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ABSTRACT

This thesis investigates some of the sensing and perception challenges faced by

multi-robot teams equipped with LIDAR and camera sensors. Multi-robot teams

are ideal for deployment in large, real-world environments due to their ability to

parallelize exploration, reconnaissance or mapping tasks. However, such domains

also impose additional requirements, including the need for a) online algorithms (to

eliminate stopping and waiting for processing to finish before proceeding) and b)

scalability (to handle data from many robots distributed over a large area). These

general requirements give rise to specific algorithmic challenges, including 1) online

maintenance of large, coherent maps covering the explored area, 2) online estima-

tion of communication properties in the presence of buildings and other interfering

structure, and 3) online fusion and segmentation of multiple sensors to aid in object

detection.

The contribution of this thesis is the introduction of novel approaches that leverage

grid-maps and sparse multi-variate gaussian inference to augment the capability of

multi-robot teams operating in urban, indoor-outdoor environments by improving the

state of the art of map rasterization, signal strength prediction, colored point cloud

segmentation, and reliable camera calibration.

In particular, we introduce a map rasterization technique for large LIDAR-based

occupancy grids that makes online updates possible when data is arriving from many

robots at once. We also introduce new online techniques for robots to predict the

signal strength to their teammates by combining LIDAR measurements with signal

strength measurements from their radios. Processing fused LIDAR+camera point

vii



clouds is also important for many object-detection pipelines. We demonstrate a near

linear-time online segmentation algorithm to this domain. However, maintaining the

calibration of a fleet of 14 robots made this approach difficult to employ in practice.

Therefore we introduced a robust and repeatable camera calibration process that

grounds the camera model uncertainty in pixel error, allowing the system to guide

novices and experts alike to reliably produce accurate calibrations.
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CHAPTER 1

Introduction

Cooperative multi-robot teams have the potential to replace humans in tasks such

as search and rescue, urban reconnaissance, and surveying. For example, robots could

be used for identifying and aiding victims in a natural disaster, searching for roadside

bombs, finding lost items, tracking intruders, or building inspection [1, 2, 3, 4]. These

tasks are often difficult, dangerous or unpleasant, so if robots can be deployed instead

of humans then society may benefit. For instance, although robots were only a small

fraction of the agents involved in the cleanup at Fukushima, they reduced the need to

expose humans to harmful radiation [5]. Such tasks are often inherently parallelizable,

which means many robots can cooperate to complete them faster. For example, when

searching for victims, multiple robots can split up a search area, completing the search

faster than a single agent could.

Despite the potential benefits of multi-robot teams to such applications, there

has yet to be a sustained deployment of automated multi-robot systems to real-

world environments. The dominant paradigm remains human-teleoperated robots

(e.g. explosive ordinance robots) or carefully engineered environments (e.g. KIVA’s

robotic warehouses) [6, 7]. Excepting cost, reliability and mechanical design (which

are not to be overlooked), the main remaining challenges preventing deployment of

such systems are the lack of online and scalable autonomy systems to control many
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robots with little or no human intervention.

In this thesis, we focus on a subset of these algorithmic and logistical challenges,

particularly in mapping and perception, which are exacerbated when multiple robots

are deployed cooperatively. Algorithms for field robotics should generally be online

and scalable. By online, we mean that an algorithm should be capable of running

while the robot is in operation, without falling behind. Typically this means runtimes

bounded by a second or two, but ideally much less. For example, an online motion

planning algorithm would not require the robot to stop and think before deciding what

the next action is. By scalable (in this context), we mean that the algorithm remains

online, while accommodating data arriving from a dozen or more robots at once.

For example, a non-scalable mapping algorithm may have combinatorial complexity

with respect to the size of the environment and number of robots. In practice, many

mapping and perception algorithms, such as FastSLAM or Fisher image classification,

struggle to scale to large numbers of robots or to run online, respectively [8, 9].

The work in this thesis is also motivated by the challenges we faced when the

APRIL lab competed in the MAGIC 2010 multi-robot reconnaissance competition,

where teams of autonomous robots were tasked to explore a 500×500m indoor-outdoor

urban environment, and identify and neutralize simulated bombs [10]. In particular,

it highlighted the shortcomings of existing work in the key areas of 1) online map

rasterization from multiple robots in a large area, 2) online estimation of communica-

tion properties, and 3) online sensor fusion and scene segmentation for colored point

clouds. This thesis makes improvements over the state of the art in each of these

areas with the goal of improving the competency of multi-robot teams in MAGIC-

like environments (among others). While these topics share a common application

(multi-robot teams), there are also many similarities in the technical approaches we

used to overcome them (multi-variate Gaussian inference and grid-based spatial rep-

resentation). While MAGIC 2010 is a key motivator for the work presented here,
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this thesis contributes to the broader robotics community, where large-scale map-

ping, state estimation and perception are topics of ongoing research. Improving the

state of the art in the aforementioned areas will help others in this field, for example

by reinforcing how spatial reasoning with rasterized gridmaps can be coupled with

parametric state estimation techniques to expand the range of applications where

robots can be deployed autonomously.

1.1 Methods Overview

A key challenge for multi-robot teams is generating a fused state estimate that

incorporates sensor data from all robots in the team. In particular, multi-robot

frontier-based exploration requires a live, coherent estimate of which part of the envi-

ronment is already explored, and which is still unexplored [11]. The border between

these two regions is called the ‘frontier’. In order for online planning to occur, this

state estimate must be available with limited delay (e.g. < 2 seconds), or else robots

must stop and wait until a new command is available (e.g. from the centralized

planner).

Fortunately, existing GraphSLAM inference techniques, in combination with ef-

ficient loop closure generation, extend naturally to the multi-robot case [12, 13, 14].

However, these estimation methods provide only the maximum-likelihood trajectories

of the robot team. The configuration of the environment, such as the position of walls

and doors, must still be computed explicitly from the accumulated sensor data, for

example by rasterizing the position of obstacles into a grid-based representation of

the environment. Since the estimates of where a robot has traveled are constantly

updated as new loop closures are identified, näıve approaches to this problem, which

re-rasterize the entire world after each update, cease being “online” even for modestly

sized environments.

To enable online planning for the team of robots, Chapter 2 describes a new two-
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Figure 1.1: Map rasterization. Rasterizing a map of the environment allows robots
to understand where they can drive and where the walls are.

level rasterization technique which scales better to larger environments with many

robots. In particular, on our largest dataset with 14 robots covering 220x160m, the

näıve algorithm consistently took over 6 seconds to rasterize all the data, while the

proposed method averaged less than 1 second per rasterization.

Having a consistent, low-latency rasterized map of the environment is a necessary

prerequisite to enable frontier planning approaches, however rasterized maps are not

sufficient to enable the success of such algorithms. Multi-robot teams also generally

need to communicate in order to collaborate effectively, for example to share sensor

data, or agree on task allocations. With our MAGIC 2010 system, we deployed a

long-range centralized radio infrastructure that struggled to perform well in dense

urban environments. During the MAGIC competition the system averaged only 108

bytes/second, shared between 14 robots. To put that in perspective, our heavily-

compressed sensor scans average 132 bytes [2]. The lack of bandwidth with this

system was a key limitation in scaling our system to larger environments, or more

robots. A common approach to improving bandwidth is to use shorter-range, ad-

4



Figure 1.2: Robot communication. When operating in urban environments, robots
need to understand where they will be able to communicate in order to collaborate
effectively.

hoc mesh networks. However, to prevent a robot from becoming detached from

the communication graph, robots need to plan to remain in contact, which requires

predicting where they will be able to communicate. Unfortunately, signal strength

prediction is very challenging. Even when prediction is confined to two points on a

2D plane, the estimation problem is fundamentally under-constrained, as the input

space is R4, and there are very few labeled outputs because only the signal strength

between each robot is known.

Chapter 3 describes a new method for predicting signal strength that leverages the

existing capability to generate LIDAR-based maps in combination with the radio’s

signal strength estimates to provide stronger and more informative constraints on the

estimation problem. We then formulate a multi-variate Gaussian estimation problem,

embedded in a grid that encompasses the workspace, whose maximum likelihood

(ML) solution estimates the signal attenuation in each grid cell. The resulting signal
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Figure 1.3: Scene segmentation. Efficient segmentation of colored point clouds (left)
is important to enable robots to detection recognize objects in real environments
(right).

attenuation maps (which can be used to predict signal strength using a line-integral),

can then be used as input to a communication-aware planner to dispatch robots such

that connectivity is maintained [15].

In addition to collaboratively mapping the test environment, the MAGIC 2010

competition also required identification of simulated improvised explosive devices.

These objects had a particular shape and color which robots were required to identify

and avoid, otherwise the robot would be deactivated if it came too close. Both 3D

LIDAR and color information are required for accurate classification. Furthermore,

robots must be able to quickly (online) classify their surroundings in order to avoid

running into one of these hazards.

To tackle this challenge, in a joint project with Andrew Richardson, we adapted a

popular graph-based, image-only segmentation technique to the colored point-cloud

domain. The adaptation, presented in Chapter 4, is not straight-forward because

color and range measurements are not directly comparable, and furthermore they have

different sample densities. The resulting algorithm was able to run at approximately

4Hz on a single core, which meets our “online” requirement. Unfortunately, our

proposed algorithm relies on carefully co-calibrated LIDAR and camera sensors which

made it logistically prohibitive to implement the proposed algorithm with our 14-robot
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team using the error-prone camera calibration toolboxes available at the time.

The final contribution of the thesis, also joint work with Andrew Richardson, im-

proved the state of the art in camera calibration to be more robust and repeatable

than state-of-the-art methods, even for novice users. Most existing camera toolboxes

require an expert to select several images of a calibration target to compute the many

intrinsic parameters, such as focal length and radial distortion. However, the result-

ing parameter estimates are sensitive to the chosen calibration images (the training

set). It can be difficult, even for experts, to ensure that enough images are incorpo-

rated to correctly estimate all parameters. Principled validation of a calibration can

theoretically be done by collecting a large, exhaustive and independent test set, but

this time-consuming process is not widely adopted in practice [16].

In contrast to the expert-driven approach, AprilCal, described in Chapter 5, intro-

duces a principled, algorithm-driven process that suggests calibration target positions

in order to minimize a new metric called “Max Expected Reprojection Error” (Max

ERE). This metric evaluates the quality of an in-progress calibration based on the

expected error throughout the image, rather than only evaluating on the user-chosen

training set, as in previous approaches. We demonstrate that the Max ERE correlates

highly with empirical test set errors, eliminating the need for end users to spend the

time to collect their own. Principled computation of the Max ERE is made possible

by modeling the camera intrinsics and calibration-target extrinsics parameters as a

sparse, multi-variate gaussian distribution. This allows both efficient inference, using

similar tools as in the map rasterization and signal strength estimation works, but

also for straight-forward marginal computation. The Max ERE is then derived by

sampling over a particular marginal distribution. The resulting interactive system

allowed users to reliably calibrate a variety of camera lenses. We validated this claim

with a user study that showed that novice users with no prior experience could re-

liably calibrate cameras to << 1 average pixel error. Because this system provides
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Figure 1.4: Camera calibration. Human-selection of target images (especially by
novices) results in inaccurate parameter estimates. Our guided, repeatable calibration
process helps make calibration of a fleet of robots manageable.

live suggestions to the user, it must achieve online performance.

These novel contributions to map rasterization, signal strength estimation, point

cloud segmentation and camera calibration have the potential to improve the capa-

bilities of cooperative multi-robot teams. Many of these contributions use similar

spatial- and probabilistic-reasoning tools to deliver online algorithms applicable to

real robots. In particular, the contributions of this thesis are:

� A new, more efficient algorithm for map rasterization that enables multiple

simultaneously exploring robots to explore large urban environments

� A novel approach to, and online algorithm for, signal-strength prediction that

handles teams of robots

� An efficient, online, colored point cloud segmentation algorithm that improves

the ability to segment objects from their surroundings

� A principled method for reasoning about calibration uncertainty, which enabled

the creation of the first intelligent, guided camera calibration toolbox

These contributions are presented in Chapter 2 “Map Rasterization”, Chapter 3 “Sig-
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nal Strength Prediction for Teams of Robots” Chapter 4 “Colored Point Cloud Seg-

mentation” and Chapter 5 “Guided Camera Calibration”, respectively.
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CHAPTER 2

Map Rasterization1

Successful autonomous operation of a team of robots in unknown large-scale en-

vironments depends on having a robust and globally consistent mapping solution. In

particular, rasterized occupancy grids have many important applications where effi-

ciency is an important objective (see Fig. 2.1). For example, autonomous exploration

presents particularly hard timing requirements — the planner requires map updates

quickly so that it can compute updated plans without requiring robots to stop and

wait [17].

While parametric SLAM graphs can support efficient maximum-likelihood in-

ference for very large graphs, (e.g., using iSAM [13]), this graph-based representa-

tion is not directly useful to frontier-based exploration algorithms, which require a

globally-consistent view of the border (frontier) between explored and unexplored

space. Standard approaches to rasterization in the Simultaneous Localization and

Mapping (SLAM) field scale linearly with the amount of robot sensor data, even-

tually overwhelming a fixed CPU budget. We present a method that uses a sparse

parametric SLAM algorithm to enable occupancy grid updates to be computed on-

line for larger environments than any näıve methods can handle. While our approach

still has a linear worst case, it is designed to produce much faster performance in

1©2011 IEEE. Adapted with permission, from Johannes Strom, Edwin Olson, “Occupancy Grid
Rasterization in Large Environments for Teams of Robots” September 2011.
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Figure 2.1: Rasterized map of Keswick Barracks. The 180 x 100 m map was produced
with a mean processing time of 1.3 seconds on a single 2.53 GHz core. Permanent
structure is shown in black; known free space in gray; unobserved in white.

typical urban environments. Our method exploits several properties of the mapping

problem: We observe that after incorporating loop closures, the posterior, maximum-

likelihood (ML) estimate of a historical robot position does not necessarily change,

so parts of the gridmap may remain the same. We also observe that useful maps,

such as for cooperative planning, only contain the static structure of the environment,

omitting dynamic obstacles. Finally, we note that with some low-noise sensor types,

such as laser range finders, a small number of views of a place are sufficient to form

a complete map. These observations allow us to design a new data structure and

principled data reduction technique which enabled online performance in domains

where näıve algorithms were not able to keep up.

2.1 Problem Formulation

We consider the problem of generating a rasterized map using the laser-range-

finder data associated with the trajectories of a team of robots. Each map consists

of a grid of ternary labels free, structure, and unknown. In particular, we build on

11



Figure 2.2: Slam graph sequence from Keswick Barracks. Even though the SLAM
graphs do not directly encode a grid map, we’ve shown that we can use this repre-
sentation to efficiently compute an occupancy grid of the observed space.

the GraphSLAM formulation, where a SLAM graph G contains a set of nodes V and

edges E. The nodes represent the location of a specific robot at a specific instant in

time. Each node is associated with a local occupancy grid taken at that moment. The

edges represent constraints between two poses that determine their relative position,

including a covariance. An edge can be created using odometery and IMU readings

from a single robot to form that robot’s trajectory. Furthermore, additional edges can

be added by finding correspondences in the sensor data associated with two nodes.

Several efficient methods exist for computing ML posteriors for the node locations,

such as SqrtSAM, iSAM, or SGD [13, 18, 19].

Given the sensor data associated with each node and its ML posterior position,

we can formulate a basic näıve algorithm for building a global occupancy grid map.

Starting with an empty map, we iterate over each node in the graph and rasterize the

associated sensor data onto a global map. This rasterization algorithm scales linearly

in the number of nodes in the graph: for applications where only the final map is

desired, this method works quite well.

In the case of a team of actively exploring robots, we actually operate on a sequence

of n graphs G1, · · · , Gn, from which we want to produce maps M1 · · ·Mn, e.g, for use

12



with an autonomous planner. We desire that the maps be computed on-line with

a minimum of delay so that consumption by the planner can proceed directly. We

further require that the maps reflect the exact Maximum Likelihood Estimate (MLE)

position of all the sensor data contained within it, and that moving obstacles are

removed. (Dynamic obstacle avoidance is not handled at the task allocation level

during frontier planning, but rather using lower latency, on-board collision avoidance.)

2.2 Method

We use a combination of techniques to speed up the computation of Mi+1 given

previous maps M1 · · ·Mi. We first introduce a spatially-aware data structure that uses

caching to automatically exploit the structural similarity between subsequent maps.

This is possible because we are primarily concerned with mapping the structure of the

environment, which is assumed to be static during the course of a mission. Second,

we introduce the notion of a “node covering” that allows Mi to be computed by

discarding redundant sensor data. These optimizations enable the time to compute a

rasterization to scale with the size of the observed area, not with the duration of the

system’s operation (which could be quite long, or even unknown). Finally we show

how this method can incorporate transient object removal.

2.3 Slice Caching

Each subsequent node set is a superset of the previous set (Vi ⊆ Vi+1), so we

could theoretically improve on the näıve algorithm if we can exploit the overlap. For

example, if the edges added to Gi to form Gi+1 did not include significant information

gain (in the probabilistic sense), then the maps Mi and Mi+1 can be quite similar.

What we desire is a principled way to determine which portions of Mi we can reuse

to form Mi+1, so that if the graph is not gaining information, the map update is very

13



Figure 2.3: Cache data structure. The leaves, depicted here for N = 2, represent
local maps from each robot. A single layer of globally aligned sub-maps are stored in
the slices.

fast. In cases where the graph changes significantly, we must be willing to wait for

an accurate map Mi+1 to be formed if we want to ensure the map is consistent.

We can exploit similarities in subsequent maps by partitioning the nodes Vi into k

disjoint subsets S1 · · ·Sk which we call slices (see Figure 2.3). A system designer can

choose k freely, to tradeoff between faster best-case performance, and faster average-

case performance, as discussed in the evaluation. We then compute small maps mj

from each slice Sj, such that the final map Mj is the rasterization of all m1 · · ·mk. For

each map update, the number of subsets that need to be converted to sub-maps will

vary. In the worst case all subsets will contain nodes whose ML posterior has changed

and the data from every node will be examined twice — once to form mj, and once

again to form Mi. To achieve faster map updates, we can avoiding recomputing mj

if the ML posterior position of no node in Sj changes enough to cause a change in

mj. Determining whether to recompute mj can be done exactly by observing whether

a change in the ML position would result in more than 1 grid cell of change in its

projection into the global frame. As we show in our evaluation, it is usually the case

that enough nodes are not part of a loop closure that it is worthwhile to cache mi.

The method for partitioning Vi into subsets greatly impacts the runtime of the

algorithm. Unfortunately it is not possible to know an optimal partitioning in ad-

vance. Ideally, we design the subsets to contain highly correlated graph nodes. This
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way, if l nodes need to be recomputed, only d |Sk|
l
e slices need to be recomputed. If

the subsets were not correlated, we might need to recompute as many as l slices.

We found that in practice, a good heuristic partitioning is to automatically group N

sequential nodes from a single robot into a slice. These slices contain spatially and

causally correlated nodes, so their ML posteriors are likely to change together. This

means a single node is less likely to cause the recomputation of an entire slice unless

the other nodes in that slice also have moved.

2.4 Spatially Non-Redundant Node Coverings

To further increase the speed of computing the rasterization for a map, we note

that much of the sensor data collected by the robots is redundant. For environments

that are structurally static, such as indoor-outdoor urban environments, a small num-

ber of sensor observations can be sufficient to build an accurate map of a small area.

In particular, this is the case for low-noise sensors such as laser range finders.

This observation allows us to reformulate the occupancy map generation using

only a subset of nodes, Ci ⊆ Vi, which cover all the nodes in Ni. We define a set of

nodes to be covering if there exists no node not in Ci that adds significant information

to the map Mi. We can also show that this assumption actually allows us to improve

map quality subjectively, since multiple observations of a single place can only result

in blurring of features, potentially erasing important topological features such as

doorways, which can result in an incomplete exploration mission.

In practice, determining a minimal covering that meets this definition is at least

as expensive as computing M ′
i from Vi, since it is unclear without examining each

local map mj in detail if it will contribute significantly to the global map. However,

we can define a conservative heuristic that will guarantee a complete covering in

most environments, though it may not be minimal. We solve this by automatically

considering the field of view that each local map covers, and the location at which

15



it was taken. If both of these are too similar to an existing measurement, we can

remove it from the covering.

The covering paradigm enables a smart decimation of the sensor data, which

enables the computation of Mi to be bound by the area it covers, rather than by the

time the system has been running. In the worst case, the area could still be linearly

dependent on the runtime. However, at system design time, we will likely have a

prior over the size of the environments we are mapping, even if we don’t have a prior

over its runtime.

2.5 Transient Object Removal

The final step of the rasterization process is determining how to ensure transient

objects are not included in the final map. As previously mentioned, transient objects

cause problems for autonomous planners because their presence can obscure the ex-

istence of more explorable terrain through a doorway. As a result, we must carefully

detect which sensor readings are due to transient objects. In principle, such objects

are easy to detect by looking for disagreement among sensor data as to the free or

occupied status of a cell. In practice however, some disagreement can be caused by

alignment error and does not necessarily indicate a transient object. In cases where

alignment is poor (e.g., when the SLAM Graph is poorly constrained), we want to

mitigate the possibility that entire walls will be removed. The “bias” to label an

object as transient reflects the degree to which the system designer wishes to be resis-

tant to alignment error versus the desire to ensure all doorways are correctly marked

as passable terrain. An efficient solution to this problem is to view multiple sensor

readings of a particular cell as observations of a binary variable with equal covariance.
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The probability of the cell being an obstacle is given by:

p(obs|z0 · · · zn) ∼ p(obs)
∏
i

p(zi|obs)

This can be computed directly by summation of log probabilities [20]. A simple

threshold on p(obs|z0 · · · zn) is then used to determine whether the cell should be

marked as occupied or free, reducing the process to a vote at each cell. Note that

while the covering technique presented in the last section reduces the number of sensor

observations used, the covering algorithm is designed to preserve sufficient overlap so

that dynamic objects are still be detected.

Algorithm 2.1 COVER COMPOSITE(Gi = 〈Vi, Ei〉)
1: for v ∈ Vi|v 6∈ Vi−1 do
2: r = robot(v)
3: if coverTest(v, Cr) then
4: append(Cr, v)
5: sk = getNextSlice(Sr)
6: addToSlice(sk, v)
7: end if
8: end for
9: for sj ∈ S do
10: if projectionError(sj) >thresh then
11: regenerate(sj)
12: end if
13: end for
14: Mi = initialize(boundingBox(S))
15: for sj ∈ S do
16: compositeOnto(Mi, sj)
17: end for
18: threshold(Mi)
19: return Mi

2.6 Implementation

Our method, ‘CoverComposite’, which combines the improvements from the node

covering with slice caching, is described in Algorithm 2.1. We assume that another
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module, such as GraphSLAM, is producing a sequence of ML posterior SLAM graphs

Gi, Gi+1, · · · . The algorithm we present is run on successive Gi. For convenience, the

cover and slice sets are stored in memory as Cr and a set of slices Sr for each robot

r ∈ {0, · · · , R}. First, all the new nodes that first appear in graph i are examined to

determine if they belong in the covering for the robots which spawned them. If so,

they will be added to an existing slice if there is room, or otherwise force the creation

of a new slice. Next, each slice is examined to determine if the geometric projection

error of any update of the state of any of its member nodes would cause an error

of more than some threshold (e.g., 1 pixel). If an update is needed, the cumulative

gridmap for that slice is regenerated according to the most recent ML posteriors for

each node. Finally, all the slices for all robots are composited together to form the

final occupancy grid. We also track of how many slices observed each cell as either

observed or free. Using the probabilistic scheme described in the previous section, we

convert that representation to a binary map via a fixed classification threshold.

The asymptotic complexity bounds of our method are the same as the näıve

algorithm we described earlier. In the worst case, our implementation is at most

twice as slow, since each sensor datum must be examined at most twice. However,

we have shown empirically that the average run time is much faster than the näıve

rasterization algorithm.

Algorithm Nodes composited
NäıveComposite All
NäıveCoverComposite Cover (every timestep)
CoverCompositeN Cover (only when necessary)

Table 2.1: Rasterization methods used in the evaluation

Dataset Size # robots Num. Graphs
Keswick Barracks 150 x 150 m 10 68

Showgrounds (phase2) 220 x 160 m 14 429

Table 2.2: Mapping datasets used in the evaluation of each rasterization method
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Figure 2.4: Phase 2 occupancy grid. This grid map includes data from 15 robots
collected over the course of 72 minutes. Size: 220 x 160 m @ 0.1m resolution.
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Figure 2.5: Phase 2 cumulative runtimes. Color bands indicate the portion of raster-
izations that finished in <1.0s, <2.0s, <3.0s, <4.0s , <5.0s and ≥5.0s for colors of
red, green, blue, cyan, magenta and yellow, respectively.
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2.6.1 Evaluation

To evaluate the effectiveness of the method, we implemented two näıve rasteriza-

tion algorithms, and compared to three versions of the our method by varying N , the

parameter which determines how many nodes are in each slice (see Table 2.1). The

first näıve method, NäıveComposite, computes a batch composite of all the nodes

every timestep. The second näıve method, NäıveCoverComposite, rasterizes only the

nodes in the cover at each timestep. The primary evaluation metric is efficiency, the

time it takes to compute a rasterization. It is also important that the resulting maps

correctly represent the structure of the environment. For example, if the map contains

a gap in a wall, as a result of incorrectly computing a covering of the environment,

robots may be tasked to drive through a wall. In our MAGIC system, the robots

have collision avoidance strategies that prevent an accident in such a case. However,

attempting to drive through a hallucinated door would slow down the progress of

exploration. Therefore, we validated that the maps produced by our approach are

structurally accurate (and without gaps), by conducting several real-world exploration

missions covering several hours of operation in mixed indoor-outdoor environments.

We evaluated all five algorithm parametrizations on two separate datasets: one

involving 10 robots autonomously exploring a section of the Keswick Barracks, and

another of 14 robots autonomously exploring a portion of the Adelaide Showgrounds

as part of the MAGIC 2010 contest (see Table 2.2 for specific dimensions). While

the datasets are both of structured, man-made environments, they have significantly

different topologies. This enables us to evaluate performance under varying condi-

tions. The maps corresponding to the final graphs in each dataset are shown in

Figure 2.1 and 2.4. Both datasets were taken in Adelaide, South Australia. To our

knowledge, no other public datasets of this scale exist.

To evaluate the effectiveness of each method, we ran each algorithm on a sequence

of graphs for each dataset, collected at 10 seconds intervals. We evaluated each
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Figure 2.6: Keswick timing detail. Runtimes for each graph G0...G67 on the Keswick
dataset. Horizontal lines indicate average runtime for that algorithm. Large runtimes

indicate loop closures occurred between the (i − 1)th and the ith timestep, which
changed the ML posterior for the position of many nodes.
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Figure 2.7: Phase 2 timing detail. Runtimes for each graph G0...G429 on the phase
2 dataset. Horizontal lines indicate average runtime for that algorithm. The graphs
are taken at 10 second increments. Vertical spikes are indicative of significant loop
closures. The distribution of loop closures is dictated by the environment, and the
paths the robots used to explore it. In this dataset, the system is still functioning
well after over an hour in a large environment with many loop closures.
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Figure 2.8: Phase 2 node detail. Time varying totals for the number of nodes in the
graphs, the number of nodes in the cover, and the number of nodes that must be
regenerated for each algorithm at each timestep.

method primarily on the total runtime of the rasterization. All algorithms use the

same ML node posteriors, so we expect the maps from each algorithm to be very

similar. While it would also be desirable to quantitatively evaluate the map quality

from each method, as in [21], we lack accurate ground truth for the environments in

question (see Figure 2.4). In practice, we found that our cover heuristic consistently

produced structurally-accurate maps over a number deployments in real-world urban

environments. Subjectively, we even saw a slight improvement to map quality using

the covering method, as can be seen in Figure 2.9.

For evaluation, we timed the duration of each map update for each method on

a 2.53 GHz Intel i5 laptop. All our algorithms are hand-optimized, implemented in

Java and single threaded. To determine which algorithm is the most CPU efficient,

consider the integral time over the phase 2 dataset shown in Figure 2.5 (lower is

better). The plot shows that although N = 16 has the lowest total time, the N = 4

parametrization actually has more instances finishing in under 1.0 seconds (red) than

any other method. For MAGIC 2010 exploration missions, despite slightly slower
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(a) Context (b) Original (c) w/ Cover

Figure 2.9: Map quality improvement from covering. Using a node covering for a
problematic section of the phase2 map reduces feature blurring while still providing a
structurally equivalent map. The resulting map more accurately represents the true
environment, but without needing to process every collected submap.

average performance, we choose to use N = 4, since it reduces the planning delay the

most often. Other system designers may prefer to choose a different parametrization,

with different runtime characteristics, to maximize the end-to-end performance in

their domain. Note that when large scale loop closures occur, we must be willing to

incur a heavier planning delay if we want a map which accurately reflects the MLE

position of each sensor scan. This is because any cached rasterization is largely useless

when the underlying SLAM graph changes significantly. This plot also shows that

the CoverComposite algorithm out-performs both näıve implementations.

More detailed timing information for both datasets is available in Figs. 2.6 and 2.7.

These plots show the time required by each method to rasterize the graph at each

timestep in both datasets. The average time for each method is shown as a horizon-

tal bar. The näıve algorithms show steadily increasing compute time as the number

of nodes in the graph (or cover) grows, which is expected. The cached CoverCom-

posite algorithm has variable runtime depending on the number of slices that need

to be recomputed. Figure 2.8 shows the number of nodes in the graph, the size of

the cover, and the number of nodes that are recomputed at each step. Comparing

Figs. 2.8 and 2.7 confirm our claims that the CoverComposite family of algorithms
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only incurs significant CPU time when large numbers of nodes have moved signifi-

cantly due to a loop closure. The data show that our method is significantly more

efficient than our highly optimized näıve algorithms we compared against.

2.7 Discussion

Our work in improving the rasterization algorithms using sparse SLAM-graph-

based approaches helped to make the state estimation scale to larger environments,

which was crucial to the success of our MAGIC entry. This work also demon-

strates that occupancy-grid-based representations can be scaled to multiple robots,

and that such a representation, which was traditionally used in particle-filter-centric

approaches, can be used effectively in combination with sparse, parametric inference

methods. However, the presented rasterization approach depends on reliable inter-

robot communication to function properly. If local sensor data can’t be received in a

timely fashion, the concept of a live, globally-coherent map is impossible.

Our MAGIC system relied heavily on a centralized, “reliable” communication

infrastructure, which ultimately underperformed our expectations by averaging only

108 bytes per second per robot at a range of about 250 m [2]. This centralized system

was also augmented by an opportunistic, best-effort mesh network with substantially

higher throughput. This system would likely not scale to larger environments though,

as the centralized radio network would have even lower bandwidth at longer ranges,

and the opportunistic mesh network would be less likely to maintain all the links

necessary to collect sensor data from every robot.

Ad-hoc wireless mesh networks, built from multiple, short, high-bandwidth links

are capable of reliable communication, provided the robots can understand the signal

strength propagation and then act to prevent the network from becoming discon-

nected. This limitation motivates the signal strength mapping work in the next

chapter.
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CHAPTER 3

Signal Strength Prediction for Teams of Robots1

Our experience in the MAGIC contest demonstrates that mapping the physical

space in which robots are deployed is not enough to allow proper operation of multi-

robot teams in large environments. Choosing more powerful radios is not always an

option, so it is important that robots can plan to remain connected to support collab-

oration. One way to do this is to predict signal strength measurements in places to

which robots are considering moving. Therefore, we introduced a signal strength mod-

eling and prediction framework in realistic indoor/outdoor urban environments with

an a priori unknown map [22]. This work extends previous works that typically focus

on the case where robots communicate with an existing fixed base station [23]. Unfor-

tunately, many domains lack a usable communications infrastructure (e.g., disaster

zones), forcing robots to deploy their own. Achieving good performance from fully-

mobile networks is challenging because more complicated signal-propagation models

must be incorporated into the path-planning process to ensure connectivity. Further-

more, existing models for fixed-transmitters do not extend directly to the case where

all nodes are mobile.

While prediction in the former case is analogous to regression in a two dimen-

sional space, the latter requires making predictions for a four dimensional space, but

1©2012 IEEE. Adapted with permission, from Johannes Strom, Edwin Olson, “Multi-sensor
ATTenuation Estimation (MATTE): Signal-strength prediction for teams of robots” September 2012.
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Figure 3.1: Estimated attenuation map. A single traversal of a 160×100m environ-
ment by 3 robots conducting an exploration mission allows the environmental atten-
uation to be estimated. Blue indicates regions where signals are attenuated, white
and orange regions indicate where signals pass more easily. Black denotes building
structure. Our algorithm, MATTE, is designed for predicting signal strength in the
challenging case where all transmitters and receivers are mobile.

without a corresponding increase in data density. The result is that achieving simi-

lar generalization performance from observed signal-strength measurements becomes

more challenging. This work explores how existing methods can be modified to better

cope with this reduction in data density, and introduces Multi-sensor ATTenuation

Estimation (MATTE), which uses additional sensor data to inform a better prior

over the locations of significant attenuators in the environment. We evaluate the

performance of MATTE on over 40,000 m2 of map and signal strength data collected

in a number of environments including academic buildings, libraries, and residential

apartment complexes. The scope of our real-world evaluation is several orders of

magnitude larger than those presented in existing works, which in one case is 70 m2

of real world data [24], and less than 1,600 m2 in a building basement [25].
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3.1 Background

Standard macroscopic models of RF propagation describe the expected signal

strength, which depends on the location of the receiver ~r and transmitter ~t, as having

three main components [26]:

ydBm = L0 − a log10(||~r − ~t||)︸ ︷︷ ︸
path-loss

− g(~r,~t)︸ ︷︷ ︸
shadowing

− ε︸︷︷︸
multipath

(3.1)

In simplified, ideal environments, signal-strength can be determined purely by path-

loss, which has two degrees of freedom: L0 corresponds to the power of the transmitter

and a is the path-loss exponent that determines how quickly the signal attenuates with

distance. In real environments both shadowing and multipath can additionally affect

the signal strength: shadowing corresponds to the attentuation a signal experiences

as it passes through dense objects, and multipath corresponds to amplification or

cancellation that occurs when waves travel multiple paths of different lengths from

source to destination. In general, multipath is very difficult to predict because it

results from complex reflection and diffraction interactions. Shadowing, on the other

hand, is easier to predict, since the scale of its effects are larger and more spatially

coherent. For the remainder of this chapter, we will focus on models that predict

path-loss and shadowing but ignore multipath. Properly modeling and predicting the

effects of multipath is not realistic for multi-robot systems which only sparsely sample

the space of possible signal strength estimates.

Robots are able to measure the signal-strength from each other robot during the

robot’s mission. These noisy values form a vector ŷ, with corresponding vectors of

positions R and T containing all pairs of receiver and transmitter positions, respec-

tively. We treat predicting y as a linear regression problem. For the case of the simple

path-loss model, estimating the two variables (L0, a) from the data is sufficient to

predict signal measurements for arbitrary positions. This can be done using standard
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least-squares approaches: if x = [L0 a] and the ith row of A is [1 log10(||~ri − ~ti||)]

then the least-squared error estimate for x is x̄ = (ATA)−1AT ŷ. Path-loss-only mod-

els are useful due to their simplicity and correspondence with theoretical propagation

equations: the low degree of freedom reduces the chance of over-fitting. However,

as this model ignores shadowing effects, its application in environments with varying

attenuation is limited. In our evaluation, we will use this simple log-fit as a baseline.

Correlative and tomographic methods include the same path-loss model, but also

explicitly incorporate shadowing, allowing for improved predictive performance. The

way in which shadowing is captured varies between the two types of models. In the

tomographic case, the shadowing function, g(·) is computed by integrating the effect

of all attenuators between transmitter and receiver. In practice, we model the world

as a 2D grid of infinitely tall columns, represented using the standard tomographic

methods as 2D grid of pixels. If the signal passes through a series of p discretized

pixels, the shadowing is computed as [24]:

g(~r,~t) =

p∑
i

wivi (3.2)

where vi is the attenuation in the ith pixel and wi is the importance weight of that

pixel for that signal’s path. (In our implementation, the weights wi correspond to the

length of the line between transmitter and receiver that is contained in the pixel.) In

other words, we compute attenuation per pixel by assuming that signal strength is

reduced according to the sum each pixel appearing along the path between receiver

and transmitter. Given a set of signal strength measurements, we can attempt to

find the attenuation values xi of each pixel using a similar least-squares approach as

described above. However, there are many possible attenuation assignments to the

pixels that can adequately explain the signal strength measurements, resulting in an

under-determined system of equations. In the next section we will discuss apply-
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ing regularization techniques to encode a prior that prefers real-world environments,

thereby over-constraining the system of equations, and making the estimation of vi

feasible.

In the correlative case, the shadowing component is considered to be uniformly

correlated in all directions, allowing predictions to be made by making inferences from

spatially-proximate training points. In particular, prior approaches have had success

modeling shadowing using a Gaussian-process (GP) [25, 26].

In the case of a fixed base-station (located at ~b), standard practice is to use the

log-fit as a mean function, and then use a standard squared-exponential kernel to

specify the expected covariance between signals at two locations, x and x′: k(x, x′) =

σ2
f exp{− ||x−x

′||
l2
}. Using this covariance (kernel) function, we can apply standard GP

regression techniques to make predictions for a set of sample points [27]:

1. Compute Log-fit: Fit L0 and a using least-squared approach described above.

2. Fit Hyperparameters: Choose correlation distance l and function variance

σf to maximize likelihood of training data.

3. Compute Covariances: Compute covariance matrix Ky of training data, and

covariance vector k∗ of sample points with respect to training data. Ky =

Kf + σ2
dI, where each entry ki,j ∈ Ky = k(xi, xj).

4. Evaluate prediction: ysample = kT∗K
−1
y (yobserved − ylog)

These correlative methods have good predictive performance, especially in the case

when many training points are available. The main shortcomings of this method

are that prediction assumes signals are uniformly correlated in all directions — an

assumption that breaks down in the presence of discrete attenuating objects. Direct

extension of this method to the case of mobile nodes is also problematic, since training

points are in R4, requiring significantly more data to achieve the same performance.
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Finally, this method is computationally expensive, requiring the inversion of a dense

matrix whose dimension is determined by the number of training points (typically

600).

3.2 Methods

In this section, we extend both the tomographic and correlative methods to the

case of multiple mobile nodes. We will describe our modifications to these existing

approaches, and introduce our new approach, MATTE, which uniquely leverages

other sensors to infer the location of attenuating objects.

3.2.1 Correlative Methods for Mobile Nodes

Extending previous approaches of correlative prediction to the case of moving

nodes exacerbates the data-sparsity problem. Instead of producing signal predictions

for R2 (all points in the plane), we now must produce predictions in R4 (all possible

pairs of points in the plane). Since we can’t increase the number of signal-strength

observations that robots make without slowing down the speed of exploration, this

means we have significantly reduced data density. However, we were able to mitigate

this problem somewhat by recognizing that our signal-strength models are symmetric

with regard to where the transmitter and receiver are — that is, we assume the signal

strength is the same from robot A to B as it is from robot B to A. This observation

allows us to construct a symmetric distance function, ds4, which effectively doubles

the data density:

ds4(~ra,~ta, ~rb,~tb) = min

 ||~ra − ~rb||+ ||
~ta − ~tb||

||~ra − ~tb||+ ||~ta − ~rb||
(3.3)
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In other words, ds4 is a distance metric for pairs of lines that is invariant to rotations

of 180 degrees.

In practice, many thousands of observations may be available for use in training

the Gaussian process. Due to the O(n3) computation cost of matrix inversion, it

quickly becomes impractical to include all training data. However, prediction per-

formance is improved as more training points are used. In the case where K is very

sparse, the inversion can be done more quickly, enabling use of more training data.

However, the squared exponential kernel is not sparse; two measurements will never

have a covariance of exactly zero, even if they are very far apart. By modifying

the kernel to have compact support — that is, the kernel is exactly zero once some

distance Θ is reached — the matrix K becomes sparse [28]:

ks(x, x
′) = max(0, 1− ||x− x

′||
Θ

)γ ∗ k(x, x′) (3.4)

The resulting sparsity allows computing K−1 much faster, enabling the use of more

training points. Although sparse kernels generally have worse performance, we found

in practice the that the speed improvement enabled the incorporation of enough extra

training points to achieve a net improvement in performance. This sparsification also

increases the number of hyper-parameters that must be estimated to a total of 5.

In principle, we can learn these additional parameters the same way we learn the

parameters for the original covariance function. However, increasing Θ will always

result in a lower training error and an increased computation due to a less-sparse

covariance matrix. To limit worst-case computation time, we do an offline parameter

sweep to estimate the best Θ and γ subject to a fixed CPU budget.

Together, the symmetric distance metric and the forced sparsification of the cor-

relation function enabled us to adapt existing correlative prediction techniques to

the case of multiple mobile robots, and achieve results competitive with our method.
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These additions to existing methods form the Multi-robot Gaussian Process “MRGP”

method, which we include in our evaluation.

3.2.2 Multi-robot Tomography (MRT)

Conceptually, extension of the tomographic methods to the case of multiple robots

is relatively straightforward. The attenuation of each pixel through which a signal

passed is estimated in least-squares fashion. The number of pixels, p, is determined

by the grid size such that the pixels completely fill the workspace of the robots. For

a grid of width w and height h, p = w × h and pixels are labeled v0,0 · · · vw−1,h−1. In

addition, the two path-loss parameters, L0 and a are also estimated simultaneously,

resulting in n = p + 2 unknowns: x = [L0 a v0,0 · · · vw−1,h−1]. Each of the m signal

strength observations yi provide one equation partially constraining a subset of the

pixels in addition to the path loss parameters (see Eqns 3.2 and 3.1). Together these

equations are stacked to form the rows of an n×m matrix A. If A is full rank, x =

(ATA)−1ATy. However, even though m is generally greater than n, A remains rank

deficient, resulting in many possible solutions for x. Related approaches have solved

this by using Tikhanov regularization that enforces smooth changes in attenuation

between neighboring pixels [24]. This corresponds to constructing a Tikhanov matrix

Γ whose rows correspond to equations of the form vi,j−vi+1,j = 0 and vi,j−vi,j+1 = 0

for each i, j < w, h. The over-constrained solution for x now takes the form

x = (ATA+ λ2ΓTΓ)−1ATy (3.5)

where λ is a parameter to determine the weight of the smoothness constraints in Γ

relative to the observation equations in A. In contrast to the correlative methods,

which scale O(m3) with respect to the number of observations, the tomographic meth-

ods scale O(p3) with respect to the number of pixels. However, unlike the correlative
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methods, ATA is naturally sparse since each pixel is only jointly constrained with

a small number of other pixels. This means that sparse matrix-inversion methods,

such as a Cholesky decomposition, can perform significantly better than O(p3). In

practice, ATA is still dense enough (95% zeros) that we are limited to solving grids on

the order of 100× 100 (10000 pixels). For the datasets in our evaluation, this trans-

lates to a grid size between 2 and 4 meters. Such large grid sizes poorly approximate

the sharp spatial changes in attentuation found in real environments, such as at the

border between a building and neighboring free space. Furthermore, in order to avoid

over-fitting, λ must be set large enough to allow very little spatial gradient in the at-

tenuation of each pixel (see Figure 3.1). In areas where attenuation changes quickly,

the predictive power is limited. Our implementation of this approach, Mutli-robot

Tomography (MRT), is included in our evaluation.

3.2.3 Multi-sensor ATTenuation Estimation (MATTE)

The approaches we’ve discussed so far focus solely on using signal-strength read-

ings for prediction of future measurements. Many robots already carry additional

sensors for mapping and navigation. Intuitively, since the physical structure of an

environment (the position of walls and other solid surfaces) influences signal prop-

agation, a map of the environment should help predict signal propagation. This is

especially true for sensors like laser range-finders, which tend to have a range of

at least 10–30 meters. Incorporating a map does not solve the problem completely

though, since the attenuation of a wall depends on the material and LIDAR generally

can’t distinguish between a reinforced concrete wall and drywall.

Specifically, we propose the use of occupancy grids derived from laser range-finders

to provide a more informed regularization constraint to tomographic methods. The

occupancy grids collected by our robots label the world with three classes: known

free space, known structure and unknown. This information can provide a much
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better prior about the attenuating properties of the environment. For example, we

generally expect areas that are marked as free space to pass signals with little inter-

ference. Similarly, knowing the location of structures can provide a prior about where

attenuation should increase dramatically. Besides providing a better prior about the

magnitude of attenuation, the occupancy grids also provide a much finer view of the

environment. Using the MRT method, we are typically limited to coarse grid sizes

(e.g., 3 m for our datasets) due to computational constraints. On the other hand,

LIDAR-based occupancy grids can be computed cheaply even for fine-grained grid

sizes (we used 10 cm grid in our experiments).

Our approach explicitly estimates the attenuation of each of the three classes

separately. A simple approach to this problem is to fit a single attenuation value to

all pixels of the same class. For example, known free space might have an attenuation

of −0.01dBm per meter, whereas structure (e.g., walls) could have an attenuation

of −0.3dBm per meter, and unknown space could be approximated as somewhere in

between. This approach is notable in its simplicity — it has no parameters to tune

and only 5 degrees of freedom to fit the observed data: two for path loss parameters

and three more for the attenuation assigned to each class in the occupancy grid. In

general, however, it is a poor assumption that all objects detected by the robots as

structure will have the same attenuation. For example, a wooden fence and a brick

building have very different effects on a signal, but can appear very similar to a robot’s

laser range finder. As our initial experiments confirmed, this model performed poorly

in explaining real-world data.

A better way to use the occupancy grids is to better inform regularization methods,

for example by enforcing smoothness constraints only between neighboring pixels of

the same class. Using a more flexible model is difficult, however, since individually

estimating the attenuation for each pixel in the fine-grained occupancy grid results

in a poorly constrained, computationally prohibitive problem. The largest map we
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present has nearly 5 million pixels. Downsampling to a coarser resolution can make

the problem more tractable, but reduces the ability to incorporate features such as

doors or walls, which may be lost by resampling.

Algorithm 3.1 MATTE UPDATE(trainPoints, map)

1: init A, b from bounds(map)
2: for all p ∈ trainPoints do
3: r ← [1, log10(||pr − pt||), 0 · · · , 0]
4: for all locations vi ∈ losPath(p) do
5: c← map.class(vi)
6: r(vi, c)← 1
7: end for
8: A← appendRow(r)
9: b← appendElement(pz)
10: end for
11: {A, b} ← appendRegularization(A, b)
12: x← cholesky.solve(ATA,Atb)
13: store x
14: store map
15: return

Algorithm 3.2 MATTE PREDICT(testPoints)

1: retrieve x
2: z ← vector(testPoints.len)
3: for all p ∈ testPoints do
4: zp ← x(0) + log10(||p||)
5: zs ← attenuationIntegral(x, p,map)
6: p← append(p, zp + zs)
7: end for
8: return p

Instead, we introduce a method that benefits from the detailed resolution of the

map, but has computational complexity comparable to the MRT method. Our tech-

nique, called MATTE, separately estimates spatially-varying attenuation for each of

the three classes in the occupancy grid. These estimates allow querying any point

in the environment and determining, for example, if there was structure there, what

attenuation it would have. When predicting signal-strength, we first examine pixels

in the occupancy grid to determine which class they are, and then perform a look-up
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Figure 3.2: Attenuation integral using the three-class representation. An estimate
for g() is obtained by integrating over the cell-by-cell attenuation estimates from
the receiver to transmitter. Using three coarser grids, one each for free, unknown,
and occupied space, was crucial to efficiently estimating the attenuation while still
leveraging fine-grained representation of the environment. The illustrated line inte-
gral passes through known free-space, known occupied space, and unknown space,
denoted by blue, pink, and yellow, respectively. For each cell in the high-resolution
occupancy grid, the corresponding attenuation is incorporated via a lookup into a
lower-resolution grid of class-specific attenuation estimates.
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(a) nw1

(b) nw2

(c) bbb3

(d) eecs4

(e) dc1

Figure 3.3: Five evaluation environments for MATTE. From left to right they are:
two outdoor sections of the Northwood residential housing complex, the 3rd floor
of the Bob and Betty Beyster Building, the 4th floor of the Electrical Engineering
and Computer Science Building and the first floor of the Duderstadt Library. White
is unexplored, gray is known free-space and black is structure. Each evaluation set
consists of back-to-back traversals of three of these environments; meta-parameters
are tuned using the remaining two. These maps are rasterized using the techniques
presented in Chapter 2.
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on the appropriate attenuation estimate, as shown in Figure 3.2. The benefit of this

approach is that we can estimate the spatially-varying attenuation at a resolution

independent of the resolution required to adequately map the environment structure.

Typically grid sizes of 10 to 20 cm are required to preserve the presence of doors

or thin walls — but attenuation rates of a particular material, (e.g., building) tend

to vary at a much slower rate. The computational implications of this approach are

significant — whereas the resolution of the occupancy grid is typically 10 cm, we

have achieved good results with a grid size of 4 m for the spatially varying per-class

attenuations, resulting in a reduction by a factor of 1600 in the number of unknowns.

Similar to the previous tomographic approach, we simultaneously estimate the

path-loss parameters and the spatially varying attenuation. For a workspace w × h

pixels in dimensions, we estimate a total of 2 + 3 ∗ w ∗ h variables that comprise x.

Although this represents a threefold increase in the number of degrees of freedom

over our previous approach, ATA is generally more sparse (e.g., 99% sparse in our

datasets), ultimately requiring less time to compute a result. An overview of the

update and prediction steps are shown in Algorithms 3.1 and 3.2. The MATTE

algorithm has several important parameters which can either be tuned by hand or

estimated automatically from training data. The most important parameter is the

relative weight λ given to the smoothing regularizer we described in Eqn. 3.5. In

addition we introduce three parameters to govern the expected attenuation in areas

where we have not collected any signal data: a weighting factor φ determines the

relative weight of this prior, and prior attentuation values in units of dBm per meter

for each class are ρf , ρs, ρu, for free-space, structure, and unknown space, respectively.

In practice, we set ρs = ρu, allowing free space to have a distinct prior from other

areas.

An additional potential advantage of MATTE is that new occupancy grids can be

incorporated cheaply, as the underlying spatially varying attenuation does not neces-
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sarily need to be updated when the map changes. For example, our approach might

encode the knowledge that a pixels labeled as “structure” in a particular area tend to

have an attenuation of X dBm per meter. If the map of that area is later expanded,

that information will be able to provide an estimate for the attenuation expected

there, without needing to recompute x. This allows our approach to potentially be

adapted to run online.
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Evaluation Method Meta-parameters

1 Training: {nw2,bbb3} Testing: {eecs4,dc1,nw1}

MATTE λ=2.0 φ=.2 ρf=-.1 ρu,s=-.3

MRT λ=0.1375

2 Training: {eecs4,dc1} Testing: {bbb3,nw2,nw2}

MATTE λ=1.225 φ=0.05 ρf=0.2125 ρu,s=-0.2875

MRT λ=0.1125

3 Training: {bbb3,eecs4} Testing: {nw2,nw1,dc1}

MATTE λ=2.0 φ=0.275 ρf=0.2875 ρu,s=-0.4875

MRT λ=0.1250

4 Training: {nw1,eecs4} Testing: {nw2,dc1,bb3}

MATTE λ=1.38 φ=0.3 ρf=-.1 ρu,s=-.3

MRT λ=0.1125

5 Training: {dc1,nw1} Testing: {eecs4,bbb3,nw2}

MATTE λ=2.0 φ=0.1 ρf=-0.15 ρu,s=-.3

MRT λ=0.5875

Table 3.1: Signal-strength prediction parameters. Parameters are automatically de-
termined for each evaluation using coordinate descent on the training set. Some
parameters were fixed for performance reasons, including the grid sizes for MATTE
and MRT methods, at 4.0 meters and 3.0 meters, respectively. For MRGP, the num-
ber of training points was set to min(600, .05 ∗m), Θ was fixed to 20.0, and γ to 3.
Also σd and σf were fixed for numerical stability reasons at 1.5 and 1.0, respectively.
For MRGP, coordinate descent fixed l to 28.75 on all training data.
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3.3 Evaluation

We evaluated the three primary methods we have discussed to determine which

methods were most successful at predicting real-world signal-strength measurements.

The main purpose of our evaluation is to show that previous signal-strength prediction

methods using a fixed base station can be extended to the more general case where

all nodes are mobile. We also show that in many cases sensor data can be effectively

leveraged to further improve signal-strength predictions. Several of our models have

many degrees of freedom, so our evaluation also seeks to show that the methods we

present can generalize well from previous observations to the prediction of future

signal measurements.

3.3.1 Test Apparatus

We used a robot platform our lab custom designed for urban reconnaissance [2].

We outfitted three of our 14 robots with additional 2.4 GHz TP-Link WiFi radios

which were programmed to report signal-strength measurements at 20 Hz. Our robots

are equipped with 3D laser range finders, in addition to IMUs and odometers, enabling

them to produce high-quality globally consistent maps using SLAM algorithms [18,

29, 30]. This capability allows us to quickly collect large amounts of signal-strength

data that is co-registered with a global grid.

We used these three robots to collect a series of 5 datasets in various indoor and

outdoor environments, spanning a total area over 40,000 m2. The datasets consist

of three indoor environments, bbb3, eecs4 and dc1 for short, as well as two larger

outdoor environments, abbreviated nw1 and nw2 (see Figure 3.3 for details). Real-

world rescue robots must operate in mixed indoor-outdoor urban environments. In

order to mimic these conditions, we randomly selected a sequence of three of the

environments for testing, guaranteeing a mix of indoor and outdoor datasets. Each of

the datasets consist of exploration missions so very few sensor measurements can be
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(d) Eval 4 {nw2,dc1,bbb3}
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Figure 3.4: Evaluation of signal-strength prediction accuracy. MSE is shown for each
method on of the five the testing datasets. Error bars are bounded by 0.8 dBm2 and
are omitted for clarity. Our proposed method, MATTE, is compared to extensions of
previous methods MRGP and MRT. Our method generally performs better for near-
term predictions where the robots’ sensor data provides an informative prior. Poor
performance of MATTE in evaluation 3 is attributable to the randomly generated
training set which contains only indoor datasets, while the testing set contains both
indoor and outdoor sets.
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considered duplicates, since robots do not tend to retrace their steps. This enables us

to explicitly test the predictive performance of each method, rather than their recall

abilities.

For each randomly-selected set of three areas, we replayed the signal-strength

observations and corresponding maps in two second increments. After each step,

the methods were tested on their prediction performance of the next 10 intervals of

future signal strength data (from 0–2 seconds, 2–4 seconds, 4–6 seconds, up to 18-20

seconds). As the traversal played out, methods had access to an increasing amount

of training data, but the amount of testing data was relatively similar at each step.

Several of the methods also have meta- or hyper- parameters, which need to be tuned

before the start of a traversal. We used the two remaining areas not selected for the

test set to train meta parameters using a compass search. We include results for 5

such randomly generated traversals. The parameters selected by the compass search

for each method on each evaluation are shown in Table 3.1. All of the methods we

presented were tuned to use comparable amounts of computational resources.

While automatically tuning the meta parameters could be used to tune for a wide

variety of use cases (even outside multi-robot exploration), we particularly optimized

the parameters to target the online, multi-robot exploration case. While each method

exhibits significantly different asymptotic growth, and as such cannot be tuned to

have identical CPU usage, we set parameters that resulted in roughly equal CPU

use over all datasets. Specifically, cumulative run-times for MATTE ranged between

2 seconds to process the bbb3 dataset up to 30 seconds for the significantly larger

nw2 dataset. For the GP method, times varied between 15 seconds for bbb3 datasets

and 20 seconds on nw2.
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3.3.2 Results

The testing results for the five evaluation sets are displayed in Figure 3.4. As

expected, all methods are better at making short-term rather than long-term predic-

tions. This is a result of the fact that measurements nearer in the future are more

likely to be similar to existing measurements, or the fact that attenuating objects

impacting observations in the near future are likely to be correlated with sensor data

the robots have just now collected. The evaluation shows that when predicting more

than about 8-10 seconds in the future, MRT, MRGP and MATTE perform worse

than the simple log baseline. This suggests the approaches presented here are best

suited for near-term predictions. For use in a multi-robot exploration system, the

performance around 0-6 seconds in the future is of most interest, since the system

will continuously be replanning.

All of the methods we have implemented show competitive performance, especially

for predictions between 0 and 10 seconds in the future. However, MATTE significantly

out-performs the other methods in evaluations 1 and 5. In evaluations 2 and 4, it

performs comparable to the tomographic method. However, in evaluation 3, our

method exhibits worse performance than the other methods. An examination of

the meta-parameters determined via compass search show evidence of over-fitting

the training set, which by nature of our randomly selected test sets, happened to

both be exclusively indoors. This manifests as a positive attenuation prior for free-

space (ρf ), consistent with the wave-guide effect sometimes seen in hallways. In the

other evaluation sets, there was at least one outdoor dataset used for training, which

helped to mitigate this type of over fitting. In most of the evaluation sets, we see

that MATTE can outperform the correlative method for short-term predictions up to

ten seconds in the future. For longer-term predictions, where training data is mostly

useless, it is difficult to beat the log baseline. Our evaluation shows that even without

explicitly capturing multipath in our models, we can still make meaningful predictions
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for robot teams. For example, near term predictions for MATTE have a typical MSE

of 40 dBm2, or RMSE of 6.3 dBm. For signal strength measurements which typically

range from 40 to 110 dBm, MATTE can provide a signal strength estimate that can

differentiate between good (low) and bad (high) communication links.

3.4 Discussion

Our signal strength framework for multi-robot teams is an important step to-

wards operating in environments with constrained communication, such as the in-

door/outdoor urban environments in the MAGIC contest. The signal strength esti-

mates could be, for example, combined with a communication-aware planning frame-

work to ensure the maintenance of a single, connected ad-hoc mesh network for the

entire team of robots [31]. However, any planning approach that makes use of the pre-

diction framework described here must be able to ensure the communications graph

remains connected. While short interruptions could be tolerated, extended outages

would reduce the map and signal strength information available, interrupting the

crucial inputs needed to make good predictions. Other system integration challenges

also exist; the work here uses two distinct physical radios per robot, one for TX and

one for RX. This was primarily due to limitations of Linux “monitor” mode. Better

integration with radio firmware could reduce the size of the required hardware, and

potentially also improve signal strength estimates.

Mapping the physical and signal-propagation properties of an environment is just

one of the many mapping and perception tasks that multi-robot teams must tackle. In

the next sections, we discuss how similar multi-variate-gaussian and grid-based tools

can be applied to the problems of point cloud segmentation and camera calibration.
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CHAPTER 4

Colored Point Cloud Segmentation

Joint work with Andrew Richardson12

In addition to mapping the physical layout and signal-attenuation properties of

an environment, multi-robot teams are often required to identify particular items of

interest, for example IEDs or human survivors [32]. However, detecting such objects

(or even much simpler ones such as the colored trash cans in the MAGIC competition)

remains a challenge for robots deployed in real, complex, cluttered, indoor-outdoor

environments. Similar to the previously described LIDAR-aided signal-strength pre-

diction approach, one strategy for improving detection of objects is to combine data

from multiple sensors, such as LIDAR and cameras. This allows analysis of both the

shape and visual appearance of the object which can yield better classifications.

However, combining data from cameras and LIDAR introduces several additional

challenges, including higher data rate, and data streams of incomparable units (dis-

tance vs color). Model-based object detection or complex surface extraction struggles

to run online, especially when faced with 3D point clouds. Furthermore, typical depth

estimation techniques from the vision community are either high quality and not real-

time [33, 34], or real-time at the expense of quality [35]. Laser scanners, however,

support acquisition of highly accurate and reliable spatial data without expending

1Both Andrew and I contributed equally to this project
2©2010 IEEE. Adapted with permission, from Johannes Strom, Andrew Richardson, Edwin

Olson, “Graph-based Segmentation for Colored 3D Laser Point Clouds” September 2010.
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(a) Colored lidar scan (b) True-color segmentation results

Figure 4.1: Sample segmentation. Our method uses leverages both color and surface
normals to enable online segmentation.

significant additional computation resources.

A common technique to make processing steams of sensory information tractable

in real-time is to segment the data into superpixels [36] or spatially adjacent re-

gions [37]. This data reduction technique enables tractability for terrain classi-

fiers [38], or object classification algorithms [39]. While jointly calibrated laser and

camera systems have been used widely for applications such as pedestrian tracking [40]

and road following [38], such approaches have all separately considered the visual and

spatial components. These approaches segment separately, and then recombine the

results near the end of the processing pipeline. Some recent work has also considered

the case of colored point clouds in aerial surveying applications [41]. While the work

shows the benefits of analyzing the joint data stream, it does not address the online

requirement for use on a robot system.

Prior work on segmenting laser point clouds relies either on determining segment

boundaries using Euclidean separation or change in local surface normals. The former

approach, [37], fails to produce meaningful segments when objects can be connected

by a continuous string of points through some common supportive surface (e.g. the

ground plane, or a wall). This can lead to improper agglomeration with the support-
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ing surface and make later detection or classification difficult. More sophisticated

methods use a local estimation of the surface normal for every point as a segmen-

tation criterion [42]. However, they use a kd−tree to lookup nearby points, which

requires O(n log n) time to construct. Furthermore, solely determining reasonable

segment boundaries based on surface normals can result in over segmentation. This

occurs because local surface normal estimation is very sensitive to the range noise

when scan density is high. Others have shown success in indoor or simulated en-

vironments using a high-frequency, high-precision, low-range, low-field-of-view laser

scanner [43]. However, with lower resolution, wider field of view scanners, such as

those often used for robot navigation (and in this work), normal estimation becomes

more noisy.

Using our co-registered sensors, we demonstrate a robust method that exploits the

structure of the laser data in combination with the additional information provided by

the camera to speedup and improve the segmentation process. The key contributions

in this work are:

� An extension of graph-theoretic segmentation to propose segment unions based

on spatial proximity

� A dynamic segment union criterion based on color and surface normals that

produces a quality segmentation

� An efficient segmentation process, bounded by O (nα(n)), which is a linear

bound for all practical n

Quantitative evaluation of segmentation quality is difficult because the effectiveness

of the segmentation is determined by the application for which it is intended. In this

work, we evaluate segmentation quality based on its ability to distinguish between

objects and the surrounding environment.
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4.1 Point Cloud Co-registration

Given a set of planar laser scans L, and a corresponding image I, we are inter-

ested in computing the joint point cloud of vectors ~v = [x y z r g b]T which will form

the basis of our segmentation algorithm described in the following sections. Each

laser scan L contains a set of range-bearing measurements R = {(r1, θ1), · · · , (ri, θi)},

and an associated rigid body transformations Ti = Ti(φ) mapping each homogeneous

vector ~ri = [ri cos(θi) ri sin(θi) 0 1]T to a point ~li = [x y z 1]T in the sensor’s co-

ordinate frame. These rigid body transformations are determined dynamically from

the angle of the servo controlling the laser scanner, φ. The full experimental sensor

configuration can be seen in Figure 4.2.

Producing the joint cloud now only requires projection of the laser points li into

the most recent image I, and discovering the pixel ~pi = [px py] with coloring r, g, b

that corresponds to li, finally producing vi. Determining the correct pixel ~pi also

depends on the distortion model for the camera, as covered in [44] and [45]. The

projection is described precisely by Equation 4.1.

pi = d(KETi~ri) (4.1)

where K is the standard 3 × 3 intrinsics matrix with 5 degrees of freedom (DOF),

E = [R t] is the 3 × 4 extrinsics matrix with 6 DOF, Ti is the 4 × 4 rigid body

transformation described above, and d(·) is a sixth degree polynomial approximation

of the lens distortion using only 5 DOF.

The production of the joint cloud is highly sensitive to the accuracy of the co-

registration between the two sensors described by the 16 parameters in Equation 4.1.

Prior methods on co-registering laser and cameras are covered in [46], [47] and [48].

In the first case, calibration is achieved by manually placing specialized calibration

targets in the scene. The second case relies on measurements from an IMU directly
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Figure 4.2: Sensor configuration. Co-location of the LIDAR and camera enables
co-registration of both data streams.

attached to the sensor rig to aid calibration. In the final case, some pre-processing

of the laser and camera data is done to aid a human in identifying correspondences

manually. For the purposes of this work, we follow an approach very similar to [48].

Our calibration is optimized on a scene-by-scene basis. For each scene, we manually

select a set of corresponding points in both camera and LIDAR space. For example,

object corners are generally easy to identify in both the camera image and the point

cloud. We then run an iterative compass search, varying k1 · · · k5, e1 · · · e6, d1 · · · d5,

to minimize the mean square projection error:

e =
∑
j

|pj − d(KETj~rj)|2 (4.2)

As the calibration is an offline process and our method requires a very accurate

calibration, the optimization is allowed to run until an error-minimum is reached.

After calibration, points which project into the image are assigned the appropriate

color, as shown in Figure 4.3a. An alternative approach would be to label all the pixels

in the image with an x, y, z point. However, the angular resolution of the camera is

finer than that of the laser scanner, so we can avoid dealing with a missing data

problem by considering the color points in 3D space.
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4.2 Graph-based Segmentation

In this section we discuss the extension of a popular graph-theoretic segmenta-

tion method for images to the domain of co-registered laser and color points [36].

This method has been extended successfully to many domains, including for use in

parallel segmentation [49] and to tracking fiducial tags [50]. Given the joint cloud

V = [v1, · · · , vi] whose construction is specified above, we consider the problem of

segmenting (or clustering) this set into disjoint subsets Si s.t.
⋃
i Si = V .

We consider a graph (or mesh) G = (V,E) whose vertices V are points from the

joint cloud (above), and some set of edges E. In the vision literature, where the nodes

of the graph are typically the pixels in the image, E is constructed such that each

pixel is 8-connected to all of its neighbors. In recent work on clustering laser clouds,

E is determined by connecting all points to all the neighbors within a radius r [37].

Given this graph, there are many ways of clustering nodes together. In [37], the

resulting clusters are all the connected components, determined by greedily merging

all nodes that are connected by an edge. This approach, variants of which are used

also in [42], only incorporates a binary edge criterion. That is, each edge is either

present or absent. In [42], edge existence is further screened by a fixed threshold

for angular difference in surface normal. Other segmentation criteria, for example

making assumptions designed to remove the ground plane, are discussed in [51].

In our method, we also use a real-valued edge weight, but only leave edges up to a

specified length intact, generally 0.25 m. This avoids the requirement to special case

the removal of the ground plane, and allows segments to be formed that are uniformly

variable, while with the same parameters also separating smooth areas from segments

that have a high variability. To achieve this, we use as a foundation a segmentation

algorithm from [36].

When operating on an image, this segmentation algorithm generates an 8-connected

graph, as described above. Edge weights are determined as a function of color error
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between neighboring pixels and then edges are sorted in increasing order.

Segments are formed by processing each edge e = 〈pi, pj, w〉 in order, starting with

the smallest w. For each pixel pi and pj, the corresponding segments containing those

pixels, Sl and Sm, are retrieved, in addition to corresponding threshold values threshl

and threshm. A merge between Sl, and Sm to form Slm is accepted if and only if

w < threshh for both h = l and h = m. If the merge is accepted, w is guaranteed to

be the largest weight between any two pixels in Slm, so we can update the threshold

for the newly formed segment as:

threshlm = w +
krgb
|Slm|

(4.3)

The net effect is that, as the segments grow, the threshold approaches the largest intra-

segment weight. The resulting segmentation process ensures that areas of uniform

edge cost are joined first, while segments with larger variability are formed after small-

weight edges are considered. This enables the highly desirable property of segmenting

regions of uniform color, gradients, and, crucially, regions of uniform variability. These

results are discussed in more detail in [36].

We extend this method in two ways. First, we replace the image-based grid with

a surface mesh constructed directly from successive laser scans. Each point in the

joint cloud is connected by a potential edge to its 8 neighbors in the current, previous

and subsequent scans. While the segmentation depends heavily on the actual edge

weights, a significant segmentation improvement can be obtained by simply building

a mesh that does not contain an edge from an object in the foreground to one far

away in the background. This extension better enables separation of similarly color

objects from a background, which the image based grid often cannot handle.

Second, we consider the case where there are two weights for every edge: one for

color difference and one for angle difference between surface normals. Integrating
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a second edge weight into the scheme described above raises two important issues.

Both issues stem from the fact that weights for the surface normals and weights for

color are in fundamentally different units and cannot be directly compared. The first

problem is that sorting simultaneously on two distance metrics is ill-defined. One

could conceivably define a mixture of the two measures and sort on the combined

weight. However, this introduces an additional parameter that must be tuned, and

requires finding appropriate normalization schemes for both the color distance and

the surface normal distance metrics.

When considering how to sort the edges, runtime is an important concern. If the

edges are real-valued, the best sorting performance is O(n log n). However, in the

case of the discrete labels (e.g. in RGB), the number of possible distances is constant

(though potentially large). This allows a constant time sorting algorithm to sort edge

weights in O(n+k), where k is number of possible distances. Since n is very large for

a laser point cloud, sorting real-valued edges quickly becomes prohibitive. Because

sorting on both edge weights is ill-defined, we choose only one of the edge weights

to sort on. Since the edge weights corresponding to color are more stable than local

surface normal estimation, and since they are also discrete, we can continue to use

counting sort in O(n+ k) time.

Note that sorting edges without incorporating surface normal weights does not

provide the same theoretical guarantees shown in the color-only case [36]. However,

our algorithm still yields a significantly improved segmentation in the environments

presented in the evaluation. As noted above, sorting on both criteria is ill-defined.

To integrate the edge weight corresponding to the surface normals, we add an

additional threshold in similar fashion to the camera-only approach described above,

knorm. This means that for an edge e = 〈li, lj, wrgb, wnorm〉 to connect two segments

Sl, Sm into a larger segment Slm, we need the following to hold: wrgb < threshrgb and

wnorm < threshnorm for the thresholds corresponding to both Sl and Sm.
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Similar to [36], we employ an 8-connected graph for segmentation. This graph is

extracted from the mesh of laser scans. Only laser points that have a corresponding

color value are included in the mesh. Each node in the surface mesh is connected

to up to 8 others by edges labeled with two edge weights. The first edge weight,

discussed above, is simply the Euclidean distance in the RGB color space. The RGB

color space is chosen over HSV or other alternative color spaces because it corresponds

to the native color space used by our camera, and because it was used effectively in

prior work [36]. The color edge weight between two pixels ~u,~v is then given as:

wrgb(~u,~v) =
√

(ur − vr)2 + (ug − vg)2 + (ug − vg)2 (4.4)

Computing the corresponding edge weights for surface normals is slightly more in-

volved because it involves computing the surface normal at each point. In practice,

this can be done with reasonable accuracy by only looking at the neighboring points.

A comprehensive study of local normal estimation techniques is presented in [37]. For

this work, we find the best fit plane for the 8 neighbors using a Singular Value Decom-

position (SVD) because it was shown to have the highest accuracy and a reasonably

fast runtime [37]3.

Let ~q1 · · · ~qm be the m points connected to point ~q0 by an edge, where m is neces-

sarily no greater than 8. Defining the mean of the points to be q̄ =
∑

j ~qj/m, then we

can pack a m×3 matrix Q, such that row j corresponds to ~qj− q̄. Using the SVD, we

can factor Q = UDV T , where V is a 3×3 matrix containing the principal components

of Q. The two largest principal components define the bases for the best fit plane;

we are interested in extracting the normal, the smallest principal component, thus we

are interested in the column of V corresponding to the smallest singular value.

A key observation here is that the computation of normals is extremely dependent

on which points in the neighborhood of q0 are chosen. In our case, we choose to use the

3our SVD implementation corresponds to their “PlanePCA” implementation
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topology of the mesh to choose neighbors. However, as the resolution density of the

scans increases, the normal estimates are increasingly sensitive to noise in the range

returns. Thus, finding good normals may necessitate increasing the neighborhood

size used in PlanePCA calculation.

One way to achieve this is to create an O(n log n) spatial data structure to find

more points in the neighborhood. The extra computation is hard to justify, however,

because a similar effect can be found by simply sub-sampling the laser data appropri-

ately. The latter is the approach we choose here because it is very efficient and still

produces good segmentations.

Once the normals have been estimated for each point for which color information

is available, edge costs between points are straightforward to compute, using the

angle between them. Let ~ni and ~nj be the unit normal vectors at two nodes i and

j separated by an edge e = (i, j), then the edge weight computed from the surface

normals is given in Eq. 4.5:

wnorm = arccos (ni · nj) (4.5)

Algorithm 4.1 gives pseudocode for the complete segmentation pipeline using the

mesh of colored points and the two edge costs from color and surface normals. The raw

laser and camera data is first processed into an augmented set of point pi ∈ Points,

where pi = [x y z r g b nx ny nz] and a set of edges em ∈ Edges, where em = [i, j],

where i, j are the indices of two points pi and pj. In lines 3 and 4, we compute edge

weights, and sort the edges and the weights in increasing order. This takes O(n+ k)

time. In line 5 we initialize a disjoint UnionFind data structure to keep track of which

points belong to which segment [52]. Each union or find operation is O (α(n)), where

α is the inverse Ackermann function, which is bounded by 5 for any practical value

of n. Thus, a sequence of n unions or finds takes O (α(n)n), which is effectively a

55



Algorithm 4.1 SEGMENT COLORED POINT CLOUD(L, I)

〈Edges, Points〉 = buildGraph(L, I)
Weights = computeEdgeWeights(Edges, Points)
countingSortOnRGB(Edges,Weights)
segments = new UnionFind(Edges)
init thresholds
for 〈pi, pj〉 ∈ Edges, 〈wrgb, wnorm〉 ∈ Weights do
Si = segments.find(i)
Sj = segments.find(j)
if belowThresh(〈wrgb, wnorm, i, j〉, thresholds) then
newID = segments.join(i, j)
updateThresh(〈wrgb, wnorm, newID〉, thresholds)

end if
end for
return segments

linear bound for any realistic number of nodes. In lines 7-9 we iterate through edges

in increasing order of color weights, and propose unions between the sets connected

by that edge. Line 10 shows that unions are only accepted if they meet both the

dynamic criteria for both color edge weights and normal edge weights as described

previously.
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(a) Colored laser scan (b) Downsampled surface mesh

Figure 4.3: Spatially-derived segmentation mesh. We derived the spatially-informed
mesh at a lower resolution to efficiently handle normal estimation using noisy LIDAR
range returns.

4.3 Experimental Setup

To evaluate our method, we collected two distinct datasets, one indoors in an

office hallway (the “hallway dataset”), and another outdoors in bright sunlight on

a small hill (the “hill dataset”). Because our sensor configuration is novel, we are

unable to evaluate our method using previously published datasets.

For our experiments, we used a Hokuyo UTM-30LX planar laser scanner, which

returns 270 degree FOV planes at 40 Hz with 1/4° angular resolution. The laser is

attached to a custom-made mount printed using rapid-prototyping ABS plastic, and

actuated with an AX-12 Dynamixel servo (1/3° angular resolution). The camera is a

color USB Firefly MV 03MTC camera with 752 x 480 resolution used in conjunction

with a wide angle (111°) Tamron M13VM246 lens. The camera is attached to the

same structure, and is actuated with a pan and tilt servo. For the data presented

here, the camera is held fixed with respect to the robot; only the Hokuyo was actively

actuated. This was to simplify the calibration process between the two sensors.

We analyzed the choices we made in designing our approach by comparing the

performance with different aspects of the algorithm enabled or disabled. First, we
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compared using a spatially-informed mesh, with a pixel-based grid for G. Second,

we compared performance using different combinations of edge weights, either color-

based, surface normal based, or both together.

Our evaluation makes segment boundaries explicit by artificially coloring each

segment where appropriate. Each dataset consists of a series of timestamped servo

positions, camera images, and laser range measurements. For both datasets discussed

below, we used similar parameters when possible, but varied to produce best-case

results for each algorithm. The parameters we used are listed in Table 4.1 where

‘Edge cut’ denotes the maximum edge length threshold and both Krgb and Knorm

are the graph-cut parameters for their respective quantities. We also downsampled

our LIDAR data uniformly, as noted in the table. This increased the fidelity of the

PCA surface normal estimation algorithm, since small variations in surfaces were

eliminated. A similar approach intended to smooth variation in surface normals is

also employed in [51].

4.4 Results

The hallway dataset has several everyday objects placed haphazardly to fill the

scene. The camera image corresponding to this scene is shown in Figure 4.4a. We

first show what previous methods from [36] produce using only the full resolution

image. These results are shown in Figure 4.4b. Tuning the parameters for the image-

only method can change which segments are created, but some objects cannot be

Figure 4.4c 4.4d 4.4e, 4.4f 4.4g, 4.4h 4.4j
Resolution (deg) 0.75 0.75 0.75 0.25 0.50

Edge cut (m) 0.25 0.25 0.25 0.25 0.50
Krgb 1000 n/a 9000 9000 12000
Knorm n/a 9 10 10 9

minsize 100 100 100 100 100

Table 4.1: Colored point cloud segmentation parameters
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(a) The camera image for the “hallway” dataset. (b) Image-only segmentation from [36].

(c) Graph segments with using color only (d) Graph segments with surface normals only

(e) Graph segments via our method. (f) Our method (true color).

(g) Over-segmentation (true color). (h) Alternate viewpoint of 4.4g.

(i) The camera image for the “hill” dataset. (j) Graph segments (our method).

Figure 4.4: Segmentation evaluation. Our method differentiates on color and surface-
normal changes. Note the undesirable results of other methods in 4.4c and 4.4d.
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disambiguated on color alone.

This motivates the decision to use a spatially grounded mesh instead of a pixel-

based mesh. Building the mesh from the laser scans also enables using additional in-

formation to suggest connections between regions in the scene. Using this mesh yields

significant improvements over the vision-only method, even without any considera-

tion of surface normals. This is shown in Figure 4.4c. However, as in the image-only

segmentation, some of the objects cannot be disambiguated on color alone even when

using the spatial mesh. In particular, the gray trash bin is difficult to separate from

the floor using only color information.

We can also examine the segmentation performance when only surface normals are

used to determine segment boundaries. Figure 4.4d shows how segmentation using

surface normals is able to separate the gray trash barrel from the floor, but is unable

to separate the blue recycling bin from the rear wall.

Our method combines both of these approaches to give a segmentation more

consistent with our expectations. The results of the joint segmentation is shown in

Figure 4.4e. For the segments using the recommended method, we also show how the

segments look without false coloring; Figure 4.4f instead shows each segment colored

by its average color.

Our method is considerably more robust than either laser data alone or color

alone. To show this, consider the “hill dataset” scene depicted in Figure 4.4i. In this

case, the sun is so bright that the camera (whose color calibration was fixed indoors)

does a poor job of distinguishing between the color of the ground, the color of the

orange buckets, and the color of the tree trunk. In this case, we observe that valid

segmentation is still generated using the recommended method which determines

segment breaks using both color and surface normals. This is shown in Figure 4.4j,

where the barrels, the ground and the tree are segmented separately. Outdoor en-

vironments present a particular challenge for normal estimation algorithms because
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terrain is more variable (e.g. grass), and consequently laser scanners produce results

that are less consistent. By increasing knorm, we are able produce a segmentation

that separates the important objects in the scene. However, our metric for evaluating

how “good” a segmentation remains subjective. Different values for the threshold

constants will be required depending on the application (e.g. obstacle avoidance, or

object detection). Finally, an example over-segmentation using our approach is shown

in Figure 4.4g.

Even though the implementation we present is a batch operation on the data, the

algorithm is fast enough to easily operate in real time. The scans in question were

collected over a period of 12 seconds. The downsampled graph initialization over

148500 laser points took 176 milliseconds on the 2.6 GHz Core 2 Duo laptop attached

to the robot. Segmentation of the downsampled 4161 points with color information

took an additional 73 milliseconds. In this case, we are only using 2.1% of the CPU.

(Note: even if the points are not downsampled, which produces poor segmentation due

to range noise, the total runtime for segmenting 151201 points with color information

is only 5.2 seconds, taking 43% of the CPU.) This suggests our method can be run

in tandem with other processes that still use a significant amount of CPU power.

4.5 Discussion

Segmentation is an important pre-processing step necessary for higher-level tasks

such as object recognition. We have demonstrated a novel method for efficiently and

robustly segmenting a colored laser point cloud. Our method enables the detection of

segment boundaries on the basis of both spatial cues and color information, improving

performance in domains which previous unimodal methods found difficult.

Since objects often cannot be segmented (let alone recognized), without using

color, our approach is crucial for boosting the capabilities of such higher level pro-

cesses. Although our algorithm has a small number of tunable constants, we demon-
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strated that our algorithm performs well in multiple environments using similar pa-

rameters.

This work predates the introduction of the Kinect by about 6 months. At the

time of publication, our approach was the first segmentation algorithm applied di-

rectly to the RGB-D point cloud, likely a result of the difficulty of collecting carefully

co-registered point clouds. The introduction of the Kinect, which co-located a cali-

brated range and color sensor, sparked a huge research effort in RGB-D pointcloud

processing, leading to many more segmentation approaches and resulting in over 50

citations to this work, according to Google scholar. Subsequent works have leverage

Moore’s Law along with different computational-tradeoffs to achieve more robust re-

sults, for example, by using additional plane-fitting steps, or explicit removal of the

ground plane [53, 54].

One of the main challenges which limits the impact of segmentation of the fused

colored point cloud for teams of mobile robots is the difficulty of co-registering the

camera and lidar data. Particularly for large teams of robots such as in the MAGIC

competition, correctly calibrating and validating all the cameras in the fleet remained

a prohibitive cost for our team. Therefore, during the actual competition, we per-

formed segmentation separately in the point cloud and camera, and then fused the

results later in the pipeline [2].

Achieving the potential of greater segmentation accuracy promised by the pre-

sented approach in urban reconnaissance requires a more streamlined approach to

managing the calibrations of a fleet of robots. Recent work by Pandey et al. describes

a method for automatic, targetless extrinsics calibration between laser scanners and

cameras from real-world data [55]. Such an approach could be used to replace the

manual correspondences we used for extrinsics calibration in this work. The remaining

challenge of determining the camera intrinsics motivates the next chapter on robust,

reliable and repeatable camera calibration.
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CHAPTER 5

Guided Camera Calibration

Joint work with Andrew Richardson12

Applications such as colored point cloud segmentation [56], visual odometry [57]

and dense reconstruction [58, 59] are fundamentally dependent on accurate calibra-

tions to accurately combine camera data with other sensors readings, or to accurately

extract metrical data from images. The MATLAB and OpenCV packages are two

popular systems for calibrating lenses [60, 61]3. These existing toolboxes can be error

prone, however, especially for lenses with significant distortion. This stems from the

fact that the quality of a calibration is dramatically affected by the user’s choice of

calibration images. A user who chooses poor calibration target positions may find the

resulting model generalizes poorly to unseen examples. It can also be difficult or time

consuming to independently verify that a calibration is correct. This is especially

relevant to the deployment of large multi-robot teams, for example in the MAGIC

competition. If additional data must be manually collected, processed, and inspected

for each robot, it can quickly become prohibitive to rely on the calibrations to be

accurate to the level needed for colored point cloud segmentation.

The calibration challenge is particularly acute for novice users, who are not aware

1Both Andrew and I contributed equally to this project
2©2013 IEEE. Adapted with permission, from Andrew Richardson, Johannes Strom, Edwin

Olson, “AprilCal: Assisted and repeatable camera calibration” September 2013.
3The more recent OpenCV calibration toolbox uses the same mathematical approach, and largely

subsumes the functionality of the MATLAB toolbox, but with a more accessible user interface.
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Figure 5.1: The AprilCal GUI. Our system combines the ability to reason about
unseen targets and a novel quality metric to make suggestions to the user about
where to place the target. The user is notified that calibration is complete once the
desired accuracy has been reached, typically achieving < 1 pixel of error after 6-8
images.

of the properties of the underlying estimation and optimization methods, or end-

users in dramatically different fields [62]. Even experts may be unsure that the target

positions they have chosen will yield a sufficiently accurate calibration, as the number

of images needed is not constant across lenses and should vary with the quality of

the constraints. Consequently, standard practice is to collect many more images than

necessary and verify that the model parameter uncertainty and training error are low;

if the results are unsatisfactory, the calibration is repeated or updated with additional

images. This process is unreliable, not theoretically grounded, and doesn’t scale well

to large numbers of robots or cameras.

The primary goal of this work is to increase calibration repeatability and accuracy

in a more principled fashion. This work benefits both novice and expert practitioners

in the field of robotics, machine vision, and downstream consumers of the results from

these disciplines, for example, motion-capture systems which require precise camera

calibration [63]. We introduce a paradigm where fit quality is explicitly considered

at each stage during a live calibration process. Specifically, we automatically con-

sider many unseen target positions and suggest positions that will best improve the
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quality of the calibration. This is achieved using a novel quality metric based on the

uncertainty of the calibration as measured in pixels. Previous toolboxes report the

uncertainty of the model parameters, but the effect of these parameter uncertainties

on pixel coordinates can be complex. We argue that worst-case uncertainty in pixels

is more relevant for application performance and more natural for the user. Worst-

case pixel uncertainty also serves as a principled basis to automatically determine

when enough images have been collected.

We also introduce a new method for robustly bootstrapping a calibration that

enables our system to make sensible recommendations even when little or no prior

information is available about the lens. Our system also makes use of a calibration

target composed of AprilTags [50], which, unlike previous approaches, can still be

detected when individual markers are occluded. This enables a wider variety of

target positions, which our method successfully exploits when making suggestions to

the user.

We validated our camera calibration toolbox via a 16-participant study mostly

compromised of users who had never calibrated a camera. Despite their lack of

expertise, they were consistently able to use our software to produce accurate cal-

ibrations. The same novice users also used the OpenCV calibration toolbox and

invariably produced poorer calibrations, in some cases yielding errors of tens of pix-

els. In addition, we show that our toolbox can calibrate a wide range of lenses with

an explicit accuracy guarantee.

The contributions of this work include:

� A framework for generating target position suggestions to guide users during

camera calibration

� A new evaluation metric for camera calibration that enables high confidence in

calibration parameters everywhere in the image
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� A bootstrapping setup to enable interactive calibration even before all param-

eters are fully constrained

� An evaluation that demonstrates the robustness of our approach using a human-

subjects study of 16 people, mostly novices.

AprilCal is released as part of the APRIL Robotics Toolkit and is available at

http://april.eecs.umich.edu

5.1 Background

A wide variety of camera calibration approaches exist, spanning different optimiza-

tion methods, calibration target styles and intrinsic model designs. Many previous

methods have used multiple views of a planar target [44, 60, 61] or a single view of

a carefully constructed 3D target [64]. Other methods have used laser pointers or

other bright lights to facilitate calibration of networks of cameras. Such approaches

typically still require bootstrapping by calibrating some cameras in the network with

a constructed target [65, 66]. All of these prior methods share the same approach to

calibration: a user first collects a set of images, then runs a batch calibration process

on that data. This is in contrast to our approach, where the entire calibration pro-

cess is interactive and additional data is solicited until the desired accuracy has been

achieved.

A dominant paradigm for calibration involves capturing several images of a pla-

nar target. These approaches (ours among them) make associations between points

detected in the image and corresponding world points on the target whose relative

position are known by construction [44]. Simultaneous optimization over the intrinsic

parameters for the camera model and the extrinsics for each target yield an estimate of

the model parameters. Using such an approach requires the choice of 1) optimization

method and 2) lens model.
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Among the many possible optimization techniques, we adopt a standard, iterative

non-linear-least-squares approach, using a sparse matrix solver as the back-end. This

method is roughly analogous to standard approaches in GraphSLAM and bundle ad-

justment [18, 67, 68]. Our calibration vector x consists of all the model parameters

(roughly 10) for the camera, in addition to the 6-DOF position of each calibration

target. For each image containing k extracted 2D image points, we add 2k linearized

constraints as rows in the Jacobian matrix J . Each row-pair corresponds to pro-

jecting a feature from a known 3D coordinate on the calibration target into pixel

coordinates, capturing both the unknown position of the camera and the unknown

camera parameters. Iterative solutions to Eqn 5.1 yield a locally-optimal set of model

parameters for x.

JTΣ−1z J∆x = JTΣ−1z r (5.1)

xi+1 = xi + ∆x (5.2)

Here, Σz is the matrix of prior covariances for the target detector, and r is the

residual, the observed minus the predicted pixel coordinates for each point. The

correct convergence of x to the global minimum is sensitive to initialization of x0; we

use a specific bootstrapping process to pick good initializations.

There are also a wide variety of models for camera intrinsics, starting with the

fundamental pinhole model [69]. However, using the ideal pinhole model in isolation

will poorly capture the dynamics of most real world lenses, especially those with a

wide field of view. Therefore, many models extend this method by accounting for

the lens distortion explicitly. For example, the MATLAB toolbox uses a polynomial

Taylor series with 3-5 distortion terms to approximate these effects after projecting

with the pinhole camera model [60]. In contrast, we have found that a polynomial as a

function of θ, the angle from the principal axis, yields as good or better4 calibrations,

4The details of this analysis are omitted due to space limitations. However, AprilCal
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often with fewer distortion terms for the lenses tested, increases the stability of the

calibration process, and handles Z ≤ 0. This is a reduced version of the model

by Kannala and Brandt [70], who also include tangential distortion. The specific

preferred model for this work is described in Equations 3-8 in [71].

In a similar spirit to this work, several others have sought to make calibration

easier, less time consuming, and less error prone. For example, the ROS calibration

package for the PR2 now has specific guidelines for the user about which checkerboard

positions are required for getting a “good” calibration [72]. However, even with good

rules of thumb, it is still possible that a user will collect “bad” frames that lead

to an inaccurate calibration. While it is possible to manipulate a calibration target

automatically using a robotic arm [73], our approach can be used to choose desired

target views during calibration. Others have shown that in some cases, it can be

possible to calibrate a distorted camera using only a single image [62]. However, this

approach does not explicitly constrain the accuracy of the resulting calibration, and

works with only a very specific distortion model. In contrast, our method ensures

that the user takes sufficient images to meet their desired level of accuracy, typically

6-8 images to achieve a < 1 pixel confidence.

Finally, as suggested in Ranganathan’s work on non-parametric intrinsics mod-

els [16], we adopt the use of a strict testing set to provide a more rigorous evaluation

of the actual accuracy of our method. This is in contrast to the standard practice, in

this domain, of reporting only the training error.

5.2 Method

As outlined previously, our method improves on the state of the art by offering

a virtual calibration assistant that provides suggestions to users and automatically

can perform model selection to evaluate all available models as a post-processing step. See
http://april.eecs.umich.edu for details.

68



notifies them when the calibration has reached the specified accuracy. Our approach

leverages a calibration target consisting of a mosaic of AprilTags [50], which can be

detected robustly on the live video stream, even if parts of the target are occluded.

Users interact with a GUI to match target positions suggested by our software. After

each target position is achieved, the next best position is computed, repeating until

the desired accuracy is achieved. To ensure a responsive UI, we use the aforemen-

tioned greedy strategy for choosing frames for the user to collect, rather than jointly

reasoning about a sequence of future observations.

Our system divides the calibration into two sequential phases: bootstrapping,

and uncertainty reduction. In the bootstrapping phase we start with a restricted

camera model with very few parameters, relaxing to the full model as new images of

the target are added. A detailed description of the bootstrapping process is covered

in [71]. Once all model parameters are fully constrained (typically after 3 images),

we switch to the uncertainty reduction phase until the desired accuracy is achieved.

Transition from the first to second phase is transparent: in both cases, the UI remains

the same.

5.2.1 Pixel-based Calibration Error Metric

Once all intrinsic parameters are fully constrained during the bootstrapping phase,

the next goal is to guide the user to collect more images until the calibration accuracy

requirements have been achieved. However, there are many possible images the user

could collect, and we need a metric to rank which one will improve the accuracy the

most. Previous approaches have used Mean Reprojection Error (MRE) and Mean

Squared Error (MSE) as primary indicators of calibration quality. However, this is

problematic because these are training errors, rather than testing errors. Using one of

the prior works, if the training images are selected poorly, the resulting MRE could

be low, yet the generalization performance (e.g. as measured on a test set) could

69



Figure 5.2: Max Expected Reprojection Error. The ERE for several test points is
computed by sampling from the estimated model parameter distribution, and repro-
jecting world points to derive pixel-based error measurements. The resulting pixel
error distributions are shown after 3 and 5 images have been taken by the user. The
set of samples with the Max ERE are circled in red. Our sampling-based error met-
ric can be used with any intrinsics model and allows us to automatically ensure the
calibration is well constrained everywhere without requiring the user to collect a test
set.

be very poor. Unfortunately, collecting a proper testing set can be onerous — for

our evaluation we use an expert-selected set of 60 or more images from all over the

camera’s field of view. Especially for novice users, it is not reasonable to expect they

would be able to collect a “good” testing set. Even for expert users, this process is

time-consuming and requires careful attention.

Therefore, our approach is to derive a more principled estimate of the testing error

that can be computed automatically given an intermediate state of the calibration.

Our proposal is called “Max Expected Reprojection Error” (Max ERE), which we can

compute at any stage during the calibration by sampling from the current posterior

distribution over the model parameters. We then project a series of 3D points through

each sampled calibration, producing a distribution of pixels for each test point, whose

mean error is the “ERE”. Finally, we take the max of the EREs over all the test points.

This ensures that we will properly weight the part of the image where the model is

currently the most uncertain. We choose the fixed 3D points carefully so that they
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will project into all parts of the image. Our current implementation uses a 5 x 5

grid of test points distributed so their projections will uniformly cover the image (see

Figure 5.2). See Alg. 5.1 for an overview of the implementation.

Algorithm 5.1 COMPUTE MAX ERE(currentCalibration)

(x,Σ) = getModelPosterior(currentCalibration)
meanCal = makeCal(x)
testPointsXYZ = makeTestGrid(meanCal, 5, 5)
calSamples = [sampleCal0(x,Σ), · · · , sampleCaln(x,Σ)]
MaxERE = 0
for all ~t ∈ testPointsXYZ do

ERE = 0
for all sampCal ∈ calSamples do

ERE += 1
n
|meanCal.project(~t) - sampCal.project(~t)|

end for
MaxERE = max(ERE, MaxERE)

end for
return MaxERE

Computation of the Max ERE uses the estimate of the marginal posterior covari-

ance of the model parameters: P̄ (m|z0, · · · , zn). This distribution is derived by first

computing the joint distribution of the model parameters and each target extrinsics,

given all the observations of those targets. Suppose we have collected n images of

targets, then we can “marginalize-out” the target extrinsics:

P̄ (m|z0, · · · zn) =

∫
T0,··· ,Tn

P (m,T0, · · ·Tn|z0, · · · zn) (5.3)

where m = {fx, fy, · · · , k1, · · · }, Ti is a 6DOF rigid-body transform, and zi contains

the detected x, y pixel locations of the centers of every AprilTag in image i. In

practice, we assume the joint distribution in Eqn. 5.3 can be approximated as multi-

71



variate Gaussian:

N(x,Σ) =

N





m

T0
...

Tn


,



Σm,m Σm,T0 · · · Σm,Tn

ΣT0,m
. . .

...

...
. . .

ΣTn,m · · · ΣTn,Tn




(5.4)

This allows the marginal P (m|z0, · · · ) = N(m,Σm,m) to be computed trivially by

dropping the other rows and columns of the covariance matrix. Computation of Σm,m

requires forming the sparse, semi-positive definition, dim(x) by dim(x) information

matrix I, which is derived from the observed target positions (similar to Eqn 5.1):

I = JTΣ−1z J (5.5)

where each row of J is the linearized projection equation describing how a point on

the target projects into the image, given the model parameters m and target position

Ti. Σm,m can then be computed from the Cholesky decomposition of I, as described

in [74, 75].

Crucially, computing the information matrix depends on an estimate for the detec-

tor accuracy in pixels, σz, which must be known in advance. For AprilTag, we have

empirically found the accuracy to be relatively constant across lenses with image

width as a satisfactory predictor. Proper focus of the lens is assumed.

σz = 7× 10−5 × width (5.6)

Detector accuracy was fit independently for a number of camera configurations (see

Figure 5.8) using 60+ image calibration datasets for each. The resulting accuracies

were then used to compute the linear model in Eqn. 5.6.

72



Using the derived, low-dimensional marginal distribution over the model param-

eters, P (m|z0, · · · ), we can then sample a series of mi from P to compute the Max

Expected Reprojection Error, as described above. This metric is then used to select

the next target the user is guided to achieve.

5.3 Implementation

AprilCal is implemented in Java and runs at 25 FPS with 640× 480 images on a

quad-core Intel i7-3740QM @ 2.7GHz. Using a mosaic of AprilTags as our calibration

target allows us to automatically detect the target at video rates, with processing

time typically dominated by AprilTag detection. We have found that rigid mounting

at an office supply store is inexpensive and yields a target durable enough for many

uses. In addition, we can detect and recognize individual tags without observing the

entire target. This makes it possible to add constraints in the corners of images, even

for highly distorted lenses. In the multi-camera case, this allows for the calibration

of cameras with adjacent, but non-overlapping, fields of view.

In addition to target detection, our implementation requires significant CPU when

determining the next suggestion. In our implementation, we score a fixed set of about

60 target positions regularly distributed throughout the view frustrum. This process

depends on incorporating hypothetical observations into the calibration optimization

framework, and then estimating the marginal distribution over the model parameters.

As more images are acquired, and the size of the joint distribution grows, this can

take up to 1 or 2 seconds. However, this scoring process only occurs a small number

of times: once after each suggestion has been achieved by the user.

The AprilCal user interface is designed primarily to allow the user to correctly

match the target positions suggested by the system. As shown in Figure 5.1, we use

a set of unique colors to show how the desired target position (hollow rectangles)

should be matched by the live detections (solid rectangles). The UI also automati-
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cally offers basic advice to the user via textual prompts about how to move the target

to match the desired pose. When the calibration is deemed complete, the user is then

automatically presented with the rectified video stream. This allows the user to qual-

itatively verify that the calibration is accurate, primarily by checking for straightness

of projected lines.

5.4 Human trials

We conducted a series tests with human subjects5 to measure the effectiveness of

AprilCal and to compare it to the widely used OpenCV method. Our user population

consisted of undergraduate students at the University of Michigan. Only 3 of the 16

subjects reported any previous experience with camera calibration.

Each participant was asked to calibrate the same camera and medium-distortion

lens with two different methods (see Figure 5.3). We used a Point Grey Chameleon

CMLN-13S2M-CS in 648 × 482 8-bit grayscale mode with a 2.8mm Tamron lens

(Model 13FM28IR). This lens has a medium amount of distortion — significant

enough that several Taylor series terms are required to model it, but still with a

moderate field of view (only 93° horizontal FOV).

The two methods we evaluated were OpenCV’s calibration using automatic checker-

board detection and AprilCal using a mosaic of AprilTags. Participants were given

a set of printed instructions. If they asked questions to the experimenter, they were

given comprehension-level clarification on the instructions or advised to re-read the

instructions. Participants then followed a checklist to first collect four samples using

OpenCV, followed by four samples using AprilCal. Additionally, participants watched

a video demonstrating calibration with each method. In Method A (OpenCV), par-

ticipants interacted with a GUI showing live detections of the chessboard, using the

5Our study was reviewed by the University of Michigan Humanities Institutional Review Board
and designated “exempt” with oversight number HUM00066852.
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(a) (b)

Figure 5.3: Human study sample images. Participants took images of a checkboard
for Method A (Open CV) and an AprilTag mosaic for Method B (AprilCal). A smock
and gloves were used to protect of subject anonymity.

“space” key on a wireless keyboard to capture a frame. In Method B (ApriCal), the

frames are automatically taken when the participants move the targets close enough

to the suggested pose.

In contrast to AprilCal, which provides detailed guidance throughout the calibra-

tion, OpenCV’s calibrate.cpp provides no in-application suggestions. To enable a

fair comparison, we provided a set of written instructions for calibrating with their

software. Our goal was primarily to emulate the experience of a first-time user who

downloads this software from the Internet. Therefore, we provided users with some

example pictures from the MATLAB Toolbox web page. The best written instruc-

tions we found were on the ROS tutorial for monocular camera calibration [72], which

we also included. These are:

� checkerboard on the camera’s left, right top and bottom of field of view

� checkerboard at various sizes

� close (fill the whole view)

� far (fill ~1/5 of the view)
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Dataset Lens Model Reprojection Error

Mean Max

OpenCV Radial, 3 distortion terms 0.728 38.646
AprilCal Radial, 3 distortion terms 0.229 1.651
AprilCal Angular, 4 distortion terms 0.203 1.444

Table 5.1: Human study calibration performance evaluation. Average mean and max
testing errors show AprilCal calibrations are lower error, as measured over all human
subject trials against a a 65 image reference dataset. Results are significant with
p < 6.3× 10−7 for both mean and max errors and all pairs of rows.

� checkerboard tilted to the left, right top and bottom

After reading these instructions, participants were then instructed to take 10-16 im-

ages in each of the 4 trials (on the same lens).

5.5 Evaluation

We evaluated AprilCal on several fronts. First, we report the results from our

human subjects study to demonstrate the robustness of our approach to user error.

Then, we demonstrate that our novel Max ERE metric is a good proxy for testing

error. Finally, we demonstrate that AprilCal can be successfully used on a variety of

lenses.

A note on evaluation of calibration quality: in all of our evaluations, we use testing

error to indicate calibration quality. Each testing set is a collection of 60+ images

from all over the field of view, including the corners of the images and at various scales.

Because we do not have ground truth positions for the targets in the testing set, the

error we report is after we optimize the target extrinsics to best fit the fixed model

parameters for a given calibration. While this in general results in lower reprojection

errors, it ensures that all models are fairly evaluated and still allows discrimination

between good and bad calibrations.

Furthermore, Mean Reprojection Error (MRE) is typically reported as a summary

of calibration quality, as it is simple to understand and robust to detector error. How-
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ever, it can also often mask systematic errors in the underlying calibration. Therefore,

we also report Max Reprojection Error on the test set — this ensures that calibrations

are evaluated by their performance everywhere in the image.

Figure 5.4: Human study error histograms for mean and max reprojection error.
Errors are computed with respect to a 65-image test set for calibrations produced by
the participants using AprilCal and OpenCV. For OpenCV, 3 MREs and 46 MaxREs
not visible within plot extents.
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Dataset Focal length (x) Focal center (x)

Mean Std dev Mean Std dev

OpenCV 378.9† 9.0† 327.8† 1.9†

AprilCal 381.7 1.2 328.0 0.8

Figure 5.5: Human study focal- length and center distributions. While the mean pa-
rameter values from calibrations with AprilCal and OpenCV are similar, the standard
deviations for the OpenCV calibrations are much higher. †One OpenCV outlier that
would have further skewed the calculations was omitted from the calculations and is
not visible within the plot extents. Best viewed in color.
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5.5.1 Novice Calibrators using AprilCal and OpenCV

Our study results show that novices do a significantly better job calibrating when

using AprilCal than when using OpenCV (p < 6.3×10−7). For example, with testing

set errors averaged over all participants, the testing MRE using OpenCV is approx-

imately three times that when using AprilCal (see Table 5.1). The disparity is even

greater when considering the Max Reprojection Errors — OpenCV averages 38 pix-

els (6% of the image), whereas AprilCal averages a much lower 1.6 pixels for the

same model. Interestingly, no OpenCV calibration yielded a max reprojection error

better than the worst max reprojection error from AprilCal (2.02 pixels). This may

be because the sorts of images that novice users capture, even when attempting to

follow the ROS instructions, do not constrain the model parameters well. With the

target suggestions provided by AprilCal, even new users of camera calibration soft-

ware can produce calibrations with very low worst-case reprojection errors. The error

histograms for both populations is shown in Figure 5.4.

The human study results can also help us understand where in the image the

calibrations disagree. Figure 5.6 depicts the expected error between the human trials

and a 65 image reference calibration. From the images shown, it is clear that the

OpenCV calibrations fail to capture the lens model in the image corners. This can be

explained by both the need to observe the whole calibration target in OpenCV and

the difficulty for users to predict where constraints are needed.

In addition to showing that AprilCal calibrations are more accurate, the user

study results also show that calibrations with AprilCal are more consistent. Fig-

ure 5.5 depicts the distribution of focal lengths and focal centers for both AprilCal

and OpenCV. While both distributions have similar means, the AprilCal standard

deviations are 7.5× smaller for focal lengths and 2.37× smaller for focal centers.
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(a) OpenCV (Radial, 3 dist. terms) (b) AprilCal (Radial, 3 dist. terms)

(d) Cross section from the focal center to the furthest corner in the image

Figure 5.6: Reprojection error heatmaps for AprilCal and OpenCV. Reprojection
errors were calculated by projecting a point for every pixel in the reference calibration
through all test subject calibrations, then computing the pixel distance. The reference
calibration used an angular polynomial model with 4 terms, as it had the lowest mean
and max training errors. AprilCal calibrations show low error in all parts of the image,
while OpenCV calibrations have very high error in the corners (see arrow).
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5.5.2 Evaluating the Max ERE metric

We designed the Max ERE to be a good measure of calibration quality. Specifi-

cally, we want users to specify the accuracy they need for their application (e.g. <

1 px), and if the Max ERE falls below that threshold, then the calibration can con-

fidently be said to be that accurate. To validate these claims, we computed several

variants of testing error over a large number of AprilCal trials. After each image is

added, we evaluate the performance using Max ERE, as well as on an independent

testing set using Max (100th percentile), 99.5th percentile, and mean reprojection

errors. As can be seen in Figure 5.7, our sampled-MRE metric corresponds closely

to the highest percentiles of testing error. This shows empirical evidence that our

metric is effective.

5.5.3 Accuracy of AprilCal on a Variety of Lenses

In addition to performing reliably for a wide range of users, AprilCal also produces

accurate calibrations for a number of camera and lens configurations. Each lens was

calibrated multiple times by one of the authors using the guidance provided by April-

Cal (typically requiring 6-8 images in total). A separate 60+ image testing set was

collected to evaluate the accuracy for each configuration. To fairly compare results

from different lenses, we compute each lens’ testing error against a reference calibra-

tion computed from the corresponding test set. This eliminates the effects of detector

error on testing error, which varies for different images sizes (see Eqn 5.6). For each

target point detected in the testing set, we project through both the reference calibra-

tion and the calibration using AprilCal, and compute the Mean, 99.5th percentile and

Max Reprojections Errors. Figure 5.8 shows the testing error for six configurations

that our lab uses for various robotics applications, including stereo odometry, object

detection and overhead ground truth. In each case, the testing MRE is significantly

below one pixel. Example images from each configuration are shown in Figure 5.9.
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Figure 5.7: Max ERE correlation with testing error. Our novel Max ERE metric (red)
correlates highly with the 99.5th percentile of reprojection errors on an independently
captured test set. The Max ERE allows us to automatically compute a rigorous
accuracy score for a partial calibration without needing an exhaustive test set. Error
bars reflect std. error of the mean.

(A) (B) (C) (D) (E) (F)

0.0

0.5

1.0

1.5 Testing MRE
Testing 99.5%−tile
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Lens DFOV Resolution Format

(a) Fujinon YV2.2x1.4A-2 143◦ 648× 482 Gray
(b) Tamron 13FM22IR 146◦ 648× 482 Gray
(c) Tamron 13FM28IR 114◦ 648× 482 Gray
(d) Boowon BW38B 83◦ 752× 480 Color
(e) Boowon BW3M30B 121◦ 648× 482 Gray
(f) Boowon BW3M30B 121◦ 1296× 964 Color

Figure 5.8: AprilCal evaluated on multiple lenses. AprilCal allows accurate calibra-
tion of a variety of lenses, as measured by error against a rigorous test set. The
Diagonal Field Of View (DFOV) was estimated from the testing sets for each config-
uration. Error bars reflect std. error of the mean.
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(a) Fujinon YV2.2x1.4A-2
(648× 482)

(b) Tamron 13FM22IR
(648× 482)

(c) Tamron 13FM28IR
(648× 482)

(d) Boowon BW38B (752×
480)

(e) Boowon BW3M30B
(648× 482)

(f) Boowon BW3M30B
(1296× 964)

Figure 5.9: Sample images for each lens used in the evaluation. AprilCal is demon-
strated on a variety of lenses with moderate amounts of radial distortion. Image
contrast adjusted for clarity.

5.6 Discussion

AprilCal is an interactive calibration tool that provides live feedback on the state

of the calibration and produces tightly-distributed calibration parameters even when

used by novices. This problem is challenging to solve because the correct lens pa-

rameters are not know initially, so the system must make recommendations under

significant uncertainty. We address this challenge by leveraged a novel calibration

quality metric (Max ERE), which we derived from the observed uncertainty distribu-

tion over the intrinsics parameters. We leverage Max ERE to automatically determine

whether a calibration is sufficiently accurate, without requiring a user to collect a rig-

orous testing set. We conducted a 16-person human subjects study to show that even

novice users can produce consistent, quality calibrations using such a system.

AprilCal is especially useful when many cameras need to be calibrated, for ex-

ample for a team of urban reconnaissance robots. Using AprilCal allows the fleet
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maintainer to calibrate each camera and confidently use the resulting calibrations

without needing to carefully validate the parameters on each robot. Furthermore,

the Max ERE metric we presented could be adapted to allow robots to calibrate their

cameras automatically, for example if a target is mounted on a mechanical arm that

is wirelessly controlled by the robot.
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CHAPTER 6

Conclusion

Real-world deployments of multi-robot teams face a number of challenges, includ-

ing mechanical robustness, effective collaboration under uncertainty, human-robot

interfaces, and understanding raw sensor data. In this thesis, we have addressed

some of these challenges by demonstrating a number of online perception and map-

ping algorithms that scale to teams of robots cooperatively mapping and exploring

urban environments. These algorithms are fundamental building blocks that higher-

level planning and object-detection algorithms can use to understand and interact

with large, real-world, indoor-outdoor urban environments. During the MAGIC 2010

competition, the APRIL lab fielded a vertically integrated multi-robot exploration

team (including both hardware and software design). The work presented here either

contributed to our success, or was motivated by challenges we experienced during our

participation. While our approaches are tuned for MAGIC-like environments, these

algorithms (perhaps with different parameter tunings) are still useful more broadly

in the search and rescue, SLAM, and machine vision communities, among others.

When we started designing the MAGIC team, we quickly identified state estima-

tion and mapping as one of the core challenges, as the competition venue required

robots to operate in a priori unknown environments. The SLAM field had been fo-

cused on this challenge for several years before MAGIC, and while many aspects of
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SLAM have been solved, the application to autonomous multi-robot teams lagged

behind. The key challenges when applying SLAM to multi-robot teams included au-

tomatic loop-closure identification, and generating large maps of all the sensor data.

The automatic loop-closure challenge, addressed by Olson in [14], involved scaling

SLAM approaches to many robots by making significant algorithmic improvements

to scan matching by introducing a heap-based multi-resolution search. These loop

closures form the backbone of the multi-robot SLAM graph. The challenge of ras-

terizing gridmaps from the SLAM graph online is addressed in this thesis. Unlike

existing SLAM approaches that focus on single-robot operation, we needed to de-

velop a strategy to handle data from 14 robots at once, and still be able to fuse it to

produce an accurate state estimate. The covering-based decimation, along with an

efficient, grid-aligned caching data structure, were the key insights that enabled us to

improve the efficiency of this process by avoiding the need to reprocess all historical

data at every time step.

In contrast to the parameteric SLAM approaches we fielded for MAGIC, occupancy-

grid mapping has largely been used in the SLAM community in the context of

sampling-based inference methods, such as FastSLAM [8]. These approaches main-

tain a rasterized representation of historical data, and associate it with a large num-

ber of particle hypotheses. Due to the particle depletion these approaches suffer

in high-dimensional state spaces, they are poorly suited for inference over an entire

multi-robot team. Therefore, one key lesson learned from the rasterization methods

presented here is that it is possible to use occupancy grids efficiently in the context

of parameteric SLAM approaches. The rasterization implementation presented here

is designed for execution by a CPU, but many of the operations are easily paralleliz-

able. Future work is needed to determine whether GPU memory access speeds are

fast enough to allow an overall speedup. Looking forward, variants of the caching and

sparsification techniques here could also be applied in other areas, for example, to the
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problem of generating city- or country-scale rasterized maps to support autonomous

vehicles on public road infrastructure. In particular, such maps must be built incre-

mentally, and it is important to be able to efficiently update them, for example when

lanes are moved around a construction zone.

The CoverComposite algorithm improves over the strictly-linear performance of

the näıve algorithms, but it still has worst-case linear time, for example in the case

where robots never revisit previously mapped areas. For scaling to such environments,

the SLAM estimation problem, as well as rasterization, will need to be able to “freeze”

certain parts of the map in order to work within a fixed compute capacity, such as in

the Atlas framework [76].

The MAGIC competition also highlighted the need for high-bandwidth, reliable

communication infrastructure. However, the urban environments where such teams

are designed to operate are very challenging from a signal-propagation perspective.

Existing cellular networks cannot always be relied on, so multi-robot teams must

leverage their capability to deploy their own infrastructure. High-bandwidth, short-

medium range radios, such as 802.11, are ideal for this due to their portability, low-

cost, and use of the ISM frequency bands. However, such radios would need to be

deployed as a mobile mesh-network, which introduces a key coupling between how

robots decide to move (to maintain the mesh), and the signal-propagation properties

of their environment. This is especially challenging due to the fact that environments

are a priori unknown, meaning that robots must collect data about their surroundings

and react to it dynamically.

In Chapter 3, we undertook the first half of this challenge: given that robots

maintain a mesh network, and collect signal strength and LIDAR data, we must pre-

dict where they will be able to communicate in the future. Therefore, we developed

MATTE, a tomographic approach which fuses LIDAR and signal strength estimates

to help make accurate predictions of signal strength. This problem was very chal-
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lenging to solve, because the signal strength measurements are very sparse, biased,

and one-sided: they only cover the links where a pair of robots were, at a partic-

ular instant in time, and furthermore, the signal strength is only measured when a

packet is successfully received. Nonetheless, we showed that the approach of combin-

ing additional data from the LIDAR to help predict signal strength is promising. One

important contribution of the MATTE work is the large amount of real-world data

we collected to validate the approach. This was several orders of magnitude bigger

than the largest existing evaluation in the signal strength prediction literature.

One particular environmental aspect we didn’t address directly in MATTE is

how knowledge of elevation, such as hills or ridges could be taken into account. The

environments we tested were predominantly planar. Nonetheless, it should be possible

to leverage 3D point cloud data to compute elevation, or to use pre-existing GIS

databases, to help improve the prediction quality. Additionally, another application of

our approach could be in fusing signal strength measurements with satellite imagery.

It may be possible to automatically classify the imagery into categories (such as

road, trees, buildings) and learn spatially varying attenuation rates for each category

separately, similar to how the MATTE algorithm does this for LIDAR-estimated

classifications of structure, free-space, and unknown.

The second half of the communications challenge for cooperative multi-robot

teams is to develop coordination strategies under joint communications and envi-

ronmental structure uncertainty. Reasoning under uncertainty is computationally

challenging, and is exacerbated by the number of robots with uncertain state. In

some follow on work to MATTE, we explored some of these issues, by allowing agents

to model each other, and their future actions. However, tackling this problem in

interesting, uncertain environments remains a challenging topic. Some of our efforts

in this direction are discussed in a separate tech report [77]. Others in the APRIL

lab are studying similar approaches to planning under uncertainty, using compact

88



models of agents, in the domains of navigation, and autonomous vehicle decision

making [78, 79].

One important takeaway from the MATTE work is that fusing together sensors

with different characteristics can help imbue robots with a richer understanding of

their surroundings. Similarly, in the colored point-cloud segmentation work detailed

in Chapter 4, we achieve improved segmentation by fusing together data from 3D

LIDAR and a camera. It is not surprising that improved quality can be obtained

by using more data. However, efficiently processing more data is challenging. Our

approach addresses efficiency concerns with near-linear complexity. Since segmenta-

tion is just one part of an object recognition pipeline, it is important to use as little

CPU as possible. Therefore we demonstrate how our approach achieves subjectively

good segmentation, but using only 5% CPU. While our work is the first online seg-

mentation algorithm applied to colored point clouds, subsequent work has built more

complex processing pipelines with worse complexity bounds to achieve more robust

performance [53, 54]. In this sense, our work helps to set the baseline for what is

achievable using linear complexity so future approaches can show their additional

computation is warranted.

There remain acute challenges in the segmentation domain, however, including es-

tablishing quantitative evaluation metrics and the necessity of carefully co-calibrating

sensors. Quantitative metrics are difficult to employ because it is the end-to-end per-

formance of an object detection pipeline that is of most concern. Depending on the

other stages of the pipeline, different performance of the segmentation step may be re-

quired. While some subsequent work has evaluated their approach using ground-truth

segmentation as specified by a human [54], future work in this area should evaluate

the segmentation process in the context of the final application to give meaningful

quantitative evaluations.

The calibration challenges in our segmentation work motivated Chapter 5 on ro-
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bust and repeatable camera calibration. Maintaining the camera calibrations on the

MAGIC fleet of 14 robots using the standard calibration approach at the time proved

impractical; the MATLAB toolbox (predecessor of the OpenCV calibrator) was time

consuming, required batch processing, needed manual validation of the checkerboard

detections, and was error-prone, since novice users were free to choose arbitrarily

bad calibration images. Validating a calibration was also not directly part of the

MATLAB toolbox workflow, which relied instead on the user to design their own

time-consuming experiments to determine the quality of the estimated calibration

parameters.

Our software, AprilCal, is a significant departure from this methodology. We

developed an online, interactive, and repeatable calibration technique, grounded in

principled and automatic analysis of the model parameter uncertainties to guide users

to pick the right exemplar images to properly constrain all parts of the camera model.

Using this software, it is much easier to calibrate a fleet of robot sensors — an

experienced AprilCal user can finish a calibration in a few minutes. The robustness

of the approach eliminates the need for secondary validation, thereby making it easier

to recalibrate in the field, or any time the configuration of the cameras is changed.

Future work in this area should consider how robots with actuators can be used

to automatically reposition a camera to collect the desired images. Furthermore, it is

possible that a similar approach to reasoning about the intrinsics uncertainty could

be used to inform which data to collect for repeatable extrinsics calibration between

the camera and LIDAR. Especially if integrated into an automatic process, this would

improve the applicability of the presented color point cloud segmentation algorithm

to field robots. AprilCal also has the potential to impact communities far outside

the robotics domain, including machine vision as well as any inter-disciplinary study

where researchers from other fields are looking to use calibrated cameras for data

collection.
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These contributions are all related by the multi-robot applications which inspired

their development, but they also leverage similar grid-based or multi-variate-Gaussian

inference methods. Many of the methods also rely on carefully exploiting the sparse

structure of the estimation technique to achieve sufficient efficiency gains so that the

solutions can be run online, on real robots. All of our methods are evaluated on

real data collected in a variety of settings, including large urban environments and

human-subject trials. By demonstrating the value of our approaches on real-world

data, we make a more convincing argument for the adoption of these algorithms in

the robotics community, and beyond.
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