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ABSTRACT

COMPUTATIONALLY-EFFICIENT FINITE-ELEMENT-BASED THERMAL

AND ELECTROMAGNETIC MODELS OF ELECTRIC MACHINES

by

Kan Zhou

Chair: Heath F. Hofmann

With the modern trend of transportation electrification, electric machines are a key

component of electric/hybrid electric vehicle (EV/HEV) powertrains. It is there-

fore important that vehicle powertrain-level and system-level designers and con-

trol engineers have access to accurate yet computationally-efficient (CE), physics-

based modeling tools of the thermal and electromagnetic (EM) behavior of electric

machines. In this dissertation, CE yet accurate thermal and EM models for electric

machines, which are suitable for use in vehicle powertrain design, optimization,

and control, are developed. This includes not only creating fast and accurate ther-

mal and EM models for specific machine designs, but also the ability to quickly

generate and determine the performance of new machine designs through the ap-

plication of scaling techniques to existing designs. With the developed techniques,

the thermal and EM performance can be accurately and efficiently estimated. Fur-

thermore, powertrain or system designers can easily and quickly adjust the char-

acteristics and the performance of the machine in ways that are favorable to the

overall vehicle performance.

xiv



CHAPTER 1

Introduction

1.1 Background and Motivation

Motivated by the needs of improving fuel economy, reducing pollution and greenhouse

gas (GHG) emissions, and decreasing dependence on petroleum fuels, research interests in

transportation electrification and Electric Vehicle/Hybrid Electric Vehicle (EV/HEV) have

been increasing for years. Various reports have suggested that EV/HEVs need to possess

a large portion of market share in the next 25-35 years to satisfy the regulatory emission

standards and achieve GHG reduction goals. For example, a national goal for electrification

was set in [1] that by 2040, 75% of the vehicle miles traveled in the U.S. should be electric

miles. The U.S. Department of Energy suggests that advanced powertrain vehicles have the

potential to dominate the light-duty vehicle (LDV) market by 2050 [2], where conventional

vehicles with internal combustion engines will only have 8% market share, as shown in

Fig. 1.1.

With such trend of transportation electrification, electric machines are a key compo-

nent of EV/HEV powertrains. As a result, there is increasing interest in the simulation,

modeling, and optimization of electric machines to achieve better performance, reduced

cost, and improved reliability of electric machines. Electric machines are fundamentally

multi-physical. The physics involved in machine operation include electromagnetic (EM),

thermal (heat conduction, convection, and radiation), fluid dynamics, structural, noise and

1



Figure 1.1: Advanced powertrain vehicles have the potential to dominate the LDV market

by 2050, figure from [2].

vibration, etc. Each type of physics plays an important role in the high performance and

high reliability operation of electric machines. This dissertation focuses on the EM and

thermal perspectives of electric machines.

There are two levels of electric machine modeling and simulation – the component

level and the system level. For component-level modeling, the focus is usually on improv-

ing accuracy, and making sure the simulation can accurately reflect the physics. Thus it

can to some extent replace expensive prototyping and testing. These models are usually

slow to run, since they capture a lot of details. For system-level modeling, the electric

machine models are integrated in a larger and higher-level simulation/optimization/control

framework, e.g. vehicle powertrain. Thus, the detailed but slow component-level models

are no longer suitable for these purposes due to computational constraints. It is therefore

important that vehicle powertrain-level and system-level designers and control engineers

have access to accurate, computationally-efficient (CE), and physics-based modeling tools

for electric machines. To satisfy such needs, this dissertation is focused on CE modeling

of electric machines, where two physics are included – thermal and EM.

2



1.2 Literature Review and Objectives

In this section, the literature on thermal and EM modeling of electric machines is re-

viewed, where CE modeling is the focus. The literature on the applications of CE models

is also included. Based on the context and background established through the literature

review, the objectives of this dissertation are presented at the end of each subsection.

1.2.1 Thermal Modeling

Thermal models are used to determine the internal temperatures of electric machines.

In previous works, both lumped-parameter-based and finite-element-based thermal models

have been used to capture the thermal dynamics of electric machines.

In lumped-parameter (LP) thermal models, the geometry of an electric machine is

lumped into discrete circuit components, such as thermal resistor, thermal capacitor, and

heat sources. These models are usually relatively fast [3, 4]. However, complex and large

LP models are required to accurately capture the distributed nature of the losses, the tem-

perature distribution in the machine, and the complexity of the machine geometry [5]. Ad-

ditionally, the appropriate structure/topology and resulting thermal parameters of the LP

models, and their sensitivity to variations in cooling conditions, can be difficult to iden-

tify [6].

Finite element (FE) method can be used to accurately predict the internal tempera-

tures of a machine with complex geometries, where the geometry of an electric machine

is meshed into small elements. Both 2D [7] and 3D [8, 9] finite element analysis (FEA)

has been used in previous work. These approaches can provide accurate and distributed

temperature information inside the machine, and can model complex structures easily by

importing geometry directly from Computer Aided Design (CAD) softwares. However,

solving FEA models is time-consuming (especially 3D FEA).

The temperature knowledge is valuable in practice and has been implemented in dif-

3



ferent applications, e.g., 1) determining the temperature-dependent power capability of an

electric machine at a given instant in time [10]. This information allows high-performance

operation of electric machines, especially when operating under severe duty cycles where

thermal limitations overshadow other physical limitations; 2) protection and condition

monitoring [11, 12], to ensure electric machines operate safely under temperature limits;

3) machine design optimization [13]; and 4) real-time implementation in a system-level

control algorithm, or in full-scale vehicle-level powertrain simulation and optimization rou-

tine [14, 15].

Many of these applications require the thermal models to be computationally efficient

while maintaining sufficient accuracy. Thus, to make the full-order dynamic thermal mod-

els computationally efficient, various model order reduction (MOR) techniques have been

used previously [16]. For electric machine thermal modeling, pole-zero cancellation and

Hankel Singular Value Decomposition (SVD) were used in [17] to build a two-state thermal

model for induction machines based on a lumped-parameter model. A transfer-function-

based system identification approach was used in [18] to generate low-order reduced mod-

els for induction machines. A 1600-node lumped-parameter induction machine model was

reduced to 4 nodes using a transfer-function-based MOR approach in [19]. A balanced-

truncation MOR method was used in [20] for the LP permanent magnet synchronous ma-

chine (PMSM) thermal models. However, the accuracy of each of these reduced-order

models (ROMs) is fundamentally limited by the accuracy of the original lumped-parameter

model.

An FEA-based MOR method for power electronic circuits was presented in [21]. The

FE mesh is partitioned into different regions to build a LP equivalent circuit (EC). The

lumped parameters are determined by steady-state FEA results. However, this approach

only reduces the full-order FE model to a medium-order EC model with hundreds of states.

Moreover, the MOR process involves an iterative process for determining the size of the

reduced model, and a training process is needed to accurately estimate the parameters for
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the EC.

Eigenfunction-based techniques have been used for modeling power electronic cir-

cuits [22] and electric machines [23]. However, the techniques presented in [22] require cal-

culating a huge number of eigenfunctions (105-106) for the multilayer structure to achieve

good accuracy. Furthermore, the method is restricted to systems where all layers have the

same horizontal extent of rectangular shape, which is not suitable for modeling electric

machines.

In one of my early works, a CE thermal model was presented [23], where the calculation

of all the eigenvalues/eigenvectors of the FE matrices is required. This is computationally

infeasible for the huge matrices generated by 3D FEA. Furthermore, the 2D machine model

used in [23] cannot accurately capture the temperature variation in the axial direction of the

electric machine. Convective cooling on the ends of the machine also needs to be modeled

to achieve better accuracy. Thus, a 3D model is necessary to accurately capture the thermal

dynamics in the machine.

In this dissertation, one of the objectives is to develop a CE dynamic thermal model

that can achieve similar level of accuracy as traditional full-order 3D dynamic thermal

conduction FEA, while being much faster to run as compared to the full-order model.

Additionally, the CE model should be fast to generate, and not depend on system inputs

or training data.

1.2.2 Electromagnetic Modeling

FEA has been widely used in EM modeling of electric machines for decades. Both

magneto-static (MS) and magneto-quasistatic (MQS) FEA has been used in various ap-

plications. Both MS and MQS formulations are approximations to Maxwell’s equations,
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which are shown below:

∇ · ~D = ρ, (1.1)

∇ · ~B = 0, (1.2)

∇× ~E = −
∂ ~B

∂t
, (1.3)

∇× ~H = ~J +
∂ ~D

∂t
, (1.4)

where ~D is electric flux density, ρ is free charge density, ~B is magnetic flux density, ~E

is electric field intensity, ~H is magnetic field intensity, and ~J is electric current density.

Equation (1.1) is Gauss’s law, Equation (1.2) is Gauss’s law for magnetism, Equation (1.3)

is Faraday’s law, and Equation (1.4) is Ampere’s law.

By neglecting the effect of charge accumulation and displacement field, MQS formula-

tions are derived:

∇ · ~D = 0, (1.5)

∇ · ~B = 0, (1.6)

∇× ~E = −
∂ ~B

∂t
, (1.7)

∇× ~H = ~J. (1.8)

In the spacial and temporal scales of interest for electric machines, MQS is a good and

accurate approximation to Maxwell’s equations [24]. By further neglecting the dynamic

effects in Faraday’s law, MS formulations can be derived:

∇ · ~D = 0, (1.9)

∇ · ~B = 0, (1.10)

∇× ~E = 0, (1.11)

∇× ~H = ~J. (1.12)

6



Table 1.1: Trade-offs between magneto-static and magneto-quasistatic FEA

Magnetostatic FEA Magneto-quasistatic FEA

Fast to solve Slow to solve

Position dependent Time dependent

FEA results can be used for all rotor speeds New solutions required for each speed

Cannot capture skin and proximity effect Can capture skin and proximity effect

Over-estimates magnet losses Accurate magnet losses

Suitable for powertrain-level optimization Suitable for machine design optimization

MS formulations have been preferred in CE modeling due to the computational benefits

gained at the cost of ignoring dynamic effects, thus lacking accuracy in loss estimation. A

detailed comparison between MS and MQS formulations is shown in Table 1.1.

Due to the computational intensity involved in MQS FEA, CE EM models have mainly

focused on utilizing MS formulations, for example, in [25–31]. In [27], two-dimensional

(2D) nonlinear MS FEA was used for calculating the magnetic vector potential in the coils.

By taking advantage of phase symmetry, only three MS FEA solutions, which correspond

to three different rotor positions (one for each phase), are used to reconstruct the flux link-

age waveform for each phase. Post-processing techniques and analytical relationships are

then used to estimate the motor performance (i.e. torque, voltage, and core losses). Based

on [27], Fourier analysis and space-time transformations were added to the CE-FEA model

in [28] so the radial and tangential components of the flux density at any point in the stator

core can be calculated. Based on [27,28], Zhang et al. [30] proposed an analytical relation-

ship to estimate the PM eddy-current losses by dividing the PM region into small blocks

and using the flux density information in each block. T.J.E. Miller et al. [31] proposed to

use a small set of 2D MS FEA solutions to build a flux-MMF diagram for fast calculation

of average torque and inductances of the machine.

Although MS-based models suffer to some extent in the accuracy of loss calculation

(AC winding loss and PM eddy-current loss), it can be useful in some applications, e.g.,

in machine design [32, 33], machine drives [34], and EV/HEV powertrain–level analysis
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[35]. In EV/HEV powertrain–level simulation and optimization, torque–speed curves and

efficiency maps of an electric machine design are a convenient tool to use [36–41]. An

example map is shown in Fig. 1.2, where speed is shown in the x-axis, torque is shown in

the y-axis, and efficiency level is shown by contour lines.

Figure 1.2: An example efficiency map of Toyota Prius motor, figure from [40].

Generating an accurate optimal efficiency map for a specific design using FEA is com-

putationally intensive. Although simulating a single operating point of current magnitude,

phase angle, and rotor position is usually fast, obtaining an average torque requires calcu-

lating multiple rotor positions in one period. Furthermore, to find the operating point with

optimal efficiency for a given torque and speed combination requires simulating a large

number of current magnitudes and phase angles to maximize efficiency while satisfying

voltage constraints (the number of operating points that needs to be checked is even higher

in the field weakening region). Multiplying this computation time for one torque and speed

combination by the number of points in an efficiency map, such a process is computation-

ally intensive and can take several core-hours. For example, as reported in [42], it takes

12 core-hours to simulate the efficiency map for a given design. This is very slow for
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powertrain- or system-level design optimization purposes.

In addition to FEA simulations of the efficiency map for a given design, the ability

to quickly generate and predict the performance of new electric machine designs is also

crucial for EV/HEV powertrain–level design and optimization. To quickly generate new

designs for given specifications, the idea of dimensional scaling has been discussed in [43–

45]. However, dimensional scaling by itself is limited in terms of producing a sufficient set

of machine designs and enough degrees of freedom for powertrain design and optimization.

In this dissertation, one of the objectives is to develop a toolkit that can 1) quickly

generate machine designs based on an existing design with enough degrees of freedom

through different scaling techniques; 2) quickly calculate the efficiency maps of these new

designs. The process should be much faster than the traditional method of solving FEA for

each individual operating point in efficiency map, to the extent that it is sufficiently fast to

be integrated into a system– or powertrain–level simulation/optimization routine.

1.2.3 Electromagnetic-Thermal Coupled Analysis

Electromagnetic-thermal coupled analysis of electric machines has been reported in re-

cent years [32,46–49]. The general process of EM-thermal coupled analysis is to start from

an EM simulation that determines the torque, losses, and other quantities (e.g. flux linkage,

voltage, flux density, field intensity, etc) for a given operating point. The losses are then

fed into the thermal simulation to estimate temperature under such loss conditions. Since

the material properties are temperature-dependent, they are updated according to the esti-

mated temperature at the end of thermal simulation, and fed back to the EM simulation for

another iteration. This iterative process stops when the temperatures converge. However,

these papers all focus on component-level simulation and optimization, and are therefore

not suitable for powertrain-level simulation due to computational constraints.

The temperature-dependent torque-speed curve was estimated by EM-thermal coupled

analysis in [50], showing the impact of temperature rise on torque production. However,
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using EM-thermal analysis in efficiency map estimation has not yet been reported in the

literature. The efficiency map of an electric machine is constrained by temperature, since

the torque capability and losses are both affected by temperature. Furthermore, the con-

tinuous operating region, which is defined as the operating points where the machine can

safely run at steady state without hitting the temperature limit of the winding insulation and

PM materials, can provide useful information for powertrain design and optimization. To

predict the continuous operating region of an efficiency map, a thermal model is needed to

couple with the EM model. Furthermore, an accurate prediction of demagnetization also

requires temperature information in the PM [47], since the intrinsic coercivity of the PM

material is affected by temperature.

In this dissertation, one of the objectives is to develop an EM-thermal coupled model

that can be integrated into the efficiency map generation toolkit mentioned in Section 1.2.2,

and provide the ability to quickly estimate the continuous operating region of the efficiency

map.

1.3 Contributions and Dissertation Outline

The intellectual contributions of this dissertation are:

1. The application of orthogonal decomposition as a modal-based MOR technique,

where only a small subset of eigenmodes need to be calculated, to a full-order 3D

dynamic thermal FEA model of an electric machine to build a CE dynamic thermal

model that is much faster than 3D FEA and sufficiently accurate.

2. The development of a “normalized extent of excitation” calculation that can automate

the process of selecting the most significantly excited eigenmodes without the need

of training data or iterative processes. Furthermore, the calculation does not depend

on the system inputs by using normalized distribution vectors.
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3. The development of a scalable 2D MS model that can be used to generate new ma-

chine designs using three independent scaling techniques. Moreover, the torque-

speed curve and efficiency map of the scaled designs can be quickly estimated using

pre-calculated base design FEA data, without the necessity of re-solving the FEA for

these scaled designs.

4. The development of a EM-thermal coupled model by coupling the aforementioned

scalable MS model with a 3D scalable static thermal model to estimate the continu-

ous operating region of the scaled design directly using the pre-calculated base design

thermal data, without the necessity of re-solving the coupled EM-thermal FEA for

these scaled designs.

This dissertation is organized as follows:

• Chapter 1 has presented the background and motivation behind the proposed objec-

tives of the dissertation, along with a detailed literature review. The objectives were

presented, and the intellectual contributions have been highlighted.

• Chapter 2 will present the development of a CE 3D FE-based dynamic thermal model

of electric machines, where eigenmode-based MOR techniques are used to generate

a ROM. The process of building a full-order 3D FEA model is presented at first,

followed by the MOR technique. Simulation results are presented to show that the

ROM can dramatically reduce computation time while maintaining satisfactory accu-

racy comparing with the full-order model. Experimental results are shown to validate

the model and the feasibility of using the proposed ROM for real-time operation.

• Chapter 3 will present a CE 2D MS FE-based scalable model for electric machines

that is suitable for powertrain design optimization. Three independent scaling tech-

niques are proposed to quickly generate new machine designs. The efficiency maps

of the new designs can be efficiently calculated using a pre-determined FEA database,

11



without the necessity of re-solving FEA for the scaled designs. Results show that the

torque-speed curve and the shape of the efficiency contour can be adjusted in a CE

manner.

• Chapter 4 will present a CE finite-element-based EM-thermal coupled scalable model

of electric machines that is scalable and suitable for fast temperature-dependent ef-

ficiency map generation and continuous operating region prediction. The scalable

2D MS model is coupled with a scalable 3D static thermal analysis and solved it-

eratively in the database generation process. After the database is generated, the

efficiency map and the continuous operating region of the scaled designs can be cal-

culated quickly.

• Chapter 5 will present the conclusion of the dissertation, along with some related

future work.
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CHAPTER 2

Computationally-Efficient Finite-element-based

Dynamic Thermal Model of Electric Machines

2.1 Introduction

In this chapter, a 3D thermal FEA-based MOR technique is proposed for electric ma-

chines. A modal-based orthogonal decomposition method [51] is used to decompose the

full-order FE model without the necessity of calculating all the eigenmodes of the 3D

model. An automatic process based on a proposed “extent of excitation” calculation is

used to select the eigenmodes that should be included in the reduced-order dynamic model.

The selection process is not dependent on inputs, does not require training or iterative pro-

cess. Finally, only specific temperatures are calculated to further reduce the size of the

problem. Based on both simulation and experimental results, the proposed reduced-order

model is shown to be both fast and accurate enough to be used as a real-time temperature

monitor or in powertrain-level simulation and optimization of electric vehicles (EVs) and

hybrid electric vehicles (HEVs).
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2.2 Dynamic 3D Thermal Analysis

2.2.1 Conduction Heat Transfer

The partial differential equation (PDE) associated with thermal conduction is given as

follows:

d
∂T

∂t
− κ∇2T = qloss, (2.1)

where T is the continuum temperature, and κ and d are the thermal conductivity and spe-

cific heat, respectively, of the machine materials, and qloss represents heat generation inside

the machine. Using finite element analysis techniques and considering convective heat

transfer boundary conditions, the machine model is meshed and the above PDE can be

discretized into an ordinary differential equation (ODE) as follows:

D~̇t +K~t = ~q, (2.2)

where ~t is the nodal temperature vector of the finite element mesh, K is the finite element

matrix which corresponds to thermal conductivity, and D is the finite element matrix which

corresponds to specific heat. Both K and D are n-by-n symmetric matrices generated

by the FEA assembly process, where n is the number of nodes in the 3D finite-element

mesh. The vector ~q corresponds to the excitation/inputs of the thermal model, and can be

categorized as follows:

~q =
∑

k

Pk
~fk +

∑

l

Hl~gl. (2.3)

The vectors Pk
~fk correspond to different loss mechanisms of the machine, including

conduction losses, core losses, permanent magnet (PM) losses, and friction and windage

losses. The scalars Pk correspond to the total amount of loss, and the vectors ~fk correspond
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to the normalized spatial loss distribution in the machine. Each type of loss can be further

broken down into sub-domains that have different loss density distributions. For example,

the stator iron can be divided into the back-iron region, the tooth region, and the tooth-face

region, with different core loss distribution assigned to each sub-domain. Thus, the resolu-

tion of the loss density distribution can be adjusted. Likewise, the vectors Hl~gl correspond

to convective heat transfer on different boundaries of the machine, representing Neumann

boundary conditions of the finite element model. The scalars Hl correspond to the heat

flux density, and the vectors ~gl correspond to the normalized heat flux distribution on the

machine boundaries.

The thermal conductivity tensor of the stator slot region is calculated by using the rule-

of-mixtures technique. As the slot region is a mixture of copper conductor and insulation,

the equivalent thermal conductivity tensor can be calculated as follows:

[κij ] =













κx 0 0

0 κy 0

0 0 κz













, (2.4)

where

κx = κy =
1

fs
κCu

+ 1−fs
κv

, (2.5)

κz = fsκCu + (1− fs)κv, (2.6)

κx and κy are the thermal conductivity in the cross sectional plane, κz is the thermal con-

ductivity in axial direction, fs is the slot filling factor, and κCu and κv are the thermal

conductivity of copper and varnish, respectively.
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2.2.2 Convection Cooling on Machine Boundaries

The convective excitation component in (2.3) can be used to simulate air and liquid

cooling on any boundary of the machine (typically on the stator outer boundary and both

ends of the machine). Newton’s Law of Cooling is used to calculate the heat flux at the

machine boundaries:

Hl = hl(Tcl − Tbl), (2.7)

where hl is the heat transfer coefficient on the l-th convective boundary, Tbl is the tempera-

ture on the boundary, and Tcl is the coolant or ambient temperature. A convective Neumann

boundary condition is then applied to the boundaries of the finite-element model. The heat

transfer coefficient for air cooling or liquid cooling can be determined through empirical

measurements or computational fluid dynamic (CFD) simulations.

2.2.3 Heat Transfer in the Air Gap

The stator and rotor finite element models are coupled at the air gap of the machine

to capture the speed-dependent air gap heat transfer. Both conductive and convective heat

transfer occurs in the air gap. In this chapter, this issue is addressed by modeling the air

gap with an effective thermal conductivity which captures both conduction and convection.

In order to derive this effective conductivity, the stator and rotor are modeled as concen-

tric rotating cylinders. The convection heat transfer between two rotating cylinders can be

calculated using the dimensionless Reynolds number (Re), Taylor number (Ta), and Nus-

selt number (Nu). The Reynolds and Taylor numbers are given in [52], and are repeated

below:

Re =
gωrrr
ν

, Ta = Re

√

g

rr
, (2.8)
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where g is the length of air gap, ωr is the rotational velocity of the rotor, rr is the rotor

radius, and ν is the kinematic viscosity of air. The Nusselt number can be then determined

by the corresponding Taylor number [3, 52, 53]:

Nu =























2.2, Ta < 41,

0.23× T 0.63
a × P 0.27

r , 41 ≤ Ta ≤ 100,

0.425× T 0.5
a × P 0.27

r , Ta > 100,

(2.9)

where Pr = ν
α

is the Prandtl number and α is the thermal diffusivity of air. The con-

vection heat transfer, which is determined by the Nusselt number, can be combined with

the conductive heat transfer term in the heat transfer equation to form an effective thermal

conductivity for both conductive and convective heat transfer [8]:

κeq (ωr) =
Nuκair

2
, (2.10)

where κair is the thermal conductivity of still air.

Once the equivalent thermal conductivity is determined, we exploit the fact that the air

gap is a cylindrical annulus, as shown in Fig. 2.1. Solving Laplace’s equation, and assum-

ing a uniform normal heat flux density Hg and temperature Tg at the air gap boundaries of

the stator and rotor, we achieve the following heat flux/temperature relationship between

the stator and rotor:

Hsg =
κeq (ωr)

rsg ln
(

rsg
rrg

) (Trg − Tsg) , (2.11)

Hrg =
κeq (ωr)

rrg ln
(

rsg
rrg

) (Trg − Tsg) . (2.12)

The air gap convective excitation vector for the stator and rotor Hig~gig can then be

calculated and used in (2.3). The block diagram of the entire full-order thermal model is
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Figure 2.1: Flux relations for cylindrical annulus, representing the air gap.
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shown in Fig. 2.2. The inputs to the model are coolant temperature, heat transfer coeffi-

cients, speed, and torque. The speed and torque are fed into a look-up table for calculating

the losses in the machine. The look-up table can be built by either solving a corresponding

electromagnetic FEA, or conducting experimental measurements. The losses and cooling

conditions are then used in the stator and rotor thermal model, which are then coupled

together using the air gap heat transfer relationship. The outputs of the model are tempera-

tures in different locations inside the machine.

Loss 

Calculation

Stator Finite

Element 

Model

Rotor Finite

Element 

Model

Mechanical 

Speed

Mechanical 

Torque

Coolant 

Temperature

Rotor Heat Flux

Stator Heat Flux

Air Gap

Thermal 

Coupling

Stator Winding

Temperature

Stator Iron

Temperature

Permanent Magnet 

Temperature

Rotor Iron

Temperature

Rotor Outer

Boundary Temperature

Stator Inner 

Boundary Temperature

Liquid Cooling 

Heat Flux 

Calculation
Liquid Cooling 

Heat Transfer 

Coefficient

Figure 2.2: Block diagram of thermal model.

2.3 Model Order Reduction for 3D FEA Model

The order of the finite element model discussed in the previous section is now reduced.

Two assumptions are made in the following analysis and results. First, the RMS line current

is used to calculate conduction losses instead of the instantaneous current, as it is assumed

that the oscillations in the instantaneous heat generation due to the time-varying current

are sufficiently filtered by the thermal capacitance of the machine. This is valid when the
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period of the current waveform is significantly smaller than the time constants associated

with the thermal dynamics. By assuming this, the required time step length in the reduced-

order model can be much larger than the period of the current, thus making the model more

computationally efficient.

Second, the normalized loss distribution in the associated material is considered to be

independent of frequency, i.e. the normalized loss distribution vector ~fk in (2.3) is constant.

This assumption simplifies the model-order-reduction process and reduces the size of the

resulting model.

2.3.1 Decomposition of Dynamic and Static Eigenmodes

The proposed method is based upon the simulation of the eigenmodes of the dynamic

thermal system as shown in (2.2). An eigenmode (or mode) is defined as an eigenvector ~vi

associated with an eigenvalue λi of (2.2) that satisfy the generalized eigenvector equation:

(K− λiD)~vi = 0. (2.13)

This is similar to the concept of “modes” in structural dynamics, where the dynamic sys-

tem is broken down into different modes that have different modal shapes and resonant

frequencies. The difference is that the structural analysis is a second order system while

the thermal conduction is a first-order system.

In previous work [23], in order to build a reduced-order model, all the eigenvectors of

the 2D FEA model need to be calculated. However, this is computationally infeasible for a

3D model, which may contain millions of eigenvectors. To develop a computationally fea-

sible model-order-reduction technique for 3D FEA, we take advantage of the orthogonality

property of the eigenmodes of the real, symmetric matrices generated by FEA. Using the

proposed technique, only a small subset of the eigenmodes need to be calculated.

As K and D are both n-by-n symmetric matrices generated by 3D FEA, they satisfy
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the following orthogonality properties:

~vTi D~vj =











di, i = j

0, i 6= j
, ~vTi K~vj =











ki, i = j

0, i 6= j
. (2.14)

Therefore, they can be diagonalized as follows:

V
T
DV = d =



















d1 0
d2

0 ...

dn



















, (2.15)

V
T
KV = k =



















k1 0
k2

0 ...

kn



















. (2.16)

We separate the eigenvectors into m “dynamic” and (n−m) “static” vectors (to be defined

later) [51]:

V = [~v1 ~v2 ... ~vm ~vm+1 ~vm+2 ... ~vn)]

= [Vd Vs
]. (2.17)
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Thus,

Vd
T
DVd = dd =



















d1 0
d2

0
. . .

dm



















, (2.18)

Vs
T
DVs = ds =



















dm+1 0
dm+2

0
. . .

dn



















. (2.19)

The same relationship also holds for matrix K: V
T
d KVd = kd, VT

s KVs = ks, where

kd and ks are diagonal matrices similar to dd and ds. Thus, by using a change of basis

~t = V~x, (2.2) becomes

d~̇x+ k~x = V
T~q. (2.20)

To reduce the order of the dynamic system, the “static” eigenmodes are assumed to

converge to their steady-state values instantaneously, i.e.:

ẋj = 0⇒ xj =
1

kj

(

~vTj ~q
)

. (2.21)
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Thus,

~t = V~x =

m
∑

j=1

~vjxj +

n
∑

j=m+1

~vjxj = Vd~xd +

n
∑

j=m+1

1

kj
~vj~v

T
j ~q

= Vd~xd +

(

n
∑

j=1

1

kj
~vj~v

T
j −

m
∑

j=1

1

kj
~vj~v

T
j

)

~q

= Vd~xd +
(

Vk
−1
V

T −Vdk
−1
d V

T
d

)

~q

= Vd~xd +
(

K
−1 −Vdk

−1
d V

T
d

)

~q. (2.22)

By substituting (2.3) into (2.22), the temperature can be calculated as

~t = Vd~xd +
∑

k

Pk~uk +
∑

l

Hl~sl, (2.23)

where vectors ~uk and ~sl can be pre-calculated by performing matrix-vector solves:

~uk =
(

K
−1 −Vdk

−1
d V

T
d

)

~fk, (2.24)

~sl =
(

K
−1 −Vdk

−1
d V

T
d

)

~gl. (2.25)

By substituting (2.21) and (2.23) into (2.2), and left-multiplying the equation by V
T
d , the

dynamics of the reduced-order model are shown by

dd

.

~xd + kd~xd =
∑

k

Pk
~fv,k +

∑

l

Hl~gv,l, (2.26)

where vectors ~fv,k = V
T
d
~fk and ~gv,l = V

T
d~gl can also be pre-calculated. Since dd and

kd are both diagonal matrices, all the “dynamic” eigenmodes are decoupled and can be

simulated separately. This results in a collection of first-order differential equations.

In this approach, instead of calculating all the eigenmodes of the huge 3D FEA problem,

we only need to calculate a subset of eigenmodes, in order of decreasing time constant, to

determine the modes that should be modeled dynamically. This can be done by using MAT-
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LAB’s built-in function “eigs”, which is efficient at calculating the generalized eigenvector

problem for sparse matrices.

2.3.2 Dynamic Eigenmodes Selection

To decompose the system, the most significantly excited eigenmodes are considered as

dynamic modes. To select the eigenmodes, the extent of excitation of the i-th eigenmode

for each type of excitation is calculated:

Ei =











τi~v
T
i
~fk (for losses)

τi~v
T
i ~gl (for boundary heat transfer)

, (2.27)

where τi = 1
λi

= di
ki

is the time constant associated with the i-th eigenmode. The time-

constant term in (2.27) is used to increase the weights of slower eigenmodes, as the system

response of interest is mainly governed by the slowest eigenmodes. The extent of exci-

tation for each type of excitation (loss or boundary heat transfer) is then normalized for

comparison:

Ei,norm =
Ei

max
j=1...k,1...l

(Ej)
, (2.28)

In this way, the extent of excitation of each eigenmode does not depend on specific sys-

tem inputs Pk and Hl. And the process of normalization allows a fair comparison between

different type of excitations. To select the eigenmodes that need to be modeled as dynamic

states, a threshold is set and the eigenmodes that have at least one extent of excitation that

exceeds the threshold value are selected as the dynamic modes. This is an advantage over

previous techniques that depend on system inputs [23], where the selected eigenmodes may

not accurately model the dynamics due to overshadowed excitations.

In practice, users can either select the number of dynamic states they would like to
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include in the reduced-order model, or specify a threshold value. The algorithm will then

automatically generate a reduced-order model. We also note that by calculating the extent

of excitation separately for each type of excitation, the dynamic modes selection process is

general and does not depend on specific loss/cooling inputs.

The flowchart of the eigenmode selection process is shown in Fig. 2.3. For example,

a full-order 3D FEA may contain 105 dynamic states. By only calculating the 50 slowest

eigenvectors of the full-order model, and comparing their extents of excitation with the

threshold value, 11 eigenmodes that are significantly excited can be selected as dynamic

modes. The other 39 slow eigenmodes that are weakly excited or unexcited, along with the

99950 fast eigenmodes that are not calculated, are considered as static modes. Thus, the

number of dynamic states can be greatly reduced in the reduced-order model.

Full-order 3D FEA
(e.g. 10

5
 dynamic states)

Slow Eigenmodes
(e.g. only calculate the 50 

slowest eigenvectors)

Fast Eigenmodes
(e.g. 99950 eigenvectors are 

uncalculated)

Significantly Excited 

Eigenmodes

(e.g. only 11)

Weakly or Unexcited 

Eigenmodes
(e.g. the rest 39)

Extent of 

Excitation

> threshold £ threshold

Dynamic modes
(e.g. 11 states)

Static modes
(e.g. 99989 states are assumed 

to converge instantaneously)

Figure 2.3: Eigenmode selection process.
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2.3.3 Efficient Temperature Calculation

In practice, we are only interested in a few “hot spot” temperatures of the machine, ei-

ther in the regions that are usually hottest (e.g. the center region of each slot and permanent

magnets), or the nodal temperatures that correspond to the physical location of the temper-

ature sensor to simulate the actual temperature measurement. Therefore, we only calculate

the values of a small subset of nodal temperatures ~ths. The i-th hot spot temperature thsi

(i.e. the i-th element of ~ths) that corresponds to the j-th node in the global finite element

mesh is calculated as follows based on (2.23):

thsi = ~vTdj~xd + tej, (2.29)

where ~vTdj is the j-th row of matrix Vd in (2.23), and tej is the j-th element of vector

~te =
∑

k

Pk~uk +
∑

l

Hl~sl in (2.23).

Furthermore, (2.29) also allows fast calculation of the average temperature of a bound-

ary or a set of nodal temperatures inside the machine by using an n-by-1 averaging vector

~mavg , whose i-th element is

mavg,i =











1
Nhs

, i = j

0, i 6= j
, (2.30)

where j is the global identification number of a node in the set and Nhs is the total number

of nodes in the set. The average temperature of the set is then given by

tavg = ~mT
avgVd~xd +

∑

k

~mT
avg~ukPk +

∑

l

~mT
avg~slHl, (2.31)

where vector ~mT
avgVd and scalars ~mT

avg~uk and ~mT
avg~sl can be pre-calculated.

The final state-space representation of the proposed reduced-order model is then given

by (2.26), (2.29), and (2.31). Note that in these equations, only m-by-m diagonal matrices,
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m-by-1 vectors, and scalars are involved. Thus, by using the above model-order-reduction

techniques, the size of the resulting reduced-order model is dramatically smaller than that

of the full-order model. It requires a significantly smaller number of calculations compared

with the full-order model and thus being much faster to solve. For example, a full-order 3D

machine model may contain on the order of 105 to 106 dynamic states. As will be seen, by

using the proposed techniques it can be reduced to a model with approximately 10 dynamic

eigenmodes (m ≈ 10) while maintaining satisfactory accuracy.

2.4 Simulation

2.4.1 Model Construction

A 145kW, 400N-m (peak), liquid-cooled PMSM from UQM Technologies [54], which

is suitable for use in vehicle propulsion, is used as our example. Its 3D geometry is shown

in Fig. 2.4. Based on the above methodology, a full-order thermal FEA solver and a

reduced-order thermal model have been implemented for the PMSM in MATLAB. The 3D

dynamic finite element thermal model of the PMSM was built by visual inspection, a set of

simple tests, and material properties from previous publications.
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Figure 2.4: 3D geometry of a PMSM.
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Table 2.1: Material properties and thermal parameters used in the simulation

Material κ(W/(m ·K)) ρ(kg/m3) c(J/(kg ·K))

Iron stack [8] (cross-section direction) 20 7600 447

Iron stack [8] (axial direction) 3.4 7600 447

Copper [8] 390 8900 383

Insulation [8] 0.175 1100 1500

Magnets [8] 9 7600 440

Still air 0.025 1.2 1007

Slot liner [7] 0.076 2150 1172

Rotor containment ring (steel) 50 7874 460

Rotor iron-PM contact resistance (tuned using step response) 3.1e-3 1.2 1007

Liquid Convection Cooling 1000W/(m2 ·K)
Natural Convection Cooling (end turn) 3.5W/(m2 ·K)
Natural Convection Cooling (rotor end) 7W/(m2 ·K)

2
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The material properties (thermal conductivity κ, density ρ, and specific heat c) and

thermal parameters used in the simulation are shown in Table 2.1. The heat transfer coef-

ficient of the natural convection cooling was determined by using an Omega HFS-3 heat

flux sensor. The heat transfer coefficient of the stator end turn is considered to be half of

the measured natural convection heat transfer coefficient in the actual machine, since about

half of the area of the end turn region is covered. The heat transfer coefficient of the liquid

cooling is determined by a set of steady-state tests. We note that the material properties and

thermal parameters listed in Table 2.1 were not tuned, except for the thermal conductivity

of the contact resistance layer between the rotor iron and the PM. Due to the inherent dif-

ficulty in determining the thermal conductivity of the contact resistance layer, it was tuned

using an optimization routine which minimizes the RMS error between the measured and

simulated PM temperature waveforms in a step response test with Iamp = 200A (more

details can be found in Section 2.5). After this optimal thermal conductivity was found, it

was used in all the simulations presented in this chapter.

In the simulations, winding conduction losses, stator core losses, rotor core losses,

and PM eddy current losses in the thermal simulation are determined at each machine

operating point by a corresponding 2D nonlinear electromagnetic time-domain steady-state

FEA [55], where an entire pole of the machine is modeled. The average loss density in each

region is then calculated assuming a uniform distribution. The losses and boundary heat

transfers are assumed to be identical for each tooth-slot pair in the stator, and for each pole

in the rotor. Thus, only one tooth-slot pair in the stator and one pole in the rotor needs to

be modeled in the simulations.

One nodal temperature in the end turn region and one in the PM region are used in the

reduced-order model. The location of the hotspots in the FE mesh correspond to the actual

location of the temperature sensors in the experimental setup. In addition, two average

temperature calculations, as presented in (2.31), are needed to determine the average air-

gap boundary temperature for the stator and rotor for the air-gap heat transfer calculation.
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Thus, there are two hotspot calculations for the stator and rotor model, respectively.

The detailed steps for the reduced-order model construction are listed as follows. First,

the 3D machine geometry is drawn and meshed in COMSOL Multiphysics. Second, the

finite element mesh is imported into MATLAB using COMSOL LiveLink for MATLAB.

Third, the full-order finite element model is assembled in MATLAB. Fourth, a small subset

of eigenmodes is calculated in order of decreasing time constant using the full-order finite

element matrices, and their extent of excitation is calculated using (2.27). The eigenmodes

chosen to be modeled as dynamic modes are selected based on the threshold value, as

described in Section 2.3.2. Finally, the reduced-order model is generated.

2.4.2 Extent of Excitation Calculation

By using the proposed normalized extent of excitation calculation method in Section

2.3.2, the normalized extents of excitation of the slowest 20 eigenmodes in the stator and

10 eigenmodes in the rotor of the PMSM were calculated, and are shown in Figs. 2.5 and

2.6, respectively. Note that the y-axis of these two figures are abbreviated for better display,

since the slowest eigenmodes in the stator and rotor have a much longer time constant, and

thus a much larger extent of excitation in (2.27), than those of the other eigenmodes. As

can be seen from Figs. 2.5 and 2.6, only a relatively small subset of the eigenmodes are

significantly excited for each type of excitation and therefore need to be included in the

dynamic portion. Examples of a significantly-excited stator eigenmode (Eigenmode #2)

and an unexcited mode (Eigenmode #5) are shown in Figs. 2.7 and 2.8. A significantly-

excited rotor eigenmode (Eigenmode #2) and a weakly-excited mode (Eigenmode #5) are

shown in Figs. 2.9 and 2.10. For Stator Eigenmode #2, the largest extent of excitation

(0.29) is due to end cooling, as can be verified by the mode pattern in Fig. 2.7. For Rotor

Eigenmode #2, large extent of excitation is observed from the containment ring loss and air

gap cooling, as can be verified by the mode pattern in Fig. 2.9.

To illustrate the dynamic eigenmodes selection process, a threshold of 0.06 is set for
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Figure 2.5: Normalized extent of excitation of stator (zoomed-in at y-axis).

Figure 2.6: Normalized extent of excitation of rotor (zoomed-in at y-axis).
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Fig. 2.5 as an example. By using this threshold value, the 1st, 2nd, 3rd, 4th, 6th, 8th, and

15th eigenmodes will be chosen as dynamic modes and result in a 7th-order model for the

stator. Thus, by adjusting the threshold value, the number of dynamic states included in the

reduced-order model can be automatically adjusted.

Figure 2.7: Stator tooth-slot pair Eigenmode #2 (significantly excited), τ=42.2sec. For this

mode, the largest extent of excitation is due to end cooling, as can be seen from the mode

pattern in this plot.

2.4.3 Simulation Results

By using the proposed techniques, a reduced-order model is built from the full-order

finite element model of the machine. The simulation results of a step response and a real-

life driving cycle are shown in this section. In this section, both the full-order and the

reduced-order model used implicit Trapezoidal integration [56, p. 46] with a 1sec time step

length. To allow a fair comparison, Cholesky factorization with a permutation matrix was

pre-calculated for the full-order model to accelerate the solving process. In the follow-

ing discussions, the “simulation time” refers to the time span of the simulation, while the

computation time refers to the amount of CPU time the simulation takes to run. All the
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Figure 2.8: Stator tooth-slot pair Eigenmode #5 (unexcited), τ=17.3sec.

Figure 2.9: Rotor pole Eigenmode #2 (significantly excited), τ=684.8sec. For this mode,

the largest extent of excitation is due to containment ring loss and air gap cooling, as can

be seen from the mode pattern in the plot.
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Figure 2.10: Rotor pole Eigenmode #5 (weakly excited), τ=125.1sec.

simulations were conducted on a workstation with an Intel Xeon X2350 dual-core CPU

operating at 2.67GHz.

2.4.3.1 Step Response

The step response due to a step in torque command at 4000RPM and 350N-m is simu-

lated by the full-order model and a variety of reduced-order models that contain different

numbers of dynamic states. The results are shown in Fig. 2.11 and Table 2.2. As can be

seen from the table, the accuracy of the reduced-order model is improved by increasing the

number of dynamic eigenmodes included. A trade-off can therefore be made between ac-

curacy and the number of states (and therefore computation time) by the users, depending

on their specific requirements. By using a 7+4-order reduced model (7 dynamic states in

the stator, 4 dynamic states in the rotor), the error remains less than 0.23◦C and 0.13◦C for

stator and rotor for the entire time span. Note that the “jump” at t = 0 in the lower-order

models is due to the assumption that the static eigenmodes in the reduced-order models

instantaneously converge to their quasi-steady-state values.
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Figure 2.11: Step response temperature comparison @ 4000RPM, 350N-m for “x” stator

+ “y” rotor states in the reduced-order model.

Table 2.2: Error of various reduced-order models in the step response

# of States Max. Error(◦C) Max. Relative Error

(Stator+Rotor) Stator Rotor Stator Rotor

4+3 2.73 0.21 11.89% 0.94%

7+4 0.23 0.13 0.72% 0.58%

15+7 0.14 0.02 0.60% 0.04%

25+10 0.07 0.01 0.18% 0.02%
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2.4.3.2 Driving Cycle Simulation

The internal temperatures of the machine have also been simulated during typical driv-

ing cycles. The speed and torque commands of an example driving cycle are shown in Fig.

2.12. The driving cycle shown in Fig. 2.12 is simulated using the full-order model and the

7+4-order reduced model. The simulation time is 1300sec. The temperature response and

temperature error for the driving cycle simulation is shown in Fig. 2.13. As can be seen

from the figure, the maximum error is less than 0.94◦C (stator) and 0.07◦C (rotor) for the

entire time span, and all the transient responses are captured with sufficient accuracy. A

detailed comparison of the two models is shown in Table 2.3. As can be seen from Table

2.3, the size of the problem is reduced from 103.9k states and 103.9k nodes to 11 states

and 4 temperature calculations, which reduces the computation time by over 4 orders of

magnitude. It takes only 16.8 milliseconds to simulate a driving cycle from 0 to 1300sec

for the reduced-order model, while it takes 219.8 seconds to simulate the full-order model.
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Figure 2.12: An example driving cycle for HEV simulation.
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Figure 2.13: Temperature and temperature error for driving cycle simulation by using a

reduced-order model with 7 stator and 4 rotor states.

Table 2.3: Comparison of full- and reduced-order models for simulating a driving cycle

# of # of Nodal Computation Max Error(◦C)

States Temperatures Time Stator Rotor

Full 52.2k+51.7k 52.2k+51.7k 219.8s N/A N/A

Reduced 7+4 2+2 16.8ms 0.94 0.07
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2.4.4 CE Sensitivity Analysis

The reduced order model also allows much faster thermal sensitivity analysis, which

can provide useful insights for electric machine thermal and cooling system design. The

differential sensitivity of a given thermal parameter or material property to the peak tem-

perature during a driving cycle can be calculated as

Sp =
∆Tmax

∆p

p

Tmax

, (2.32)

where p is a thermal parameter or material property, Tmax is the peak temperature during a

driving cycle, ∆p is a small variation in p around the nominal parameter/material property,

and ∆Tmax is the resulting change in peak temperature.

As an example, differential sensitivity analysis on both thermal parameters (e.g. coolant

temperature, liquid cooling heat transfer coefficient, air cooling heat transfer coefficient,

and initial conditions) and material properties (e.g. thermal conductivity of copper, iron,

magnets, varnish, and slot liner) were conducted for UQM PowerPhase 145, and the results

are shown in Figs. 2.14 and 2.15.

As can be seen in Fig. 2.14, for the UQM machine used in the simulation, both stator

and rotor peak temperature are very sensitive to the coolant temperature, which matches

the intuition that majority of the heat is removed through liquid cooling. As can be seen

in Fig. 2.15, for the UQM machine used in the simulation, stator peak temperature is very

sensitive to the thermal conductivity of the varnish, since it is much smaller than the thermal

conductivity of copper and has a huge effect in the Rule-of-Mixture calculation (2.5). For

rotor, the peak temperature is very sensitive to the thermal conductivity of lamination.
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2.5 Experimental Validation

As shown in Section 2.4.3, the reduced-order model results match well with those of the

full-order FEA model, and there exists a trade-off between accuracy and computation time

that can be adjusted by the number of dynamic states included in the reduced-order model.

In this section, a realistic benchmark case is used to test the reduced-order model, and to

illustrate the potential of using the reduced-order model in real-time operations. We note

that the experimental results presented in this section are solely for reference purposes,

since the reduced-order model converges to the full-order model as the number of states

increases, and thus is unrelated to the error between the full-order model and experimental

results.

A test setup was constructed which consists of a UQM PowerPhase145 145kW PMSM,

a three-phase rectifier, a 600A/1200V 3-phase IGBT inverter, and corresponding cooling

systems. PT100 Resistance Temperature Detectors (RTDs) from Omega were used to mea-

sure the temperatures of the stator end-turn, inlet coolant, and outlet coolant. A Texense

IRN2 infrared sensor, which is mounted on the end cap of the machine and pointing at the

permanent magnets, is used to measure the PM temperature. The locations of the RTDs

and the infrared sensor are shown Fig. 2.16. In the experiments, coolant and ambient

temperatures were measured and fed into the thermal model as inputs.

Locked-rotor tests were conducted due to the ease of determining the natural convection

cooling heat transfer coefficient on the end surfaces of the machine. Determining accurate

heat transfer coefficients on the end-turn surface and rotor end surface due to rotor rotation

at different speeds often requires detailed CFD simulation or complex experimental setups

[5, 57–59], which is beyond the scope of this dissertation.

A synchronous reference frame current regulator is used to generate balanced three-

phase currents with a switching frequency of 10kHz and a DC bus voltage of 290V. The

magnitude of the current is determined by either a constant command in step response tests,

or a dynamic command that corresponds to the torque of the driving cycle in driving cycle
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Figure 2.16: Temperature sensor locations.

tests. The electrical frequency of the stator current was kept at 40Hz in the locked-rotor

tests. In these tests, the reduced-order model uses explicit Forward Euler integration for

the purpose of mimicking real-time application, and reducing computation time.

The step response tests were conducted first to tune the thermal conductivity of the con-

tact resistance layer between the PM and rotor iron. The thickness of the contact layer was

set to 0.25mm. In the step response, the current magnitude is set at 200A. An optimization

routine which minimizes the error between the measured and simulated PM temperature

waveforms is used to find the optimal thermal conductivity. The step response with dif-

ferent thermal conductivities of the contact layer are shown in Fig. 2.17. As shown in the

figure, κcont = 3.1 × 10−3W/(m·K) was found to be the optimal thermal conductivity, and

was therefore used in all the simulations in this dissertation.

In the driving cycle test, the command shown in Fig. 2.12 was repeated twice to make

the temperature rise more significant. The driving cycle response of the locked–rotor tests
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Figure 2.17: Experimental data vs. simulation, step response (Ipk=200A) with various

thermal conductivities for the contact resistance layer. The experimental data was used in

the tuning of the thermal conductivity of the contact layer, with 3.1e-3W/(m ·K) found to

be the optimal value.
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is shown in Fig. 2.18. As can be seen from the figure, the simulation results (using a 7+4-

order reduced-order model) match well with the experimental data. The absolute and RMS

errors for the step and driving cycle response are listed in Table 2.4.

It takes the reduced-order model 33.0 milliseconds to simulate the driving cycle from

0 to 2600sec with a 1sec step length on Intel Xeon X2350 @ 2.67GHz dual-core CPU,

which corresponds to a 12.7 microsecond computation time for each 1sec time step (an

acceleration ratio of 78740). This is easily fast enough for a real-time temperature observer

on the processor we used. It should also be fast enough for real-time micro-controller

implementations of the model.
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Figure 2.18: Comparison of experimental driving cycle test results with reduced order

model consisting of 7 stator modes and 4 rotor modes.
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Table 2.4: Error of the reduced-order model vs. experimental results

# of Max. Error (◦C) Max. Relative Error RMS Error (◦C)

States End Turn PM End Turn PM End Turn PM

Step Command 7+4 2.16 2.13 8.4% 8.2% 0.43 0.47

Driving Cycle 7+4 1.69 1.13 4.0% 4.4% 0.64 0.54

2.6 Discussion

2.6.1 Computation Time

There are four steps involved in the proposed model-order-reduction technique: 1) full-

order model generation; 2) orthogonal eigenmode decomposition; 3) reduced-order model

generation; 4) reduced-order model simulation. In the test case presented in this chapter,

the first three steps take 36.5, 35.7 (when calculating the slowest 40 eigenvectors for stator

and the slowest 30 for rotor), and 16.0 seconds, respectively, and the last step, as shown

in Sections 2.4.3 and 2.5, only takes tens of milliseconds on the workstation described in

Section 2.4.3.2. In electric/hybrid electric vehicle powertrain-level simulation or real-time

temperature observer applications, the first three steps can be pre-calculated beforehand.

Only the last step is required for each simulation or to be run in real-time conditions.

We also note that the total computation time for all the four steps (about 88.2sec) in

the proposed technique is still almost 3 times faster than that required to simulate a full-

order model (36.5sec for full-order generation, plus 219.8sec for simulation as shown in

Table 2.3). Thus, the proposed reduced-order model can also bring significant benefits

for applications that require the generation of new full-order models at each iteration (e.g.

electric machine design optimization).

2.6.2 Explicit vs. Implicit Integration

In Section 2.4.3, implicit Trapezoidal integration was used to solve the full–order and

reduced–order model for comparison purpose, while explicit Forward Euler integration was
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used for the reduced-order model in Section 2.5 for the purpose of mimicking real-time

application and reducing computation time.

Since the full–order model is a stiff system whose smallest time constant is on the order

of microseconds, the explicit method is unstable unless using an extremely small time step,

which results in long computation time. Thus, implicit integration methods have to be

used in practice for the full-order model to ensure numerical stability and computational

efficiency [56, pp. 72-73].

On the other hand, the smallest time constant of the reduced–order model is on the order

of seconds, which makes explicit methods (such as Forward Euler) feasible. Since only

scalar operations are involved in the reduced-order model, as shown in (2.26) where the

matrices are diagonal, the reduced-order model avoids a matrix–vector solve at each step,

thus being more computationally efficient. This shows another advantage of the reduced–

order model over the full–order model.

Another benefit of using explicit numerical integration is that the temperature-dependent

losses can be captured directly in the reduced-order model, where the losses are updated

explicitly using the temperature at the previous time steps. For example, the winding con-

duction loss at temperature T can be evaluated as:

Pwind,T = Pwind,20◦C [1 + β (T − 20◦C)] , (2.33)

where Pwind,20◦C is the winding conduction loss at 20◦C, β = 0.003862K−1 is the temper-

ature coefficient of the electric resistivity of copper. Such temperature-dependent winding

conduction loss was implemented in Section 2.5. Since the temperature-dependent Pk are

serving as the inputs to the thermal model, the same model-order-reduction technique can

be applied without any modification.

Unlike the thermal material properties, which are mild functions of temperature in the

operating temperature range of electric machines (e.g. the thermal conductivity of copper
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changes by about 3% over a temperature range of −25◦C to 130◦C, and its specific heat

changes by less than 5% over the same range), the electromagnetic material properties are

strong functions of temperature (e.g. the electric resistivity of copper). One nice feature

of the proposed reduced-order thermal model is that it can provide temperatures for use in

loss estimation.

2.6.3 Trade-offs in the Reduced-order Model

Although faster, the reduced-order model will always lose some information, and thus

accuracy, when compared with the full-order model. Thus, there exists a trade-off between

computation time and accuracy. A good model-order-reduction technique should allow

the users to adjust such trade-off according to their specific applications. In the proposed

model-order-reduction technique, users can adjust the accuracy by adjusting the following

trade-offs.

2.6.3.1 Symmetry in the Thermal Model

In Section 2.4 and 2.5, only a tooth-slot pair was modeled for the stator, and only a

single pole was modeled for the rotor, by assuming symmetries in the loss and boundary

heat transfer distributions in the thermal model. This is only for the purpose of reducing the

size of the 3D mesh and accelerating the generation process of the reduced order model.

If an entire pole or an entire machine geometry is modeled, the 3D FE mesh becomes

much larger, and the computation time and memory consumption for the reduced-model

generation process (especially the eigenvector calculation) will increase substantially.

However, the proposed model-order-reduction technique will still work if an entire pole

or an entire machine is modeled in the thermal model. Although the computation time for

generating the reduced order model is much longer than that presented in this chapter, after

the reduced-order model is generated, the model can be still fast to run since it contains

a dramatically smaller number of dynamic states in the reduced model than that in the
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full-order model. In some scenarios, it is necessary to model an entire pole or an entire

machine, for example, when simulating stalling scenarios, unbalanced phase currents, or

asymmetric cooling conditions. The proposed method would be actually more useful in

these cases, as a traditional full-order 3D thermal model for an entire machine would be

extremely computationally intensive.

2.6.3.2 Detailed Distributed Loss Modeling

In Section 2.3, the normalized loss density distribution vectors ~fk are assumed to be in-

dependent of operating points in terms of current magnitude, phase angle, and rotor speed.

This allows the pre-calculations of (2.24), (2.25), (2.26), and a straightforward extent of

excitation calculation in (2.27). The proposed reduced-order model can also take the full-

order nodal loss information as inputs, where (2.3) becomes

~q =
∑

k

~qk +
∑

l

Hl~gl, (2.34)

where ~qk is the nodal loss vector (internal forcing vector) calculated from the full-order

FEA assembly process for each type of loss, which can be operating-point dependent and

contains loss information for each node in the FE mesh. Equation (2.26) then becomes

dd

.

~xd + kd~xd = V
T
d ~q. (2.35)

By using this technique, the distributed loss in the reduced-order model can be modeled as

accurately as the full-order model. However, the computational benefits of pre-calculating

time-invariant, operating-point-independent vectors ~uk, ~sl and V
T
d
~fk in (2.24), (2.25), and

(2.26) are lost. Instead, time-varying, operating-point-dependent full-order vectors ~qk are

needed. This increases the computation time and memory cost.
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2.6.3.3 Time-dependent Convective Heat Transfer Boundary Condition

When the heat transfer coefficients on convective boundaries are time-invariant, by sub-

stituting (2.7) into (2.2), the nodal temperature component in (2.7) can be combined into the

stiffness matrix K in (2.2) forming a combined stiffness matrix K
′. The orthogonal decom-

position in Section 2.3.1 is then applied to D and K
′ for model-order-reduction. When the

heat transfer coefficients on convective boundaries are time-varying (e.g. due to changes in

cooling temperature or rotor speed), combining (2.7) and (2.2) would create a time-varying

K
′. In this case, the orthogonal decomposition process is applied to D and the original

stiffness matrix K for model-order-reduction, and the time- and temperature-dependent

heat flux on the right hand side of (2.2) are considered as inputs to the system. Provided

explicit numerical integration techniques are used, this is straight forward to implement.

2.6.3.4 Unit Delay from Air Gap Coupling for Solving Full-order Model

In this chapter, the stator and rotor models are simulated separately and coupled to-

gether using the air gap transfer relationship discussed in Section 2.2.3. For the implicit

Trapezoidal integration used in Section 2.4.3, the boundary temperature at the previous

time step (tk−1) is used to calculate the air gap heat flux at tk, which introduces a unit

delay to the system dynamics. The unit delay can be eliminated by augmenting the stator

and rotor state-space equations with the air gap transfer relationship to form a single state-

space representation for the entire machine. The unit delay has negligible impact on the

simulation results in this chapter and eliminating it by augmenting the matrices makes the

simulation time much longer. Thus, the unit delay is kept in this chapter.

For example, simulating a single 103.9k-state model for the entire machine is more than

20 times slower than simulating a 52.2k-state stator model and a 51.7k-state rotor model

coupled by air gap, while the accuracy improvement from unit-delay elimination is in the

range of 0.01◦C.
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2.7 Conclusion

A CE 3D FE-based dynamic thermal model is proposed, developed, and presented in

this chapter. By applying orthogonal decomposition and eigenmode-based MOR, the full-

order 3D FEA model can be reduced to a ROM with a small number of states based on

the proposed “normalized extent of excitation” calculation. Results show that the pro-

posed model can dramatically reduce the computation time by over 4 orders of magnitude

comparing with a full-order dynamic thermal FEA model while maintaining satisfactory

accuracy. Experimental results show that a ROM with 7 stator states and 4 rotor states can

accurately capture the temperature response in the testing machine comparing with mea-

surements. These results suggest that, although the geometry of an electric machine can

be complex and may result in a large 3D FEA mesh, a dynamic thermal model with a few

dynamics states can be accurate enough for many applications. This chapter presents a

systematic way of generating such a reduced-order model. Furthermore, a ratio of 80000

between simulation time and real time was observed in Section 2.5, which is fast enough

for real-time implementation in embedded controllers.

Such a CE thermal model can be useful in real-time condition monitoring, model-

based controls, system-level simulation, and thermal protection/management. Moreover,

the MOR process only requires calculating a small subset of eigenvectors of the full-order

3D FEA model, and does not depend on the inputs to the system. Thus, the ROM genera-

tion process is also fast. As a result, the computation time for generating and simulating the

ROM is still 3 times faster than simulating the full-order model. This can bring benefits

for applications that require the generation of new full-order models at each iteration (e.g.

electric machine design optimization).
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CHAPTER 3

Computationally–Efficient

Magnetostatic-FEA-based Scalable Model of

Electric Machines

3.1 Introduction

This chapter focuses on developing a physics-based, CE, scalable EM electric machine

model for vehicle powertrain designers that is fast enough for powertrain-level simula-

tion/optimization. The proposed scaling framework is based on MS FEA, which makes it

possible to quickly generate and determine the EM performance of new machine designs

through the application of scaling techniques to an existing “base” design. Three scaling

techniques are used to quickly generate new machine designs from the base design for

vehicle powertrain-level simulation and optimization. Using the proposed scaling tech-

niques, the performance of the new designs in terms of efficiency map can be predicted

quickly by avoiding re-solving FEA for the scaled designs, so vehicle powertrain designers

can efficiently adjust the characteristics and the performance of the machine in ways that

are favorable to the overall vehicle performance. The result is a scalable model that can

estimate the efficiency map of a new scaled machine design in several core-minutes, after

a base-design database is pre-calculated. This is fast enough to be integrated into vehicle

powertrain optimization.
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In Section 3.2, the MS finite element model used in this dissertation is discussed. This

is used in the FEA database generation process. Section 3.3 presents three scaling tech-

niques for generating new designs from a “base design” FEA database. It is shown that the

performance of the scaled designs can be estimated directly from the base design database,

without the necessity of re-solving FEA. In Section 3.4, the process of the proposed de-

sign scaling simulation framework is presented. In Section 3.5, results and examples are

presented to demonstrate the benefits the proposed method can bring to the powertrain de-

signers. In this chapter, a permanent magnet synchronous machine (PMSM) design is used

as a case study to illustrate the proposed technique. But the proposed scaling techniques

are general and can work with other types of machine topologies, such as field-wound

synchronous machines, induction machines, and switched reluctance machines.

3.2 Finite Element Modeling and Post-Processing

Nonlinear 2D MS FEA and post-processing techniques are used in this dissertation to

estimate the EM performance of a machine instead of transient or steady-state analysis.

This choice is due to the following reasons. First, MS FEA is much faster to solve than

transient or steady-state analysis. Second, MS FEA is rotor-position-dependent instead of

time-dependent so it can be used for all rotor speeds. Third, MS FEA enables the proposed

number-of-turns scaling technique, which will be discussed in Section 3.3. It is noted that

the accuracy of loss estimation will suffer to some extent using MS FEA. However, this is a

trade-off for making the model feasible to be used in powertrain level simulation/optimiza-

tion.
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The MS formulations used in this dissertation are listed below:

∇ · ~B = 0, (3.1)

∇× ~E = 0, (3.2)

∇× ~H = ~J, (3.3)

where ~B is magnetic flux density, ~E is electric field intensity, ~H is magnetic field intensity,

and ~J is electric current density. Note that the dynamic effects in Faraday’s Law are ne-

glected in MS FEA, as shown in (3.2). In this dissertation, a current-driven MS FEA model

is used. Thus, the inputs to the model are current magnitude and phase angle, and rotor

position.

3.2.1 Torque Calculation

The instantaneous electromagnetic torque is calculated using FEA for a given com-

bination of current magnitude, phase angle, and rotor position. Several rotor positions

within one period are then simulated, and the average torque is calculated and stored in the

database for later use.

3.2.2 Loss Calculation

Winding conduction losses, stator and rotor core losses, PM eddy current losses, and

power electronic losses are estimated using MS FEA, post-processing techniques, and an-

alytical relationships.

3.2.2.1 Winding Conduction Losses

The winding conduction losses are estimated as follows:

Pcond = Nslot (lslot + lend)σslot

∫∫

J2ds, (3.4)
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where Nslot is the number of slots, lslot is the length of the slot, lend is the length of the end

winding, σslot is the effective electrical conductivity of the slot region, and J is the current

density. The length of the end winding can be determined through measurement of the base

design, or estimated using analytical relationships based on the dimensions and the layout

of the winding (e.g., [60, 61]).

The effective electrical conductivity of the slot region σslot can be calculated as:

σslot = σcopperffill, (3.5)

where σcopper is the conductivity of copper, and ffill is the slot fill factor.

The electric resistivity of copper is a function of temperature, and can increase by

54.07% with a temperature rise from 20◦C to 160◦C. An accurate estimation of the temper-

ature effect on winding resistance is not possible without coupling a thermal model to the

EM model. In this chapter, the resistivity of copper is adjusted to the winding temperature

limit for continuous operation as a rough approximation to such temperature effect:

ρCu,T1
= ρCu,T0

[1 + β (T1 − T0)] (3.6)

where T1 is the winding temperature limit for continuous operation, T0 = 20◦C is room

temperature, ρCu,T1
is the resistivity of copper at T1, ρCu,T0

= 1.68 × 108Ω · m is the

resistivity of copper at room temperature, β = 0.003862K−1 is the temperature coefficient

of the electric resistivity of copper.

3.2.2.2 Core Losses

Core losses are estimated in post-processing using the flux density distribution in the

lamination calculated from 2D MS FEA. The flux density vector in each finite element

~B(θr) is evaluated at a set of different rotor positions θr within one period. The rotor–

position–dependent flux density ~B(θr) is then converted to time-dependent flux density
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~B(t) at specific rotor speeds (and electrical frequencies fe), where t and θr are related as

t =

Npole

2
θr

2πfe
, (3.7)

where Npole is the number of poles.

There are two important phenomena to capture in the core loss calculation of electric

machines: 1) non-sinusoidal flux density waveforms; 2) the rotational field. Building an

accurate model to capture both effects is difficult, and “no relevant significant work has

appeared in the literature” [62]. In this chapter, the rotational core losses due to the rota-

tional flux density vector with harmonics are calculated as the sum of pulsating losses with

harmonics in both x and y directions [62]:

Pcore = Pcore,x (Bx (t)) + Pcore,y (By (t)) , (3.8)

where Pcore is the rotational core loss, Pcore,x and Pcore,y are the pulsating core loss with

harmonics in x and y directions, which are functions of flux density Bx and By, respec-

tively.

Among several core loss models, two models were found to be suitable for capturing

the harmonics in the pulsating core loss in this paper: 1) a Fourier-series-based method [63]

which is fast but lacks accuracy as it assumes the losses of each harmonic are independent

of one another; and 2) an Improved Generalized Steinmetz Equation (IGSE) [64] which

can capture the nonlinearity and minor loops, but is computationally intensive to run. As

the proposed scaling techniques in Section 3.3 do not depend on the choice of loss model,

users can decide on which loss model to use. The first method is presented below, and used

in the simulation in this dissertation due to its computational efficiency.

By performing Fourier Transform on the x component of ~B(t), the core losses can then
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be evaluated as a function of fe and B̂x,h as:

Pcore,x =
∑

h

Ph

(

fe, B̂x,h

)

. (3.9)

where Px,h is the pulsating core loss at the h-th harmonic in x direction, B̂x,h is the flux

density at the h-th harmonic in x direction. Using the Steinmetz Equation, the core loss

can be normalized with respect to frequency as follows:

Pcore,x = ceNpolel
∑

h

c1(hfe)
c2
∑

i

∫∫

∆i

B̂c3
x,hds

= fe
c2Pcore,x,norm, (3.10)

where

Pcore,x,norm = ceNpolel
∑

h

c1h
c2
∑

i

∫∫

∆i

B̂c3
x,hds (3.11)

is the normalized core loss in x direction, l is the length of the iron, ∆i is the area of the

i-th finite element, and c1, c2, c3 are the Steinmetz coefficients. An empirical corrective

coefficient ce is used to take the manufacturing and lamination process into account, as the

core loss estimation is usually systematically lower than the measurement to the extent that

a factor of 2 or more are often observed [65]. The same process applies for the y direction.

3.2.2.3 Permanent Magnet Eddy Current Losses

The permanent magnet eddy current losses can be estimated using Faraday’s Law [66,

67]:

~E = −

(

∂ ~A

∂t
+∇φ

)

, (3.12)
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where ~E is the electric field intensity, ~A is the magnetic vector potential, and φ is the

electric potential. No net current in the permanent magnets indicates

∫∫

Si

(

∂ ~A

∂t
+∇φ

)

ds = 0, (3.13)

where Si is the area of the i-th PM. The electric potential of the i-th PM in the average

sense can therefore be obtained as

∇φ = −
1

Si

∫∫

Si

∂ ~A

∂t
ds. (3.14)

In a 2D problem, ~A = Az ẑ, thus

Ez = −





∂Az

∂t
−

1

Si

∫∫

Si

∂Az

∂t
ds



 . (3.15)

In the harmonic form, the h-th harmonic of the electric field is

Ezh = −jωeh



Azh −
1

Si

∫∫

Si

Azhds



 , (3.16)

where ωe = 2πfe is the electrical angular velocity. For linear triangular finite elements,

define the magnetic vector potential of the i-th PM in the average sense as

Aavg,h =
1

Si

Ni
∑

k=1

∫∫

∆k

Azhkds

=
1

Si

Ni
∑

k=1

∆k

3
(Azhk,1 + Azhk,2 + Azhk,3), (3.17)

where Ni is the number of elements in the i-th PM, ∆k is the area of the k-th element, and

Azhk,1, Azhk,2, Azhk,3 are the nodal values of the k-th element. Thus, the nodal value of the
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eddy current density is given by

JEC,h = −jωehσPM(Azh − Aavg,h) = feJEC,norm, (3.18)

where σPM is the electric conductivity of the PM material and JEC,norm = −2πjhσPM(Azh−

Aavg,h) is the normalized eddy current density with respect to frequency at each node.

If J corresponds to the peak value, the average eddy current loss in a linear triangular

element is [68]

Pk = ℜe

(

lPM

2σPM

∫∫

∆k

JECJEC
∗ds

)

(3.19)

=
∆klPM

12σPM

[|Jk1|
2 + |Jk2|

2 + |Jk3|
2 + ℜe(Jk1J

∗
k2 + Jk1J

∗
k3 + Jk3J

∗
k2)]. (3.20)

where lPM is the length of PM, and Jk1, Jk2, Jk3 are the nodal eddy-current densities of the

k-th element. The total eddy current loss in PM is then given by

PPM = Npole

Ni
∑

k=1

Pk = f 2
ePPM,norm, (3.21)

where PPM,norm is the normalized eddy current loss with respect to frequency, which is

calculated using the normalized eddy current density JEC,norm. It is noted that the proposed

scaling techniques in Section 3.3 do not depend on the choice of PM eddy-current loss

estimation method. Users can also choose to use other post-processing techniques, e.g.

[30].

The conduction loss calculation in (3.4) is independent of frequency, and therefore un-

derestimates the winding losses at high rotor speeds by not capturing the skin and proximity

effect. Furthermore, PM losses are overestimated by neglecting the effects of the induced

currents on the magnetic field structure. These are the compromises created due to our use

of MS FEA.

One advantage of using the MS approach and the proposed loss expressions is that the

58



core losses in (3.10) and PM losses in (3.21) can be normalized with respect to frequency,

thanks to the proportional relationship with respect to fx
e . Using normalized expressions

for these losses, all of the calculated values for a given operating point of current magnitude

and phase angle are independent of frequency, and the results can be easily used for any

frequency (i.e., rotor speed). Another benefit of using normalized losses is that the flux

density distribution in the iron and the eddy-current density distribution in the PM are no

longer needed to be stored in the database, which dramatically reduces the file size of the

FEA database.

3.2.2.4 Power Electronic Losses

Power electronic losses, which include the conduction losses of the insulated-gate bipo-

lar transistors (IGBT) and the anti-parallel diodes, switching losses, reverse recovery losses,

and gate charging losses, can be calculated using analytical relationships and empirical

data. In this dissertation, the power electronic losses are calculated as follows.

IGBT conduction losses can be calculated as [69–71]:

PIGBT,cond =

(

1

2
−

Td

Ts

)(

VCE0
Ipk
π

+Rc

I2pk
4

)

+

(

VCE0
Ipk
8

+Rc

I2pk
3π

)

, (3.22)

where Td is the dead-time duration, Ts = 1
fsw

is the switching period, fsw is the switch-

ing frequency, VCE0 is the IGBT on-state zero-current collector-emitter voltage, Rc is the

collector-emitter on-state resistance, and Ipk is peak phase current.

Diode conduction losses can be calculated as [69–71]:

Pdiode,cond =

(

1

2
+

Td

Ts

)(

Vd0
Ipk
π

+Rd

I2pk
4

)

−

(

Vd0
Ipk
8

+Rd

I2pk
3π

)

(3.23)

where Vd0 is the diode forward voltage drop at zero current, and Rd is the diode on-state

resistance.

Assuming voltage and current changes linearly during switching, the IGBT turn-on and
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turn-off losses can be approximated as:

PIGBT,on =

∫ t2

t1

VCEICdt = fsw
VpkIpk
π

(

trise
4

+
td,on
2

)

, (3.24)

PIGBT,off =

∫ t4

t3

VCEICdt = fsw
VpkIpk
π

(

td,off
2

+
0.95tfall

3

)

, (3.25)

where Vpk is peak phase voltage, trise is the rise time, tfall is the fall time, td,on is the turn-

on delay time, and td,off is the turn-off delay time. A more accurate approximation can be

found in [72].

Diode turn-on losses can be calculated as [69]:

Pdiode,turn−on =
1

4
QrrVDrrfsw, (3.26)

where Qrr is the diode reverse recovery charge, and VDrr is the voltage across the diode

during reverse recovery.

Gate charging losses can be calculated as [69]:

Pgate = QgVGEfsw, (3.27)

where Qg is the total gate charge, and VGE is the IGBT gate-emitter voltage.

3.2.3 Flux Linkage

In 2D FEA, the calculated flux linkage does not capture the end-winding leakage in-

ductance. This inductance can be estimated using analytical relationships, e.g., [60,61]. In

this chapter, the following relationship is used [60]:

Lend = µ0ReN
2
c

[

ln
8Re

R
− 2

]

, (3.28)

60



where Lend is the end-winding leakage inductance, µ0 is the vacuum permeability, Re is

half of the winding arc length, Nc is the number of turns per coil, and R is the geometric

mean distance of the coilside from itself.

Thus, the fundamental flux linkage with end-winding effect included can be compen-

sated as

λ̃1 = λ̃′
1 + LendĨ (3.29)

where (̃·) denotes a phasor quantity, λ̃′
1 is the fundamental flux linkage from the 2D FEA

simulation, and Ĩ is the phase current.

3.2.4 Demagnetization Check

To predict demagnetization in the electric machine, the maximum magnetic field inten-

sity in the PM region needs to be calculated and compared with the intrinsic coercivity of

the PM material times a safety factor. Thus, the maximum magnetic field intensity of the

PM region for each operating point is also stored in the base design database for later use.

3.3 Design Scaling for Electric Machines

For the purpose of building FEA databases and generating efficiency maps, the torque,

normalized losses, flux linkage, and magnetic field intensity of the base design are calcu-

lated over a wide range of operating points and stored in a “base design” database for use

in the proposed scaling techniques. The base design is scaled using three independent tech-

niques, which create the ability for powertrain designers to quickly adjust the torque-speed

curve and efficiency maps in ways that are favorable to the vehicle powertrain. Each scal-

ing technique is discussed in this section, while the entire scaling framework with detailed

procedures is presented in Section 3.4.
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Figure 3.1: Dimensional scaling

3.3.1 Dimensional Scaling

The first scaling method, as illustrated in Fig. 3.1, is to proportionally scale all the

dimensions of the base design by a factor of α as ~rα = α~r1, where ~r denotes the coordi-

nate system, subscript “1” is for the base design, and “α” is for the scaled design. In the

scaled design, magnetic fields, flux densities, and electric potentials (voltages) are forced

to remain consistent with the base design, as they are the fundamental limiting factors of

the machine’s performance capability.

Flux density: ~Bα (~rα, tα) = ~B1 (~r1, t1) , (3.30)

Field intensity: ~Hα (~rα, tα) = ~H1 (~r1, t1) . (3.31)

Electric potential: φα (~rα, tα) = φ1 (~r1, t1) . (3.32)

The voltage will be adjusted by the second scaling method, as will be discussed later in

Section 3.3.2. Under the above three constraints, it can be shown that the quantities in the

scaled design and the base design are related as follows [44].
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3.3.1.1 Time

To achieve the desired relationships in (3.30, 3.31), the time t, and rotor speed ωr, must

be scaled as follows:

tα = α2t1, (3.33)

ωr,α =
1

α2
ωr,1. (3.34)

3.3.1.2 Electromagnetic Field Scaling

The electromagnetic field quantities of the base and scaled designs can be related as

follows:

Flux linkage: λα (tα) = α2λ1 (t1) , (3.35)

Current density: Jα (~rα, tα) =
1

α
J1 (~r1, t1) , (3.36)

Current: Iα (~rα, tα) = αI1 (~r1, t1) . (3.37)

3.3.1.3 Electromagnetic Performance Scaling

The torque, total loss, and thus efficiency of the base and scaled designs are related as

follows:

Torque: τem,α = α3τem,1, (3.38)

Losses: Ploss,α = αPloss,1, (3.39)

Efficiency: ηα (τem,α, ωr,α) = η1 (τem,1, ωr,1) . (3.40)

Using (3.34, 3.38, 3.39), the efficiency maps of the scaled designs can be generated directly

using the information in the base design database. Note that, according to (3.40), there is

a direct mapping between the base design efficiency map and the scaled design efficiency

map in dimensional scaling. The point (τem,1, ωr,1, η1) on the base design efficiency map
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directly corresponds to the point (τem,α, ωr,α, ηα) on the scaled design efficiency map.

3.3.2 Number-of-Turns Scaling

The second scaling method is to scale the number of turns in the winding. The effective

number of turns of a phase can be represented using a factor of N , as illustrated in Fig. 3.2.

Figure 3.2: Number-of-turns scaling

The concept of effective number of turns N is used to represent the total flux linkage

linking one phase, which affects the terminal voltage–current relationship. The terminal

voltage–current relationship can be affected by several factors, e.g. the number of turns per

coil, the winding connection scheme (parallel or series connection of the pole–pairs), and

∆/Y connection. Thus, the effective number of turns N is not limited to integer numbers.

For example, for a base design with 18 poles (9 pole pairs) connected in series, 1 turn per

coil, and a Y-winding configuration, the effective number of turns N can be scaled by the

multiplication of the following three factors: 1) any natural numbers of turns per coil (1,

2, 3, ...); 2) pole-pair connection factors (1 for 9 pole pairs connected in series, 1
3

for 3 in

series, then in parallel, and 1
9

for 9 in parallel); and 3) Y/∆ factor (1 for Wye, 1√
3

for ∆).

The base design is considered to have 1 turn per coil (i.e. N = 1) in the number-of-turns

scaling. After the turn scaling is applied, the total current in a slot of the scaled design is

determined by the effective number of turns, combination of winding scheme (e.g., parallel
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or series connection of poles, and ∆/Y connection) and the current information in the base

design database. The operating points of the scaled design and the base design are related

by the current density in a slot. The operating points which have the same current density

distribution in the base design FEA database are used to calculate the performance of the

scaled design. Since the scaled and the base design have the same current density distri-

bution, the area of a single turn and the terminal current of the machine has the following

scaling relationship:

AN =
A1

N
, (3.41)

IN =
I1
N
, (3.42)

where the subscript “1” is for the base design, and “N” is for the scaled design. Fur-

thermore, the total length of all the turns, and thus the phase resistance, has the following

scaling relationship:

lN = Nl1 (3.43)

RN = ρslot
lN
AN

= ρslot
Nl1
A1

N

= N2R1, (3.44)

where ρ is the resistivity of the winding material.

Since the “base” design database consists of position-dependent MS analysis, the time

and rotor speed can be scaled easily to calculate the fundamental component of the phase

voltage of the scaled design by using the scaling relationship (3.42,3.44) and λN = Nλ1:

ṼN = ĨNRN + jωeλ̃N (3.45)

= N
(

Ĩ1R1 + jωeλ̃1

)

. (3.46)

The voltage constraint, which is imposed by the power electronics, can thus be checked for

the scaled design.
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3.3.3 Slot/Pole Scaling

Figure 3.3: Slot/Pole scaling

The third scaling method, as illustrated in Fig. 3.3, is to proportionally scale the number

of slots and the number of poles, while making the slot/pole ratio constant. To improve

the performance of the scaled design, the thickness of the stator and rotor back-iron are

adjusted by [60]

tNpole
= tbase

Nbase

Npole

, (3.47)

where Nbase and Npole are the number of poles in the base design and the scaled design,

respectively, tNbase
and tpole are the back-iron thickness in the base design and the scaled

design, respectively. By using a thinner back-iron when increasing the number of poles, the

weight can be reduced. Since there is no straightforward way to relate the performance of

the base design and the scaled design in slot/pole scaling, separate FEA databases need to

be built for this scaling technique. The dimensional and number-of-turns scaling are then

applied to each database.

As a summary, using the above three independent scaling techniques, new machine

designs can be generated easily. In the first two scaling techniques, the performance of the

scaled design can be calculated directly by using the pre-generated FEA database, without

the necessity of re-solving the computationally intensive FEA for each scaled design. It is
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noted that the proposed scaling techniques are general and can work with both 2D and 3D

MS FEA database. 2D FEA is discussed in this dissertation only for illustration purposes.

3.4 Simulation

The process of the proposed simulation framework is presented in this section. There

are three steps involved in the proposed techniques: 1) the pre-calculation of base design

FEA databases, 2) the generation of scaled designs, and 3) efficiency map generation for

the scaled designs.

3.4.1 Pre-calculation of Base Design FEA Database

In the database generation process, MS FEA is solved and post-processing techniques

are used for a wide range of current magnitudes I and phase angles θI , as introduced in

Section 3.2. The average torque over one period, normalized losses, flux linkage, and the

maximum magnetic field intensity in the PM are calculated and stored in a database as

two-dimensional lookup tables, with current magnitude and phase angle as inputs.

3.4.2 Scaled Design Generation

Scaled designs can be generated using the three scaling techniques proposed in Section

3.3. After a set of scaling parameters (α and N) is chosen, the pre-calculated databases are

scaled correspondingly, according to the scaling relationships presented in Section 3.3.1

and 3.3.2. Post-processing is then used to estimate the losses at all rotor speeds (ωr) by

using the relationships presented in Section 3.2.2. The result is a set of data which contains

torque (τ ), losses (Ploss), voltage (V ), and the maximum magnetic field intensity of the

PM region (Hmax) for all the (I ,θI ,ωr) combinations. It is then used for calculating the

efficiency map of the scaled design.
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Algorithm 3.1: Optimal operating point search

Input: a point (τ, ωr) on efficiency map

Data: τ , Ploss, V , Hmax, Vlim and Ilim
Result: (Iopt, θI,opt) and its efficiency ηopt

1 ηtest ← 0;

2 Determine Imin, the smallest I that can produce τ (i.e. the min. current operating

point);

3 for I=Imin to Ilim do

4 Search for θI that can produce τ at I using interpolation;

5 if found then // τ is achievable at I
6 if V ≤ Vlim and Hmax < cHci then

// by interplolation

7 Calculate losses and efficiency at (I, θI);
8 if η(I, θI) > ηtest then

9 ηtest ← η(I, θI);
10 (Iopt, θI,opt)← (I, θI);

11 end

12 end

13 end

14 end

15 ηopt ← ηtest;

3.4.3 Efficiency Map Generation

The optimal-efficiency operating points (Iopt, θI,opt) need to be found for efficiency map

calculation. The optimal-efficiency operating points are defined as the (I ,θI ) combination

that minimizes losses for a given (τ ,ωr) while satisfying voltage and current constraints

(Vlim and Ilim imposed by power electronics) without demagnetizing the permanent mag-

nets (i.e. Hmax < cHci, where Hci is the intrinsic coercivity, and c < 1 is a safety factor).

Algorithm 1 is used to find the optimal operating points. For a given torque and speed (i.e.

a point on efficiency map), the smallest current magnitude that can produce the torque is

determined first (i.e. the minimum current operating point). The current magnitude is then

swept from this minimum value to the current limit in the algorithm. At each current mag-

nitude, the phase angle that can produce the torque is determined through interpolation.

The efficiency at such current magnitude and phase angle combination is then compared

with the previous highest efficiency. By sweeping all the possible current magnitudes, the
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efficiency found by Algorithm 1 is guaranteed to be optimal. After the optimal efficiencies

ηopt(τ, ωr) are found for all the torque and speed combinations in the efficiency map, the

efficiency contours can be drawn.

The flowchart of the overall simulation process is shown in Fig. 3.4. Among the four

steps, the first two correspond to the database generation process, which are calculated

beforehand. Only the last two steps are needed to run in the powertrain simulation/opti-

mization.

3.5 Results

3.5.1 Base Design Efficiency Map Validation

A model of the UQM PowerPhase® 145, a 400Nm, 145kW surface-mount PMSM from

UQM Technologies [54], is used in this section for illustration purposes. The geometry

of the machine used in the 2D FEA is shown in Fig. 3.5. The losses are calculated using

the relationships presented in Section 3.2.2. For winding conduction loss, the resistivity of

copper is adjusted to 160◦C, which is the winding temperature limit for continuous opera-

tion provided by the machine manufacturer. The core losses are calculated by Steinmetz’s

Equation (3.10), with coefficients c1 = 16.59, c2 = 1.53, c3 = 1.90, which are determined

by fitting the data from steel lamination datasheet. An empirical corrective coefficient

ce = 2 was used to account for the manufacturing process [65].

As an example, the loss density distribution solved by FEA at the operating point of

I = 400A, θI = 140◦, 4000RPM is shown in Fig. 3.6. As discussed in Section 3.4.1, a

wide range of current magnitudes and phase angles are simulated to build the base design

database. Fig. 3.7 shows the rotor-position-dependent torque at different current magni-

tudes with θI = 90◦. The average torque within a period is used for the efficiency map

calculation. Fig. 3.8 shows the torque vs. current phase angle curves at different current

magnitudes. In practice, only the range of 90◦ ≤ θI ≤ 180◦ (i.e. direct-axis current Id ≤ 0,
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Figure 3.5: 2D geometry of UQM PowerPhase® 145.
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quadrature-axis current Iq ≥ 0) is of interest for the motoring mode of a PMSM. Thus,

there is no need to sweep θI from 0◦ to 180◦ in the simulation.
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Figure 3.6: Loss distribution at 400A, 140◦, 4000RPM (logarithmic scale)

Comparing the MS FEA results with MQS, torque, flux linkage, and core loss calcu-

lated from the two formulations are almost identical. MQS FEA is more accurate for AC

winding resistance and PM eddy current loss calculation. But calculating AC winding re-

sistance in MQS FEA requires modeling individual wires/strands in the slot, which dramat-

ically increases the number of elements in the mesh. Thus, traditionally it is not uncommon

to use DC resistance in MQS FEA; e.g., [42, 47]. If DC resistance is used, both MQS and

MS FEA will have the same accuracy in the winding loss calculation. For PM eddy current

losses, although MS FEA overestimates PM losses as discussed in Section 3.2.2.3, the to-

tal amount of PM losses is usually small, and so the impact on efficiency map calculation
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Table 3.1: Comparison of MS and MQS FEA at 8000RPM, 450A, 157.7◦

MS MQS

Torque τ (Nm) 164.5 164.50

Peak flux linkage λpk (Vs) 0.02471 0.02512

Winding loss Pwind (W) 6484.3 6484.3

Core loss Pcore (W) 2893.2 2889.8

PM loss PPM (W) 56.4 41.1

PPM/Pmech 0.04% 0.03%

Table 3.2: Comparison of MS and MQS FEA at 8000RPM, 250A, 178.9◦

MS MQS

Torque τ (Nm) 4.47 4.45

Peak flux linkage λpk (Vs) 0.03773 0.03769

Winding loss Pwind (W) 2001.4 2001.4

Core loss Pcore (W) 2662.4 2662.2

PM loss PPM (W) 15.1 10.7

PPM/Pmech 0.4% 0.3%

is negligible. For example, two operating points are simulated at the maximum speed of

8000RPM for the UQM machine using MS and MQS FEA, with results shown in Table

3.1 and 3.2. As can be seen in the tables, MS FEA overestimates PM loss by up to 41.1%

at low torque. But the ratio of PM loss PPM to output mechanical power Pmech = τωr is

small, thus such overestimation in PM loss has negligible impact on efficiency calculation.

The efficiency map simulated using MS FEA and the techniques discussed in Sec-

tion 3.4.3 is compared with the efficiency map provided in the UQM PowerPhase® 145

datasheet [54], which was determined through experimental measurements. The current

and bus voltage limits used in the simulation are 500A and 340V, according to the datasheet,

and six-step operation [73] is used in the field weakening region. As can be seen from Fig.

3.9, the simulated torque-speed curve and the overall shape of the efficiency contour lines

matches well with the datasheet. The peak power calculated from the simulation (151.0kW)

is 4.1% larger than the rated peak power of 145kW, while the peak torque in the constant

torque operating region at low speeds calculated from the simulation (425.2Nm) is 6.3%
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larger than the rated peak torque of 400Nm.

The over-estimation in peak torque at low speeds is possibly due to the uncertainty in

B-H curve caused by the manufacturing process of the laminations. It is also possible that

the datasheet map does not utilize the reluctance torque (although it is small for surface-

mount PMSM) at low speeds, i.e. not in max torque per ampere (MTPA) operation. For

example, at the current limit of 500A, torque is 412.3Nm when Id = 0A, Iq = 500A,

while increasing to 425.2Nm at MTPA operation (Id = −104A, Iq = 489A). The over-

estimation in efficiency is possibly due to 1) the neglect of AC winding resistance; 2) the

core loss corrective coefficient due to manufacturing process (ce = 2) used in this paper

is conservative. A coefficient higher than 2 is often observed, as suggested in [65]. Better

accuracy can be achieved by tuning ce, since it is fundamentally difficult to determine it

theoretically.

3.5.2 Scaled Design Examples

In this section, an MS FEA database that contains 151 current magnitudes and 31 phase

angles are used in the scaling process. The same current and bus voltage limits of 500A

and 340V are used as in Section 3.5.1 purely for comparison purposes. In practice, users

can choose different limits according to their specific cases.

Using the proposed techniques, the torque-speed curve of the electric machine can be

adjusted, and the high efficiency region (“sweet spots”) on the efficiency map can be re-

shaped according to different design specifications. For example, Fig. 3.10 shows a scaled

design with dimensional scaling factor α = 1.6 and effective number of turns N = 0.78

(7 turns, 9 parallel paths), and 18 poles. As shown in the figure, this design has good

efficiency performance at mid speed, high torque regions around 510Nm, 2700RPM. By

decreasing the number of turns while increasing the size of the machine, the scaled design

has higher peak torque as the base design, and the sweet spots are moved upward. This is

achieved at the price of using more materials, and thus a higher cost.
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Fig. 3.11 shows another design with α = 0.8, N = 1.33 (4 turns, 3 parallel paths). As

shown in the figure, this design has good efficiency performance at mid speed, low torque

regions around 95Nm, 7000RPM. Fig. 3.12 shows another scaled design with α = 1.3,

N = 2, and 18 poles. As shown in the figure, by increasing the number of turns and size,

much higher peak torque of 905Nm can be achieved while having sweet spots in the mid

speed, mid torque range around 340Nm, 1750RPM.

It is noted that an arbitrarily scaled design may not be feasible in practice due to ther-

mal and structural limitations. From the thermal perspective, when the number of turns

increases, for the same terminal current magnitude, heat generation increases due to the

increase in total slot current, while cooling capacity remains the same due to the same di-

mensions and thus the same cooling surface area. This may result in over-heating and the
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Figure 3.12: Efficiency map of the α = 1.3, N = 2 design

80



predicted peak torque from electromagnetic FEA may be not practical to achieve. To accu-

rately predict the peak torque and continuous torque operating regions (which are defined

as the peak torque a design can produce for a short period of time and in steady-state, re-

spectively), a scalable thermal model is needed to couple with the electromagnetic model.

From the structural perspective, the rotor experiences centrifugal forces when rotating, and

it is a major challenge in high-speed PMSM design to retain the PMs at high-speed oper-

ations [74]. Thus, when the scaled design has a larger speed range, the structural design

may become invalid.

To address this concern, both analytical and numerical methods can be used for rotor

stress analysis [74] and determining the feasibility of a scaled design from the structural

perspective. It is also possible to develop a dimensional scaling framework similar to [44]

based on the fundamental governing PDEs of structural analysis.

3.5.3 Computation Time

The simulations were run on a workstation with Intel Xeon E7-8860 @ 2.27GHz CPU.

The computation time involved in the proposed techniques consists of two parts:

1. The pre-calculation of the FEA database which corresponds to the first two steps in

Fig. 3.4.

2. The generation of scaled designs and their efficiency maps which corresponds to the

last two steps in Fig. 3.4.

Since the FEA solutions are independent of one another for different operating points,

the computation time for generating the base design database can be linearly reduced

through parallel computing. Parallel computing can also linearly reduce the computation

time for generating an efficiency map of the scaled design, since the process of finding

the optimal efficiency operating points for a given torque and speed are also independent.
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Thus, the units of “core-hour” and “core-minute” are used in the following results, which

is calculated by multiplying the number of CPU cores used with computation time.

The average computation time is 16.9sec for a nonlinear 2D MS FEA solve of one com-

bination of current amplitude and phase angle with 91 rotor positions. That corresponds to

22.0 core-hours for generating a base design database with 151 current amplitudes and 31

phase angles. It takes 66.0 core-hours in total to generate three databases for three different

number of poles.

After the FEA database is built, it takes about 1 to 5 core-minutes to generate an effi-

ciency map for a scaled design, depending on the chosen scaling parameters. Some scaled

designs require more computation time, since more operating points need to be checked in

the database. For example, under the same terminal current limit, a N = 4 design requires

checking more current magnitudes than a N = 2 design, thus taking more computation

time to generate its efficiency map. Nonetheless, the computation time of several core-

minutes for generating a scaled machine design and its efficiency map is much faster than

solving the FEA for the scaled design, and is fast enough for the purpose of powertrain

level simulation and optimization.

3.6 Conclusion

Three scaling techniques, dimensional scaling, number-of-turns scaling, and slot/pole

scaling, are proposed in this chapter and used to generate new designs of electric machines

based on the finite element model of an existing base design. By using the proposed MS

scalable model, the efficiency maps of the scaled designs can be efficiently generated, with-

out the necessity of re-solving FEA for these designs, which dramatically reduces computa-

tion time. Results show that, in the scaled designs, the torque-speed curves can be adjusted

and the efficiency maps can be re-shaped in ways favorable to powertrain design. These

techniques can be also useful for powertrain optimization for given specifications or driving

82



cycles.
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CHAPTER 4

Computationally-Efficient

Electromagnetic-Thermal Coupled Scalable

Model for Electric Machines

4.1 Introduction

The efficiency map of an electric machine is constrained by temperature, since the

torque capability and losses are both affected by temperature. Furthermore, the continuous

operating region, which is defined as the operating points where the machine can safely

run at steady state without reaching the temperature limits of the winding insulation and

PM materials, can provide useful information for powertrain design and optimization. To

determine the continuous operating region, a thermal model is needed. Furthermore, an

accurate prediction of demagnetization also requires temperature information in the PM,

since the intrinsic coercivity of the PM material is affected by temperature.

Based on the work presented in Chapter 3, a CE EM-thermal coupled model based on

2D MS FEA and 3D thermal static FEA is developed to add the capability of continu-

ous operating region prediction and temperature-dependent demagnetization check to the

previous model.
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4.2 Static Thermal Modeling

The PDE associated with thermal conduction in steady state is given as follows:

−κ∇2T = qloss, (4.1)

where T is the continuum temperature and κ is the thermal conductivity of the machine

materials. Using FEA techniques, the machine geometry is meshed and the above PDE can

be discretized into a differential equation as follows:

K~t = ~q, (4.2)

where ~t is the nodal temperature vector of the finite element mesh, K is the finite ele-

ment matrix which corresponds to thermal conductivity. The vector ~q corresponds to the

excitation of the thermal model, and can be categorized as follows:

~q =
∑

k

~pk ⊙ ~fk +
∑

l

hl

(

~tc − ~t
)

⊙ ~gl, (4.3)

where ⊙ denotes element-wise multiplication. The vectors ~pk ⊙ ~fk correspond to different

loss mechanisms of the machine, including conduction losses, core losses, and PM eddy-

current losses, which are determined by the 2D magneto-static FEA. Vectors ~pk are the

nodal loss density vectors, and ~fk are the normalized internal forcing vectors generated

from FEA assembly. Likewise, the vectors hl

(

~tc − ~t
)

correspond to the heat flux density at

each boundary node due to convective heat transfer on different boundaries of the machine,

representing Neumann boundary conditions of the finite element model. Scalars hl are the

heat transfer coefficients on the convective boundaries, and ~gl are the normalized boundary

external forcing vectors generated from FEA assembly.
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By combining (4.2) and (4.3), the static thermal model can be written as:

[

K+
∑

l

diag (hl~gl)

]

~t =
∑

k

~pk ⊙ ~fk +
∑

l

hl
~tc ⊙ ~gl, (4.4)

K
′~t = ~q ⇒ ~t = K

′−1
~q. (4.5)

where diag (~v) denotes a diagonal matrix with vector ~v in its diagonal entries, and K
′ =

K+
∑

l

diag (hl~gl).

The continuous operating region of an efficiency map is determined by the temperature

of the winding and PM regions. A 3D static thermal FEA model is used to predict the

steady-state temperature in the winding and PM for each operating point in the efficiency

map. The operating points whose steady-state temperatures do not exceed the winding

insulation limit and the temperature limit of the PM material are deemed as continuous

operating points.

Since the electric resistivity of copper is a function of temperature, and can increase by

54.07% with a temperature rise from 20◦C to 160◦C, it is necessary to use the temperature-

dependent winding conduction loss as the input to the thermal model to form an iterative

algorithm:

~pcond,i+1 = ~pcond,i ⊙
(

~1 + β∆~t
)

, (4.6)

where ~pcond,i is the nodal winding conduction loss density vector at temperature ~ti, and

β = 0.003862K−1 is the temperature coefficient of the electric resistivity of copper. The

temperatures of the electromagnetic-thermal coupled model is calculated by iteratively

solving ~t = K
′−1~q(~t) until convergence for each operating point, where the excitation

vector ~q is temperature-dependent and updated at each iteration. LU decomposition of K′

is pre-calculated and used for the matrix-vector solving to reduce the computation time.

The iterative process is shown in Algorithm 4.1.

Similar to the previous model presented in Chapter 3, in this EM-thermal coupled
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Algorithm 4.1: EM-thermal coupled analysis

Input: loss information from EM FEA, cooling parameters, FEA model.

Result: converged max. temperature in winding and PM.

1 initialization;

2 while error > tolerance do

3 ~pcond,i+1 ← ~pcond,i ⊙
(

1 + β ~∆t
)

;

4 Calculate ~qi+1 based on ~pcond,i+1;

5 ~ti+1 ← K
′−1~qi+1 using LU decomposition;

6 ∆~t← ~ti+1 − ~ti;

7 ~ti ← ~ti+1 ;

8 error ← ‖∆~t‖;

9 end

10 Twinding ← max
(

~ti (winding indecies)
)

;

11 TPM ← max
(

~ti (PM indecies)
)

;

model, torque, power losses, flux, magnetic field intensity, and temperature information

over a range of current magnitudes and phase angles is calculated by the 2D MS FEA and

3D thermal static FEA for the base design, and a FEA database is constructed for later use.

4.3 Thermal Scaling

To be effectively integrated in the previous scalable MS model presented in Chapter 3,

the thermal model also needs to be scalable. The temperature solution vector ~t = K
′−1~q(~t)

in Section 4.2 can be decomposed into two components:

~t =

[

K+
∑

l

diag (hl~gl)

]−1(
∑

k

~pk ⊙ ~fk +
∑

l

hl
~tc ⊙ ~gl

)

(4.7)

= ~tloss + ~th (4.8)

where ~tloss is the temperature contribution from losses, and ~th is the contribution from

boundary heat transfers.

The proposed thermal scaling happens after the dimensional scaling. When the dimen-

sions are scaled by a factor of α, the 3D FEA thermal model is also scaled. From the
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FEA assembly process [75], by using linear tetrahedral elements, the stiffness matrix K is

proportional to α:

K = [Ke] =





Nshape
∑

A,B=1

∫∫∫

Ve

∂NA

∂xi

κij

∂NB

∂xj

dV



 ∝
1

α

1

α
α3 = α. (4.9)

where Ke is the element-level stiffness matrix, [∗] denotes the FEA assembly process, NA

and NB are shape functions, Nshape is the number of shape functions (4 for linear tetrahedral

element), Ve is the volume of the element, i, j = 1, 2, 3 correspond to 3D coordinates, and

κij is the i, j-th component of the thermal conductivity tensor. In this section, the Einstein

summation convention is used.

Similarly, the internal forcing vectors ~fk are proportional to α3:

~fk =
[

~fint,e

]

=





Nshape
∑

A=1

∫∫∫

Ve

NAdV



 ∝ α3. (4.10)

where ~fint,e is the element-level internal forcing vector.

The boundary external forcing vectors ~gl are proportional to α2:

~gl =
[

~fext,e

]

=





Nshape−1
∑

A=1

∮

Ωe

N ′
Ads



 ∝ α2, (4.11)

where ~fint,e is the element-level external forcing vector, and N ′
A is the shape function for

boundary surface elements.

Furthermore, the conduction loss density ~pcond is proportional to J2 according to Joule’s

law. Thus by using (3.36),

~pcond ∝ J2 ∝
1

α2
. (4.12)
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The hysteresis core loss density ~pcore is a function of ~B, ~H and electrical frequency fe:

~pcore = fe

∮

~Hd ~B, (4.13)

where ~B and ~H are unchanged during dimensional scaling according to (3.30), and fe ∝
1
α2

according to (3.34). Thus, ~pcore ∝
1
α2 .

By assuming that the heat transfer coefficient on the boundary scales with 1
α

, i.e. hl,α =

1
α
hl,1, we have:

K
′ = K+

∑

l

diag (hl~gl) ∝ α, (4.14)

K
′−1 ∝

1

α
. (4.15)

By combining these relationships, it can be shown that both ~tloss and ~th are unchanged

in dimensional scaling:

~tloss = K
′−1

(

∑

k

~ploss,k ⊙ ~floss,k

)

∝
1

α

1

α2
α3 = 1, (4.16)

~th = K
′−1

(

∑

l

hl~gl

)

∝
1

α

1

α
α2 = 1. (4.17)

As a result, the temperature in the scaled design can be determined directly and effi-

ciently from the temperature solution of the base design without resolving FEA:

~tα = ~tloss,α + ~th,α

= ~tloss,1 + ~th,1

= ~t1. (4.18)

Note that the assumption on cooling capability hl ∝
1
α

is not unfounded, since when

the dimensions of the machine increase, the heat generation increases linearly according to
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Section 3.39, while the area of cooling surface increases quadratically. Thus, smaller heat

transfer coefficients for larger machines would be enough to cool the machine down to the

same temperature. Similarly, for smaller machines, better cooling capability is required to

maintain the same temperature as the base design, which matches intuition.

4.4 Simulation

The process of the proposed EM-thermal coupled scaling is presented in this section.

Since most of the process is same as presented in Section 3.4, only the part related to the

coupled scalable thermal model is discussed.

4.4.1 Pre-calculation of Base Design FEA Database

In the database generation process, the MS FEA database is generated first, in the same

way as discussed in Section 4.4.1. The thermal FEA database is optional and only neces-

sary when the user needs the feature of estimating the continuous operating region. For the

same range of current magnitude and phase angle used in the MS FEA database generation,

the iterative static thermal FEA algorithm (Algorithm 4.1) is conducted over a range of ro-

tor speeds. This is due to the fact that, unlike the speed-independent MS FEA, the thermal

model is speed-dependent due to the air-gap heat transfer as shown in Section 4.2. The

initial loss information used in the thermal FEA is from the previously generated MS FEA

database, with normalized core losses and eddy-current losses adjusted to the correspond-

ing rotor speed in post-processing using (3.9) and (3.21). Finally, the nodal temperature

vectors, calculated by the thermal FEA, are stored in a database as 3D lookup tables, with

current magnitude, phase angle, and rotor speeds as inputs.
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4.4.2 Efficiency Map Generation and Continuous Operating Region

Estimation

In addition to the efficiency map generation process presented in Section 3.4.3, the

continuous operating region can be estimated using the proposed scalable thermal model.

The continuous operating region inside an efficiency map is determined by the tempera-

ture of the winding and PM region. The operating points whose steady-state temperature

do not exceed the winding insulation limit and the temperature limit of the PM material

are deemed as continuous operating points. Algorithm 1 is thus amended by adding the

calculation of temperatures at the optimal operating points, as shown in Line 10 and 11 of

Algorithm 4.2. By using the temperature information (Topt,wind(τ, ωr) and Topt,PM(τ, ωr))

determined in Algorithm 4.2, the continuous operating region can be drawn as the intersec-

tion of the areas that are within the winding insulation limit and the PM temperature limit.

The flowchart of the overall EM-thermal coupled scaling process is shown in Fig. 4.1.
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Algorithm 4.2: Optimal operating point search with temperature calculation

Input: an operating point (τ, ωr) on efficiency map

Data: the FEA database that contains torque, voltage, loss, field intensity, and

temperature information for each (I, θI) combination at ωr; Vlim and Ilim
imposed by inverter

Result: the optimal operating point (Iopt, θI,opt), its efficiency ηopt, and max.

temperature in winding (Topt,wind) and PM region (Topt,PM )

1 ηtest ← 0;

2 Determine Imin, the smallest I that can produce τ (i.e. the min. current operating

point);

3 for I=Imin to Ilim do

4 Search for θI that can produce τ at I using interpolation;

5 if found then // τ is achievable at I
6 if V (I, θI) ≤ Vlim and H(I, θI) < Hci then

// by using interplolation

7 Calculate losses and efficiency at (I, θI);
8 if η(I, θI) > ηtest then

9 ηtest ← η(I, θI);
10 Topt,wind ← Twind(I, θI);
11 Topt,PM ← TPM(I, θI);
12 (Iopt, θI,opt)← (I, θI);

13 end

14 end

15 end

16 end

17 ηopt ← ηtest;
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Figure 4.1: Flowchart of the overall EM-thermal coupled scaling process
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4.5 Results

4.5.1 Base Design Efficiency Map Validation

The same UQM PowerPhase 145 machine model is simulated by using the proposed

techniques. As an example, the loss and temperature distribution solved by FEA at the

operating point of I = 146.9A, θI = 141.6◦, 4050RPM is shown in Fig. 4.2.
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Figure 4.2: Loss (left) and temperature (right) distribution at 146.9A, 141.6◦, 4050RPM

The efficiency map is then simulated, where the estimated continuous operating region

is determined by the intersection of the area covered by the 160◦C maximum winding

temperature contour and the 150◦C maximum PM temperature contour for this machine

based on information from the manufacturer. The winding temperature contour is shown

in Fig. 4.3 and the PM temperature contour is shown in Fig. 4.4.

The simulated efficiency map is compared with the datasheet map, as shown in Fig.

4.5. As shown in the figure, the overall shape of the predicted continuous operating region

matches with that in the datasheet map. The overestimation of the continuous region is

possibly due to that the operating points used in the datasheet were not in MTPA operation

thus requiring more currents to produce the same amount of torque.
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4.5.2 Scaled Design Examples

In this section, an FEA database that contains 151 current magnitudes, 31 phase angles,

and 6 rotor speeds are used in the scaling process. The same current and bus voltage limits

of 500A and 340V are used as in Section 3.5.1 purely for comparison purposes. In practice,

users can choose different limits according to their specific cases.

By using the proposed EM-thermal coupled scaling techniques, the torque-speed curve

of the electric machine can be adjusted, and the high efficiency region (“sweet spots”) and

the continuous operating region on the efficiency map can be reshaped. For example, Fig.

4.6 shows a scaled design with dimensional scaling factor α = 1.2 and effective number

of turns N = 1.11 (10 turns, 9 parallel paths), and 18 poles. As shown in the figure, this

design has good efficiency performance at mid speed, high torque regions around 350Nm,

4000RPM. Furthermore, by decreasing the number of turns while increasing the size of the

machine, this scaled design has a better thermal performance, whose continuous operating

region spans most of the area under the peak torque-speed curve. Furthermore, the simu-

lation results suggest that this design can safely operate at its peak torque in steady state

without hitting temperature limits.

Fig. 4.7 shows another design with α = 0.8, N = 2.33 (7 turns, 3 parallel paths),

and 18 poles. As shown in the figure, this design has good efficiency performance at mid

speed, low torque regions around 40Nm, 5000RPM while having a peak torque of 200Nm.

Furthermore, the highest efficiency region (the 94% contour line) is completely inside the

continuous operating region, which suggests that this scaled design can safely operate at its

highest efficiency in steady state without hitting temperature limits.

4.5.3 Computation Time

The average computation time for solving a given combination of current amplitude,

phase angle, and rotor speed in 3D static thermal FEA on a workstation with Intel Xeon

E7-8860 @ 2.27GHz CPU is 5.07sec. The total computation time to build the thermal
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FEA database is not a simple multiplication of the time for single solve by the total number

of operating points in terms of current magnitudes, phase angles, and rotor speeds. For

the purpose of estimating the continuous operating region, the computation time is much

shorter than the multiplication, since there is no need to calculate the temperatures for the

operating points that are above the thermal limit. During the database generation process,

once the current magnitude reaches a level where all the current phase angles fail to sat-

isfy the thermal constraint, it is safe to stop the thermal FEA solver, since all the current

magnitudes above such a level would also exceed the temperature limit.

Using this strategy, after the EM FEA database discussed in Section 3.5.3 is gener-

ated, it takes 14.4 core-hours to generate a 151 current amplitudes, 31 phase angles, and

6 rotor speeds thermal FEA database for one slot/pole combination. Among these 28086

(151 × 31 × 6) operating points, 17856 were skipped. After the databases are generated,

the continuous operating region estimation requires little computation time (additional∼ 2

core-minutes after the efficiency map is generated). In total, it only takes several core-

minutes to calculate the efficiency map and the continuous operating region of a scaled

design.

4.6 Conclusion

In this chapter, the 2D CE scalable MS FE-based model presented in Chapter 3 is cou-

pled with a 3D CE scalable thermal static FE-based model. An iterative approach is used

to predict the converged temperature for each operating point under steady-state opera-

tion. Furthermore, through the use of thermal scaling relationships, the continuous oper-

ating region of the scaled design can be estimated using the pre-calculated FEA database,

without the necessity to re-solve the computationally intensive 3D thermal FEA. The pro-

posed EM-thermal coupled scalable model can provide more insights and information for

powertrain-level simulation/optimization, and is useful in vehicle thermal management.
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CHAPTER 5

Conclusion and Future Work

5.1 Conclusion

Computationally-efficient electromagnetic and thermal models of electric machines are

presented in this dissertation.

A CE 3D FE-based dynamic thermal model is proposed, developed, and presented in

Chapter 2. By applying orthogonal decomposition and eigenmode-based MOR, the full-

order 3D FEA model can be reduced to a ROM with a small number of states based on

the proposed “normalized extent of excitation” calculation. Results show that the proposed

model can dramatically reduce the computation time by over 4 orders of magnitude compar-

ing with a full-order dynamic thermal FEA model while maintaining satisfactory accuracy.

Experimental results show that a ROM with 7 stator states and 4 rotor states can accurately

capture the temperature response in the testing machine compared with measurements. A

ratio of approximately 80000 between simulation time and real time was observed, which

is fast enough for real-time implementation in embedded controllers. Such a CE thermal

model can be useful in real-time condition monitoring, model-based controls, system-level

simulation, and thermal protection/management. Moreover, the MOR process only requires

calculating a small subset of eigenvectors of the full-order 3D FEA model, and does not

depend on the inputs to the system. Thus, the ROM generation process is also fast. As a

result, the combined computation time for generating and simulating the ROM is still about
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3 times faster than simulating the full-order model. This can bring benefits to applications

that require the generation of new full-order models at each iteration (e.g. electric machine

design optimization).

In Chapter 3, a 2D CE scalable MS FE-based model is proposed, developed, and pre-

sented. Results show that the model can quickly generate new machine designs based on

a given base design through three independent scaling techniques (dimensional scaling,

number-of-turns scaling, and number-of-poles scaling). The scalable model can quickly

predict the efficiency map of the scaled design using the pre-calculated FEA database.

This avoids re-solving the computationally intensive FEA again for the scaled design, and

takes only several core-minutes to generate the efficiency map for the scaled design. The

proposed scalable model is feasible to be used in powertrain-level or system-level simula-

tion/optimization, and allows powertrain designers to adjust the torque-speed curves and

the shape of the efficiency map in ways favorable to overall powertrain performance.

In Chapter 4, the 2D CE scalable MS FE-based model is coupled with a 3D CE scalable

thermal static FEA model. An iterative approach is used to predict the converged tempera-

ture for each operating point under steady-state operation. Furthermore, through the use of

thermal scaling relationships, the continuous operating region of the scaled design can be

estimated using the pre-calculated FEA database, without the necessity to re-solve the com-

putationally intensive 3D thermal FEA. The proposed EM-thermal coupled scalable model

can provide more insights and information for powertrain-level simulation/optimization,

and is useful in vehicle thermal management.

5.2 Future Work

In this section, some of the future work directly related to this dissertation is presented.
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5.2.1 CE Thermal Modeling

5.2.1.1 Error Estimation

The orthogonal decomposition based MOR technique presented in Chapter 2 is guar-

anteed to be stable, since all the eigenmodes in the full-order system are stable. However,

the error induced by this MOR technique is not evaluated quantitatively in this dissertation.

There has been some previous work for evaluating the error bound for other MOR tech-

niques [76] (e.g. for Balanced Truncation MOR [77, 78] and alternating direction implicit

(ADI) method [79]). It would be helpful to derive a quantitative relationship between error

bound and the dynamic eigenmodes in the presented ROM, as this can provide insights for

selecting the number of dynamic states in the ROM.

5.2.1.2 Applications of the Developed ROM

The CE reduced-order thermal model presented in Chapter 2 can be valuable in various

applications, such as real-time thermal observers, model-based control, cooling system

design, and thermal management.

Thermal Observer Implementation The initial condition in the CE ROM presented in

Chapter 2 is a uniform temperature field T0 across the entire machine. If the model is im-

plemented as a real-time temperature monitor, it needs to start from a uniform temperature

distribution and run continuously. To accommodate arbitrary initial conditions in temper-

ature distribution, a thermal observer utilizing the CE ROM can be developed. By using

temperature measurements from physical sensors, the ROM can converge to current states

quickly after start. This would make the ROM more useful in real-time operations.

Model-based Control The CE ROM can be used in model-based control to allow tem-

perature tracking by using actuators (fan, pump, compressor, etc) in cooling system. This

can avoid over-cooling and reduce cooling power consumption. For example, the proposed

104



electric machine ROM was used in a vehicle thermal management system [15] which al-

lows temperature tracking for stator peak temperature by using a Linear-Quadratic Regular

(LQR). Future work includes multiple temperature tracking and high-reliability peak torque

operation.

5.2.1.3 Computational Fluid Dynamics

One important perspective in thermal modeling of electric machines is the accurate

calculation of convective heat transfer on machine boundaries. As discussed in Chapter 2.5,

determining accurate heat transfer coefficients on the end-turn surface and rotor end surface

due to rotor rotation at different speeds often requires detailed CFD simulation [58,80–82]

or complex experimental setups [5, 57, 59]. Since experimental setups are expensive and

time-consuming to build, CFD is often preferred to save cost and shorten the turn-around

time in design optimization.

CFD is the application of a variety of numerical methods to solve the equations that

govern the flow dynamics, which is extremely computationally intensive (much more in-

tensive than thermal conduction FEA) due to the highly nonlinear nature of the governing

equations. Thus, it is not practical for use in a CE thermal model, or in design optimization.

To address this issue, there have been several attempts to use CFD in a CE manner. For ex-

ample, a limited CFD analysis was conducted only for the coolant in cooling channels and

end-turn surface and combined with a LP model in [5]. This reduced the computation time

of CFD to less than 30 minutes on a PC with 4GB memory and a Core 2 Duo 3.16 GHz

CPU. CFD results have also been used in system identification studies serving as input data

to build reduced-order models for electric machines [19] and batteries [83, 84].

As a result, future work is to investigate the possibility of conducting MOR on CFD.

Although there have been numerous attempts on accelerating the solving of general CFD

equations, there is no existing literature aiming specifically on the MOR of CFD for electric

machines.
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5.2.2 CE EM Modeling

5.2.2.1 Improvement for the Existing MS Scalable Model

More Degrees of Design Freedom In powertrain-level simulation/optimization, it is cru-

cial to have enough degrees of design freedom to allow flexibility in re-shaping the effi-

ciency map. Three design scaling techniques are used in this dissertation providing three

design variables. More variables are desired to provide more freedom. The difficulty is to

find an analytical relationship that can relate the base design and the modified design to

avoid re-solving FEA.

Analytical AC Resistance Estimation One of the drawback of using MS FEA is the

underestimation of winding conduction loss by neglecting skin and proximity effects. It

is thus beneficial to develop an analytical AC resistance estimation method that can be

integrated in the dimensional and number-of-turns scaling to allow quick estimation of

AC resistance. Some analytical relationships and CE methods have been reported in the

literature [85–88], and might be suitable to be used in the proposed scaling framework. It

is also possible to develop a new analytical AC resistance estimation method that fits the

proposed scaling techniques better.

Error Estimation It would be helpful to investigate how the error in efficiency between

MS FEA simulation and experimental measurements of a prototype machine propagates in

the proposed scaling techniques.

5.2.2.2 MOR of MQS FEA

MOR of MQS FEA is more difficult than the MOR of thermal conduction FEA pre-

sented in Chapter 2, since the assumption of linear material properties is no longer enough

to capture the physics. Most of the nonlinearity in EM FEA comes from the nonlinear

B-H curve in lamination, which has to be accurately captured to produce accurate results.
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Traditionally, there has been much work on reducing full-order nonlinear dynamic systems

into a reduced linear part (by using linear MOR techniques) plus a full-order nonlinear

part. This method is effective only when the nonlinear part of the dynamic system is small,

for example, in power systems or electronic circuits where there are only a few nonlinear

components. Chaniotis and Pai [89] proposed to use Krylov-subspace based linear MOR

techniques to reduce the linear part of the power system and couple the reduced linear

model with nonlinear generators. However, these techniques are not suitable for tackling

the distributed nature of the nonlinearity inside electric machines, since the laminations

contribute to a large portion of the system dynamic equations.

Proper Orthogonal Decomposition (POD) is a nonlinear MOR technique based on the

Karhunen-Loève (KL) transform. It has been used in electromagnetic [90] and thermal [91]

ROMs in the literatures, although not for electric machines. To use POD, full-order nonlin-

ear models are simulated with typical input commands to construct a series of “snapshots”.

Thus, the accuracy of POD-based ROM depends on the training commands. Furthermore,

there are no formal rules on how to select “good” training commands [16].

A trajectory piecewise linear approach [92, 93] has been proposed for nonlinear MOR.

The nonlinear material properties are modeled as piecewise linear curves. Thus, a nonlinear

model can be decomposed into several piecewise linear models. MOR is then applied to

each linear model. Depending on the operating points, the ROM switches between different

piecewise linear models. This technique has been used in power electronic circuits [94,95],

where nonlinear inductors are modeled using switched linear inductors.

To date, there has not been any MOR for MQS FEA of electric machines reported in

the literature. Thus, future work is to develop such a technique that can accurately cap-

ture the distributed nonlinearity inside the machine. Furthermore, if a good physics-based

reduced-order MQS model is developed, it would allow an easy coupling with the presented

reduced-order thermal model. Such a CE MQS-thermal coupled model would be valuable

for various applications (e.g. machine design optimization, system-level simulation/opti-
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mization, real-time control, model-based control, etc). In the following paragraphs, some

initial thoughts and preliminary investigation on the development of a CE MQS FEA model

is presented.

The idea is to decompose the full-order MQS model into linear, dynamic components

and nonlinear, static components for stator and rotor, respectively. The stator and ro-

tor are then coupled through a traveling-wave air-gap model. Eigenmode-based model

order reduction techniques are applied to the linear, dynamic part of the model, while

a computationally-efficient mapping between selected dynamic eigenmodes and specific

magnetization patterns in the machine is developed to reduce the order of the nonlinear

static part. Finally, the electrical variables are presented by a set of time-varying Fourier

coefficients that will be constant under steady-state operating conditions. The block dia-

gram of the proposed ROM is shown in Fig. 5.1.

Stator Reduced Order 

Nonlinear Static Model

Stator 

Voltage

Stator 

Current

Electromagnetic 

Torque

s
aa
s
aa

s
ii
s
i
s
i

Stator Reduced Order 

Linear Dynamic Model

Rotor Reduced Order 

Nonlinear Static Model

s
vv
s
v
s
v

( )
s s
m am )
s s
(m ((
s
((( )m ((

s
AA
s
AA

r
AA
r
AA

em
t

s
HH
s

HH

r
HH
r

HH

Rotor 

Speed

( )
r r
m am )
r r
((m ((
r
((( )m (

r
aa
rr
aa

r
w

Stator 

Losses

Rotor Losses
,loss r

P

,loss s
P

Travelling-Wave

Airgap Model

Rotor Reduced Order 

Linear Dynamic Model

Figure 5.1: The idea of a MQS ROM for electric machines

A locked-rotor scenario with nonlinear magnetic material properties has been investi-

gated first. This corresponds to the reduced-order linear dynamic blocks and the reduced-

order nonlinear static blocks shown in Fig. 5.1 without the air-gap model. After discretizing
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the nonlinear PDEs of the machine dynamics using FEA, the resulting nonlinear ODEs are

given by:
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, (5.2)

where ~x1 and ~x2 corresponds to the magnetic vector potentials (MVPs) of the electrically

conducting (e.g. copper and PM) and non-conducting (e.g. lamination) nodes, respectively.

For rotor, ~xr3 corresponds to the electric potential of the PM region. For stator, ~xs3 has a

length of Ns3 = NturnsNslots

Npoles
+ 2Nphase which consists of NturnsNslots

Npoles
electric potentials for

each turn in each slot, Nphase phase voltages, and Nphase line currents. For a typical PM

machine, the only excitation to the rotor is ~fr1, which corresponds to the magnetization of

PM, and the only excitation to the stator is ~fs3, which corresponds to the input line current

for a current-driven problem, or the input phase voltage for a voltage-driven problem. The

equivalent magnetization currents~imr (~xr2) and~ims (~xs2) correspond to nonlinear behavior
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of the soft magnetic materials (e.g. laminated iron).

From the second and third row of (5.1), we have

~xr2 = −K
−1
r22

(

Kr21~xr1+Kag~xs2 +~imr

)

,

~xr3 = −K
−1
r33Cr31̇~xr1.

(5.3)

Substitute (5.3) into the first row of (5.1):

(

Cr11 −Kr13K
−1
r33Cr31

)

~̇xr1 +
(

Kr11 −Kr12K
−1
r22Kr21

)

~xr1

= ~fr1 +Kr12K
−1
r22Kag~xs2 +Kr12K

−1
r22

~imr (5.4)

By solving the generalized eigenvector problem

(

Kr11 −Kr12K
−1
r22Kr21

)

~vi = λ
(

Cr11 −Kr13K
−1
r33Cr31

)

~vi (5.5)

and only model a few eigenmodes as dynamic modes while assuming the other modes

converge to steady states instantaneously, (5.4) can be reduced to

cṙ~yr + kr~yr = Mr1~xs2 +Mr2
~fr1 +Mmr1

~imr, (5.6)

~xr1 = Vdr~yr +Mr3~xs2 +Mr4
~fr1 +Mmr2

~imr. (5.7)
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where

cr = V
T
dr

(

Cr11 −Kr13K
−1
r33Cr31

)

Vdr, (5.8)

kr = V
T
dr

(

Kr11 −Kr12K
−1
r22Kr21

)

Vdr, (5.9)

Mr1 = V
T
drKr12K

−1
r22Kag, (5.10)

Mr2 = V
T
dr, (5.11)

Mmr1 = V
T
drKr12K

−1
r22, (5.12)

Mr3 = SrKr12K
−1
r22Kag, (5.13)

Mr4 = Sr =
(

Kr11 −Kr12K
−1
r22Kr21

)−1
−Vdrk

−1
r V

T
dr, (5.14)

Mmr2 = SrKr12K
−1
r22. (5.15)

By applying the similar model order reduction techniques to the stator, we have
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(5.17)

By using the second row in (5.1) and (5.2) and substituting them into (5.16), the reduced
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order model is

c







~̇yr

~̇ys






+ k







~yr

~ys






= Ff







~fr1

~fs3






+ Fi







~imr

~ims






(5.18)

The discrete time, nonlinear form of (5.18), ċ~y+k~y = Ff
~f +Fi

~im, can be then written

as

~r (~yn+1) =
(

c

h
+ k

)

~yn+1 −
c

h
~yn − Ff

~fn+1 − Fi
~im,n+1 = 0, (5.19)

and solved by using Newton–Raphson Iteration:

J∆~y = −~r (~y) (5.20)

where the Jacobian matrix J = ∂~r
∂~y

= c
h
+ k − Fi

∂~im
∂~x2

T1V1 is a small matrix who has the

same number of rows as the total number of dynamic states modeled in the reduced order

model.

The nonlinear mapping between equivalent current and the MVPs of the non-conducting

region,







~imr

~ims






= ~g













~xr2

~xs2












, is governed by the following nonlinear equation:







~xr2

~xs2






−T1V1







~yr

~ys






−T1S1







~fr1

~fs3






− (T1S2 +T2)~g













~xr2

~xs2












= ~0. (5.21)

Thus,







~imr

~ims






can be solved as a function of







~yr

~ys






and







~fr1

~fs3






.

There are several techniques to reduce the computation burden of nonlinearity. For

the sake of easy implement, the preliminary technique we use in this year is a multi-

dimensional look-up table, whose inputs are machine excitations (e.g. current ampli-
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tude and phase angle) and reduced order state variables







~yr

~ys






, and outputs are Fi

~im,

Fi
∂~im
∂~x2

T1V1, and torque. This look-up table can be constructed by solving (5.21) and then

used to solve (5.19). The flowchart of the MOR process using look-up table is shown in

Fig. 5.2.

Figure 5.2: Flowchart of the MOR process using look-up table

By using the above approach, a full-order nonlinear FEA model can be reduced by

using eigenmode-based MOR for the linear part and look-up table for the nonlinear part.

For comparison purposes, four models (a full linear, a reduced linear, a full nonlinear, and

a reduced nonlinear model) have been simulated for the UQM PowerPhase 145 machine,

and the resulted torque are presented in Table 5.1 and Fig. 5.3. As can be seen in the

table and figure, nonlinearity has significant contributions to torque 1 and thus has to be

modeled to produce correct results. The reduced nonlinear model matched well with the

full-order nonlinear model, and can reduce the computation time by more than one order

1Note that the linear models produce a much less torque than that of the nonlinear models in Fig. 5.3.

This is because that the PM flux is shorted in the rotor containment ring when the ring is modeled as a linear

material. There would be little flux going into the stator, resulting much less torque compared to the nonlinear

models. For the nonlinear model, the containment ring is saturated, which allows flux to go into stator through

air gap.
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of magnitude from 23.7sec to 1.41sec.

Note that the reduced linear + reduced nonlinear model is significantly slower than

the reduced-order linear model by about two orders of magnitude, which suggests that the

nonlinear look-up table takes the majority of computation time. By replacing the look-up

table with a more efficient nonlinear MOR reduction technique, the computation time of

the proposed ROM can be further reduced. Future work involves improving the nonlinear

MOR, adding the traveling-wave air-gap model, and complete the proposed framework

shown in Fig. 5.1.

Table 5.1: Comparison of four different MQS models

Models
Number of States

(Stator+Rotor)
Computation Time RMSE (Nm)

Full-order nonlinear 1301+599 23.7sec N/A

Reduced linear + reduced nonlinear 1+1 1.41sec 1.24

Full-order linear 1301+599 6.77sec 124.63

Reduced-order linear 1+1 16.2ms 124.64
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Appendix

Publications during Ph.D. Study

1. K. Zhou, A. Ivanco, Z. Filipi, and H. Hofmann, “Finite-Element-Based Computationally-

Efficient Scalable Electric Machine Model Suitable for Electrified Powertrain Sim-

ulation and Optimization,” Industry Applications, IEEE Transactions on, vol.PP,

no.99, pp.1,1, to appear in Nov./Dec. 2015.

2. K. Zhou, J. Pries, and H. Hofmann, “Computationally-Efficient 3D Finite-Element-

Based Dynamic Thermal Models of Electric Machines,” Transportation Electrifica-

tion, IEEE Transactions on, accepted.

3. X. Tao, K. Zhou, A. Ivanco, J. Wagner, H. Hofmann, and Z. Filipi, “A Hybrid

Electric Vehicle Thermal Management System - Nonlinear Controller Design,” SAE

Technical Paper 2015-01-1710, 2015.

4. D. Reed, K. Zhou, H. Hofmann, and J. Sun, “A Stator Current Locus Approach for

Induction Machine Parameter Estimation,” in Transportation Electrification Confer-

ence and Expo - Asia Pacific (ITEC Asia-Pacific), 2014 IEEE, August 2014.

5. J. Hou, D. Reed, K. Zhou, H. Hofmann, and J. Sun, “Modeling and Test-bed De-

velopment for an Electric Drive System with Hybrid Energy Storage,” in Electric

Machines Technology Symposium (EMTS), 2014 ASNE, May 2014.
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6. A. Ivanco, K. Zhou, H. Hofmann, and Z. Filipi, “A Framework for Optimization

of the Traction Motor Design Based on the Series-HEV System Level Goals,” SAE

Technical Paper 2014-01-1801, 2014.

7. K. Zhou, A. Ivanco, Z. Filipi, and H. Hofmann, “Finite-Element-Based Compu-

tationally Efficient Electric Machine Model Suitable for Integration in Electrified

Vehicle Powertrain Design Optimization,” in Applied Power Electronics Conference

and Exposition (APEC), 2014 Twenty-Ninth Annual IEEE, pp. 1598–1603, March

2014.

8. K. Zhou, J. Pries, and H. Hofmann, “Computationally-efficient 3D finite-element-

based dynamic thermal models of electric machines,” in Electric Machines & Drives

Conference (IEMDC), 2013 IEEE International, pp. 839–846, May 2013.

9. K. Zhou, J. Pries, and H. Hofmann, Y. Kim, T.-K. Lee, and Z. Filipi, “Computationally-

efficient finite-element-based thermal models of electric machines,” in Vehicle Power

and Propulsion Conference (VPPC), 2011 IEEE, pp. 1-6, Sept. 2011.
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