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Evaluation and Comparison of Dynamic Treatment Regimes: Methods and
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by

Xi Lu

Chair: Professor Susan A. Murphy

Dynamic treatment regimes (DTRs) are sequences of decision rules that link the

patient history with treatment recommendations. Clinical scientists have become

increasingly interested in the development of DTRs in various fields including

substance abuse, mental health and cancer. The Sequential Multiple Assignment

Randomized Trial (SMART) is a multi-stage trial design that explicitly targets

the development of high-quality DTRs. In this dissertation, we develop statistical

methodologies, which can be applied to SMART data, that either address novel

research questions regarding the construction of a high-quality DTR, or exhibit

better performance than existing statistical methods.
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CHAPTER 1

Introduction

In many areas of health, treatment response is heterogeneous in which case clinicians will
need to consider providing a sequence of treatments in order to obtain sufficient treatment
response. Furthermore patients with chronic illnesses often require changes in treatment,
that is, sequences of treatments, so as to maintain a good response. As a result clinical
scientists have become increasingly interested in, and active in, the development of inter-
ventions that are composed of treatment sequences [25] in various fields including alco-
holism [48], substance abuse [18, 35], leukemia [75] and autism spectrum disorder [19].
The treatment sequences are adapted to the dynamics of the evolving illness. The idea is
that the adaptation should accommodate treatment response heterogeneity so as to result in
more efficacious and less burdensome/costly treatment. Treatment policies [33, 82, 83] –
also called dynamic treatment regimes (DTRs) [51, 56, 57, 58, 64, 41], adaptive treatment
strategies [25, 27, 26, 40, 74, 75] or adaptive interventions [43, 44, 1] – operationalize
the dynamic adaption via a sequence of decision rules, one for each stage in the treatment
process; the decision rule inputs measurements of patients’ time-varying covariates and
outputs recommended treatments.

The Sequential Multiple Assignment Randomized Trial (SMART; [25, 40, 9]), a multi-
stage trial design, was developed explicitly for the development of high-quality DTRs.
Specifically, data from SMART design is useful in addressing key research questions that
inform the construction of a high-quality DTR. Each stage in a SMART corresponds to one
of the critical decisions involved in the DTR. Each participant moves through the multiple
stages and at each stage the participant is (re)randomized to one of several intervention op-
tions. A variety of these trials have been conducted, with some of the earliest taking place in
cancer research, for the purpose of developing medication algorithms for leukemia [75], or
to develop adaptive treatments of prostate cancer [74]. A selection of SMART studies may
be found at http://methodology.psu.edu/ra/adap-inter/projects. Com-
mon research questions regarding DTRs that can be addressed by analyzing SMART data
include: (a) the comparison of different intervention options at each of multiple stages of
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the intervention; (b) the comparison among a pre-determined set of DTRs (usually “em-
bedded” in the design of a SMART, which we later explain in Chapter 3) in terms of an
end-of-study primary outcome.

In the following chapters in this dissertation, we will develop statistical methodologies
that either address novel research questions regarding the construction of a high-quality
DTR, or exhibit better performance than existing methods/statistical procedures. The topics
that are discussed in this dissertation will cover a variety of aspects in the analysis of data
arising from SMARTs, or more generally, randomized clinical trials. It is worthwhile to
note that there are also extensive works concerning the design of (multi-stage) randomized
clinical trials, for the purpose of optimizing various objectives. Those topics are not in the
scope of this dissertation.

The dissertation is organized as follows. In the remainder of Chapter 1, we review the
literature of methodological works related to evaluating and optimizing DTRs. In Chapter
2, we develop an “assisted estimator” that can be used to compare the mean outcomes of
a pair of competing DTRs. The term “assisted” refers to the fact that estimators from the
Structural Nested Mean Model (SNMM), a parametric model for the causal effect of treat-
ment at each time point, are used in the process of estimating the mean outcome. This novel
estimator significantly improves efficiency compared to the existing inverse-probability-of-
treatment-weighted type of methods, by imposing parametric modeling assumptions on the
components of the data distribution that are easily interpretable. Additionally, based on
Robins’ G-estimators for the SNMM, we present an easy-to-implement least-squares esti-
mator for the parameters in the SNMM.

In Chapter 3, we focus on the comparison of a pre-determined set of DTRs, in terms
of a repeated-measures outcome that spans across multiple treatment stages. Modeling
the marginal mean trajectories of a repeated-measures outcome arising from a SMART
presents challenges, because traditional longitudinal models used for randomized clinical
trials do not take into account the unique design features of SMART. In this chapter, we
fill in this gap by discussing modeling considerations for various forms of SMART de-
signs, emphasizing the importance of considering the timing of the repeated measures in
relation to the treatment stages in a SMART. For illustration, we present three case studies
with increasing level of complexity, in autism, child attention deficit hyperactivity disorder
(ADHD), and adult alcoholism. The weighted-and-replicated estimators, which were orig-
inally proposed for comparing DTRs in terms of an end-of-study outcome, are generalized
to estimate the parameters in our repeated-measures model.

In Chapter 4, we concentrate on one particular aspect of the weighted-and-replicated
(WR) estimators, namely the performance of the WR estimators on data sets with small
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sample sizes. More specifically, in some numerical studies we found that the sandwich
estimator for the variance of WR estimators derived from the standard Taylor series argu-
ments does not provide confidence intervals that have good coverage, when the sample size
is sufficiently small. The same phenomenon has been discovered in the GEE literature;
intuitively, this happens because using the estimated parameters as a surrogate for the true
unknown values of the parameters in general tend to “underestimate the variance of the true
errors”. Based on [34] in the GEE literature, we propose a small-sample adjusted estimator
for the variance of WR estimators. The adjustment is developed for the WR estimators
with both known weights (due to the SMART design) and estimated weights.

In Chapter 5, we consider a novel research question regarding the search for the optimal
decision rule. Primarily the goal is to identify the optimal policy, i.e., the one that yields
the highest mean of an outcome variable, within a pre-specified class of parametrized poli-
cies. On top of this goal, we are interested in understanding the usefulness of a particular
variable in decision making, i.e., whether using this variable in addition to all the other
variables in the specified policy form to construct a policy would remarkably increase the
optimal achievable policy value. It turns out that estimating the optimal policy by sim-
ply searching for the policy associated to the highest (non-parametrically) estimated policy
value does not answer the second part of our research question, due to some interesting ill-
posedness issues. In this chapter some preliminary endeavor is made towards this research
question. We propose a regularized estimator for the optimal policy, with two components
of regularization motivated by two issues of the original unregularized estimator.

1.1 Review of Existing Work on Dynamic Treatment Regime
Methodologies

Here we give a brief review of the literature on DTRs, mostly using data arising from an
experiment study such as SMART.

A vast literature is available concerning the estimation of the optimal DTR based on
data collected from both SMARTs and observational studies. A DTR is considered to
be optimal if it yields the highest value of mean outcome when the entire population re-
ceive treatment sequences that are specified by this DTR. Q-learning [72, 42, 69, 37] has
been the most well studied methodology in this direction. A backward induction proce-
dure mimicking dynamic programming is implemented, estimating the Q-function at each
time point, which is the conditional mean of the primary outcome given certain values of
current history of covariates and treatments, assuming that the optimal treatment is always
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assigned in each of subsequent stages. The optimal DTR can then be estimated to consist
of decision rules that recommend the treatment that maximizes the estimated Q-function
at each stage. However, unbiased estimates and valid inference about the estimated opti-
mal DTR can be difficult, because the “max” operator used in the Q-learning procedure
can cause non-regularity. Some variations of Q-learning have been proposed, including the
use of thresholding [8, 38] and the combination with LASSO [71]. There are also works
that aim to directly draw valid inference from Q-learning based on bootstrap or m-out-of-n
bootstrap techniques [23, 7].

On the other hand, the optimality, or good performance, of the estimated optimal DTR
relies severely on the correct model specification of the Q-functions. More specifically,
both the main effects of the covariates and the treatment interaction effects in each of the Q-
functions have to be correctly specified to guarantee the optimality of the derived optimal
DTR. This is a rather strong modeling assumption; mis-specification of the Q-functions
may potentially lead to low mean value of the estimated optimal DTR. Advantage learning
(A-learning; [39, 64]) is an alternative approach to estimating the optimal DTR. Unlike
Q-learning, in A-learning only the part of outcome regression model that represents the
contrasts among the treatments is parametrically modeled; this makes A-learning in general
more robust than Q-learning to model mis-specification.

Another line of research that targets the estimation of the optimal DTR is the statisti-
cal learning based methods developed by [89] and [90]; the former focuses on one time
point and the latter extends the methodology for single time point to sequential treatments.
The approaches proposed in these works cast the optimization of the value under the DTRs
as weighted classification problems, where weights depend on the outcomes; as a conse-
quence, existing machine learning algorithms can be directly applied to achieve the search
for the optimal DTR. In particular, in these works the authors adopt the support vector
machine (SVM) algorithm to relax the weighted classification problem; therefore, the the-
oretical properties of the proposed methods naturally follow from the established theory of
SVM.

Marginal mean model [41] is a model for the marginal mean of a primary outcome un-
der a DTR, conditional on some baseline covariates. This methodology is essentially non-
parametric in that it does not make parametric assumptions on the relationship between
time-varying covariates and the outcome; consistency only relies on correct specification
of the treatment assignment probability in the observed data, which helps to connect the
mean in the hypothetical population where all individuals follow the specified DTR, to a
weighted mean in the observed population. Such a model is estimated by a doubly robust
inverse probability weighted estimator that contains some working models for a series of
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conditional means to provide additional guarantee of robustness and potential efficiency
improvement. Since the treatment assignment probability is known in SMARTs, the esti-
mator based on the marginal mean model can easily be consistent. [87] provides another
perspective of the estimator for marginal mean model that arises from coarsening of the
sequential data, and has some insights about how the users might obtain reasonably good
working estimates for the nuisance functions.

G-computation estimators [51] are another class of estimators that can be used to es-
timate the marginal mean of the outcome under a DTR. This class of estimators is based
on the representation of the marginal mean with conditional mean of the outcome given
time-varying covariates, and the conditional distribution of the time-varying covariates. In
the G-computation estimator, these conditional means and conditional distributions are re-
placed by their estimates, respectively. This approach is conceptually intuitive; however, it
requires correct model specification of many components in the data, which is particularly
difficult when the covariates are of high dimension.

Marginal Structural Models (MSMs; [55], [63]) are a class of methods that were origi-
nally proposed to model the causal effect of time-varying treatment as a function of base-
line prognostic factors. MSMs can be readily applied to handle various types of primary
outcomes. Later the MSM methodology was extended to investigate the causal effect of
DTRs conditional on baseline prognostic factors [47, 78, 50, 3, 46]. This is achieved by
modeling the mean of potential outcomes associated with each of the DTRs in the class of
DTRs of interest. By nature of the MSM methodology, the model adopted in MSM needs
to be chosen according to the class of DTRs under study. Doubly robust inverse probability
weighted estimating equation can be used to estimate such models. Then the optimal DTR
among the specified class of DTRs can be readily estimated by identifying the optimizer of
the estimated values of the DTRs.

Targeted maximum likelihood estimation (TMLE; [77, 6]) is another estimation proce-
dure that can be taken to estimate a pre-specified parameter of the distribution of the ob-
served data, such as the mean of an end-of-study outcome. The TMLE procedure targets a
pre-specified estimand; more specifically, the procedure estimates the likelihood functions
in a way that matches the efficient influence curve of the targeted parameter. The estimated
likelihood functions are later used to construct the estimator for the targeted parameter via
the G-computation formula. A TMLE is a substitution estimator, i.e., an estimator that can
be conceptualized by replacing the unknown true underlying distribution with a particularly
estimated distribution, in the defining formula of the estimand. Therefore it enjoys advan-
tages that are specific to substitution estimators (e.g., the values of the estimator always lie
in the reasonable range).
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Methodological work that targets other types of outcomes is also available. Survival
outcome (i.e., time to event outcome) is a particular type of outcome that usually requires
special methodologies, and there have been a series of works about the comparison of
DTRs regarding a survival outcome. [10] and [29] present weighted log-rank test statistic
to compare a pair of DTRs that do not share observations (i.e., no participant can have
treatment sequence that is consistent with these two DTRs at the same time). [21] develop
weighted log-rank test statistic that can compare any pair of competing DTRs.

[85] proposes Bayesian inference methodology for the estimation and inference about
DTRs. Under the Bayesian framework, potential outcomes under all possible treatment
sequences are conceptualized as unknown parameters, and therefore posterior predictive
distribution can be formed for the potential outcomes to facilitate estimation and inference
about static and dynamic regimes. Moreover, the Bayesian approach naturally offers the po-
tential to pool information across treatment paths and individuals in the same group/cluster.
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CHAPTER 2

Comparing Treatment Policies with Assistance
from the Structural Nested Mean Model

2.1 Introduction

In many health domains, a treatment sequence that is adapted to patients’ evolving char-
acteristics and past treatment history is needed. This is because the response to the same
treatment/intervention can vary among patients with different baseline characteristics and
time-varying health status. Moreover, a treatment that is associated with short-term success
may not be preferable for controlling the disorder in the long term. One way to operational-
ize the adaptation of the sequence of treatment to patients’ evolving status over time is via
the treatment policies, which compose of a sequence of decision rules, one for each critical
decision time point in the treatment process. At each critical decision time point (i.e., at
each treatment stage), the decision rule takes the measurements of patients’ time-varying
covariates as input, and determines the recommended treatments/interventions.

Often scientists construct treatment policies that represent competing approaches to
managing an illness. For example in the treatment of attention deficit hyperactivity disor-
der (ADHD), the American Psychological Association recommends starting with behav-
ioral treatment and moving to a medication only if the behavioral treatment is not effec-
tive [4], whereas the American Academy of Child and Adolescent Psychiatry recommends
starting with medication [49]. Or one treatment policy might represent a least intensive or
least costly version, whereas another treatment policy may represent a most intensive, most
costly version. For example, the Extending Treatment Effectiveness of Naltrexone (Ex-
TENd) trial of alcohol dependence treatments (PI: Oslin; [48]) involves multiple treatment
policies, of which one is the most intensive and another is the least intensive.

In this chapter, we develop and discuss statistical methodologies for the evaluation of a
treatment policy and the comparison between two competing treatment policies, regarding
the mean of a pre-specified primary outcome variable, that is either measured at the end
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of the study, or an outcome variable calculated from the variables measured during the
study. Some other endpoints for the comparison/evaluation of treatment policies might be
possible. In particular, in the next chapter, we discuss the comparison among treatment
policies regarding the mean trajectories of a repeated-measures outcome, the measurement
of which spans through multiple treatment stages in a study.

A common approach to comparing the mean outcomes of two competing treatment
policies, is to use a non-parametric estimation procedure that involves inverse-probability-
weights (IPW), such as those described in [41] and [87]. These estimators are non-parametric
in the sense that they do not require nor take advantage of models that relate baseline or
time-varying covariates with the outcome. Robins and colleagues [54, 46] generalized
the [41] methods to consider multiple treatment policies.

In this chapter, we develop an alternative approach for contrasting two treatment poli-
cies. This approach combines the non-parametric IPW estimators with a model-based ap-
proach based on Robins’ Structural Nested Mean Model [52]. In the Structural Nested
Mean Model, intermediate treatment effect functions, also called “treatment blips,” are
parametrically modeled. The intermediate treatment effects isolate the causal effect of
treatment at each time point, conditional on baseline and time-varying covariate history up
to that time point. We call the resulting estimator, an “assisted” estimator to convey that
the model-based approach is intended to assist the non-parametric estimator in estimating
the mean outcomes of competing treatment policies.

In this chapter we first focus on the comparison of two-stage treatment policies. Most
sequentially randomized trials, also known as Sequential Multiple Assignment Random-
ized Trials (SMART) [24, 40], concern two stages of treatment. In particular, ExTENd
is a two-stage SMART. Towards the end of this chapter we will briefly discuss the exten-
sion of the proposed methodology to the scenario of more than two treatment stages. In
Section 2.2, we formulate the estimand in a precise manner. In this section we provide
a class of assisted estimators for the mean outcome based on data from a SMART; theo-
retical properties of the estimators are also provided. In Section 2.3, we briefly introduce
how these estimators can be used to compare a pair of treatment policies and make infer-
ence. Simulation studies, in Section 2.4, are used to investigate different aspects of the
methodology, including the performance of the proposed estimator under various levels of
mis-specifying treatment effects. In Section 2.5, the methodology is illustrated by an anal-
ysis of the ExTENd data. In Section 2.6, we briefly introduce some ideas about how the
proposed estimator can be extended to apply to three-stage problems. Finally, a discussion
of the paper, including ideas for future work, is presented in Section 2.7. Proofs of the
theorems and lemmas are relegated to the appendix.
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2.2 Assisted Estimator for Policy Value

A two-stage treatment policy consists of two decision rules, d = (d1, d2). Each deci-
sion rule inputs available patient information at the current stage and outputs a treat-
ment recommendation. Denote the outcome by Y (Y may be observed after the study
or may be a function of the data collected during the study). The value of a policy is
the expectation of Y that would result if the treatments were selected using the treat-
ment policy d. A useful way to define the value of a policy is via the potential out-
come framework [45, 68]. For each variable and each treatment sequence, we concep-
tualize a “potential outcome” that would have been observed under that treatment se-
quence. Using Xj to denote observations available prior to the j-th decision and using X3

to denote observations available after the second-stage treatment, the potential outcomes
are {X1, X2(a1), X3(a1, a2); for all possible sequences of treatments (a1, a2)}. Here the
outcome Y (a1, a2) is a known function of {X1, X2(a1), X3(a1, a2)}. The value of the
policy, d, is given by Vd = E

[
Y (a1, a2)|a2=d2(H2(a1)),a1=d1(H1)

]
where H1 = X1 and

H2(a1) = (X1, a1, X2(a1)) are the potential outcome history vectors prior to the treatments
at stage one and stage two.

The value of a treatment policy d, can also be written as a function of the intermedi-
ate treatment effects or “treatment blip functions,” from Robins’ Structural Nested Mean
Model [52]. We deviate briefly to define these intermediate treatment effects. Correspond-
ing to the two stages of treatment, there are two intermediate treatment effects given by
µ2(h2, a2) = E[Y (a1, a2)|H2(a1) = h2] − E[Y (a1, 0)|H2(a1) = h2] and µ1(h1, a1) =

E[Y (a1, 0)|H1 = h1] − E[Y (0, 0)|H1 = h1], where at = 0 is the coding for a reference
treatment (e.g., control treatment). The intermediate treatment effect, µ2, quantifies the
effect of treatment a2 relative to the reference treatment at stage two on the mean of Y ,
among individuals with history h2. The intermediate treatment effect, µ1, quantifies the
effect of treatment a1 relative to the stage one reference treatment, if always followed by
the reference treatment at stage two, on the mean of Y , among individuals with history h1

at stage one. In addition to this type of treatment blip functions, there are other types of
blips, such as the optimal-blip-to-zero functions for A-learning [39] and regime-specific
SNMMs [64].

Consider randomized treatments, denoted by capitalized letters, A1, A2, where the con-
ditional distribution of A1 given H1 = h1 is denoted by p1(·|h1) and the conditional dis-
tribution of A2 given H2(A1) = h2 is denoted by p2(·|h2). Throughout this chapter we
implicitly make all required measurability assumptions as well as existence of regular con-
ditional densities. We have the following lemma.
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Lemma 2.2.1. Assume that (i) max{E|Y (a1, a2)|, E|µ1(H1, a1)|, E|µ2(H2(a1), a2)|} <
∞ for any treatment sequence (a1, a2) and (ii) for some δ > 0, p1(a1|h1) ≥ δ a.s. for

(h1, a1), then

Vd = E
[
Y (A1, A2)− µ2(H2(A1), A2)− µ1(H1, A1) + µ1(H1, d1(H1))

+ µ2(H2(a1), d2(H2(a1)))|a1=d1(H1)

]
= E

[
Y (A1, A2)− µ2(H2(A1), A2)− µ1(H1, A1) + µ1(H1, d1(H1))

+
I{A1 = d1(H1)}

p1(A1|H1)
µ2(H2(A1), d2(H2(A1)))

]
.

(2.1)

This representation of the value, Vd, will form the basis for our method. The intuition
behind this representation is that the potential outcome of Y under treatment policy d can be
constructed or recovered from the potential outcome associated with the treatment sequence
(A1, A2), by subtracting the intermediate treatment effects due to the sequence (A1, A2)

and then adding in the intermediate treatment effects due to the policy d. The fraction
involving the randomization probability in the last term (2.1) is used to account for the fact
that the intermediate treatment effect of the second stage treatment under policy d depends
on H2(a1)|a1=d1(H1) (the covariate history that would occur if the first stage treatment were
assigned according to policy d); that is, this fraction adjusts for the fact that H2(A1) is not
always equal to H2(d1(H1)).

2.2.1 The Data and the Estimation Method

The observed data on each participant in a two-stage SMART is {X1, A1, X2, A2, X3}
where Xt denotes covariates observed prior to the t-th stage and At denotes the t-th stage
randomized treatment. Let H2 = (X1, A1, X2) and H1 = X1. The randomization proba-
bility for an individual’s treatment may be a function of the individual’s observed data (say
P [At = a|Ht] = pt(a|Ht)). For example, in ExTENd (see Figure 2.1), participants were
initially randomized uniformly to one of two criteria for early non-response to Naltrexone:
the stringent definition (two or more heavy drinking days) or the lenient definition (five or
more heavy drinking days). A heavy drinking day is defined as a day with more than five
standard drinks for males or more than four standard drinks for females. Participants were
assessed weekly for non-response; as soon as a participant met the non-response criterion,
he/she was re-randomized to either switch to combined behavioral interventions (CBI) or
to a combination of CBI and Naltrexone. If the participant did not meet his/her assigned

10



non-response criterion by the end of two months, then the participant was re-randomized to
one of two relapse prevention options: usual care (UC) or telephone disease management
(TDM). Thus non-responding participants had probability 0 of being assigned a relapse
prevention option whereas responding participants had probability 0 of being assigned CBI
or the combination of CBI and Naltrexone.

 

 

 

 

 

Stringent Criterion 

for Non-response  

(2 or more heavy 

drinking days) 

Responders continue NTX 

As soon as  
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TDM +  
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Figure 2.1: ExTENd SMART design for the treatment of alcohol dependence. “R” stands
for (re-)randomization. TDM = Telephone Disease Management, UC = Usual Care, NTX
= Naltrexone, CBI = Combined Behavioral Intervention, MM = Medical Management

Denote the primary outcome by Y (we assume a higher value is more favorable; in
ExTENd Y might be percent days abstinent or a mental health score). To express the inter-
mediate effects and the value (2.1) in terms of the observed data, we relate the observed data
to the potential outcomes. We assume [66, 53, 50], (A1) Consistency: X2 = X2(A1), X3 =

X3(A1, A2), Y = Y (A1, A2) and (A2) Sequential Randomization: A1 is independent of all
potential outcomes given observed X1; A2 is independent of all potential outcomes given
observed (X1, A1, X2). The consistency assumption states that the observed covariates are
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identical to the potential outcomes of the covariates evaluated at the observed treatment se-
quence. In particular this assumption implies that each subject’s outcomes are uninfluenced
by other subjects’ assigned treatments. This assumption may be violated if for example,
treatment is provided in a group setting (group counseling). The sequential randomization
assumption is valid in the setting of SMART trials because the treatment is randomized.

The intermediate treatment effects and the value, Vd, can be expressed in terms of the
observed data as follows.

Lemma 2.2.2. Assume A1 and A2 and (i) max{E|Y |, E|µ1(H1, a1)|, E|µ2(H2, a2)|} <∞
for any treatment sequence (a1, a2) and (ii) for some δ > 0, p1(a1|h1) ≥ δ a.s. for (h1, a1),

then

(a) µ2(h2, a2) = E[Y |H2 = h2, A2 = a2]− E[Y |H2 = h2, A2 = 0],

(b) µ1(h1, a1) = E[E[Y |H2, A2 = 0]|H1 = h1, A1 = a1] − E[E[Y |H2, A2 = 0]|H1 =

h1, A1 = 0] and

(c) Vd = E
[
Y−µ2(H2, A2)−µ1(H1, A1)+µ1(H1, d1(H1))+ I{A1=d1(H1)}

p1(A1|H1)
µ2(H2, d2(H2))

]
.

Suppose the intermediate treatment effects are known up to a finite-dimensional pa-
rameter: µ1(h1, a1) = µ1(h1, a1; β1), µ2(h2, a2) = µ2(h2, a2; β2). [52] provides a class of
“g-estimators” for the parameters, β = (β1, β2). Each member in the class corresponds
to a different choice of model for each of several nuisance functions; consistency of the
g-estimators does not require correct models for the nuisance functions (see [52] for a de-
tailed discussion). Furthermore this class of estimators does not require knowledge of the
treatment policy, d. Thus β can be estimated and then used to form the estimators of the
values of a variety of treatment policies. In the next section, we review the class of g-
estimators. Each estimator in this class is consistent for the true value β0 = (β10, β20) of
β, and is asymptotically normally distributed (assuming a correctly specified SNMM and
some finite moment conditions). Throughout the chapter we implicitly assume consistency
and asymptotic normality of β̂.

Then, given the results of Lemma 2.2.2 and estimators, β̂, a natural assisted estimator
of the value of the policy d, Vd is:

V̂0(d; β̂) = Pn
[
Y − µ2(H2, A2; β̂2)− µ1(H1, A1; β̂1) + µ1(H1, d1(H1); β̂1) (2.2)

+
I{A1 = d1(H1)}

p1(A1|H1)
µ2(H2, d2(H2); β̂2)

]
,
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where Pnf(X1, A1, X2, A2, X3) denotes a sample average. This estimator belongs to a
class of assisted estimators, given by

V̂m(d;β̂) = Pn
[
Y − µ2(H2, A2; β̂2)− µ1(H1, A1; β̂1) + µ1(H1, d1(H1); β̂1) (2.3)

+
I{A1 = d1(H1)}

p1(A1|H1)

{
µ2(H2, d2(H2); β̂2)−m(H1, A1)

}
+m(H1, d1(H1))

]
,

indexed by the function m(h1, a1). Note the former assisted estimator, V̂0(d; β̂), corre-
sponds to setting m(h1, a1) ≡ 0. We have the following lemma:

Lemma 2.2.3. Assume that the assumptions for Lemma 2.2.2 hold, then

(a) The estimating function in (2.3) is unbiased for any choice ofm that satisfiesE|m(H1, a1)| <
∞ for any a1.

(b) Assume (i) E|Y |2 < ∞; (ii) µ̇1(h1, a1; β1) := ∂
∂β1
µ1(h1, a1; β1) exists for all β1, a.s.,

and µ̇2(h2, a2; β2) := ∂
∂β2
µ2(h2, a2; β2) exists for all β2, a.s.; and (iii) there exists some

δ > 0 such that
∑

a1
E sup‖β1−β10‖≤δ |µ1(H1, a1; β1)|2 + |µ̇1(H1, a1; β1)|2 <∞, and∑

a2
E sup‖β2−β20‖≤δ |µ2(H2, a2; β2)|2 + |µ̇2(H2, a2; β2)|2 < ∞. Then if β̂ belongs to

a subclass B of g-estimators, the choice of m resulting in the lowest variance for

V̂m(d; β̂) satisfies m(h1, d1(h1)) = E[µ2(H2, d2(H2))|H1 = h1, A1 = d1(h1)].

The subclass B corresponds to g-estimators for which a particular nuisance function
is correctly modeled. This subclass is defined in Section 2.2.2 after a general review of
g-estimators; in particular, in the simulation section we will first use an estimator β̂ based
on a correctly specified model for the nuisance function, thus β̂ ∈ B. We will also provide
additional simulation results when using a β̂ that does not belong to B.

The lemma above provides a guide for the choice of m; in practice m(h1, a1) in (2.3)
can be replaced by a working estimator m̂(h1, a1) := m(h1, a1; α̂m) ofE[µ2(H2, d2(H2))|H1 =

h1, A1 = a1], resulting in V̂m̂(d; β̂). Next we provide consistency and asymptotic normal-
ity results for the estimators of the value. We assume A1 and A2; in addition, we assume
that µ1(h1, a1; β1) and µ2(h2, a2; β2) are functions that correctly specify the SNMM, with
true parameter value β0 = (β10, β20). In particular, Theorem 2.2.4 below implies that the
assisted estimator is consistent regardless of the choice of function m (indeed one can set
m ≡ 0).

Theorem 2.2.4. Assume that the assumptions for Lemma 2.2.3 hold; moreover, assume:

(1) α̂m converges in probability to some limit α+
m; (2) there exists some δ > 0 such that∑

a1
E sup‖αm−α+

m‖≤δ |m(H1, a1;αm)| < ∞; and (3) ṁ(h1, a1;αm) := ∂
∂αm

m(h1, a1;αm)

exists for all αm, a.s. Then V̂m̂(d; β̂) is a consistent estimator for the policy value of d, Vd.
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Theorem 2.2.5. Assume that the assumptions for Theorem 2.2.4 hold; moreover, assume:

(1) there exists some δ > 0 such that
∑

a1
E sup‖αm−α+

m‖≤δ |m(H1, a1;αm)|2+|ṁ(H1, a1;αm)|2 <
∞ and (2)

√
n(α̂m − α+

m) = Op(1). Then
√
n
(
V̂m̂(d; β̂)− Vd

)
is asymptotically normal.

The asymptotic variance of the limiting normal distribution in Theorem 2.2.5 is pro-
vided in the appendix. Recall that ifm(h1, a1;αm) is a correct model forE[µ2(H2, d2(H2))|H1 =

h1, A1 = a1], then this asymptotic variance achieves the lowest value among all choices of
m, provided that β̂ belongs to the subclass B of g-estimators.

2.2.2 Estimators for SNMM

2.2.2.1 Review: Robins’ G-Estimators for SNMM

Here we give a brief review of Robins’ class of g-estimating equations [52] and the semi-
parametric locally efficient g-estimator. Assume that the SNMM is correctly specified. A
class of estimating equations which can be used to solve for consistent estimators for β is:

Pn
{
r1(H1, A1) (Y − µ2(H2, A2; β2)− µ1(H1, A1; β1)− q1(H1))

+ r2(H2, A2) (Y − µ2(H2, A2; β2)− q2(H2))
}

= 0,

where r1, r2 are arbitrary functions, both of the same dimension as the length of (βT1 , β
T
2 ),

that satisfy E[r1(H1, A1)|H1] ≡ 0, E[r2(H2, A2)|H2] ≡ 0; q1, q2 are arbitrary functions.
Assume that V ar(Y − µ2(H2, A2) − µ1(H1, A1)|H1, A1) ≡ V ar(Y − µ2(H2, A2) −

µ1(H1, A1)|H1), which we will denote as σ2
1(H1), and that V ar(Y −µ2(H2, A2)|H2, A2) ≡

V ar(Y − µ2(H2, A2)|H2), which we will denote as σ2
2(H2). Robins provides r1, r2, q1, q2

functions that make the estimating equation semiparametric locally efficient; in particular
the semiparametric locally efficient estimating equation is obtained by setting

q∗1(h1) = E[Y − µ2(H2, A2; β20)− µ1(H1, A1; β10)|H1 = h1],

q∗2(h2) = E[Y − µ2(H2, A2; β20)|H2 = h2],

r∗1(h1, a1) = σ−2
1 (h1)

(
µ̇1(h1, a1; β10)− E[µ̇1(H1, A1; β10)|H1 = h1]

E[µ̇2(H2, A2; β20)|H1 = h1, A1 = a1]− E[µ̇2(H2, A2; β20)|H1 = h1]

)
and

r∗2(h2, a2) = σ−2
2 (h2)

(
0

µ̇2(h2, a2; β20)− E[µ̇2(H2, A2; β20)|H2 = h2]

)
.
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Consider models for r1(·), r2(·), q1(·), q2(·), namely r1(·; η), r2(·; η), q1(·; ξ), q2(·; ξ). If the
parametric models specified for r1, r2, q1, q2 contain the truth (i.e., r∗1, r

∗
2, q
∗
1, q
∗
2), the esti-

mator for β is then semiparametric efficient.
Definition of B: The subclass B of g-estimators is defined as the collection of g-

estimators in which q1(h1; ξ) is a correctly specified model for q∗1(h1). In Lemma 2.2.3, we
show that the optimal m function in the assisted estimator can be identified if β̂ belongs to
this subclass. Note that the semiparametric efficient estimator belongs to this subclass.

2.2.2.2 Regression-Type Implementation of the G-Estimator

It turns out that for particular models of the nuisance functions (i.e., r1, r2, q1, q2) in the
g-estimating equation, one can estimate both the nuisance functions and the β’s simultane-
ously via least-squares. We use this approach to estimate the β parameters in the interme-
diate treatment effects in our simulations. We assume that the treatment effect functions
are linear in the unknown parameters: µ1(h1, a1; β1) = φ1(h1, a1)Tβ1 and µ2(h2, a2; β2) =

φ2(h2, a2)Tβ2, where φt is some feature of (ht, at). The estimation is as follows:

1. First solve a linear regression of Y on (φ2(H2, A2)− E[φ2(H2, A2)|H2],M2), in
which M2 is a summary of the history H2. Note that in the setting of a random-
ized trial, the distribution of A2 is known; thus E[φ2(H2, A2)|H2] can be calcu-
lated. Put β̂2 equal to the vector of the estimated coefficients for φ2(H2, A2) −
E[φ2(H2, A2)|H2].

2. Second solve a linear regression of Y − φ2(H2, A2)T β̂2 on
(φ1(H1, A1) − E[φ1(H1, A1)|H1],M1), in which M1 is a summary of the history
H1. Again since the distribution of A1 is known, E[φ1(H1, A1)|H1] can be cal-
culated. Put β̂1 equal to the vector of the estimated coefficients for φ1(H1, A1) −
E[φ1(H1, A1)|H1].

β̂ obtained from this least-squares implementation is equivalent to a g-estimator with the
following choice of nuisance functions: r1(H1, A1) = φ̃1(H1, A1), r2(H2, A2) = φ̃2(H2, A2),
q1(H1) = MT

1 κ
+
1 − E[φ1(H1, A1)|H1]Tβ10, q2(H2) = MT

2 κ
+
2 − E[φ2(H2, A2)|H2]Tβ20,

where φ̃1 ≡ φ̃1(H1, A1) = φ1(H1, A1) − E[φ1(H1, A1)|H1] and φ̃2 ≡ φ̃2(H2, A2) =

φ2(H2, A2)−E[φ2(H2, A2)|H2]; κ+
1 and κ+

2 denote the probabilistic limits of the estimated
coefficients of M1 and M2 in the least-squares procedure. In particular, this regression-
type estimator is consistent with correctly specified SNMM. Note that β̂ obtained from this
least-squares implementation belongs to the subclass B defined previously, provided that
MT

1 κ1 is a correct model for q∗1(H1) + E[φ1(H1, A1)|H1]Tβ10.

15



Each member of the class of g-estimators is consistent and asymptotically normal. In
particular, the asymptotic distribution of

√
n(β̂ − β0) is a multivariate normal with mean

zero and var-covariance matrix B−1ΣB−1,T where

B =

(
E[φ̃1φ̃

T
1 ] E[φ̃1φ

T
2 ]

0 E[φ̃2φ̃
T
2 ]

)

and Σ = E

((
(Y − φT2 β20 − φ̃T1 β10 −MT

1 κ
+
1 )φ̃T1 , (Y − φ̃T2 β20 −MT

2 κ
+
2 )φ̃T2

)T)⊗2

, where

V ⊗2 = V V T . Plug-in estimates B̂ and Σ̂ can be obtained by replacing population expecta-
tion in B and Σ with sample mean, and replacing β, κ by the estimates from the series of
least squares.

Prior to this least-squares type estimator for the SNMM, [2] proposed a parametric two-
stage estimator that can be implemented by linear regression. Consistency of the estimator
therein requires correct model specification for both the intermediate treatment effects (i.e.,
µ1, µ2) and the nuisance functions associated to the time-varying error terms.

2.2.3 Existing Work Regarding the Evaluation of A Treatment Policy

Here we review the methodologies for the evaluation and comparison of treatment policies
proposed by [41] and [87]. We present those methods in the two-stage scenario.

[41] introduces the marginal mean models for the estimation of a mean response to a
treatment policy (called DTR there). For simplicity, we ignore the discussion there about
the mean value of a treatment policy over interesting subpopulations (denoted byZ in [41]),
and only consider the estimation of the marginal mean value of a policy in the entire popu-
lation. The estimator is based on the equality

Ed[Y ] = Eobs
[
Wd(Ā2, X̄2)Y

]
,

whereWd(ā2, x̄2) = ωd,1(a1, x1)ωd,2(ā2, x̄2) and ωd,1(a1, x1) = I{A1=d1(X1)}
p1(A1|H1)

, ωd,2(ā2, x̄2) =
I{A2=d2(X̄2,A1)}

p2(A2|H2)
; Ed is the expectation in the population where all individuals follow the

treatment policy d and Eobs is the expectation in the observed population. Thus the basic
IPW estimator based on the marginal mean model is V̂ = Pn

[
Wd(Ā2, X̄2)Y

]
.

There is a potential to improve the efficiency of this estimator by augmenting it (moti-
vated by projecting the original estimating equation off the score functions for the treatment
assignment probabilities, which are nuisance parameters for the estimation of policy value),
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namely

V̂ (α̂g) =Pn
(
ωd,1ωd,2Y + (g1(X1, d1(X1); α̂g)− ωd,1g1(X1, A1; α̂g))

+ ωd,1(g2(X̄2, A1, d2(X̄2, A1); α̂g)− ωd,2g2(X̄2, Ā2; α̂g))
)
,

in which g2(x̄2, ā2;αg) is a model for g2(x̄2, ā2) := Eobs[Y |X̄2 = x̄2, Ā2 = ā2] and
g1(x1, a1;αg) is a model for g1(x1, a1) := Eobs[g2(X̄2, A1, d2(X̄2, A1))|X1 = x1, A1 = a1].

These estimators are in essence non-parametric estimators that are obtained by properly
weighting the observations in the data that happen to have the entire treatment sequences
consistent with the policy, d, of interest. Data from those who have treatments consistent
with the policy d only until the first stage, or data from those with treatments inconsistent
with the policy d from the entry to study, are utilized to varying degrees in the augmented
estimators, to potentially improve the efficiency.

[87] presents a robust augmented inverse probability weighted estimator for the values
of a restricted class of treatment policies. In their paper the problem of policy value estima-
tion is cast as one of monotone coarsening; however, with some calculation one can show
that the general class of estimators proposed in this paper is equivalent to the estimators
arising from the marginal mean model in Murphy et al. (2001). Here we briefly present the
equivalence in the case of a two-stage problem.

For each two-stage policy d = (d1, d2), conceptualize the complete data to be the po-
tential outcomes associated with d: (X1, X2(d1), Y (d1, d2)). Then a coarsening variable
Cd can be defined for the complete data as below: If A1 6= d1(H1), then Cd = 1. If
A1 = d1(H1) and A2 6= d2(H2), then Cd = 2. If A1 = d1(H1) and A2 = d2(H2),
then Cd = ∞. Then define the hazard functions for this coarsening variable Cd as fol-
lows (coarsening at random is assumed, and in the scenario of sequential randomized trials
this assumption is naturally satisfied): λd,1(X1) = Pr(Cd = 1|X1), and λd,2(X1, X2) =

Pr(Cd = 2|Cd ≥ 2, X1, X2). Then the class of estimators (indexed by the functions L1(x1)

and L2(x1, a1, x2)) proposed in Zhang et al. (2013) can be written as:

Pn
{ I{Cd =∞}

(1− λd,1)(1− λd,2)
Y +

I{Cd = 1} − λd,1
1− λd,1

L1(X1)+

I{Cd = 2} − λd,2I{Cd ≥ 2}
(1− λd,1)(1− λd,2)

L2(X1, A1, X2)
}
,

in which λd,1 = λd,1(X1), λd,2 = λd,2(X1, X2). The consistency of any estimator in this
class is guaranteed, regardless of the choices of L1, L2.

Equivalency of this class of estimators and the estimators in [41] can be established by
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setting L1(X1) = g1(X1, d1(X1)) and L2(X1, A1, X2) = g2(X̄2, A1, d2(X̄2, A1)).
In the simulation section, we will compare the assisted estimators with the estimators

arising from the marginal mean models. Note that the model specification for gt(·) does
not have an impact on the consistency of the estimator V̂ (α̂g). Suggested by [41], to guar-
antee that the models for gt are consistent with each other under the null, in the simulation
experiments we model gt as linear in x̄t and independent of āt. In particular, we estimate
g2(X1, A1, X2, A1; α̂g) by regressing Y on intercept and X̄2, then regress the fitted values
on intercept and X1 to obtain g1(X1, A1; α̂g).

2.3 Comparison between Treatment Policies

Suppose we are interested in comparing treatment policies d = (d1, d2) and d̃ = (d̃1, d̃2).
Then, given an estimator β̂ for the intermediate treatment effects, we obtain the following
consistent estimator for the contrast between d and d̃, i.e., Vd̃ − Vd:

(V̂md̃(d̃; β̂)− V̂md(d; β̂)) =Pn
[
µ1(H1, d̃1(H1); β̂1)− µ1(H1, d1(H1); β̂1) (2.4)

+
I{A1 = d̃1(H1)}

p1(A1|H1)

{
µ2(H2, d̃2(H2); β̂2)−md̃(H1, A1)

}
− I{A1 = d1(H1)}

p1(A1|H1)

{
µ2(H2, d2(H2); β̂2)−md(H1, A1)

}
+md̃(H1, d̃1(H1))−md(H1, d1(H1))

]
,

where the function m(h1, a1) is now subscripted by the policy d, to reflect that a good
choice of function m varies with d (see the following lemma). For ease of notation, define
∆d(h1, a1) = md(h1, a1)− E[µ2(H2, d2(H2))|H1 = h1, A1 = a1].

Lemma 2.3.1. Assume that the conditions for Lemma 2.2.3 are satisfied; in particular,

assume that β̂ belongs to the subclass B of g-estimators. Then the choice of md and md̃

resulting in the lowest asymptotic variance for
√
n(V̂md̃(d̃; β̂)−V̂md(d; β̂)), among the class

of estimators in (2.4) with md and md̃ being arbitrary functions of (h1, a1), satisfy: (1) for

h1 such that d1(h1) 6= d̃1(h1), ∆d̃(h1, d̃1(h1)) = ∆d(h1, d1(h1)) = 0; (2) for h1 such that

d1(h1) = d̃1(h1), ∆d̃(h1, d̃1(h1)) = ∆d(h1, d1(h1)).

Lemma 2.3.1 implies that, for the purpose of estimating the policy contrast, it is reason-
able to replacemd(h1, a1) with a working estimatemd(h1, a1; α̂m) ofE[µ2(H2, d2(H2))|H1 =

h1, A1 = a1]. Then we have the following lemma concerning the estimator of the contrast
in (2.4) with md(h1, a1) replaced by md(h1, a1; α̂m). We will also refer to this estimator as
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an “assisted estimator”. This lemma assumes that md(h1, a1; α̂m) is modeled via a linear
model DT

mαm where Dm is a function of (H1, A1) and αm is estimated via least squares.

Lemma 2.3.2. Assume that the conditions for Theorem 2.2.4 and 2.2.5 are satisfied; then
√
n
(
(V̂m̂d̃(d̃; β̂)−V̂m̂d(d; β̂))−(Vd̃−Vd)

)
converges in distribution to a normal distribution

with mean zero and var-covariance matrix, Σ∆. The plug-in estimator Σ̂∆ is a consistent

estimator of Σ∆.

The formulae for Σ∆ and Σ̂∆ are provided in the appendix.

2.4 Simulation

All simulation experiments are based on generative models mimicking the ExTENd study.
More specifically, the structure of the simulated data is: (X1, A1, X2, R,A2, Y ). X1 is a
3-dimension baseline covariate simulating the distribution of {baseline percent days heavy
drinking, baseline craving score, baseline mental composite score},A1 is the binary indica-
tor of the randomized non-response criterion, X2 is a 2-dimension covariate simulating the
distribution of {phase 1 duration, phase 1 percent days drinking}, R is the binary indicator
of early response, A2 is the re-randomized binary treatment at the second stage. Y is a pri-
mary outcome simulating the distribution of the end-of-study craving score (lower values
are better). We will study various simulation scenarios that are all based on the following
Y :

Y = η0(X1)+A1(1, XT
1 )β1+η1(X1, A1, X2)+A2(1, XT

2 , A1, R,RX
T
2 , RA1)β2+ε. (2.5)

in which the terms involving β’s are the intermediate treatment effects and η0(·), η1(·) and
ε are other components in the distribution of Y that correspond to the main effect of X1,
the effect of X2 conditional on (X1, A1) and the error term, respectively. We use estimates
of η0(·) and η1(·) that are by-products of estimating an SNMM with the ExTENd data; the
by-products of the estimation of SNMM also include an estimate of the variance of the
error term, and we use that variance estimate to generate ε in our simulations. More details
are provided in the appendix.

We create nine simulation scenarios by varying β1, β2 in the generating model for Y .
This procedure alters the magnitude of the main effects of the treatments at both stages
and also the extent to which there are treatment by time-varying covariate interactions. In
particular, the first coordinates in β1 and β2 reflect the main effects ofA1 andA2, and the re-
maining coordinates reflect the interactions of A1 and A2 with time-varying covariates. We
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adopt the following definition of standardized effect size of a coordinate in βj by slightly
modifying Cohen’s dmeasure to: SES(βjk) = βjk/

√
V ar(η0(X1)) + V ar(η1(X1, A1, X2)) + V ar(ε).

We adopt this definition of standardized effect size because η0(X1), η1(X1, A1, X2) and ε
are uncorrelated components in the generative model of primary outcome Y , and the sum
of their variances contributes to the majority of the variance in Y . Note that to ensure that
this definition of standardized effect size is meaningful, we will use standardized covari-
ates (each covariate in X1, X2 is standardized to come from a population with mean 0 and
standard deviation equal to 1). The nine simulation scenarios correspond to combinations
of no treatment effect, low treatment effect and medium treatment effect at both stages.
We define no Aj treatment effect (j = 1, 2) as βj = 0, define low Aj treatment effect as
setting all coordinates in βj to have SES equal to 0.2, and define medium Aj treatment
effect as setting the first two coordinates in βj to have SES equal to 0.5 (i.e., main effect
and interaction effect with Xj1), and the other coordinates in βj to have SES equal to 0.2.
The rationale for only one medium level interaction in medium Aj treatment effect case is
that it is unlikely (in real data) for the treatment to interact with many covariates at medium
level. The sign of each coordinate in βj is determined by a preliminary fit to the ExTENd
data. In each simulation scenario, we generate 1000 simulated data sets.

Throughout β̂ in the assisted estimator is one of Robins’ g-estimators that belongs to B

(β̂ is the solution to a series of least squares problems; indeed if, as discussed above a par-
ticular nuisance function is correctly modeled, then this least squares solution will belong
to B). In the appendix we provide results when β̂ does not belong to B; the simulation
results are similar. Also throughout m̂d is estimated via least squares with (1, X1, A1) as
predictors.

Let the triple (c1, c2, c3) denote a policy in which c1 is the assigned non-response crite-
rion, c2 is the assigned binary treatment for early responders at the second stage, and c3 is
the assigned binary treatment for early non-responders at the second stage. To investigate
different aspects of the proposed methodology, we perform two sets of simulation exper-
iments: The first set studies the bias and MSE of the assisted estimators of the difference
in values of the most intensive policy, (1,1,1) and the least intensive policy, (0,0,0). The
second set illustrates the efficiency gain of using the assisted estimator, compared with a
non-parametric policy value estimator that is based on the marginal mean model.

Simulation 1: Here we compare bias and MSE for three types of assisted estimators
for difference in value. We use the assisted estimator, V̂m̂d(d; β̂) with m̂d, an estimator
of E[µ2(H2, d2(H2))|H1, A1], and V̂0(d; β̂), to estimate the contrast between embedded
policies (1, 1, 1) and (0, 0, 0). We also consider V̂md(d; β̂) in which md is the unknown
E[µ2(H2, d2(H2))|H1, A1]; we call this an “oracle” assisted estimator, because in prac-
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tice the optimal md will be unknown. The coverage of confidence intervals based on the
asymptotic standard errors of each of the two non-oracle estimators is also provided.
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The simulation results with N = 100 and N = 250 are shown in Table 2.1. Based
on the ratio of bias and standard deviation, we conclude that, as expected, the assisted
estimators provide an unbiased estimate of the contrast between policies. The MSEs of all
the three estimators are similar; V̂m̂d(d; β̂) tends to be slightly more efficient than V̂0(d; β̂).
The coverage of the confidence intervals based on the asymptotic standard errors is close
to 95% in all cases.

In the appendix we provide additional simulations; these simulations illustrate that
V̂m̂d(d; β̂) will provide a noticeable efficiency improvement over V̂0(d; β̂) in some extreme
settings. However, in most practical scenarios, a sophisticated chosenmd does not substan-
tially improve the efficiency over md ≡ 0; therefore for simplicity we recommend using
the assisted estimator with md ≡ 0.

Simulation 2: Here we assess the robustness via the bias, MSE and confidence inter-
val coverage provided by the assisted estimators to misspecification of the SNMM. As a
comparison we consider estimators from the marginal mean model [41] as these estimators
do not require the SNMM. The marginal mean models are estimated via a non-parametric
inverse-weighted estimator. Note that when the goal is to evaluate the difference between
two policies, the estimators in [46] under particular choices of nuisance functions reduce
to the marginal mean model estimators.

V̂m̂d(d; β̂) is estimated with two differently mis-specified SNMMs in addition to the
correctly specified SNMM. The true SNMM is implied by the generative model in (2.5),
i.e., µ1(H1, A1) = A1(1, XT

1 )β1, µ2(H2, A2) = A2(1, XT
2 , A1, R,RX

T
2 , RA2)β2. The first

mis-specification of the SNMM excludes X11 from the model for µ1(H1, A1) and ex-
cludes X21, RX21 from the model for µ2(H2, A2) (denoted as Assist2 in Table 2.2). The
second mis-specification models µ1(H1, A1) as A1(1, X∗T1 )β1 and models µ2(H2, A2) as
A2(1, X∗T2 )β2, where X∗1 and X∗2 are 3-dimensional and 7-dimensional covariates (denoted
as Assist3 in Table 2.2). X∗1 and X∗2 generated independently of all the other covariates;
the dimensions of X∗1 and X∗2 are chosen so that the model complexity is the same as in the
correctly specified SNMM.

We focus on the estimation of two contrasts: the first is the contrast between the policies
(1,1,1) and (0,0,0), and the second is the contrast between a “tailored” treatment policy and
the policy (0, 0, 0). This tailored treatment policy assigns a1 = 1 if X13 > 0; a2 = 1

to all early responders and a2 = 1 to early non-responders if X21 < 0. In each of the
nine simulation scenarios we compare the marginal-mean-model-based estimator with the
assisted estimators for three differently specified SNMMs.
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The experiment results when N = 100 are shown in Table 2.2; results for N = 250 are
shown in Table 2.3. Instead of the MSE of the estimators, we present the relative MSE of
the assisted estimators, with the MSE of the marginal-mean-model-based estimator (MM)
as the reference. From the simulation results with N = 100, we found that, for the compar-
ison between the two embedded policies, the assisted estimators with correctly specified
SNMM outperform MM in terms of the MSE in most cases; mis-specifying the SNMM
does not seem to introduce bias, but severe mis-specification (Assist3 in the Table) can
lead to lower efficiency, and sometimes can even cause the assisted estimators to have a
larger MSE than MM. For the comparison between the tailored policy and the reference
policy, the assisted estimators with correctly specified SNMM outperform MM in terms of
the MSE, and the advantage is greater than that of the first contrast. Mis-specifying the
SNMM introduces bias; in particular, severe mis-specification (Assist3) leads to consid-
erable bias. However, this bias does not seem to greatly impact the performance of the
confidence interval. Interestingly, for the estimation of this contrast, mis-specifying the
SNMM may even result in a smaller MSE despite of the bias, due to a smaller standard
deviation in the estimate.

With a larger sample size (N = 250 as compared to N = 100), the advantage of
the assisted estimators in terms of having a lower MSE than the marginal-mean-model-
based estimators is more evident. Similar to the N = 100 experiments, mis-specifying
the SNMM introduces bias in some scenarios, but even in those scenarios the performance
of the assisted estimators in terms of the MSE does not worsen, because reduction in the
variance dominates the bias-variance tradeoff. We notice that under the most severe mis-
specification of SNMM (Assist3), the confidence interval of the contrast between the tai-
lored policy and the policy (0, 0, 0) has noticeable under-coverage. However, we expect
that in practice, such severe mis-specification, which fails to use any variable correlated
with the variables in the true SNMM, might be unlikely to happen.

2.5 Illustration with the ExTENd Data

The ExTENd study (see Figure 2.1) includes 302 participants, with 49 participants drop-
ping out prior to experiencing two heavy drinking days. These participants are removed
from our analysis as they did not experience the first randomization and both they and the
clinicians were blind to this randomization. Only three participants dropped out during
the first treatment stage after experiencing two heavy drinking days. The data from these
participants is also removed for simplicity. Thus the data we analyze has a sample size of
250.
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We use both the marginal-mean-model-based estimator and the assisted estimator to
compare the most intensive versus the least intensive policies. Treatment policy (1,1,1)
represents the most intensive policy in the SMART, in which the early non-response is
deemed to occur if and when there are 5 or more heavy drinking days in the first 8 weeks, in
which early responders are provided TDM and in which early non-responders are provided
NTX+CBI. Treatment policy (0,0,0) represents the least intensive policy, in which early
non-response is deemed to occur if and when there are 2 or more heavy drinking days
in the first 8 weeks, in which early responders are provided UC and in which early non-
responders are provided CBI only.

Besides the two treatment policies above, we will also compare a more “deeply tai-
lored” policy versus the policy (0, 0, 0). At stage one, this tailored policy assigns the 5
or more heavy drinking days definition of non-response to participants for whom the stan-
dardized pre-treatment mental score is above zero and the 2 or more heavy drinking days
definition of non-response to participants with a pre-treatment mental score below zero.
Among early responders this policy assigns TDM if they have at least one heavy drinking
day during stage one and assigns UC otherwise. Among early non-responders this policy
assigns NTX+CBI if their stage one duration is shorter than 49 days and otherwise assigns
CBI only. The justification of this treatment policy comes from the belief that participants
who were in worse mental health condition (indicated by a lower mental composite score)
at baseline should proceed to stage two earlier to receive more intensive treatments. More-
over, it is considered that responders and non-responders who performed worse in stage
one (i.e., responders who experienced at least one heavy drinking day and non-responders
who transitioned to stage two sooner) should receive more intensive intervention in stage
two.

We compare the treatment policies in terms of the Penn Alcohol Craving Scale (PACS).
Here we reverse code this scale such that higher values imply less craving thus are more
favorable. PACS is collected every two months during stage two. The outcome Y is the
average of the measurement at two months and four months after entry into stage two.
Among the 250 participants in our data set, 46 participants are missing Y . We deal with
this missingness in the outcome, Y , by adopting a slightly adjusted assisted estimator that
handles missingness via inverse-probability-weights (see [62] for example). The adjust-
ment requires an estimator of the conditional probability of missing the outcome. This
adjustment is briefly presented in the appendix. In particular, we make the assumption that
the missing Y ’s are missing at random [65]. The marginal-mean-model-based estimator is
also adjusted similarly to accommodate for missingness.

In the analysis model, we choose to include the following covariates: X1 is a 10-
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Table 2.4: Illustrative data analysis results with the ExTENd data. Evaluate the policy
contrasts of both the policy (1, 1, 1) and the proposed tailored policy, in relation to the
policy (0, 0, 0), with respect to PACS. MM = Marginal-mean-model-based estimator. As-
sist1 = Assisted estimator with a parsimonious SNMM. Assist2 = Assisted estimator with
a complex SNMM.

(1,1,1) vs (0,0,0) Tailored vs (0,0,0)
Est (s.e.) Lower

Bound
Upper
Bound

Est (s.e.) Lower
Bound

Upper
Bound

PACS MM 2.98 (1.30) 0.44 5.52 0.21 (1.05) -1.85 2.27
Assist1 2.83 (1.44) 0.00 5.66 0.91 (0.99) -1.02 2.85
Assist2 2.95 (1.48) 0.04 5.85 1.25 (1.05) -0.80 3.31

dimensional baseline covariate including mean-centered versions of {gender, age, years
of alcohol use, indicator of drug abuse, pre-treatment percent days heavy drinking, indi-
cator of being married, years of alcohol intoxication, pre-treatment alcohol intoxication
days within 30 days, pre-treatment percent days drinking, pre-treatment mental compos-
ite score}; X2 is 5-dimensional covariate measured prior to re-randomization, including
{duration of the first stage, number of heavy drinking days during the first stage, percent
days drinking during the first stage, percent days heavy drinking during the first stage, av-
erage number of pills taken per day during the first stage}. Moreover, A1 indicates whether
(A1 = 1) or not (A1 = 0) a patient is randomized to the lenient definition (i.e., five or
more heavy drinking days) of non-response as opposed to the stringent definition (i.e., two
or more heavy drinking days); R is the indicator of being an early responder; A2 indicates
whether (A2 = 1) or not (A2 = 0) a responder is re-randomized to TDM as opposed
to UC, or whether or not a non-responder is re-randomized to NTX+CBI as opposed to
Placebo+CBI.

We run two sets of analysis with the assisted estimators, under two different SNMMs:
in the first analysis we adopt a parsimonious model for SNMM by assuming µ1(H1, A1) =

A1(1, X̃T
1 )β1 and µ2(H2, A2) = A2(1, X̃T

2 , A1, R,RX̃
T
2 , RA1)β2, where X̃1 is the first five

dimensions in X1 and X̃2 is the first three dimensions in X2; in the second analysis we
adopt a more complex model for SNMM by assuming µ1(H1, A1) = A1(1, XT

1 )β1 and
µ2(H2, A2) = A2(1, XT

2 , A1, R,RX
T
2 , RA1)β2. Asymptotic standard errors of the policy

contrast estimates are calculated and used to construct the 95% confidence intervals for the
policy contrasts. Table 2.4 presents the analysis results.

The three estimators (including two assisted estimators with different SNMMs) produce
similar estimates, considering the relatively large standard errors. The analyses suggest
that the most intensive, (1,1,1) policy is estimated to approximately lower PACS by 3 on

28



average compared to the least intensive, (0,0,0) policy, and this difference is significant
at 0.05 level, across all three estimators. The proposed more tailored policy, on the other
hand, does not significantly differ from the (0,0,0) policy. Note that the marginal-mean-
model based estimator has standard error no greater than that of the assisted estimators;
this might be due to either small treatment effects in the ExTENd data, or the variance due
to the considerable amount of missingness in the data.

2.6 Extension to More than 2 Stages

In this chapter we focused on the comparison of two-stage treatment policies. Most of
the SMART studies that have been completed or are on-going are two-stage trials, that is,
in these studies each participant was at most randomized twice. None-the-less SMART
studies with more than two stages are likely to be proposed in the future. Here we discuss
how the proposed assisted estimator might be extended to a three-stage problem; similar
ideas can be used to extend to more stages.

The observed data on each participant is {X1, A1, X2, A2, X3, A3, Y }, and a three-
stage policy would be d = (d1, d2, d3); the history before each treatment decision time
point is H1 = X1, H2 = (X1, A1, X2), H3 = (X1, A1, X2, A2, X3) respectively. Poten-
tial outcomes can be conceptualized similarly. Intermediate treatment effects are given
by µ3(h3, a3) = E[Y (a1, a2, a3)|H3(a1, a2) = h3] − E[Y (a1, a2, 0)|H3(a1, a2) = h3],
µ2(h2, a2) = E[Y (a1, a2, 0)|H2(a1) = h2]−E[Y (a1, 0, 0)|H2(a1) = h2] and µ1(h1, a1) =

E[Y (a1, 0, 0)|H1 = h1]− E[Y (0, 0, 0)|H1 = h1].
Suppose we have models for µ1, µ2, µ3 with estimators of the parameters in these mod-

els. Then a straightforward estimator for the value of d, Vd, is

Pn
{
Y − µ1(H1, A1; β̂1)− µ2(H2, A2; β̂2)− µ3(H3, A3; β̂3) (2.6)

+ µ1(H1, d1(H1); β̂1)

+
I{A1 = d1(H1)}

p1(A1|H1)
µ2(H2, d2(H2); β̂2)

+
I{A1 = d1(H1)}

p1(A1|H1)
· I{A2 = d2(H2)}

p2(A2|H2)
µ3(H3, d3(H3); β̂3)

}
,

in which the third line aims to estimate the effect of the treatment specified by d2 if the
first stage treatment were assigned according to d1, and the fourth line aims to estimate
the effect of the treatment specified by d3 if the first and second stage treatments were
assigned according to (d1, d2). This estimator is assisted by the intermediate treatment
effect functions (in terms of the primary outcome Y ), borrowing the inverse-probability-
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weight idea to estimate the effect of the policy at subsequent stages.
Similar to the two-stage assisted estimator, one can construct assisted estmimators to

replace the fourth line in (2.6), by viewing µ3(H3, d3(H3)) as the end-of-study primary
outcome. More specifically, define y(ā2) = µ3(H3(ā2), d3(H3(ā2)); this is the intermedi-
ate effect of the treatment specified by d3 on Y , conditional on the history H3(ā2). Define
ν2(h2, a2) = E[y(a1, a2)|H2(a1) = h2] − E[y(a1, 0)|H2(a1) = h2]; this is the effect of
treatment a2 relative to the reference treatment at stage two, on the mean of the treatment
effect of d3, among individuals with history h2. Define ν1(h1, a1) = E[y(a1, 0)|H1 =

h1] − E[y(0, 0)|H1 = h1]; this is the effect of treatment a1 relative to the stage one ref-
erence treatment, if always followed by the reference treatment at stage two, on the mean
of the treatment effect of d3. Suppose that ν1, ν2 can be modeled as ν1(h1, a1; τ1) and
ν2(h2, a2; τ2) and that τ1, τ2 can be consistently estimated. Estimators of ν1 and ν2 can be
used to form an assisted estimator of (the fourth line in (2.6) is altered) Vd:

Pn
{
Y − µ1(H1, A1; β̂1)− µ2(H2, A2; β̂2)− µ3(H3, A3; β̂3) (2.7)

+ µ1(H1, d1(H1); β̂1)

+
I{A1 = d1(H1)}

p1(A1|H1)
µ2(H2, d2(H2); β̂2)

+ µ3(H3, d3(H3); β̂3)− ν1(H1, A1; τ̂1)− ν2(H2, A2; τ̂2)

+ ν1(H1, d1(H1); τ̂1) +
I{A1 = d1(H1)}

p1(A1|H1)
ν2(H2, d2(H2); τ̂2)

We have discussed two possible estimators of the value of a three-stage treatment pol-
icy; in fact, there is bias-variance-tradeoff between the two estimators, similar to the esti-
mators for the value of a two-stage treatment policy.

2.7 Discussion

Our simulations indicate that the MSE performance of the assisted estimators is not sensi-
tive to misspecification of the model for the intermediate treatment effects. None-the-less
to reduce bias, efforts should be made to ensure good model fit in estimating the interme-
diate treatment effects. Data analysts should make efforts to collect all the time-varying
covariates that may moderate the effect of treatment at each stage on the primary outcome
and include them in the treatment effects models. Specific subject knowledge, and possibly
results from past studies, may provide valuable information for choosing the models.

In this chapter we did not derive the semi-parametrically efficient estimator for policy
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value and/or policy contrast. To obtain the most efficient estimator of the policy contrast,
one needs to subtract from the influence function of the assisted estimator its projection on
all tangent spaces that are orthogonal to the tangent space associated to the policy contrast;
this appears difficult because the policy contrast is a functional of a collection of finite or
infinite dimensional parameters in the data distribution and the functional is dependent on
the specific policies being studied. We plan to investigate this efficiency problem in future
research.

The methodology proposed in this chapter is only applicable when a few candidate
treatment policies have been pre-specified. When there are more than a few candidate
treatment policies, usually one of the candidate treatment policies can be considered as
a reference policy, and comparison can be made between any of the remaining policies
and this reference policy. In future work, we will also consider a multiple comparison
procedures for many treatment policies.

The assisted estimators are based upon the structural nested mean models for continu-
ous primary outcomes. Multiplicative structural mean models [53] and generalized struc-
tural mean models [81] have been proposed to deal with non-continuous primary outcomes
and non-linear treatment effects. We expect that the assisted estimators can also be ex-
tended to deal with more complicated primary outcomes and more complicated underlying
interaction between treatments and covariates, with the assistance of these more recent
variations of SNMMs.

2.8 Appendix

Proof of Lemma 2.2.1

We first write a telescoping sum of the conditional mean of Y (A1, A2). Since A1|H1 = h1

has a conditional distribution given by p1(·|h1) (*) and A2|H2(A1) = h2 has a conditional
distribution given by p2(·|h2) (**), we haveE[Y (A1, 0)|H2(A1), A2] = E[Y (A1, 0)|H2(A1)]

and E[Y (0, 0)|H1, A1] = E[Y (0, 0)|H1]. Thus we have:

E[Y (A1, A2)|H2(A1), A2] = E[Y (A1, A2)|H2(A1), A2]− E[Y (A1, 0)|H2(A1), A2]

+ E[Y (A1, 0)|H2(A1)]− E[E[Y (A1, 0)|H2(A1)]|H1, A1]

+ E[Y (A1, 0)|H1, A1]− E[Y (0, 0)|H1, A1]

+ E[Y (0, 0)|H1]

31



Note that the first line on the right hand side is equal to µ2(H2(A1), A2) due to (**) and
the third line is equal to µ1(H1, A1) due to (*); the second line has a conditional mean
zero, conditional on (H1, A1). Thus we conclude that E[Y (A1, A2) − µ2(H2(A1), A2) −
µ1(H1, A1)] = E[Y (0, 0)].

For a fixed policy d, the associated potential outcomes are {X1, X2(d1), Y (d1, d2)}.
Now let us focus on the telescoping sum of the conditional mean of Y (d1, d2). Due to
(*), we have E[Y (A1, a2)|X1, A1, X2(A1)]1A1=a1 = E[Y (a1, a2)|X1, X2(a1)]1A1=a1; this
impliesE[Y (A1, a2)|X1, A1, X2(A1)]1A1=d1(H1) = E[Y (d1, a2)|X1, X2(d1)]1A1=d1(H1) be-
cause d1(H1) is known given X1. Moreover, since d2(H2(A1)) = d2(H2(d1)) on event
{A1 = d1(H1)}, we have
E[Y (A1, d2)|X1, A1, X2(A1)]1A1=d1(H1) = E[Y (d1, d2)|X1, X2(d1)]1A1=d1(H1). Now let
p1(·|h1) be a degenerate distribution, that concentrates on d1(h1), we then conclude that
E[Y (d1, d2)|X1, X2(d1)]−E[Y (d1, 0)|X1, X2(d1)] = µ2(H2(a1), a2)|a2=d2(H2(a1)),a1=d1(H1).
Similarly one can show E[Y (d1, 0)|X1]− E[Y (0, 0)|X1] = µ1(H1, a1)|a1=d1(H1).

Based on the arguments above, we can write:

E[Y (d1, d2)|X1, X2(d1)] = E[Y (d1, d2)|X1, X2(d1)]− E[Y (d1, 0)|X1, X2(d1)]

+ E[Y (d1, 0)|X1, X2(d1)]− E [E[Y (d1, 0)|X1, X2(d1)]|X1]

+ E[Y (d1, 0)|X1]− E[Y (0, 0)|X1]

+ E[Y (0, 0)|X1]

and conclude thatE[Y (d1, d2)] = E[µ1(H1, a1)|a1=d1(H1)+µ2(H2(a1), a2)|a2=d2(H2(a1)),a1=d1(H1)

+Y (0, 0)]. Thus Vd = E
[
Y (A1, A2)−µ2(H2(A1), A2)−µ1(H1, A1) +µ1(H1, d1(H1)) +

µ2(H2(a1), a2)|a2=d2(H2(a1)),a1=d1(H1)

]
. Finally, consider the transition from the degenerate

distribution of A1 that concentrates on d1(H1) to the distribution of A1 given by p1(·|H1),
we then can rewrite E[µ2(H2(a1), a2)|a2=d2(H2(a1)),a1=d1(H1)] as
E
[
I{A1=d1(H1)}
p1(A1|H1)

µ2(H2(A1), d2(H2(A1)))
]
. This completes the proof of Lemma 2.2.1.

Proof of Lemma 2.2.2

First we prove the equality for the second-stage treatment effect. By sequential random-
ization of A1, E[Y (a1, a2)|H2(a1) = h2] = E[Y (A1, a2)|H2(A1) = h2] (note that a1

is also part of h2), which is then equal to E[Y (A1, A2)|H2(A1) = h2, A2 = a2] due
to sequential randomization of A2. Finally by consistency assumption, we conclude that
E[Y (a1, a2)|H2(a1) = h2] = E[Y |H2 = h2, A2 = a2], thus the first equalilty for µ2(h2, a2)

holds.
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Next we prove the equality for the first-stage treatment effect. By sequential random-
ization of A1, E[Y (a1, 0)|H1 = h1] = E[Y (a1, 0)|H1 = h1, A1 = a1], which is then equal
to E[E[Y (a1, 0)|H2(a1), A2 = 0]|H1 = h1, A1 = a1] due to sequential randomization of
A2. Re-using sequential randomization of A1 for the inner conditional mean, this quantity
can be written as E[E[Y (A1, A2)|H2(A1), A2 = 0]|H1 = h1, A1 = a1]. Finally by con-
sistency assumption, we conclude that E[Y (a1, 0)|H1 = h1] = E[E[Y |H2, A2 = 0]|H1 =

h1, A1 = a1], thus the equality for µ1(h1, a1) holds.
The equality of expressing the policy value Vd with the observed data directly follows

from Lemma 2.2.1, due to the consistency assumption.

Proof of Lemma 2.2.3

(a) We know from Lemma 2.2.2 that Vd = E
[
Y−µ2(H2, A2)−µ1(H1, A1)+µ1(H1, d1(H1))+

I{A1=d1(H1)}
p1(A1|H1)

µ2(H2, d2(H2))
]
. Again using the transition from the degenerate distribution

of A1 that concentrates on d1(H1) to the distribution of A1 given by p1(·|H1), it is obvi-
ous to see that that E[m(H1, d1(H1))− I{A1=d1(H1)}

p1(A1|H1)
m(H1, A1)] = 0,∀m that satisfies the

integrable condition.
(b) The asymptotic variance of V̂0(d; β̂) is equal to V ar(fβ0 +CT

ϕϕ), and the asymptotic
variance of V̂m(d; β̂) is equal to V ar(fβ0 +CT

ϕϕ+gm), where the termCT
ϕϕ comes from the

estimation of paramter β in the SNMM (ϕ is the influence function for β); fβ(h2, a2, y) =

y−µ1(h1, a1; β1)−µ2(h2, a2; β2)+µ1(h1, d1(h1); β1)+ωd1(h1, a1)µ2(h2, d2(h2); β2), and
gm(h1, a1) = m(h1, d1(h1)) − ωd1(h1, a1)m(h1, a1). Then the difference in asymptotic
variance between V̂m(d; β̂) and V̂0(d; β̂) is equal to 2Cov(fβ0 + CT

ϕϕ, gm) + V ar(gm).
We note that for β̂ in subclass B, Cov(CT

ϕϕ, gm) = 0. More specifically, when β̂

belongs to the subclass B, it is the solution to an estimating equation with the nuisance
function q1(h1; ξ) chosen optimally (see the review of g-estimators), and one can show that
E[ϕ · gm] = 0. Thus for those β̂’s, Cov(CT

ϕϕ, gm) = 0, and we only need to focus on
2Cov(fβ0 , gm) + V ar(gm); i.e., the derivation of the optimal m function is the same as
the arguments under a known β. For more general β̂’s, Cov(CT

ϕϕ, gm) would depend on
the estimating equation that produces β̂ as well as the policy d in a complicated way, thus
affecting the choice of optimal m function; for simplicity, in this lemma we assume that β̂
belongs to B.

In addition, note that E[(Y − µ1(H1, A1) − µ2(H2, A2)) · gm] = 0 by taking the con-
ditional mean with respect to (H1, A1). As a result, the optimal choice of m remains the
same whether the estimator is for the value Vd, or for the contrast between policy d and a
static policy that always assigns treatment 0.
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Denote m∗(h1, a1) ≡ E[µ2(H2, d2(H2))|H1 = h1, A1 = a1]; for simplicity, we write
ωd1 ,m and m∗ in short for ωd1(H1, A1),m(H1, A1) and m∗(H1, A1), and write m ◦ d1 and
m∗ ◦ d1 in short for m(H1, d1(H1)) and m∗(H1, d1(H1)). Then, since E[gm(H1, A1)|H1 =

h1] ≡ 0, we could derive that 2Cov(fβ0 , gm)+V ar(gm) = E[ωd1 (2m∗ −m) (m ◦ d1 − ωd1m)].
Re-using the fact that E[m ◦ d1 − ωd1m|H1 = h1] ≡ 0 for arbitrary function m, we
have 2Cov(fβ0 , gm) + V ar(gm) = E[{(m−m∗) ◦ d1 − ωd1(m−m∗)}

2]−E[(m∗ ◦ d1 −
ωd1m

∗)2]. Thus the use of function m in the assisted estimator leads to efficiency improve-
ment whenE[{(m−m∗)◦d1−ωd1(m−m∗)}2] < E[(m∗◦d1−ωd1m∗)2]; in particular, the
largest efficiency improvement is achieved when m(h1, d1(h1)) ≡ m∗(h1, d1(h1)). Note
that, the values of function m at only (h1, d1(h1)) have an impact on V̂m(d; β̂).

Remark: To get more intuition about when the efficiency improvement that is achieved
by using function m can be large, consider a simple scenario where treatments are binary
and equally randomized in the data. Then E[(m∗ ◦ d1 − ωd1m

∗)2], the maximal amount
of variance reduction, is equal to E[m∗(H1, d1(H1))2]. This quantity can be large if, under
the circumstance that d1 is followed in stage one, on average the treatment recommended
by d2 at stage two has a large treatment effect.

Proof of Theorem 2.2.4

Under regularity conditions, the following class of functions is Glivenko-Cantelli:

{y − µ2(h2, a2; β2)− µ1(h1, a1; β1) + µ1(h1, d1(h1); β1)

+
I{a1 = d1(h1)}

p1(a1|h1)
(µ2(h2, d2(h2); β2)−m(h1, a1;αm)) +m(h1, d1(h1);αm) :

‖β1 − β10‖ ≤ δ, ‖β2 − β20‖ ≤ δ, ‖αm − α+
m‖ ≤ δ}

The theorem then follows from Lemm 2.2.2 and Lemma 2.2.3 by applying Glivenko-
Cantelli Theorem to this function class.

Proof of Theorem 2.2.5

Since V̂0(d; β̂) is a special case of V̂m̂(d; β̂), we only prove the asymptotic normality of the
latter one. We write V̂d in short for V̂m̂(d; β̂) and Vd in short for the true policy value of d.
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For ease of notation, define ωd1(H1, A1) = I{A1=d1(H1)}
p1(A1|H1)

. Then

√
n(V̂d − Vd) =

√
nPn

{
Y − µ2(H2, A2; β̂2)− µ1(H1, A1; β̂1) + µ1(H1, d1(H1); β̂1)

+ ωd1(H1, A1)µ2(H2, d2(H2); β̂2)
}

−
√
nP
{
Y − µ2(H2, A2; β20)− µ1(H1, A1; β10) + µ1(H1, d1(H1); β10)

+ ωd1(H1, A1)µ2(H2, d2(H2); β20)
}

+
√
nPn

{
m(H1, d1(H1); α̂m)− ωd1(H1, A1)m(H1, A1; α̂m)

}
−
√
nP
{
m(H1, d1(H1);α+

m)− ωd1(H1, A1)m(H1, A1;α+
m)
}
.

Under the regularity conditions specified in the theorem, Pµ1(H1, A1; β1), as a function of
β1, is differentiable, and the order of differentiation and integration can be interchanged;
moreover Pµ̇1(H1, A1; β1) is continuous in β1 in a neighborhood of β10. Combined with
the fact that β̂1 converges in probability to β10, we have:
√
nPµ1(H1, A1; β̂1)−

√
nPµ1(H1, A1; β10) = (Pµ̇1(H1, A1; β10) + op(1))

√
n(β̂1 − β10).

By similar arguments and the assumptions that
√
n(β̂1 − β10) = Op(1),

√
n(β̂2 − β20) =

Op(1), we can get:

√
n(V̂d − Vd) =

√
n(Pn − P )

{
Y − µ2(H2, A2; β̂2)− µ1(H1, A1; β̂1) + µ1(H1, d1(H1); β̂1)

+ ωd1(H1, A1)µ2(H2, d2(H2); β̂2)
}

+ P
[
ωd1(H1, A1)µ̇2(H2, d2(H2); β20)− µ̇2(H2, A2; β20)

]√
n(β̂2 − β20)

+ P
[
µ̇1(H1, d1(H1); β10)− µ̇1(H1, A1; β10)

]√
n(β̂1 − β10)

+
√
nPn

{
m(H1, d1(H1); α̂m)− ωd1(H1, A1)m(H1, A1; α̂m)

}
−
√
nP
{
m(H1, d1(H1);α+

m)− ωd1(H1, A1)m(H1, A1;α+
m)
}

+ op(1).

Under regularity conditions on m(h1, a1;αm), we can derive

√
nP (m(H1, d1(H1); α̂m)− ωd1(H1, A1)m(H1, A1; α̂m))

−
√
nP
(
m(H1, d1(H1);α+

m)− ωd1(H1, A1)m(H1, A1;α+
m)
)

=
(
Pṁ(H1, d1(H1);α+

m)− Pωd1(H1, A1)ṁ(H1, A1;α+
m) + op(1)

)√
n(α̂m − α+

m).
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Since P [m(H1, d1(H1);αm)− ωd1(H1, A1)m(H1, A1;αm)] ≡ 0, for all αm, we derive the
following equality, as long as

√
n(α̂m − α+

m) = Op(1):

√
n(V̂d − Vd) =

√
n(Pn − P )

{
Y − µ2(H2, A2; β̂2)− µ1(H1, A1; β̂1) + µ1(H1, d1(H1); β̂1)

+ ωd1(H1, A1)µ2(H2, d2(H2); β̂2)
}

+ P [ωd1(H1, A1)µ̇2(H2, d2(H2); β20)− µ̇2(H2, A2; β20)]
√
n(β̂2 − β20)

+ P [µ̇1(H1, d1(H1); β10)− µ̇1(H1, A1; β10)]
√
n(β̂1 − β10)

+
√
n(Pn − P ) {m(H1, d1(H1); α̂m)− ωd1(H1, A1)m(H1, A1; α̂m)}+ op(1)

Define functions indexed by β1, β2, αm as fβ1,β2,αm(x1, a1, x2, a2, y) = y−µ2(h2, a2; β2)−
µ1(h1, a1; β1) + µ1(h1, d1(h1); β1) + ωd1(h1, a1)µ2(h2, d2(h2); β2) +m(h1, d1(h1);αm)

− ωd1(h1, a1)m(h1, a1;αm) and function class
Fδ =

{
f̃β1,β2,αm := 1‖β1−β10‖≤δ,‖β2−β20‖≤δ,‖αm−α+

m‖≤δfβ1,β2,αm

}
. Since β̂

p−→ β0 and α̂m
p−→

α+
m,
√
n(Pn − P )fβ̂1,β̂2,α̂m =

√
n(Pn − P )f̃β̂1,β̂2,α̂m + op(1). Under regularity conditions,

P sup |f̃β1,β2,αm|2 <∞, thus P [f̃β̂1,β̂2,α̂m − f̃β10,β20,α+
m

]2
p−→ 0. By assuming∑

a1
P sup‖β1−β10‖≤δ |µ̇1(H1, a1; β1)|2 + |µ1(H1, a1; β1)|2 <∞,∑

a2
P sup‖β2−β20‖≤δ |µ̇2(H2, a2; β2)|2 + |µ2(H2, a2; β2)|2 <∞ and∑

a1
P sup‖αm−α+

m‖≤δ |ṁ1(H1, a1;αm)|2 + |m1(H1, a1;αm)|2 < ∞, it can be shown that
Fδ is a P−Donsker class. By Lemma 19.24 in [79],

√
n(Pn − P )f̃β̂1,β̂2,α̂m =

√
n(Pn −

P )fβ10,β20,α+
m

+ op(1). Hence we have shown that

√
n(V̂d − Vd) =

√
n(Pn − P )fβ10,β20,α+

m

+ P [ωd1(H1, A1)µ̇2(H2, d2(H2); β20)− µ̇2(H2, A2; β20)]
√
n(β̂2 − β20)

+ P [µ̇1(H1, d1(H1); β10)− µ̇1(H1, A1; β10)]
√
n(β̂1 − β10) + op(1).

This combined with the assumption that β̂ is an asymptotically normal estimator for the
parameter β in the SNMM, yields that V̂d is an asymptotically normal estimator for Vd.

Therefore, the asymptotic variance of
√
n
(
V̂d − Vd

)
is equal to

E
(
fβ10,β20,α+

m
(X1, A1, X2, A2, Y ) + P [µ̇1(H1, d1(H1); β10)− µ̇1(H1, A1; β10)]ϕ1

+ P [ωd1(H1, A1)µ̇2(H2, d2(H2); β20)− µ̇2(H2, A2; β20)]ϕ2

)2, where ϕ1, ϕ2 are the influ-
ence functions for β̂1 and β̂2.

Proof of Lemma 2.3.1

With arguments similar to part (b) in Lemma 2.2.3, under the assumption that β̂ belongs
to the subclass B of g-estimators, the difference in asymptotic variance between the esti-
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mators with functionm and without functionm is equal to 2Cov(fd̃,β0−fd,β0 , gmd̃−gmd)+

V ar(gmd̃−gmd), where fd,β(x1, a1, x2, a2, y) = µ1(h1, d1(h1); β1)+ωd1(h1, a1)µ2(h2, d2(h2); β2),
and gmd(x1, a1) = md(h1, d1(h1))− ωd1(h1, a1)md(h1, a1).

Define m∗d(h1, a1) ≡ E[µ2(H2, d2(H2))|H1 = h1, A1 = a1] and further define ∆d =

md − m∗d. It can be derived that 2Cov(fd̃,β0 − fd,β0 , gmd̃ − gmd) + V ar(gmd̃ − gmd) =

E
[
{(∆d̃◦d̃1−ωd̃1∆d̃)−(∆d◦d1−ωd1∆d)}2

]
−E
[
{(m∗

d̃
◦d̃1−ωd̃1m

∗
d̃
)−(m∗d◦d1−ωd1m∗d)}2

]
.

The second term in the previous formula is not dependent on md or md̃, and thus the lowest
asymptotic variance is obtained when (∆d̃ ◦ d̃1 − ωd̃1∆d̃) = (∆d ◦ d1 − ωd1∆d), a.s.. The
conclusions of the lemma are implied by this equality.

Proof of Lemma 2.3.2

Define ∆̂(d, d̃) := V̂m̂d̃(d̃; β̂) − V̂m̂d(d; β̂); since each assisted estimator for the value is
asymptotically normal, ∆̂(d, d̃) is also asymptotically normal. For notational simplicity,
assume that the treatment effect functions can be modeled as linear in unknown parameters,
i.e., µ1(h1, a1; β1) = φ1(h1, a1)Tβ1 and µ2(h2, a2; β2) = φ2(h2, a2)Tβ2, where φt is some
feature of (ht, at). Denote ∆(d, d̃) := Vd̃ − Vd.

We first write the estimated value of m functions for each individual explicitly, as-
suming that m is a working estimate of E[µ2(H2, d2(H2))|H1 = h1, A1 = a1] obtained
from least-squares. This assumption is made only for notational simplicity; in practice,
more complicated approach can be taken to estimate m if considered necessary. Denote
the predictors that are used to estimate m as Dm = Dm(H1, A1), then the fitted value of m
function for an individual with (H1, A1) = (h1, a1) would be equal to:

m(h1, a1; α̂m) = Dm(h1, a1)T
(
PnDmD

T
m

)−1 PnDmφ2(H2, d2(H2))T β̂2.

To simplify the notation, define D̂ := PnDmD
T
m, Ẑd := PnDmφ2(H2, d2(H2)), then

under the specified regularity conditions, we have:

√
n(∆̂(d, d̃)−∆(d, d̃))

=
√
n(Pn − P )fd,d̃,β10,β20

+ P
[
φ1(H1, d̃1(H1))− φ1(H1, d1(H1))

]T √
n(β̂1 − β10)

+ P
[
ωd̃1(H1, A1)φ2(H2, d̃2(H2))− ωd1(H1, A1)φ2(H2, d2(H2))

]T √
n(β̂2 − β20)

+
√
nPngTd̃1P [DmD

T
m]−1P [Dmφ2(H2, d̃2(H2))Tβ20]

−
√
nPngTd1P [DmD

T
m]−1P [Dmφ2(H2, d2(H2))Tβ20] + op(1),
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in which fd,d̃,β1,β2(h2, a2) = (φ1(h1, d̃1(h1))−φ1(h1, d1(h1)))Tβ1+ωd̃1(h1, a1)φ2(h2, d̃2(h2))Tβ2−
ωd1(h1, a1)φ2(h2, d2(h2))Tβ2, and gd1(h1, a1) = Dm(h1, d1(h1))− ωd1(h1, a1)Dm(h1, a1).

Thus if we denote the influence function of the estimator for parameters in the SNMM
by (ϕ1, ϕ2), namely if

√
n(β̂1−β10) =

√
nPnϕ1 + op(1), and

√
n(β̂2−β20) =

√
nPnϕ2 +

op(1), then the asymptotic variance of ∆̂(d, d̃) is equal to

Σ∆ = V ar
(
fd,d̃,β10,β20 + P

[
φ1(H1, d̃1(H1))− φ1(H1, d1(H1))

]T
ϕ1

+ P
[
ωd̃1(H1, A1)φ2(H2, d̃2(H2))− ωd1(H1, A1)φ2(H2, d2(H2))

]T
ϕ2

+ P [Dmφ2(H2, d̃2(H2))Tβ20]TP [DmD
T
m]−1gd̃1

− P [Dmφ2(H2, d2(H2))Tβ20]TP [DmD
T
m]−1gd1

)
.

Next we provide the form of the plug-in estimator Σ̂∆ for Σ∆. Suppose we are able to
estimate the influence function of (β̂1, β̂2) evaluated at each data point by (ϕ̂1, ϕ̂2) =

(ϕ1(Z; β̂, ξ̂), ϕ2(Z; β̂, ξ̂)) (Z includes all the observables from one individual; ξ is the nui-
sance parameter in estimating SNMM). Define Σ̂∆ =

Pn
(
fd,d̃,β̂1,β̂2 + Pn

[
φ1(H1, d̃1(H1))− φ1(H1, d1(H1))

]T
ϕ̂1 (2.8)

+ Pn
[
ωd̃1(H1, A1)φ2(H2, d̃2(H2))− ωd1(H1, A1)φ2(H2, d2(H2))

]T
ϕ̂2

+ Pn[Dmφ2(H2, d̃2(H2))T β̂2]TPn[DmD
T
m]−1gd̃1

− Pn[Dmφ2(H2, d2(H2))T β̂2]TPn[DmD
T
m]−1gd1

)2

.

To show that Σ̂∆ converges in probability to Σ∆, we may use the result that the class of
functions involved is a Glivenko-Cantelli class using arguments similar to the proof of
Theorem 2.2.4.

Further Details about the Generative Model in Simulation

Here we provide more details about the generative model used in the simulation experi-
ments. η0(·), η1(·) and the variance of ε that we use are all based on the by-products of
estimating the SNMM with the ExTENd data, using PACS as the primary outcome. More
specifically, η0(·) is the main effect of X1, and it is set to η0(X1) = (1, X11, X12,

X13, X11X12, X11X13, X12X13, X
2
11, X

2
12, X

2
13)α0 where α0 = (11.23, 0.3, 2.28,−0.25,

0.24, 0.73, 0.3,−0.74,−0.53,−0.47). η1(·) is the main effect ofX2 conditional on (X1, A1),
and it is set to η1(X1, A1, X2) = 2(X21−E[X21|X1, A1])− 2(X22−E[X22|X1, A1]). The
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standard deviation of ε is set to be 5.54.

Assisted Estimator with Missingness in the Outcome

Real data arising from SMART studies normally contains some missing data, due to par-
ticipants’ dropouts or missing some intermediate treatment sessions or research outcome
measurement sesssions for various reasons. In this section we describe an approach to the
adjustment of the proposed assisted estimator, in the simplified scenario where only the pri-
mary outcome variable Y contains missing values. In particular, this requires that patients
do not leave the study before the second randomization.

First we denote our data from each participant as (X1, A1, X2, A2, Rπ, RπY ), whereRπ

is an indicator of whether (Rπ = 1) or not (Rπ = 0) the outcome variable Y is observed
for this participant. Let π(h2, a2) = Pr[Rπ = 1|H2 = h2, A2 = a2] be the conditional
probability of observing Y given history (h2, a2). Estimator for the parameters in SNMM
can be obtained following a similar least-squares procedure as the one introduced in Sec-
tion 2.2.2.2:

1. Generalized linear regression to obtain π(H2, A2; α̂π) as an estimator for π(H2, A2).

2. Weighted linear regression of Y on (φ2(H2, A2)−E[φ2(H2, A2)|H2],M2) with weights
Rπ/π(H2, A2; α̂π) (note that only those observations with non-missing Y get non-
zero weights); this regression outputs β̂2, which is the vector of the estimated coeffi-
cients for φ2(H2, A2)− E[φ2(H2, A2)|H2].

3. Weighted linear regression of Y−φ2(H2, A2)T β̂2 on (φ1(H1, A1)−E[φ1(H1, A1)|H1],M1)

with weights Rπ/π(H2, A2; α̂π) (again only those observations with non-missing Y
get non-zero weights); this regression outputs β̂1, which is the vector of the estimated
coefficients for φ1(H1, A1)− E[φ1(H1, A1)|H1].

Then one can use the following assisted estimator for the policy value:

V̂m(d;β̂) = Pn
{ Rπ

π(H2, A2; α̂π)
Y − µ2(H2, A2; β̂2)− µ1(H1, A1; β̂1) + µ1(H1, d1(H1); β̂1)

+
I{A1 = d1(H1)}

p1(A1|H1)

(
µ2(H2, d2(H2); β̂2)−m(H1, A1; α̂m)

)
+m(H1, d1(H1); α̂m)

}
.

Additional Results from Simulation 1

Here we present the simulation results for the same set of simulation experiments using
an estimator for β that does not belong to the subclass B (simulation 1*); that is, the
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particular nuisance function referred to in the definition of B is not correctly modeled (in
fact, the true nuisance function includes linear terms and second-order terms of X1; in
this simulation, in the estimation of β we only model the nuisance function by the linear
terms). Our conjecture is that the assisted estimator V̂m̂d(d; β̂) with m̂d is still slightly more
efficient than the assisted estimator with md ≡ 0. Since β̂ no longer belongs to B, we
do not compare the assisted estimators with an “oracle” estimator. Results are shown in
Table 2.5. We found that, as expected, the resulting assisted estimators are unbiased. The
MSEs of the two different assisted estimators are similar; yet the one using a good working
estimate m̂d seems to be slightly more efficient in some cases. In general, the results are
very similar to the results from the experiments using a β̂ that belongs to the subclass B.

Simulation of the Relative Efficiency of Assisted Estimators

In this section we further investigate the extent to which the assisted estimator with a work-
ing estimate of the optimalmd improves efficiency over the assisted estimator withmd = 0.
We apply the two types of assisted estimators to estimate each of the two policy contrasts:
(1) contrast between embedded policies (1, 1, 1) and (0, 0, 0); (2) contrast between embed-
ded policies (1, 1, 0) and (0, 0, 0). Motivated by the remark in the proof of Lemma 2.2.3
about the magnitude of the achievable variance reduction by adopting a good choice of md,
the experiments are conducted with data from a series of generative models, in which the
standardized effect size (SES) of the coordinate in β2 that corresponds to the A2 main ef-
fect varies from 0.0 to 3.0, and all the other coordinates in β1 and β2 have an SES equal to
0.2. We focus on the relative mean squared errors of the assisted estimator with a working
estimate of the optimal md as compared to that with md = 0, and for both estimands we
plot the trend of the relative mean squared error as the A2 main effect grows.

The simulation results are shown in Figure 2.2. As expected, the benefit of using a
working estimatemd in the assisted estimator increases when the stage two treatment effect
amplifies. However, under the generative model we consider, the A2 main effect needs to
be as large as having an effect size of 1.5 so that the efficiency improvement is about 20%.
In practice, we suspect whether such a huge treatment effect would ever be present in a
SMART; thus in general using md = 0 in the assisted estimator may perform just as well
as the assisted estimator with a working estimate of md. We also notice that, the extent to
which using a working estimate of md is more efficient than using md = 0 varies with the
estimand.
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Table 2.5: Simulation 1*: Statistical properties of the assisted estimators of the contrast
between values of policies (1,1,1) and (0,0,0), when β̂ does not belong to B. Assist =
contrast estimator based on V̂m̂d(d; β̂) with a working estimate of the optimal md. Assist
(md = 0) = contrast estimator based on V̂0(d; β̂). The displayed numbers for confidence
interval coverage are the coverage proportion × 100. An Asterisk indicates that the MSE
of Assist (md = 0) is significantly different from MSE of Assist (at 0.05 level).

N = 100

Scenario
Bias / SD MSE ASE Coverage

Assist Assist
(md = 0)

Assist Assist
(md = 0)

Assist Assist
(md = 0)

(none,none) 0.04 0.04 3.48 3.54∗ 95.1 95.2
(none,low) 0.02 0.01 4.33 4.41 94.3 94.6
(none,med) 0.03 0.01 3.89 4.28∗ 95.6 95.5
(low,none) -0.02 -0.02 3.38 3.39 95 95.4
(low,low) 0.01 0.01 4.15 4.14 95 95.6
(low,med) 0.03 0.02 3.97 4.13∗ 95.3 95.6
(med,none) 0.05 0.05 3.93 3.98 95.2 95
(med,low) -0.02 -0.02 4.42 4.43 94.9 94.7
(med,med) 0 0 4.04 4.25∗ 94.8 95.5

N = 250

Scenario
Bias / SD MSE ASE Coverage

Assist Assist
(md = 0)

Assist Assist
(md = 0)

Assist Assist
(md = 0)

(none,none) 0.01 0.01 1.36 1.36 93.8 94
(none,low) 0.01 0.02 1.51 1.53∗ 95.4 95.6
(none,med) 0.03 0.03 1.44 1.53∗ 94.7 95.2
(low,none) -0.01 -0.01 1.35 1.35 95.9 95.9
(low,low) -0.01 -0.01 1.73 1.73 94 94.1
(low,med) -0.01 -0.01 1.45 1.57∗ 95.4 94.8
(med,none) -0.03 -0.03 1.47 1.47 94.9 94.8
(med,low) 0 0.01 1.66 1.68 94.8 95.3
(med,med) -0.02 -0.01 1.53 1.61∗ 94.7 95.1
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Figure 2.2: Relative mean squared error of the two assisted estimators, as a function of the
SES of A2 main effect in the generative model.
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CHAPTER 3

Comparing Dynamic Treatment Regimes Using
Repeated-Measures Outcomes: Modeling

Considerations in SMART Studies

3.1 Introduction

Dynamic treatment regime (DTR) adapts the type or dosage of treatments to patients’
changing needs. DTRs are particularly useful for the treatment of chronic diseases and
mental disorders, where the status of the individual is often waxing and waning, or in set-
tings in which no one treatment is effective for most individuals.

An example DTR for improving spoken communication in children with autism spec-
trum disorder [73, 20] is “Begin with a therapist-delivered behavioral language intervention
(BLI) for 12 weeks. At the end of week 12, if a child is a slow responder, augment BLI
with an augmentative or alternative communication (AAC) approach, most often a speech-
generating device; otherwise, if the child shows early signs of response, continue with
the first stage BLI for an additional 12 weeks.” See [20] for more details concerning the
intervention procedures and the definition of early signs of response at week 12.

This chapter focuses on statistical methods for comparing DTRs on the basis of a
repeated-measures outcome observed across the multiple stages of treatment in a sequen-
tial, multiple assignment, randomized trial (SMART; [25, 24, 40]). In the context of the
autism example, a researcher may be interested in comparing two DTRs, say, based on
the trajectory of the number of socially communicative utterances collected at baseline and
weeks 12, 24 and 36.

Study features that are unique to SMARTs make repeated-measures modeling a chal-
lenge. In this setting, repeated-measures models must account appropriately for (i) the
temporal ordering of treatments relative to outcome measurement occasions and (ii) the
fact that participants may transition from one stage of treatment to the next at different time
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points. In this chapter we discuss how to accommodate the features of various forms of
SMART designs in modeling repeated-measures outcomes. For illustration, we use data
from three SMART case studies in autism, child attention deficit hyperactivity disorder
(ADHD), and adult alcohol dependence. We do this because each case study presents a
progressively more complex SMART design. ADHD SMART was conducted to investi-
gate the effect of sequential implementation of two forms of ADHD treatment: medication
and behavioral modification. The unique feature of ADHD SMART is that participants
were evaluated early response status at each month after the first two months, if they had
not yet become slow responders; they transitioned to stage two and were re-randomized im-
mediately after being classified as slow responders. Thus, for different participants, mea-
surements taken at the same calendar time, say, measurement taken at the end of month
4, may belong to different treatment stages. However, measurements were taken monthly
for 8 months, for all the participants. On the other hand, ExTENd is a SMART trial of
alcohol dependence in which all participants went through two stages of treatments. They
had varying lengths of stage one treatments depending on initial randomization and par-
ticipant’s response status to first-line treatment, but roughly the same length of stage two
treatment (4 months).

A secondary contribution is the extension and application of an inverse probability of
treatment weighted (IPTW) estimator for the repeated-measures models. The IPTW esti-
mator was earlier introduced for estimating time-varying treatment effect in observational
studies and for the evaluation of one specific DTR (i.e., marginal mean model). Later it was
developed and illustrated for the Marginal Structural Models (MSMs) that compare DTRs
based on an end-of-study outcome [47, 3, 50, 46]. On the other hand, there is also works
concerning MSMs for the marginal effect of time-varying treatments or static treatment
regimes (rather than a DTR) on a repeated-measures outcome [60, 13, 61]; these papers
discussed the possibility of using a working covariance matrix in the estimator to improve
the statistical efficiency. In this chapter, we describe an easy-to-implement estimator for
the repeated-measures model that generalizes this estimator to the comparison of repeated
measures among DTRs, that permits analysts to efficiently use the data to estimate the
mean trajectories associated to all embedded DTRs simultaneously, and to take advantage
of within-person correlations in repeated measures with an attempt to improve statistical
efficiency.

This chapter is organized as follows. In Section 3.2, we give a brief review about the
existing works that investigate the effect of time-varying treatment and regime on repeated-
measures outcomes. In Section 3.3, we describe the three SMART studies that will be used
to illustrate the proposed modeling principles and methodology. In Section 3.4, we present
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and discuss general principles for modeling repeated-measures outcomes in a SMART and
illustrate these principles with the three SMART studies. A weighted-and-replicated es-
timator for the parameters in the repeated-measures marginal model is proposed in Sec-
tion 3.5. In Section 3.6 we present the data analysis results for the three SMART studies.
In Section 3.7 we report results of simulation studies that investigate both the modeling and
estimation aspects of the methodology. Finally, a discussion, including other possible ideas
for modeling repeated-measures outcomes from a SMART, is presented in Section 3.8.

3.2 Existing Works Regarding Repeated-Measures Out-
come

[60] presented MSMs for a repeated-measures outcome under a particular treatment se-
quence. This paper discussed a class of IPTW estimators for such models that generalize
the GEE methodology; in particular, in some discussions about the practical choice of an
estimator in this class of IPTW estimators, Robins recommended using a working covari-
ance matrix of the repeated measures conditional on the treatment sequence, to achieve
reasonably high efficiency. [13] more deeply investigated MSMs for repeated measures
that correspond to pre-specified static treatment regimes, with the motivation that standard
methodology produces biased causal results when there are time-varying confounders that
are predicted by previous treatments. Interestingly, we note that there are two different
weighting strategies proposed in these two papers. [60] uses an identical weight for all
time points for an individual, which is equal to the inverse probability of the individual
receiving the assigned/observed entire treatment sequence. On the other hand, [13] uses
time-varying weights for the repeated measures of each individual, and the weight for each
time point is the cumulative inverse probability of treatment up to that specific time point.
The first weighting scheme is one that is applicable for general outcome types, and it allows
for using a working covariance matrix in the estimator without impairing the consistency
of the estimator. The second weighting scheme is more specific to the methodology for
analyzing repeated measures. When the working covariance matrix is taken to be inde-
pendence and there are no additional augmentation terms in the estimator, there have been
empirical results showing that it is more efficient than the first weighting scheme. In the
methodology proposed in this chapter, we choose to adopt the first weighting scheme and
allow for a non-independence working correlation structure.

[36] compares repeated-measures outcome among DTRs by focusing on repeated mea-
sures that occur only after all the re-randomizations. For example, if the data arises from
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a two-stage SMART, the repeated measures that are analyzed in this paper would be those
measured after the second randomization. Thus it has the limitation that no conclusion
can be made about the effect of the treatment regimes on the repeated measures over a
longer period of time that begins from the initial treatment stage. They propose methods
that are based on mixed models and multiple imputations. The working paper by Li pro-
poses a methodology to compare DTRs in terms of repeated measures that span through
multiple treatment stages. In this paper, the author focuses on the estimation perspective of
the repeated-measures analysis under various SMART designs, and discusses in detail the
sample size calculation based on such estimators; modeling considerations specific to the
analysis of repeated measures from SMART studies are not as emphasized as the estimation
component.

3.3 Three SMART Studies for Case Study

In a SMART participants proceed through multiple treatment stages, and at each treatment
stage the participant may be randomized to one of several treatment options available at
that stage. Often, subsequent randomized treatment options in a SMART are restricted
depending on the participant’s response to prior treatment.

In this section we describe the three SMART studies that we use for illustration in this
chapter: the autism, ADHD and ExTENd studies. These designs vary in complexity, with
the autism study being the least complex and the ExTENd study being the most complex
of the three. The complexity in study design is in terms of the number of DTRs that are
embedded in the design and the number of time points at which participants can transition
from one treatment stage to another. In Section 3.4, we will discuss how these varying
design features have implications on the choice of models for repeated measures arising
from the SMART studies.

Figure 3.1 provides the design of the autism SMART (C. Kasari, P.I.; [20]), for the
treatment of minimally verbal children with autism, aged 5 to 8 years. In this SMART,
at the first stage children were randomized to BLI or BLI+AAC. This stage lasted for 12
weeks for all children. After 12 weeks, children were classified as either early responders
or slow responders and made the transition to the second stage. In the second stage, early
responders continued with the treatments that were assigned in the first stage; slow respon-
ders to initial BLI+AAC received intensified BLI+AAC (more sessions per week), and slow
responders to initial BLI were randomly assigned to either intensifying the initial treatment
(BLI) or to augmenting the initial treatment with AAC (i.e., BLI+AAC). The second stage
treatment lasted for 12 weeks.

46



 

 

 

 

Continue: 
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First-stage  
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Baseline End of Week 12 

Responder Status 

Figure 3.1: A SMART study for developing a DTR for children with autism who are min-
imally verbal. R = randomization. BLI = behavioral language intervention. AAC = aug-
mentative or alternative communication approach.

SMARTs, such as the one shown in Figure 3.1, have a set of DTRs embedded within
them, by design. The phrase “embedded by design” is used to express that the variables
used to “tailor” the treatment in these DTRs can only be those used in the SMART to
restrict randomized treatment options. These embedded DTRs are pre-determined in the
design phase of the study; all participants are expected to provide data that is consistent
with at least one of these DTRs. These embedded DTRs correspond to different strategies
to managing the disease/disorder over time.

In the autism SMART there are three embedded two-stage DTRs; they are listed in Ta-
ble 3.1. These three embedded DTRs reflect different strategies towards improving spoken
communication skills, with varying levels of the provision of AAC (in the context of BLI).
For example, DTR#1 uses AAC only for those who show slow response to initial BLI;
in contrast, DTR#3 uses AAC from entry to study for every participant. Note that some
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Table 3.1: Embedded DTRs in the autism SMART.
Label Treatment decision rule

DTR #1 (1,−1) Begin treatment with BLI for 12 weeks. At the end of week
12, if the child does not show early signs of response, aug-
ment BLI with AAC for 12 weeks. Otherwise, continue
with BLI for another 12 weeks.

DTR #2 (1, 1) Begin treatment with BLI for 12 weeks. At the end of week
12, if the child does not show early signs of response, in-
tensify BLI for 12 weeks. Otherwise, continue with BLI for
another 12 weeks.

DTR #3 (−1, ·) Begin treatment with BLI+AAC for 12 weeks. At the end of
week 12, if the child does not show early signs of response,
intensify BLI+AAC for 12 weeks. Otherwise, continue with
BLI+AAC for another 12 weeks.

participants in a SMART have treatment sequences that are consistent with more than one
DTR. For example, early responders to BLI have a treatment sequence that is consistent
with both DTR#1 and DTR#2.

In the analysis of the autism SMART data, we focus on the repeated measures of the
number of socially communicative utterances at baseline, week 12, 24 and 36. The repeated
measure at baseline is prior to the first-stage treatment; the repeated measure at week 12 is
prior to the second-stage treatment.

Figure 3.2 shows the design of the ADHD SMART for the treatment of children (aged
5 to 13 years with mean of 8 years) with ADHD (W. Pelham, P.I.). In this SMART, at the
first stage children were randomly assigned to begin with low-intensity behavioral modi-
fication (BMOD) or with low-dose medication (MED; methylphenidate). Starting at the
end of month two, children were assessed monthly for response/non-response to the initial
treatment. See [28] and [43] for more details concerning the definition of response/non-
response. Children who met the criteria for non-response were immediately re-randomized
to either an intensified version of the initial treatment (INT) or to augmenting the initial
treatment with the alternative treatment (MED+BMOD). Children who continued to re-
spond remained on their initial treatment. Treatment duration was eight months in total for
all children in the study.

The ADHD SMART has four embedded DTRs, as a result of two treatment options
in the initial randomization and two treatment options in the re-randomization of non-
responders. The ADHD SMART differs from the autism SMART in that the duration of
stage one varied among participants. Those who met the non-response criteria at later time
points transitioned to the second treatment stage later during the study, and the duration of
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Figure 3.2: A SMART study for developing a DTR for children with attention
deficit/hyperactivity disorder. R = randomization. MED = medication. BMOD = behav-
ioral modification.

the first treatment stage was an outcome of the initial treatment. Those who continued to
respond to the initial treatment did not transition to the second stage. In the analysis of the
ADHD SMART data, we focus on the repeated measures of classroom performance rating
that is part of the teachers’ Impairment Rating Scale (IRS). This measure is available at the
end of each month until the end of the study (i.e., month eight). Note that, for different par-
ticipants, the classroom performance rating at a certain time point may belong to different
treatment stages.

Figure 3.3 shows the design of a third SMART study, the ExTENd SMART aiming
to develop a DTR for individuals with alcohol dependence. This study was used as an
illustrating example for the assisted estimator in Chapter 2, where more details about this
study were provided.
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The ExTENd SMART design is more complex than the autism and ADHD studies.
Similar to the ADHD study, in ExTENd the duration of stage one varied among par-
ticipants. Specifically, non-responders transitioned to stage two at any of a variety of
weeks prior to week eight whereas all responders transitioned to stage two at week eight.
However, in ExTENd both responders and non-responders to the initial treatment were re-
randomized to subsequent treatment options. As a result of the initial randomization and
the re-randomization , the ExTENd SMART has eight embedded DTRs. In the analysis
of the ExTENd SMART data, we focus on the repeated measures of an alcohol craving
scale. This craving measurement is available weekly, from baseline to the end of the study.
Note that the entire duration of the study varies among the participants, depending on how
they respond to the initial treatment. Thus we analyze the repeated measures of alcohol
craving scale from baseline to week 16; these measurement occasions are applicable to all
participants in the study.

3.4 Repeated-Measures Marginal Model

In this section we develop marginal models for comparing the embedded DTRs in a SMART
based on repeated measures. For simplicity, we focus on two-stage SMARTs; all ideas
can be extended readily to SMARTs with more than two stages. By examining the three
SMART studies introduced above, we will illustrate modeling considerations by varying
degrees of complexity in SMART design. There has been work that compares DTRs by
focusing on repeated measures that occur only after all the re-randomizations [36]; in our
work we allow the repeated measures to span across multiple treatment stages.

We label each embedded DTR in a two-stage SMART by the pair (a1, a2), where aj is
used to denote a treatment option at stage j. For example, in the autism SMART, we let
a1 = 1 denote BLI and let a1 = −1 denote BLI+AAC. We let a2 = 1 denote assigning
intensified BLI to slow responders to first stage BLI and let a2 = −1 denote assigning
BLI+AAC to slow responders to first stage BLI. Note that in the autism SMART, a2 is
nested within a1 = 1 because only slow responders to BLI were re-randomized. See
Table 3.1 for the labels of all three embedded DTRs in the autism study.

X denotes baseline, pre-randomization covariates, such as age, gender and ethnicity. In
all models below, the variables in X are mean-centered to facilitate model interpretations.
Yt denotes the repeated-measures primary outcome that is of scientific interest, observed at
time t, t ∈ T . In the autism study, Yt is the number of socially communicative utterances at
week t = 0 (baseline), 12, 24, 36. For this outcome, higher values of Yt are more favorable.

E(a1,a2)[Yt|X] is the marginal mean of the repeated-measures outcome Yt under the em-
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bedded DTR defined by (a1, a2), conditional on the baseline variable X . Note that under
the potential outcome framework [45, 68], this is the mean of the repeated-measures out-
comes had all participants followed the DTR (a1, a2). Thus a model µt(X, a1, a2; β) for
E(a1,a2)[Yt|X] is a repeated-measures marginal structural mean model [63, 46]; in this chap-
ter for conciseness we will call µt(X, a1, a2; β) a marginal mean model. The primary focus
of this chapter is on developing parametric models µt(X, a1, a2; β) for E(a1,a2)[Yt|X] under
various forms of SMART designs. We will also discuss the estimation of the unknown
parameter β.

3.4.1 A Traditional yet Naı̈ve Approach to Modeling Repeated Mea-
sures in a SMART

To appreciate the need to accommodate the specific features of a SMART design in repeated-
measures modeling, we first consider using a traditional approach to comparing the mean
trajectories between two DTRs in the autism SMART. For simplicity, suppose we are in-
terested in comparing DTR#1 (labeled (1, -1) in Table 3.1) versus DTR#2 (labeled (1, 1)
in Table 3.1) using only data from children who began with BLI (a1 = 1). A traditional
model in this case might be

E(a1,a2)[Yt|X] = ηTX + β0 + β1t+ β21a1=1,a2=1t.

This is a traditional approach in that it is often used in the analysis of two-arm RCTs. In
this model, the trajectories associated with the two DTRs are modeled as two straight lines
that start with the same intercept at t = 0: the marginal mean of Yt under DTR (1,−1)

is (β0 + β1t), whereas the marginal mean of Yt under DTR (1, 1) is (β0 + (β1 + β2)t).
In this example of a traditional approach, therefore, the difference between the marginal
mean trajectories is given by the single parameter β2. This model will incur bias if either
one of the two DTRs does not have a linear mean trajectory. However, in a study such
as the autism SMART, it may be important to accommodate a possible deflection at week
12 in the mean trajectory because this is the point at which the treatment is modified for
slow responders. Further, since neither participants nor staff were aware of the randomly
assigned second-stage treatment during the first stage of treatment (this is a typical feature
of SMART designs), these two DTRs should not differ, on average, from t = 0 to t =

12. An example of an improved model is presented in the next section. In Section 3.7
we investigate, via simulations, the bias that occurs when adopting a traditional slope or
quadratic model to analyze repeated measures from a SMART.
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In general, depending on what treatment is practically administered in one stage under
each of the embedded DTRs, it might be possible that more than one DTR should share the
same marginal mean until some critical decision time point, where participants advance to
a new treatment stage. Typically, this constraint is valid in the analysis of SMART due to
the lack of anticipatory behavior resulting from sequential randomization of the treatments.

In addition, when it is no longer reasonable to adopt simple models such as the slope
model above, the comparison between DTRs based on a repeated-measures outcome would
require alternative estimands. In the following subsections, we discuss (a) modeling con-
siderations for µt(X, a1, a2; β) for various forms of SMART designs, and (b) options for
estimands in the comparison of the embedded DTRs in a SMART.

3.4.2 Repeated-Measures Modeling Considerations: The Autism Ex-
ample

As noted earlier, modeling of a repeated-measures outcome arising from a SMART should
be guided by two key principles: (a) properly accommodate the timing of repeated mea-
sures in relation to the treatment stages in a SMART; and (b) properly accommodate the
restrictions applied on the randomizations by design. The autism SMART provides a rela-
tively simple example to illustrate these modeling principles.

In the autism SMART, all participants had the same duration of stage one treatment (12
weeks) and stage two treatment (12 weeks), and they all advanced to stage two after week
12. Additionally, only slow responders to BLI were re-randomized.

The primary outcome, the number of socially communicative utterances, was measured
on four occasions. Baseline measurement Y0 was pre-treatment; Y12 was measured right
before the second treatment stage (re-randomization, if applicable, happened right after
Y12); Y24 was measured at the end of treatment; Y36 was measured post treatment and
treatment ended at the end of week 24. Since all participants transitioned at t = 12, one
approach to modeling the repeated measures in the autism SMART is using a continuous,
piecewise marginal model with a knot at week 12. For example, consider the following
marginal model for Yt:

E(a1,a2)[Yt|X] = ηTX + β0 + 1t≤12{β1t+ β2ta1}

+ 1t>12{12β1 + 12β2a1 + β3(t− 12) + β4(t− 12)a1 + β5(t− 12)1a1=1a2},
(3.1)

where the unknown parameters β = (β0, β1, β2, β3, β4, β5) model the effect of the three em-
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bedded DTRs over time; and η captures the association between the time-varying outcome
and baseline covariates X; β are of primary interest.

This example model entails two main restrictions. The first restriction is that Y0 is
modeled to have the same marginal mean for all three embedded DTRs. This is a com-
mon restriction used in the analysis of longitudinal randomized trials [30] since, by design,
treatment groups are not expected to differ at baseline (prior to randomization). The second
restriction is that the marginal mean trajectory is assumed to be the same between embed-
ded DTRs (1, 1) and (1,−1) until week 12. This restriction is unique to SMARTs. It is
consistent with the study design, in that (1) these two DTRs are identical up to week 12
and (2) re-randomization to second stage treatment does not occur until week 12 (i.e., there
can be no expectancy or anticipatory effects due to knowledge of second stage treatments
during stage one).

For simplicity, the example model above assumes a piecewise linear trend. In practice,
a quadratic mean trajectory (or some other trend) may be more appropriate.

Note that in the model proposed above, we implicitly assume that the marginal mean of
Yt under each of the embedded DTRs is continuous in time. In practice, it might be more
reasonable to allow for a “jump”, i.e., an abrupt change, in the marginal model when there is
treatment stage transition, because it is possible that actions such as informing the patients
their initial response status or informing the patients their re-randomized treatments may
have an momentary effect on the outcome. However, learning a more flexible model like
this requires more frequent measurement of the outcome. Given the scheme of outcome
measurement in the autism SMART, we choose to impose the continuity assumption on the
marginal mean model.

3.4.3 Repeated-Measures Modeling Considerations: The ADHD Ex-
ample

In analyzing the ADHD SMART, we focus on comparing the four embedded DTRs based
on the repeated measures of classroom performance rating measured on eight occasions
– at the end of each month of the study (i.e., Y1, ..., Y8). Note that unlike in the autism
SMART, the repeated-measures outcome in the ADHD SMART is unavailable at baseline.
This outcome is coded so that higher values are more favorable. Each of the four embedded
DTRs is labeled by a pair (a1, a2). Let a1 = 1 denote starting with low-intensity BMOD
and let a1 = −1 denote starting with low-dose MED. Let a2 = 1 denote intensifying
the initial treatment for non-responders and let a2 = −1 denote augmenting the initial
treatment with the alternative treatment for non-responders.
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As discussed previously, the design of the ADHD SMART study is more complex rela-
tive to the autism study. The duration of the first treatment stage varied among participants;
it could be as short as two months (for the children who became non-responders at the
end of month two), or as long as eight months (for the children who continued to respond
throughout the entire study). This has implications for modeling the marginal mean under
a DTR in that, for a fixed t > 2, the marginal mean of Yt is a weighted average of the
mean for participants who have transitioned and the mean for participants who have yet to
transition; as a result, there may be deflections in the marginal mean at any given month,
starting at month 2 (t = 2) and ending at month 7 (t = 7).

Additionally, the initial treatment (BMOD versus MED) had an impact on participants’
performance, which determined whether or when the participants transitioned to the second
stage as non-responders. For example, among the 75 participants who were assigned to
MED initially, only 19 transitioned to stage two (as non-responders) at month two; whereas
among the 75 participants who were assigned to BMOD initially, 36 transitioned to stage
two (as non-responders) at month two. Therefore, we may allow the pattern of deflection in
the mean trajectory to differ between DTRs that start with BMOD and those starting with
MED (see the exploratory plot in the appendix).

Based on the discussions above, as well as exploratory analysis aimed at refining the
modeling assumptions, we propose to model the repeated measures from the ADHD study
as shown below:

E(a1,a2)[Yt|X] =ηTX + β0 + β1a1 + 1a1=11t≤2β2(t− 1) (3.2)

+ 1a1=11t>2(β2 + 1a2=1(β3(t− 2) + β4(t− 2)2) + 1a2=−1β5(t− 2))

+ 1a1=−11t≤3β6(t− 1)

+ 1a1=−11t>3(2β6 + 1a2=1β7(t− 3) + 1a2=−1β8(t− 3)).

Here, the DTR (BMOD, BMOD+MED) (i.e., (a1, a2) = (1,−1)) is assumed to have a
piecewise linear trajectory with a knot at t = 2, whereas (BMOD, INT) (i.e., (a1, a2) =

(1, 1)) has the same mean trajectory as (BMOD, BMOD+MED) until t = 2 and then
develops a quadratic trajectory. The two DTRs that begin with MED are assumed to have
piecewise linear trajectories with a knot at t = 3 and they share the same mean trajectory
until t = 3.
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3.4.4 Repeated-Measures Modeling Considerations: The ExTENd Ex-
ample

The greater complexity in the ExTENd SMART necessitates more careful modeling con-
siderations. In analyzing the ExTENd SMART, we focus on comparing the eight embedded
DTRs based on a repeated-measures outcome of alcohol craving. Alcohol craving was col-
lected on 17 occasions: at baseline (Y0) and the end of each week for 16 weeks (Y1, ..., Y16).
This outcome is re-coded so that higher values are more favorable. Each of the eight DTRs
is denoted by a triplet (a1, a2R, a2NR), where a1 is used to denote whether the stringent
definition or the lenient definition of early non-response is adopted, a2R is used to denote a
treatment option for responders at stage two, and a2NR is used to denote a treatment option
for non-responders at stage two.

The transition time to the second treatment stage ranged from the end of week two to the
end of week eight. As a result, similar to the ADHD study, for a fixed t, Yt may come from
different treatment stages for different participants. In addition, note that DTRs that begin
with the same a1 might differ only in a2R (how responders are treated in the second stage),
only in a2NR (how non-responders are treated in the second stage), or both. The impact
of differing a2NR can take place from the end of week two (non-responders could start to
transition to stage two as early as the end of week two); however the impact of differing
a2R can only take place from the end of week eight (responders could only transition to
stage two at the end of week eight).

Because of the features illustrated above, and given the relatively frequent repeated
measures, we do not model each of the mean trajectories by simple parametric form; in-
stead, we adopt flexible spline-based models with constraints that are consistent with the
SMART design. First, we allow two DTRs that differ only in a2NR to start to differ in
the mean trajectories after t = 2, because participants could become non-responders and,
therefore, receive salvage treatment options specified by a2NR on or after week two. Sec-
ond, we allow two DTRs that differ only in a2R to start to differ in the mean trajectories
after t = 8, because on week eight participants could become responders and, therefore, re-
ceive the maintenance treatment options specified by a2R. Aside from forcing all DTRs to
have the same mean of Y0 and these two constraints, we allow the trajectories of the DTRs
to be regression splines. In the appendix we provide additional details about building the
regression splines model based on these considerations.
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Table 3.2: Design features of ExTENd study and their implications on the repeated-
measures modeling.
Design features Implications for repeated-measures mod-

eling
Randomization is (or should be) stratified on
baseline measurements; there is no difference
in anticipatory effect among the eight DTRs.

Trajectories of all the eight DTRs have the
same intercept.

Patients became responders only if they stayed
in stage one for eight weeks without meeting
the assigned criterion for non-response. There
can be no expectancy effects due to knowledge
of second stage treatments during stage one.

A pair of DTRs that only differ in a2R

(the second-stage treatment for respon-
ders) should share the same trajectory un-
til the end of week eight, and may differ
from then on.

Patients transitioned to stage two as non-
responders as early as week two. There can be
no expectancy effects due to knowledge of sec-
ond stage treatments during stage one.

A pair of DTRs that only differ in
a2NR (the second-stage treatment for non-
responders) should share the same trajec-
tory until the end of week two, and may
differ from then on.

3.4.5 Estimands

In the repeated-measures analysis of SMARTs, a variety of interesting estimands are pos-
sible for the comparisons among embedded DTRs. Here, we present two that are clini-
cally important and easy to communicate: change score comparisons and area under curve
(AUC). The first approach, change score comparisons, measures the differences among
embedded DTRs in terms of change in response from t1 to t2. A change score estimand is
∆t1,t2 = E(a1,a2)[Yt2 − Yt1 ] − E(a∗1,a

∗
2)[Yt2 − Yt1 ], where (a1, a2) and (a∗1, a

∗
2) are two em-

bedded DTRs. In the autism example, a change score comparison from week 0 to week 36
compares the embedded DTRs in terms of the mean increase from baseline to the end of
follow-up in the number of socially communicative utterances.

The second approach, AUC, summarizes the cumulative amount of Yt within a time
range (t1, t2); it provides an alternative single number summary of the overall mean trajec-
tory under each embedded DTR. In the autism study, the AUC of Yt from t = 0 to t = 36

for a specific embedded DTR has a clinically relevant interpretation as the average total
number of socially communicative utterances from t = 0 to t = 36 under this DTR.

Note that if the investigator believes that the change score comparison is more relevant
for the subject-specific area, one may choose to adopt a statistical methodology that com-
pares the DTRs in terms of only the end-of-study outcome, which ideally takes advantage
of the data of other time-varying variables (including the Yt’s at earlier time points) in some
way (e.g., via estimating the weights in the weighted-and-replicated estimator using the co-
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variates). However, these methodologies cannot simultaneously answer research questions
that are related to other estimands such as AUCs. The methodology we propose models the
entire trajectory of the marginal mean, which can later be used to address multiple research
questions.

The AUC is a more informative summary of the marginal mean trajectory than the
change score, because it captures not only change from the start to the end point, but also
characteristics of the progression in the mean outcome during the period. In the data anal-
ysis, we mainly report the AUC for the embedded DTRs.

3.5 Estimator for Repeated-Measures Marginal Model

3.5.1 Observed Data

For simplicity, we present the proposed estimator for the repeated-measures marginal model
with the autism example. Details about how this estimator is implemented to analyze the
ADHD and ExTENd SMARTs can be found in the appendix.

The structure of the data is as follows. For individual i (i = 1, ..., N ), we observe
Xi, A1,i, Ri, A2,i and Yt,i, t ∈ T . X includes a set of mean-centered baseline covariates; A1

denotes the first-stage treatment to which an individual is randomized; R is the indicator
of early response; A2 denotes the second-stage treatment to which the individual is re-
randomized. Yt is the observed value of the repeated-measures outcome at time t.

For example, in the autism SMART, we have (Xi, Y0,i, A1,i, Y12,i, Ri, A2,i, Y24,i, Y36,i).
A1 denotes whether the child was randomized to BLI (A1 = 1) or BLI+AAC (A1 = −1)
during the first 12 weeks. For slow responders to BLI (A1 = 1, R = 0),A2 denotes whether
the child was re-randomized to intensified BLI (A2 = 1) or BLI+AAC (A2 = −1).

3.5.2 A Review of the Weighted-and-Replicated Estimator

This section is a review of a weighted-and-replicated (WR) estimator for comparing the
DTRs with respect to an end-of-study outcome [47, 78, 50, 46, 43], illustrated with the
autism example. In the next section, we extend this estimator to repeated-measures out-
comes.

Suppose that one is interested in comparing the mean of Y36 among the embedded
DTRs, and assume that µ36(X, a1, a2; β) is a parametric model for the marginal mean
of Y36 under embedded DTR (a1, a2), which takes a linear form in β and has derivative
d(X, a1, a2) with respect to β. The WR estimator for β is obtained by solving the follow-
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ing estimating equation:

0 =
N∑
i=1

∑
(a1,a2)

I{treatment sequence of individual i consistent with DTR (a1, a2)}

· d(Xi, a1, a2)Wi · (Y36,i − µ36(Xi, a1, a2; β)),

where I{treatment sequence of individual i consistent with DTR (a1, a2)} is a binary indi-
cator that the individual i was assigned to treatment sequence that would be observed under
the DTR (a1, a2); and Wi is the product of stage-specific weights, each being the inverse
probability of receiving the observed treatment at that stage, conditional on the observed
covariate and treatment history. In a SMART, W is known, by design. For example in
the autism study, W = 1/ (Pr(A1|X, Y0) · Pr(A2|X, Y0, A1, Y12, R)). Slow responders to
BLI receive a weight equal to 4; all the other participants receive a weight equal to 2.

To appreciate why weighting is necessary, note that by design, BLI slow responders
are randomized twice, whereas other participants are randomized only once; thus, slow
responders to BLI would have a 1/4 chance of following the sequence of treatments they
were offered, whereas other participants would have a 1/2 chance of following the treat-
ments they were offered. Therefore, slow responders to BLI are under-represented in the
data. To account for this imbalance, weights inversely proportional to the probability of
being assigned to a particular treatment sequence are employed in the estimating equation.

Next, note that this estimating equation is an aggregate of estimating equations for each
of the embedded DTRs. In a SMART, each individual may be consistent with one or more
embedded DTRs depending on the study design. For example, in the autism SMART, re-
sponders to initial BLI are consistent with DTRs (1, 1) and (1, -1); that is, their treatment
sequences are identical to the treatment sequences that would be recommended if embed-
ded DTRs (1, 1) or (1, -1) were followed. To account for this “sharing” of observations,
those observations contribute to the estimating equations for multiple DTRs.

3.5.3 An Extension for Repeated Measures

For the estimation of the repeated-measures marginal model, we use a longitudinal ver-
sion of the WR estimator reviewed above. This estimator builds on works by Robins
and Vansteelandt concerning the estimation of the effect of time-varying treatment on a
repeated-measures outcome in observational studies [60, 13, 61, 80].

Let Yi = (Y0,i, Y1,i, ..., YT,i)
T denote the vector of a repeated-measures outcome for

individual i. Denote the vector of the model for the marginal mean as µ(Xi, a1, a2; β, η),
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where µ = (µ0, µ1, ..., µT )T . Recall µt(x, a1, a2; β, η) is a parametric model for the marginal
mean of Yt among participants that have pre-treatment baseline covariates equal to x, un-
der the embedded DTR labeled (a1, a2). Denote the derivative of µ(Xi, a1, a2; β, η) with
respect to (η, β) as D(Xi, a1, a2). D(Xi, a1, a2) is a (T + 1)-by-p matrix, where p is the
dimension of (η, β).

An estimator for (η, β) for a general SMART design is

0 =
N∑
i=1

∑
(a1,a2)

I{treatment sequence of individual i consistent with DTR (a1, a2)}

·D(Xi, a1, a2)TV (a1, a2)−1Wi · (Yi − µ(Xi, a1, a2; β, η)). (3.3)

V (a1, a2) is a working variance-covariance matrix of (Y0, Y1, ..., YT )T conditional on
the baseline X , under the embedded DTR labeled (a1, a2). The weight W is used to ac-
count for the fact that participants received the observed treatment sequences with different
probabilities. In the autism example, W = 1/(Pr(A1|X, Y0) · Pr(A2|X, Y0, A1, Y12, R)).
The choice of the working variance-covariance matrix V (a1, a2) does not have an impact
on the unbiasedness of the estimating equation above, assuming that the marginal model
µ(X, a1, a2; β, η) and the weight W are correctly specified. In the analysis of SMART
studies, the weight W can be correctly specified because the treatments are assigned ac-
cording to known probabilities. Asymptotics of this estimator is provided in the appendix;
this includes the formula for the asymptotic standard error of β̂.

The estimator in (3.3) is an extension of the WR estimator to accommodate a repeated-
measures outcome. Each patient now has a vector-valued outcome. Moreover, this estima-
tor uses a working variance-covariance matrix for the vector of repeated measures, which
is a strategy that is usually taken when performing longitudinal analysis, for the purpose
of improving statistical efficiency [86]. Note that the weighting scheme here is consistent
with the weighting scheme used in [59, 80], but differs from the weighting scheme adopted
in [13]

Furthermore, known weightsWi in (3.3) can be estimated, for example, using covariates
thought to be correlated with the repeated-measures outcome [13, 14, 5]. This approach can
asymptotically improve efficiency of the estimator. We take this approach in our analyses
of the data arising from three SMART studies.

60



3.5.4 Implementation of the Estimator for Repeated-Measures Marginal
Model

To facilitate using the estimator shown in (3.3) with over-the-counter statistical software,
here we conceptualize the estimating equation in (3.3) as an estimating equation based on
an augmented data set, as follows:

0 =
M∑
j=1

D(Xj, A1,j, A2,j)
TV (A1,j, A2,j)

−1Wj · (Yj − µ(Xj, A1,j, A2,j; β, η)). (3.4)

Here, an augmented data set of size M = N + K is used, with the additional K rows
arising from K participants who are consistent with more than one embedded DTR. These
individuals are replicated in the augmented data set. For example, in the autism study, K is
the number of responders to first-stage BLI, because responders to BLI are consistent with
both DTR (1, 1) and DTR (1, -1). In the augmented data set, one of the two replicated rows
for a BLI responder is given the value A2 = 1 and the other is given the value A2 = −1;
the two rows are identical in all the other components. Therefore, in this augmented data
set, unlike in the original data set, each observation is associated with only one embedded
DTR (i.e., the j-th observation is associated with DTR (A1,j, A2,j)). In Table 3.3 we show
a chunk of fake data before and after augmenting.

The estimator, written in this form, can be readily implemented on the augmented data
set, in any standard statistical software that implements GEE methodology [86] in R [15].
For example, using the function geeglm in geepack, one can obtain both estimators
and standard errors for the parameters in the repeated-measures marginal model. However,
note that unlike in (3.3), the M observations in (3.4) cannot be considered as independent;
this has implications on how one should use the statistical software to obtain valid standard
errors. Therefore, To acquire valid standard errors that take into account replicates in the
augmented data set, we need to inform geeglm which rows in the augmented data set are
associated with the same individual (i.e., the same “cluster” in R terminology).

To do this, the augmented data set should include an identifier for replicates that come
from the same participant; see the use of id in Table 3.3. For example, participant 10001 in
Table 3.3 does not have replicate and thus there are four observations associated with him
(because measurements are collected at four time points). Participant 10002 is replicated
in the augmented data set and thus there are eight observations associated with him. This
is all that is needed if an independence working correlation structure is used.

When non-independence working correlation structures are used, the preceding step
also ensures that each subject’s individual working correlation matrix has the appropri-
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ate dimension. For example, geeglm expects a 4 × 4 correlation matrix for participant
10001 and an 8 × 8 correlation matrix for participant 10002. However, in the case of
non-independence working correlation structures, additional work is necessary so that the
software understands how to appropriately construct the user-specified working correlation
matrix. To understand why this additional work is necessary, assume that we would like
to analyze the repeated measures using an exchangeable working correlation structure, i.e.,
we want to let V (a1, a2) ≡ R(α) in (3.4), where R(α) is a 4× 4 correlation matrix with all
the off-diagonal entries equal to α. Here, in order to match the estimating equation in (3.4),
participant 10001 should be assigned a correlation identical to R(α), whereas participant
10002 should be assigned a correlation identical to the following block matrix:(

R(α) 04×4

04×4 R(α)

)
.

That is, we must inform the software that the working correlation between an observation
in the original copy and an observation in the replicated copy is zero. Without additional
work, the software would now know how to create an appropriate block matrix such as
this; instead, the software would create an 8×8 exchangeable correlation structure with
all off-diagonal entries equal to α. In geeglm, specialized R code (available from the
author’s webpage: http://www-personal.umich.edu/˜luxi/) is necessary to
accomplish this. This R code utilizes geeglm’s “wave” argument, which also requires
additional data pre-processing step (see the wave column in the augmented data set in
Table 3.3).

With the prepared data set and a properly specified user-defined correlation structure
as illustrated above, implementing geeglm gives correct estimates of the parameters and
their (robust) standard errors.

As discussed previously, when estimated weights rather than known weights are used,
there is a potential for efficiency gains. Additional work is also necessary in order to reflect
such potential efficiency gains in the estimates of the standard errors. The R code provided
allows users to obtain more accurate standard errors that account for the estimation of
weights.

3.6 Data Analysis

Here, we present the results of the data analysis of the three SMART studies. For all three
SMARTs, prior to analysis, a sequential type of multiple imputation algorithm was used to
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Table 3.3: Example of a chunk of data before and after augmenting. The augmented data
set is ready to be analyzed by geeglm in geepack.
Before augmenting:

id time A1 R A2 Y
10001 0 -1 0 · 23
10001 12 -1 0 · 28
10001 24 -1 0 · 32
10001 36 -1 0 · 30
10002 0 1 1 · 20
10002 12 1 1 · 25
10002 24 1 1 · 30
10002 36 1 1 · 30

After augmenting:
id time A1 R A2 Y waves

10001 0 -1 0 · 23 1
10001 12 -1 0 · 28 2
10001 24 -1 0 · 32 3
10001 36 -1 0 · 30 4
10002 0 1 1 1 20 1
10002 12 1 1 1 25 2
10002 24 1 1 1 30 3
10002 36 1 1 1 30 4
10002 0 1 1 -1 20 5
10002 12 1 1 -1 25 6
10002 24 1 1 -1 30 7
10002 36 1 1 -1 30 8

replace missing values in the data set [70]. This was implemented using the mice package
in R [76]. All estimates and standard errors reported are calculated using standard rules
for combining identical analyses performed on each of the imputed data sets [67]. Data
are analyzed using the approach outlined in Section 3.5.3, with an auto-regressive working
correlation structure.

3.6.1 Analysis of the Autism SMART Data

We first present the analysis of data arising from the autism SMART (N = 61). The weight
at the first stage is estimated using age, gender, indicator of African American, indicator of
Caucasian, number of socially communicative utterances at baseline; the weight (for slow
responders to the first-stage BLI) at the second stage is estimated using number of socially
communicative utterances at baseline and number of socially communicative utterances
at week 12. Figure 3.4 displays a plot of the estimated marginal mean trajectories of the

63



number of socially communicative utterances for each of the three embedded DTRs. Esti-
mates and standard errors for the parameters in the repeated-measures model and pairwise
comparisons among the three embedded DTRs based on the AUCs are given in Table 3.4.
To enhance interpretation we report estimates of AUC/36, which can be interpreted as the
average number of socially communicative utterances over the entire course of the 36-week
study.
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Figure 3.4: Estimated mean trajectories under the embedded DTRs of the autism SMART.

The DTR (labeled (-1, ·)) that assigns BLI+AAC at the first stage and intensifies BLI+AAC
for slow responders, appears to outperform the other two embedded DTRs, in terms of the
AUC (e.g., 95% CI of the contrast of (BLI+AAC, ·) versus (BLI, INT) is (2.52, 24.40)).
Under this DTR, the average number of socially communicative utterances during the 36-
week study is estimated to be 50.84 (95% CI (42.29, 59.39)), whereas it is smaller than 40
for the other two DTRs.
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Table 3.4: An analysis of the repeated-measures outcome from the autism SMART. The
reported summary of each DTR and the comparison between DTRs is regarding AUC/36.

Estimate SE p-value
β0 (Intercept) 29.57 4.53 <0.01
η1 (age) -3.63 3.59 0.32
η2 (male) -9.39 15.73 0.55
η3 (AfricanAmerican) 1.04 13.92 0.94
η4 (Caucasian) 1.09 8.18 0.89
β1 (time; stage one) 1.39 0.40 <0.01
β2 (time×A1; stage one) -0.80 0.32 0.01
β3 (time; stage two) 0.12 0.20 0.54
β4 (time×A1; stage two) 0.20 0.20 0.33
β5 (time×A1A2; stage two) -0.08 0.14 0.57
(BLI, INT) 37.38 4.87 <0.01
(BLI, BLI+AAC) 38.68 4.75 <0.01
(BLI+AAC, ·) 50.84 4.36 <0.01
(BLI, INT) vs (BLI, BLI+AAC) -1.30 2.24 0.57
(BLI+AAC, ·) vs (BLI, BLI+AAC) 12.16 5.44 0.03
(BLI+AAC, ·) vs (BLI, INT) 13.46 5.58 0.02

Interestingly, while the DTR that begins with BLI+AAC is superior in terms of AUC,
it does not maintain the positive trend from week 12 to week 36 (change score = -1.91,
95% CI (-14.21, 10.39)), while the other two DTRs seem to show marginally an average
increasing trend during the same period (e.g., change score from week 12 to week 36 under
(BLI, BLI+AAC) = 9.76, 95% CI (-6.89, 26.42)). These findings suggest that, in a study
where the participants are followed for a longer period, the DTR that starts with BLI+AAC
might be less advantageous than the other two DTRs; an additional study with a longer
follow-up period would be needed to confirm this hypothesis.

3.6.2 Analysis of the ADHD SMART Data

Analysis of the ADHD SMART data (N = 150) is based on the repeated-measures model
proposed in (3.2). The repeated-measures outcome is the classroom performance rated
by teachers; higher values indicate better classroom performance. The weight at the first
stage is estimated using age, indicator of being previously medicated at home, indicator
of being diagnosed with oppositional defiant disorder (ODD), baseline ADHD severity of
symptoms, classroom performance rating at baseline; the weight (for non-responders) at
the second stage is estimated using age, stage one treatment, time to re-randomization,
classroom performance rating at baseline and immediately prior to re-randomization.
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Table 3.5 presents the estimated AUCs for the four embedded DTRs and their compar-
isons. AUC/7 can now be interpreted as the average classroom performance rating from
the end of month one until the end of month eight. The estimated mean trajectories of the
classroom performance under the four embedded DTRs are shown in Figure 3.5.
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Figure 3.5: Estimated mean trajectories under the embedded DTRs of the ADHD SMART.

The DTR (BMOD, BMOD+MED) is estimated to have the smallest AUC among the
four embedded DTRs, and it differs significantly from the two DTRs that start with MED.
The two MED DTRs are identical in terms of AUC. However, the two DTRs starting with
BMOD seem to differ. Specifically, as suggested by the estimated coefficients, the slope
of DTR (BMOD, BMOD+MED) after t = 2 is significantly positive (0.09; 95%CI (0.03,
0.15)); on the other hand, (BMOD, INT) has a quadratic trajectory with the second-order
coefficient significantly negative (-0.04; 95%CI (-0.08, 0)), and the two MED DTRs both
have a slope not significantly different from zero after t = 3. The data suggest that (BMOD,
BMOD+MED) is the only embedded DTR that maintains a trend of improvement after
t = 2. In summary, assigning MED initially seems to yield a more positive outcome than
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assigning BMOD initially in the short term, but the performance of children who initially
receive BMOD improves within a wider range of time. In addition, there is no evidence
that the two DTRs starting with MED differ in terms of their second-stage trajectories,
but the two DTRs beginning with BMOD differ markedly in terms of their second-stage
trajectories.

3.6.3 Analysis of the ExTENd SMART Data

Our analysis of the ExTENd SMART data (N = 250) is based on the flexible regres-
sion splines model discussed in Section 3.4.4 (details are presented in the appendix). The
repeated-measures outcome is alcohol craving, assessed using the Penn Alcohol Craving
Scale (PACS; [11]); values of this variable are reverse coded (ranging from 0 to 30), such
that higher values indicate less alcohol craving, which is more favorable. Recall that in this
study there were two definitions of non-response: stringent and lenient definitions. The
weight at the first stage is estimated using age, gender, pre-study percent days heavy drink-
ing, alcohol craving at the screening visit and the first stage one visit; the weight at the
second stage is estimated using age, alcohol craving at the first and the last stage one vis-
its, the assigned non-response definition, indicator of response to the first stage treatment,
duration of stage one.

Recall that for the purpose of modeling the repeated measures, the entire 16 weeks can
be conceptualized to have three periods: in the first two weeks, each group of four DTRs
that are identical in the definition of non-response share one trajectory; from week two
to week eight, each pair of DTRs that are identical in the non-response definition and the
treatment for non-responders share one trajectory; from week eight on, each DTR has a
distinct trajectory.

The estimated mean trajectories for alcohol craving under the eight embedded DTRs
are shown in Figure 3.6. The estimated AUCs for the eight embedded DTRs are reported in
Table 3.6. AUC/16 can be interpreted as the average alcohol craving from entry to study to
the end of week 16. The estimated trajectories imply that outcomes improve over time, on
average across all eight embedded DTRs. DTRs that utilize the lenient definition for non-
response seem to lead to less alcohol craving than DTRs that use the stringent definition. In
particular, the DTR with the highest AUC (21.19; 95%CI (20.1, 22.3)) utilizes the lenient
definition and assigns UC to responders and Placebo+CBI to non-responders. However,
there were no significant differences between the eight DTRs in terms of the AUCs.

The repeated-measures analysis of the ExTENd study should be considered exploratory
in nature. The estimated mean trajectories are non-parametric with some constraints that
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Figure 3.6: Estimated mean trajectories under the embedded DTRs of the ExTENd
SMART. a1 (the definition for non-response) and a2 (stage two treatment regime) jointly
specify the eight embedded DTRs.

are consistent with the design of the study, and we did not impose any smoothing con-
straints at t = 2, 8 (i.e., where the two consecutive regression splines are connected),
thus the plot may present some artificial patterns that are not interpretable. Moreover, the
repeated-measures outcome PACS is moderately noisy (standard deviation of the outcome
at each time point ranges from 6 to 8). However, such analysis is useful for generating
hypotheses regarding the developmental pattern of the repeated measures.
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Table 3.6: An analysis of the repeated-measures outcome from the ExTENd SMART.
LNT=lenient non-response definition. STRGT=stringent non-response definition.
NTX=naltrexone+CBI. PLC=placebo+CBI.

Embedded DTR Estimate of AUC/16 SE of AUC/16
(LNT, TDM, NTX) 20.65 0.56
(LNT, TDM, PLC) 21.02 0.55
(LNT, UC, NTX) 20.83 0.57
(LNT, UC, PLC) 21.19 0.55
(STRGT, TDM, NTX) 20.18 0.59
(STRGT, TDM, PLC) 20.18 0.56
(STRGT, UC, NTX) 20.04 0.57
(STRGT, UC, PLC) 20.03 0.58

3.7 Simulation

3.7.1 Importance of Modeling Considerations

We conduct a small set of simulation experiments to investigate the importance of incor-
porating the unique features of a SMART in repeated-measures models comparing embed-
ded DTRs. In particular, we compare the bias and relative efficiency of estimators from
a repeated-measures model that incorporates the features of a SMART versus traditional
repeated-measures models that ignore these features. Data (X, Y0, A1, Y12, R,A2, Y24, Y36)

were generated to mimic the autism SMART study. Notation is the same as described in
Section 3.5. In particular, X is a 4-dimensional pre-treatment covariate for age, gender,
indicator of African American, indicator of Caucasian.

It is well known that bias in the estimated comparison between the DTRs is expected to
occur under misspecified models [46]. Here we focus on a type of model misspecification
that is specific to the analysis of repeated-measures data in a SMART. We adopt a series of
data-generative models under which the mean trajectory of DTR (-1, ·) is maintained to be
linear, and the average of the two mean trajectories of DTRs (1, 1) and (1, -1) is maintained
to be linear. Recall that DTRs (1, 1) and (1, -1) ought to share trajectories up to t = 12. We
create a series of models by varying the extent to which the trajectories of (1, 1) and (1, -1)
deviate from the average between them, thus deviating from being linear. More specifically,
we let the mean trajectories of (1, 1) and (1, -1) be two piecewise linear curves that share
the path from t = 0 to t = 12. To quantify the magnitude of the deviation from linear,
we conceptualize an effect size in terms of the comparison of AUCs between DTRs (1, 1)
and (1, -1); this is operationalized as the true difference between the two AUCs divided by
the pooled standard deviation in person-specific AUCs in each DTR group. Data sets with
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effect sizes equal to 0, 0.2, 0.5 and 0.8 and with sample sizes N = 100 and N = 300 are
generated (details provided in the appendix). Note that a zero effect size corresponds to
the case where the marginal mean trajectories of the two DTRs (1, 1) and (1, -1) do not
differ over the entire course of the study; thus in this case both DTRs have a linear mean
trajectory.

For each data-generative scenario, we fit three models: (a) the model shown in Equa-
tion (3.1); (b) a linear slope model, in which the mean trajectory of each embedded DTR is
assumed to be linear; (c) a quadratic model, in which the mean trajectory of each embed-
ded DTR is assumed to be quadratic. The slope and quadratic models do not impose the
constraint that DTRs (1, 1) and (1, -1) share the same trajectory until the end of the first
treatment stage; in other words, the treatment stage transition is not explicitly accounted for
in those two models. In all cases, the estimator for the repeated-measures models utilizes
an independence working correlation.

We present results for two pairwise comparisons: ∆AUC
1 (the difference in AUC be-

tween DTRs (1, 1) and (1, -1)) and ∆AUC
2 (the difference in AUC between DTRs (-1, ·)

and (1, -1)). We report the bias in the estimates when using the slope model and quadratic
model, and the ratio of MSE of estimators arising from the slope and quadratic models over
the MSE of estimators arising from the model (a). As the slope and quadratic models are
correctly specified models only in the scenario with zero effect size, we expect to see bias
in all scenarios except zero effect size. On the other hand, model (a) is a correctly specified
model across all simulation scenarios. However, since the slope model is more parsimo-
nious than model (a), for small effect sizes we expect the slope model to have smaller MSE
than model (a).
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Results are shown in Table 3.7. We notice that, as expected, the slope and quadratic
models produce biased estimates when they are not correctly specified (i.e., effect size not
equal to zero). However, the slope model has smaller MSE than model (a) in some non-
zero effect size cases; in particular, when the sample size is small (N = 100), the slope
model has smaller MSE than model (a) for the estimation of ∆AUC

2 unless the effect size
is large (this is when there is severe mis-specification when assuming the slope model).
This is due to the bias-variance tradeoff; the slope model is more parsimonious thus may
have smaller MSE when the induced bias is larger than model (a). This tradeoff can also
be appreciated by noticing that, as the sample size increases, model (a) starts to outperform
the slope model under conditions with small effect sizes. Interestingly, for the estimation
of ∆AUC

1 , model (a) is better than the slope model uniformly under all simulation scenarios.
This can be intuitively explained by the fact that, the information that DTRs (1, 1) and (1,
-1) share trajectory from t = 0 to t = 12 is particularly useful for the estimation of the
AUC contrast between these two DTRs; this information is explicitly imposed in model (a)
but not in the slope model. We also notice that the quadratic model always leads to a larger
MSE than model (a), for the estimation of both contrasts and across sample sizes.

These results suggest that it is important to account for unique features of a SMART
in the analysis of repeated-measures data. More traditional models such as the slope or
quadratic model (these are the types of models often used in the analysis of three-arm
RCTs) do not effectively utilize known information about the SMART study design and
may result in bias and efficiency loss. The efficiency loss for certain estimands appears to
occur even in settings where the true mean trajectories do not deviate much from the slope
model or the quadratic model.

3.7.2 Efficiency Gain by Utilizing Within-person Correlation

As discussed in Section 3.5.4, the estimator for the repeated-measures model can be im-
plemented using standard GEE software. Here we explore the extent to which use of a
non-independent working correlation structure improves the statistical efficiency of the es-
timator. For the experiments, we generate data (X, Y0, A1, Y12, R,A2, Y24, Y36) to mimic
the autism SMART study. For the purpose of investigating the efficiency gain due to the
use of a non-independent working correlation, we adopt a series of data-generative mod-
els under which the marginal mean trajectories of the three embedded DTRs remain the
same, yet the magnitude of the within-person correlation among Y0, Y12, Y24 and Y36 varies
in the context of an exchangeable correlation structure. In particular, we vary the within-
person correlation over 0, 0.3, 0.6, 0.9. We also vary the sample size over N = 100, 300.
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Table 3.8: Comparison between two implementations of the proposed estimator (GEE-I
uses an independent working correlation; GEE-exch uses an exchangeable working cor-
relation), concerning the estimation of two estimands: ∆AUC

1 = the constrast in AUC
between DTRs (1, 1) and (1, -1); ∆AUC

2 = the contrast in AUC between DTRs (-1, ·) and
(1, -1).

N = 100
∆AUC

1 ∆AUC
2

CI coverage RMSE CI coverage RMSE
GEE-I GEE-exch GEE-I GEE-exch

ρ = 0 95.2 95.4 0.92 95.8 95.5 1.01
ρ = 0.3 94.1 94.7 1.01 96.3 95.8 0.89
ρ = 0.6 95.2 96.2 0.83 96.6 97.1 0.62
ρ = 0.9 94.2 95.2 0.44 95.0 96.7 0.29

N = 300
∆AUC

1 ∆AUC
2

CI coverage RMSE CI coverage RMSE
GEE-I GEE-exch GEE-I GEE-exch

ρ = 0 95.8 95.5 0.94 96.8 96.6 1.01
ρ = 0.3 93.7 94.5 1.03 94.0 94.4 0.88
ρ = 0.6 94.6 95.4 0.74 95.9 95.4 0.58
ρ = 0.9 96.1 96.7 0.44 94.8 97.5 0.26

Additional details concerning the data-generative models are given in the appendix.
For each data-generative scenario, we compare two estimators: they both estimate the

repeated-measures model shown in (3.1); the first estimator uses an independent work-
ing correlation, and the second estimator uses an exchangeable working correlation. We
present results for two pairwise comparisons: ∆AUC

1 (the difference in AUC between DTRs
(1, 1) and (1, -1)) and ∆AUC

2 (the difference in AUC between DTRs (-1, ·) and (1, -1)). We
report the relative mean squared error (RMSE) between the estimator with exchangeable
correlation and the estimator with independent correlation in terms of ∆AUC

1 and ∆AUC
2 .

We also report the coverage of the confidence interval based on the asymptotic standard er-
ror. We hypothesize that, similar to the regular GEE [30], when the true correlation level is
low, using an exchangeable working correlation is almost as efficient as using an indepen-
dent working correlation; however, when the true correlation among the repeated measures
is at some moderate level, using an exchangeable correlation in the estimator will lead to
improved efficiency.

Results are shown in Table 3.8. We observe that as expected, as the underlying within-
person correlation among the repeated measures increases, the advantage of adopting an
exchangeable working correlation structure in terms of the efficiency, as compared to
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adopting an independent working correlation, is more remarkable. In particular, under a
practically reasonable within-person correlation level ρ = 0.6 (e.g., this was the within-
person correlation observed in the autism SMART example), for both sample sizes, using
exchangeable correlation in the estimation lowers the MSE by about 40% for estimating
∆AUC

2 , and about 25% for estimating ∆AUC
1 . For correlation levels below ρ = 0.3, using

the exchangeable correlation in the estimator does not seem to improve the efficiency.
We also observe that the confidence intervals are sometimes conservative (i.e., the cov-

erage probability greater than the nominal level). This is because in the estimation of the
standard error we use a degree-of-freedom type of correction in the sandwich estimator to
account for the use of estimated coefficients as a surrogate for the unknown true values
of the coefficients. Additional work is needed to better correct for small sample bias in
the estimation of standard errors [34], in particular with the complication of weighting and
replication.

3.8 Discussion

This chapter provides modeling guidelines for comparing DTRs based on a repeated-
measures outcome arising from a SMART. Three distinct SMART study designs were used
for illustration. The autism SMART has a relatively simple design, with only three embed-
ded DTRs, and all patients transitioned to the second stage at the same time. In addition,
there are only four measurement occasions during the entire study. Therefore, we sug-
gested the piecewise linear model. In the ADHD SMART, non-responders transitioned to
the second stage at different time points, and the transition times vary between two initial
treatment groups on average. Thus we recommended a parametric model that accommo-
dates these features. The ExTENd SMART differs from the other two SMARTs in that both
responders and non-responders were re-randomized, but with different transition times to
second stage. There are more DTRs embedded in this study (i.e., eight DTRs) and more
frequent measurements of the repeated-measures outcome. Thus we modeled the trajecto-
ries of all embedded DTRs using regression splines that are properly constrained to respect
the relationship among the embedded DTRs. In practice, decisions about how to appropri-
ately model repeated measures arising from SMARTs should be based on when patients
transition between treatment stages, the timing of outcome measurement occasions relative
to treatment stages, and any additional area specific knowledge about the developmental
pattern of the repeated-measures outcome under the assigned treatments.

In additional simulations not reported here we discovered that including the repeated
measures before re-randomization in the model for estimating the true known weight seems
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to play a similar role as specifying a non-independent working correlation structure in
the GEE implementation, for the purpose of improving the efficiency of the estimator.
However, this was in simulations mimicking the autism study with just two measurement
occasions in the second stage. One advantage of the approach of using non-independent
working correlation is that it allows scientists to capitalize on utilizing correlation among
repeated measures that belong to the second treatment stage, which cannot be included in
the model for estimating the weights.

There has been debate in the field about whether the repeated measure at baseline should
be considered a covariate or a dependent variable [31]. In this chapter we chose to treat
baseline as part of the repeated-measures outcome, when the measurement is available at
baseline (in the ADHD SMART, it was not). We think this approach provides researchers
with a more complete picture of the developmental trajectory associated with each DTR,
because we are able to capture the change in the repeated measures from entry to the study.

Model selection for modeling the repeated measures under the embedded DTRs in a
SMART is a challenging task and a direction for future research. In this chapter, we mainly
focused on the general principles of a repeated-measures model that takes into account the
specific design features of a SMART study. However, there might be multiple parametric
models that are in accordance with the design features of a SMART study. Evaluation
of the goodness of fit in the context of the weighted-and-replicated estimation procedure
requires novel statistical methods.

The ExTENd SMART contains more subtle features that may have implications on
modeling repeated measures, which are beyond the scope of this chapter. For example, the
initial randomization is between two distinct criteria for non-response, instead of between
two distinct treatments, as in most other trials. This implies that two DTRs that differ in
the criterion for non-response can only start to differ, after the participant meets the more
stringent non-response criterion. In other words, there is a chance for all the embedded
DTRs to share the same mean trajectory during the first few weeks of the study. In addition,
non-responders were blinded to the re-randomization, but responders were not (due to the
nature of the treatments); this might have implications for modeling repeated-measures data
in ExTENd. In future work we will extend the guidelines provided here to accommodate
other unique features of SMART designs like ExTENd.

This work can also be extended readily in a number of directions. One natural extension
is to consider different link functions in the marginal model to examine how DTRs differ
based on trajectories of categorical, count or ordinal outcomes. A second extension is to
the analysis of cluster- (or group-) randomized SMARTs in which clusters are randomized
sequentially, yet the primary outcome is measured at the level of individuals nested within
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clusters [22]; this is a setting where GEE methods are often used to account for clustering
of individuals (patients) within clusters (groups).

3.9 Appendix

Asymptotics of the Weighted-and-replicated estimator for Repeated Mea-
sures

In this section we show the consistency of the estimator in Equation (3.3), and then derive
the asymptotic standard error of the estimator.

The estimator given in Equation (3.3) is based on known weights and a pre-specified
working variance-covariance matrix V (a1, a2). In practice, the known weights might be
estimated using covariates to improve efficiency [13, 14, 5], and V (a1, a2) might be esti-
mated based on a specified working correlation structure [30] (e.g., in the data analysis we
use an auto-regressive correlation structure). In this case, the estimating equation is

0 =
1

N

N∑
i=1

∑
(a1,a2)

I{treatment sequence of individual i consistent with DTR (a1, a2)}

·D(Xi, a1, a2)TV (a1, a2; α̂)−1Wi(γ̂)(Yi − µ(Xi, a1, a2; β, η)), (3.5)

where X includes a set of mean-centered baseline covariates. Consistency of the estimator
arising from this estimating equation is shown in the theorem below:

Theorem 3.9.1. Assume that the marginal model for the repeated-measures outcome is

correctly specified, that is, E(a1,a2)[Y |X] = µ(X, a1, a2; β0, η0), where (β0, η0) is the true

value for the parameter (β, η) in the repeated-measures model. Also assume that there exist

α+, γ0 such that
√
N(α̂ − α+) = Op(1), and

√
N(γ̂ − γ0) = Op(1), where W (γ0) ≡ W ,

the true inverse-probability weight. Then the estimator (β̂, η̂) obtained by solving (3.5) is

consistent for (β0, η0).

Proof. For notational simplicity, we use θ = (β, η) to denote the parameter in the repeated-
measures model and θ0 = (β0, η0) to denote its true value. Denote the estimating equation
by 0 =

∑N
i=1 U(Zi; θ, α̂, γ̂)/N , where Z contains all the observed covariates for an individ-

ual. We will show that E[U(Z; θ0, α
+, γ0)] = 0, and then the consistency of our estimator

can be established in the same way as the standard GEE estimator [30].
Note that I{treatment sequence of the individual consistent with DTR (a1, a2)}/W is

the Radon-Nikodym derivative between Pobs and P(a1,a2), where Pobs is the distribution
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of the observed data, P(a1,a2) is the distribution of data in the population where all the
individuals follow the embedded DTR (a1, a2). Hence,

E[U(Z; θ0, α
+, γ0)] =

∑
(a1,a2)

E(a1,a2)D(X, a1, a2)V (a1, a2;α+)−1 (Y − µ(X, a1, a2; θ0))

=
∑

(a1,a2)

EXD(X, a1, a2)V (a1, a2;α+)−1E(a1,a2)[Y − µ(X, a1, a2; θ0)|X]

= 0.

The last equality follows because the repeated-measures model is correctly specified.

The theorem below concerns the asymptotic distribution of the estimator obtained from (3.5).

Theorem 3.9.2. Assume mild regularity conditions and the same assumptions as in The-

orem 3.9.1, and assume that the parameter γ in the weight is obtained from a maximum

likelihood estimator for the treatment assignment probabilities, with a score function Sγ .

Then
√
N
(

(β̂, η̂)− (β0, η0)
)

is asymptotically multivariate normal with zero mean and

covariance matrix Σ = J−1IJ−1, where I, J are given by

I = E[UUT ]− E[USTγ ]E[SγS
T
γ ]−1E[SγU

T ],

and

J =E
∑

(a1,a2)

I{treatment sequence of the individual consistent with DTR (a1, a2)}

WD(X, a1, a2)TV (a1, a2;α+)−1D(X, a1, a2)

where

U :=
∑

(a1,a2)

I{treatment sequence of individual consistent with DTR (a1, a2)}

·D(X, a1, a2)TV (a1, a2;α+)−1W (Y − µ(X, a1, a2; β0, η0)).

Proof. Again use θ to denote the unknown parameter in the repeated-measures model.
Denote the proposed estimating equation by 0 =

∑N
i=1 U(Zi; θ, α̂, γ̂)/N . Using the same

argument as for standard GEE estimator, we can derive that
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√
N(θ̂ − θ0) = −E

[
∂U(Z; θ0, α

+, γ0)

∂θ

]−1 { 1√
N

N∑
i=1

U(Zi; θ0, α
+, γ0)

+ E

[
∂U(Z; θ0, α

+, γ0)

∂γ

]√
N(γ̂ − γ0)

}
+ op(1)

Let U := U(Z; θ0, α
+, γ0) and use the fact that Sγ is the score function for γ̂, then we

could further write:

√
N(θ̂ − θ0) = −E

[
∂U(Z; θ0, α

+, γ0)

∂θ

]−1

·
{ 1√

N

N∑
i=1

[
Ui − E[USTγ ]E[SγS

T
γ ]−1Sγ,i

] }
+ op(1).

Thus the asymptotic variance of
√
N(θ̂ − θ0) is equal to

J−1
(
E[UUT ]− E[USTγ ]E[SγS

T
γ ]−1E[SγU

T ]
)
J−1.

Remark: In particular, the asymptotic variance of
√
N((β̂, η̂) − (β0, η0)) does not

depend on the choice of the estimator for α, i.e., the parameter in the working covari-
ance matrix, among those that have a

√
N -rate for a same limit α+. This is because

E
[
∂U(Z;θ0,α+,γ0)

∂α

]
= 0 holds when the repeated-measures model and the model for weights

are correctly specified. This property is same as the standard GEE estimator. On the other
hand, estimating the known weights should provide a reduction in the asymptotic variance
of β̂, particularly when the projection of U on the vector space of Sγ is not close to zero.
Intuitively, this might be the case if the repeated-measures outcome Y is correlated with
the covariates used in the model for estimating weights.

To obtain an estimate of the standard error of (β̂, η̂), we use plug-in estimators for J
and I . Namely, we set

Ĵ =1/N
N∑
i=1

∑
(a1,a2)

I{treatment sequence of the individual i consistent with DTR (a1, a2)}

WiD(Xi, a1, a2)TV (a1, a2; α̂)−1D(Xi, a1, a2);
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and we set

Î = 1/N
N∑
i=1

ÛiÛ
T
i −

(
1/N

N∑
i=1

ÛiŜ
T
γ,i

)(
1/N

N∑
i=1

Ŝγ,iŜ
T
γ,i

)−1(
1/N

N∑
i=1

Ŝγ,iÛ
T
i

)
,

where

Ûi :=
∑

(a1,a2)

I{treatment sequence of individual i consistent with DTR (a1, a2)}

·D(Xi, a1, a2)TV (a1, a2; α̂)−1Wi(Yi − µ(Xi, a1, a2; β̂, η̂))

and Ŝγ,i := Sγ̂,i. The plug-in estimator for Σ is Σ̂ = Ĵ−1Î Ĵ−1.

Exploratory Plot of Repeated Measures in ADHD SMART

To guide the repeated-measures modeling of the ADHD SMART, we made an exploratory
plot of the repeated measures. More specifically, we plot the empirical mean of the class-
room performance rating under each of the four embedded DTRs separately at each time
point. The exploratory plot is shown in Figure 3.7.

We notice that the two MED regimes do not seem to differ much before t = 3, whereas
the two BMOD regimes start to differ notably after t = 2. There is no evident trend in
the two MED regimes after t = 3. Repeated measures under (BMOD, BMOD+MED)
seem to improve at a constant rate after t = 2, whereas repeated measures under (BMOD,
INT) seem to improve rapidly immediately after t = 2, but the rate of improvement is not
maintained through the end of the study. Guided by these observations, we propose the
repeated-measures model that is shown in Equation (3.2).

Details Concerning the Data-generative Models for Simulation 1

In the simulation in Section 3.7.1, we illustrate the importance of considering the special
features of SMART designs in the modeling of repeated measures from SMART trials,
by comparing a repeated-measures model that incorporates SMART features with more
traditional longitudinal models such as slopes and quadratic models. Here we provide ad-
ditional details about the data-generative models used in this simulation. We adopted a
series of data-generative models under which the mean trajectory of DTR (-1, ·) is main-
tained to be linear, and the average of the two mean trajectories of DTRs (1, 1) and (1, -1)
is maintained to be linear; each data-generative model in the series is indexed by a param-
eter θ > 0, which quantifies the extent to which the trajectories of DTRs (1, 1) and (1, -1)
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Figure 3.7: Exploratory plot of ADHD SMART: empirical mean of the repeated-measures
outcome under each embedded DTR, at each time point.
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deflect at t = 12.
We generate data (X, Y0, A1, Y12, R,A2, Y24, Y36) for each individual in a sample of size

N .

• X includes six mean-centered baseline covariates: age, gender, indicator of African
American, indicator of Caucasian, indicator of Hispanic, indicator of Asian. (Note
that in the simulation experiments, the marginal model we fit for repeated measures
only includes the first four covariates in X to avoid rank deficient problem in the
estimation) X is sampled (with replacement) from the real autism SMART data. For
notational simplicity, we let X below always contain intercept as the first coordinate.

• Generate Y0 = ηT0 X + ε0, where ε0 ∼ N(0, σ2).

• Generate A1 to be -1 or 1 with equal probability.

• Generate Y12 = ηT11X + η12Y0 + β11A1 + ε1, where ε1 ∼ N(0, σ2).

• Generate A2 to be -1 or 1 with equal probability, among individuals with A1 = 1 and
R = 0; otherwise set A2 = 0.

• Generate Y24 = ηT21X + η22Y0 + ηT23A1 + η24Y12 +β21(1−R)(A1 + 1)A2 + ε2, where
β21 = −θ and ε2 ∼ N(0, σ2).

• Generate Y36 = ηT31X + η32Y0 + ηT33A1 + η34Y12 + β31(1 − R)(A1 + 1)A2 + ε3,
where η31 = 2η21, η32 = 2η22, η33 = 2η23, η34 = 2η24 − 1, β31 = 2β21 = −2θ and
ε3 ∼ N(0, σ2).

• The values of the coefficients mentioned above: η0 = (29.5,−5.1,−16.3, 0, 14.3,−11.8,

0.5), σ = 10, η11 = (23.46, 1.4,−3.0, 16.6, 11.1, 6.5, 22.5), η12 = 0.3, β11 = −1,
η21 = (22.758, 1.20, 4.33, 12.33, 4.00, 7.53, 7.47), η22 = 0.2, η23 = −1.8, η24 = 0.2.

In order to have data-generative models that are reasonable, we conceptualize an effect
size in terms of the contrast in AUC between two embedded DTRs. We define the effect
size of the comparison between DTR (1, 1) and DTR (1, -1) as the ratio of the difference
in their AUCs over the pooled standard deviation of “a person-specific AUC” between
the two DTR groups. More specifically, we operationalize the person-specific AUC as
12(Y0/2 + Y12 + Y24 + Y36/2) for each individual. Let σ(1,1) denote the standard deviation
of this person-specific AUC under DTR (1, 1) and σ(1,−1) denote the standard deviation of
this person-specific AUC under DTR (1, -1). Then the effect size mentioned above can
be written as (AUC(1,1) − AUC(1,−1))/

√
(σ2

(1,1) + σ2
(1,−1))/2. This measure quantifies the

extent to which DTRs (1, 1) and (1, -1) differ throughout the entire study period.
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Figure 3.8 shows the true mean trajectories of the repeated measures under the three
embedded DTRs, in each of the four data-generative models (with the effect size defined
earlier equal to 0, 0.2, 0.5, 0.8) that we use in our simulation experiments. Across all of the
four data-generative models, the effect size in terms of the comparison between DTR (-1,
·) and the average of DTRs (1, 1) and (1, -1) is kept at around 0.4.
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Figure 3.8: True mean trajectories of the repeated measures under the embedded DTRs,
under four data-generative models corresponding to effect size (of the contrast in AUC
between DTR (1, 1) and (1, -1)) = 0, 0.2, 0.5, 0.8.
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Details concerning the Data-generative Models for Simulation 2

Here we provide additional details concerning the data-generative models adopted for
the simulation experiments that investigate the efficiency gain due to a working corre-
lation structure. The data-generative models here differ from those in the previous sec-
tion; the goal here is to provide a series of data-generative models that all imply the same
marginal mean model for the repeated-measures outcome Yt, yet the within-person corre-
lation among Yt’s varies across different data-generative models.

We generate data (X, Y0, A1, Y12, R,A2, Y24, Y36) for each individual in a sample of size
N . The data-generating process below is indexed by (α1, α2, α3, k1, k2, k3); tuning these
parameters would not change the marginal mean model for Yt (conditional on baseline X),
but would change the within-person correlation and variances of Yt.

• X includes six mean-centered baseline covariates: age, gender, indicator of African
American, indicator of Caucasian, indicator of Hispanic, indicator of Asian. X is
generated in a way identical to the previous section.

• Generate Y0 = ηT0 X + ε0, where ε0 ∼ N(0, σ2).

• Generate A1 to be -1 or 1 with equal probability.

• Generate Y12 = ηT11X + η12Y0 + β11A1 + ε1, where ε1 ∼ N(0, σ2
1). η12 = η∗12α1; α1

controls the correlation between Y0 and Y12. η11 = η∗11 + (1−α1)η∗12η0; η11 is chosen
to maintain the same marginal mean E[Y12(a1)|X] across various data-generative
models. σ2

1 = k1σ
2; k1 controls the variance of Y12.

• Generate A2 to be -1 or 1 with equal probability, among individuals with A1 = 1 and
R = 0; otherwise A2 = 0.

• Generate (e2, e3) jointly from a bivariate mean zero normal distribution with vari-
ance 1 and correlation 0.25. They will be used in the generation of error terms of
(Y24, Y36).

• Generate Y24 = ηT21X + η22Y0 + η23A1 + η24Y1 + η25R+ η26A1R+β21(1−R)(A1 +

1)A2 + ε2. η22 = η∗22α2; α2 controls the correlation between Y0 and Y24 (and Y36).
η24 = η∗24α3; α3 controls the correlation between Y12 and Y24 (and Y36). η21 and η23

are accordingly adjusted to maintain the same marginal mean E[Y24(a1, a2)|X]; in
particular, η21 = η∗21 and η23 = η∗23 when α2 = α3 = 1. ε2 = σ2e2; σ2

2 = k2σ
2; k2

controls the variance of Y24.
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• Generate Y36 = ηT31X + η32Y0 + ηT33A1 + η34Y1 + η35R+ η36A1R+β31(1−R)(A1 +

1)A2 + ε3, where η31 = 2η21, η32 = 2η22, η33 = 2η23, η34 = 2η24 − 1, η35 = 2η25,
η36 = 2η26, β31 = 2β21. ε3 = σ3e3; σ2

3 = k3σ
2; k3 controls the variance of Y36.

• The values of the coefficients mentioned above: η0 = (29.5,−5.1,−16.3, 0, 14.3,−11.8,

0.5). η∗11 = (23.46, 3.5, 1.4,−3.0, 16.6, 11.1, 6.5, 22.5), η∗12 = 0.7, β11 = −2.8.
η∗21 = (18.4, 1.20, 4.33, 12.33, 4.00, 7.53, 7.47), η∗22 = 0.33 , η∗23 = −7.2, η∗24 = 0.5,
η25 = −10.1, η26 = 5.1, β21 = −3.

As can be seen above, each data-generating model is indexed by a set of parameters
(α1, α2, α3, k1, k2, k3). In the simulation, we focus on four scenarios with the following
choices of those parameters (we were only able to control the within-person correlation
among Y0, Y12 and Y24):

• (α1, α2, α3, k1, k2, k3) = (0, 0, 0, 1, 1, 1.5). As a result, the correlation among Y0, Y12, Y24

is around 0.

• (α1, α2, α3, k1, k2, k3) = (0.43, 0.72, 0.48, 0.91, 0.85, 1.19). As a result, the correla-
tion among Y0, Y12, Y24 is around 0.3.

• (α1, α2, α3, k1, k2, k3) = (0.86, 1.17, 0.77, 0.64, 0.52, 0.72). As a result, the correla-
tion among Y0, Y12, Y24 is around 0.6.

• (α1, α2, α3, k1, k2, k3) = (1.28, 1.48, 0.97, 0.19, 0.10, 0.42). As a result, the correla-
tion among Y0, Y12, Y24 is around 0.9.

Details Concerning the Analysis of Repeated-Measures Data in the ADHD
Study

For individual i, we observeXi, A1,i, Ri,Mi, A2,i and repeated measures Y1,i, ..., Y8,i. A1 =

1 denotes that the individual received low-intensity BMOD and A1 = −1 denotes that
the individual received low-dose MED. R indicates whether the individual continued to
respond until the end of the study. WhenR = 0 (i.e., the individual became a non-responder
during the study), M denotes the time (in months) of non-response andA2 denotes whether
(A2 = 1) the initial treatment was intensified or (A2 = −1) the initial treatment was
augmented with the alternative treatment.

The repeated-measures model proposed in (3.2) was estimated using the estimator pre-
sented in (3.3). In particular, the treatment sequence of each individual is consistent with
either one or two of the embedded DTRs. An individual’s treatment sequence is consistent
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with only one embedded DTR if this individual was a non-responder (e.g., a non-responder
to BMOD who was later re-randomized to INT is only consistent with DTR (BMOD,
INT)). An individual’s treatment sequence is consistent with two embedded DTRs if this
individual was a responder (e.g., a responder to BMOD is consistent with both (BMOD,
INT) and (BMOD, BMOD+MED)). The weight W in (3.3) is the inverse probability of an
individual receiving the treatment sequence that was assigned to him/her. Therefore, re-
sponders receive a weight equal to 2 (they were randomized only once, to two options) and
non-responders receive a weight equal to 4 (they were randomized twice, each time to two
options). In our data analysis, however, we estimate these known weights using covariates
specified in Section 3.6.2 to improve the statistical efficiency.

Details Concerning the Analysis of Repeated-Measures Data in the Ex-
TENd Study

Given the many measurement occasions of the repeated-measures outcome, we adopted a
piecewise splines model. Here we describe the details. From t = 0 to t = 2, we let the
mean trajectory under DTR (a1, a2R, a2NR) be a regression spline that can only vary with
a1 and has the identical intercept regardless of a1. From t = 2 to t = 8, we let the mean
trajectory under the DTR (a1, a2R, a2NR) be a regression spline that continously connects
to the trajectory between t = 0 and t = 2, and can vary with different values of (a1, a2NR).
From t = 8 to t = 16, we let the mean trajectory under the DTR (a1, a2R, a2NR) be a
regression spline that continuously connects to the trajectory up to t = 8, and the trajectory
can vary with different values of (a1, a2R, a2NR). For model simplicity, all the b-spline
bases are of degree 2. We apply internal knots at t = 5 (midway from t = 2 to t = 8) and
t = 12 (midway from t = 8 to t = 16).

A regression splines model can be viewed as a linear model, with properly chosen
functions of b-spline bases as predictors. Therefore, the estimator presented in (3.3) can
be readily applied. More specifically, in the ExTENd study, each individual’s treatment se-
quence is consistent with two embedded DTRs. For example, a patient who was assigned
the lenient early non-response definition and later transitioned to stage two as a responder
and received TDM was consistent with the following two DTRs: (a1, a2R, a2NR)=(lenient,
TDM, NTX+CBI) and (a1, a2R, a2NR)=(lenient, TDM, Placebo+CBI). The weight in (3.3)
is equal to 4 for every individual, because in the ExTENd study each individual was ran-
domized twice, each time to one of two options. In our data analysis, we estimate these
known weights using the covariates specified in Section 3.6.3 to improve the statistical
efficiency.
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CHAPTER 4

Small-Sample Considerations in the Comparison
of Dynamic Treatment Regimes Using SMART

Data

4.1 Introduction

The Sequential Multiple Assignment Randomized Trial (SMART), was developed for the
purpose of building high-quality dynamic treatment regimes (DTRs). A common aim in a
SMART is to compare the mean of an end-of-study outcome between two or more of the
DTRs embedded within it (see Section 3.3 for introduction about the embedded DTRs in a
SMART). A regression-based inverse probability-of-treatment weighting (IPTW) method
has been proposed for comparing the DTRs with respect to an end-of-study outcome [47,
78, 50, 46, 43], based on marginal mean models for the DTRs; in a SMART, these weights
are known, by design. We call it a weighted-and-replicated (WR) estimator due to a simple
way to implement it using existing software [43]. Briefly, weighting adjusts for the fact
that, by design, participants in a SMART may differ in their probability of being offered
their sequence of treatments; whereas replication is used to take advantage of the fact that
some SMART participants are consistent with more than one of the embedded DTRs being
compared.

This chapter focuses on small sample considerations in the use of WR estimator with
data arising from a SMART. This work is motivated by a SMART in autism (shown in Fig-
ure 3.1 and described in more detail in Section 3.3) which has three DTRs embedded within
in and a sample size of n = 61 (considered small). Little is known concerning the small
sample properties of the WR estimator, particularly the performance of its corresponding
asymptotic variance estimator. Not all SMARTs are expected to have sample sizes that are
“sufficiently large”. This may be particularly true in settings in which (i) the SMART may
not have been powered for the mean comparisons of the embedded DTRs because this is a
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secondary aim of the SMART, or (ii) recruitment difficulties prohibited investigators from
achieving their planned sample size goals.

In this chapter, we develop a small-sample variance estimator of the WR estimator
by extending the work of [34]. Moreover, it is well-known that the asymptotic statistical
efficiency of IPTW estimators is improved when estimated, rather than known, weights are
used [62, 14, 5, 84]. Hence, we also develop a small-sample variance estimator for the
case when estimated, as opposed to known, weights are used in the WR estimator. We
investigate via simulation studies the performance of the proposed small-sample variance
estimator. The ongoing work of Almirall et al. provides more complete discussions about
the contents of this chapter. In particular, there the authors also investigate the efficiency
gains that can be achieved when varying the level of correlation among covariates used in
the weight model and the outcome, via simulation studies in a small-sample setting; also
presented there are the analyses of the autism SMART data that motivates this project.
However, this chapter will mainly focus on presenting the small-sample variance estimator
of the WR estimator.

In Section 4.2, we briefly review the marginal mean model and the form of WR esti-
mator. In Section 4.3, we propose a small-sample bias-corrected estimator for the variance
of WR estimator. The empirical performance of the proposed variance estimator is inves-
tigated in a simulation study in Section 4.4. Concluding remarks and discussions are in
Section 4.5.

4.2 Model and Estimator

The marginal mean model and the WR estimator for the model were introduced in Sec-
tion 3.5. For completeness, here we briefly review them in the context of the autism
SMART.

For each SMART study participant and each one of the dynamic treatment regimes
(a1, a2) embedded in the SMART, we envision a primary end-of-study outcome Y (a1, a2).
a1 denotes the first-stage treatment, and a2 denotes the second-stage treatment. We use
contrast coding (i.e., (-1, +1) coding) to facilitate the interpretation of the parameters in the
marginal mean model. The three DTRs embedded in the autism SMART can be denoted
in the identical way to that in Section 3.4. Specifically, the DTR that starts with BLI and
augments BLI with AAC for slow responders is labeled (1, -1); the DTR that starts with
BLI and intensifies BLI for slow responders is labeled (1, 1); the DTR that starts with
BLI+AAC and intensifies BLI+AAC for slow responders is labeled (-1, ·). Here in the
analysis of data arising from the autism study, we focus on a primary outcome Y that is
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the total number of socially communicative utterances at the end of treatment (week 24);
higher values are more desirable.

Our overarching goal is to compare values of E[Y (a1, a2)], which is the marginal mean
of the primary outcome Y for each of the SMART-embedded DTRs. As with models used
in the analysis of standard randomized clinical trials, the marginal modeling approach also
includes models for quantities such as E[Y (a1, a2)|X], in which X includes pre-specified
pre-treatment covariates.

The comparison of mean outcomes between the DTRs embedded in a SMART is fa-
cilitated by parametric marginal mean models µ(a1, a2, X; β, η) for E[Y (a1, a2)|X] of the
form

µ(a1, a2, X; β, η) = βTf(a1, a2) + ηTX,

where β = (β1, ..., βp)
T and η = (η1, ..., ηq) are, respectively, p- and q-dimensional col-

umn vectors of unknown parameters; and, for simplicity, we assume X is mean centered.
The form of f(a1, a2) and the covariates in X are pre-specified in advance of collecting
the SMART data. η quantifies the association between the baseline covariates X and the
outcome Y , but is not necessarily of scientific interest because it does not carry information
about the comparison of the embedded DTRs. The form of f(a1, a2) will depend on the
design of the SMART. In the autism study, an example model is f(a1, a2) = (1, a1, I(a1 =

1)a1a2) so that

µ(a1, a2, X; β, η) = β1 + β2a1 + β3I(a1 = 1)a1a2 + ηTX. (4.1)

We next review the WR estimator, using the autism SMART as an example. Let θ =

(β, η) denote the complete set of p+q unknown parameters. LetO = (X,L1, A1, R, L2, A2, Y )

denote the observed SMART data used to estimate the unknown parameters θ. Lt denotes
auxiliary data collected prior to first-stage treatment assignment (L1), as well as data col-
lected after first-stage treatment assignment but prior to second-stage treatment assignment
(L2). R is a binary variable denoting responder (R = 1) versus non-responder/slow re-
sponder (R = 0) to first-stage treatment. At is the randomly assigned treatment at each
stage t.

In the autism example, WR estimator θ̂ is the solution for θ to the following weighted
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estimating equations:

0 =Pn2RI(A1 = 1)(Y − β1 − β2 − β3 − ηTX)DT
(1,1)

+ Pn2RI(A1 = 1)(Y − β1 − β2 + β3 − ηTX)DT
(1,−1)

+ Pn2I(A1 = −1)(Y − β1 + β2 − ηTX)DT
(−1,·)

+ Pn4(1−R)I(A1 = 1)(Y − β1 − β2 − β3A2 − ηTX)DT
(1,A2),

where D(1,1) = (fT (1, 1), X), D(1,−1) = (fT (1,−1), X) and D(−1,·) = (fT (−1, ·), X)

are the (p + q)-dimensional model design row-vectors associated with each of the three
embedded DTRs.

Next we present the WR estimator in a different form, for general SMART designs.
Mathematically, the estimators presented in the previous display is equivalent to this alter-
native form; however, this alternative form will later facilitate the derivation of the small-
sample variance of the WR estimator more easily. For a general SMART design with K
embedded two-stage DTRs {(ak1, ak2)}Kk=1, the marginal mean model estimator can be for-
malized as the solution to the estimating equations

0 =
n∑
i=1

w(Xi, L̄2,i, Ri, Ā2,i)D
T
i εi(θ), (4.2)

where

D =



D1

...
Dk

...
DK


and ε(θ) =



I1 · (Y − µ(a1
1, a

1
2, X; θ))

...
Ik · (Y − µ(ak1, a

k
2, X; θ))

...
IK · (Y − µ(aK1 , a

K
2 , X; θ))


,

where Dk = ∂µ(ak1, a
k
2, X; θ)/∂θT is the model design vector under the k-th embedded

DTR denoted by (ak1, a
k
2), and Ik is shorthand for the indictor I(Ā2 is consistent with DTR (ak1, a

k
2)).

The weight w(X, L̄2, R, Ā2) is the inverse of the product of the probability density func-
tion of A1 given (X,L1) and A2 given (X,L1, A1, R, L2). These weights are known, by
design; for notational simplicity, we denote w(X, L̄2, R, Ā2) as W . While the expres-
sion for weights is written in general terms as a function of (X, L̄2, R, Ā2), for the autism
SMART, the weights are only a function of (A1, R,A2). Note that for each individual, we
have conceptualized design vector and error for each of all the embedded DTRs; however,
only those errors associated to the DTRs that this individual is consistent with will have
non-zero values.
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4.3 The Variance Estimator for WR Estimator

Standard Taylor series arguments (around θ0, the true value for parameter θ) can be used to
obtain the asymptotic covariance matrix of θ̂:

M−1
n E

(
n∑
i=1

WiD
T
i εi(θ0)εi(θ0)TDiWi

)
M−1

n , (4.3)

where Mn = −E
(∑n

i=1WiD
T
i
∂εi(θ0)
∂θT

)
. The expectation in the formula is with respect

to the randomness of the data conditional on the baseline X; in particular, Di is not
considered random, but Wi, εi are considered random. In practice, Mn is estimated by
−
∑n

i=1 WiD
T
i
∂εi(θ̂)
∂θT

, and E
(∑n

i=1WiD
T
i εi(θ0)εi(θ0)TDiWi

)
is estimated by∑n

i=1 WiD
T
i εi(θ̂)εi(θ̂)

TDiWi .
When the sample size is relatively small, θ̂ can deviate from θ0 by a non-ignorable

amount. More often, the estimated θ̂ may result in ε(θ̂) that vary less than ε(θ0). This
phenomenon is well-known in the GEE literature [34]. Therefore, using θ̂ to replace the
unknown θ0 in the sandwich estimator of the asymptotic variance of θ̂ may induce consid-
erable amount of small-sample bias. Below we focus on correcting the small-sample bias of
using

∑n
i=1WiD

T
i εi(θ̂)εi(θ̂)

TDiWi as an estimator forE
(∑n

i=1WiD
T
i εi(θ0)εi(θ0)TDiWi

)
.

We will discover later that, in the context of WR estimator, the small-sample correction ap-
proach proposed by [34] cannot be applied in a straightforward way, because (i) data from
one individual may contribute to the estimation of multiple DTRs, and (ii) the weight used
in the WR estimator is a function of post-treatment covariates, thus must be considered as
“random”, unlike the predictors in a GEE.

From now on we re-define the “error vector” ei = Wiεi(θ0) and the “residual vector”
ri = Wiεi(θ̂). The way we define the errors and the residuals differs from GEE, in that
they incorporate weighting and replication; weighting and replication is random for each
subject, because the treatments and the response status are random. Then the middle piece
in (4.3) is

∑n
i=1D

T
i E[eie

T
i ]Di, which is normally estimated by

∑n
i=1D

T
i rir

T
i Di. Below

we attempt to quantify the gap between them.
Consider a first-order Taylor series expansion of ri about θ: ri = ei + ∂ei

∂θT
(θ̂ − θ0). A

first-order approximation gives

(θ̂ − θ0) ≈M−1
n

n∑
i=1

DT
i ei. (4.4)

91



Thus we can derive

E[rir
T
i ] ≈ E[eie

T
i ] + E

[
∂ei
∂θT

(
M−1

n

n∑
j=1

DT
j ej

)
eTi

]
(4.5)

+ E

ei(M−1
n

n∑
j=1

DT
j ej

)T
∂eTi
∂θ

+ E

 ∂ei
∂θT

(
M−1

n

n∑
j=1

DT
j ej

)(
M−1

n

n∑
j=1

DT
j ej

)T
∂eTi
∂θ

 .
This equation quantifies the difference between eieTi and rirTi , on average. Some further
approximations are needed to simplify the calculation. First, we ignore all the terms in (4.5)
that involve interaction between ei and ej where i 6= j. Then we get

E[rir
T
i ] ≈ E[eie

T
i ] + E

[
∂ei
∂θT

M−1
n DT

i eie
T
i

]
(4.6)

+ E

[
eie

T
i DiM

−1
n

∂eTi
∂θ

]
+ E

[
∂ei
∂θT

M−1
n

n∑
j=1

DT
j eje

T
j DjM

−1
n

∂eTi
∂θ

]
.

Notice that
(
− ∂ei
∂θT

M−1
n DT

i

)
plays a crucial role in forming the gap between E[rir

T
i ] and

E[eie
T
i ]. Although Mn is unknown, we can use its estimate, −

∑n
i=1 WiD

T
i
∂εi(θ̂)
∂θT

, to con-
struct an approximation to

(
− ∂ei
∂θT

M−1
n DT

i

)
. Thus we define

Hij :=
∂ei
∂θT

(
n∑
k=1

WkD
T
k

∂εk(θ̂)

∂θT

)−1

DT
j = Wi

∂εi(θ̂)

∂θT

(
n∑
k=1

WkD
T
k

∂εk(θ̂)

∂θT

)−1

DT
j ,

in particular,

Hii :=
∂ei
∂θT

(
n∑
k=1

WkD
T
k

∂εk(θ̂)

∂θT

)−1

DT
i = Wi

∂εi(θ̂)

∂θT

(
n∑
k=1

WkD
T
k

∂εk(θ̂)

∂θT

)−1

DT
i . (4.7)

Note that Hii is a K-by-K square matrix, where K is the total number of embedded DTRs
in the SMART (e.g., K = 3 in the autism example). (4.6) is then rewritten as

E[rir
T
i ] ≈ E[eie

T
i ]− E

[
Hiieie

T
i

]
− E

[
eie

T
i H

T
ii

]
+ E

[
n∑
j=1

Hijeje
T
j H

T
ij

]
.

We further make the approximation that Hij ≈ 0 for i 6= j; the similar type of approxima-
tion was also made in [34] in the GEE setting. Then we have

E[rir
T
i ] ≈ E[eie

T
i ]− E

[
Hiieie

T
i

]
− E

[
eie

T
i H

T
ii

]
+ E

[
Hiieie

T
i H

T
ii

]
. (4.8)
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Here, Hii can not be extracted out of the expectation, because Hii defined in (4.7) not
only depends on the baseline covariates, but also depends on the treatment sequences and
response status that are post treatment. Thus it is not straightforward to recover E[eie

T
i ]

from E[rir
T
i ].

We propose an ad hoc approach to correcting the bias, suggested by (4.8). The gap be-
tween E[eie

T
i ] and E[rir

T
i ] is approximately E

[
Hiieie

T
i

]
+E

[
eie

T
i H

T
ii

]
−E

[
Hiieie

T
i H

T
ii

]
.

Although ei is unknown, it can be approximated by ri, and the remaining bias would be
of higher order. That is, in place of rirTi in the original estimator for the covariance for θ̂,
we use rirTi + Hiirir

T
i + rir

T
i H

T
ii −Hiirir

T
i H

T
ii . Therefore, the adjusted estimator for the

middle piece in (4.3) is
∑n

i=1 D
T
i (rir

T
i +Hiirir

T
i + rir

T
i H

T
ii −Hiirir

T
i H

T
ii )Di.

4.3.1 The Variance Estimator for WR Estimator with Estimated Weights

When the weights in the WR estimator are estimated rather than the known ones, some
further adjustments are necessary. The estimating equation for θ can now be written as 0 =∑n

i=1Wi(α̂)DT
i εi(θ). W (α) is a model for the weight and α̂ is the maximum likelihood

estimator; we assume that it is the solution to the estimating equation 0 =
∑n

i=1 Sα,i(α).
Now, the asymptotic covariance matrix of θ̂ can be written as

M−1
n E

[
n∑
i=1

(
WiD

T
i εi(θ0)− Π[WiD

T
i εi(θ0)|Sα,i]

)⊗2

]
M−1

n , (4.9)

where Sα is Sα(α) evaluated at the true value α0; Π[V |Sα] is the projection of V on the
space of Sα; V ⊗2 = V V T .

Using the notation defined previously, by taking Di outside the expectation, the middle
piece in (4.9) can be written as

∑n
i=1 DiE (ei − Π[ei|Sα,i])⊗2DT

i . Thus the goal now is to
quantify the bias that is introduced when estimating this quantity by∑n

i=1Di (ri − Π[ri|Sα,i])⊗2DT
i . Since Π[ei|Sα,i] is relatively negligible compared to ei,

we will focus on correcting the bias incurred by replacing eieTi with rirTi , and ignore the
bias incurred by replacing Π[ei|Sα,i] with Π[ri|Sα,i].

Note that, when the weights are estimated, the deviation of θ̂ from the true value θ0 is
no longer characterized by (4.4). Instead, we have

(θ̂ − θ0) ≈M−1
n

n∑
i=1

(
DT
i ei − Π[DT

i ei|Sα,i]
)
. (4.10)
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Thus we have

E[rir
T
i ] ≈ E[eie

T
i ] + E

[
∂ei
∂θT

(
M−1

n

n∑
j=1

(
DT
j ej − Π[DT

j ej|Sα,j]
))

eTi

]
(4.11)

+ E

ei(M−1
n

n∑
j=1

(
DT
j ej − Π[DT

j ej|Sα,j]
))T

∂eTi
∂θ


+ E

 ∂ei
∂θT

(
M−1

n

n∑
j=1

(
DT
j ej − Π[DT

j ej|Sα,j]
))(

M−1
n

n∑
j=1

(
DT
j ej − Π[DT

j ej|Sα,j]
))T

∂eTi
∂θ

 .
Here, in addition to the approximations made before in the case of using known weights,
we further approximate the third line in (4.11) with E[Hiieie

T
i H

T
ii ] (i.e., some lower order

terms are approximated by zero). After all the simplifications, we have

E[rir
T
i ] ≈ E[eie

T
i ]− E

[
Hiieie

T
i

]
− E

[
eie

T
i H

T
ii

]
+ E

[
Hiieie

T
i H

T
ii

]
(4.12)

− E
[
∂ei
∂θT

M−1
n Π[DT

i ei|Sα,i]eTi
]

− E
[
∂ei
∂θT

M−1
n Π[DT

i ei|Sα,i]eTi
]T
.

Motivated by this approximation, we propose the following ad hoc bias-corrected esti-
mator for the middle piece in (4.9):

∑n
i=1D

T
i

(
(ri − Π̂[ri|Sα,i])⊗2 + Hiirir

T
i + rir

T
i H

T
ii −

Hiirir
T
i H

T
ii −

[
Wi

∂εi(θ̂)
∂θT

(∑n
j=1WjD

T
j
∂εj(θ̂)

∂θT

)−1

Π̂[DT
i ri|Sα,i]rTi

]
−
[
Wi

∂εi(θ̂)
∂θT

(∑n
j=1 WjD

T
j
∂εj(θ̂)
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Di, where we calculate Π̂[Vi|Sα,i]

by taking the fitted values in the regression of V on Sα(α̂).

4.4 Simulation Studies for the Small-sample Variance Es-
timator

A small set of simulation experiments were conducted to investigate the performance of the
proposed small-sample bias-corrected variance estimator for the WR estimator. In particu-
lar, we compared the confidence intervals constructed based on the bias-corrected variance
estimator, and confidence intervals constructed based on the simple plug-in sandwich vari-
ance estimator. The comparison was made with both WR estimator with known weights
and WR estimator with estimated weights. Data (X,L1, A1, R, L2, A2, Y ) were generated
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to mimic the autism SMART study. Here, X includes age, gender and ethnicity; L1 and L2

are the numbers of socially communicative utterances at baseline and week 12, respectively.
Note that L1, L2 and Y are the repeated measures of the number of socially communicative
utterances of a subject; although L1, L2 are not in the marginal model, they will be used in
the weight model for the WR estimator with estimated weights.

The marginal mean model (4.1) is estimated in all the experiments. Since the goal of
the simulations is to evaluate the performance of standard error estimators, rather than the
performance of the estimators, we use generative models which all imply that (4.1) is a
correctly specified marginal mean model for the outcome. More specifically, we create
four simulation scenarios in which the marginal means of the outcome under the embedded
DTRs do not vary, but the within-person correlations among L1, L2, Y are 0, 0.3, 0.6,
0.9. Therefore, under these simulation scenarios, estimating the weights using L1, L2 is
expected to provide different levels of efficiency improvement. Data sets with a sample
size n = 100 are generated.

For each data-generative scenario, we apply two estimators: (a) WR estimator with
known weights; (b) WR estimator with estimated weights (predictors in stage one weight
model areX and L1; predictors in stage two weight model are L1 and L2). For each estima-
tor, we implement two variance estimators: the sandwich estimator without bias correction
and the sandwich estimator with the proposed bias correction. In the implementation of the
former, we use a naive degree-of-freedom adjustment for the middle piece of the sandwich
estimator, i.e., to obtain the plug-in estimate, we use a denominator equal to (n− (p+ q))

(when known weights are used) or (n − (p + q) − pα) (when estimated weights are used;
pα is the total number of parameters in the estimated weight model).

We present results for two pairwise comparisons: ∆1 (the mean difference between
DTRs (1, 1) and (1, -1)) and ∆2 (the mean difference between DTRs (-1, ·) and (1, -1)). We
report the coverage of the confidence intervals constructed based on two different variance
estimators, for each of the two WR estimators.
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Results are shown in Table 4.1. We notice that, confidence intervals based on the sand-
wich estimator without bias correction have some under coverage, even with the degree-
of-freedom adjustment. In particular, when weights are estimated in the WR estimator, the
confidence intervals for the difference between DTRs (1, 1) and (1, -1) have coverage prob-
abilities that are below 90%. Using the small-sample bias correction, the coverage for this
estimand is improved to at least 92%. We also notice that, for the other estimand, i.e., the
difference between DTRs (-1, ·) and (1, -1), both variance estimators seem to be somewhat
conservative in some simulation scenarios, especially for the WR estimator with estimated
weights.

4.5 Conclusion and Discussion

Comparison among the embedded DTRs of a SMART study in terms of an end-of-study
outcome can be a primary aim of a SMART study. This aim can be achieved by proposing
a marginal mean model and estimating the model with a weighted-and-replicated estima-
tor. There are some research questions regarding the WR estimator for relatively small
sample sizes, when the asymptotics may not accurately characterize the performance of
the estimators. This chapter proposes and investigates the performance of a small-sample
bias-corrected variance estimator for the WR estimator. In the simulations we have found
that the proposed variance estimator gives a confidence interval with no worse performance
than the traditional sandwich estimator, and can improve the coverage probability in some
scenarios. Because of the special properties of a WR estimator (i.e., the estimator involves
weighting and replication, both of which are “random”, conditional on the baseline covari-
ates), the approach proposed by [34] is not directly applicable to the WR estimator. The
bias-corrected variance estimator proposed in this chapter extends the idea in [34], and
uses some approximations to simplify the form of the estimator. In Almirall et al., we also
examine via simulations, the variance estimator obtained by naively adopting the method
in [34] without acknowledging the special properties of a WR estimator for the marginal
mean model.

Currently the confidence intervals of the estimands are constructed using the estimated
standard errors and a z-score. Alternatively, one may construct the confidence interval us-
ing a test statistic that has a chi-squared distribution with certain degrees of freedom under
the null. Properly identifying this degree-of-freedom may further improve the performance
of the confidence interval. We will investigate this in future research.
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CHAPTER 5

Regularized Search within a Restricted Class of
Treatment Policies

5.1 Introduction

One natural extension to the assisted estimator for evaluating and comparing competing
treatment policies, is to estimate the optimal one among a pre-specified class of parametrized
treatment policies, that is, the one that yields the highest mean of the primary outcome. The
pre-specified class of treatment policies, for example, may be a class of linear decision rules
that involve a set of variables suggested by the clinical scientists; it is believed that these
variables, when properly used to tailor the treatment assignment, lead to personalized treat-
ments that will yield higher value of the outcome. In addition to identifying the optimal
policy within such a pre-specified policy class, it is also of interest to investigate to what
extent one variable is useful for decision-making, in the context of all the other variables
that are already in the decision rule. This is because including one additional variable in
the decision rule given a set of variables in the decision rule may not further increase the
highest achievable value; or including this additional variable may only further increase
the highest achievable value by a small amount that is comparable to the noise level of the
data. In particular, we would like to detect this type of scenario if this additional variable is
expensive or difficult to collect or measure in practice. These thoughts are closely related
to the concept of “value of information” in the decision theory literature [16, 17]. Value
of information of one variable in the decision making procedure, roughly speaking, is how
much it is worth to observe this variable, in terms of the average benefit in the utility func-
tion by making decision based on the more complete information with the value of this
variable revealed. Therefore, in most cases, value of information of a variable would be the
amount one is willing to pay to reveal this variable. In this framework, benefits and costs
are calculated with the same scale (e.g., in terms of the economic impact), whereas we will
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concentrate more on the benefit in terms of a pre-specified primary outcome and omit the
economic cost-benefit analysis.

There have been relatively limited works related to determining the important decision-
making variables in the context of optimizing treatment policies. In particular, all the
existing methods do not consider a pre-specified policy class. [32] considers selecting
decision-making variables via a penalized regression framework that is based on modeling
and estimation of the effect of treatment interacting with prognostic factors, i.e., A-learning.
This approach does not require a prediction model for the entire conditional mean of the
outcome given the history as in Q-learning; it builds only on a prediction model for the
“treatment blip”, thus is robust to mis-specification of the main effect of the prognostic
factors in the conditional mean of the outcome. However, one potential disadvantage of
this type of method is that, in practice, clinicians or the agents that assign the treatments
may not be willing to use many variables to tailor the treatments, either because collecting
some variables in a clinical setting is expensive or burdensome, or because of lack of in-
terpretability when the decision rule is too complicated (e.g., involves too many variables).
In these cases, they might propose a couple of variables that they are particularly willing
to use to tailor the treatment assignment, i.e., to build the decision rules. The A-learning
approach can only produce an estimated optimal policy in this desired form by using only
this set of variables in the prediction model for the treatment blip. It is very likely that this
set of variables proposed by the clinicians cannot accurately predict the treatment blip; in
that case bias will be incurred in the estimation, thus affecting the value associated with the
estimated optimal decision rule. Moreover, a variable that quantitatively interacts with the
treatment may not be necessary to be included for the optimality of the decision rule [12].
Variable selection approach based on A-learning cannot successfully eliminate these types
of variables. [88] attempts to identify important variables in the context of optimizing treat-
ment policies in her unpublished PhD dissertation, where a two-step method is proposed to
identify all the variables that have qualitative interactions with the treatment; the first step
is a flexible fit of the potential outcomes under each treatment regime using state-of-the-art
machine learning algorithms, and the second step utilizes a sparse classification method
to do variable selection for the optimal treatment regime. This method, however, is also
directly targeting variable selection for the optimal treatment regime, and is not applicable
when the regimes of interest are in a pre-specified restricted class.

To avoid the problems that are encountered when taking the prediction model approach,
and to be able to investigate the problem in the context of a pre-specified class of policies,
we propose to build an optimization procedure based on consistent estimation of the policy
values.
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5.2 Problem Formulation, Challenges and Proposals

5.2.1 Problem Formulation

Consider a one-stage decision-making problem with binary treatment (a = 0, 1), and sup-
pose that the class of policies/decision rules that we want to optimize among is I{c0 +

c1S1 + ... + cpSp > 0}. This class of policies is indexed by (p + 1)-dim parameter
c = (c0, c1, ..., cp). Throughout we will assume that S1, ..., Sp are all standardized, i.e.,
each has a zero mean. Suppose our observed data is {(Xi, Ai, Yi)}ni=1 and (S1, ..., Sp) is a
subset of X; the treatment Ai is assigned according to some known randomization proba-
bility. Then the value of the policy indexed by c, V (d)(c), can be estimated using the IPW
estimator V̂ (d)

n (c). Since the policies in the class are deterministic policies, the estimator
V̂

(d)
n (c) is usually discontinuous in c, therefore optimizing V̂ (d)

n (c) over c to obtain the es-
timated optimal policy would be a difficult optimization problem (this issue of estimation
in finite sample motivates us to consider a class of stochastic policies). Another equally
important problem is the ill-posedness of the optimization of the policy value. Simply put,
it is very likely that the maximizer of V (d)(c) is non-unique. Note that c and K · c specify
an identical policy, thus we can restrict our attention to {c : ‖c‖ = 1}. This is a compact
set; if V (d)(c) were continuous in c, then V (d)(c) would have a maximum on {c : ‖c‖ = 1}.
On {c : ‖c‖ = 1}, there might be multiple c’s that achieve the maximal value of V (d)(·).
As a result of this ill-posedness, whether a variable is useful for decision making cannot
be easily detected from the optimizer(s) of the value function. We will illustrate this point
later in our investigation for stochastic policies.

To resolve the discontinuity in estimated policy value in finite sample, we propose to re-
lax the original policy search problem by searching over a larger class of stochastic policies.
This class of stochastic policies uses the expit function to smooth the indicator function in-
volved in the original deterministic policies. That is, we consider stochastic policies that
assign a = 1 with probability πθ(S) = exp(θ0 + θ1S1 + ...+ θpSp)/(1 + exp(θ0 + θ1S1 +

...+θpSp)) and θ = (θ0, θ1, ..., θp). Note that this stochastic policy class in fact contains the
deterministic policies as degenerate cases. From now on we consider the stochastic policy
class not as a computational tool to relax the original problem, but as our new pool from
which the policy search is conducted. By switching from the deterministic policy class to
the stochastic policy class, we are essentially expanding the candidate policies.
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5.2.2 The Policy Search Problem - At Population Level

Let V (θ) denote the policy value associated to θ. V (θ) = EθY = E
[
E[Y |S,A =

1] · πθ(S) + E[Y |S,A = 0] · (1− πθ(S))
]
, where Eθ denotes the expectation in the popu-

lation where the stochastic policy prescribed by πθ(S) is followed. It can also be written as
E
[
Y · Aπθ(S)+(1−A)(1−πθ(S))

p(A|X)

]
, where p(A|X) is the randomization distribution of A given

X in the observed data. The IPW estimate V̂n(θ) = Pn
[
Y · Aπθ(S)+(1−A)(1−πθ(S))

p(A|X)

]
is con-

tinuous in θ; thus the discontinuity problem is resolved. Under mild finite moment condi-
tions, V (θ) can be shown to be bounded. We denote supθ V (θ) as V ∗. The (population-
level) ill-posedness issue in the context of a class of stochastic policies is similar to the
issue with the class of deterministic policies. Roughly speaking, the optimizer of V (θ) is
non-unique; in particular, this lack of uniqueness makes it difficult to claim whether or not
a certain variable is useful for decision making.

However, now with a class of stochastic policies, we can no longer restrict the domain
to a compact set. In particular, note that as the coordinates of θ go to infinity in a direction,
the associated stochastic policy degenerates to a deterministic policy. For example, if θ =

(θ0, θ1) in πθ(S) = exp(θ0 + θ1S1)/(1 + exp(θ0 + θ1S1)) goes to infinity in direction
(c0, c1), then it degenerates to the deterministic policy that assigns a = 1 if and only if (c0 +

c1S1) > 0. Besides, if some of the coordinates of θ stay finite and the others go to infinity
in some direction, then the stochastic policy degenerates to a deterministic policy that is
only determined by those infinite coordinates of θ. For example, if (θ0, θ1) in πθ(S) =

exp(θ0 +θ1S1 +θ2S2)/(1+exp(θ0 +θ1S1 +θ2S2)) goes to infinity in direction (c0, c1) and
θ2 = θ20 (θ20 is an arbitrary finite number), then the policy degenerates to the deterministic
policy that assigns a = 1 if and only if (c0 + c1S1) > 0.

For now we do not allow coordinates of θ to take values in {−∞,+∞}. Then the
ill-posedness issue, which was mentioned in the discussion about optimizing deterministic
policies, must be framed in a slightly different way. Suppose we desire to make inference
about Sp. We say that optimization of V (θ) is ill-posed with respect to Sp, if there exists
δ > 0 such that for an arbitrarily small ε > 0, we can find θ and θ′ that both have a value
higher than V ∗ − ε, and satisfy |θp| ≥ δ, yet θ′p = 0. We choose this definition of ill-
posedness because, unlike in the case of deterministic policies, here the supremum V ∗ may
not be attainable; thus it is more appropriate to talk about ε-optimizers for an arbitrarily
small ε.

In this scenario, because of the existence of θ′, we can say that Sp is not useful for de-
cision making given the other variables in the policy. However, without any regularization
of this (population-level) optimization problem, one might not be able to conclude that Sp
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can be eliminated from the policy with no loss, because we may accidentally obtain an
optimizer with nonzero θp instead of the θ′p = 0.

To better understand the issue of ill-posedness, consider the example below. We con-
sider a policy class πθ(S) = exp(θ0 + θ1S1)/(1 + exp(θ0 + θ1S1)); this policy class only
involves the intercept and one “tailoring variable” S1. Consider a generative model for Y :
Y = A + ε, where ε ∼ N(0, 1). This generative model illustrates the ill-posedness, in
terms of S1, of optimizing among this policy class. Without looking at the specified policy
class, it is clear that optimality is attained if a = 1 is assigned to each participant; i.e., S1

does not need to be used to tailor the treatment to achieve optimal value.
It is obvious to see that V ∗ = 1. Let S1 be uniformly distributed in (-1,+1). Then it is

easy to show that, for any small ε > 0, if we let θ0 = 2 + log(1
ε
− 1), then θ = (θ0, 0) and

θ′ = (θ0, 1) satisfy V (θ) > 1− ε and V (θ′) > 1− ε. In other words, here ill-posedness is
that the ε-optimal level optimizers (for any ε) include optimizers with zero coefficient and
non-zero coefficient for S1.

Note that, in general, “ill-posedness” may refer to the non-uniqueness of the maximizer
with respect to any coordinate in θ. In our framework though, since the goal (aside from
the main goal of optimizing the value) is to determine whether Sp has additional use in
decision making given that all the other variables are already used in the decision rule, we
concentrate on the ill-posedness with respect to this particular variable Sp. This particular
type of ill-posedness motivates a regularization of the original policy search problem. In
other words, when this type of ill-posedness arises, even when the amount of data is infi-
nite, “inference” about the usefulness of Sp cannot be readily drawn by inspecting the p-th
coordinate in the (ε-)optimizer of V (θ).

One approach to regularizing the problem at population level is introducing penalty to
θp, the coefficient of Sp, in the optimization of V (θ). Using an L2 penalty, the optimization
objective can be Vλ(θ) = V (θ)− 1

2
λ‖θp‖2

2. The aim is that with the penalty, the optimization
is no longer ill-posed with respect to Sp. Therefore, with a proper penalty at level λ, the
regularized objective clearly indicates (through its optimizer) whether or not Sp is useful for
decision making. More specifically, it is desirable that under the λ-level penalty, either all
the optimizer θ’s for Vλ(θ) have |θp| ≥ δ for some δ > 0 (then variable Sp is in fact useful),
or all the optimizer θ’s for Vλ(θ) have θp = 0 (then variable Sp is in fact not useful). Since
later we will be motivated to also penalize the other coefficients, we denote this penalty
parameter as λ1.
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5.2.2.1 Tuning Parameter λ1

The tuning parameter λ1 is used to resolve the ill-posedness of the optimization of the (pop-
ulation level) policy value, with respect to the variable, Sp, that we would like to investigate
the usefulness in decision making. The quadratic penalty (i.e., 1

2
λ1‖θp‖2

2) provides curva-
ture when the original value function V (θ), or more accurately, the “profile value function”
maxθ0,...,θp−1 V (θ) (as a function of θp), is flat in θp. Therefore it is desirable that under the
penalization, the value function has a unique optimizer θp.

On the other hand, as the main goal is to optimize the policy value, it is desirable
that any optimizer θ∗λ of Vλ(θ) gives a policy value that is not much lower than V ∗, the
optimal value with no regularization. Consider the next two toy examples for understanding
reasonable choices of λ1.

• Toy example A: Suppose the generative model for Y is Y = A+ ε, and consider the
policy class πθ(S) = exp(θ0 + θ1S1)/(1 + exp(θ0 + θ1S1)). Now the “profile value
function” is exactly flat in θ1; without the penalty, for any θ1, θ0 = +∞ optimizes the
value. Therefore, with any positive λ1, θ∗λ that optimizes Vλ(θ) is equal to (+∞, 0);
this corresponds to the policy that assigns a = 1 to all individuals. That is, under this
generative model, λ1 does not induce a loss in the policy value.

• Toy example B: Suppose the generative model for Y is Y = A ·S1 +ε, that is, there is
zero main effect and all the treatment effect is the interaction effect with S1. Consider
the policy class πθ(S) = exp(θ0 + θ1S1)/(1 + exp(θ0 + θ1S1)). The optimal policy
should assign a = 1 if and only if S1 > 0. For ease of calculation, further assume
that S1 can only take two values {-1, 1}, each with probability 1/2. Then the optimal
value is V ∗ = 1/2. The penalized value function Vλ(θ) is equal to:

Vλ(θ) = E [S1 · exp(θ0 + θ1S1)/(1 + exp(θ0 + θ1S1))]− 1

2
λ1‖θ1‖2

2

=
1

2
· exp(θ0 + θ1)

1 + exp(θ0 + θ1)
− 1

2
· exp(θ0 − θ1)

1 + exp(θ0 − θ1)
− 1

2
λ1‖θ1‖2

2.

The optimizer θ∗λ of Vλ(θ) should satisfy V ′λ(θ
∗
λ) = 0. That is, θ∗λ solves the following

two equations:

1

2
· exp(θ0 + θ1)

(1 + exp(θ0 + θ1))2
− 1

2
· exp(θ0 − θ1)

(1 + exp(θ0 − θ1))2
= 0

1

2
· exp(θ0 + θ1)

(1 + exp(θ0 + θ1))2
+

1

2
· exp(θ0 − θ1)

(1 + exp(θ0 − θ1))2
− λ1θ1 = 0.
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We then obtain that for θ∗λ = (θ∗0λ, θ
∗
1λ), θ∗0λ = 0 and θ∗1λ satisfies:

exp θ1

(1 + exp θ1)2
= λ1θ1. (5.1)

Recall that, the penalization parameter λ1 should be chosen such that the policy value
corresponding to θ∗λ is not much lower than V ∗. Next we study more carefully, in the
scenario of this toy example, the requirement for λ1 if the largest amount of policy
value loss that one can tolerate is ε. That is, we want to guarantee that V (θ∗λ) ≥
V ∗ − ε.

V (θ∗λ) = E

[
S

exp(θ∗1λS)

1 + exp(θ∗1λS)

]
=

1

2
· exp(θ∗1λ)

1 + exp(θ∗1λ)
− 1

2
· exp(−θ∗1λ)

1 + exp(−θ∗1λ)

=
1

2
· −1 + exp(θ∗1λ)

1 + exp(θ∗1λ)
.

Thus V (θ∗λ) ≥ V ∗ − ε = 1/2 − ε is equivalent to (1 + exp θ∗1λ)
−1 ≤ ε. Therefore,

θ∗1λ that satisfies (5.1) must make (1 + exp θ∗1λ)
−1 ≤ ε hold.

Note that an upper bound readily obtained from (5.1) is that θ∗1λ < 1/(4λ1), which
implies a necessary condition for λ1: λ1 ≤ (log(ε−1 − 1))

−1
/4 (a sufficient con-

dition for λ1 would follow from a lower bound for θ∗1λ obtained from (5.1)). Intu-
itively, θ∗1λ shrinks towards zero when λ1 increases (implied by (5.1)); thus to satisfy
(1 + exp θ∗1λ)

−1 ≤ ε, λ1 must be bounded properly from above.

To summarize, the regularization parameter λ1 trades off higher policy value with the level
of well-posedness of the policy search problem with respect to Sp, the variable we intend
to make inference about. Up to now we only say that the policy search problem is or is not
ill-posed with respect to Sp. Note however, that when λ1 is small, the optimal coefficient
for Sp might be unique, but the curvature of the penalized objective with respect to θp

might still be too small for estimation purposes; in other words, this is when the level of
well-posedness is low.

The “value of information” (VoI) of variable Sp mentioned in the introduction is an
alternative approach to understanding the importance of a variable in decision making.
Here we make some comments about the comparison between taking the regularization
approach and focusing on VoI of variable Sp. First of all, VoI is not in the context of a
specific class of decision rules. Furthermore, VoI provides a one-number summary of the
difference in the optimal achievable values with and without knowing Sp: Vol = 0 indicates
that Sp is not useful and Vol> 0 indicates that Sp is useful. In practice, it is unlikely that we
will encounter the case Vol = 0. More likely, the variable Sp is somewhat useful (i.e., Vol
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is a non-zero small number); in these cases, knowing how Sp should be used to construct
a good decision rule, under various amounts of reduction in the optimal value that can be
tolerated, can be a more interesting and practical problem. I conjecture that this problem
can be addressed by the proposed regularized approach, by properly tuning the parameter
λ1.

5.2.3 The Policy Search Problem - At Finite-sample Level

We have illustrated above that, in the context of maximizing the policy value, to be able
to have an identifiable estimand for the coefficient of the variable that we intend to make
inference about, regularization is needed for the objective function at the population level.
We proposed to use L2 regularization. Next we investigate the policy search problem at the
finite sample level.

With a finite sample of size n, the goal is to obtain θ̂n that estimates the optimal policy,
and to have valid inference about the usefulness of variable Sp. More specifically, let θ∗pλ be
the coefficient for Sp in the optimizer θ∗λ of the regularized objective at population level, we
need some characterization of the distribution of θ̂n,p− θ∗pλ, for the purpose of constructing
a valid confidence interval for θ∗pλ.

It is natural to consider optimizing the empirical version of the regularized optimization
objective, i.e., V̂n,λ(θ) = V̂n(θ)− 1

2
λ1‖θp‖2

2, to obtain θ̂n. However, we will discover from a
toy example below that, at the finite sample level, penalizing only θp is problematic, which
motivates another layer of penalization; in this layer the coefficients of all the variables in
the specified policy form are penalized.

The intuition is that, when the signal (here the signal refers to the increase in value by
including Sp in the policy) is small, if only θp is penalized, then optimizing the population-
level objective is likely to have an effect of pushing the other coefficients to be finite (pe-
nalizing θp is equivalent to the optimization of the value with the constraint that ‖θp‖ is
bounded from above). On the other hand, when optimizing the sample-level objective,
due to the discrete nature of the sampling distribution Pn, there might be a non-ignorable
probability that, for a finite sample of size n, a deterministic policy not involving Sp hap-
pens to maximize the estimated value (i.e., coefficients other than θp are estimated to be
infinite in some direction). Now because the other coefficients are infinite, θp becomes un-
identifiable; with an L2 penalty for it, θ̂p is forced to be zero and the contribution of Sp in
decision making is completely buried.
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5.2.3.1 Toy Example: Point Mass of θ̂n,p at Zero - Motivating the Penalty for All
Coefficients

Suppose the generative model for Y is Y = A · (0.2 + 0.5S1) + ε, and S1 can only take
two values {−1, 1}, each with probability 1/2. Consider the policy class πθ(S) = exp(θ0 +

θ1S1)/(1 + exp(θ0 + θ1S1)). In this case the value function is V (θ) =

E [Y · (Aπθ(S) + (1− A)(1− πθ(S))) · 2] = E[2A · (0.2 + 0.5S1)πθ(S)] = E[(0.2 +

0.5S1)πθ(S)]. The optimal policy is to assign a = 1 if S1 = 1 and assign a = 0 if S1 = −1

(note that this rule can actually be achieved by letting (θ0, θ1) in the specified policy class
go to infinity in many directions).

To obtain estimator θ̂n = (θ̂0n, θ̂1n) for the coefficients in an optimal policy within the
specified class, consider optimizing V̂n,λ(θ), the objective in which θ1 has a L2 penalty
and no penalty is applied for θ0, using a sample of size n. The structure of the data is:
(Si, Ai, Yi) for i = 1, ..., n, where Ai is randomized to take values in {0, 1} with equal
probability. The objective function based on this finite sample is:

V̂n,λ(θ) = PnY · (Aπθ(S) + (1− A)(1− πθ(S))) · 2− λ1‖θ1‖2
2/2

= Pn [2(A(0.2 + 0.5S1) + ε)(2A− 1)πθ(S)]− λ1‖θ1‖2
2/2 + terms not involving θ.

(5.2)

Note that the summand is equal to (1.4A + (4A − 2)ε)πθ(1) if S = 1, and it is equal to
(−0.6A+ (4A− 2)ε)πθ(−1) if S = −1. θ corresponds to the two probabilities p1 and p−1,
the probabilities of assigning a = 1 for S = 1 and S = −1, respectively. Specifically, p1 =

πθ(1) = expit(θ0 + θ1) and p−1 = πθ(−1) = expit(θ0 − θ1). Therefore the summation in
the previous display (i.e., the objective function without the penalty for θ1) can be rewritten
as

1

n

n∑
i=1

(−0.6Ai + (4Ai − 2)εi)I{Si = −1} · p−1

+
1

n

n∑
i=1

(1.4Ai + (4Ai − 2)εi)I{Si = 1} · p1.

This representation implies that, the solution to the optimization is entirely determined
by the two quantities K := 1

n

∑n
i=1(−0.6Ai + (4Ai − 2)εi)I{Si = −1} and K̃ :=

1
n

∑n
i=1(1.4Ai + (4Ai − 2)εi)I{Si = 1}.

The current regularization scheme only penalizes θ1 but not θ0. As a result, when K
and K̃ have the same sign (i.e., either both positive or both negative), θ1 is estimated to be
zero. This is because when K, K̃ > 0, p−1 = p1 = 1 optimizes the objective, and this
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implies θ̂0 = +∞; when K, K̃ < 0, p−1 = p1 = 0 optimizes the objective, and this implies
θ̂0 = −∞. In addition, as a result of the L2 penalty for θ1, in these cases θ̂1 = 0.

We run a small simulation investigating the chance that this would happen. We run an
experiment with 1000 samples of size n = 100, and var(ε) = 1. We find that in 163 out
of the 1000 samples, K, K̃ > 0 and in 10 out of the 1000 samples, K, K̃ < 0. Therefore
in 173 out of the 1000 samples, a deterministic policy that does not involve S1 happens to
optimize the estimated value, which implies that the contribution of S1 is entirely buried.

The toy example above demonstrates that, for a finite sample, when only the coefficient
of Sp (the variable about which we intend to make inference) is penalized, a deterministic
decision rule not involving Sp may happen to optimize the estimated value. This can cause
the distribution of θ̂p to have a point mass at zero when the truth is that Sp is useful; this
can have an impact on the power of testing the null hypothesis of θ∗p = 0. Moreover, as
the sample size becomes smaller, the sampling distribution Pn may deviate much from the
population distribution P , such that the estimated optimal decision rule varies a lot across
different samples (i.e., the coefficients other than θp are estimated to be infinite in directions
that vary considerably). All of these discussions motivate us to consider penalizing other
coefficients than θp; the penalization will essentially bring in randomness/stochasticity into
the decision rule, i.e., prevent the estimated coefficients from going to infinity.

5.2.3.2 Tuning Parameter λ0n

The discussions above motivate us to consider an estimator that optimizes the following
objective:

V̂n,λ(θ) = V̂n(θ)− 1

2
λ0n

p−1∑
j=0

‖θj‖2
2 −

1

2
λ1‖θp‖2

2. (5.3)

This objective is the empirical version of the following regularized policy value func-
tion:

Vn,λ(θ) = V (θ)− 1

2
λ0n

p−1∑
j=0

‖θj‖2
2 −

1

2
λ1‖θp‖2

2.

By applying penalty to the coefficients other than θp, the optimizer (θ∗0n, θ
∗
1n) of Vn,λ(θ)

differs from the optimizer (θ∗0, θ
∗
1) of Vλ(θ), the regularized policy value function in which

only θp is penalized. Moreover, the policy value of the policy indexed by (θ∗0n, θ
∗
1n) might

be lower than the value of the policy indexed by (θ∗0, θ
∗
1). Therefore, roughly speaking, λ0n

should be chosen so that: (i) it is sufficiently large such that the inference about θp is not
impaired by the other coefficients being estimated to be at/close to the boundary; and (ii) it
is sufficiently small such that the bias in θ1 (i.e., |θ∗1n − θ∗1|), or the loss in policy value, is
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no greater than a pre-specified amount.

5.2.4 Summary of the Regularized Estimator for the Optimal Policy

Here we summarize the proposals and discussions above into the following policy search
procedure:

• Let the clinicians/scientists propose a number of variables that they would like to use
to construct the decision rule. These variables induce a class of stochastic policies,
from which we aim to estimate the optimal policy. Moreover, without loss of gen-
erality, we assume the variable about which we are interested in the usefulness in
decision making is Sp.

• Collect data {Xi, Ai, Yi}ni=1 from a randomized clinical trial.

• Assume that we know the proper choices for the regularization parameters λ1 and
λ0n (they should be chosen based on the amount of policy value that we can sacrifice
to trade the ill-posedness of the problem as well as the ill performed distribution of
the estimated coefficient; we will investigate how to tune these parameters in future
work). We can optimize the estimated policy value function with penalty, shown
in (5.3). This optimization yields the coefficients for each of the variables in the
estimated optimal policy: (θ̂0, ..., θ̂p).

• Construct confidence interval for θp based on asymptotics (future work). If the confi-
dence interval does not contain zero, then we can conclude that in the context of the
proposed policy class, including Sp in the decision rule in addition to all the other
variables is useful; if the confidence interval contains zero, then we can conclude that
we do not have sufficient evidence to support the usefulness of Sp.

5.2.5 Plan for Future Work

We propose a regularized estimator for the optimal policy within a parametrized class. The
regularization consists of two components: one component is necessary for eliminating the
ill-posedness issues that occur even with infinite amount of data; the other component is
necessary for making valid inference. We have presented discussions about the intuition
behind these regularization parameters. We plan to develop theoretical results and practical
rules about the choices of these parameters.

We have provided an outline of the estimator for the coefficients in the optimal policy.
Because one of our goals is to understand the usefulness of a particular variable Sp in
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decision making in the context of the proposed policy class, we are particularly interested
in constructing confidence interval for θp, the coefficient of Sp; the statement about Sp
can then be made based on this confidence interval. We plan to derive a valid confidence
interval for θp using asymptotics; this can be challenging because we will need to take into
account the procedure of tuning the regularization parameters.

Although we discuss the problem and propose the methodology in a quite general set-
ting, the toy examples we provide to illustrate the motivation and intuition are all over-
simplified in the sense that the policy class we focus on in our toy examples only involve the
intercept and one tailoring variable. When there are multiple variables in the specified pol-
icy form, and we are only interested in the usefulness of Sp, the correlation between Sp and
the other variables will surely bring in challenges in developing theory of the methodology.
We plan to clearly understand those challenges and investigate the solutions. Furthermore,
we were motivated to consider a pre-specified parametrized class of policies, as an alter-
native to directly targeting the optimal policy. Therefore, we will need to investigate toy
examples in which the true treatment blip involves some other variables in addition to the
variables in the form of specified policy, or toy examples in which the variables in the form
of specified policy and the variables that interact with the treatment in the data-generative
model are two distinct sets of variables.

We frame the policy search problem in the context of a class of stochastic policies, in
order to eliminate the discontinuity issue that arises when working with a class of deter-
ministic policies. Although the deterministic policies also belong to the class of stochastic
policies, the estimated optimal policy is likely to be truly stochastic (i.e., for each individ-
ual, the recommended probability of taking treatment a = 1 stays away from 0 and 1) as
a result of the penalization scheme. On the other hand, in practice it is not reasonable for
any clinical scientists to implement a stochastic policy. Therefore, we will need to sug-
gest a practice to convert the estimated optimal stochastic policy into an implementable
real-world decision rule.

Extension of the proposed methodology to two-stage or multi-stage scenarios is of great
interest, and requires deeper thinking, because the earlier-stage treatment may impact the
final outcome in both direct and indirect routes.

We have built our regularized estimator based on the original non-parametric IPTW es-
timator for a policy value (arising from a marginal mean model). It is well known that this
estimator has a high variance because it does not utilize any information about the prog-
nostic effect of the observed covariates on the outcome. A natural proposal is to consider
building the regularized estimator based on a more efficient version of IPTW estimator,
e.g., the augmented IPTW estimator. The hypothesis is that the efficiency in terms of esti-
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mating the policy value may induce a more efficient estimator for the optimal policy, and
the inference about the usefulness of Sp may also get more accurate.

Simulation studies will be conducted later to investigate the ability of the proposed
methodology in eliminating a variable when it is truly not useful, and not eliminating this
variable when it is useful. The simulation studies shall be conducted in various scenarios; in
particular, we are interested in the performance of the estimator when the targeted variable
correlates with the other variables in the policy at various levels. Moreover, we will use
simulations to demonstrate the possibility that a variable, which is not useful for decision
making, can easily be estimated to have significantly non-zero coefficient in Q-learning,
and then be included in the optimal policy derived from Q-learning.

Up to now in terms of the aspect of making inference, we have only discussed the
inference about the coefficient of Sp; this inference allows us to conclude whether there
is sufficient evidence to support the usefulness of Sp in decision making. The selection of
the regularization parameters is in part driven by this inference goal. Another interesting
and important inference goal is the inference about the optimal value that can be achieved
within the specified policy class. The hypothesis is that if one desires a well-performed
confidence interval for the optimal value, a different regularization scheme, or at least a
different approach to tuning the parameters, might be necessary.
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