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Abstract

Of existing applications, the majority of shape memory alloy (SMA) devices consist of
beam (orthodontic wire, eye glasses frames, catheter guide wires) and framed structures
(cardiovascular stents, vena cava filters). Although uniaxial tension data is often suf-
ficient to model basic beam behavior (which has been the main focus of the research
community), the tension-compression asymmetry and complex phase transformation be-
havior of SMAs suggests more information is necessary to properly model higher com-
plexity states of loading. In this work, SMA beams are experimentally characterized
under general loading conditions (including tension, compression, pure bending, and
buckling); furthermore, a model is developed with respect to general beam deformation
based on the relevant phenomena observed in the experimental characterization.

Stress induced phase transformation within superelastic SMA beams is shown to de-
pend on not only the loading mode, but also kinematic constraints imposed by beam
geometry (such as beam cross-section and length). In the cases of tension and pure
bending, the structural behavior is unstable and corresponds to phase transformation lo-
calization and propagation. This unstable behavior is the result of a local level up–down–
up stress/strain response in tension, which is measured here using a novel composite–
based experimental technique. In addition to unstable phase transformation, intriguing
post-buckling straightening is observed in short SMA columns during monotonic load-
ing (termed unbuckling here). Based on this phenomenological understanding of SMA
beam behavior, a trilinear based material law is developed in the context of a Shanley
column model and is found to capture many of the relevant features of column buckling,
including the experimentally observed unbuckling behavior. Due to the success of this
model, it is generalized within the context of beam theory and, in conjunction with Bloch
wave stability analysis, is used to model and design SMA honeycombs.
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Chapter 1

Introduction

Over the past few decades, the demand for higher efficiency structures has grown as engineers
continually look to improve performance while decreasing operational costs. To address these
demands, the field of Smart Structures has begun to incorporate additional functionality (such as
actuation and sensing) into traditional passive load bearing structures. Some of the most prominent
focuses within the Smart Structures field are integrated structural health monitoring systems, mor-
phing structures (such as control surfaces on aircraft), adaptively tuned structures (such as variable
stiffness car shocks), and energy harvesters.

Multi-functionality is often enabled within Smart Structures through the use of Adaptive Mate-
rials (also referred to as Smart Materials) which are a class of materials that mechanically interact
with external stimuli (such as electric, thermal, and/or magnetic fields). Due to their mechanical
interaction with the environment, Adaptive Materials are primarily used as actuators (an external
stimulus is used to activate the material mechanically); although, some also have the capability to
function as sensors (a mechanical input generates an external field which can be measured). Some
of the most common Adaptive Material classes are shape memory alloys, shape memory polymers,
piezoelectrics, and magnetostrictives. The performance capabilities of these active material classes
(such as the actuation work output, response rate and magnitude of deformation) vary considerably
as outlined in Table 1.1, lending each to their own niche applications. Of interest in this dissertation
are shape memory alloys, which are most suitable for high work output actuation at moderately
large strokes and low actuation frequencies. For an in-depth overview of shape memory alloy ap-
plications and properties, see Shaw et al. [2010]; however, for completeness, a brief overview is
provided here.
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Table 1.1: Shape memory alloys provide the greatest actuation work output of common Adaptive
Materials, although at relatively slow actuation frequencies.

Material
class

Most popular
materials

Actuation
field

Work
output

Response
rate

Deformation
magnitude

Shape memory
alloy NiTi, CuZnAl Temperature High Slow Moderate

Shape memory
polymer

styrene acrylate,
epoxy Temperature Very low Very slow High

Piezoelectric PZT, PVDF Electric Low Fast Low

Magnetostrictive Terfenol-D,
Galfenol

Magnetic Low Moderate Low

1.1 Shape Memory Alloys Background

Shape memory alloys (SMAs) are a class of metals which exhibit two unique properties: the
shape memory effect and superelasticity. The more well known (one-way) shape memory effect
describes the material’s ability to recover apparent permanent deformation when heated above
a threshold temperature (see ©1 –©2 –©3 –©1 in Figure 1.1); additionally, if processed correctly, a
preferred high and low temperature state can be established, resulting in a two-way shape memory
effect. The temperature induced deformation of the shape memory effect is often used in actuator-
based applications and is the property that classifies SMAs as Adaptive Materials. Superelasticity
describes the material’s enhanced flexibility when operating at temperatures above the threshold
temperature for the shape memory effect (see ©1 –©4 –©1 in Figure 1.1). Unlike typical metals
which begin to permanently deform when strained to the order of 0.1 %, superelastic materials can
recover deformations on the order of 10 % strain. Superelastic SMAs are therefore often used in
applications where the strength of a metal is needed, but high flexibility is also required.

1.1.1 Applications

A number of SMAs have been discovered over the past century (Figure 1.2); however, as many
of them consist of precious metals, only a few have been shown to be commercially viable. The
most commonly used SMA is near equiatomic NiTi (often referred to as Nitinol), which arguably
possesses the best shape memory and superelastic behavior of all known SMAs; additionally, NiTi
is biocompatible, enabling its use in biomedical applications.

In application, the shape memory effect is primarily used for actuation. Functioning under
the one-way shape memory effect, an SMA can only actuate in one direction; however, two-way
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such that residual deformation is present (©2 –©3 ), followed by heating the material to recover the
original shape (©3 –©1 ); whereas, superelasticity corresponds to the recovery of large deformations
when loaded-unloaded at temperatures above the austenite transformation temperature (©1 –©4 –©1 ).
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Figure 1.2: A number of SMAs have been discovered since the early 1950s; however, only a few
of them are commercially viable (reproduction of Figure 2a from Shaw et al. [2010]).

SMAs or one-way SMAs coupled with a biased spring can achieve two-way actuation. The first
commercially successful application of the one-way shape memory effect was the Cryofit™ shrink
fit pipe coupler developed by Raychem Corporation in 1969, which was most notably used on
fuel lines in the F-14 fighter [Kauffman and Mayo, 1997]. Following suit, other forms of SMA
couplers were developed, such as Cryocon, Cryolive®, Betaflex™, Crotact™, Tinel® -lock and
Unilok® [Humbeeck, 1999]. In 1992, the Flangibolt® was developed by TiNi Aerospace to shear
off bolt heads using the one-way shape memory effect [Johnson, 1992], providing an alternative to
explosive release mechanisms on spacecraft. More recently, actuator SMAs have been integrated in
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Figure 1.3: There are three primary crystallographic phases in NiTi: cubic B2 austenite, mono-
clinic B19′ martensite and the rhombohedral B2′ R-phase (reproduction of Figure 6a from Shaw
et al. [2010]).

mainstream applications, such as the hatch vent of the 2014 Chevrolet Corvette [Alexander et al.,
2014], thermal cutoff valves [Tucholski and Pedicini, 1990], automatic transmission cold-start
valves [Xie et al., 2013], and optical image stabilization systems [Topliss and Leedham, 2014]. In
the future, the shape memory effect is planned to be integrated into more advanced applications,
such as morphing control surfaces (control surfaces of aircraft and the chevrons of jet turbines) and
deployable structures in space.

Although less well known, superelastic SMA devices make up the vast majority of SMA appli-
cations to date. The first successful commercial application of superelastic SMAs was as orthodon-
tic bridge wires in the 1970s, being both more flexible and less stiff than traditionally used stainless
steel wires [Kauffman and Mayo, 1997]. In the subsequent years, superelastic SMAs found their
way into eye glasses frames, cell phone antennas, and flexible support in clothing [Humbeeck,
1999]; however, the most notable application of superelastic SMAs has been as biomedical tools
and implants (such as cardiovascular stents, root canal files, embolic filters, vena cava filters, and
catheter guide wires [Lecce and Concilio, 2014]), which was quoted to have a market value of
$130 billion in 2002 [Yoneyama and Miyazaki, 2008] and has continued to grow since then.

1.1.2 Origins of the Shape Memory Effect and Superelasticity

The shape memory and superelastic phenomena found in SMAs originate from a solid-to-solid
state martensitic transformation between a high temperature parent austenite phase and a low tem-
perature martensite phase. This diffusionless process corresponds to a shearing of the lattice that
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results in an abrupt change in the crystallographic structure. In the case of NiTi, two crystallo-
graphic systems of martensite can form within the operational range of the material, resulting in
three relevant phases (see Figure 1.3):

• a high symmetry B2 cubic crystal structure which corresponds to the austenite phase (A),

• a moderate symmetry B2′ rhombohedral crystal structure which corresponds to one possible
martensitic phase (R), and

• a low symmetry B19′ monoclinic crystal structure which corresponds to another possible
martensitic phase (M ).

The martensitic B2′ rhombohedral phase (often referred to as the R-phase) is only observed for a
subset of NiTi alloys and exhibits small amplitude shape memory and superelastic behavior (usu-
ally less than 1 % strain); whereas, the martensitic B19′ monoclinic phase (often simply referred
to as martensite) is usually the primary focus of NiTi behavior due to its high amplitude shape
memory and superelastic behavior (usually on the order of 6 % to 8 % strain).

Although martensitic transformations are found in many metallic systems, the shape memory
effect and superelasticity only occur for a subset of martensitic transformations which adhere to a
strict set of conditions [Bhattacharya, 2003, Elliott et al., 2002b]:

• the austenite phase must have a higher symmetry than the martensite phase, allowing for the
formation of multiple symmetry related variants of martensite which can develop complex
twinned microstructures;

• the martensitic transformation must be “proper” (which defines a group-subgroup relation-
ship between the high and low symmetry phases that results in infinitesimal displacements of
atoms) instead of “reconstructive” (which involves finite displacements of atoms and often
the breaking and reforming of atomic bonds);

• the transformation from austenite to martensite must be self–accommodating, allowing for
thermally induced transformation between the two phases with no macroscopic deformation;
and

• the phase transformation must be reversible (thermoelastic).

In addition to these restrictions, the appropriate grain size and precipitate structure (usually achieved
through heat treatment and cold work) are necessary to prevent early onset plasticity within the ma-
terial.

Due to the higher symmetry of the austenite phase, the martensite microstructure can reside in
either a twinned or detwinned state: in a twinned state, multiple variants of the base crystal co-
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Figure 1.4: Phase transformation in SMAs is dependent on both temperature and the loading state.
The stress free temperature behavior is measured using DSC (a) while the stress dependent behav-
ior is characterized by the Clausius-Clapeyron slope (b).

exist within the microstructure; whereas, in a detwinned state, only a single variant of the crystal
exists within the microstructure. When an SMA is cooled from austenite to martensite, the re-
sulting crystal structure forms into a twinned microstructure which is often referred to as thermal
martensite. This formation of the twinned phase is self–accommodating, resulting in no macro-
scopic deformation of the material. When sufficiently stressed, twinned martensite reorients into
detwinned martensite (often referred to as oriented martensite) which does not reverse back to
twinned martensite when unloaded, resulting in residual macroscopic deformation.

Table 1.2: The temperature ranges associated with phase transformation within SMAs are referred
to by their start and finish temperatures, as shown here for a generic NiTi alloy.

Transformation Label Start temperature Finish temperature

Austenite to R-phase A→ R Rs Rf

R-phase to martensite R→M Ms Mf

Martensite to austenite M → A As Af

Under stress-free conditions, austenite is thermodynamically stable at high temperatures while
martensite is thermodynamically stable at low temperatures. As phase transformation does not oc-
cur at a single temperature, but rather over a small temperature range, a start and finish temperature
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are used to characterize the transformation behavior (an example of which are parameterized for
NiTi in Table 1.2). In general, the temperatures at which phase transformation begins and ends
are hysteretic with respect to the direction of phase transformation (as is the case for A ↔ M

transformations in NiTi); however, some cases exist in which the transformation temperatures are
almost nonhysteretic (such as the A ↔ R transformations in NiTi which usually only has a hys-
teresis of 2 ◦C to 5 ◦C). Furthermore, some phase transformations occur concurrently (such as
the transformation from martensite in NiTi where R-phase and austenite nucleate concurrently).
These transformation temperatures (along with the latent heats of transformation and the material
specific heat) are usually measured using differential scanning calorimetry (DSC), an example of
which is shown in Figure 1.4a for a NiTi alloy. In the case of NiTi alloys, Mf usually ranges
from−150 ◦C to 60 ◦C and Af from−30 ◦C to 90 ◦C depending on stoichiometric composition and
material processing.

In addition to temperature change, phase transformation can be induced by external loading.
Starting load free in the austenite phase, stress induced phase transformation results in twinned
martensite which transforms back into the austenite phase upon unloading. Similar to thermally
induced phase transformation, the stress at which phase transformation is induced (σp) is hysteretic
with respect to the direction of phase transformation; furthermore, σp varies nearly linearly with
respect to temperature according to the Clausius-Clapeyron slope, an example of which is shown
in Figure 1.4b for a NiTi alloy. In the case of NiTi alloys, the Clausius-Clapeyron slope usually
ranges between 5 MPa/◦C to 8 MPa/◦C.

The shape memory effect and superelasticity correspond to differing aspects of these complex
martensitic behaviors:

• The shape memory effect is the result of twinning/detwinning behavior and the reversibility
of thermally induced phase transformations. To help illustrate the behavior, a depiction of the
shape memory effect is shown in©1 –©2 –©3 –©1 of Figure 1.1. Starting at a high temperature
in the austenite phase (©1 ), the material is cooled below Mf , resulting in thermal (twinned)
martensite (©2 ). Due to the self–accommodating nature of the phase transformation between
austenite and thermal martensite, there is no macroscopic deformation associated with this
process (except for basic thermal contraction due to the temperature change). At these low
temperatures, loading the material detwins the microstructure, resulting in residual deforma-
tion upon unloading (©3 ). If the material is then heated above the austenite finish tempera-
ture, the crystal structure transforms into the high symmetry austenite phase, recovering the
residual strain incurred by detwinning of the microstructure (©1 ).

• Superelasticity is the result of reversible stress-induced phase transformation between austen-
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ite and detwinned martensite. To help illustrate the behavior, a depiction of superelasticity
is shown in©1 –©4 –©1 of Figure 1.1. Operating at temperatures above the Af , stress induced
phase transformation from austenite results in detwinned martensite (©4 ). The transforma-
tion into the twinned phase results in large macroscopic strains, which are recovered when
the loading is released and the material transforms back into the austenite phase (©1 ).

1.2 Motivations

Due to their complex thermomechanical behavior, constitutive modeling of SMAs has been an
elusive problem. Most current SMA devices are therefore developed based on empirical rules or
trial and error design. Although these design techniques have sufficed for relatively simple design
requirements (such as highly flexible devices or linear wire actuation), a robust material model is
required to fully utilize the beneficial properties of SMAs for more advanced applications.

One of the many issues associated with the development of a robust SMA constitutive model
is the limited availability of experimental data for phenomenological understanding and calibra-
tion and validation purposes. Due to the large recoverable deformations observed in SMAs, non-
standard procedures are required to sufficiently probe and measure the full range of material be-
havior; furthermore, both mechanical and thermal conditions must be tightly controlled to account
for their coupled thermomechanical behavior. The majority of experimental data on SMAs have
therefore been with respect to tension of wire and strip, with only a few cases focusing on more
complex forms of loading [Berg, 1995, 1997, Bundara et al., 2000, Rahman et al., 2001, Sun and
Li, 2002, Rejzner et al., 2002, Urushiyama et al., 2003, Grabe and Bruhns, 2008, Reedlunn et al.,
2013, Bechle and Kyriakides, 2013]. From these data, SMAs have been found to exhibit thermo-
mechanical coupling [Shaw and Kyriakides, 1995], hysteresis with respect to mechanical and ther-
mal loading, local mechanical phenomena such as phase transformation localization [Shaw and
Kyriakides, 1997], history dependent mechanical and thermal shakedown, tension/compression
asymmetry [Gall and Sehitoglu, 1999], and loading rate sensitivity [Shaw and Kyriakides, 1995];
however, this phenomenological understanding is limited to a relatively small set of loading cases
of an anisotropic material. Although sufficient to develop and validate tensile models (see for ex-
ample Chang et al. [2006]), this information has been insufficient to validate models representing
general SMA behavior.
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1.3 Objectives and Contributions

The primary objective of this dissertation is to facilitate the development of SMA material models.
Due to the prevalence of thin-walled superelastic SMA structures in existing SMA applications,
this objective is approached in the context of superelastic beams and frames.

• To begin, the general thermomechanical behaviors of superelastic NiTi beams are examined
experimentally in Chapter 2, probing the primary deformation modes of beams (tension,
compression, pure bending, and column buckling).

• Due to the presence of deformation localization in the tensile experiments of Chapter 2,
a novel composite–based experimental technique is used in Chapter 3 to measure the ho-
mogeneous tensile deformation of NiTi, providing a better understanding of the underlying
material behavior.

• Based on this phenomenological understanding, a simple two degree of freedom model is de-
veloped and implemented in Chapter 4 to investigated and explain an interesting unbuckling
phenomenon discovered during some of the column buckling experiments of Chapter 2.

• Motivated by the success of this simple model, it is generalized within the context of beam
theory and implemented within the finite element framework in Chapter 5.

• Shifting to the examination of framed SMA structures with an underlying periodicity (in
particular, honeycombs), Bloch wave stability analysis is outlined in Chapter 6.

• Finally, the performance capabilities of SMA honeycombs are experimentally quantified and
the model developed in Chapter 5 and the stability analysis discussed in Chapter 6 are used to
investigate the energy absorption properties of superelastic SMA honeycombs in Chapter 7.
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Chapter 2

Experimental Study of Superelastic SMA Beams

In many existing applications, SMA devices consist of slender beams and frames, such as catheter
guide wires, cardiovascular stents, isolation bars for highway bridges, wire re-centering devices
for civil buildings, flexible eye glasses frames, and flexible support in clothing (such as shoes and
brassieres) [Duerig et al., 1999, Song et al., 2006, Humbeeck, 1999]. The prevalence of thin-walled
structures in SMA applications is likely due to two factors: (1) the bending dominated kinematics
of beams and frames amplifies recoverable displacements, resulting in highly deformable devices,
and (2) excellent shape memory and superelastic properties are predominately available in high
aspect ratio forms (wires, thin strips and tubes) where drawing and controlled heat treatment can be
advantageously employed in their fabrication/processing. Understanding the mechanical behavior
of SMA beams and their potential structural/material instabilities is therefore important to not only
improve the fidelity of existing constitutive models, but also to enable the design and analysis of
new and more complex thin-walled devices.

The kinetics of phase transformation in SMA beams are still not fully understood, especially
for loading modes other than uniaxial tension. It is expected that many of the common features
found in the uniaxial behavior, such as

• a non-monotonic nonlinear mechanical response,

• strong temperature sensitivity,

• loading-rate sensitivity due to thermo-mechanical coupling,

• mechanical and thermal hysteresis,

• texture and anisotropy,

• significant tension-compression asymmetry, and

• unstable stress-induced transformation (which often results in localization of the strain field
and propagation of macroscopic phase transformation boundaries),
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will be present under general loading conditions; however, it is unclear how these phenomena will
interact and what other unknown behaviors will be present.

To date, a small body of experimental data exists in the literature addressing combined modes
of deformation, mostly focusing on pure bending, tension-torsion, and buckling behavior [Berg,
1995, 1997, Bundara et al., 2000, Rahman et al., 2001, Sun and Li, 2002, Rejzner et al., 2002,
Urushiyama et al., 2003, Grabe and Bruhns, 2008, Reedlunn et al., 2013, Bechle and Kyriakides,
2013]. Within this literature, often only the tensile response and one additional mode of loading are
examined on a single specimen geometry (and occasionally the compressive behavior as in Reed-
lunn et al. [2013], Bechle and Kyriakides [2013]). To gain a more comprehensive understanding of
general SMA beam behavior, I examine the mechanical response and phase transformation kinetics
of two different SMA beam geometries under four different modes of loading.

This chapter presents isothermal experiments on commercially-available superelastic NiTi cylin-
drical rods and tubes of the same nominal outer diameter and with similar superelastic responses.
Beginning with the underlying uniaxial and bending deformations found in beam kinematics, pure
tension, pure compression and pure bending experiments are examined. Column buckling experi-
ments are then presented, studying SMA beam behavior under combined uniaxial and bending de-
formation; additionally, the buckling experiments investigate the interaction between material and
structural instability. In all experiments, stereo digital image correlation (DIC) is used to examine
full field surface displacements and strains through the course of a loading procedure, allowing
for the observation of strain field localization when present and the measurement of averaged field
quantities. The general properties of the rod and tube are briefly discussed in Section 2.1, followed
by the experimental setups and procedures for each experiment type in Section 2.2. In Section 2.3,
the experimental results for both cross-sectional geometries are compared and contrasted for each
loading mode, focusing on the macroscopic mechanical responses and the evolution and morphol-
ogy of phase transformation. The major contributions of this chapter are

• the observation of multiple phase transformation localization morphologies which depend
on the loading mode and specimen cross-sectional geometry,

• that, even in the presence of phase transformation localization, plane sections remain plane
in rods (solid cross-sections), but only on average in tubes (hollow cross-sections),

• the discovery of unbuckling behavior in short SMA columns (that is, the post-buckling
straightening of a column under continued monotonic compression), and

• a survey of superelastic SMA beam behavior under four modes of loading on two specimen
cross-sectional geometries, providing a database of high quality experimental data (including
full field surface displacements and strains) which can be used for both model calibration and
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validation.

2.1 Materials

Experiments were performed on specimens cut from commercially available, straight, superelastic
NiTi rod (NDC SE508, Lot # 2006303) and tube (Memry BB, Lot # 957152). Due to the extreme
sensitivity of SMA material behavior to the manufacturing process (such as stoichiometric compo-
sition, heat treatment, and cold work), it was difficult to obtain different geometric forms with the
same material properties; therefore, these materials were selected to be as similar as possible, but
were not quite identical. The NiTi rod had a measured outer diameter D = 3.150 mm; whereas,
the NiTi tube had a measured outer diameter D = 3.176 mm and wall thickness H = 0.318 mm
(resulting in an approximate diameter to thickness ratio D/H ≈ 10). All experiments presented
were performed on new specimens in the as-received condition.

Differential scanning calorimetry (DSC) was conducted on both materials to characterized their
stress-free phase transformation behavior. Each geometric form was cut at a slow speed with a
water cooled diamond cutoff wheel to minimize specimen heating and stress-induced phase trans-
formation; the resulting rod and tube specimens were 21.4 mg and 35.4 mg, respectively. As is
common practice when conducting DSC on SMAs, the DSC experiments started at a temperature
sufficiently high to ensure the material was in the parent austenite phase, cooled at a constant rate
of −10 ◦C/min to a sufficiently cold temperature to ensure the material was fully in the martensite
phase, allowed to equilibrate for a short time, and then heated to the start temperature at a constant
temperature rate of 10 ◦C/min. The DSC results are shown in Figure 2.1, demonstrating distinct
transformations from austenite to R-phase and R-phase to martensite on cooling (two distinct latent
heat valleys), but overlapping reverse transformations on heating (overlapping latent heat peaks).
The sub-room temperature austenite finish temperatures (Af) of 10 ◦C and 19 ◦C for the rod and
tube, respectively, indicate both forms were superelastic at room temperature.

2.2 Experimental Setups

All experiments were performed in a general purpose uniaxial load frame under global elonga-
tion (δ) control. Each specimen was gripped within the experimental fixture1, loaded at a constant
loading rate |δ̇| = |dδ/dt| to a peak elongation, and then unloaded to a state of zero load. Ex-

1Steel pins were inserted within the gripped sections of the tube specimens.
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Figure 2.1: Cross-section geometries and differential scanning calorimetry (DSC) thermograms
(specific heat flow q̇/Ṫ vs. temperature T ) for the rod and tube specimens. Both materials had
similar outer diameters and were superelastic at room temperature (RT).

periments were performed in stagnant room temperature air at sufficiently slow loading/unloading
rates to achieve near isothermal loading conditions (less than 1 °C temperature change). During
each experiment, the axial load P and cross-head displacement δ were measured, along with imag-
ing of the specimen; additionally, at the end of each experiment, the following post-processing
procedures were conducted:

• Stereo digital image correlation (DIC) was used in all experiments to measure surface dis-
placements and strains, allowing for the investigation of localized deformations. To en-
able these measurements, the gauge section of each specimen was painted with a base coat
of white paint, followed by black speckles. This gauge section was then imaged through
the course of the experiment by two cameras positioned with a relative stereo angle be-
tween them. Each camera consisted of a Pt. Grey Research Grasshopper (GRAS-50S5M-C)
charge-coupled device (CCD), Fujinon HF75SA 75 mm lens and appropriate lens extension
tubes (between 20 mm to 60 mm) to ensure the full specimen was in the field of view of
the cameras while maximizing the number of pixels across the specimen width (atleast 100
pixels). At the end of the experiment, the stereo image pairs were post-processed using the
commercially available software Vic-3D 2010 [Solutions, 2012] to calculated surface dis-
placements and strains. For a more in-depth discussion of the DIC measurement technique,
see Reedlunn et al. [2011], Sutton et al. [2009]. Due to its suitability for modeling beam
kinematics (for example, see Humer [2011]), all DIC strain fields are reported using the Biot
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Figure 2.2: To extrapolate the specimen centerline from the DIC data, circles were fit to material
points with similar Z values in the reference configuration and accumulated to define the specimen
geometry.

strain measure2, εB = U − I , whereU is the right stretch tensor and I is the identity tensor.

• The specimen centerlines during the course of an experiment were extrapolated based on the
3D surface data from the DIC analysis, quantifying the cross-sectionally averaged axial and
bending deformation. An illustration of the centerline extrapolation is shown in Figure 2.2.
From the DIC analysis, a discrete number of material points on the surface of the beam
with coordinates (X, Y, Z) were established in the reference configuration of the structure
(the first stereo image pair), where the Z axis corresponds to the beam axis. These material
points were then tracked during the experiment, measuring the (x, y, z) coordinates for every

2For a more detailed discussion on why the Biot strain measure was chosen over the Green-Lagrange strain mea-
sure, see Section 3.3 and Appendix B of Reedlunn et al. [2013]
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material point at each time step (each successive stereo image pair). This corresponds to a
Lagrangian type measurement where all displacements and strains are with respect to the
reference configuration. To reconstruct the column centerline, all of the material points were
first grouped together according to their Z location along the column length, resulting in
bins of material points with the same Z coordinate in the reference configuration. For a
given instant in time, a circle was fit to each bin of material points, determining the column
center point (xc, yc, zc) and radius r at each location along the length of the column. This
procedure was conducted for each frame of the DIC data, resulting in a reconstruction of the
column centerline through the course of an experiment. There are two assumptions in this
procedure which affect its accuracy: plane section remain plane during the deformation and
cross-sections remain circular. In reality, plane sections do not necessarily remain plane (as
will be discussed in Section 2.3.3) nor do the cross-sections remain perfectly circular due to
ovalization in bending; however, the errors associated with these effects are expected to be
small due to the averaging associated with the circle fitting procedure.

• In evaluating the mechanical response of an experiment, a “virtual” extensometer was used
to average the deformation along the gauge length of the specimen while avoiding unwanted
end-effects near loading fixtures. The gauge section length Le of the “virtual” extensometer
was established within the central section of the extrapolated specimen centerline in the
reference configuration and its relative deformation was measured through the course of the
experiment. This “virtual” measurement was particularly useful for the experiments where
mechanical or laser extensometers could not be used, as was the case for the pure bending
and buckling experiments.

• Depending on the experiment, select measurements were differentiated (such as the tangent
modulus of the uniaxial behavior or the time rate of change of a quantity). Of the many
possible differentiation methods, some of the most popular consist of fitting the data with a
smoothing interpolant (such as a polynomial or spline), of which the derivative is then ana-
lytically evaluated [Berghaus and Cannon, 1973]; smoothing splines were used here. These
methods allow for easy tuning of the derivative smoothness while maintaining sufficient ac-
curacy; furthermore, the data can be piecewise fit to accommodate kinks or discrete changes
in the data.

As shown schematically in Figure 2.3, four experimental setups were used in this study to char-
acterize the respective tension, compression, pure bending and column buckling behaviors of the
NiTi specimens. The tension, compression and pure bending setups were identical to those found
in Section 3 of Reedlunn et al. [2013], the details of which are only highlighted here; however, the
buckling setup was new and is discussed in more detail.
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Figure 2.3: Schematics of respective setups for the tension, compression, pure bending, and buck-
ling experiments, highlighting the deformation modes and experimental measurements.
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Figure 2.4: The buckling setup consisted of a uniaxial load cell in–line with ER collet grips,
resulting in a short and stiff stackup resistant to buckling; additionally, two CCD cameras were
used to image the specimen during the loading procedure.

• Tension: The tensile experimental setup applied a uniform tensile load along the gauge
section of the specimen as shown schematically in Figure 2.3a. The specimen was gripped
within a uniaxial load frame using ER collets, exposing a free length of L. The mechanical
response was characterized according to the engineering stress P/A0 > 0 and engineering
strain δe/Le > 0, where A0 is the reference cross-sectional area of the specimen.

• Compression: The compressive experimental setup applied a uniform compressive load
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along the gauge length of the specimen as shown schematically in Figure 2.3b. The specimen
was gripped within a uniaxial load frame using custom compression grips. The compression
grips were designed to reduce the structure’s propensity to buckle (while using a sufficient
specimen length to minimize unwanted end-effects) by laterally supporting the specimen
over most of its length, leaving only a small unsupported length for imaging; additionally,
the stack-up was designed to be short and stiff to minimize its propensity to buckle. The
mechanical response was characterized according to the engineering stress P/A0 < 0 and
engineering strain δe/Le < 0.

• Bending: The pure bending experimental setup applied a constant moment along the gauge
length of the specimen as shown schematically in Figure 2.3c. The specimen was gripped
in a custom 4-point bending fixture designed to load the specimen under pure bending to
large rotations. As the linear motion of the uniaxial load frame was converted into rotation
through two loading wheels, the applied moment was calculated according to the relationship
M = P (Dw +Dc)/4 where Dw = 23.86 mm and Dc = 1.19 mm. After the experiment, the
mean offset of the neutral strain plane from the beam centerline Y 0 was determined from the
DIC data according to the relationship

∫ Le

0
εB

ZZ(Y 0, Z)dZ = 0. The mechanical response was
characterized according to the normalized bending moment MC/I , the normalized neutral
axis offset Y 0/C and normalized average curvature Cκ, where C ≡ D/2 is the outer radius
of the specimen, I is the reference cross-sectional area moment of inertia of the specimen
in bending, and κ ≡ (φ2 − φ1)/Le is the average curvature of the beam along the DIC
extensometer gauge length.

• Buckling: The column buckling experimental setup compressed the specimen under clamped-
clamped boundary conditions as shown in the photograph of Figure 2.4 and schematically
in Figure 2.3d. The experimental stack-up was designed to be short and stiff to encourage
buckling of the specimen, but not of the stack-up. To simulate clamped-clamped bound-
ary conditions, the specimen was gripped within a uniaxial load frame using ER collets,
exposing a free length of L. Since geometric imperfections and loading eccentricities can
drastically affect the buckling response of a structure, the position of the grips were not dis-
turbed between experiments. A fine K-type thermocouple was attached to the base of the
specimen (Ts) using OmegaTherm thermal paste to verify isothermal loading while another
thermocouple was positioned in the air near the bottom grip (Ta) to measure the ambient
temperature. After the experiment, the magnitude of the lateral displacement at the beam
midpoint (δr) was measured by averaging the DIC lateral displacement data over a small
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area around the beam midpoint. The macroscopic stress P/A0 < 0, normalized radial (lat-
eral) midpoint displacement δr/L and DIC extensometer strain3 δe/Le < 0 were used to
characterize the buckling response. To examine the effects of geometry on buckling behav-
ior, columns with approximate aspect ratios L/D of 5, 7.5, 10, 15 and 20 were buckled.
Due to the differing cross-sectional geometries of the rod and tube, it is also useful to define
the column slenderness ratio, ` ≡ L/

√
I/A0, where

√
I/A0 is the radius of gyration of

the cross-section. As a final note, due to the axisymmetric specimens used, there was no
preferred buckling direction; therefore, buckling displacements often did not occur in the
imaging plane, so one should be aware that strain images shown later may be at oblique
angles to the plane of buckling.

The relevant parameters for the uniaxial, pure bending and buckling experiments are shown in
Tables 2.1 to 2.3, respectively. For clarity, each experiment is referred to by a formatted label of
the form X-Y(-Z), where X refers to the experiment type (T for tension, C for compression, M for
bending, and B for buckling), Y refers to the cross-sectional geometry (R for rod and T for tube)
and, in the case of the buckling experiments, Z refers to the approximate length/diameter aspect
ratio (either 5, 7.5, 10, 15, or 20). Also, it should be noted that the results for experiments T-T,
C-T and M-T are the same as for experiments T1, C1 and B1, respectively, from Reedlunn et al.
[2013].

Table 2.1: Uniaxial experimental parameters.

Tension Compression

Parameter Rod Tube Rod Tube

Label T-R T-T C-R C-T

L (mm) 15.35 14.13 37.91 41.59

Le (mm) 12.38 9.57 2.18 5.33

δ̇/L (s−1) ±5× 10−5 ±2.18× 10−5 ∓2× 10−5 ∓2.18× 10−5

2.3 Results and Discussion

In general, beam behavior consists of both uniaxial and bending deformation. These two deforma-
tion modes are first investigated individually, looking at the tension (Section 2.3.1), compression

3During buckling, bending of the specimen results in rotation of the extensometer cross-sections which is not
accounted for in the extensometer strain measurement. To mitigate these effects, the extensometer ends are positioned
close to the grips where the cross-sectional rotations are nearly zero.
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Table 2.2: Pure bending experimental parameters.

Parameter Rod Tube

Label M-R M-T

Le (mm) 8.04 9.58

δ̇ (mm/s) ±0.0025 ±0.0025

Table 2.3: Buckling experimental parameters.

Rod approximate L/D Tube approximate L/D

Parameter 5 7.5 10 15 20 5 7.5 10 15 20

Label B-R-5 B-R-7.5 B-R-10 B-R-15 B-R-20 B-T-5 B-T-7.5 B-T-10 B-T-15 B-T-20

L (mm) 15.38 22.80 30.12 47.12 62.50 16.11 23.27 31.50 47.01 63.10

Le (mm) 14.55 22.75 29.90 46.36 61.65 15.19 22.09 30.26 45.15 61.56

L/D 4.9 7.2 9.4 15.0 20.2 5.1 7.3 9.9 14.8 19.9

` 19.5 28.9 37.6 59.9 80.6 15.8 22.9 31.0 46.3 62.1

δ̇/L (s−1) ∓1× 10−4 ∓1× 10−4

(Section 2.3.2) and pure bending (Section 2.3.3) behaviors. Subsequently, the buckling behavior
of columns with differing length/diameter aspect ratios are discussed (Section 2.3.4), examining
various cases of combined uniaxial and bending deformation.

2.3.1 Tension

The tensile mechanical behavior of the rod and tube (engineering stress P/A0 vs extensometer
strain δe/Le as shown in the the upper right quadrant of Figure 2.5a) aligns with the characteristic
isothermal flag-shaped response of superelastic NiTi. In general, the rod and tube behaved sim-
ilarly, with the rod exhibiting a 7 % higher and 15 % longer loading stress plateau than the tube.
The only significant qualitative difference between the rod and tube responses was in the initial pre-
plateau behavior, where the rod behaved nearly linearly, while the tube behaved nonlinearly (this
is most easily seen in the tangent modulus (Et) data presented in Figure 2.5b). The nonlinearity
in the tube behavior is associated with a homogeneous transformation from austenite to the rhom-
bohedral phase (R-phase) commonly found in NiTi materials operating at temperatures slightly
above Af as was the case here (the tube Af was 19 ◦C, while the room temperature experiment was
conducted around 21 ◦C).

For each tensile specimen, the pronounced stress plateau in the mechanical response was due
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Figure 2.5: The uniaxial responses of the rod (T-R and C-R) and tube (T-T and C-T) exhibited
tension-compression asymmetry, hysteretic behavior and flat stress plateaus in tension.
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Figure 2.6: Phase transformation localized and propagated along the length of the specimens under
tensile loading, forming a diffuse high strain phase boundary in the rod and a criss-crossing high
strain finger–like boundary in the tube.
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to the localization of a high strain front which propagated along the specimen length (see the axial
strain fields εB

ZZ in ic – ie of Figure 2.6). This formation of a high strain localization corresponded
to the nucleation of stress-induced phase transformation which unstably progressed along the spec-
imen. Due to the mixed strain state during localized propagation, it is important to note that this
portion of the loading corresponds to an averaged structural response rather than the homoge-
neous deformation often associated with the local constitutive behavior of the material. As will
be discussed further in Chapter 3, the suppression of phase transformation localization in tension
results in a nonmonotonic up–down–up mechanical response which is likely more suitable for the
purposes of material modeling.

Although phase transformation localized in both the rod and tube, the morphology of the phase
transformation front differed (see the surface axial strain data εB

ZZ in Figure 2.6). In the case of the
rod, the localized phase boundary was diffuse (for example, id of Figure 2.6a); whereas the tube
phase boundary consisted of distinct criss–crossing “fingers” (for example, id of Figure 2.6b).
This difference in the phase transformation features is attributed to the differing cross-sectional
geometries of the rod and tube. Kinematically, the formation of a distinct phase boundary requires
strain compatibility tangential to the phase boundary plane (see Shaw and Kyriakides [1998] for
a more in-depth discussion on this topic). Although this compatibility condition cannot be met
exactly for either the rod or tube, the thin wall of the tube better accommodates it than the solid
cross-section of the rod. The tube can therefore localize with sharp phase boundaries, while the
rod can only accommodate a diffuse neck-like phase boundary.

2.3.2 Compression

Similar to the tensile responses, the compression responses of the rod and tube were characterized
by hysteretic trilinear-like behavior, although with smoother corners, as shown in the lower left
quadrant of Figure 2.5a. Of the differences between the tensile and compressive behaviors, one of
the most notable is the absence of flat plateaus in compression due to stable homogenous transfor-
mation. Quantitatively, the magnitudes of the compressive transformation stresses were about 1.5

times larger than the corresponding tensile transformation stresses, while the magnitudes of the
compressive transformation strains were about 2/5 times smaller than the corresponding tensile
transformation strains. This tension-compression asymmetry is now a well-known and prevalent
feature of common commercial NiTi materials and is likely due to the strong crystallographic tex-
ture induced during the processing of wire, rod, and tube [Gall and Sehitoglu, 1999]. Comparing
between the rod and tube behaviors, the magnitude of the compressive transformation stress for
the rod was nearly 15 % higher than the tube, while the transformation strain was only marginally
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higher (although it is somewhat difficult to quantify the end of transformation due to the smooth
mechanical response). In a similar fashion to the tensile response, the tube exhibited a slight non-
linearity prior to transformation to martensite, which I believe corresponds to a phase change from
the austenite to the R-phase; whereas, the rod response was again nearly linear up to the initia-
tion of phase transformation to the martensite phase (see the tangent modulus response shown in
Figure 2.5b).

Although the compression fixture was designed to suppress buckling, the soft material response
at the start of phase transformation resulted in minor buckling of both materials as seen in the axial
strain data of Figure 2.7. In the case of the rod, the deformation remained uniform through ih ,
after which a column buckling mode of deformation was observed, as seen in ii – ij ; whereas, in
the case of the tube, the deformation remained uniform through ii , after which a faint axisymmet-
ric shell-type buckling mode of deformation was detected, as seen in ij – ik . Interestingly, upon
further loading, both the rod and tube “unbuckled” by il , returning to a straight configuration and
again deforming uniformly (this behavior is discussed further in Section 2.3.4 and Chapter 4). Due
to the nonuniform strain fields associated with buckling of both the rod and tube during the com-
pression experiments, the reported responses are not necessarily the “pure” compressive responses
corresponding to uniform deformation; however, results from other compression experiments (not
shown here), which buckled with varying amplitudes, suggest that the reported data have nearly
converged on the homogeneous compressive responses. As a final note, phase transformation lo-
calization was not observed in either of the compression experiments, corresponding to the absence
of stress plateaus in the mechanical responses (Figure 2.5a).

2.3.3 Pure Bending

The pure bending mechanical behaviors (normalized moment MC/I vs normalize curvature Cκ)
were characterized by hysteretic stiff–soft–stiff responses (Figure 2.8). Initially exhibiting the
same (elastic) bending stiffnesses, the tube mechanical response began to deviate from the linear
rod response at a normalized curvature of 0.5 % as the outer fibers of the tube began to transform to
the R-phase. At a normalized curvature of approximately 1.3 %, the moment curvature responses of
both materials began to soften as the outer fibers of the specimens began to transform to martensite;
due to the solid cross-section of the rod, this softening behavior occurred more gradually in the rod
than for the tube. Upon further loading, the effects of phase transformation dominated, resulting
in nearly flat moment plateaus, which ultimately stiffened as the majority of phase transformation
completed. Similar to the stress plateaus found in the tensile responses, the moment plateaus of the
pure bending responses corresponded to localization of phase transformation (Figure 2.9). Finally,
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it should be recognized that the moment hysteresis between the two pure bending responses are
not directly comparable, since the tube was taken well past the moment plateau, which is known
to suppress reverse transformation.

Due to the nonlinear uniaxial behavior of NiTi, it was not possible to normalize the bending
mechanical behavior to be independent of the cross-sectional geometry of the specimen. This is
best exemplified by the definition of the moment in a beam:

M = −
∫

A

σ(Y )Y dA, (2.1)

where σ is the axial stress, Y is the thickness-wise position, and the integration is conducted over
the cross-section of the beam. In the case of a linear elastic beam, Eq. (2.1) reduces to

M = EIκ, (2.2)

which defines a constitutive relationship between MC/I and Cκ, parameterized by the elastic
modulus of the material (E); however, for the nonlinear constitutive behavior of NiTi, the moment
definition Eq. (2.1) cannot be manipulated to decouple material and structural effects. Therefore,
the presented results of Figure 2.8 do not represent purely constitutive behavior and should not be
compared directly (except for during the initial linear elastic behavior of the materials).

Unlike the elasto-plastic behavior of most metals, the average location of the neutral strain
plane (Y 0) shifted from the centerline of both the rod and tube as shown in the upper portion of
Figure 2.8. This shift in the neutral plane is best exemplified through the axial equilibrium equation

24



for a beam during pure bending:

N =

∫

A

σ(Y ) dA

=

∫ Y 0

−D/2
w(Y )σT(Y ) dY

︸ ︷︷ ︸
Tensile contribution

+

∫ D/2

Y 0

w(Y )σC(Y ) dY
︸ ︷︷ ︸

Compressive contribution

= 0, (2.3)

whereN is the axial force in the beam, Y is the thickness-wise position,w(Y ) is the cross-sectional
width (as shown in Figure 2.10), and σT(Y ) > 0 and σC(Y ) < 0 are tensile and compressive
stress, respectively. Since the magnitude of the transformation stress is greater in compression
than in tension for NiTi, the neutral plane is shifted towards the compressive side (Y 0 > 0) for
both the rod and tube. Due to the differing cross-sectional width distributions (Figure 2.10), the
tube required the neutral axis to shift farther from the beam centerline than the rod to maintain
axial equilibrium.

Although the strain fields localized in the bending of both the rod and tube, the morphology
and evolution of the localized behaviors were fundamentally different (Figure 2.9). In the case of
the rod, propagating high curvature traversed the beam length from left to right as shown in Fig-
ure 2.9a, initiating at the moment drop just prior to ic and culminating just after ie . In contrast, the
strain field localized on the tensile side of the tube according to the crisscrossing finger-like struc-
tures as seen in ic – if of Figure 2.9b, eventually developing into wedge-shaped high strain regions
towards the end of loading. The slightly negative tangent modulus of the rod moment plateau sug-
gests that the propagation phenomenon within the specimen corresponds to an unstable structural
response; whereas the slightly positive tangent modulus of the tube moment plateau suggests the
finger-like growth of phase transformation corresponds to a structurally stable response.

It is tempting to attribute the differing modes of localization evolution in the rod and tube to
their differing cross-sections; however, the propagating high curvature observed in the NiTi tube

tested by Bechle and Kyriakides [2013] suggests more factors are involved. In examining the
behavior of Bechle and Kyriakides’s tubes, similar high strain “fingers” and wedges seen in my
tubes were observed in the high curvature sections of their specimens. In both cases, these discrete
wedge regions had an approximate width on the order of the tube’s diameter and suggests that the
length scale of a high curvature localization in a tube must be on the order of the tube diameter. I
therefore postulate that a localized high curvature region could more easily “fit” in the long free
length of Bechle and Kyriakides’s bending setup (which was on the order of 14 tube diameters), but
not within the relatively short free length of my bending setup (which was on the order of 4.5 tube
diameters). In the case of the rod, the kinematic restraints on phase transformation localization

25



due to it’s solid cross-section resulted in a relatively small transition region between the high and
low curvature regions (on the order of 0.5 rod diameters) of the beam during propagation. Unlike
the tube, the high curvature localization could therefore “fit” within the short free length of my
bending setup. This reasoning suggests that both the beam cross-section and free length affect the
localization morphology. Another contributing factor is likely the stiffness of the material response
during phase transformation (both in tension and compression); for example, the initial stiffness
in compression of my rod and Bechle and Kyriakides’s tube were much shallower than my tube,
suggesting the softer initial behavior contributes to the presence of propagating curvature. In all
likelihood, structural stability of superelastic SMAs in pure bending is a function of both specimen
geometry (length and cross-section) and the stiffness of the material response.

Due to the localized deformations of both the rod and tube in bending, the mechanical responses
correspond to averaged responses of the structures; however, unlike the uniaxial behavior, these
averaged responses correspond to differing structural events. In the case of the rod, the unstable
propagation (slightly negative tangent modulus) of the high curvature front had similar behavior
to the propagation of the high strain front in tension: the low curvature section of the beam corre-
sponds to the curvature at the start of the moment plateau, the high curvature section corresponds
to the curvature at the end of the moment plateau, and the structural response corresponds to the
weighted average of the high and low curvatures according to the degree of propagation. The ma-
terial behavior of the rod is therefore expected to have an up-down-up moment-curvature relation-
ship. In contrast, the stable transformation in the tube (positive tangent modulus) could potentially
be used as an averaged constitutive relationship (although it is dependent on the cross-sectional
geometry as discussed previously); however, it is difficult to determine if this stable behavior was
the result of the material behavior or the kinematic restrictions of the experimental setup.

The localization of the rod and tube strain fields during pure bending brings into question the
validity of the classical beam theory assumption that cross-sectional planes remain planar through
the course of loading for SMA beams. To investigate the applicability of this assumption for
SMA beams, the axial strain profiles (εB

ZZ) through the thickness of the rod and tube are shown in
Figure 2.11 for two locations along the beam axes (Z1 and Z2); additionally, the averaged axial
strain profile along the Z direction,

εB
ZZ(Y ) =

1

Le

∫ Le

0

εB
ZZ(Y, Z)dZ (2.4)

and the strain profile predicted by Euler-Bernoulli beam theory (which assumes that cross-sectional
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Figure 2.11: Axial strain profiles through the thickness of the rod and tube during pure bending at
the points of interest labeled in Figure 2.8, showing that plane sections remain plane for the rod,
but only on average for the tube.
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planes not only remain planar, but also normal to the deformed centerline of the beam),

ε̂B
ZZ(Y ) = κ(Y 0 − Y ), (2.5)

where κ and Y 0 are the values measured in M-R and M-T (and taken from Figure 2.8). In the
case of the rod (Figure 2.11a), the axial strain profiles remained nearly linear through the course of
loading, only differing in slope along the beam axis (Z1 vs. Z2) due to the propagation of the high
curvature front. In contrast, the tube strain profiles (Figure 2.11b) became nonlinear in the presence
of phase transformation localization as seen in the strain distributions of ic – if . Consequently,
cross-sectional planes only remained planar in the case of the rod geometry. With that said, the
averaged axial strain profile εBZZ (Eq. (2.4)) was nearly planar for both the rod and tube, even in
the presence of phase transformation localization. Furthermore, εBZZ aligned with the prediction by
Euler-Bernoulli beam theory (Eq. (2.5)), suggesting that the classical assumption of beam theory
is valid on average along the length of the beam. Therefore, classical beam theory appears to be a
viable approach to model SMA beam kinematics on average, even in the presence of localization
phenomena (such that the exact morphology of phase transformation is not of interest).

2.3.4 Column Buckling

The column buckling experiments spanned a wide range of loading conditions, investigating the
interaction between kinematic and material nonlinearity. The general characteristics of superelastic
SMA buckling are examined first, followed by a comparison between the measured and predicted
onset of buckling (critical buckling load). Lastly, the observation of post-buckling straightening is
the short SMA columns is discussed.

General Buckling Behavior

In the column buckling experiments, the mechanical response characteristics varied significantly
with respect to the column aspect ratio (Figure 2.12). Until the onset of buckling, all of the columns
loaded according to the compressive response of the material (C-R or C-T). Upon buckling, the
mechanical responses of the

• low aspect ratio columns (B-R-5, B-T-5, B-T-7.5) monotonically increased, initially soften-
ing (although with a positive tangent modulus), but ultimately stiffening and rejoined the
compressive response;
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Figure 2.12: The post buckling mechanical responses (normalized load P/A0 vs normalized dis-
placement δe/Le) of the column buckling experiments varied significantly with column aspect
ratio, exhibiting monotonically increasing behavior for low aspect ratio columns, nonmonotonic
down–up–down behavior for mid aspect ratio columns, and monotonically decreasing behavior for
high aspect ratio columns.

• mid aspect ratio columns (B-R-7.5, B-T-10) exhibited nonmonotonic down–up–down be-
havior;

• high aspect ratio columns (B-R-10, B-R-15, B-R-20, B-T-15, B-T-20) monotonically de-
creased, softening quickly, but ultimately asymptoting to a neutral tangent modulus.

During unloading, the mechanical responses were characterized by smoother paths with only the
high aspect ratio columns exhibiting nonmonotonic behavior. At the end of unloading, the ma-
jority of the buckling deformation was recovered in the columns, demonstrating the robustness of
superelastic SMAs to even the extreme loading conditions of buckling.

In general, the rod and tube specimens with similar aspect ratios showed different characteristic
behaviors, as is evident by a direct comparison between the mechanical responses of Figures 2.12a
and 2.12b. A better metric for comparison is the slenderness ratio of the column (` ≡ L/

√
I/A0),

which accounts for both the column aspect ratio and the cross-sectional geometry. Of the columns
examined in this study, there were two rod/tube pairs which had similar slenderness ratios: B-R-
7.5/B-T-10 and B-R-15/B-T-20 (see Table 2.3). As shown in Figure 2.13, the mechanical responses
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Figure 2.13: Columns with similar slenderness ratios (`) had qualitatively similar mechanical re-
sponses (normalized load P/A0 vs normalized displacement δe/Le).

of these rod/tube pairs had comparable qualitative characteristics, although the magnitudes differed
due to the differing uniaxial behaviors of the two materials (Figure 2.5a).

In the tube buckling experiments B-T-10 and B-T-15, the columns kinked at their midlength
late in loading, resulting in significant stress drops in the mechanical responses as marked in Fig-
ure 2.12b; additionally, the tube with an aspect ratio of 15 cracked along the beam axis on the
compressive side of the tube when loaded beyond kinking, corresponding to the second stress drop
in the B-T-15 response. In both cases, the residual strain at the end of unloading was higher than
the other tube buckling experiments; however, the majority of post-buckling deformation was still
recovered, further highlighting the robustness of superelastic SMAs to even extreme localized de-
formation. A more in-depth look into the kinking behavior is shown in Figure 2.14, comparing
the the mechanical responses (Figure 2.14a) and select axial strain fields of B-R-10 and B-T-10
(Figures 2.14b and 2.14c, respectively). In the case of B-R-10, the rod deformed with no signs
of kinking as indicated by the smooth axial strain fields of Figure 2.14b; whereas, in the case of
B-T-10, the initial signs of kinking are evident in ie of Figure 2.14c and more distinct by if . As
kinking results from the ovalization of the column cross-section during loading, it is not surprising
that kinking was not observed in the buckling of the rods due to their solid cross-sections, which
ovalize less than the hollow cross-sections of the tubes. Interestingly, the tube with an aspect ratio
of 20 did not kink in the loading range of the experiment, although I postulate that the tube would
have kinked if it had been loaded further.
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Figure 2.14: The load drop in B-T-10 was the result of kinking at the tube midlength, a phe-
nomenon that was not observed in any of the rod specimens due to the rod’s greater resistance to
ovalization.

Unlike the uniaxial and pure bending experiments, transformation localization was less promi-
nent in the buckling experiments. In the case of the rods and the low aspect ratio tubes, transfor-
mation localization did not occur, although high strain regions developed consistent with the usual
expectations for inelastic post-buckling behavior. Only the high aspect ratio tubes of B-T-15 and
B-T-20 showed signs of sharp localizations, an example of which is shown in id of Figure 2.15c at
the beam half length. Even so, the presence of localized phase transformation had little effect on
the qualitative characteristics of the structural response (for example, see the mechanical response
comparison of columns with similar `’s of Figure 2.13b, where the tube response corresponds to
the one shown in Figure 2.15a).
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Figure 2.15: In the case of the highest aspect ratio columns (B-R-20 and B-T-20), the axial strain
field localized at the midlength of the tube, but remained smooth in the rod; however, unlike the
tensile and bending responses, localization had no apparent effect on the mechanical response of
the tube.
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Measurement and Calculation of Critical Buckling Stress
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Figure 2.16: The critical buckling stress (σE
c ) is defined here as the point in which dδr/dδ reaches

80 % of its peak, as is show for two example cases: (a) elastic and (b) inelastic buckling.

For each buckling experiment, the critical buckling stress (σE
c ) was determined using the mea-

sured lateral deflection of the column midlength. Since buckling is defined as the bifurcation from
the principal deformation path (a straight column) to a secondary deformation path (a bent col-
umn), a theoretical step should exist in the derivative of the lateral displacement (dδr/dδ) at the
point of bifurcation. In reality, the change is smooth, so the point corresponding to 80 % of the
dδr/dδ peak value was used4. Two examples of the measurement method of σE

c are shown in Fig-
ure 2.16: Figure 2.16a corresponds to the elastic buckling of experiment B-T-20 and Figure 2.16b
corresponds to the inelastic buckling of experiment B-T-5. The measured critical buckling stresses
for all of the buckling experiments are shown in Figure 2.17.

In addition to measuring the experimental critical buckling stress, the theoretical critical buck-
ling stress (σTc ) for a perfect column was calculated for each buckling experiment. According to
the tangent modulus theory for inelastic column buckling, the critical buckling stress of a clamped-
clamped column is

σT
c = −4π2E∗t `

−2, (2.6)

where E∗t is the compressive tangent modulus of the material at the critical buckling stress. A

4The value of 80 % of the dδr/dδ peak was calibrated by the experiments in which the column buckled elastically
with a pronounced stress peak in the response.
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section of the compressive material response (Figure 2.5a) with the function σT(Et) = −4π2Et`
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(see Figure 2.5b for the Et behavior), an example of which is shown here for experiment B-R-10.

column’s resistance to buckling is therefore a function of two factors: the material stiffness (Et)
and the column slenderness ratio (`). Due to the functional dependence of Et on the applied load,
Eq. (2.6) is an implicit equation in terms of σT

c . To aid in the determination of σT
c , the function

σT ≡ −4π2Et`
−2 (2.7)

is defined, where Et is the loading tangent modulus of the material for a given loading state δe/Le

(see Figure 2.5b). The theoretical critical buckling stress σT
c then corresponds to the intersection of

the specimen’s compressive P/A0 vs δe/Le response (Figure 2.5a) with σT vs δe/Le; for example,
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see the calculation of σT
c for B-R-10 in Figure 2.18. The calculated critical buckling stresses for all

of the buckling experiments are shown in Figure 2.17.

As is commonly found in the comparison between experimental and theoretical buckling stresses,
the magnitude of the experimentally measured critical buckling stresses were lower than the theo-
retical predictions as shown in Figure 2.17. The over-prediction of the buckling theory is likely due
to subtle geometric imperfections and/or loading eccentricities in the experimental setup which are
not accounted for in the theory. I also postulate that superelastic SMA columns are more sensitive
to imperfections/eccentricities than conventional elasto-plastic materials due to the rapid soften-
ing of the compressive response of supereleastic SMAs at the initiation of phase transformation
(Figure 2.5b).

Buckling–Unbuckling of Short Columns

In the buckling experiments B-R-5, B-T-5 and B-T-7.5, and the compression experiments C-R and
C-T, an intriguing buckling–unbuckling behavior was observed during the loading and unloading
portions of each experiment. As buckling defines the deformation of a straight column to a bent
column under axial compression, unbuckling is defined here as the return of a buckled column
to its original straight form under continued axial compression. To better illustrate unbuckling, a
comparison of the mechanical responses and select axial strain fields of experiments B-R-7.5 and
B-T-7.5 are shown in Figure 2.19. In the case of experiment B-R-7.5, the rod midlength lateral
displacement (δr) increased monotonically with increasing compressive loading (δe/Le) as shown
in Figures 2.19a and 2.19b, corresponding to the conventional notion of buckling; whereas, in
the case of B-T-7.5, the tube midlength lateral displacement initially increased after buckling atib , but subsequently decreased to a near zero value by if (unbuckled) as shown in Figures 2.19a
and 2.19c. In addition to its observation during loading, buckling-unbuckling was also observed
in the unloading portions of C-R, C-T, B-R-5, B-T-5 and B-T-7.5 (for example, see the unloading
portion of the δr response in Figure 2.19a).

The absence of buckling–unbuckling behavior in conventional materials suggests that the stiff–
soft–stiff uniaxial material behavior of superelastic SMAs plays an important role in unbuckling
behavior; furthermore, the restriction of unbuckling to the low aspect ratio column experiments
implies a coupling between the specimen geometry and material behavior. For a more in–depth
discussion on the factors that influence unbuckling, see Chapter 4.

Other manifestations of unbuckling have been observed in the literature, such as balloon infla-
tion [Alexander, 1971, Haughton, 1980, Chen and Healey, 1991], SMA columns in the martensite
phase [Urushiyama et al., 2003, Richter et al., 2011], and tension of thin sheets [Healey et al.,
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Figure 2.19: For the columns with an approximate aspect ratio of 7.5, the rod specimen exhib-
ited monotonically increasing buckling deformation; whereas the tube specimen exhibited post-
buckling straightening (unbuckling).

2013, Nayyar et al., 2014]; however, to the best of our knowledge, this is the first observation of
column unbuckling under monotonic loading. Of these, the unbuckling-like behavior observed by
Urushiyama et al. [2003] is the most similar to the behavior observed here. In their experiments,
they used a three part loading procedure: (1) a column was axially compressed in a load frame until
the microstructure of the SMA material began to detwin and was then unloaded; (2) the column
was removed from the load frame and mechanically deformed into a “cosine” shape; (3) the col-
umn was again installed into a load frame and axially compressed, resulting in straightening of the
column. While this disjoint loading procedure does not strictly satisfy my definition for unbuck-
ling (since their columns were never buckled), steps (1) and (2) result in a configuration similar
to a buckled column. It should also be noted that mechanical behavior of SMAs in the martensite

phase differs from that of superelastic SMAs (which were examined here), although both exhibit
the seemingly necessary stiffening at large strains for unbuckling to occur.
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2.4 Conclusions

To better understand the combined uniaxial and bending behavior found in SMA beams, along
with the effects of beam cross-sectional geometry, tension, compression, pure bending and column
buckling experiments were performed on superelastic NiTi rods and tubes. In each experiment,
stereo digital image correlation (DIC) was performed to measure surface strains, allowing for the
observation of phase transformation localization when present. The mechanical responses and
phase transformation morphologies were evaluated, identifying the unique phenomena associated
with superelastic SMA beam deformation.

The tensile behavior of the rod and tube both exhibited usual hysteretic flag-shaped behavior
with flat stress plateaus corresponding to unstable propagation of localized phase transformation.
Although exhibiting similar mechanical behaviors, a diffuse phase transformation boundary devel-
oped in the rod upon localization; whereas, distinct finger-like phase boundaries developed in the
tube. The difference in strain localization between the rod and tube is attributed to the differing
restrictions on kinematic compatibility across phase boundaries where the solid cross-section of
the rod is less accommodating to thickness-wise compatibility than the thin-walled tube.

In compression, the rod and tube again exhibited hysteretic behavior, but with smaller transfor-
mation strains, greater transformation stresses and smoother transitions than their tensile counter-
parts. Unlike the localized phase transformation in tension, phase transformation in compression
was a stable process that was nearly homogeneous throughout the length of the specimen. Even
while using grips designed specially to suppress buckling, minor buckling was observed in both
the rod and tube due to the softening of the material response at the initiation of stress-induced
phase transformation.

When subjected to pure bending, the mechanical responses of the rod and tube exhibited hys-
teretic flag-shaped behavior, but with distinctive quantitative and qualitative differences. Similar to
the tensile response, phase transformation localization was observed in both specimen geometries.
In the case of the rod, phase transformation localized in the form of a propagating high curvature
front; whereas, phase transformation localized at disparate locations along the tensile side of the
tube with similar finger-like phase boundaries as those observed in the tube tension experiment.
Due to the differing localization behaviors, it was found that the rod specimen abided by the clas-
sical beam theory assumption that plane sections remain plane, which was only true on average for
the tube.

In the column buckling experiments, the rods and tubes with similar slenderness ratios (L/r)
had similar mechanical responses. Especially for the high aspect ratio columns (length/diameter),
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the majority of the post-buckling deformation was recovered upon unloading, suggesting that buck-
ling of SMAs need not indicate failure as is commonly concluded for elasto-plastic materials. Short
columns were found to buckle inelastically due to the onset of phase transformation induced soften-
ing; whereas, long columns buckled elastically. Sharp phase transformation localization was only
observed in the buckling of high aspect ratio tubes; however, unlike the tensile and pure bending
responses, phase transformation localization in buckling did not propagate nor did it appreciably
affect the mechanical response. Interestingly, in the case of low L/r columns, unbuckling behavior
was observed, corresponding to the post-buckling straightening of the columns under increasing
compressive loading. To the authors’ knowledge, this is the first documentation of unbuckling
behavior in superelastic SMA columns.

This chapter presented some of the effects of loading and structural geometry on the phase
transformation and mechanical behavior of SMA materials. It was shown that phase transformation
localization occurs in loading modes other than tension and that its morphology and evolution is
dependent on the geometry of the structure. In general, the morphology of localization is governed
by strain compatibility at phase boundaries which is most influenced by the the cross-sectional
geometry of beam specimens: thin-walled structures allow for sharp localizations, while solid
cross-sections can only localize according to diffuse ‘necks’. The evolution of localization (such
as propagation phenomena) is then dependent on the the overall geometry of the beam and the
mode of deformation. Therefore, proper representation of these interactions between loading and
structural kinematics are of the many challenges that must be faced when developing high fidelity
SMA constitutive laws and structural simulations.
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Chapter 3

Material Response in Tension

At the foundation of most constitutive model calibrations is the uniaxial tension experiment. Ap-
plying a state of constant stress throughout the gauge section of the specimen, tension experiments
typically result in uniform deformation, giving a direct relationship for the material’s tensile stress–
strain response. Unfortunately, in the case of superelastic SMAs, unstable stress induced phase
transformation between the austenite and martensite phases results in localization and propagation
of a high strain field (Figure 3.1). The resulting mechanical response corresponds to an averaged
structural behavior (Figure 3.1a), providing limited information with respect to the homogeneous
material behavior; in particular, the local stress–strain behavior during phase transformation is un-
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Figure 3.1: Pulled in uniaxial tension, the deformation field of the superelastic NiTi rod from
Chapter 2 localizes during phase transformation ( ic – ie ), deviating from the desired homogeneous
behavior.
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Figure 3.2: In his work on the tensile behavior of bars, Ericksen [1975] proposed that the stress
plateau of the structural response (P/A0 vs δ/L0) is due to up–down–up material behavior (σ vs
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known (i.e. during the stress plateau). Ideally, an experiment could be designed to suppress phase
transformation localization within the material while measuring the tensile response; however, this
is difficult to achieve in practice.

In the seminal work of Ericksen [1975] on the equilibrium of bars, he hypothesized that gen-
eral localization and propagation behavior (which is found in a wide range of physical systems,
such as Lüders banding during tension of mild steel [Hallai and Kyriakides, 2013] or bulging of a
thin membrane during inflation [Kyriakides and Chang, 1991] with the characteristic stress plateau
shown in Figure 3.2a) derives from up–down–up material behavior (Figure 3.2b). Upon observa-
tion of localization and propagation in superelastic SMAs, the SMA community therefore adopted
this hypothesis regarding the local material behavior; however, it wasn’t until the recent work by
Hallai and Kyriakides [2013] that this hypothesis was experimentally confirmed.

To measure the local material behavior of NiTi, Hallai and Kyriakides conducted two tension
experiments: in the first, a composite structure consisting of a thin superelastic NiTi strip sand-
wiched between and joined to two stainless steel strips was pulled in tension; whereas, in the
second experiment, a stainless steel strip (of the same material used in the composite experiment)
was pulled in tension. After conducting both experiments, the mechanical response of the stain-
less steel strip was subtracted from the mechanical response of the composite structure. Since the
NiTi and stainless steel were loaded in parallel during the composite experiment, the subtraction
of the stainless steel behavior from the composite response resulted in the effective response of
the NiTi; furthermore, the stiff response of the stainless steel in the composite prevented localiza-
tion in the NiTi, resulting in the measurement of the homogeneous NiTi behavior during phase
transformation.

The composite experimental setup of Hallai and Kyriakides [2013] is adapted here to measure

40



the local tensile material behavior of the superelastic NiTi rod examined in Chapter 2. The ex-
perimental procedure is first discussed in detail, outlining the composite manufacturing process
(Section 3.1) and the loading procedure (Section 3.2). The experimental results are then discussed,
examining validation results on aluminum rod (Section 3.3) and the measured NiTi local material
response (Section 3.4). The major contributions of this chapter are

• the validation of the composite based experimental setup of Hallai and Kyriakides [2013],

• a more thorough constitutive understanding of superelastic SMA tensile behavior, and

• the measurement of the local material behavior of the rod specimen from Chapter 2, which
can be used in conjunction with the experimental results from Chapter 2 for both model
calibration and validation purposes.

3.1 Materials and Composite Preparation

Rod

Tube
Epoxy

Dr

Dt

h

h

Figure 3.3: The composite specimens used in the measurement of the local material response of
an unstable material consist of an inner rod (with outer diameter Dr), an outer tube (with outer
diameter Dt), and an interfacial epoxy layer (with thickness h).

To measure the local material behavior of rod specimens, composite specimens were manufac-
tured by joining the rod with a stiffer outer tube (Figure 3.3). Special care was taken in choosing
the geometry of the outer tube, ensuring that the wall thickness was sufficiently large to suppress
localization within the inner rod, while remaining small enough so as not to overwhelm the mea-
sured rod signal; furthermore, the inner diameter of the tube was chosen such that the gap between
the rod and tube was large enough to allow for good bonding, but small enough so as not to af-
fect the compliance of the structure. Two composites were manufactured for this study: NiTi rod
+ steel tube and Al rod + steel tube. The NiTi-based composites consisted of 3.15 mm (~1/8 ”)
diameter superelastic NiTi rod (the same as examined in Chapter 2) and 8.01 mm (~5/16 ”) outer
diameter and 3.25 mm (0.128 ”) inner diameter 4130 steel tube; whereas, the Al-based composites
(used for validation purposes) consisted of 3.165 mm (~1/8 ”) diameter 2024 aluminum rod and
6.40 mm (~1/4 ”) outer diameter and 3.80 mm (1.50 ”) inner diameter 4130 steel tube.
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The rod and tube materials in the composite specimens were joined together using an epoxy
adhesive (JB Weld™). To ensure good bonding, the composites were manufactured according to
the following process:

1. the exterior of the rod was roughened using coarse grained sandpaper;

2. the surface of the rod and the inner surface of the tube were thoroughly cleaned with acetone;

3. the surface of the rod and the inner surface of the tube were coated with epoxy and the rod
was inserted into the tube;

4. the composite was cured in an oven at 100 ◦C (212 °F) for 30 min and then cooled in room
temperature air.

The resulting bonds were found to be sufficiently strong for the composite experiments examined
here1.

3.2 Setup and Procedure
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Figure 3.4: In the processing of the composite experimental results, the mechanical response (ax-
ial load P vs the extensometer strain δe/Le) of the steel tube was subtracted from the mechanical
response of the composite, resulting in the response of the inner rod. Here, the process is demon-
strated for the Al–based composite.

Two experiments were performed to measure the local material behavior of either the NiTi or
Al rod: a tension experiment on the composite material and an equivalent tension experiment on
the tube. All experiments were performed in a general purpose uniaxial load frame under global
elongation (δ) control. Each specimen was gripped using mechanical wedge grips with roughened

1On a few occasions, debonding occurred and corresponded to sharp drops in the load response of the composite.
In these cases, the results were disregarded and another composite experiment was conducted.
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Figure 3.5: The scatter in the mechanical response between the steel tube experiments (as shown
for two experiments indicated by P1 and P2) was on the order of 100 N, resulting in scatter on the
order of 2.5 % of the full scale baseline subtracted results.

V–grooved platens2, exposing a free length L = 51 mm (2 ”) between the grips. The specimen
was then loaded at a constant loading rate |δ̇| = |dδ/dt| to a peak elongation. Experiments were
performed in stagnant room temperature air at the slow loading rate of δ̇/L = 5× 10−5 s−1 to
achieve near isothermal loading conditions (less than 1 °C temperature change as measured by
a thermocouple on the composite surface). During the experiment, the axial load P and cross-
head displacement δ were measured, along with mechanical extensometer displacement δe. After
completing an experimental pair, the P vs. δe/Le response of the tube material was subtracted
from the P vs. δe/Le response of the composite to determine the mechanical response of the rod,
an example of which is shown in Figure 3.4 for the Al-based composite.

Due to inaccuracies in the measurement of physical signals, their tends to be scatter in the
baseline subtraction process. To help illustrate the effects of these inaccuracies, the mechanical
response of the 8.01 mm outer diameter steel tube was measured on two separate specimens (Fig-
ure 3.5a). In theory, the two measured responses should be identical; however, direct subtraction
of the second response from the first (Figure 3.5b) results in a difference on the order of 100 N. In
the context of the steel behavior, the 100 N difference is of relatively little consequence since it is
only 0.33 % of the 30 kN full scale load experienced by the material; however, in the context of the
baseline subtraction of the composite experiment, this 100 N scatter propagates to the measured
response of the inner rod, which is on the order of 4 kN, resulting in a more significant difference
of 2.5 %.

2Steel pins were inserted within the gripped sections of the secondary specimens when tested on their own.
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3.3 Validation Results

The baseline subtraction technique attempts to measure the pure tension response of the NiTi rod
in the absence of phase transformation localization and propagation; however, the mismatching
Poisson–type contractions of the two joined materials in the composite (be that due to elasticity,
plasticity or phase transformation) results in a combined state of axial and radial stress that differs
slightly from the desired state of pure axial stress. The measured local material behavior of the
NiTi rod therefore deviates from the true pure tension behavior, the severity of which is unknown.

To examine the effects of combined loading on the measured local material response in a com-
posite experiment, a set of validation experiments were conducted on aluminum rod. Since the
tensile response of aluminum is stable under moderate deformations, the local material response
can be measured using typical tensile experimental procedures. The deviation between the pure
tension and composite tension measurements can therefore be evaluated, providing a sense of the
validity of the composite experimental procedure.
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Figure 3.6: In the comparison between the true aluminum tensile response (denoted by subscript T )
and the baseline subtracted tensile response from the composite experiment (denoted by a subscript
C), the error between the two was on the order of 5 MPa (about 1 % of full scale), validating the
use of the composite experimental procedure.

The mechanical response of the Al rod measured with the composite experimental procedure
was found to correspond well with the pure tensile behavior (Figure 3.6). With the naked eye, the
deviations between the two mechanical responses are almost imperceptible (Figure 3.6a). Sub-
tracting the response measured by the composite experiment (PC) from the pure tension response
(PT ) (Figure 3.6b), the maximum deviation was on the order of 25 MPa, with the majority of the
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deviation being less than 5 MPa. Since 5 MPa is only 1 % of the full scale mechanical behavior,
the affect of the material response due to the combined loading state in the composite structure is
therefore minimal. As the linear elastic behavior of NiTi and Al are similar (both having elastic
moduli near 70 GPa) and the fact that both plasticity and phase transformation are nearly volume
preserving (i.e., similar Poisson–type behavior), it is expected that the composite experimental
procedure is also valid for NiTi.

3.4 Experimental Results
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Figure 3.7: The measured local material response (engineering stress P/A0 vs engineering strain
δe/Le) corresponds to the expected up–down–up behavior.

The measured local material response of the NiTi rod corresponds to the expected up–down–up
behavior as shown in Figure 3.7. Unlike the structural response (which is also shown in Figure 3.7
for reference), the local response exhibited smooth behavior with a sharper “up” to “down” tran-
sition than “down” to “up” transition. Interestingly, the second “up” portion of the local response
began before the end of the stress plateau in the structural response. It is difficult to determine
whether this corresponds to the actual material behavior, or if it is an artifact of the baseline sub-
traction process; although, the flat and slightly peaked steel tube response (Figure 3.7a) starting at
around 6 % axial strain, which is often associated with the onset of necking in the specimen (i.e.,
inhomogeneous deformation), suggests the stiffer than expected behavior in the measured local
response is an artifact of the baseline subtraction process.

To verify the suppression of localized deformation in the composite, a supplementary composite
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experiment was conducted using stereo digital image correlation (DIC) to measure full field strains.
Unfortunately, due to the makeup of the composite, DIC could only measure strains on the surface
of the composite’s outer steel tube, providing only an indirect understanding of the inner tube
deformation. The axial strain fields (εBZZ) at select points during the loading (Figure 3.8a) are
shown in Figure 3.8c; additionally, the averaged axial strain profiles through the thickness (D)
along the axis of the composite as defined by

ε̄BZZ(Z) =
1

D

∫ D/2

−D/2
εBZZ(Y, Z) dY (3.1)

are shown in Eq. (3.1), providing a more quantitative sense of inhomogeneities in the deformation.
Up through ic , the composite deformed homogeneously; however, during phase transformation
( ic – if ), two high strain regions developed, exhibiting a maximum strain variation of 1.4 % along
the length of the specimen. Since the strain field localized, the measured mechanical response
corresponds to an averaged response; however, the suppression of unstable propagation still al-
lowed for the measurement of the up–down–up material behavior during phase transformation. It
should be noted that, due to the lower accuracy of the DIC virtual extensometer measurements
used in these experiments in comparison to the mechanical extensometer used in the previous ex-
periments, the baseline subtraction results were noisier (Figure 3.8a); in particular, the initial linear
elastic behavior.

3.5 Conclusions

A novel experimental technique was used to measure the unstable local material response of su-
perelastic NiTi rod. Through the use of a composite structure, phase transformation localization
was suppressed within the NiTi material. The NiTi component of the composite behavior was then
determined by subtracting off the material response of the outer steel tube and consisted of a non-
monotonic up–down–up response. This local behavior provides a better constitutive representation
of the material than the structural tensile response (which is contaminated by inhomogeneous de-
formation) that is measured using a conventional tensile experiment.
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Chapter 4

Superelastic Column Unbuckling

For conventional structural materials (such as metals, ceramics and composites), classical compres-
sive buckling of columns is a monotonic process where the degree of buckling (bending) increases
under increased axial loading; however, as shown in Chapter 2, nonlinear material behavior and
large recoverable kinematics can lead to more complex nonintuitive buckling phenomena. One
such phenomenon was observed in the low aspect ratio column buckling experiments of Chapter 2
where short columns buckled (bent), but then later straightened, all during monotonic compressive
loading. Since buckling is characterized by the departure from the principal equilibrium path to
a bifurcated path, this return of a buckled structure (on a bifurcated equilibrium path) to its pre-
buckled configuration (principal path) under continued monotonic loading is therefore defined here
as unbuckling.

Other related cases of unbuckling have been reported in the literature, although researchers have
used various names (such as detwinning effect, anti-buckling and isola bifurcation) to describe the
phenomenon. The following are a few notable examples that share some common traits:

• An early observation of unbuckling behavior was by Alexander [1971] where he experimen-
tally examined the inflation of a spherical neoprene balloon. At a critical inflation pressure
the balloon buckled into an asymmetric mode yet, under further inflation, regained its spher-
ical shape (see Figure 4.1a). As an extension to Alexander’s work, Haughton [1980], and
later Chen and Healey [1991], analytically modeled the unbuckling behavior of balloon in-
flation using an Ogden material model, reproducing the observed behavior of Alexander. A
similar phenomenon was observed by Kyriakides and Chang [1991] during the inflation of
cylindrical latex-rubber balloons, where at a critical pressure a bulge formed, propagated
along its length, and eventually regained its nominally cylindrical shape (once the bulge has
consumed the entire length) at sufficiently high pressure. Both of these are a consequence
of the inherent non-monotonic (up-down-up) pressure-volume relationship of the balloons,
arising from nonlinearities in the material behavior and large-deformation kinematics.
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• More recently, Urushiyama et al. [2003] experimentally examined the unbuckling-like be-
havior of SMA columns in the martensite phase. In their experiments, they used a three
part loading procedure to demonstrate unbuckling-like behavior: (1) a column was axially
compressed in a load frame until the microstructure of the SMA material began to detwin
and was then unloaded; (2) the column was removed from the load frame and mechanically
deformed into a “cosine” shape; (3) the column was again installed into a load frame and
axially compressed, resulting in straightening of the column (see Figure 4.1b). While this
disjoint loading procedure does not strictly satisfy my definition for unbuckling, since their
columns were never buckled, steps (1) and (2) result in a configuration similar to a buckled
column. It should also be noted that mechanical behavior of SMAs in the martensite phase
differs from that of superelastic SMAs (which are examined here), although both exhibit the
seemingly necessary stiffening at large strains for unbuckling to occur. As a followup to
this work, Richter et al. [2011] used a finite element model to capture the behavior of SMA
columns in the martensite phase, successfully simulating the straightening during compres-
sion.

• Another recent example of unbuckling behavior was found in the wrinkling of thin sheets
pulled in tension (see Figure 4.1c). Although the wrinkling problem has been studied for a
number of years, Healey et al. [2013] were the first to discover the unbuckling behavior of
thin sheets analytically, which was later experimentally verified in polyethylene thin sheets
by Nayyar et al. [2014].

This work looks to provide a deeper understanding of the mechanisms behind unbuckling, ex-
amining the buckling of superelastic SMA columns as a lens into more general post-buckling
behavior. The remainder of this chapter is outlined as follows:

• Section 4.1 reviews two relevant column buckling experiments of superelastic SMAs from
Chapter 2, reiterating the phenomenon of unbuckling;

• Section 4.2 develops a simple two degree-of-freedom superelastic Shanley column model
that exhibits buckling–unbuckling behavior;

• Section 4.3 investigates the model behavior, presenting the general characteristics of un-
buckling (Section 4.3.1), comparing the model against experimentally observed unbuckling
(Section 4.3.2), and identifying the necessary geometric and material parameters for unbuck-
ling to occur, thereby providing an analytical tool for the design of columns that unbuckle
(Section 4.4);
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Figure 4.1: Other unbuckling phenomena have been observed experimentally.

4.1 Superelastic Buckling Experiments

Two relevant experiments from Chapter 2, involving buckling and unbuckling of superelastic SMA
columns, are reviewed here. Experiments were performed on initially straight superelastic as-
received NiTi rods (NDC SE508) and tubes (Memry BB) with a nominal outer diameter (D) of
3.175 mm (1/8 in). The NiTi rod had a measured outer diameter D = 3.150 mm and austenite fin-
ish temperatureAf = 10 °C; whereas, the NiTi tube had a measured outer diameterD = 3.176 mm,
wall thickness H = 0.318 mm, and Af = 19 °C.

In all experiments, stereo digital image correlation (DIC) was used to measure surface displace-
ments and strains. Prior to each experiment, the gauge section of the specimen was painted with
a base coat of white paint, followed by black speckles. Stereo images were then captured during
each experiment and post-processed using Vic-3D (Solutions [2012]) to calculate the surface dis-
placements and strains. For the purpose of characterizing global mechanical responses, a “virtual”
extensometer of length Le was established within the DIC gauge section and its elongation δe was
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used to measure the average axial strain δe/Le in the gauge section (Figure 4.3a). This avoided
difficulties with the use of conventional mechanical extensometers in the presence of bending de-
formation during column buckling.

For reference, uniaxial mechanical responses of the two SMA specimens (rod and tube) are
shown in Figure 4.2, depicting superelastic responses typical of commercially-available NiTi.
These are plotted in terms of nominal engineering stress F/A0 (axial tensile force F , reference
cross-section area A0) versus average axial strain δe/Le in the DIC extensometer gage section. The
responses are similar (but not identical), both exhibiting loading-unloading hysteresis, an inter-
mediate softening due to phase transformation between austenite (low strain) and stress-induced
martensite (high strain) phases, and significant asymmetry in tension versus compression.

For the buckling experiments, specimens were compressed axially in a load frame (Instron
5585) under clamped-clamped boundary conditions (see Figure 4.3a schematic). Experiments
were performed in room temperature air under slow, end-displacement control to achieve near
isothermal loading conditions, since superelastic SMAs are exceptionally strain-rate sensitive [Shaw
and Kyriakides, 1995]. The specimen was gripped by ER-16 collets, exposing a free length L, and
was loaded-unloaded in axial compression at a constant rate of shortening ∆̇/L = ±1× 10−4 s−1.
During each experiment, continuous measurements were made of the axial load P (by a 12.5 kN
load cell), grip displacement ∆ (by the load frame actuator), and specimen temperature Ts (by
a thermocouple affixed with thermally-conductive paste). The maximum temperature deviation
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Figure 4.2: Uniaxial isothermal mechanical responses (engineering stress F/A0 vs. engineering
strain δe/Le) of superelastic NiTi rod and tube in tension and compression, demonstrating hys-
teretic non-monotonic structural responses.
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of the specimen was less than 1 °C in all buckling experiments. The buckling response of the
specimen was characterized by the macroscopic compressive stress (P/A0), compressive DIC ex-
tensometer strain (∆e/Le), normalized radial (lateral) midspan displacement (δr/L) and outer fiber
strains (ε1 and ε2).

To better illustrate buckling–unbuckling behavior, the buckling responses of the NiTi rod and
NiTi tube with aspect ratios L/D = 7.24 and 7.33, respectively, are compared in Figure 4.3. Me-
chanical responses during loading (only) are shown in Figure 4.3b in terms of normalized axial
force (P/A0, lefthand vertical axis) and lateral displacement of the column’s midspan (δr/L, right-
hand vertical axis) versus normalized axial shortening in the gage section (∆e/Le), and selected
DIC axial strain field images are shown in Figure 4.3c and Figure 4.3d for the respective rod and
tube specimens. Consistent with the experiments of [Reedlunn et al., 2013], DIC strain fields are
reported here using the Biot strain measure, εB = U − I where U is the right stretch tensor and
I is the identity tensor, to give engineering-like bending strains that are invariant to cross-section
rotations. As seen in Figure 4.3b, the rod specimen begins to buckle at ib , reaches a limit load be-
tween ib and ic , stiffens somewhat just before id , and reaches a collapse load at ie after which the
load drops steeply. While this is not quite the traditional elasto-plastic post-buckling response of
conventional materials, the degree of bending (δr) continues to grow past point ib , so no unbuckling
occurs in this case. I term this behavior ‘monotonic’ buckling in the sense that the lateral deflection
continues to grow, while recognizing that the axial load response may still be non-monotonic (as
in the rod response of Figure 4.3b). By contrast, after early buckling near ib , the tube specimen’s
force-shortening response significantly stiffens and the degree of bending decreases past point id
as shown by the decrease in δr (Figure 4.3b upper pane) and the return to a relatively uniform strain
field in εB

ZZ (Figure 4.3d) at if . This post-buckling straightening is the unbuckling phenomenon of
interest in this chapter.

4.2 Superelastic Shanley Column Model

A modified Shanley column model is developed here to investigate the origins of unbuckling be-
havior observed in superelastic SMA columns. The objectives are to (1) examine the mechanisms
of unbuckling within a simple framework, (2) identify the conditions under which it occurs, and
(3) develop simple guidelines for the design of columns that functionally buckle-unbuckle.

Developed by Shanley in the 1940s to characterize the onset of elasto-plastic buckling, the orig-
inal Shanley column was a reduced-order model of simply supported column buckling [Shanley,
1947]. Noting that the majority of post-buckling deformation is localized in a hinge at the column
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Figure 4.4: The Shanley Column consists of a axially loaded (by a force P ) rigid inverted ‘T’
resting on two nonlinear spring, deforming with a tip displacement ∆ and rotation θ.

midspan, the Shanley column models the symmetric half-length of the column by a rigid inverted
‘T’ supported by two springs at its base (see Figure 4.4a). The length of the Shanley column is b
and the halfwidth is a. A small angle θ0 defines a possible initial misalignment of the column to in-
clude the effects of geometric imperfection. When subjected to a compressive vertical load P , the
degrees-of-freedom (DOFs) are the axial tip translation ∆ and rotation θ, as shown in Figure 4.4b.
I selected the upper tip displacement instead of the commonly-chosen translation of the base center
point, since the tip displacement is what is typically measured in a column buckling experiment.
Although this choice of the translational DOF is immaterial in the case of linear kinematics, it does
affect the stability results.

My modification to the Shanley column is in the constitutive law for the support springs, now
modeled as nonlinear elastic springs to mimic superelastic behavior (in contrast to the elaso-plastic
behavior originally used by Shanley). The mechanical behavior is idealized by assuming each
quadrant1 of force-deflection behavior is trilinear with a softer intermediate segment (Figure 4.5a).
In the interest of simplicity, I neglect the loading-unloading hysteresis, tension-compression asym-
metry, any differences in elastic moduli between austenite (low strain magnitude) and martensite
(high strain magnitude), and the rounded corners in the actual SMA behavior (Figure 4.2). These
likely affect the quantitative results, but not the essential origins of unbuckling.

1Here, compressive behavior is the upper right quadrant, while tensile behavior is the lower left quadrant.
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The idealized force displacement response of the spring behavior is defined by

F(u) =





−
[
keus + kt(uf − us) + ke(−u − uf)

]
: u < −uf

−
[
keus + kt(−u − us)

]
: −uf ≤ u < −us

keu : |u| ≤ us

keus + kt(u − us) : us < u ≤ uf

keus + kt(uf − us) + ke(u − uf) : u > uf

, (4.1)

where F is the compressive spring force and u is the spring shortening. Focussing on just the
positive quadrant, the constitutive law is trilinear with the following parameter constants: us and
uf are the respective start and finish displacements of the second linear segment, ke is the tangent
stiffness of the first and third segments, and kt is the tangent stiffness of the second segment. Note
that us, uf, ke, and kt are all positive parameters with 0 < kt < ke and 0 < us < uf.

To generalize the analysis, dimensionless variables for spring force f and spring displacement
ε, along with dimensionless spring parameters α, β and η, are defined as

f ≡ F

keb
, ε ≡ u

b
, α ≡ us

b
, β ≡ uf − us

b
, η ≡ kt

ke
∈ (0, 1). (4.2)

The dimensionless form of the constitutive law (as shown in Figure 4.5b) is therefore

f(ε) =





ε + (1− η)β : ε < −α− β (A)

ηε − (1− η)α : −α− β ≤ ε < −α (B)

ε : −α ≤ ε < 0 (C)

ε : 0 ≤ ε < α (D)

ηε + (1− η)α : α ≤ ε < α + β (E)

ε − (1− η)β : ε ≥ α + β (F )

. (4.3)

For later reference, each piecewise segment of the constitutive response is referenced by the capital
letters in Eq. (4.3) and Figure 4.5b.

The kinematics of the Shanley column are defined by the rigid body motion of the inverted
‘T’. For a downward displacement (∆) and clockwise rotation (θ), the respective displacements in
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Figure 4.5: To imitate superelastic-like material behavior, the foundation springs of the Shanley
column are modeled by a trilinear constitutive law.

Springs 1 and 2 (assuming they remain vertical) are

u1 = ∆ + b
[
cos(θ + θ0)− cos θ0

]
− a

[
sin(θ + θ0)− sin θ0

]
, (4.4a)

u2 = ∆ + b
[
cos(θ + θ0)− cos θ0

]
+ a

[
sin(θ + θ0)− sin θ0

]
. (4.4b)

Defining the dimensionless aspect (slenderness) ratio ` and dimensionless tip displacement as

` ≡ b

a
, δ ≡ ∆

b
, (4.5)

the dimensionless spring displacements of Eq. (4.2) are

ε1 = δ + cos(θ + θ0)− cos θ0 −
sin(θ + θ0)− sin θ0

`
, (4.6a)

ε2 = δ + cos(θ + θ0)− cos θ0 +
sin(θ + θ0)− sin θ0

`
. (4.6b)

For small rotations, the kinematics can be linearized by sin θ → θ and cos θ → 1, giving

ε1 ≈ δ − θ

`
, (4.7a)

ε2 ≈ δ +
θ

`
. (4.7b)

Due to the dead loading and elastic (yet nonlinear) spring behavior, this model represents a
conservative system (contrary to the original elasto-plastic Shanley column model) which can be
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represented by the total potential energy Π̃ = Ũ + Ω̃ of the system, where

Ũ =

∫ u1

0

F1(u) du +

∫ u2

0

F2(u) du, (4.8a)

Ω̃ = −P∆, (4.8b)

are the internal and external potential energies, respectively. Using Eqs. (4.2) and (4.5), and defin-
ing the dimensionless applied load

p ≡ P

keb
, (4.9)

the dimensionless potential energy is

Π ≡ Π̃

keb2
= U + Ω =

∫ ε1

0

f1 (ε) dε +

∫ ε2

0

f2 (ε) dε − pδ. (4.10)

Equilibrium states are found from stationary points of the potential energy Π(δ, θ) according to

∂Π

∂δ
= 0 = f1 + f2 − p, (4.11a)

∂Π

∂θ
= 0 =

f2 − f1

`
cos(θ + θ0)− (f1 + f2) sin(θ + θ0), (4.11b)

which also could have been found from a simple force and moment balance using the free body
diagram (Figure 4.4b). In the case of linear kinematics, force equilibrium (Eq. (4.11a)) remains
the same while moment equilibrium (Eq. (4.11b)) reduces to

(f2 − f1)− ` (f1 + f2) (θ + θ0) = 0. (4.12)

Explicit analytical solutions of the equilibrium paths exist for both the kinematically nonlinear
and linear models. Due to the piecewise linear behavior of the springs, however, it was necessary
to perform an extensive search of all possible equilibrium paths. Without any loss in generality,
I assumed that θ > 0, θ0 > 0 and δ > 0. All relevant permutations of the springs’ constitutive
behaviors (a total of nine as listed in Table 4.1) were substituted into the equilibrium equations
and solved with respect to either δ or θ, depending on which was more convenient. The equilib-
rium paths were then constructed piecewise according to the relevant regimes of the constitutive
behavior. An example solution procedure is as follows (assuming θ0 = 0 and linear kinematics for
simplicity):
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Table 4.1: Nine relevant pairs of the springs’ constitutive regimes exist during compression of the
Shanley column.

Loading state Constitutive behavior

Pure compression D/D, D/E, D/F, E/E, E/F, F/F

Mixed tension and compression A/F, B/F, C/F

• Choose a permutation of the springs’ constitutive behavior: suppose Springs 1 and 2 both lie
along branch D of the response (denoted D/D), which corresponds to fi = εi for i = 1,2;

• Substitute the constitutive behavior into the kinematically linear equilibrium equation, Eq. (4.12):

(ε2 − ε1)− (ε1 + ε2)`θ = 0;

• Substitute the linear kinematic relations of Eq. (4.7) and simplify:

(
1− δ`2

)
θ = 0;

• Solve the resulting equation in terms of the DOFs, and use Eq. (4.11a) to find the resulting
external load p = f1 + f2:

1. θ = 0, which corresponds to the principal branch with p = 2δ;

2. δ = `−2, which corresponds to a bifurcation point at θ = 0 and a secondary branch at
p = 2`−2;

• Create piecewise constructions of each equilibrium branch based on the assumed regime of
constitutive behavior (0 ≤ εi < α):

1. For θ = 0, ε1 = ε2 = δ, which implies solution 1 is valid for 0 ≤ δ < α;

2. For δ = `−2, ε1 = (`−1 − θ)`−1 and ε2 = (`−1 + θ)`−1. Since by assumption θ > 0,
0 ≤ ε1 < ε2 < α, which implies solution 2 is valid for 0 ≤ θ < α`− `−1.

The Shanley column is stable when the potential energy is positive definite with respect to small
admissible perturbations away from an equilibrium state. Stability with respect to displacement δ
control is therefore determined by

∂2U

∂θ2
> 0; (4.13)
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whereas, stability with respect to load control is determined by

∂2Π

∂δ2
> 0, (4.14a)

and
∂2Π

∂θ2

∂2Π

∂δ2
−

(
∂2Π

∂δ ∂θ

)2

> 0, (4.14b)

each evaluated at a particular equilibrium solution (δ, θ). Note that Eq. (4.14a) evaluates to

f ′1 + f ′2 > 0, (4.15)

where f ′1 = f ′(ε1) and f ′2 = f ′(ε2) are the tangent stiffnesses of the springs, so the condition
is always true for η > 0 (stable spring response) as assumed here. The two remaining criteria
Eqs. (4.13) and (4.14b) correspond to

Kδ = f ′1 + f ′2 − l2(f1 + f2) > 0, for δ-control, (4.16a)

or Kp = 4− l2p
[

1

f ′1
+

1

f ′2

]
> 0, for p-control. (4.16b)

Consistent with how the experiments in Section 4.1 were performed, subsequent stability results
will be evaluated with respect to displacement control (Eq. (4.16a)) unless otherwise specified.

To get an initial sense of the expected buckling behavior, it is useful to map the stability regimes
along the principal branch for the perfect column (θ0 = 0). Along the principal branch (θ = 0 =⇒
δ = ε1 = ε2), a straightforward stability analysis (with respect to δ-control) using Eqs. (4.3)

200
0

20

δ (%)

�
 10

α+βα

 2.77 3.16

 8.77

D E FStable

Figure 4.6: The stability of the principal path (denoted by the gray region) depends on the aspect
ratio of the column (` ≡ b/a) as determined by Eq. (4.17).
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and (4.16a), and accounting for the regimes of spring behaviors, show that bifurcations exist at

δB =





`−2 in D/D if ` >
1√
α
,

`−2 − α
(
η−1 − 1

)
in E/E if

√
η

α + βη
< ` <

√
η

α
,

`−2 + β (1− η) in F/F if ` <
1√

α + βη
.

(4.17)

To provide a better sense of the principal branch behavior, the stability regime according toKδ > 0

is plotted in Figure 4.6 as a function of the aspect ratio `, where the material parameters of the
springs are α = 1 %, β = 3 %, and η = 10 % (which approximate the uniaxial compressive
response of superelastic NiTi (Figure 4.2)).

4.3 Results

To examine buckling-unbuckling behavior, simulation results using the modified Shanley column
model are presented (Section 4.3.1) and then compared to experimental results on superelastic
SMA columns (Section 4.3.2). This is followed by an analysis of the necessary conditions for
buckling-unbuckling to occur, thereby defining a design space of columns that unbuckle (Sec-
tion 4.4).

4.3.1 Simulation Results

Simulations of the superelastic Shanley column are shown here to establish the different types
of possible post-buckling behaviors and to describe why buckling-unbuckling can occur. The
model is simple, having only two DOFs, yet as will be shown, its structural response exhibits
a surprisingly rich set of post-buckling equilibrium paths, arising from the interplay between the
trilinear constitutive response of the springs and the column’s aspect ratio `. For now, the model
has no initial geometric imperfection (θ0 = 0) and nonlinear kinematics are used; furthermore, the
material properties are chosen to represent generic superelastic compressive behavior (Figure 4.2)
and correspond to α = 1 %, β = 3 %, and η = 10 %. The equilibrium paths shown in subsequent
figures are denoted by solid (stable) or dotted (unstable) lines, and stability is determined with
respect to displacement (δ) control (although not necessarily a monotonic rate so as to better see all
possible equilibria); additionally, open circles indicate bifurcation points, and solid circles indicate
either a change in stability or a transition in constitutive behavior of the springs.
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For fixed material properties, the structural responses of the superelastic Shanley column can
be classified into four types based on the aspect ratio `: long, midlength, short, and very short
(Figures 4.7 to 4.10, respectively).

1. When loading starts from zero load, the structural response of “long” columns aligns with the
usual notion of monotonic buckling. The response has three equilibrium branches, as shown
in Figure 4.7 for an aspect ratio ` = 4.8. Branch 0 is the principal branch with θ = 0, which
is stable until the first bifurcation point at δ = α = 1 % that is triggered by the softening
of the spring responses. Branch 1 emanates from the first bifurcation point and diverges
from the principal branch with monotonically increasing θ. Branch 2 emanates from the
second bifurcation point at δ = α + β = 4 % on the principal branch (where one spring has
transitioned from soft segment E to stiff segment F), that interestingly loops back to return to
the principal branch at a third bifurcation point at δ = `−2 +β(1−η) ≈ 7 %. While Branch 2
has a portion that is stable, these states would not be realized by continuous loading from
zero load. Note, however, that segment E/F in Figure 4.7a initially hooks toward Branch 1
(δ̇ < 0) but turns around before reaching it.

2. The response of “midlength” columns correspond to unbuckling behavior (shown for ` = 4.4

in Figure 4.8), since Branch 1 emanates from the first bifurcation point but eventually loops
back along segment E/F to reattach to the principal branch at the second bifurcation point.
In this case Branch 2 starts at the third bifurcation point at δ = `−2 + β(1 − η) ≈ 7.9 %
and diverges without returning to the principal branch. Note that, unlike the long column,
equilibria associated with spring behaviors E/F are now split between Branch 2 (stable) and
Branch 3 (unstable). Thus, upon loading from zero load, the column would buckle, unbuckle,
then buckle again if loading persists.

3. The response of “short” columns (shown for ` = 3.0 in Figure 4.9, noting the change in
δ and p scales) is similar to that of “midlength” columns, except that the first bifurcation
occurs at δ = `−2 + α(1 − 1/η) ≈ 2.1 % after both springs have already softened (E/E). A
third bifurcation point exists at a larger value δ = `−2 + β(1− η) ≈ 13.8 %, where buckling
again occurs, but without returning to the principal branch.

4. The response of “very short” columns (shown for ` = 2.7 in Figure 4.10) is simpler, with
only two equilibrium branches and no unbuckling. The structure remains on the principal
branch to large spring strains F/F before encountering a single bifurcation point at δ =

`−2 + β(1− η) ≈ 16.4 % and then buckling away from the principal branch.

Unbuckling behavior therefore occurs only in short to midlength columns, within a bounded range
of column aspect ratios `min < ` < `max. Further analysis to define this range will be provided in
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Figure 4.7: “Long” Shanley columns (` = 4.8 shown) buckle along Branch 1 after the first bifur-
cation with no return to the principal path.

Section 4.4.

The reasons for unbuckling can be deduced by comparing the ε1-ε2 spring responses of the
long and midlength columns, Figures 4.7b and 4.8b, respectively. In both cases, buckling initiates
due to the softening of the tangent moduli in the spring responses at the end of the D/D segment
(ε1 = ε2 = α). Upon buckling, Spring 1 unloads along segment D, while Spring 2 loads along
softer segment E. This mismatch in spring tangent stiffnesses enhances the clockwise moment to
produce the rotated (buckled) configuration. Upon continued loading, Spring 2 eventually stiffens
as it reaches the onset of segment F; initially, this also causes Spring 1 to load somewhat. After
this point, however, the behaviors of the long and midlength columns differ. For the long column,
Spring 1 reaches a maximum strain and then begins to unload again, while Spring 2 continues to
load monotonically. For the midlength column, by contrast, Spring 1 is able to reach the onset of
segment E where its tangent modulus softens. The stiffness mismatch with Spring 2 creates an
incremental restoring (counter-clockwise) moment that arrests the rotation and reverses it. Thus,
while buckling is caused by the softening in Spring 2 (while Spring 1 remains stiff), unbuckling
is caused by the softening in Spring 1 (while Spring 2 remains stiff). The reason Spring 1 in
the shorter midlength column was able to load into segment E was due to the lesser incremental
applied moment coming from the reaction at the top end.

Without this analysis, it would have been natural to conclude that unbuckling occurs simply
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Figure 4.8: “Midlength” Shanley columns (` = 4.4 shown) buckle-unbuckle stably along Branch 1,
followed by buckling along Branch 2 at large strains.
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Figure 4.9: “Short” Shanley columns (` = 3.0 shown) buckle to Branch 1 within the soft spring
regime (E/E), unbuckle back to the principal path, and subsequently buckle a second time along
Branch 2 at large strains.
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Figure 4.10: “Very short” Shanley columns (` = 2.7 shown) buckle at large spring strains from the
first (and only) bifurcation with no return to the principal path.

due to the late stiffening in the constitutive law (segment F), but this is inaccurate. Late stiffening
in the constitutive law is not a sufficient condition for unbuckling. A special combination of both
geometry and nonlinear material behavior is necessary to induce softening of one spring (transition
from segment D to E) while having a stiff response in the other spring. It would be more correct
to say that the existence of buckling-unbuckling requires just the right sequencing of softening in
the two springs, along with the late stiffening.

As noted previously, the long column in fact has two secondary equilibrium branches, one that
corresponds to the post-buckling path (Branch 1) and another that is never reached (Branch 2),
albeit attached at two bifurcation points to the principal branch at large strains (Figure 4.7b). Al-
though both secondary branches are attached to Branch 0, they are disjoint to one another. Repeat-
ing the simulation (not shown) at a slightly reduced aspect ratio (length) results in the two branches
moving towards eachother. Eventually, the two segments touch each other at a tangency point as
the length of the column is reduced further. This special case, which occurs for `max ≈ 4.61 for
the material parameters chosen here, is shown in Figure 4.11. This represents the highest aspect
ratio `max, or upper bound, for columns that can unbuckle. As the aspect ratio is reduced further
yet, one can imagine the branches would overlap, but instead the equilibrium segments annihilate
one another wherever they would overlap. This effectively splits Branches 1 and 2 for the long
column into two segments for the midlength column, creating two new secondary branches con-
sisting of pieces of each of the original ones. The new Branch 1 (as in Figure 4.8b) is now attached
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Figure 4.11: At a critical length (`max = 4.610 shown), the secondary branches in the response of
the Shanley column share a common tangent point (open diamond).

at two bifurcation points to the principal branch, thereby creating a looping path for buckling then
unbuckling.

As the length of the column is reduced further (see Figure 4.9), the first bifurcation occurs
later, within E/E. Although buckling-unbuckling still exists, the size of the loop and maximum
rotation attained are less than that of somewhat longer columns. Eventually, the size of the loop
collapses entirely in sufficiently (very) short columns (Figure 4.10) and no buckling-unbuckling
occurs. Somewhere between these two cases, a lower bound `min exists, below which unbuckling
is not possible.

As can be seen in Figures 4.7 to 4.10, each equilibrium branch consists of various stable and
unstable segments. Most of the changes in stability are associated with the transitions (kinks)
in the spring constitutive behaviors, but not all. The two exceptions are (1) segment F/F of the
principal branch, which eventually loses stability at sufficiently large strains in all columns (Euler-
like buckling), and (2) loss of stability midway in segment E/F of Branch 2 in long columns,
although this is not a realizable path from zero load. All stability results shown so far assumed δ-
control (Eq. (4.16a)), i.e., stability with respect to a ‘hard’ loading device; however calculations for
stability with respect to p–control (Eq. (4.16b)) were also conducted, i.e. stability with respect to
a ‘soft’ loading device. Although explicit results are not shown here, the stability of several paths
under load control are found to differ from displacement control: segment F/F becomes unstable
when present, segment E/E becomes unstable for the short column (` = 3), and segments D/E

and E/F becomes unstable for midlength (` = 4.4) and long (` = 4.8) columns (since E/F is the
segment involved in unbuckling, it is unlikely unbuckling would ever be observed in load-control).

The introduction of a geometric imperfection (θ0 6= 0) can significantly alter the response of
the column, including elimination of the possibility for unbuckling. As an example, responses of
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shown) causes the column structural response to transition from buckling-unbuckling to monotonic
buckling.

the midlength column (` = 4.4) for several imperfections are shown in Figure 4.12. For small im-
perfections (see the case θ0 = 0.5o), the column buckles-unbuckles similar to the perfect column;
however, with a large imperfection (θ0 = 5o), the response resembles that of a long column without
unbuckling. For intermediate imperfections (see θ0 = 2o), interestingly, an isolated equilibrium
loop, or isola2, appears, although the unbuckling path never traverses it (see Dellwo et al. [1982]
for more information on isola bifurcations).

4.3.2 Comparison to Experimental Results

Two column buckling experiments on the NiTi rod were chosen to evaluate the performance of the
Shanley column: L ≡ L/D of 6.3 and 5. These aspect ratios were selected to mimic the behavior
of the long and midlength Shanley columns discussed in Section 4.3.1. The axial compressive
strain (∆e/L), normalized midspan lateral displacement (δr/L), compressive engineering stress
(P/A0), and midspan outer-fiber strains (ε1 and ε2) roughly correspond to the respective end-
displacement (δ), rotation (θ), axial load (p) and spring displacements (ε1 and ε2) of the Shanley
column, respectively, and were therefore chosen as metrics for comparison. To enable a more
realistic comparison with the experimental results, the Shanley model was given a small geometric
imperfection θ0 = 0.5°.

The qualitative agreement of the model and experiments is quite good (Figures 4.13 and 4.14),
with the simulations exhibiting all the relevant features of the experimental behavior. For long
columns, the experiment and model both show a relatively monotonic post-buckling response in
the lateral deflection (δr/L) and rotation (θ), although the model also predicts the existence of an

2Italian for island.
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isola that would never be reached (Figures 4.13a and 4.13b). The axial load responses, whether
plotted against lateral deflection–rotation (Figures 4.13c and 4.13d) or axial strain (Figures 4.13e
and 4.13f), show up-down-up-down behaviors, which are predicted reasonably well by the model
(albeit with sharper corners); likewise, the general shapes of bending/spring strain response curves
correspond nicely (Figures 4.13g and 4.13h). For midlength columns, the SMA rod and model
buckle, unbuckle, and then buckle again at higher loading (Figure 4.14). The good comparison
between the model simulations and the experiments provides convincing evidence that the model
captures the underlying mechanisms responsible for unbuckling (and superelastic column buckling
in general).

The critical (upper bound) aspect ratio Lmax for unbuckling was experimentally determined for
SMA columns by bracketing the value between two experiments, where one exhibited unbuckling
but the other did not. For the tube, a limited amount of material was available, so only a few
column aspect ratios were examined. It was found that a L = 7.33 tube unbuckled, while a
L = 9.92 tube did not; thus, the critical value for the SMA tube lies somewhere in between, with
an estimated value of L

tube
max = 8.6 ± 1.3. More material was available for SMA rod specimens, so

a larger number of experiments were performed to better refine the bracket for the critical aspect
ratio. In the performed experiments, an experiment on a L = 5.49 rod unbuckled, while another
experiment on a L = 5.52 rod did not, thereby giving a reasonably tight estimate for the SMA rod
of L

rod
max = 5.50 ± 0.02. Although the rod and tube had slightly different material properties, the

disparate results by over 50 % suggests that unbuckling depends on the cross-sectional geometry
as well as the aspect ratio. It should be emphasized that these results were for clamped-clamped
boundary conditions, which would be different if other boundary conditions were used.

To compare the experiment and simulation results somewhat more quantitatively, I sought to
determine a correspondence between the aspect ratio of the Shanley column and the geometry of
the SMA specimens used in the experiments. The SMA column experiments were performed using
clamped-clamped boundary conditions, rather than the simply supported conditions as originally
envisioned by Shanley, so ‘plastic’ hinges tended to form at the midspan and at both ends, as was
seen in Figure 4.3c. This suggests a simple equivalence, in which the Shanley column represents
1/4 of the experimental specimen based on symmetry about the midspan and the expected inflection
points of the buckling mode at z = L/4, 3L/4 (see Figure 4.15). Thus, the length of the Shanley
column corresponds to b = L/4.

Unfortunately, in the simplification from a beam-column to the Shanley column, the cross-
sectional information is lost; however, an understanding of beam deformation can be used to guide
the choice of the Shanley column halfwidth a to appropriately represent beam–columns. The
following are three possibilities:
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Figure 4.13: A comparison of experimental measurements [ (a), (c), (e), and (g) ] and model simu-
lations [ (b), (d), (f), and (h) ] for “long” columns (SMA rod L/D = 6.3; Shanley model ` = 4.8,
θ0 = 0.5o) shows good qualitative agreement with monotonic post-buckling deflections.
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Figure 4.14: A comparison of experimental measurements [ (a), (c), (e), and (g) ] and model sim-
ulations [ (b), (d), (f), and (h) ] for “midlength” columns (SMA rod L/D = 5.0; Shanley model
` = 4.4, θ0 = 0.5o) shows good qualitative agreement with buckling-unbuckling.
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Figure 4.15: The Shanley column of length b (clamped-free boundary conditions) is roughly equiv-
alent to 1/4 the length of the experimental SMA specimens (clamped-clamped boundary condi-
tions).

1. One could simply imagine the Shanley springs at the outer radius of the beam column, or

a =
D

2
, (4.18)

since this is where the magnitudes of the bending strains are greatest. This might be reason-
able for the SMA tube, but less so for the SMA rod since a larger fraction of the axial load
is supported by stress near the central axis.

2. One could use the radius of gyration of the cross-section as a characteristic width. The radius
of gyration is defined as r =

√
I0/A0, where I0 and A0 are the reference bending moment

of inertia and reference area of the cross-section, respectively. In this view a = r, giving

a =





D

4
: rod,

D

4

√
2− 2h+ h2 : tube,

(4.19)

where h = 2H/D is the normalized tube wall thickness based on the outer radius. This
approach is consistent with buckling in the linear elastic range of material behavior, so one
expects it would give a reasonable estimate for linear elastic (Euler) buckling but not for
buckling of nonlinear materials.

3. Alternatively, one could define a characteristic half-width dimension a = M/(F1 − F2),
whereM is the bending moment and F1 and F2 are resultant forces acting on each half area of
the cross-section (A1 andA2, respectively). The actual stress distribution in the cross-section
is unknown due to the complex material behavior of SMAs, but Figures 4.13g and 4.14g
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both show that at the onset of buckling one side of the column unloads elastically (in D)
while the other loads along the soft segment (in E). At this point the nominal compressive
strain is ε = α + yκ as bending begins, where y is the lateral buckling direction and κ

is the bending curvature. Incrementally, this creates a piecewise linear stress distribution:
∆σ1 = Ey∆κ on the unloading side (in A1), and ∆σ2 = ηEy∆κ on the loading side (in
A2). The incremental moment is ∆M =

∫
A
y∆σ dA and the incremental force difference

is ∆F1 − ∆F2 =
∫
A1

∆σ1 dA −
∫
A2

∆σ2 dA. Taking the ratio and simplifying leads to the
characteristic half-width a = I1/Q1, where Q1 =

∫
A1
y dA and I1 =

∫
A1
y2 dA are the first

and second area moments, respectively, of half of the cross-section. This definition gives

a =





3D

32π
: rod,

3D

32π

[
4− 6h+ 4h2 − h3

3− 3h+ h2

]
: tube.

(4.20)

For a clamped-clamped column with length L and outer diameter D, the aspect ratio of the real
column (L) is related to the Shanley column model through the relationship

L =
L

D
=

4b

D
= 4ā`, (4.21)

where ā = a/D relates the half width of the Shanley column (a) to the outer diameter of the real
column (D) through one of the options listed above, (Eqs. (4.18) to (4.20)). Using our baseline
material parameters α = 1 %, β = 3 %, and η = 10 %, h = 1/5 for the tube, and `max = 4.610,
the predicted critical aspect ratios from the Shanley model are provided in Table 4.2. In general,
the concentrated-forces method (Eq. (4.20)) gives a good estimate for the rod, while concentrated-
forces and the outer radius methods (Eqs. (4.18) and (4.20)) reasonably bracket the range for the
tube.

Table 4.2: The concentrated forces representation of the rod (using Eq. (4.21)) nearly predicts the
experimentally measured upper bound on column aspect ratio for unbuckling (Lmax); whereas, the
outer radius and concentrated forces representations of the tube bracket Lmax.

Calculated from the Shanley model

Measured Lmax Outer Radius Radius of Gyration Concentrated Forces

Rod 5.5 9.2 4.6 5.4

Tube between (7.3, 9.9) 9.2 5.9 6.6
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Figure 4.16: Comparison of linear and nonlinear kinematics for a “midlength” Shanley column
(` = 4.4), showing similar results in the unbuckling region (θ < 5°, δ < 4 %).

4.4 Design of Columns that Unbuckle

Finally, a parametric study is performed to map the ‘design space’ of columns, in terms of the
geometry (` and θ0) and material parameters (α, β, η), for which buckling-unbuckling occurs. Fig-
ure 4.16 shows a comparison of calculated equilibrium paths from the superelastic Shanley model
using both linear and nonlinear kinematics. Clearly, the secondary branches at large rotations and
strains are significantly different, but this regime of loading is of little concern to unbuckling behav-
ior. In the case of the moderate rotations and strains (θ < 5°, δ < 4 %) associated with unbuckling,
there is little difference between the linear and nonlinear kinematics and no essential features are
lost (as might generally be the case for nonlinear problems). Thus, the following analysis will be
done using linear kinematics, from which closed-form relations can be more conveniently found.

As was mentioned, the transition from unbuckling behavior in a midlength column (Figure 4.8)
to monotonic buckling in a long column (Figure 4.7) indicates the existence of an upper-bound
on column aspect ratio for unbuckling to occur. The limiting case between these two was shown
in Figure 4.11, for which the two secondary branches just touch at a common point. This occurs
when δD/F = δE/F at a single θ, where,

δD/F =
1

`2
+
β(1− η)(`θ − 1)

2`θ
, (4.22a)

δE/F =
`2(β − α)(1− η)θ + (1 + η)θ − `(1− η)

(
α + β + θ2

)

`
[
η − 1 + `(1 + η)θ

] , (4.22b)

using linear kinematics. This corresponds to a cubic equation with three roots. The first root is
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θ = −1/`, which does not apply since ` > 0 and θ ≥ 0 was assumed. The remaining roots are

θ =
1 + `2

(
β̄ − α

)

2`
±

√√√√
[

1 + `2
(
β̄ − α

)

2`

]2

− β̄, (4.23)

where β̄ = (1 − η)β/2 has been defined for convenience. When the quantity inside the radical
is less than zero, the solutions are imaginary, indicating that no unbuckling is possible. When the
radical quantity is greater than zero, two unique positive solutions for θ exist, which correspond to
points on the overlapping (in δ) secondary branches seen in Figures 4.8 and 4.9, and unbuckling
occurs. When the radical is exactly zero, the two solutions collapse to the same θ, which is the
limiting case for unbuckling. Solving the resulting bi-quadratic equation for `2 and, taking the
positive root, gives the following relation for the upper-bound on column aspect ratio:

`max =
1

√
α +

√
β̄
. (4.24)

Using our baseline material parameters, this calculates to `max = 4.626 (based on linear kinemat-
ics), which is quite close to 4.610 that was (numerically) found using nonlinear kinematics.

If the system has a geometric imperfection (θ0 > 0), the critical aspect ratio generalizes to

ˆ̀
max =

1
√
α + θ0/2 +

√(
θ0/2

)2
+ θ0

√
α + β̄

. (4.25)

This upper bound for the imperfect geometry (as denoted by the caret in ˆ̀
max) is always less than

for the perfect geometry (Eq. (4.24)) and Eq. (4.25) is a monotonically decreasing function with
increasing imperfection as shown in Figure 4.17. To gain a sense of the imperfection sensitivity,
an imperfection angle of 2° results in a decrease in `max by 13 % and an imperfection of 4° results
in a decrease of 23 %.

A lower bound also exists on the column aspect ratio for unbuckling to occur, since the short
column (Figure 4.9) buckled-unbuckled but the very short column (Figure 4.10) did not. The case
delimiting these two behaviors is when the principal branch first remains stable in E/E as the aspect
ratio is decreased. Stability of the principal branch was established previously in Figure 4.6, where
the largest aspect ratio for E/E to be completely stable was 2.77 for our material parameters, which
according to Eq. (4.17) was

`min =

√
η

α + βη
. (4.26)
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Figure 4.17: The upper bound on the Shanley column aspect ratio ˆ̀
max for unbuckling to exist is a

monotonically decreasing function of increasing geometric imperfection θ0.

This defines the lower-bound on the column aspect ratio for unbuckling in perfect columns. In
the case of an imperfect system, however, the lower-bound is zero (ˆ̀

min = 0) as a small degree of
unbuckling is always present in short columns.

Since ˆ̀
min is zero for an imperfect column, `max is the only parameter of practical importance

when designing a column to unbuckle. Based on the relationship for `max (Eq. (4.24)), the feasible
design space for perfect columns is shown in Figure 4.18. For a column aspect ratio ` = 4,
for example, all materials that lie within the shaded region (sufficiently small α and β̄) exhibit
unbuckling behavior; for real columns that are imperfect, the design space is slightly smaller, since
ˆ̀

max ≤ `max. As `max increases, the feasible region shrinks significantly as shown in Figure 4.18.
In the case of superelastic NiTi materials, the Shanley column aspect ratio must be less than about
4.5 to exhibit unbuckling behavior. Since other nonlinear materials have stiff-soft-stiff behavior
(like elastomeric materials), or even just soft-stiff (bilinear) behavior where α ≈ 0 (like biological
tissue), it seems possible that column unbuckling might also manifest in other materials; however,
due to the strong material parameter restrictions on unbuckling, it seems unlikely, since most of
these materials tend to stiffen only at very large strains (i.e., large β), thereby requiring an aspect
ratio that would be too small to be of practical use in a column.

Although all imperfect columns with aspect ratios less than ˆ̀
max unbuckle, the amplitude of

unbuckling (that is, the peak rotation along the unbuckling path) decreases with decreasing aspect
ratio. For a given aspect ratio, the maximum rotation (θmax) occurs at the start of the return path
to the principal solution, which always occurs at the start of path E/F. This point depends on the
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shaded, and the design space shrinks as the aspect ratio of the column increases.

aspect ratio of the column, leading to the two relations

2θmax =





`
`2min
− 1

`
− θ0 +

√(
1
`

+ `
`2min

+ 2
`min

+ θ0

)(
1
`

+ `
`2min
− 2

`min
+ θ0

)
: ˆ̀

min ≤ ` < `∗

1 + `2
(
β̄ − α

)

`
− θ0 −

√√√√
(

1 + `2
(
β̄ − α

)

`
+ θ0

)2

− 4

(
β̄ +

θ0

`

)
: `∗ ≤ ` ≤ ˆ̀

max

(4.27)

where

`∗ =

√(
2η

2α + βη

)2

+

(
θ0

β

)2

− θ0

β
. (4.28)

The best case θmax =
√
β̄ occurs at `max when θ0 = 0 and decreases monotonically to zero at `min

(Figure 4.19). Thus, to maximize the “stroke” of unbuckling columns should be as close to `max

as possible. Furthermore, since β̄ = (1 − η)β/2, the plateau length (β) and relative stiffness (η)
are the dominant parameters affecting θmax, with the optimum stroke corresponding to maximum
β and minimum η.
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Figure 4.19: The peak rotation of unbuckling, θmax, is maximum at an aspect ratio of ` = ˆ̀
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decreases monotonically to zero at an aspect ratio of ` = ˆ̀
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4.5 Summary & Conclusions

Defined as the return of a buckled structure to the principal path under monotonic loading, unbuck-
ling has been found in the literature to occur in the inflation of balloons, column buckling and the
wrinkling of thin sheets. Column buckling of superelastic shape memory alloy columns was used
here as a lens into the underlying mechanisms of unbuckling behavior. A modified Shanley column
was developed to model unbuckling behavior, using a trilinear material response to represent the
superelastic response of shape memory alloys. The explicit solutions of the proposed model exhib-
ited unbuckling behavior and agreed well with experimental results on NiTi columns. It was also
found that stiffening late in the material response is a sufficient condition for unbuckling to occur
given the appropriate kinematic conditions. Applying the model, a relationship was developed for
the design of columns which unbuckle, relating the necessary geometry of the column to material
behavior. Materials such as shape memory alloys can therefore be used in the development and
design of novel structures which functionally unbuckle.
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Chapter 5

Superelastic Beam Modeling

In Chapter 4, a Shanley column model with trilinear spring behavior successfully captured the un-
buckling behavior of superelastic SMA columns; furthermore, the model replicated many of the
general qualitative characteristics of superelastic column buckling behavior (Figures 4.13 and 4.14).
Unfortunately, the simplicity of the two degree of freedom model did not accurately capture the
quantitative behavior of the column. The trilinear spring material law is therefore generalized here
from the two degree of freedom system to the continuum level to more accurately model quantita-
tive behavior.

Continuum level material models are usually developed in the context of thin-walled (beams,
frames and shells), two dimensional (plane stress or strain) or fully three dimensional structures.
In the context of SMAs, the majority of current applications consist of thin–walled structures,
motivating the extension of the Shanley column model of Chapter 4 to a thin-walled framework;
furthermore, due to the focus on beam and framed structures here, a model based on beam theory
is developed.

In this chapter, a simple SMA beam model is presented. The model framework is discussed in
Section 5.1, outlining the kinematics of deformation (Section 5.1.1), equilibrium (Section 5.1.2),
and the generalization of the trilinear material model (Section 5.1.3). The implementation details
in the context of the finite element method are then discussed in Section 5.2, focusing on the beam
element formulation (Sections 5.2.1 and 5.2.2), issues with numerical integration (Section 5.2.3),
and loss of ellipticity of the model when using an up–down–up tensile response (Section 5.2.4).

5.1 Beam Model

A model is developed to capture the large rotation bending and the superelastic properties of SMA
beams. Within the development of the model, a balance is struck between accuracy and efficiency:

77



Y

X

x,s0

s

d

h

y

r0

r u

T
N

α

u

v

Figure 5.1: Fully nonlinear kinematics of an SMA beam defined in two coordinate frames: the
local frame of the beam (x-y) and the global coordinate system (X-Y ).

kinematically exact deformations fully capture the general large deformations of SMAs and their
structural stability characteristics, while a phenomenological SMA material model efficiently cap-
tures the stress-induced phase transformation behavior of superelastic SMAs.

5.1.1 Kinematics

In defining the kinematics for the model, it is important to capture both the large rotation bend-
ing of SMA beams and the overall stability characteristics of the structure. As the linearized
kinematics of traditional beam theory are insufficient for these purposes, the kinematically exact
extensible elastica model (comparable to Reissner [1972], Magnusson et al. [2001], Humer [2011])
is adopted. Within this framework, cross-sectional planes are assumed to remain plane and normal
to the deformed centerline of the beam (i.e., the Euler Bernoulli assumption), restricting the model
application to slender beams.

The deformation kinematics are developed within the context of an initially flat beam with
length h and thickness d (Figure 5.1). The position vector of the beam centerline in the reference
configuration is

r0(s0) = X(s0) eI + Y (s0) eJ , (5.1)

where s0 is the arc length parameter of the beam with respect to the reference configuration, and eI

and eJ are orthonormal vectors corresponding to the globalX-Y frame1. For a given displacement,
u = u ei +u ej , where ei and ej are orthonormal vectors corresponding to the local x-y frame, the

1All variables with the subscript 0 refer to the reference configuration.
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position vector of the current configuration centerline is

r = r0 + u. (5.2)

Of primary importance to the beam deformation are the centerline stretch ratio

λ ≡ ds

ds0

=
∥∥r′
∥∥ (5.3)

and centerline curvature

κ ≡ dα

ds
=

dT

ds
·N, (5.4)

where

T(s0) =
r′(s0)∥∥r′(s0)

∥∥ and N(s0) =
T′(s0)∥∥T′(s0)

∥∥ (5.5)

are respectively the the unit tangent and normal vectors of the beam centerline in the current config-
uration. As κ is defined with respect to the current configuration, the relative centerline curvature

κ̂ ≡ α′(s0) = T′ ·N (5.6)

is defined to relate the curvature to the reference configuration. Since T and N are orthonormal
vectors (‖T×N‖ = 1) and

T×N =
1

κ̂λ2

(
r′ × r′′

)
, (5.7)

κ̂ can be related to the position vector by

κ̂ =
‖r′ × r′′‖

λ2
. (5.8)

Combining the definition of the position vector (Eq. (5.2)) with the stretch ratio and relative cur-
vature definitions (Eqs. (5.3) and (5.8)),

λ =

√
(1 + u′)2 + (v′)2 (5.9a)

κ̂ =
(1 + u′) v′′ − v′u′′

(1 + u′)2 + (v′)2 . (5.9b)

The model is developed within the context of traditional beam theory assumptions, limiting its
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scope to slender beams. This deformation and geometry type leads to a small strain, large rotation
approximation of the kinematics of SMA beams where plane sections remain plane and normal to
the deformed centerline. It should be noted that, although strain localization occurs under certain
loading conditions in SMAs (such as tension and pure bending as discussed in Sections 2.3.1
and 2.3.3), the assumption that plane sections remain plane was found to be valid on average along
the beam length as discussed in Section 2.3.3. Under these assumptions, and the geometry defined
in Figure 5.1, the x and y displacement fields are respectively

ū(s0, y) = u(s0)− y sinα(s0), (5.10a)

v̄(s0, y) = v(s0)− y(1− cosα(s0)) (5.10b)

where (̄.) denotes a noncenterline quantity. From basic vector calculus, the trigonometric quantities
sinα and cosα can be related to the centerline displacement fields through the relationships

cosα = T · ei =
1 + u′

λ
(5.11a)

sinα = ‖T× ei‖ =
v′

λ
. (5.11b)

Although the Lagrangian strain is commonly used in solid mechanics, the Biot strain is more
convenient for the given kinematics. The Biot strain tensor is defined as

EB = U− I, (5.12)

where I is the second order identity tensor, U is the right stretch tensor defined by

U =
(
FTF

)1/2

, (5.13)

and F is the deformation gradient tensor defined by

F =
∂ū

∂r0

+ I. (5.14)

Combining Eqs. (5.10a), (5.10b), (5.11a) and (5.11b) with Eq. (5.12) results in the only nonzero
strain

εB
ZZ(s0, y) = e(s0)− yκ̂(s0), (5.15)
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which corresponds to the axial strain, where e ≡ λ − 1 is the midline strain and y is the normal
distance from the beam centerline.

5.1.2 Equilibrium

Due to the later implementation of the model within the context of a finite element formulation,
equilibrium is defined in its weak form. From the principal of virtual work,

δW I = δWE, (5.16)

where δ(.) defines a “virtual” quantity and δW I and δWE denote the internal and external virtual
work on the system, respectively. For the chosen Biot strain measure, the internal virtual work is

δW I =

∫ h

0

∫

A

ΠB : δEBdA ds0, (5.17)

where ΠB is the Biot Stress tensor and A corresponds to integration across the cross-sectional.
The Biot stress is the work conjugate pair to the Biot strain measure and is defined by

ΠB = det(F)F−1 · σ ·R, (5.18)

where (.)−1 denotes a tensor inverse, σ is the Cauchy stress tensor, and R is the rotation tensor
associated with the deformation gradient F such that, from the polar decomposition theorem,

R = F ·U−1. (5.19)

Applying Eqs. (5.13), (5.14) and (5.19) to the definition of the Biot stress (Eq. (5.18)) results in
a single nonzero stress component which corresponds to the axial engineering stress (σB

ZZ). The
internal virtual work (Eq. (5.17)) therefore reduces to

δW I =

∫ h

0

∫

A

σB
ZZδε

B
ZZdA ds0, (5.20)

Defining the axial force and bending moment as

N =

∫ d/2

−d/2
σB

ZZw dy (5.21a)

M =

∫ d/2

−d/2
−σB

ZZwy dy, (5.21b)
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respectively, where w is the width of the cross-section at a location y through the thickness,
Eq. (5.20) becomes

δW I =

∫ h

0

∫

A

(N δe+M δκ̂) dA ds0. (5.22)

Equilibrium is therefore defined by

∫ h

0

∫

A

(N δe+M δκ̂) dA ds0 = δWE, (5.23)

where δWE is dependent on the external loading of the beam. The resulting formulation corre-
sponds to the exact definition of equilibrium, which is not always the case in nonlinear mechanics.

5.1.3 Constitutive Model

A phenomenological constitutive definition similar to that used in Chapter 4 is used to model the
superelastic behavior of the SMA material. Figure 5.2a reports typical isothermal mechanical be-
havior for superelastic NiTi, highlighting the defining characteristics of superelastic SMA: large re-
versible deformation, hysteretic loading/unloading behavior, nonlinear stiffness, tension/compression
asymmetry, and up–down–up tensile behavior (see Chapter 3). An asymmetric, hysteretic, trilinear
material model is presented here with the focus of capturing these characteristics (see Figure 5.2b).

Superelasticity in SMAs is the result of a reversible stress induced phase transformation be-
tween the austenite and martensite phases, which is represented here with an internal variable
formulation. The phase fraction (ξ) is defined such that ξ ∈ [−1, 1], where ξ = 0 denotes the
austenite phase, ξ = 1 denotes the tensile martensite phase, ξ = −1 denotes the compressive
martensite phase, and ξ ∈ (−1, 0) ∪ (0, 1) denotes a mixture of phases2. The trilinear material
model used here is broken into three parts (see Figure 5.2b): at low strains, the material is in the
austenite phase and behaves according to the first linear branch (ξ = 0); at intermediate strains,
a mixed phase material governs the behavior according to the second (hysteretic) linear branch
(ξ ∈ (−1, 0) ∪ (0, 1)); and, at high absolute strains, the material is in the martensite phase and be-
haves according to the last linear branch (ξ = ±1). When completely in the austenite or martensite
phase (first or third branch), the material behavior is defined by Hooke’s Law:

σA(ε) = EAε (5.24)

2It is assumed here that the temperature is sufficiently high such that tensile and compressive martensite cannot
coexist.
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Figure 5.2: Comparison of experimental behavior of NiTi (a) with the material model (b), high-
lighting the trilinear, asymmetric and hysteretic characteristics.

or

σ±M(ε) = E±M(ε− β±), (5.25)

respectively, where EA is the modulus of elasticity of austenite, E±M is the modulus of elasticity of
martensite, β± is the transformation strain, and (.)± denotes a material parameter in the tensile (+)
or compressive (−) region of the response. When in the mixed phase region (second branch), the
response can be further classified by three sub-branches: loading (A → M±), unloading (M± →
A), and intermediate (within the hysteresis loop). The material behavior for the loading, unloading
and intermediate sub-branches are defined by

σ±` (ε) = EAε
±
n + E±` (ε− ε±n ), (5.26a)

σ±u (ε) = EAε
±
n + E±u (ε− ε±n )±

(
E±u
EA
− 1

)
, (5.26b)
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and

σ±h (ε, ξ) = η(ε, ξ)±σ±u (εu(ξ)) +
[
1− η±(ε, ξ)

]
σ±` (ε`(ξ)), (5.26c)

respectively, where ε±n is the nucleation strain, E±` is the modulus of elasticity during A → M±

transformation, E±u is the modulus of elasticity during M± → A transformation, and

η±(ε, ξ) =
ε− ε±u (ξ)

ε±` (ξ)− ε±u (ξ)
, (5.27)

such that

ε±` (ξ) = ε±n ∓
EM

(
β± − ε±n

)
+ EAε

±
n

E±` − E
±
M

ξ (5.28a)

and

ε±u (ξ) = ε±n ∓
∆σ±A
EA

+




∆σ±A
EA
∓ ε±n ±

E±Mβ
± +

(
EA − E±u

)(
ε±n ∓

∆σ±
A

EA

)

E±M − E±u


 ξ. (5.28b)

The corresponding phase transformation behavior is governed by the kinetic relations

ξ̇(ε, ε̇, ξ) =





˙ξ+
` (ε̇) if η(ε, ξ) = 1 and ε̇ > 0 and ξ < 1

˙ξ−` (ε̇) if η(ε, ξ) = 1 and ε̇ < 0 and ξ > −1

ξ̇+
u (ε̇) if η(ε, ξ) = −1 and ε̇ < 0 and ξ > 0

ξ̇−u (ε̇) if η(ε, ξ) = −1 and ε̇ > 0 and ξ < 0

0 otherwise

(5.29)

where

ξ̇`
±

(ε̇) =
±
(
E±M − E

±
`

)

EM (β± − ε±n ) + EAε±n
ε̇ (5.30a)

and

ξ̇±u (ε̇) =
EA
(
E±M − E±u

)

E2
Aε
±
n ± E±M∆σ±A ∓ EA

[
∆σ±A ∓ E

±
M (β± − ε±n )

] ε̇. (5.30b)
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In summary, the constitutive relationship is defined by

σ(ε, ε̇, ξ) =





σA(ε) if ξ = 0

σ+
` (ε) if 0 < ξ < 1 and ξ̇(ε, ε̇, ξ) > 0

σ−` (ε) if −1 < ξ < 0 and ξ̇(ε, ε̇, ξ) < 0

σ+
u (ε) if 0 < ξ < 1 and ξ̇(ε, ε̇, ξ) < 0

σ−u (ε) if −1 < ξ < 0 and ξ̇(ε, ε̇, ξ) > 0

σ+
h (ε, ξ) if 0 < ξ < 1 and ξ̇(ε, ε̇, ξ) = 0

σ−h (ε, ξ) if −1 < ξ < 0 and ξ̇(ε, ε̇, ξ) = 0

σ+
M(ε) if ξ = 1

σ−M(ε) if ξ = −1

. (5.31)

The asymmetric, hysteretic, trilinear material model is a balance between accuracy and compu-
tational efficiency. Many of the main characteristics of superelasticity are captured, while ignoring
some of the more complex mechanisms, such as latent heat effects (which often manifests as load-
ing rate sensitivity) and shakedown (also known as functional fatigue). This model is therefore
best suited for the quasistatic loading of a precycled material.

5.2 Numerical Implementation

The nonlinear behavior of the SMA kinematics and constitutive behavior results in a system which
is difficult to examine analytically, motivating a numerical finite element implementation. Due to
the nonstandard kinematics and material behavior, a number of material element implementations
are possible. Two element definitions are discussed in Sections 5.2.1 and 5.2.2, highlighting their
advantages and disadvantages; additionally, there are also important numerical issues that must
be considered in thickness-wise integrals (Section 5.2.3) and the potential loss of ellipticity of the
governing equations due to the up–down–up tensile behavior of SMAs (Section 5.2.4).
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5.2.1 Three nodal degrees of freedom

In traditional beam elements, three nodal degrees of freedom – two translational (u and v) and
one rotational (α) – are used in the discretization of the system. As these three field quantities are
related by

tanα =
v′

1 + u′
, (5.32)

which derives from the kinematic relationship of Eq. (5.11), the finite element shape function
definitions for these three field variables must be coupled. For the small rotations assumed for
linear beam elements, the coupling equation Eq. (5.32) simplifies to

v′ ≈ λα, (5.33)

which linearly relates v′ with α. Standard polynomial shape functions (the order of which depend
on the number of nodes used in the beam element) can therefore be used for each degree of free-
dom, with the α polynomial being one degree lower than the v polynomial. Unfortunately, in the
case of the nonlinear kinematic model used here, it is not possible to define polynomial shape func-
tions for the three field variables without violating the coupling equation Eq. (5.32). The resulting
element is more computationally costly than standard polynomial implementations.

For a two node beam element, one possible choice for shape functions is linear u, cubic v, and
direct enforcement of Eq. (5.32) for α:

u(s0) = a0 + a1s0 (5.34a)

v(s0) = b0 + b1s0 + b2s
2
0 + b3s

3
0 (5.34b)

α(s0) = arctan

(
b1 + 2b2s0 + 3b3s

2
0

a1

)
. (5.34c)

Relating the shape function definitions to the nodal degrees of freedom,

u1 ≡ u(0); u2 ≡ u(h); v1 ≡ v(0); v2 ≡ v(h); α1 ≡ α(0); α2 ≡ α(h); (5.35)
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the shape functions coefficients are

a0 = u1 (5.36a)

a1 =
u2 − u1

h
(5.36b)

b0 =
[tan(α1) + tan(α2)](h− u1 + u2) + 2(v1 − v2)

h2
(5.36c)

b1 = v1 (5.36d)

b2 =
tan(α1)(h− u1 + u2)

h
(5.36e)

b3 = −(h− u1 + u2)[2 tan(α1) + tan(α2)] + 3(v2 − v1)

h2
. (5.36f)

In addition to the computational costs of evaluating Eq. (5.34c), this element definition has com-
putation issues associated with nodal rotations near 90° as the tan(αi) terms found in the shape
function coefficients begin to approach infinity. This therefore limits this element implementation
to rotations of less than 90°.

5.2.2 Four nodal degrees of freedom

To address some of the issues associated with the three nodal degree of freedom element definition,
an element can be defined which uses two translational (u and v) and two rotation–like (u′ and v′)
nodal degrees of freedom. As the rotation–like degrees of freedom are derivatives of the transla-
tional degrees of freedom, traditional polynomial shape functions can be used; furthermore, there
are no restrictions on the beam rotation as there are no ill posed functions in the shape function
definition.

Unfortunately, the trigonometric relationship between the rotation–like degrees of freedom and
the beam centerline rotation (Eq. (5.32)) make it difficult to prescribe rotation-based (α) continuity
and boundary conditions. For proper compatibility between elements, continuity of u, v, and α are
required. A sufficient condition for continuity of α between elements is to enforce continuity of
both u′ and v′3. It should be noted that this implementation of the rotational continuity condition
additionally results in continuity of the centerline stretch ratio λ (see Eq. (5.9a)). For the case
in which elements are connected along a smooth beam (see Figure 5.3a), λ continuity implies
axial strain continuity between elements, suppressing the possibility of strain localization. For the

3Alternatively, an optimization procedure (such as a Lagrange Multiplier formulation) could be used to minimize
the difference in α between connecting elements, thus enforcing α continuity. Unlike enforcing ū′ and v̄′ continuity,
there are no assumptions with respect to λ at the element connections; however, this comes at the cost of being more
computationally complex and expensive.
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Figure 5.3: Schematics of element connection conditions: (a) demonstrates element connections
within a single beam, while (b) demonstrates element connections at a juncture in which multiple
beams meet.

case in which elements connect at the juncture of multiple beams (see Figure 5.3b), continuity
of λ results in aphysical behavior; for example, if nodes 1 and 2 in Figure 5.3b were vertically
compressed, strain would develop in elements 1 and 2 (λ 6= 1 at node 3), but element 3
would remain unloaded (λ = 1 at node 3), which is contradictory to the continuity of λ at node
3. Fortunately, in the special case of the thin beams investigated here, in which bending dominates
over axial deformation, λ ≈ 1 at the joints. There are therefore only minor effects from the extra
constraint of λ continuity. It should also be noted that specifying α as a boundary condition,
through specification of ū′ and v̄′, can have unforeseen consequences; in particular, there are a
number of ū′ and v̄′ pairs which result in the same α, but different boundary conditions.

For a two node element, a natural choice for the shape functions are cubic polynomials for
the translational degrees of freedom and quadratic polynomials for the rotation–like degrees of
freedom:

u(s0) = a0 + a1s0 + a2s
2
0 + a3s

3
0 (5.37a)

v(s0) = b0 + b1s0 + b2s
2
0 + b3s

3
0 (5.37b)

u′(s0) = a1 + 2a2s0 + 3a3s
2
0 (5.37c)

v′(s0) = b1 + 2b2s0 + 3b3s
2
0. (5.37d)

Relating the shape function definitions to the nodal degrees of freedom,

u1 ≡ u(0); u2 ≡ u(h); v1 ≡ v(0); v2 ≡ v(h); (5.38)

u′1 ≡ u′(0); u′2 ≡ u′(h); v′1 ≡ v′(0); v′2 ≡ v′(h) (5.39)
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the shape function coefficients are

a0 = u1 b0 = v1 (5.40a)

a1 = u′1 b1 = v′1 (5.40b)

a2 = −3(u1 − u2) + h(2u′1 + u′2)

h2
b2 = −3(v1 − v2) + h(2v′1 + v′2)

h2
(5.40c)

a3 =
2(u1 − u2) + h(u′1 + u′2)

h3
b3 =

2(v1 − v2) + h(v′1 + v′2)

h3
. (5.40d)

5.2.3 Integration Considerations

The heterogeneous mixture of phases in SMAs can result in large stress and strain gradients, requir-
ing special considerations when numerically integrating these quantities. In the case of uniaxial
deformation, the loading is uniform along the length, exhibiting small gradients in stress and strain
(except for the case of phase localization) and suggesting the need for only a small number of inte-
gration points. Even in the case of localization, mesh refinement allows for accurate capture of the
associated high gradients. For these reasons, Gauss quadrature based integration with four integra-
tion points is used in all implementations of the model for the length-wise integrals. In the case of
bending, the model assumes a linear strain profile through the thickness of the beam. Due to the
nonlinear relationship between stress and strain, the resulting thickness-wise stress profile is non-
linear, containing kinks in the profile at phase boundaries. Integration of the thickness-wise stress,
as in the evaluation of the axial load (Eq. (5.21a)) and bending moment (Eq. (5.21b)), therefore
requires a relatively large number of integration points for accurate evaluation. Although Gauss
quadrature can be used (which is one of the most common integration schemes used in the finite
element method), it tends to be inefficient due to the necessity to either calculate the quadrature
weights or tabulate the weights for a wide range of integration points. This inefficiency can be
somewhat alleviated by sectioning the beam cross-section and using a smaller number of integra-
tion points over each section; however, this adds in unnecessary complication. Instead, trapezoidal
integration is used due to its greater flexibility and efficient implementation. In convergence studies
run using the presented model, between 51 and 201 integration points4 were found to be sufficient
to accurately evaluate the thickness-wise integrals.

4An odd number of trapezoidal integration points are always used so that the end points align with the edges of the
beam.
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5.2.4 Loss of Ellipticity: Localization and Propagation

Due to the negative tangent modulus of the “down” portion of the up–down–up tensile response of
superelastic SMAs (see Chapter 3), the strain field within the material can localize into high strain
regions (as seen in the tensile and pure bending experiments of Sections 2.3.1 and 2.3.3, respec-
tively). From a modeling perspective, localization is associated with the loss of ellipticity of the
governing partial differential equations and causes issues with solving boundary value problems.
In the context of the finite element method, which is developed to solve elliptic partial differential
equations, loss of ellipticity results in mesh dependent results and numerical instability. For an
illustrative example of these issues, see Section 2 of Jirsek [2002].

There are several modeling techniques which can be used to regularize the localization problem,
incorporating a characteristic length scale to essentially penalize high strain gradients. These tech-
niques range from the addition of strain gradients, to nonlocal parameters, to rate dependence, each
of which have their benefits and drawbacks. In all cases, these techniques require a non-standard
finite element implementation, which is beyond the scope of this work. Instead, the structural
response of the material is used to avoid the issues associated with loss of ellipticity (as in Sec-
tion 7.2), with the understanding that this simplification omits important information about the
material behavior (the effects of which are also left for future work).

5.3 Summary

A basic phenomenological model was presented for superelastic SMAs in the context of beam
theory. An extensible elastica framework was implemented to capture the large rotation kinematics
of SMA beams while a phenomenologically inspired trilinear material law was used to model
the constitutive behavior of the material. Implementation of the model within the finite element
framework was then discussed, providing three node and four node element definitions, along with
potential implementation issues regarding numerical integration and loss of ellipticity of the model
when using an up–down–up tensile response.
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Chapter 6

Bloch Wave Stability Analysis

Many biological and engineered systems function at multiple length scales, ranging from muscle
tissue and bones, to composites and corrugations. Unfortunately, it is often mathematically in-
tractable to explicitly model all of the relevant length scales in the entire system. In the case of
systems with an underlying periodic length scale, analysis is often simplified using homogenization
techniques to represent the system by a homogeneous continua (although not necessarily isotropic)
with effective properties derived from the averaged behavior of the mesostructure. Unfortunately,
homogenization loses some of the physical aspects of the original structure, such as the stability
characteristics at the mesoscopic scale; for example, micro-buckling of fibers in a fiber reenforced
composite. Alternatively, a periodic structure can be represented by the minimum repeating unit
of the structure (the unit cell) subjected to periodic boundary conditions. Unlike the homogeniza-
tion technique, some of the mesoscopic behavior can be preserved, but at the cost of suppressing
other behaviors, such as instabilities with a wavelength greater than the unit cell. To avoid the
short comings of the aforementioned analyses, a third method founded on Bloch’s theorem can be
used to tractably represent the meso- and macroscopic characteristics of structures with underlying
periodicity.

Developed by Felix Bloch in 1928 to describe the conduction of electrons within crystalline
materials [Bloch, 1928], Bloch’s theorem defines the general solution to the linear Schrödinger’s
equation in three dimensions. Although independently developed by Bloch, Bloch’s theorem was
actually a rediscovery of a concept discovered by a number of researchers in the late 1800s, the
most notable of which was Gaston Floquet who developed an equivalent theory (Floquet theory)
in the context of linear ordinary differential equations with periodic coefficients [Floquet, 1883].
The rediscovery of this theory within different fields emphasizes its generality and applicability to
a range of problems in which there is a fundamental periodicity to the problem.

Extension of Bloch’s theorem from solid state physics to continuum mechanics is relatively
straight forward due to the similarities in their governing equations. Mead was of the early re-
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searchers to apply Bloch’s theorem to mechanics, examining the vibrational characteristics of
periodic structures such as stiffened plates [Mead, 1970, 1973, 1975a,b], along with Anderson
who looked into buckling and natural vibrations of periodic lattice structures [Anderson, 1981,
Anderson and WIlliams, 1986]. Since then, the general framework for Bloch wave analysis was
formally established by Triantafyllidis and coworkers, rigorously proving the mathematical frame-
work [Geymonat et al., 1993] and applying the theory to the analysis of laminated composites
[Triantafyllidis and Bardenhagen, 1996], fiber reinforced composites [Triantafyllidis and Maker,
1985, Michel et al., 2010], metallic honeycombs [Triantafyllidis and Schraad, 1998, Michailidis
et al., 2009, López Jiménez and Triantafyllidis, 2013], and phase transformation in SMAs [El-
liott et al., 2002a, 2006a,b]. Since then, the theory has been used to examine wave propagation
in two dimensional lattices [Phani et al., 2006] and elasto-plastic buckling of rigid joint lattices
[Hutchinson and Fleck, 2006].

Bloch’s theorem in the context of stability analysis of infinite structures with underlying peri-
odicity is of primary interest here. Although there is a broad literature on the subject matter, there
are relatively few cases which provide a thorough discussion of the theory in the context of simple
problems and applications; this work looks to address these concerns. To set the stage, infinite
structures with underlying periodicity are briefly discussed in Section 6.1. Bloch’s theorem is then
presented (Section 6.2), along with some of its many intricacies (Section 6.3), its implementation
in the context of structural stability analysis (Section 6.4), and some simple illustrative examples
of its implementation (Section 6.5).

6.1 Infinite Structures with Underlying Periodicity

Lattice points

R43

R12

a1

a2

Figure 6.1: The periodicity of a two–dimensional lattice is defined by its lattice vector Ruv =
ua1 + va2.

The periodicity of a structure is defined by its Bravais lattice. In three dimensions, there are a
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total of 14 possible Bravais lattices which range from a low symmetry triclinic unit cell1 to a high
symmetric cubic unit cell. Mathematically, the Bravais lattice is described by a lattice vector and
corresponding reciprocal lattice vector. If the corners of a unit cell are defined as lattice points,
then the lattice vector defines the vector from one lattice point to all other lattice points within the
structure:

Ruvw = ua1 + va2 + wa3, (6.1)

where (u, v, w) are integers parameterizing the lattice points and ai are the vectors defining the
directions and magnitudes of translational symmetry; an example two–dimensional lattice is shown
in Figure 6.1, along with its corresponding lattice vector. Transforming the lattice vector into the
Fourier domain (which corresponds to the spatial frequency of planes of lattice points), there exists
a reciprocal lattice vector

G`mn = `b1 +mb2 + nb3, (6.2)

where (`,m, n) are integers parameterizing the reciprocal lattice points and bi are vectors defined
such that ai · bj = δij and δij is the Kronecker delta. For a more detailed discussion on lattice
structures, refer to most any text on crystallography; for example, see Chapter 2 of Rohrer [2001].

6.2 Bloch’s Theorem

Bloch’s theorem states that the general solution to a system of linear differential equations with
periodic coefficients is

ψ(r; k) = eik·rp (r; k) , (6.3)

where i =
√
−1, ψ : RN × RN 7→ CN is the general solution vector (where the dimensionality

of the problem is defined by N ), r is the vector of independent variables (which resides in the
physical domain), k is the Bloch wavevector (which resides in the reciprocal domain), and p :

RN × RN 7→ CN is a function periodic with respect to the periodicity of the coefficients in the
governing differential equations. Eq. (6.3) consists of a plane wave modified by a periodic function
and is often referred to as a Bloch wave. In the context of mechanics, r defines a position vector
and the periodicity of the governing differential equations is due to the underlying periodicity of

1The unit cell is defined as the fundamental repeating unit of the structure with respect to translational symmetry.
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the lattice structure (Ruvw). The resulting periodicity of p is therefore

p(r + Ruvw) = p(r) (6.4)

for all integers (u, v, w). To interpret the physical characteristics of the complex valued ψ, either
the real or imaginary part of ψ can be taken at the end of the analysis. It should be noted that ψ
could be equivalently defined in the real domain; however, the mathematical convenience of the
complex representation out weighs the resulting obscuration of the physical interpretation.

6.3 Properties of Bloch Waves

The building block of Bloch’s theorem, Bloch waves are almost-periodic functions containing no
fundamental period in the exact sense. A classic example of an almost-periodic function is

f(x) = sin(πx) + sin(π
√

2x), (6.5)

which appears to be a periodic function due to the superposition of two periodic functions, but in
reality has no true fundamental frequency. Formally, a complex valued function f(x) defined for
−∞ < x < ∞ is called almost-periodic if for any ε > 0 there exists a trigonometric polynomial
Tε(x), such that

|f(x)− Tε(x)| < ε for −∞ < x <∞, (6.6)

where a trigonometric polynomial is defined by

T (x) =
n∑

j=1

cje
iλjx, (6.7)

cj are complex numbers and λj are real numbers [Corduneanu et al., 1989]; as a corollary, all
trigonometric polynomials are almost-periodic functions. Given the one-dimensional Bloch wave

ψ(x) = eikxp(x), (6.8)
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where p(x+nL) = p(x) for any integer n, the unit periodic function p can be expanded according
to its equivalent Fourier Series:

ψ(x) = eikx
∞∑

m=−∞

cme
i 2πm
L

x =
∞∑

m=−∞

cme
i( 2πm

L
+k)x, (6.9)

where the cm are Fourier coefficients. Eq. (6.9) is a trigonometric polynomial and, therefore, all
Bloch waves are almost-periodic functions. Note that, although this discussion was conducted
in the context of a one-dimensional Bloch wave for clarity, the ideas generalize to the three-
dimensional case in a straightforward manner.

Due to the almost-periodic properties of Bloch waves, care must be taken when interpreting
their spatial characteristics. Although Bloch waves have no fundamental wavelength in general,
Eq. (6.9) reduces to a Fourier Series (upon redefinition of the index integerm) when k = 2πa/(Lb)

and a/b is an irreducible fraction, implying that a subset of Bloch waves are periodic functions.
For this subset of Bloch waves, the fundamental wavelength is bL, which has several ramifications:

• The term “Bloch wavenumber” for k is deceiving as it does not align with the classical notion
of a wavenumber; that is, the Bloch wavenumber does not correspond to the wavelength (λ)
of a Bloch wave through the typical relation λ = 2π/k, even in the case that the Bloch wave

is periodic.

• Numerically, only periodic Bloch waves can be represented due to the truncation of irrational
numbers to rational numbers in computers.

• The denseness of rational and irrational numbers on the number line results in a highly
discontinuous mapping between the k and wavelength space of periodic Bloch waves. Nu-
merically, the selected precision of k therefore drastically affects the interpreted wavelength
of a Bloch wave (as will be shown in Section 6.5.2).

• There are b periodic Bloch waves with same wavelength bL.

By definition, Bloch waves are not uniquely specified by the wavevector k due to the periodicity
of p. For example, let ψ̂ be a Bloch wave with wavevector k̂ = k + G`mn:

ψ̂(r; k̂) = eik̂·rp̂
(
r; k̂
)

= eik·r
[
eir·G`mnp̂

(
r; k̂
)]

. (6.10)

As p ≡ eir·G`mnp̂
(
r; k̂
)

has the same unit periodicity as p̂, the righthand side of Eq. (6.10) defines
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another Bloch wave ψ ≡ eik·rp(r; k) such that

ψ̂(r; k + G`mn) = ψ(r; k). (6.11)

Eq. (6.11) implies that ψ and ψ̂ represent identical Bloch waves, although they are parameterized
by different wavevectors. To simplify the representation, k is often restricted to the smallest set
centered around the origin which completely represents all Bloch waves (referred to here as the
set B). This set is referred to as the First Brillouin Zone in the solid state physics literature and is
defined by the Wigner-Seitz cell (which is analogous to a Vorinoi cell) of the reciprocal lattice. For
the remaining discussion, the parameterization of ψ with respect to k will be suppressed with the
assumption that k ∈ B.

6.4 Stability Analysis

Intuitively, stability defines a system’s ability to maintain a given state when subjected to small
perturbations (be they mechanical, thermal, etc). An overview of stability theory is discussed here
to provide a general mathematical framework (Section 6.4.1); however, the interested reader is
referred to Iooss and Joseph [1990] for a more in depth discussion of the subject matter. The
specialization of this theory in the context of infinite media with underlying periodic structure is
then detailed within this framework (Section 6.4.2).

6.4.1 General Stability Analysis

Stability analysis of a mechanical system can be broken into two fundamental components: deter-
mination of the system’s equilibrium paths and the stability assessment of each equilibrium path.
The equilibrium paths of the system provide a map of all possible states of the system for the
given loading conditions; whereas the stability assessment determines which of these states are
stable, and hence physically relevant. In most practical cases, stability of the principal solution
path (equilibrium path emanating from the initially unloaded state of the system) is of primary
interest as deformation along secondary equilibrium paths often result in permanent deformation
and failure of the structure; furthermore, in the case of nonconservative systems, the behavior of
the system is path dependent, so the analysis requires the system to be examined starting from the
initial load free condition.

For the sake of clarity in simplicity, stability analysis is discussed here for the relatively simple
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case of conservative systems (both with respect to material behavior and external loading condi-
tions), noting that the implementation details with respect to Bloch’s theorem discussed in Sec-
tion 6.4.2 are the same regardless of conservative or nonconservative systems. A conservative
system can be modeled according to its total potential energy Π, which consists of a combination
of the internal potential energy of the system U and the potential energy of the external loads Ω:
Π = U +Ω. At a given loading state λ, stability of the conservative system is governed by the con-
vexity of Π(u;λ) with respect to the deformation field u (which is kinematically admissible with
the boundary conditions of the system), where stable equilibria correspond to minima of Π(u;λ).

Mathematically, the vector u0 is a (local) minimum of Π (u;λ) such that

∆Π(u0;λ) ≡ Π(u;λ)− Π(u0;λ) > 0 ∀ 0 < ||u− u0|| < ε (6.12)

and ε is small. The solution to this optimization problem is often considered with respect to the
Taylor series expansion about the point u0:

∆Π(u0;λ) = Π,u(u0;λ) ·∆u +
(
Π,uu(u0;λ) ·∆u

)
·∆u + ..., (6.13)

where ∆u ≡ u − u0 is a small perturbation about the equilibrium point. In the case of discrete
systems, the Π,u(u0;λ) and Π,uu(u0;λ) terms of Eq. (6.13) corresponds to the Jacobian vector
and Hessian matrix of Π evaluated at the point u0, respectively; whereas, in the case of continuous
systems, the Π,u(u0;λ) · ∆u and

(
Π,uu(u0;λ) ·∆u

)
· ∆u terms of Eq. (6.13) are the first and

second variational derivatives (i.e. Gâteaux derivatives) of Π evaluated at u0 such that

Π,u(u0;λ) ·w =
∂Π(u0 + εw;λ)

∂ε

∣∣∣∣
ε=0

(6.14a)

(
Π,uu(u0;λ) ·w

)
· v =

∂2Π(u0 + εw + ηv;λ)

∂ε∂η

∣∣∣∣∣
ε=η=0

, (6.14b)

respectively. If the point u0 is a stationary point (i.e. minimum, maximum, or saddle point) of Π,
then

Π,u(u0;λ) ·∆u = 0 ∀ ∆u 6= 0, (6.15)

which is the weak form of equilibrium. Since ∆u 6= 0, equilibrium can be reformulated into the
equivalent strong form

Π,u(u0;λ) = 0. (6.16)
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To then ensure that u0 is a minima and, hence, a stable equilibrium point,

(
Π,uu(u0;λ) ·∆u

)
·∆u > 0 ∀ ∆u 6= 0. (6.17)

Of interest is the critical loading parameter λc along the principal solution
0

u in which the system
first loses stability; that is,

(
Π,uu(λc;

0

uc) ·∆
1

uc

)

︸ ︷︷ ︸
I

·∆ 1

uc︸︷︷︸
II

= 0, (6.18)

where
0

uc is the equilibrium solution on the principal path at λc and ∆
1

uc is the direction about
0

uc

corresponding to zero curvature in Π(λc,
0

uc) (and correspondings to the direction of the intersect-
ing secondary solution path

1

u)2. Since the trivial solution ∆
0

uc = 0 is not of interest, II 6= 0 and,
hence, I = 0. Eq. (6.18) therefore corresponds to the eigenvalue problem

Π,uu(λc;
0

uc) ·∆
1

uc = 0. (6.19)

Eq. (6.19) is the strong form for the critical loading state which can be reformulated to its corre-
sponding weak form,

(
Π,uu(λc;

0

uc) ·∆
1

uc

)
· δu = 0 ∀ δu 6= 0, (6.20)

where δu is an arbitrary weighting function (which is kinematically admissible with the boundary
conditions of the system). Since the convexity of Π is only probed within a small distance from
the equilibrium point, Eq. (6.20) is typically linearized about

0

uc to simplify the analysis (and later
to allow for the use of Bloch’s theorem).

To recapitulate, the critical loading parameter λc in which a system first loses stability is deter-
mine as follows:

1. the principal equilibrium path
0

u is determined according to the equilibrium equation Eq. (6.16);

2. the critical point along
0

u is then determined from Eq. (6.20).

As a final note, often the second step in the stability analysis (i.e., evaluating the stability of the
equilibrium paths) is neglected. Instead, the uniqueness of the principal equilibrium path

0

u is
investigated, noting that loss of uniqueness corresponds to a bifurcation point. As most “real”

2In general, a system can lose stability with respect to multiple directions at a single critical load; however, these
cases are not discussed here for the sake of simplicity.
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physical systems lose stability at the first bifurcation point, this analysis method allows for the
quantification of the first load in which the system likely becomes unstable and deviates from the
principal path; however, it should be cautioned that there are no guarantees when using this method
as stability is never explicitly verified.

6.4.2 Stability Analysis with Bloch’s Theorem

For an infinite structure with underlying periodicity, the governing equations (Eqs. (6.16) and (6.20))
derived from the potential energy of a continuous structure correspond to differential equations
with periodic coefficients. In the case of equilibrium, the governing differential equations are in
general nonlinear; whereas, in the case of stability, the governing differential equations have been
linearized and are, hence, linear. Due to the infinite size of the structure, the solutions of these
governing equations are intractable; however, the underlying periodicity of the governing equa-
tions can be utilized to reduce the problem to a specialized analysis of the structure’s unit cell.

The first step in the stability analysis is the determination of the principal path (
0

u). Since
the governing equations for equilibrium (Eq. (6.16)) are in general nonlinear, Bloch’s theorem
is not applicable; however, it can be shown that a solution periodic with the same periodicity as
the coefficients of the governing equations always exists, even in the case of nonlinear systems.
Assuming that the behavior of the structure is unique on an interval near the start of loading (i.e.,
the principal path is unique near λ = 0), then it follows that the principal solution corresponds
to the solution having the same periodicity as the governing equations’ coefficients (and, hence,
the structure). Therefore, the governing equations for the principal path can be reduced from the
infinite domain to the unit cell with periodic boundary conditions.

The second step is then to determine when the principal path first loses stability (λc). Since
the governing equations for stability are linear (Eq. (6.20)), Bloch’s theorem is applicable and
solutions take the form of Bloch waves. From the periodicity of the function p in the definition of
a Bloch wave (Eq. (6.4)),

ψ(r + Ruvw) = eik·(r+Ruvw)p (r + Ruvw) = eik·Ruvwψ(r) (6.21)

defines the relationship for the values of a Bloch wave between unit cells. For r on a boundary
face of the unit cell and Ruvw in the set S = {Ru,v,w | u ∈ {0, 1}, v ∈ {0, 1}, w ∈ {0, 1}},
Eq. (6.21) can be used to relate ψ between the boundary faces of the unit cell. These relationships
are similar to periodic boundary conditions, but with the addition of the eik·Ruvw modifier. The
stability problem can therefore be reduced to the analysis of the unit cell subjected to periodic–like

99



boundary conditions defined according to Eq. (6.21) (which are referred to here as Bloch boundary
conditions).

Due to the complex variable definition of Bloch waves, the governing stability equation Eq. (6.20)
defined in the context of real variables is somewhat ambiguous and needs to be modified. The main
modification stems from the synonymous definition of the dot (inner) product with matrix multipli-
cation for real variables, which doesn’t hold for complex variables; that is, for the column vectors
a,b ∈ C,

aTb ≡
∑

i

aibi 6= 〈a,b〉 ≡
∑

i

aib̄i, (6.22)

where (̄.) denotes the complex conjugate of a quantity and 〈., .〉 defines a generalized dot product.
In the original derivation of the strong form of stability (Eq. (6.19)), the · operator defines a matrix
multiplication type operation; however, the conversion to the weak form, which looks to produce
a sesquilinear form (which is the generalization of a bilinear form for complex numbers) with
an arbitrary weighting function, defines a generalized dot product. The critical stability equation
Eq. (6.19) therefore needs to be redefined as

〈(
Π,uu(λc;

0

uc) ·∆
1

uc(k)
)
, δu(k)

〉
= 0 ∀ δu(k) 6= 0, (6.23)

noting the dependence of
1

uc and δu on the Bloch wavevector k due to the imposition of the Bloch
boundary conditions. The parameterization of the critical stability condition with respect to k

implies that λc is dependent on k; therefore, the first loss of stability is defined by

λ∗c = inf
k∈B

λc(k). (6.24)

In the case of discrete systems, the governing equations derived from Eqs. (6.16) and (6.23)
are not systems of differential equations; rather, they are systems of algebraic equations. The
differential equation–based arguments used to reduce infinite continuous systems to the analysis of
the unit cell with specialized boundary conditions therefore do not directly apply; however, similar
arguments can be formulated to result in the same conclusions. The evaluation of the principal
path therefore corresponds to the examination of the unit cell loading under periodic boundary
conditions; whereas, the determination of the critical point in which the principal solution loses
stability corresponds to the perturbation analysis of the unit cell under Bloch boundary conditions.
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6.5 Examples

There are many intricacies associated with Bloch wave stability analysis that are not initially obvi-
ous from the theoretical framework. To better provide insight into the application and interpretation
of Bloch wave stability analysis, a series of examples are presented. These examples range from
analysis of a simple rigid link system (Section 6.5.1), to a continuous beam (Section 6.5.2), to a
two dimensional honeycomb (Section 6.5.3).

6.5.1 1D Rigid Link System

A rigid link system is first examined to introduce the implementation of Bloch wave stability anal-
ysis. The simplicity of the system helps to prevent distracting computational complexities from
overshadowing the analysis technique.

Problem Statement

g2g1

G1 G2

g2g1

G1 G2

g2g1

G1 G2

2LL L

x
w

λλ

(a) Geometry and loading

θ1

θ2
θ3

w1 w2 w4w3

Δ

(b) Deformed configuration of
unit cell

Figure 6.2: An infinite rigid link system, with a unit cell consisting of three rigid links, two rota-
tional springs, and two translational springs, is axially compressed by a load p until it buckles.

The first example explores the infinite one-dimensional rigid link system schematically repre-
sented in Figure 6.2a. The unit cell of the link system consists of three initially flat links connected
in series by pins and having lengths L, 2L and L, respectively. At the first link juncture, there is
a rotational spring with spring stiffness G1 and a translational spring oriented perpendicular to the
links with spring stiffness g1; there is similarly a rotational spring and a translational spring at the
second link juncture, but with spring stiffnesses G2 and g2, respectively. In the context of the gen-
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eral outline of the Bloch wave analysis in Section 6.4.2, the unit cell lattice vector is Ru = 4Lue1

and the First Brillouin zone is B = {k | 4Lk ∈ (−π, π]}.

The system is axially compressed by a load p and, upon buckling, the unit cell deforms accord-
ing to the translational displacements wi for i = 1, .., 4 and the rotationals θi for i = 1, .., 3 as
shown in Figure 6.2b. Due to the rigid nature of the system, three of the seven generalized dis-
placements are dependent on the others, resulting in only four independent degrees of freedom. For
convenience in the later application of the Bloch boundary conditions, the generalized displace-
ment vector q = [w1, θ1, w4, θ3] is defined here to contain the degrees of freedom on the boundary
of the unit cell. The remaining generalized displacements are defined from the geometry of the
system by

w2(q) = w1 + L sin θ1 (6.25a)

w3(q) = w4 − L sin θ3 (6.25b)

sin θ2(q) =
w3 − w2

2L
=

(w4 − L sin θ3)− (w1 + L sin θ1)

2L
(6.25c)

Of interest is the critical load pc in which the system first loses stability.

Model

The defined system is conservative with respect to both material behavior and external loading,
allowing for a representation of the unit cell according to its total potential energy (Π̃ = Ũ + Ω̃).
Based on the spring configuration, the internal potential energy of the unit cell is

Ũ =
1

2

[
G1

(
θ2(q)− θ1

)2
+G2

(
θ3 − θ2(q)

)2
+ g1w

2
2(q) + g2w

2
3(q)

]
; (6.26)

whereas, based on the rigid geometry and the external loading, the external potential energy of the
unit cell is

Ω̃ = −p∆ = −pL
(
4− cos θ1 − 2 cos θ2(q)− cos θ3

)
. (6.27)

Nondimensionalizing according to

Wi ≡
wi
L
, P ≡ p

g1L
, η ≡ G1

g1L2
, ξ ≡ G2

G1

, and ζ ≡ g2

g1

, (6.28)
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the nondimensional potential energy of the system is

Π̃(Q, P ) =
1

2
g1L

2
(
W 2

2 (Q) + ζW 2
3 (Q) + η[θ1 − θ2(Q)]2 + ηξ[θ2(Q)− θ3]2

−2P
[
4− cos θ1 − 2 cos θ2(Q)− cos θ3

])
,

(6.29)

where Q = [W1, θ1,W4, θ3] and

W2(Q) = (W1 + sin θ1) (6.30a)

W3(Q) = (W4 − sin θ3) (6.30b)

sin θ2(q) =
(W4 − sin θ3)− (W1 + sin θ1)

2
. (6.30c)

Solution

From Eq. (6.15), the general weak form of equilibrium for the unit cell is

Π̃,Q(Q0;P ) ·∆Q = 0 ∀ ∆Q 6= 0, (6.31)

where

Π̃,Q(Q;P ) =
[
Π̃,W1(Q;P ), Π̃,θ1(Q;P ), Π̃,W4(Q;P ), Π̃,θ3(Q;P )

]T
(6.32)

is the Jacobian vector for the system. Interested in the principal solution
0

Q which corresponds to
deformation of the unit cell under periodic boundary conditions, the generalized displacements are
related according to

W4 = W1 (6.33a)

θ3 = θ1 (6.33b)

∆W4 = ∆W1 (6.33c)

∆θ3 = ∆θ1. (6.33d)
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Substituting the periodic boundary conditions of Eq. (6.33) into the general weak form of equilib-
rium Eq. (6.31),

[
Π̃,W1(

0

Q;P ) + Π̃,W4(
0

Q;P ), Π̃,θ1(
0

Q;P ) + Π̃,θ3(
0

Q;P )

]
·∆Qα = 0 ∀ ∆Qα 6= 0, (6.34)

where Qα = [W1, θ1] and
0

Q = [
0

W1,
0

θ1,
0

W1,
0

θ1]. The resulting strong form for equilibrium of the
principal path is

Π̃,W1(
0

Q;P ) + Π̃,W4(
0

Q;P ) = 0 (6.35a)

Π̃,θ1(
0

Q;P ) + Π̃,θ3(
0

Q;P ) = 0, (6.35b)

where

Π̃,W1(
0

Q;P ) = g1L
2(

0

W1 + η
0

θ1(1 + ξ) sec
0

θ1 + sin
0

θ1 − P tan
0

θ1) (6.36a)

Π̃,θ1(
0

Q;P ) = g1L
2(η

0

θ1(3 + ξ)− 2P sin
0

θ1 + cos
0

θ1(W1 + sin
0

θ1)) (6.36b)

Π̃,W4(
0

Q;P ) = −g1L
2 sec

0

θ1(η
0

θ1(1 + ξ)− P sin
0

θ1 + ζ cos
0

θ1(−
0

W1 + sin
0

θ1)) (6.36c)

Π̃,θ3(
0

Q;P ) = g1L
2(η

0

θ1(1 + 3ξ)− 2P sin
0

θ1 + ζ cos
0

θ1(−
0

W1 + sin
0

θ1)). (6.36d)

By inspection,
0

W1 =
0

θ1 = 0 satisfies Eq. (6.35), hence the principal solution is
0

Q = [0, 0, 0, 0]

(which is independent of the applied load). This conclusion seems obvious given the rigid sys-
tem and the loading conditions; however, the procedure was conducted so as to show the general
procedure within the framework discussed in Section 6.4.

Stability of the principal path
0

Q = [0, 0, 0, 0] then derives from Eq. (6.23) for the unit cell:

〈(
Π̃,QQ(

0

Q;Pc) ·∆
1

Q

)
, δQ

〉
= 0 ∀ δQ 6= 0. (6.37)

To apply Bloch’s theorem, Eq. (6.37) must first be linearized about
0

Q, which is most easily ac-
complished by applying the small angle assumptions sin θ ≈ θ and cos θ ≈ 1 (which are applied
after evaluating the derivatives of Π̃). Due to the discrete nature of the system, the only term of

Eq. (6.37) affected by the the linearization is Π̃,QQ(
0

Q;P ), resulting in

〈(
K(Pc) ·∆

1

Q

)
, δQ

〉
= 0 ∀ δQ 6= 0, (6.38)
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where

K(P ) =
1

4
g1L

2



−(2P−η(ξ+1)−4) −(2P−η(ξ+3)−4) (2P−η(ξ+1)) −(2P−η(3ξ+1))
−(2P−η(ξ+3)−4) −(6P−η(ξ+9)−4) (2P−η(ξ+3)) −(2P−3η(ξ+1))

(2P−η(ξ+1)) (2P−η(ξ+3)) −(2P−4ζ−η(ξ+1)) (2P−4ζ−η(3ξ+1))
−(2P−η(3ξ+1)) −(2P−3η(ξ+1)) (2P−4ζ−η(3ξ+1)) −(6P−4ζ−η(9ξ+1))


 (6.39)

is the linearized version of Π̃,QQ(
0

Q;P ) and corresponds to the tangent stiffness matrix of the unit
cell. Based on the geometry of the unit cell (Figure 6.2b), the Bloch boundary conditions are
defined by




∆
1

W4

∆
1

θ3




︸ ︷︷ ︸
∆

1
Qβ

=




ei2πκ 0

0 ei2πκ




︸ ︷︷ ︸
A(κ)




∆
1

W1

∆
1

θ1




︸ ︷︷ ︸
∆

1
Qα

(6.40a)

δQβ = A(κ) · δQα, (6.40b)

where κ = 4Lk/(2π) is the dimensionless Bloch wavenumber such thatB = {κ | κ ∈ (−1/2, 1/2]}
is the corresponding First Brillouin Zone3. Applying the Bloch boundary conditions (Eq. (6.40))
to the linear critical stability condition (Eq. (6.38)),

δQH
α (κ)K̃(Pc;κ

∗)∆
1

Qα(κ) = 0 ∀ δQα(κ) 6= 0, (6.41)

where

K̃(Pc;κ) = Kαα(Pc) + AH(κ)Kβα(Pc) + Kαβ(Pc)A(κ) + AH(κ)Kββ(Pc)A(κ) (6.42)

and (.)H denotes the conjugate transpose of a matrix (or vector). Due to the form of Eq. (6.42), K̃

is a Hermitian matrix (i.e. K̃H = K̃) and, hence, has real eigenvalues. Eq. (6.41) corresponds to
the eigenvalue problem

K̃(Pc;κ)∆
1

Qα = 0 (6.43)

which has a nontrivial solution (i.e., ∆
1

Qα 6= 0) when

det K̃(Pc;κ) = 0. (6.44)

3Note that the subscripts α and β are labels, not indices.
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Applying Eq. (6.39) and Eq. (6.40) to determine K̃, Eq. (6.44) is defined by

8 sin2(κπ)P 2+4
[
η(1 + ξ) cos(2πκ)− 2(1 + ζ)− η(1 + ξ)

]
P

+ 4η + 8ζ(1 + η) + ηξ(8 + 4ζ + 3η)

+ 4η(1 + ζξ − ηξ) cos(2πκ) + η2ξ cos(4πκ) = 0,

(6.45)

which is a quadratic equation with the solutions

P (1)
c (κ) =

1

4

[
2η(1 + ξ) + 2(1 + ζ) csc2(κπ)− χ(κ)

]
(6.46a)

P (2)
c (κ) =

1

4

[
2η(1 + ξ) + 2(1 + ζ) csc2(κπ) + χ(κ)

]
(6.46b)

where

χ(κ) = csc2(κπ)
[
(2 + 2ζ + η + ηξ − η(1 + ξ) cos2(2πκ)

−2 sin2(κπ)
(
4η + 8ζ(1 + η) + η(8 + 4ζ + 3η)ξ

+4η(1 + ζξ − ηξ) cos(2πκ) + η2ξ cos(4πκ)
)]1/2

.

(6.47)

Noting that χ(κ) > 0 for all κ ∈ B, P (1)
c (κ) ≤ P

(2)
c (κ) . Since we are interested in the first loss of

stability of the principal solution path, P (1)
c (κ) is therefore the only relevant solution; additionally,

due to the dependence of P (1)
c on κ, the solution must be further refined to be

P ∗c = inf
κ∈B

P (1)
c (κ) (6.48)

and κ∗ is defined such that P ∗c = P
(1)
c (κ∗). In general, P ∗c cannot be solved for analytically and

must therefore be solved numerically using a root finding algorithm (such as a Newton–Raphson
solver).

The mode shape ∆
1

Qα = [∆
1

W1,∆
1

θ1] corresponding to the load Pc (be that P (1)
c , P (2)

c , or P ∗c ),
can be determined from Eq. (6.43) by calculating the nullspace of K̃(Pc(κ), κ). The deforma-
tion corresponding to the β degrees of freedom (W4 and θ3) are then determined from the Bloch
boundary conditions (Eq. (6.40)). Lastly, the deformation of the nth unit cell can be determined
from Bloch’s theorem (Eq. (6.3)) according to the relationship

∆
1

Qn = ei2πn∆
1

Q, (6.49)

where n < 0 and n > 0 correspond to unit cells to the left and right of the reference unit cell,
respectively. To then inspect the physical characteristics of the mode shape, either the real or
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Figure 6.3: There are three characteristics behaviors of the rigid link system defined by the material
properties of the springs, corresponding to the critical cases: (a) κ∗ = 0 for η = ξ = 0 and ζ 6= 0,
(b) κ∗ = 1/2 for η = ξ 6= 0 and ζ 6= 0, and (c) κ∗ ∈ (−1/2) ∪ (0, 1/2) for η 6= ξ 6= 0 and ζ 6= 0.

imaginary part of ∆
1

Qn can be examined.

Results

To gain a better sense of the interpretation of the Bloch wave stability analysis, it is useful to
examine the P (1)

c and P (2)
c behavior over the First Brillouin Zone (i.e., for κ ∈ B = (−1/2, 1/2]).

Three cases are shown in Figure 6.3, demonstrating the possible representative behaviors of the
rigid link system. In all cases, the behavior of Pc is symmetric about κ = 0, which is a result
of the translational symmetry of the system; in particular, it can be shown that K̃(κ) and K̃(−κ)

are similar matrices and, hence, have the same eigenvalues and stability characteristics. It turns
out that this is a general property that always arises in Bloch stability analysis and implies that
the first loss of stability (P ∗c ) need only be searched for over a subset of the First Brillouin Zone
(κ ∈ [0, 1/2] for the current system). Additionally, as stated previously, P (1)

c ≤ P
(2)
c for all κ ∈ B.

The first instability P ∗c is therefore defined by the the infimum of P (1)
c as shown in Figure 6.3.

The three characteristic behaviors of the system are dependent on the material properties of
the springs in the rigid link system: η = ξ = 0 and ζ 6= 0; η = ξ 6= 0 and ζ 6= 0; and
η 6= ξ 6= 0 and ζ 6= 0. In the case that η = ξ = 0 (Figure 6.3a), there are no rotational
springs in the system. This system is highly symmetric, resulting in κ∗ = 0, which corresponds
to a mode shape with the same periodicity as the unit cell (Figures 6.3a and 6.4a). When the
rotational springs are added into the system such that they have the same properties (η = ξ 6= 0),
the critical behavior shifts to κ∗ = 1/2, which corresponds to a mode shape with a periodicity
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of two unit cells (Figures 6.3b and 6.4b). Lastly, when the symmetry of the rotational spring
stiffnesses is broken (η 6= ξ 6= 0), the critical behavior again shifts (Figure 6.3c) and corresponds
to κ∗ ∈ (−1/2) ∪ (1/2). The physical interpretations of these mode shapes are not well defined,
as will be discussed further in Section 6.5.2; however, the mode shapes for a few explicit κ 6= κ∗

from P
(1)
c for (η, ξ, ζ) = (10, 2, 3) are shown for reference in Figures 6.4c and 6.4d.

6.5.2 Beam with Periodic Bending Stiffness and Stabilizing Spring

The second example looks at the application of Bloch’s theorem in context of column buckling of
a linear–elastic beam. The solution procedure to this continuous system differs rather significantly
from the previously discussed discrete system in Section 6.5.1, although the fundamental concepts
remain the same. Due to the increased complexity of the problem, stability is only examined in the
context of the loss of uniqueness of the principal equilibrium path (i.e., stability is not explicitly
evaluated).

Problem Statement

An infinitely long linear elastic beam is axially compressed by the load p as illustrated in Figure 6.5.
The bending stiffness of the beam (EI where E is the elastic modulus and I is the area bending
moment of inertia of the beam cross-section) alternates between EI1 and EI2 every length L along
the beam. Located at the junctures of the differing beam bending stiffnesses are springs with
stiffness g, spaced every 2L along the beam length. In the context of the Bloch wave stability
analysis discussed in Section 6.4.2, the lattice vector is Ru = 2Lue1 and the First Brillouin Zone
is B = {k | 2Lk ∈ (−π, π]}. At a critical load pc, the initially straight beam buckles with the
displacement field w.

Model

According to classical beam theory, the governing equilibrium equation for out–of–plane displace-
ment of an axially compressed beam is

f(x) = EI(x)d4w(x)
dx4

+ pd2w(x)
dx2

= 0 ∀ x ∈ D (6.50)

where x is the position along the beam length, D is the domain of the beam, w is the lateral
deflection field, EI is the bending stiffness along the beam length, and p is the externally applied

108



0 1 2

0

Unit Cell

Re ΔW
1

(a) Unit cell periodic (κ∗ = 0)

0 1 2 3 4

0

Unit Cell
(b) Periodicity of two unit cells (κ∗ = 1/2)

0 1 2 3

0

Unit Cell

Re ΔW
1

(c) Three unit cell periodic (κ = 1/3 = 2/3)

0 1 2 3 4

0

Unit Cell

Re ΔW
1

(d) Four unit cell periodic (κ = 1/4 = 3/4)
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Figure 6.5: An infinite beam with periodic bending stiffness is axially loaded until it first buckles.

axial load; for the unit cell defined in Figure 6.5, f(x) is piecewise defined by

f(x) =





EI1
d4w1(x)

dx4
+ pd2w1(x)

dx2
for −L ≤ x ≤ 0

EI2
d4w2(x)

dx4
+ pd2w2(x)

dx2
for 0 ≤ x ≤ L

. (6.51)

Due to the piecewise nature of f(x), continuity of displacements, rotations, moments, and trans-
verse shear between the piecewise sections must be enforced according to the conditions

w1(0) = w2(0) (6.52a)

w′1(0) = w′2(0) (6.52b)

EI1w
′′
1(0) = EI2w

′′
2(0) (6.52c)

EI1w
′′′
1 (0) = EI2w

′′′
2 (0) + gw2(0). (6.52d)

To properly account for the deformation of the infinite system, Bloch boundary conditions are
applied to the boundaries of the unit cell (noting that we can apply Bloch’s theorem since Eq. (6.50)
is a linear ordinary differential equation). The general form of a Bloch boundary condition for the
given system is

h(x+ 2nL) = h(x)ei2kL, (6.53)

where h(x) is a generic field quantity. Similar to the continuity conditions at the center of the beam
(Eq. (6.52)), the displacements, rotations, moments and transverse shear must abide by Eq. (6.53);
therefore, the field quantities at the boundary of the unit cell are related by

w1(−L) = w2(L)e−i2Lk (6.54a)

w′1(−L) = w′2(L)e−i2Lk (6.54b)

EI1w
′′
1(−L) = EI2w

′′
2(L)e−i2Lk (6.54c)

EI1w
′′′
1 (−L) = EI2w

′′′
2 (L)e−i2Lk. (6.54d)
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To generlized the analysis, the problem is nondimensionalized according to the relationships

P ≡ pL2

EI1

; X ≡ x

L
; Wi ≡

wi
L

; κ ≡ Lk

π
; ζ ≡ EI2

EI1

; η ≡ gL3

EI1

, (6.55)

noting that the First Brillouin Zone for the normalized wavenumber is B = {κ | κ ∈ (−1/2, 1/2]}.
The resulting governing equilibrium equation is

0 = f(X) =





d4W1(X)
dX4 + P d2W1(X)

dX2 for −1 ≤ X ≤ 0

ζ d4W1(X)
dX4 + P d2W1(X)

dX2 for 0 ≤ X ≤ 1

, (6.56)

with the continuity conditions

W1(0) = W2(0) (6.57a)

W ′
1(0) = W ′

2(0) (6.57b)

W ′′
1 (0) = ζW ′′

2 (0) (6.57c)

W ′′′
1 (0) = ζW ′′′

2 (0) + ηW2(0) (6.57d)

and the Bloch boundary conditions

W1(−1) = W2(1)e−i2πκ (6.58a)

W ′
1(−1) = W ′

2(1)e−i2πκ (6.58b)

W ′′
1 (−1) = ζW ′′

2 (1)e−i2πκ (6.58c)

W ′′′
1 (−1) = ζW ′′′

2 (1)e−i2πκ. (6.58d)

Solution

The general form of the piecewise solution to the governing equation Eq. (6.56) is

W1(X) = C1 +D1X −
B1

P
sin
(
X
√
P
)
− A1

P
cos
(
X
√
P
)

(6.59a)

W2(X) = C2 +D2X −
ζB2

P
sin


X

√
P

ζ


− ζA2

P
cos


X

√
P

ζ


 , (6.59b)
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where Aj , Bj , Cj and Dj are arbitrary constants. Applying the general solution (Eq. (6.59)) to
the continuity conditions (Eq. (6.57)) and the Bloch boundary conditions (Eq. (6.58)) results in the
system of equations

M(P ;κ)u = 0, (6.60)

where

u = [A1 B1 C1 D1 A2 B2 C2 D2]T (6.61)

and

M(P ;κ) =




M11(P ) M12(P )

M21(P ) M22(P ;κ)


 (6.62)

such that

M11(P ) =




− 1
P

0 1 0

0 − 1√
P

0 1

1 0 0 0

0 −
√
P 0 0




, (6.63a)

M12(P ) =




ζ
P

0 −1 0

0
√

ζ
P

0 −1

−ζ 0 0 0

−ζ η
P

√
ζP η 0




, (6.63b)

M21(P ) =




− cos
√
P

P
sin
√
P

P
1 −1

− sin
√
P

P
− cos

√
P

P
0 1

cos
√
P − sin

√
P 0 0

√
P sin

√
P
√
P cos

√
P 0 0




, (6.63c)
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M22(P ;κ) = e−i2πκ




ζ cos
√
P/ζ

P

ζ sin
√
P/ζ

P
−1 −1

−
√
ζ/P sin

√
P/ζ

√
ζ/P cos

√
P/ζ 0 1

−ζ cos
√
P/ζ −ζ sin

√
P/ζ 0 0

√
ζP cos

√
P/ζ −

√
ζP sin

√
P/ζ 0 0




. (6.63d)

Since κ = 0 corresponds to unit cell periodic boundary conditions,

M(P ; 0)
0

u = 0, (6.64)

defines the equilibrium equation for the principal path, which has the trivial solution
0

u = 0.

As noted in Section 6.4.1, loss of uniqueness of the principal solution path often corresponds to
loss of stability. From the form of Eq. (6.60), we are therefore interested in the eigenvalue problem

M(Pc;κ)∆
1

u = 0 (6.65)

such that ∆
1

u 6= 0, which reduces to

det M(Pc;κ) = 0. (6.66)

Evaluating the determinant of M(Pc;κ), the resulting characteristic equation is of the form

det M = z4 − I1(Pc)z
3 + I2(Pc)z

2 − I1(Pc)z + 1 = 0, (6.67)

where z = e−i2πκ and

I1(Pc) =

2
√
ζ
√
Pc(Pc − η) +

√
ζ cos

[√
Pc√
ζ

](
2P

3/2
c cos

[√
Pc

]
+ η sin

[√
Pc

])

√
ζP

3/2
c

+

(
ζη cos

[√
Pc

]
− (1 + ζ)P

3/2
c sin

[√
Pc

])
sin
[√

Pc√
ζ

]

√
ζP

3/2
c

(6.68a)
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I2(Pc) =

2

[
√
ζP

3/2
c +

√
ζ cos

[√
Pc√
ζ

](
2
√
Pc(Pc − η) cos

[√
Pc

]
+ η sin

[√
Pc

])]

√
ζP

3/2
c

+

2

[(
ζη cos

[√
Pc

]
+ (1 + ζ)(η − Pc)

√
Pc sin

[√
Pc

])
sin
[√

Pc√
ζ

]]

√
ζP

3/2
c

.

(6.68b)

Interested in the first loss of stability of the system,

P ∗c = inf
κ∈B

Pc(κ) (6.69)

where κ∗ is defined such that P ∗c = Pc(κ
∗).

Due to the nonlinear coefficients I1 and I2, the characteristic equation Eq. (6.67) cannot be
solved analytically and must therefore be solved numerically. The problem can be somewhat sim-
plified by taking advantage of the specialized polynomial form of Eq. (6.67) where the functional
dependence on P and κ are decoupled; however, a numerical solution procedure is required re-
gardless, so this added complexity is overlooked here. There are a number of possible numerical
approaches to this problem:

• a direct root finding algorithm such as a Newton solver,

• a hybrid brute force/root finding algorithm in which one of the parameters is discretized
(often κ) and then a root finder is applied to solve for the other parameter at each of these
discretized points, after which the case corresponding to the minimum Pc solution is chosen
as P ∗c ,

• a hybrid root finder/minimization procedure in which the solution (Pc,κ) to Eq. (6.67)
determined by the root finder is minimized with respect to Pc so as to ensure proper deter-
mination of P ∗c .

Of these possibilities, the direct root finder is the least robust as there is no guarantee that the solu-
tion corresponds to P ∗c . Of the two remaining solution techniques, the hybrid root finder/minimization
procedure is a more efficient implementation of the hybrid brute force/root finding procedure; how-
ever, its implementation is more complicated and tends to be less numerically robust due to the
periodicity of the characteristic equation with respect to κ. In the results that are presented, the
hybrid brute force/root finding algorithm is therefore used for its simplicity and reliability.

For a given solution Pc and κ to the characteristic equation Eq. (6.67) (which need not be P ∗c and
κ∗), the corresponding global mode shape can be determined through the use of Bloch’s theorem.
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From the matrix form of equilibrium (Eq. (6.65)), the coefficient vector ∆
1

u ∈ C8 (Eq. (6.61)) can
be determined to within an arbitrary constant by finding the nullspace of M(Pc, κ) (Eq. (6.62)).
Substituting the results of ∆

1

u into the general forms of W1 and W2 (Eq. (6.59)), the mode shape
within the unit cell can then be piecewise represented. The mode shape of the nth unit cell is then
extrapolated from the mode shape within the unit cell using the nondimensional form of Bloch’s
theorem (which is derived from Eqs. (6.53) and (6.55)):

W (X + 2n) = P (X + 2n;κ)ei2πκ(X+2n)/2 (6.70a)

= P (X;κ)ei2πκ(X+2n)/2 from the periodicity of P (6.70b)

= P (X;κ)ei2πκX/2︸ ︷︷ ︸
W (X)

ei2πκn splitting the exponential (6.70c)

= W (X)ei2πκn, (6.70d)

where n > 0 correspond to unit cells to the right of x = 0 and n < 0 correspond to unit cells to the
left of x = 0. As a final step, either the real or imaginary part of W should be taken to establish a
physical interpretation of the results.

Results

In general, the buckling behavior of the beam is highly coupled with the relative spring stiffness
η = gL3/EI1 and the ratio of bending stiffnesses ζ = EI2/EI1 as shown in Figure 6.6. For
both increasing η and ζ , the critical buckling load P ∗c increases (Figure 6.6a). In the case of the
critical buckling wavenumber4, κ∗ is predominantly dependent on η, plateauing at a value of 1/2

(periodicity of 2 unit cells) for large η (Figure 6.6b).

Based on the mapping of κ∗ in Figure 6.6b, there are two characteristic behaviors of the defined
problem: κ∗ = 1/2 and κ∗ ∈ (0, 1/2). In the case of κ∗ = 1/2 , the instability corresponds to
a fundamental wavelength of exactly two unit cells. Since there are no cases in which κ∗ = 0,
the κ∗ = 1/2 case corresponds to the shortest fundamental wavelength of the instability mode
shapes for the defined problem. In the case of κ∗ ∈ (0, 1/2), the fundamental wavelength is
less well defined due to the almost-periodic behavior of Bloch waves as discussed in Section 6.3;
in particular, the numerical procedure limits solutions to periodic Bloch waves and the highly
discontinuous mapping between the κ and fundamental wavelength spaces leaves the results up for
some interpretation.

To help illustrate some of the issues associated with interpreting the physical meaning of the κ

4Only results for κ∗ ∈ [0, 1/2] are shown due to the symmetry of the κ∗ results with respect to the origin.
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Figure 6.6: Maps of the critical buckling load P ∗c (a), and the corresponding critical buckling Bloch
wavenumber κ∗ (b), with respect to the spring stiffness η and the bending stiffness ratio ζ , showing
increasing buckling load with η and ζ , along with the plateau of the κ∗ to 1/2 for high η.

parameter, the effects of numerical precision on the perceived fundamental wavelength of a partic-
ular mode shape are presented in Table 6.1 for the cases (η, ζ) = {(50, 20), (1, 1/2), (1/10, 10)}.
Since the fundamental wavelength of a Bloch wave with wavenumber k = 2πκ/(2L) is defined
by the denominator 2Lb such that κ ≡ a/b (where a and b are integers and a/b is an irreducible
rational number), the calculated κ∗ must be rationalized to interpret its physical characteristics.
Two of the most common ways to rationalize a number are to

• simply truncate the number to a desired number of digits such that

κ∗ ≈ a

b
≡ round(κ∗ · 10n)

10n
, (6.71)

where n is an integer defining the desired degree of truncation and the resulting form must
be simplified into its irreducible form; or

• find the smallest b such that

∣∣κ∗ − a/b
∣∣ < tol, (6.72)

where tol is the desired tolerance of the approximation (which is most often achieved using
the method of continued fractions, such as the rat function in MATLAB®).

116



The second method (Eq. (6.72)) is the most applicable to the problem here as it better addresses
the issues associated with the discontinuous mapping between the κ and fundamental wavelength
spaces. At the boundary of the κ space (κ∗ = 1/2), this procedure results in a consistent result of
b = 2 as seen in the first row of Table 6.1; however, for the cases in Table 6.1 in which κ∗ ∈ (0, 1/2)

(i.e., (η, ζ) = {(1, 1/2), (1/10, 10)}), there is a wide range of interpretations of the normalized
wavelength b based on the desired tolerance tol as show in rows two and three of Table 6.1. This
ambiguity has little effect on the quantification of P ∗c (which is a continuous function with respect
to κ∗), but likely has implications on the prediction of the post-buckling behavior of the structure
(such as imperfection sensitivity).

Table 6.1: Comparison of wavelengths predicted by the rationalization of the wavenumber κ∗ for
three select cases, illustrating some of the issues associated with interpreting the wavelength of the
critical instability mode shape.

Normalized wavelength b based on the rationalization tolerance tol

(η,ζ) κ∗ 10−1 10−2 10−3 10−4 10−5 10−6 10−7 10−8

(50,20) 1/2 2 2 2 2 2 2 2 2

(1,1/2) 0.2986068943 1 10 10 67 144 1651 1651 1651

(1/10,10) 0.1302800588 1 8 8 23 284 284 2249 2249

6.5.3 Honeycomb

Finally, the last example examines the stability analysis of a two-dimensional honeycomb (framed)
structure. Unlike the previous two examples, this problem is solved in the context of a nonlinear
finite element analysis to discuss some of the aspects associated with a completely numerical pro-
cedure. This example also serves as a basis for the analysis discussed in Section 7.2 regarding the
behavior of SMA honeycombs.

Problem Statement

A two dimensional infinite hexagonal honeycomb is axially compressed under displacement con-
trol along the Y axis, as shown in Figure 6.7. The honeycomb has an orthorhombic unit cell with
an internal hexagonal ligament structure defined by the horizontal ligament length ` ≈ 0.462 mm,
diagonal ligament length h = 1 mm, diagonal ligament angle θ = 30°, and ligament thickness
d = 0.025 mm (noting that the horizontal ligaments have thickness 2d). The resulting unit cell has
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Figure 6.7: An infinite honeycomb with an orthorhombic unit cell is axially compressed until the
onset of instability.

width L1 = 2(` + h sin θ) ≈ 1.925 mm and height L2 = 2h cos θ ≈ 1.732 mm. In the context
of the general outline of the Bloch wave analysis in Section 6.4.2, the honeycomb lattice vector is
Ruv = uL1eI + vL2eJ and the First Brillouin zone is B = {(k1, k2) | k1L1, k2L2 ∈ (−π, π]};
additionally, to simplify the application of the Bloch boundary conditions, the unit cell was cho-
sen such that only ligament ends (i.e., element nodes) intersect its boundary (see Figure 6.7). Of
interest is the critical load pc in which the infinite honeycomb becomes unstable.

Model

The honeycomb structure is modeled using a framed construction of the beam elements devel-
oped in Chapter 5 with the NiTi–like superelastic material properties outlined in Table 6.2. Each
beam element therefore consists of two nodes, each of which has M degrees of freedom (where
M is three or four depending on the choice of element definition as discussed in Sections 5.2.1
and 5.2.2). For a given loading state p, the behavior of the unconstrained unit cell is defined by the
loading tangential stiffness matrix K(p) and has the solution vector u.

To aide in the discussion, the degrees of freedom are grouped according to their location in the
unit cell; in particular, those that lie on the boundary of the unit cell (denoted by a subscript b) and
those that lie in the interior of the unit cell (denoted by a subscript i). The boundary degrees of
freedom are further grouped according to nodes on opposite faces of the unit cell (subscripts α and
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Table 6.2: The ligaments of the honeycomb structure are modeled according to the SMA beam
model of Figure 5.2b using NiTi–like superelastic material parameters.

Parameter Value

EA = E+
M = E−M 1

E+
l = E+

u 0.05

E−l = E−u 0.15

β+ 0.0418

β− -0.02125

ε+n 0.006

ε−n 0.0012

∆σ+
A = ∆σ−A 0.002

β). For example, the stiffness matrix is arranged such that

K(λ) ≡




Kbb(λ) Kbi(λ)

Kib(λ) Kii(λ)


 ≡




Kαα(λ) Kαβ(λ) Kαi(λ)

Kβα(λ) Kββ(λ) Kβi(λ)

Kiα(λ) Kiβ(λ) Kii(λ)



. (6.73)

For the unit cell defined in Figure 6.7, the boundary nodes (b) correspond to nodes 1 through 6,
with the α nodes defined by nodes 1, 2 and 3 and the β nodes defined by nodes 4, 5 and 6.

Solution

The principal solution of the infinite honeycomb is evaluated using an incremental–based loading
procedure which is parameterized by the monotonically increasing loading parameter λ. From the
global boundary conditions,

FX(−∞, Y ) = 0, FY (−∞, Y ) = 0, M(−∞, Y ) = 0

FX(∞, Y ) = 0, FY (∞, Y ) = 0, M(∞, Y ) = 0

FX(X,−∞) = 0, V (X,−∞) = 0, M(X,−∞) = 0

FX(X,∞) = 0, V (X,∞) = δ∗(λ), M(X,∞) = 0,

(6.74)
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where V is a global displacement in the Y direction, FX and FY are forces in the X and Y di-
rections, respectively, and M is a bending moment. At the start of loading (λ = 0), the structure
loads along the principal solution path which corresponds to unit cell periodic deformation. From
Eq. (6.74), the corresponding unit cell periodic deformation corresponds to

F
(1)
X = 0, F

(1)
Y = 0, M (1) = 0

F
(4)
X = 0, F

(4)
Y = 0, M (4) = 0

U (2) = F
(3)
X = 0, V (2) = V (3) = 0, M (2) = M (3) = 0

U (6) = F
(5)
X = 0, V (6) = V (5) = δ(λ), M (6) = M (5) = 0,

(6.75)

where U is a global displacement in the X direction and (·)(i) denotes the ith nodal quantity (see
Figure 6.7 for node numbering of the unit cell); note that U (2) = V (2) = V (3) = 0 to prevent
rigid body motion and U (6) = 0 from the periodic boundary conditions. At each loading step, the
principal path solution is determined using a Newton-Raphson root–finding algorithm.

Stability of the structure is assessed about each equilibrium point in the loading procedure. For
the inelastic behavior of the hysteretic trilinear SMA material model, the critical stability equation
Eq. (6.23) defined for a conservative system is modified accordingly:

δuHK(pc)∆
1

u = 0 ∀ δu 6= 0, (6.76)

noting that this critical state condition is a generalization of the tangent modulus condition for
inelastic column buckling (see for example, Shanley [1947]). From the Bloch boundary conditions
(Eq. (6.21)), the boundary degrees of freedom are related by




∆u4

∆u5

∆u6




︸ ︷︷ ︸
∆uβ

=




ei2πκ1I 0 0

0 0 ei2πκ2I

0 ei2πκ2I 0




︸ ︷︷ ︸
A(κ)




∆u1

∆u2

∆u3




︸ ︷︷ ︸
∆uα

(6.77a)

δuβ = A(κ)δuα, (6.77b)

where ∆ui are a M × 1 vectors corresponding to node numbers i = 1, ..., 6 (see Figure 6.7), κ =

[κ1, κ2], κi ≡ kiLi/(2π) ∈ (−1/2, 1/2] is the dimensionless Bloch wavenumber (for i = 1, 2), I

and 0 are the M ×M identity and zeros matrices, and the Greek subscripts correspond to labels
of groups of degrees of freedom (and are not indices). Applying the Bloch boundary conditions
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(Eq. (6.77)) to the critical stability equation (Eq. (6.76)),

δũH(κ)K̃(pc;κ)∆
1

ũ(κ) = 0 ∀ δũ(κ) 6= 0, (6.78)

where ∆
1

ũ = [∆
1

uα,∆
1

ui]
T , δũ = [δuα, δui]

T ,

K̃ =




K̃αα K̃αi

K̃iα K̃ii


 , (6.79)

and

K̃αα(pc;κ) = Kαα(pc) + Kαβ(pc)A(κ) + A(κ)HKβα(pc) + A(κ)HKββ(pc)A(κ) (6.80a)

K̃αi(pc;κ) = Kαi(pc) + A(κ)HKβi(pc) (6.80b)

K̃iα(pc;κ) = Kiα(pc) + Kiβ(pc)A(κ) (6.80c)

K̃ii(pc) = Kii(pc). (6.80d)

Since δũ 6= 0, Eq. (6.78) corresponds to the eigenvalue problem

K̃(pc;κ)∆
1

ũ = 0, (6.81)

which implies that the nontrivial solution (∆
1

ũ 6= 0) for the loss of stability of the principal path is
defined by

det K̃(pc;κ) = 0. (6.82)

Since K̃(pc;κ) in Eq. (6.82) is parameterized by κ, the first loss of stability of the principal path
is determined according to

p∗c = inf
κ∈B

pc(κ). (6.83)

and the corresponding critical wavevector κ∗ is defined such that p∗c = pc(κ
∗).

The mode shape corresponding to a critical load (be that pc or p∗c) corresponds to the eigenvector

∆
1

ũ which is determined by calculating the nullspace of K̃(pc,κ). To define the mode shape for
the whole unit cell, ∆

1

uβ are backed out from the Bloch boundary conditions Eq. (6.77). Lastly,
the mode shape for the (n,m)th unit cell of the full infinite structure (where n < 0, n > 0,
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m < 0, m > 0 correspond to unit cells to the left, right, below, and above the reference unit cell,
respectively) is determined from Bloch’s theorem (Eq. (6.3)) such that

∆
1

unm = ei2π(nκ1+mκ2)∆
1

u. (6.84)

Practically speaking, there are some issues that need to be addressed to properly implement the
Bloch wave stability analysis into the finite element framework:

• The positive definiteness of a matrix is efficiently evaluated using an LDU decomposition,
with the smallest entry of the diagonal matrix D going to zero (or less than zero) at the loss
in positive definiteness of the matrix.

• As the First Brillouin zone defines an infinite set (B), an appropriate numerical procedure
must be conducted to evaluate the positive definiteness of K̃ for all κ ∈ B. One of the more
basic approaches is to discretize B (often onto a uniformly spaced grid) and evaluate the
positive definiteness of K̃ at each of these grid points. This method is rather computationally
expensive, but is simple in its numerical implementation (and is the method used here and
in Section 7.2). Another possible approach is to use a numerical optimization procedure
to minimize the minimum eigenvalue of K̃ over B. If the minimized minimum eigenvalue
is zero or negative, the corresponding wavenumber pair corresponds to an instability in the
structure. This method is usually less computationally expensive than the global search
method, but at the cost of implementation complexity.

• The evaluation of the positive definiteness of K̃ is a rather computationally expensive proce-
dure as K̃ must be computed for each (κ1, κ2) pair. For a finite element mesh with N nodes,
this results in multiple computations of an M(N − 3) ×M(N − 3M) matrix (noting that
the three dependent Bloch boundary nodes are omitted) defined in Eq. (6.79), along with the
evaluation of its positive definiteness. To reduce the computational costs of the problem, the

fact that K̃
1

ũ = 0 (see Eq. (6.11)) when K̃ loses positive definiteness can be exploited. From
Eq. (6.11),

K̃(λc;κ) =




K̃αα(λc;κ) K̃αi(λc;κ)

K̃iα(λc;κ) K̃ii(λc;κ)







∆
1

uα

∆
1

ui


 =




0

0


 . (6.85)

Solving the second equation in the linear system for ∆
1

ui and substituting the result into the
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first equation of the linear system, the solution to Eq. (6.11) reduces to solving

[
K̃αα(λc;κ)− K̃αi(λc;κ)K̃−1

ii (λc)K̃iα(λc;κ)
]

∆uα = K̂(λc;κ)
1

∆uα = 0. (6.86)

The solution to Eq. (6.86) corresponds to the loss of positive definiteness of K̂ (which is
essentially a statically condensed version of K̃). In comparison to theM(N−3)×M(N−3)

(where N >> M ) size of K̃, the 3M × 3M size of K̂ results in reduced computational cost
during the positive definiteness evaluation; furthermore, noting that A is dependent on κ, K

is dependent on λ, and

K̃αiK̃
−1
ii K̃iα =

[
Kαi + AHKβi

]
K−1
ii

[
Kiα + KiβA

]
(6.87a)

= KαiK
−1
ii Kiα︸ ︷︷ ︸
I

+ KαiK
−1
ii Kiβ︸ ︷︷ ︸
II

A + A KβiK
−1
ii Kiα︸ ︷︷ ︸

III

+AH KβiK
−1
ii Kiβ︸ ︷︷ ︸
IV

A,

(6.87b)

the terms I, II, III and IV only depend on λ and, hence, need only be computed once per
loading step.

• It is difficult to determine λc such that at least one eigenvalue of K̃ equals zero exactly;
rather, the minimum eigenvalue will straddle zero due to the numerics of the simulation.
Typically, a root finding algorithm (commonly a bisection method) is used to converge to
the critical loading point to within an desired tolerance (for example, see Triantafyllidis and
Schraad [1998]).

• As discussed in Section 6.3, the case of κ = 0 has a rigid body displacement implicit in its
definition. If this rigid body mode is not considered, K̃(λc; 0) is always positive semidefinite,
yielding false stability information. To overcome this issue, some of the boundary nodes can
be pinned to suppress rigid body translations and rotation in the stability analysis for this
special case; for example, the two translational degrees of freedom of node 2 and the Y
translational degree of freedom of node 3 can be pinned (see Figure 6.7). From the form of
the eigenvalue problem (Eq. (6.81)), this pinning procedure corresponds to evaluation of the
positive definiteness of a reduced from of K̃ such that the rows and columns corresponding
to the pinned degrees of freedom have been removed.

The principal path mechanical response of the honeycomb during loading has stiff–soft–stiff
behavior as shown in Figure 6.8a. According to the Bloch wave stability analysis (Figure 6.8b), the
structure loses stability at a macroscopic strain of approximately 16 % with the wavenumber pairs
(2πκ1, 2πκ2) = (±0.05,±0.04) (again noting the symmetry of the solution over the wavenumber
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Figure 6.8: The principal path mechanical response of the honeycomb (where A0 = L1L3 is the
projected cross-sectional area of the honeycomb) has stiff–soft–stiff behavior, with the structure
losing stability at a macroscopic strain of approximately 16 %.

space as discussed previously in Section 6.5.1). Interestingly, the principal path regains stability
at a macroscopic strain of approximately 40 %, suggesting that the honeycomb might unbuckle
similar to the superelastic SMA columns examined in Chapter 4.

The critical instability mode shape (λ = λc) is derived from Eq. (6.84) with (2πκ1, 2πκ2) =

(0.05, 0.04) and shown in Figure 6.9 (noting that the mode shape results are the same for all of the
(±0.05,±0.04) wavenumber pairs). The fundamental wavelength of the instability mode shape is
much greater than the unit cell geometry; furthermore, the X and Y periodicity are similar.

6.6 Summary

Bloch’s theorem defines the general solution to linear differential equations with periodic boundary
coefficients, which are typically referred to as Bloch waves. In the context of mechanics, Bloch’s
theorem can be used in linear stability analysis of structures with underlying periodicity (often
referred to as Bloch wave stability analysis). From general stability analysis, the framework for
Bloch wave stability analysis was developed and some of its intricacies were discussed. The theory
was then applied to a set of example problems, illustrating its implementation in the context of
discrete and continuous systems.
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Chapter 7

Shape Memory Alloy Honeycombs

Micro- and mesoscale cellular lattices make up the structure of many natural systems, such as
bee hives, plant stalks, the interior of bones, some woods and cork [Gibson et al., 1982]. As
engineering structures, cellular lattices usually take the form of three-dimensional foams or two-
dimensional honeycombs. The sparse strut and plate-based configuration of cellular solids results
in high specific stiffness (stiffness-to-mass ratio), motivating their usage in lightweight engineered
structures (such as aircraft); additionally, the buckling induced collapse which occurs under large
deformations can result in ideal energy absorption characteristics, motivating their usage as pro-
tective structures (such as in packaging and personal safety equipment).

The construction of a cellular structure from an SMA material is a relatively new approach to re-
alize lightweight, adaptive structures. Operating in the superelastic regime, the SMA enhances the
flexibility of the honeycomb, even allowing for recovery of deformations associated with buckling
and collapse of the honeycomb. Unlike conventional metal honeycombs, SMA honeycomb energy
absorbers could be designed to be reusable. Operating in the shape memory regime, the SMA can
be used to actuate shape change of the honeycomb structure. This actuation could function as a
large stroke linear actuator, a self healing sandwich panel, or deployable device. With respect to
the SMA material performance, the low volume-to-surface area of cellular solids provides ideal
thermal conditions for the operation of the SMA material, allowing for improved actuation fre-
quency and reduced superelastic loading rate sensitivity; furthermore, their sparse configuration is
ideal for active cooling and quenching during the manufacturing process.

Unfortunately, the extreme sensitivity of SMA material behavior to manufacturing processes
has hindered the development of SMA cellular solids. The primary issues associated with the
development of complex SMA forms are the dependence of SMA phase transformation tempera-
tures on the material stoichiometry, the necessity of heat treatment and cold work to yield robust
SMA properties, and the high temperature reactiveness of SMAs to oxygen in both the solid and
molten states [Shaw et al., 2002]. Some open celled SMA foams have been successfully manufac-
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tured [Shaw et al., 2002, Grummon et al., 2003]; however, good shape memory and superelastic
properties have yet to be achieved due to these manufacturing issues. In the case of honeycombs
structures, the problems associated with welding (the manufacturing process traditionally used
to manufacture metal honeycombs) can be circumvented through the use of alternative joining
methods such as high performance adhesives; unfortunately, these joining techniques often cannot
withstand the large deformations experienced by SMAs. Fortunately, the recent advent of a nio-
bium based brazing technique, which robustly joins NiTi while maintaining its unique properties,
has opened new possibilities for the design of NiTi honeycombs [Grummon et al., 2006].

Research into the development of SMA honeycombs began in the mid 2000s, building upon the
seminal work of Gibson and Ashby [1997] on the behavior of general cellular materials, the experi-
mental work of Papka and Kyriakides on metallic honeycombs [Papka and Kyriakides, 1994, 1998,
1999a,b], and the theoretical work of Triantafyllidis on the properties of honeycombs loaded in in-
plane [Triantafyllidis and Schraad, 1998] and out-of-plane [López Jiménez and Triantafyllidis,
2013] compression using Bloch wave stability analysis. Hassan et al. were of the early researchers
to examine SMA honeycombs, manufacturing, testing, and modeling cyanoacrilate bonded NiTi
honeycombs [Hassan et al., 2004, ASM, 2005, Hassan et al., 2008, 2009]; unfortunately, from a
performance standpoint, these honeycombs exhibited less recoverable deformation than expected,
largely due to their adhesively bonded joints. To address this concern, Shaw et al. [2007] used
the new niobium–based brazing technique developed by Grummon et al. [2006] to manufacture
superelastic NiTi honeycombs, observing recoverable in–plane compressive deformations on the
order of 50 % macroscopic strain. With respect to shape memory behavior, Okabe et al. [2008]
demonstrated the “self-healing” ability of sandwich beams constructed with adhesively bonded
NiTi honeycombs, followed by the construction of bending actuator sandwich beams [Okabe et al.,
2011]. From a design prospective, the effects of constitutive parameters on the stability and me-
chanical characteristics of superelastic SMA honeycombs were recently examined using Bloch
wave stability analysis by Michailidis et al. [2009].

This work examines the experimental behavior (Section 7.1) and design (Section 7.2) of SMA
honeycombs loaded in in-plane compression. In the examination of the general properties of SMA
honeycombs, a comparison is made with monolithic SMAs to examine the tradeoffs between the
two forms and the appropriate applications for SMA honeycombs. A parametric study of su-
perelastic SMA honeycombs is then conducted, establishing design criteria for reusable energy
absorption applications.
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7.1 Experimental Behavior in In-plane Compression

σ∗

h

�

d

θ

d

Figure 7.1: Hexagonal honeycomb geometry is defined by the horizontal ligament length `, the
diagonal ligament length h, the diagonal ligament orientation θ and the thickness of the ligaments
d. In the case of regular hexagonal honeycombs, ` = h and θ = 30°.

To examine the the trade–offs between monolithic SMAs and SMA honeycombs, their ther-
momechanical properties can be estimated and compared using basic beam theory. Although the
constitutive and kinematic behavior of SMAs are nonlinear, linear elastic beam theory is used here
to provide simple scaling laws with the understanding that their validity breaks down for large
deformations. For hexagonal honeycombs loaded in in-plane compression as shown in Figure 7.1,
Gibson and Ashby [1997] showed that the relative mass density (homogenized/solid SMA) and
homogenized/local ratios of maximum strain (ε), transformation stress (σ0), and elastic modulus
(E), respectively scale as

ρ∗

ρs
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2h
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, (7.1a)
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)3
cos θ

(`/h+ sin θ) sin2 θ
, (7.1d)

where d is the honeycomb ligament thickness, ` is the horizontal ligament length, h is the diagonal
ligament length (see Figure 7.1), and θ is the angle of the diagonal ligament, (.)∗ defines a macro-
scopic quantity, and (.)s defines a material property; for a regular honeycomb1, these relationships

1A regular honeycomb is defined such that ` = h and θ = 30°
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reduce to
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Typically, ρ∗/ρs < 30 % for cellular solids [Gibson and Ashby, 1997] (10 % ≤ ρ∗/ρs ≤ 20 % for
the honeycombs examined here) implying that d/h < 1/4. From this observation and Eq. (7.2),
SMA honeycombs are therefore expected to have improved recoverable deformation (Eq. (7.2b)) at
the cost of decreased transformation stress (Eq. (7.2c)) and stiffness (Eq. (7.2d)). From Eq. (7.1b),
it can also be shown that the strain rate (ε̇ = dε/dt) is expected to scale as

∣∣∣∣
ε̇∗

ε̇s,max

∣∣∣∣ ∝
(
d

h

)−1

, (7.3)

indicating lower local strain rates compared to the macroscopic loading strain rate. Due to the
loading rate sensitivity of superelastic SMAs (which is due to phase transformation induced latent
heating and thermomechanical coupling), superelastic SMA honeycombs are expected to exhibit
less loading rate sensitivity than monolithic SMAs. Additionally, the thermal time constant (τ ) for
convective heat transfer scales with the ratio of volume (Vs) to exposed surface area (Ss) of the
solid material [Bergman et al., 2011]:

τ ∝ Vs

Ss
. (7.4)

In the case of a honeycomb, Vs/Ss ≈ d/2, suggesting that thermal lag scales with the ligament
thickness instead of the macroscopic dimensions. Since d/h =

√
3ρ∗/(2ρs) < 25 % (Eq. (7.1a)),

SMA honeycombs are expected to have good thermal conditions for both superelastic and shape
memory operation.

Although some of the above scaling laws were proposed previously by Shaw et al. [2007], they
have yet to be fully investigated experimentally. Since the majority of existing SMA experimental
data, and much of the community’s knowledge of SMAs, corresponds to the tensile behavior of
NiTi wire, a set of experiments are presented here to compare the thermo-mechanical responses
of NiTi honeycombs under in-plane compression to that of NiTi wires under tension. The purpose
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here is to quantify both the advantages and tradeoffs of NiTi honeycombs with respect to the shape
memory effect, superelasticity, thermal lag and loading rate sensitivity. The honeycomb and wires
specimen details are outlined in Section 7.1.1, followed by a discussion of the experimental setups
and results in Section 7.1.2.

7.1.1 Specimens

W

L0

h �θ d2d

(a) Honeycomb 1

L0

W

d�h θ 2d

(b) Honeycomb 2

Figure 7.2: Two honeycombs were experimentally characterized: (a) Honeycomb 1 had lens–like
bicylindrical cells and (b) Honeycomb 2 had hexagonal cells.

In the comparison of SMA honeycomb and wire performance, multiple honeycomb and wire
geometries were examined. With respect to the honeycombs, two geometries were evaluated: Hon-
eycomb 1 had lens–like bicylindrical cells (see Figure 7.2a) and Honeycomb 2 had hexagonal cells
(see Figure 7.2b). Each honeycomb specimen was fabricated from d = 0.2 mm thick superelastic
(at room temperature) NiTi strip. The strips were shape-set into the appropriate corrugations and
then joined using a niobium braze (see Grummon et al. [2006] for more details on fabrication).
Other geometric parameters for the honeycombs are provided in Table 7.1. The NiTi wires were
obtained from Memry Corp and are referred to as Wire 1 and Wire 2. Wire 1 had a diameter
of dw = 0.76 mm and is the same as the wire used in Chang et al. [2006], Shaw et al. [2008];
whereas, Wire 2 had a diameter of 1.28 mm. Figure 7.3 shows differential scanning calorimetry
(DSC) thermograms of Wire 1 and NiTi material excised from an as-fabricated Honeycomb 1.
Based on the measured Af temperatures, Wire 1 was clearly superelastic at room temperature;
whereas, Honeycomb 1 was on the borderline of superelastical at room temperature. Although the
DSC thermograms are not presented here, Wire 2 and Honeycomb 2 were also superelastic at room
temperature. As a final note, due to the differing alloy compositions between the honeycombs and
wires, order of magnitude differences are the primary interest in comparing performance.
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Table 7.1: Measured SMA honeycomb geometric parameters, approximating both to have hexag-
onal ligament geometries.

Parameter Variable Units Honeycomb 1 Honeycomb 2

Cell shape – – bicylindrical hexagonal

Relative density ρ∗/ρs % 18.5 12.5

Ligament thickness d mm 0.2 0.2

Diagonal ligament length h mm 2.15 2.6

Horizontal ligament length ` mm 1.25 2.6

Honeycomb angle θ ° 70 45

Gage length (height) L0 mm 14.45 22.89

Total width W mm 38.90 32.04

Total depth D mm 5.30 5.34
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Figure 7.3: Differential scanning calorimetry (DSC) thermograms of and Wire 1 and Honey-
comb 1, both of which were (nearly) superelastic at room temperature.

7.1.2 Experimental Comparison

The thermo-mechanical behaviors of the SMA wires and honeycombs are compared based on three
types of experiments: (1) fundamental shape memory and superelasticity cycles, (2) thermal lag,
and (3) superelastic rate sensitivity. Although all of the honeycomb experiments are new, due to the
prevalence of SMA wire data in the literature, data from experiments in Chang et al. [2006], Shaw
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et al. [2008], Churchill et al. [2010] are presented here as representative cases of wire performance;
the only exception is the wire thermal lag experiment which is new since the necessary wire data
was not found in the literature. In the evaluation of the scaling law predictions of Eq. (7.1), both
honeycombs are approximated to have the hexagonal ligament geometry of Figure 7.1 as shown
in Figure 7.2. For both honeycombs, this ignores the double thickness of the horizontal ligaments
(Figure 7.2); however, for the in-plane loading examined here, the horizontal ligaments carry no
load and, hence, this discrepancy does not affect the scaling law predictions.

Shape Memory and Superelasticity

L0+δ

P

Specimen

Thermocouple

Thermal
Chamber

Laser
Extensometer

Laser Tag

(a) NiTi wire tension

P

L0 – δ

Dewar

Liquid
Nitrogen

Specimen Thermocouples Aluminum Stand

RT Air
Remove

(b) NiTi honeycomb compression & recovery

Figure 7.4: Schematically shown here, the shape memory and superelastic experiments looked to
investigate the fundamental thermomechanical properties of Wire 1 and Honeycomb 1, measuring
the uniaxial responses under controlled temperature conditions.

The shape memory and superelastic experiments were designed to investigate the fundamen-
tal thermomechanical properties of Wire 1 and Honeycomb 1. The experiments were conducted
within a uniaxial load frame under controlled environmental conditions as illustrated in Figure 7.4.
During each experiment, the axial load P , axial displacement δ, and specimen temperature T were
measured. Fine (0.076 mm wire) K-type thermocouples were attached locally to the specimens
using OmegaTherm 201 thermal paste to ensure good thermal contact. Although not possible for
the wire experiment, the honeycomb experiment was designed such that the room temperature free
recovery could be additionally measured, accounting for the differing experimental setups.

The NiTi wire tension setup (Figure 7.4a) tested Wire 1 and included an air temperature-
controlled chamber with liquid nitrogen cooling. A laser extensometer was projected onto the
specimen through the window of the thermal chamber, measuring the relative displacement (δ) of
two retroreflective tags attached to the wire at an initial distance L0 from each other; additionally, a
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Figure 7.5: Shape memory (©1 –©2 –©3 –©1 ) and superelastic (©1 –©4 –©5 ) responses, showing a 10×
increase in recoverable deformation of Honeycomb 1 over Wire 1, in exchange for reduced strength
and stiffness. (The dashed lines ©1 –©2 denote that only the endpoints of strain were measured,
giving an approximate path for this portion of each experiment.)

single thermocouple was attached to the specimen at the middle of the extensometer gauge length.
The shape memory and superelastic loading procedure are were as follows:

• Shape memory cycle: Starting at room temperature (©1 ), the wire was quenched in liquid
nitrogen to ensure that the specimen was fully thermal martensite and then allowed to heat up
to−50 ◦C in the thermal chamber (©2 ). At a constant temperature of−50 ◦C (which was less
than As = −30 ◦C), the wire was then quasistatically loaded to δ/L0 = 5 % extensometer
strain and then unloaded to zero load (P = 0), resulting in a residual extensometer strain of
approximately 4 % (©3 ). Under load control at a small load (just enough to keep the wire
taut), the temperature was raised back to 25 ◦C (©1 ), with the majority of the strain recovery
occurring between −10 ◦C and 5 ◦C.

• Superelastic cycle: After the shape memory cycle, the specimen was isothermally loaded
slowly under elongation control at 25 ◦C to an extensometer strain of approximately 7 % (©4 ),
which was just beyond the termination of the superelastic stress plateau. The elongation was
then reversed until the specimen was completely unloaded (©5 ). The unloading segment in-
volved another (lower) stress plateau where the reverse transformation occurred. Both stress
plateaus were due to localization and propagating of phase transformation fronts, which are
a particular manifestation of unstable transformation kinetics well-known to occur during
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stress-induced transformations of NiTi in tension (as discussed in detail in Chapter 3).

The results from both experiments are shown in Figure 7.5a with the circled labels referencing
the measured thermomechanical response of the wire (tensile engineering stress P/A0 vs tensile
extensometer strain δ/L0 vs temperature T , where A0 = πd2

w/4 is the reference cross-sectional
area of the wire).

The NiTi honeycomb compression setup (Figure 7.4b) tested Honeycomb 1 and consisted of a
liquid nitrogen dewar and an open air test stand. To get a sense of the temperature distribution in
the honeycomb, three thermocouples were attached along the height of the specimen. The shape
memory and superelastic loading procedure were as follows:

• Shape memory cycle: A dewar in-line with the load frame was filled with liquid nitrogen.
Starting at room temperature (©1 ), the specimen was inserted into the dewar, fully trans-
forming to the martensite phase (©2 ). The honeycomb was then slowly loaded to a peak
compressive displacement of 50 % and then unloaded to a load free state, resulting in a
residual strain of 35 % (©3 ). The shape memory loop was then completed by quickly moving
the specimen from the liquid nitrogen to the open air test stand (less than 5 s) where it was
allowed to freely recover at room temperature (©1 ).

• Superelastic cycle: After the shape memory cycle, the dewar was emptied and allowed to
return to room temperature. The specimen was then reinserted into the load frame (©1 ) and
isothermally loaded at room temperature to a peak compressive strain of 50 % (©4 ), followed
by unloading to a load free state (©5 ).

The results from both experiments are shown in Figure 7.5b with the circled labels referencing the
measured thermomechanical response of the honeycomb (compressive engineering stress P/A0

vs compressive extensometer strain δ/L0 vs temperature T , where A0 = WD is the projected
reference cross-sectional area of the honeycomb).

In general, the recoverable deformations measured in the honeycomb specimen were approxi-
mately 10× greater than the wire. In the case of the shape memory experiment, the magnitudes of
the recoverable strains for the wire and honeycomb specimens were respectively 4 % and 35 %,
although it should be recognized that both are dependent on the maximum strain imposed (here
5 % and 50 %, respectively). During the superelastic cycles, recoverable strain magnitudes of 7 %
and 50 % strain were shown, respectively for the wire and honeycomb specimens (after heating
above Af). Note that since no stress plateau existed in the honeycomb’s superelastic response,
it was difficult to determine exhaustion of phase transformation during loading, so the measured
strain recovery may be a conservative quantification of the honeycomb performance. Nevertheless,
this order of magnitude difference is reasonably consistent with the scaling law of a 9.6× increase
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in recoverable deformation for the given honeycomb geometry (Eq. (7.1b))2.

One of the costs of this enhanced recoverable deformation was the decreased load carrying ca-
pacity of the honeycomb. While the superelastic behavior of the honeycomb had no stress plateaus,
we can start by comparing its stress at the first knee in the response (σ∗0 = 1.25 MPa) to the loading
plateau stress of the wire (σ0 = 450 MPa). This corresponds to a ratio of 2.8× 10−3, which agrees
reasonably well with the scaling law prediction of 3.1× 10−3 from Eq. (7.1c) and Table 4.2. Of
course this rough comparison ignores the fact that the transformation temperatures of the two NiTi
alloys are different by about 30 ◦C and superelastic responses were quite temperature sensitive ac-
cording to the Clausius-Clapeyron law (6.4 MPa ◦C−1 for this wire [Chang et al., 2006]). If one
shifts the plateau stress of the wire by −30 ◦C, the plateau stress would be σ0 = 260 MPa and the
ratio between honeycomb and wire would be about 4.8× 10−3, resulting in a slightly worse corre-
spondence with the scaling law prediction. Comparing instead the two low-temperature martensitic
responses (©2 –©3 ), which are typically not very temperature dependent, the initial knee in the me-
chanical response was roughly σ∗0 = 0.67 MPa for the honeycomb and was about σ0 = 100 MPa
for the NiTi wire. The resulting ratio of stresses is 6.7× 10−3, which is larger than predicted by
the scaling law (3.1× 10−3).

In addition to the loss in load carrying capacity, the stiffness of the honeycomb was also signifi-
cantly less than the wire. Comparing the initial elastic stiffnesses in the superelastic responses, the
steepest portion of the honeycomb’s loading response was about E∗ = 5.7 MPa, while the initial
(austenite) modulus of the monolithic wire was EA = 70 GPa. The corresponding honeycomb-to-
wire stiffness ratio was 0.8× 10−4, which is reasonably in line with the scaling law prediction of
2.1× 10−4 (Eq. (7.1d)). Note, however, that the value of E∗ measured should be considered as a
lower bound, since at room temperature the specimen was not fully austenite.

In this comparison of the honeycomb properties, the 10× improvement in recoverable defor-
mation comes at the severe cost of a reduced effective stress capacity of 10−2 and reduced elastic
stiffness of 10−4; however, this is not the whole story. Often of interest in the application of active
structures is the energy density of the material, which scales as the product of the transformation
stress and strain. In comparing the honeycomb energy density to the wire, the ratio of energy den-
sities σ∗0ε

∗/(σ0,sεs,max) is of order 10−1, which is likely a reasonable trade–off for the improved
recoverable deformation; additionally, there are many applications in which low stiffness and stress
capacity structures are necessary, such as biological implants.

2Note that the scaling law predictions are for hexagonal honeycombs, while Honeycomb 1 had a bicylindrical
geometry; however, the geometry was approximated to be hexagonal as shown in Figure 7.2a.
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Figure 7.6: Starting at a temperature T0 = −196 ◦C, the wire heated up to room temperature (Ta)
faster than the honeycomb in stagnant air, but slightly slower than the honeycomb under forced
convection.

Thermal lag

The thermal lag experiments compared the heat transfer characteristics of Wire 2 and Honey-
comb 1. For a fair comparison with the honeycomb, Wire 2 was selected to have a roughly equiva-
lent stroke (7.225 mm) and load capacity (400 N at 300 MPa) to the honeycomb, corresponding to a
wire with length L = 100 mm and diameter dw = 1.28 mm. In each experiment, a fine (0.076 mm
wire) K-type thermocouple was attached to the middle of the specimen using OmegaTherm 201
thermal paste; additionally, Kevlar thread (which has low thermal conductivity) was tied to the
specimen to assist in the maneuvering of the specimen in and out of liquid nitrogen. The specimen
then was dipped into a dewar of liquid nitrogen and allowed to thermally equilibrate, followed
by removal into room temperature air (Ta = 21.3 ◦C) where it was hung horizontally and the
temperature response was measured (T ). This experimental procedure was conducted in both stag-
nant (Ua = 0 m s−1) and moving air (Ua = 9 m s−1) to examine both free and forced convection
conditions.

The wire was found to have less thermal lag than the honeycomb in stagnant air conditions and
comparable thermal lag to the honeycomb in the case of forced convection (Figure 7.6). To quantify
the rate of temperature change of each specimen, the thermal lag coefficient (τ ) was determined
by fitting the initial measured temperature responses to Newton’s Law of Cooling:

ln

(
T (t)− Ta

T0 − Ta

)
= −t/τ (7.5)

where T (t) is the transient temperature of the structure as measured by the thermocouple, T0 =
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T (0) is the initial temperature of the structure, and Ta is the ambient temperature. Although New-
ton’s law of cooling does not account for latent heat, which is evidently present as seen by the kink
in the response, the sensible heating time constant still provides a sense of the recovery rate. In the
case of stagnant air (Figure 7.6a), the time constants were τw = 28 s and τh = 58 s for the wire and
honeycomb, respectively, indicating that the wire took less time to heat-up than the honeycomb.
This behavior is contrary to the scaling law discussed in Eq. (7.4), where

τw

τh
=
V

(w)
s /S

(w)
s

V
(h)

s /S
(h)
s

≈ dw/4

d/2
= 3.2, (7.6)

predicts that the thermal lag of the honeycomb (τh) should be less than the wire (τw). Interest-
ingly, in the case of forced convection (Figure 7.6b), the wire and honeycomb time constants were
comparable (τw = 4.5 s and τw = 4.0 s, respectively), resulting in the honeycomb heating slightly
faster than the wire. This suggests that the interior surface area of the honeycomb does not function
as efficiently as the outer surface area with respect to heat transfer. It is only in the case of forced
convection that some benefits of the internal surface area of the honeycomb are realized; although,
the performance is still less than that predicted by the scaling law.

In addition to the thermal lag experiments, the load-free shape recovery of Honeycomb 1 during
©3 –©1 of Figure 7.5b provides insight into the thermal behavior of SMA honeycombs. To summa-
rize this previously described experiment (see Section 7.1.2), the free recovery process corresponds
to the transfer of a deformed honeycomb (35 % compressive residual strain) in liquid nitrogen to
room temperature air where it was placed on an aluminum stand and allowed to recover deforma-
tion load free (Figure 7.4b). During the free recovery, the temperature response was measured at
three vertical locations along the height of the honeycomb (see Figure 7.7) to gain a sense of the
honeycomb temperature profile. The axial strain was also measured using a video extensometer,
which allowed for both global and local measurements. The video extensometer consisted of a
Point Grey Research Grasshopper (GRAS-50S5M-C) CCD camera with a Tamron CCTV 75 mm
focal length lens. The Grasshopper camera has a 2448 × 2048 grayscale CCD which typically
allowed about 2200 pixels across the (vertical) gauge length of the honeycomb specimen. The
resulting accuracy of the global strain measurement was on the order of 0.05 % or 1, 000th of the
total strain at full compression (−50 % strain). The camera was run at 5 fps, and a line detection
algorithm (similar to Steger [1998]) was used to measure the gauge length in each frame. The
video extensometer also allowed homogenized strains (δi/Li) of three individual cells (within the
honeycomb (see Figure 7.7) to be measured, although at reduced accuracy (0.5 % strain) as there
were only about 350 pixels across each cell.

Overall, the strain and temperature of Honeycomb 1 took about five minutes to stabilize during
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Figure 7.7: Three thermocouples were used to measure the thermal gradient along the height of
Honeycomb 1 in the free recovery experiment; additionally, the local homogenized strain (δi/L0

for i = 1, 2, 3) of adjacent unit cells were measured using a video extensometer, along with the
global honeycomb strain (δ0/L0).
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Figure 7.8: The temperature (T ) and homogenized strain (δi/Li for i = 0, 1, 2, 3 as marked in
Figure 7.7) primarily stabilized within the first five minutes of Honeycomb 1’s free recovery ex-
periment, showing kinks in the behaviors around 1.5 min and 2 min.
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Figure 7.9: The recovery process of Honeycomb 1 was inhomogeneous, progressing from the
bottom to the top of the honeycomb.

free recovery, with most of the rapid changes completed in the first three minutes (see the respec-
tive homogenized strain (δi/Li) and temperature (T ) histories in Figures 7.8a and 7.8b, where
t = 0 denotes the time at which the honeycomb was removed from the liquid nitrogen and circled
labels correspond to the images in Figure 7.9). Globally, the strain history of the entire honeycomb
(black line in Figure 7.8a) showed a steep decrease in compressive strain from 35 % to about 20 %
in the first 1.5 min, accelerated for about 1 min, then slowed asymptotically thereafter. Locally, the
honeycomb unit cells exhibited similar qualitative behavior as the global response; however, the
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bottom cell of the honeycomb heated up faster and recovered faster than the middle and top cells
(see Figures 7.8a and 7.8b, respectively). This gradient in recovery was likely due to the free re-
covery setup (see Figure 7.4b), where the aluminum stand acted as a heat sink, allowing the bottom
of the specimen to heat faster than the middle and top. In addition to the differing recovery rates,
the bottom unit-cell strain started at 38 % while the middle and top unit-cell strains started at 30 %,
indicating that the honeycomb did not deform uniformly during the prior compression in liquid
nitrogen (©2 –©3 in Figure 7.5b). This non-uniformity was most likely due to the imperfections in
the honeycomb geometry which are evident in Figure 7.7; although, row-by-row collapse of cells
can occur during in-plane compression of even nearly perfect honeycombs made of conventional
materials [Papka and Kyriakides, 1994, 1998].
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Figure 7.10: The majority of free recovery in Honeycomb 1 occurred over the temperature range
−20 ◦C to 5 ◦C, comparing well with the first endothermic latent heat peak of the Honeycomb 1
DSC results in Figure 7.3b.

Globally and locally, most of the strain recovery occurred between −20 ◦C and 5 ◦C (see Fig-
ure 7.10), comparing well with the first endothermic latent heat peak of the Honeycomb 1 DSC
results in Figure 7.3b. Interestingly, about 10 % strain was recovered before the specimen temper-
ature reached As which is perplexing since only minor recovery due to thermal expansion would
be expected in this temperature range. In the case of thin structures, in which the Biot number is
small, it is common to assume that the temperature was uniform through the thickness; however, in
reality, a small thermal gradient exists across ligaments, which is accentuated by the large temper-
ature difference between the environment and the specimen here (∼ 200 ◦C) . Since the maximum
bending strains within the honeycomb occurred in the outer fibers of the ligaments, it is likely that
even small amounts of phase transformation that occurred in this ‘thermal boundary layer’ created
a noticeable macroscopic deformation of the honeycomb.
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Figure 7.11: Schematically shown here, the superelastic rate sensitivity experiments measured the
effects of axial loading rate on the mechanical responses of Wire 1 and Honeycomb 2.

Superelastic rate sensitivity

The loading rate sensitivity experiments were designed to compare the effects of axial loading rate
on the mechanical response of Wire 1 and Honeycomb 2. Unlike the loading rate sensitivity found
in viscoplastic metals, superelastic loading rate sensitivity is the result of the strong dependence
of SMA mechanical behavior on temperature and phase transformation induced latent heating or
cooling. The wire and honeycomb experimental setups used in the study were similar (see Fig-
ure 7.11), loading the specimen in a uniaxial load frame while measuring the axial load P , axial
displacement δ, and the surface temperature field using an infrared thermal camera (ThermaCAM
SC1000 digital infrared radiometer). The NiTi wire specimens (Wire 1) were gripped within “V”
grooved platens, resulting in a free length of L = 60 mm and a laser extensometer gauge length
L0 = 33.3 mm; whereas, the honeycomb was fixed between two knurled files to simulate clamped
boundary conditions, resulting in a gauge length of L0 = 22.89 mm. In each experiment, the spec-
imen was loaded in stagnant room temperature air at a constant grip strain rate (δ̇/L0) to a peak
displacement, followed by unloading at a grip strain rate of −δ̇/L0 to a load free state. To evaluate
the rate sensitivity of the honeycomb and wire, a moderately high grip strain rate of 7× 10−2 s−1

was conducted on Honeycomb 2, while experiments at grip strain rates of 10−4 s−1, 10−3 s−1 and
10−2 s−1 were conducted on three different Wire 1 specimens (which correspond to the wire exper-
iments found in Churchill et al. [2010]). It should be noted that only one honeycomb experiment
was conducted due to large specimen-to-specimen variations associated with the honeycomb man-
ufacturing process, preventing first cycle comparison between honeycomb experiments conducted
at different strain rates.

The loading rate sensitivity of Honeycomb 2 was found to be significantly less than Wire 1
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Figure 7.12: Comparison of superelastic responses in terms of local specimen temperature (upper
plots) and homogenized stress (lower plots), both against gauge strain: (a) NiTi wire at three
elongation rates (b) NiTi honeycomb at a moderately fast strain rate.

(see Figure 7.12). In all of the experiments, latent heat was generated faster than it could be
transferred to the environment, resulting in temperature increases during loading (and temperature
decreases during unloading). In the case of the wire experiments, the ratio of heat generation rate
to dissipation rate increased for increased loading rate, resulting in greater temperature variations
(see specimen midlength temperature T vs extensometer strain δ/L0 as shown in upper portion
of Figure 7.12a). Since the phase transformation stress increases with increasing temperature
(Clausius-Claperyon relationship), the higher strain rate experiments resulted in stiffer mechan-
ical responses (see engineering stress P/A0 vs extensometer strain δ/L0 as shown in lower portion
of Figure 7.12a). Due to the relatively small temperature change measured in the slowest wire ex-
periment (at most 2 ◦C), the mechanical behaviors of Wire 1 as strain rates less than 1× 10−4 s−1

are the same and correspond to isothermal behavior. In contrast to the wire experiments, the Hon-
eycomb 1 exhibited very little temperature change: at most a 1.5 ◦C change as measured by a
thermocouple in the interior of the honeycomb (upper portionFigure 7.12b) and in general across
the specimen as measured by thermal imaging. The measured mechanical response of Honey-
comb 2 (bottom portion of Figure 7.12b) therefore represents nearly isothermal loading behavior,
indicating that Honeycomb 2 is at least three orders of magnitude less sensitive to loading rate than
Wire 1.
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The SMA honeycomb was expected to exhibit less strain rate sensitivity than the wire due
to the bending dominated kinematics of the honeycomb ligaments; however, the degree of rate
insensitivity of the honeycomb was at first surprising. From the loading rate sensitivity scaling law
(Eq. (7.3)) and the dimensions of the honeycomb (h/d = 13), rate sensitivity in Honeycomb 2 was
expected to be ×10−1 less than Wire 1, which is two orders of magnitude greater than measured
experimentally. A number of factors not included in the scaling law likely contributed to the greater
than expected honeycomb rate insensitivity; the greatest factor is likely due to the differing phase
transformation morphologies observed between the honeycomb and wire. In the case of tensile
SMA wire behavior, phase transformation localizes and propagates as a front with dimension on
the order of the wire diameter, resulting in a small surface area to convectively dissipate/provide
latent heat; whereas, in the case of a honeycomb, the bending dominated kinematics results in
homogenous phase transformation (which was indicated in the Honeycomb 2 experiment by the
uniform temperature field in the thermal imaging, not shown here), resulting in a large surface area
to convectively dissipate/provide latent heat.

7.1.3 Conclusions

The goal of this work was to illustrate and quantify the improved deformation kinematics and ther-
mal properties of NiTi honeycombs over traditional NiTi wire. Fabricated honeycomb specimens
were experimentally tested in in-plane compression, characterizing both the shape memory/thermal
lag and superelastic/rate sensitivity properties. It was found that NiTi honeycombs exhibit an order
of magnitude increase in recoverable deformation over wire, both in the shape memory effect and
superelasticity, in exchange for two orders of magnitude less strength and four orders of magnitude
less stiffness; additionally, the thermal lag of the wire and honeycomb were found to be similar,
while the honeycomb exhibited three orders of magnitude less rate sensitivity than the wire. With
regard to the mechanical behavior, the scaling laws aligned well with the experimental observa-
tions; however, the thermal lag prediction slightly overestimated the honeycomb performance,
while the rate sensitivity prediction underestimated the honeycomb performance by two orders of
magnitude.

There are many possible applications of SMA honeycombs, exploiting different combinations
of their improvements over monolithic materials:

• Compact high stroke actuator or deployable device: As discussed in Section 7.1.2, a
100 mm long NiTi wire would be necessary to achieve comparable stroke to the 14.45 mm
long honeycomb tested. This results in a honeycomb actuator approximately 85 % shorter
than the wire; however, to achieve equivalent load carrying capacity between the two actua-
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tors, the total volume of the honeycomb actuator is about 20× larger, and the mass would be
about 4× larger (for the 18.5 % dense honeycomb). Thus, compactness comes at the expense
of increased volume and mass.

• Reusable energy absorber: One of the most common applications of honeycombs (and cor-
rugated materials in general) is energy absorption. The beneficial energy absorption prop-
erties are due to the stress plateau found in the structural response when the structure be-
gins to locally collapse; however, the beneficial energy absorption properties of corrugated
structures typically lie within the plastic region of the material response. By constructing
honeycombs with SMAs, reusable energy absorbers are now possible.

• Vibration damping: The hysteresis loop found in the uniaxial behavior of SMAs lends itself
to energy dissipation applications; however, the rate sensitivity found in monolithic SMAs
limits the potential usage to low frequency dissipation. SMA honeycombs expand the usable
frequency range by three orders of magnitude.

Furthermore, the dependency of the structural geometry on the macroscopic response allows the
honeycomb to be tuned for different designs by simply changing the unit-cell geometry.

7.2 Design Study for Energy Absorption Applications

Few design tools exist in the field of SMAs due to their complex thermomechanical behavior,
much less for SMA honeycombs. The design of an SMA honeycomb with prescribed performance
capabilities is therefore a difficult problem that has yet to be addressed. The goal of this study is
to better understand the geometric dependencies of SMA honeycomb mechanical properties and
their implications on design optimization for reusable energy absorption applications. Under in-
plane compression, infinite hexagonal honeycombs are examined (see Figure 7.13), representing
structures in which the macroscopic length scale is much greater than the honeycomb unit cell
length scale. To represent all feasible geometric designs, a parametric space is defined in Sec-
tion 7.2.1. Within this space, a discrete number of designs are chosen and evaluated according to
the procedures outlined in Section 7.2.2.

7.2.1 Parametric Space of Hexagonal Honeycombs

The geometry of a honeycomb is best defined by the simplest repeating unit within the structure:
the unit cell. For the case of a hexagonal honeycomb, the unit cell is defined by the geometry

143



X

σ∗ Y

h

�

d

θ

2d

L2

L1

1

2 3

4

56

7 10

8 9

δ
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illustrated in Figure 7.13 and is fully defined by the horizontal ligament length `, diagonal ligament
length h, hexagonal angle θ and ligament thickness d (noting that horizontal ligaments have a
thickness of 2d in accordance to traditional manufacturing processes used to construct hexagonal
honeycombs). The resulting unit cell has width L1 = 2(` + h sin θ) and height L2 = 2h cos θ.
To more intuitively classify a honeycomb design, the unit cell aspect ratio (r ≡ L2/L1), diagonal
ligament aspect ratio (d/h), and honeycomb angle (θ) are used to define the geometry to within an
arbitrary scaling factor.

The unit cell aspect ratio, r, characterizes the unit cell height-to-width ratio as defined by

r ≡ L2/L1 =
cos θ

sin θ + `/h
for |θ| ≤ 90o. (7.7)

Since 0 ≤ ` < L1 and h > 0 for the class of honeycombs being considered, the maximum aspect
ratio (rmax) for a given θ is

rmax = cot |θ| , (7.8)

which results in a feasible region for r as shown in Figure 7.14a. For increasing r, `/h decreases as
illustrated in Figure 7.14b, going to zero at the maximum aspect ratio rmax (i.e. ` = 0 at r = rmax).

The ligament aspect ratio, d/h, characterizes the slenderness of the diagonal honeycomb liga-
ments. Since the dominant mode of deformation is bending, which is strongly related to the area
moment of inertia of a beam (I = bd3/12 where b is the out-of-plane width), d/h strongly in-
fluences the bending stiffness of the ligaments and, thus, the overall stiffness of the honeycomb
structure. For increasing d/h, the thickness of the honeycomb ligaments effectively increases as
illustrated in Figure 7.15.
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Figure 7.15: As d/h increases, the relative thickness of the honeycomb ligaments increases.

The honeycomb angle, θ, characterizes the alignment of the diagonal elements to the loading
orientation. Since buckling is highly dependent on this orientation, θ is expected to strongly influ-
ence the stability of the structure. It should be noted that, for cases in which θ < 0, honeycombs
exhibit a negative Poisson’s ratio (ν) and are usually referred to as auxetic. The effects of increas-
ing θ are illustrated in Figure 7.16.

7.2.2 Procedure

To gain a better understanding of the dependencies of SMA honeycomb mechanical properties
on geometry, a finite set of geometries were examined within the parametric space with fixed
SMA material properties. This discretization was defined according to all combinations of θ =

θ-θ

θ

ν < 0 ν > 0

Figure 7.16: As|θ| → 0, the diagonal element of the unit cell approaches vertical.
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Table 7.2: Constitutive model parameters for the SMA honeycomb parametric study.

Parameter Value

EA = E+
M = E−M 1

E+
l = E+

u 0.05

E−l = E−u 0.15

β+ 0.0418

β− -0.02125

ε+n 0.006

ε−n 0.0012

∆σ+
A = ∆σ−A 0.002

{±15o,±30o,±45o,±60o}, r =
{

0.1, 0.2, 0.3, ..., brmaxc
}

3, and d/h = {0.005, 0.010, 0.015, ..., 0.100},
resulting in a total of 2780 cases. For each case, quasi-static finite element simulations were con-
ducted according to a displacement-based loading procedure in the Y direction (see Figure 7.13)
along the principal solution path. To model superelastic behavior of NiTi-like SMA honeycombs,
the asymmetric, hysteretic, constitutive law outlined in Section 5.1.3 was implemented using the
material parameters in Table 7.2.

The principal solution of each honeycomb was evaluated using an increment–based loading
procedure which was parameterized by the monotonically increasing loading parameter λ. From
the global boundary conditions,

FX(−∞, Y ) = 0, FY (−∞, Y ) = 0, M(−∞, Y ) = 0

FX(∞, Y ) = 0, FY (∞, Y ) = 0, M(∞, Y ) = 0

FX(X,−∞) = 0, V (X,−∞) = 0, M(X,−∞) = 0

FX(X,∞) = 0, V (X,∞) = δ∗(λ), M(X,∞) = 0,

(7.9)

where V is a global displacement in the Y direction, FX and FY are forces in the X and Y direc-
tions, respectively, and M is am bending moment. At the start of loading (λ = 0), the structure
loads along the principal solution path which corresponds to unit cell periodic deformation. From

3The form bxc denotes that x is rounded down to the first decimal place.
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Eq. (7.9), the corresponding unit cell periodic deformation corresponds to

F
(1)
X = 0, F

(1)
Y = 0, M (1) = 0

F
(4)
X = 0, F

(4)
Y = 0, M (4) = 0

U (2) = F
(3)
X = 0, V (2) = V (3) = 0, M (2) = M (3) = 0

U (6) = F
(5)
X = 0, V (6) = V (5) = δ(λ), M (6) = M (5) = 0,

(7.10)

where U is a global displacement in the X direction and (·)(i) denotes the ith nodal quantity (see
Figure 6.7 for node numbering of the unit cell); note that U (2) = V (2) = V (3) = 0 to prevent
rigid body motion and U (6) = 0 from the periodic boundary conditions. At each loading step, the
principal path solution was determined using a Newton-Raphson solution algorithm.

In evaluating a honeycomb design, two finite element simulations were performed to accurately
calculate the mechanical response and critical buckling load of the structure. The first simulation
evaluated the mechanical response of the principle branch up to a macroscopic strain (δ/L2) of 70%

using a fine loading step without regard to the loss of structural stability. The second simulation was
used to determine the critical buckling load according to the Bloch wave stability analysis outlined
in Chapter 6. Starting with a coarse loading step, the loading was incrementally increased until the
first indication of instability (if any). A bisection-based loading procedure was then conducted to
accurately converge on the critical buckling load to within a tolerance of 7× 10−5 % macroscopic
strain (δ/L2). For a more detailed discussion on the stability analysis of a honeycomb structure in
the context of the finite element analysis, see Section 6.5.3.

7.2.3 Results and Discussion

For each design, the overall energy absorption performance was evaluated. To ensure reusability
of the honeycombs and to maintain physically meaningful results, the mechanical response of each
design was limited to within operational bounds. For the cases in which the structure became
unstable during loading, further investigation was conducted with respect to the corresponding
mode of instability. A brief discussion of the relationship between honeycomb design and the
macroscopic Poisson’s ratio is discussed, followed by the identification of optimum geometric
designs with respect to specific energy end energy density measures. Due to the quantity of data
collected in this study, the following will first focus on results for θ = ±30o and then be generalized
to the other θ cases.
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Performance Constraints

In the first simulation of each honeycomb design, loading was conducted along the principal solu-
tion path regardless of the physicality of the response. To maintain physically meaningful behavior
in the quantification of energy absorption performance, the mechanical response was truncated ac-
cording to the following constraints:

• Local strains within the ligaments must remain within prescribed limits – The fatigue
life of superelastic materials, which dictates the reusability of the structure, is highly depen-
dent on loading conditions. In general, the more extreme the loading condition, the shorter
the fatigue life. In this study, local strain limits (εmax) of 5.0% and 2.5% were imposed on
the honeycomb ligament behavior as representative limits for low and high cycle applications
for the material definition in Table 7.2, respectively.

• The macroscopic loading must be less than the critical buckling load of the structure –
Although Bloch wave analysis provides information with respect to the onset and nature of
instability, the solution at the critical buckling load loses uniqueness. The principal solution
followed after the first instability is only one of many possible solution paths. As deforma-
tion along the principal path is seldom observed in reality due to imperfections within real
systems, it is unlikely that this mechanical behavior accurately represents real SMA honey-
comb behavior. Determination of the solution path along secondary branches is a complex
problem and beyond the scope of this work (for the reader interested in details on perform-
ing these complex path following problems, see for example Sorkin et al. [2014]); however,
as the secondary solution paths associated with buckling often result in higher local strains
than the principal path, it is expected that local strain limits would be hit near or just after
buckling. In general, this is a conservative restriction on performance.

• Inter-ligament contact is inadmissible – Inter-ligament contact becomes relevant for neg-
ative Poisson’s ratio honeycombs (i.e. θ < 0), occurring between nodes 7 and 10 (Fig-
ure 7.13). If a contact algorithm was incorporated into the analysis, contact between nodes
7 and 10 would result in a “fused” joint and further loading would result in a significantly
stiffer response. In reality, imperfections within the structure would likely result in nodes
7 and 10 sliding along the adjoining ligaments with only mild stiffening of the structural
response. Imperfections could be added to the unit-cell geometry to more accurately model
this behavior; however, the corresponding stability analysis would likely be highly sensi-
tive to the nature of the imperfection, resulting in a highly complex problem. It is therefore
difficult to determine the exact behavior post-contact without significant modeling and com-
putational efforts and is beyond the scope of this study. This is therefore a very conservative
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restriction on performance.

• The macroscopic loading must stay within design requirements – In application, honey-
comb energy absorbers are often designed to absorb a prescribed energy for a given maxi-
mum load; for example, energy absorbers used in packaging are designed to absorb energy
while exerting a small load on the contents inside. Therefore, this design parameter was
incorporated into the analysis through the addition of a limiting macroscopic stress (σ∗).

All design properties were calculated up until the onset of the first active constraint. If no con-
straints were active, then the properties were calculated up until the end of loading at 70 % macro-
scopic strain. Figure 7.17 illustrates the principal solution for one of the honeycomb designs, along
with the points in the loading in which each constraint became active and the corresponding mea-
surement of the absorbed energy. Overall, these constraints are expected to be a conservative lower
bound of a design’s performance while ensuring reusability.

The limiting constraint of a honeycomb design provides insight as to the dominant mechanical
behavior. For θ = ±30o, εmax = 2.5 %, and an arbitrary stress constraint, mappings the first active
constraint with respect to r and d/h space are shown in Figure 7.18. These two mappings serve as
a representation of the trends found for all θ and result in the following observations:

• Local strain limit based constraints (as depicted by the orange regions), occur for low r, high
d/h and high |θ| . These designs correspond to load bearing elements that are short, thick
and closer to horizontal than vertical (i.e. stocky cantilever beams). The results for the case
of a 5 % strain limit are similar; however, the strain limited region recedes towards lower r
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Figure 7.18: Honeycomb performance tends to be limited by the local strain limit (2.5 % shown
here) for low r and high d/h, the stability limit for high r and low d/h, the macroscopic stress
limit for high r and high d/h, and the contact limit for θ < 0 and high r.

and higher d/h.

• Stability based constraints (denoted by the blue regions) stem from high r, low d/h and low
|θ| . These designs correspond to loading bearing elements that are long, slender and closer
to vertical than horizontal, aligning with classical notions of beam buckling.

• Internal contact (as denoted by the green regions) is only present for designs with θ < 0.
For increasing r and decreasing θ the region of internal contact grows. Geometrically, these
designs correspond to unit cells in which nodes 7 and 10 (see Figure 7.13 for reference) are
close together in the undeformed configuration (see Figures 7.14b and 7.16 for visual trends).
As the structure is loaded, these nodes pinch together until contact ultimately occurs.

• Stress limit based constraints (as depicted by the red regions), occur for high r and high
d/h, which correspond to long and thick ligaments. The high stiffness of these design cases
induce the stress limit earlier in loading.

• Very few cases had no constraints active up to the maximum macroscopic strain of δ/L2 =

70 % (as denoted by the gray regions). These cases were restricted to low values of d/h and
large values of |θ| and (as shown later) generally exhibited low energy absorption.
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Instabilities

The post-buckling behavior of infinite honeycombs is highly complex; however, examination
of the Bloch wave modes near the critical buckling load provides some insight with respect to
the ensuing deformation. The initial macroscopic strain δ/L2 (λc in Section 6.5.3) along the
principal path at which different mode shapes become unstable are shown in Figure 7.19 for
two honeycomb designs with the same d/h and θ, but different r: (r, d/h, θ) = (0.1, 0.03, 30°)
and (r, d/h, θ) = (1.5, 0.03, 30°). The critical buckling displacement of the structure (denoted
by δc) corresponds to the minimum point on the instability surface; although, the exact loca-
tion of δc within the wavenumber space is approximate due to the finite sampling of both the
loading increment and the κ space. In the case of the honeycomb with geometric parameters
(r, d/h, θ) = (0.1, 0.03, 30o) (Figure 7.19a), the instability surface spans a large portion of the
Bloch wavenumber space over a relatively shallow variation in δ/L2. Conversely, for the case of
the honeycomb with (r, d/h, θ) = (1.5, 0.03, 30°) (Figure 7.19b), the instability surface is much
narrower, although still relatively shallow with respect to δ/L2. In both cases, the continuity and
shallowness of the surface suggests the post-buckling behavior of the structures will be highly im-
perfection sensitive; that is, even small imperfections will potentially result in a large change in the
corresponding post-buckling behavior. The directionality of the imperfection sensitivity, however,
differs between the two geometries. Let

α = arctan
κ2

κ1

(7.11)

be the “direction” of the instability, where κ1 and κ2 are the normalized Bloch wavenumbers as
defined in Section 6.5.3. With respect to Figure 7.19a, the shallowness of the instability surface is
omnidirectional, suggesting the “direction” of the instability is also highly sensitive to imperfec-
tion; whereas, with respect to Figure 7.19b, the shallowness of the instability surface is relatively
unidirectional, suggesting the “direction” of the instability is likely imperfection insensitive.

Although it is difficult to quantify the exact wavelength of the mode shape corresponding to
a particular critical buckling load, it is still illustrative to visualize the calculated mode shapes to
get a sense of the general characteristics. As the finite element analysis was only with respect to
the honeycomb unit cell, the eigenvector corresponding to the loss in positive definiteness of the
structural stiffness matrix only corresponds to the mode shape of the unit cell; however, except for
a mode shape with unit cell periodicity, the mode shape has greater dimensionality than the unit
cell. To determine the entire mode shape, the Bloch wave representation must be used as defined
in Eq. (6.84). Note that the calculated mode shapes will involve complex numbers in general;
therefore, once the mode shape is calculated (i.e., after applying Eq. (6.84)), either the real or
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Figure 7.19: The characteristics of the instability surface (initial macroscopic strain δ/L2 along the
principal path at which different instability modes become unstable) vary broadly depending on the
honeycomb design; for example, (r, d/h, θ) = (0.1, 0.03, 30o) had a broad surface with a minimum
(δc) in the upper right portion of the wavenumber space, while (r, d/h, θ) = (1.5, 0.03, 30o) had a
narrow surface with a minimum near the origin of the wavenumber space.

imaginary part can be taken to examine the shape. The mode shapes corresponding to δc ≡ δ(λc)

in Figure 7.19 are shown in Figure 7.20. Two extremes of mode shapes are shown here, with local
deformation shown in Figure 7.20a while there is more global deformation in Figure 7.20b.

Poisson’s Ratio

The ligament based construction of honeycombs allows for structures in which the macroscopic
Poisson’s ratio is not limited to the isotropic elasticity range of −1 < ν < 0.5 and can be tuned
according to the honeycomb geometry. As formulated by Gibson et al. [1982] using engineering
beam theory, the Poisson’s ratio of a linear elastic honeycomb under loading along the Y direction
is

ν =
h cos2 θ

(`+ h sin θ) sin θ
= r cot θ, (7.12)
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Figure 7.20: Depending on the normalized wavenumber pair (κ1, κ2), the characteristics of the
instability mode shape deformation ranged from (a) local to (b) global.

illustrating the auxetic behavior of honeycombs with θ < 0. For a chosen θ, the linear dependence
of ν on r results in a simple formulation for the design of a honeycomb’s Poisson’s ratio. From
Eq. (7.8), the Poisson’s ratio is limited by

0 ≤ ν ≤ νmax for 0° ≤ θ ≤ 90° (7.13a)

and

−νmax ≤ ν ≤ 0 for −90° ≤ θ ≤ 0° (7.13b)

where

νmax = rmax cot|θ| = cot2|θ| . (7.14)

As cot2|θ| monotonically decreases with increasing |θ| (such that |θ| ≤ 90o, which is the feasible
region for physical designs of honeycombs), the greatest Poisson’s ratios can be attained for low
|θ| ; furthermore, as cot θ is a point symmetric function about the origin and r > 0, honeycombs
with ±θ have the same|ν| relationship with respect to r.

153



0 10 20 30 40 50 60 70
0

1

2

3

δ/L2

ν̂

0.1

0.8

1.6
r

Effects of aspect ratio (r) on Poisson’s ratio.
The effective Poisson’s ratio of the honeycomb (ν)

vs the loading (δ/L2).
θ = 30; t/h = 0.005

Figure 7.21: As a honeycomb is compressed (shown here for honeycombs with the parameters
d/h = 0.005 and θ = 30°), the magnitude of the instantaneous Poisson’s ratio (|ν̂|) monotonically
decreases with greater variations as r increases; furthermore,|ν̂| increases with increasing r.

Although Eq. (7.12) provides a useful tool for tuning the Poisson’s ratio of a honeycomb struc-
ture, it is derived from linear elastic engineering beam theory (i.e., small strains, small displace-
ments and small rotations), which is only valid for the initial behavior of the structure. The evo-
lution of the effective Poisson’s ratio (ν̂) throughout the loading procedure for honeycombs with
(d/h, θ) = (0.005, 30o) and varying r are shown in Figure 7.21, where

ν̂ ≡ −ε
∗
X

ε∗Y
(7.15)

and ε∗X and ε∗Y = δ/L2 are macroscopic strains. At δ/L2 = 0, ν̂ abides by Eq. (7.12) and then
decreases monotonically with increasing load, with high r designs exhibiting the greatest variations
during loading.

Optimum Energy Absorber

The energy absorption performance of the honeycomb designs is evaluated according to two met-
rics: specific energy absorption and absorbed energy density. Defined as absorbed energy per
unit mass (W/m), the specific energy metric optimizes with respect to weight efficiency, result-
ing in a lightweight energy absorber; whereas, defined as absorbed energy per unit macroscopic
volume (W/V ∗), the energy density metric optimizes with respect to space efficiency, resulting in
a compact energy absorber. Both quantities are normalized with respect to the austenite modulus
of elasticity (EA) and, in the case of specific energy, the mass is normalized with respect to the
density of the material, resulting in dimensionless specific energy W/(EAVs) and dimensionless
energy density W/(EAV ∗), where

Vs = 2(2h+ `)dL3 (7.16)
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is the volume of the SMA material and

V ∗ = L2L1L3 (7.17)

is the macroscopic volume of the unit cell (and L3 is the depth of the honeycomb which was taken
as 1 for this study).

In the case of both energy metrics, optimal designs tended towards designs with high d/h and
low |θ| as shown in Figures 7.23 and 7.24 for εmax = 2.5 % and no imposed macroscopic stress
constraint. In Figures 7.23 and 7.24, optimum designs are defined as those that lie within 5 % of
the maximum energy metric for a given θ, which helps give a sense of the shallowness/steepness
of the energy metric over the design space. With respect to the specific energy measure at fixed θ
(Figure 7.23), optimal designs tended toward the r boundary between the local strain and stability
constraints. When no interface existed between the local strain and stability constraints at high d/h,
optimal designs corresponded to high r, bordering the contact limited region in the case of θ < 0

and rmax for θ > 0; furthermore, designs that were limited by local strain constraints showed
little to no dependency on d/h. This resulted in a set of optimal designs with nearly identical
performance for a given θ. Conversely, only a single optimum design tended to exist for a given
θ when using the energy density metric (Figure 7.24). The optimal design always tended towards
the contact limited region in the case of θ < 0 and rmax for θ > 0. These general trends were
consistent regardless of εmax.

-30º

(a)

30º

(b)

Figure 7.22: Due to the loading orientation, the diagonal ligaments were the only load carrying
members, resulting in identical mechanical responses for the +θ and −θ designs.

Regardless of energy measure, the designs with +θ always outperformed (or were equivalent to)
the corresponding−θ designs with the same r and d/h (see Figures 7.23 and 7.24). This improved
energy absorption performance for θ > 0 designs was the result of three factors:

• Only θ < 0 designs were susceptible to the very conservative contact constraint (as seen in
a comparison of the contact limited regions of Figures 7.23 and 7.24).

• The −θ configurations were less stable than the +θ configurations (as seen in a comparison
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of the stability limited regions of Figures 7.23 and 7.24).

• Due to the loading orientation, the diagonal ligaments were the only load carrying members
of the structure (see Figure 7.22), resulting in identical mechanical responses and total energy
absorption for the +θ and −θ honeycomb designs. In the case of the energy density metric,
the identical unit cell volume for±θ designs resulted in the same energy density performance
(as seen in a comparison of the strain limited regions of Figure 7.24); whereas, in the case of
the specific energy metric, the greater mass of the−θ designs resulted in less specific energy
absorption (as seen in a comparison of the strain limited regions of Figure 7.23).

In general, SMA honeycombs with θ = {15°, 30°} had the best energy absorption properties
(see Figures 7.23 and 7.24 for the case of εmax = 2.5 %). Although the results shown here are only
for a single strain limit εmax, this trend was found for all εmax. Within these designs, there existed a
cutoff εmax = 5 % where honeycombs with θ = 15° performed best for εmax < 5 %, while θ = 30°
performed best for εmax > 5 %. So, honeycombs with smaller |θ| have better applicability for
high cycle loading conditions, while honeycombs with higher |θ| are more suited for low cycle
loading conditions.

To gather perspective on the implications of the macroscopic stress constraint, its influence on
both energy metrics was examined over a range of values. For a particular θ, the maximum stress
(σ∗max) was determined for all of the designs within the corresponding r-d/h space. Five macro-
scopic stress constraints where then chosen, σ∗i for i = 1, 2, .., 5, such that σ∗i /σ

∗
max = i/5, and

the corresponding behaviors were compared (noting that σ∗5 had no macroscopic stress constraint).
A representative case is shown in Figure 7.25 for the energy density measure of honeycombs with
θ = 30° and εmax = 5 %. The addition of a macroscopic stress constraint shifted the optimum
designs from high r and d/h towards the boundary of the strain-stability-stress constraint bound-
aries. Although the trends vary somewhat depending on the energy measure and θ, in general, the
optimum designs lie along the stress constraint boundary. When the strain, stability and macro-
scopic stress constraint meet at a juncture, the optimum points tend to cluster around this juncture,
forming a ridge of closely performing designs. At higher macroscopic stress constraints, when
the macroscopic stress constraint boundary only touches the strain boundary, the optimum designs
tend towards higher aspect ratios along the constraint boundary.

7.2.4 Conclusions

Design optimization of infinite, perfectly periodic, superelastic shape memory alloy (SMA) honey-
combs was performed with a focus on reusable energy absorption applications. The design space
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Figure 7.23: In the case of specific energy (W/(EAVs)) performance with εmax = 2.5 % and no stress constraint, a large set of designs
performed optimally (as marked by the grey dots) which tended to correspond to high r. Overall, designs with θ > 0° out performed
those with θ < 0° and the θ = 15° designs performed the best overall.
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Figure 7.24: In the case of energy density (W/(EAV ∗)) performance with εmax = 2.5 % and no stress constraint, optimal designs
(marked by the grey dots) were restricted to a small set of designs which tended to correspond to high r and d/h. Overall, designs with
θ > 0° out performed those with θ < 0° and the θ = 15° designs performed the best overall.
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Figure 7.25: In the case of energy density performance (W/(EAV ∗)) for honeycombs with θ = 30° and εmax = 5 %, optimal designs
(labeled by grey dots) shifted from high to midrange r and d/h as the magnitude of the macroscopic stress constraint (σ∗1 < σ∗2 < σ∗3 <
σ∗4 < σ∗5 = σ∗max) was decreased, congregating near the boundary of the strain-stability-stress constraints.
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was fully defined by the honeycomb unit cell aspect ratio (r), ligament thickness to length ratio
(d/h) and honeycomb angle (θ), which was discretely sampled to probe the behavior of NiTi-like
honeycombs. For each design, finite element simulations in conjunction with Bloch wave stability
analysis evaluated mechanical behavior and energy absorption performance. To ensure physically
relevant results, constraints on the behavior of each design (such as limits on the maximum local
strain and macroscopic applied stress, along with structural stability) were imposed. As mass and
space efficiency are often desired in energy absorbers, specific energy (energy/mass) and energy
density (energy/volume) metrics were used to evaluate energy absorption performance.

Based on the results of the parametric study, the following SMA honeycomb design guidelines
were formulated:

• In all cases, designs with θ > 0 outperformed (or were comparable) to those with θ < 0. So,
unless an application requires a negative Poisson’s ratio, it is reasonable to restrict designs
to θ > 0.

• For low strain limits, the set of optimum designs occurs for low |θ|. As the strain limit
increases, the set of optimum designs shifts to higher |θ|. In the case of the strain limits used
in this study, the best performance occurred for θ = 15° with a strain limit of 2.5 % and
θ = 30° with a strain limit of 5.0 % (regardless of the energy measure).

• When working with honeycombs in which θ > 0, designs with r = rmax usually perform
better than other designs with the same θ and d/h and r < rmax. Geometrically, these designs
correspond to diamond-type unit cells (` = 0, which might be difficult to fabricate). For the
few exceptions where this rule does not hold (such as θ = 15°), these designs still perform
within 90 % of the best performance found for the same θ and d/h. It should be noted that
this may not be the case for other in-plane loading directions where the horizontal ligament
becomes important. This rule is less absolute for the case in which θ < 0 as interligament
contact dominates at high r. As the contact constraint is rather conservative (and likely far
from the actual performance of these honeycombs) it is difficult to say whether or not it
would be better to use a smaller aspect ratio or maximize the aspect ratio and hope that the
contact behavior results in good performance.

• Optimization with respect to energy density is much more sensitive than with respect to
specific energy. In general, the optimum energy density design lines up with one of the
optimal specific energy designs. So, a honeycomb optimized with respect to volume is likely
also optimized with respect to mass, but not necessarily vice versa.

The suggested design process of SMA honeycombs for vertical in-plane compression is to choose
a design with θ > 0 and r = rmax (unless an auxetic structure is required); in the case of high
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cycle (and low amplitude) loading, θ = 15° should be chosen, while for the case of low cycle
(and potentially high amplitude) loading, θ = 30° should be chosen. From this point, d/h should
be tuned based on the maximum stress constraint, where a higher stress limit allows for higher
d/h (and correspondingly higher energy absorption). Due to the many competing factors, this
procedure will not necessary result in the true optimum design, but will likely fall within 90 % of
the optimum design performance without the need for an in-depth parametric study.

7.3 Summary & Conclusions

The properties of SMA honeycombs loaded in in–plane compression were experimentally investi-
gated. It was found that SMA honeycombs are 10× more flexible than monolithic SMAs (both in
the shape memory effect and superelasticity) and their sparse configuration and bending dominated
kinematics results in significantly reduced loading rate sensitivity; however, this comes at the cost
of significantly reduced stiffness and strength. From an applications standpoint, SMA honeycombs
are therefore most suited as compact high stroke actuators, vibration dampers, and reusable energy
absorbers.

To help realize the application of SMA honeycombs as reusable energy absorbers, a parametric
study was implemented to develop general rules for their optimal design. In general, it was found
that SMA honeycombs with high aspect ratio unit cells and nearly vertical diagonal ligaments
(between 15° and 30° from vertical) have the best energy absorption properties. The thickness of
the honeycomb ligaments can then be tuned to provide the necessary load carrying requirements
for a given application.
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Chapter 8

Conclusions & Future Work

The primary objective of this dissertation was to facilitate the development of shape memory alloy
(SMA) material models. Due to the prevalence of thin–walled structures in existing SMA appli-
cations, the focus within this objective was on beam and framed structures. To better understand
the combined uniaxial and bending behavior found in SMA beams, along with the effects of beam
cross-sectional geometry, tension, compression, pure bending and column buckling experiments
were conducted on superelastic NiTi rods and tubes; furthermore, a novel composite based ex-
perimental setup was used to measure the local up–down–up material response of an SMA pulled
in tension. Based on this phenomenological understanding, a trilinear material law was imple-
mented into a Shanley column model and within general beam theory to model the deformation
of SMA beams. This model was found to capture many of the relevant behaviors found in SMA
beams (such as unbuckling behavior in short SMA columns) and was used to model and design
superelastic SMA honeycombs.

8.1 Conclusions

The complex material behavior found in SMAs pose many challenges from a modeling perspective.
As discussed in this dissertation,

• the up–down–up tensile behavior can cause localization of phase transformation and the
deformation field within the material, a phenomenon that is associated with the loss of el-
lipticity of the governing equilibrium equations and results in a number of computational
difficulties (such as non-uniqueness and numerical instability);

• the localization behavior found in SMAs depends not only on the loading conditions, but
also the material geometry, which likely has implications on the failure and fatigue behavior
of the material; and
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• the stiff–soft–stiff uniaxial behavior of SMAs can cause nonintuitive behavior (such as un-
buckling), suggesting there may still be behaviors unique to SMAs that have yet to be ob-
served (and understood).

Some assumptions commonly used in the modeling of metals, such as the Euler Bernoulli assump-
tion, appear to hold for SMA beams; however, there are still many that have yet to be confirmed.
It is therefore likely that a combined experimental and theoretical effort will be necessary to fully
understand the relevant phenomena found in SMAs and accurately/efficiently capture these phe-
nomena within the framework of a constitutive model.

8.2 Future Work

This work provides a foundation for more extensive modeling efforts in the future. The proposed
beam model was adopted due to the success of the Shanley column model in capturing unbuckling
behavior in superelastic SMAs; however, no other validation was provided to gauge the over-
all performance of the generalized model. The logical next step would therefore be to examine
the performance of the proposed model, using the uniaxial data from Sections 2.3.1 and 2.3.2
and Chapter 3 to calibrate the model and the pure bending and buckling data from Sections 2.3.3
and 2.3.4 to examine the performance capabilities.

In addition to model validation, an appropriate model calibration technique needs to be devel-
oped. A likely candidate is a secant modulus based technique that uses the uniaxial response (both
in tension and compression) of the material to determine the tangent moduli and trilinear sectioning
for the model; however, fitting a sharp cornered trilinear material law to the actual smooth uniaxial
data leaves room for interpretation (especially in the case of the compressive response). Ideally,
some form of procedure would be developed to address this issue.

Even in the case that a robust calibration procedure can be devised, there are still issues asso-
ciated with gathering the necessary experimental data to perform the calibration. Both the com-
pression and composite tension experiments require custom and intricate fixturing which are likely
beyond the means of most people interested in calibrating an SMA model (especially design-
ers). This begs the question: “what are the effects of neglecting the up–down–up tensile response
and compression asymmetry?” In all likelihood, the effects of neglecting the up–down-up ten-
sile response are small, especially in compression dominated loading; however, the large tension-
compression asymmetry found in SMAs probably plays a significant role in the overall behavior.
It would therefore be desirable to develop a robust calibration technique which only requires basic
testing equipment. One such possibility is the use of inverse–based calibration; for example, see
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Garbowski et al. [2012].

With the validation and calibration studies completed, the next step would be to generalize the
current model to three–dimensional “space rods”. This would allow for the modeling of three–
dimensional structures such as stents and cables. The transition from two dimensions to three
dimensions requires an understanding of the twisting behavior of the material, along with the
interaction between twisting, bending and uniaxial loading. Multi–axial experiments will therefore
be necessary to better understand the primary phenomena of interest.

These are just a few possible topics that could be pursued in light of the work presented here on
quasistatic isothermal loading. Beyond these conditions, topics such as temperature dependence,
cyclic behavior, and shape memory behavior are of interest, along with the development of a
general three–dimensional model. Therefore, much work still needs to be done to realize robust
constitutive laws for the modeling and design of SMA structures.
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