
Not All Gestures Are Created Equal: Gesture and Visual
Feedback in Interaction Spaces

by

Qi Yang

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in the University of Michigan
2015

Doctoral Committee:
Assistant Professor Georg Essl, Chair
Professor Mark S. Ackerman
Associate Professor Sile O’Modhrain
Associate Professor Gregory H. Wakefield

For mom and dad

ii

ACKNOWLEDGEMENTS

I would like to thank my advisor Georg Essl for his unwearying support, guidance and

counsel in the last five years, in addition to steering me in the right direction and tirelessly

reading many of my drafts. I would also like to thank my dissertation committee members

Mark Ackerman, Sile O’Modhrain, and Gregory Wakefield for their guidance. I am grateful

for their rigorous, and tremendously valuable insights, which are crucial to the formation

and completion of this thesis.

I would like to thank my colleagues in the sound lab which include James Juett, Sang

Wang Lee, Didi Zhang, Xin Fan, and Antonio Deusany de Carvalho Junior. They were my

sounding boards and mirrors, and compatriots in this journey through graduate school.

Our conversations were a source of both academic enlightenment and encouragement. In

particular, I owe a special thank you to Taylor Cronk for his contribution on the event-action

backend in Tapperware. Many ideas in Tapperware (described in Chapter VI) also owe their

inspiration to an earlier unpublished project urVen.

I would like to thank my editor Brooke Horton for smoothing out the following pages

and polishing my unwieldy language. I would also like to thank Nancy Wu, Ciara Reyes,

Max Radin and Mark Dong for lending me your tireless eyes for proofreading. I want to

acknowledgemy friendsMax Radin, Yuanyuan Zhou, Jasmine Jones for bravely volunteering

for our pilot studies.

I would like to thank my brothers and sisters in faith from Harvest Mission Community

Church of Ann Arbor (HMCC) and the HMCC graduate student fellowship Impact for root-

ing and praying for me, as well as participating in some of the studies presented. A special

iii

shoutout to Sinsar Hsie, John Wang, Victor Wong, Kevin Meng and Jeffery Yeung for be-

ing like brothers to me. In addition, I would like to thank the friends at American Friends

Service Committee, my musical collaborators of the Ann Arbor Fruit Preservation Society

and the University Carillon Studio. Thank you for giving me opportunities to explore my

passions.

I want to acknowledge a few institutions at the University of Michigan, namely the

Department of Computer Science and Engineering, the Rackham Graduate School, and the

Center for Statistical Consultation and Research for all their generous support and advising.

I would also like to thank the Natural Sciences and Engineering Research Council of Canada

for their generous support.

Finally, I would like to give thanks to Mom and Dad. No amount of ink or characters

spilled here could express my gratitude to you, and without you, none of this would have

been possible. Gracias Ciara, thank you for being with me through the end of this journey.

Soli Deo gloria,

Qi Yang

May 2015

iv

TABLEOF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . viii

LIST OF TABLES . x

ABSTRACT . xi

CHAPTER

I. Introduction . 1

1.1 Thesis Overview . 2
1.2 Thesis Contribution . 3
1.3 Thesis Outline . 5

II. Background . 7

2.1 Proliferation of Gestural Interaction 7
2.2 Interactions on Modern Mobile Devices 8
2.3 Multi-Touch on Mobile . 9
2.4 Feedback for Gesture Interfaces . 11

III. Gesture Augmented Piano and Visualization 12

3.0.1 Keyboard as Interface . 12
3.0.2 Visual Association in Gestural Interface 14

3.1 Related Works . 15
3.1.1 Visualization . 16
3.1.2 Evaluation Methods . 17

3.2 System Implementation . 18
3.2.1 Extended playing technique 20

3.3 Human Subject Study . 21

v

3.3.1 Experiment Design . 22
3.3.2 Participants . 24
3.3.3 Results . 25

3.4 Visual Associations in Gesture Space 31
3.4.1 Positioning the Visual in the Interactive Loop 31
3.4.2 Examples of Visualization Feedback 32
3.4.3 Explanation through Visuals 35
3.4.4 The Purpose of Visuals 37

3.5 Conclusion . 38

IV. Visual Programming Environment on Multi-touch 40

4.1 Introduction . 40
4.2 Related Works . 41

4.2.1 Visual Programming . 42
4.2.2 Multi-Touch Interfaces . 43
4.2.3 Mobile Multi-Touch Programming 45
4.2.4 Visualization for Gestures 47
4.2.5 Impact of Device Size . 48

4.3 Representation & Interaction Design 48
4.3.1 Shared Grammar . 49
4.3.2 Visual Representation and Interaction Modes 51
4.3.3 Considerations in Touch-Based Interaction 57

4.4 Experiment . 58
4.4.1 Design . 59
4.4.2 Recruitment . 62
4.4.3 Results . 63

4.5 Conclusion . 70

V. Fitts’s Law and Occlusion on Touch Screen Drag Motions 73

5.1 Background . 74
5.1.1 Fitts’s Law . 74
5.1.2 Occlusion . 76

5.2 Experimental Design . 77
5.2.1 Data Collection . 80

5.3 Data Analysis . 81
5.3.1 Data cleaning . 81
5.3.2 Movement Time . 81
5.3.3 Error Rate . 82
5.3.4 Fitts’s Law Model . 83
5.3.5 Time Effects . 85

5.4 Discussion . 86
5.5 Conclusion . 88

vi

VI. Tapperware: Implementation . 90

6.1 Overview . 90
6.2 Programming Primitives . 91

6.2.1 Region . 91
6.2.2 Link . 94
6.2.3 Group . 96

6.3 Graphical User Interface . 97
6.3.1 Gesture Recognition and Visualization 98
6.3.2 Utilities . 100

6.4 Summary . 100

VII. Conclusion . 101

7.1 Contribution . 102
7.2 Future Research . 105

BIBLIOGRAPHY .107

vii

LIST OF FIGURES

Figure

2.1 The on-screen software keyboard on iPad 9

3.1 Configuration of the Augmented Keyboard 17

3.2 Hand gesture recognition in Augmented Keyboard 19

3.3 Data flow of the Augmented Keyboard . 20

3.4 Visual feedback generated based on hand detection 21

3.5 Musical passages used for keyboard performance study 23

3.6 Effect of learning in keyboard performance study 26

3.7 Comparison of jitter in gestures . 28

3.8 Excerpts of open-ended responses from participants 30

3.9 Example visualizations in Augmented Keyboard 32

3.10 A typical strumming gesture over the harp visualization 33

3.11 Reaction of the Flock visualization to user gestures 34

4.1 The wide range of mobile touch screen device size 41

4.2 Common multi-touch gestures on iOS . 44

4.3 Basic elements of the multi-touch visual programming environment 49

4.4 The interface for changing a region’s texture 50

4.5 Menu representation mode . 52

4.6 Creating link in menu mode . 53

4.7 Icon representation mode . 54

4.8 Drag gesture handle in Icon mode . 55

viii

4.9 Gesture mode . 55

4.10 Drag-and-drop grouping gesture in Gesture mode 56

4.11 Coping gesture in Gesture mode . 57

4.12 Gesture-driven menu in Gesture mode 58

4.13 Piano keyboard layout built with our programming environment 59

4.14 Music mixer interface built with our programming environment 60

4.15 Task Completion Time Wait Time in visual programming study 64

4.16 Sample trace of drag gestures for one participant 66

4.17 Gestures trace for all participants . 67

4.18 Effect of time in visual programming study 68

4.19 Likert scale questionnaire in visual programming study 70

5.1 Target distances and target sizes in relation to screen sizes, in scale 78

5.2 Two dragging direction used in the dragging task 81

5.3 Mean Movement Times of touch screen drag motions 82

5.4 Error rate of touch screen drag motions 83

5.5 Fitts’s Law modeling using unadjusted ID 84

5.6 Fitts’s Law modeling using adjusted IDe 85

5.7 Throughput of touch screen drag motions 86

5.8 Effect of time analysis in drag motions . 87

6.1 Overview of the software components of the programming environment . . 91

6.2 An urMus region with size, position and texture configured 92

6.3 Tapperware region class . 93

6.4 Link class diagram . 95

6.5 Composition of layers in the graphical interface of Tapperware 97

6.6 Gesture state machine examples . 99

ix

LIST OF TABLES

Table

3.1 All mapping configurations of gestures and physical wheels used in the study 23
3.2 Classification of visualizations and the interface with respect to their func-

tions for performer and audience. 37
4.1 List of cognitive dimension questions . 70

x

ABSTRACT

Not All Gestures Are Created Equal: Gesture and Visual Feedback in Interaction Spaces

by

Qi Yang

Chair: Georg Essl

As multi-touch mobile computing devices and open-air gesture sensing technology become

increasingly commoditized and affordable, they are also becoming more widely adopted.

The expanding utility of these technologies makes it necessary to create new interaction

design, specifically for gesture-based interfaces, to meet the growing needs of users. How-

ever, a deeper understanding of the interplay between gesture, and visual and sonic output

is needed before meaningful advances in design can be made. This thesis addresses this

crucial step in development by investigating the interrelation between gesture-based input,

and visual representation and feedback, in gesture-driven creative computing.

This thesis underscores the importance that not all gestures are created equal, and there are

multiple factors that affect their performance. For example, a drag gesture in multi-touch

visual programming scenario performs differently than a similar drag gesture in a target

acquisition task. The work presented here (i) examines the role of visual representation

and mapping in gesture input, (ii) quantifies user performance differences and similari-

ties in gesture input to examine the effect of multiple factors on gesture interactions, and

(iii) develops tools and platforms for exploring visual representations of gestures. A range

of gesture spaces and usage scenarios from continuous sound control with open-air ges-

xi

tures to mobile visual programming with discrete gesture-driven commands was assessed.

Findings from this thesis show that performance in gesture interactions is dependent on

multiple interacting factors such as the mapping of gesture to sound, device size and the

task scenario.

The work in this thesis reveals a rich space of complex interrelations between gesture

input and visual feedback and representations, which enables both immediate design so-

lutions and further exploration of concepts. The contributions of this thesis includes the

development of an augmented musical keyboard with 3-D continuous gesture input and

projected visual feedback, as well as a visual touch-driven programming environment for

interactively constructing dynamic interfaces. These designs were evaluated by a series of

user studies in which gesture-to-sound mapping was found to have a significant affect on

user performance, along with the selection of visual representation. A number of counter-

intuitive findings point to the potentially complex interactions between factors such as de-

vice size, task and scenarios, which exposes the need for further research. For example,

the size of the device was found to have contradictory effects in two different scenarios.

Furthermore, this work presents a multi-touch gestural environment to support the proto-

typing of gesture interactions.

xii

CHAPTER I

Introduction

Personal mobile devices with touch-screens as the main interface have become common-

place and more prevalent than traditional personal computers (as of 2014, over 76% of

American adults under the age of 30 own a smartphone (Zickuhr and Rainie, 2014)). The

commoditization of open-air gesture sensing technology such asMicrosoft Kinect (Microsoft,

2013) or Leap Motion 1 has also brought gesture interactions to new domains of applica-

tions. As a result, gesture-based inputmethods are becoming popular due to thewidespread

adoption of multi-touch and open-air gesture sensing technology in consumer electronics.

Gesture-capable devices require gesture-based interaction modes, where gestures replace

or complement traditional interaction methods. These new hardware developments call for

new interaction designs, and also enabled the development of more natural user interfaces

beyond the keyboard-mouse paradigm (Buxton, 1991).

Another trend growing in parallel to the wide adoption of gesture-capable devices is

the more personal, intimate, and creative use of computing power in consumer mobile

devices such as smartphones and tablets. In fact, a large portion of the popular mobile

applications is creative and allows artistic expression (Instagram, Pinterest, Magic Piano 2,

and etc.). The ubiquity of these platforms creates an opportunity to empower the general

public. More natural interfaces, which reduce the friction of personal expression and allows
1https://www.leapmotion.com
2respectively http://instagram.com, https://www.pinterest.com, http://www.smule.com/apps

1

https://www.leapmotion.com
http://instagram.com
https://www.pinterest.com
http://www.smule.com/apps

the author to have complex and interactive experiences, could be instrumental in allowing

this computational power to be fully exploited.

Currently, gesture-capable consumer platforms such as mobile multi-touch devices or

Kinect-like open-air gesture spaces have a gestural vocabulary limited to tap, pinch, or swipe.

The design of more complex gestures is an area of active exploration. By replacing and/or

augmenting existing interaction models with gesture, there is potential to broaden the ex-

pressive power of existing devices, thus enabling new, more personal and creative use-cases.

For example, in the domain of augmented musical instruments, gesture controls and novel

sensors are used to complement traditional physical controls (see Miranda and Wanderley

(2006) for an overview). Feedback mechanisms are integral to the success of user inter-

face. Previous works have explored many feedback methods for gesture interactions, from

visual (on-screen guides, silhouettes) to tactile and audio feedback (Charbonneau et al., 2011;

Sodhi et al., 2012; Schönauer et al., 2012; Bark et al., 2013). Similar to the traditional keyboard-

mouse paradigm, visual feedback is most readily available for gesture interfaces due to the

availability of displays (via screens or projections) and the versatility of dynamic on-screen

interface elements. However, visualization for gesture interfaces is still not as well un-

derstood as more traditional interaction methods such as the keyboard and mouse. This

deficient in knowledge is the guiding motivation for this thesis.

1.1 Thesis Overview

In this thesis, we investigated the interrelation between (i) visual representation and feed-

back, and (ii) gesture-based input across a range of interaction spaces, with a focus on

the domain of creative computing. To complement previous research on the mechanics of

gesture input and the design of visual feedback, we focused on the joint consideration of

gesture interfaces and visualizations on multiple levels. In particular, we examined how

both gestures and visuals combine to explain and guide interactions.

Visuals are essential as the primary representation of gesture interfaces and the feedback

2

mechanism. We studied the visual representation specifically situated in the domain of

musical performance andmobile programming. We also considered a range of gesture space

sizes from large open-air gestures to finer drag gesture on mobile devices. The gestures are

considered in these different spaces: (i) continuous hand and arm open-air gestures in a

performance scenario, where movement is mapped directly to continuous input parameters,

(ii) discrete gesture commands inmobilemulti-touch devices of differing form-factor, where

each gesture (such as tapping or dragging) activates the corresponding commands. Within

these gesture spaces and contexts, we explored how visual representation of the interface

affects the user’s perception, preference and performance through a series of user studies.

Our work is distinctive from the works such asHofmeester andWolfe (2012) and Bragdon et al.

(2010), which explored the role of visuals in a generic context in revealing and explaining

gesture interactions to users.

1.2 Thesis Contribution

Our central research question is:

Which aspect(s), if any, of visual feedback and sonic mapping affects the efficacy of gesture-based

interaction in creative computing?

This concentration leads to the following specific goals:

1. Examine the role of visual representation andmapping in real-time continuous gesture-

to-input-parameter interaction, and discrete gesture-driven commands.

2. Quantify user performance in gesture input across a range of interaction spaces to

examine the effect of multiple factors on gesture interactions.

3. Develop tools and platforms for exploring visual representations of gestures.

The main finding of this thesis is that not all gestures are created equal. We found that not only

is the performance of gesture input affected by factors such as the mapping of gesture to

3

sound and device size, the effects are also dependent on the condition and task. The specific

contributions made in this thesis are as follows:

Open-air gestures versus physical interface in musical performance

We evaluated open-air gestures versus physical wheel control in the context of a pro-

totype gesture-augmented musical keyboard instrument. Our real-time musical per-

formance user study showed that the selection of gesture mapping is crucial for per-

formance and expression, and that users reported greater enjoyment using the gestu-

ral interface thani the traditional physical wheel controls. They also reported similar

or higher capacity for expressiveness when using the gestural interface. This study is

detailed in Chapter III.

Visualization design for open-air gesture performance

We developed a series of visualization examples to explore the role of visuals in real-

time gesture performance using the augmented keyboard instrument described above.

We developed a framework for explaining themechanics of the interactions by varying

the physical placement and temporal-causal relations between visuals and gestures.

This is described in Section 3.4.

Gesture and visual representations in mobile visual programming

We examined the effect of different styles of visual representation between gesture-

based interfaces and more traditional text and icon based interface, as well as device

size with a touch-driven visual programming environment. We conducted a user

study and found significant differences in user preferences and performances, with

respect to the visual representations and also device form-factor. Differences in device

sizes affected performance in an unexpectedway: smaller devices withmore restricted

screen space leads to better performance on visual programming tasks. To the best of

our knowledge there are no existing comparative user studies on visual programming

on multi-touch devices. This is detailed in Chapter IV.

4

Device size, occlusion on drag gesture motor performance

To further investigate the effect of device size and occlusion on mobile multi-touch

devices, we present a follow-up user study to quantify these effects on touch-screen

dragging motions in Chapter V. We found that drag motions can be modeled by

Fitts’s Law and that device size and possible occlusion significantly affects perfor-

mance. Based on the previous study, we hypothesized that devices with smaller

screens would allow users to perform better. However, we found that smaller screens

lead to significantly slower drag motion, possibly due to a difference in perceived user

confidence. We also found that more occlusion in the task condition leads to faster

performance with a lower accuracy.

Framework for prototyping multi-touch gestures on mobile

We present Tapperware, a multi-touch gestural environment to support prototyping of

gesture interactions, which enabled the mobile visual programming study mentioned

above and expounded upon in Chapter IV. Based on an existing cross-platform audio

programming framework urMus(Essl, 2010b), we built a visual environment where

different multi-touch gestures can be specified through a state machine, as well as

modularized architecture that allows visual feedback to be developed separately. The

implementation details of this framework are discussed in Chapter VI.

1.3 Thesis Outline

The organization of this thesis is as follows:

Background

Chapter II provides an overview of the previous work in areas of gesture interactions,

the role of various feedback mechanisms for gesture interactions, and multi-touch

interactions on mobile devices.

5

Gesture Augmented Piano and Visualization

Chapter III details the investigation of a prototype open-air gesture-augmented key-

board instrument. We present the implementation detail of this prototype as well as

a user study to compare different gesture mappings to traditional physical controls.

Later in this chapter, we show a series of visualization examples and a framework for

developing visuals within the same prototype instrument.

Gestures in Visual Programming Environment on Multi-Touch

Chapter IV presents a visual, touch-driven gestural environment for constructing dy-

namic interfaces. The same chapter also details the effect of varying visual represen-

tation and device form-factor on user performance based on a user study examining

visual programming.

Touch-screen Drag Motion Study

Chapter V presents a follow-up user study to the previous chapter to quantify the

effects of occlusion and device size on touch-screen dragging motions, using Fitts’s

Law of human movement as a model.

Implementation of the Visual Programming Environment

In Chapter VI we describe the system architecture of Tapperware, a multi-touch vi-

sual programming environment. We show how it can be used for prototyping multi-

touch-driven interfaces.

Conclusion

In Chapter VII we summarize the contribution of this thesis to the current field of

work and discuss directions for future research.

Portions of Chapter III have been published in Yang and Essl (2012), Yang and Essl (2013),

and Yang and Essl (2014). Parts of Chapter IV have been accepted at NIME15, and we plan

to submit results of the user studies in Chapter IV and Chapter V for publication in the

near future.

6

CHAPTER II

Background

Gesture-based input is becoming popular due to the widespread adoption of multi-touch

and open-air gesture sensing technologies. Mobile devices with touch screens as the main

interface have become common-place and the commoditization of open-air gesture sensing

technologies such as Microsoft Kinect (Microsoft, 2013) or Leap Motion 1 has opened a new

domain of motion based interactions. These new hardware developments call for new in-

teraction designs beyond the keyboard and mouse in traditional PCs. While the adoption of

these technologies is recent, there is a rich body of work in the past several decades on ges-

ture interaction, multi-touch interaction as well as visualization as a feedback mechanism

in interfaces.

2.1 Proliferation of Gestural Interaction

Gesture-based input is increasing in popularity as an alternative interaction model for com-

puting devices. The adoption of affordable smartphones and tablets is outpacing traditional

personal computers (Milanesi et al.). At the same time, popular gaming systems are making

more use of gesture as part of their interface (e.g. Nintendo Wii, Playstation Move and Mi-

crosoft Kinect). These new trends have led to a new generation of users who, having grown

up using these computational devices instead of traditional PCs, are more accustomed to
1https://www.leapmotion.com

7

https://www.leapmotion.com

gesture being part of the interaction vocabulary. In some cases gesture-based input has also

supplanted the traditional mouse-keyboard and physical controllers.

2.2 Interactions on Modern Mobile Devices

On personal mobile devices such as smartphones and tablets, the gesture on multi-touch

screens has become the standard interaction method. Interactions on these devices are

generally characterized by:

• Portability (screen size of 4′′ – 10′′)

The portability of the device enables more ubiquitous usage in contrast to traditional

desktops or laptops. This further encourages more personal use-cases, such as en-

tertainment or creativity. The wide range of screen sizes also potentially enables or

hinders different types of usage.

• Multi-touch capable touch screen as the primary user interface

The lack of a physical keyboard or other physical buttons for primary interaction

presents a unique interaction model where almost all interactions occur via touch.

Unlike a physical keyboard, the virtual on-screen elements, such as buttons or slid-

ers, can be changed dynamically through software.

The smaller size of these devices means that even the largest at 10′′ is significantly smaller

than desktops (20′′ or larger) or laptops (13′′–15′′), which have more than twice the area.

Furthermore, most touch screen mobile devices do not have a physical keyboard and rely on

a virtual on-screen keyboard for text input. When activated, the software keyboard interface

takes up further space on the screen (Figure 2.1), allowing for even less screen space for

software interfaces.

These factors limit the efficacy of using traditional software UI, since restricted screen

size and lack of a physical keyboard make it difficult to use the keyboard-mouse-driven

8

interfaces found on a PC. The touch-driven hardware interface is an opportunity for new

interaction design paradigms based on gestures.

Figure 2.1: On typical tablet such as the iPad,
the on-screen keyboard takes almost half of
the screen space when activated, leaving only
54% of the space for applications.

The portable nature of mobile devices

encourages new use-cases that are more

personal than traditional computing de-

vices. The class of popular mobile applica-

tions (e.g. social networks, photo-sharing

applications such as Instagram2, or creative

games such as Magic piano3) points to the

general public’s growing interest in creativ-

ity and personal artistic expression. Given

their growing ubiquity over PCs (as of 2014

over 76% of American adults under the age

of 30 own a smartphone (Zickuhr and Rainie,

2014)), mobile devices are well-positioned to potentially further empower the general pub-

lic in the domains of personal expression and creativity. However, their computational

power has yet to be fully exploited.

2.3 Multi-Touch on Mobile

Multi-touch interactions differ from the traditional keyboard and mouse model in several

ways. For example, on a desktop computer, the keyboard is usually used for text input, and

themouse (and arrow keys on a keyboard) is used for precise selection of on-screen elements

such as buttons and menu items. However, on a multi-touch mobile device, both tasks are

done using touch. Compared to the mouse, touch input has performance advantages as a

pointing device in accuracy and throughput of target acquisition (Sasangohar et al., 2009)
2http://instagram.com
3http://www.smule.com/magicpiano

9

http://instagram.com
http://www.smule.com/magicpiano

and when bimanual interaction is preferred (Forlines et al., 2007). However, in addition to

occlusion by the user’s hand or finger (Nacenta et al., 2009) (or the “fat-finger” problem

(Cockburn et al., 2012)), when finger tips are used for selection or pointing, the precision of

touch is lower than a mouse cursor. As a result, interactive regions on a touch screen have

to be larger than on a desktop to provide targets that are easy to hit accurately (Vogel and

Baudisch, 2007). The average index finger is between 16–20mmwide (Dandekar et al., 2003).

Previous work and developer guidelines have recommended 22mm as the minimal diameter

for touch targets. This minimum size varies depending on the spacing between the targets

(Hall et al., 1988; Scott and Conzola, 1997). Recent developer guidelines have recommended

a minimum of 9mm (Apple Inc., 2013; Google Inc., 2013).

These differencesmean that the traditional mouse-based user interface cannot be ported

to touch devices directly. For example, in a text editor, both text selection and movement

of the text entry cursor will be difficult since touch input is less accurate at pointing at a

precise location. The finger used for pointing will also obscure the text content that the user

needs to see. This is a known problem and solutions such as Vogel and Baudisch (2007) have

been proposed. As a result, touch interfaces have increased the size of interactive elements

such as buttons and controls, exacerbating the limitation of smaller screens.

In the case of text entry, typing speed and accuracy afforded by virtual software key-

boards on touch screens also suffers compared to physical keyboards. The typing speed on

a full-sized mechanical keyboard averages roughly 60 words-per-minute (WPM), or higher

with experience (Grudin, 1983; Roeber et al., 2003). Chaparro et al. (2010) found that the aver-

age typing speed on iPad’s virtual keyboard (which is the same size as a physical keyboard)

is significantly slower at 42WPM, with similar error rates (1–2%). On smaller touch screen

devices (screen size smaller than 7′′), the on-screen virtual keyboard is significantly smaller

than the regular physical keyboard, and as a result typing with all fingers becomes difficult

or impossible. On most phones for example, screen sizes range from 3.5′′ to 4.5′′, and the

virtual keyboards are designed to be used with just two thumbs. Since the on-screen key-

10

board is software based, touch zone location and size usually has to be predictively adjusted

according to language models, and most devices autocorrect the user’s input to reduce er-

rors. The average typing speed on a mobile phone touch screen is roughly 30 WPM (Goel

et al., 2012).

Most consumer touch-based software and operating system vendors also make use of

gestures such as tap and hold, swipe and pinch/stretch in addition to on-screen buttons that

respond to a simple tap. However, these novel gestural interaction methods are criticized

due to their poor visibility, discoverability, learnability, and consistency (Norman and Nielsen,

2010). These differences mean that the traditional mouse-based user interface cannot be

ported to touch devices directly, and new gesture-centric user interface is needed.

2.4 Feedback for Gesture Interfaces

The feedback mechanisms for these gestural interaction methods remain an open space

with a range of approaches from on-screen guides or silhouette (Charbonneau et al., 2011),

on-hand projections (Sodhi et al., 2012), to wearable tactile feedback (Schönauer et al., 2012;

Bark et al., 2013). Despite these works, which we will discuss in more detail in Chapter III

and IV, the visualization of gesture interfaces is still not as well understood as traditional

interaction methods such as the keyboard and mouse, and there remains space for explo-

ration.

To fully exploit the power of gestural interactionmethods, Donald Norman called for the

development of a standardized convention for gestural interfaces, so that the visualization

would “follow the basic rules of interaction design”. This would take into account explicit

feedback to aid the discovery of possible gesture commands and to explain the dynamics of

their execution (Norman, 2010).

11

CHAPTER III

Gesture Augmented Piano and Visualization

Musical keyboards are musically expressive and are well suited for discrete note perfor-

mance. However, smooth adjustments of performance parameters that are important for

digital synthesizers or samplers are difficult to achieve. Since the 1970s, such adjustments

have often been achieved using pitch and modulation wheels at the left side of the key-

board. Contemporary gestural sensor technology makes it increasingly easy to offer contin-

uous inputs, and gestures’ potential for expressivity makes it an ideal candidate for music

performance. We augmented the musical keyboard with a 3D gesture space using the Mi-

crosoft Kinect (Microsoft, 2013), an infrared based depth camera for sensing and top-down

projection for visual feedback. This interface provides 3D gesture controls to enable contin-

uous adjustments to multiple acoustic parameters such as those found on the typical digital

synthesizers. Using this system we conducted a user study to establish the relative merits

of free-hand gesture motion versus traditional continuous controls. We also explored the

design space of potential visual feedback for this open-air gesture interface.1

3.0.1 Keyboard as Interface

The popular piano-style musical keyboard enables the player to address multiple discrete

pitches concurrently and directly. In contrast, wind instruments produce a single pitch at a
1Content of this chapter has been published in Yang and Essl (2013, 2014)

12

time and require complex chorded fingering. Further, in string instruments such as violin or

guitar, polyphony is limited by the number of strings, and by the geometry of the hand that

provides the fingering. Also, the initial activation and reactivation of notes on a keyboard

does not require preparation such as stopping the strings or activating multiple valves on a

wind instrument.

Despite the ease of keyboard playing, it does came with drawbacks. After the onset of

each note, the player has limited control of the quality of the sound. This is in contrast

to bowed or wind instruments, which have a range of expressive timbre controls after the

onset of each note. In the case of the traditional piano, limited timbre controls are provided

by pedals to dampen of the strings and therefore the amount of sympathetic resonance

between strings.

The pipe organ does offer means of timbre control through knobs or tabs, commonly

referred to as organ stops. The player pushes or pulls on the stops to discretely activate

or mute different sets of pipes, changing the timbre of the sound produced by actuating

the keys. Pipe organs have developed a wide range of timbres that are enabled by different

combinations of pipes, but the physical interface has seen little change, as the the stops are

not designed for timbre changes while keys are being held down (more recent pipe organs

allow configurations to be saved in advance and loaded during the performance), while the

crescendo and swell foot pedals provide limited continuous timbre controls.

Digital synthesizers, sampler instruments and MIDI controllers usually feature a key-

board for pitch selection and note activation. For parameter adjustment during live perfor-

mance, they traditionally feature one or two wheels (or in some cases joysticks) next to the

keyboard for modulation or pitch bending control. We want to see if open-air hand gestures

provides better means of adjustment during live performance.

It is easy to perform continuous gestures using hand motions in space, hence they make

a good candidate for real-time continuous timbre control especially in improvised music.

At the same time, gestures of musicians can be musically expressive and aesthetically pleas-

13

ing, even when not instrumental in producing the actual sound. The expressivity of gestural

control makes it a natural fit in music domain and the utility of capturing these gestures for

musical performances is recognized (Rovan et al., 1997). Theremin, an early purely gesture-

based instrument, uses antennas to sense hand position, also requires a high level of skill to

play (Paradiso, 1997). Gesture controls are used often for other theremin-like music instru-

ments or to augment traditional instruments (Wanderley and Depalle, 2004). More recently,

Kinect offers affordable 3D sensing to be used to build gesture-based interfaces for music

(Yoo et al., 2011; Berg et al., 2012), and for augmenting acoustic instruments (Odowichuk et al.,

2011).

Our prototype system uses an off-the-shelf depth camera to track a range of hand mo-

tions, positions and gestures in real-time, making it suitable for live performance and the

goals of this paper. The sensing of position and hand-width creates a space with multiple

continuous degrees of freedom, allowing multiple parameters to be controlled simultane-

ously. The gesture space also allows either hand to be used for hand gesture controls, in

contrast to the fixed location of pitch and modulation wheels on the left of a standard MIDI

keyboard.

3.0.2 Visual Association in Gestural Interface

In a gestural digital instrument such as our gestural-augmented keyboard, we can arbitrarily

configure the relationship between input and output. Nothing in computation requires one

choice over another. This in principle leaves it open how to choose a mapping between

input and output. However this choice of mapping is what in various ways defines the

instrument. This is a canonical problem in new music instrument design known as the

“mapping problem” (Miranda and Wanderley, 2006).

An important part of the mapping problem relates to our natural experience of acoustic

instruments. An acoustic instrument “explains itself” to the performer and the audience.

It enable the performer to associate the act of initiating sound by physical interactions until

14

these actions become muscle memory, and performance becomes intuitive. This is facil-

itated by the pure physical interfaces and how sound are produced in these instruments.

The act of pressing a physical key or blowing into a wind column is directly associated with

the initiation of the sound, as are the actions that affect the timbre during the sound pro-

duction, such as varying the pressure and speed of bowing on a string instrument. Hence

acoustic instruments tend to suggest a kind of causation that can be consistently experi-

enced and learned. In this sense a new music instrument should strive to explain itself to

both the performer and the audience.

Using the augmented keyboard prototype, we also explored the question of visuals as

part of the gesture interaction loop to aid this explanation. We explored possible choices

and functions of visual in this setup using some examples we constructed, and suggest some

broader views from these perspectives.

3.1 Related Works

Our system draws on the augmentation of established traditional musical instruments, and

continuous controls for musical instruments with gestures. Both fields have both extensive

prior works and we refer the reader to comprehensive reviews (Paradiso, 1997; Miranda and

Wanderley, 2006).

How to best support continuous control in conjunction with the keyboard interface is a

longstanding problem and has seen many proposals. When designing the first hard-wired

commercial analog synthesizers, Bill Hemsath in collaboration with Bob Moog and Don

Pakkala invented the pitch and modulation wheels (Pinch and Trocco, 2004), which became

the canonical forms of continuous control on electronic keyboard interfaces ever since. Early

analog synthesizers had many continuous controls via rotary potentiometers and sliders,

but in many canonical cases the pitch and modulation wheels were the only ones that sur-

vived the transition to digital synthesizers. However, continuous control in keyboard per-

formance remained an important topic. Moog (1982), later with collaborators Rhea (Moog

15

andRhea, 1990) and Eaton (Eaton andMoog, 2005) experimented for decades with prototypes

to add continuous control to the surface of the keys themselves. This idea has also been

explored by Haken and Tellman (1998), Lamb and Robertson (2011), McPherson and Kim (2010)

and McPherson (2012).

Another idea that has been proposed is the augmentation of the action of the key itself.

The classic aftertouch, where extra levels of control are available once the keys are fully

depressed, is an early example of this (Paradiso, 1997). Precise sensing of key position can

be achieved through various means such as optical interruption sensing (Freed and Avizienis,

2000). More recently, McPherson and Kim (2011) described the augmentation of traditional

piano keys through a light-emitting diode sensing mechanism that is capable of inferring

performance parameters from the key action.

3.1.1 Visualization

The relationship between sound and visual display has taken a central place digital music

instrument design. The work of Sergi Jorda (Jordà, 2003) on tangible interface and Golan

Levin’s work on shape based projection interaction serve as examples that inspired the way

we attack these questions. Levin’s Manual Input Workstation (Levin and Lieberman, 2005)

most immediately inspired our thinking, using real-world physical metaphors to “explain”

the gestures. He used camera combined with overhead projection to construct a shape-

based performance system that included sound.

More broadly, similar setup are used on large-surface multi-touch displays, as pioneered

by Han (2005). Davidson and Han (2006) demonstrated the use of virtual control elements

(onscreen sliders, knobs) for sound synthesis interface. In an effort to reveal the mechanics

of a digital instrument to audiences, manymusicians use video projection of the instrument,

or crafted visualization such as ROUAGES (Berthaut et al., 2013).

Closest in setup to our system are Takegawa et al. (2011) who added top-down projection

to a musical keyboard in order to provide score visualizations, and Rogers et al. (2014) which

16

Figure 3.1: Configuration of the Augmented Keyboard

uses the same projection for performance feedback and pedagogy, but neither make use of

open-air gestures.

3.1.2 Evaluation Methods

In addition, literature on evaluation methodologies exist for designing digital music in-

struments. Notably Wanderley and Orio (2002) suggested using musical tasks and adapting

human computer interaction methodologies for evaluating input devices in the area of mu-

sic instrument evaluation. O’Modhrain (2011) proposed a framework where the roles and

goals of different stakeholders (such as the audience, performer, manufacturer and etc.) of

the musical instruments are all considered for the evaluation of instrument designs. Jordà

(2004) proposed a measure of efficiency of musical instruments based on the expressive

power and diversity, and complexity of the input interface. Our evaluation draws ideas

fromWanderley and Orio (2002) by using HCI performances metrics of input devices with a

well-defined musical task.

17

3.2 System Implementation

Our system uses a Kinect depth camera and a video projector installed above a MIDI key-

board, facing down towards the keyboard (Figure 3.1). The Kinect depth camera, projector

and keyboard are connected to a single computer which processes the sensor data from

Kinect and MIDI data from the keyboard, while controlling a software synthesizer to pro-

duce the sound. A white projection surface placed above the keyboard allows a clear view

of the projected visual feedback.

The Kinect depth camera is used to capture three-dimensional data on the gesture space,

in the form of an 11-bit monochrome, 640×480-pixel video stream sampled at 30 Hz, with

the brightness indicating the distance from the camera. This video stream is passed through

background and noise removal and fed into a blob-detection algorithm using OpenCV (Cul-

jak et al., 2012). The blob-detection algorithm used was based on labeling pixel contour

components (Chang et al., 2004). Using the initial keyboard setup as a background, the im-

age with the background removed is passed through blob-detection and we can then detect

the presence and position of the player’s arms as they enter the gesture space. We isolate

the player’s hand positions by capturing the extremity of their arms, and we use the cen-

troid of their hands as the position. Using the center of their hand as reference, we also

measure the distance to the camera, which in this case corresponds to the height of the

hand. (See Figure 3.2 for the stages of processing depth camera data) At the same time, we

can also compute the width of the hands to see if they are open or closed. The hand motion

trajectory inferred from this position is past through an averaging filter of five frames to

remove the jitter caused by the noise in the depth camera.

Using the Processing framework (Reas and Fry, 2006) as a bridge, the hand position data

is mapped to timbre control MIDI messages to be sent to a software synthesizer (Figure

3.3). MIDI note pitch and attack velocity messages from the keyboard are also sent to the

synthesizer. We also use Processing for visual feedback (Figure 3.4), which is projected

unto the surface beneath the gesture space. The detected location of the player’s hands is

18

Figure 3.2: Kinect video stream, depth camera stream, and image after background removed
with hand position derived from blob-detection.

19

displayed, as well as vertical and horizontal bars showing the gesture axes that are currently

active and their current values, and circles showing the size of the palm as well as the height

of player’s hands.

KINECT

Background
Subtraction &
Blob Detection

Hand
Position & Size

Synthesizer
Instrument

Pitch and attack velocity

Sound parameters

Piano Keyboard

Kinect Depth Camera

Video Stream

Audio
Output

Figure 3.3: Data flow of the Augmented Keyboard

Overall the latency in the system from Kinect sensor to displaying visualization and

MIDI control messages is estimated to be 174ms, with a standard deviation of 23ms, less

than the 33ms it takes for Kinect sensor to refresh. (Note that latency measurements were

conducted after a forced operating system update and may not fully reflect original user

study)

3.2.1 Extended playing technique

With our system, a keyboard player can play normally using both hands on the keyboard,

just as any traditional keyboard. For continuous gesture controls, the player canmove either

hand into the gesture space immediately above and behind the keyboard, while using the

other hand to continue playing simultaneously. The gesture space can also be configured to

20

Figure 3.4: Visual feedback generated based on hand detection

be directly above the keys on the keyboard itself, so any wrist motion or other hand gesture

during normal playing can be captured and used for continuous control.

3.3 Human Subject Study

We conducted a user study to evaluate how our system performs versus the physical con-

trols featured on conventional electronic keyboards. In addition, we wanted to examine

the mapping between gesture types and timbral parameters, as well as to study ergonomic

issues such as fatigue, learnability, and enjoyment.

21

3.3.1 Experiment Design

Our study consisted of two parts: a 45 – 50 minute playing session on the augmented

keyboard, and an exit questionnaire.

To test continuous timbre manipulation after onset, we asked each participant to play

three simple passages of monophonic melodies and chords on the keyboard, which require

only a single hand to play. At the same time, the participant was to move the other hand in

the gesture space to control one or two parameters of the synthesizer that affect the timbre

of the sound produced.

We chose a low-pass cutoff filter (henceforth “filter”, for brevity) and a tremolo (an

oscillation in amplitude but not pitch) effect to be applied to a generic synthesizer sound.

The two effects were chosen because they have distinct timbral effects even when applied

concurrently. A musical score of the passage is provided (see Figure 3.5), with timbral

effects marked as curves above the notes, with vertical position showing the amount of the

effect. The filter effect is notated as a slowly increasing or decreasing timbre change, while

tremolo are notated as a gradual increase to the maximum with a sharp cutoff soon after.

For comparison, we chose three distinct gestural axes to map to the two effects, as

well as two physical wheel controls on the electronic keyboard. We detected the left-right

movement of the player’s hand (X), the front-back movement (Y), and the width of their

hand (W, which changes when the hand is opened or closed, or alternatively when the wrist

is turned). For physical control, we detected the pitch bend wheel (wheel1) andmodulation

wheel (wheel2) on the keyboard. These were then mapped to one or two timbral effect

parameters. Similar to most MIDI keyboards, on the keyboard used for the experiment the

pitch bend wheel is spring loaded, while modulation wheel is not, and zero timbral effect

is always mapped to the neutral position on the spring-loaded wheel.

We tested all combinations of mapping one or two gestures to one or two effects using

a full factorial design. We did the same with mapping physical wheel controls to effects, in

total with ten configurations of control scheme mapped to a single effect, and eight config-

22

A

B

similar

C

c&# n

&

&

&

& ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑

œ œ œ œ œ œ œ œ w œ œ œ œ œ œ œ œ w

œ œ œ œ ˙ ˙ œ œ œ œ w

œ œ œ œ ˙ ˙ œ œ ˙ w

˙̇̇ ˙̇̇ ˙̇̇ ˙̇̇ ˙̇̇ ˙̇̇̇ ˙̇̇̇ ˙̇̇̇

filter tremolo

filter
tremolo

filter tremolo

tremolo
filter

Figure 3.5: Musical notation of timbral effects used for our study. Three passages of varying
difficulty are used.

urations of two controls mapped to two effects (See Table 3.1).

Low Pass
Filter

Tremolo

1
2
3
4
5
6
7
8
9

10

Y
Y

W
W

Wheel 1
Wheel 1

Wheel 2
Wheel 2

X
X

Factors Control Effect
Y Low Pass Filter
W Tremolo
X

Wheel 1 (Pitch Bend)
Wheel 2 (Modulation)

Low Pass
Filter

Tremolo

11
12
13
14
15
16
17
18

Y W
W Y

Wheel 1 Wheel 2
Wheel 2 Wheel 1

X Y
Y X
X W
W X

Config. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Filter

Tremolo

Y W Wh1 Wh2 X Y W Wh1 Wh2 X Y X W

Y W Wh1 Wh2 X W Y Wh2 Wh1 Y X W X

Table 3.1: All mapping configurations of gestures (X,Y,W) and physical wheels (Wh1-pitch
bend, Wh2-modulation) to the two effects (low-pass filter, tremolo). Each column is one
configuration, empty cell indicates that the effect is not used.

At each session, the participant was asked to fill out the screening survey. After a learn-

ing period of about 5 minutes to play the passages without using any timbral effects, the

configurations are presented. Since we recruited experienced piano players, the initial learn-

ing period of 5 minutes allows them to learn to play the simple passages fluently (which

only requires a single hand). Due to the length of each playing session, we anticipated that

23

not all participants are able to complete all 18 configurations. As a result we only presented

all configurations without the X gesture in randomized order first, then if there was time

remaining, the configuration containing X gestures were presented in randomized order

afterwards. During the actual study, out of the 22 participants, only two were unable to

complete all configurations, but we kept the partially randomized presentation order for all

participants for consistency.

For each configuration the participant was given one to two minutes to learn to play

the passage with notated timbral effects, and then play one last time after the participant

indicated that they feel ready to play, where their performance was recorded. This procedure

was repeated for all three passages. New configurations were introduced without pause

after each one was finished.

Although our system makes no distinction between the left and the right hand, for con-

sistency the participants were asked to use their right hand for playing the melody and

left hand for timbre controls. After completing all the configurations, the participant was

invited to improvise timbral effects onmusic of their choosing, or to play one of the test pas-

sages using their own timbral effects, using a control configuration of their choosing. Then

they were asked to fill out the exit questionnaire. In the questionnaire we use five-point

Likert scale questions to assess, for each configuration, ease of learning, expressiveness,

fatigue, fun, and personal preference. We also used the ISO 9241-420 questionnaire (ISO,

2011) to evaluate potential discomfort.

3.3.2 Participants

We recruited undergraduate and graduate students and faculty members at the University

of Michigan. 22 participants participated in the study, with 45% female. 80% participants

are between the age of 19 – 25. All had keyboard instrument experience, with more than

80% having five years or more experience , and one third of them currently studying music

at the college level. Participants were compensated for their time.

24

3.3.3 Results

We recorded MIDI performance data from the keyboard for each configuration, as well as

MIDI controller messages from themapped gestures or physical controls. We then used this

to compute task completion time, error, and smoothness of continuous controls, which will

be discussed below.

3.3.3.1 Task Completion Time

We measured the time each participant took to play each passage for the final time after

one or two practices. Based on observation participants encountering difficulties playing

with hand gestures stuttered or paused more often, and were likely to take longer than

the normal tempo they established during the practice phase. Task completion time can

capture performance degradation due to cognitive load, motor performance difficulty and

other related performance characteristics. Hence it serves in the author’s view as a useful

measure of performance competence.

We discarded data from 5 participants due to technical problems in recording data. After

running a two-factor ANOVA on the task completion time of single-effect configurations

(where one control is mapped to a single effect), we found that the completion time has

high variance overall, and that neither controls or effect types have a statistically significant

(p > 0.05) effect on the task completion time.

When two gestures or physical controls are mapped to two effects simultaneously, we

found that passage A and B exhibited no significant difference between different control

type and parameters. This is likely attributable to the fact that in none of two passages do

two parameters need to be adjusted concurrently (Figure 3.5), one parameter only need to

be held at a constant value while the other is adjusted. For passage C we found controls

have significant effect (F = 3.7, p < 0.0178) on completion time. T-tests show that in

particular the combination of X-filter and W-tremolo or Y-tremolo are better than many

physical wheel configurations (t = 4.11, p < 0.0008, we used p < 0.05/N after Bonferroni

25

Untitled 1 Untitled 2 Untitled 3 Untitled 4 Untitled 5 Untitled 6 Untitled 7 Untitled 8 Untitled 9 Untitled 10 Untitled 11 Untitled 12 Untitled 13 Untitled 14 Untitled 15 Untitled 16 Untitled 17 Untitled 18
Average
Passage 1
Passage 2
Passage 3

5.5921998081 4.2780889543 4.7460048558 4.8599575356 4.8294234341 5.959899097 5.0297641781 5.0055085501 3.8809697381 3.7662411063 4.7369822359 4.8611732348 4.885420859 3.8149380076 3.8342514045 4.915122279 4.6356172758 4.6873967157
7.817176347 5.1118059594 5.0120377085 5.9432440763 6.5102504562 7.0684350375 6.8874903261 5.8294928103 5.5054251946 6.4916897203 6.1341928668 6.2398605168 7.5901902916 5.370721718 5.9831869804 6.4160994027 6.8076715783 6.3462325636

3.9052756772 3.6257152716 3.3838199166 5.3667451221 3.1298591203 3.3870863385 3.8857290536 2.4963564975 3.0166264807 2.1963445223 2.6874649705 1.6409863489 3.1402384731 2.9087061981 2.9871232503 2.2578904418 2.9079380406 4.4190492632
4.667859267 4.0784036964 6.1804352606 3.2413590169 4.7526870057 7.2337621844 4.5369497456 6.2658199558 4.1073905657 2.9476213554 5.5708853411 6.3456637202 4.2249879816 4.3211295543 2.4193938811 5.800221255 4.9965020294 3.7282613644

56.666666668 42.625 38.666666665 44.4375 40.645833333 49.520833335 39.541666667 37.583333335 37.3125 38.5625 42.208333335 40.145833335 41.5 38.645833333 39.208333332 38.1875 36.604166665 40.9375
44.416666667 40.958333333 41.166666667 41.458333332 43.25 40.8125 43.208333333 43.1875 46.145833333 41.708333335 42.25 43.375000002 39.604166667 42.916666667 42.20833333 39.1875 44.5625 42.833333332

48.75 57.625 49.958333335 52.833333335 55.979166665 55.229166667 59.708333333 48.124999998 50.9375 53.812500002 51.5 55.395833335 54.791666665 47.645833333 51.895833335 51.583333335 55.520833335 53.916666665
45.791666667 73.3125 61.125000002 62.25 47.000000003 53.854166665 44.729166665 46.875 47.75 42.270833333 41.75 59.562500002 43.875 47.208333337 54.6875 60.54166667 47.604166665 54.541666665
36.687500002 39.666666665 41.854166667 55.291666665 37.354166667 36.8125 37.4375 39.979166665 37.583333332 46.375 40.104166665 38.1875 40.249999998 38.583333335 37.25 40.291666665 43.416666667 35.666666667
41.020833333 43.0625 42.645833333 49.895833335 48.166666665 43.208333335 48.083333337 43.8125 41.541666665 44.875 44.041666667 44.708333332 41.70833333 47.5625 43.770833335 45.25 46.375 44.875000003

38.875 36.916666668 33.354166665 35.25 43.708333335 46.75 35.541666665 38.354166667 36.5 35.875 37.854166667 37.25 35.916666665 35.916666667 37.39583333 35.0 38.291666667 34.083333333
70.333333335 57.3125 42.5625 60.354166667 53.291666668 43.979166667 41.3125 35.958333332 37.25 30.125 45.875 29.520833332 46.22916667 42.270833335 60.229166665 36.145833333 38.6875 49.6875
60.166666665 47.64583333 54.854166665 57.916666667 52.8125 40.375 60.041666667 58.916666665 48.1875 48.958333333 39.708333335 39.958333333 52.0625 47.416666665 51.479166665 39.8125 50.208333335 50.0625

58.791666665 39.395833332 48.562499998 35.624999998 36.145833332 34.4375 35.125 35.958333335 33.66666667 33.125 39.354166665 32.0625 35.8125 32.499999998 34.333333335 35.41666667 32.874999998 32.645833335
45.729166667 46.04166667 39.9375 49.479166665 48.687500002 36.416666665 36.125 39.708333335 34.979166665 34.083333335 43.25 34.833333332 36.4375 39.208333333 42.3125 42.25 38.27083333 37.6875
62.770833335 48.083333335 58.5 62.08333333 50.5625 55.833333333 42.979166665 53.770833335 52.312499998 49.041666667 59.60416667 54.541666668 45.895833333 55.916666667 51.208333335 53.666666665 46.0 58.083333335
83.916666667 61.145833337 62.770833335 53.020833335 62.6875 55.5625 55.1875 59.895833337 57.5625 55.333333333 55.25 53.645833335 50.916666667 48.916666667 51.625 49.666666667 59.8125 53.770833333

17.792735043 16.251068376 15.793803419 16.920405983 15.90491453 15.199786325 14.846688034 14.926282051 14.403311966 14.208867521 14.942307692 14.440705128 14.487179487 14.479700855 15.323183761 14.538461539 14.826388889 15.097222222
13.704981665 10.640575615 9.3815616882 9.2734414847 7.5635109165 7.7794772163 8.7883438198 8.2951579513 7.6982735666 8.0081404869 6.6192835703 9.6516796524 6.2487895019 6.4080844346 7.9961181962 7.9790606655 7.7120345852 8.6542086272

10.875

12.9375 17.5 12.25 11.9375 11.75 15.0 10.4375 10.833333335 10.0 10.875 11.5 11.9375 10.75 11.125 10.354166667 10.875 10.125 11.5
15.25 11.3125 12.3125 12.166666665 14.25 13.0625 14.458333333 13.125 13.6875 12.4375 13.125 13.833333335 12.166666667 13.229166667 13.25 10.8125 13.9375 13.6875

14.4375 14.75 14.625 15.5625 15.5 15.0625 16.0625 13.5 14.4375 14.187500002 13.5 15.375 15.0625 13.8125 14.270833335 14.4375 18.770833335 14.5625
12.0 19.916666665 17.979166667 16.375 11.666666668 14.791666667 11.875 12.6875 14.125 11.791666667 11.75 15.729166667 11.5625 11.916666667 14.875 15.645833335 11.375 14.75

11.708333335 13.3125 13.229166667 18.708333333 12.0625 11.875 11.8125 14.125 12.166666667 12.5 12.25 12.8125 11.1875 11.3125 10.8125 11.0625 11.8125 10.6875
12.020833333 11.0625 11.0625 12.0 15.3125 11.375 11.750000002 11.25 10.5 11.229166667 11.604166667 11.854166665 10.75 12.125 11.395833335 11.9375 13.0625 11.145833335

12.5625 11.625 10.729166665 9.9375 12.6875 12.25 11.3125 11.5625 10.9375 12.4375 10.8125 12.083333335 11.354166665 10.625 10.9375 10.375 11.125 10.1875
19.4375 15.958333333 10.25 17.666666667 15.604166667 14.895833333 11.375 11.145833335 12.1875 8.6875 9.0 7.9166666667 11.25 10.125 12.5625 8.1875 9.75 10.3125

8.0 11.854166665 12.604166665 13.166666667 13.5625 11.3125 13.666666667 15.875 14.208333335 15.833333333 10.0 10.708333333 13.75 11.979166665 11.916666665 10.125 12.9375 11.5

16.916666665 11.625 11.645833333 9.8125 11.041666665 9.9375 9.375 10.4375 9.770833335 9.041666665 8.791666665 8.5 9.125 9.916666665 8.770833335 8.958333335 8.875 8.583333335
10.3125 12.1875 12.0 11.5 12.75 10.75 8.875 9.375 9.1875 8.6875 10.0625 8.875 9.4375 9.75 10.125 10.9375 9.8125 9.5625

17.395833335 14.395833335 16.75 18.479166665 16.25 17.083333333 12.8125 16.333333335 16.375 15.1875 18.3125 15.458333335 13.4375 16.8125 15.5625 16.916666665 13.0 17.895833335
24.375 20.875 19.916666665 16.6875 16.8125 18.0 18.8125 15.8125 15.5625 17.75 17.0625 16.4375 15.8125 14.041666667 15.125 14.75 17.5625 16.25

14.411858974 14.336538461 13.488782051 14.153846154 13.788461538 13.491987179 12.509615385 12.774038462 12.549679487 12.357371795 12.136217949 12.424679487 11.97275641 12.059294872 12.30448718 11.924679487 12.47275641 12.355769231
4.3084820406 3.3304115465 2.9830202274 3.205091012 1.9469758972 2.5057736926 2.7247846418 2.258693438 2.3524228186 2.8029008795 2.8539463545 2.8725021667 2.0176160066 2.0031053396 2.162481576 2.6696833312 2.9575065433 2.8115026722

17.0625 14.6875 15.5 15.5625 13.9375 16.333333333 17.3125 14.708333335 20.25 14.6875 14.9375 16.0625 15.1875 16.6875 14.229166665 17.0625 15.9375 22.4375
23.770833333 11.0625 16.416666665 17.3125 16.5625 18.5625 15.104166667 15.0625 14.9375 15.4375 16.333333335 16.125 16.125 16.458333333 16.1875 14.875 14.875 16.5
19.604166667 19.145833333 19.8125 18.5625 19.125 17.9375 18.875 20.0 22.270833333 19.020833335 18.875 19.916666667 19.0625 19.8125 19.291666665 18.875 20.4375 19.729166665

18.375 27.5625 21.625 23.166666667 24.854166665 26.729166667 29.125 21.270833333 22.1875 24.0 23.4375 24.625 25.0 20.645833333 23.3125 22.833333335 23.125 24.291666665
20.25 31.9375 26.0625 25.625 20.8125 23.958333333 20.5625 20.8125 19.666666665 17.6875 16.875 24.3125 20.291666665 18.583333335 23.625 26.395833335 19.416666665 23.625

14.979166667 17.041666665 17.4375 23.729166665 15.833333333 15.4375 16.3125 16.75 16.0 20.541666665 16.5 16.0 18.499999998 16.375 16.3125 18.916666665 17.104166667 15.9375
16.875 16.25 15.770833333 23.5 17.5 16.333333335 17.5 16.4375 15.791666665 16.520833333 16.25 16.5625 15.6875 19.3125 16.0 17.5625 17.25 17.166666668

17.104166665 15.958333333 14.5 14.6875 19.125 17.875 15.625 16.729166667 16.125 14.875 15.4375 16.125 15.666666667 15.958333333 16.20833333 14.8125 16.5625 15.145833333
34.583333335 26.791666667 20.75 26.1875 24.020833335 18.958333333 17.9375 15.604166665 14.5 13.5 17.375 11.125 21.020833335 19.333333335 26.5 16.5625 16.5625 23.291666665

26.75 19.354166665 19.75 27.375 25.125 15.3125 25.375 22.229166665 19.125 19.3125 15.375 16.25 22.6875 19.125 21.3125 16.125 20.0625 21.1875
26.083333335 24.479166665 26.916666667 38.0 29.791666667 29.25 25.4375 28.5 30.625 32.5 38.041666665 25.875 27.875 36.791666665 30.625 31.708333335 42.125 26.875

21.1875 15.625 18.229166665 14.270833333 14.375 13.75 14.625 13.9375 13.625 13.895833335 15.5 13.375 15.375 13.270833333 14.5625 15.645833335 13.437499998 13.5
19.104166667 18.79166667 15.0 22.3125 21.562500002 13.979166665 14.6875 17.125 14.937499998 14.145833333 19.5625 15.041666665 14.5625 17.125 18.0625 17.0625 17.229166665 16.3125

26.9375 21.875 25.6875 27.354166665 21.0625 24.625 18.0625 23.666666665 22.916666665 22.541666667 25.10416667 24.9375 19.8125 24.416666667 22.6875 23.1875 20.375 25.25
35.729166667 27.354166667 25.375 24.3125 26.6875 25.3125 23.9375 23.458333335 29.3125 24.9375 22.8125 24.5 22.0625 23.1875 23.375 22.6875 26.625 23.770833333
22.559722222 20.527777778 19.922222222 22.797222222 20.691666667 19.623611111 19.365277778 19.086111111 19.484722222 18.906944445 19.494444445 18.722222222 19.261111111 19.805555556 20.152777777 19.620833334 20.075 20.334722222
6.3458467523 5.9058348759 4.3504588528 6.1828659627 4.6980450173 5.0065152658 4.536099052 4.166591269 5.2501208572 5.3011542399 6.055712668 4.8499219299 3.974043594 5.4885662324 4.817185327 4.8244234897 6.9532024141 4.2542248684

11.125 12.125 11.458333335 12.0 10.604166665 11.333333333 13.395833335 11.375 11.1875 11.375 11.5625 12.104166665 9.1458333333 12.125 10.583333335 10.75 12.375 8.6875
19.958333335 14.0625 10.0 15.1875 12.333333333 15.958333335 14.0 11.6875 12.375 12.25 14.375 12.083333335 14.625 11.0625 12.666666665 12.4375 11.604166665 12.9375

9.5625 10.5 9.0416666667 10.729166667 9.875 9.8125 9.875 10.0625 10.1875 10.25 10.25 9.625 8.375 9.875 9.666666665 9.5 10.1875 9.4166666667
15.9375 15.3125 13.708333335 14.104166668 15.625 13.4375 14.520833333 13.354166665 14.3125 15.625 14.5625 15.395833335 14.729166665 13.1875 14.3125 14.3125 13.625 15.0625

13.541666667 21.458333335 17.083333335 20.25 14.520833335 15.104166665 12.291666665 13.375 13.958333335 12.791666667 13.125 19.520833335 12.020833335 16.708333335 16.1875 18.5 16.8125 16.166666665
10.0 9.3125 11.1875 12.854166667 9.4583333333 9.5 9.3125 9.104166665 9.416666665 13.333333335 11.354166665 9.375 10.5625 10.895833335 10.125 10.3125 14.5 9.0416666667

12.125 15.75 15.8125 14.395833335 15.354166665 15.5 18.833333335 16.125 15.25 17.125 16.1875 16.291666667 15.27083333 16.125 16.375 15.75 16.0625 16.5625
9.208333335 9.333333335 8.125 10.625 11.895833335 16.625 8.604166665 10.0625 9.4375 8.5625 11.604166667 9.041666665 8.8958333333 9.3333333333 10.25 9.8125 10.604166667 8.75

16.3125 14.5625 11.5625 16.5 13.666666667 10.125 12.0 9.2083333317 10.5625 7.9375 19.5 10.479166665 13.958333335 12.8125 21.166666665 11.395833333 12.375 16.083333335
25.416666665 16.4375 22.5 17.375 14.125 13.75 21.0 20.8125 14.854166665 13.8125 14.333333335 13.0 15.625 16.3125 18.25 13.5625 17.208333335 17.375

19.875 15.375 16.770833335 16.0 20.0 20.1875 15.708333335 14.4375 15.75 27.8125 19.125 12.9375 15.270833335 18.3125 15.791666668 18.375 18.541666665 18.875

20.6875 12.145833332 18.6875 11.541666665 10.729166667 10.75 11.125 11.583333335 10.270833335 10.1875 15.0625 10.1875 11.3125 9.3125 11.0 10.8125 10.5625 10.5625
16.3125 15.0625 12.9375 15.666666665 14.375 11.6875 12.5625 13.208333335 10.854166667 11.250000002 13.625 10.916666667 12.4375 12.333333333 14.125 14.25 11.229166665 11.8125
18.4375 11.8125 16.0625 16.25 13.25 14.125 12.104166665 13.770833335 13.020833333 11.3125 16.1875 14.145833333 12.645833333 14.6875 12.958333335 13.5625 12.625 14.9375
23.8125 12.91666667 17.47916667 12.020833335 19.1875 12.25 12.4375 20.625000002 12.6875 12.645833333 15.375 12.708333335 13.041666667 11.6875 13.125 12.229166667 15.625 13.75

16.154166667 13.744444445 14.161111112 14.366666667 13.666666667 13.343055556 13.184722222 13.252777778 12.275 13.084722222 14.415277778 12.520833333 12.527777778 12.984722222 13.772222222 13.0375 13.595833333 13.334722222
5.1861240762 3.1353545386 4.0292478163 2.7446941057 3.0925798453 2.9914816508 3.3523441026 3.6266405251 2.171728862 4.7362967193 2.6824480326 2.8970642303 2.4449502879 2.8479192431 3.3225688041 2.8481122786 2.701029529 3.4361150409

0

4

8

12

16

20

24

y = 0.0196x2 - 0.4571x + 15.57

y = 0.0273x2 - 0.6123x + 22.642

y = 0.0134x2 - 0.3902x + 15.005

y = 0.0225x2 - 0.5518x + 17.853

R² = 0.5521

R² = 0.5765

R² = 0.8968

R² = 0.8144

Tr
ia

l C
om

pl
et

io
n

Ti
m

e
(s

)

Avg
Passage 1
Passage 2
Passage 3

0

2.75

5.5

8.25

11

13.75

16.5

19.25

22

y = -0.0805x2 + 0.71x + 11.944

y = -0.0178x2 + 0.2857x + 19.145

y = 0.0035x2 + 0.0551x + 11.936

y = -0.0148x2 + 0.1983x + 14.323

R² = 0.6023

R² = 0.6027

R² = 0.4337

R² = 0.2603

Tr
ia

l C
om

pl
et

io
n

Ti
m

e
(s

)

Avg
Passage 1
Passage 2
Passage 3

3

7

11

15

19

23

M
ea

n
Ta

sk
 C

om
pl

et
io

n
Ti

m
e

(s
)

Configurations in Presented Order

Average
Passage 1
Passage 2
Passage 3

X-axis Gestures
Introduced

0

1

2

3

4

5

6

7

8

Su
m

 o
f L

ev
en

sh
te

in
 D

ist
an

ce

Configurations in Presented Order

X-axis Gestures
Introduced

Figure 3.6: Learning curves with polynomial curve fit, with some effect in task-completion
time, little effect in edit distance

multiplicity correction as threshold of significance). X-filter and W-tremolo combination is

also significantly better than X-tremolo and W-filter (t = 4.19, p < 0.0007), with no other

configurations showing significant differences. This likely because this passage requires

two parameters to be adjusted concurrently.

Although many of the configurations that use X-axis are better than physical wheels, we

cannot claim significance, since X gestures were confounded by not being fully randomly

presented with other mappings. The measured effect could be explained in multiple ways;

one possible explanation is improvement over time.

We investigated this possibility by inspecting progression of task completion time chrono-

logically in the order of presentation (See Figure 3.6). The curve does show a slight learning

effect during the first ten configurations presented. After that, before the X gestures are

introduced in the last six configurations, there is little improvement. In fact, the increase

in time for passages after the first ten configurations is a counter-indication for X gestures

being confounded by learning effects, suggesting that advantage of X gestures over physical

controls may be a real effect. However this is not conclusive, as the slight increase at the

end can also suggest fatigue after playing for about 35 minutes.

3.3.3.2 Levenshtein (Edit) Distance

We adopted Levenshtein distance (Levenshtein, 1966), an algorithm to compute the minimal

difference between two strings in terms of basic edit operations, as a measure of the errors

26

participants made during playing. Similar to task completion time, errors may correspond

to difficulty in performing the continuous timbral effects. For each recorded performance,

we compare the MIDI note data with a gold standard performance derived from the score.

Each passage is considered as a sequence of notes, and the Levenshtein distance between

the recording and “gold standard” is computed, as the number of mistakes (missing a note,

inserting an extra note, or playing the wrong note) the participant made.

Since participants performed many passages with few errors, the data is sparse, and

some passages have no errors at all. We aggregated errors from all three passages, a two-

factor ANOVA shows no strong effect in either control schemes used or the effect mapped

to. Similar to task completion time, there are no significant difference for single-effect

configurations. In the case of dual-effect, X-filter and Y-tremolo performed significantly

better than Y-tremolo andW-filter configuration and one physical wheel configurations (t =

3.58, p < 0.0028), with no other significant differences.

Similar to task completion time, we examined the possible effects of presentation order

on Levenshtein Distance. We found no clear effects of learning; only Passage 2 shows some

effects of presentation order (Figure 3.6). The absence of clear effects in Levenshtein dis-

tance after the first eight configurations further supports the possibility that the advantage

of X gestures may be real.

3.3.3.3 Continuous Control Smoothness

We analyzed the MIDI controller data derived from either the hand motion or the physical

wheels, to measure the smoothness of the continuous controls. Jitter in control (mani-

fested as fluctuation in the controlled parameter) suggests possible difficulty in operating

the control, or stumbles when the participant is confused by the mappings, or fatigue. As

the participants are told tomake timbral effects gradual and smooth as notated, the presence

of unintended jitters should reflect the quality of the performance.

The MIDI controller data are sampled at roughly 25 Hz and have a resolution of only 7

27

32 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

 -80
-60
-40
-20

0
20
40
60
80

100
120
140

Time (s)

MI
DI

 V
alu

e

Wheel 2 (modulation) mapped to filter

0

500

1000

1500

2000

2500

Su
m

 o
f a

ve
ra

ge
 ji

tte
r f

or
 e

ac
h

pa
ss

ag
e

Y-filter

W-filter

X-filter

Wh2-filter

Passage 1
Passage 2
Passage 3

 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

-40

-20

0

20

40

60

80

100

120

140

Time (s)

M
ID

I V
alu

e

Articulation
Jitter

Y-axis mapped to filter

Figure 3.7: Jitter in typical (a) gesture and (b) physical wheel controls. Jitter, computed
as numerical second derivative, is scaled down by a factor of 100 to fit visually. (c) Wheel
control exhibit significantly more jitter.

bits (128 discrete values). To measure the jitter in the continuous controls, we use stan-

dard three-point numerical differentiation to estimate the second derivative of the effect

values, to measure changes in acceleration. By cursory observation, the MIDI controller

data derived from the Kinect sensor have a significant amount of noise, even after the nec-

essary smoothing (See Figure 3.7), while physical wheels exhibit no noise when they are

not actuated by the player.

Due to technical problems, we only recorded and analyzed the gestures and modula-

tion wheel mapped to filter for nine participants. Comparing only jitter in single-effect

configurations, an ANOVA shows the control scheme to have a significant effect (F =

31.5, p < 0.000001), and W gestures have significantly more jitter than all others (t =

3.97, p < 0.0063, see Figure 3.7), X gestures have less jitter than using modulation wheel

(t = 4.81, p < 0.0019), with no other significant differences. Given that the Kinect sensor

is generally noisier than physical wheels, the advantage of gestures producing continuous

timbral effects with less jitter is significant. Our experiment setup did not have control to

account for noise in the potentiometer in the wheels versus optic/vision sensing, however

we do observe that the wheels have no noise when it is not being moved. It should be noted

however, that since W gestures exhibit more noise, the difference cannot be due to sensor

noises in physical wheel controls.

28

3.3.3.4 Exit Survey

After participants completed the playing session, they were asked to fill out an exit survey

consisting of five Likert scale questions for each configuration they played, ISO9241-420 As-

sessment of Discomfort, and open-ended questions for feedback. Due to the large number

of configurations tested, we asked participants to evaluate discomfort of gesture controls in

comparison to physical wheels in general.

We analyzed the five-point Likert scale questionnaires using the pairwiseMann-Whitney

U (MWU) test. The MWU only shows significance for dual-effect configurations, with

gestures being easier than physical wheels (U = 100, p < 0.0392). Within gestures, W-

tremolo is easier to learn than W-filter (U = 94, p < 0.0245). Most configurations are easy

to learn. On expressiveness, participants responded that single-effect configurations were

less expressive than dual-effect (U = 86, p < 0.04257). Within dual-effect configurations,

using physical wheels were worse than some gestures (U = 105, p < 0.0367), with no

other significance. When asked if the configuration was fun to play, 57% responded fun,

and 11% not fun. Multiple effects were always more fun than single effect, regardless of

the control scheme (U = 82, p < 0.04426). In addition, dual-effect configurations with

W-tremolo were more fun than other configurations (U = 113, p < 0.0226). When the

participants were asked to rate based on personal preference, the MWU shows W-tremolo

to be least preferable among single-effect configurations (U = 102, p < 0.02994). How-

ever, for dual-effect configurations, W-tremolo is preferable to configurations where other

gestures are mapped to tremolo.

For ISO9241-420 assessment of discomfort, participants were asked about fatigue of

gestures versus physical wheels in general. The gestures are considered better in terms of

force required, smoothness, accuracy and general comfort, with no significant differences

in other factors. There is a clear tradeoff between finger and arm fatigue, with physical

wheels causing more finger fatigue, while gestures cause more arm fatigue. No significant

differences in fatigue are found between each configuration.

29

On the last open-ended question, participants mentioned that gestures improve expres-

siveness, and are fun to play (See Figure 3.8). They also mentioned that taking one hand

away for timbre control limits the complexity of the music that can be played, and causes

more fatigue. Subjects describe gesture controls as “natural” or “fluid”, but also stated that

different mappings can be confusing to learn, especially in the short time given. Although

our system has an estimated latency of 174ms, only one participant mentioned that the

system can be “it is slightly unresponsive”, likely due to the latency.

1

Enjoyment

“the sound is definitely fun!”
“It is much more fun!”
It was fun however, doing
two at the same time may
get confusing, especially
switching through them so
fast.

Expressivity

“Allows more expressivity with the
gesture controls than with the mod
wheels.”

“I felt I had more direct control over the
expression of the music.”

yes there's more flexibility in
movement with gestures. i guess you
can say it's more expressive as well.

“it limits playing to one hand.”

“only one hand is taken for dynamics
such that both hands cannot be used
to play the piano keyboard.”

“the articulations don't make up for
loss of a hand in playing.”

“it feels more like conducting and
allows for more natural dynamic
expression”

The gesture control is more fluid, but it
does require some getting used to.

“the significantly better control over the
variations in sound than the mod
wheel.”

Fatigue

“it is slightly unresponsive distracting
to music reading, and uncomfortable
(especially with the wrist)”
“My only concern is that playing for
hours could get extremely tiring.”
“for extended periods of times it is
very tiring, making the mod wheel
much more practical.”

Figure 3.8: Excerpts of open-ended responses from participants

3.3.3.5 Summary

Objective metrics (task completion time, Levenshtein distance, jitter) that measure the

participant’s performance with the system suggest that, when multiple parameters are con-

trolled concurrently, there are advantage in using gestures over physical wheels, as long as

the gesture mappings are chosen well. The difference is however insignificant when only

30

a single effect is mapped or when two parameters are not adjusted concurrently. We also

found some gesture mappings perform better than others, particularly when W is mapped

to tremolo in any dual-effect configurations, suggesting that the action of opening the hand

or turning the hand to affect W may be a good match to the tremolo effect. The results

from subjective surveys agree with this finding. The subjective surveys also show that par-

ticipants find the augmented keyboard generally fun and expressive, and there is a tradeoff

between finger and arm fatigue caused by performing continuous timbral effects, depending

on whether gestures or physical wheels are used.

While the initial 5 minutes of learning period for the musical passage familiarized the

participants to play the passages fluently without using gestures or physical wheels (all are

experienced piano player), the learning period for each gesture/physical wheel configura-

tion is brief. As a result, the participants’ experience with novel gesture or physical wheel

augmented playing is low in comparison with their expertise with keyboard. The results

presented here reflect the performances of trained keyboard musicians using a novel aug-

mented keyboard instrument, without extensive training on the instrument. This might

not be indicative of the performance of someone who had extensively studied this particu-

lar instrument.

3.4 Visual Associations in Gesture Space

Using the same system, we also explored some possible choices and functions of visuals in

the gesture space with some examples of different visualization metaphors (Figure 3.9) and

suggest some broader views from these perspectives.2

3.4.1 Positioning the Visual in the Interactive Loop

In our gesturally augmented keyboard, one or more performers, as well as the audience

(possibly through mirrored and magnified projection) can have access to the projected vi-
2Content of this section has been published in Yang and Essl (2013)

31

(a) (b) (c)

Figure 3.9: Implemented example visualizations: (a) Piano-Roll, (b) Harp, and (c) Flock

sual, which is situated in the same space as the performative gestures that are recognized.

Beyond the simple mapping of continuous hand motion to single axis parameter control

as discussed earlier, what is the function of the visualization in such an interactive perfor-

mance system?

In this setup we have a range of modalities that make up the performance, including

visual output through projection, sound produced as part of the interaction and multiple

modes of control. In our case, the control is a combination of discrete control through key

actions, and multi-dimensional continuous control in the gesture space.

When defining an instrument one could think of the process as trying to construct a kind

of “meaningful” relationship between input and output components for the performer and

the audience. How this is perceived may well differ depending on the role of the observer,

with respect to the nature of active engagement with the instrument. This definition of

meaning is a difficult open problem to which we make no claim of providing a solution.

Rather, what we want to discuss ways to reason through the impact of choices made on a

number of concretely implemented examples.

3.4.2 Examples of Visualization Feedback

We implemented three visualization examples for the instrument (Figure 3.9). They are a

piano roll display, a harp-like interface, and a flocking display.

The piano roll display is implemented as an animated waterfall notation showing notes

32

to be played which fall down towards the musical keyboard. The performer is expected to

play the indicated notes when their visual representations fall “onto” the keyboard, while

the keys are gradually lit as the notes move down closer to the keyboard, indicating a need

for the performer to prepare. This is a common form of score visualization for performance

or pedagogy, such as in musical games (e.g. Rock Band3, Dance Dance Revolution4 and

Rocksmith5, Magic Piano by Hamilton et al. (2011)) or in learning (Rogers et al., 2014).

Figure 3.10: A typical strumming gesture over the harp visualization

In the harp visualization, the keyboard is used for selecting pitch classes to be activated,

in a similar fashion as pedals on harpsmute and unmute sets of strings. When the performer

presses and holds down keys, the corresponding pitch classes are activated, and a visual

representation of the set of strings for these pitch classes are shown via projection, but no

sound is produced at this stage. To play the actual notes, the performer can wave his or her

hands in the gesture space while the “strings” are activated, and the corresponding note

is played each time the performer’s hand moves across the string’s location, producing an

arpeggio of notes similar to strumming a traditional harp. The general gesture of the harp

performance with this visualization is depicted in Figure 3.10.

In the Flock visualization, the triggering of the notes is further separated from the di-

rect input of the performer. The music keyboard is used to select a set of pitches, which

are assigned to individual entities simulated and visualized as a flock of particles moving

organically on the projection surface, emulating a school of fish or other small aquatic life.

Without gesture input the particles will simply move randomly and no sound is produced.
3http://www.rockband.com/
4http://www.ddrgame.com/
5http://rocksmith.ubi.com/

33

http://www.rockband.com/
http://www.ddrgame.com/
http://rocksmith.ubi.com/

(a) hand directed movements

(b) repelling or scaring away the fish
pressing down

Figure 3.11: Reaction of the Flock visualization to user gestures

When the performers extend their hands in the gesture space, the movement of the parti-

cles can be directed by moving their hands faster than a threshold velocity, at which point

the particles will try to follow the rough direction of the movement. When the performers

press down to touch the projection surface, their hands repel particles nearby, causing them

to quickly move away. Details of these interaction modalities can be seen in Figure 3.11.

The movement of each particle is used for sonification, as its assigned pitch is sounded

whenever its velocity is above a threshold. As the performer uses gesture to manipulate

the flock, the sound is produced dynamically as part of the particles’ reaction to the gesture

inputs, corresponding roughly to the overall level of activity in the simulated “fish-pond”.

These examples contain a number of design choices that are varied along certain di-

mensions. The degree of directness differs, from very high in the case of the piano roll, to

rather displaced in the case of the flock. Another important difference is the locus of pitch

activation. In the piano roll example, pitches are selected traditionally by pressing keys. In

the other two examples the locus of pitch selection is moved towards the gestural space.

Some of these examples also suggest a future outcome of the performance. For example

the piano roll will suggest the correct notes to be played when the visual entities hit the bot-

34

tom of the display. The harp also suggest an anticipated outcome as specific pitches are be

pre-selected even if the respective virtual strings have not yet been activated. With the flock

example it is less clear if a future outcome can truly be anticipated from the visualization.

3.4.3 Explanation through Visuals

What does the visual do to explain how the performance functions, and how the visual is

likely going to be perceived?

Within the context of articulating the role of perception in instrument design, enactive

principles have become important in articulating the need to be conscious of the role of

the action in perception (Essl and O’Modhrain, 2006). Gaze can be seen as an activity itself,

and while looking is rather passive ultimately, there are a few notions that come to the fore

more strongly when recognizing activity in visual perceptions.

One of these is attention. In our setting we are interested in how visual cues in the

interface suggest where the attention of the performer and the audience should be. The

site of performance can be quite complex given our interface design. It can be the keyboard

or the gesture space, or a complex joint configuration between the two. What the audience

should pay attention to may well define how the instrument is understood.

An important concept here is causation. What is perceived to be the main causative

event that triggers sounds? It is sensible to view the perception of causation as emerging

from a set of gestalt principles (Wagemans et al., 2012). Common-fate and co-occurrence of

percepts across multiple modalities suggest a common causative process. For example, if

a gesture that looks like an impact is followed by an impact-like sound, the gestalt of the

setup can lead to a perception of a causation of the sound.

Further, the perceived locus of causation may impact the notion of attention. The mech-

anisms of shifting attention between perceptual modalities are still not fully understood,

through some progress has been made (Bonnel and Haftser, 1998). However it is known

that audio can shift attention and hence direct the observer’s gaze in a certain way and

35

in turn again reinforce the perceived causation of the performance. However, the visuals

themselves can also direct attention and hence suggest the locus of causation.

To make this more explicit, we view the function of the visualization with respect to

the actual locus of triggering sounds. To this end let us distinguish between two actions

in musical performance, pitch selection and temporal sound triggers. Pitch selection is the

activity of defining which pitches will be activated in performance. Temporal sound triggers

are events in time that actually trigger pitches. In a typical acoustic instrument these two

are by physical necessity co-located.

In our three examples, the visualization serves to direct and reinforce the locus of pitch

selection and temporal triggers in different ways. In the case of the piano roll display, the

locus of pitch selection and temporal triggers are co-located in the keys just like one would

expect from a traditional piano performance. Further the visualization reinforces and points

to this locus of performance by having its display moving towards the locus of performance.

In the case of the harp, the locus of pitch selection and of temporal trigger is split.

The temporal triggering happens through gesture over the gesture space over the projected

visuals. The pitch selection happens through the physical keyboard. The locus of causation

is in the virtual plucking of the strings in the continuous gesture space. The visualization

suggests the progression of the causal chain from pitch selection at the keyboard to temporal

selection by plucking, by highlighting the selected pitch classes in response to changes of

keys on the keyboard, and animates when each virtual string is “struck”. The attention is

not only sonically but visually drawn to the strumming part of the harp performance.

Finally, in the case of flock we again have a split between selection and temporal trigger.

The keys select different sonic outcomes by priming the pitches that will be played. How-

ever there is no visual representation of this in the display. The display shows the flocking

behavior which, when interacted with, will cause temporal sound triggers. Hence the in-

terface strongly suggests the locus of attention to be drawn to the gesture space only, and

de-emphasize the percept of the key selection, although the key selection of course remains

36

visible to both the audience and the performer.

Piano Roll Harp Flock
Directness Yes Yes No

Output Anticipation Yes Yes No
Attention Visuals Gesture Gesture

Keys Visuals Visuals
(Keys)

Causation Keys Gesture Gesture
Input Sound Trigger Keys Gesture Gesture

Pitch Selection Keys Keys Keys

Table 3.2: Classification of visualizations and the interface with respect to their functions
for performer and audience.

3.4.4 The Purpose of Visuals

These dimensions discussed previously allow us to construct a space of factors for each

visualization in Table 3.2. The individual components of this space interact in non-trivial

ways. For example, we argued that Sound Triggers are important for establishing the site

where the causation of the performance is going to be perceived. This in turn will direct

the attention to that locus.

More importantly the space of factors allows us to articulate the purpose of the visual-

ization in the following manner. The bottom two rows of the design space, Sound Trigger

and Pitch Selection can be viewed as input to the performance. Whereas Anticipation and

Attention relate to where an observer is pulled in terms of visual and auditory cues, which

are the output of the system. Hence we get at varied purposes of the co-location or lack

thereof between visual attention, auditory attention and site of input. This can be under-

stood in terms of how the performance will function for either a performer or the audience.

To illustrate this, let us contrast the case of the Harp against the Flock example. Both

use the same input mechanisms. Pitch is selected via the keyboard and sounds are triggered

by hand gestures. However the ways they are perceived are different. The Harp example

37

provides direct cues that link the selection process of the keys to the visualization. Hence

one can expect some attention to be potentially directed at the key play. However, in the

case of the Flock example all the visual feedback is designed to focus the attention of the

audience to the gesture space with no visual cues about the keyboard. Furthermore, the

visuals do not anticipate any particular action. Hence the key input disappears as a factor

in all the output characteristics.

In addition, the real-world metaphors borrowed by these two examples inform the per-

former and the audience’s expectation in terms of directness of the interaction. Either of

the Harp and Flock example have photo-realistic visuals, instead use animations such as

the activated and strummed string and the reacting movements of the flock to explain the

interaction. The string animation reacts immediately when the sound is triggered by ges-

ture, reinforcing the directness of the interaction, while particle movements in Flock is

more sustained and has longer delay in reaction to gesture input, corresponding to the low

immediacy.

3.5 Conclusion

We augmented the musical keyboard with a gesture space, using a depth camera for sensing

and top-down projection for visual feedback of gestures. Through an user study we found

that improved performance is dependent on the particular mapping between gesture and

sound effect. This suggests that the choice of mapping is critical. As an example, using

a change of hand width for tremolo effect shows significant improvement in performance

compared to traditional pitch wheels as well as other mapping. Testers also reported that

gestures have similar or improved expressivity over physical wheels for multi-parameter

controls.

The same sensing and visual feedback setup has a wide range of potential applications,

including supporting other styles of playing using multiple interaction modalities or peda-

gogy. We discussed ways to reason through the function of visualization in this setup by

38

means of notions of attention, causation, and anticipation among other factors. We ex-

amined three examples of visualization with this process and highlighted how this helps

reason through the impact and meaning of the visualization. Different dimensions of the

role of visualizations form a space of classification that illustrates the relationship between

inputs and perceived outcome, and how visualization help revealing the mechanics of the

gesture interface.

39

CHAPTER IV

Visual Programming Environment on Multi-touch

4.1 Introduction

Recently there have been efforts to make mobile computational power more accessible

through building programming languages for mobile touch screen devices (Essl, 2010a).

Many approaches take cues from the extensive previous work on visual programming for

desktop PCs (due to limited space here we refer to more comprehensive overviews such as

Shneiderman (1983); Green and Petre (1996); Johnston et al. (2004)).

Multi-touch interface for mobile touch screen devices is different in many aspects from

traditional mouse and keyboard input, and require a rethinking of the interaction design.

For example, the pointing accuracy of the finger requires larger tap targets (Lee and Zhai,

2009) and is further complicated by the occlusion of the operating hand or finger (Nacenta

et al., 2009). In addition, there is also a wide variation of device sizes to be considered, from

a typical size of 5” on phone to 10” on tablet (see Figure 4.1)

Although there has been somework on tasks-based assessments with touch screen sizes

(such as Chae and Kim (2004); Oehl et al. (2007); Raptis et al. (2013)) looking at general

tasks such as web browsing and information seeking, to the best of our knowledge, visual

programming tasks and interaction representations on multi-touch devices have not been

examined before. We explored this design space by building a visual environment where

simple dynamic interfaces can be interactively assembled, and then evaluated three different

40

iPad Mini (7”)

iPad (9.7”)

Galaxy
Note
(5.7”)

iPhone 6
(4.7”)

Typical Finger Tip Size (18mm)

Figure 4.1: The wide range of mobile touch screen device size, ranging from 4 – 5” on typical
mobile phones, to 7” or 10” on tablets

visualization and interactionmodes using the same underlying visual grammar, on different-

sized tablet devices.

We expected to see larger screen lead to better performance given the complexity of

the tasks. However, we found that smaller tablets have higher efficiency than larger tablets

based on timing measures. We also found that prior experience with tablet interaction is

not a significant factor, while prior programming experience is. The results on interaction

modes are complex and may vary depending on the task.

4.2 Related Works

The design of our prototype draws from the following areas: visual programming languages

and interaction design for multi-touch devices. The latter is focused more specifically on

programming on mobile multi-touch devices.

41

4.2.1 Visual Programming

Visual programming language and environment have been explored extensively with the

prevalence of graphical user interfaces on PCs with keyboard and mouse input. This is

often done with the intention of exposing the potential of computation to a wider audience

(known as end-users) by making programming more accessible.

The cognitive benefit of visual representation for programming and problem solving

was recognized early (Larkin and Simon, 1987). Making the text-based programming visual

can reduce the initial learning curve by avoiding the need to memorize textual syntax or

exact keywords. Multiple approaches to visual programming languages (including Boxer by

diSessa and Abelson (1986), HANDS by Pane, Myers, andMiller (2002), and Kodu byMacLaurin

(2011)) have used principles of Human Computer Interaction (HCI) to guide the design of

the programming interfaces.

Among visual programming languages, visual blocks are often used to represent pro-

gram logic and to allow users to manipulate and combine these blocks spatially to form

programs (e.g. Scratch (Resnick et al., 2009) and Hopscotch (Leavitt et al., 2013)). Another

approach is data-flow programming language, which both visually and conceptually makes

use of the metaphor of nodes and edges (e.g., LabView (Hils, 1992), or computer vision

(Reimer et al., 2011)) (Johnston et al., 2004). Data-flow metaphor is also used for program-

ming interactive media, such as sound/video processing or event-driven programs. The

languages or interfaces are generally designed for domain experts in the specialized context

of programming for music or interactive media (e.g., Pure Data (Puckette et al., 1996) and

MAX/MSP (Puckette, 2002)).

Although text-based programming languages still dominate the landscape of commer-

cial software development, various commercial framework and integrated development en-

vironments also incorporate visual interfaces for programming user interface or building

42

prototypes. Visual programming tools such asQuartz Composer1, Form2 orUnreal Blueprints
3 are some examples that make use of flow-based metaphors for programming.

The visualization of programming is also important in the field of live coding, a musi-

cal performance practice where a programmer writes code using a specialized, interpreted

language in a concert setting to generate and perform impromptu music. Some live coding

languages are designed with a predominantly visual component (Blackwell and Collins, 2005;

McLean et al., 2010), since live coding performances usually need to show a lay audience the

programming process, and also convey what the programmer is doing.

The design of our visual environment draws from a number of established visual pro-

gramming representations and underlying mechanisms, from data-flow to interactive or live

programming (as there is no distinctive mode between editing and running the program).

Our aim is to investigate the effect of different visual representations on the performance

of multi-touch gesture interactions while the “grammar” of the language is held constant,

so as not to focus on the particular choices in constructing the underlying programming

concepts.

4.2.2 Multi-Touch Interfaces

Touch screens as an interface have been explored since the 70s (Buxton, 2010). One of the

earliest examples ofmulti-touch interfaces is demonstrated inKrueger et al. (1985)’s VIDEO-

PLACE. The technology for building multi-touch screens has became commercially viable

(Buxton, 2007) and is widely adopted on mobile phones and tablets, generating interest in

Mobile HCI research on touch screen interfaces.

Previous work found that direct touch interfaces have benefits beyond the traditional

indirect and text-based interaction using mouse and keyboard (Forlines et al., 2007; Terrenghi

et al., 2007; Sasangohar et al., 2009). Interacting by directly touching the interface elements
1https://developer.apple.com/library/mac/documentation/GraphicsImaging/Conceptual/

QuartzComposerUserGuide/qc_intro/qc_intro.html
2http://www.relativewave.com/form
3https://docs.unrealengine.com/latest/INT/Engine/Blueprints

43

https://developer.apple.com/library/mac/documentation/GraphicsImaging/Conceptual/QuartzComposerUserGuide/qc_intro/qc_intro.html
https://developer.apple.com/library/mac/documentation/GraphicsImaging/Conceptual/QuartzComposerUserGuide/qc_intro/qc_intro.html
http://www.relativewave.com/form
https://docs.unrealengine.com/latest/INT/Engine/Blueprints

instead of indirectly through a pointing device, has been found to be more efficient for bi-

manual tasks (Forlines et al., 2007). Ishii and Ullmer (1997) developed prototypes for tangible

interfaces where users interact directly by hand with digitally augmented physical objects

instead of onscreen interfaces.

Touch screen interfaces can be seen as a natural extension from the direct manipula-

tion interfaces (Shneiderman, 1983) developed with pointing devices, such as the mouse.

Sketchpad (Sutherland, 1964) is an early instance of this, which uses a pen to draw and ma-

nipulate onscreen objects. Although not physically tangible, touch screen interactions can

have some aspects of tangibility. The co-location of the user’s hand or finger and the visual

interface on a touch screen, combined with the use of physical metaphors and tightly cou-

pled feedback can form an experience where virtual onscreen objects can tangibly respond

to touch manipulations.

Figure 4.2: Common multi-touch ges-
tures on iOS: “tap”, “drag”, “swipe”, and
“pinch/stretch”. Illustration from iPad User
Guide (https://help.apple.com/ipad/8/)

Existing work on interface design for

multi-touch interaction hasmany approaches.

Common approach in consumer software

is the adaptation of keyboard-mouse-driven

interfaces for the finger, which leads to

larger touch targets (e.g., larger buttons and

different placements to adapt to position

and occlusion of hand (Biegel et al., 2014)).

Commercial software for multi-touch still

relies on visual buttons, but is starting to

unlock the power of gesture interfaces with

more complex gestures than “tap and hold”,

“swipe” or “pinch” (see Figure 4.2). For ex-

ample, Apple’s iOS running on iPad uses a

multi-finger swipe gesture to activate the multi-tasking interface or switch between appli-

44

https://help.apple.com/ipad/8/

cations; the third party application Loose Leaf4 also uses a four-finger stretch gesture for

copying elements.

However, these novel gestural interaction interfaces are criticized for their poor visi-

bility, discoverability, learnability, and consistency (Norman and Nielsen, 2010). As Norman

(2010) states, “because gestures are unconstrained, they are apt to be performed in an am-

biguous or uninterruptable manner”, and constructive and continuous feedback are needed

“for the user to learn the appropriate manner of performance and to understand what was

wrong with their action”. There have been many approaches to visual feedback for multi-

touch gesture interfaces (for a brief overview see Buxton (2007)). Previous works have

focused on the ease of recognition and memorization of multi-finger gestures, but mapped

arbitrarily to commands (Ghomi et al., 2013; Wagner et al., 2014). Using simulated physical

objects for visual affordance has also being explored by Bragdon et al. (2010).

In this study, we explored three different visual representations for multi-touch ges-

tures: The menu mode uses only a single “tap” gesture, the icon and gesture modes make

use of more complex drag selection or “drag-and-drop” gestures, and both use different

methods to visually guide the interactions.

4.2.3 Mobile Multi-Touch Programming

Commercial applications exist for traditional text-based programming or scripting on

mobile touch screen devices, most of them developed for the iPad. This is likely due to its

large screen size, which allows a full-sized virtual keyboard to be used. Applications such

as Pythonista or Diet Coda (Zorn, 2012; Panic, 2012) are examples of direct translations

of desktop-based code editors for multi-touch. More experimental editors such as Codea

and ScriptKit (Saëns, 2011; Buza, 2012) augment the basic text editor with templates that

the user can drag and drop into the code by touch, and in-place visual editors to automate

programming tasks such as picking color or texture; text-based scripting languages such as
4https://getlooseleaf.com

45

https://getlooseleaf.com

Lua are still used. Beyond tablets, mobile Integrated Development Environments (IDE),

such as AIDE 5, also support text-based programming on phones with smaller screens as

well as tablets. Mobile programming has also been used to reinvent programming as a social

gaming experience (Berland et al., 2011), highlighting the benefits of programming on the

move and while standing.

The urMus environment (Essl, 2010b) is designed with Musicians in mind, and features

both a web-based text editor for programming using the Lua scripting language and a “drag-

and-drop” programming interface. Environments such as Hopscotch (Leavitt et al., 2013)

and Catroid (Slany, 2012) adapt a visual programming interface, where draggable blocks

that can be sequentially stacked represented code statements. AppInventor (Wolber et al.,

2011) allows the user to program for mobile devices through a web browser, using a block-

like visual programming interface. LiveCode (Holgate, 2012) uses a natural-language-like

scripting language for programming mobile devices, but still requires a PC to do the actual

coding. More recent environments such as TouchDevelop (Tillmann et al., 2011) adapt a

similar menu structure interface, where tapping on evolving menu entries assembles pre-

built keyword blocks. A field study of mobile programming on TouchDevelop platform was

conducted to examine the usage patterns in real users (Li et al., 2013). McDirmid (2011)

presented a similar mixed menu-iconic approach for touch-centric interaction paradigm for

textual programming on tablets.

Many game-like visual sandbox environments also contain elements of visual program-

ming. Examples include Creatorverse (Linden Research, Inc., 2012) and Blocksworld (Linden

Research, Inc., 2013), where a 2D or 3D physics engine allows users to build mechanical

constructs using “drag-and-drop” gestures and apply some constrained vocabulary of inter-

activity or logic to these constructs.

Pong Designer (Mayer and Kuncak, 2013), which combines a 2D physics engine with

directly manipulatable objects in a sandbox, is closest to our approach in general mobile
5AIDE: http://www.android-ide.com

46

programming. It enables users to add programming logic by inferring event and causal

relations to build simple games (e.g. when a ball collides with a wall, increment a counter).

The common graphical representation of our system uses a visual-sandbox like envi-

ronment (similar to Blocksworld) for assembling elements, eschewing text-based coding.

Unlike most environments where a program is assembled and then ran, our system is fully

interactive and there is no distinction between modes of assembling a program versus run-

ning one. In the design of the different interactions and representations modes, elements

of the mentioned visual sandbox environments are incorporated such as “drag-and-drop”,

and multi-touch gestures such as “pinch”. Our focus is not to build a full-fledged program-

ming environment but to compare different visual representation and interaction modes

using programming-like tasks. The constructive capability is limited in scope to building

dynamic interfaces (e.g., complex branching behavior in procedure languages is not sup-

ported in our system, currently).

4.2.4 Visualization for Gestures

Earliest examples of gesture-capable interfaces such as the marking menu (Kurtenbach et al.,

1993) predate the popularity of touch-screens. Existing work has found visual feedback

to be beneficial in mouse and pen-based direct manipulation interfaces (Wilcox et al., 1997;

Shneiderman, 1983). In pen-based interactions, visual information is also found to be more

effective than sound as a feedback mechanism, due to better visual-spatial memory in most

users (Zhai et al., 2012). On touch-screens, visual feedback is also found to have a strong

effect on accuracy in pointing/crossing tasks (Luo and Vogel, 2014).

One of the central criticisms by Donald Norman on gestural interfaces used in consumer

electronics is the lack of feedback to guide learning, as well as execution, of gesture com-

mands (Norman, 2010). Previous works have addressed this by using simulated physical

objects for learning (Bragdon et al., 2010). Continuous and dynamic visual guides, which

aim to suggest ways to complete a gesture in progress, were also proposed (Vermeulen et al.,

47

2013). Multiple works used continuous visualization to show possible commands given the

current state of interaction (Bau andMackay, 2008; Lundgren and Hjulström, 2011; Ghomi et al.,

2013; Freeman et al., 2009; Sodhi et al., 2012), usually showing potential gesture choices lo-

cated either right at the site of the interaction (near the finger touch location), or mirrored

at a more visible location.

In icon and gesture interaction modes in our system, dynamic continuous visual feed-

back is used to suggest possible outcomes associated with gesture commands, but it is not

the primary focus of the study.

4.2.5 Impact of Device Size

The impact of mobile device size has been the subject of investigation from a number of per-

spectives. In particular, the impact of screen size has been studied with respect to subjective

usability and efficiency measures on different sized mobile phones (Raptis et al., 2013), with

larger size mobile phones found to be more efficient. Similarly, psychological factors such

as enjoyment, perceived mobility, and intention to use were studied across mobile phone

and tablet form factors. While mobility decreased as device size increase, efficiency and us-

ability measures were lowest for intermediate sized devices and higher for small and large

form factors. For basic pointing tasks, large touch screens were also found to be preferable

to smaller ones (Oehl et al., 2007). Larger touch screens were also reported by users to lead

to higher enjoyment than smaller ones (Kim et al., 2011). Our work is unique in examining

the effect of touch screen size on programming-like tasks using a variety of interaction and

representation modes.

4.3 Representation & Interaction Design

Aprototype of the programming interface is built using Lua scripting language on the urMus

(Essl and Müller, 2010) platform. urMus provides a set of Lua API for programming mobile

phone sensors, audio and graphics, with which a block-based drag-and-drop interface can be

48

easily implemented. For our purpose, urMus serves as a flexible general-purpose platform

for prototyping representations and interactions. The implementation detail of our system

is described in Chapter VI.

4.3.1 Shared Grammar

The basic grammar of the visual environment starts with a full-screen canvas where the user

can create basic elements called regions and arrange them spatially as well as other elements

that are discussed below. This is where a user creates a dynamic interface (see Figure 4.14

for example). Next, we present the general programming and interaction elements that will

be shared between all representations.

Region Region
Region

Group regionRegion

Links

(a) (b) (c)

0.54

Figure 4.3: Basic elements of our environment include (a) Regions and links (b) groups for
organization and spatial constraints. A simple example interface which can be easily built
using these primitives is a slider in (c)

4.3.1.1 Region

The most basic building block is a Region (see Figure 4.3 (a)). Each region is visually rep-

resented by a rectangle on screen and can be directly manipulated via dragging and resized

via a pinching gesture. Regions can be created with a simple tap gesture on the canvas, and

can be arbitrarily arranged on the canvas. Their visual appearance can also be modified, and

they can be pinned to the canvas to prevent movement, which can be useful if it is used as

a fixed interface element (a button for example).

Regions possess characteristics of a generic variable or object in the more traditional

sense, in that they can be used both as abstract containers for values, such as a variable or a

49

constant, and as a visual object in the program. All regions can send and receive events, in

a manner similar to function calls. Regions can be configured to have other functionalities

as well, such as playing an audio sample (which may be useful for building musical instru-

ments) or moving its position on screen. Similar to how class can be instantiated as many

times as needed, regions can be duplicated while retaining their properties as well as links

which define how they interact with other regions. In all representation modes, tapping on

the empty canvas creates regions and their appearance is changed using a common texture

picker interface (see Figure 4.4).

4.3.1.2 Links

Figure 4.4: The image picker interface for
changing a region’s texture. This is com-
mon for all three representation modes.

Following the concepts of node and edges in

event-driven data-flow programming, each re-

gion can receive events and respond to themwith

actions. The routing of these events between re-

gions constitutes the main method of building

interactions in the visual environment. Links

are visually shown as lines directing from one

region to another, similar to visual patching in-

terfaces. Each link is directional and stores an

event type that is generated from the sender of

the link and an action that is to be taken by the

receiver when the event is detected. In the ex-

ample in Figure 4.3 (c), a region on the left is linked to send its vertical position value to

the region on the right (which displays a numerical value), acting as a vertical slider.

This mechanism can be used for building more complex interactions, since a region

can respond to multiple events from multiple sources, as well as respond to each event

with multiple actions, or forward events to other regions. Events can include touch-based

50

events from user input (e.g., fired when the region is dragged, tapped, or held etc.). The

actions that can be triggered by events can change the properties of the region (e.g., size,

position or movement), or can be forwarded to another region. When a region is duplicated,

all the incoming and outgoing links are also duplicated, preserving its interaction between

other regions.

For simplicity of the experiment, we implemented a basic set of touch-based events and

actions. The move event is evoked when the region is dragged; this sends the current po-

sition of the region, which can be responded by a move action, which moves the receiving

region in the same direction and distance. The receiving region can also respond by display-

ing one of the coordinates of the received position and sending it to a music synthesizer.

4.3.1.3 Groups

We use groups to encapsulate and organize sets of regions. Similar to how objects can be

nested in object-oriented language, group regions function both as conceptual containers

for regions and as a way to spatially organize objects. Because we treat groups as container

regions (implemented as a subclass of the region class), they can also receive and respond

to events. When a group is duplicated, all its children are also duplicated. Visually, a group

region spatially constrains the movement of its child regions, so they cannot be moved

out of the group. It can be used to create common interface widgets such as sliders (see

Figure 4.3 and Figure 4.14 for examples).

4.3.2 Visual Representation and Interaction Modes

Given the shared mechanisms described above, we then implemented three types of repre-

sentations for manipulating and interacting with them: (1) Menu-driven, (2) Icon-driven,

and (3) Gesture-driven.

51

4.3.2.1 Menu-Driven Mode

Figure 4.5: The text-based menu associ-
ated with a region. Deletion command is
accessed through the top left button in-
stead of the menu.

As a baseline for comparison, we created a menu

representation mode that has more similarity

to a traditional desktop UI. Except for region

deletions, link deletions and the shared gestures

mentioned above, all commands such as cre-

ation of links or groups are activated through

a contextual text-based menu (see Figure 4.5)

that is associated with one region. Deletion but-

tons for each region and link are shown when-

ever a single tap activates the menu.

For commands that require a second region

to act on (e.g., creating a link between two regions), the user activates the command and

then is prompted to select the second region (e.g., the target region to create a link to, or

in the case of creating a group, the region to be used as the container) by tapping. After

the selection, the command is executed on the two regions. Figure 4.6 shows an example

of creating a link using the menu system, as well as the menus for selecting events and

actions. The creation of groups uses the identical steps.

Due to its widespread use on different platforms, we expect this representation/interac-

tion mode to be most familiar to average users who have prior experience with desktop PCs

and commercial touch screen operating systems such as iOS or Android, where text-based

menus are common.

4.3.2.2 Icon-Driven Mode

In icon-driven mode (icon for short), most commands are accessible through a contextual

symbolic menu surrounding the region (see Figure 4.7). The icons are arranged similar to

a radial layout surrounding the region, which borrows from previous work on radial menu

52

Figure 4.6: Steps for creating a link using text menumode. 1) The link creation command is
selected from the menu, 2) the user is prompted to select a second target region by tapping,
3) events and actions are selected using their respective contextual menu, 4) at last the link
is created. Creation of groups uses the same mechanism, minus step 3 since no events or
actions is needed.

design for touch-screens (Kammer et al. (2010) for example).

Two types of gesture interactions exist in the icon-driven menu. Static buttons are acti-

vated by tapping (e.g., the “Delete” button on the top left corner), while draggable buttons

function as handles for more complex “drag-and-drop” gestures. These drag gestures ac-

tivate different types of semantically related commands. For linking, the link icon can be

dragged and dropped on the region to link to, and the potential link is visually shown us-

ing a cable-like metaphor through the interaction (see Figure 4.7). The grouping gesture

handle is used as a lasso selector to select other regions to add to the parent group region

(see Figure 4.8). The copy handle, visually represented as a smaller version of the region,

53

Figure 4.7: Above: Icon mode contextual menu, actual interface does not contain the text
labels. Pin button anchors the region on canvas, edit texture is used for changing the appear-
ance of regions. “Group”, “Link” and “Copy” icons, which are labeled in blue, are draggable
gesture handles, they are periodically animated for distinction. Below: an example of the
draggable icon handle for linking.

can be tapped to produce a copy of the parent region. It can also be dragged into any other

area on screen to produce a copy of the parent region at that location when released (see

Figure 4.7).

To visually differentiate draggable gesture handles from the static buttons, the draggable

handles are animated periodically when not used, moving slightly away and back to their

original position, as visual affordance suggesting that they can be dragged as opposed to

responding only to taps.

4.3.2.3 Gesture-Driven Mode

The last representation mode is designed to be almost entirely driven by direct manipula-

tion gestures that act on the regions. In our approach, gestures are designed for directly

manipulating the on screen elements (regions in this cases). Themapping between gestures

and the associated command is not arbitrary, but is semantically related to and reinforces

54

Figure 4.8: Draggable handle used for selection of regions to add to a group in icon repre-
sentation mode

the command being triggered.

Figure 4.9: Gesture mode uses pinch gestures
to create (above) or delete (below) links.
Background color changes show the current
command that will be executed when the ges-
ture is ended by releasing the hold, as a guide
through the activation of the pinch gesture.

For linking and unlinking two regions,

a pinch or stretch gesture is used (see Fig-

ure 4.9). A pinch gesture, where two re-

gions are dragged concurrently and moved

towards each other, is used for linking. The

opposite, moving away from each other, is

used for unlinking, reinforcing the concept

of linking and unlinking. For each gesture,

the regions have to be moved past a thresh-

old (which is visually shown when reached)

for the action to be completed. This acts

as a confirmation for each action to prevent mistaken activations. If the threshold is not

crossed, regions are automatically restored to their previous positions and the action is

cancelled.

A background color guide is displayed faintly after the initiation of the gesture as a

visual guide, and is continuously updated depending on the user’s progress in completing

each gesture (i.e., “pinch” or “stretch”). The color area corresponding to the potential

command is displayed in increased intensity, while the color corresponding to the opposite

55

Figure 4.10: A drag-and-drop gesture is used to add a region to a group (a), the reverse
removes a region from a group (b). In both cases, visualization shows the progression of
the gesture command, in (a) the potential group region is temporarily enlarged; in (b) red
background show a drop-zone for the impending drag-and-drop gesture.

command is faded (see Figure 4.9 for the visual guide). The large color background is meant

to alleviate the problem of occlusion by the user’s hand.

For grouping regions, a drag-and-drop gesture is used. When two regions are dragged,

and one is released over another one with a larger size, the smaller or released region is

added to the group associated with the larger region (see Figure 4.10). To remove a region

from a group, the reverse gesture is used: the user simply drags both the region and its par-

ent group region, and then moves the child region outside of the group region and releases.

The movement restriction of child regions within their group region is temporarily lifted

while this gesture is performed, and restored after the remove-from-group action is either

executed or cancelled. Similar to the linking gesture, visualization provides guidance by

enlarging the potential group region when adding, or showing a drop-zone when removing.

The region creation gesture of a single tap on the empty canvas (shared among all three

interaction modes) is modified to support copying. While holding onto a source region

to be copied, tapping the empty space on the canvas creates instead a copy of the source

region (see Figure 4.11). Since there is no need to release the hold on the source region,

56

this allows for efficient creation of copies.

To pin a region, a double tap gesture is used to toggle between restricting and allowing

movements (see Figure 4.12 (c)). For deletion or modifying a region’s texture, a hold-and-

slide gesture menu is used. The gesture menu is displayed after holding onto the region

for a short time and while no other commands (e.g., moving, resizing etc.) are activated.

The two commands are activated by maintaining the hold gesture while sliding towards

the command icon (similar symbol as the icon mode) and then releasing the finger. Fig-

ure 4.12(b) shows the visual feedback for activating each command after the hold-and-slide

gesture.

Figure 4.11: Copying regions in gesture mode uses a modified tap-to-create gesture nor-
mally used for creating new regions. Holding on a source region while tapping the empty
canvas to create copies.

4.3.3 Considerations in Touch-Based Interaction

For all three interaction modes, touch targets, if present (i.e., each item in the text menu,

or the icon based buttons in icon mode), are designed to have a minimal size of 9mm (on

the higher pixel density 7.9” iPad Mini) as recommended by standard mobile user interface

guidelines (Apple Inc., 2013; Google Inc., 2013).

57

Figure 4.12: (a, b) hold gesture activated menu and its different states, (b) shows how the
non-active commands is faded out while the active one is increased in opacity. (c) Visual
feedback for when a region is pinned after double tapping

Continuous visual feedback is also used in interaction modes that rely on drag gestures

(i.e., drag-and-drop, pinch, lasso selection etc.). In previous work continuous visual feed-

back has been found to be beneficial in visual programming contexts (Wilcox et al., 1997).

In icon mode, the cable and lasso selection visualization are continuously animated, and in

gesture mode the color background is continuously updated during the linking gesture (see

Figure 4.9).

4.4 Experiment

We conducted a task-based user study to explore the efficacy of different interaction and

representation modes and device sizes, using the shared visual programming environment.

In particular we are looking to test a set of three hypotheses: H1: Does the mode of inter-

action significantly influence performance? H2: Does prior experience affect how effective

or different modes are? H3: Does larger device size lead to better performance? The user

study is designed to test these hypotheses. Further, we collect subjective evidence via ques-

tionnaires as well as analysis of details of interaction patterns across all three modes.

58

Figure 4.13: A touch screen piano keyboard interface built with our environment. Partici-
pants were asked to build this in Task 1.

4.4.1 Design

We used a mixed within-subject factorial design. The factors included mode of interaction

(menu, icon and gesture, as mentioned before) and device size (full sized iPad with 9.7”

screen and iPad mini with 7.9” screen).

All three modes of interaction were presented to all participants (within-subject), while

device sizes were randomly and uniformly distributed among participants. Each participant

is assigned to only one of the two device sizes. The presentation order of interaction modes

was randomly assigned and counter-balanced. This, in turn, is in anticipation of possi-

ble learning effects in the data and allows inclusion of presentation order in the statistical

analysis.

As described before, for the mode of interaction, the underlying semantics and elements

of the visual environment, such as Regions and Links are held constant, while the interac-

tion mode for manipulating these programming primitives is varied.

For the different device sizes, the identical interface is scaled to each screen since both

have the same aspect ratio and the same effective resolution of 1024x768 pixels. This means

that fixed sized interface elements, such as menu and icon buttons, are 38% larger on the

full size iPad.

59

Figure 4.14: An example of interface built
with our environment: a music mixer control
panel containing multiple sliders as well as
a 2-D pad for simultaneous control of multi-
ple parameters. The sliders widgets are linked
with the 2-D pad so they move concurrently
whenever the other one is used to adjust val-
ues. The output parameters are fed into grey
inlet regions at the bottom that can fed the
values to amusic synthesizer. Participants are
asked to build a simplified version of this in
Task 2 with only two sliders.

We designed two tasks for the study.

Task 1 asks participants to build a touch

screen version of a simple piano keyboard

interface (see Figure 4.13). This task asks

participants to arrange regions in a layout

and change textures. Since the keyboard

contains multiple regions sharing the same

texture, participants are encouraged to use

the duplication function extensively. Task

2 asks participants to build a music con-

troller interface with sliders and a 2-D con-

trol pad, making more use of grouping and

linking functions (see Figure 4.14, simpli-

fied to contain only two sliders). There

aremany possibilities for programming-like

tasks, but our selection is not meant to be

representative, only to ensure coverage of

most of the basic possible actions. For this

reason we did not consider task as a factor

in our analysis.

Each participant is randomly assigned

one type of device out of the two sizes. After a short introduction to the basic grammar

of the programming interface, each interaction mode is introduced. Five minutes is allot-

ted for learning on each interaction mode to help mitigate learning effects. During each

learning period, the participants are asked to perform basic actions (i.e., creating regions,

changing visual appearance of regions, creating links etc.) until they are able to complete

the actions without guidance.

60

After each learning period, Task 1 is presented. After participants complete the task

three times, one on each interaction mode, they are asked to give qualitative feedback on

each of the interactionmodes through a survey. The survey evaluates each interactionmode

in terms of usability, discoverability and difficulty to learn. The survey contains 13 Likert

scale questions, and takes less than five minutes to complete.

After completing the survey, Task 2 is presented, and the participants are asked to com-

plete it three times using the same interaction modes as Task 1 and in the same order.

Afterward, a nearly identical survey is given regarding Task 2, and regarding their general

impression of each interaction mode. In total, the six trials (three on each task) last ap-

proximately 70 minutes.

Using the underlying urMus framework, we instrumented each interaction mode so

that every interaction participants have with the device is recorded. This includes low level

touch events (i.e., touch down, up, drag events) as well as the activation of each command

that modifies regions, links or groups. The recordings are analyzed in aggregate for each

task with each mode. The following aggregate measures are considered for each trial:

• Task Completion Time: The participants are instructed to complete each task as

fast as they can and to tap an onscreen button when they finish. We define comple-

tion time as the duration between the first interaction and the last interaction before

the finish button is tapped. Longer completion time indirectly reflects the difficulty

participants encountered while using each mode.

• Total Wait Time: From the interaction log we also measure how much time each

participant pauses between each interaction sequence (activating a menu, moving or

touching a region etc.). The cumulative wait time across each task may indicate user

confusion or difficulty in recall.

• Total Actions Performed: Beyond the low-level touch events recorded, we want to

look at higher-level actions that actually manipulate properties of an element (e.g.

61

changed texture, locked movement, created links and etc.). Instead of considering

each interaction such as tap or drag, we consider actions independent of the sequence

of interactions (i.e., whether a menu tap or a gesture is used) used to activate them.

This gives us an indirect measure of how efficient each mode can be. When looking at

total actions performed to accomplish each task, since the end goal of the task is the

same for every trial, more actions to reach the same goal may indicate redundancy or

more error correction. We estimate this as well using the number of deletions since

there is no undo built-in. When normalized over time, the number of actions can also

indicate how efficient each mode is at supporting fast activation of actions, although

not necessarily how useful.

• Drag Time: We aggregate drag events that are generated at display refresh rate every

time a finger is dragged on screen into more discrete drag “strokes” (see Figure 4.16),

where each drag gesture starts with a finger touch-down event, continues with a series

of drag events, and ends with a touch-up event when the finger is lifted from the

screen. We measure the total time spent on drag gestures as well as the average

duration of each drag gesture. Since the different interaction mode relies on drag-like

gestures to different degrees, we hope to see if this affects the kind of drag gestures

users perform, as well as the overall accuracy required for these gestures. Assuming

Fitts’s Law can model the drag gestures, the drag gestures requiring high precision

will necessitate a slower, longer drag.

4.4.2 Recruitment

We recruited 21 graduate and undergraduate students from the University of Michigan. We

selected participants from a variety of academic concentrations with an average age of 26.7

years, 40% of which are female. Most participants have a significant amount of experience

using touch screen phones (mean = 5.29 years, std = 2.17), about 40% have extensive

experience using tablets (mean = 2.35, std = 2.00), and 33% having more than 5 years of

62

programming experience, while 28% with less than two years (mean = 4.76, std = 4.16).

We hope to capture a broad spectrum of experience in both programming and touch screen

usage.

4.4.3 Results

Since the randomized distribution in experiment design did not result in an equal num-

ber of participants in each condition (i.e., presentation order of modes, device size), direct

ANOVA analysis cannot be applied. We used general linear model (GLM) for analysis and

we also examined two-way interactions using GLM. Presentation order is included as a

factor in the GLM regression to account for the effects of time. We also removed outlier

data points outside 2-times-standard-deviation range for each participant, with about 1.4%

of data points removed. We use the standard alpha value of 0.05 as threshold for signifi-

cance. Interaction mode factor has more than two levels, so post hoc pairwise comparisons

are done with Tukey HSD multiple comparisons correction (to have alpha value of 0.05 as

significant) to examine differences between the three interaction modes.

For many of the metrics we examined below, standard deviations are large between

participants within the same conditions, possibly resulting from the complexity of the tasks

and the differences in how people approach the tasks.

4.4.3.1 Task Completion Time

GLM shows that device is a significant factor (F = 5.86, p < 0.0169), while mode is

not (F = 0.65, p < 0.52). Surprisingly, the larger sized iPad shows longer completion

time than the iPad mini, disproving hypothesis H3. Presentation order is found to have a

significant effect on most of the responses (F = 18.19, p < 0.0001). Also surprisingly,

prior experience with touch screen phone and tablet are not found to be correlated with

completion time.

63

 Menu Icon Gesture

10

20

30

40

50

60

70

80

90

100

110

120

Ti
m

e(
s)

task completion time

wait time

Figure 4.15: Task Completion Time and Wait
Time both show high variance between par-
ticipants within the same condition, however,
the difference between gesture and the two
other modes are significant.

Prior experience in programming, how-

ever, is positively correlated with faster per-

formance (F = 4.76, p < 0.0312) in

GLM analysis. One possible explanation

is that prior programming experience and

understanding also aid the user in a visual

paradigm.

Given the high complexity of the task

and the flexibility, difference due to mode

is likely overshadowed by the high variance

in individual participants, and task comple-

tion time is possibly a poor measure of complex programming tasks (See Figure 4.15).

4.4.3.2 Wait Time

Forwait time, mode and device are significant factors (F = 4.30, p < 0.0156,F = 8.08, p <

0.0052, respectively). The order of presentation is significant (F = 10.55, p < 0.0001).

For mode, post hoc comparisons show menu (mean = 51.99, stdev = 16.91) and icon

(mean = 46.39, stdev = 15.94) lead to significantly more wait time than gesture (mean =

39.10, stdev = 17.28), menu and icon are not significantly different. This is likely explained

by the extra effort required to read menu command text or icon symbols, whereas in gesture

there are very few symbolic or textual visual cues. At the same time, as shown later with

drag time analysis, gesture mode may simply require longer, extended time to perform each

action and so it leaves less time for pause. For expertise, only experience in tablet usage is

significant (F = 6.80, p < 0.0102).

64

4.4.3.3 Total Actions

For total actions performed, we found mode to be a significant factor (F = 18.98, p <

0.0001), with gesture having significantly more actions than both menu and icon (p <

0.0001 from post hoc comparisons, icon and menu are not significantly different). (As

expected, task is significant (F = 84.37, p < 0.0001) due to the difference in task design.)

Device is also significant (F = 14.03, p < 0.0034), with the larger iPad havingmore actions

performed. Presentation order is not significant (F = 0.64, p < 0.5876). Experience in

tablet usage is possibly correlated (F = 2.91, p < 0.0583) to total actions, as participants

with more experience use fewer actions to complete the tasks.

When examined in combination of percentage of delete actions, we can infer how often

the user is correcting a mistake in creation of links, regions or groups. For percentage of

deletion out of total number of actions, mode is significant (F = 3.08, p < 0.0499), in

particular menu has higher error correction rate than gesture (mean = 9.644% vs mean =

7.775%, again this significance does not show in pairwise t-test comparisons), suggesting

that perhaps participants create more regions, links and groups by mistake with menu than

with gesture. Icon mode has similar deletion rates as menu mode at mean = 9.23%. The

fact that gesture tend to have more actions in total but a lower percentage of deletions,

suggests that the extra actions, which are not deletion, have more to do with refinement

(e.g., changing appearance or size).

When we considered the rate of action (normalized over time), GLM regression shows

that mode is also significant (F = 14.18, p < 0.0001), with gesture mode having signif-

icantly higher rates of action than icon and menu (with no significant difference between

icon and menu).

4.4.3.4 Drag Gesture Times

We aggregated how people use drag gestures. When considering the total time used for

dragging gesture, we found thatmode, task and device are significant factors (F = 12.01, p <

65

Menu Icon Gesture

Task 1

Task 2

Figure 4.16: Sample trace of all drag gesture and activation of commands for one participant.
Columns are interaction modes, and red points denote where each command is activated,
regardless of the mode.

0.0001,F = 6.33, p < 0.0131, respectively). Post hoc comparison shows that under ges-

ture mode participants spent more time dragging than menu or icon, with no significant

difference between icon and menu, which is not surprising given the emphasis of gesture

mode on drag-and-drop based interactions.

With device as the factor, participants spent more time on dragging while using the

larger iPad. Since the same goals are given for the tasks on both devices, participants nat-

urally tend to scale up the layout with a larger screen, possibly contributing to the longer

time. Both devices have identical pixel resolution, and so all onscreen elements with fixed

or default sizes such as a newly created region, buttons and menus, are already scaled up

on the larger screen.

When examining average duration of each drag gesture, only device is a significant factor

(F = 5.06, p < 0.0264), as the larger iPad again shows longer average drag duration

66

Menu Icon Gesture

Task 1

Task 2

Figure 4.17: Traces of all drag gesture and activation of commands across all participants

than small iPad. With respect to average drag distances, neither device, task nor mode is a

significant factor.

We visually examined the aggregated drag gesture traces recorded from each trial. Rep-

resentative samples can be seen in Figure 4.16, and aggregation of all participants’ drag

gestures can be seen in Figure 4.17. The trace shows fewer gestures in menu mode while

more in gesture mode. This was not surprising given the design of each mode. It also shows

more short stop-and-go drag gestures in gesture mode and icon mode, where the partici-

pant drags in a sequence of small steps, possibly iteratively refining the drag. Although

both icon and gesture show similar amount of drag gestures, it is likely that the difference

in drag time is explained by unfamiliarity with gestures without having icon-based gesture

handles in icon mode. Further, the need for more precision in gesture mode in the case of

linking and grouping, where a certain gesture threshold has to be crossed for each action

to complete, may explain the difference in drag time.

67

4.4.3.5 Time Effects

We did observe learning effects during each session as the participants completed each task

multiple times in completion time measurements, but not in total action performed (as

seen in Figure 4.18). We accounted for presentation order by including it as a factor in the

GLM analysis, and we also examined possible interactions and found that while order is

a significant factor in most cases (typically F > 10, p < 0.001), no interaction is found

between order and other factors.
id 1 2 3 4 5 6

1 74 61 80 53 30 53

2 61 111 53 37 61 39

3 80 56 53 31 30 31

4 53 57 75 37 39 64

6 104 74 57 36 64 32

7 61 76 75 39 48 52

8 91 53 53 58 61 30

9 70 55 85 44 35 82

10 107 53 49 50 38 47

11 67 53 80 31 55 42

12 101 56 109 57 46 32

13 73 72 51 36 36 35

14 76 57 62 41 41 31

15 80 53 53 37 38 42

16 49 70 49 34 41 30

17 77 51 55 47 31 44

18 64 83 49 38 40 34

19 56 52 74 34 30 49

20 61 74 56 43 39 38

21 53 85 57 35 35 31

ac
tio

ns

0

30

60

90

120

order
1 2 3

Task 2 total actions in presented order

ac
tio

ns

0

15

30

45

60

75

90

4 5 6

id 1 2 3 4 5 6

1 74 53

1 61 37

1 80 31

1 53 37

1 104 36

1 61 39

1 91 58

1 70 44

1 107 50

1 67 31

1 101 57

1 73 36

1 76 41

1 80 37

1 49 34

1 77 47

1 64 38

1 56 34

1 61 43

1 53 35

2 61 30

2 111 61

2 56 30

2 57 39

2 74 64

2 76 48

2 53 61

2 55 35

2 53 38

2 53 55

2 56 46

2 72 36

2 57 41

2 53 38

2 70 41

2 51 31

2 83 40

2 52 30

2 74 39

2 85 35

3 80 53

3 53 39

3 53 31

3 75 64

3 57 32

3 75 52

3 53 30

3 85 82

3 49 47

3 80 42

3 109 32

3 51 35

3 62 31

3 53 42

3 49 30

3 55 44

3 49 34

3 74 49

3 56 38

3 57 31

4

4

4

4

Task 1 total actions in presented order

R² = 0.0577

R² = 0.0017

tim
e(

s)

0.000

45.000

90.000

135.000

180.000

order
1 2 3

tim
e(

s)

0.000

45.000

90.000

135.000

180.000

order
4 5 6

Task 1 time in presented order

R² = 0.3659

Task 2 time in presented order

R² = 0.0989

ac
tio

ns

0

30

60

90

120

order
1 2 3

Task 2 total actions in presented order

ac
tio

ns

0

15

30

45

60

75

90

order
4 5 6

Task 1 total actions in presented order

R² = 0.0577 R² = 0.0017

�1

Figure 4.18: Plotting measurements against the presented order of each trial show some
possible learning effects in completion time (above), but no obvious trend in total actions
(below).

68

4.4.3.6 Surveys

Thirteen Likert scale survey questions are given after the completion of each task, and we

will discuss each of them in term. We included six questions from a cognitive dimension

assessment questionnaire (Green and Petre, 1996) used in the evaluation of visual program-

ming environments, which are relevant to our system. The Likert scale questions in the

questionnaire were analyzed using Mann-Whitney U tests. The interactions between the

Likert responses and factors such as device size are examined through General Linear Model

where the response values are treated as parametric, with means shown in Figure 4.19.

Questions 1 – 3 assess ease to learn, ease of use, and fun to use respectively. Participants re-

ported that gesture mode is not as easy to learn or use than menu and icon, but found both

icon and gesture to bemore fun thanmenumode (U = 373 to 735, p < 0.000002 to 0.018).

Questions 4 – 6 assess how easy it is tomanipulate regions, groups, and links respectively. Par-

ticipants reported that gesturemode ismore difficult in all three cases (U = 344 to 702, p <

0.00029 to 0.023) while there’s no significant difference between menu and icon. Question

7 assesses how easy it is to make mistakes, and gesture is found to be easier than both icon

and menu (U = 557 to 601, p < 0.00021 to 0.00083). This corresponds with earlier ob-

servations from deletion actions that show gesture mode usage lends to significantly more

actions and a higher percentage of deletions, likely due to mistakes.

Questions 8 – 13 are selected from the cognitive dimensions questionnaire. As our

environment is not strictly a system of notation, we selected mostly questions regarding

visibility and effects on programming workflow (Table 4.1). We found that gesture mode

generally has lower scores than icon and menu, while there is no significant difference

between icon and menu modes. Specifically in CD9, mode is not a factor, but visibility is

positively correlated with experience in tablet and negatively correlated with programming

experience. For CD10, icon mode is found easier than gesture (U = 735, p < 0.018271).

No significant differences were found in CD12 and 13, although smartphone experience

might be positively correlated.

69

CD8 Is it easy to see the different parts of the “program”, and how they function?
(visibility)

CD9 Is it easy to make changes? (viscosity)
CD10 Is it easy to stop and check your work so far?
CD11 Is it easy to work in any order you like?
CD12 Is it possible to sketch things out?
CD13 Are any similarities between different parts clear?
CD14 Can you think of ways that the design of the system could be improved?

Table 4.1: List of cognitive dimension questions

7 7 5.6 5.6 5.6 7 4.2

5.6 5.6 2.8 5.6 5.6 4.2 5.6

5.6 5.6 4.2 5.6 5.6 5.6 4.2

7 7 5.6 7 7 5.6 5.6

7 7 4.2 7 7 5.6 5.6

7 4.2 5.6 7 5.6 7 4.2

5.6 5.6 4.2 5.6 4.2 5.6 2.8

7 7 7 5.6 7 5.6 4.2

6.28 6.15 4.69 6.20 6.17 5.47 4.30

6.15 6.15 6.17 6.17 5.89

4.69 4.69 5.47 5.47 5.44

Q1

Q2

Q3

Q4

Q5

Q6

Q7

CD8

CD9

CD10

CD11

CD12

CD13

Likert Rating
0 1 2 3 4 5 6 7

Menu Icon Gesture

menu icon gesture menu icon gesture menu icon gesture

�5

Figure 4.19: Means of all Likert scale re-
sponses. Higher are more positive, except for
Q7, which asks if it is easier tomakemistakes.
Shows generally a disadvantage for Gesture
mode, except for Q3 where gesture and icon
modes are viewed as more fun than menu.

The last set of open-ended feedback

questions ask participants how each mode

can be improved (CD14), as well as any

general feedback. Participants generally re-

ported that menu is the easiest to learn, but

can be tedious or boring. A few complained

about having to rely on reading text to un-

derstand. Meanwhile, participants found

that icon interface can be hard to under-

stand with only symbols and no text expla-

nation, and that the discoverability of drag-

and-drop gestures is low, but fun to operate

once they become familiar. There were no

reports of fatigue in using any interaction

modes.

4.5 Conclusion

We presented an experimental study of visual programming representations and interac-

tions based on a shared underlying grammar structure that investigates the impact of device

70

size, programming background, and user expertise. We found that, contrary to our initial

hypothesis, smaller tablets offer faster programming performance across all visual interac-

tion paradigms. This is shown in less task completion time and wait times, as well as less

programming actions performed, and suggests a shared underlying explanation.

Out of the three programming representations, the icon-driven mode along with menu

mode, consistently out-performed gesture-mode in task-completion time measures and

lower wait-times between actions. Gesture mode also has a higher number of drag ges-

tures, which take more time than on other modes (not surprising given the higher reliance

on multi-touch drag-gestures), as well as a higher number of total programming actions.

Since the goal of each task is identical, the possibly redundant action points to higher num-

bers of mistakes. In some sense, this disadvantage of gesture-mode is not surprising. Most

users had prior experience with menu-based interfaces or icon driven interfaces, which are

popular already on existing computational devices, while only 40% of the participants of

the study reported any experience with commercial tablets. The short training time for

each participants also means each interaction mode, especially the gesture-driven mode,

are relatively new to them, in contrast to something like keyboard and mouse with which

they have many years of experience. Nevertheless, we do find that prior programming ex-

perience correlates to significant higher performance across all representations, suggesting

some transferability of programming expertise.

We also evaluated of different modes of representation with subjective questionnaire

and a subset of the cognitive dimension model. Subjective feedback shows that there are

differences in enjoyment and comprehension between the visual programming modes. In

particular, the menu mode and icon mode are similar in performance measures but subjec-

tive evaluations found the icon mode to be preferable in terms of enjoyment.

These results also suggest that one should be cautious in making predictions about

complex interactive task performances on mobile devices based on the device size. The

design of touch gestures needs to take the screen size of the device into account, as we

71

found that when efficiency can degrade with increased device size. This difference between

device sizes is particularly interesting, and in the next chapter we present a study to model

basic drag gestures on different device sizes.

72

CHAPTER V

Fitts’s Law and Occlusion on Touch Screen Drag Motions

In the previous study in Chapter IV we showed that in a complex visual programming task

using touch screen devices, device/screen size is a significant factor in several aggregated

performance measures, and that smaller devices lead to better performance. We had previ-

ously conjectured that larger screens would lead to better performance since more space is

available for complex gestures and assembling operations to be done with more ease. One

potential explanation for our surprising finding is that the smaller screen size leads to an

overall reduction of distances when performing drag gestures, and the effect of this domi-

nants the advantages, if any, of a larger screen. If this is the case, it should be possible to

model drag gestures on touch screen using Fitts’s Law (Fitts, 1954), which models linear

ballistic motion in target acquisition tasks.

Additionally, occlusion by the user’s hands and fingers is a common occurrence for touch

screen interactions, particularly in the previous scenario when multi-touch required more

than one finger to be on the screen. Although Fitts’s Law has been adapted to account for

varying pointing accuracy of touch screens (Bi et al., 2013), it is not clear that it can directly

model dragging gestures with potential hand and finger occlusions as a factor.

Since the previous study was not designed to test for Fitts’s Law effects or occlusion un-

der controlled conditions, we conducted a second follow-up experiment using Fitts’s Law

model to investigate if device size and hand occlusion have a significant effect on perfor-

73

mance in a touch screen drag task. Specifically, we want to address the following questions:

(i) does Fitts’s Law adequately model draggingmotion on touch-screens, (ii) is performance

difference across varying screen sizes (as seen in our previous study) consistently explained

by Fitts’s Lawmodel, and (iii) what effect does occlusion of hand have on touch-screen drag

motions?

5.1 Background

5.1.1 Fitts’s Law

Fitts’s Law traditionally models a one-dimensional pointing task using hand/arm motions,

and is typically defined as:

T = a+ b log2(
D

W
+ 1)

with T as time, D as distance (or amplitude) of the movement,W as the width or size of

the target, and a and b are constants dependent on the particular interface and user. More

recent interpretations include Fitts’s index of difficulty formulated by quantifying motor

skills using information theory (MacKenzie, 1992). Previous work sought to expand to two-

dimensional tasks (MacKenzie and Buxton, 1992) and compare pointing tasks in physical

space and virtual space on-screen (Graham and MacKenzie, 1996). They found that virtual

space pointing behaves differently when participants experienced more difficulty “homing”

on the target at the final stage of the task. Some also adapted Fitts’s Law for touch-screens

taking account of the accuracy of finger touch (Bi et al., 2013; Jota et al., 2013).

Previous works have compared Fitts’ Law under different interaction modes such as

mouse versus touch screen (MacKenzie et al., 1991; Forlines et al., 2007). These studies also

found a difference between dragging and pointing motions, where users exert more effort

for dragging motions, resulting in lower performance.

Notably, Soukoreff and MacKenzie (2004) formulated best practices for applying Fitts’s

Law model in 2-dimensional pointing tasks, which takes into account variations in user

74

performance (also standardized in ISO (2002)). These recommendations guided our anal-

ysis below:

1. Shannon formulation of the Index of Difficulty (ID) should be used:

ID = log2(
D

W
+ 1)

so thatMovement Time (MT), the time for each dragging task, is modeled by Fitts’s Law

as: MT = a+ b ID, where a and b are condition specific constants.

2. Movement Time (MT) should be used as the primary measure of performance. In a

discrete task where consecutive trials are separated by a break, reaction time should

be discounted (the time between the start of the task and when the user actually

started moving).

3. End-points and error rates of each movement should be collected. End-point scatter

data can be used to perform adjustment for accuracy. Specifically, the target width pa-

rameter is adjusted based on real performance of the users and the conditions tested,

with an adjusted effective widthWe = 4.133σ, where σ is the standard deviation of the

end-point position along the movement direction within the specific task condition

(distance, width, and etc.). With this adjustment, the Effective Index of Difficulty (IDe)

becomes

IDe = log2(
D

We + 1).

The interpretation is that ID values represent themovement tasks that users are asked

to perform, while the adjusted IDe corresponds to the actual movements that the user

performed. According to Soukoreff and MacKenzie (2004) there are two reasons for

possible discrepancy: (i) The spread of movement end-points will not perfectly align

with the target width specified, and (ii) users tend to cheat on easier ID conditions

by not moving fast enough or covering the whole distance.

75

4. Linear regression should be used to find the parameters a, b of the Fitts’s Law equa-

tion: MT = a + b IDe and the resulting intercept (a) should be close to zero (under

400ms in most previous work). A large intercept might indicate problems with the

methodology.

5. Throughput (TP) (TP = ID
MT) should be used as an over-all measure of performance if

different task conditions (other than distance and target width) are compared. This

is computed as a mean for each participant and averaged across all participants:

TP = 1

y

i=1∑
y

(
1

x

j=1∑
x

IDei,j
MTi,j

)

where y is the number of participants and x is the number of movement (distance,

width) conditions. The unit of throughput is bits per second.

Since the majority of the touch-screen gestures involve some form of dragging, we focus

only on dragging-target-acquisition task in this study instead of pointing tasks. To this end,

we designed a dragging task where participants are to keep their finger on the screen until

they have reached the target.

5.1.2 Occlusion

Occlusion is recognized as a problem in touch screen interactions (Vogel and Casiez,

2012), with multiple solutions proposed. For example, finger touch “ghosts” are used for

precision pointing on touch screen (Benko et al., 2006). Visuals can be shifted from under

the finger/hand to be more visible (Vogel and Baudisch, 2007; Freeman et al., 2009). Cockburn

et al. (2012) also found that occlusion inherent in touch screen pointing can be a limiting

factor in performance versus other indirect pointing devices.

However, we are not aware of works quantifying the effect of occlusion in a Fitts’s motor

performance task on touch screens. Our drag gesture experiment includes potential occlu-

sion as a factor, since for multi-touch gestures it is common to have two fingers or even

76

two hands over the screen, possibly obscuring the target of the gesture strokes.

5.2 Experimental Design

We recruited 20 adult participants from the University of Michigan. Using a screening

survey, we selected participants who were capable of operating a touch screen device, right-

handed with right eye-dominance, and who had no impairments that affect the usage of

their arms and hands. The effect of eye-dominance on hand motor tasks is not commonly

examined, while hand-dominance is found to have a significant effect (Ehrenstein, 1997). To

avoid both as potential confounding factors we chose to control for both dominances in our

participant selection.

Demography of the participants is 50% female and 50% male with an average age of

23.05 years (standard deviation of 2.27 years), and all have some experience using a mobile

touch-screen device (smartphone or tablet).

We used full factorial design with the following factors: drag direction (2), drag dis-

tances on tablet (4), target size (3), device screen size (2), resulting in 48 conditions in

total. With four trials in each condition, a total of 192 trials are presented in random-

ized order, in 16 batches of 12 each. A full factorial design with randomized order allows

straightforward analysis with ANOVA, while the randomization provides counterbalancing

to control the effect of presentation order.

For each trial, we asked the participant to place the pointing finger of their dominant

hand on a green starting rectangle on the tablet, and then a target is shown on screen.

The participant is then asked to drag their finger from the starting position to the target as

fast as possible and the trial is complete when the participant lifts their finger. The trial is

counted as a success if participant reached the target (lift their finger inside the target), or

failure if missed. Audio and visual feedback is provided in all trials to indicate a success or

a miss. A crosshair is updated continuously on screen to indicate the center of the touch

event as interpreted by the touch screen, and the target square changes color to white when

77

Figure 5.1: Target distances and target sizes in relation to screen sizes, in scale

the participant moves into the target. A short audio beep is played if the participant moved

their finger into the target, while a different beep plays when they missed the target. The

use of audio and visual feedback for each task is similarly used in other touch-screen Fitts’s

Law studies (Bi et al., 2013). In our case the visual and audio changes aim to compensate

for possible accuracy limits in touch screen gestures, which is not a factor since it is applied

to all conditions.

Prior to the actual study, we conducted an informal pilot study to examine factors and

to test some assumptions in guiding the experimental design choices. Details of the exper-

iment factors are detailed below:

Drag Direction

We vary the drag direction to introduce potential occlusion as a factor. We positioned

78

the tablet so that it is vertically aligned with the right forearm of the participant when

they lay their forearm flat on a table positioned in front of them. The dragging tasks

presented are strictly vertical, dragging either up or down on the tablet (see Fig-

ure 5.2). We discovered that diagonal motions with respect to participant’s forearms

produced potential for limb locking during our pilot study, which can possibly affect

the performance. Therefore we choose to make motion vertical and symmetric with

respect to forearm joints. With a fixed posture and the alignment of the tablet, when

dragging up, the target is above the participant’s hand and is always visible with no

occlusions. When dragging down, since the participant is moving their hand/arm

down vertically , their arm or hand is likely to obscure the drag target.

Target Distance

We vary the distance between the starting position and the center of the target rectan-

gle in range of 37.5mm, 50mm, 75mm and 100mm. The first three distances chosen,

mirror previous Fitts’s Law studies on touch and pen-based pointing for consistency

and comparability (GrahamandMacKenzie, 1996). The target rectangle is always placed

in relation to the initial touch center of the participant’s finger, not the center of the

starting rectangle, in order to compensate for any variation in each participant’s initial

touch down. See Figure 5.1 for target distance and size in scale.

Target Size

We use three target sizes: 6mm, 12mm and 24mm. Each target is shown on screen

as a red square. The target sizes are chosen in relation to the average human fin-

ger width of about 16 – 20mm (Dandekar et al., 2003), with 6mm being close to the

typical minimal touch target size on commercial touch-based platforms, 12mm be-

ing similar to touch area of average finger, and 24mm giving significantly larger area

than the touch area of a finger. Similar to the target distances mentioned above, the

values chosen are used in previous Fitts’s studies on touch and pen-based pointing

79

for consistency(Graham and MacKenzie, 1996) . The combination of distance and size

produces an ID range of 1.4 – 4.4.

Device Size

We use two screen sizes, iPad at 9.7” and iPad mini at 7.9”. This matches the screen

size in the multi-touch programming study in the previous chapter, where we found

that smaller screen device perform significantly better (lower task completion time)

than the larger screen. Here we want to see if the same effect is in play in a simpler

dragging task. Other factors such as target sizes and target distances are scaled ac-

cording to the different pixel densities of the screens so the physical size and distance

remain constant.

For each participant, after introduction and a learning period of about five minutes (96 trials

are presented), the batches of trials are presented. In our pilot study, we found that initial

variation due to learning or acclimation takes about five minutes to subside, and roughly

100 trials are enough to reduce the effect. Each trial is presented discretely and takes only

a couple of seconds, with each batch of trials taking one minute or less to complete. After

each batch we ask the participant to take a one-minute rest break to reduce the potential

for fatigue. The total time of the session for each participant is about 35 minutes.

5.2.1 Data Collection

We record the time it takes for the participant to move from starting position, into the

target, and lift their finger. To compute Movement Time (MT), we discard any time after

the participants first placed their finger on the screen (which triggers the start of the trial,

the target is immediately shown), before they moved their finger, so reaction time is not

included inMT, which is the time participant spendmoving their finger while it is in contact

with the screen.

We also note when the target is reached or missed for each trial. We instrumented our

experiment apparatus to record each drag stroke, since this allows us to record the end-point

80

Figure 5.2: Two dragging directions are presented during the dragging task. Participants
are expected to experience no occlusion moving up, and more potential for occlusion when
moving down.

position of each drag, which are used for IDe adjustment later.

5.3 Data Analysis

5.3.1 Data cleaning

Overall we collected a total of 3840 trials from 20 participants. After grouping all data by

conditions across participants, we removed a total of 12 outlier samples in each group in

preprocessing, (outside of twice standard deviation, similar to suggestion by Soukoreff and

MacKenzie (2004)), which is less than 0.3% of the total samples.

5.3.2 Movement Time

We use Movement Time (MT), the time the participant takes to drag from the starting

position into the target square (or stops, if they missed it) as the primary measure of per-

formance. ANOVA on movement time with respect to all factors (i.e., device, direction,

target distance and target size) shows that all have significant effect onMT. For device size,

we found that the iPad mini with smaller screen performed significantly slower than iPad

81

device dir tp

Up 10.2047602802 0.2138472990 0.1524214719 0.1597295729

Down 20.1993739365 0.2081233052 0.1454912604 0.1548882479

2 124.1385209523 0.0463155079 0.0511157197

2 225.3581771459 0.0508816716 0.0576769983

0.0511157197

0.0576769983

Mean movement time across device and direction

M
ov

em
en

t t
im

e
(s

)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Direction
Up Down

0.20810.2138 0.19940.2048

iPad
iPad Mini

device dir min min2 avg avg2

1 1 0.120071 0.0839820.12356150.0946903

1 1 0.172778 0.1544570.1896758 0.16139

1 1 0.195552 0.158680.223702000.1896203

1 1 0.208241 0.162518 0.2236370.18296475

1 1 0.129553 0.0782290.14748025 0.096332

1 1 0.145077 0.1231260.16498900 0.132525

1 1 0.089516 0.0662120.12471550.08415850

1 1 0.169319 0.1121800.24937600.19742825

1 1 0.154240 0.101693 0.1809440.11539400

1 1 0.225142 0.1652320.259060750.21776600

1 1 0.121645 0.1126220.17318830.14231125

1 1 0.144423 0.1050270.1676153 0.123209

1 1 0.185738 0.1339980.20406880.1483310

1 1 0.171 0.1196110.2428165 0.179657

1 1 0.136009 0.118680.157457750.1345383

1 1 0.238718 0.1887760.25694575 0.208906

1 1 0.162463 0.092827 0.1863270.11502900

1 1 0.119549 0.097979 0.131370 0.108670

1 1 0.207068 0.1381860.242344000.16998000

1 1 0.169640 0.1226420.193780500.13421675

1 1 0.217351 0.1389060.252940500.1681665

1 1 0.236553 0.204707 0.2557710.2335790

1 1 0.110880 0.0782150.17070000 0.1200

1 1 0.110872 0.0841780.169912000.10569500

1 1 0.176179 0.1303950.191906500.1477635

1 1 0.098755 0.051230 0.1607320.08718775

1 1 0.238256 0.1694420.25232600.1822303

1 1 0.158392 0.11891 0.1872480.1470303

1 1 0.155335 0.093281 0.1688540.11436150

1 1 0.179704 0.0974030.240248500.14419000

1 1 0.122573 0.0756810.14157450.08818525

1 1 0.108715 0.0825010.14120875 0.092955

1 1 0.213272 0.14230.24129000.16940525

1 1 0.173197 0.1473740.209520250.1720930

1 1 0.155961 0.1063430.171594500.1220530

1 1 0.174870 0.139599 0.1924730.1599263

1 1 0.105764 0.062341 0.15819 0.088209

1 1 0.139176 0.0902780.161062750.11537425

1 1 0.225853 0.1234770.246434750.15368800

1 1 0.26455 0.173600.322110500.1957478

1 1 0.176176 0.1308210.220541750.15678925

1 1 0.165493 0.0900340.175074000.10113225

1 1 0.174681 0.151060 0.193900.1568225

1 1 0.210489 0.1583100.23678675 0.160826

1 1 0.16611 0.1151340.176935750.1257140

1 1 0.111332 0.078720.159061500.12836950

1 1 0.142034 0.0892670.158336750.11209050

1 1 0.138060 0.076480 0.1575640.09009000

1 1 0.183087 0.127087 0.1933360.13948350

1 1 0.277792 0.174074 0.2955620.21981125

1 1 0.168602 0.143276 0.1899540.15568350

1 1 0.216394 0.144103 0.2388030.16052475

1 1 0.158633 0.118158 0.1765910.13026800

1 1 0.124591 0.095391 0.1626320.10724175

1 1 0.138889 0.105240 0.1578600.11532475

1 1 0.107138 0.068355 0.1261950.08185900

1 1 0.208975 0.180140 0.2313170.20723150

1 1 0.218083 0.164582 0.2440790.18430100

1 1 0.249442 0.1614290.28634030.19136250

1 1 0.134478 0.12007 0.142240.12601850

1 1 0.18443 0.1368310.27900825 0.203223

1 1 0.107308 0.0766690.13696030.09288500

Mean movement time across device and direction

M
ov

em
en

t t
im

e
(s

)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Direction
Up Down

0.15490.1597 0.14550.1524

iPad
iPad Mini

�1

Figure 5.3: Mean movement time are significantly different between device sizes and drag
directions. The scatter plot shows the spread of all movement time in each device-direction
condition.

with larger screen (F = 18.93, p < 0.0001,), which is unexpected given the previous study.

We also found direction to be a significant factor (F = 9.4, p < 0.0022) (See Figure 5.3,

lower time means better performance). For target distance and size this is not surprising

(F = 1299.27, p < 0.0001, F = 641.44, p < 0.0001 respectively, with p < 0.05 as

significant), assuming the movement is modeled by Fitts’s Law, which predicts a strong

correlation between target distance, size and performance. No interaction between device

and direction was observed in ANOVA.

5.3.3 Error Rate

We also recorded the number of misses. Because of the scarcity of misses (out of all trials

only about 6.1% are missed), we considered error rate per task condition across all partic-

ipants. In ANOVA with all factors (i.e., device size, direction, target distance, target size)

with respect to error rate, we found that drag direction is a significant factor(F = 5.78, p <

82

device dir dist size err

1 1 1 1 0.138888888889 0.125 full d=1 w=1

1 1 2 1 0.0833333333333 0.0833333333333 full d=2 w=1

1 1 3 1 0.0694444444444 0.166666666667 full d=3 w=1

1 1 4 1 0.0972222222222 0.222222222222 full d=4 w=1

1 1 1 2 0.0138888888889 0.0694444444444 full d=1 w=2

1 1 2 2 0.0138888888889 0.0138888888889 full d=2 w=2

1 1 3 2 0 0.0277777777778 full d=3 w=2

1 1 4 2 0.0138888888889 0 full d=4 w=2

1 1 1 3 0 0 full d=1 w=3

1 1 2 3 0 0.0277777777778 full d=2 w=3

1 1 3 3 0 0.0138888888889 full d=3 w=3

1 1 4 3 0 0 full d=4 w=3

2 1 1 1 0.0945945945946 0.162162162162 mini d=1 w=1

2 1 2 1 0.04 0.12 mini d=2 w=1

2 1 3 1 0.0933333333333 0.173333333333 mini d=3 w=1

2 1 4 1 0.175675675676 0.123287671233 mini d=4 w=1

2 1 1 2 0.027027027027 0.04 mini d=1 w=2

2 1 2 2 0 0 mini d=2 w=2

2 1 3 2 0.0135135135135 0.027027027027 mini d=3 w=2

2 1 4 2 0 0.027027027027 mini d=4 w=2

2 1 1 3 0 0.0133333333333 mini d=1 w=3

2 1 2 3 0 0 mini d=2 w=3

2 1 3 3 0 0.027027027027 mini d=3 w=3

2 1 4 3 0 0.0135135135135 mini d=4 w=3

1 2 1 1 0.125

1 2 2 1 0.0833333333333

1 2 3 1 0.166666666667

1 2 4 1 0.222222222222

1 2 1 2 0.0694444444444

1 2 2 2 0.0138888888889

1 2 3 2 0.0277777777778

1 2 4 2 0

1 2 1 3 0

1 2 2 3 0.0277777777778

1 2 3 3 0.0138888888889

1 2 4 3 0

2 2 1 1 0.162162162162

2 2 2 1 0.12

2 2 3 1 0.173333333333

2 2 4 1 0.123287671233

2 2 1 2 0.04

2 2 2 2 0

2 2 3 2 0.027027027027

2 2 4 2 0.027027027027

2 2 1 3 0.0133333333333

2 2 2 3 0

2 2 3 3 0.027027027027

2 2 4 3 0.0135135135135

Error rate

0%

5%

10%

15%

20%

25%

Task conditions

full d=1 w=1
full d=2 w=1
full d=3 w=1
full d=4 w=1
full d=1 w=2
full d=2 w=2
full d=3 w=2
full d=4 w=2
full d=1 w=3
full d=2 w=3
full d=3 w=3
full d=4 w=3
m

ini d=1 w=1
m

ini d=2 w=1
m

ini d=3 w=1
m

ini d=4 w=1
m

ini d=1 w=2
m

ini d=2 w=2
m

ini d=3 w=2
m

ini d=4 w=2
m

ini d=1 w=3
m

ini d=2 w=3
m

ini d=3 w=3
m

ini d=4 w=3

direction up
direction down

�1

Figure 5.4: Error rate shows significance w.r.t. direction, but not device. As expected
target size is significant factor as predicted by Fitts model. Each task condition is labeled
by device (full = iPad, mini = iPad mini), distance (d=37.5, 50, 75, 100mm), and target
width (w=6, 12, 24mm). Direction up should have no occlusion versus direction down for
which occlusion is highly likely.

0.0206), but device size is not (see Figure 5.4). We also found that target width is signif-

icant (F = 83.92, p < 0.0001) while distance is not (F = 0.12, p < 0.729). We did not

observe any significant interaction between device and direction in error rate in ANOVA.

5.3.4 Fitts’s Law Model

As per recommendation of Soukoreff and MacKenzie (2004), using Shannon’s formulation of

unadjusted ID, we first grouped MT data into four device size-direction conditions. With

MT and ID, we used least square linear regression to find a, b in MT = a + b IDe. Each

condition shows a clear linear fit (see Figure 5.5), with R2 = 0.85 to 0.883.

While unadjusted ID assumes participants complete each trial exactly as directed (e.g.

stopping in the center of the target), when adjusted for accuracy in real performance, IDe

should give us a more realistic measure. As noted by Soukoreff and MacKenzie (2004), any

large discrepancies between the model derived from ID and IDe may be a sign of a method-

83

ID time 1 time 2 IDe avg2 avg1 IDe avg1 avg2 IDe avg1 avg2 IDe avg1 avg2

2.3692 0.1552 0.2030 1 2 1 1 2.0000 1.0000 2 2

1.3576 0.0656 0.1243 1.3576 0.0731 0.1467 4.1430 0.1962 0.2845 2.0444 0.1728 0.1996 2.8580 0.1097 0.1704

3.2224 0.1922 0.2487 1.3576 0.0586 0.1264 4.1430 0.1614 0.2742 2.0444 0.1708 0.2266 2.8580 0.0896 0.1463

3.2224 0.1386 0.1927 1.3576 0.0587 0.1404 4.1430 0.1801 0.2494 2.0444 0.1911 0.2307 2.8580 0.1219 0.1897

2.0444 0.1304 0.1802 1.3576 0.0614 0.1277 4.1430 0.2277 0.3373 2.0444 0.1626 0.2209 2.8580 0.1163 0.1694

2.0444 0.0923 0.1464 1.3576 0.0814 0.1643 4.1430 0.2764 0.3393 2.0444 0.1071 0.1607 2.8580 0.1072 0.2167

4.1430 0.2157 0.2777 1.3576 0.0910 0.1435 4.1430 0.2057 0.2720 2.0444 0.1103 0.1397 2.8580 0.1086 0.1821

2.8580 0.1470 0.2019 1.3576 0.0664 0.1899 4.1430 0.2356 0.2878 2.0444 0.1045 0.1700 2.8580 0.0634 0.1424

3.7549 0.1841 0.2394 1.3576 0.0565 0.1177 4.1430 0.2289 0.2756 2.0444 0.1165 0.1682 2.8580 0.1000 0.1560

2.8580 0.1299 0.1883 1.3576 0.0515 0.0992 4.1430 0.2787 0.3519 2.0444 0.1863 0.2263 2.8580 0.2207 0.2129

2.3692 0.1176 0.1685 1.3576 0.0505 0.1208 4.1430 0.1849 0.2494 2.0444 0.1533 0.1779 2.8580 0.1398 0.1925

1.6245 0.0865 0.1343 1.3576 0.0699 0.1248 4.1430 0.3008 0.3519 2.0444 0.1686 0.1985 2.8580 0.2020 0.2128

4.1430 0.2237 0.2814 1.3576 0.1538 0.2353 4.1430 0.3498 0.3498 2.0444 0.1512 0.1747 2.8580 0.1098 0.1877

2.8580 0.1344 0.1930 1.3576 0.0503 0.1060 4.1430 0.3166 0.3266 2.0444 0.1852 0.2250 2.8580 0.1461 0.2078

3.7549 0.1878 0.2407 1.3576 0.0695 0.1355 4.1430 0.3095 0.3283 2.0444 0.1370 0.1750 2.8580 0.1132 0.1735

2.8580 0.1586 0.2070 1.3576 0.0968 0.1554 4.1430 0.2291 0.2782 2.0444 0.1637 0.1971 2.8580 0.1070 0.1708

2.0444 0.1042 0.1565 1.3576 0.0577 0.1191 4.1430 0.2326 0.3074 2.0444 0.1633 0.1840 2.8580 0.1706 0.2651

3.2224 0.1495 0.2004 1.3576 0.0389 0.0790 4.1430 0.2514 0.3057 2.0444 0.1744 0.2507 2.8580 0.1167 0.1850

2.0444 0.1342 0.1832 1.3576 0.0649 0.1244 4.1430 0.1300 0.2283 2.0444 0.1419 0.2048 2.8580 0.1492 0.2286

2.3692 0.1235 0.1736 1.3576 0.0580 0.1136 4.1430 0.2885 0.3588 2.0444 0.1648 0.2123 2.8580 0.1254 0.1654

1.6245 0.1023 0.1506 1.3576 0.0566 0.1003 4.1430 0.2228 0.2904 2.0444 0.1442 0.1909 2.8580 0.1241 0.1826

1.3576 0.0882 0.1434 1.3576 0.0357 0.0708 4.1430 0.2605 0.3211 2.0444 0.1159 0.1543 2.8580 0.1010 0.1627

3.2224 0.1946 0.2496 1.3576 0.0595 0.1027 4.1430 0.2506 0.2984 2.0444 0.1039 0.1749 2.8580 0.1419 0.1880

2.3692 0.1683 0.2178 1.3576 0.0533 0.1121 4.1430 0.1444 0.1919 2.0444 0.1009 0.1532 2.8580 0.0970 0.1394

2.0444 0.1415 0.1925 1.3576 0.1276 0.2321 4.1430 0.2209 0.2997 2.0444 0.1241 0.1885 2.8580 0.0907 0.1097

3.2224 0.2078 0.2599 1.3576 0.0685 0.1198 4.1430 0.2466 0.2957 2.0444 0.1583 0.1960 2.8580 0.0892 0.1073

4.1430 0.2444 0.3038 1.3576 0.0689 0.1709 4.1430 0.2446 0.3114 2.0444 0.1511 0.2079 2.8580 0.0724 0.0926

2.8580 0.1746 0.2271 1.3576 0.0530 0.1255 4.1430 0.1351 0.2323 2.0444 0.1392 0.1986 2.8580 0.0791 0.1120

1.3576 0.0917 0.1464 1.3576 0.0689 0.1373 4.1430 0.1690 0.2649 2.0444 0.1537 0.1832 2.8580 0.1117 0.1399

3.2224 0.1628 0.2190 1.3576 0.1033 0.1592 4.1430 0.2714 0.3645 2.0444 0.1323 0.1940 2.8580 0.0985 0.1567

2.0444 0.1114 0.1633 1.3576 0.0552 0.1057 4.1430 0.1282 0.2263 2.0444 0.1458 0.1902 2.8580 0.0833 0.1230

2.8580 0.1474 0.2037 1.3576 0.0452 0.1131 4.1430 0.2924 0.3109 2.0444 0.1028 0.1537 2.8580 0.1253 0.2134

3.7549 0.2010 0.2583 1.3576 0.0685 0.1176 4.1430 0.2522 0.2976 2.0444 0.1187 0.1667 2.8580 0.2116 0.3160

1.6245 0.1074 0.1580 1.3576 0.0574 0.1391 4.1430 0.2586 0.2846 2.0444 0.1426 0.1662 2.8580 0.1789 0.3034

2.3692 0.1320 0.1840 1.3576 0.0503 0.1365 4.1430 0.2657 0.2877 2.0444 0.1279 0.1642 2.8580 0.2129 0.3129

2.3692 0.1808 0.2245 1.3576 0.0584 0.1222 4.1430 0.3017 0.3198 2.0444 0.1248 0.1669 2.8580 0.1573 0.2158

2.8580 0.1341 0.1920 1.3576 0.0612 0.1395 4.1430 0.2417 0.2932 2.0444 0.1143 0.1470 2.8580 0.0732 0.1855

2.0444 0.0961 0.1448 1.3576 0.0497 0.0742 4.1430 0.2727 0.2894 2.0444 0.1096 0.1732 2.8580 0.1271 0.2058

3.2224 0.2140 0.2617 1.3576 0.0664 0.0932 4.1430 0.2651 0.2739 2.0444 0.1057 0.1861 2.8580 0.1795 0.2231

2.8580 0.1575 0.2129 1.3576 0.0407 0.0540 4.1430 0.2038 0.2298 2.0444 0.1307 0.1981 2.8580 0.1231 0.1633

2.3692 0.1199 0.1678 1.3576 0.0586 0.0879 4.1430 0.2439 0.3015 2.0444 0.1174 0.1935 2.8580 0.0852 0.1179

3.2224 0.1501 0.2093 1.3576 0.0522 0.1361 4.1430 0.2139 0.2763 2.0444 0.1259 0.1591 2.8580 0.1253 0.1434

1.3576 0.0743 0.1299 1.3576 0.0528 0.1623 4.1430 0.2490 0.2969 2.0444 0.1352 0.1693 2.8580 0.1392 0.2079

4.1430 0.2346 0.2959 1.3576 0.0761 0.1352 4.1430 0.2420 0.2707 2.0444 0.1471 0.1872 2.8580 0.1536 0.1644

2.0444 0.1363 0.1801 1.3576 0.0675 0.1433 4.1430 0.2092 0.2768 2.0444 0.1270 0.1474 2.8580 0.1308 0.1499

1.6245 0.0926 0.1395 1.3576 0.0576 0.0817 4.1430 0.2112 0.2641 2.0444 0.1270 0.1931 2.8580 0.1732 0.2313

2.3692 0.1692 0.2144 1.3576 0.0600 0.0779 4.1430 0.2784 0.3278 2.0444 0.1348 0.2202 2.8580 0.2118 0.2968

3.7549 0.1944 0.2572 1.3576 0.0760 0.1028 4.1430 0.1194 0.2238 2.0444 0.1268 0.1631 2.8580 0.1292 0.1836

1.3576 0.0417 0.0924 4.1430 0.1883 0.2467 2.0444 0.1441 0.1739 2.8580 0.0879 0.1678

1.3576 0.0558 0.1113 4.1430 0.1713 0.2379 2.0444 0.1376 0.2047 2.8580 0.2133 0.2959

1.3576 0.0516 0.1155 4.1430 0.2700 0.3006 2.0444 0.1500 0.1991 2.8580 0.1736 0.2540

1.3576 0.0510 0.1093 4.1430 0.1268 0.1815 2.0444 0.1479 0.2229 2.8580 0.1991 0.2807

1.3576 0.0603 0.0974 4.1430 0.1797 0.2619 2.0444 0.1642 0.2167 2.8580 0.1047 0.1615

1.3576 0.0490 0.0838 4.1430 0.1995 0.2782 2.0444 0.1474 0.2228 2.8580 0.0899 0.1761

1.3576 0.0508 0.0766 4.1430 0.1856 0.2803 2.0444 0.1750 0.2410 2.8580 0.0976 0.1650

1.3576 0.0554 0.0892 4.1430 0.1945 0.2740 2.0444 0.1258 0.1893 2.8580 0.0944 0.1629

Device = iPad, direction = down

M
ov

em
en

t T
im

e
(s

)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

ID (bit)
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

y = 0.0462x + 0.078
R² = 0.8505

Fitts model with mean movement time

M
ov

em
en

t T
im

e
(s

)

0

0.08

0.16

0.24

0.32

ID (bits)
0.00 1.25 2.50 3.75 5.00

y = 0.0517x + 0.0636
R² = 0.8383

Device = iPad, direction = up

M
ov

em
en

t T
im

e
(s

)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

ID (bit)
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

y = 0.0522x + 0.0543
R² = 0.8654

Device = iPad mini, direction = down

M
ov

em
en

t T
im

e
(s

)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

ID (bit)
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

y = 0.0576x + 0.0477
R² = 0.8825

Device = iPad mini, direction = up

M
ov

em
en

t T
im

e
(s

)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

ID (bit)
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

y = 0.0504x + 0.0766
R² = 0.8698

�1

Figure 5.5: Fitts’s Law model with unadjusted ID, across four device-direction conditions.
The spread of MT values are also shown in addition to the means for each ID values. In all
conditions the linear regression fit is shown.

ology problem.

With IDe adjusted using collected end-point data, we updated the Fitts’s Law model in

Figure 5.6. The adjustment does not change the values of MT, but shifts the IDe values

along the x-axis. The linear regression results are similar to unadjusted ID, with a clear

linear fit R2 = 0.824 to 0.925. In one case R2 improved from 0.883 to 0.925, while in

another R2 became worse (0.86 to 0.82 after adjustment). Nevertheless, the difference is

small, suggesting that Fitts’s Law model applies in the dragging task conditions. For both

the unadjusted and the adjusted model, the intercept from linear regression is also within

the suggested 400ms range at a maximum of 76ms.

To evaluate the performance of the device-direction conditions, we compute throughput

84

Device = iPad, direction = down

M
ov

em
en

t T
im

e
(s

)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

IDe (bit)
0 0.5 1 1.5 2 2.5 3 3.5

y = 0.0808x - 0.0051
R² = 0.8697

Device = iPad mini, direction = down

M
ov

em
en

t T
im

e
(s

)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

IDe (bit)
0 0.5 1 1.5 2 2.5 3 3.5

y = 0.1019x - 0.0517
R² = 0.9259

Device = iPad, direction = up

M
ov

em
en

t T
im

e
(s

)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

IDe (bit)
0 0.5 1 1.5 2 2.5 3 3.5

y = 0.0845x - 0.013
R² = 0.8611

Device = iPad mini, direction = up

M
ov

em
en

t T
im

e
(s

)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

IDe (bit)
0 0.5 1 1.5 2 2.5 3 3.5

y = 0.082x + 0.005
R² = 0.8239

�1

Figure 5.6: Fitts’s model with IDe adjusted for accuracy across four device-direction condi-
tions. Linear regression fit is also shown for all conditions.

for each participant in each device-size-direction condition (target distance and size are no

longer factors). The means of throughput for each condition are similar and range from 12

– 14 bits/s (see Figure 5.7). Running ANOVA on throughput data across all participants

(only factors are device size and drag direction) shows that device size is a significant factor

(F = 8.46, p < 0.0037) and direction is also significant (F = 11.64, p < 0.0007). Overall,

the iPad mini has lower throughput than the larger iPad, and dragging down leads to higher

throughput than dragging up.

5.3.5 Time Effects

To examine the possible effects of time, whether caused by fatigue or learning effects, we

looked at throughput in the order of presentation. We use throughput instead of move-

85

device dir tp

Up 1 12.9470643509 1.00757704582 12.4442138836 1.17963729161

Down 2 13.5720256544 1.98939612384 13.0368922476 1.85798052713

2 1 12.4442138836 1.17963729161

2 2 13.0368922476 1.85798052713

Thoughput (mean of means) across device and direction

Th
ro

ug
hp

ut
 (b

its
/s

)

0

2

4

6

8

10

12

14

16

Direction
Up Down

13.0412.44 13.5712.95

iPad
iPad Mini

device dir tp

Up 1 0.0845000000 11.83431952663 12.19512195122

Down 2 0.0808000000 12.37623762376 9.81354268891

2 1 0.0820000000 12.19512195122

2 2 0.1019000000 9.81354268891

0.0845

Thoughput (regression) across device and direction

Th
ro

ug
hp

ut
 (b

its
/s

)

0

1.625

3.25

4.875

6.5

8.125

9.75

11.375

13

Direction
Up Down

9.81
12.20 12.3811.83

iPad
iPad Mini

�1

Figure 5.7: Mean of means of throughput per device and direction condition, computed
using IDe.

ment time due to easier comparability since throughput is a general performance measure

independent of target distance and width, which are varied between trials. The aggregated

resulting plot shows no significant trend (see Figure 5.8), suggesting no clear effects of

learning or fatigue.

5.4 Discussion

In the previous study in Chapter IV, we found that the iPad mini with a smaller screen

leads to lower task completion time than the bigger iPad, which corresponds to better per-

formance for smaller screens. Our conjecture was that a smaller screen leads to a lower

average drag distance across the tasks performed. If Fitts’s Law models drag motion on

touch screens, this should lead to lower movement time as well.

Surprisingly, this smaller screen advantage is not reflected in the results. In movement

time analysis, the iPad mini has higher movement time than the iPad, suggesting slower

performance. Similarly, the iPad mini has a lower throughput, as an overall measure of

the performance, while we found error rates are not significantly different across device

sizes. This directly contradicts what we expected. Since target distance-size conditions

86

Mean throughput in order of presentation

Th
ro

ug
hp

ut
 (b

its
/s

)

0

2

4

6

8

10

12

14

16

18

20

22

Order of Presentation

y = 0.0004x + 13.241
R² = 0.0007

�1

Figure 5.8: Mean throughput shows no significant time effects. Shown are standard devia-
tion of throughput as well as a mostly flat logarithmic regression fit. no learning or fatigue
effect significant

are identically scaled between two different screen sizes, if Fitts’s Law fully models the

task we should expect to see near identical performance across device sizes. We suspect

that the counterintuitive result is affected by other potential factors such as perception or

confidence of the participant being in play. One potential explanation is that the smaller

screen visually outlines a smaller area for the participants to move freely. When asked to

drag as fast as possible, their top speed is affected by the perceived freedom to move, as they

do not want to move too fast to overshoot the edge of the screen. Larger screens can be

perceived to allow more freedom and encourage faster and bigger gestures. In other words,

the perception of confinement of the smaller screen potentially makes participants move

more carefully, which leads to slower performance overall. Although we did not include a

questionnaire in the study, a post-session questionnaire about the participants’ perception

might help verify or rule out perception as a plausible explanation for this result.

For question (i), we do find that drag motions on touch screens do conform to Fitts’s

Law model, with both unadjusted ID and adjusted IDe resulting in good linear regression

fit with no large discrepancies.

87

For question (ii), in the previous study we observed that larger devices lead to longer

drag time, however drag distance is not significantly different between devices. The applica-

bility of Fitts’s Lawmodel would be potentially consistent with a smaller screen performing

better if drag distances are also smaller and that no other factors are involved, since Fitts’s

Law predicts that shorter target distance correlates with shorter movement time. However,

drag distance is not significantly different in the previous study, even though in this study

we see that touch screen drag motions do conform to Fitts’s Law. It is less clear if other

factors such as perception or experience can also account for the difference in the previous

study, which dominate the affect of Fitts’s Law drag motions.

Finally, to address question (iii) about occlusion, we find the potential presence of oc-

clusion to be a significant factor across multiple measures in unexpected ways. We expected

downward drag to have potentially more occlusion, which might affect performance neg-

atively. Instead, movement time is significantly lower when dragging down, suggesting

higher performance. Similarly throughput measure shows downward drag lead to higher

performance. A potential explanation is that the reduced visibility of the target due to oc-

clusion leads to a less careful approach to the target, which may lead to faster movement.

This explanation is consistent with what we see in error rates. Although errors are sparse,

when participants drag down, they miss significantly more than when they drag up. The

higher error rate (especially when the target is small) supports the explanation that poten-

tial occlusion in downward drag leads to less careful drag approaches. Overall, the result is

that participants tend to move faster during downward drag but are less accurate.

5.5 Conclusion

As an extension of the work in Chapter IV, we conducted a Fitts’s Law drag motion study

to quantify the performance difference in touch screen drag between device sizes and the

potential effect of occlusion. We find Fitts’s Law to suitably model drag motion on touch

screen overall, but the difference across device sizes is unexpected. Smaller screens lead to

88

slower dragging motion and lower throughput, while in our previous study smaller screens

lead to higher performance on complex tasks. We suspect factors such as perception and

confidence of the participant with respect to screen size might be in play. We also quanti-

fied the difference due to potential occlusion in dragging motion, and found that potential

occlusion is correlated to a higher performance (i.e., lower time, higher throughput), but

also higher error rate.

89

CHAPTER VI

Tapperware: Implementation

Themobile visual programming system called Tapperware is used inChapter IV. Tapperware

is built on top of the urMus framework (Essl, 2010b) using Lua scripting language. In this

chapter, we present the implementation detail of Tapperware, and provide some examples

of how it can be used to create gesture interfaces with visualizations.

6.1 Overview

The architecture of Tapperware (see Figure 6.1) consists of a set of programming primitives

accessible through an Application Programming Interface (API), and the graphical interface

components that enable the interaction and feedback. The programming primitives include

classes that represent the basic entities in the visual language (see Chapter IV): Region,

Link andGroup. These classes mirror their syntactic counterparts in the visual language. The

graphical representations of these primitives and the user interfaces are managed separately

by a set of singleton classes, which also provide standard UI widgets such as menus, icons,

notification views, and visualization for gestures. Finally, a set of utility classes provide

a logging feature which can be used for user studies, and an interface to urMus’s sound

synthesis API.

We use Lua’s general data structure table to achieve object-oriented programming.

This enables common object-oriented behaviours such as inheritance, which we will not

90

language visual interactive

Gesture
Manager

Region

Group

Link Visual
Link

Text & Icon
Menu

Gesture
Guides

urMus

Tapperware

sound

logging

notification

Figure 6.1: Overview of the software components of the programming environment

describe in detail here1. Syntactically, if a is an object, then a:method() is a method call,

and a property of object a is accessed as a.property.

6.2 Programming Primitives

6.2.1 Region

Tapperware region is an extension or subclass of the built-in visual region class in urMus,

as it retains appearance properties and direct-manipulation interactions. The urMus region

API2 provides simple access to the creation of an onscreen rectangle, as well as the modifi-

cation of its texture, and event-driven interaction using callback functions. For example, the

following code creates an urMus region and then configures its size and position on screen:

r = Region() -- creates a region object

r:SetWidth(200) -- sets dimensions and positions

1See Lua documentation at http://www.lua.org/pil/16.html for detail
2http://urmus.eecs.umich.edu/urAPI/Region.html

91

http://www.lua.org/pil/16.html
http://urmus.eecs.umich.edu/urAPI/Region.html

Figure 6.2: An urMus region with size, position and texture configured

r:SetHeight(200)

r:SetAnchor('CENTER',400,400)

r:Show() -- make it visible on screen

The appearance of the urMus region can also be modified, either by setting the color or, as

shown in the following example, setting an image texture:

r.t = r:Texture("textureImage.png")

r.t:SetBlendMode("BLEND")

In this example, r:Texture() method call initiates a texture object and is then stored in

r.t property, and Figure 6.2 shows the final result. Texture API 3 in urMus allows a variety

of visual manipulations such as setting the blend mode.

3http://urmus.eecs.umich.edu/urAPI/Texture.html

92

http://urmus.eecs.umich.edu/urAPI/Texture.html

urMus
region

Region class

contextual menu
touch states (held, drag speed, etc.)
references to links
references to parent group
movement constraints
event responder and dispatcher

Figure 6.3: Tapperware region class extends urMus region class with multiple properties and
mechanisms as part of the gesture state machine.

Event-driven logic can be set up in urMus regions using Handle() methods:

-- define the call back function

function onTouchUpCallback(self, x, y)

Log:print("touched up on region")

end

-- now assign the call back function

r:Handle("OnTouchUp", onTouchUpCallback)

Here the function onTouchUpCallback is passed as the callback function for a low level

touch event, and will be called whenever a user triggers a touch up event in the urMus

region r.

In Tapperware, the extended region class retains all the features of the urMus region

class mentioned above. In addition, it also stores interaction states as part of the gesture

state machine, and mechanisms for dispatching and responding to events. Events and Links

(described in the next section) are the main mechanisms through which regions interacts

with each other. It also has data structure for managing links and associated contextual

interfaces for text and icon-based menus (see Figure 6.3). A highlight of the new public

methods include:

TWRegion:new()

A new constructor for the extended TWRegion class, new TWRegion objects are either

allocated or used from a reusable pool for more efficient memory usage.

93

TWRegion:RemoveRegion()

A recycling destructor which returns the TWRegion object into a reusable pool. This

will also remove all the links to and from this region.

TWRegion:SetPosition(int x, int y)

Sets the onscreen position of the object, while obeying any movement constraints.

For example, if the region object is pinned or is within a group, the new position is

set according to the constraints.

TWRegion:Copy(x, y)

Creates a copy of the region object and positions it onscreen. This also duplicates any

links associated with the object, mirroring the behaviour described in Chapter IV.

TWRegion:OpenRegionMenu(), :CloseMenu()

Opens or closes the associated contextual menu. This could be a text-based menu or

an icon-based menu depending on the menu class used.

Tapperware region has event handlers for all of the low level touch events in urMus, and

each event is passed to the gesture manager class as part of the gesture recognizer, which

we will discuss in Section 6.3.1.

6.2.2 Link

The function of Link class is to connect two region objects and to direct the flow of events

from object to object (with a specified sender and receiver, see Figure 6.4). Each link object

can also have user interfaces associated with it (for example, buttons for removing the link).

Methods of link class include:

Link:new(TWRegion sender, TWRegion receiver, event, eventHandler)

Constructor for link object, which also sets the sender and receiver regions. Event

94

region 1

region 2region 3

linklink

sender

receiver sender

receiver

Figure 6.4: The link class is a directional conduit between region objects. The large grey
arrows indicates the flow of events.

is a string specifying the type of events to be passed through the link, and even-

tHandler is a reference to the callback function, which usually belongs to the region

object.

Link:SendMessageToReceivers(message, TWRegion origin)

This private method is called only by the sender region object to pass the event to

the receiver. Message can be of any types as long as the handler function knows

how to process it. Origin references to the sender object, which is used to detect

cycles when a message is propagated through multiple regions connected by links. A

simple tree traversal is used to send each message, where regions are nodes and links

are edges.

In the following example, two region objects are linked so that they will move together

(touch event OnDragging is handled with the region method TWRegion.move):

r1 = TWRegion:new()

r1:SetPosition(10,10)

r2 = TWRegion:new()

r2:SetPosition(20,30)

95

link:new(r1,r2,'OnDragging',TWRegion.Move) -- link from r1->r2

link:new(r2,r1,'OnDragging',TWRegion.Move) -- link from r2->r1

6.2.3 Group

Group is a subclass of the region class, which acts simply as a container for other region

objects. It has common methods for managing its child regions:

Group:New(), Group:Destroy()

Constructor and destructor for group object (The destructor also removes any regions

contained in the group.)

Group:CreateGroupFromRegions(listOfRegions)

Special constructor to create a new group to contain a list of regions

Group:SetRegions(listOfRegions), :AddRegion(region), :RemoveRegion(region)

Methods for setting, adding regions to a group, as well as removing regions from a

group

Like region objects, group objects can also be connected by links, or duplicated. In the

following example code, two regions are created, and are then nested together with a new

group.

local r1 = TWRegion:new()

local r2 = TWRegion:new()

rgroup = CreateGroupFromRegions({r1,r2})

rgroup.r:LoadTexture('barback.png') -- change group's texture

96

Background Gesture visualization Links Regions Menu, Icon, Notifications

Notification overlay Notification overlay

Composited view

Figure 6.5: Illustration of the different layers which are composited together to form the
graphical interface of Tapperware

6.3 Graphical User Interface

The visual representation of region objects is handled by urMus region API, while the vi-

sual representation of links and other user interface elements are built fromurMus regions.

The interface of the environment is composited from several layers of urMus regions, each

responsible for drawing the background canvas, links, each region, menus and icons, ges-

ture visualizations, and any notification overlays (see Figure 6.5). Multiple utility classes

are responsible for handling the drawing of these layers:

LinkLayer

This class draws each of the line segments on screen representing the individual link

objects.

SimpleMenu, IconMenu

These classes create and manage a text-based or icon-based menu on screen (shown

in Figure 4.5 and Figure 4.7). In addition to drawing all the icon textures, icon menu

class also handles the drawing of selection lassos as seen in Figure 4.8.

ImgPicker

This class creates an image-based texture-picker menu on screen (see Figure 4.4).

NotifyView

This class creates a simple timed text-based notification, and can be used for feedback

when actions are performed.

97

GestureGuideView

This class contains all drawing methods for different types of visual gesture guides,

which are called by the gesture manager/recognizer for feedback.

The text and icon menu classes are implemented using textured urMus regions and text

labels. They are designed to be reusable and are instantiated and configured each time

they are needed with callback functions for each command in the menus. The drawing

and updating of links and gesture guides are triggered by user-initiated events such as the

moving or tapping of a region. These low level touch events are handled through a gesture

manager utility class.

6.3.1 Gesture Recognition and Visualization

Gesture interactions are enabled by two components, the Gesture Manager class which

handles the actual recognition of interactions using state machines, and the GestureGuide-

View class which draws the visualization for gestures on screen. The multi-touch gesture

state machine recognizes each gesture such as a pinch by listening for low-level touch events

from all regions in the environment, and then triggers the assigned actions (for example,

creating a link) when action states are reached. To accomplish this, Gesture Manager lis-

tens for low level touch events using the following callback functions which are called by

TWRegion when low level touch events are received:

GestureManager:BeginGestureOnRegion(region)

Called when a touch-down event is detected on any region. The gesture manager

keeps track of the number of concurrent touch-down events to differentiate between

multi-touch and single touch gestures.

GestureManager:EndGestureOnRegion(region)

Called when a touch-up is detected on any region

98

S0
initial
state

S1
multi-

dragging

touch down 2 regions

S2
trigger
actiontouch up

> pinch threshold

touch up
 < pinch threshold

region positions
are reset

S0
initial
state

S3

touch down

S4
trigger
hold

action

wait > threshold

touch up,
wait < threshold

triggers tap action

touch up

S0

S1

S2 S3

S4

Figure 6.6: Simplified examples of state machines managing the pinching gesture, tap and
hold gesture. On the far right is a combined state machine for both the pinching and hold
gestures. Action states are shown with bold, red circle and text.

GestureManager:Dragged(region, dx, dy, x, y)

Called when an OnDragging event is detected, when the region is being moved by

the user. The dx, dy reports the velocity of the drag motion so that the manager can

filter on intentional drag versus unintentional shift in touch when the user intended

to tap and hold instead.

GestureManager:Tapped(), :Leave()

These callback methods are triggered when a tapped or leave touch event is fired by

user input.

Since low level events such as touch-down, touch-up, tap, and leave are recorded by the ges-

ture manager, higher level multi-touch or single touch gestures can be specified through

a gesture state machine. For example, Figure 6.6 shows two simplified state machines for

a two-finger pinch gesture, as well as tap and hold gestures. When each gesture state is

entered, drawing functions in GestureGuideView mentioned above are called accordingly

to provide and update the visualizations. Some visualization is updated after each Gesture-

Manager:Dragged() call to provide continuous visual feedback.

The separation of gesture recognition and visualization in the Gesture Manager class

allows a variety of gestures to be swapped in by specifying different state machines within

the manager class, and different visualizations to be exchanged by only changing the imple-

mentation of GestureGuideView. This way the underlying functional component such as

99

region and link objects do not need to be modified for new gestures or new visualizations.

However, one particular technical challenge is the limitation in expressivity and readability

of specifying complex state machines in code. While the example presented in Figure 6.6

is simplified, more complex gestures might call for different approaches to programming

state machines such as using specialized or declarative specifications.

6.3.2 Utilities

Other utilities include logging, which records each touch event and user-triggered action in

a detailed log on device. This utility is used extensively in Chapter IV for data collection

during the user study.

In addition to the visual interface, a sound module serves as a simple wrapper to urMus

sound synthesis API. This allows user inputs from the programming environment to be fed

into sound synthesis parameters, and enabling the building of musical controllers. In the

example in Figure 4.14, each of the sliders controls a different parameter of a simple sin

oscillator.

6.4 Summary

In this chapter we presented an overview of Tapperware, a multi-touch visual programming

environment which can also support the creation of newmulti-touch gesture interfaces. We

described the architecture of Tapperware, and a summary of the Application Programming

Interfaces for the programming primitives: Region, Link and Group. Finally we outlined

the components for gesture recognition and gesture visualization and how they can be in-

dependently configured to create new gesture-based interfaces.

100

CHAPTER VII

Conclusion

The work we presented in this thesis investigates the interrelation between visual represen-

tation and feedback, and gesture-based input in the domain of creative computing. While

previous works have looked at the mechanics for the recognition of gesture input and the

design of visual feedback, we focused on the joint consideration of gesture interfaces and

visualizations across a range of interaction spaces.

Our research question is: Which aspect(s), if any, of visual feedback and sonic mapping affects

the efficacy of gesture-based interaction in creative computing? We examined a range of interaction

spaces and usage scenarios, from continuous sound parameter control in open-air gestures

to visual programming on multi-touch mobile devices. The main finding of this thesis is

that performance in gesture interactions is dependent on multiple and interacting factors.

In other words, not all gestures are created equal.

We presented two novel gesture interaction spaces, an open-air gesture-augmented pi-

ano keyboard, and a multi-touch visual programming environment. We conducted user

studies and found that user performance is dependent on multiple, interacting factors such

as the mapping of gesture to sound and device size. A number of findings are unintuitive.

For example, the contradictory effect of device size in two different task scenarios. This

suggests that the performance of similar gestures, such as dragging, can vary highly based

on the scenario and may benefit from different task and conditions like device size.

101

7.1 Contribution

Specifically, we set out to accomplish the following goals:

1. Examine the role of visual representation andmapping in real-time continuous gesture-

to-input-parameter interaction, and discrete gesture-driven commands.

2. Quantify user performance in gesture input across a range of interaction spaces to

examine the effect of multiple factors on gesture interactions.

3. Develop tools and platforms for exploring visual representations of gestures.

Goal 1

In Chapter III and Chapter IV, we considered visualization and gesture interface in a range

of interaction spaces. We explored the design space of visual representation and feedback

in both continuous gesture parameter controls and discrete gesture-driven visual program-

ming. In the space of open-air gesture controls, we defined a framework for design visuals

and gestures based on physical placement and temporal-causal relationships between the

input and the feedback. We created a series of visualizations and representations to explain

and guide user interactions by drawing on real-world metaphors such as a school of fish

or a harp. We also considered the design of visual representations in multi-touch visual

programming. We created multiple visual representations, from a menu-driven interface to

a direct-manipulation-inspired gesture interface. This work is described in Section 3.4 and

Section 4.3.2.

Goal 2

We presented three user studies which quantified the performances of gesture interfaces

with respect to varying mapping strategies, visual representations and device sizes.

In Chapter III we examined the performance of real-time continuous parameter ges-

ture controls in a gesture-augmented keyboard instrument, using quantitative measures

such as task completion time and smoothness of input in a real-time musical performance

102

scenario. We found that the mapping of gestures to multiple continuous parameters affects

performance significantly. The best gesture-parameter mapping can out-perform traditional

physical wheels for real-time multi-parameter control. For example, hand-width gesture is

more suitably matched with tremolo sound control, but performs poorly when mapped to

a low-pass filter effect. This advantage is also correlated with the subjective measure of

higher expressivity and more enjoyment in using the gesture interface controls over tradi-

tional physical controls. In summary, we found that not all gesture-to-sound mappings are

equally suited for performance.

In Chapter IV we looked at the performance of three visual representations and two

device sizes in the context of mobile multi-touch visual programming. We conducted a

user study and measured performance with metrics such as task completion time, waiting

time and drag time. We found that more traditional menu-driven and icon-driven visual

representations achieved better performance than a gesture-driven representation. While

users reported that menu and icon-driven representations are easier to use, gesture and

icon representations are more enjoyable to use. We also unexpectedly found that smaller

device size, which corresponds to smaller screen size, leads to better performance over-

all, which is possibly correlated with overall distance of drag gestures. This performance

difference in device size is further investigated in a drag task study using Fitts’s Law in

Chapter V. We found a counterintuitive result in touch screen drag tasks which challenges

our earlier findings. We found that smaller device size actually leads to worse performance

in speed, possibly due to a difference in user perception of confinement on the device. We

also unexpectedly found that the potential of occlusion in the task condition does not lead

to slower performance. Instead users performed the drag task faster, but with a lower ac-

curacy. These results suggest that not all touch screen drag gestures are the same, and

performance is dependent on factors such as device size and the scenario.

In both gesture spaces, we found that the performance of gesture interactions is depen-

dent on multiple interacting factors, and the effect of these factors is also dependent on the

103

scenario and the task.

Goal 3

We present Tapperware, a multi-touch visual programming platform in Chapter VI, which

can serve as a starting point for exploring multi-touch gesture interfaces and visualizations.

This framework is used as the basis for the user study in Chapter IV. It is designed to allow

new multi-touch gestures to be defined using state machines as well as different gesture

visual feedback to be implemented independently.

Further contributions made in this thesis are as follows:

Gesture Augmented Musical Keyboard Instrument

InChapter IIIwe presented a novel gesture-augmentedmusical keyboard instrument

where gestures are used to control continuous sound parameters. The design of the

instrument combines open-air gesture sensing with a traditional piano keyboard, as

well as top-down projection for visual feedback over the entire gesture space. The

gesture sensor can track hand positions in 3D space and can provide corresponding

audio output and visual feedback overlaid on the gesture space. This system serves as

the platform for our user studies in comparing real-time gesture mapping and physi-

cal wheel controls. It also enables a range of alternative performance interfaces. For

example, the player can move either hand into the gesture space immediately above

the keyboard for parameter controls and using the other hand to continue playing

simultaneously. The gesture space and projected visualization open up many possi-

bilities of musical instrument designs. Some examples can be found in Section 3.4.

Mobile Visual Programming with Multiple Visual Representations

In Chapter IV we presented a visual touch-driven environment for interactively con-

structing dynamic interfaces. We created three distinctive visual representations for a

common underlying flow-based visual programming vocabulary: a traditional menu

interface, an icon-driven interface, and a gesture-driven interface. While menu in-

terface follows more established text-based menu paradigm, icon and gesture repre-

104

sentations make use of novel visual metaphors and guides for continuous feedback.

As detailed in Chapter VI, this environment is also designed to be extensible for

prototyping other gesture interfaces.

7.2 Future Research

In the short period of time since multi-touch and open-air gesture interfaces have become

common on commercial platforms such as smartphones and gaming consoles, there already

have been many approaches in gesture interfaces. We believe the design of gesture inter-

action in the creative domain is a growing area ripe for exploration and experimentation.

Through our exploration of visualization and gesture interaction design, we have started

to develop a framework to understand the interaction between visuals and gesture input,

as well as guiding the design of new gesture interfaces. From our user studies, we have

seen that certain gesture mappings and visual representations have performance advan-

tages over others. The precise mechanism of these advantages is not yet clear understood.

For example, the suitability of certain mapping of gesture to sound parameter suggest a

possible cognitive fit between the two factors, more research is needed to understand this

relationship.

The various factors involved in multi-touch gestural interaction also call for further in-

vestigation. Although factors such as occlusion and device size are recognized, and other

works have proposed solutions to these perceived problems, more studies are needed to

examine how these factors affect the interaction. In our examination of device size and

occlusion, the counter-intuitiveness of the results suggests that the mechanisms of their

effects are not well understood. For example, it is not conclusive or clear why in one sce-

nario users performed better on smaller devices, while in another they performed worse. A

deeper understanding of these factors can help guide the design of gesture interactions to

avoid any pitfalls.

With the growing adoption of personal mobile devices, demand is also growing for cre-

105

ative and personal expressive use of these devices. We are in an exciting time when the

landscape of gesture interactions is shifting with new device form-factors and commodi-

tized gesture sensing technologies. These developments point to a hopeful outlook for

gesture interactions where expressivity and enjoyment can rival traditional physical musi-

cal instruments, while their specificity and power can match the complexity afforded by the

keyboard-and-mouse paradigm.

106

BIBLIOGRAPHY

107

BIBLIOGRAPHY

(2002), Ergonomic requirements for office work with visual display terminals (vdts)—part
9—requirements for non-keyboard input devices, (ISO 9241-9:2000(E)).

(2011), Appendix D Assessment of Comfort, Ergonomics of human-system interaction - Part 420:
Selection of physical input devices., (ISO 9241-420:2011), 38–30.

Apple Inc. (2013), iOS Human Interface Guidelines, Apple Inc.

Bark, K., E. Hyman, F. Tan, E. Cha, S. A. Jax, L. J. Buxbaum, and K. J. Kuchenbecker (2013),
Effects of Vibrotactile Feedback on Human Learning of Arm Motions, IEEE Transactions on
Neural Systems and Rehabilitation Engineering.

Bau, O., and W. E. Mackay (2008), Octopocus: A dynamic guide for learning gesture-based
command sets, in Proceedings of the 21st annual ACM symposium on User interface software and
technology, pp. 37–46, ACM.

Benko, H., A. D. Wilson, and P. Baudisch (2006), Precise selection techniques for multi-
touch screens, in CHI ’06: Proceedings of the SIGCHI Conference onHuman Factors in Computing
Systems, p. 1263, ACM, New York, New York, USA.

Berg, T., D. Chattopadhyay, and M. Schedel (2012), Interactive Music: Human Motion Ini-
tiated Music Generation Using Skeletal Tracking By Kinect, in Proceedings of the Conference
of The Society for Electro-Acoustic Music in the United States (SEAMUS).

Berland, M., T. Martin, T. Benton, and C. Petrick (2011), Programming on themove: Design
lessons from IPRO, in CHI’11 Extended Abstracts on Human Factors in Computing Systems, pp.
2149–2154, ACM.

Berthaut, F., M. Marshall, S. Subramanian, and M. Hachet (2013), Rouages: Revealing the
Mechanisms of Digital Musical Instruments to the Audience, in Proceedings of the Interna-
tional Conference on New Interfaces for Musical Expression (NIME).

Bi, X., Y. Li, and S. Zhai (2013), FFitts law: modeling finger touch with fitts’ law, in CHI
’13: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, ACM.

Biegel, B., J. Hoffmann, A. Lipinski, and S. Diehl (2014), U can touch this: touchifying an
IDE, in CHASE 2014: Proceedings of the 7th International Workshop on Cooperative and Human
Aspects of Software Engineering, ACM.

108

Blackwell, A., and N. Collins (2005), The Programming Language as a Musical Instrument,
Proceedings of PPIG05 (Psychology of Programming Interest Group), pp. 120–130.

Bonnel, A.-M., and E. R. Haftser (1998), Divided attention between simultaneous auditory
and visual signals, Attention, Perception, & Psychophysics, 60(2), 179–190.

Bragdon, A., A. Uguray, and D. Wigdor (2010), Gesture play: motivating online gesture
learning with fun, positive reinforcement and physical metaphors, in ACM international
conference on interactive tabletops and surfaces, pp. 39–48, ACM, Saarbru ̈cken,Germany.

Buxton, B. (1991), The ”Natural” Language of Interaction: A Perspective on Non-Verbal
Dialogues, The Art of Human-Computer Interface Design, pp. 405–416.

Buxton, B. (2007), Multi-Touch Systems That I Have Known and Loved, Microsoft Research.

Buxton, B. (2010), 31.1 : Invited Paper: A Touching Story: A Personal Perspective on the
History of Touch Interfaces Past and Future, SID SymposiumDigest of Technical Papers, 41(1),
444.

Buza, K. (2012), ScriptKit.

Chae, M., and J. Kim (2004), Do size and structure matter to mobile users? an empirical
study of the effects of screen size, information structure, and task complexity on user
activities with standard web phones, Behaviour & Information Technology, 23(3), 165–181.

Chang, F., C.-J. Chen, and C.-J. Lu (2004), A linear-time component-labeling algorithm
using contour tracing technique, Computer Vision and Image Understanding, 93(2), 206–220.

Chaparro, B., B. Nguyen, M. Phan, S. A, and J. Teves (2010), Keyboard Performance: iPad
versus Netbook, in Usability News, vol. 12.

Charbonneau, E., A. Miller, and J. J. LaViola Jr (2011), Teach me to dance: exploring player
experience and performance in full body dance games, 43 pp., ACM.

Cockburn, A., D. Ahlström, and C. Gutwin (2012), Understanding performance in touch
selections: Tap, drag and radial pointing drag with finger, stylus and mouse, International
Journal of Human-Computer Studies, 70(3), 218–233.

Culjak, I., D. Abram, T. Pribanic, H. Dzapo, and M. Cifrek (2012), A brief introduction
to OpenCV, in MIPRO, 2012 Proceedings of the 35th International Convention on Information
and Communication Technology, Electronics andMicroelectronics, pp. 1725–1730, IEEE, Opatija,
Croatia.

Dandekar, K., B. I. Raju, Srinivasan, andM. A (2003), 3-D Finite-Element Models of Human
and Monkey Fingertips to Investigate the Mechanics of Tactile Sense, Transactions of the
ASME, 125, 682–691.

Davidson, P. L., and J. Y. Han (2006), Synthesis and control on large scale multi-touch
sensing displays, in Proceedings of the International Conference on New Interfaces for Musical Ex-
pression (NIME), pp. 216–219, Paris, France.

109

diSessa, A. A., and H. Abelson (1986), Boxer: a reconstructible computational medium,
Communications of the ACM, 29(9).

Eaton, J., and R. Moog (2005), Multiple-touch-sensitive keyboard, in Proceedings of the Inter-
national Conference on New Interfaces for Musical Expression (NIME), Vancouver, BC, Canada.

Ehrenstein, W. H. (1997), Perception-action compatibility and eye-hand dominance in us-
ing visually-displayed information, in Proceedings of the Europe Chapter of the Human Factors
and Ergonomics Society Annual Conference, Bochum.

Essl, G. (2010a), Mobile phones as programming platforms, in Proceedings of the First Interna-
tional Workshop on ProgrammingMethods for Mobile and Pervasive Systems, Pervasive, Helsinki.

Essl, G. (2010b), UrMus – An Environment for Mobile Instrument Design and Performance,
in Proceedings of the International ComputerMusic Conference (ICMC), Stony Brooks/New York.

Essl, G., and A. Müller (2010), Designing Mobile Musical Instruments and Environments
with urMus, in Proceedings of the International Conference on New Interfaces for Musical Expres-
sion (NIME), Sydney, Australia.

Essl, G., and S. O’Modhrain (2006), An enactive approach to the design of new tangible
musical instruments, Organised Sound, 11(03), 285–296.

Fitts, P. M. (1954), The information capacity of the human motor system in controlling the
amplitude of movement., Journal of Experimental Psychology, 47(6), 381–391.

Forlines, C., D. Wigdor, C. Shen, and R. Balakrishnan (2007), Direct-Touch vs. Mouse Input
for Tabletop Displays, in CHI ’07: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, ACM.

Freed, A., and R. Avizienis (2000), A newmusic keyboard featuring continuous key-position
sensing and high-speed communication options, in Proceedings of the International Computer
Music Conference (ICMC), Berlin, Germany.

Freeman, D., H. Benko, M. R. Morris, and D.Wigdor (2009), ShadowGuides: visualizations
for in-situ learning of multi-touch and whole-hand gestures, in ITS ’09: Proceedings of the
ACM International Conference on Interactive Tabletops and Surfaces, ACM.

Ghomi, E., S. Huot, O. Bau, M. Beaudouin-Lafon, andW. E. Mackay (2013), Arpège: Learn-
ing multitouch chord gestures vocabularies, in Proceedings of the 2013 ACM international
conference on Interactive tabletops and surfaces, pp. 209–218, ACM.

Goel, M., L. Findlater, and J.Wobbrock (2012), WalkType: using accelerometer data to acco-
modate situational impairments in mobile touch screen text entry, in CHI ’12: Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, ACM.

Google Inc. (2013), Metrics and Grids | Android Developers.

Graham, E. D., and C. L. MacKenzie (1996), Physical versus virtual pointing, 292–299 pp.

110

Green, T. R. G., and M. Petre (1996), Usability Analysis of Visual Programming Environ-
ments: A ‘Cognitive Dimensions’ Framework, Journal ofVisual Languages&Computing, 7(2),
131–174.

Grudin, J. T. (1983), Error Patterns in Novice and Skilled Transcription Typing, in Cognitive
aspects of skilled typewriting, pp. 121–143, Springer New York, New York, NY.

Haken, L., and E. Tellman (1998), An Indiscrete Music Keyboard, Computer Music Journal,
22(1), 30–48.

Hall, A. D., J. B. Cunningham, R. P. Roache, and J. W. Cox (1988), Factors affecting perfor-
mance using touch-entry systems: Tactual recognition fields and system accuracy., Journal
of Applied Psychology, 73(4), 711–720.

Hamilton, R., J. Smith, and G. Wang (2011), Social Composition: Musical Data Systems for
Expressive Mobile Music, Leonardo Music Journal, 21(21), 57–64.

Han, J. Y. (2005), Low-cost multi-touch sensing through frustrated total internal reflection,
in Proceedings of the 18th annual ACM symposium on User interface software and technology, pp.
115–118, ACM.

Hils, D. D. (1992), Visual languages and computing survey: Data flow visual programming
languages, Journal of Visual Languages & Computing, 3(1), 69–101.

Hofmeester, K., and J. Wolfe (2012), Self-revealing gestures: teaching new touch interac-
tions in windows 8, in CHI’12 Extended Abstracts on Human Factors in Computing Systems, pp.
815–828, ACM.

Holgate, C. (2012), LiveCode Mobile Development Beginner’s Guide, Packt Publishing, Limited.

Ishii, H., and B. Ullmer (1997), Tangible bits, in the SIGCHI conference, pp. 234–241, ACM
Press, New York, New York, USA.

Johnston, W. M., J. Hanna, and R. J. Millar (2004), Advances in dataflow programming
languages, ACM Computing Surveys (CSUR), 36(1), 1–34.

Jordà, S. (2003), Sonigraphical instruments: from FMOL to the reacTable, in Proceedings of
the International Conference on New Interfaces for Musical Expression (NIME), pp. 70–76.

Jordà, S. (2004), Instruments and Players: Some Thoughts on Digital Lutherie, Journal of
New Music Research, 33(3), 321–341.

Jota, R., A. Ng, P. Dietz, and D. Wigdor (2013), How fast is fast enough?: a study of the
effects of latency in direct-touch pointing tasks, in Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pp. 2291–2300, ACM, ACM.

Kammer, D., F. Lamack, and R. Groh (2010), Enhancing the expressiveness of fingers:
multi-touch ring menus for everyday applications, in AmI’10: Proceedings of the First in-
ternational joint conference on Ambient intelligence, Springer-Verlag.

111

Kim, K. J., S. S. Sundar, and E. Park (2011), The effects of screen-size and communication
modality on psychology of mobile device users, in CHI’11 Extended Abstracts on Human
Factors in Computing Systems, pp. 1207–1212, ACM.

Krueger, M. W., T. Gionfriddo, K. Hinrichsen, M. W. Krueger, T. Gionfriddo, and K. Hin-
richsen (1985), VIDEOPLACE—an artificial reality, vol. 16, ACM.

Kurtenbach, G. P., A. J. Sellen, andW. A. S. Buxton (1993), An empirical evaluation of some
articulatory and cognitive aspects of marking menus, Human-Computer Interaction, 8(1).

Lamb, R., and A. Robertson (2011), Seaboard: a new piano keyboard-related interface com-
bining discrete and continuous control, in Proceedings of the International Conference on New
Interfaces for Musical Expression (NIME), pp. 503–506, Oslo, Norway.

Larkin, J. H., and H. A. Simon (1987), Why a Diagram is (Sometimes)Worth Ten Thousand
Words, Cognitive Science.

Leavitt, J., S. John, A. Pressman, Z. Seuberling, and K. Lo (2013), Hopscotch, Available
online at: http://www.gethopscotch.com/, retrieved July 1, 2013.

Lee, S., and S. Zhai (2009), The Performance of Touch Screen Soft Buttons, in CHI 09’
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.

Levenshtein, V. I. (1966), Binary codes capable of correcting deletions, insertions, and re-
versals, Soviet Physics Doklady, 10(8), 707–710.

Levin, G., and Z. Lieberman (2005), Sounds from shapes: audiovisual performance with
hand silhouette contours in the manual input sessions, in Proceedings of the International
Conference on New Interfaces for Musical Expression (NIME), pp. 115–120, National University
of Singapore, Singapore, Singapore.

Li, S., T. Xie, and N. Tillmann (2013), A comprehensive field study of end-user program-
ming on mobile devices, in 2013 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC), pp. 43–50, IEEE.

Linden Research, Inc. (2012), Creatorverse.

Linden Research, Inc. (2013), Blocksworld.com.

Lundgren, S., and M. Hjulström (2011), Alchemy : dynamic gesture hinting for mobile
devices, in the 15th International Academic MindTrek Conference, pp. 53–60, ACM, New York,
New York, USA.

Luo, Y., andD. Vogel (2014), Crossing-based selectionwith direct touch input, in Proceedings
of the 32nd annualACMconference onHuman factors in computing systems, pp. 2627–2636, ACM.

MacKenzie, I. S. (1992), Fitts’ law as a research and design tool in human-computer inter-
action, Human-Computer Interaction, 7(1), 91–139.

112

http://www.gethopscotch.com/

MacKenzie, I. S., and W. Buxton (1992), Extending Fitts’ law to two-dimensional tasks,
in CHI ’92: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp.
219–226, ACM Request Permissions, New York, New York, USA.

MacKenzie, I. S., A. Sellen, and W. A. S. Buxton (1991), A comparison of input devices
in element pointing and dragging tasks, in CHI ’91: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pp. 161–166, ACM Request Permissions, New York,
New York, USA.

MacLaurin, M. B. (2011), The design of kodu: a tiny visual programming language for
children on the Xbox 360, in POPL ’11: Proceedings of the 38th annualACMSIGPLAN-SIGACT
symposium on Principles of programming languages, ACM.

Mayer, M., and V. Kuncak (2013), Game programming by demonstration, in Proceedings of the
2013 ACM international symposium on New ideas, new paradigms, and reflections on programming
& software, pp. 75–90, ACM.

McDirmid, S. (2011), Coding at the speed of touch, in Proceedings of the 10th SIGPLAN sym-
posium on New ideas, new paradigms, and reflections on programming and software, pp. 61–76,
ACM.

McLean, A., D. Griffiths, N. Collins, and G. Wiggins (2010), Visualisation of live code, in
EVA’10: Proceedings of the 2010 international conference on Electronic Visualisation and the Arts,
British Computer Society.

McPherson, A. (2012), Touchkeys: Capacitive multi-touch sensing on a physical keyboard,
in Proceedings of the International Conference on New Interfaces for Musical Expression (NIME),
edited by G. Essl, B. Gillespie, M. Gurevich, and S. O’Modhrain, University of Michigan,
Ann Arbor, Michigan.

McPherson, A., and Y. Kim (2010), Augmenting the acoustic piano with electromagnetic
string actuation and continuous key position sensing, in Proceedings of the International Con-
ference on New Interfaces for Musical Expression (NIME), Sydney, Australia.

McPherson, A., and Y. Kim (2011), Multidimensional gesture sensing at the piano key-
board, in Proceedings of the 2011 annual conference on Human factors in computing systems, pp.
2789–2798, ACM.

Microsoft (2013), Kinect.

Milanesi, C., L. Tay, R. Cozza, R. Atwal, T. H. Nguyen, T. Tsai, A. Zimmermann, and C. K. Lu
(), Forecast: Devices by Operating System and User Type, Worldwide, 2010-2017, 2Q13
Update | 2524916, Gartner Inc.

Miranda, E., and M.Wanderley (2006), NewDigitalMusical Instruments: Control and Interaction
Beyond the Keyboard, A-R Editions, Inc., Middletown, Wisconsin.

113

Moog, R., and T. Rhea (1990), Evolution of the keyboard interface: The bösendorfer 290 se
recording piano and the moog multiply-touch-sensitive keyboards, ComputerMusic Journal,
14(2), 52–60.

Moog, R. A. (1982), A Multiply Touch-Sensitive Clavier for Computer Music Systems, in
Proceedings of the International Computer Music Conference (ICMC), pp. 601–605.

Nacenta, M. A., P. Baudisch, H. Benko, and A. Wilson (2009), Separability of spatial manip-
ulations in multi-touch interfaces, in GI ’09: Proceedings of Graphics Interface 2009, Canadian
Information Processing Society.

Norman, D. A. (2010), Natural user interfaces are not natural, interactions, 17(3), 6–10.

Norman, D. A., and J. Nielsen (2010), Gestural Interfaces: a Step Backward in Usability,
interactions, 17(5).

Odowichuk, G., S. Trail, P. Driessen, W. Nie, and W. Page (2011), Sensor Fusion: Towards
a Fully Expressive 3D Music Control Interface, in IEEE Pacific Rim Conference on Communi-
cations, Computers and Signal Processing (PacRim), pp. 836–841, IEEE.

Oehl, M., C. Sutter, and M. Ziefle (2007), Considerations on Efficient Touch Interfaces
– How Display Size Influences the Performance in an Applied Pointing Task, in Human
Interface and theManagement of Information. Methods, Techniques and Tools in Information Design,
pp. 136–143, Springer Berlin Heidelberg, Berlin, Heidelberg.

O’Modhrain, S. (2011), A framework for the evaluation of digital musical instruments,
Computer Music Journal, 35(1), 28–42.

Pane, J. F., B. A. Myers, and L. B. Miller (2002), Using HCI techniques to design a more
usable programming system, in Human Centric Computing Languages and Environments, 2002.
Proceedings. IEEE 2002 Symposia on, pp. 198–206.

Panic, I. (2012), Diet coda.

Paradiso, J. A. (1997), Electronic music: new ways to play, IEEE Spectrum, 34(12), 18–30.

Pinch, T. J., and F. Trocco (2004), Analog days: The invention and impact of the Moog synthesizer,
Harvard University Press, Cambridge.

Puckette, M. (2002), Max at Seventeen, Computer Music Journal.

Puckette, M., et al. (1996), Pure data: another integrated computer music environment,
Proceedings of the Second Intercollege Computer Music Concerts, pp. 37–41.

Raptis, D., N. Tselios, J. Kjeldskov, and M. B. Skov (2013), Does size matter?: investigating
the impact of mobile phone screen size on users’ perceived usability, effectiveness and
efficiency., in Proceedings of the 15th international conference onHuman-computer interactionwith
mobile devices and services, pp. 127–136, ACM.

114

Reas, C., and B. Fry (2006), Processing: programming for themedia arts, AI&Society, 20(4),
526–538.

Reimer, P., A. Branzan Albu, and G. Tzanetakis (2011), Raydiance: A tangible interface for
teaching computer vision, in Advances in Visual Computing, Lecture Notes in Computer Science,
vol. 6939, edited by G. Bebis, R. Boyle, B. Parvin, D. Koracin, S. Wang, K. Kyungnam,
B. Benes, K. Moreland, C. Borst, S. DiVerdi, C. Yi-Jen, and J. Ming, pp. 259–269, Springer
Berlin Heidelberg, doi:10.1007/978-3-642-24031-7_26.

Resnick, M., et al. (2009), Scratch, Communications of the ACM, 52(11), 60.

Roeber, H., J. Bacus, and C. Tomasi (2003), Typing in Thin Air: the Canesta Projection
Keyboard - a New Method of Interaction with Electronic Devices, CHI EA ’03: CHI ’03
Extended Abstracts on Human Factors in Computing Systems.

Rogers, K., et al. (2014), Piano: Faster piano learning with interactive projection, in Proceed-
ings of theNinthACMInternational Conference on Interactive Tabletops and Surfaces, pp. 149–158,
ACM.

Rovan, J., M. Wanderley, and S. Dubnov (1997), Instrumental gestural mapping strategies
as expressivity determinants in computer music performance, in KANSEI-The Technology of
Emotion.

Saëns, S. (2011), Codea.

Sasangohar, F., I. S. MacKenzie, and S. D. Scott (2009), Evaluation of Mouse and Touch
Input for a Tabletop Display Using Fitts’ Reciprocal Tapping Task, Proceedings of the Human
Factors and Ergonomics Society Annual Meeting, 53(12), 839–843.

Schönauer, C., K. Fukushi, A. Olwal, H. Kaufmann, and R. Raskar (2012),Multimodal motion
guidance: techniques for adaptive and dynamic feedback, ACM.

Scott, B., and V. Conzola (1997), Designing Touch Screen Numeric Keypads: Effects of
Finger Size, Key Size, and Key Spacing, Proceedings of theHumanFactors andErgonomics Society
Annual Meeting.

Shneiderman (1983), Direct Manipulation: A Step Beyond Programming Languages, Com-
puter, 16(8), 57–69.

Slany, W. (2012), A Mobile Visual Programming System for Android Smartphones and
Tablets, in 2012 IEEESymposium onVisual Languages andHuman-Centric Computing (VL/HCC),
pp. 265–266.

Sodhi, R., H. Benko, and A. Wilson (2012), LightGuide: Projected Visualizations for Hand
Movement Guidance, in Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pp. 179–188, ACM, ACM Press, New York, New York, USA.

Soukoreff, R. W., and I. S. MacKenzie (2004), Towards a standard for pointing device evalu-
ation, perspectives on 27 years of Fitts’ law research in HCI, International Journal of Human-
Computer Studies, 61(6), 751–789.

115

Sutherland, I. E. (1964), Sketch Pad a Man-Machine Graphical Communication System, in
DAC ’64Proceedings of the SHAREDesignAutomationWorkshop, pp. 6.329–6.346, ACMPress,
New York, New York, USA.

Takegawa, Y., T. Terada, and M. Tsukamoto (2011), Design and implementation of a piano
practice support system using a real-time fingering recognition technique., in Proceedings
of the International Computer Music Conference (ICMC), pp. 387–394, University of Hudders-
field, UK.

Terrenghi, L., D. Kirk, A. Sellen, and S. Izadi (2007), Affordances for manipulation of phys-
ical versus digital media on interactive surfaces, in CHI ’07: Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems, pp. 1157–1166, ACM, New York, New York,
USA.

Tillmann, N., M. Moskal, J. de Halleux, and M. Fahndrich (2011), TouchDevelop: program-
ming cloud-connected mobile devices via touchscreen, in ONWARD ’11: Proceedings of the
10th SIGPLAN symposium on New ideas, new paradigms, and reflections on programming and soft-
ware, ACM.

Vermeulen, J., K. Luyten, E. van den Hoven, and K. Coninx (2013), Crossing the bridge over
Norman’s Gulf of Execution: revealing feedforward’s true identity, in CHI ’13: Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, p. 1931, ACM, New York,
New York, USA.

Vogel, D., and P. Baudisch (2007), Shift: A Technique for Operating Pen-Based Interfaces
Using Touch, in CHI ’07: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems.

Vogel, D., and G. Casiez (2012), Hand occlusion on a multi-touch tabletop, in Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, pp. 2307–2316, ACM, ACM
Press, New York, New York, USA.

Wagemans, J., J. Elder, M. Kubovy, S. Palmer, M. Peterson, M. Singh, and R. von der Heydt
(2012), A Century of Gestalt Psychology in Visual Perception: I. and II. , Psychological
Bulletin, 138(6), 1172–1217, 1218–1252.

Wagner, J., E. Lecolinet, and T. Selker (2014), Multi-finger Chords for Hand-held Tablets:
Recognizable and Memorable, in Proceedings of the 32nd annual ACM conference on Human
factors in computing systems, pp. 2883–2892, ACM.

Wanderley, M. M., and P. Depalle (2004), Gestural control of sound synthesis, in Proceedings
of the IEEE, pp. 632–644.

Wanderley, M. M., and N. Orio (2002), Evaluation of Input Devices for Musical Expression:
Borrowing Tools from HCI, Computer Music Journal.

Wilcox, E. M., J. W. Atwood, M. M. Burnett, J. J. Cadiz, and C. R. Cook (1997), Does
continuous visual feedback aid debugging in direct-manipulation programming systems?,

116

in CHI ’97: Proceedings of the ACM SIGCHI Conference on Human factors in computing systems,
pp. 258–265, ACM, New York, New York, USA.

Wolber, D., H. Abelson, E. Spertus, and L. Looney (2011), App Inventor, O’Reilly Media.

Yang, Q., and G. Essl (2012), Augmented piano performance using a depth camera, in Pro-
ceedings of the International Conference on New Interfaces for Musical Expression (NIME), Ann
Arbor.

Yang, Q., and G. Essl (2013), Visual Associations in Augmented Keyboard Performance, in
NIME’13, Deajeon, Korea.

Yang, Q., and G. Essl (2014), Evaluating gesture-augmented keyboard performance, Com-
puter Music Journal, 38(4), 68–79.

Yoo, M., J. Beak, and I. Lee (2011), Creating Musical Expression using Kinect, in Proceedings
of the International Conference on New Interfaces for Musical Expression (NIME), Oslo, Norway.

Zhai, S., P. O. Kristensson, C. Appert, T. H. Andersen, and X. Cao (2012), Foundational
Issues in Touch-Screen Stroke Gesture Design - An Integrative Review, Foundations and
Trends in Human-Computer Interaction, 5(2), 97–205.

Zickuhr, K., and L. Rainie (2014), Younger Americans’ Reading Habits and Technology Use.

Zorn, O. (2012), Pythonista.

117

	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	Introduction
	Thesis Overview
	Thesis Contribution
	Thesis Outline

	Background
	Proliferation of Gestural Interaction
	Interactions on Modern Mobile Devices
	Multi-Touch on Mobile
	Feedback for Gesture Interfaces

	Gesture Augmented Piano and Visualization
	Keyboard as Interface
	Visual Association in Gestural Interface

	Related Works
	Visualization
	Evaluation Methods

	System Implementation
	Extended playing technique

	Human Subject Study
	Experiment Design
	Participants
	Results
	Task Completion Time
	Levenshtein (Edit) Distance
	Continuous Control Smoothness
	Exit Survey
	Summary

	Visual Associations in Gesture Space
	Positioning the Visual in the Interactive Loop
	Examples of Visualization Feedback
	Explanation through Visuals
	The Purpose of Visuals

	Conclusion

	Visual Programming Environment on Multi-touch
	Introduction
	Related Works
	Visual Programming
	Multi-Touch Interfaces
	Mobile Multi-Touch Programming
	Visualization for Gestures
	Impact of Device Size

	Representation & Interaction Design
	Shared Grammar
	Region
	Links
	Groups

	Visual Representation and Interaction Modes
	Menu-Driven Mode
	Icon-Driven Mode
	Gesture-Driven Mode

	Considerations in Touch-Based Interaction

	Experiment
	Design
	Recruitment
	Results
	Task Completion Time
	Wait Time
	Total Actions
	Drag Gesture Times
	Time Effects
	Surveys

	Conclusion

	Fitts's Law and Occlusion on Touch Screen Drag Motions
	Background
	Fitts's Law
	Occlusion

	Experimental Design
	Data Collection

	Data Analysis
	Data cleaning
	Movement Time
	Error Rate
	Fitts's Law Model
	Time Effects

	Discussion
	Conclusion

	Tapperware: Implementation
	Overview
	Programming Primitives
	Region
	Link
	Group

	Graphical User Interface
	Gesture Recognition and Visualization
	Utilities

	Summary

	Conclusion
	Contribution
	Future Research

	BIBLIOGRAPHY

