicator-age interaction term to regression

1.8 and display the results below.

Table 1.4 displays empirical results from the specification in which generations are

pooled and the cartel indicator averages across all cartel generations. Results from spec-

ifications with and without the 128Mb generation are consistent with the model’s predic-

tions: the interacted coefficient of cartelization and generation age is strongly positive and

significant. This indicates that the effect of collusion on prices increases as a function of

generation age.

Figure 1.10 plots predicted price coefficients from the model with and without the bi-

nary variable indicating cartel activity. The x-axis is generation age and the y-axis is logged

price per module. The figure estimates the expected price path of a generation beginning

collusion from its first period through the rest of its product cycle. It is consistent with

a causal link between collusion in one generation and demand shift to a preceding gen-

eration. Specifically, learning effects through output expansion push the price below its

competitive counterpart for the first 20-24 quarters, while output restriction raises the price
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Table 1.4: Log Module Price Trend on Covariates, 1988-2011

(1) (2)
All Generations 128Mb Omitted

Intercept 5.639∗∗∗ 5.906∗∗∗

(0.117) (0.116)

Log Gen Age -1.382∗∗∗ -1.450∗∗∗

(0.034) (0.034)

PC Growth Rate 5.910∗∗∗ 5.547∗∗∗

(0.584) (0.573)

PC Growth Rate × Gen Age -0.141∗∗∗ -0.136∗∗∗

(0.029) (0.028)

PC Growth Rate × Gen Age2 0.0006∗ 0.001∗∗

(0.0003) (0.0003)

I(Coll) -1.080∗∗∗ -0.912∗∗∗

(0.200) (0.216)

I(Coll) × Log Gen Age 0.334∗∗∗ 0.294∗∗∗

(0.062) (0.065)

N 580 525
R2 0.907 0.921

***p < 0.01, **p < 0.05, *p < 0.1. The dependent variable is logged industry-
level deflated price in USD, by generation and quarter. PC Growth Rate is a
demand proxy that measures the year-over-year change in worldwide PC ship-
ments. Interactions of PC Growth Rate capture the differential effect of a change
in shipment rates on DRAM price over the early, peak, and post-peak phases of
the product cycle. The indicator variable I(Collusion) estimates the average price
change from cartel activity at the first period of a generation’s product cycle.
I(Collusion) × Log Gen Age estimates the price trend from cartel activity during
a generation’s product cycle.
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Figure 1.10: Estimated Competitive and Collusive Price Trends

in the following quarters. The break-even point occurs roughly at a generation’s peak in its

sixth year.

1.6 Conclusion

If firms in learning-by-doing industries refrain from competition, the cost to society could

be especially large, because firms also reduce the rate at which they lower long-term costs.

The fundamental insight of this paper is that the effectiveness of collusion in such mar-

kets is determined by the rate of learning. The effectiveness of collusion in one product

generation impacts equilibrium price and output of competing product generations. In par-

ticular, successful collusion in a mature generation shifts demand toward newer product

generations. The shift renders collusion’s effect on output ambiguous for newer genera-

tions: coordination induces them to cut output, while the increase in demand induces them

to raise output. Increased net output results in more learning in collusion than competition
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for newer generations.

Empirical analysis of the DRAM cartel shows evidence consistent with the model.

Firms are estimated to produce substantially more output for the frontier 64Mb, 128Mb

and 256Mb generations during collusion than competiton but less output for the established

4Mb and 16Mb generations. Most interestingly, prices of the three frontier generations are

estimated to be significantly lower as a result of collusion. This implies that, consistent

with the model, firms learned more during 12 quarters of collusion than they would have

during 12 quarters of competition.

It is also noteworthy that these results are not unique to the DRAM market or its episode

of collusion. In the aftermath of the DRAM cartel, many of the largest electronics manufac-

turers in the world have settled charges of price fixing in related markets, including LCD

panels and hard disk drives. There is strong evidence that LCD makers, spurred by in-

creased incentives to roll out newer generations, increased the pace of these introductions

during collusion relative to competition. Further research and study of different markets

should be conducted to reveal the extent of the substitution and its welfare effects.

This paper carries several implications for antitrust policy, particularly as it relates to

many high-technology industries that experience large cost reductions through learning.

Economists have long recognized that such industries may under- or over-invest in output

early in the product cycle depending on the learning rate, the extent of interfirm learning

spillovers, and strategic entry deterrence. The present study suggests that if firms receive a

subsidy or other credit designed to raise their early stage output, they have strong incentives

to pass on the resulting cost savings accrued by learning. These incentives can remain

economically significant even when firms are acting as a cartel.

It further suggests to competition authorities monitoring high-profile, learning-intensive

markets that collusion does not always imply increased prices on all generations of a

product. Indeed, faster-than-usual price decreases may signal collusion among older gen-

erations. Moreover, as technology becomes increasingly expensive to downsize at the
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nanoscale level, it is well understood that semiconductors of all types are approaching a

limit to cost reduction.39 This means that overall learning rates are slowing down while

other structural features that facilitate coordination—product homogeneity, multimarket

contact, R&D cooperation—remain in place. Competition authorities should be aware that

the conditions favoring shakeout may also raise the likelihood of firms reaching collusive

equilibria, as they did in this case.

39Mark Bohr, senior fellow and director at Intel, relates: “Everybody in our industry will acknowledge
it is getting tougher with every new generation, [but] we are going to carry the Moore’s Law banner as far
as we can.”—“Intel Details 14-Nanometer Chip Aimed at Tablets,” Wall Street Journal 8/11/2014. http:
//online.wsj.com/articles/intel-details-new-chip-aimed-at-tablets-1407775008
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CHAPTER 2

Tort Liability and Settlement Failure:
Evidence on Litigated Auto Insurance Claims

(With Sharon Tennyson, Department of Policy Analysis & Management, Cornell Univer-
sity)

This paper empirically tests the predictions of the Priest-Klein model of pre-trial bar-
gaining. It exploits variation in tort liability for bad faith insurance law across states and
time during two decades of evolving law from the 1970s to the 1990s. Using repeated
cross-sectional datasets of auto insurance claims from the Insurance Research Council, it
finds evidence consistent with the hypothesis that variance in parties’ subjective estimates
of trial outcomes drove the likelihood of settlement. The likelihood of trial for an average
claim is estimated to have risen by over 20% in the initial years following reform among
the first group of states to enact the tort remedy. Trial rates among tort states thereafter
declined through the sample, dropping over 10% below control states by 1997. A simi-
lar relationship is estimated for the likelihood of a lawsuit being filed, and characteristics
of litigated claims are consistent with a different subset of claims being disputed follow-
ing regime change. Results are robust to sample selection bias, endogeneity in settlement
time, and other state-level legislation on punitive damages limits and prejudgment interest.
While there is limited evidence for the predictions of asymmetric information models of
settlement, we conclude that policyholders and insurers negotiated in a manner consistent
with divergent expectations.
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2.1 Introduction

The theory of law and economics has long emphasized the link between legal rights and

settlement bargaining. It has shown that the welfare effects of rights, such as those granted

under tort law, depend critically on the comparative statics of pre-trial bargaining. Among

the most important of these are the likelihood that a dispute reaches litigation and the

likelihoood that litigation reaches trial.1 It is well known, for example, that civil case

backlog at the county, state and federal levels imposes costly strain on the American legal

system.2

But there remain different frameworks to analyze breakdown in pre-trial bargaining.

Divergent expectations models of litigation posit that parties hold mutually optimistic as-

sessments of their chances at trial.3 Parties fail to settle if the litigation costs of trial are

small enough to justify the expected utility gain of trial relative to settlement. Asymmetric

information models, in contrast, assume that one party holds an objectively correct prior

assessment of the expected trial judgment.4 The other party knows only the distribution of

priors. If the plaintiff is uninformed, she may demand a settlement amount that is greater

than the expected cost the defendant would expect to pay at trial, which causes disagree-

ment.5

In this paper, we present an empirical analysis of settlement behavior following a

change in the body of law and show that it is consistent with the divergent expectations

model proposed by Priest and Klein (1984). We focus on the evolution of insurance “bad

faith” law, one of the most active areas of civil liability expansion in the United States over

1Throughout the paper, we use “litigation” to mean the presence of a suit filed by plaintiff against defen-
dant.

2See http://www.wsj.com/articles/in-federal-courts-civil-cases-pile-up-1428343746 for a recent descrip-
tion of the causes and consequences of federal case backlog.

3These models date to the early literature on law and economics; see Landes (1971), Gould (1973), Posner
(1973), Landes and Posner (1979), and Shavell (1982).

4Seminal models based on screening between informed types include Bebchuk (1984), P’ng (1983), and
Spier (1992). Seminal models of signaling between plaintiff and defendant include Reinganum and Wilde
(1986) and Nalebuff (1987). See Spier (2007) for a review of asymmetric information models.

5The comparative statics of settlement probability in such models are typically invariant to whether the
plaintiff or the defendant has the informational advantage.
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the closing decades of the twentieth century. Insurance law requires providers to deal fairly,

thoroughly, and promptly in settling insurance claims with policyholders. Breach of this

duty constitutes a bad faith liability. Policyholders who dispute the value of a claim can sue

their insurer for underpayment, and also for bad faith negotiation.

Specifically, we estimate how the tort remedy for first-party bad faith changed the in-

cidence of settlement failure between automobile insurers and their policyholders.6 We

exploit three primary sources of explanatory power to test the model. First, states differ in

whether they recognize a cause of action for the tort of bad faith. This creates two groups

of states that differ in two ways: the standard necessary to establish bad faith and the mag-

nitude of damages once it has been established. In New York, for example, common law

takes the traditional position that bad faith dealings are a part of contract law.7 Because the

state does not recognize bad faith as an independent cause of action, liability would typi-

cally entitle plaintiffs to the compensatory value of the claim, but no extra-contractual or

noneconomic damages. In Wisconsin, however, common law recognizes bad faith and ad-

judicates it as a tortious harm.8 To establish bad faith liability in Wisconsin, plaintiffs must

convince the court that the insurer’s behavior meets elements of both an intentional and

negligence standard.9 A liability finding would grant plaintiffs compensatory damages,

as well as consideration for additional awards: economic harm above the policy limits,

emotional distress, and expressly punitive damages.10

Second, states changed bad faith regimes at different points in time, and state-level

6This paper’s exclusive focus is on first-party rather than third-party bad faith insurance. Bad faith is used
to mean “first-party” throughout the paper, unless otherwise noted. See section 2.3 for the distinction between
the two types of insurance.

7Gordon v. Nationwide Mut. Ins. Co., 30 NY. 2d 427 (1972).
8Anderson v. Continental Insurance Co., 85 Wis.2d 675, 271 N.W.2d 368 (1978). Most states that recog-

nize a private cause of action for first-party bad faith adjudicate it through tort law. Several states do recognize
the cause of action but adjudicate it through contract or statute; see further details in section 2.3, and a wider
discussion in Tennyson and Warfel (2010).

9See Sykes (1996), pp. 411-412. The Gordon standard is the most common model for first-party bad faith
around the country.

10Punitive damages have been granted in a number of such cases and follow naturally from the tort of
bad faith. As Sykes (1996) explains: “once ‘bad faith’ is established under the applicable standard, the full
array of tort remedies generally becomes available...[and] because ‘bad faith’ can often be characterized as
‘reckless,’ ‘malicious,’ ‘wanton,’ and the like, many plaintiffs will be able to collect punitive damages.”
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reform has undergone a relatively discrete start and finish. The Priest-Klein model dis-

tinguishes between transitory and permanent levels of uncertainty in beliefs about trial

success. To avoid conflating the two, it is necessary to estimate how comparative statics

change over time. It is also necessary for the degree of liability and evidentiary standards

within states to stabilize, so that it is possible to distinguish short- from long-term effects.

The study of bad faith law makes such an analysis possible: states began determining ad-

judication for first-party bad faith following a landmark 1973 California decision.11 In the

subsequent two decades, the majority of states followed California by granting a tort-based

cause of action for bad faith, while others clarified that it did not exist. After the early

1990s, only a handful of states would modify existing bad faith regimes significantly.12

Finally, auto insurance claims provide a set of frequent, high-information bargaining

events against the backdrop of a trial. Changes in bad faith insurance law are unlikely to

induce significant changes in the primary incentives to file a claim. Because the law pertains

to an insurer’s liability for bad faith, and not more generally to an individual’s liability for

personal injury or property, a bad faith tort can occur only after a claim has been filed. This

stands in sharp contrast to more widely studied applications of tort law: auto accidents,

medical malpractice, and products liability.13 We present a model that builds on these three

institutional features of bad faith insurance: variation in state law, variation over time, and

the distribution of underlying claims between the two legal regimes. The model develops

conditions under which a sample of insurance claims from states with and without tort

liability can identify the effect of the law on settlement failure probabilities.

Such a sample is employed with the Insurance Research Council’s national decennial

survey of auto insurance claims. We build a repeated cross-sectional dataset with survey

11Gruenberg v. Aetna Ins. Co., 510 P.2d 1032, 1037-38 (Cal. 1973). Gruenberg, the other primary model
that states use for first-party bad faith, is commonly understood to be less narrow than Gordon.

12There are two primary reasons. Where states treated bad faith as common law, judicial precedent clarified
the scope and limitations of the law and increased the predictability of judgments. In addition, nationwide
doctrinal debates surrounding tort and medical malpractice liability spurred courts to examine bad faith during
the 1960s and 1970s. This movement slowed down by the 1990s. See Abraham (1994) for a full analysis of
the maturity of bad faith law.

13See Kessler and Rubinfeld (2007) for a survey of these literatures.
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responses from 1977, 1987, and 1997. We exploit natural variation in state bad faith regime

and time to directly identify the effect of the law on the probability of settlement failure.

We examine binary measures of settlement failure at two different stages of the negotiation

process. The first measure of settlement failure is whether the policyholder filed suit against

his insurer, as opposed to settling without suit. The second measure is whether, conditional

on the policyholder filing suit, the claim proceeded to trial as opposed to settling out of

court.14 We also use data on the policyholder’s settlement demand, as well as claimant-

and accident-specific variables, to analyze how the types of claims that proceed to each

stage of the negotiation process differ between legal regimes.

Empirical estimates of the effect of bad faith tort liabilty on settlement failure support

the predictions of the Priest-Klein model. The strongest finding pertains to the likelihood

of an insurance claim to proceed to trial conditional on the case entering litigation. The

likelihood of an average claim being closed in trial rose by over 20% among tort states in

the earliest years following their regime change, relative to non-tort states. Trial likelihood

in tort states thereafter declined steadily, dropping over 10% below other states by the

end of the sample. Together, these facts are consistent with theory that selection operates

on cases closest to the decision standard. The tort liability regime changed the types of

cases selected for trial. It increased the variance of the error with which parties estimated

potential trial outcomes. As the decision standard for the tort regime solidified over time,

the regime’s level of uncertainty changed from a mixture of transitory and permanent levels

to a solely permanent level. A narrower range of disputes around the standard survived to

trial, so that the density of trials decreased.

We find a similar pattern for the likelihood of litigation, i.e., a policyholder filing suit

against his insurer. We estimate a positive effect of bad faith tort liability on the suit proba-

bility of an average claim of nearly 5% in the early- and intermediate-phase of bad faith re-

14The dataset contains only closed claims. Therefore it does not contain any cases in which the poli-
cyholder “dropped” the lawsuit. See Katz (1990) for an empirical study examining drop rates for medical
malpractice claims.
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form, but a negative effect in the long-term. Regression specifications control for numerous

characteristics that exogenously impact the likelihood of settlement, including economic

loss claimed, attorney use, degree of injuries suffered, and other state-level legislation on

punitive damages and prejudgment interest. Results are robust to sample selection bias

with respect to the timing of legal changes, as well as to endogeneity of the time between

a claim’s filing and settlement. We conclude that the combination of the two changes asso-

ciated with tort liability—the level of uncertainty and the stakes of the case—created two

discrete effects on the likelihood of settlement failure for first-party bad faith auto insur-

ance claims. The short-term effect of uncertainty significantly increased litigation and trial

rates among tort states in the 1970s and 1980s. But steadily declining uncertainty about bad

faith tort law, in tandem with limits on punitive damages and gradually narrowing doctrinal

scope for bad faith tort liability, eventually reduced the scope for disagreement in settle-

ments. This has ultimately reduced the overall strain that settlement failure in first-party

auto insurance claims imposes upon the legal system.

While these results are in line with divergent expectations models, they are inconsistent

with the full implications of asymmetric information models of settlement. To better dis-

tinguish between the two types of canonical models, we examine the economic loss that the

policyholder claimed. This constitutes a direct proxy for her settlement demand—typically

unobservable in bargaining settings—which is the central lever that drives comparative

statics results in asymmetric information models. We find that policyholders’ average set-

tlement demand changed non-monotonically through the sample period. This is at odds

with both screening-based models of settlement, which predict a monotonic increase, and

signaling-based models, which predict a decrease. There is, however, evidence that the

settlement demand was correlated with the likelihood of litigation, as both screening and

signaling models predict.
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This paper makes two primary contributions. The first is to empirically test the di-

vergent expectations model of pre-trial settlement bargaining.15 We follow Priest (1987),

Hughes and Snyder (1995) Waldfogel (1995), Siegelman and Donohue (1995), Kessler,

Meites and Miller (1996), Waldfogel (1998), Siegelman and Waldfogel (1999) and Eisen-

berg and Farber (2003) in testing the Priest-Klein model of settlement.

In contrast to studies that focus on a limiting prediction of the model—50% win rates

for plaintiffs and defendants—we assess its broader implication that the selection of dis-

putes for litigation or trial is based on parties’ subjective assessments of trial outcomes.

Our study is closest to Priest (1987) in estimating the effects of legal uncertainty about

a decision standard. We show that litigation and trial rates for a similar set of disputes

increased dramatically under a new legal regime, but eventually decreased following the

regime’s maturation. Combined with descriptive evidence of different accident character-

istics between the two regimes, this evidence is consistent with variation in the precision

of future trial outcomes driving parties’ settlement decisions. More generally, it is also

consistent with disputes for litigation or trial being systematically selected on the basis of

proximity to a legal standard.

Other empirical evidence on litigation and trial outcomes is also consistent with diver-

gent expectations models. While there is limited evidence for the predictions of asymmetric

information models, the literature does show that the direction of comparative statics may

depend on the types of disputes considered.16 Viscusi (1988) and Perloff, Rubinfeld and

Ruud (1996) specify models of litigation and settlement in products liability and antitrust

claims, respectively. Consistent with both types of canonical models, they find that trial

probability increases with the size of the case and decreases with the variance of outcomes

and the magnitude of risk aversion. Fournier and Zuehlke (1989), in contrast, study a

15A developing line of research documents and explains the existence of partial settlements between the
two extremes of completely contingent settlement out of court and completely incontingent litigation in court.
See Prescott, Spier and Yoon (2014), Prescott and Spier (2015a) and Prescott and Spier (2015b).

16See Farber and White (1991) and Farber and White (1994) for empirical evidence of screening in medical
malpractice litigation.
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broader database of civil suits. They find that larger expected payments are associated with

greater rates of settlement, an outcome of divergent expectations but not screening with

asymmetric information. Johnston and Waldfogel (2002) exploit federal litigation data that

identifies attorney representation to show that increased interactions speed dispute resolu-

tion and raise the probability of settlement. The present study emphasizes that the variance

in parties’ subjective probability estimates may change over time to greatly shape the di-

rection of comparative statics.

The second contribution is to estimate the shadow effect of a change in tort liability,

specifically, on the likelihood of litigation. We specify a model of insurance claims in

the spirit of previous empirical analyses of malpractice claims (Danzon and Lillard, 1983;

Hughes and Snyder, 1989), auto insurance claims (Kessler, 1996; Browne and Schmit,

2008), and civil litigation cases more generally (Eaton, Mustard and Talarico, 2005).

Our paper is unique among this group in exploiting variation on the extensive margin

of tort law—from no cause of action to a tort-based cause of action—rather than on the

intensive margin, from an unrestricted tort right to a tort right restricted by caps on various

damages. Perhaps for this reason, many of these studies fail to find significant effects

of damage changes on litigation outcomes. Kessler and McClellan (2005) find that tort

caps reduce lawsuit incidence by only about 2%. Kessler (1996) finds that tort reforms

mandating prejudgment interest for winning plaintiffs increase settlement delay in auto

insurance claims, and Eaton, Mustard and Talarico (2005) find no evidence of punitive

damages on settlement rates or amounts in civil cases throughout the state of Georgia.

The outline of the paper is as follows. Section 2.2 develops a model of pre-trial ne-

gotiation pertaining to bad faith insurance settlements and to the structure of the dataset

presented. Section 2.3 details the data used for empirical analysis and presents descrip-

tive evidence consistent with the model. Section 2.4 conducts econometrically estimates

the relationship between tort liability and settlement failure over time. We conclude in

section 2.5 by discussing implications for the economic theory of settlement.
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Figure 2.1: The bargaining process

2.2 Theoretical Framework

2.2.1 Model Preliminaries

We adopt a divergent expectations model of bargaining in the form of Priest and Klein

(1984) and apply it to the bad faith insurance setting. The model compares the probability

of an insurance claim from two different bad faith regimes settling over different time peri-

ods. Consider one insurance company, D, that is charged with settling first-party insurance

claims from the set of its policyholders, P . Each realized claim x is filed by policyholder

Pn, n ∈ {1, . . . , N}. Pn and D bargain over the amount of compensation for the claim.

Settlement occurs if the minimum amount demanded by Pn is less than or equal to

the maximum settlement offer from D. There are three discrete stages of the settlement

process, indexed by s. Parties hold full information about the timing of the process and the

options to settle or prolong the negotiation at each stage. Figure 2.1 represents the three

stages of negotiatiation, which culminate in a court or jury trial.

At the first stage, the two parties bargain after a claim has been filed. If they agree on

a settlement amount, claim x “closes” within this stage and never reappears. Should they

fail to reach an agreement, Pn files suit against D for a breach of insurance contract. Pn
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can also allege a supplementary charge that I negotiated in bad faith with Pn.

If Pn files suit, then the bargaining process repeats at the second stage. If they fail to

reach an agreement at the second stage, the negotiation over x proceeds to the third and final

stage: trial. Parties hold full information about the amount at stake in the trial, judgement

J ≥ 0. This judgment may include compensatory damages for bad faith, if it is alleged.

The judgment award J from D to Pn closes the claim in stage three.

If x is in stage one or stage two, Pn andD formulate settlement demands and settlement

offers, respectively. They formulate subjective probabilities πi ∈ [0, 1], i ∈ {Pn, D}, that

Pn would win trial against D. Party i’s optimism about trial success is weighed against

his cost of prolonging the negotiation, ris(J) > 0, s ∈ {1, 2}, where s denotes the stage

of negotiation. Let ri1(J) < ri2(J) ∀ J : the cost of settlement failure is strictly greater in

the second stage, when trial results, than in the first stage, when lawsuit merely results.17

Assume also that ∂r
i
s

∂J
> 0: litigation cost is increasing in the size of the judgment.

Denoting rs(J) = rPs (J) + rDs (J), a first or second stage claim fails to settle in that

period if and only if:

JπP − rPs (J) > JπD + rDs (J) (2.1)

πP − πD >
rs (J)

J
(2.2)

The standard condition in 2.2 implies that the minimum asking price of Pn exceeds the

maximum offer of D at stage s. The assumption that ri1(J) < ri2(J) guarantees that parties

are more willing to settle at the second stage than the first stage.

The defining feature of the Priest-Klein model is its endogenous formulation of sub-

jective trial assessments πi. Settlement fails to occur if parties hold sufficiently optimistic

expectations of their chances at trial. A difference in optimism is determined by two fac-

17Cost is comprised of attorneys’ fees and opportunity cost of not settling earlier. Attorneys’ fees from
filing suit include initial fact finding, documentation, case review, and communication between parties. Ad-
ditional costs for trial include preliminary injunctions, wiitness preparation, and testimony presentation; ex-
penses increase sharply as a case proceeds to trial.
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tors. The first is the relationship between the legal facts of the claim and the correctly

administered decision standard. Each claim x contains a different mixture of bargaining

characteristics. These include the timing and nature of initial contact between policyholder

and insurer, the manner of claim appraisal and evaluation, the settlement offer, threats made

to agree to the settlement offer, and more generally, all dealings that fall under the umbrella

of the insurer’s “good faith duty to settle.” Y ∈ R maps the mixture of characteristics

associated with each claim onto a continuous measure of insurer fault. Y ∗ is the degree of

fault necessary for a court to hold the insurer liable for bad faith under the given standard,

and Y ′ is the particular degree of fault that x displays.

The second factor that determines πi is error with the estimation of Y ′. The facts of a

claim negotiation map onto an objective assessment of the insurer’s wrongdoing, but the

application of those facts to the case requires careful consideration and analysis. Parties

may be uncertain or disagree over the steps taken after the claim was filed or the appro-

priateness of various negotiation tactics. They may also disagree over the interpretation of

the standard or, particularly in the bad faith setting, the expectation over the future evolu-

tion of the standard as it pertains to the claim. This measurement error creates subjective

assessments of the insurer’s fault. Priest-Klein assume that errors are independently and

identically normally distributed, so that draws in opposite directions create optimism bias.

Formally, let Ŷ i = Y ′ + ε, ε ∼ N(0, σ2). The probability of settlement failure at stage

s ≤ 2 is:

Pr[Fails] = F P
(
Ŷ P
)
− FD

(
Ŷ D
)
>
rs (J)

J
, F i (·) =

∫ Ŷ i

−∞
φ(ε)dε (2.3)

It is important to note that condition 2.3 represents unconditional probabilities of settle-

ment failure. As such, Pr[Fails] denotes the proportion of claims from an initial set

(each beginning at the first stage) that failed to settle by stage s. Because ri1(J) < ri2(J),

Pr[Fail2] < Pr[Fail1]: strictly more claims will settle by stage two than by stage one.
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Equivalently, Pr[Fail2|Fail1] = Pr[Fail1]−Pr[Fail2]
Pr[Fail1]

< 1: some disputes that failed at stage

one will settle at stage two, because litigation costs rise by enough to offset optimism bias.

Condition 2.3 also implies the central prediction of the Priest-Klein model. When all

else is equal, claims with Y ′ close to Y ∗ are less likely to settle than claims with Y ′ far

from Y ∗. If Y ′ ≈ Y ∗, even a small divergence in error terms results in a relatively large

area under the density curve. This enhances the probability of disagreement.

2.2.2 Tort Liability for Bad Faith

In this section we add a stylized representation of the bad faith legal environment to the

model. We use the framework to generate predictions of the effect of bad faith tort law on

the probability of settlement failure for auto insurance claims at different points in time, as

well as to derive conditions under which the empirical setting identifies this effect.

Insurer D operates in two states, A and B, in each of infinitely many discrete periods

of time t. D’s policyholders P file a total of X l
t new claims, l ∈ {A,B}, in each period

t. Claims are filed according to the same distribution with respect to the liability standard,

Y , in both states. Specifically, X l
t ∼ Poisson(λ).18 Each stage of the settlement process

corresponds to one period t. The framework outlined in section 2.2.1 implies that the X l
t

claims can be partitioned into the subsets X l1
t , X

l2
t , X

l3
t , ∪X li

t = X l
t . With probability

1 − Pr[Fail1], X l1
t ⊂ Xlt will settle in t. With probability (Pr[Fail1]− Pr[Fail2]),

X l2
t ⊂ X l1

t will settle in t+ 1; and with Pr[Fail2], X l3
t ⊂ X l2

t will settle in t+ 2.

There are two possible bad faith regimes: no private cause of action for bad faith,

which renders it part of contract law, or tort-based cause of action. States A and B do not

recognize a private cause of action for bad faith in periods [1, . . . , t − 1]. In this interval,

subjective trial assessments are made from the same decision standard, Y ∗, in both states.

18This assumption can be relaxed in two ways without changing the results that follow. The mean number
of claims may differ across states. The mean number of claims may also change over time, as long the
change is identical across states. These points are explained further in the empirical identification discussion
in section 2.4.
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The probabilty of settlement failure across all three stages is equal for both states. At the

start of period t, state B applies a tort remedy for bad faith. All claims that are filed in

period t are subject to the state’s prevailing legal regime, but claims filed before t that are

still in negotiation at t remain subject to the law when the claim originated.

Tort adjudication differs in two ways from conventional contract adjudication. First,

tort law introduces the possibility of economic damages above the insurance policy’s limits,

noneconomic damages such as emotional distress, and punitive damages at the discretion

of the court.19 The model therefore specifies that the effect of tort liability is to raise the

stakes of a case relative to contract liability.

Second, the change from one body of law to another alters the decision standard Y ∗.

A new Y ∗ changes the variance of parties’ error, σ2, because it carries a new level of

uncertainty. Priest-Klein allows this uncertainty to change over time. Priest (1987) writes:

One would expect virtually all changes in legal rules to upset the parties’ expec-

tations of outcomes over some period of time, however short. That is, holding

constant the permanent level of rule uncertainty, one would imagine that the

parties will face greater uncertainty in predictions of the initial application of a

new legal standard than they will face in predictions of subsequent applications

of the standard. Thus, the transitory level of uncertainty should surely decline

over time as study of the rule or actual experience with implementation of the

rule accumulates.

A tort change at period t implies that failure probabilities are no longer invariant across

state and time. The model outlined in this section, as well as condition 2.3, can be used

to derive comparative statics and dynamics of settlement failure with respect to each of the

variables that tort law changes. The following two propositions establish testable predic-

tions of this legal change.

19Some states have limitations on the extent of punitive damages desipte adjudicating bad faith through
tort. Date on punitive damages reforms is described in section 2.3 and used in the empirical analysis.
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Proposition 2.1 Denote the set of claims that close in period t, in state l, and at stage s as

Z ls
t . Suppose that the distribution of claims with respect to Y is identical between states A

and B in periods [t− 2, t− 1, t].

If tort liability raises the stakes of a claim from J1 to J2 > J1, then:

(J2 − J1)
[
πP − πD

]
> rs(J2)− rs(J1) ⇐⇒ ZBst

ZB1
t
>

ZAst
ZA1
t

where s ∈ {1, 2}

Proof 2.1 See Appendix B.1.1.

Proposition 2.1 represents a familiar result in the law and economics of pre-trial settle-

ment. Cross-sectionally, raising the stakes of a trial J results in two distinct and opposing

effects. First, it magnifies existing optimism bias between plaintiffs. This increases the

scope for disagreement. Second, however, it increases negotiation effort before litigation

or trial. When a case is more valuable, insurers increase their investment into discovering

the facts of the policyholder’s case by consulting police and hospital reports, conducting

independent medical examinations, and appraising the extent of property damage. Plain-

tiffs also have the incentive to increase spending into discovery and independent evaluation.

Increases in the costs of prolonging a dispute reduce the likelihood of disagreement by en-

hancing the settlement zone.20 The net effect in period t is therefore ambiguous, and the

magnitude of any change is an empirical question.

20Note that if parties are risk averse, the same argument applies: the likelihood of settlement failure de-
creases. The magnitude or impact of risk aversion is not tested, but is mentioned in section 2.4 where perti-
nent.
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Proposition 2.2 Assume the same conditions as in 2.1. If lower uncertainty reduces the

variance of ε to σ2B
t+1 < σ2B

t , then:

(i) ZBst
ZB1
t
>

ZBst+1

ZB1
t+1

, where s ∈ {1, 2}.

(ii) (a) (rs(J2)− rs(J1)) < J∗∗ ⇒ ZBst+1

ZB1
t+1

>
ZAst+1

ZA1
t+1

(b) (rs(J2)− rs(J1)) > J∗∗ ⇒ ZBst+1

ZB1
t+1

<
ZAst+1

ZA1
t+1

where J∗∗ is a sufficiently large constant.

Proof 2.2 See Appendix B.1.2.

Proposition 2.2 constitutes a comparative dynamic prediction of changes in settlement

failure over time, both within tort states and between tort and non-tort states. Part (i) gen-

erates an unambiguous prediction of the effect of legal uncertainty on settlement rates. It

follows from the fundamental properties through which Priest-Klein specificies subjective

probability formation. More uncertainty creates a larger probability of settlement failure

by increasing the error with which parties estimate the standard a given case, Y ′. Whatever

is the permanent level of uncertainty associated with the standard for tort law, the possibil-

ity of transitory uncertainty adds to this value in the short-term. This implies that a lower

percentage of claims will settle without litigation or trial in state B in the period of regime

change than in the period(s) following regime change.

Part (ii) combines the earlier two results to compare settlement rates at period t+ 1 be-

tween states A andB. Unlike (i), a comparison between states depends not only on parties’

uncertainty in evaluating potential trial outcomes, but also in their response to the larger

stakes of tort trials. Like Proposition 2.1, response can be characterized by the difference

in litigation costs between regimes. Increased litigation costs reduce the probability of set-

tlement failure, while increased effective optimism bias and possibly increased permanent

uncertainty raise the probability of settlement failure. If the effect of increased litigation

costs is large enough to offset the effects of increased effective optimism bias and perma-
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nent uncertainty, then closed claims in state B will have lower levels of settlement failure

in the long-term than closed claims in state A. And vice versa if optimism bias and uncer-

tainty dominate litigation spending. The dynamic effect of tort change between states, like

the static effect, is therefore also an empirical question.

Before testing the predictions of the Priest-Klein model for auto insurance bad faith, it

is worth pausing to assess the implications of asymmetric information models to the same

question. These models posit that an uninformed plaintiff makes settlemend demands of an

informed defendant. In the auto insurance context, the insurer could expect to have dealt

with a range of bad faith disputes or to know whether its actions in negotiation constitute

negligent or intentional harm. With respect to tort law’s increased stakes, screening models

such as Bebchuk (1984) imply that the law increases the policyholder’s threat position and

therefore his settlement demand. Higher settlement demand requires the marginal insurer to

possess a weaker case than otherwise. This unambiguously increases the overall percentage

of claims that fail to settle.

Strategic models of signaling add an additional layer of complexity to the standard

screening framework by allowing parties to bargain sequentially. One party’s decision to

make or respond to an offer conveys a signal to the other party, which he uses to update

his prior assessment of the other’s type. Nalebuff (1987) specifies a two-sided model of

asymmetry in which the policyholder makes a settlement demand, the plaintiff accepts or

rejects, and the policyholder then chooses whether to proceed to trial. The policyholder

is uninformed about the the strength of his case, and the insurer is uninformed about the

policyholder’s willingness to extend the dispute to its next stage.

In this model, the signal that the policyholder’s offer conveys to the insurer creates a

“credibility constraint.” Because of the double-sided asymmetry, the policyholder must

demand a high enough settlement to provide the insurer a credible threat to go to trial.

Policyholders raise the value of their demands relative to the non-signaling benchmark.

The presence of the credibility constraint can reverse the Bebchuk (1984) prediction. If it
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binds in equilibrium, then the increased stakes of a tort regime relax the constraint. The

policyholder no longer inflates his negotiation position, which decreases his settlement

demand relative to the non-tort case. This leads the insurer to accept a higher proportion of

policyholder offers, and the incidence of settlement failure unambiguously decreases.

Neither the screening nor signaling models specify how uninformed parties form their

expectations over their adversary’s type. As such, they do not generate testable predic-

tions for how the uncertainty induced by a change to tort law would alter the distribution

of insurer types that the policyholder perceives. Likewise, because the magnitude of par-

ties’ error is left unspecified, asymmetric information models do not predict comparative

dynamics such as those arising from the Priest-Klein model.

2.3 Data and Descriptive Evidence

2.3.1 IRC Data

To test the predictions derived in section 2.2, we employ a repeated cross-sectional dataset

of auto insurance claims. Specifically, we use three samples of closed, uninsured motorist

(UM) claims from surveys conducted by the Insurance Research Council (IRC).21 UM is

a standard coverage that provides policyholders compensation in the event that they suffer

bodily injury in an accident where the other driver is at fault, but that driver does not

possess liability insurance. It is consistently interpreted by courts as a type of “first-party”

insurance: the policyholder files a claim requesting payment from his insurer for his own

loss, rather than for the loss of a “third-party.”22 As Browne, Pryor and Puelz (2004)

21The IRC is a nonprofit research organization that has conducted numerous decennial surveys of American
insurers since its inception in 1977. It is widely regarded as the leading data provider for economic studies of
auto insurance claims.

22See Corp. and LLP (2008), described further below. Third-party (a type of “liability”) insurance provides
coverage to a policyholder for a loss the policyholder brings upon a third-party. Bad faith law treats the two
types of insurance differently. Expanding liability for third-party insurance has been less legally contentious
than its analog, and states have been quicker to recognize tort liability on third-party claims. See Sykes (1994)
for a normative economic analysis of third-party bad faith.
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and Asmat and Tennyson (2014) describe, UM insurance provides ample scope for the

policyholder to negotiate damages with his insurer. UM claims are therefore particularly

well suited to assessing settlement likelihood.

The first portion of the dataset consists of the complete set of UM claims from IRC sur-

veys in 1977, 1987, and 1997. Approximately 60 different insurers were surveyed during

a 2-week interval in the year the survey was administered.23 The dataset contains claims

across 42 different states in the U.S.24 It contains broad state-level variation in bad faith

regimes and time. We treat the state and year in which the accident occurred as the indica-

tor of bad faith regime. To remove heterogeneity in claims that may affect the chances of

dispute in ambiguous ways, we drop claims with outlying features. They include all claims

for which claimed loss exceeded the insurance policy limit, another insurer contributed part

of the settlement, or a no-fault regime mandated a minimum claiming threshold.

The results presented in section 2.2 depend on claims from both types of states possess-

ing similar distributions and characteristics. The data contains extensive information about

the accident, the claim, and the claimant.25 We exploit in particular information on the date

of insurance filing, first payment, and final payment to proxy for the stage of the dispute,

s. We construct a measure of “settlement lag” to compare dispute outcomes from claims in

different regimes at the same point in their timeline. Settlement lag is defined as the date

of final payment from insurer to policyholder less the date of insurance filing.26 The model

specifies that higher settlement lag is associated with higher proportions of lawsuits and

trials. We examine the implications of this variable further in section 2.3.3.

23Although the share of the private passenger auto insurance market that these insurers comprised is un-
available, the IRC obtains data from most of the largest providers in the country. For example, Allstate,
Farmers, GEICO, Liberty Mutual, Prudential, and State Farm have each participated in at least one of the
surveys. The IRC does not survey the same set of insurers each decade, and its data does not identify the
particular insurer associated with any claim.

24Claims from the following eight states are not represented: Hawaii, Louisiana, Maryland, Massachus-
setts, Montana, Nebraska, New Jersey, and Pennsylvania.

25These variables are described further as they appear in the regression specifications in section 2.4.
26It could also be defined as the date of first payment less the date of insurance filing; the two measures are

nearly identical. We use final payment in order to account for disputes which may have developed after the
first payment but before subsequent payments of a structured settlement.
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Each claim contains powerful measures of litigation status that we treat as the primary

dependent variables of interest. The first is the presence or absence of a filed lawsuit, and

the second is a categorical variable for the stage in which a lawsuit ended. The second

measure denotes whether a suit ended before trial, during trial, or with judgment from trial.

We render the outcome binary by treating a claim as “tried” if a trial begins, and “settled”

otherwise.27 It also contains a binary variable for attorney use during the negotiation.

2.3.2 Bad Faith Regime Data

The second portion of our dataset tracks the evolution of state first-party bad faith regimes.

The assessment of state bad faith law over time is based on the dataset compiled and de-

scribed by Tennyson and Warfel (2010). They use the comprehensive legal sources of case

law found in Stempel (2006), Ostrager and Newman (2008), and Corp. and LLP (2008) to

classify bad regimes through 2008.28

The case law data can be used to classify states by several different types of first-party

bad faith remedies: recognition of any private cause of action; tort-based cause of ac-

tion; punitive damages; or extra-contractual damages. By 1997, the final year of the IRC

dataset, all but five states explicitly recognized a private right of action for bad faith.29

Legal scholarship and economic evidence has argued that the most relevant distinction be-

tween regimes is not the presence of a private cause of action, but instead the presence or

absence of tort liability.30 Tort liability typically allows plaintiffs to collect sums for eco-

nomic harm above the policy limits, non-economic harm such as emotional distress, and

punitive damages. Our empirical treatment of bad faith law therefore classifies states as ei-

ther tort or non-tort regimes at each point in time. This measure is substantively equivalent

27Only 8 of the 467 total claims that resulted in lawsuit were settled during trial.
28A simplified, cross-sectional version of this timeline was used by Browne, Pryor and Puelz (2004), who

analyze auto insurance claims solely from the 1992 IRC survey. The full version was used in Asmat and
Tennyson (2014).

29The remaining states are Kansas, Maryland, Michigan, Minnesota, Missouri, and New York.
30See Asmat and Tennyson (Forthcoming) for a summary of the legal and economic literature on this topic.
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Figure 2.2: Frequency of Claims by Accident Year

to classificaton by the presence or absence of punitive or extra-contractual damages, and

results are robust to each of the three classifications.31

2.3.3 The Selection Hypothesis

The observations in each IRC survey arise only from claims closed during the two-week

interval of sampling. Figure 2.2 displays the number of closed accident claims by survey

year for each of the three surveys. Most claims were filed in either the year of or the year

preceding the survey, with a small tail of claims filed several years prior. This distribution

is relatively constant across the three survey years.

State bad faith reform, on the other hand, occurred non-uniformly over the roughly two

decades from the early 1970s to the early 1990s. Table A.1 depicts the final timeline of state

bad faith laws with respect to tort liability. It describes whether and when a state ajudicated

31Tables of state bad faith laws over time with respect to each of the three remedies are available upon
request from the authors.
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bad faith through tort law until 1997, the final year of the IRC dataset. States generally

either did not enact the tort remedy at any point in their history, or enacted the remedy

and retained it through the sample period. The two exceptions are Florida and Georgia,

which removed tort liability for bad faith in 1986 and 1989, respectively. To make the legal

classification as consistent as possible, we drop claims from these two states.32

The interaction of these two parts of the dataset—the structure of the IRC sample and

the history of bad faith reform itself—raises the crucial possibility of selection bias. Any

claim in an IRC survey for which the accident occurred on or after the state enacted a bad

faith tort regime is treated as a tort claim. All other claims are treated as non-tort claims.

Simply through random variation in the timing of legal reforms or state populations, tort

claims in the sample may be disproportionately from states that switched to tort law several

years before an IRC survey year. If most tort claims in the 1977 IRC sample, for example,

are from states that switched regimes in 1971-1973 rather than 1976-1977, then there will

be a negative correlation between two variables in the dataset. Specifically, as the year that

the state switched to tort law approaches 1977, the settlement lag—the time it took to close

the claim—would steadily decrease.

Section 2.2 specified a framework in which the settlement lag has a strictly deterministic

relationship with the stage of the dispute: prolonging the dispute by one stage prolongs the

time period by exactly one stage. The model therefore implies that a greater settlement lag

increases the probability of settlement failure (to one, in the limiting case). Moreover, if the

year of a state’s switch to the tort remedy is negatively correlated with the settlement lag,

then it is also negatively correlated with probability of settlement failure. This scenario

would generate selection on claims more likely to be have been litigated or tried in tort

states. It would result in an upwardly biased estimate of tort law on settlement failure. To

the extent that the non-uniformity of regime switches varied from one decade to another—if

more states switched to tort law in 1986 and 1987 than in 1976 and 1977, for example—

32Estimates with data including claims from these states are available upon request. They do not change
the interpretation of any descriptive or regression results.
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Figure 2.3: Scatterplot: Claims by Regime Switch and Payment Lag

then it would also bias the estimates of regime change over time.

Figure 2.3 addresses this possibility by plotting the settlement lag against the time since

a state switched to tort law, in days. The data is encouraging: there is only mild evidence of

a negative correlation between the two variables. Throughout the distribution of settlement

lag, there is wide variation in the time since switch. We exploit this variation throughout

the empirical analysis by conditioning on the settlement lag of a claim. We also account

for the possibility that the settlement lag variable is endogenous with bad faith regime. If

tort law shifted the distribution of settlement lags leftward, to decrease the chances of a bad

faith allegation, then settlement failures would be upwardly biased even conditional on the

lag. In section 2.4, we instrument for settlement lag with average settlement lag, by state

and month, of a different category of auto insurance claims unaffected by first-party bad

faith law.

60



Figure 2.4: Histogram of Economic Loss Claimed, with Outliers

2.3.4 Empirical Evidence

After dropping claims with missing settlement lags, loss claimed, lawsuit or trial status,

as well as all other explanatory variables used in regressions, the dataset contains 5,949

observations. Figure 2.4 presents a histogram of the remaining observations. It plots each

policyholder’s claimed economic loss after the accident, by survey year and for the full

sample. The data is approximately symmetric with a rightward skew. To preserve the

balance of the sample, we treat economic losses above the 99.9th percentile and below the

0.25th percentile as outliers and drop them.33 Dropping 59 observations above the 99th

percentile and 11 observations below the 0.25th percentile results in a final dataset with

5,879 observations.

33Results are robust to the inclusion of these outliers. The six largest losses, all above $50,000, do alter the
magnitudes of claimed loss regressions in the 1987 survey year.
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Table 2.1: Settlement Statistics by Legal Regime and Survey Year

1977 1987 1997

Tort Non-Tort Tort Non-Tort Tort Non-Tort

Mean Settlement Lag 211 267 ∗∗∗ 242 294 ∗∗∗ 280 350 ∗∗∗

(8.4) (10.5) (7.0) (15.9) (6.5) (17.2)

Proportion Attorney Rep. 0.405 0.427 0.511 0.506 0.445 0.453
(0.019) (0.015) (0.014) (0.022) (0.011) (0.023)

Proportion Litigated 0.102 0.114 0.114 0.056 ∗∗∗ 0.059 0.093 ∗∗∗

(0.012) (0.010) (0.010) (0.010) (0.005) (0.013)

N 684 1023 1,216 532 1,943 481

Proportion Tried | Litigated 0.329 0.077 ∗∗∗ 0.072 0.167 ∗ 0.027 0.133 ∗∗∗

(0.057) (0.026) (0.022) (0.069) (0.015) (0.051)

N 70 117 139 30 113 45

***p < 0.01, **p < 0.05, *p < 0.1. All values are sample means, with parantheses denoting standard errors.
“Loss Claimed” represents the economic losses claimed by the policyholder following accident.
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Table 2.1 presents descriptive statistics of pertinent legal variables for the full sample of

claims and the subset of claims in which policyholder filed suit. Several results stand out.

Consistent with the model, average settlement time is significantly lower in tort relative to

non-tort states throughout the sample. This highlights the importance of conditioning on

lag to compare litigation outcomes of tort and non-tort states, which we do throughout the

paper.

While claimants from both groups of states hired attorneys at a statistically indistin-

guishable rate, litigation outcomes display remarkably strong patterns over time.34 The

bottom panel shows that 33% of claims in 1977 tort states for which a lawsuit was filed

ended in trial. This figure is orders of magnitude higher than other rates of trial both within

claim categories in this dataset and across insurance lines in a variety of settings. By 1997,

however, the trial rate conditional on suit declined to less than 3%, significantly lower than

its 1997 non-tort counterpart. Similarly, the proportion of claims that reach litigation is

significantly higher for tort states than non-tort states in 1987. Like trial rates, it also de-

clined to a level significantly lower than non-tort states by the 1997 survey year. These

trends are strongly consistent with both parts of Proposition 2.2. Part (i) suggests that tran-

sitory uncertainty early in bad faith reform increased the variance of parties’ error terms

with respect to trial outcomes. Part (ii) suggests that the effect of higher litigation spend-

ing dominated higher effective optimisim bias once transitory uncertainty subsided, so that

raising the stakes increased settllement in auto insurance.

Figure 2.5 depicts the litigation rates from table 2.1 graphically and nonparametrically

controls for variation at the settlement lag-level. The top panel plots the likelihood of

an insurance claim being resolved with litigation, by legal regime and survey year. The

bottom panel adds a categorical variable for settlement lag. This variable divides claims

from each survey into four bins, with each bin corresponding to a threshold for settlement

34The claimant is always the policyholder in this dataset, because all claims are first-party. We use the two
terms interchangeably.

63



(a)

(b)

Figure 2.5: Litigation Probability by Legal Regime and Covariates
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lag.35 Claims from tort and non-tort states are therefore compared at ordered values of

settlement lag.

Consistent with the structure of the model, the bottom panel shows clear evidence of

data selection by settlement lag: lawsuit proportion rose steadily and markedly as lag in-

creased. Moreover, claims in tort states in the 1977 and 1987 survey years showed higher

litigation likelihoods than their counterparts, even after controlling for lag. The effect is

particularly strong in the 1987 survey year. The 1997 data, however, shows no evidence of

this effect.

Figure 2.6 displays the corresponding bar graphs for trial rates, among the subset of

claims to have reached litigation.36 Unlike lawsuit rates, trial rates conditional on lawsuit

did not demonstrate a clear pattern of increase through settlement lag bin, but rates were

consistently lower in the first bin than the second.

The graphs reinforce the statistics tabulated in the bottom panel of table 2.1: trial rates

rose dramatically in the 1977 survey year. The conditional proportion of claims to trial in

tort states exceeded that in non-tort states by at least 15 percentage points in each of the

four settlement lag bins. Among the set of claims in the second to fourth bins, well over

30% ended in trial—a startlingly high rate in any civil litigation context. The figure is also

noteworthy for a second reason.

It may be hypothesized that a large portion of this steadily decreasing pattern of failure

rates was attributable to punitive damages reforms and not waning transitory uncertainty.

The history of bad faith law, and civil liability more generally, has seen punitive damage

reforms and common law evolution gradually restricting the damages enforcable through

tort law. The stakes of tort cases may gradually have been converging to those of contract

cases throughout the sample period.

35Thresholds for the four bins shown in the figure are 300 days, 450 days, and 600 days, respectively.
These values were chosen to highlight variation in the dependent variable; thresholds that correspond to 25%
of claims in each bin in each survey year produce similar results.

36Thresholds for the four bins are 400, 600, and 900 days, respectively. They are greater than the thresholds
in fig. 2.5 because the subset of litigated claims has higher average lags than the dataset at large.

65



(a)

(b)

Figure 2.6: Trial Probability by Legal Regime and Covariates
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Figure 2.6 highlights that optimism bias alone cannot explain the trend, however. The

reason is that claims from tort states were significantly less likely to go to trial or face

litigation by the end of the sample, when conditional trial rates dropped under 3%. If

optimism bias were solely responsible for reducing the high trial rates of the 1977 survey

year, then trial rates in tort rates should be expected to remain at or above those of non-tort

states.37 Instead, this result is consistent with increased litigation spending dominating the

impact of optimism bias on net.38 This effect is only clear in the long-term, when transitory

uncertainty had made way for permanent uncertainty.39 We develop this intuition further

in the next section by formulating a full regression specification that controls for punitive

damages limits using state-level data.

Finally, we describe other characteristics of litigated claims to show further evidence

consistent with the model. Table 2.2 presents descriptive statistics for the subset of cases in

which the policyholder filed suit against his insurer, by bad faith regime and survey year.

The upper half of the table shows that the claims selected for litigation were different along

several dimensions in tort states in the early part of the sample. Claimants who filed suit

in 1977 claimed significantly lower economic losses, were significantly less likely to have

visited a hospital, and were significantly more likely to have claimed a strain injury than

their counterparts in non-tort states.40 Each of these variables has a clear interepretation for

the negotiation of auto insurance claims. Greater claimed losses and injuries require larger

payouts from the insurer to settle, on average. Strain injuries are particularly contentious

in the insurance setting due to their difficulty in verifiability, and insurers often pursue

additional investigation to gauge the extent of the injury.41

37Furthermore, there are additional damages above the insurance policy’s limits that states do not restrict
through statute.

38Risk aversion is not modeled explicitly, but it could also function identically to increased litigation costs.
39As appendix B.1.2 shows, the possibility of tort states possessing lower permanent levels of uncertainty

than other states could also produce this effect. It is unlikely, however, because of the well-known complexi-
ties in assessing the defendant’s level of negligence or intentional harm, as well as his degree of deliberation.

40Note that claimants filed significantly lower economic losses, on average, in tort states throughout the
sample. Section 2.4 explores this point further.

41See Dionne and St-Michel (1991).
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Table 2.2: Descriptive Statistics of Litigated Claims
by Legal Regime and Survey Year

1977 1987 1997

Tort Non-Tort Tort Non-Tort Tort Non-Tort

Loss Claimed ($) 3,375 4,823 4,357 5,471 5,800 6,059
(480) (579) (443) (1,376) (643) (1,098)

Hospital Stay† 0.414 0.632 ∗∗∗ 0.475 0.667 ∗ 0.575 0.689
(0.059) (0.045) (0.043) (0.088) (0.047) (0.070)

Strain Claimed† 0.871 0.692 ∗∗∗ 0.863 0.667 ∗∗∗ 0.717 0.667
(0.040) (0.043) (0.029) (0.088) (0.043) (0.071)

Age 34.5 28.9 ∗∗ 33.2 37.0 36.6 32.9
(2.1) (1.5) (1.3) (3.0) (1.5) (2.0)

Employed † 0.343 0.342 0.496 0.567 0.451 0.511
(0.044) (0.057) 0.042 (0.092) (0.047) (0.075)

Urban Accident† 0.671 0.718 0.583 0.700 0.584 0.689
(0.057) (0.042) (0.041) (0.085) (0.047) (0.070)

N 70 117 139 30 113 45

***p < 0.01, **p < 0.05, *p < 0.1. All values are sample means, with
parantheses denoting standard errors. “Loss Claimed” represents the eco-
nomic losses claimed by the policyholder following accident. All values are
in CPI-indexed 1987 US dollars.
† Indicator variable equal to one if condition satisfied and zero otherwise.
Hospital stay equals one if claimant visited ER, overnight, one week, or more
than one week.
Strain claimed equals one if claimant reported a neck, back, or other strain.
Employment status equals one if claimant was employed full-time at time of
accident, and zero if claimant identified as part-time, student, unemployed,
minor, or retiree.
Urban accident equals one if claimant identified accident location as “big
city” or “medium city,” and zero if identified as “suburban” or “small town.”
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Furthermore, the table shows that the mean values of these variables in tort states grad-

ually shifted toward equivalence with other states over the course of the sample. By 1997,

all three variables are statistically indistinguishable between the two sets of states. The two

findings are consistent with the selection mechanism posited by the Priest-Klein model.

As the variance in subjective probabilty estimates between the two parties increased in the

1970s, the selection of cases that failed to settle also changed. These cases were not a

random sample of the underlying claims filed: they were cases systematically closer than

average to the break-even point of the decision standard.42 Moreover, as the variance in

probability estimates decreased over time, the distribution of cases for litigation changed

along with it. Sample means of all three variables in tort states steadily converged to the

sample means of their counterparts in the 1987 and 1997 survey years.

2.4 Econometric Analysis

2.4.1 Settlement Failure Likelihood

In this section, we test the model’s predictions of settlement failure with a sequence of

discrete choice regressions. Regression estimation allows us to test a more complete set

of predictions from the Priest-Klein model, and to obtain estimated coefficients of the per-

centage change in settlement failure for claims in the dataset at different sample points. We

implement probit regressions of the form:

Yilt = β1Tortlt + β2Zt + β3Tortlt × Zt + α4Wlt + α5Xilt + εilt (2.4)

Yilt is defined in two ways, depending on the stage of settlement failure being estimated.

The first is whether the claim closed in a lawsuit, and the second is whether the claim closed
42They were not a selected sample in all case dimensions, however. The bottom half of the table shows

that litigated claims were statistically indistinguishable in age, employment status, and accident location
throughout the sample.
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with trial, among the subset of cases to have filed a lawsuit. The claim is indexed by i, the

accident state by l, and the accident year by t. Tortilt is coded as one if the state permitted

tort law for bad faith in the accident year, and zero otherwise.43 β2 captures the changes

in parties’ settlement behavior attributable to legal uncertainty. Its parameter, Zt, takes on

different values for different regression specifications, as described below. The interaction

Tortilt × Zt is the key explanatory variable of interest. β3 estimates the differential effect

of tort law at various points in time.

Identification of β1, β2, and β3 relies on the assumptions outlined in section 2.2. The

model restricts the likelihood of settlement failure at stage one or two to be equal across

states, at every time period, conditional on bad faith regime. Specifically, it posits that the

position of a claim with respect to the decision standard, Y , is equal across regimes. It also

assumes that the variance of the error term associated with parties’ estimates of Y ′ is equal

within a regime.44

These identification assumptions are addressed by conditioning on additional claimant-

and accident-level characteristics with the vector Xist. Claim characteristics include the

economic loss claimed, final settlement amount, specified injuries and their severity.45 Ac-

cident information includes the presence of hospital stay and duration of any visit (categor-

ical variables for emergency room, overnight, one week, or longer), the size of the city or

town in which the accident occurred, and the number of vehicles involved in the accident.

Demographic variables include age, gender, marital and employment status.46

Identification also requires controlling for ways in which states differ in legal policies

other than the bad faith regime. Wlt contains two binary variables for state-level laws, puni-

43We assume that the dates from table B.1 apply to January 1 of the accident year. Results are invariant to
the date chosen.

44The variance is not restricted to be constant across time unless it is correlated with bad faith regime.
Such changes are picked up through the national-level trend in settlement failure.

45The amount of final settlement is also included, but does not distinguish between the insurer’s final offer
and the final judgment amount in case of trial. See Asmat and Tennyson (2014) for an analysis of bad faith
liabilty on settlement amounts.

46As described in Section 2.3.1, we also preemptively dropped claims for which claimed loss exceeded
the insurance policy limit, another insurer contributed part of the settlement, or a no-fault regime mandated a
minimum claiming threshold.
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tive damages caps and prejudgment interest, that also constitute deeper tests of the model.47

Punitive damages caps decrease the stakes of a case by eliminating the possibility of large,

outsized judgments, and prejudgment interest increases them by raising the amount owed

to a victorious plaintiff.

It is important to account for the possibility that settlement lag is endogenous in the

estimation of eq. (2.4). This occurs if tort liability for bad faith induces insurers to speed

their negotiation with policyholders in tort states in order to minimize the possibility of

litigation. It is instrumented with the average settlement lag in the accident state and year

among claims from a parallel IRC dataset on Bodily Injuries. Bodily Injury auto claims

are filed against the at-fault driver in accident, rendering them subject to third-party (rather

than first-party) bad faith liability. Lags in Bodily Injury claims capture the institutional

elements of delay and are correlated with lags from the UM dataset. We assume that this

variable is uncorrelated with the error term, εilt, conditional on the remaining covariates.

Table 2.3 presents the estimation of eq. (2.4) with lawsuit as the dependent variable.

In specifications (1)-(3), indicator variables for the 1987 and 1997 survey years act as the

time vector Zt. Specification (2), which adds the full set of explanatory variables, explains

substaintially more of the variation in lawsuits than the specification (1). Specification (3)

instruments settlement lag with state- and time-level lags from Bodily Injury claims. It

captures more variation in the dependent variable otherwise attributed to the time trend.

The primary coefficients of interest hold the expected sign through most specifications:

positive in the 1977 and 1987 years, and negative in the 1997 year. The importance of

conditioning by (instrumented) settlement lag is evidenced by the fact that it raises lawsuit

probability in the 1977 survey year above zero.48 Specification (3) indicates that a claim

with average characteristics in 1987 was nearly 10% more likely to be litigated if it was in

47The data listing these reforms by state were obtained from the Insurance Information Institute.
48Unreported regressions also show the same sign when attorney use is included as an endogeneous re-

gressor in 2SLS estimation. It is instrumented with a measure of the legal employees in the accident state
and year. This data was compiled from the “legal services” 4-digit SIC code in the County Business Patterns
series from the U.S. Census Bureau.
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Table 2.3: Probit Regression of Lawsuit Indicator
on Tort Liability and Covariates, 1977-1997

(1) (2) (3)†

I(Tort) -0.010 -0.012 0.005
(0.013) (0.011) (0.011)

I(87) -0.059∗∗∗ -0.060∗∗∗ -0.060
(0.016) (0.014) (0.014)

I(97) -0.017 -0.028∗∗ -0.037∗∗∗

(0.015) (0.013) (0.014)

I(Tort) × I(87) 0.069∗∗∗ 0..054∗∗∗ 0.046∗∗

(0.020) (0.018) (0.018)

I(Tort) × I(97) -0.029 -0.021 -0.027
(0.019) (0.017) (0.017)

Ln Settlement Lag 0.056∗∗∗

(0.013)

Ln Loss Claimed 0.040∗∗∗ 0.030∗∗∗

(0.003) (0.011)

Pun Dam Cap -0.017 -0.006
(0.012) (0.013)

Prejmt Interest 0.013 0.013
(0.009) (0.009)

N 5,879 5,879 5,879
Psuedo R2 0.015 0.120

***p < 0.01, **p < 0.05, *p < 0.1. All coefficients are marginal effects
calculated at the sample mean of the explanatory variable. All regressions
are estimated by MLE.
The dependent variable is equal to one if the claim settled with a lawsuit
filed, and zero otherwise. I(87) and I(97) equal one if the claim is from
the 1987 and 1997 survey year, respectively. Loss Claimed represents the
economic losses claimed by the policyholder following accident. All val-
ues are in CPI-indexed 1987 US dollars. Other controls not shown denote
employment status, sex, marital status, accident location, injury measures.
† Instruments the natural log of settlement lag with the average natural log
of settlement lag for BI claims in the state and year of the accident.
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a bad faith tort state than otherwise.

Coefficients on punitive damages caps and prejudgment interest enter negatively and

positively, respectively. While neither of these coefficients reaches significance, the signs

are consistent with punitive damages causing a small portion of the decline in lawsuit rates

in bad faith tort states over time. Both estimates are consistent with the presence of opti-

mism bias, the fundamental property of divergent expectations models.49

Note also that settlement lag carries a positive and significant coefficient in specifica-

tions (2) and (3). These results are consistent with the Bebchuk (1984) screening model:

higher claimed losses are associated with higher likelihoods of filing suit. Unreported spec-

ifications with claimed loss regressed on the same covariates indicate that claimed losses

were also related non-monotonically to tort liability over the sample period. These results

are illustrated in fig. B.3, which plots the mean total loss claimed for the two groups of

states in the three survey years. The results suggest that higher claimed losses in 1987 were

associated with higher litigation rates in that survey year, and that relatvely lower claimed

losses in 1998 were associated with decreased liltigation rates in that survey year. To the

extent that claimed loss is endogenous in table 2.3, specifications (2) and (3) overstate

its positive effect on lawsuit likelihood and understate the time trends, which nonetheless

remain strongly significant.50

Table 2.4 presents the analagous marginal effect estimates for trial likelihood. The

dataset is made up of claims from the subset of claims for which a suit was filed. Intere-

acted coefficients are again consistent with increased settlement failure followed by rapidly

reduced failure rates by the end of the sample.51 A claimed strain injury enters positively

and significantly. Loss claimed, punitive damages caps, and prejudgment interest are not

statistically significant predictors.

49While the magnitudes of these coefficients vary based on the point at which the marginal effect is evalu-
ated, the sign does not. Sample means for punitive damage caps and prejudgment interest are 11% and 41%
across the sample, respectively.

50The next version of this draft will instrument for loss claimed in these two speecifications.
51The time trends alone also capture a significant amount of the variation in trial rates; specification (1)

has a Psuedo-R2 of over 11%.
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Table 2.4: Probit Regression of Trial Indicator
on Tort Liability and Covariates, 1977-1997

(1) (2) (3)†

I(Tort) 0.156∗∗∗ 0.129∗∗∗ 0.215∗∗

(0.038) (0.037) (0.086)

I(87) 0.073 0.044 0.030
(0.051) (0.048) (0.062)

I(97) 0.050 0.034 0..016
(0.046) (0.047) (0..067)

I(Tort) × I(87) -0.234∗∗∗ -0.224∗∗∗ -0.270∗∗

(0.063) (0.073) (0.091)

I(Tort) × I(97) -0.286∗∗∗ -0.273∗∗∗ -0.356∗∗∗

(0.063) (0.066) (0.092)

Ln Settlement Lag 0.161
(0.175)

Ln Loss Claimed 0.030∗∗ 0.015
(0.012) (0.026)

Strain Claimed 0.074∗ 0.107∗∗

(0.038) (0.052)

Pun Dam Cap 0.004 0.025
(0.061) (0.082)

Prejmt Interest 0.020 -0.004
(0.044) (0 .061)

N 512 512 512
Psuedo R2 0.113 0.167

***p < 0.01, **p < 0.05, *p < 0.1. All coefficients are marginal effects
calculated at the sample mean of the explanatory variable. All regressions
are estimated by MLE.
The dependent variable is equal to one if the claim settled with a trial, and
zero otherwise. I(87) and I(97) equal one if the claim is from the 1987 and
1997 survey year, respectively. Loss Claimed represents the economic
losses claimed by the policyholder following accident. All values are in
CPI-indexed 1987 US dollars. Other controls not shown denote employ-
ment status, sex, and marital status, accident location, and other injures.
† Instruments the natural log of settlement lag with the average natural
log of settlement lag for BI claims in the state and year of the accident.
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The endogeneous settlement lag specification (3) is noteworthy in producing marginal

effects much closer to those suggested by the descriptive bar graphs in section 2.3.4.52 They

indicate that tort liability raised the conditional estimate of a litigated claim ending in trial

by a remarkable 20% at the sample mean of the explanatory variables in the 1977 survey

year. This estimate declined rapidly in the 1987 and 1997 survey years, dropping below

-20% in 1997. The large magnitude of these estimates is striking.

To gain a deeper understanding of which states drive the trends described above, we

decompose the tort indicator variable based on when states switched to a tort regime. Spec-

ification (1) in table 2.5 treats a claim as belonging to the tort regime “by” a given survey

year if the claim arose from a state that enacted tort law on or before that survey year. The

1977 indicator variable, for example, tags only claims from those states that enacted the

tort remedy by the 1977 survey year. The 1987 indicator variable tags claims from those

states, in addition to claims from states switched betwen 1977 and 1987.

Specification (2) decomposes tort reform further. It treats a claim as belonging to the

tort regime “in” a survey year only if it is from a state that enacted tort law by that survey

year and after the end of the previous survey year. The “in” 1987 indicator variable, for

example, is active only for claims from states that switched by 1987 and after 1977. The

next group of variables interacts these indicators with survey year dummys for subsequent

years. The coefficient on the “Tort in 1987 × I(97)” can be interepreted as the effect of tort

law on lawsuit probability in 1997 among the second group of states to switch to tort law.

Both specifications in table 2.5 show that the time trends in lawsuit and trial rates were

driven by the first states to switch to tort law: those that enacted reform by 1977. The

coefficient for the 1977 tort indicator variable in specification (4) implies that those states

raised the conditional likelihood of a trial by 21.7% in the 1977 survey year, but reduced

the likelihood by 4.3% and 3.0% in the 1987 and 1997 survey years, respectively. There

was no corresponding increase in trial rates for the next group of states to pass the tort

52The Wald statistic testing for the exogeneity of settlement lag, however, fails to be rejected (Pr > χ2 =
0.44).
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Table 2.5: Probit Regressions of Lawsuit or Trial
on Tort Liability, Time and Covariates, 1977-1997

Yilt=Suit Yilt=Trial | Suit

(1) (2) (1) (2)

I(87) -0.018∗∗∗ -0.034∗∗∗ -0.096∗∗∗ .003
(0.004) (0.006) (0.024) (0.053)

I(97) -0.020∗∗∗ -0.009 -0.083 -0.004
(0.005) (0.006) (0.027) (0.040)

I(Tort by 77) 0.008∗ 0.055∗∗

(0.005) (0.027)

I(Tort by 87) -0.007∗ -0.057∗∗

(0.005) (0.027)

I(Tort by 97) 0.006 -0.046
(0.013) (0.125)

I(Tort in 77) 0.001 0.217∗∗∗

(0.007) (0.072)

I(Tort in 87) 0.012 -0.045
(0.023) (0.030)

I(Tort in 97)‡ -0.005 -0.019
(0.009) (0.053)

I(Tort in 77) × I(87)† 0.070∗∗ -0.043
(0.035) (0.034)

I(Tort in 77) × I(97)† -0.006 -0.030
(0.009) (0.031)

I(Tort in 87) × I(97)‡ -0.014∗ -0.073∗∗∗

(0.008) (0.015)

N 5,879 5,879 512 512

***p < 0.01, **p < 0.05, *p < 0.1. All coefficients are marginal effects calculated
at the sample mean of the explanatory variable. All specifications instrument the nat-
ural log of settlement lag with the average natural log of settlement lag for BI claims
in the state and year of the accident, and estimate by MLE.
† denotes Wald test between coefficients in specification (2) rejected for equality at
1% level.
‡ denotes Wald test between coefficients in specification (4) rejected for equality at
10% level.
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remedy, the 1987 group: rates continued to decline among those states as they changed

regimes Figure B.2 reinforces these results graphically. It shows that the increases in trial

rates among tort states in 1977 were not replicated among those states switching to tort

between 1977 and 1987, or between 1987 and 1997.

These findings are also consistent with the evolution of bad faith law on a national level.

As Tennyson and Warfel (2010) detail, common law in California and Wisconsin formed

two noteworthy and distinct standards for first-party bad faith law 1973 and 1978, respec-

tively. Abraham (1994) relates the consensus among legal scholars of the time that liability

for bad faith was expected to continue to expand. In fact, however, California and Wis-

consin would establish the two primary models of tort law for other states to follow.53 The

1970s constituted a more fragile time in the development of common law—and therefore

to parties’ perceived uncertainty regarding liability—than future years would. Figure B.4

shows that the conditional trial trend is fully robust to removing California from the sample,

denoting only other states to pass the tort remedy as treated states.54

2.5 Conclusion

This paper has exploited state- and time-level variation in the adjudication of tort law for

bad faith insurance law to show evidence consistent with the Priest-Klein model. Data from

IRC samples in 1977, 1987, and 1997 shows strongly positive and significant effects of tort

liability on settlemetn failure rates up to 20% in the short-term, and similarly negative

effects in the long-term. The evidence is consistent with the tort regime increasing the

variance of parties’ subjective trial estimates and increasing the scope for disagreement in

the short-term. It is also consistent with one of the predictions of asymmetric information

53See Asmat and Tennyson (Forthcoming) for further discussion.
54The sample size of litigated and tried claims drops significantly after removing California, particularly

in the 1977 survey year (where fewer states adjudicated bad faith through tort). The next version of this draft
will update the dataset to add UIM and other types of claims to the sample, increasing size and geographical
variation.
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models of settlement: policyholder settlement demands were positively correlated with

lawsuit probability throughout the sample period.

Although the data cannot isolate the effect of optimism bias specifically, it is likely that

a portion of the stark short-term increase in settlement failure was also attributable to the

possibility of increasingly large stakes. The 1970s and 1980s saw a national surge in large,

multimillion judgments for plaintiffs across civil liability cases. In the subsequent years,

states passed numerous reforms to limit the payouts for general and punitive damages,

noneconomic damages, and prejudgment interest. Estimates of punitive damages caps and

prejudgment interest policies are consistent with optimism bias explaining a portion of the

time trend in settlement failure, but they do not come close to explaining all of the variation.

There are also specific factors in the evolution of first-party bad faith insurance law that

may have made the magnitude of results presented in this paper especially large. First,

there has been debate about the intent and scope implied by the standard that a majority of

tort states have imposed. The standard, based on a 1978 Wisconsin Supreme Court case, is

understood to lie between the traditionally clear intentional and negligence benchmarks.55

As Sykes (1996) explains:

Despite the efforts of the Anderson court to define bad faith breach as an “in-

tentional” tort, even a superficial reading of the opinion reveals elements of a

negligence standard...The court and perhaps the jury must make some judg-

ment about the objective “reasonableness” of the insurer’s actions.

In practice, it is fairly clear that the general trend of this interpretation was to raise the

standard required to show bad faith. Abraham (1994) notes that state courts made a point

to limit punitive damages following the early years of bad faith tort remedies in the 1970s.

Feinman (2012) argues based on more recent cases that bad faith liability has continued to

narrow. All of these factors are consistent wtih the decreasing litigation probability trends

shown in this paper. Further research is needed to disentangle their impact from those
55Anderson v. Continental Insurance Co., 85 Wis. 2d 675, 271 N.W. 2d 368 (1978).
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of tort law more generally. This is especially important with respect to the largest policy

finding of this paper: that claims from bad faith tort regimes were less likely than claims

from their counterparts to face lawsuit or trial by the end of the sample period.

Notwithstanding these particular features in the history of bad faith law, however, this

paper has highlighted the importance of a central element of the Priest-Klein model. Be-

cause Priest-Klein formulates plaintiff and defendant trial expectations relative to a decision

standard, it places first-order emphasis on the variance in parties’ expectation of a decision

standard. The model is thus well-suited to predicting the effect of the inherent uncertainty

that arises when a new legal right is introduced. The tort remedy for bad faith is hardly

unique in this regard: practically all changes in substantive law are accompanied by some

change in standard. When evaluating comparative statics of a legal change, it is there-

fore critical to take into account the uncertainty that both parties in pre-trial negotiation

perceive. This point is not fully captured by asymmetric information models of settlement.
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CHAPTER 3

Empirical Screens of Collusive Pricing:
Evidence from a Korean Petrochemical Cartel

This paper uses knowledge of cartel pricing strategies disclosed during an antitrust inves-
tigation into South Korean petrochemicals to generate a screen for detecting collusion in
commodities markets. This screen is based on differences in the responsiveness of output
price to input costs before and after a reversion from collusion to competition. In particular,
it examines output price asymmetry with respect to crude oil input prices. Using prices be-
fore and after the cartel end date, it constructs measures of the price-cost margin and input
price asymmetry for two specific petrochemicals. styrene and toluene. Coefficients from
error correction models demonstrated inverted price asymmetry at 1% confidence levels.
The conclusions drawn are as follows: the cartel altered supply behavior to enforce collu-
sion, the breakdown in the agreement resulted in systematic changes in the relationships
between price and cost, and error correction estimation measures can be used to screen for
collusion of this type.
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3.1 Introduction

Since the Antitrust Division of the U.S. Department of Justice enhanced its corporate le-

niency program in the mid-1990s, it has uncovered a persistent stream of international price

fixing cartels.1 The success of the amnesty program has seen many other jurisdictions

around the world follow suit and prosecute additional cartels.2 These cases make clear that

firms in many of the world’s largest industries have the ability to reach and sustain collusive

equilibria today despite the well-known challenges of doing so.

Several recent cases involve cartels in fuel-intensive industries.3 These cases are espe-

cially noteworthy because of the widespread availability of data on crude oil prices around

the world. A significant body of empirical literature in industrial organization has used

such data to find that prices rise “like rockets” and fall “like feathers” with respect to crude

oil prices. The phenomenon occurs when output price displays more responsiveness to

input price increases than to input price decreases.4 There are both procompetitive (Yang

and Ye, 2008; Tappata, 2009; Cabral and Fishman, 2012) and anticompetitive (Rotemberg

and Saloner, 1986; Haltiwanger and Harrington, 1991; Lewis, 2011) theories of oligopoly

pricing that are consistent with asymmetric pricing.

A separate strand of literature uses high-frequency, readily obtainable price data to em-

pirically screen for the presence of collusion in market settings.5 Abrantes-Metz et al.

(2006) and Bolotova, Connor and Miller (2008) use oligopoly models to formulate hy-

potheses of equilibrium pricing that are consistent with collusion but inconsistent with

1Since 1995, the agency has fined firms from over 100 different cartels for over $9 billion. See http:
//www.justice.gov/atr/public/criminal/sherman10.html.

2In addition to the European Commission, competition authorities in Australia, Brazil, and South Korea,
among others, have prosecuted cartels as part of amnesty programs over the last decade.

3They include air cargo (http://www.justice.gov/atr/public/press releases/2008/234435.pdf), passen-
ger fares (http://www.justice.gov/atr/cases/f225500/225524.htm), freight forwarding (http://europa.eu/rapid/
press-release IP-12-314 en.htm?locale=en) and retail gasoline (http://www.competitionbureau.gc.ca/eic/
site/cb-bc.nsf/eng/03079.html)

4See Borenstein, Cameron and Gilbert (1997), Bachmeier and Griffin (2003), Verlinda (2008), Lewis
(2011) and references therein.

5A related literature in auctions employs other methods to empirically test for collusion; see Porter and
Zona (1993, 1999) and Bajari and Ye (2003).
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other types of supply. The screens proposed in these studies estimate the first and second

moments of the pricing distribution. They do not estimate screens of output price using

input prices, or specify models of the degree of price asymmetry during collusion relative

to competition.

This paper tests for screens of collusion based on explicit knowledge of how and when a

cartel in a petroleum-based market operated. It extends the scope of the screening literature

by specifying a clear hypothesis of how collusion affects the degree of price asymmetry

relative to competition. It focuses on the case of two petrochemicals products, styrene

monomer and toluene, whose South Korean manufacturers were fined by the Korean Fair

Trade Commission (KFTC) in 2008. During its investigation, the KFTC disclosed that

cartel participants adhered to product pricing formulae to determine collusive behavior.

One of the products, styrene, based price directly as a function of crude oil and other

inputs; the other, toluene, based price on lagged toluene prices.

This knowledge is used to generate a simple screen with respect to the price asymmetry

between the petrochemical price and the crude oil price. Conditions are shown under which

adherence to the styrene price strategy would result in an elevated degree of price asymme-

try during collusion. This serves as the basis for descriptive and regression measures that

are proposed as possible markers of collusion in fuel-intensive industries and commodities

markets.

Empirical analysis employs a dataset of weekly, market-wide Korean spot prices for

styrene and crude oil, before and after the periods of alleged cartel behavior. It combines

this data with weekly crude oil prices during the same time period. The data is used to

provide evidence that firms changed supply behavior on or near the dates specified by the

KFTC. The timeline is used to generate descriptive measures of price, time-series variation,

Pearson product-moment correlation, and adjustment response for both products. It is also

the basis for an error correction model estimating the degree of price asymmetry before and

after the break date.
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Results show that prices in the Korean styrene and toluene markets moved like “rockets

and feathers” before the breakup of the cartel, but like “feathers and rockets” after the end

of the conspiracy. Consistent with the formulae, the styrene price demonstrated stronger

asymmetry than the toluene price during the cartel period and price-cost inversion after the

cartel period. Mean adjustment ratios were estimated to fall by 38% and 15% following

cartel breakdown in styrene and toluene, respectively. The corresponding coefficients on

positive and negative cost changes from the empirical model demonstrate inverted price

asymmetry after the break date, with differences in coefficient magnitudes significant at

the 1% level.

Other descriptive measures are also consistent with discrete and significant changes to

supply behavior after the cartel breakdown, particularly for styrene. Linear correlation de-

clined to nearly zero for styrene and 67% for toluene in the post-cartel sample period. In

contrast, measures of first and second moments of prices and margins were not inidicative

of collusive behavior in either product. I conclude that the cartel altered supply behavior to

enforce collusion, that the breakdown in this agreement resulted in inverse price asymme-

try, and that descriptive and error correction estimation measures can be used to screen for

collusion of this type.

In addition to the screening literature, this paper supplements work that exploits the

institutional features of a particular “hard core” price fixing cartel to draw empirical impli-

cations. Levenstein (1997), Roller and Steen (2006), Genesove and Mullin (2001), Clark

and Houde (2013, 2014) study the internal rules and organization of cartels to assess their

effectiveness in sustaining incentive compatibility. In this study, in contrast, the structure

of the cartel is used to generate predictions of the change in price-cost measures before car-

tel breakup relative to after breakup. Knowledge of the cartel strategy provides a rigorous

theoretical basis for collusion that shares attributes with models of endogeneous antitrust

enforcement including Harrington (2004). The hypothesized empirical screen of collusion

transfers readily to other fuel-intensive industries.
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The remainder of the paper is organized as follows. Section 3.2 describes the perti-

nent features of the Korean petrochemical market and the details of the cartel investigation.

Section 3.3 introduces the data under study and summarizes descriptive relationships that

contrast cartel pricing before and after the end date. Section 3.4 estimates empirical mod-

els of price-cost asymmetry using vector error correction specifications, and section 3.5

highlights the conclusions for screening methodologies.

3.2 Industry Background and Cartel Investigation

3.2.1 Industry Background

The market for petrochemicals in South Korea displays several characteristics long identi-

fied as significant in reaching and maintaining collusive equilibria. The market structure is

oligopolistic: most petrochemicals are produced by three to five large firms and a smaller

fringe of competitors. Table C.1 displays a snapshot of market shares by firm for Styrene

and Toluene during 2007, a select year of data availability. Five unique firms accounted for

over 90% of the market for both products in 2007.6 Several of the largest firms are Korean

conglomerates, which own industry-leading market shares in areas ranging from telecom-

munications, media, electronics, and construction.7 Many of the largest manufacturers also

compete in multiple markets and have pled guilty to explicit price fixing in a variety of

industries.8 Prices are widely available at weekly and monthly intervals from two market

research firms, ICIS and Platts. There is also a robust spot market for resale and trade.

Two properties make the petrochemical industry in Korea particularly attractive to

study. First, production is based heavily on the availability and price of crude oil, an inter-

6Globally, Korea ranks between the fourth and sixth largest petrochemical producers in the world, behind
the U.S., Germany, Japan, and Saudi Arabia (Korean Petrochemical Industry Association).

7Major firms are also Korean-owned and independent of a controlling stake from foreign multinationals.
Two cases of partial (but non-controlling) foreign ownership include GS Caltex (Chevron), and S-Oil (Saudi
Aramco).

8See Asmat (2015) for an empirical analysis of the memory chip cartel and references therein.
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nationally traded commodity with readily accessible historical price data. Second, Korean

crude oil price is determined exogenously from the petrochemical price: none of the coun-

try’s petrochemical firms is involved in the direct resale, stockpiling or shipping of crude

oil. Figure C.1 shows that the country currently imports 100% of its crude oil.9 Integrated

refineries purchase crude oil and convert it to the distillate naphtha, which in turn produces

the various types of petrochemicals after undergoing a cracker process. Toluene is pro-

duced directly from naphtha, while styrene is produced from a combination of naphtha,

liquefied natural gas, associated gases and ethylene. In addition to its role as a feedstock,

petroleum is also used to provide the energy necessary to fuel the chemical reactions which

take place. The process is depicted graphically in fig. C.2.

Each product has particular chemical properties that make it homogeneous from both

buyers’ and sellers’ perspectives. The chemical makeup also renders each product suitable

for specific end uses. Styrene monomer is a slightly yellow, hazardous liquid produced

from the olefins branch of the petrochemicals family. It is sold downstream primarily

to synthetic rubber manufacturers; a smaller group of buyers use it to make unsaturated

polyesters.10 Toluene is a colorless, liquid aromatic petrochemical with properties of both

rubbers and plastics. It is sold principally to manufacturers of flexible foam, polyvinyl

chloride, and polyester; these producers in turn sell to retailers of mattresses, furniture, and

automobile parts.11 Sales are both domestically and internationally; most exports are made

to China.12 Table C.2 shows that firms exported less than half of their production during

the years in and surrounding the cartel period.

9The largest upstream oil and gas companies are state-owned, including Korea National Oil Corporation.
10Synthetic rubber takes the form of polystyrenes including stryrene-butadiene rubber (SBR) and acryloni-

trile butadiene styrene (ABS). Many of these manufacturers have pleaded guilty to separate counts of price
fixing around the world; see http://europa.eu/rapid/press-release IP-08-78 en.htm?locale=en.

11Two of these downstream markets have also faced fines for international cartels. See
http://europa.eu/rapid/press-release IP-15-5214 en.htm (flexible foam) and http://www.justice.gov/opa/pr/
nine-automobile-parts-manufacturers-and-two-executives-agree-plead-guilty-fixing-prices (auto parts).

12Korean’s petrochemical industry began “on the assumption that...virtually all its surplus petrochemicals
and plastics production could be shipped to [China]” (“Korea’s Capacity Fears, Chemical Week: 2/19/1997).
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3.2.2 KFTC Investigation

In 2008, the KFTC began investigating price-fixing among producers of a range of Korean

petrochemicals. The investigation studied here closed in June 2008 and imposed fines

of about $12 million on the largest producers of the two chemicals under study.13 Certain

details about the cartel were publicly documented and made available by the KFTC. Styrene

and toluene had domestic market shares of 94.6% and 82.5% at the time of investigation,

respectively. The KFTC also disclosed the time period in which firms in each product

professed to colluding. The styrene cartel officially lasted from October 2000 to September

2004, while the toluene cartel lasted from January 2002 to June 2005.14

The most interesting feature of the KFTC’s investigation was the disclosure of pricing

formulae to which cartel members in each product agreed during collusion. For example,

the formula for styrene was given as follows:

Pt =

[(
C̄1
m−1 + C̄2

m−1

2

)
(0.7)

]
∗ 1.08

+
[(

0.804 ∗Benzenet + 0.280 ∗ ¯Ethyleneq +Won238/kg
)

(0.3)
]
∗ 1.08

This strategy demonstrates a strong relationship between styrene price in period t and in-

put costs of crude oil, benzene, and ethylene. Pt is the price of styrene at time t; C̄i
m−1 is

the average price of crude oil as listed in the Platts and ICIS data in the previous month,

respectively; Benzene is the international price of benzene, and ¯Ethyleneq is the inter-

national quarterly average price of ethylene. Specifically, the following hypothesis can be

formulated:

13For firm-level fine amounts, see http://www.icis.com/Articles/2008/06/23/9134408/
s-korean-firms-fined-12.3m-for-pricing-cartel.html. The same investigation fined producers of three
other petrochemicals: monoethylene glycol (MEG), diethylene glycol (DEG), and ethylene oxide (EO).
Price data for these chemicals was not available for purchase at the time of data collection from ICIS; see
section 3.3 more details.

14As is typical in criminal proceedings for “hard core” cartels, the dates were agreed upon after a period
of negotiation and represent only possible start and end dates for collusion.
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Hypothesis 1 Assume that firms adhere to the formula outlined above in the cartel period.

If the degree of price-cost asymmetry between benzene and crude oil on the one hand,

and ethylene and crude oil on the other, is greater than one, then the degree of price-cost

asymmetry between styrene and crude oil will increase during the cartel period.

Hypothesis 1 predicts that the degree of styrene-crude oil asymmetry is magnified dur-

ing the collusive period, as long as there is a pre-existing asymmetry of the other input

prices with respect to crude oil. When the price of crude oil rises, it will be fully passed on

to the styrene price at the rate of (0.7) ∗ (1.08). To the extent that crude oil price raises the

price of the other inputs, those increases will also be passed on at the specified rate. When

the price of crude oil falls, it will decrease the price of styrene, passing on a decrease at the

rate of (0.7) ∗ (1.08). But to the extent that benzene and ethylene do not drop as sharply as

crude oil, the decline will be stemmed. Thus, the degree of price asymmetry will increase.

The KFTC’s investigation revealed a different formula for firms colluding in the price

for toluene.

Pt =
(
P̄m−1

)
(α ∗Misc Expenses)

The strategy for toluene price is based on a function of lagged toluene price and a positive

multiple, α, times miscellaneous expenses. This strategy does not base output price on

the price of crude oil or any other inputs. It therefore does not provide a prior basis to

hypothesize an increase or decrease in the degree of toluene-crude oil asymmetry, and the

presence or absence of a change is an empirical question.
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3.3 Data and Descriptive Evidence

3.3.1 Data Sources

Empirical analysis utilizes historical market-wide price data from the market research firm

ICIS. ICIS is a leading provider of price data and market research for chemical, energy,

and fertilizer products around the world. The firm’s price collection process is detailed and

well-cited. Its region-specific employees consult buyers, sellers, and traders worldwide to

independently verify price quotations. Its chemical database includes over 180 products,

including most of the world’s highly traded petrochemicals and feedstocks. It is a primary

source for price negotiations between wholesalers, distributors and purchasers.

Specifically, the data purchased from ICIS for this study is comprised of weekly, Free-

on-Board import spot prices for two Korean petrochemicals: Styrene Monomer and Toluene.15

For each product, the time spans two full calendar years prior to the alleged start of the car-

tel, through the full duration of the cartel period, and two additional calendar years after the

alleged end of the cartel.16 Prices are quoted at the end of business each Friday, exclude the

final two weeks of the year. They consist of a weekly high and low value, reported in US

dollars/Tens of Metric Tons.17 I supplement petrochemical prices with international crude

oil prices from the Bloomberg database. Specifically, I use Iran “Light” crude oil priced

for export to Asia.18 The price in US dollars at the close of trading each Friday is reported

as the (weekly) unit of observation.

15ICIS does not offer export prices for the Korea region.
16Additional periods of historic data before or after the cartel period were not purchased.
17Prices are non-deflated throughout the analysis because of the sensitivity of output prices to oil prices.

The results are robust to deflating both indices by monthly Korean CPI data from KOSTAT, Korea’s national
statistics agency.

18Results are not sensitive to the grade of oil used; covariance between Iran light and several other interna-
tionally traded grades averaged over 0.97 during the sample period.
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3.3.2 Cartel Break Evidence

This section outlines descriptive evidence to support the contention that firms changed sup-

ply behavior during the data sample period. The change in behavior corresponds to the date

of cartel breakup alleged in the KFTC investigation, lending credence to the institututional

evidence. Figure 3.1 presents graphs of petrochemical price, crude oil price, and the mar-

gin. Panel (a) depicts the styrene relationship and panel (b) the toluene relationship. The

gray shaded area represents admitted dates of collusive activity.

The figures show that the trend in price-cost margin was gradually increasing during

the cartel period of both products. Styrene margin rose until September 2004, the month

of cartel breakup, before decreasing for the rest of the sample. The same pattern held for

toluene, where the price-cost margin increased from the start of its cartel period in January

2002 through September 2004. Margin thereafter declined sharply through the rest of the

conspiracy period and the sample.

Table 3.1 presents summary measures of the first moments, linear correlation coeffi-

cient, margin, and adjustment ratio for each of the three periods of supply behavior, as

given by the KFTC. Let the petrochemical price in time t be denoted Pt and crude oil price

in time t Ct. Following Clark and Houde (2014), the adjustment ratio of price asymmetry

is defined as follows.

AdjustmentRatiot =

T∑
t=1

∆P+
t

T∑
t=1

∆P−t

/ T∑
t=1

∆C+
t

T∑
t=1

∆C−t

This ratio summarizes the mean output price increases divided by the mean output price

decreases and standardizes by the corresponding measure in the input price. Values of one

represent perfectly symmetric pricing; values greater than one indicate asymmetric pricing;

and values less than one indicate inverse asymmetric pricing.

The descriptive statistics in Table 3.1 are noteworthy in highlighting dimensions of
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(a) Styrene

(b) Toluene

Figure 3.1: Chemical-Crude Price Margins
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Table 3.1: Summary Statistics by Chemical:
Pre-, During-, and Post-Cartel

(1) (2) (3)

Pre-Cartel Cartel Post-Cartel

Styrene

Mean 53.82 67.33 112.00

Variance 379.03 494.17 202.77

Corr Coefficient∗t 0.845 0.867 0.029

Margin∗ 36.39 40.42 58.049

Adjustment Ratio 1.16 1.38 0.86

N 143 208 116

Time Period 1/98 - 9/00 10/00- 9/04 10/04 - 12/06

Crude Oil

Mean 17.42 26.91 53.95

Variance 40.04 22.44 94.90

Toluene

Mean 30.30 48.91 80.91

Variance 21.89 273.77 97.27

Corr∗t 0.758 0.833 0.673

Margin∗ 5.94 17.55 17.65

Adjustment Ratio 0.98 1.15 0.98

N 104 181 130

Time Period 1/00-12/01 1/02-6/05 7/05-12/07

Crude Oil

Mean 24.36 31.37 63.26

Variance 11.10 59.49 92.54
* Denotes Pearson product-moment correlation coefficients. Sample esti-
mates of correlation, margin and adjustment ratio calculated with respect to
crude oil price. Price units are in USD/tens of Metric Tons.
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variation between hypothesized cartel and non-cartel periods. Two measures of the price-

cost relationship, linear correlation coefficient and mean adjustment ratio, were higher for

both chemicals during the cartel period than either before or after the cartel period. The

linear correlation for styrene declined to near zero after September 2004, consistent with

a significant change in pricing behavior.19 The time-series variation was also markedly

higher during the cartel period.20

The table also suggests that the largest difference in supply regimes was at the end

of collusion rather than at the start, consistent with the collapse of the cartel through a

price war. The change from the hypothesized pre-cartel period to the cartel period was not

as discrete, consistent with descriptive evidence from Abrantes-Metz et al. (2006), Clark

and Houde (2013), and Clark and Houde (2014). The trend is also in line with models

of endogeneous antitrust detection posited by Harrington (2005) and Harrington and Chen

(2006): price reaches the collusive level gradually rather than suddenly, but falls from the

collusive level suddenly rather than gradually.

Figures 3.2 and 3.3 examine this point further by constructing residual plots. The resid-

ual plots display diagnostic evidence from OLS and AR(1) regressions, respectively, of

petrochemical price on crude oil price. Panel (a) shows clear evidence of autocorrelation

throughout the sample, obscuring the inspection of any trend between cartel periods. Par-

tial autocorrelation (PAC) tests displayed in fig. C.3 and fig. C.4 show evidence that each

process is approximately integrated of order one. This implies that AR(1) regressions are

sufficient to observe residual time trends.

Panel (b) depicts the residuals from the AR(1) model. The results show a much cleaner

relationship, without any obvious autocorrelation over the sample period. They are also

consistent with the descriptive statistics: the variance of the residuals changes markedy at

19Undisplayed cross-correllellogram figures also show significantly altered pricing in the post-cartel period
for styrene. In particular, the correlation between styrene in period t and toluene in periods (t−1, t−2, ...t−
20) displays a negative and increasing relationship. This stands in contrast to positive cross-correlations at
every other point in the sample.

20This finding echoes the analysis of the lysine cartel in Bolotova, Connor and Miller (2008).
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(a) Styrene-Crude OLS Residuals

(b) Styrene-Crude AR(1) Residuals

Figure 3.2: Styrene-Crude Regression Residuals
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(a) Toluene-Crude OLS Residuals

(b) Toluene-Crude AR(1) Residuals

Figure 3.3: Toluene-Crude Regression Residuals
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the end of the sample. The largest residuals occur between July and September of 2004,

and the variance gradually decreases over the rest of the sample period. We therefore treat

the hypothesized “break date” of the cartel as September of 2004 for both products.
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3.4 Empirical Specification

This section builds on the descriptive statistics presented in section 3.3.2 to estimate param-

eters of price asymmetry in pre- and post-collusion periods. It specifies a standard model

of error correction based on Bachmeier and Griffin (2003) amd Borenstein, Cameron and

Gilbert (1997). The model is estimated in two stages, as detailed by Engle and Granger

(1987).21

Pt = α0 + α1Ct + δq + εt (3.1)

∆Pt =
n∑
j=0

(
β+∆C+

t−k + β−∆C−t−k
)

+
n∑
k=1

(
β+∆P+

t−k + β−∆P−t−k
)

+ ρ (Pt−1 − δq − α0 − α1Ct−1) + µt (3.2)

The first stage, eq. (3.1), models output (petrochemical) price as a function of con-

temporaneous crude oil price and quarterly dummy variables. Equation (3.2) regresses the

first-differenced output price on first differences of crude oil and output price, as well as on

the lagged residuals from eq. (3.1). The positive and negative superscripts represent lagged

differences with positive and negative signs, respectively. Comparing the absolute value of

the magnitude of complementary coefficients constitutes a test of asymmetric pricing. With

perfectly symmetric prices, the absolute value of each positive and negative coefficient.

The model relies on two identification assumptions. First, styrene, toluene, and crude

oil price are assumed to be non-stationary and and integrated of order n. Consistent with

the autoregressive depictions in fig. 3.2 and fig. 3.3, n = 1. Second, the joint distribution of

Pt and Ct is cointegrated of order one. This assumption is consistent with a Dickey-Fuller

test for crude oil price that rejects the null hypothesis of no unit root, together with the first

assumption.22

21Other estimation approaches for vector error-correction models include simultaneous estimation through
nonlinear least squares (Lewis (2011)) and nonlinear Bayesian techniques (Verlinda (2008)).

22p < 0.05 with one lag; p > 0.10 with two lags.
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Table 3.2: VEC(1) Specification, Pre- and Post-Cartel Break

Styrene Toluene

(1) (2) (1) (2)
Pre-Break Post-Break Pre-Break Post-Break

∆C+
t 0.235 -0.280 0.452∗∗∗ 0.338

(0.273) (0.411) (0.162) (0.223)

∆C−t -0.043 -1.388∗∗∗ -0.088 -0.784∗∗∗

(0.207) (0.433) (0.114) (0.239)

∆C+
t−1 -0.023 1.062∗∗ 0.163 0.343

(0.270) (0.412) (0.162) (0.227)

∆C−t−1 -0.675∗∗∗ 0.513 -0.346∗∗∗ -0.097
(0.211) (0.450) (0.116) (0.246)

∆P+
t−1 0.188∗∗ -0.058 0.075 -0.040

(0.079) (0.169) (0.096) (0.124)

∆P−t−1 -0.480∗∗∗ -0.384∗∗ -0.475∗∗∗ 0.098
(0.110) (0.155) (0.129) (0.147)

ρt−1 -0.008 -0.038∗ 0.002 -0.069∗∗∗

(0.014) (0.023) (0.015) (0.025)

N 345 116 241 168

***p < 0.01, **p < 0.05, *p < 0.1. The estimates are from the second
stage of a two-step vector error correction model. The first stage includes
quarter dummy variables; intercept of second stage not reported.
†Denotes confidence level from Wald Test between C+

t and C=
t
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Table 3.2 shows the results from the two-step error correction model, separately by

chemical and by pre/post cartel period. Several coefficients are consistent with the speci-

fication of the model. The error correction term, ρt−1, is negative and significant. This is

consistent with prices “drifting” back to the relationship estimated by α̂0 and α̂1 in eq. (3.1).

Moreover, the estimated coefficients for cost increases and decreases have the expected

signs in most periods.

There are two strong relationships to note among the remaining coefficient estimates.

First, both contemporaneous cost coefficients display higher absolute value for positive dif-

ferences than negative differences during the pre-break period. The toluene coefficients can

be rejected for significance at the 1% level. The relationship flips in the post-break period,

however: negative cost differences display higher absolute values than positive cost differ-

ences. In fact, column (2) in the styrene regression shows that the sign of the positive cost

difference coefficient flips altogether: positive cost shocks were associated with negative

styrene shocks, conditional on the lagged first differences, the error correction term, and

the quarter dummys. The results reinforce the graphical depictions of an inversion of the

“rockets and feathers” relationship to a “feathers and rockets” relationship, particularly for

the styrene product.

3.5 Conclusion

The results outlined above have demonstrated a clear pattern that emerged in the Korean

petrochemicals cartel under study. These relationships are evident in both descriptive statis-

tics as well as more structured regression specifications. First, the degree of price-cost

asymmetry between each product and crude oil increased during the cartel period relative

to after. Second, the price-cost asymmetry inverted following the breakdown of the cartel,

with adjustment ratios less than one in styrene and significantly different absolute values

of coefficient magnitudes in styerne and toluene. In addition, the linear correlation be-
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tween output and input price decreased following breakdown, and the time-series variation

in output price was larger during the cartel period than after the cartel period.

The results are consistent with firms in the styrene market adhering to the collusive

strategy disclosed during the KFTC’s investigation. One avenue for further research is to

examine the conditions under which this strategy constitutes optimal pricing in the presence

of an active antitrust authority. In particular, the relationship between price and cost that

arises during collusion, as well as the resulting breakdown in the relationship after the

collapse of collusion, is consistent with the model outlined by Harrington and Chen (2006)

and its precursors.23 The descriptive figures imply that the price-cost margin increased

gradually during the cartel period, but decreased suddenly upon cartel breakdown.

The evidence in this paper provides a basis for developing an empirical screen for col-

lusion in fuel-intensive industries based on the degree of price-cost asymmetry. These

measures were shown to provide more evidence consistent with a theory of collusive pric-

ing than corresponding measures based only on the first and second moments of the picing

distribution. The analysis relied on market-wide prices for petrochemicals as well as pub-

licly available, international price series for crude oil. This data is readily available to

competition authorities around the world and does not require firm-specific price or output

information.

23See Harrington (2004) and Harrington (2005).

99



APPENDIX A

Appendix for Chapter I

A.1 Proofs of Results

A.1.1 Proof of Proposition 1

Proof 1.

Part I

Period two punishment from deviating in period one is weaker than period three punish-

ment from deviating in period two.

q∗D1
i1 > q∗i1 > q∗J1i1 ⇒ Π∗J1i2 − Π∗D1

i2 =

(
a− c1 + λq∗J1i1

)2
8b︸ ︷︷ ︸

<
(a−c)2

8b

− (a− c1 + λq∗D1
i1 )2

9b︸ ︷︷ ︸
=

(a−c)2
9b

if c1−λq∗Di1 =c

<
(a− c)2

72b

If i deviates enough to reach c in period two, the inequality holds.

If i deviates but not enough to reach c in period two, the inequality still holds:

(a− c1 + λq∗D1
i1 )2

9b
− (a− c)2

9b
> 0 ≡ A

(a− c1 + λq∗J1i1 )2

8b
− (a− c)2

8b
> 0 ≡ B

∂A

∂c
>
∂B

∂c
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Part II

The same-period gain to deviating at period two is not boundlessly larger than the same-

period gain to deviating at period one.

(a− c)2

72b
−

((
a− c1 + λq∗J1i1

)2
8b

− (a− c1 + λq∗D1
i1 )2

9b

)
>

1

δ

(
(a− c1) + λq∗i1

64b
− (Π∗D1

i1 − Π∗J1i1 )

)
δ |∆1→2{Deviation Punishment}t+1|︸ ︷︷ ︸

LHS

> |∆1→2{Deviation Gain}t|︸ ︷︷ ︸
RHS

δ∗J11 > δ∗J22 �

A.1.2 Proof of Proposition 2

Proof 2.

δ∗J11 < δ∗J22 < δ ⇒

θ1 = θ2 = 1 (A.1)

[
|η1|
|η1| − 1

− |η1|
|η1| − 1

2

]
>

[
|η2|
|η2| − 1

− |η2|
|η2| − 1

2

]
∀ |ηt| > 1 (A.2)

∂C∗i
∂qi1

[
|η1|
|η1| − 1

− |η1|
|η1| − 1

2

]
>
∂Ci
∂qi2

[
|η2|
|η2| − 1

− |η2|
|η2| − 1

2

]
∀ |ηt| > 1 (A.3)
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∂C∗i
∂qi1

[
|η1|
|η1| − 1

− |η1|
|η1| − 1

2

]
+

(
∂C∗J1i

∂qi1
− ∂C∗i
∂qi1

)
|η1|
|η1| − 1︸ ︷︷ ︸

>0

>

∂Ci
∂qi2

[
|η2|
|η2| − 1

− |η2|
|η2| − 1

2

]
∀ |ηt| > 1

(A.4)

∆P1 > ∆P2 (A.5)

Inequality A.2 follows from the assumption that |η1| ≥ |η2|: demand is at least as

elastic in period two as in one. Inequality A.3 follows from inequality A.2 and the fact that

∂Ci
∂qi1

> ∂Ci
∂qi2

. Dynamic marginal cost is higher at period one, when static marginal costs are

higher and the learning effect is present, than at period two, when static marginal costs are

lower and the learning effect is not present.1

δ∗J11 < δ < δ∗J22 ⇒

1

2
≤ θ1 < θ2 = 1 (A.6)

∂C∗i (θ1)

∂qi1

[
|η1|

|η1| − θ1
− |η1|
|η1| − 1

2

]
<
∂Ci
∂qi2

[
|η2|
|η2| − 1

− |η2|
|η2| − 1

2

]

∀ |ηt| > 1, |η2| − |η1| < ε,
∂C∗i (θ1)

∂qi1
− ∂Ci
∂qi1

< γ

(A.7)

∆P1 < ∆P2 ∀ |ηt| > 1, |η2| − |η1| < ε,
∂C∗i (θ1)

∂qi1
− ∂Ci
∂qi1

<γ (A.8)

∆P1 > ∆P2 ∀ |ηt| > 1, |η2| − |η1| > ε , or
∂C∗i (θ1)

∂qi1
− ∂Ci
∂qi1

>γ � (A.9)

The intuition is similar in the above scenario, where conditions for ∆P1 < ∆P2 are

1At the first period, ∂C∗J1
i

∂qi1
≥ ∂C∗

i

∂qi1
: dynamic marginal cost is higher for collusion than competition. This

occurs because firms in collusion plan to cut period two output relative to the competitive rate, and lower
period two output increases the effective cost of period one output by diminishing its learning advantage.
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derived. The key step is A.6: if the discount factor is high enough to sustain collusion

at the joint profit maximizing level at period two, but not at period one, then θ2 = 1 and

θ1 < 1. The remainder of the proof shows that if this difference in the average strength

of collusion is high enough relative to the evolution of dynamic marginal cost and of price

elasticity, then ∆P1 < ∆P2. If not, then ∆P1 > ∆P2.
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A.2 Learning Spillovers in Collusion

The model presented in section 1.2 treats learning entirely as a proprietary possibility:

firms reduce future cost as a function of their own current output, but not as a function of

others’ output. Learning diffusion between firms is not tied to any firm’s output. Theory

and empirical applications in learning-by-doing industries raise the possibility that one firm

could also benefit from another firm’s output—learning “spills over” between firms.2 This

could happen if learning is human capital-specific and knowledgable employees change

firms, or if research is published in scientific journals once findings are made.

This section extends the baseline model by allowing learning to spill over exogenously

between firms. I show that the mechanism that makes collusion less sustainable during

the learning period—one firm gains a strategic advantage over the other if it deviates from

an output restriction during the first period—continues to hold under plausible spillover

rates. Specifically, as long as the rate at which a firm reduces its own cost is greater than

the rate at which it reduces its competitor’s cost, firms play as strategic substitutes. The

sufficient conditions for Results 1.1 and 1.2 then extend to the learning spillovers case as

well: collusion requires more patience to sustain when firms begin colluding during the

learning phase relative to the post-learning or diffusion phase.

A.2.1 Spillover Effect and Strategic Substitutability

Consider the model presented in section 1.2.1: firms i and j compete in an infinite horizon

game with three distinct stages. In period one, they have identical marginal costs; by

period two, costs decline based on period one’s output; and by period τ , which is infinitely

repeated, costs reach their minimum level and there is no further learning. The possibility

of spillover-free diffusion remains: if firms do not learn enough to exhaust learning by the

2Fudenberg and Tirole (1983) and Ghemawat and Spence (1985) discuss spillovers in their learning-by-
doing models. Zulehner (2003) and Irwin and Klenow (1994) use structural models to infer the existence of
learning spillovers in DRAM based on firms’ output reactions.
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start of period two, further cost reductions diffuse freely between firms.

Introduce the parameter 0 < α < 1 to represent the rate of cost reduction in cj2 based

on output qi1.3 Firm i’s baseline first order condition in the competitive case becomes:

max
qi

Πi = [a− b(qi1 + qj1)− c1]qi1 + δ[a− b(qi2 + qj2)− (c1 − λqi1 − αqj1)]qi2

+
∞∑
τ=3

δτ−1[a− b(qiτ + qjτ )− c]qiτ

⇒ ∂Πi

∂qi1
: a− 2bqi1 − bqj1 − c1 + (δλqi2)︸ ︷︷ ︸

“PLE”

−
(
δbqi2

∂qj2
∂qi1

)
︸ ︷︷ ︸

“ISE”

= 0 (A.10)

The first order condition is identical to the spillover-free case, which includes the pro-

prietary learning incentive (“PLE”), except for one additional term. The intertemporal

strategic parameter (“ISE”) captures the total change in firm j’s output in period two that

is attributable to a change in firm i’s output in period one. Its effect depends on the sign

of ∂qj2
∂qi1

: if ∂qj2
∂qi1

> 0, then the ISE runs counter to the PLE. Intuitively, this happens when

spillovers are relatively large: i reduces j’s period two costs via the spillover parameter α.

The PLE induces firms to produce more than static marginal cost through the direct effect

of learning; the ISE can induce firms to cut back their extra output through the indirect

effect of learning on their rivals.4 The net effect of the PLE and ISE determines whether

firms play as strategic substitutes, as in the learning-free case, or strategic complements,

when spillovers prevent firms from producing the “extra” output that learning encourages.

3Like proprietary learning parameter λ, spillover parameter α is identical between firms i and j. The
game therefore remains symmetric.

4 ∂qj2
∂qi1

is not positive for all values of α because the ISE also takes into account the inherent strategic
substitutability of Cournot competiton. If α = 0, for example, then the ISE induces firms to produce even
more in the first period than they would in its absence.
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A.2.2 Spillover Effect and Incentive Compatibility

To assess the role of learning spillovers in collusion, standardize and fix total learning

to one: (λ + α = 1). The ability to restrict output during coooperative play depends

on i’s incentive to deviate. i’s incentive to deviate at period one depends on the profits

it anticipates receiving in periods two.5 Second period profits depend on second period

outputs, which in turn depend on the value of the ISE. Because i considers its deviation

decision holding j’s output fixed at the cartel level, second period outputs can be expressed

through the first order conditions as:

qi2 =
a− bqj2 − c1 + λqi1 + αq∗J1j1

2b
(A.11)

qj2 =
a− bqi2 − c1 + λq∗J1j1 + αqi1

2b
(A.12)

Substituting A.11 into A.12 yields:

qj2 =
a− c1

3b
+
qi1(2α− λ)

3b
+
q∗J1j1 (2λ− α)

12b
(A.13)

⇒∂qj2
∂qi1

=
2α− λ

3b
(A.14)

Equation A.14 illustrates the role of spillovers in determining the sign of the ISE. ∂qj2
∂qi1

>

0 when α > 1
3
: spillovers discourage i from deviating when they reduce cost at least

half as much as does proprietary learning. Whether firms play as strategic substitutes or

complements, however, depends on the net effect of the ISE and PLE shown in i’s first order

condition above. Substituting A.14 into A.10 reveals the central relationship governing

5It also depends on τ th period profits. As shown in the ICC’s ?? and ??, τ th period profits are identical
whether collusion begins at period one or at period two.
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strategic competition:

a− 2bqi1 − bqj1 − c1 + δqi2

(
2(λ− α)

3

)
︸ ︷︷ ︸

PLE + ISE

= 0 (A.15)

i and j play as:


strategic substitutes if λ > 1

2

strategic complements if λ < 1
2

The inequality above states that if the proprietary learning rate is greater than the

spillover learning rate, i and j will compete as strategic substitutes, just as in the learning-

free case. Strategic substitutability ensures that the punishment for deviating at period one

is weaker than the punishment for deviating at period two. The sufficient condition for Re-

sult 1.1 therefore applies to the learning spillovers case if α < λ. Whenever the dynamic

effect of strategic substitution dominates any static effect of decreased elasticity, the joint

profit maximizing collusive equilibrium is sustainable at a lower minimum discount factor

starting from period two (the post-learning or diffusion period) than from period one (the

learning period). The subsequent implications for price differences between generations

outlined in Result 1.2 also follow.

A.2.3 Discussion of Empirical Spillover Rates

In practice, it is unlikely that learning spillovers are large enough to render the quantity-

setting game one of strategic complements, even when the spillover effect is magnified by

n > 2 firms in the market. Zulehner (2003) finds that if spillovers are large enough to in-

duce strategic complementarity, complementarity occurs only at the end of the product life

cycle, when large learning effects have subsided. Such a result is fully consistent with this

paper’s findings, because increased spillovers at the end of the product life cycle would re-

inforce collusion for older generations but not for newer generations. The conclusions that

follow from the plant-level DRAM manufacturing analyses of Hatch and Mowery (1998)
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and Macher and Mowery (2003), moreover, imply that it is more likely that the learning

spillover effects found in empirical DRAM papers are conflated with the effect of general

cost diffusion over the product life cycle. Cost diffusion is modeled through the transition

between periods two and τ in the framework presented in Section 1.2.

108



A.3 DRAM Output by Technology

Section 1.3 describes the rival technologies available to DRAM manufacturers during the

early 2000s. DDR, developed cooperatively by DRAM fabricators through JEDEC, faced

a rival technology in RDRAM, licensed by the design firm Rambus. Although RDRAM

boasted slightly faster performance speeds than DDR, the two technologies were largely

substitutable. After initial backing from Intel, RDRAM failed to gain popularity among

fabricators and OEM’s and DDR quickly became the industry standard upon which subse-

quent innovations have been based.

The empirical pattern of positive collusive overcharge for the 16Mb and 64Mb gen-

erations but zero or negative overcharges for the 128Mb of 256Mb generations cannot

be explained by changes in the underlying technology of the chips. During the 1990s,

the four largest firms—Samsung, Infineon, Micron and Hynix—designed their plants to

accomodate both technology types for 128Mb and 256Mb chips, skipping the older two

generations.6 After DDR became the dominant next-generation technology, Rambus filed

a private antitrust suit in 2004 accusing the DRAM manufacterers of flooding the market

with DDR to price out RDRAM.7. Note that this case is distinct from both the DOJ antitrust

case around which this paper focuses and the string of largely successful Rambus patent in-

fringement suits that spurred the FTC and EC to file retaliatory “patent ambush” litigation.

Figures A.1 and A.2 rule out the possibility that competition between firms pushing either

of these technologies contributed to the output increase discussed in section 1.5.1, because

RDRAM and DDR did not proliferate until after 2000:

6“Samsung’s Fuller Disclosure,” Businessweek 11/29/2005 http://www.businessweek.com/stories/
2005-11-29/samsungs-fuller-disclosure

7The case proceeded to a $3.95 billion trial in 2011, where a jury ultimately rejected Rambus’ alle-
gation. See “Rambus Loses Antitrust Lawsuit, Shares Plunge,” http://www.reuters.com/article/2011/11/16/
us-rambus-micron-verdict-idUSTRE7AF1XL20111116

109

http://www.businessweek.com/stories/2005-11-29/samsungs-fuller-disclosure
http://www.businessweek.com/stories/2005-11-29/samsungs-fuller-disclosure
http://www.reuters.com/article/2011/11/16/us-rambus-micron-verdict-idUSTRE7AF1XL20111116
http://www.reuters.com/article/2011/11/16/us-rambus-micron-verdict-idUSTRE7AF1XL20111116


Figure A.1: 128Mb DRAM Technology Share, 1998-2011

Figure A.2: 256Mb DRAM Technology Share, 1999-2011
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A.4 Additional Tables
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Table A.1: DRAM Years Active
by Generation, 1974-2011

Generation Years Active∗

4Kb1 1974-1985

16Kb 1976-1985

64Kb 1979-1995

256Kb 1982-1997

1Mb 1985-2002

4Mb 1988-2010

16Mb 1991-2011

64Mb 1996-2011

128Mb 1998-2011

256Mb 1999-2011

512Mb 2001-2011

1Gb 2003-2011

2Gb 2005-2011

4Gb 2010-2011

* Year is counted if at least one firm pro-
duces output in any quarter
1 First year of Gartner data; shipments
began about two years earlier
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Table A.2: C4 Concentration Ratios by Generation, 1994-2004∗

Year 16Mb 64Mb 128Mb 256Mb

1994 60.0

1995 51.4 100

1996 51.4 76.3

1997 42.8 79.8

1998 53.4 56.2 100

1999 62.6 67.6 75.1 100

2000 66.8 68.7 76.9 82.6

2001 68.5 73.6 74.3 74.2

2002 60.5 72.2 78.2 77.6

2003 73.7 69.2 79.2 78.4

2004 79.3 70.3 77.0 74.7

* The four largest firms across generations from 1994-2004 were Sam-
sung, Infineon, Micron and Hynix.
In addition to changes in the market shares of the four pre-existing firms,
year-to-year changes reflect new firms entering a generation and merger
and acquisition activity. As characterized in Gartner Research’s data:
in 1998, Micron purchased Texas Instruments’ DRAM operations. In
1999, SK Hynix (then named Hyundai) merged with LG Semiconduc-
tor. In 2001, NEC and Hitachi begain operating the DRAM joint venture
Elpida Memory.

113



A.5 Additional Figures

Figure A.3: Revenue Share: 4Mb - 256Mb
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Figure A.4: Cartel Insider Market Share: 4Mb - 256Mb

Figure A.5: Total Output by Generation: 256Kb - 4Gb
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APPENDIX B

Appendix for Chapter II

B.1 Proofs of Results

B.1.1 Proof of Proposition 1

The sufficient and necessary condition guaranteeing that Z
Bs
t

ZB1
t
>

ZAst
ZA1
t

is stated as:

(J2 − J1)
[
πP − πD

]
> rs(J2)− rs(J1) (B.1)

J2
[
πP − πD

]
− rs(J2) > J1

[
πP − πD

]
− rs(J1) (B.2)

Pr [Fails]
B
t > Pr [Fails]

A
t (B.3)

Equation (B.3) follows from condition 2.3: Pr [Failt]
l = J

[
πP − πD

]
> rs(J). The

following inequalities relate the probability of a claim in staet l failing at time t to Z ls
t , the

number of claims from stage s ∈ {1, 2} in state l that close in period t.

1− Pr [Fails]
B
t < 1− Pr [Fails]

A
t (B.4)

XB1
t < XA1

t (B.5)

ZB1
t < ZA1

t (B.6)

ZBs
t

ZB1
t

>
ZAs
t

ZA1
t

� (B.7)
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Where inequality B.6 is equivalent to inequality B.5 because the number of claims from an

initial set of claims arriving at t that settle in t is equal to the set of claims that settle in t

that are in stage one.

B.1.2 Proof of Proposition 2

Part i

The probability of failure for claim x at state s ∈ {1, 2} in period t can be characterized

as:

πP − πD >
rs(J)

J
(B.8)

πP
(
Y ′, ε(σ2P

t )
)
− πD

(
Y ′, ε(σ2D

t )
)
>
rs(J)

J
(B.9)

Where Ŷ i = Y ′+ ε, ε ∼ N(0, σ2): subjective probabilities are formed as a function of the

normally distributed error term ε.

This probability is composed of two mutually exclusive and nonstochastic outcomes:

the parties fail to settle at stage s, or they settle at state s. Let K∗ denote a constant. Then

settlement failure and settlement imply two inequalities:

σ2P
t − σ2D

t > K∗ > 0⇒ x fails to settle at s (B.10)

σ2P
t − σ2D

t < 0 < K∗ ⇒ x settles at s (B.11)

The sufficient condition of Proposition 2.2 (i) states that σ2
t > σ2

t+1, with the mean

centered at zero in both t and t+ 1. Letting α > 0, this implies:

E[σ2P
t+1 − σ2D

t+1|σ2P
t+1 − σ2D

t+1 > 0] < E[σ2P
t − σ2D

t |σ2P
t − σ2D

t > 0] (B.12)

E
[
σ2P
t+1 − σ2D

t+1|σ2P
t − σ2D

t > 0
]

= αE
[(
σ2P
t − σ2D

t |σ2P
t+1 − σ2D

t+1 > 0
)]

(B.13)
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Mapping the discrete events B.12 and B.13 back into stochastic probabilities,

E
[
πP − πD|πP − πD > 0

]
t
> E

[
πP − πD|πP − πD > 0

]
t+1

(B.14)

Pr
[
Fails|πP − πD > 0

]
t
> Pr

[
Fails|πP − πD > 0

]
t+1

(B.15)

When parties obtain mutually optimistic draws from ε, then the average magnitude of dis-

agreement rises and the probability of disagreement rises with it.

Observe, however, that the corresponding inference cannot be made for the discrete

condition that σ2P − σ2D > 0. This is because when parties obtain mutually pessimistic

draws from ε, the probability that they fail to settle is zero: σ2P
t −σ2D

t < 0⇒ σ2P
t −σ2D

t <

K∗. This disparity is driven by strictly positive litigation costs rs(J): in the absence of

optimism bias, parties possess no reason to reach disagreement.1 Therefore

Pr
[
Fails|πP − πD < 0

]
t

= Pr
[
Fails|πP − πD > 0

]
t+1

= 0 (B.16)

Finally, combining inequalities B.15 and B.16 implies the necessary condition:

XB1
t > XA1

t+1 (B.17)

ZB1
t > ZA1

t+1 (B.18)

ZBs
t

ZB1
t

<
ZBs
t+1

ZB1
t

� (B.19)

Part ii

The proof of (ii) is similar to the proof of Proposition 2.1 demonstrated in appendix B.1.1

above. Let 0 < rs(J2) − rs(J1) < (J2 − J1)
(
πP − πD

)
in period t + 1. Because

1This standard result of Divergent Expectations models is ceteris paribus. In particular, it does not hold
when parties have asymmetric stakes in the trial.
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σ2B
t+1 = σ2A

t+1, the following implication holds:

[
F P (Y ′ + ε)− FD (Y ′ + ε)

]B
t+1
− rs (J)

J
>
[
F P (Y ′ + ε)− FD (Y ′ + ε)

]A
t+1
− rs (J)

J

(B.20)

Pr [Fails]
B
t+1 > Pr [Fails]

A
t+1 (B.21)

The step from B.20 to B.21 is proven by B.3 in Proposition 2.1.

Now let J∗∗ > (J2 − J1)
(
πP − πD

)
. Then

(J2 − J1)
(
πP − πD

)
< J∗∗ < rs(J2)− rs(J1) (B.22)

Pr [Fails]
B
t+1 < Pr [Fails]

A
t+1 (B.23)

ZBs
t+1

ZB1
t+1

>
ZAs
t+1

ZA1
t+1

� (B.24)

Where the final step is the same as the one from B.3 to B.7.
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B.2 Additional Tables
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Table B.1: State Tort Liability Regimes
for Insurance Bad Faith to 19971,2,3

State Tort Start-End State Tort Start-End
AK 1974- MO
AL 1981- MS 1984-
AR 1984- MT 1982-
AZ 1982- NC 1976-
CA 1973- ND 1979-
CO 1983- NE
CT 1973- NH
DC NJ
DE 1982-1995 NM 1974-
FL 1975-1986 NV 1975-
GA Unknown-1989 NY
HI 1996- OH 1983-
IA 1988- OK 1977-
ID 1986- OR
IL PA† 1990-
IN 1993- RI 1980-
KS SC 1983-
KY 1977- SD 1986-
LA† Unknown- TN
MA† Unknown- TX 1987-
MD UT
ME VA
MI VT 1979-
MN WA 1992-

WI 1978-
WV
WY 1990-

Based on Stempel (2006), Ostrager and Newman (2008), and Corp.
and LLP (2008)
1 Blank space indicates no punitive damages through 1997.
2 “-” indicates punitive damages regime lasted through at least 1997.
Illinois (2002) is only known state to have enacted punitive damages
after 1997.
3 “Unknown” is treated as pre-1977. Regression results robust to
dropping these states.
† Punitive damages but no tort regime.
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B.3 Additional Figures

Figure B.1: Average Settlement Times by Tort Switch Group and Survey Year
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Figure B.2: Average Conditional Trial Rates by Tort Switch Group and Survey Year

Figure B.3: Mean Economic Loss Claimed by Survey Year and Regime
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Figure B.4: Average Conditional Trial Rates, Excluding California
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APPENDIX C

Appendix for Chapter III

C.1 Additional Tables

125



Table C.1: Korean Petrochemical Production
by Company Year 2007 (Thousands of Metric Tons)

Firm Styrene Toluene

Samsung Total† 870

LG Chem 680 100

Honam Petrochem† 500 78

SK Energy† 384 849

BASF Company 320

Yeochun NCC 290 233

Dongbu HiTek† 270

S-Oil Corp. 350

GS Caltex† 170

OCI Company 30

Total 3,314 1,810

Source: Korean Petrochemical Industry Association
† Publicly fined by KFTC for price fixing
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Table C.2: Aggregate Korean Petrochemical Production
and Export Percentage, Selected Years (Thousands of Metric Tons)

Product Styrene Toluene

Production (Thou/MT) Export % Production (Thou/MT) Export %

1995 1,356 25 952 65

2000 2,430 37 1,440 70

2004 2,608 35 1,834 45

2005 2,722 35 1,792 42

2006 2,964 38 1,779 37

Source: Korean Petrochemical Industry Association
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C.2 Additional Figures

Figure C.1: Sources of Oil Import by Country, 2010

Figure C.2: Petrochemical Feedstock Diagram
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Figure C.3: Styrene Partial Autocorrelation Graph, 1998-2006

Figure C.4: Toluene Partial Autocorrelation Graph, 2000-2007
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