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FPI Fabry-Pérot interferometer

FSR Free spectral range

FWHM full-width-half-maximum

HG Hermite-Gaussian

MCP microchannel plate

MOT Magneto-optical trap

PDH Pound-Drever-Hall

PID proportional-integral-derivative

POL ponderomotive optical lattice

RF radio frequency

sat. spec. saturated absorption spectroscopy

TA Tapered Amplifier

TTL Transistor-transistor Logic

xiv



ABSTRACT

Atom trapping and spectroscopy in cavity-generated optical potentials

by

Yun-Jhih Chen

Chair: Georg Raithel

In this thesis I study atom trapping in GHz-deep optical lattices, generated by an

in-vacuum near-concentric optical cavity at 1064 nm, to perform experiments on cold

Rydberg atoms. In contemporary atomic physics, cold Rydberg atoms are widely

used due to their high sensitivity to static and ac fields, as well as to their unusual

collision properties. In my research, I intend to study the response of such atoms to

GHz-deep optical traps. In the atom preparation procedure, the deep optical-lattice

trap adiabatically compresses the cold rubidium atom sample within the lattice wells,

where the atoms experience light shifts of several GHz. The deep optical-lattice trap

allows me to perform several spectroscopy experiments which have not yet been done.

An experimental challenge that had to be overcome was the realization of GHz-deep

light shift traps (which are highly unusual in the field). The design of the cavity

experiment also allows a fast experimental repetition rate (which is advantageous in

spectroscopy experiments), a large atomic number density, and cold-atom samples

with a highly elongated aspect ratio.

A near-concentric cavity is the only type of stable two-mirror cavity that has a
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focus at the cavity center. This configuration not only provides high laser intensity at

the cavity center, but also nearly perfect three-dimensional optical trapping potential

based on the cavity’s non-degenerate cavity modes. The cavity-generated optical

trapping potentials offer a platform for deep ponderomotive Rydberg spectroscopy

which would be otherwise very difficult in a conventional optical-lattice experimental

setup.

In this thesis, I discuss the work that I have achieved for constructing and realizing

this unique in-vacuum near-concentric cavity experimental tool from the beginning. I

present the recent experimental results with the cavity-generated optical-lattice exper-

iment: I discuss the critical technique I have established to perform lattice adiabatic

compression of the cold-atom sample. I have realized atom trapping and spectroscopy

in GHz-deep optical lattices. I observe a lensing effect by the lattice-compressed elon-

gated cold-atom cloud prepared in the cavity-generated trapping potential, including

the radiation guiding at the trap center, and the surface guiding around the trap

surface. I measure the scalar and tensor polarizability of the rubidium 5P3/2 level

in the intense 1064-nm lattice light field, and I obtain α0 = −1112 × 4πε0a
3
0 and

α2 = 535 × 4πε0a
3
0. This result can be useful to test theoretical models; it is also

of general interest in the atom trapping community (where rubidium and 1064 nm

laser traps are commonly used). The GHz-deep cavity-generated optical lattices also

offers an opportunity to study the adiabatic energy levels of lattice-mixed hydrogenic

states in optical lattices. I summarize my effort to map the lattice-mixed hydrogenic

Rydberg state with an initial experimental spectrum.
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CHAPTER I

Introduction

Rydberg atoms are atoms in a highly-excited state, in which the outermost elec-

tron, called Rydberg electron, is in an energy level with large principal quantum

number n (usually n > 30). A Rydberg atom is thousands of times larger than a

ground-state atom, and its corresponding atomic radius scales as 2n2 at low and n2

at high angular momentum. As a result, the Rydberg electron, which is quasi-free

at this atomic radius, interacts with the core of the Rydberg atom in a similar way

as the electron of a hydrogen atom interacts with its atomic nucleus. The binding

energy of the Rydberg electron is approximated by a modified Bohr formula [5],

Enl = −hc Ryd

[n− δl]2
(1.1)

where Ryd is the Rydberg constant, n is the principal quantum number, and δl is the

quantum defect, which is subtracted from n to account for the effect of the ionic core

potential. δl depends on angular momentum l. In rubidium, δl = 3.13 for S-states.

For l ≥ 3, the quantum defects are � 1.

Rydberg atoms have several exaggerated properties. For example, they are long-

lived (the lifetime scales as n3 for low angular momentum) and extremely sensitive to

external electric and magnetic fields. These unusual properties make Rydberg atoms

an interesting topic in atomic physics. For example, Rydberg atoms can be used to
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measure microwave electric field [6], since the transition energy between the Rydberg

states is in the GHz to THz range, and transition dipole moments are large (they scale

as n2). Rydberg atoms can also be used to measure Rydberg constant. In a lithium

atom beam experiment [7], the Rydberg constant is determined by the measurement

of the microwave transition between two consecutive circular Rydberg states (states

with |ml| = n− 1), whose valence electron distribution has the shape of a thin torus.

Rydberg atoms are also promising candidates for the realization of quantum com-

puting [8–10]. This is because the interaction between Rydberg atoms are strong,

while the interaction between Rydberg atoms and the environment is weak, assum-

ing sufficiently precise and accurate stray field control as well as low background gas

density. This properties enable fast and reliable quantum gate operation. The gate

operation of Rydberg atoms is embedded in the usage of two hyperfine ground-state

levels, and the control of laser excitation to the Rydberg state. The experimental

demonstration of entanglement between Rydberg atoms and the demonstration of a

quantum phase gate and a controlled-NOT gate can be found in references [11–13].

The production of Rydberg atoms in laboratory is usually achieved by optical

excitation of ground-state atoms. (Interestingly, Rydberg atoms exists naturally in

interstellar space, where they have been observed via radio frequency detection.) In

this thesis, I utilize two-photon excitation to produce the Rydberg atoms from the

ground-state atoms trapped inside a Magneto-optical trap. The Rydberg atoms in

my experiment are detected by field ionization with moderately high voltage. This

is possible because the Rydberg electron is loosely bound and easy to be ionized.

Based on this well-established production and detection scheme, I study the trapping

of Rydberg atoms with optical lattices.

The trapping of cold Rydberg atoms advances the spectroscopic study and the

manipulation of these exotic atoms, due to the long atom-field interaction times

afforded by atom traps. The current types of traps include strong static electric-field
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traps [14], strong static magnetic-field traps [15] (first demonstrated in our group),

and optical traps. For the case of static field traps, the trapping is based on low-

field seeking Rydberg states. The spatial confinement of the Rydberg atom in a

static field trap depends on the scale of the field gradient, which is determined by

the geometry of the electrode package or the magnetic coils which provide the static

fields. For the case of optical traps, the trapping force is provided by the gradient of a

typically focused laser beam, which can vary over a much smaller length scale than the

DC fields generated by machined electrodes or coils. Therefore optical traps usually

allow for larger trapping forces at a given potential depth than static-field traps.

Conversely, optical traps allow for the realization of a given trapping force with much

weaker trapping potentials than static-field traps. Also, the static field create massive

energy level shifts of the atomic levels, while lattice light shift is minimal compared

to static field traps.

In our group, we utilize the standing-wave pattern of optical lattices to manipulate

Rydberg atoms. A ponderomotive optical lattice (POL) is an optical-lattice trap for

Rydberg atoms, which utilizes the ponderomotive energy shift [16–18] of the quasi-

free electron to form modulated trapping potentials for Rydberg atoms. In the case

of a one-dimensional optical lattice along the z-axis, the ponderomotive potential is

Vp(z) =
e2E2

0

4meω2
[1 + cos(2kz)], (1.2)

where E0 is the amplitude, k is the wavenumber, and ω is the angular frequency of

the laser light field. The ponderomotive optical lattice trap for Rydberg atoms was

proposed by our group in 2000 [19], and has been experimentally demonstrated after

ten years of work [20, 21]. Other studies based on the POL can be found in references

[22, 23].

The effort to study ponderomotive lattices in our group expanded into two direc-

3



tions after the experimental demonstration: one of the directions is to drive Rydberg

transitions by amplitude modulation of the lattice with a modulation frequency given

by the frequency of the desired transition. This fundamentally new type of spec-

troscopy method allow us with spatial control of microwave Rydberg transition. The

recent experimental demonstration can be found in reference [24]. The long-term goal

is the high-precision measurement of Rydberg constant via this lattice-amplitude-

modulation magic transition between circular Rydberg states.

The other effort is the study of the adiabatic trapping potentials of Rydberg atoms

in a deep 1064 nm ponderomotive optical lattice [25], which have not yet been probed.

The trapping potential seen by the Rydberg atom is an average of the standing wave

pattern of the free-electron ponderomotive trapping potential, using the Rydberg

electron wavefuntion as a weighting factor. We predict rich trapping structures due

to large light shifts, then the lattice-mixed hydrogenic states should become accessible

through two-photon Rydberg excitation. In this deep lattice, near the lattice inflection

point the lattice-mixed level structure mimics the level structure caused by the shift

of an external electric field, whereas near lattice nodes/antinodes the structure can be

described by an effective magnetic field. The effective electric/magnetic field patterns

are arranged inside each lattice period, and repeat themselves over the lattice potential

wells.

The study requires a high cw lattice laser intensity of about 20 MW/cm2, which

is difficult to obtain in a vacuum cold-atom experiment via direct application of

a (narrowband) fiber laser. I took the challenge to build a near-concentric cavity

experimental setup for the study of the adiabatic trapping potential. In most of

the applications of cavities in laser-cooling experiments, a confocal cavity or near-

planar cavity with extremely high finesse is used. For our experimental requirement, a

moderately high finesse and a focal spot at the center of the near-concentric cavity are

critical in realizing the high intensity required for the study of a deep ponderomotive

4



optical lattice.

The trapping of atom with a very deep optical lattice is somewhat different than

the trapping of atoms in a shallow lattice. For the case of a shallow lattice, the loading

of ground-state atoms is achieved by overlapping the MOT with the lattice light field.

Atoms roll into the bottom of the trap as long as they get MOT laser cooled. The

subsequent production of Rydberg atoms is done by a slightly frequency-detuned

two-photon excitation, where the laser detuning compensate the lattice-induced light

shift. To load atoms into a deep optical lattice, we start the loading of ground-

state atoms into a shallow lattice. Then, we perform lattice adiabatic compression to

compress the atom cloud to the bottom of a deep optical lattice, where the atoms see

large light shift. The following Rydberg excitation relies on a careful adjustment of

the excitation lasers to excite the atoms resonantly through the strongly light-shifted

intermediate 5P3/2 state. The 5P3/2 light shifts are on the order of several GHz in

my optical lattice; in addition, the levels are split by the tensor polarizability.

It worth to stress the idea of deep-lattice experiment again: with the near-

concentric cavity, we mean to harness the atoms with massive light shift until atomic

energy levels are mixed and the high-angular momentum (hydrogenic) states become

accessible to regular two-photon Rydberg excitation. This aspect differs from most

other work done with optical lattices. The spatial variation of the cavity-generated

light shift is dramatic, all the rich, lattice-mixed, hydrogenic-state structures repeat

themselves on the scale of the lattice laser wavelength. The structures resulted from

the nonlinear response of Rydberg atoms to the trapping potential would be use-

ful for the future quantum manipulation experiments. In addition to the study of

lattice-mixed Rydberg hydrogenic state, the cavity-generated optical traps are suit-

able for a.c. polarizability measurement of excited atomic states, for the merit of the

outstanding light shift.

Another merit out of the cavity is its nearly perfect trapping geometry. The
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cavity is sealed inside vacuum and no other elements in the way of the circulating

laser power. As a result, the cavity generated optical trapping potentials only depends

on the cavity modes. The cavity functions like a mode filter – it “cleans” the input

laser and guarantees perfect cavity modes inside the cavity. In addition, due to

the long Rayleigh length of the focus at the cavity center, the trap results in the

formation of very dense, long and slim atom samples that can be used for a variety

of cold-atom experiments, such as search for new Rydberg molecules and Rydberg

electromagnetically induced transparency (EIT).

The objective of my thesis work is to build a new laser-cooling experimental appa-

ratus with the near-concentric cavity as the core of the experiment. I also developed

the adiabatic compression method to actually trap cold atom with high laser inten-

sity. In the following chapters, I elaborate on my experimental work and the initial

experimental results. The following is an outline of this thesis.

• In Chapter II, I give a summary of the optics work that is related to the designing

of the cavity experiment.

• In Chapter III, I provide the technical details of this newly-built experiment.

• In Chapter IV, I review the preliminary results of the cavity experiment.

• In Chapter V, I discuss the critical experimental work that allows us to generate

the large light shift with the cavity setup.

• In Chapter V, VI, and VIII, I present the recent result of the cavity-generated

deep optical-lattice experiments.

• I summarize the accomplishment of this thesis work and outline the future

direction of this project in Chapter IX.
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CHAPTER II

Near-concentric cavity

The mirror surfaces of a two-mirror optical cavity define the boundary of the cav-

ity. Laser light traveling inside the cavity with the wavefront matching the mirror

surfaces gets retro-reflected onto itself. A general mathematical analysis based on

the ray reflection by cavity mirrors leads to a simple geometrical parameter, the “res-

onator g parameter”[2], that describes the properties of a cavity. In Sec. 2.1, I provide

the details of the g-parameter analysis. In Sec. 2.1.2, I summarize the g-parameter

analysis for a near-concentric cavity, which is also the core of my experimental appa-

ratus. In Sec. 2.2 and 2.3, I discuss the experimental realization of a near-concentric

cavity.

2.1 Stability analysis

Fig. 2.1 shows an optical cavity composed of two mirrors centered on the z-axis,

mirror 1 (M1) and mirror 2 (M2). The positions of the mirror surfaces of M1 and M2

on the z-axis are z1 and z2, respectively. The cavity length L is calculated as z2− z1.

A Gaussian beam traveling inside this two-mirror cavity is retro-reflected onto

itself by the cavity mirrors when the radii of curvature of its wavefront match the radii

of curvature of the cavity mirror surfaces. There exists a specific mirror configuration,

i.e. mirror surfaces at z1 and z2, such that the Gaussian beam gets retro-reflected
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Figure 2.1:
Gaussian beam inside a two-mirror optical cavity. The propagating di-
rection is along z-axis. Red curves: mirror surfaces of mirror 1 (M1) and
mirror 2 (M2).

by the mirror surfaces multiple times instead of leaving the cavity. The circulating

laser light inside the cavity forms a stable waist w0 at z0 = 0. The configuration of

the cavity mirrors hence defines the boundary condition for the laser light to oscillate

inside the cavity. The above description is mathematically expressed by,

R(z1) = z1 +
z2
R

z1

= −r1, (2.1)

R(z2) = z2 +
z2
R

z2

= r2,

where r1 and r2 are the radii of curvature of M1 and M2, respectively, and zR is the

Rayleigh length of the Gaussian beam, zR =
nπw2

0

λ
.

Given a pair of cavity mirrors with known radii of curvature, we would like to

know which cavity configuration leads to a stable waist inside the cavity, and the size

of the waist. That is, we would like to find the expressions of z1, z2 and w0 in terms

of known values r1, r2, and the cavity length L. To begin with, Eq. 2.1 and the cavity

length satisfy,

z2
R

z1

= −r1 − z1 (2.2)

z2
R

z2

= r1 − z2

z2 = z1 + L.
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z1, z2 and zR follow,

z1 =
−L(r2 − L)

r1 + r2 − 2L
(2.3)

z2 =
L(r1 − L)

r1 + r2 − 2L
(2.4)

z2
R =

L(r1 − L)(r2 − L)(r1 + r2 − L)

(r2 + r2 − 2L)2
(2.5)

The waist w0 is calculated from the Rayleigh length zR,

w0 =

√
λzR
nπ

=

√
λ

nπ

[L(r1 − L)(r2 − L)(r1 + r2 − L)

(r2 + r2 − 2L)2

] 1
4

(2.6)

where n is the index of refraction inside the cavity, and λ is the wavelength of the

Gaussian beam.

The use of the “g parameter” simplifies further analysis. A g parameter is defined

for each cavity mirror. The value of a g parameter solely depends on the geometrical

properties of a cavity.

g1 = 1− L

r1

(2.7)

g2 = 1− L

r2

(2.8)

Using the g parameters, z1, z2 and w0 are written as,

z1 =
−Lg2(1− g1)

g1 + g2 − 2g1g2

(2.9)

z2 =
Lg1(1− g2)

g1 + g2 − 2g1g2

(2.10)

w0 =

√
Lλ

nπ

[ g1g2(1− g1g2)

(g1 + g2 − 2g1g2)2

] 1
4

(2.11)
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From the propagation of the Gaussian beam, the waist w1 and w2 at the mirror

surfaces of M1 and M2 are,

w1 = w0

√
1 +

z2
1

z2
R

=

√
Lλ

nπ

[ g2

g1(1− g1g2)

] 1
4

(2.12)

w2 =

√
Lλ

nπ

[ g1

g2(1− g1g2)

] 1
4

(2.13)

Based on the expressions of w1 and w2, a two-mirror cavity has physical values of w1

and w2 when 0 < g1g2 < 1. A cavity that satisfies this condition is a stable cavity,

which keeps laser light retracing itself without walking off from the cavity axis. If

g1g2 < 0 or g1g2 > 1, the cavity is unstable. If g1g2 = 0 or g1g2 = 1, the cavity is

called “marginally stable”.

Fig. 2.2 shows a plot of g1g2 and a few examples of two-mirror cavities. Cavities

inside the blue-shaded region are stable. Cavities outside the blue-shaded region are

unstable. Cavities on the boundary g1g2 = 0 or g1g2 = 1 are marginally stable. The

red dashed line on the plot marks cavities with g1 = g2, i.e. symmetric two-mirror

cavities. There are three examples of cavities on this red dashed line: plane-parallel

(planar) cavity, confocal cavity, and concentric cavity. Confocal cavities are pretty

much the most common among these three cavities. Occasionally, people are confused

by the naming, i.e. confocal cavity vs. concentric cavity. The difference between

confocal cavities and concentric cavities is the cavity length. The cavity length of

symmetric confocal cavities is r, because the center of curvature of each cavity mirror

is on the center of the surface of the other cavity mirror. With the same pair of

cavity mirrors, the cavity length of a symmetric concentric cavity is 2r. The centers

of curvature of both mirrors overlap at the cavity center for a concentric cavity.

Practically speaking, the difference between a concentric cavity and a confocal
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cavity is that a concentric cavity is frustrating from a graduate student’s point of

view. This can be explained by the stability diagram. Starting with the confocal

configuration (L = r), following the red dashed line and moving toward the con-

centric configuration (L = 2r), the beam waist w0 at the cavity center is narrowing

down as the cavity mirrors are brought further away from each other. As the cavity

length increases and the waist decreases, the cavity becomes more sensitive to angular

misalignment. At the concentric configuration, both cavity mirrors focus exactly at

the same spot. Any angular misalignment can fail this “point contact”, break the

round trip of the circulating light and throw the cavity into the unstable regime on

the stability diagram.

Despite the experimental challenges that concentric cavities possess, particularly if

used in ultra-high vacuum conditions as it is the case in our experiment, they present

Figure 2.2:
Stability diagram of two-mirror cavities. Origin: wikipedia
(http://commons.wikimedia.org/wiki/File:Laser_resonator_
stability.svg)
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many worthwhile advantages. In the beginning, the critical reason that pushed us

to design such a in-vacuum concentric cavity experiment is that we need high laser

intensity at the center where the cold atom cloud is located, and low intensity at the

mirror surfaces. Among all of the symmetric, stable or marginally stable two-mirror

cavities, the concentric cavity is the only configuration that has a focus at the cavity

center, which ensures high laser intensity. In this type of cavity, there is also much less

chance of damaging the cavity mirror coatings in a vacuum environment. We have

realized that there are even more advantages of using a concentric configuration,

which will be discussed in our findings in later chapters.

2.1.1 Cavity modes

The electric field of a Gaussian beam propagating in z-axis in free-space can be

described by Hermite polynomials, Hn, as follows:

Emn(x, y, z) =

E0
w0

w
Hm(

√
2x

w
)Hn(

√
2y

w
) exp

[
− (x2 + y2)(

1

w2
+

ik

2R(z)
)− ikz + i(m + n + 1)ζ(z)

]
(2.14)

where R(z) is the radius of curvature of the wavefront, w = w(z) is the radius of the

beam, measured from the z-axis to the position where the field amplitude drops to

1
e

of the axial value, and ζ(z) = tan−1 z
zR

is the Guoy phase shift. m and n are the

orders of Hermite polynomials which describe the electric field in x-axis and y-axis,

respectively. At the lowest order, m = 0 and n = 0, the transverse profile is the

familiar Gaussian beam profile. At higher orders, the profile is composed of lobes of

rectangular symmetry. mth order refers to m nulls and m+1 peaks in the x-axis. For

example, the profile of a mode with m=1, n=1 has 2 by 2, four bright lobes.

For a Gaussian beam to oscillate within the cavity while retaining its profile, the
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single-pass phase shift experienced by the beam has to be a multiple of π,

φ(z2 − z1) = qπ (2.15)

= kL− (m + n + 1)(tan−1 z2

zR
− tan−1 z1

zR
)

= kL− (m + n− 1) cos−1√g1g2

So the frequencies of self-reproducing, Hermite-gaussian eigenmodes within the cavity

are,

kqmn =
π

L

[
q + (m + n + 1)

cos−1√g1g2

π

]
(2.16)

νqmn =
c

2nL

[
q + (m + n + 1)

cos−1√g1g2

π

]
(2.17)

The above analysis gives the frequencies of the Hermite-Gaussian (HG) cavity

eigenmodes. Similar analysis can also be done with Laguerre-Gaussian beams of

cylindrical symmetry, or Ince-Gaussian beams of elliptical symmetry[26, 27]. The

figure on the title page is a sample of the cavity modes captured by an infrared

camera. I took these picture by “mis-aligning” the cavity mirrors. It seems fairly

easy to obtain cavity modes of all the three types of symmetries with a concentric

cavity. Although the Hermite-gaussian cavity modes are of the most interest for the

atom-trapping experiments in this thesis work, one should keep in mind that the work

can be extended by using cavity modes of cylindrical or elliptical symmetry.

The analysis here has essentially no difference compared to a quantum mechanics

problem. The cavity mirrors define the boundary condition, and we try to find the

eigenbasis of cavity modes. The cavity exhibits discrete cavity modes. The laser

intensity profile of a cavity modes is “quantized” in both transverse and axial direc-

tions. In the axial direction, the modes generate periodic lightshift for cold-atoms,

mimicking the periodic lightshift of standing waves formed by counter-propogating
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laser beams. Together with the transverse cavity modes, the cavity is able to generate

three-dimensional optical trapping potentials.

Table 2.1:
summary of two-mirror cavity parameters. Further details can be found
in Ref.[2].

g parameters g1 = 1− L
r1

, g2 = 1− L
r2

beam waist at cavity center w0 =
√

Lλ
nπ

[
g1g2(1−g1g2)

(g1+g2−2g1g2)2

] 1
4

beam waist at M1 w1 =
√

Lλ
nπ

[
g2

g1(1−g1g2)

] 1
4

beam waist at M2 w2 =
√

Lλ
nπ

[
g1

g2(1−g1g2)

] 1
4

frequencies of cavity modes νqmn = c
2nL

[
q + (n + m + 1)

cos−1√g1g2
π

]
axial mode splitting ∆νax = c

2nL

transverse mode splitting ∆νtrans = c
2nL

[
cos−1√g1g2

π

]

2.1.2 Near-concentric cavity

The perfect concentric configuration, L = 2r, is not experimentally feasible, due

to its exaggerated sensitivity to angular misalignment. To integrate a concentric

configuration into a real experiment, we reduce the cavity length by a tiny amount

Figure 2.3:
(a) Near-concentric cavity. A pair of coupling lenses is required to focus
a collimated input beam at the cavity center. See Sec. 2.2 for more
information. (b) Cavity transmission spectra illustration and the mostly
seen four Hermite-Gaussian (HG) cavity modes.
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δ. The reduced cavity ensures that the cavity stays inside the stable regime. For a

symmetric near-concentric cavity, r1 = r2 = r, L = 2(r − δ), g1 = g2 = g. The cavity

parameters in Table 2.1 can be approximated by,

w0 ≈
√
rλ

π

[δ
r

]1/4

, (2.18)

w1 ≈
√
rλ

π

[r
δ

]1/4

,

νqmn ≈
c

4r

[
q + (n + m + 1)

(
1− 2

π

√
δ

r

)]
,

∆νax =
c

4r
,

∆νtrans =
c

4r

(
1− 2

π

√
δ

r

)
.

where the index of refraction is 1 in vacuum. Fig. 2.3 illustrates the geometry and

cavity transmission spectrum of a near-concentric cavity. In Fig. 2.3(b), the cavity

is aligned in a manner such that it slightly deviates from cylindrical symmetry. This

alignment lifts the degeneracy of the Hermite-Gaussian cavity modes in the x- and y-

axes, allowing easy access to individual HG cavity modes.

Empirically, the more the cavity length is reduced, the easier it is to align the

cavity. This can be pictured by the overlapping of the beam focus inside the cavity.

For a perfect concentric configuration, the tips of the two retro-reflected light cones

from the two cavity mirrors have to overlap at exactly the same point. The round-trip

path of the circulating light will be broken by minute misalignment. However, if the

cavity length is reduced, there will still be a good chance that the two light cones

overlap in case of small angular misalignment due to a larger beam waist at that point.

In the language of g1g2, as the cavity length is reduced, the concentric cavity moves

toward the confocal cavity limit on the stability diagram. The cavity starts acquiring

the properties of a confocal cavity – fairly insensitive to angular misalignment and

very user-friendly.
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The in-vacuum near-concentric cavity is described in in detail Sec. 3.1. The δ
r

is

about 0.004 in the current setup. This is measured by scanning the cavity length

and calculating the percentage splitting of (q-1,1,0) to (q,0,0) cavity mode relative

to ∆νax, which is about 4% (see Fig. 2.3). The beam waist at the cavity center is

calculated to be 23 µm. Since w1

w0
=
√

r
δ
, the intensity ratio scales to r

δ
. The intensity

is increased by 250 times at the cavity center. The large waist ratio not only allows

us a high laser intensity at the cavity center, but also reduces the chance of damaging

the mirror surface. In comparison, a confocal cavity would have a waist ratio of only
√

2.

Fig. 2.4 is an illustration of the transmission spectra of the three symmetric-two

mirror cavity: near-planar(plane-parallel), confocal, and near-concentric. The cavities

are assumed to have the same cavity length in the drawing. Both the near-planar and

Figure 2.4:
Illustration of transmission spectra for near-planar, confocal, and near-
concentric cavities with the same cavity length. near-planar: g1, g2 → 1−,
cos−1√g1g2

π
→ 0+. confocal: g1, g2 = 0,

cos−1√g1g2
π

= 1
2
. near-concentric:

g1, g2 → −1+,
cos−1√g1g2

π
→ 1−. The cavity modes for both near-planar

and near-concentric cavities are non-degenerate, while the cavity modes
of a confocal cavity are degenerate.
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near-concentric cavities have non-degenerate cavity modes, while the cavity modes of

confocal cavity is degenerate. Because of the degeneracy, the Free spectral range

(FSR) of a confocal cavity is calculated as 1
2
∆νax = c

4nL
. For the case of near-

concentric cavities, we use FSR= ∆νax = c
2nL

.

2.2 Optical near-concentric cavity design

2.2.1 Coupling lens

In reality, a pair of coupling lenses is required for the near-concentric cavity. The

lens at the entrance focuses the input laser at the cavity center. The lens at the exit

collimates the transmitted light for observation. The placement of the coupling lens

is critical to couple a large portion of the incident laser power into selected cavity

modes.

In the experimental setup, the cavity is composed of two cavity mirrors with

r = 25 mm. The focal length of the pair of focusing lens is 40 mm. The focusing

lenses are relatively thin GRADIUM R© lenses, while the thickness of the substrate

of the cavity mirrors is 0.375”. The position of the lenses is calculated by assuming

a collimated input beam that focuses at the cavity center. The position of optimal

Figure 2.5:
Focusing collimated input beam into a thick cavity mirror with a thin
coupling lens. w1 is the waist of the Gaussian cavity mode (HG00) on the
cavity mirror surface. w′1 is the waist on the thin focusing lens.
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coupling is approximated by,

d ' f − t+ r

n
(2.19)

where n is the refractive index of the mirror substrate, and the other variables are

shown in Fig. 2.5. The optimal position d is 17.63 mm for the current cavity setup.

2.2.2 Cavity mode-matching

The cavity functions like a mode filter as follows: the cavity extracts the portion

of input light matching the cavity mode at the cavity mirror surfaces and rejects

everything else (see Fig. 2.6). Inside the cavity, the modes of the light field are nearly

perfect, which can be verified by monitoring the transmitted light. As a result, the

cavity guarantees nearly perfect optical trapping potential for cold atoms.

In order to maximize the usage of input laser power by the cavity, the beam waist

of the input laser is adjusted to enhance the mode-matching to the Gaussian cavity

mode. The optimal input beam waist is the waist that matches the waist on the

focusing lens. The waist at the focusing lens is then focused down to match the waist

of the cavity mode at the cavity mirror surface. The relation between the input beam

Figure 2.6:
Profiles of the laser beam rejected by the cavity when the cavity is locked
to Hermite-Gaussian (HG) 00, 10, 20, and 30 modes. The input beam
is Gaussian. The cavity extracts the portion of input which matches the
cavity modes and then rejects the rest, leaving dark strips on the profile
of the return beam.
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waist and the cavity mode waist at the mirror surfaces is,

w′1 ' w1

(t+ r + nd

r

)
' 2.411w1. (2.20)

The waist w1 is calculated using Eq. 2.18 with the ratio δ
r

obtained from the cavity

transmission spectra. Beam-profiling the transmitted laser at the focusing lens also

gives the w′1. For the current setup, the input laser beam is resized to a waist about

900 µm; this waist is the closest to the optimal Gaussian mode-matching waist we

can obtain, due to the limited options of telescope lenses.

2.2.3 Theoretical coupling efficiency

The finesse F of a cavity is defined as the FSR divided by the full-width-half-

maximum (FWHM). The transmitted power, which can be easily measured, times

F
π

gives an estimate of the circulating laser power inside the cavity. The theoretical

maximal value of F equals π
√
R

1−R , where R is the reflectivity of the cavity mirror. For

the cavity mirrors in my setup, the reflectivity is guaranteed to be more than 99.5%

by the manufacturer, so the theoretical limit of F is 626. The F measured from the

transmitted spectra is around 600, so the power inside the cavity is about 200 times

of the transmitted power.

The finesse F of the cavity is moderately high compared to the extremely high F

in a cavity QED experiment, which is usually at least several thousand. In principle,

the mirrors for a very high F cavity are commercially available by customizing the

thin-films coatings of dielectric materials on the glass mirror substrate. Nevertheless,

the moderately high F has advantages for the purpose of getting better coupling

efficiency and higher circulating laser power. The moderately high F also makes the

cavity easier to be aligned, and stabilized by electronic feedback circuits.

The coating on the mirror surfaces reflects most of the injected laser light, with a
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tiny amount of light getting transmitted through. In reality, the coatings also cause

a finite amount of absorption or scattering loss. The scattering loss is the familiar

phenomenon that the coating of a mirror always seems lit-up when a strong beam

hits the mirror surface.

To obtain the theoretical coupling efficiency, the cavity mirror is again treated

as a boundary for the electric field of a Gaussian cavity mode. The reflected and

transmitted electric field is calculated. The power ratios of laser light transmitted,

reflected and absorbed by a cavity are,

Ptransmitted =
T 2

(1−R)2
Pinput (2.21)

Preflected =
RA2

(1−R)2
Pinput (2.22)

Ploss =
A(1−R)2 + AT + ART

(1−R)2
Pinput (2.23)

where R is the reflectivity, T is the transmission, and A is the loss of the mirror

coating. A+T+R = 1. In order to get high intensity inside the cavity, the reflectance

of a mirror is not the only factor that needs to be considered. The tiny amount of

transmission and absorption loss dramatically affects the coupling efficiency.

The values of A and T for the cavity mirrors are not provided by the manufacturer,

but I measured them to be 0.28% and 0.14%, respectively. This puts the theoretical

maximal coupling efficiency of the cavity to 11% for the Gaussian cavity mode. The

real coupling efficiency is usually a bit lower, due to the input laser mode is not

perfectly matching the cavity mode.

2.3 Cavity stabilization with Pound-Drever-Hall scheme

A tiny portion of the circulating laser light inside the cavity gets transmitted

through the cavity mirror at the exit side, providing us an non-invasive way to ob-
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serve the field inside the cavity. We would like to stabilize the cavity such that the

transmitted power is at its peak value, which guarantees that the intracavity power

is also stabilized to the maximal value.

If the input laser frequency is modulated near a resonance, not only the cavity

transmission but also the cavity reflection, will contain the information of whether

the input laser frequency is above or below the resonance. However, a transmission

or reflection spectrum alone is not enough for an electronic feedback circuit (usually a

negative feedback circuit, e.g. a proportional-integral-derivative control) to stabilize

the laser frequency at the resonance. The Pound-Drever-Hall (PDH) scheme is used

to convert the cavity reflection from an absorption peak to a zero-crossing slope that a

regular electronic feedback circuit recognizes as an error signal. The negative feedback

circuit will try to bring the laser frequency back to the zero-crossing position, which

has the same position as the position of peak absorption on the spectrum. In this

manner, the circuit can stabilize the laser frequency at the resonance.

The PDH scheme works as follows: the input laser is frequency modulated to

create frequency up-shifted and down-shifted sidebands, where the frequency shift

is the same as the modulation frequency. The cavity reflection and the modulation

frequency are both sent to a mixer, whose output is a multiplication of its inputs.

The output of the mixer is filtered by a low pass filter, and the remaining signal is

the PDH error signal. Fig. 2.7 is a screenshot showing both the cavity reflection and

the PDH error signal.

To compute the PDH error signal we start with the incident electric field Ei =

E0eiωt, which after frequency modulation is,

Ei = E0e
iωteiβ sin Ωt (2.24)

where β is called modulation depth, and Ω is modulation frequency. Using Jacobi-
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Figure 2.7:
A oscilloscope screenshot of the cavity reflection (yellow) and PDH error
signal (blue).

Anger expansion,

Ei = Eeiωt
( ∞∑

n=−∞

Jn(β)einΩt
)

(2.25)

≈ E0J0(β)eiωt

carrier

+E0J1(β)ei(ω+Ω)t − E0J1(β)ei(ω−Ω)t

first-order side bands

The electric field of the cavity reflection is,

Er = F (ω)E0J0(β)eiωt +F (ω+ Ω)E0J1(β)ei(ω+Ω)t−F (ω−Ω)E0J1(β)ei(ω−Ω)t (2.26)

where F (w) is a frequency-dependent complex reflective coefficient of the cavity. On

resonances, ω is an integer multiple of a cavity mode frequency, and F (ω) has a

minimum. The power of cavity reflection is,

Pr = Pc|F (ω)|2 + Ps|F (w + Ω)|2 + Ps|F (w − Ω)|2 (2.27)

+ 2
√
PcPs

(
Re[F (ω)F ∗(ω + Ω)]− Re[F (ω)F ∗(ω − Ω)]

)
cos Ωt

+ 2
√
PcPs

(
Im[F (ω)F ∗(ω + Ω)] + Im[F (ω)F ∗(ω − Ω)]

)
sin Ωt

−
√
PcPs

(
F (ω + Ω)F ∗(ω − Ω)e2iΩt + F ∗(ω + Ω)F (ω − Ω)e−2iΩt

)
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where Pc is the carrier power, Ps is the sideband power and their sum equals the

input laser power P0. The power of the first-order side bands is usually on the order

of 1% of Pc. All the other higher orders, which have much less strength compared

to the first order, are neglected. The output signal, together with the modulation

frequency is sent to the mixer, and then through the low-pass filter. When the cavity

reflection is mixed with a signal sin Ω′t, with oscillation frequency Ω′ = Ω, then the

term oscillating with sin Ωt in the cavity reflection will be filtered out as a DC signal.

When the modulation frequency Ω is higher than several linewidth of the axial mode

peaks on the cavity transmission spectra, the cavity reflection is approximated by,

Pr ≈ 2Ps − 4
√
PcPsIm[F (ω)] sin Ωt+ f(2Ω) (2.28)

The PDH error signal after the mixer and low pass filter is,

ε = −4
√
PcPsIm[F (ω)] (2.29)

≈ −4

π

√
PcPs

δω

δν
,

where δν is the cavity transmission linewidth, and δω is the difference in frequency

from resonance. Reference [28] provides the detailed derivation of the PDH error

signal generation.

The PDH error signal has three zero crossing slopes in Fig. 2.7. The zero-crossing

position of the large negative slope marks the position of minimal reflection, which

is also the position of peak cavity transmission. The other two small slopes with

opposite polarity mark the location of first-order side bands. The powers of side

bands are so low that they are invisible in the yellow reflection curve.

In the experimental setup, the phase of the input laser is modulated by an electro-

optic modulator (EOM) instead of frequency-modulation. The radio frequency (RF)

modulation amplitude and frequency of the EOM is controlled by a PDH detector
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Figure 2.8:
Layout of the Pound-Drever-Hall cavity stabilization with commercial
control modules

module (PDD 110, TOPTICA Photonics). The PDD module also takes the cavity

reflection and mixes the cavity reflection with its internal oscillator to generate the

PDH signal. The PDH error signal is then sent to a PID feedback control module

(PID 110, TOPTICA Photonics). The positive high-voltage output of the PID con-

trol module is applied to a ring piezo which pushes the cavity mirror to the peak

transmission position. We assume that the output of the laser has neither frequency

drift nor intensity noise. It is the cavity length which is stabilized relative to the

frequency of input laser. See Fig. 2.8 for the layout of the control.

The PDH scheme is fundamental to the cavity stabilization in my experiment.

The scheme enables the cavity to peak-lock to a constant laser source. Later on, as

the experiment develops, we need the cavity to peak lock to a noisy and time-varying

input laser beam. The PDH scheme presented here is not yet able to handle the

situation. How the problem is solved is discussed in Chapter V.
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CHAPTER III

Experimental apparatus and techniques

This concentric-cavity experiment is very new in the group. In this chapter,

I describe the apparatus and techniques of the experiment, including the vacuum

system, excitation lasers, and calibration data. The purpose of this chapter is to

provide a detailed technical reference for operating the experiment.

3.1 In-vacuum near-concentric cavity

Fig. 3.1(a) shows the experimental geometry of the in-vacuum near-concentric

cavity. The cavity is composed of two half-inch concave mirrors with a radius of

curvature of 2.5 cm. The cavity is surrounded by six electrodes of 2 mm diameter, on

a circle with diameter of 17 mm. The 1064 nm lattice laser enters the cavity via the

bottom cavity mirror, and is transmitted through the top cavity mirror. A rubidium

Magneto-optical trap (MOT) is produced directly at the cavity center.

Fig. 3.1(b) is a photo of the concentric-cavity assembly before it was enclosed

inside the external vacuum chamber. The main structural component is a stainless

steel cylinder, which shields the cavity mirrors, holds the electrodes in place, and

defines the experimental geometry. The large openings in the cylinder are for MOT

lasers. The angles of these large openings are oriented such that the six MOT beams

overlap the xyz axes of a Cartesian coordinate system with origin at the cavity center.
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There are 10 more small openings for the excitation laser and observation, four of

them are on the horizontal plane crossing the cavity center, and the other six are

away from the horizontal plane, forming another complete set of optical-access axes

aligned to a Cartesian coordinate system with origin also at the cavity center. The

two sets of xyz-axis openings are arranged so that all the laser beams passing through

the cavity center are either above or below the horizontal plane by 35.26◦. The two

sets of openings are away from each other by a 60◦ rotation about the cavity axis (the

rotation axis is in the lab frame).

The cylindrical steel cylinder that holds most components is clamped down on the

top of a aluminum base, which is itself screwed to the bottom flange of the external

vacuum chamber. The 1064 nm lattice laser enters the cavity through a channel

inside the aluminum base. The first coupling lens, which focuses the lattice laser at

Figure 3.1:
(a) Experimental geometry. The cavity is stabilized to the 1064 nm lattice
laser. A Rb MOT is produced directly at the cavity center, loading the
optical lattice trap at the focus where the intensity is the highest. (b)
Photo of the concentric-cavity assembly.
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Figure 3.2:
Left: concentric tubes viewed from the coupling lens side. The Kap-
ton wires connect to a ring piezo placed in-between the tubes. Middle:
concentric tubes viewed from the side of top cavity mirror. Right: six
electrodes inside the stainless steel cylinder. Sec. 3.6 describes the usage
of the electrodes.

the cavity center, is glued to the end of the channel inside the base. The second

coupling lens, which collimates the transmitted lattice laser, is glued to the top of a

set of concentric tubes (see Fig. 3.2). The positions where the lenses are glued to the

in-vacuum setup are calibrated by means of Michelson interferometer to ensure that

both of the lenses focus at the cavity center.

Both of the cavity mirrors are mounted inside the stainless-steel cylinder with

manual angular and translational controls. The top cavity mirror is glued to the

set of concentric tubes which supports the coupling lens. A ring piezo is placed in-

between the tubes. The tubes altogether are screwed down to the top of the cylinder

by six screws. Three of the screws are 3/16′′-100 threaded for fine adjustment control.

The other three screws are #4-40 threaded. They lock the tubes in place after the

adjustment is done.

The bottom cavity mirror lies on a tripod. The tripod is mounted to the aluminum

base in a manner that mimics a conventional kinematic mirror mount (see Fig. 3.3).

Each leg of the tripod is fastened down by a spring, while a 3/16′′-100 screw next to

the spring counter-acts the spring force. The screws sit on three plate piezos glued on

the aluminum base. These piezos have hand-made adaptors glued on top for accepting

the ball tip of the fine-threaded screws. The hand-made adaptors are all different,
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Figure 3.3:
Left: CAD drawing of the tripod and photo of a conventional mirror-
mount. Right: hand-made adaptor for the three-point contact scheme.
Close look of the tripod. The red/white wire pairs connect to the plate
piezos.

one with a flat surface, one with a V-shaped groove, and one with three sapphire

balls. The adaptors center the tripod to the cavity axis.

Although we cannot access these manual controls after the vacuum chamber is

closed, these controls are critical during the assembling process. The lattice mode-

matching and the size of beam waist is optimized with these manual controls. After

assembling inside the UHV chamber, the fine tuning of the cavity length and the

angular adjustment outside the vacuum chamber are done by voltage control of the

piezos in the system. The ring piezo translates the top cavity mirror, and the three

plate piezos below the tripod control the angular movement of the bottom cavity

mirror.

3.2 Vacuum system

The cavity is enclosed inside a one-foot tall cylindrical vacuum chamber. The

bottom flange of the chamber has a small viewport for the lattice laser entering the

cavity. The top of the chamber is sealed with a large viewport for the convenience

of observation (see Fig. 3.4). There are several feedthroughs and viewports attached
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Figure 3.4:
Cavity inside the vacuum chamber seen from the large viewport on the
top of the vacuum chamber. The aluminum cone next to the cavity is an
ion guard tube, which shields the field-ionized ions on their way to the
microchannel plate (MCP) in spectroscopy experiments.

to the side of the chamber. The viewports on the side match the openings in the

in-vacuum stainless steel cylinder that holds most cavity components. The other

feedthroughs are for electrical connections, vacuum pumps, and a rubidium reservoir.

All of the connections are sealed by ConFlat flanges.

A Rb reservoir is attached to the chamber via an angle valve with a position higher

than all of the MOT beam viewports. The Rb reservoir is warmed up by a heat tape

when more Rb pressure is needed. The Rb vapor diffuses into the chamber, and is

collected by the MOT beams directly at the cavity center. The details of the MOT

are discussed in Sec. 3.5.

The pressure inside the chamber is in the range 10−8 to 10−9 Torr, which satisfies

the requirement for a MOT experiment. The chamber was connected to both an

ion pump and a turbo pump during the“bake-out” process. Now the valve that was

connected to the turbo pump is kept closed, and the turbo pump is removed. The
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Figure 3.5:
Vacuum chamber front view. The neodymium magnets provide the
quadruple magnetic field required for the MOT. The three pairs of offset
coils fine tune the MOT magnetic field. The neodymium magnets are
3/4-inch in diameter and 2 inches long. They are wrapped with a piece
of paper and fixed inside a 1-inch plastic tube adaptor by frictional force.

pressure inside the chamber is maintained by the ion pump.

3.3 Excitation lasers

3.3.1 Amplified DBR laser system

The experiment has two amplified 780 nm Distributed Bragg Reflector (DBR)

laser systems. One of them provides the power needed for the MOT cycling transition.

The MOT repumping transition is provided by a home-built 780 nm external cavity

diode laser (ECDL)[29]. The other amplified DBR laser system provides the power for

5S→5P transition in the two-photon excitation and absorption imaging. The original
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design of the amplified DBR laser system is by Erik Power, with modification advice

from Rachel Sapiro.

In the ECDL scheme, the wavelength of the laser is tuned by using a reflecting

grating to direct the Littrow reflection back to the laser diode. The angle of the grating

is controlled by fine-threaded screws, and is fine-tuned by a plate piezo attached to

the back side of the grating. With the Littrow feedback, we can force the laser diode

to operate at a wavelength that is a few nm away from the central wavelength of the

laser diode. The wavelength tuning of the DBR laser diode is somewhat different.

The laser diode has a stack of distributed Bragg reflector fabricated on-chip next to

the laser gain medium. The reflector enables wavelength-dependent feedback; there

are no mechanical components in a DBR laser. The DBR laser output frequency can

be current modulated at high speed, and the current response is very linear.

For all the newly-built DBR laser systems in the lab, the laser diodes are from

Photodigm, Inc. The laser diode is packed inside a TO-8 package. A thermo sensor

and a Peltier thermoelectric cooler are also packed inside the TO-8 can, which is very

convenient. The linewidth of the laser is about 1 MHz, and the emission wavelength

is tunable over several GHz by fast current modulation without mode hops. The

long-term stability of DBR lasers is also much better than the ECDLs. The only

disadvantage of the DBR lasers so far is their cost, which is considerably higher than

ECDLs.

The amplified DBR laser system is built inside a 4′′ × 5′′ × 15′′ aluminum box.

Fig. 3.6 shows the top view of the components inside the box (from the one that

provides the 5S→5P transition laser). The DBR laser diode is mounted on a black

housing. The coupling lens for the laser emission is mounted to the black housing with

translational controls in both x- and y-axes. The collimated output of the DBR laser

diode first passes two Faraday isolators. A small portion of the output is sampled

for a saturated absorption spectroscopy (sat. spec.) and a temperature-controlled

31



Fabry-Pérot interferometer (FPI). The majority of the laser power is directed to a

Tapered Amplifier (TA) laser. The coupling is maximized by the adjustment of the

two mirrors at the corners in the box. The TA laser is mounted inside a water-cooled

copper block assembly. The water-cooling loop is driven by an aquarium pump. The

copper blocks also hold a pair of coupling lenses: one focuses the DBR laser seeding

at the TA gain medium, and the other collimates the amplified output from the gain

medium. The laser output from a TA usually has a significant astigmatism. To

correct the beam profile, the output of the TA is collimated by a cylindrical lens and

the size of the beam is adjusted by a telescope.

Fig. 3.7 shows the Fabry-Pérot interferometer transmission spectrum and satu-

rated absorption spectrum (for details see Sec. 3.4) of the amplified DBR laser system

for the 5S→5P transition. In Fig. 3.7, the DBR laser diode is current-modulated, and

the output is sampled for both Fabry-Pérot interferometer and sat. spec. at the same

time. The saturated absorption spectrum provides absolute frequency reference for

the FPI transmission spectrum in this case, since the transition frequencies for the

85Rb cycling and repumping transitions are well-known. The difference in frequency

between the F = 3 → 4 and F = 2 → 3 transitions is 2915.092(68) MHz [4]. The

Figure 3.6:
Amplified DBR laser system. The components are all mounted on fixed-
height, customized pedestals. Some of them can freely slide on the bottom
aluminum rails.
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Figure 3.7:
(a) Fabry-Pérot interferometer transmission spectrum (top) and saturated
absorption spectrum for rubidium-85 (bottom). The DBR laser diode is
current modulated, and its output is sampled for both spectra at the
same time. (b) A zoom-in of the saturated absorption spectra. The
absorption peaks are fitted with Lorentz amplitude function. The validity
of Lorentz peak-findings is examined by comparing the centers of the
crossover peaks[1] to their expected position, which is in the middle of two
real peaks. The difference is within 0.1%. The centers of the F = 3→ 4
and F = 2→ 3 transition gives the frequency reference 2915.092439 MHz.

centers of the absorption peaks are determined using a multiple-Lorentzian fit,

y = y0 +
2A

π

w

4(x− xc)2 + w2
(3.1)

where xc is the parameter for the peak center. The output wavelength of the DBR

laser is nearly linear under current modulation over several GHz, as can be seen by

the equal spacings between the FPI transmission peaks in Fig. 3.7(a).
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The FPI consist of a confocal cavity with cavity length of 20 cm. The FSR

is 374.682 MHz (standard error of the mean 0.170 MHz), determined by repeating

the spectroscopic measurement as shown in Fig. 3.7. The cavity is air-sealed inside

a kwik-flange nipple, wrapped with heat tape, and then covered by 1′′ thick pink

foam to prevent thermal drift caused by the changing room temperature. The power

dissipated by the heat tape is driven by a temperature controller. The positions

of transmission peaks relative to the saturated absorption signals can be moved by

changing the temperature setting of the FPI. The transmission peaks move by half

of a FSR when the temperature is changed by 2 ◦C.

For most of the rubidium MOT experiments, the saturated absorption spectrum

also functions as a source of error signal for an electronic feedback circuit. The feed-

back circuits stabilize the laser frequency to the zero-crossing of the slopes of the

spectral peaks. For later experiment with large lattice light shift, large 5S→5P tran-

sition detuning is required. The transmission spectra of the temperature-controlled

FPI provide extra spectral peaks in spectral region where no atomic transition lines

exist. This ability is critical for a large part of the work presented in this thesis.

3.3.2 Frequency-doubled blue laser

The output from a 960 nm ECDL is increased by a TA laser, and then frequency-

doubled by a frequency-doubling stage which yields the 480 nm upper transition laser

(5P→Rydberg state). The design of the TA laser was made by Lúıs Felipe Gonçalves.

Fig. 3.8 shows the photos of the TA laser. The center piece is made of copper.

The C-mount TA laser chip is screwed to the M2-threaded hole at the center of the

copper piece. The copper piece is dropped into the bottom brass plate, and clamped

downward in place tightly by the large brass piece.

The coupling lenses for the TA are mounted into aluminum tubes with fine-

external threads, which match the inner threads of the two cuboid brass lens mounts.
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The aluminum tube can freely move in or out relative to the brass cuboids during

the laser-collimation process, and then be locked stationary by a set screw after the

adjustment is done. The brass cuboids are attached to the large brass piece by four

M3 screws with split lock washers. The position of the coupling lenses can be trans-

lated in both horizontal and vertical directions by balancing the pressure exerted by

the 6-80 fine-threaded screws.

3.3.3 Pressure-tuned Fabry-Pérot interferometer

A few percent of the 960 nm ECDL output is directed to a wavelength meter and

a pressure-tuned Fabry-Pérot interferometer. Details about the FPI are presented

in refenrence [30]. The FPI is made of a 15 cm long confocal cavity. The confocal

cavity is sealed inside a kwik-flange tubing, filled with high-index-of-refraction, inert

gas SF6. A bellow is attached to the kwik tubing, and the bellow is pulled/pushed

by a step motor driving a optical translational stage. The stepping of the step motor

changes the volume of the bellow, which in turn changes the pressure and refractive

index inside the entire kwik tubing. The tiny change of FSR due to the change of

refractive index shifts the position of the peaks on the transmission spectrum. As a

result, the transmission peaks translates in steps as the step motor moves.

Figure 3.8:
Left: center pieces of the TA amplifier laser. Right: TA amplifier laser
assembly.
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During a two-photon excitation experiment, the lower transition, 780 nm laser is

locked to a Rb atomic transition, and the upper transition 480 nm laser, frequency

doubled from the 960 nm laser, is scanning across the Rydberg-atom excitation res-

onance. This is done by stabilizing the 960 nm ECDL to the nearest FPI peak, and

programming the step motor to step toward the resonance. The PID feedback circuit,

which stabilizes the 960 nm ECDL, is able to lock the laser frequency to the same

peak and allow the step motor scanning over a range of about 750 MHz at 960 nm

(1500 MHz at 480 nm).

The movement of the step motor is recorded in step number in the raw data.

Fig. 3.9 shows the calibration factor of step number into MHz at 480 nm. Cali-

bration is obtained with 69S two-photon excitation spectra. The upper transition,

frequency doubled blue laser, is switched on and off by a single-pass acousto-optic

modulator (AOM). The AOM generates multiple orders of deflected blue light. The

frequency difference between consecutive orders is the same as the frequency of the

radio frequency source driving the AOM, which is 361 MHz. As a result, the differ-

ence in step number between two 69S lines which use consecutive deflection orders of

the AOM (-1 and -2 order) equals 361 MHz.

Figure 3.9:
Calibration factor of the step motor (step number to MHz at 480 nm).
The slight change in calibration is mostly due to the non-linear response
of the bellow.
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In later experiments involving large lattice light shifts, the spectroscopic searching

range is usually several GHz, which is beyond the PID feedback circuit’s tracking

range. The spectroscopy in this condition requires manually turning the 960 nm

grating voltage offset control and counting the transmission peaks being swept during

the manual search. The final frequency shift relative to the starting point of the two-

photon excitation spectra will then be the frequency shift converted from step number,

plus the number of peaks passed times the FSR of the FPI at 480 nm.

The calibration of the FSR of the 960 nm FPI is done by referencing the distance

of main Gaussian cavity mode to the side bands generated by a single-pass AOM (see

Fig. 3.10) on the cavity transmission spectra. The collimated output of the 960 nm

laser focuses at the crystal inside the AOM, and then the AOM output is collimated

before being sent to the FPI. When a focused beam is deflected by the crystal, it is

very easy to get higher order modes creeping in the direction of the zero order mode,

and vice versa. The leakage of the higher orders appears as side bands next to the

main cavity mode. The separation between the side bands and major peaks equals

the frequency shift by the AOM, which is the same as the RF driving frequency of

Figure 3.10:
960 nm FPI transmission spectra. The side bands are caused by higher-
order deflections of a single-pass AOM. Note the response of the grating
modulation is not as linear as the current response of a DBR laser. The
ratio of the FSR to sidedands is used in the calculation to compensate
this nonlinearality.
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the AOM (80 MHz). The FSR is calculated as,

FSR =
∆

δ+ + δ−
× 2× 80MHz (3.2)

where the values of ∆, δ+ and δ− are measured as shown in Fig. 3.10. The averaged

FSR is 489.37 MHz at 960 nm, with standard error of the mean 0.56 MHz. The FSR

at 480 nm is twice the number of the FSR at 960 nm.

3.3.4 Computer control of the experiment

The MOT lasers and both excitation lasers are switched on and off by AOMs.

The RF driving power of the AOM is triggered on and off by the Transistor-transistor

Logic (TTL) pulses sent out from the computer that controls the timing and data-

acquisition of the entire experiment. The computer has an eight-channel counter/timer

extension board (National Instruments, NI PCI-6602), a GPIB controller (NI GPIB-

USB-HS), an analog input card (NI USB-6003), and an analog output card (Measure-

ment Computing, USB-3114). The computer programs that run these extension cards

are developed in LabView (version 12). My experiment inherited LabView programs

from the TIP experiment in the group, codes mostly written by Andrew Schwarzkopf.

3.4 Saturated absorption spectroscopy

The laser cooling experiments start with cooling and collecting gaseous atoms by

laser beams whose frequencies are tuned close to atomic transitions. For a rubidium

experiment, the MOT cooling utilizes the 5S1/2 →5P3/2 atomic transition. The tran-

sition is at 780 nm, a wavelength which is easily available from semi-conductor diode

lasers.

The stabilization of laser frequency to atomic transition in the experiment is based

on saturated absorption spectroscopy. To obtain a saturated absorption spectrum,

38



a pair of 780 nm probe laser beams are sent through a room-temperature rubidium

vapor cell, one of the probe beams is overlapped with a counter-propagating pump

beam that has an intensity higher than that of the probe beam. The transmitted

laser intensities of both probe beams are monitored. Fig. 3.11 shows the spectra of

both probe beams when the laser frequency is modulated over the rubidium atomic

transitions. Without a pump beam present, the transmitted spectra have Doppler-

broadened absorption features, which reflect the velocity distribution of the atom

sample inside the vapor cell. With a pump beam, the narrow spectral features of

the hyperfine levels burn into the wide Doppler background (Lamb dip, see reference

[31] for details.). Due to the Doppler shift, atoms moving at different velocities see

on-resonance radiation at different laser frequencies, and then broaden the absorption

feature. With the strong and counter-propagating pump beam, the small portion of

atoms that are stationary is depleted by the pump beam, resulting in a narrow trans-

Figure 3.11: Wide scan of absorption spectra of rubidium 5S1/2 →5P3/2 transition.
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parent window for the probe beam. Narrow spectral features at hyperfine transitions

thus are revealed on the wide Doppler-broadened absorption feature. By sending both

spectra to a differential amplifier, the Doppler background is removed. The resulting

signal is shown in Fig. 3.12. The hyperfine spectral lines provide absolute atomic

transition frequency reference.

The laser frequency stabilization is done by feeding the saturated absorption spec-

troscopic signal to an electronic feedback circuit, e.g. PID feedback or a simple inte-

grator. These lock circuits stabilize laser to a zero-crossing of a slope on the spectra.

By changing the offset of the spectral signal, the lock circuit can stabilize the laser

frequency to virtually both sides of the narrow peaks in the saturated absorption

spectra. For a position near the spectral peak where the zero-crossing is hard to

acquire, e.g. the 85Rb(87Rb) MOT cycling transition, a zero-crossing at the desire

location can be created by Zeeman shift. This scheme is known as dichroic atomic

vapour laser lock, or DAVLL, in the literature. Wrapping the Rb vapor cell with a

solenoid, a magnetic field with magnitude of about 10 Gauss shifts the spectral line

far enough from the zero-field cycling transition for MOT operation. More control

of the zero-crossing position is acquired by “mis-aligning”, or by changing the polar-

ization of the pump beam. When the laser is locked, sending the output of the laser

to a single-pass or a double-pass AOM, which deflects the laser beam and offsets the

laser frequency, provides additional tuning range.

3.5 Magneto-optical trap

A very clear introduction to Magneto-optical traps and optical molasses can be

found in the reference book Atomic Physics [32] by C. J. Foot. In this section, I focus

on the practical aspects of obtaining a MOT in my experiment.

The necessary elements to get a MOT are: (1) six circularly-polarized MOT laser

beams along the xyz axes of a Cartesian coordinate system, (2) a quadruple mag-
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netic field with the field minimum at the origin. The MOT magnetic field is usually

provided by a pair of coils in anti-Helmholtz configuration. The MOT laser includes

two components, one for the cycling transition and one for the repumping transition

(see Fig. 3.12 for spectra and level diagram). For a 85Rb(87Rb) MOT, the cycling

transition laser drives the F=3(2)→ F′=4(3) transition. However, the atoms can also

be off-resonantly excited to the F′=3(2) level by the cycling transition laser. From

here, the atoms can decay to the F=2(1) lower level of the 5S1/2 state. This lower

5S level is about 3 GHz away from the cycling transition (6.8 GHz in the case of

87Rb), which is so far-detuned that the atoms in the level will not be brought back

to the laser cooling cycle by the cycling-transition laser. The repumper, which drives

the transition F=2→ F′=3(F=1 → F′=2 for 87Rb), brings the lost atoms back to

the cooling cycle. The laser power of the cycling transition is about 15 mW/cm2 per

MOT beam. For the repumper transition, about 0.5 mW/cm2 is sufficient, although

when the deep optical lattice trap is on, more repumping power is needed. The MOT

will essentially not work without the repumper laser.

Figure 3.12: Saturated absorption spectra for rubidium 85 and 87.
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A common method for loading atoms into a MOT is by primary-secondary MOT

configuration. In my experiment, however, as in numerous other systems, the MOT

traps the rubidium atoms directly from the room-temperature rubidium vapor inside

the vacuum chamber. Therefore, the total number of atoms trapped by this MOT

configuration is considerably lower than the primary-secondary MOT scheme. Also,

due to the size of the openings in the stainless steel cylinder which shields the cavity,

the MOT beam size can only be made as large as 8 mm, which further reduces the

ability to collect atoms. Another difference in this experiment is that due to limited

space anti-Helmholtz coils were found to be less practical than a quadruple MOT

magnetic field provided by a pair of rod neodymium magnets (Fig. 3.5). The magnetic

field gradient at the mid point of the pair of magnets is about 19.5 Gauss/cm. This

pair of rod neodymium magnets can only mounted in a manner such that the magnetic

field experienced by the atoms is actually about 15◦off from the orientation with the

maximal field. (see Fig. 3.5). Nevertheless, despite of the deviations from a common

setup, the MOT traps atoms and loads the optical lattice. My experiment has a rapid

experimental repetition rate because of this MOT loading scheme: the MOT collects

atoms directly at the cavity center and no atom transfer is needed.

The deep optical lattice experiment uses either 85Rb MOT or 87Rb MOT. The

switch between different isotopes only requires us to lock the lasers to different satu-

rated absorption spectral lines. Generally, the 85Rb MOT is brighter than the 87Rb

MOT, because the 85Rb isotope is about three times more abundant than 87Rb. How-

ever, the 5S→5P excitation scheme of the 87Rb MOT in spectroscopy studies is less

complicated, mostly due to the larger hyperfine splitting of the 5S hyperfine levels,

and fewer light-shifted lines in the 5P3/2 level.
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3.6 Stark spectroscopy

The detection of Rydberg atoms is achieved by field-ionization with the electrodes

surrounding the cavity, and ion-detection with a microchannel plate (MCP) detector

[33]. Fig. 3.13 shows the relative position of the MCP and the electrodes to the

atom-trapping region.

The field strength required to ionize the Rydberg atoms is not extremely high;

usually several tens of V/cm is sufficient. The ionization field launches the positive

ions toward the MCP, which is a few inches downstream. The MCP detector is

composed of two micro channel plates in the Chevron configuration, plus a phosphor

screen attached to the Chevron. The front plate of the MCP detector, with a voltage

of -1015V, acts like a huge sink for the positive rubidium ions. The second plate of

the MCP and the phosphor screen are at +735V and +3375V, respectively. When

a positive ion reaches the MCP front plate, it triggers a chain reaction at the spot,

releasing many electrons which then generate a blip at the MCP phosphor screen.

Thus, the blips on the phosphor screen reflect the spatial distribution of Rydberg

atoms before field ionization. When the amplified electron outputs reach the phosphor

screen, they create a voltage spike on the DC high-voltage background. To count the

number of detected ions, a high-pass filter is inserted between the DC high-voltage

supply and the phosphor screen. The pulses are filtered out by the high-pass filter,

and then sent to a photon counter. The photon counter converts the electrical pulses

into a number of detected events. The detected counts are plotted as a function of

the step-motor step number, and then converted into a count rate vs. frequency plot,

using the calibration factors in Fig. 3.9.

Rydberg atoms are known to be very sensitive to electric fields. A small stray

electric field can cause significant spectral line shift and line splitting, especially for

high-lying Rydberg states. The unknown stray electric field is compensated by Stark

spectroscopy [5] of Rydberg D lines. The spectroscopy is done by taking D line spectra
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Figure 3.13:
Stark maps for the rubidium 67D level. The electric field in x direction
is controlled by four of the electrodes surrounding the cavity. The four
electrodes are marked by solid disks. The electric field in y direction
is controlled by the other two electrodes, marked by open circles. The
stray electric field is compensated at the voltage setting where the lines
have no splitting. The maximal upper-shift in frequency of 67D5/2 lines
happens at -0.21 V and 1.12 V of x-axis scan, and -0.70 V and 0.62 V
of y-axis scan. These maxima on the map give a rough calibration of
electric field.

at different voltage settings of the six electrodes during the Rydberg excitation phase.

The spectra are plotted against the electrode voltage setting. See Fig. 3.13 for an

example. The specific voltage setting that shows no splitting on the plot would be

the best voltage setting, since it best compensates the stray electric field.

The voltage settings of the electrodes are independent from each other. The

voltages are assigned such that the six electrodes provide the control of electric field

in the x- and y-direction. The electric field is not compensated along the z-axis due

to the geometry of the electrodes, but we do not observe a line splitting due to the

lack of control along this direction.

During the field ionization phase, the high voltage is assigned to the two electrodes

which are farthest from the MCP. The high voltage is assigned with a ratio of about

1:3 to launch the ions toward the MCP (see Fig. 3.13). With a voltage setting of 200 V

and 71 V applied to these two electrodes, the electric field is numerically calculated
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to be about 73 V/cm at the trapping center. The two electrodes that are nearest

to the MCP are assigned with small offset voltage to optimize the direction of ions

trajectory.

3.7 Optical dipole traps and optical lattices

Optical dipole traps [34] use focused laser beams to trap atoms. The atoms are

attracted to, or repelled from the high intensity region, depending on the direction of

frequency detuning of the laser beam relative to the atomic transition and atomic po-

larizability values. If the laser frequency is red-detuned, then the atoms are attracted

to the region of high intensity. The atoms are attracted to low intensity regions if the

laser is blue-detuned.

For a laser beam with intensity I and detuning δ, the trap depth is proportional

to I
δ
, and the scattering rate is proportional to I

δ2
. Experimentally, we usually use

a far-detuned focused 1064 nm laser beam of high intensity (usually on the order of

1010W/m2) to trap rubidium atoms. The large laser detuning ensures that there is

not too much heating of the atoms due to photon scattering.

Optical lattices use a similar trapping mechanism. Instead of one single laser

beam, optical lattices utilize two or more laser beams to generate standing wave

patterns. The spatial confinement of atoms is not only in radial direction relative

to the laser beam, but also in the direction of laser propagation due to the periodic

standing wave patterns.

The atoms inside the lattice see periodic light shifts due to the AC Stark shift. For

ground state atoms, the 5S atomic level is altered by the light field as −1
4
α5SE

2
0 , where

α5S is the dynamic polarizability of the 5S level. The polarity of the AC Stark shift

depends on the sign of polarizability of the level. For the relevant rubidium levels

in this thesis, α5S is positive, α5P is negative, and Rydberg states have a negative

polarizability in most of the cases. The light shift causes lattice potential wells as
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Figure 3.14: two-photon excitation, shallow lattice spectrum.

shown in Fig. 3.14

When taking two-photon excitation spectra of the lattice shift signals, the lower

transition laser is frequency up-shifted to compensate the lattice light shift. Fig. 3.14

shows a sample scan in my experiment. The 1064 nm lattice laser power is con-

veniently expressed in terms of cavity transmitted power. In this specific scan, the

transmitted power is 1.6 mW. The lower transition detuning is up-shifted by 75 MHz.

The atoms concentrated at the center of the lattice trap are on-resonantly excited,

while the atoms outside the lattice are off-resonantly excited. The narrow peaks on

the spectra are from the atoms outside the lattice, while the broadened blue-shifted

signals are from the atoms inside the lattice. The frequency distance from the center

of the narrow line to the blue side of the lattice signal is the maximal lattice-induced

light shift, which is a combination of ground-state light shift plus Rydberg state

light-shift (see Fig. 3.14).

46



CHAPTER IV

Atom trapping with cavity-generated optical

potentials

In this chapter, I summarize the experiments that have been performed with the

cavity-generated optical lattice trapping potentials. The results discussed in this

chapter are for shallow lattice potentials, and most of them are published on Phys.

Rev. A ( http://link.aps.org/doi/10.1103/PhysRevA.89.063409).

4.1 Introduction

Fig. 4.1 shows the geometry of cavity-generated optical lattice potentials. The

cavity mirrors are centered on the z-axis, so the z-axis is also the lattice axis. At the

cavity center, the light shifts depends on both the longitudinal direction (z-axis) and

transverse direction (x- and y-axes). In the z-axis, the light shift is sinusoidal with a

periodicity of 532 nm, due to the standing wave pattern of the 1064 nm lattice laser.

In both the x- and y-axes, the light shift has Gaussian profile, due to the small waist

of the cavity modes; the e−2 waist of the intensity of the HG00 mode is 23 µm in both

the x- and y-axes.

This cavity-generated optical lattice potential is nearly perfect: the transverse

profile is well characterized by the cavity modes, and in the z-axis the lattice-induced
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Figure 4.1:
Cavity-generated optical lattice potentials are nearly perfect. Dotted lines
are unshifted energy levels, while the solid lines are lattice-shifted levels.
The gap between 5S and 5P is not to scale.

light shift cancels at the nodes. This is because the cavity mode, both in longitudinal

and transverse direction, is beautiful even after the cavity is sealed inside our vacuum

chamber – there is no distortion of the laser wavefront, no laser power loss or imbalance

caused by any non-cavity-mirror optics, or imperfection caused by non-ideal overlap

of lattice beams.

Before we move on to the discussion of experimental results, it may be worth to

clarify the terms I often use in the experiment to prevent confusion.

• Lattice power: The laser power that is transmitted through the cavity mirror

is always proportional to the circulating power inside. The transmitted power

times finesse
π
≈ 200 gives a good estimate of the circulating power. There is not

a direct method that we can use to measure the circulating power inside the

cavity. The laser intensity I0 is calculated as,

– I0 = 2P0

πw2
0
, running wave

– Imax = 4 × 2P0

πw2
0
, optical lattices made of two counter propagating beams.

P0 is the single-beam power. The factor of four is because of the standing

wave patterns of the lattice.

– Imax = finesse
π
×4× 2Ptrans

πw2
0

, cavity-generated. Ptrans is the transmitted lattice

power. w0 is the beam waist at the cavity center, and it is calculated from
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the beam waist of the cavity transmission, using Eq. 2.18.

The light shift experienced by the atoms at the trapping site is proportional to

the lattice intensity. A better calibration of the light shift per unit of transmit-

ted lattice laser power at the atom-trapping site can be done with two-photon

excitation spectroscopic methods, which is discussed the Appendix A. For all

of the experimental data in this thesis, I record the transmitted lattice power,

which is simply referred to as “lattice power”.

• Side camera and top cameras: The experiment has two cold-atom cloud

monitoring cameras. The line of sight of one of the camera is along the x-axis,

and it sees the trap center on the yz-plane, i.e. the object plane is parallel

to the lattice axis. I usually call this camera the “side camera”. The line of

sight of the other camera is along the z-axis. This camera looks through the

cavity mirror from above, and it sees the trap center on the xy-plane, i.e., the

object plane is transverse to the lattice axis. I usually call this camera the “top

camera”.

4.2 Fluorescence imaging

In my experiment, I use both fluorescence imaging and absorption imaging to

probe the optical lattice trap. Absorption imaging is discussed in the following section.

The top camera provides a very convenient alignment and real-time monitoring

tool. Fig. 4.2 are screenshots from the top camera when the cavity is locked to HG00,

HG10, HG20, and HG30 modes. The bright lobes inside the thin cloud of the MOT

overlap the position of the cavity modes; they are the fluorescence coming from the

lattice trap. In a real-time monitor window, these bright lobes are strikingly stable

compared to the MOT cloud.

The light transmitted through the top cavity mirror is composed of 780 nm fluores-
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Figure 4.2:
Top camera screen shots of the bright optical lattice traps inside the thin
cloud of a MOT. The cavity is locked to HG00, HG10,HG20, HG30 modes.

cence and 1064 nm lattice laser light. The coating of the cavity mirror has reflectivity

at 1064 nm, but it is approximately transparent to 780 nm with transmission ∼80%.

The two different wavelengths are separated by a long-pass dichroic mirror. The re-

flected 780 nm part is filtered by another low-pass filter to remove residual 1064 nm

light before it images on the top camera. Also, the top camera looks at an angle

offset from all of the MOT beams, so we expect no trace of 780 nm MOT light on

the camera. No extra 780 nm probe laser exists, either. Hence, all the images in

Fig. 4.2 present only fluorescence at 780 nm. The bright lobes at the trap center

might seen surprising at first, because at the trap center there is a latticed-induced

light shift which should have reduced the 780 nm MOT fluorescence from the atoms.

The bright trap center suggests that there is radiation guiding [35, 36] – the relatively

far-off-resonant scattering of MOT light is guided along the mode axis (or axes) by

the atom cloud, and then is captured by the top camera which is looking into the

cavity mirror.

Fig. 4.3 shows fluorescence images by the top camera of the HG00 cavity mode

at different lattice powers when it overlaps with the MOT. In all cases, there is a

dark rim around the trap center, which we interpret as proof of the existence of a

cylindrical capture volume of the lattice. MOT atoms entering the capture volume

are quickly laser-cooled to the trap center, leaving a cylindrical shell which is depleted

of atoms around the mode axis (or axes for higher order modes). The dark rim thus
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Figure 4.3:
Top: 780 nm fluorescence of the MOT overlapped with HG00 modes with
the indicated transmitted laser powers. The exposure time of each image
is 50 ms. Bottom: Horizontal cuts of the images averaged over 3 to 5
rows of pixels. The box on the first image shows the spatial range of the
cuts.

marks the boundary of the capture range of the lattice.

The bright spot observed at the center of the cavity mode disappears as the lattice

power increases. This trend is observed best in horizontal cuts of the fluorescence

images. At 1.6 mW of lattice power, the fluorescence peak, which appears Gaussian

in shape, is approximately 4 times as bright as the surrounding MOT fluorescence.

At 2.4 mW, the peak is about as bright as the MOT. At 4.2 mW, the Gaussian peak

is entirely erased, leaving a flat segment at the same location.

The cavity-generated optical potential determines the atomic density distribution,

which in turn determines the refractive-index profile underlying the light guiding. The

atom density profile has a maximum at the mode center and rapidly decreases as a

function of distance from the mode axis. Between mode axis and the surrounding

MOT, there is a density gradient due to the atom-depleted region discussed above.
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This density profile results in a refractive index profile which mimics that of an

optical fiber – the elongated cold-atom cloud acts as the core of the mini-fiber, with

the region void of atoms acting as the cladding. An estimate of the acceptance

angle of this cold-atom fiber for 780 nm MOT light is on the order of 1◦, with our

experimental parameters of 1.6 mW transmitted laser power, central volume density

≈ 2 × 1011 per cm3, and ground-state light shift ≈ 30 MHz [37]. The MOT light

scattered by atoms near the mode axis, if emitted within the acceptance angle, could

possibly be enhanced by cooperative scattering along the strongly elongated atomic

cloud [38, 39]. The radiation is then guided through the elongated atomic cloud,

emitted from its end, and eventually detected by the camera. The lack of radiation

coming out from the trap center in the case of 4.2 mW may due to the lattice laser

cooling limit, which is discussed in Sec. 4.4. The lattice with lattice power at 4.2 mW

traps MOT atoms less efficiently than the lattices at lower power, and the lattice-

induced light shift is larger such that the photon-scattering rate of the atoms inside

the lattice is lower.

4.3 Shadow imaging

The lattice trap is easily observed by the fluorescence imaging due to the radiation

guiding. The geometry of the trap can also be probed by absorption imaging, which

also gives an estimate of atom density from the intensity absorption ratio. Details of

the atom density calculation is provided in Sec. 5.2.

Due to the lattice light shift, the transition energy of the cycling transition

5S1/2 → 5P3/2 is shifted up in frequency. To probe the atoms inside the trap with

this transition, a blue-detuned, collimated, 50 µs probe is sent to the atom sample.

The atoms inside the lattice see on-resonant photons and thus scatter the probe light,

leaving a dark region when the probe is imaged on the CCD camera. There are both

advantages and disadvantages of this blue-detuned probe scheme. The probe is only
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Figure 4.4:
2f imaging: because the photon-scattering of probe light by the atom
cloud is radially outward in all directions, the shadow of atom cloud
images sharply on the image plane, while the probe light does not.
f1 =15 cm, f2 =30 cm, the distance between the lenses is irrelevant. This
lens configuration gives magnification factor of 2.

scattered by the atoms inside the lattice where the lattice-induced lightshift matches

the probe detuning, and the atoms outside the lattice are invisible in the resulting

image. However, the probe only sees a portion of the lattice atoms instead of the

entire population inside the lattice. With the deep lattice trap and much higher atom

number density, in Chapter V, we switch the lattice off before we send a short pulse

of on-resonance probe, so the image is caused by the scattering of all the atoms, both

inside and outside the lattice.

The shadow imaging in the yz-plane is done by sending a collimated probe beam

with a waist much larger than the size of the MOT. The shadow of atoms images on

the side camera with “2f imaging” scheme (Fig. 4.4). In the xy-plan, the shadow image

is obtained by co-propagating a probe beam with the lattice laser. The probe beam

is divergent before entering the vacuum camber, so it is approximately collimated at

the trap center. The transmission of the 780 nm through the cavity mirror is about

80%, and the probe is separated from the 1064 nm laser as described in Sec. 4.2. The

atom cloud shadow images onto the top comera with a 1:1 telescope and a 138 mm

camera lens outside the chamber.

The scaling factors are: for the side camera 2.88 µm in the object plane per pixel
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Figure 4.5:
Middle: absorption images of atoms inside the lattice fields, in the plane
transverse to the lattice axis. Transmitted lattice laser powers, from left
to right, are 1, 1.6, 1.9 and 1.6 mW. The probe detuning is 27 MHz
for modes HG00, HG10, and HG20, and 25 MHz for mode HG30. Top:
corresponding calculated area densities of on-resonant atoms. Bottom:
calculated electric-field squares of HG00, HG10, and HG20 and HG30, for
a circulating laser power of 1 W and w0 of 23 µm.

(Fig. 4.6; calibrated with a test object) and for the top camera 2.45 µm per pixel

(Fig. 4.5). The scaling factor of the top camera is obtained by comparing images of

the same traps from both cameras. The alignment uncertainty of the line of sight of

the side camera in Fig. 4.6 relative to the y-axis is . 20◦, as a result, the true spacings

between the cavity lobes could be up to 6% more than shown by the length markers in

the images. The separations between mode lobes obtained from the absorption images

are in good agreement with the distances shown in the intensity profiles calculated for

the Hermite-Gaussian modes, with w0 = 23 µm derived from the cavity transmission

spectrum.

The shadows of the atom clouds clearly replicate the cavity mode profile of the

HG modes, which increase in overall size with mode index. For the same trap depth,
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Figure 4.6:
Absorption images of atoms inside the HG lattices and corresponding area
density calculation in the xz-plane. The aspect ratio of each cold-atom
cloud is about 10 to 15. The transmitted lattice laser powers and probe
detunings are the same as in Fig. 4.5. Atom numbers computed using
the on-resonant scattering cross section are 5400, 4200, 7500 and 6000,
respectively; the numbers are of on-resonant atoms.

higher-order modes require higher powers, because of the overall larger trap volume

(see Fig. 4.5). Both Fig. 4.5 and 4.6 (top view and side view) show that the lobe

spacing decreases with mode number. Also, the outermost lobes form deeper traps

are darker than the inner ones.

The periodicity of the lattice in z direction is 532 nm, which cannot be resolved by

the side camera. As a result, the atom density calculation in the z-axis is an average

over this axis. The atoms density inside a single lattice potential well is twice or

higher than the average.

The absorption images show that we can realize clean, stable 1D, 2D and 3D

trapping geometries for ultra-cold atoms. The cavity functions as a mode filter to

implement a variety of higher-order modes with well-defined, precisely known, regular
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patterns and lobe spacings.

Absence of cavity mode-mixing is ensured by a sufficient degree of non-degeneracy

in the cavity transmission spectrum (see Fig. 2.3). The input laser is directed into

the cavity in a manner such that the first few Hermite-Gaussian cavity modes form

clean spectral peaks on the transmission spectrum, and thus the electronic feedback

circuit selectively stabilizes the cavity to only one of the cavity mode.

4.4 Spectroscopy and lattice laser cooling limit

The lattice cooling limit is determined by two-photon spectroscopy of Rydberg

60D levels. Details of the signal acquisition with a microchannel plate detector,

and the stray field compensation with Stark spectroscopy are described in Chap-

ter III. The spectroscopy here is done by locking the cavity to the HG00 mode,

frequency-stabilizing the lower transition laser to the cycling transition 5S1/2 →5P3/2,

blue-shifting the lower transition beam with an AOM, and then scanning the upper

transition laser. The experiment runs at 100 Hz, the lattice laser is always on, the

excitation pulse is on for 10 µs, and the Rydberg atoms are field-ionized at the end

of each experimental cycle. The excitation lasers intersect at the trap center; the

upper transition has a focus of FWHM 40 µm and a power . 0.5 mW, and the upper

transition laser is collimated to a size that is larger than the MOT with intensity

1 mW/cm2, which is about 1
4
Isat (saturation intensity). This configuration of exci-

tation laser parameters allows us to clearly observe both the on-resonantly excited

lattice atoms and off-resonant MOT atoms on a single spectroscopic scan.

For a shallow lattice, i.e. the AC Stark shift caused by the lattice light field is

weak compared to the hyperfine structure, and the atomic energy level is altered

according to −1
4
αE2

0 , where α is the dynamic polarizability. In a 1064 nm optical

lattice, α5S = 4πε0×687.3a3
0 [40], α5P = α0+α2

3m2−F (F+1)
F (2F−1)

, with α0 ≈ −4πε0×1120a3
0

and α2 ≈ 4πε0 × 520a3
0 (see Chapter VII for the details of α0 and α2). For Rydberg
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Figure 4.7:
Two-photon excitation spectra of Rb 60D levels. Spectral resolution is
≈ 5 MHz. (a) Spectra with transmitted lattice laser power 1.2 mW, and
the indicated lower-transition detunings ∆. (b) Spectra for the indicated
transmitted lattice laser powers and ∆ = 75 MHz. The experimental
repetition rate is 100 Hz. Each data point is an average of 50 shots. The
small signal at 0 MHz is likely due to MOT leakage light.

atoms, αR results from the free-electron ponderomotive shift −4πε0 × 545a3
0 [19].

The actual value of αrmR depend on all quantum numbers of the utilized Rydberg

levels and where the atom is located relative to the lattice axis. The sign of the

polarizability determines the polarity of the energy level shift in the lattice. In the

1064 nm lattice, i.e., 5S level has potential minima coincident with the lattice intensity

minima, while the 5P and the 60D Rydberg levels have potential maxima coincident
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with the intensity maxima.

In order to near-resonantly excite the atoms inside the lattice to 60D levels, the

lower transition laser is blue-detuned by ∆ (∆ > 0) relative to the field-free cycling

transition (of 85Rb 5S1/2 F=3 → 5P3/2 F′=4); ∆ is within the range of the cavity-

generated light shifts of that transition. The corresponding upper-transition detuning

becomes −∆ plus the lattice-induced light shift of the two-photon 5S1/2 F=3→60D

transition. The narrow peaks in Fig. 4.7, located at upper-transition detuning −∆,

result from off-resonant excitation of atoms outside the lattice, whereas the broad-

ened blue-shifted features result from the atoms inside the lattice. Therefore, the

frequency distances between the narrow lines and the blue-shifted features reveal the

lattice-induced light shifts [22]. The maximal shift is estimated by the distance from

the narrow 60D5/2 line to the high-frequency edge of its blue-shifted feature, repre-

sented by the dashed lines in Fig. 4.7. This light shift is a combination of the shifts

of 5S1/2 and of 60D5/2, which can be calculated using known dynamic polarizabil-

ities. Roughly, 5S1/2 accounts for 2/3 of the total shift, and 60D5/2 for 1/3. For

example, in the top panel of Fig. 4.7(a), the maximal lattice-induced light shift is

about 30 MHz, corresponding to the asymptotic value in Fig. 4.8(a). Therefore, for

a transmitted lattice power of 1.2 mW the lattice potential depth for ground-state

atoms is ≈20 MHz.

Fig. 4.7(b) shows the spectra for higher transmitted lattice laser powers. We set

∆ to 75 MHz to be able to probe deeper optical lattices. Generally, we find for

transmitted powers below approximately 2 mW that the maximal induced light shift

scales linearly with the transmitted power. We conclude that in this power range

the atoms are laser-cooled to the bottom of the optical lattice, and the calibration

factor relating the 5S1/2 lattice depth and the transmitted lattice laser power is ≈

18 MHz per mW for the fundamental Hermite-Gaussian mode, HG00. However, for

transmitted powers larger than 2 mW, the measured light shift reaches a maximum

58



Figure 4.8:
Maximal upper-transition shifts of the 60D5/2 level from Fig. 4.7 (a) vs
lower-transition detuning ∆ and (b) vs transmitted laser power. The
amount of shift is estimated by the frequency distance between the central
position of the narrow line to the broadened blue-shifted feature, plus half
of the 1/e2 full width of Gaussian fits to the blue-shifted feature. In the
cases that the blue-shifted feature shows multiple peaks, the one at larger
detuning is used. The dotted line in (a) indicates that the lattice induced
shift converges to an asymptotic value of about 30 MHz. The straight
line in (b) shows that at low powers the calibration for the ground-state
atom trap depth is about 18 MHz/mW.

at ≈60 MHz and the ground-state trap depth is about 40 MHz (see Fig. 4.8(b)),

showing that the atoms are not cooled to the bottom of the optical lattice in this

power regime. To overcome the lattice cooling limit, we have the lattice adiabatic

compress the atom sample. The experimental details are discussed in Chapter V,

and the calibration factor relating the lattice-induced light shift in a deep lattice is

provided in Appendix A.

The substructures seen in some of the higher-power cases are due to the m-

dependence of the 5P3/2 light shifts, which lead to resonant enhancement of the signal

at several upper-transition detunings. In Chapter VII, I present the measurement of

polarizability in the strong lattice laser field of the deep optical lattice, where the

substructures are resolved and employed to measure polarizabilities.

Spectra for higher-order HG modes are qualitatively similar to these shown in

Fig. 4.7. For higher-order modes the blue-shifted signal which arises from the lattice
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trap is stronger because of the larger trap volume, and the calibration factors for the

trap depths per transmitted power are lower.

4.5 Ionization of ground-state rubidium atoms

We use a MCP detector to detect the field-ionized Rydberg atoms in most cases.

However, in the following discussion, I focus on an ion source that does not originate

from optical Rydberg excitation but from a rather different mechanism.

We consistently observe blips of background ions on the phosphor screen of the

MCP detector, as long as the 1064 nm lattice trap and the weak extraction electric

field are both present. These background ions are independent of the 480 nm laser; no

direct optical production of Rydberg atoms is needed. In this case, the ions detected

by the MCP are unlikely to be induced by field-ionization, since the weak extraction

field is far below the strength required to ionize the ground-state Rb atoms. The

count rate of detected ions is negligible compared to the strength of Rydberg spectral

lines, but the blips of the ions are very well localized on the MCP phosphor screen,

such that we suspect these ions could have resulted from a combination of collision

and photoionization processes involving both the 780 nm and the 1064 nm laser light.

To characterize the spatial distribution of these ions, the videos of the phosphor

screen of the MCP detector are averaged over many shots. Fig. 4.9 shows averaged

video frames of the phosphor screen when the cavity is locked to HG00 and HG10

modes, with lattice power at about 1.5 mW. In order to launch the ions to the MCP,

the electric field is continuously on with a strength of 56 V/cm at the cavity center.

The blips on the phosphor screen reflect the spatial distribution of the ions. The

dark counts of the MCP are randomly distributed on the phosphor screen, so they

are almost completely eliminated after averaging over many frames. The blips due to

ions are very localized on the phosphor screen, so the signal peaks up after averaging.

For the case of the HG00 cavity mode, the ions come from a single source. For the
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Figure 4.9:
Average of the blips on MCP phosphor screen when cavity is locked to
HG00 mode and HG10 modes. The blips reflect the spatial distribution
of the cavity modes. HG00: average of 800 shots, HG10: average of 1000
shots. The image of the HG10 mode shows the ions originate from two
sources whose spacing is about or less than 20 µm (i.e. the lobe spacing
of the HG10 cavity mode, see Figure Fig. 4.5).

case of the HG10 cavity mode, the averaged image shows two maxima. The cavity

mode HG10 is oriented such that the two elongated cold-atom clouds both face the

MCP, and the ions emerging from the two sources are resolved on the MCP phosphor

screen 1. This spatial structure provides evidence that the ionization occurs inside

the 1064 nm lattice trap.

To determine the laser that may be responsible for these observations, the sus-

pected lasers are programmed to pulse on an off at different times, and the detected

ions are counted as a function of time in an experimental cycle. In each single cycle

of an experiment, a device called multichannel scaler (Stanford Research Systems

SR 430) partitions the detected ion counts into sequential bins depending on when

the counts arrive. The multichannel scaler also allows repeating the experiment for

several thousand times and summing over the results; the accumulation of scans in-

creases the signal to noise ratio of a real event, and reduces the effect of laser or MOT

density drifts.

Fig. 4.10(a) shows that the count rate immediately drops to the background level

1In the MCP phosphor screen shots, the two sources are resolved in the horizontal direction,
because there is magnification in this direction due to the geometry of the electrodes surrounding
the cavity. There is no magnification in the vertical direction
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when either the MOT laser or lattice laser is pulsed off. In Fig. 4.10(b), the MOT

light, including the cycling transition laser and repumper laser, is pulsed off for 1 ms,

and a short pulse of probe tuned to the cycling transition occurs at a different time

in each of the scans. The count rate is immediately high again when the the probe

is on. These two sets of scans conclude that the ionization requires both the cycling

transition laser at 780 nm and the 1064 nm lattice laser.

The photoionization of vaporous Rb 5S1/2 ground-state atoms can be off-resonantly

induced by two photons with wavelengths in range 540 nm to 590 nm [41], when

the photoionization laser intensity is strong. In my experiment, the laser with the

strongest intensity is the far-off-resonant 1064 nm lattice laser, whose strength is

on the order of 1011W/m2 and is likely not strong enough to drive an off-resonant

photonization on its own. There are two possible mechanisms that may cause the

ionization of ground-state rubidium atoms, both of which are based on Penning ion-

ization,

1. The 1064 nm laser is directly involved in the ionization. The 780 nm cycling

Figure 4.10:
Photoionization multichannel scaler scans. (a) Photo-ionization count
rate drops when either MOT light (including cycling and repumping
transitions) or lattice laser is turned off. (b) Count rate returns to high
level when the 10 µs probe (cycling transition 5S1/2 →5P3/2) pulses on.
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transition laser excites the ground-state Rb atoms from 5S1/2 to 5P3/2, and then

two excited-state 5P3/2 atoms collide in the presence of a 1064 nm photon, which

collectively exceeds the energy threshold required to achieve the ionization. In

brief,

5P3/2 + 5P3/2 + 1064 nm γ → Rb+ + 5S1/2 + e− + kinetic energy.

2. The 1064 nm laser is not directly involved in the ionization, but it provides a

high enough density of trapped atoms such that the 780 nm cycling transition

off-resonantly excites a significant amount of 5D atoms. The ions may then

result from Penning ionization involving the collision of atoms at 5P and 5D

excited states.

5P + 5D → Rb+ + Rb + e− + kinetic energy

Further multichannel scaler scans would be required to determine which mechanism

causes the ionization process observed.

Regardless of the ion-production mechanism, this could be used in MOT laser-

cooled ion sources, which are used in the fabrication and microscopy of nanoscale

materials [42], and they are advantageous over other ion sources for low beam energy

and sputtering. The ion source originating from atoms trapped in cavity-generated

optical potentials could have further advantages – spatial control of the ion sources

could be achieved by stabilizing the cavity to the cavity mode which gives the desired

number and geometry of cold-atom channels. As shown in Fig. 4.9, the angular spread

of the ion beam is minimal, and we can still resolve the two HG10 channels on the

MCP, which is about 5 inches away from the lattice trap.
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CHAPTER V

Lattice adiabatic compression

In this chapter, I present the experimental details of lattice adiabatic compression,

which is a critical technique in my experiment. The lattice adiabatic compression

allows us to overcome the lattice cooling limit and create lattice light shift on the

order of several GHz.

5.1 Advanced cavity stabilization

In my experiment, I use a cw, narrow-band 1064 nm fiber laser as the lattice laser

(IPG photonics YLR-10-1064-LP-SF). The 1064 nm laser has a short term linewidth

< 100 kHz, as specified by the manufacturer. However, the output of the 1064 nm

fiber laser for the lattices is not perfectly noise-free for the use in my experiment.

This is noticed by daily observations on the cavity transmission spectra – when the

cavity length is in scan mode, the peaks on the transmission spectrum are not entirely

stationary; there are long-term drift and short-term fluctuation. A frequency drift

would not significantly affect the trapping of atoms because of the adiabatic following;

the atoms keep trapped because the time scale of the frequency drift is relatively slow

to the atomic motion in optical dipole traps or optical lattices. However, the same

frequency drift poses problems for the concentric cavity experiment, because the

frequency drift results in the intracavity intensity fluctuation.
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Figure 5.1:
Optics layout for the Pound-Drever-Hall stabilization scheme with lattice
amplitude modulation. See text for details. EOM: electro-optic modula-
tor. AOM: acousto-optic modulator.

With the cavity locked to the laser, the slow drift changes the percentage of in-

put laser power coupled into the cavity, which in turns affects the intracavity and

transmitted lattice power on a long time scale. However, the slow drift does not

significantly affect the PDH cavity stabilization scheme. The short term frequency

fluctuation of the 1064 nm laser is the most concerning. The short-term fluctuation

can also be seen when the cavity length is in scan mode. The peaks shake left-right on

the transmission spectrum, indicating that the laser frequency fluctuates. When the

electronic feedback circuit is in lock mode, this frequency fluctuation causes an un-

desirable transmitted-power fluctuation, which indicates a corresponding fluctuation

of the lattice trapping potentials. This results in unwanted signal-to-noise reduction

and spectral line broadening of the signals of atom inside the lattice.

To minimize the transmitted power fluctuation, I insert a double-pass AOM in the

lattice laser beam path, using the AOM’s RF frequency modulation to compensate

the short-term frequency fluctuation. A schematic diagram is shown in Fig. 5.1. The

philosophy here is similar to the frequency stabilization of an ECDL: the output

wavelength is stabilized by the slow movement of the grating, but the linewidth is

reduced further by the fast modulation of the laser diode current. I use the relatively
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fast frequency modulation of the AOM to compensate the 1064 nm laser’s frequency

fluctuation.

Compared to the common cavity PDH stabilization scheme, as shown in Sec. 2.3,

the main differences of this combined stabilization scheme are as follows: first, most

of the 1064 nm input is deflected into the -1 order twice, and then passed through

the EOM. All the other orders, including the zero order, are blocked. Second, the

PDH error signal which is generated with the EOM and PDH module, is sent to both

the PID feedback module (for piezo lock) and a proportional feedback circuit. The

stabilization of the cavity still relies on the high-voltage PID feedback to the ring

piezo (slow feedback component), but with an added laser AOM frequency modula-

tion controlled by the proportional feedback circuit (fast feedback component). The

frequency of AOM-deflected laser beam is modulated by means of modulating the RF

frequency applied to the crystal inside the AOM. The proportional feedback circuit

controls the RF frequency modulation in a manner such that the frequency-shift of

the deflected beam compensates the frequency fluctuation of the fiber laser. Third, in

addition to the frequency modulation, the amount of input laser sent to the cavity is

also modulated by modulating the RF power that drives the crystal inside the AOM.

The amplitude of the lattice power sent to the cavity scales with the RF power output

of the AOM driver, which in turns is voltage-controlled by an envelope generated by

an arbitrary function generator. In later experiments with the deep lattice trap with

experimental repetition rate around 100 Hz, we can program the arbitrary function

generator to produce an envelope such that the lattice laser power is kept constantly

low most of the time, and then increased for a short period in each experimental

cycle.

Fig. 5.2 shows a scope screenshot of the cavity transmitted power (yellow line),

which is proportional to the lattice laser intensity at the cavity center. The lattice

intensity is increased by a factor of 20 within a ramp time of 30 µs, then held high
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Figure 5.2:
A screenshot of cavity transmitted power (yellow) monitor by a photodi-
ode. Blue curve is a multiplexer pulse.

for another 70 µs, and finally returns to low power at the end of an experimental

cycle. This intensity stepping reduces the chance of damaging the in-vacuum optics

by excessive heating by the fiber laser. The intensity stepping also allows us to

load the lattice at a shallow lattice potential, and then adiabatic compress the atom

samples to overcome the lattice laser cooling limit, which is discussed in the previous

Sec. 4.4.

5.1.1 Real-time normalization circuit

The amplitude of the PDH error signal scales with the amplitude of cavity re-

flection, which itself is proportional to the input laser power. The modulation of the

laser power by the AOM thus causes an inevitable modulation of the PDH error signal

amplitude. Both the slow piezo-lock feedback circuit and the frequency modulation

feedback circuit that take this PDH error signal have fixed gain; the gain is manually

controlled by analog trimpots. The change of the PDH error signal amplitude without

an automatic control of the gain causes an overshooting of the feedback circuits, and

the cavity transmission oscillates madly whenever the feedback circuits overshoot. To

prevent the feedback circuits from seeing a varying amplitude of error signal, I add a
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PDH error signal real-time normalization circuit, as shown in Fig. 5.4.

Common PID feedback circuits are realized by operational amplifiers (op amp):

with a combination of resistors and capacitors, one can make the output of the op

amp proportional to the input, or to be an integration or a differentiation of the

input signal. With the use of diodes, as shown in Fig. 5.3, the op amp can also

perform logarithmic output or exponential output. For the logarithmic output, Vout =

−VT ln
(
Vin
ISR

)
, and for the exponential output, Vout = −RIS exp

(
Vin
VT

)
. VT is the

thermal voltage, and IS is the saturation current of the diode.

The real-time PDH error signal normalization circuit is composed of log ampli-

fiers, exponential amplifiers, and summing amplifiers. The circuit takes logarithms

of the input signals, and them performs adding/subtraction operation with the sum-

ming amplifier. The output of the summing amplifier is amplified by the exponential

amplifier. In this manner, the circuit output voltage is,

output = amplitude× PDH error signal

reference signal

The reference signal is obtained by monitoring the 4% reflection from the beam sam-

pler at the input side (see Fig. 5.1). The only non-straight-forward part is adjusting

the time constant of the low-pass filter for the reference photodiode which monitors

the 4% reflection. The photodiode has a relatively slow rising time for the purpose

of reducing noise. The time constant of the low-pass filter needs to be adjusted to

Figure 5.3: (a) logarithmic output. (b) exponential output.
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optimize the normalization performance and minimize the residual PDH error signal

modulation.

5.2 Atom density estimation

The densities of atom samples inside the lattice traps are estimated by absorption

imaging, which is mostly called “shadow imaging” in lab. The lattice axis is the z-

axis in my experiment, and the imaging is on yz-plane. A probe beam, with intensity

I0(y, z), shines through the atom sample on yz-plane right after the lattice light is

turned off, and then the remaining intensity I(y, z) is imaged onto a CCD camera (the

“side camera”) whose line of sight is along the x-axis. The area density is calculated

from the change of intensity of the probe beam due to the photon scattering by atoms.

When the atom sample is dense, the portion of the probe that passes through dense

area is almost extinguished, leaving a “shadow” on the images of the bright probe

field.

Over a length element dx, the change of probe intensity, I(y, z), is,

dI = −γhνnV (x, y, z)dx. (5.1)

where nV is the volume density of the atom sample, γ is the scattering rate, and hν

is the transition energy of the levels involved in the photon-scattering.

In the case of low probe intensity (I < Isat, Isat saturation intensity), and a probe

frequency on-resonance with the 5S→5P transition, the scattering rate γ equals ΓI
2Isat

,

Γ is the decay rate of the transition. Eq. 5.1 is rearranged to get,

nV (x, y, z)dx = −2Isat
Γhν

dI

I
. (5.2)
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Integrating both side of the equation gives the area density nA,

nA(y, z) =
2Isat
Γhν

ln
I0

I
. (5.3)

I0 is the initial intensity of the probe beam, and I is the intensity after the probe

beam passes the atom cloud.

Experimentally, the probe beam is unpolarized, and is tuned on-resonance with the

MOT cycling transition. The camera takes three images for each round of calculation:

one image with the probe beam passed through the atom sample (I) , one image with

the probe beam when there is no sample (I0), and a background image when both

probe beam and atom sample are off (IB). For a Rb atom sample and probe beam

tune to the MOT cycling transition, the area density of each pixel on the image is

calculated by,

nA(y, z) = 3.44× 108 × ln
I0(y, z)− IB(y, z)

I(y, z)− IB(y, z)
cm−2 (5.4)

Fig. 5.5 shows a sample plot of the area density of the lattice trap obtained from

the shadow image on the yz-plane. The trap looks like a needle. The observation is

not surprising in light of the geometry of the cavity-generated trapping potential: the

intensity profile of the cavity mode is Gaussian, and the Rayleigh length at the cavity

mode focus is 1560 µm, which puts the depth of the cavity-mode focus larger than the

dimension of the MOT. Based on this observation, the atom density is assumed to be

uniform on the z-axis, and radially symmetric with the same Gaussian distribution on

the x- and y-axes. Although the CCD camera only records the images on yz-plane, we

can still reconstruct the volume density nV (x, y, z) with these symmetry conditions

applied. The volume density distribution is expressed as,

nV (x, y, z) = N × 1

L

1

σ
√

2π
exp

(−x2

2σ2

) 1

σ
√

2π
exp

(−y2

2σ2

)
. (5.5)
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where N is the total number of atoms, and L is the length of the lattice trap in the

lattice axis. The CCD camera sees the area density on the yz-plane,

nA(y, z) =
N

L

1

σ
√

2π
exp

(−y2

2σ2

)
. (5.6)

Integrated the area density plot along lattice axis, or z-axis,

L
2∫

−L
2

nA(y, z)dz =
N

σ
√

2π
exp
−y2

2σ2
, (5.7)

σ can be obtained by Gaussian-fitting the resulted curve, as shown in the right panel

of Fig. 5.5. Since nV (x, y, z) = nA(y, z) 1
σ
√

2π
exp

(−x2
2σ2

)
, the central volume density

follows,

nV (0, 0, 0) = nA(0, 0)
1

σ
√

2π
, (5.8)

where nA(0, 0) is read directly from the center of the lattice area density plot. The

volume density distribution is,

nV (x, y, z) = nV (0, 0, 0) exp
(−x2

2σ2

)
exp

(−y2

2σ2

)
. (5.9)

In the case of a lattice-compressed atom sample, the central volume density is usually

higher than 2× 1011 cm−3.

The above calculation neglects the lattice potential wells in the z-axis and assumes

a homogeneous distribution in this axis; the calculated density distribution is an

average over z-axis. However, the actual density inside a single lattice potential well

in the z-axis should be much higher than the density averaged over the z-axis. The

atom number density depends how deeply the atom sample is compressed to the

bottom of the lattice potential well.
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5.3 Lattice adiabatic compression

We can obtain a high 1064 nm lattice laser intensity at the center of the near-

concentric cavity. However, we were not certain whether very deep lattice traps can

actually be loaded with MOT atoms. It was tested by both the earlier experiment in

the group and my experiment that the lattice loading turns very inefficient when the

lattice depth exceeds 50 MHz or so.

In the case of a shallow lattice, the lattice-induced light shift is not so significant.

MOT atoms keep filling the lattice, because they are still laser-cooled by the MOT

cycling transition laser at the bottom of the lattice potential well. In the case of a deep

lattice, the MOT light is so far-off-resonant at the bottom of the lattice potential well

that the atoms are not laser-cooled there. Practically speaking, it is useless to turn up

the lattice power more, because the MOT atoms stall at a depth of about 50 MHz.

The number of atoms cooled to the bottom of the lattice trap and experiencing a

large lattice-induced light shift might be so small that they are not experimentally

detectable.

To overcome the lattice cooling limit, I adiabatically compress the atoms sample

by ramping up the depth of the optical lattice. The idea of an adiabatic process is

that if a Hamiltonian H0 varies slowly and gradually, the nth eigenstate of H0 will

still be the nth eigenstate of the new Hamiltonian H ′. In the opposite case, if H0 is

changed all in a sudden (diabatic), then the nth eigenstate of H0 will end up being a

superposition of the eigenstates of the new Hamiltonian H ′.

As long as the lattice intensity increases slowly and gradually so the change is

adiabatic, the atoms that are loaded to the bottom of a shallow lattice are expected

to remain in the bottom of the new, deep optical lattice trap. The atoms are also

expected to be more concentrated around the lattice axis, as the lattice potential

becomes deeper and narrower.

74



5.3.1 Trap frequency of a deep optical lattice

In the two-photon excitation spectroscopy, we usually use the lattice-induced light

shift to describe the depth of the lattice. The other quantity that people often use

to picture the geometry of an atomic trap is trap frequency: the optical potential

seen by the atoms can be approximated by a simple harmonic potential, and the

trap frequency is calculated from the “spring” constant related to this potential. For

example, the trap frequency is fx = ω
2π

= 1
2π

√
kx
m

for a trap potential approximated by

V (x) = 1
2
kxx

2, and the atoms inside this potential oscillate at fx. The trap frequency

describes the time-scale of the motion of the atoms inside the trap.

For the case of my experiment, in the lattice axis, z-axis, the lattice optical po-

tential is sinusoidal and periodic,

V (z) =
V0

2
(1 + cos 2kz), k =

2π

λ
(5.10)

Using Taylor expansion, V (z) ≈ V0k
2z2. The spring constant kz in the lattice-axis is

2V0k
2. In the transverse direction, the lattice optical potential is exponential,

V (ρ) = V0 exp
[−2ρ2

w2
0

]
(5.11)

where w0 is the beam waist of the lattice laser. Taking the second derivative, V (ρ) ≈
2
w2

0
V0ρ

2. The spring constant kρ in the transverse direction is 4V0
w2

0
.

The optical potential amplitude V0 is calculated from the a.c. Stark shift of the

ground state, V0 = −1
4
α5SE

2
0 , with E2

0 = 2I
cε0

. Using α5S ≈ 700× 4πε0a
3
0, w0 =23 µm,

λ =1064 nm, and a lattice laser intensity for the “shallow” lattice case I = 1.67 ×

1010 W/m2(corresponding to a transmitted lattice power about 2 mW), the trap

frequencies in the shallow lattice are: in the lattice axis fz = 700 kHz, and in the

transverse direction fρ = 7 kHz.
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Figure 5.6:
FWHM of the atom density distribution in lattices of (a) different com-
pression ratio (b) different sine-rising duration. The oscillation of FWHM
after 100 µs might be due to the heating of the trapped atoms by the in-
tense lattice laser field.

5.3.2 Lattice intensity modulation

To apply the adiabatic compression idea experimentally, the lattice is first loaded

at a low power to have a large number of trapped atoms to start with. Then the

MOT laser is switched off and the lattice power starts increasing. The lattice power

follows a sine-rising curve (phase varies from −π
2

to π
2
, Fig. 5.2 shows an example), so

the increasing curve is smooth and slow. The atoms that were in the bottom of the

shallow lattice trap are expected to remain in the bottom of the deep lattice despite

the fact that the lattice power is increasing.

The best compression ratio (high power to loading power) and the sine-rising com-

pression duration is determined experimentally by the methods of shadow imaging.

The timing sequence of the shadow imaging is as follows: the lattice power is kept low

and then sine increased to the high power. The lattice is held at high power for 70 µs

before being switched off of rapidly. A 5 µs probe tuned to the cycling transition

is on while the lattice laser is off. Fig. 5.6(a) shows the trap FWHM in the shadow

images at different compression ratios with the same compression duration of 30 µs.

76



Given a fixed high power, the trap waist is generally the narrowest if the compression

starts with 2 mW, resulting in a higher compression ratio. Fig. 5.6(b) shows the

dependence of trap FWHM on the compression duration when the lattice power is

increased from 2 mW to 40 mW. From the data we see the FWHM is the narrowest

when the duration is about 50 µs, which corresponds to a sinusoidal modulation at

20 kHz. In the later spectroscopy experiments, we choose the lattice compression

condition that gives a narrow FWHM, which implies a more spatially concentrated

atom sample and less spectral line broadening.

The times scale of the lattice intensity modulation is about 20 kHz. The initial trap

frequencies are fz = 700 kHz, and fρ = 7 kHz. Based on the frequencies, we expect

that the atoms get adiabatically compressed in the z-axis. We are not certain about

the transverse direction, because the initial trap frequency is less than the intensity

modulation frequency. Since the trap frequencies are proportional to the depth of

the lattice potential, we expect the compression to be more and more adiabatic as

the lattice increased to higher power. Overall, the atom sample after the lattice

compression might be a product of a mixture of adiabatic and diabatic compression,

but more likely to be adiabatic. In comparison, if we had utilized an optical dipole

trap made of a single focused beam without periodic optical lattice modulation along

the beam axis, then the trap frequencies would have been fρ = 7 kHz � fz, due

to the large Rayleigh length. The lattice compression would have to be carried out

much more slowly to ensure an adiabatic compression, with the price of slowing the

data-taking rate and losing more atoms during the long compression duration.

5.3.3 Two-photon excitation spectroscopy

The atom density estimation by the shadow imaging method indicates a significant

increase of the atoms density in a lattice-compressed sample. However, we are not

certain whether the atoms are adiabatically compressed to the bottom of the trap
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Figure 5.7:
Two-photon excitation spectra. (a) Lattice is always at loading power.
(b) Lattice is at loading power for most of the time, but compressed to
high power immediately before the Rydberg excitation. The splitting of
74S signal is due to the intermediate state 5P3/2.

due to the limited resolution of the cameras. In comparison, the effect of adiabatic

compression is transparent in two-photon excitation spectra.

Fig. 5.7 shows spectra of a shallow lattice and an adiabatically-compressed lattice.

The narrow lines on the spectra are from off-resonance excitation of MOT atoms out-

side the lattice. The blue-shifted, broadened signals are from the atoms inside the

lattice. For the shallow lattice, the lattice signal is very close to the MOT signal,

and the sharp cut-off of the broadened lattice signal at the blue side typically ends

somewhere around 50 MHz (for a lattice power & 2 mW). For the case of an adia-

batically compressed sample, the lattice signal is far away from the MOT signal, and

in-between the two signals there is a wide void region. This spectral feature suggests

that the atoms that were at the bottom of the shallow lattice remain at the bottom

of the deep lattice after the adiabatic compression is done.

With the lattice adiabatic compression, we obtain a fairly large population of

atoms at the bottom of a very deep optical lattice trap, with lattice-induced light

shifts on the order of several GHz. The lattice adiabatic compression also helps

to reduce the broadening of the lattice-shifted spectral signals in the two-photon
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excitation spectroscopy, because the atoms are more concentrated around the lattice

axis. There are several immediate applications of the lattice adiabatic compression,

which are discussed in the following chapters, including radiation guiding (Chap. VI),

polarizability measurement (Chap. VII) and Rydberg hydrogenic states ( Chap. VIII).
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CHAPTER VI

Radiation guiding

In Sec. 4.2, I showed the results of the radiation guiding in a shallow lattice trap,

and concluded that the elongated cold-atom cloud acts like a “mini-fiber”. After

upgrading the cavity-stabilization scheme, I am able to “lattice-compress” the cold-

atom samples and switch the lattice off for observation. In the is chapter, I present the

more prominent radiation guiding phenomena in the deep optical-lattice traps and a

rough model that qualitatively explains what I observed. In the following discussion,

I use the HG00 cavity mode, the fundamental Gaussian cavity mode, which is also

the easiest to align.

6.1 Imaging system

The radiation guiding by the lattice-compressed cold-atom sample is monitored

by the “top camera”, which looks though the cavity mirror from above. Imaging the

cold-atom cloud at the trap center is made possible by two features of the experimental

setup: First, the cavity mirror is approximately transparent to the 780 nm laser light

(transmission of 80%). Second, the cavity is of near-concentric configuration. The

fluorescence or probe light scattered by the atoms at the cavity center is emitted

outward in all directions. As a result, that the 780 nm fluorescence/scattered probe

light comes out from a point source which is located directly at the center of a
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Figure 6.1:
Illustration of the laser light path in the shadow/fluorescence imaging.
Not shown in the plot: a long pass dichroic mirror that separates the
780 nm and 1064 nm laser light before the lowpass filter.

concentric cavity. The propagation directions of the light rays starting from this

point source are distributed in the light cone defined by the cavity mirror of the

cavity at the exit port. The solid angle of the light cone is about 0.058 π, which

is limited by the inner radius of the ring piezo between the cavity mirror and the

coupling lens. These rays are collimated by the cavity mirror and the coupling lens

in the same way that the transmitted lattice laser is collimated.

Fig. 6.1 illustrates the imaging mechanism. The fluorescence or the shadow caused

by the probe light scattered by the atoms are imaged on the camera in the same

manner. In the case of shadow imaging, I apply a probe laser beam (typically 5µs,

10Isat), which is divergent before entering the cavity in a way that it is approximately

collimated at the trap center. A 1:1 telescope after the cavity helps correct the

collimation of the fluorescence/shadow imaging light coming out from the cavity

center. Then, the fluorescence/shadow is focused on the CCD detector of the top

camera by a 138 mm camera lens. The probe light is not collimated after the cavity,

so it is not imaged sharply on the camera; it forms an approximately homogeneous

background.

The optical imaging system for obtaining fluorescence and shadow images is the

same, the difference is in the operating mode of the camera. In the case of fluorescence

imaging, the camera is not triggered and has a very long exposure time (50 ms) due
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to the low intensity of the fluorescence. In the case of shadow imaging, the camera is

triggered on when the probe pulse is on (intensity≈ 10 Isat ), and has a short exposure

time (300 µs).

6.1.1 Radiation guiding as an experimental alignment tool in Rydberg

atom spectroscopy

In the two-photon Rydberg excitation, the lower transition laser, the 780 nm laser

which drives the same 5S1/2 →5P3/2 transition as in the case of the shadow imaging,

is focused at the trapped center. I use a pair of counter-propagating 780 nm lower

transition lasers to reduce the radiation pressure caused by the 780 nm laser intensity.

The 780 nm laser beams are set through the cavity mirrors: One co-propagates with

the lattice laser input, and enters the cavity through the cavity mirror at the input

side. The other one counter-propagates with the lattice laser and enters the cavity

through the cavity mirror at the exit port. By looking directly through the cavity

mirrors with the top camera when the lattice laser is locked to a low power (≈ 3 mW),

I can easily overlap the focus of the co-propagating lower transition laser with the

elongated cold-atom cloud. The rough alignment is done as follows: first, I use

fluorescence imaging to determine the location of the trap center on the camera’s

real-time monitoring window, as shown in the screen shots in Fig. 4.2 or 4.3. Second,

I move the direction of the 780 nm laser beam, so that it overlaps the position of

the trap center from the view of the top camera. The overlap is further optimized

by maximizing the absorption of the lower transition laser: I trigger the top camera

so that the camera only sees the short pulse of the 780 nm laser light but no MOT

fluorescence, and then I tweak the direction of the 780 nm laser beam slightly such

that it transmission through the sample decreases when its frequency sweeps over the

5S1/2 →5P3/2 cycling transition. Fig. 6.2 shows screen shots of the lower transition

laser beam as its frequency sweeps over the 5S1/2 →5P3/2 transition. The overlap of
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Figure 6.2:
Lower transition laser lensing by the atoms in a shallow lattice trap. The
lower transition laser is focused in, and its waist (50 µm) is about twice
of the waist of the cavity mode (23 µm). The number is the order of the
screenshots, as the lower transition frequency sweep through the cycling
transition frequency.

the lower-transition beam with the lattice trap is optimized such that I observe the

concentric diffraction ring patterns.

Both of the lower transition lasers are brought to the experimental setup by single-

mode fibers. After the one that co-propagates with the lattice laser is optimized by

the method of radiation guiding, the counter-propagating lower-transition beam laser

is then overlapped by back-coupling it into the fiber that sends out the first lower-

transition laser beam.

6.2 Radiation guiding

6.2.1 Timing sequence

The experimental repetition rate for the shadow imaging used to probe the lattice-

compressed atom sample is 20 Hz. Most of the time during the experimental cycle,

the lattice is held at the loading power to load the MOT atoms, except at the end
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Figure 6.3:
Illustration of the timing sequence. Orange: lattice laser power. Blue:
probe pulse. t1: compression duration. t2: hold high. t3: probe pulse
delay.

of the cycle. The timing sequence at the end of the experimental cycle is shown in

Fig. 6.3. The lattice compresses the atom sample with a compression duration of

t1 = 50 µs, and then the lattice is held at high power for 70 µs. It is then finally

switched off for the observation with a probe pulse that is on-resonant with the MOT

cycling transition (5S1/2 F = 2→5P3/2F′ = 3). The probe beam is pulsed on for 5 µs

when the lattice is off, and the intensity is on the order of 10 Isat. The relatively high

probe intensity is necessary due to the very strong attenuation by the elongated cold

atom cloud. The MOT light is switched off before the lattice starts compression, and

is kept off during the probe observation.

Fig. 6.4 shows the time-delayed shadow images of a lattice-compressed 87Rb atom

sample. The lattice compresses from 2 mW to 50 mW, and the 5 µs probe pulse is

on after different delay times (t3 in Fig. 6.3). The attenuation at the trap center is

so strong that the probe light is completely extinguished there; we are not able to do

an atom density measurement from the shadow image. However, by comparing the

size of the dark disk of different time-delayed images, we can tell how much the atom

sample has spread out during the delay of the probe pulse. As shown in the figure,

the size of the dark disk is nearly the same between no delay and a 10 µs delay. As

a result, even though the lattice trap is switched off for observation, as long as the

5 µs probe beam is immediately on after the lattice is off, we assume that the atom
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Figure 6.4:
Shadow images of a lattice compressed atom sample at various probe pulse
delays. The bright background is the probe light field, which is banded
because of interference effects caused by the vacuum window or other
optics components along the beam path. The dark disk at the center
is the shadow of the lattice-compressed atom sample, and it is usually
completely saturated. 1 pixel = 2.45 µm in the object plane.

sample remains the same during the observation.

Also in Fig. 6.4, the dark disk becomes smaller after a 20 µs delay. This is likely

due to the thermal expansion of the atomic cloud in the transverse direction. The

lattice compression increases the temperature of the atoms in the lattice by a factor

of about I
I0

, where I is the final and I0 is the initial lattice laser intensity. As a

result, in Fig. 6.3, the atom temperature is increased by a factor of 50
2

= 5 after the

compression. The initial temperature of the (MOT-cooled) atoms is about 200 µK.

After the compression, the atom temperature is about 1 mK, which corresponds to a

speed of 0.3 m/s; the atoms could move outward by a distance of 3 µm every 10 µs.

6.2.2 Lensing effect

Fig. 6.5 shows the shadow images and vertical cuts of a lattice-compressed 87Rb

sample with probe laser at different detunings. A 2 mW lattice is first loaded with

MOT atoms, the loaded sample is then compressed by increasing the lattice laser

power to 40 mW in 50 µs. The probe frequency is detuned relative to the MOT

cycling transition, 5S1/2(F = 2) → 5P3/2(F′ = 3). The brightness of the images is

enhanced to make the features in the images visible. The location of the vertical cut

is indicated by the yellow markers. The cut shows pixel values relative to the probe
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background field when there is no atom sample. The trap center is indicated by the

dashed line on the plots. In the region away from the trap center, the relative pixel

values approximately cancel to zero, except in the case of a -2.4 MHz probe detuning,

where the probe is nearly on-resonance with the MOT cycling transition, leading to

absorption by the atoms outside the lattice trap.

In the following, I give a brief description of each image and its vertical cut.

• -33.9 MHz. There is a strong emission coming out from the dark disk at the

trap center, plus an inner bright rim and an outer dark rim circling the trap.

• -11.5 MHz. The dark disk becomes larger, which suggests a stronger attenuation

because of a smaller probe detuning. There is no emission from the trap center,

but we can see the inner bright rim and the outer dark rim that circle the trap.

• -2.4 MHz. The probe frequency is close enough to the 5S1/2(F = 2)→ 5P3/2(F′ =

3) transition, so it experiences a strong attenuation at the trap center, and at-

tenuation outside the trap due to the less dense non-trapped atom cloud. There

is no rim pattern circling the trap.

• 10.9 MHz. The size of the dark disk is about twice as small as for the case of

the red-detuned probe. Concentric inner bright and the outer dark rims appear

again.

• 43.0 MHz. The attenuation of the probe light is not obvious. Instead, there is

enhanced intensity at the trap center. We can observe a faint pattern consisting

of an inner bright rim and an outer dark rim.

From the images, we see two different types of lensing effects1: Center guiding of

the probe light, seen as bright emission from the trap center, and surface guiding,

1In order to see the effect as shown in Fig. 6.5, one has to carefully couple the probe light into the
cold-atom “mini-fiber”. If the probe enters the trap at a small angle other than co-propagating with
the lattice laser, the emission, both with red-detuned or blue-detuned probe, would then emerges as
a single bright spot next to the dark disk of the trap instead of forming concentric patterns.
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Figure 6.5:
Radiation guiding in a lattice-compressed 87Rb sample. The uncertainty
of the probe frequency is ±1 MHz. 1 pixel = 2.45 µm in the object plane.
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Figure 6.6: Dispersion curve, using Eq. 6.2

seen as a bright rim circling the trap. The multiple dark/bright rim patterns might

be caused by a specific diffraction behavior of the probe wavefront as it propagates

through the atom cloud.

6.3 Qualitative model

We use a two-level system to describe the lensing effect by the dense, elongated

atom cloud: 5S1/2 is the ground state, level 1, and 5P3/2 is the excited state, level 2.

The probe light drives the 5S1/2(F = 2)→ 5P3/2(F′ = 3) transition, and its intensity

is on the order of 10 Isat.

Assuming there is saturation due to the probe intensity, at steady state, the

coherence ρ̃12 is,

Re
[
ρ̃12

]
=

√
I

2Isat

2∆
Γ

1 + 4
(

∆
Γ

)2
+ I

Isat

(6.1)

Im
[
ρ̃12

]
=

√
I

2Isat

1

1 + 4
(

∆
Γ

)2
+ I

Isat

where Γ is the decay rate in MHz (6.0666MHz for 5S1/2 → 5P3/2, and ∆ is the probe

detuning in MHz. The absorption coefficient (m−1) and index of refraction (unit-less)
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Figure 6.7:
Index of refraction and the absorption in the transverse direction, using
Eq. 6.2

depend on the coherence,

n− 1 =
1

2

2nvd

ε0E0

Re
[
ρ̃12

]
(6.2)

α =
2nvdω

cε0E0

Im
[
ρ̃12

]
where d is the dipole matrix element of the transition, ω is the angular transition

frequency, and nV is the atomic number volume density. nV is cylindrically sym-

metric about the z-axis in my experiment, as discussed in Sec. 5.2. I use the ex-

perimental parameter from Fig. 5.5 to plot the dispersion relation in Fig. 6.6: trap

σ = 7.03 µm, trap length along the lattice axis L = 1400 µm, and a central volume

density nV(0, 0, 0) = 5 × 1011 cm−3. From the dispersion curve, the maximum and

minimum of n occurs at ∆
Γ

= ±1.66, or ±10 MHz. I use ∆
Γ

= ±1.66 to plot the index

of refraction and the absorption along the x-axis in Fig. 6.7.

Because of the Gaussian profile and the sign of the index of refraction, we expect a

blue-detuned probe will be diverging when passing through the atom cloud. Whereas

the red-detuned probe will be converging. However, we are not entirely certain about

the way the probe light emerges from the trap, because of the strong absorption by

the trap. To give a qualitatively description, we assume the probe light field is a

plane wave, and we plot the wavefront of the probe light after it passes through the
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trap, using the Raman-Nath approximation. I.e., we assume there is no change of

the wavefront in the transverse direction as it propagates in the elongated cold-atom

cloud, and the probe wavefront only accumulates a phase change in the direction of

propagation. The phase change is,

∆φ =
2π

λ

[
n(x)− 1

]
L (6.3)

Fig.6.8 shows the plot of the phase of the probe light wavefront and the intensity

after the probe passing though the atom cloud. 2 From the phase of the wavefront

of the probe, we expect a red-detuned probe light forms one focus along the z-axis,

whereas we expect a focal ring in the blue-detuned case. Also, because of the radius

of curvature of the wavefront, the focal length of the blue-detuned focal ring is larger

than of the red-detuned focus. We plot the intensity of the probe light after the

atom cloud, using the absorption coefficient in Eq. 6.2. For the red-detuned probe,

the calculated radius of curvature of the wavefront at z = 0 is 26 µm. We use this

distance as the focal length and plot the intensity in the imaging plane that contains

the focus. The imaging plane of the blue-detuned probe on the plot is twice as far

as that of the red-detuned. Although there is strong absorption by the atom cloud,

qualitatively, the probe light has emission coming out from the trap center in the

red-detuned case, and there is a bright rim around the trap in the blue-detuned case.

The above analysis does not explain the multiple rim pattern and the very strong

emission from the trap center. For a more complete model, one should solve the

Helmholtz equation for the probe wave propagating in the elongated cold-atom cloud.

This suggested approach is based on the observation that the elongated cold-atom

cloud is similar to a gradient-index rod whose index of refraction gradually varies in

2I use the probe wavefront emerging from the cold-atom could to plot the intensity in the image
plane. I assume that at a location x in the one-dimensional wavefront, the light rays start from this
x location and propagate in the normal direction of the wavefront, and the number of light rays is
proportional to e−α(x)L. The intensity in the image plane is plotted as a histogram of the number
of light rays that reach the bin at the corresponding x position in image plane.
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Figure 6.8:
Probe light wavefront phase and amplitude after passing the trap. (a)
red-detuned probe. (b) blue-detuned probe. The dotted line in both plot
is the amplitude of the on-resonance probe.

the radial direction. Nevertheless, the trap is not only good for making cold-atom

mini-fiber, but also good for other experimental applications, such as Rydberg EIT

[43, 44] or Rydberg polariton [45] experiments, in both cases the large aspect ratio

(≈100) and the high atom density of the trap will be great advantages.
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CHAPTER VII

Dynamic polarizability measurement

In this chapter, I discuss the experimental measurement of the dynamic polariz-

abilities of rubidium 5P3/2 in linearly-polarized 1064 nm lattices.

7.1 Introduction – Stark shift and dynamic polarizability

In the presence of an external static electric field, a neutral atom is polarized by

the field, and thus its atomic energy levels are altered. This phenomenon is known

as d.c. Stark shift. The interaction Hamiltonian of the electric field is,

ĤE = −1

2

[
α0 + α2

3J2
z − J(J + 1)

J(2J − 1)

]
E2

0 (d.c. field) (7.1)

where E = E0ẑ is the external electric field. The term inside the bracket is the

polarizability of the atomic level, with the quantum number of the total angular

momentum J . α0 is called scalar polarizability, and α2 is called tensor polarizability.

In case of an a.c. field, the interaction Hamiltonian is multiplied by 1
2

to account

for the electric field amplitude averaging (Erms = 1√
2
E0). Assuming the external

electric field is linearly-polarized along the z-axis with field amplitude E0, then the

interaction Hamiltonian is,
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ĤE = −1

4

[
α0(ω) + α2(ω)

3J2
z − J(J + 1)

J(2J − 1)

]
E2

0 (a.c. field) (7.2)

where α0(ω) and α2(ω) are now frequency-dependent a.c. polarizabilities.

In the experiment, we use 1064 nm lattice to trap rubidium atoms. The lattice

laser intensity is converted into the amplitude of electric field by,

I0 =
1

2
cε0E

2
0 (7.3)

The atomic levels that are involved in the lattice trapping are 5S1/2 and 5P3/2. The

dynamic polarizability of the ground-state rubidium 5S1/2 depends only on α0, and

α2 is zero (because J = 1
2
). For the case of 5P3/2, both α0 and α2 contribute to the

polarizability.

In the following discussion, we assume that the equilibrium of the polarization

process is fast-established when the lattice field is changing, and we neglect all the

transient effects. This means that adiabatic following applies, i.e., the electric dipole

is a well-defined function of the lattice electric field, and is always well characterized

by that field. In a linear-polarization regime, the dipole is proportional to the field

(p = αE).

The characterization of the cavity-generated optical-lattice-induced light shift of

the atomic energy levels requires the diagonalization of the full Hamiltonian in various

field strength regimes. The full Hamiltonian for the atom inside an a.c. field is

Ĥ = ĤHFS + ĤE. ĤHFS is the Hamiltonian of the hyperfine structure,

ĤHFS = AHFS Î · Ĵ +BHFS

3(Î · Ĵ)2 + 3
2
Î · Ĵ− I(I + 1)J(J + 1)

2JI(2J − 1)(2I − 1)
(7.4)

where I is the quantum number of nuclear spin, AHFS is the magnetic-dipole hyperfine

constant, and BHFS is the electric-quadrupole hyperfine constant. Their values are
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Table 7.1: Rb hyperfine structure constants for 5P3/2 [3, 4].

AHFS BHFS

Rb87 h · 84.7185(20) MHz h · 12.4965(37) MHz
Rb85 h · 25.0020(99) MHz h · 25.790(93) MHz

listed in Table 7.1. The octupole is omitted from the calculation, since its contribution

is so small that we would not be able to experimentally see the effect.

In the calculation of the matrix elements of the full Hamiltonian, we use,

Î · Ĵ = IzJz +
1

2
(Î+Ĵ− + Î−Ĵ+) (7.5)

Ĵ±|J, Jz〉 = ~
√
J(J + 1)− Jz(Jz ± 1)|J, Jz ± 1〉 (7.6)

Î±|I, Iz〉 = ~
√
I(I + 1)− Iz(Iz ± 1)|I, Iz ± 1〉 (7.7)

Although the |IJmImJ〉 basis is “bad” in the weak field regime, the computer program

LAPACK (Linear Algebra PACKage), which diagonalizes matrices regardless of the

basis, returns the eigenvalues of the full Hamiltonian. Fig. 7.1 shows the calculated

light shift of the transitions 5S1/2 →5P3/2 for the isotopes of rubidium, 85Rb and

87Rb, as a function of lattice laser intensity, which is proportional to E2
0 .

Weak field regime. When the lattice intensity is low, ĤHFS dominates, and

|F,mF 〉 (F̂ = Ĵ + Î) is the “good” basis. The light shift of 5S1/2 and 5P3/2 levels are,

∆5S = −1

4
α5SE

2
0 (7.8)

∆5P = −1

4
α0E

2
0 −

1

4
α2E

2
0

3m2
F − F (F + 1)

F (2F − 1)
(7.9)

All sub levels of the ground state 5S1/2 has the same a.c. shift. The number of 5P3/2

states is,

• 87Rb (I = 3
2
, J = 3

2
), F = 0, 1, 2, 3, total number is 1 + 3 + 5 + 7 = 16

• 85Rb (I = 5
2
, J = 3

2
), F = 1, 2, 3, 4, total number is 3 + 5 + 7 + 9 = 24
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Figure 7.1:
The a.c. Stark light shift of the transitions 5S1/2 →5P3/2 of 87Rb
(85Rb) relative to the on-resonance cycling transition 5S1/2, F =
2(3) →5P3/2, F

′ = 3(4) . The plotted energy level shift is a combi-
nation of the light shifts of these two levels. The ground-state 5S1/2

sublevels have the same a.c. shift, and the splitting here are caused by
the upper level 5P3/2. The calculation uses α5S(5S1/2) = 750 × 4πε0a3

0,
α0(5P3/2) = −800× 4πε0a3

0, and α2(5P3/2) = 500× 4πε0a3
0 as a trial num-

ber in the Hamiltonian. Although later-on with the experimental data
input, we know these number are not accurate, but qualitatively the level
splitting and crossing behavior is correct.

The levels with the same F and |mF | value are degenerate. The light shift is propor-

tional to E2
0 , so the energy levels look linearly when plotted as a function of lattice

laser intensity. As can be seen in Fig. 7.1, the levels start from four groups of different

F . Although the above equation is only “good” in the weak-field regime for all of

the sublevels, this relation is still correct in the strong field regime for the states with

the highest (F, |mF |) values. As shown in Fig. 7.1, the energy level of the states with

highest (F, |mF |) is linear in the entire field strength range. This is because in Eq. 7.4

Î · Ĵ does not couple to other levels.

Intermediate field strength. As the lattice power increases, neither ĤHFS

or ĤE dominates. The energy levels generally turn curvy and a crossing occurs. The

location where the cross happens depends on the value of the polarizabilities: α0 and
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α2 determine the significance of the field strength relative to the hyperfine structure

in the full Hamiltonian.

“Paschen-Back”, strong field regime. When the lattice intensity is high

and ĤE dominates, |JImJmI〉 becomes the “good” basis, and the light shift is de-

scribed by Eq. 7.2. The ground state 5S1/2 has no a.c.-split sublevels, while the

number of 5P3/2 sublevels is, again,

• 87Rb, J = 3
2
, I = 3

2
, number of levels = (2× 3

2
+ 1)(2× 3

2
+ 1) = 4× 4 = 16

• 85Rb, J = 3
2
, I = 5

2
, number of levels = (2× 3

2
+ 1)(2× 5

2
+ 1) = 4× 6 = 24

The energy levels become linear functions of E2
0 again on the plot, and they separate

into two groups based on their |mJ | value. Since α2 > 0, the group with higher

energy includes levels with |mJ | = 1
2
, while the group with lower energy has |mJ | =

3
2
. This is because the J2

z in ĤE determines the difference in energy between each

subgroups. Inside each subgroup, the energy levels splitting is determined by the

hyperfine perturbation. For the case of 87Rb, I = 3
2

and J = 3
2

• |mJ | = 3
2
. 〈JJz|Î+Ĵ−+ Î−Ĵ+|JJz〉 = 0, all the off-diagonal terms vanishes in Î · Ĵ

and (Î · Ĵ)2, and the energy levels splitting is determined by the diagonal terms,

which are proportional to IzJz = ±9
4

or ±3
4
. The levels appear nearly equally

spaced on the plot, due to the contribution from AHFS Î · Ĵ, the magnetic dipole.

The small deviation from an exact equal spacing is due to the perturbation of

electric quadruple term, whose strength is a few percent of that of the magnetic

dipole term.

• |mJ | = 1
2
. 〈JJz|Î+Ĵ− + Î−Ĵ+|JJz〉 are not all vanishing. Î · Ĵ has off-diagonal

terms. The energy-levels splittings are not as straightforward as in the case of

|mJ | = 3
2
, but can be numerically computed, of course.

The values of α0 and α2 are the same for 85Rb and 87Rb. For the case of 85Rb,

I = 5
2

and J = 3
2
. The energy levels also separate into two subgroups. The group is
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higher in energy has |mJ | = 1
2
, and the one lower in energy has |mJ | = 3

2
. Similar to

the case of 87Rb, the group of |mJ | = 3
2

appears nearly equally spaced on the plot.

(IzJz =±15
4

, ±9
4
, or ±3

4
.)

The theoretical calculation of a.c. Stark shift for the rubidium cycling transition

is not complicated once the dynamic polarizability values of 5S1/2 and 5P3/2 levels are

given. The real difficulty is in the theoretical calculation of the dynamic polarizability.

The theoretical calculation of the rubidium in 5S1/2 dynamic polarizability has less

uncertainty, a recently calculated value is 687.3(5)×4πε0a
3
0[40, 46, 47]; however, the

available experimental measurement concludes a value at 769±62 × 4πε0a
3
0[48]. The

calculation of the rubidium 5P3/2 dynamic polarizability is even more complicated

– in addition to the contribution of the p − s transitions, the theorists also have to

include the p − d transition matrix elements in their calculation. The experimental

determination of the dynamic polarizability of both of 5S1/2 and 5P3/2 levels is not

straight-forward, either, mostly due to the challenges in the calibration of electric

field experienced by the cold atoms at the trapping region. For the measurement

of the 5P3/2 polarizability, an additional challenge is that the field strength in most

of the experiments is in the weak-field regime, where the levels of the 5P3/2 are not

easily resolvable. So far the values of the rubidium 5P3/2 dynamic polarizabilities α0

and α2 at 1064 nm are not well-determined, despite the fact that the 1064 nm dipole

trap involving rubidium 5S1/2 →5P3/2 transition is widely used.

I note that there also exists an α1, vector polarizability, but it only leads to measur-

able effects in field with a circular component, which is not the case in my experiment.

In my experiment, the lattice intensity is very high such that the lattice-induced

light shift is in the Paschen-Back regime. With such an outstanding light shift, the

sublevels are easily resolvable, and they are also linearly related to E2
0 . In the following

section, we use the spectral lines to obtain experimental values of α0 and α2. The

beauty of the spectroscopy method presented here is that the determination of α0
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Figure 7.2:
Relevant levels of a two-photon Rydberg excitation. Dotted lines are
unshifted energy levels, while the solid lines are lattice-shifted levels. The
gaps between levels are not to scale. (a) No light-shift, on-resonance two-
photon excitation. (b)(c) With light shift in a 1064 nm lattice. The 74S
state has a constant light shift along z-axis.

and α2 turns out to be insensitive to the calibration of lattice intensity.

7.2 Two-photon excitation in deep optical lattices: numeri-

cal simulation

The following discussion is specific for the experimental measurement of polariz-

abilities of a 87Rb atom sample, but the general rules also apply to the case of 85Rb;

we choose to use 87Rb, because the number of mj sublevels is less, and the residual

hyperfine splitting in the Paschen-Back regime is larger than that of 85Rb.

7.2.1 “Magic” Rydberg state

In a 1064 nm lattice, both 5S1/2 and 5P3/2 have local response to the lattice light

field, i.e. their light shifts are given by,

− 1

4
α|E0(R)|2 (7.10)
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where E0(R) is the lattice field amplitude at the center-of-mass location of the atom.

Rydberg atoms have a non-local response to the field, and the light shift is given by,

Vad(R) = −1

4
αe

∫
|E0(R + r)|2|ψ(r)|2d3r (7.11)

where αe = −545 × 4πε0a
3
0, calculated from the free-electron ponderomotive energy.

This means that the free-electron response is averaged over the atom, using |ψ(r)|2 as

a weighting factor. The averaging in z-direction is important, because in this direction

the size of a Rydberg atom approximately equals the lattice period. The averaging in

ρ direction is not important, because the cavity mode waist w0 is much greater than

the size of a Rydberg atom. For a few state, Vad only depends on ρ and not on z. For

rubidium in 1064 nm lattice, one such “magic” state is 74S1/2 state. For the magic

states,

Vad(ρ) = −1

4

αe
2
E2

0,M(ρ) = −1

4
× (−272.5)× E2

0,M(ρ). (7.12)

Where E2
0,M is the field amplitude at a distance ρ from the lattice axis.

We utilize two-photon excitation spectroscopy of the magic Rydberg state in

1064 nm lattices to measure the dynamic polarizability. At low filed, the lower

transition is 5S1/2(F=2) →5P3/2(F ′ = 3) (780 nm, red), and the upper transition

is 5P3/2(F ′ = 3) →74S magic state (480 nm, blue). As shown in see Fig. 7.2, the

constant light shift of the 74S Rydberg magic state along z-axis simplifies the spec-

troscopic determination of the dynamic polarizabilities and the numerical simulation

for model-fitting the data.

The spectra are taken under a fixed lattice power and a fixed 5S1/2 →5P3/2

detuning (∆red). The detected lattice-shifted signal is recorded as a function of

5P3/2 →74S transition detuning compared to the off-resonance unshifted MOT atom

signal (∆blue). Fig. 7.3(b) shows an illustration of the relevant detunings.

The energy levels in Fig. 7.1 do not immediately match the experimental data.
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To do the model fitting and extract the values of dynamic polarizability from the ex-

perimental data, we simulate the spectral lines based on the energy level calculation.

The simulation has two major steps: first, seeking the two-photon excitation reso-

nances, and second, accounting for the center-of-mass thermal motion of the atoms

in the optical lattice which may cause the spectral line broadening. Doppler shifts

are negligible and are not included in the model.

7.2.2 Two-photon excitation resonances

The diagonalization of the full Hamiltonian Ĥ = ĤHFS + ĤE gives energy level

plots as in Fig. 7.1. Inside the deep optical lattice trap, the atoms see a dramatic

spatial variation of lattice laser intensity. The spatial variation includes the standing

wave patterns along the lattice axis, and the exponential decrease of intensity due to

the waist (23 µm) of the laser beam (Fig. 4.1 shows the geometry). As a result, in

a single spectroscopic scan, there are usually several on-resonant excitation signals

from atoms located at different regions of different lattice intensities. The first step

of reconstructing the experimental data is thus finding all the on-resonant excitation

spots inside the deep optical lattice.

In the energy level plot, for each 5S1/2 →5P3/2 detuning (∆red), we find the

lattice intensities at which the 5S1/2 →5P3/2 transition is on-resonance to one of the

light-shifted 5P3/2 sublevels. The 5S1/2 sub levels all have the same light shift. Red

circles in Fig. 7.3(a) mark such resonances. From each lattice intensity marked, we

calculate the upper transition detuning (∆blue) that is on resonance with lattice-

shifted 5P3/2 →74S transition. ∆blue is defined as the frequency shift of the 480 nm

in a spectrum, measured from the center of the narrow, off-resonance signal of MOT

atoms, to the center of the broadened, on-resonance signal of atoms in the lattice.
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Figure 7.3:
Illustration of the resonance-seeking. (a) The open circles mark the reso-
nances. When the lower-transition detuning relative to the cycling transi-
tion is ∆red, the energy levels are on resonance with the lower transition
at different lattice intensities. (b) Top: sketch of a two-photon excitation
spectrum with fixed lower transition detuning ∆red. Bottom: energy
levels. Transition frequencies: R1 is the on-resonance cycling transition
(5S1/2 →5P3/2), and B1 is the on-resonance upper transition frequency.
R2 =R3 =R1 + ∆red= R1 + ∆5S + ∆5P. ∆blue= B3−B2 = ∆74S + ∆5S

See Fig. 7.3(b) for an illustration. We calculate ∆blue by,

∆blue = B3 − B2 (7.13)

= ∆74S + ∆5S

= ∆74S + ∆red−∆5P

where ∆74S = −1
4
α74SE

2
0 and α74S = −1

2
545 × 4πε0a

3
0, calculated from the free-

electron ponderomotive shift [19], averaged over one lattice period along the lattice

axis.

Repeating the same resonance-seeking procedure at different values of ∆red, we

find all the resonance spots in a lattice with an on-axis intensity maximum I0. Fig. 7.4

shows a plot of all the resonances. The y-axis shows ∆red in MHz, and the x-axis

shows the ∆blue in MHz. The resonances for each sublevels disappear at the same

101



Figure 7.4:
Calculated two-photon excitation spectra for the 74S magic state of 87Rb
in a 1064 nm lattice. The plot shows discrete resonances spots.

maximum ∆blue≈ 1440 MHz. This is because the upper limit is set by ∆74S + ∆5S,

regardless of the ∆red of the different sublevels. The resonances separate into two

groups. The group with larger ∆red has |mj| = 1
2
, while the one lower in ∆red has

|mj| = 3
2
. The slopes of these two groups provide the information on α0 and α2. See

Sec. 7.3.3 for details, which we exploit to experimentally determine their values.

7.2.3 Spectral line broadening

The calculation in Sec. 7.2.2 shows the spectral features, qualitatively. However,

this calculation only finds the resonance points and neglects all the possible line

broadening effects. To give a better model of the experimental data, we have to

include both the off-resonance excitation and line broadening from various sources.

In the end result, we plot simulated ∆blue-∆red spectra as a 301×301 pixelated

picture. The value of each pixel represents the count rate as a function of both

detunings (∆blue,∆red). Fig. 7.5 shows a typical plot of such pixelated picture.

In the simulation, the lattice is divided into concentric shells about the lattice
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axis. The lattice intensity of each shell at a radial distance ρ from the lattice axis

is I(ρ) = I0 exp[−2ρ2

w2
0

]. The count rate of each pixel in the picture is first calculated

inside an intensity shell. The calculation is repeated radially outward for each shell,

and the count rates from different shells are normalized with a weighting factor which

is proportional to the volume of the shell and the lower-transition intensity in the

shell. (The lower transition 780 nm laser co-propagates with the lattice laser in the

experiment.) The pixel values on the picture are accumulated as the shell radius is

varied.

Inside each lattice intensity shell, the computer program scans the energy level

plot in Fig. 7.1 with ∆red steps corresponding to the pixel size in the final picture. At

each ∆red step, the corresponding values of ∆blue are calculated for lattice intensites

ranging from here to I(ρ). This full range of lattice intensity coverage is due to the

fact that, inside each shell, the lattice intensity has periodic standing wave patterns

Figure 7.5:
Calculated two-photon excitation spectra for 74S magic state in 1064 nm
lattice. The plot includes the effects of off-resonant excitation. The slope
of the spectral lines are insensitive to the lattice power, as seen in the
plot. Note that we have overlaid the results obtained for three different
peak lattice intensities in the same plot).
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along the lattice axis. The intensity varies sinusoidally as a function of z, from zero

to the maximum I(ρ). As the program steps through all ∆blue values for the entire

range of lattice intensity instead of just looking for discrete resonant spots, both on-

resonantly and off-resonantly excited 5P intermediate-level populations contribute to

the final 74S signal. The count rate for ∆red and a intensity I = I(ρ, z) is,

signal = Boltzmann factor × saturation parameter × z-weighting factor.

In the following I explain all factors.

The Boltzmann factor is calculated as,

exp
[−1

4
E2

0α5S + 1
4
E(ρ, z)2α5S

kBT

]
(7.14)

E0 =
√

2I0
cε0

is the maximum of the field amplitude inside the entire lattice trap. E(ρ, z)

is the field amplitude at the atom’s location (ρ, z). The Boltzmann factor accounts

for the line broadening due to the thermal atom number density distribution inside

the 5S lattice potential wells. For the temperature, T , we typically assume several

milli-Kelvin.

The saturation parameter is calculated by,

S =
1

2

s

1 + s + 4( ∆
6MHz

)2
(7.15)

with ∆ = (on-resonance lattice-shifted transition frequency of 5S1/2 →5P3/2)−∆red.

s = Ired
Isat

exp
[−2ρ2

w2
r

]
. w2

r is the beam waist of the lower transition laser, which co-

propagates with the lattice laser. The value of S properly weights the count rate

contribution from on-resonance and off-resonance excitations. For the case of on-

resonant excitation, ∆ = 0, the lower transition frequency matches the lattice-shifted

5S1/2 →5P3/2 transition, and the signal contribution is the largest. For the case of

off-resonant excitation, there is still population excited to 5P state due to saturation

broadening. In both cases, the upper transition laser detunig is calculated as the
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frequency detuning needed to bring atoms from the lattice-shifted intermediate 5P3/2

state to the Rydberg state.

The z-weighting parameter is proportional to the “volume” inside the shell with

the lattice intensity I(ρ, z). The intensity is mapped into z-coordinate by an inverse

cosine relation in the calculation of the volume. This z-weighting factor accounts for

the sinusoidal intensity variation along z-axis inside the cylindrical shell.

Although the model is relatively simple, the final ∆red-∆blue picture strongly

agrees with the spectral features in the experimental data, as presented in Fig. 7.6.

The calculation also shows that the spectral features are insensitive to the lattice

power: the spectral lines on the ∆red-∆blue plot separate into two groups, and the

slopes of the spectral lines and the location of the crossing on the plot is independent

of the lattice power. The lattice power and the peak lattice intensity do make a

difference in the spectral signal strength distribution on the ∆red-∆blue plot. With

lower lattice intensity, the signal at lower ∆red-∆blue is stronger, whereas the signal

strength for a higher lattice intensity tends to concentrate in the region with larger

∆blue. This behavior is due to the Boltzmann factor. There is always a sharp cutoff

at a certain ∆blue where the spectral lines end. The location of this cutoff depends

on the peak lattice laser intensity. In principle, by matching the location of the cutoff

and where the actual experimental spectral lines ends, we can calibrate the lattice

intensity in the atom trapping region.

7.3 Polarizability measurement

7.3.1 Methods

We take several two-photon excitation spectra at a fixed lattice power with dif-

ferent ∆red. The count rate of each spectroscopic scan is recorded as a function of

∆blue, and then the spectra are plotted together in a waterfall plot. On the water-
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Figure 7.6:
Experimental spectra overlaid over a simulated contour plot. Experiment:
lattice power 20 mW, excitation pulse duration 2 µs. Simulation: lattice
intensity 1.8×1011W/cm2

fall plot, the spectra at different ∆red are offset by plotting count rate×100 + ∆red.

(The factor 100 simply is a convenient scaling factor). Fig. 7.6 shows the scans at

I0 = 20 mW. The uncertainty of the ∆red is less than 2%, and ∆blue is less than 2%.

The uncertainty of lattice power calibration is about 8%; however, the lattice power

does not significantly affect the determination of the α0 and α2, because the slope of

the spectral features are independent of the maximum lattice intensity.

The data taking rate of the two-photon excitation spectroscopy is 100 Hz. Each

point of the spectra is an average of 50 shots. During the first 9.5 ms in an experimen-

tal cycle, the lattice power is kept as low as 2 mW(loading power) to maximize the

loading of the lattice with MOT atoms. The MOT laser is switched off at some point
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in the experimental cycle, and then the lattice starts compressing the atom sample.

The compression is achieved by increasing the lattice power in 30 µs to 20 mW. The

increase of the lattice power follows a smooth sine-rising curve. The lattice power is

held constantly high while the Rydberg excitation pulses are on. After the excitation,

the lattice power is switched back to the loading power. The 74S Rydberg atoms get

field-ionized and the positive ions are detected by a MCP detector. Details of the

lattice compression can be found in the previous Chapter V.

7.3.2 Spectral line shape

In this experiment, the two-photon excitation spectral-line shapes do not follow

a common Lorentzian or Gaussian line shape, because the magnitude of the lattice-

induced light shift dramatically varies in the atom trapping region. The following

is a qualitatively explanation: along the lattice axis, the z-axis, the lattice laser

intensity sinusoidally varies with a periodicity of λ
2

=532 nm. At the position of

nodes, i.e. z = ±λ
2
,±3λ

2
, · · · , the lattice intensity cancels inside the cavity. In the

transverse direction, i.e., the x- and y-axes, the lattice intensity follows a Gaussian

profile I(x) = I0 exp(−2x2

w2
0

) with a beam waist of 23 µm. On any plane that is contains

the lattice axis, the lattice intensity distribution can be described by “equal intensity

ellipses”, as shown in Fig. 7.7(a). At the origin, the lattice laser intensity is the

maximal intensity, I0. If we draw an equal-intensity line for intensity I1, I1 < I0, at a

distance away from the origin, the shape of the loop mimics an ellipse because of the

different dependence of I on ρ =
√
x2 + y2 and z. the asymmetric between the z-axis

and transverse direction. If we draw a line for another, lower intensity, I2, I2 < I1,

which is further away from the origin, the “eccentricity” of the ellipse will increase,

since in the radial direction the lattice power decreases slower than in the z-direction.

The number of atoms that see a specific intensity I is proportional to the volume of

the elliptical shell which is at that intensity, and the corresponding Boltzmann factor.
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Figure 7.7:
(a) “Ellipses” of equal lattice laser intensity. Intensity: I1 > I2, eccentric-
ity: ε2 > ε1. (b) Light shift of the magic Rydberg state. (c) triangular
line shape: δ is due to the laser linewidth, and L is due to the lattice
intensity variation in space.

The atoms in the same elliptical shell see the same lattice intensity, so they all

have the same lower transition detunings and the same Boltzmann factor. However,

the atoms on the same ellipse experience different lattice induced light shift for the

74S Rydberg magic state. The 74S magic state has a constant light shift along the

z-axis without any z-dependent modulation, and the magnitude of that constant light

shift only depends on the amplitude of the lattice intensity, I(ρ, z = 0) = I0 exp(−2ρ2

ω2
0

)

. The atoms with the same distance from the z-axis always see the same light shift

of the 74S state. As a result, on the same ellipse, there are two extreme cases: atoms

at the major axis, point A, see the minimal light shift of the 74S, while the atoms

at the minor axis, point B, see the maximal light shift of the 74S (see Fig. 7.7(a)).

Also, at point A, the signal strength is at a maximum because the volume of the

corresponding region is the largest, while at point B the signal strength is a minimum.

The variation of the signal strength versus the 74S light shift causes the triangular

spectral line shape with a tail on the high frequency side.

As shown in Fig. 7.7(b), the upper transition detunings on a ellipse varies by a

frequency range of L. The maximal L is determined by the lower transition detuning,

because the ∆5S + ∆5P light shift has to approximately equal ∆red so that one

of the light-shifted intermediate 5P3/2 levels is populated. The resonance occurs at
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a certain intensity Ires. The 74S light shift along the equal-intensity “ellipse” for

Ires then varies between −1
4
α74S

2
cε0
I0 at point B and −1

4
α74S

2
cε0
Ires at point A (see

Fig. 7.7). The frequency range L therefore is,

L = −1

4
α74S

2

cε0

[
I0 − Ires

]
(7.16)

This finding accords with the observation that with smaller lower transition detunings

∆red the lattice spectral lines become wider, more asymmetric and triangular. For

each lattice spectral line, we use the position of the maximal value as the primary

marker for the spectral line. According to Fig. 7.7 and the explanation provided, the

markers correspond to the A-locations on equal-intensity “ellipse”.

7.3.3 Experimental values of α0 and α2

On the waterfall plot of the experimental spectra, the x and y axis are plotted as:

y = ∆red (7.17)

= ∆5S5P

=
1

4
(α5S − α5P)E2

0

x = ∆blue (7.18)

= ∆74S + ∆5S5P−∆5P

= ∆5S5P +
1

4
(α5P − α74S)E2

0

= y
(

1 +
α5P − α74S

α5S − α5P

)
= y

α5S − α74S

α5S − α5P
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So the slope of the levels are,

dy

dx
=
α5S − α5P

α5S − α74S

(7.19)

There are two spectral lines that are linear in all field regimes and that are passing

through the origin, as represented by the dashed lines in Fig. 7.6. They are the

highest energy levels in each subgroup of |mj| = 1
2

and |mj| = 3
2
, and their dynamic

polarizabilities are calculated by:

α5P(|mj| =
1

2
) = α0 + α2

3× (1
2
)2 − 3

2
(3

2
+ 1)

3
2
(2× 3

2
− 1)

= α0 − α2 (7.20)

α5P(|mj| =
3

2
) = α0 + α2

3× (3
2
)2 − 3

2
(3

2
+ 1)

3
2
(2× 3

2
− 1)

= α0 + α2 (7.21)

So their slopes are:

dy

dx

∣∣∣∣∣
|mj |= 1

2

=
α5S − (α0 − α2)

α5S − α74S

(7.22)

dy

dx

∣∣∣∣∣
|mj |= 3

2

=
α5S − (α0 + α2)

α5S − α74S

(7.23)

From the differential slope and average slope, we get,

dy

dx

∣∣∣∣∣
|mj |= 1

2

− dy

dx

∣∣∣∣∣
|mj |= 3

2

=
2α2

α5S − α74S

(7.24)

1

2

(
dy

dx

∣∣∣∣∣
|mj |= 1

2

+
dy

dx

∣∣∣∣∣
|mj |= 3

2

)
=

α5S − α0

α5S − α74S

(7.25)

The experimental slope is determined by linear fitting of the centers of the peaks.

1 The slopes in Fig. 7.6 are 2.43 for the level with |mj| = 1
2

and 1.32 for the level

1We set the y-intercept to zero for the linear fitting of the |mj | = 3
2 level, because this level is

passing through the origin. For the case of |mj | = 1
2 , we determine both the slope and the intercept

by the linear fitting, because the |mj | = 1
2 level does have a small, negative intercept. This is

because in the weak field regime, this level maps to |F = 3,mF = 0〉, and thus α5P = α0 − 4
5α2 (in

weak fields). If we use α5P = α0 − α2 of the strong field regime and linearly fit this level, we will
obtain a line with ≈-30 MHz y-intercept in our calculation when the lattice intensity maximum is
1.8× 1011W/m2.
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with |mj| = 3
2
. Since the α5S and α74S are both well-known, from the two slopes,

we can immediately calculate the value of α0 and α2. With α5S = 687.3 × 4πε0 and

α74S = −272.5×4πε0a
3
0, we calculate α0 = −1112.1×4πε0a

3
0 and α2 = 534.9×4πε0a

3
0,

respectively. Table. 7.2 shows the summary of the calculation.

The uncertainty listed in Table 7.2 is from error of the linear fitting, which is less

than 1%. The other sources of uncertainty are the calibration of the ∆blue and ∆red,

both are less than 2%. Overall, the uncertainty is small, and the values of α0 and α0

are reasonably close to the recent values from theoretical calculation.

The above analysis is our first experimental determination of α0 and α0, which

demonstrates the method of determining the experimental value of α0 and α0 with

two-photon spectroscopy of magic Rydberg states. To our best knowledge, there is

no such experimental determination of the α0 and α0 of rubidium 5P3/2 in 1064 nm

lattice light field in the literature.

Table 7.2: Work sheet of Fig. 7.6
value error reference

waterfall plot
slope, |mj| = 3

2
1.32 2.75×10−3

slope, |mj| = 1
2

2.43 1.65×10−2

differential 1.11 1.67×10−2

average 1.87 8.34×10−3

dynamic polarizabilities from theoretical calculations in atomic unit
α5S 687.3 0.5 Table III of [40]
α74S -272.5 0.5 [19]. The error is a conservative estimate.

Experimental dynamic polarizabilities in atomic unit
α0 -1112.1 8.1 theoretical -1120, Fig.2 of [40]
α2 534.9 4.0 theoretical 555, Fig.2 of [40]
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CHAPTER VIII

Spectroscopy of hydrogenic Rydberg states

My experiment was originally designed for the study of the hydrogenic Rydberg

states in 1064 nm optical lattices, which remains one of the long-term goals of the

project. In this chapter, I give a brief review of the theoretical and experimental work

done by the group and summarize the experimental progress made to date.

8.1 Ponderomotive optical lattices

The ponderomotive optical lattice (POL) trap for Rydberg atoms was proposed in

2000 by the group [19]. The experimantal demonstration of POL in the group can be

found in references [20, 21]. Similar to conventional optical-lattice traps for ground-

state atoms, POL utilizes the periodic potentials of a standing wave produced by

counter-propagating laser beams to trap Rydberg atoms. The name “ponderomotive”

comes from the pondermotive force experienced by the quasi-free Rydberg electron

inside the rapidly oscillating light field. The quasi-free Rydberg electron is trapped

by the ponderomotive force in lattice intensity minima. The entire Rydberg atom is

then trapped in intensity minima because of the weak Coulomb binding between the

atom core and the Rydberg electron.

There are two major differences between ponderomotive optical lattices and con-

ventional optical lattices. First, Rydberg atoms are thousands of times larger than
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Figure 8.1:
Coordinates and time scales of a Rydberg atom in an optical lattice.
(Figure adapted from reference [49].)

ground-state atoms. Ground-state atoms are approximately point-like inside an opti-

cal lattice. In contrast, the lattice potential seen by a Rydberg atom is the average of

the free-electron ponderomotive potential over the large spatial extent of the Rydberg

wave function, which is comparable to the dimension of the lattice period. Second,

the number of the degenerate high angular momentum states in Rydberg atoms is

large, and the adiabatic potentials of a Rydberg atom inside an optical lattice become

mixed as the principal quantum number n increases.

The motion of a Rydberg atom inside an optical lattice can be described by three

coordinates: the center of mass coordinate R, the position of the Rydberg electron

relative to the core r, and the quiver motion of the Rydberg electron ρ, as shown in

Fig. 8.1. The fastest motion is the quiver motion of the Rydberg electron, the relative

motion is the second fastest, and the center of mass is the slowest. The times scales of

each motion differs from others by a factor of about 1000. Under this condition, the

adiabatic trapping potential experienced by the Rydberg atom inside a optical lattice

can be calculated by applying the Born-Oppenheimer approximation. The adiabatic

trapping potential resulting from the Born-Oppenheimer approximation is a spacial

average of free-electron ponderomotive energy weighted by the Rydberg electron wave
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function,

Vad(R) =

∫
d3rVP(R + r)|ψ(r)|2 (8.1)

where VP is the free-electron ponderomotive energy,

VP =
e2E2

0

4meω2
(8.2)

E0 is the single-beam field amplitude, and ω is the angular frequency of the field.

Fig. 8.2 shows a plot of the adiabatic potentials and calculated two-photon excita-

tion spectra, with full free-electron POL shift of 1 GHz. The binding energy is plotted

in wavenumbers, 1 wavenumber in cm−1 = 30 GHz. The following is a discussion of

the plot.

(a) Quantum defect. The plot shows all Rydberg states near the principal

quantum number n=66, and we refer 66 H to as the “hydrogenic” manifold, which

includes the states with high angular momentum quantum number and negligible

quantum defect. The binding energy of a Rydberg state is [5],

Enl =
−Ryd

[n∗]2
=
−Ryd

[n− δl]2
(8.3)

where Ryd is the Rydberg constant in wavenumbers1, n∗ = n − δl is the effective

principal quantum number and δ is the quantum defect. For rubidium Rydberg

atoms, δs = 3.13, δp = 2.65, δd = 1.34, δf = 0.02, and δl ' 0.00, for l > 3. Because

of the value of the quantum defect, the energy level appears in the following order:

(n+2)P, (n+1)D, (n+3)S, nF, nH (top-down).

(b) “Spaghetti plot”, zoom-in of 66 H. Due to the Rydberg electron wave-

function averaging over the lattice potential wells, the Rydberg atom in a deep

1064 nm lattice sees a light shift that is not linearly related to the sinusoidal standing-

1R∞ = 10973731.568539(55) m−1, CODATA
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wave pattern of the lattice intensity modulation. In the case of 66H, as shown in the

plot (b), the size of the Rydberg atom is about equal to the lattice potential well

periodicity. The spectral features of 66H hydrogenic states are the several strong

rotor-state-like spectral lines around the lattice intensity maximum (z = 0) and min-

imum (z = ±λ
2
). These state mimic the rotor states, because their energy level

separations are not evenly spaced but become larger and larger.

(c) Calculated excitation spectra. Due to the mixing with low angular mo-

mentum states (S and D state), the large light shift allows us to selectively excite

the atoms from 5P3/2 intermediate state to the lattice-mixed states in (b). Electric-

dipole selection rule do not apply, because the lattice-mixed states all carry significant

S and D character. An immediate experimental application would be to use the large

light shift to prepare high angular momentum states. A typical preparation sequence

would be: (1) Perform a two-photon excitation in the presence of 1064 nm light

field and excite the atoms to the rotor states in Fig. 8.2(b). (2) Switch the lattice

light off (one might consider both adiabatic of diabatic cases). The atoms excited to

the lattice-mixed hydrogenic states will evolve into field-free high-angular-momentum

hydrogenic states.

8.2 Experimental progress

The high 1064 nm laser intensity required for the spectroscopic study of hydrogenic

Rydberg states is achieved by the near-concentric cavity setup. The cavity-generated

deep lattice is loaded with atoms by lattice adiabatic compression, which is discussed

in Chapter V. The general spectroscopic procedure for the lattice-shifted hydrogenic

states has two steps: First, calibrate the lower transition laser such that it is on-

resonant to the lattice-shifted 5S1/2 → 5P3/2 transition. Details of the calibration

procedure is given in Appendix A. Second, scan the upper transition laser from the

nearest lattice-shifted Rydberg (n+3)S lines to the region where the lattice-shifted
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nH hydrogenic state should be. Fig. 8.3 shows an example of the relative spectral-line

positions. The location of the lattice-shifted 66F and 66H is about 2.4 GHz above the

lattice-shifted 69S line, and the hydrogenic manifolds spread over a spectral range of

about 1 GHz. The spectroscopic study of hydrogenic states in 1064 nm lattice can

be done with both 87Rb and 85Rb isotopes.

Fig. 8.4 shows a spectroscopic scan of a 85Rb lattice-compressed sample in the

region where the lattice-mixed hydrogenic states should be. The spectrum shows

signals that occur at the location where the lattice-shifted 66H hydrogenic states

should be. In this scan, the lower transition detuning is locked to 2220 MHz, which

drives the transition from the upper 5S1/2 hyperfine level to the intermediate state

5P3/2, |mj| = 1
2
. I scan the upper transition laser frequency with the step motor over

the target region to get this spectrum. The experimental repetition rate is 100 Hz, and

each point on the spectrum is an average of 50 shots. The lattice power is increased

from 2 mW to 25 mW in the experimental cycle, and the compression duration is

30 µs. I focus a pair of counter-propogating lower transition laser beams along the

lattice axis, in order to balance the radiation pressure caused by the lower transition

laser, whose intensity is about 100 Isat. The upper transition laser is also focused at

Figure 8.3:
Relative spectral-line positions near the 66H in GHz, with full POL shift
of 1 GHz.
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the trap center, but enters at an angle of 55◦relative to the lattice axis. The intensity

of the upper transition laser at the focus is about 6 × 106 mW/cm2. Both Rydberg

excitation lasers are pulse on for 40 µs when the lattice is held at high power. The

field-ionization ramp is on after the excitation, and the lattice returns to the loading

power 14 µs after the ionization field is on.

At 0 MHz on the spectra, there is an off-resonantly excited 69 S MOT-atom

signal from the lower 5S1/2 hyperfine level. This level is about 3 GHz below the

upper 5S1/2 hyperfine level, so it appears at the low frequency side of the target

region of the lattice-shifted hydrogenic states; I use this 69 S lower level line as a

convenient frequency marker. The signal-to-noise ratio of the lattice-shifted signals is

low, so I cannot conclude that the signal is indeed from the hydrogenic state mixed

by the 1064 nm lattice. Also, there is no clear “wiggle” pattern on the spectrum,

which would match the calculated spectral features of the rotor states in Fig. 8.2.

The low signal-to noise-ratio is not unexpected. The count rate of the lattice-

mixed hydrogenic states is very low – for the case of 66H in a 1 GHz deep POL,

the count rate of 66F lines is calculated to be about 5% of the nearest lattice-shifted

69S line, and the strength of rotor states of the hydrogenic manifolds is less than

Figure 8.4:
Experimental scan that shows possible, but not certain, signal from the
lattice-shifted hydrogenic states.
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5%. In future attempts to search for the hydrogenic states in a 1064 nm lattice, we

should try to use a higher lattice power to acquire stronger lattice light shift; in that

case we will get a stronger mixing of low angular momentum into the hydrogenic

manifold, and thus a higher count rate. Also, we should use the highest sub-level of

5P3/2, |mj| = 3
2

as the intermediate launch state. As Fig. 7.5 shows, the two-photon

Rydberg excitation through this intermediate state results in a narrower linewidth

and a higher count rate than excitation from the highest level of 5P3/2, |mj| = 1
2
,

which is what I used for taking the spectrum in Fig. 8.4.
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CHAPTER IX

Summary and future works

At the point when I took over this work, we had most of the vacuum compo-

nents machined or purchased. I continued testing and improving the designing of the

cavity components, and I finalized the cavity fabrication so that it became ready for

operation in a vacuum environment. In the meantime, I built the entire laser-cooling

experimental apparatus for this cavity experiment. My contribution to the group is

realizing this near-concentric cavity experimental setup and performing an initial set

of experiments with the cavity-generated optical lattice. They have been described

in detail in this thesis. My thesis also includes several chapters on the technical re-

alization of the near-concentric cavity lattice; those chapters will serve as a reference

for future graduate students.

In addition to cavity QED [50] experiments utilizing high-finesse cavities, there

are many recent efforts exploring various applications of in-vaccum cavities, such as

cavity-enhanced cold-atom memory [51], low-finesse cavities for atom interferometry

[52], or multimode cavities for BEC experiments [53]. A near-concentric cavity has

also been used for single-atom detection [54]. As far as we know, our near-concentric

cavity is a unique experimental tool for optical-lattice experiments, in which an ex-

tremely deep optical lattice adiabatically compresses the atom sample and generates

enormous light shifts.
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As a summary of this thesis, here are several ideas for the future work.

• In the near future, we will continue to spectroscopically explore the hydrogenic

Rydberg states.

• The spectroscopy of Rydberg molecules [55, 56] is another experiment that

could possibly be demonstrated in the near future. The high atomic volume

density in lattice potential wells with periodicity of 532 nm, along with the

fast experimental repetition rate, would solve some difficulties experienced by

previous Rydberg-molecule experiments in the group.

• We could also measure the vector polarizability α1 of 5P3/2 [40] in a circularly-

polarized lattice light field.

• The parallel, elongated cold-atom channels in the Hermite-Gaussian cavity

modes offer a platform for experiments using Rydberg blockade [11–13], Ry-

dberg EIT [43, 44], and Rydberg polaritons [45]. The Rydberg EIT could pos-

sibly be demonstrated in the near future, since our group already has sufficient

experience with Rydberg EIT in a room-temperature vapor cell.

.

121



APPENDIX

122



APPENDIX A

Lower-transition laser frequency calibration

To excite the ground-state atoms to the Rydberg state in the presence of lattice

light field, the lower-transition laser frequency is locked so that the laser on-resonantly

drives a component of the lattice-shifted 5S1/2 →5P3/2 transition, which is the lower

transition. The lattice-induced light shift by a deep optical lattice is usually several

GHz. The calibration of the lower transition detuning relative to the lattice power is

done by the spectroscopy of the Rydberg S line. In this Appendix, I use the trapped

atoms from the 5P3/2, |mj| = 1
2

intermediate state as an example. Fig. A.1 shows

the spectroscopic scans for the calibration.

The on-resonance detuning is the frequency-setting where there is only one strong

spectral line on the spectrum, with a weak tail on the higher frequency side, as in the

scan in Fig. A.1(b). Notice that the strong peak slightly splits, because the upper-

most spectral line of from the 5P3/2, |mj| = 1
2

intermediate state is composed of two

levels with very close energy splitting. For the cases in Fig. A.1(c)(e)(f)(i), the lower

transition detuning is not high enough for the corresponding lattice power, so that

there is a smaller peak on the higher frequency side of the strong line; the smaller

peak are from the lower sub-levels of 5P3/2, |mj| = 1
2

in Fig. 7.4. For the cases in

Fig. A.1(a)(d)(g)(h), the lower transition frequency is too high, so there are not many
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Figure A.1:
69 S spectra for 87Rb. The atoms are from the 5P3/2, |mj| = 1

2
inter-

mediate state. The lower transition laser co-propagates with the lattice
laser, and is focused into the cavity with an intensity about 50 Isat.

atoms populating in the uppermost sub-levels of the 5P3/2, |mj| = 1
2

intermediate

state. There is only one spectral peak without substructure, and the count rate of

Rydberg S line is about half of the on-resonance signal, as in Fig. A.1(b).

From the best case, which is Fig. A.1(b), the lower transition calibration factor

for the topmost 5P3/2, |mj| = 1
2

level is calculated as

5S1/2 → 5P3/2 detuning in MHz

lattice power in mW
=

2686

33
= 81 MHz per mW of lattice power (A.1)
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[12] T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier,
and A. Browaeys. Entanglement of two individual neutral atoms using rydberg
blockade. Phys. Rev. Lett., 104:010502, 2010.

[13] L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson,
T. G. Walker, and M. Saffman. Demonstration of a neutral atom controlled-not
quantum gate. Phys. Rev. Lett., 104:010503, 2010.

126

http://steck.us/alkalidata
http://steck.us/alkalidata


[14] S. D. Hogan and F. Merkt. Demonstration of three-dimensional electrostatic
trapping of state-selected rydberg atoms. Phys. Rev. Lett., 100:043001, 2008.

[15] J.-H. Choi, J. R. Guest, A. P. Povilus, E. Hansis, and G. Raithel. Magnetic
trapping of long-lived cold rydberg atoms. Phys. Rev. Lett., 95:243001, 2005.

[16] P. H. Bucksbaum, R. R. Freeman, M. Bashkansky, and T. J. McIlrath. Role of
the ponderomotive potential in above-threshold ionization. JOSA B, 4:760–764,
1987.

[17] P. H. Bucksbaum, D. W. Schumacher, and M. Bashkansky. High-intensity
kapitza-dirac effect. Phys. Rev. Lett., 61:1182, 1988.

[18] R. R. Freeman, P. H. Bucksbaum, H. Milchberg, S. Darack, D. Schumacher, and
M. E. Geusic. Above-threshold ionization with subpicosecond laser pulses. Phys.
Rev. Lett., 59:1092, 1987.

[19] S. K. Dutta, J. R. Guest, D. Feldbaum, A. Walz-Flannigan, and G. Raithel.
Ponderomotive optical lattice for rydberg atoms. Phys. Rev. Lett., 85:5551, 2000.

[20] S. E. Anderson, K. C.Younge, and G. Raithel. Trapping rydberg atoms in an
optical lattice. Phys. Rev. Lett., 107:263001, 2011.

[21] K. C.Younge, B. Knuffman, S. E. Anderson, and G. Raithel. State-dependent
energy shifts of rydberg atoms in a ponderomotive optical lattices. Phys. Rev.
Lett., 104:173001, 2010.

[22] S. E. Anderson and G. Raithel. Dependence of rydberg-atom optical lattices on
the angular wave function. Phys. Rev. Lett., 109:023001, 2012.

[23] Sarah E. Anderson and Georg Raithel. Ionization of rydberg atoms by standing-
wave light fields. Nature Communications, 4, 2013.

[24] Kaitlin R. Moore, Sarah E. Anderson, and Georg Raithel. Forbidden atomic
transitions driven by an intensity-modulated laser trap. Nature Communications,
6(6090), 2015.

[25] Kelly Cooper Younge, Sarah Elizabeth Anderson, and Georg Raithel. Adiabatic
potentials for rydberg atoms in a ponderomotive optical lattice. New J. Phys.,
12:023031, 2010.

[26] M. A. Bandres and J. C. Gutiérrez-Vega. Ince-gaussian beams. Optics Letters,
29:144–146, 2004.

[27] Ulrich T. Schwarz, Miguel A. Bandres, and Julio C. Gutiérrez-Vega. Observation
of ince–gaussian modes in stable resonators. Optics Letters, 29(16):1870–1872,
2004.

[28] E. D. Black. An introduction to pound–drever–hall laser frequency stabilization.
Am. J. Phys., 69:79–87, 2001.

127



[29] A. S. Arnold, J. S. Wilson, and M. G. Boshier. A simple extended-cavity diode
laser. Rev. Sci. Instrum., 69:1236, 1998.

[30] E. Hansis, T. Cubel, J.-H. Choi, J. R. Guest, and G. Raithel. Simple pressure-
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[31] Wolfgang Demtröder. Laser spectroscopy: Vol. 2 experimental techniques.
Springer-Verlag, 2008.

[32] Christopher J.Foot. Atomic Physics. Oxford University Press, 2010.

[33] Joseph L.Wiza. Microchannel plate detectors. Nuclear Instruments and Methods,
162:587–601, 1979.

[34] H. J. Metcalf and P. van der Straten. Laser Cooling and Trapping. Springer,
Berlin, 1999.

[35] A. G. Truscott, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop.
Optically written waveguide in an atomic vapor. Phys. Rev. Lett., 82:1438, 1999.

[36] Mukund Vengalattore and Mara Prentiss. Radial confinement of light in an
ultracold anisotropic medium. Phys. Rev. Lett., 95:243601, 2005.

[37] P. R. Berman and V. S. Malinovsky. Principles of Laser Spectroscopy and Quan-
tum Optics. Princeton University Press, Princeton, NJ, 2011.

[38] William Guerin, Franck Michaud, and Robin Kaiser. Mechanisms for lasing with
cold atoms as the gain medium. Phys. Rev. Lett., 101:093002, 2008.

[39] Geert Vrijsen, Onur Hosten, Jongmin Lee, Simon Bernon, and Mark A. Kasevich.
Raman lasing with a cold atom gain medium in a high-finesse optical cavity. Phys.
Rev. Lett., 107:063904, 2011.

[40] Bindiya Arora and B. K. Sahoo. State-insensitive trapping of rb atoms: Linearly
versus circularly polarized light. Phys. Rev. A, 86:033416, 2012.

[41] Zheng-Min Wang and D. S. Elliott. Determination of cross sections and contin-
uum phases of rubidium through complete measurements of atomic multiphoton
ionization. Phys. Rev. Lett., 84(17):3795–3798, 2000.

[42] B. Knuffman, A. V. Steele, J. Orloff, and J. J. McClelland. Nanoscale focused
ion beam from laser-cooled lithium atoms. New J. Phys., 13:103035, 2011.

[43] Thibault Peyronel, Ofer Firstenberg, Qi-Yu Liang, Sebastian Hofferberth,
Alexey V. Gorshkov, Thomas Pohl, Mikhail D. Lukin, and Vladan Vuletić. Quan-
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