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The painter Kramskoy has a remarkable painting entitled The

Contemplator: it depicts a forest in winter, and in the forest, standing

all by himself on the road, in deepest solitude, a stray little peasant in a

ragged caftan and bast shoes; he stands as if he were lost in thought, but

he is not thinking, he is “contemplating” something. If you nudged him,

he would give a start and look at you as if he had just woken up, but

without understanding anything. It’s true that he would come to himself

at once, and yet, if he were asked what he had been thinking about

while standing there, he would most likely not remember, but would

most likely keep hidden away in himself the impression he had been

under while contemplating. These impressions are dear to him, and he is

most likely storing them up imperceptibly and even without realizing

it–why and what for, he does not know either; perhaps suddenly, having

stored up his impressions over many years, he will drop everything and

wander o↵ to Jerusalem to save his soul, or perhaps he will suddenly

burn down his native village, or perhaps he will do both.

There are a good many “contemplatives” among our peasants. And

Smerdyakov was probably one of them. And he was probably greedily

hoarding up his impressions, hardly knowing why.

—Dostoyevsky, The Brothers Karamazov
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7.8 ū1(t) and ū2(t) ungoverned and governed responses . . . . . . . . . 130
7.9 Nonlinear simulation: zg and ✓ responses plotted against governed

set-point r(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7.10 Nonlinear simulation: ↵(t) responses . . . . . . . . . . . . . . . . . 132
7.11 Nonlinear simulation: Forward and aft tension responses . . . . . . 132
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Introduction

All control systems are subject to constraints. These constraints can include phys-

ical actuator and safety limits as well as other design requirements. Often, control

schemes are designed without rigorously taking constraints into account and the fo-

cus of the design is instead placed on transient system performance. However, as

systems become downsized and performance is stretched to its physical limitations,

it becomes increasingly important to develop mechanisms that enforce constraints

while preserving desirable characteristics of the transient response. In such a case,

to protect system components from damage and to enforce other requirements, it

is desirable to implement a constrained control scheme that modifies input signals

to closed-loop controllers in order to ensure constraint enforcement. The reference

governor is such a scheme. It modifies input signals to closed-loop control systems

only if it predicts present or future constraint violation; otherwise it preserves the

unconstrained system response.

This dissertation describes recent developments in reference governor theory and

applications. In this chapter, we provide an overview of reference governors, as well as

the closely related extended command governors, and summarize the contributions we

have made. Note that the developments presented herein will be referred to frequently

throughout the dissertation.

Overview of reference governors

Reference governors (RGs) and the related command governors (CGs) and ex-

tended command governors (ECGs) are add-on predictive control schemes that en-

force pointwise-in-time state and control constraints in discrete-time, closed-loop sys-

tems. Unlike conventional model predictive control (MPC) schemes [1], which en-

force constraints and ensure system stability, RGs are used to augment systems with

closed-loop controllers that may have been designed without taking constraints into

account. Ordinarily, the placement of RGs follows the schematic shown in Fig. 0.1. In

1



the schematic, the RG utilizes the measured or estimated state x(t) in order to form

a prediction of future constraint violation and, if required, modify the reference input

from the desired r(t) to the constraint-admissible v(t) so that the output constraint

y(t) 2 Y is satisfied for all present and future time instants t 2 Z+, and any possible

set-bounded disturbance sequence {w(t)} 2 W .

!"#$
!"#$%&"%

'(")$*+("",

,(-&.

%"#$

).-.$/$).01-.$2/&"#$

'"#$ 	∈ 	*
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Figure 0.1: RG schematic

The focus of this dissertation is primarily on RGs and related governor schemes

whose design is based on linear system models; such RGs are referred to as “linear

RGs.” In several applications, these linear RGs will be applied to nonlinear systems,

sometimes with modifications intended to compensate for the di↵erences between

linear and nonlinear models. In general, there also exist RGs for the case where the

closed-loop model is nonlinear, i.e., “nonlinear RGs” [2, 3]. Their application will

be considered in Chapter 8 to the problem of enforcing constraints for models whose

dynamics evolve on a smooth manifold.

Linear RGs are designed based on the discrete-time system,

x(t+ 1) = Ax(t) + Bv(t) + Bww(t), (0.1a)

y(t) = Cx(t) +Dv(t) +Dww(t) 2 Y, (0.1b)

where x(t) 2 Rn is the state, v(t) 2 Rm is the admissible reference input, w(t) 2 R` is

the disturbance input, and y(t) is the constrained output that must satisfy constraints

y(t) 2 Y ⇢ Rp subject to any set-bounded disturbance sequence {w(t)} 2 W . The

matrix A is Schur, i.e., all eigenvalues are in the unit disk, and the pair (C,A)

is observable. The set Y satisfies the Minkowski assumptions, i.e., it is compact,

convex, and contains 0 in its interior; the set W is compact and contains 0. Unless

otherwise specified, the full state x(t) is assumed to be known; when it is not, we

design an observer. The observer error may be accounted for in the design of the RG

[4], and we do so in some of the subsequent theoretical developments.

The goal of the RG is to enforce constraints while ensuring that the reference input
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v(t) is close to the desired reference input r(t). The RG does this by varying v(t)

along the line segment connecting the previously constraint-admissible input v(t� 1)

and the desired input r(t),

v(t) = v(t� 1) + (t)(r(t)� v(t� 1)), (0.2)

where the the parameter (t) 2 [0, 1] is maximized so that v(t) is constraint admissible

and close to r(t) at each time instant t.

The RG relies on the model (0.1) in order to predict future constraint violation.

This prediction of future constraint violation is performed by exploiting an approxi-

mation to the set,

O1 = {(x, v) : x(0) = x, v(t) = v,

(0.1) are satisfied for all t 2 Z+ and {w(t)} 2 W}, (0.3)

which is computed o✏ine. The set O1 is the set of all initial state and reference input

pairs such that, when the reference is held constant, the constraints are satisfied for

all present and future time instants and for any possible set-bounded sequence of

disturbances.

Note that given an initial condition x(0) = x and constant reference input v(t) ⌘ v,

the solution to (0.1b) is given by,

y(t) = CAt(x��v)+ (C�+D)v+CAtBww(0)+ · · ·+CABww(t� 1)+Dww(t) 2 Y,

(0.4)

where � = (In �A)�1B is the map from the constant reference v to the steady-state

solution limt!1 x(t) in the disturbance-free case where w(t) ⌘ 0. The set O1 is then

the set of pairs (x, v) such that CAtx+ (C�+D)v ⇢ Y ⇠ CAtBwW ⇠ · · · ⇠ CBw ⇠
DwW for all t 2 Z+. It can be computed using the following recursive algorithm,

Yt+1 = Yt ⇠ CAtBwW, (0.5a)

Ot+1 = Ot \Xt+1, (0.5b)

where Xt = {(x, v) : CAtx+(C�+D)v 2 Yt} and the sets Y0 and O0 are initialized to

Y0 = Y ⇠ DwW and O0 = X0. If there exists a time t⇤ 2 Z+ such that Ot⇤ = Ot⇤+1,

then Ot⇤ = Ot⇤+k for all k ⇢ Z+ and O1 = Ot⇤ is finitely determined. If O1 is not

finitely determined, a finitely determined inner approximation can be obtained by

steady-state constraint tightening [5]. Specifically, to compute this finitely determined

3



approximation, we introduce a constraint v(t) 2 ⌦, where ⌦ is an inner approximation

to the set of all constraint admissible steady-state references, i.e., ⌦ ⇢ int⌦d where,

⌦d = {r 2 Rm : (C�+D)r 2 Y1}, (0.6)

where Y1 = limt!1 Yt. This approximation has all the required properties of O1

such as constraint admissibility and positive invariance, and it replaces O1 in all the

subsequent developments.

If Y is polyhedral, then there exists a straightforward computational procedure

for performing the updates in (0.5). Suppose Y is of the form,

Y = {y : Sy  s}. (0.7)

Then the step (0.5a) becomes,

Yt ⇠ CAtBwW = {y : Sy  s(i)}, (0.8)

where the columns s(i)k of s(i) are determined by,

s(i+1)
k = s(i)k � hW ((CAtBw)

TST
k ), (0.9)

where hW is a support function, Sk is the k-th row of S and s(0)k = sk � hW (DT
wS

T
k ).

Note that if W is polyhedral with vertices wq, q = 1, . . . , nw, then for ⌘ 2 R`,

hw(⌘) = maxq=1,...,n
w

⌘Twq. The step (0.5b) becomes,

Ot+1 = {(x, v) : H(t+1)
x +H(t+1)

v v  h(t+1)}, (0.10)

where H(t+1)
x , H(t+1)

v , and h(t+1) are recursively growing matrices,

H(t+1)
x =

"
H(t)

x

SCAt

#
, H(t+1)

v =

"
H(t)

v

SC�+D � SCAt�

#
, h(t+1) =

"
h(t)

s(t)

#
,

and are initialized to,

H(0)
x =

"
SC

0

#
, H(0)

v =

"
0

SC�+D

#
, h(0) =

"
s(0)

s1

#
,

where s1  limt!1 s(t) is an approximation to the limit of s(t) as t!1 [6].
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The RG solves the following optimization problem,

max (t) 2 [0, 1], (0.11a)

sub. to v(t� 1) + (t)(r(t)� v(t� 1)) 2 ⇧(x(t)), (0.11b)

where ⇧(x) is a slice of O1 at x,

⇧(x) = {v : (x, v) 2 O1}. (0.12)

The optimization (0.11) is computed by solving a finite sequence of scalar divisions

and logical comparisons [7]. An alternative to (0.11) is to compute v(t) by perform-

ing a bijection search for (t) over the interval [0, 1] while, for each candidate (t),

simulating the system over a su�ciently long enough horizon to predict constraint

violation [3].

The closely related ECG is a version of the RG that computes v(t) by solving

a quadratic programming problem. The ECG is more flexible than the RG because

it does not restrict the update of the reference v(t) to the line segment connecting

v(t� 1) and r(t); furthermore, it has a larger domain of attraction than the RG [8].

In the ECG, the reference v(t) is the output of an auxiliary system which has been

designed o✏ine,

x̄(t+ 1) = Āx̄(t), (0.13a)

v(t) = C̄x̄(t) + ⇢(t), (0.13b)

where x̄(t) 2 Rn̄ is the auxiliary state, ⇢(t) 2 Rm is the steady-state o↵set, Ā is

an asymptotically stable matrix and the pair (C̄, Ā) is observable. When the auxil-

iary dynamics (0.13) are coupled with the dynamics (0.1), the full system dynamics

become,

"
x̃(t+ 1)

⇢(t+ 1)

#
=

"
Ã B̃

0 Im

#"
x̃(t)

⇢(t)

#
+

"
B̃w

0

#
w(t), (0.14a)

y(t) =
h
C̃ D

i "x̃(t)
⇢(t)

#
+Dww(t) 2 Y, (0.14b)
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where,

x̃(t) =

"
x(t)

x̄(t)

#
, Ã =

"
A BC̄

0 Ā

#
, B̃ =

"
B

0

#
, B̃w =

"
Bw

0

#
, C̃ =

h
C DC̄

i
.

The corresponding maximal output admissible set (0.3) is,

Oaug
1 = {(x, x̄, ⇢) : x(0) = x, x̄(0) = x̄, ⇢(0) = ⇢,

(0.14) are satisfied for all t 2 Z+ and {w(t)} 2 W}. (0.15)

Let ⇧aug(x) be the slice of Oaug
1 at x,

⇧aug(x) = {(x̄, ⇢) : (x, x̄, ⇢) 2 Oaug
1 }. (0.16)

The quadratic programming problem that is solved by the ECG is,

min kx̄(t)k2S̄ + kr(t)� ⇢(t)k2S, (0.17a)

sub. to (x̄(t), ⇢(t)) 2 ⇧aug(x(t)), (0.17b)

where S̄ and S are positive definite matrices and S̄ satisfies the Lyapunov condition,

ĀTS̄Ā� S̄ = �Q for some positive definite matrix Q.

The final example of scheme closely related to the RG that is considered in this

dissertation is the CG. The CG is a version of the ECG in which n̄ = 0, i.e., the

auxiliary dynamics are empty. Consequently there is no gain in domain of attraction

as compared to the RG, however the flexibility of the ECG update policy is preserved.

Since v(t) = ⇢(t), the optimization (0.17) is,

min kr(t)� v(t)k, (0.18a)

sub. to v(t) 2 ⇧(x(t)), (0.18b)

where the norm to be minimized is not necessarily quadratic [3].

RGs, ECGs, and CGs exhibit the properties of recursive feasibility for the op-

timizations (0.11), (0.17), (0.18), finite-settling time for the case where r(t) is held

constant, and convergence of the state x(t) to an attractor set that depends on the

size of the disturbance set W . These results are presented in detail in [7] for RGs and

[8] for ECGs and CGs and we summarize them in the following. To do this, we need

to introduce a few additional definitions.
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Let,

F1(r) = {�r}� F1, F1 = lim
t!1

Ft, Ft =
t�1M

i=0

AiBwW, F0 = {0}. (0.19)

The set F1(r) is the attractor set for (0.1a) when v(t) ⌘ r. Specifically, F1(r) is

compact and, for all x(0) and all " > 0, there exists a t̄ 2 Z+ such that x(t) 2
F1(r)� "Bn for all t � t̄. Define,

X = {x : 9v s.t. (x, v) 2 O1}, (0.20)

X aug = {x : 9(x̄, ⇢) s.t. (x, x̄, ⇢) 2 Oaug
1 }. (0.21)

These sets are respectively the projections of O1 and Oaug
1 onto Rn and correspond

to the domains of attraction for the RG or CG and the ECG. By their definition, it

is clear that X aug � X . This means that the ECG, as a result of its more flexible

design through the addition of auxiliary variables, has a larger domain of attraction

than the RG and CG.

We state the main RG and ECG theorems. The first is a portion of the main

results of [7]. The second is the main result of [8].

Theorem 0.1 (Reference governor). Consider the system (0.1) with {r(t)} 2 Rm,

{w(t)} 2 W, v(t) defined by (0.2), (0.11), and x(0) 2 X . Then: (i) x(t), v(t), and

y(t) are defined for all t 2 Z+; (ii) y(t) 2 Y and x(t) 2 X for all t 2 Z+. Suppose

further there exists ts 2 Z+ such that r(t) = rs 2 ⌦ for all t � ts. Then (iii) there

exists tf 2 Z+ such that v(t) = rs for all t � tf ; (iv) given " > 0, there exists a

t" 2 Z+ such that x(t) 2 F1(rs)� "Bn for all t � t".

Theorem 0.2 (Extended command governor). Consider the system (0.1) with {r(t)}
2 Rm, {w(t)} 2W, v(t) defined by (0.13b), (0.17), and x(0) 2 X aug. Then: (i) x(t),

v(t), and y(t) are defined for all t 2 Z+; (ii) y(t) 2 Y and x(t) 2 X aug for all

t 2 Z+. Suppose further there exists ts 2 Z+ such that r(t) = rs for all t � ts. Define

r⇤s = argminr2⌦ kr � rsk2S. Then (iii) there exists tf 2 Z+ such that v(t) = r⇤s for all

t � tf ; (iv) given " > 0, there exists a t" 2 Z+ such that x(t) 2 F1(r⇤s)� "Bn for all

t � t".

Literature review

RGs were originally proposed as constraint-enforcing mechanisms for application

to continuous-time systems in [9, 10, 11]. In [9], the authors introduced a RG-like
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method for application to stable systems and in [10], they considered applications to

unstable systems by placing the governor inside the control loop.

Thereafter, [12, 13] considered discrete-time RG formulations by introducing what

is now called the static RG, where the design was based on the update equation

v(t) = (t)r(t) instead of (0.2). In [14, 15], these ideas were refined into the form

of RGs that are considered in this dissertation, with the exception that disturbances

were not considered; this is equivalent to the RG with W = 0. The authors then

refined this approach by introducing an RG in [7] that was robust to disturbances

and that was based on the theory of robustly invariant sets developed previously

in [5]. This theory forms the basis for the type of RGs that are considered in this

dissertation.

Concurrent with the above developments, a di↵erent version of the RG was also

under development. This version is similar to the CG and was developed for discrete-

time systems; however the prediction is based on online simulations instead of maxi-

mal output admissible sets. This version of the RG was first presented in [16], followed

by further developments in [17, 18, 3, 19, 20].

The development of RG theory was further pursued in [2], where the authors

developed a nonlinear version of the RG which used constraint admissible and not

necessarily invariant sets, similar to the linear RG. A parameter governor, which

varied system parameters as opposed to the reference input, was considered in [21].

An RG for piecewise a�ne systems was proposed in [22]. The ECG was introduced

in [8]. Examples of more recent theoretical developments include that of CGs for the

case where the state is not directly estimated [23, 24] and RGs for network control

systems [25, 26]. Recent survey papers on RGs and related topics include [27] and

[28]. In addition, the technical report [6] is a comprehensive introductory reference

that considers the computational aspects of maximal output admissible sets.

Applications of RGs, CGs, and ECGs have also been reported in the literature.

These include the application of governors to a magnetically actuated mass-spring-

damper system [29], an inverted pendulum [20], cable robots [30], and spacecraft

guidance [31]. Automotive applications include rollover [32], fuel-cell systems [33, 34,

35], and HCCI engines [36, 37], with experimental results reported in [36, 37].

Contributions and dissertation outline

This dissertation is split into two parts. Part I considers new developments in the

theory of RGs and Part II considers their practical applications.
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In Part I, the theoretical contributions generally consist of various new RG schemes,

which are modifications of the ordinary RG and for which we develop new theory.

In Part II, we consider the application of the ordinary RG to practical systems sub-

ject to constraints. The majority of the contents of this dissertation has been pub-

lished or submitted to scientific journals [38, 39] or refereed conference proceedings

[40, 41, 42, 43, 44, 45, 46, 47]. Related developments that are not included in the

dissertation have appeared in or have been submitted to journal papers [48, 49] and

conference papers [27, 50, 51].

The individual contributions are listed below in order of their corresponding chap-

ters.

Part I, Chapter 1 [38, 40]: Reduced-order RG and ECG schemes have been de-

veloped. These schemes take advantage of the modal decomposition of a system into

slow and fast subsystems. The underlying predictive model is based on the slow states

of the full-order system and approximates the fast states as if they were at steady-

state. This results in a reduced complexity of the predictive model and reduced the

memory required to store O1 and Oaug
1 . Under suitable assumptions, the schemes

have been shown to enforce constraints and converge to a steady-state reference.

Chapter 2 [41]: RG schemes have been developed for decentralized systems. These

schemes are based on ideas related to the reduced-order RG of the previous chapter

in the sense that RGs are designed for the subsystems of the decentralized systems.

These subsystem RGs operate such that constraint enforcement is assured for the

system as a whole.

Chapter 3 [42]: Prioritized RG schemes have been developed for systems subject

to constraints of di↵erent priorities and for systems with prioritized reference inputs.

The prioritized constraint handling scheme utilizes a slack parameter that is used

as padding to the constraints, with the lower priority constraint allowing for higher

values of padding. The prioritized reference scheme computes the admissible reference

v(t) element by element, maximizing the higher priority elements before considering

elements of lower priority.

Chapter 4 [43]: Various RG approaches have been considered for cases when

the set Y is not polyhedral and therefore not given by a set of linear inequalities.

Specifically, four di↵erent cases are discussed where the constraints are one of: convex,

quadratic, mixed logical-dynamics, or concave. Algorithms for computing v(t) have

been developed for all four cases and illustrated with simulation results.

Chapter 5 [44]: RG and CG schemes have been developed for systems that track

a time-varying reference r(t) and that are subject to time-dependent constraints, i.e.,
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the case where Y = Yt. The schemes are based on a contractive version of the set

O1, which is di↵erent from the ordinary, invariant design. When the CG constraint

set is contractive, the CG scheme has been shown to track references that vary with

time. When the RG constraint set is contractive, the RG scheme has been shown to

enforce constraints that depend on time.

Part II, Chapter 6 [39, 45]: The RG has been applied to the enforcement of

the compressor surge constraint for turbocharged engines. Surge is an unstable and

undesirable flow process and tends to occur inside what is called the surge region on a

compressor map. Avoiding this region using the RG leads to the mitigation of surge.

Experimental vehicle data has been presented that shows the e�cacy of the RG for

enforcement of the surge constraint.

Chapter 7 [46]: The RG has been applied to the control of a tethered airborne wind

energy system. These systems take advantage of the higher power density available at

high altitude, but are subject to constraints on parameters such as tether tension and

angle of attack, which ensure that the system remains airborne. We have developed

a linear controller for tracking set-point commands and coupled it with an RG that

ensures constraint enforcement. Nonlinear simulations have been presented that show

the successful operation of the RG in enforcing constraints.

Chapter 8 [47]: The RG has been applied to the constrained control of spacecraft

attitude, whose configuration space is SO(3). The RG updates v(t) by utilizing the un-

derlying group structure of SO(3). This scheme has been analyzed and demonstrated

to have global rest-to-rest reorientation properties on SO(3). Numerical simulations

have been reported that show the enforcement of attitude constraints using the RG.
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Part I

Developments in the theory of

reference governors

CHAPTER 1

Reduced-order reference and extended command

governors

1.1 Introduction

The complexity of the RG, ECG, and CG optimizations, (0.11), (0.17), and (0.18)

respectively, are directly related to the dimension of the system n. The purpose of

this chapter is to present an approach for reducing this complexity. It takes advantage

of decomposing the state of system (0.1) into slow and fast states, as characterized

by magnitude of the eigenvalues of A, and modeling (0.1) by an appropriate, reduced

order model based on the slow subsystem. The e↵ects of the fast states are treated

as an output disturbance in the reduced order model. With appropriate constraint

tightening to account for this disturbance, it follows that whenever v(t) in the slow

model is such that hard constraints in the reduced order model are met, then the

same v(t) used in (0.1) assures that the actual constraints are met. Thus, applying

a governor to the reduced order model guarantees constraint satisfaction in system

(0.1).

In this chapter, we first develop the theory of the reduced order RG followed by the

theory of the reduced order ECG. The ideas behind the reduced order ECG are similar

to those of the reduced order RG, but more complex because of the need to consider

the state of the auxiliary system x̄(t). Because of these auxiliary states, model order
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reduction is even more important for making the ECG computationally tractable.

Model order reduction directly contributes to lower complexity by decreasing the

number of state variables needed for the implementation of the ECG.

It is important to note that there is a trade-o↵ in the order reduction. The errors in

the system approximation must be suitably controlled and this is done by tightening

constraints; the consequence of constraint tightening is that the set of recoverable

initial states may be reduced and the reduced order governors may produce slower

response than the ordinary RG and ECG schemes.

Two examples are considered. In the first example, we demonstrate that the

surge margin constraint in a turbocharged gasoline engine can be handled based on

the reduced order model for the two slowest states out of five states in total. The

complexity reduction is important for this application due to limited computational

capability of the Engine Control Unit (ECU). In the second example, we demonstrate

that constraints on the elastic deflections of the free-free beam [52], which is an

infinite-dimensional system, can be handled based on the reduced order model of

the two lowest frequency modes. This example is motivated by applications to very

flexible aircraft [53].

The chapter is organized as follows. Section 1.2 presents the development of

the reduced order RG and ECG. Section 1.3 presents the main theorem. Section

1.4 considers the treatment of observer errors in the case where not all slow states

are measured. Section 1.5 presents an application of the reduced order RG to a

turbocharged gasoline engine. Section 1.6 presents an application of the reduced

order RG to an example that involves an infinite-dimensional system model.

1.2 Reduced order governors based on decomposition into

fast and slow modes

This section presents a model order reduction that is based on the decomposition of

the system (0.1) into normal modes. Specifically, the system is decomposed according

to fast and slow eigenvalues, and the RG or ECG is then designed based on the slow

subsystem only. A more general decomposition [54] is possible and its development is

similar, but because it does not lead to a reduction in model order, it is not explicitly

considered here.

We begin by transforming the system via an appropriate coordinate transfor-

mation so that (0.1) is split into fast and slow subsystems. Consider an invertible
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coordinate transformation P : Rn ! Rn such that,

P�1x(t) =

"
x2(t)

x1(t)

#
, P�1AP =

"
A2 0

0 A1

#
, (1.1)

P�1B =

"
B2

B1

#
, P�1Bw =

"
Bw,2

Bw,1

#
, CP =

h
C2 C1

i
, (1.2)

where A1 2 Rn
1

⇥n
1 and A2 2 Rn

2

⇥n
2 are, respectively, matrices of the fast and slow

dynamics; by this, we mean that the magnitudes of all eigenvalues of A1 are small

when compared to the magnitudes of all eigenvalues of A2. Assuming that such a

transformation can be constructed, our approach is to design the governor based

only on the dynamics of x2(t) and develop conditions that bound the error that is

introduced by the deviation of x1(t) from steady-state.

The RG and CG dynamics are a special case of the ECG dynamics where the

auxiliary system is empty; i.e., n̄ = 0 implies v(t) = ⇢(t), so we continue the devel-

opment of the reduced order governor scheme with a specific focus on the ECG. We

will specialize the ECG scheme to the RG later. Let,

P̃ =

"
P 0

0 In̄

#
, (1.3)

so that,

P̃�1ÃP̃ =

2

64
A2 0 B2C̄

0

0
Â

3

75 , (1.4)

wherein,

Â =

"
A1 B1C̄

0 Ā

#
, B̂ =

"
B1

0

#
, �̂ =

"
�1

0

#
, B̂w =

"
Bw,1

0

#
, Ĉ =

h
C1 0

i
, (1.5)

and �1 := (In
1

�A1)�1B1. Because x1(t) represents the fast state, subsequent devel-

opments are guided by the approximation that,

x1(t) ⇡ �1⇢(t). (1.6)
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We introduce a modified approximate output,

y2(t) = C2x2(t) + C1�1⇢(t) +Dv(t) +Dww(t). (1.7)

To maintain the true and modified outputs close to each other, we introduce an

artificial output error set Ey ⇢ Rp, and subsequently use it as an artificial constraint

on their di↵erence, i.e.,

ŷ(t) = y(t)� y2(t) 2 Ey. (1.8)

Note that,

ŷ(t) = C1(x1(t)� �1⇢(t)). (1.9)

The choice of Ey must satisfy conditions that are determined by the modal decom-

position of system (0.1): Ey is compact, convex, and satisfies,

Ey ⇢ intY1,2, (1.10)

where,

Y1,2 = Y ⇠ DwW ⇠
h
0 C2

i
F1 � Y1. (1.11)

Finally, the modified output must be constrained to a tightened form of Y ,

y2(t) 2 Y ⇠ Ey, (1.12)

where (1.8) and (1.12) together imply that y(t) = y2(t) + ŷ(t) 2 (Y ⇠ Ey)�Ey ⇢ Y .

Thus to guarantee y(t) 2 Y for all t 2 Z+, the ECG can be applied to a modified

system based on the dynamics of A2 and constraints on the modified output (1.12)

with the additional constraint in (1.8).

An approach to satisfying (1.8) is based on translating it to a set of su�cient

conditions on v(t). We define a state error set Ex ⇢ Rn
1 ⇥ Rn̄, satisfying,

ÂEx � B̂wW ⇢ intEx, (1.13)

ĈEx ⇢ Ey. (1.14)

The condition in (1.13) implies that Ex is robustly invariant and contractive with

respect to Â and is used to recursively guarantee constraint admissibility of the error

dynamics and also to guarantee convergence. The condition in (1.14) relates Ex to

Ey and guarantees constraint admissibility in the presence of disturbances.
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If we define,

x̂(t) =

"
x1(t)� �1⇢(t)

x̄(t)

#
, (1.15)

then from (1.14), 0 2 W , and the definition of Ĉ, it follows that x̂(t) 2 Ex =)
ŷ(t) = C1(x1(t)� �1⇢(t)) = Ĉx̂(t) 2 ĈEx ⇢ Ey.

The following proposition characterizes the predicted trajectories of the errors x̂(t)

and ŷ(t). The prediction of the trajectory of ŷ(t) is needed in order to subsequently

enforce the constraint (1.8).

Proposition 1.1. The dynamics of x̂(t+ k|t) and ŷ(t+ k|t) for k 2 Z+ satisfy,

x̂(t+ k + 1|t) = Âx̂(t+ k|t) + B̂ww(t+ k),

x̂(t|t) = x̂(t|t� 1) +�x̂(t),
(1.16a)

ŷ(t+ k + 1|t) = Ĉx̂(t+ k + 1|t), (1.16b)

where,

�x̂(t) =

"
��1�⇢(t)

�x̄(t)

#
, (1.17)

�⇢(t) = ⇢(t)� ⇢(t� 1),

�x̄(t) = x̄(t)� Āx̄(t� 1),
(1.18)

x̂(t|t� 1) =

"
x1(t)� �1⇢(t� 1)

Āx̄(t� 1)

#
. (1.19)

Proof. To show (1.16a), consider some k � 0. Then, x̂(t+k+1|t) = [(x1(t+k+1|t)�
�1⇢(t))T x̄(t+k+1|t)T]T = Â[x1(t+k|t)T x̄(t+k|t)T]T+B̂ww(t+k)+B̂⇢(t)� �̂⇢(t) =
Â[x1(t+ k|t)T x̄(t+ k|t)T]T + B̂ww(t+ k) + (In

1

+n̄ � (In
1

+n̄ � Â)�1)B̂⇢(t) = Â[x1(t+

k|t)T x̄(t+ k|t)T]T + B̂ww(t+ k)� Â(In
1

+n̄� Â)�1B̂⇢(t) = Âx̂(t+ k|t) + B̂ww(t+ k).

Also,

x̂(t|t) =
"
x1(t|t)� �1⇢(t)

x̄(t|t)

#
= x̂(t|t� 1) +�x̂(t), (1.20)

completing the derivation of (1.16a).

The output error equation (1.16b) follows from the fact that ŷ(t + k + 1|t) =

C1(x(t+ k + 1|t)� �1⇢(t)) = Ĉx̂(t+ k + 1|t) for k � 0.

The following proposition provides conditions that enforce constraint admissibility
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of ŷ(t) for all future time instants.

Proposition 1.2. Let x̂(t+k|t) and ŷ(t+k+1|t) satisfy (1.16). Suppose x̂(t|t�1) 2
Ex. If,

Â�x̂(t) 2 Ex ⇠ ÂEx ⇠ B̂wW, (1.21)

then x̂(t+ k + 1|t) 2 Ex, ŷ(t+ k + 1|t) 2 Ey for all k 2 Z+.

Proof. The proof is by induction. Suppose k > 1 and assume x̂(t + k|t) 2 Ex.

From (1.13) and (1.14), it follows that x̂(t + k + 1|t) = Âx̂(t + k|t) + B̂ww(t + k) 2
ÂEx�B̂wW ⇢ Ex, which implies that ŷ(t+k+1|t) = Ĉx̂(t+k+1|t) 2 ĈEx ⇢ Ey. For

k = 1, x̂(t+1|t) = Âx̂(t|t)+ B̂ww(t) = Âx̂(t|t�1)+ Â�x̂(t)+ B̂ww(t) 2 ÂEx� (Ex ⇠
ÂEx ⇠ B̂wW )� B̂wW ⇢ Ex.

Remark 1.3. Note that Proposition 1.2 requires that x̂(t|t� 1) 2 Ex. This property

will always be ensured by the governor from the previous time step, provided a feasible

solution to the optimization problem exists at t = 0. With this in mind, based on

Proposition 1.2, if the governor ensures, through the selection of ⇢(t) and x̄(t), that

y2(t+ k|t) 2 Y ⇠ Ey for all k 2 Z+ and, additionally, �x̂(t) given by (1.17) satisfies

(1.21), then y(t+ k|t) 2 Y for all k 2 Z+.

Remark 1.4. The reduced order ECG o↵ers most benefit when the reduction is based

on a clear separation of the eigenvalues determining the fast and slow dynamics of the

closed loop system. When all the eigenvalues of A1 are much smaller in magnitude

than those of A2, the underlying approximation in (1.6) is reasonable and Ex ⇠ ÂEx ⇠
B̂wW more closely approximates Ex ⇠ B̂wW , resulting a less stringent constraint

(1.21).

We use Remark 1.4 in order to help with the design procedure of the reduced

order RG and ECG. We now summarize the steps used to design the reduced order

governors and the online computations involved. As with the ordinary RG and ECG,

the development is split into an o✏ine and online design; the former corresponds to

the construction of the appropriate constraint sets and the latter corresponds to the

reduced order online control law.

Reduced order ECG o✏ine design

Given a system (0.1), find an invertible transformation P such that the state

matrix is in a split form as in (1.4). This decomposition should follow the insight of

Remark 1.4, so that the eigenvalues of A1 are relatively small in magnitude. We are
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now able to form a subsystem corresponding to slow eigenvalues, which is in the form

of (0.14),

"
x2(t+ 1)

x̄(t+ 1)

#
=

"
A2 B2C̄

0 Ā

#"
x2(t)

x̄(t)

#
+

"
B2

0

#
⇢(t) +

"
Bw,2

0

#
w(t), (1.22a)

y2(t) =
h
C2 DC̄

i "x2(t)

x̄(t)

#
+ (C1�1 +D)⇢(t) +Dww(t) 2 Y ⇠ Ey.

This is the reduced order system with a tightened output constraint and we develop an

ordinary ECG which corresponds to it, i.e., we find (C̄, Ā) and Oaug
1 ⇢ Rn

2⇥Rn̄⇥Rm,

along with its corresponding set ⇧aug(x2) 2 Rn̄ ⇥Rm, to use in the online algorithm.

All that is left is to handle the dynamics of A1, so define the matrices as in (1.5)

and choose the sets Ex ⇢ Rn
1 ⇥ Rn̄ and Ey ⇢ Rp, such that,

Ey ⇢ intY1,2,

ÂEx � B̂wW ⇢ intEx,

ĈEx ⇢ Ey,

(1.23)

and define a new constraint set,

Eaug =

(
(�x̄,�⇢) : Â

"
��1�⇢

�x̄

#
2 Ex ⇠ ÂEx ⇠ B̂wW

)
, (1.24)

so that we can impose the following condition online,

(�x̄(t),�⇢(t)) 2 Eaug, (1.25)

where the definitions of �x̄(t) and �⇢(t) are given in (1.18). This completes the

specification of the o✏ine procedure.

Reduced order RG o✏ine design

The reduced order RG design is similar to that of the reduced order ECG, with

the exception of the use of the auxiliary variables. Therefore certain variables reduce

to just the slow system variables, e.g., Â = A1, B̂w = Bw,1, etc. The sets O1 and

⇧(x2) are defined based on the slow system, and the constraint set E becomes,

E = {�v : �A1�1�v 2 Ex ⇠ Â1Ex ⇠ Bw,1W}, (1.26)
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which is imposed on the change in the reference �v(t) = v(t)� v(t� 1), i.e.,

�v(t) 2 E . (1.27)

Reduced order ECG online design

The online mechanism for computing v(t) according to the reduced order ECG is

similar to that of the ordinary ECG, with the exception that the additional constriant

(1.25) must be included. At each discrete time instant t, update the auxiliary system

state and o↵set based on the estimate or measured value of the slow state x2(t) by

solving the following optimization problem,

min kx̄(t)k2S̄ + kr(t)� ⇢(t)k2S, (1.28a)

sub. to (x̄(t), ⇢(t)) 2 ⇧aug(x2(t)), (1.28b)

(x̄(t)� Āx̄(t� 1), ⇢(t)� ⇢(t� 1)) 2 Eaug. (1.28c)

Then the modified reference becomes,

v(t) = C̄x̄(t) + ⇢(t). (1.29)

Note that at the initial time-instant t = 0, for the constraint (1.28c) to be en-

forceable, we require that the initial variables x̄(t� 1) and ⇢(t� 1) satisfy,

"
x1(0)� �1⇢(�1)

Āx̄(�1)

#
2 Ex. (1.30)

Reduced order RG online design

At each discrete time instant t, the reduced order RG solves the following opti-

mization problem,

min (t) 2 [0, 1], (1.31a)

sub. to v(t� 1) + (t)(r(t)� v(t� 1)) 2 ⇧(x2(t)), (1.31b)

v(t)� v(t� 1) 2 E . (1.31c)
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1.3 Main results

In this section, we show that the reduced order ECG exhibits similar theoretical

properties to that of the ordinary ECG.

We first note that the following result is immediate by Propositions 1.1 and 1.2

and Remark 1.

Proposition 1.5. If the problem (1.28) has a feasible solution at time t = 0, then it

is recursively feasible, i.e., it has a feasible solution for all t 2 Z+.

The following theorem shows that the reduced order ECG exhibits characteristics

similar to the full order version. Let ⌦2 be a set satisfying the properties of ⌦ along

with the inclusion ⌦2 ⇢ int⌦d,2 where,

⌦d,2 := {r : (C�+D)r 2 Y1,2 ⇠ Ey} ⇢ ⌦d. (1.32)

Furthermore define a set X2 ⇢ Rn
2 for the system (1.22) analogously to the definition

(0.20) of X for the system (0.14).

Theorem 1.6. Consider the system (1.22) with {r(t)} 2 Rm, {w(t)} 2W, v(t) given

by (1.29), (1.30), and x2(0) 2 X2. Then: (i) x(t), v(t), and y(t) are defined for all

t 2 Z+, and (ii) y(t) 2 Y and x2(t) 2 X2 for all t 2 Z+. Suppose further that there

exists a ts 2 Z+ such that r(t) = rs for all t � ts. Define r⇤s := argminr2⌦
2

kr� rsk2S.
Then (iii) there exists a tf 2 Z+ such that v(t) = r⇤s for all t � tf ; (iv) given " > 0,

there exists a t✏ 2 Z+ such that x(t) 2 F1(r⇤s)� "Bn for all t � t✏.

The theorem shows that many of the properties of the ordinary ECG are preserved

by the reduced order version. The convergence properties apply to the reduced order

system described by (1.22), but the constraints are satisfied for the overall system,

i.e., y(t) 2 Y for all present and future time instants in (0.1).

The assumptions are also restricted to a minimum. The di↵erences from the

full order ECG is that the error part of the initial condition is assumed to already

be bounded, i.e., x̂(0) 2 Ex. Furthermore, the set of final admissible references is

changed from ⌦ to ⌦2, because of the reduction in constraint set from Y to Y ⇠ Ey.

Furthermore, as in Remark 2 of [8], the result can easily be extended to the theory

of the CG, i.e., the constraint (1.25) can be used in the CG algorithm under the same

assumptions by making x̄(t) empty and removing its dynamics from consideration.

The result for the RG is analogous and is available in [40]; we consider the application

of this reduced order RG to a couple of numerical examples later in this chapter.
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Remark 1.7. The error sets Ex and Ey do not need to be fixed at the time of design.

Instead, Ey can be replaced with a time-varying output error set by introducing a

time-varying scalar parameter 0 < c(t) < 1 and setting Ey(t) = c(t)Y . This makes the

computation of Y ⇠ Ey(t) convenient because Y ⇠ Ey(t) = Y ⇠ c(t)Y = (1� c(t))Y .

The optimization (1.28) is then modified to simultaneously minimize c(t) and the cost

function (1.28a). The details are not covered in this dissertation but can partly be

found in our work on network reference governors (see Section 4 of [49]).

Proof. Part (i) is implied by Proposition 1.2 and the definition of Eaug in (1.26). For

(ii), the ordinary ECG guarantees that y2(t) 2 Y ⇠ Ey for all t 2 Z+. Proposition

1.2 implies that ŷ(t + 1) 2 Ey for all t 2 Z+. Since ŷ(0) 2 Ey by assumption, then

y(t) = y2(t) + ŷ(t) 2 Y ⇠ Ey � Ey ⇢ Y for all t 2 Z+ and the proof of (i) and (ii) is

complete.

We prove the rest of the theorem by defining,

V (t) = kx̄(t)k2S̄ + k⇢(t)� rsk2S � 0, (1.33)

Because (x̄(t�1), ⇢(t�1)) 2 ⇧(x2(t�1)), at the next time step, (Āx̄(t�1), ⇢(t�1)) 2
⇧(x2(t)). Due to (1.29), this implies that V (t)  kĀx̄(t � 1)k2

S̄
+ k⇢(t � 1) � rsk2S.

According to the Lyapunov-like condition on S̄ and Ā, kĀx̄(t � 1)kS̄  kx̄(t � 1)kS̄,
and therefore, V (t)  V (t� 1), implying there exists a Vm � 0 such that V (t)! Vm.

We now prove the following,

k�x̄(t)k2S̄ + k�⇢(t)k2S  V (t� 1)� V (t). (1.34)

First we state the following lemma.

Lemma 1.8. Suppose Z, �Z ⇢ Rq are closed and convex and zr 2 Z, 0 2 int�Z,

zs 2 Rq, 0 � Q 2 Rq⇥q, and zop = zop(zr, zs) = argminz2Z, z�z
r

2�Z(z� zs)TQ(z� zs).

Then,

kzr � zopk2Q  kzr � zsk2Q � kzop � zsk2Q. (1.35)

Proof. Because Z and �Z are closed, zr 2 Z and 0 2 �Z, zop exists. Now, kzr �
zsk2Q = kzr � zop� (zs� zop)k2Q = kzr � zopk2Q� 2(zr � zop)TQ(zs� zop) + kzs� zopk2Q.
Because zop is the optimal point, the necessary optimality conditon on the gradient

r(z � zs)TQ(z � zs) = 2Q(z � zs) implies that �2(z � zop)TQ(zs � zop) cannot be

negative for any point satisfying the constraint z 2 Z; this yields kzr � zsk2Q �
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kzr � zopk2Q + kzs � zopk2Q, which is an equivalent form of the result.

In Lemma 1.8, let Z = ⇧aug(x2(t)), �Z = Eaug, zr = (Āx̄(t � 1), ⇢(t � 1)),

zop = (x̄(t), ⇢(t)), zs = (0, rs), and Q = diag(S̄, S). Therefore,

k(�x̄(t),�⇢(t))k2 = k(Āx̄(t� 1)� x̄(t), ⇢(t� 1)� ⇢(t))k2

 k(Āx̄(t� 1), ⇢(t� 1)� rs)k2 � k(x̄(t), ⇢(t)� rs)k2

= V (t� 1)� V (t),

proving by (1.34) and �x̄(t)! 0, �⇢(t)! 0.

Define �v(t) = v(t)� v(t� 1). From the above, it follows that �v(t)! 0. This

leads to the result that for any " > 0, there exists a t" 2 Z+ such that,

x(t) 2 {�v(t)}� F1 � "Bn, 8t � t". (1.36)

To confirm this, decompose x(t) = xv(t) + xw(t), where xv(t) is the solution of x(t)

with w(t) ⌘ 0 and xw(t) is the solution of x(t) with v(t) ⌘ 0. It is apparent that

xw(t) 2 Ft ⇢ F1, for all t 2 Z+. Now define, �xv(t + 1) = xv(t + 1) � xv(t) =

A�xv(t) + B�v(t), therefore �xv(t)! 0 as �v(t)! 0. Since xv(t + 1) = Axv(t) +

Bv(t) = xv(t) +�xv(t), then xv(t) = �v(t) � (I � A)�1�xv(t) ! �v(t). This leads

to the conclusion that x(t) = xv(t) + xw(t)! {�v(t)}� F1.

Because (x̄(t), ⇢(t)) 2 ⇧aug(x2(t)), then ⇢(t) 2 ⌦2. This implies that,

Vm � V ⇤ := kr⇤s � rsk2S. (1.37)

In the proof of the theorem corresponding to the ordinary ECG [8], the next step is

to show that Vm = V ⇤. The only di↵erence between the assumptions in [8] and the

assumptions herein is the addition of the constraint in (1.25). By our assumption

that 0 2 int Eaug in (1.25), updates to the increment of �⇢(t) and �x̄ are always

non-zero if they would be non-zero when not considering the constraint in (1.25); this

and �⇢(t)! 0, �x̄(t)! 0 as t!1 imply that the constraint (1.25) is inactive for

all t su�ciently large. Consequently, we obtain the result that Vm = V ⇤.

Parts (iii) and (iv) now follow directly. In Lemma 1.8, let zr = (x̄(t), ⇢(t)), Z =

Rn̄ ⇥ ⌦2, �Z = Eaug, zop = (0, r⇤s), and zs = (0, rs). Then, kx̄(t)k2
S̄
+ k⇢(t) � r⇤sk2S 

V (t) � V ⇤. Therefore x̄(t) ! 0 and ⇢(t) ! r⇤s . This and (1.36) prove part (iv).

Furthermore, they imply that for su�ciently large t, (0, r⇤s) 2 ⇧aug(x2(t)) and the

constraint (�x̄(t),�⇢(t)) 2 Eaug is inactive. Therefore, (1.29) and the definition of
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r⇤s imply that for all t su�ciently large, ⇢(t) = r⇤s , proving part (iii).

1.4 Accounting for observer error

If we do not measure all the components of the state x2(t), then we can design

an observer to generate their estimates. The observer errors can be accounted for by

the ECG in an analogous manner to fast state deviations from steady-state.

Consider that a reduced order ECG has been developed for the system (1.22). Let

xo(t) be the output of the observer for x2(t) with gain L,

xo(t+ 1) = A2xo(t) + B2v(t) + L(y(t)� yo(t)), (1.38a)

yo(t) = C2xo(t) +Dv(t) + C1�1⇢(t). (1.38b)

where, without loss of generality, we assume that yo(t) is both a measured and con-

strained output. In the design of the ECG, the state x2(t) is set to xo(t).

Let,

x̃(t) =

2

64
x2(t)� xo(t)

x1(t)� �1⇢(t)

x̄(t)

3

75 ,

and ỹ(t) = y(t)� y2(t). The following proposition characterizes the predicted trajec-

tories of x̃(t) and ỹ(t).

Proposition 1.9. The dynamics of x̃(t+ k|t) and ỹ(t+ k|t) for k 2 Z+ satisfy,

x̃(t+ k + 1|t) = Ãx̃(t+ k|t) + B̃ww(t+ k),

x̃(t|t) = x̃(t|t� 1) +�x̃(t),
(1.39a)

ỹ(t+ k + 1|t) = C̃x̃(t+ k + 1|t), (1.39b)

where,

Ã =

2

64
A2 � LC2 �LC1 0

0 A1 B1C̄

0 0 Ā

3

75 , B̃w =

2

64
Bw,2 � LDw

Bw,1

0

3

75 , C̃ =
h
C2 C1 0

i
,

22



and,

�x̃(t) =

2

64
0

��1�⇢(t)

�x̄(t)

3

75 ,

x̃(t|t� 1) =

2

64
x2(t)� xo(t|t� 1)

x1(t)� �1⇢(t� 1)

Āx̄(t� 1)

3

75 .

Proof. For k � 0, x2(t+k+1|t)�xo(t+k+1|t) = A2x2(t+k|t)+B2v(t+k|t)+Bw,2w(t+

k)�A2xo(t+k|t)�B2v(t+k|t)�L(y(t+k|t)�yo(t+k|t)) = A2(x2(t+k|t)�xo(t+k|t))+
Bw,2w(t+k)�L(C2(x2(t+k|t)�xo(t+k|t))+C1(x1(t+k|t)��1⇢(t))+Dww(t+k)) =

(A2�LC2)(x2(t+k|t)�xo(t+k|t))�LC1(x1(t+k|t)��1⇢(t))+(Bw,2�LDw)w(t+k).

The rest of (1.39a) is proven by the fact that x2(t|t)� xo(t|t) = x2(t)� xo(t) and

Proposition 1.1.

Finally, (1.39b) follows from the choice of the initialization of x2(t|t) to xo(t|t �
1).

Propositions 1.9 and 1.2 imply that the reduced order ECG with an observer can

be developed by defining new constraint sets Ẽx ⇢ Rn
2 ⇥ Rn

1 ⇥ Rn̄ and Ẽy ⇢ Rp to

replace Ex and Ey, respectively. These sets satisfy,

Ẽy ⇢ intY1,2,

ÃẼx � B̃wW ⇢ int Ẽx,

C̃Ẽx ⇢ Ẽy.

(1.40)

The constraint in (1.26) is replaced by the following constraint,

2

64
�LC1 0

A1 B1C̄

0 Ā

3

75

"
��1�⇢(t)

�x̄(t)

#
2 Ẽx ⇠ ÃẼx ⇠ B̃wW. (1.41)

We can use the constraint in (1.41) to restrict changes in x̄(t) and ⇢(t) analogously

to the constraint in (1.21). In this way, we ensure that the observer error, in addition

to the fast state deviation, does not cause constraint violation.

Response properties in Proposition 5.6 and Theorem 1.6 hold with appropriate

notational modifications.
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1.5 Example 1: Turbocharged gasoline engine

Our first example addresses surge constraint handling in turbocharged gasoline

engines (see the schematic in Fig. 1.1). The problem description and full order RG

design for the nonlinear system will be discussed in Chapter 6. Here we consider the

design of the reduced order RG.

Turbine
Compressor

Intercooler

Wastegate
Actuator

Throttle

SI
Engine

pipb

pe Te

Tb

px Tx

Ti

pa Ta

Tc

Compressor
Bypass Valve

Cylinders

Figure 1.1: Schematic of a turbocharged gasoline engine. [45]

The engine model [45] has five states: intake manifold pressure (kPa), boost pres-

sure (kPa), exhaust manifold pressure (kPa), turbocharger speed (rpm), and waste-

gate flow (g/sec). The eigenvalues of the linearized continuous-time model are,

{�2.39,�3.16,�24.3,�161,�259},

suggesting that the dynamics can be decomposed into a second or a third order slow

subsystem and, respectively, a third or a second order fast subsystem. The model

has 2 outputs y(t): boost pressure (kPa), and compressor flow (g/sec) that to avoid

compressor surge are constrained by an a�ne inequality y(t) 2 Y where,

Y = {y : Sy  s}. (1.42)

The RG is applied to modify the throttle and wastegate command.

The linearized discrete-time model of the engine is first transformed into the form

of (1.2), where the eigenvalues of A1 are fast and the eigenvalues of A2 are slow. Note
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that for this system D = 0. We then proceed to define Ey by shrinking the constraint

set, Y :

Ey = "Y = {y : Sy  "s}, (1.43)

where " > 0 is a scalar. Therefore,

Y ⇠ Ey = {y : Sy  (1� ")s}. (1.44)

Now we define E = {x : SCx  "s}. We construct a A1-contractive set, Ex ✓ E,

with the maximum output admissible set algorithm [5], computing O1 by replacing A

with 1
�
A and Y with "Y , thus obtaining that E is a �-contractive set with contraction

parameter �.

In this section, we first use a reduced model of order ns = 3 to investigate di↵erent

choices of the set Ex, i.e., choices of ", assuming full-state measurement. We then fix

a value for " and use it to investigate di↵erent choices of ns. Then we fix " and ns,

introduce an observer and consider di↵erent choices of the observer gain L.

Figs. 1.2-1.3 show the results for the case when all states are directly measured,

ns = 3, and the parameter, ", is varied. From the results, a larger " requires a longer

convergence time of v(t) to r(t). This is due to the tightening of the constraints with

the increase in ".

We next vary the order of the reduced system ns between 1 and 4, with fixed

" = 0.05. The results are plotted in Figs. 1.4-1.5. Other than the case ns = 1, the

reduced order RGs perform comparably to the full-order RG, with similar convergence

rates to the reference command, see Fig. 1.5. Since it is of most complexity reduction

benefit to reduce ns as much as possible, ns = 2 is selected.

Table 1.1 show the number of variables that are required to represent the inequal-

ity constraints as function of ns. The first two columns on the right are the number

of variables used to describe the O1 and Ex constraint sets; they are obtained by

multiplying the number of linear inequalities used to describe each set with the di-

mension of the set plus one more to account for the fixed variable on the right hand

side of the inequality.

In the next investigation, we no longer assume full state measurement and we

introduce an observer, with sets Ẽx, Ẽy and fixed " = 0.25. The observer is based on

the Kalman filter and to test the impact of the observer gain L, we vary the covariance

matrix of the process noise. We have chosen a larger value of " to expand Ẽx and

to better accommodate observer errors. Figs. 1.6-1.7 show that the response of the
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ns `O1,2

⇥ (ns +m+ 1) + `E
x

⇥ (m+ 1)
1 3⇥ 4 + 109⇥ 3 = 339
2 401⇥ 5 + 31⇥ 3 = 2098
3 424⇥ 6 + 21⇥ 3 = 2607
4 431⇥ 7 + 3⇥ 3 = 3028
5 432⇥ 8 + 0⇥ 3 = 3208

Table 1.1: Number of required constraint variables
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Figure 1.2: Responses (solid) of a fully measured system of order 3 with varying val-
ues of " equally spaced between 0.05 and 0.25 plotted on a compressor
map and compared to a full-order response (dashed) plotted against com-
pressor line (dotted); the arrows indicate the direction of increasing "

RG is slowed for higher observer gains. This happens as a more aggressive observer

exhibits higher peaking, which the RG limits.

1.6 Example 2: Flexible beam

Our second example is motivated by applications to very flexible aircraft, such as

[53, 55]. We consider a flexible free-free beam, serving as a simplified prototype for

an aircraft wing, which can change the vertical position of the center of mass. The

change in the vertical position of the center of mass creates elastic deflections in the

beam. The objective is to maintain the tip deflection within the specified limits. The

model of the system is infinite-dimensional. We use the theory of the reduced order

RG to develop an an RG that adjusts the set-point for the vertical position of the
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Figure 1.3: Throttle responses (solid) of a fully measured system of order 3 with vary-
ing values of " equally spaced between 0.05 and 0.25 compared to a full
order response (dashed); the arrows indicate the direction of increasing "
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Figure 1.4: Responses of a system of order varying from 1 to 5 with fixed " = 0.05
plotted on a compressor map; the lowest two reduced order (dot-dashed)
compared to the next two (solid) and the full-order (dashed) responses
are plotted against the compressor line (dotted); the arrows indicate the
direction of increasing order

27



0 2 4 6 8 10 12 14 16 18 20

−1

−0.8

−0.6

−0.4

−0.2

0

order = 1−5

time (s)

et
c 

(d
eg

)

Figure 1.5: Throttle responses of a system of order varying from 1 to 5 with fixed
" = 0.05; the lowest two reduced order (dot-dashed) are compared to
the next two (solid) and the full-order (dashed); the arrows indicate the
direction of increasing order
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Figure 1.6: Responses of a system with varying observer gain with fixed " = 0.25 plot-
ted on a compressor map; the highest two reduced order (dot-dashed), the
next two (solid), and the fully measured (dashed) responses are plotted
against the compressor line (dotted); the arrows indicate the direction of
increasing gain
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Figure 1.7: Throttle responses of a system with varying observer gain with " = 0.25,
with the highest two reduced order (dot-dashed), the next two (solid),
and the fully measured (dashed); the arrows indicate the direction of
increasing gain

center of mass based on the reduced order model for just two elastic modes of the

beam.

The undamped equations of motion governing the dynamics of a free-free beam

are given by the partial di↵erential equations [52],

EI
@4y

@x4
(x, t) + ⇢

@2y

@t2
(x, t) = �u(t)�(x), (1.45)

with the boundary conditions,

@2y

@x2
(±`, t) =

@3y

@x3
(±`, t) = 0, (1.46a)

y(x, 0) =
@2y

@t2
(x, 0) = 0, (1.46b)

where EI = 8.4 · 103 Nm2, ⇢ = 9.0 kg/m, ` = 36 m.

The solution y(x, t) can be decomposed into orthonormal modes [52],

y(x, t) =
1X

i=0

wi(x)qi(t), (1.47)
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where

wi(x) =

8
<

:
cos(kix)� sin(k

i

`)
sinh(k

i

`)
cosh(kix), i odd

sin(kix)� cos(k
i

`)
cosh(k

i

`)
sinh(kix), i even

(1.48)

and ki are solutions to,

cos(2`ki) cosh(2`ki) = 1, (1.49)

in increasing order of positive i. Using orthonormality and assuming that all of the

modes are damped, the modal coordinates satisfy the following equations for all i,

q̈i(t) + 2⇣!iq̇i(t) + !2
i qi(t) = �u(t)

`Z

�`

wi(x)�(x) dx = �wi(0)u(t), (1.50)

where !2
i = EI

⇢
k4
i , and the damping ratio ⇣ = 0.01 is assumed for simplicity to be the

same for all modes. We note that due to the symmetry of the problem, wi(0) = 0 for

even i, and hence we assume that the modal coordinates for all odd modes are zero

and, furthermore, that y(t, `) = y(t,�`).
The constraint on the tip deflection is that the tip can deflect no more than 1%

of the half-length,

y(t,±`) 2 Y = {y : �0.01`  y  0.01`}, t 2 Z+. (1.51)

The equations of motion for the vertical position of the center of mass are given

by,

ż =

"
0 1

0 0

#
z +

"
0
1
2⇢`

#
u(t), (1.52)

where u(t) = Kz(t) + Qv(t) and v(t) is the set-point for the vertical position of the

center of mass prescribed by the RG. Our objective is to develop such a RG using

observed modal coordinates q1 and q3. We define,

g5(x) =
1X

i=5

� 1

!2
i

wi(x)wi(0), (1.53)

so that g5(x)u(t) is the contribution of modes higher than 5 to the steady-state
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deflection of the beam at position x(t), whenever a constant force u(t) is applied. For

the deflection of the tip, we can find a bound gb,5(`) on g5(`),

g5(`) =
1X

i=5

� 1

!2
i

wi(`)wi(0) 
1X

i=5,9,...

� 1

!2
i

w5(`)w5(0)�
1X

i=7,11,...

1

!2
i

w1(`)

=
⇢

EI

1X

i=5,9,...

� 1

k4
i

w5(`)w5(0)�
1X

i=7,11,...

1

k4
i

p
2

 ⇢

EI

1X

i=3
i odd

�w5(`)w5(0)

(ik3/2)4
�

p
2

((i+ 1)k3/2)4

=
⇢

EI

16

k4
3

1X

i=3

� 1

i4
w5(`)w5(0)�

1X

i=4
i even

1

i4

⇣
�w5(`)w5(0) +

p
2
⌘

=
16

!2
3

✓
⇡4

90
� 17

16

◆
(�w5(`)w5(0))�

1

16

✓
⇡4

90
� 1

◆⇣
�w5(`)w5(0) +

p
2
⌘�

⇡ 0.2156
1

!2
3

= gb,5(`),

where w1(`) = lim supi!1 wi(`) =
p
2.

We introduce a new constrained system with observer gain L,

˙̂⇠(t) = A⇠̂(t) + Bu(t) + L(y(t, `)� ŷr(t)), (1.54a)

ŷr(t) = q̂1(t) + q̂3(t) + gb,5(`)u(t) 2 Y ⇠ Ey, (1.54b)

where ⇠̂ = (ẑ, ˙̂z, q̂1, ˙̂q1, q̂3, ˙̂q3), with A and B satisfying (1.50) and (1.52), and ŷr(t) is

the reduced order output. For the RG development, in order to discretize (1.54), we

choose the sampling period to be twice the value of the frequency of the third mode,

i.e., T = 2⇡
!2

3

.

To complete the development of the reduced order RG, we constrain the overshoot

of the fast modes past their steady state value. Noting that the use of the bound

has reduced the contributions of the infinite number of fast states to that of one

variable, we choose the constraint set, Ex = Ey := [�0.002`, 0.002`], and bound the

overshoot of this variable by exp(� ⇣⇡p
1�⇣

)gb,5(`)�u(t). We introduce the constraint,

exp(� ⇣⇡p
1�⇣

)gb,5(`)�u(t) 2 Ex ⇠ �TEx where �T = exp(�!0
5T ) for !

0
5 = !5

p
1� ⇣2.

Therefore, if �u(t) = 0 and the bounded overshoot exp(� ⇣⇡p
1�⇣

)gb,5(`)�u(t) is con-

tained in Ex at time t, it will be contained in �TEx at time t+ T . We complete the

design by following the procedure in Section 1.4. The set E is constructed using a
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Figure 1.8: Governed (dashed) and ungoverned (solid) responses of the beam height

contractive parameter � = 0.98 in a procedure similar to the construction of Ex in

the previous example.

We perform a simulation using a much faster time constant and with initial con-

dition set at 100m, z(0) = (100, 0), controlling the position of the center of mass to

a reference of 0m. We compare the responses of both the ungoverned and governed

systems and plot the resuls in Figs. 1.8-1.9, where the RG is able to prevent the

constraint violation present in the ungoverned response.
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Figure 1.9: Two plots with di↵erent time axes; the governed (solid) and ungoverned
(dotted) responses of the tip deflection plotted along with deflection con-
straint (dashed)
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CHAPTER 2

Reference governors for decentralized systems

2.1 Introduction

Decentralized controllers arise in the control design for complex or large-scale

systems. Large-scale systems are often too large for conventional control techniques

to be e↵ectively applied and decentralized techniques are instead exploited in order

to achieve stability and other performance characteristics [56, 57, 58]. Furthermore,

in order to decrease engine wiring and weight, and achieve cooling requirements and

system reliability, e↵orts are being made to decentralize and distribute the control

system design for aircraft gas turbines, which are not large-scale in the conventional

sense [58, 59].

In this chapter, we consider disturbance-free, constrained linear systems of the

form (0.1) withW = 0, for which a possibly decentralized controller has been designed

to achieve suitable performance but which has not taken constraint-admissibility into

account.

The focus is on developing a decentralized RG scheme that builds on the results

of the previous chapter on reduced order RGs. Reduced order RGs are designed by

firstly decomposing a system into fast and slow subsystems and then developing an

RG for the slow subsystem, while guaranteeing bounds on the error dynamics that

are induced by assuming the fast state immediately converges to steady-state. Since

the fast states converge quickly, the transient error is kept small and the reduced

order RG behaves similarly to the ordinary RG. In this chapter, we pursue a related

approach for decentralized constrained control.

A decentralized RG is developed for each component subsystem and each decen-

tralized RG guarantees constraint satisfaction of the system in its entirety, as long as

all the other decentralized RGs function as expected. Specifically, in the language of

previous developments on reduced order RGs, each decentralized RG is applied to a
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system with lower fidelity than the large-scale system. Each decentralized RG then

guarantees constraint-adherence within some tightened constraint set, while bounding

the modeling error through the use of constraints on the rate of the change in refer-

ence. Following this procedure, the decentralized RGs guarantee constraint-adherence

of the entire subsystem as a whole. This approach is similar to [60] and references

therein, however we exploit invariant subsets and auxiliary constraints in bounding

the errors, including observer errors.

Thus our approach is to design sub-controllers for various components and then

design an RG for each controller. In one case, the sub-controllers are allowed to

communicate with each other over a network but with some delay in communication;

in fact, the assumptions inherent in this approach are that each subsystem has the

full information of only its own component of v(t) and that the rest of the components

of v(t) are delayed by one time-instant. In the other case presented in this paper, we

treat the situtation for systems that are large-scale and for which the sub-controller

does not have any such information.

The chapter is organized as follows. Section 2.2 introduces the theory of decentral-

ized RGs when applied to low-order systems. Section 2.3 presents an aircraft engine

example based on the model from [61]. Section 2.4 introduces the reference gover-

nor design for large scale systems and Section 2.5 presents an example of a coupled

mass-spring-damper system that illustates these developments.

2.2 Decentralized reference governors with state reconstruc-

tion

Consider a system that is composed of q subsystems, where every i-th subsystem

receives a reference input, vi(t). Generally, every subsystem is coupled to all other

subsystems through both the dynamics and the output. We begin the discussion of

decentralized RGs by considering such systems of lower order, for which it is not com-

putationally expensive to form an estimate of the total state within each subsystem.

In such a case, we further assume that the subsystems communicate over a network

and receive the reference signals of all other RGs, subject to a one time-step delay.

The full-state dynamics of such a decentralized system can be written as,

x(t+ 1) = Ax(t) + B1v1(t) + · · ·+Bqvq(t), (2.1a)

y(t) = Cx(t) +D1v1(t) + · · ·+Dqvq(t) 2 Y, (2.1b)
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where vi(t) 2 Rm
i and,

v(t) =

2

664

v1(t)
...

vq(t)

3

775 .

The decentralized RG theory exploits the use of the ordinary RGs by developing

multiple RGs for q di↵erent reference inputs. Decentralized RGs act independently of

each other, but are designed to achieve constraint satisfaction for the entire system.

2.2.1 RG development

To begin, we introduce q outputs,

yi(t) = Cix(t) +D1
i v1(t) + · · ·+Dq

i vq(t) 2 Yi, i = 1, . . . , q, (2.2)

where Yi ⇢ Rp
i are compact convex sets containing 0 such that,

yi(t) 2 Yi, i = 1, . . . , q =) y(t) 2 Y.

Every i-th output of the form (2.2) corresponds to a constrained system for which an

RG governing vi(t) must be designed.

We denote the RG corresponding to the i-th subsystem as RGi. The RGi is

designed with the assumption that all reference inputs are held constant for all future

time-instants, while the inputs that it does not govern are delayed by one time-instant.

In order to enforce constraints, the RGi utilizes x̂i(t) 2 Rn and ŷi(t) 2 Rp
i , which are

predictions of x(t) and yi(t). At time-instant t, the state predictions and constraints

on the predicted output are given by,

x̂i(t+ k + 1|t) = Ax̂i(t+ k|t) + Bivi(t+ k|t) +
X

j,j 6=i

Bjvj(t+ k|t), (2.3a)

ŷi(t+ k|t) = Cix̂i(t+ k|t) +Di
ivi(t+ k|t) +

X

j,j 6=i

Dj
i vj(t+ k|t) 2 Ŷi, (2.3b)

where Ŷi ⇢ Yi is a tightened version of Yi to be defined below. The system dynamics

(2.3) can be used to design an O1 for use in the online RGi. This set is,

Oi
1 = {(xi, v̄i, ṽ) : xi(t|t) = x, vi(t+ k|t) ⌘ v̄i, vj(t+ k|t) ⌘ ṽj, j 6= i,

(2.3) are satisfied}. (2.4)
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The RGi is designed to modify vi(t) in order to satisfy the constraint,

(xi(t), vi(t), v(t� 1)) 2 Oi
1. (2.5)

The di↵erence between the sets O1 and Oi
1 is that the latter depends on the input

v(t � 1), whose elements may not be controlled by the RGi. We subsequently show

that we can introduce constraints and assumptions on vj(t), j 6= i, such that the

inclusion in (2.5) is satisfied.

Proposition 2.1. Assume that at the initial time, (xi(0), vi(�1), v(�1)) 2 Oi
1 for

all i = 1, . . . , q. Introduce sets Ei
x 2 Rn and Ei

y 2 Rp
i, that satisfy,

AEi
x ⇢ intEi

x, (2.6a)

CiE
i
x ⇢ intEi

y. (2.6b)

Define �vi(t) = vi(t)� vi(t� 1) and introduce constraints,

Bi�vi(t) 2 �j
i (E

j
x ⇠ AEj

x), (2.7a)

Di
j�vi(t) 2 �j

i (E
j
y ⇠ CjE

j
x), (2.7b)

where 0 < �i
j  1 and

P
j,j 6=i �

i
j = 1.

Assume that x(0)� xi(0) 2 Ei
x. If every RGi enforces constraint (2.5) with Ŷi ⇢

Yi ⇠ Ei
y and constraints (2.7), then for all i = 1, . . . , q, and t 2 Z+, the constraints

yi(t) 2 Yi are satisfied and the problem is recursively feasible, i.e., a feasible v(t) exists

for all t.

Proof. For arbitrary i, fix t. For k � 1, assume x(t + k|t) � x̂i(t + k|t) 2 Ei
x. Then,

because v(t) is held constant over the prediction horizon, x(t+k+1|t)�x̂i(t+k+1|t) =
A(x(t+ k|t)� x̂i(t+ k|t)) 2 AEi

x ⇢ Ei
x.

Now assume x(t)� x̂i(t) 2 Ei
x. Then x(t+ 1|t)� x̂i(t+ 1|t) = Ax(t|t) +Bivi(t) +P

j,j 6=i B
jvj(t)�Ax̂i(t|t)�Bivi(t)�

P
j,j 6=i B

jvj(t� 1) = A(x(t+1|t)� x̂i(t+1|t)) +
P

j,j 6=i B
j�vj(t) 2 AEi

x�
P

j,j 6=i �
i
j(E

i
x ⇠ AEi

x) = AEi
x�(Ei

x ⇠ AEi
x) ⇢ Ei

x. Therefore

x(t+ k|t)� x̂i(t+ k|t) 2 Ei
x for all k 2 Z+ by recursion.

Therefore, for all k 2 Z+, ŷi(t+k|t) = Cix̂i(t+k|t)+Di
ivi(t)+

P
j,j 6=i D

j
i vj(t�1)+

Ci(x(t+k|t)� x̂i(t+k|t))+
P

j,j 6=i D
j
i�vj(t�1) 2 (Yi ⇠ Ei

y)�CiEi
x�

P
j,j 6=i �

i
j(E

i
y ⇠

CiEi
x) = (Yi ⇠ Ei

y) � CiEi
x � (Ei

y ⇠ CiEi
x) ⇢ Yi. Noting that the conventional RG

guarantees recursive feasibility, recursive feasibility is proven here as well.

The choice of i was arbitrary so, because x(0) � x̂i(0) 2 Ei
x, recursive feasibility
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guarantees that the result is true for all t 2 Z+ and i = 1, . . . , q.

2.2.2 Decentralized RGs with an observer

Suppose that, instead of assuming knowledge of the full state, we design a Lu-

enberger observer for (2.1) with gain Li, where we assume without loss of generality

that the output ŷi(t) is measured. Because the reference inputs for the j-th elements

(where j 6= i) are delayed by one time-insant, the observer state-update equation

becomes,

x̃i(t+ 1) = Ax̃i(t) + Bivi(t) +
X

j,j 6=i

Bjvj(t� 1) + Li(yi(t)� ỹi(t)), (2.8a)

and the output equation is,

ỹi(t) = Cix̃i(t) +Di
ivi(t) +

X

j,j 6=i

Dj
i vj(t� 1). (2.8b)

The delay in the reference input induces an observer error, which the RGi can limit

by reducing the rate of change in vi(t).

Proposition 2.2. Assume that at the initial time, (x̃i(0), vi(�1), v(�1)) 2 Oi
1 for

all i = 1, . . . , q. Introduce sets, Ẽi
x 2 Rn and Ẽi

y 2 Rp
i, satisfying,

AẼi
x ⇢ int Ẽi

x, (2.9a)

(A� LiCi)Ẽ
i
x ⇢ int Ẽi

x, (2.9b)

CiẼ
i
x ⇢ int Ẽi

y. (2.9c)

Introduce constraints,

Bi
j�vi(t) 2 �̃j

i (Ẽ
j
x ⇠ AẼj

x), (2.10a)

(Bi � LjD
i
j)�vi(t) 2 �̃j

i (Ẽ
j
x ⇠ (A� LjCj)Ẽ

j
x), (2.10b)

Di
j�vi(t) 2 �̃j

i (Ẽ
j
y ⇠ C̃jẼ

j
x), (2.10c)

where 0 < �̃i
j  1 and

P
j,j 6=i �̃

i
j = 1.

Assume that x(0)� x̃i(0) 2 Ẽi
x. If every RGi enforces constraint (x̃i(t), vi(t), v(t�

1)) 2 Õi
1 with Ŷi ⇢ Yi ⇠ Ẽi

y, and constraints (2.10), then for all i = 1, . . . , q and

t 2 Z+, ŷi(t) 2 Yi is satisfied and v(t) is recursively feasible.

Proof. By Proposition 2.1, we know that if x(t)� x̂i(t) 2 Ẽx, then x(t+ k|t)� x̂i(t+
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k|t) 2 Ẽi
x and ŷi(t) 2 Ẽi

y is guaranteed for all k 2 Z+. By the assumptions in the the

theorem, we set x̂i(t|t) = x̃i(t|t) at the beginning of the prediction.

Now, for arbitrary i, we fix t. For k � 1, assume x(t+k|t)�x̃i(t+k|t) 2 Ẽi
x. Then,

since v(t) is held constant on the prediction horizon, x(t+ k+1|t)� x̃i(t+ k+1|t) =
(A� LiCi)(x(t+ k|t)� x̃i(t+ k|t)) 2 (A� LiCi)Ẽi

x ⇢ Ẽi
x.

Now assume x(t)� x̃i(t) 2 Ei
x. Then x(t+ 1|t)� x̃i(t+ 1|t) = Ax(t|t) +Bivi(t) +P

j,j 6=i B
jvj(t) � Ax̃i(t|t) � Bivi(t) �

P
j,j 6=i B

jvj(t � 1) � (LiCix(t|t) + LiDi
ivi(t) +P

j,j 6=i D
j
i vj(t)�LiCix̃(t|t)�LiDi

ivi(t)�
P

j,j 6=i D
j
i vj(t�1)) = (A�LiCi)(x(t+1|t)�

x̃i(t+1|t))+
P

j,j 6=i(B
j�Dj

i )�vj(t) 2 (A�LiCi)Ẽi
x�

P
j,j 6=i �̃

i
j(Ẽ

i
x ⇠ (A�LiCi)Ẽi

x) =

AẼi
x�(Ẽi

x ⇠ (A�LiCi)Ẽi
x) ⇢ Ẽi

x. Therefore x(t+k|t)�x̃i(t+k|t) 2 Ẽi
x for all k 2 Z+

by recursion. Noting that the conventional RG guarantees recursive feasibility and

that we set xi(t|t) = x̃i(t|t) for all t 2 Z+, recursive feasibility is proven here as well.

The choice of i was arbitrary so, because x(0) � x̃i(0) 2 Ẽi
x, recursive feasibility

guarantees that the result is true for all t 2 Z+ and i = 1, . . . , q.

Remark 2.3. The design of the RGi and the relevant sets (2.9) follows procedures

similar to the ones outlined in the previous chapter. The sets can always be computed

if the corresponding A matrix is asymptotically stable and the constraint set has

a non-empty interior. Furthermore, the design of every RGi can be simplified if,

for a particular output, the pair (Ci, A) is unobservable; in such a case, because

unobservable dynamics do not a↵ect constraint adherence [12] the design of RGi can

be reduced by splitting the system into observable and unobservable dynamics and

developing an RG only for the former.

2.3 Example 1: Aircraft engine

The example considered here is of an aircraft gas turbine engine actuated with

three reference inputs, of which one corresponds to one constraint set and the rest

to another. The linearized system model is for an aircraft at ground idle and is

taken from [61]. In order to reduce the wiring, the control systems of di↵erent

engine components communicate over a network and the communication is sub-

ject to a delay. The continuous states are X(t) = (�Nf (t),�Nc(t)), the inputs

are U(t) = (�WF (t),�V SV (t),�V BV (t)), and the available model outputs are

y(t) = (�WF (t),�T48(t),�HPC(t)), where the components are detailed in Table

2.1 and � signifies their deviation from the operating point.
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Symbol Variable name Ref. value
Nf fan speed 1376 rpm
Nc core speed 8624 rpm
WF fuel flow 0.33 pps
V SV variable stator vane -51.4�

V BV variable bleed valve 1.00 frac
T48 total temp. at HP turbine outlet 1091�R

HPC HP compressor stall margin 37.5%

Table 2.1: Decentralized aircraft engine example data

The input and output variable constraints are given by,

�WF (t) 2 [�0.28, 1.97], (2.11a)

�T48(t) 2 [�150, 300], (2.11b)

�HPC(t) 2 [�10, 20], (2.11c)

where the constraints correspond to the physically restricted range of fuel flow rate

and the outlet temperature and compressor stall margin ranges that correspond to

safe engine operation.

In this section, we compare the ordinary RG to the decentralized version. As a

first step in the design, we discretize the system using a sampling period of 0.015s

and then design a controller to track a reference for the fan speed demand, which is a

reference input that is calculated from the aircraft throttle angle position via a static

function [61].

We introduce error dynamics, e(t+1) = e(t)+Nf (t)� v1(t), which represents the

accumulated fan speed tracking error. Ignoring all inputs other than �WF (t), we use

LQR techniques to design a stabilizing controller of the form,

�WF (t) = KIe(t) +KPX(t), (2.12)

so that Nf (t) tracks the reference v1(t). After computing the optimal feedback

gain, we obtain discrete-time closed-loop dynamics of the form (0.1) where x(t) =

(e(t), X(t)) and v(t) = (�Nf,des(t),�V SV (t),�V BV (t)). We split v(t) such that

v1(t) = �Nf,des(t) and v2(t) = (�V SV (t),�V BV (t)).

The decentralized controllers are used so that v1(t) enforces the constraint on

y1(t) = �WF (t) 2 Y1 = [�0.28, 1.97], while attempting to track the fan speed set-

point; v2(t) is then used to enforce the constraints on y2(t) = (�T48(t),�HPC(t)) 2
Y2 = [�150, 300]⇥[�10, 20]. The system schematic is provided in Fig. 2.1. Physically,

40



!
"
#
$
%
&
'

!"# $ 1&

!"#

$%&'()*%&&+

,-'.(/

1

"

!"#&

!"# $ 1&

#
!,#$%

!"# $ 1&

!"0

$%$, 

$&$

Δ(
&
∈ *+0.28,1.973

Δ4
'(

∈ +150,300 ,

Δ789 ∈ +10,20

#
!

$%$
#$%

, 

$&$
#$%

Figure 2.1: Decentralized aircraft engine schematic

the first RG is used to govern the desired fan speed, which is directly related to pilot

command, while the second RG governs inputs to the compressor, V SV and V BV ,

which are used to prevent compressor stall and surge, respectively.

For the sets (2.6), we choose Ei
y = 0.25Yi and Ei

x to satisfy 1
0.945

AEi
x ⇢ Ei

x and

CiEi
x ⇢ 0.9Ei

y.

The simulation results for conventional and decentralized RG are presented and

compared in Figs. 2.2-2.6 for a constant desired reference, r(t) ⌘ (600, 15,�0.8). They
show that the decentralized RGs behave similarly to the ordinary RG, with a slightly

longer response time due to the conservativeness introduced by use of decentralization.

As shown in Figs. 2.4-2.6, both versions of the RG satisfy the constraints given in

(2.11). As expected, the decentralized RG has a slightly slower convergence to the

desired set-point than the ordinary RG, which is shown in Fig. 2.2. This is due to

the constraint-tightening involved in designing the decentralized RG.

2.4 Decentralized reference governors for large-scale systems

In this section, we develop a decentralized RG for use in large-scale linear systems.

Because of the large dimensionality, it is unrealistic for every RGi to reconstruct the

full system state. We now introduce q states xi(t) 2 Rn
i , i = 1, . . . , q, where,

x(t) =

2

664

x1(t)
...

xq(t)

3

775 .
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The dynamics (2.1) become,

xi(t+ 1) = Ai1x1(t) + · · ·+ Aiqxq(t) + Bi1v1(t) + · · ·+Biqvq(t), (2.13a)

y(t) = C1x1(t) + · · ·+ Cqxq(t) +D1v1(t) + · · ·+Dqvq(t) 2 Y, (2.13b)

for i = 1, . . . , q.

2.4.1 Constraint sets

We consider the situation, in which every RGi is applied to the i-th subsystem

and the RGs do not communicate over a network. Every RGi is designed with the

assumption that the states of all the other subsystems are close to their steady-

state values. This assumption is used to help in the design of the RG but is not a

requirement during system operation.
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Given the i-th subsystem, let,

x(i)(t) =

2

66666666664

x1(t)
...

xi�1(t)

xi+1(t)
...

xq(t)

3

77777777775

, v(i)(t) =

2

66666666664

v1(t)
...

vi�1(t)

vi+1(t)
...

vq(t)

3

77777777775

. (2.14)

After rearranging in terms of the new variables, (2.13) is of the form,

xi(t+ 1) = Aiixi(t) + Ai(i)x(i)(t) + Biivi(t) + Bi(i)v(i)(t), (2.15a)

x(i)(t+ 1) = A(i)ixi(t) + A(i)(i)x(i)(t) + B(i)ivi(t) + B(i)(i)v(i)(t), (2.15b)

y(t) = Cixi(t) + C(i)x(i)(t) +Divi(t) +D(i)v(i)(t) 2 Y i. (2.15c)

where Y i ⇢ Y is introduced as a constraint partition of Y that is enforced by the RGi.

The RGi does not have a measurement or estimate of x(i)(t), so the design assumes

that x(i)(t) instantaneously achieves steady-state after every update with v(i)(t) = 0,

x(i)(t) ⇡ Â(i)ixi(t) + B̂(i)ivi(t), (2.16)

where, Â(i)i = (I � A(i)(i))�1A(i)i and B̂(i)i = (I � A(i)(i))�1B(i)i.

Assuming that Aii + Ai(i)Â(i)i are asymptotically stable and making use of the

fact, Â(i)i = A(i)i + A(i)(i)Â(i)i, B̂(i)i = B(i)i + A(i)(i)B̂(i)i, the prediction equations

governing the RGi become,

x̂i(t+ k + 1|t) = (Aii + Ai(i)Â(i)i)x̂i(t+ k|t) + (Bii + Ai(i)B̂(i)i)vi(t+ k|t), (2.17a)

x̂(i)(t+ k + 1|t) = Â(i)ix̂i(t+ k|t) + B̂(i)ivi(t+ k|t), (2.17b)

ŷi(t+ k|t) = Cix̂i(t+ k|t) + C(i)x̂(i)(t+ k|t) +Divi(t+ k|t) 2 Ŷ i, k � 1.

(2.17c)

The states, x̂i(t) and x̂(i)(t), are approximate predictions of xi(t) and x(i)(t), respec-

tively, the output ŷi(t) is an approximate prediction of y(t), and Ŷ i ⇢ Rp is a tightened

version of Y i. Note that, in the above, there are no contributions from v(i)(t + k|t),
i.e., due to the lack of information regarding the operation of other subsystems, we

assume v(i)(t+ k|t) ⌘ 0.

Because the RG for the i-th subsystem can only govern vi(t), this necessitates
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that Y be partitioned across all subsystems so the sets Y i are chosen to satisfy,

Y 1 � Y 2 � · · ·� Y q ⇢ Y. (2.18)

Therefore, if every RGi guarantees constraint satisfaction with respect to Y i by as-

suming that v(i)(t + k|t) ⌘ 0, constraint satisfaction for the whole system is also

guaranteed.

Specifically, given a state estimate for xi(t) and x(i)(t), the RGi is designed to

modify vi(t) in order to enforce the following constraint,

(xi(t), x(i)(t), vi(t)) 2 Ôi
1, (2.19)

where,

Ôi
1 = {(x̂i, x̂(i), v̄i) : x̂i(t|t) = xi, x̂(i)(t|t) = x(i), vi(t+k|t) ⌘ v̄i, (2.17) are satisfied}.

(2.20)

As in the case of the reduced order system of the previous chapter, we are able to

derive a constraint on the rate of change of vi(t) in order to help ensure the constraint

adherence of (2.15c).

Proposition 2.4. Assume that at the initial time, (xi(0), x(i)(0), vi(�1)) 2 Ôi
1. In-

troduce compact error sets, Ei ⇢ Rn
i, E(i) ⇢ Rn�n

i, and Ei
y ⇢ Rp satisfying,

AiiEi � Ai(i)E(i) ⇢ intEi, (2.21a)

A(i)iEi � A(i)(i)E(i) ⇢ intE(i), (2.21b)

CiEi � C(i)E(i) ⇢ intEi
y, (2.21c)

Ei
y ⇢ intYi. (2.21d)

Define �vi(t) = vi(t)�vi(t�1) and �x̂i(t) = x̂i(t)�x̂i(t�1) and introduce constraints,

�Ai(i)Â(i)i�x̂i(t)� Ai(i)B̂(i)i�vi(t) 2 Ei ⇠ AiiEi ⇠ Ai(i)E(i), (2.22a)

�A(i)(i)Â(i)i�x̂i(t)� A(i)(i)B̂(i)i�vi(t) 2 E(i) ⇠ A(i)iEi ⇠ A(i)(i)E(i), (2.22b)
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and for k � 1,

�Ai(i)Â(i)i�x̂i(t+ k|t) 2 Ei ⇠ AiiEi ⇠ Ai(i)E(i), (2.23a)

�A(i)(i)Â(i)i�x̂i(t+ k|t) 2 E(i) ⇠ A(i)iEi ⇠ A(i)(i)E(i), (2.23b)

�C(i)Â(i)i�x̂i(t+ k|t) 2 Ei
y ⇠ CiEi ⇠ C(i)E(i). (2.23c)

Assume that xi(0) � x̂i(0) 2 Ei, x(i)(0) � Â(i)ix̂i(�1) � B̂(i)ivi(�1) 2 E(i). Further

assume v(i)(t) ⌘ 0. If RGi enforces constraints (2.19) with Ŷ i ⇢ Y i ⇠ Ei
y and

constraints (2.22)-(2.23) by updating vi(t), t 2 Z+, according to,

vi(t) = vi(t� 1) + i(t)(ri(t)� vi(t� 1)), (2.24)

for i(t) 2 [0, 1], then y(t) 2 Y i is satisfied and vi(t) is recursively feasible.

Proof. Fix t. For k � 1, assume xi(t+k|t)�x̂i(t+k|t) 2 Ei, and x(i)(t+k|t)�Â(i)ix̂i(t+

k � 1|t)� B̂(i)ivi(t) 2 E(i). Then, because vi(t) is held constant along the prediction

horizon, xi(t+k+1|t)�x̂i(t+k+1|t) = Aii(xi(t+k|t)�x̂i(t+k|t))+Ai(i)(x(i)(t+k|t)�
Â(i)ix̂i(t+k|t)�B̂(i)ivi(t)) = Aii(xi(t+k|t)�x̂i(t+k|t))+Ai(i)(x(i)(t+k|t)�Â(i)ix̂i(t+k�
1|t)� B̂(i)ivi(t))�Ai(i)Â(i)i�x̂i(t+k|t) 2 AiiEi�Ai(i)E(i)� (Ei ⇠ AiiEi ⇠ Ai(i)E(i)) ⇢
Ei. Furthermore, x(i)(t + k + 1|t) � Â(i)ix̂i(t + k|t) � B̂(i)ivi(t) = A(i)ixi(t + k|t) +
A(i)(i)x(i)(t+k|t)+B(i)ivi(t)�(A(i)i+A(i)(i)Â(i)i)x̂i(t+k|t)�(B(i)i+A(i)(i)B̂(i)i)vi(t) =

A(i)i(xi(t+ k|t)� x̂i(t+ k|t)) +A(i)(i)(x(i)(t+ k|t)� Â(i)ix̂i(t+ k� 1|t)� B̂(i)ivi(t))�
A(i)(i)Â(i)i�x̂i(t+ k|t) 2 A(i)iEi � A(i)(i)E(i) � (E(i) ⇠ A(i)iEi ⇠ A(i)(i)E(i)) ⇢ E(i).

Now assume xi(t)� x̂i(t) 2 Ei, x(i)(t)� Â(i)ix̂i(t�1)� B̂(i)ivi(t�1) 2 E(i). Then,

xi(t + 1|t) � x̂i(t + 1|t) = Aii(xi(t) � x̂i(t)) + Ai(i)(x(i)(t) � Â(i)ix̂i(t) � B̂(i)ivi(t)) =

Aii(xi(t) � x̂i(t)) + Ai(i)(x(i)(t) � Â(i)ix̂i(t � 1) � B̂(i)ivi(t � 1)) � Ai(i)Â(i)i�x̂i(t) �
Ai(i)B̂(i)i�vi(t) 2 AiiEi�Ai(i)E(i)�(Ei ⇠ AiiEi ⇠ Ai(i)E(i)) ⇢ Ei. Also, x(i)(t+1|t)�
Â(i)ix̂i(t)� B̂(i)ivi(t) = A(i)ixi(t)+A(i)(i)x(i)(t)+B(i)ivi(t)� (A(i)i+A(i)(i)Â(i)i)x̂i(t)�
(B(i)i+A(i)(i)B̂(i)i)vi(t) = A(i)i(xi(t)�x̂i(t))+A(i)(i)(x(i)(t)�Â(i)i)x̂i(t�1)�B̂(i)i)vi(t�
1)) � A(i)(i)Â(i)i�x̂i(t) � A(i)(i)B̂(i)i�vi(t) 2 A(i)iEi � A(i)(i)E(i) � (E(i) ⇠ A(i)iEi ⇠
A(i)(i)E(i)) ⇢ E(i). Therefore xi(t+k|t)� x̂i(t+k|t) 2 Ei, and x(i)(t+k|t)� Â(i)ix̂i(t+

k � 1|t)� B̂(i)ivi(t) 2 E(i) for all t 2 Z+, by recursion.

Therefore, for all k � 1, y(t + k|t) � ŷi(t + k|t) = Ci(xi(t + k|t) � x̂i(t + k|t)) +
C(i)(x(i)(t+k|t)�x̂(i)(t+k|t)) = Ci(xi(t+k|t)�x̂i(t+k|t))+C(i)(x(i)(t+k|t)�Â(i)ixi(t+

k�1|t)+ B̂(i)ivi(t))�C(i)Â(i)i�x̂i(t) 2 CiEi�C(i)E(i)� (Ei
y ⇠ CiEi ⇠ C(i)E(i)) ⇢ Ei

y.

So y(t) � ŷi(t) 2 Ei
y for all t � 1, because y(t) � ŷi(t) = y(t|t � 1) � ŷi(t|t � 1).

Therefore, y(t) = ŷi(t) + (y(t) � ŷi(t)) 2 (Y i ⇠ Ei
y) � Ei

y ⇢ Y i. Noting that the
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RGi guarantees recursive feasibility and provided that y(0) � ŷi(0) 2 Ei
y, recursive

feasibility is proven here as well.

2.4.2 Decentralized RG design

Having developed RGs for every individual subsystem, we are now able to complete

the design of the decentralized RG scheme by showing that the interactions between

the RGs of every subsystem can together enforce constraints for the system (2.13).

Proposition 2.5. Assume that the assumptions of Proposition 2.4 have been satisfied

and RG1 through RGq have been designed as in Proposition 2.4. Then y(t) 2 Y for

all t 2 Z+ and v(t) is recursively feasible.

Proof. Note that due to the linearity of (2.13) and by the principle of superposition,

the system can be split into q parts, the i-th of which is driven by one input vi(t),

with all other inputs held at 0. Because of this, we can define matrices Ā1, . . . , Āq,

B̄1, . . . , B̄q, C̄1, . . . , C̄q, and D̄1, . . . , D̄q, as above so that the system becomes,

x̄1(t+ 1) = Ā1x̄1(t) + B̄1v1(t), (2.25)

...

x̄q(t+ 1) = Āqx̄q(t) + B̄qvq(t), (2.26)

y(t) = C̄1x̄1(t) +D1v1(t) + · · ·+ C̄qx̄q(t) +Dqvq(t) 2 Y, (2.27)

where,

x̄i(t) =

"
xi(t)

x(i)(t)

#
.

Applying Proposition 2.4, we can guarantee Cix̄i(t)+Divi(t) 2 Y i for all i = 1, . . . , q.

Because Y 1 � · · ·� Y q ⇢ Y by (2.18) and,

v(t) =

2

664

v1(t)
...

vq(t)

3

775

by definition, the conclusion follows.
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Figure 2.7: Double mass-spring-damper schematic

2.5 Example 2: Double mass-spring-damper

We illustrate the above approach by developing an decentralized RG scheme for

two interconnected subsystems that are unable to communicate with each other. We

show that, by applying the constraints above at the subsystem level, we are able to

achieve constraint enforcement for the whole system. Although the system is not

large in scale, the example is illustrative because, as we will show, component sub-

systems are able to enforce minimum and maximum separation constraints without

communicating with each other. The particular subsystems are blocks in a double

mass-spring-damper system, where each block is controlled by a force applied directly

to its center of mass. The system is modeled as a two degree-of-freedom system in

which two blocks are attached by a spring and damper to walls on each side and to

each other, as in Fig. 2.7.

The continuous-time equations of motion are given by,

m1ẍ1(t) + (c1 + c3)ẋ1(t)� c3ẋ2(t) + (k1 + k3)x1(t)� k3x2(t) = F1(t), (2.28a)

m2ẍ2(t)� c3ẋ1(t) + (c2 + c3)ẋ2(t)� k3x1(t) + (k2 + k3)x2(t) = F2(t), (2.28b)

where x1(t) and x2(t) are the positions of the two masses relative to equilibrium in

meters and F1(t) and F2(t) are the forces applied to each mass in Newtons. Note that

k3 and c3 are spring and damper constants for the middle spring and damper. We

impose the constraint on the relative distance between two masses,

y(t) = x1(t)� x2(t) 2 Y = [�0.04, 0.04], (2.29)

so that the minimum and maximum seperation between them is 4cm from the rest

configuration.

The parameter values are given as, m1 = 20, m2 = 1, c1 = c2 = 10, c3 = 0,

49



k1 = 16, k2 = 190, and k3 = 1. Let,

x(t) =

2

66664

x1(t)

ẋ1(t)

x2(t)

ẋ2(t)

3

77775
, v(t) =

"
F1(t)

F2(t)

#
,

In this case, the equations of motion become,

ẋ(t) =

"
A11 A12

A21 A22

#
x(t) +

"
B11 0

0 B22

#
v(t), (2.30)

y(t) =
h
C1 C2

i
x(t) 2 Y, (2.31)

where,

Aii =

"
0 1

� k
i

m
i

� c
i

m
i

#
, Bii =

"
0

� 1
m

i

#
, (2.32)

for i = 1, 2, and,

Aij =

"
0 0

� k
3

m
i

� c
3

m
i

#
, (2.33)

for i 6= j. Note that because the controllers are applied to the subsystems’ centers of

mass, this example is simplified by the fact that B12 = B21 = 0, which reduces the

constraints (2.22a)-(2.22b) to the form of (2.23a)-(2.23b).

We now develop the decentralized RG scheme. In order to develop our RG scheme,

we partition Y according to Proposition 2.5, choosing Y 1 = 0.8Y and Y 2 = 0.2Y .

We also choose Ei
y = 0.05Yi for i = 1, 2.

Taking advantage of the fact that Aii are asymptotically stable, the sets Ei, E(i),

are chosen by applying the disturbance invariant set algorithm from [5], which is

applied iteratively until (2.21a)-(2.21c) are satisfied. Forces of equal magnitude but

opposite direction are applied to each block and are set so that an equilbirium value

of 0.032cm is achieved.

The results are presented in Figs. 2.8-2.9, where we compare the ordinary RG,

which simultaneously governs the inputs for both masses, to the decentralized ver-

sion. The results show that the algorithm is able to enforce the constraint in a

decentralized manner. The response of the force applied to the first mass is slower

to converge to the desired forced than that of the conventional RG. On the other
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Figure 2.8: Distance between the two masses with ordinary (solid) and decentralized
(dashed) RGs plotted against constraints (dotted)

hand, the force response of the second mass converges immediately; this is because

the decentralization decouples the references and allows them to track their respective

desired values independently of each other.

51



0 5 10 15 20
−5

−4

−3

−2

−1

0

1

2

3

4

5

time (s)

fo
rc

e 
(N

)

Figure 2.9: Force applied to each mass with ordinary (solid) and decentralized
(dashed) RGs; the trajectory at the top corresponds to the force applied
to the first mass and the bottom trajectory applies to the second
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CHAPTER 3

Command governors for prioritized constraints

and reference governors for prioritized references

3.1 Introduction

In this chapter, we consider the use of RGs and CGs as applied to prioritized con-

straint enforcement and prioritized reference tracking for disturbance-free systems. In

the first case, CGs are applied to a set of “soft” constraints that have been prioritized

through a penalty on a slack variable. In the second case, we consider the application

of the RG to inputs v(t), which are modified in order of priority.

The chapter is organized as follows. Section 3.2 presents the motivation for this

problem and further outlines the contribution of the chapter. The next two sections

present the two methods under consideration along with theoretical results and a

numerical example: Section 3.3 introduces a method for prioritized constraint opti-

mization using slack variables and Section 3.4 introduces the prioritized RG.

3.2 Problem motivation

Typical formulations of the reference governor are applied to systems with hard

constraints, i.e., systems where the constraint y(t) 2 Y for all t 2 Z+ is strict. How-

ever, the case of soft constraints, where y(t) /2 Y is undesirable but permitted under

certain conditions, is also of interest. For instance, in some applications especially

in MPC, output constraints are often treated as soft to ensure the solution can be

computed even if constraint violation cannot be avoided [62]; in this situation, a con-

trol action which mitigates and reduces constraint violation is generated. In some

other cases, it is allowed to trade-o↵ constraint violation against the improvements

in tracking performance [63].
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To address this problem we will introduce an algorithmic method of relaxing con-

straints through the use of penalty functions on slack variables that weigh constraint

infringement of Y against desired reference set-points in order to achieve a balance

between tracking performance and constraint enforcement. We apply this cost func-

tion to the CG and illustrate the operation of the CG in the presence of prioritized

constraints using a mass-spring-damper example that is subject to both hard and

soft constraints in mass position. The hard constraint corresponds to a hard barrier

which the mass must not hit and the soft constraint is imposed to limit the amount

of overshoot.

As a related problem, we will also consider applying an RG to prioritized reference

inputs. In this approach, we aim to achieve vi(t) = ri(t) for higher priority individual

inputs vi(t) before that of lower priority individual inputs. The example reported

for this scheme is that of an F-16 aircraft for which the pitch attitude and flight

path angle reference reference inputs are prioritized. Two simulations are performed

corresponding to two di↵erent prioritizations: higher priority of the pitch attitude

increases the aerial maneuverability of the aircraft, while higher priority of the flight

path angle directly a↵ects how quickly it tracks a desired trajectory.

3.3 Command governors for prioritized constraint sets

In this section we apply the CG to output constraints of the following form,

y(t) 2 Y \ Y1 \ · · · \ Yq, (3.1)

where Y is a hard constraint set and Yi is a soft constraint set for 1  i  q. That is,

Yi is a set for which y(t) 2 Yi is not required as a strict inclusion but can be violated,

incurring a penalty for doing so.

The penalty is introduced by way of a modifying the set Yi. Specifically, we expand

Yi in all directions by a certain amount so that the output, y(t), is contained in this

modified set. To ease computational implementation, we assume Yi is polyhedral and

can be described as a set of ni
c linear inequalities,

Yi = {y : P iy  pi}, (3.2)

where P i 2 Rni

c

⇥n and pi 2 Rni

c . The matrix P i is designed so that every row has
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unit norm, i.e.,

||P i
j ||2 = 1, (3.3)

for all rows j. Note that if the constraints are not given in this form, then we can

redefine, pij := pij/||P i
j ||2 and P i

j := P i
j/||P i

j ||2, without altering the structure of (3.2).

For each 1  i  q, we can define an expanded constraint set, Y "
i ,

Y "
i

i = {(y, "i) : P iy  pi + "i1ni

c

} = {(y, "i) :
h
P i �1ni

c

i "y
"

#
 pi}, (3.4)

where "i � 0 is a scalar. Y "
i

i ⇢ Rp ⇥ R is the “relaxed” version of Yi because it

expands Yi by an extra dimension, where Yi ⇥ {0} ⇢ Y "
i

i and "i is the amount of

relaxation. Because of condition (3.3), the polytope constraint Y "
i

i retains the same

shape as that of Yi.

The projection of Y "
i

i onto the y-axis is an expanded set that contains Yi. In fact,

ProjRp

Y "
i

i ⇠ B"
i

= Yi. The proof of this follows from the requirement (3.3), since

ProjRp

Y "
i

i ⇠ B"
i

= {z : P i
jz  pij + "i � hP iT

j

(B"
i

), 1  j  nc} = {z : P i
jz  pij, 1 

j  nc} = Yi.

We apply the ordinary CG to the set Y "
i

i , where each "i is treated as a control

input and is constrained to be non-negative. This introduces a new input vector of

slack variables,

"(t) = ("1(t), . . . , "q(t)). (3.5)

The system (0.1) can then be modified,

x(t+ 1) = Ax(t) +
h
B 0

i "v(t)
"(t)

#
, (3.6a)

ŷ(t) =

"
C

0

#
x(t) +

"
D 0

0 I

#"
v(t)

"(t)

#
2 Ŷ , (3.6b)

where ŷ(t) = (y(t), "(t)) and,

Ŷ = {(y, ") : y 2 Y, y 2 Y "
i

i , 0  "i M, 1  i  q}, (3.7)

is a hard constraint on ŷ(t); the scalar term M is a very large number that is used to

ensure Ŷ is compact. The rest of the development of the CG as applied to prioritized
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constraints follows by noting that di↵erent sets Yi may have di↵erent degrees of “soft-

ness”, i.e., y(t) 2 Y1 may only admit a small violation, while y(t) 2 Yq, q 6= 1, being of

secondary significance, may allow much larger constraint infringement. We treat this

by weighing the elements of the input (both the reference and slack variables) in the

same way as the ordinary CG, where the number of additional set-point commands

is equal to the number of soft constraints.

This amounts to applying the CG to (3.6) and updating (v(t), "(t)) using a mod-

ified version of the optimization (0.18). Specifically, we define a modified maximal

admissible constraint set O1 for the expanded reference vector (v(t), "(t)) and con-

straint set (3.6), which is denoted by Ô1 ⇢ Rn ⇥ Rm ⇥ Rq; we then introduce a

diagonal positive penalty matrix Q" for use in solving for the reference (v(t), "(t)) via

the following optimization problem,

min kr(t)� v(t)k2Q + kQ""k1, (3.8a)

sub. to (x(t), v(t), "(t)) 2 Ô1. (3.8b)

The penalty matrix serves to prioritize the constraints because a higher weight on "i

amounts to a higher priority of the associated constraint Yi.

Note that since Ŷ is the intersection of sets defined by linear inequalities, then Ŷ ,

and hence Ô1, can also be expressed as a set of linear inequalities.

The prioritization of constraints guarantees satisfaction of the hard constraint, Y ,

so as a design consideration, any constraints whose enforcement is required should

be included in Y . The reason the penalty variables are not penalized using a 2-norm

is because doing so may cause the CG to soften constraints even in case where the

constraints are feasible [64, 65].

The approach to satisfying the constraints in a soft way is essentially a redefini-

tion of the ordinary CG scheme, so the prioritized CG scheme shares many of the

same properties with the ordinary CG; though all the properties apply to the output

of expanded dimension, ŷ(t), some properties, such as finite time convergence, are

dimension-independent, as the sequel shows in further detail.

Remark 3.1. Other schemes may be defined that exploit Ô1. For instance, one may

look for satisfying (3.8b) by progressively relaxing constraints, i.e., initially with all

"i set to zero, then with only one "i allowed to vary away from zero, and so on. The

properties of these schemes are left to future work.
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3.3.1 Theoretical results

The properties of CGs with prioritized constraints follow as an extension of the

ordinary CG theory. All of the results of the CG theory apply when considering the

dimensionally-expanded system (3.6). However, not all results apply to (0.1).

For example, a result from ordinary CG theory is convergence to the nearest

feasible reference. The relaxed form of the CG exhibits another property, namely

that if the steady-state response to the command is not inside the intersection of the

soft constraints then, although the CG converges, it may not converge to the desired

equilibrium. In order to demonstrate this, we first state the following. According to

the conventional CG theory, when there exists an rs such that for all t � ts, r(t) = rs,

then there exists a tf such that v(t) = r⇤s and "(t) = "⇤ for all t � tf , where,

(r⇤s , "
⇤) = argmin

(r,")2⌦̂
k(r � rs)k2Q + kQ""k1, (3.9)

⌦̂ =

(
(r, ") :

"
(C�+D)r

"

#
2 Ŷ

)
, (3.10)

where � = (In � A)�1B.

Similarly, in the case of prioritized constraints, if the steady state response to rs

is not within Yi for all 1  i  q, i.e., (C� + D)rs /2 Yi, then r⇤s may not coincide

with rs. We state the following proposition.

Proposition 3.2. r⇤s = rs if and only if (C�+D)rs 2 Yi for all 1  i  q.

Proof. Su�ciency. The hypothesis that (C� + D)rs 2 Yi for all 1  i  q directly

implies that (rs, 0) 2 ⌦̂ by the definition in (3.10). Since (rs, 0) is the unique, un-

constrained minimum of (3.9) and (rs, 0) is contained within constraints, then the

solution to (3.9) is (r⇤s , "
⇤) = (rs, 0).

Necessity. The assumption r⇤s = rs implies that the solution to (3.9) is (rs, "⇤).

There are two possibilites: either "⇤ > 0 or "⇤ = 0. In the former case, because the

lower bound on " is 0, (rs, (1�c)"⇤) is constraint admissible for all 0 < c < 1. Because

(C� +D)rs 2 intY , there exists r0s 6= rs such that k(r0s � rs)k2Q < c0kQ""||1 for some

0 < c0 < 1, implying that k(r0s � rs)k2Q + (1 � c0)kQ""||1 < kQ""||1. This contradicts

the optimality of (rs, "⇤) and the proof is complete.
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3.3.2 Numerical example

This example considers a mass-spring-damper with equations of motion,

"
ẋ1(t)

ẋ2(t)

#
=

"
0 1

� k
m
� c

m

#"
x1(t)

x2(t)

#
+

"
0
1
m

#
u(t), (3.11)

where the parameters are taken from [29] as, c = 0.6590N·s/m, k = 38.94N/m,

m = 1.54kg, and,

u(t) =
h
0 cd

i
x(t) + kv(t), (3.12)

and where cd = 4.0N·s/m is a stabilizing feed-back gain and v(t) is the steady-state

set point for x1(t).

The system models the electromagnetically actuated mass-spring-damper from

[29]. The control objective of the system is to bring the position of a small mass close

to another object. Specifically, the second object is placed at 9mm and the mass must

be brought to a position of 7.5mm. This leads to the introduction of two constriants.

The first constraint is that of a hard barrier imposed as x1(t)  0.009m in order to

prevent a collision. Additionally, a soft constraint of x1(t)  0.0075m is imposed to

limit overshoot. Furthermore, the control input is soft-constrained to 0  u(t)  0.3.

We proceed by discretizing the continuous-time system using a zero-order hold with

time step T = 0.01.

The modified output (3.6b) takes the following form,

ŷ(t) =

2

66664

1 0 0 0

0 cd 0 0

0 0 1 0

0 0 0 1

3

77775

2

66664

x1(t)

x2(t)

"1(t)

"2(t)

3

77775
+

2

66664

0

k

0

0

3

77775
v(t) 2 Ŷ , (3.13)

where Ŷ is the expanded constraint (3.7) set and "1(t), "2(t) are auxiliary reference

inputs measuring soft-constraint adherence corresponding to the position constraint

on x1(t) and control constraint on u(t).

The simulations results are reported for a constant reference set-point, r(t) ⌘
0.0075 with initial condition set at the origin, x(0) = 0. The three di↵erent runs
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Figure 3.1: Time history of v(t) for three di↵erent cases: Q",1 (solid), Q",2 (dotted),
and Q",3 (dashed)

consist of three di↵erent weights for the optimization (3.8), Q = 1 and,

Q",1 =

"
106 0

0 10�6

#
, Q",2 =

"
10�6 0

0 106

#
, Q",3 =

"
10�6 0

0 10�6

#
.

The results are presented in Figs. 3.1-3.5 and show that prioritizing constraint ad-

herence against set-point tracking can be used to manage overshoot of the output.

Note that simulations using the ordinary CG, which has been designed under the

assumption that all constraints are hard, are very similar to the case of Q",1 and thus

have not been plotted. The similarity is explained by the fact that the constraint on

the position is more stringent than the constraint on the control input.

Fig. 3.1 shows the three responses of the reference input v(t). Fig. 3.2 shows

the three responses of x1(t) with the soft and hard constraints plotted. None of

the trajectories violate the hard constraint and we see that, as the weight on "1(t)

increases, the amount of overshoot in the corresponding response is lessened. Fig. 3.3

shows the three responses of the control input u(t). Figs. 3.4-3.5 show the slack

variable responses and that lower weights correspond to higher amounts of slack.

59



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

1

2

3

4

5

6

7

8

9

x 10−3

ac
tu

al
 p

os
iti

on
 (m

)

time (s)

Figure 3.2: Time history of x1(t) for three di↵erent cases: Q",1 (solid), Q",2 (dotted),
and Q",3 (dashed); the constraints are dot-dashed
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Figure 3.3: Time history of u(t) for three di↵erent cases: Q",1 (solid), Q",2 (dotted),
and Q",3 (dashed); the constraint is dot-dashed
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3.4 Reference governors for prioritized references

Prioritized RGs (PRGs) operate by modifying a set of desired set-points in order

of priority. With this approach, the higher priority commands are modified as little

as possible and the closest feasible set-points are achieved for the highest priority

commands.

In order to accomplish this, we order the elements of the vector, v(t), in order of

priority, such that i < j implies that vi(t) has higher priority than vj(t). We then

introduce prioritized constraint sets, which are slices of ⇧(x(t)) that depend on the

desired reference r(t),

⇧i(x, r) = {v 2 ⇧(x) : vi�1 = ri�1, . . . , v1 = r1}. (3.14)

In this way ⇧i(x, r) is the set of feasible set-points for x when we set the first i � 1

set-points to their desired values. From the above definition, it follows that ⇧1(x, r) =

⇧(x) and ⇧i(x, r) � ⇧i+1(x, r) for all 1  i < m. Note that the recoverable domain

of initial states consists of all x(0) for which ⇧(x(0)) is non-empty.

The prioritization scheme is developed by defining a diagonal matrix,

K(t) =

2

664

1(t)
. . .

m(t)

3

775 , (3.15)

with the requirement that i(t) 2 [0, 1] for all 1  i  m. Subsequently, we implement

the vector RG update policy from [13, 45], which is similar to the ordinary reference

governor,

v(t) = v(t� 1) +K(t)(r(t)� v(t� 1)). (3.16)

The PRG online solution algorithm is di↵erent from that of the vector RG. It

proceeds by finding the first set, ⇧i(x(t)), such that there exists a feasible solution for

i(t) and i(t) = 1 is infeasible. Thus we choose the largest i such that ⇧i(x(t), r(t))

is nonempty and set 1(t) = · · · = i�1(t) = 1 to solve the following optimization

problem,

i(t) = argmax
(

i

,...,
m

(t))

i 2 [0, 1], (3.17a)

sub. to v(t� 1) +K(t)(r(t)� v(t� 1)) 2 ⇧i(x(t), r(t)), (3.17b)
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The solution to (3.17) may not be unique. In order to ensure the uniqueness of

i(t), and therefore vi(t), we may solve the optimization once again for i+1(t) using

the new value of i(t) and the new constraint set ⇧i+1(x(t), r(t)), repeating this until

we obtain a unique solution to (3.17). The need for this sequential optimization of

references can arise when direct constraints on the reference are present; e.g., suppose

y(t) = v(t) 2 Y , where Y = [�0.5, 0.5]m, v(t � 1) = 0, and r(t) = (1, 1). Then any

v(t) = (0.5, vcet), where vcet 2 [0, 0.5]m�1 solves (3.17). In such a case, sequentially

optimizing in the manner described above obtains a unique solution.

To summarize, we present the PRG in algorithmic form in Algorithm 1. The

algorithm guarantees 1,...,i(t) = 1 for the largest possible 1  i  m, while the PRG

satisfies imposed constraints with the rest of the available m� i command inputs.

Algorithm 1: PRG algorithm

input : x(t), r(t), v(t� 1)
output: v(t)

i 1;
solutionNotFound  true;
while solutionNotFound and i  m do

while ⇧i(x(t), r(t)) 6= ; do
i(t) 1;
vi(t) = ri(t);
i i+ 1;

Solve (3.17) for (i(t), . . . ,m(t));
vi(t) = vi(t� 1) + i(t)(ri(t)� vi(t� 1));
i i+ 1;
if (i+1(t), . . . ,m(t)) are unique then solutionNotFound  false;
;

while i  m do
vi(t) = vi(t� 1) + i(t)(r(t)� v(t� 1));
i i+ 1;

v(t) = v(t� 1) +K(t)(r(t)� v(t� 1);

3.4.1 Theoretical results

Under the condition that there exists an initial solution for v(0), i.e., ⇧(x(0)) 6= ;,
the PRG, like the RG, guarantees constraint admissibility for all future time. We

summarize this in the following proposition.

Proposition 3.3. If ⇧(x(0)) 6= ; then there exists a sequence of admissible references
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v(t) computed via Algorithm 1, such that y(t) 2 Y for all t 2 Z+.

Proof. Assume that for t � 0, y(t+ 1) 2 Y and v(t) 2 ⇧(x(t+ 1)). Then for some i,

v(t+ 1) 2 ⇧i(x(t+ 1)) ⇢ ⇧(x(t+ 1)), which implies that (x(t+ 1), v(t+ 1)) 2 O1.

By assumption, there exists a v(0) 2 ⇧(x(0)). This implies that (x(0), v(0)) 2 O1

and (x(1), v(0)) 2 O1, implying that y(1) 2 Y and v(0) 2 ⇧(x(1)).
The proof follows by induction. By the definition of ⇧(x(t)), since there always

exists an i such that v(t) 2 ⇧i(x(t)) ⇢ ⇧(x(t)), then (x(t), v(t)) 2 O1.

3.4.2 Numerical example

We apply the PRG to a linear model of an F-16 aircraft. The linear equations of

motion are taken from [66],

ẋ(t) = Ax(t) + Bu(t), (3.18a)

u(t) = �KCx(t) +Gv(t), (3.18b)

y(t) = Hx(t), (3.18c)

where the state, x(t) = (�(t), q(t),↵(t), �e(t), �f (t)), consists of the flight path angle,

pitch rate, angle of attack, elevator deflection, and flaperon deflection, respectively;

the controls in u(t) = (�ec(t), �fc(t)) are commanded elevator and flaperon deflections;

the output is y(t) = (✓(t), �(t)), where ✓(t) = �(t) + ↵(t) is the pitch attitude; the

reference input is v(t) = (✓c(t), �c(t)), where ✓c(t) is the commanded pitch attitude
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and �c(t) is the commanded flight path angle. The system matrices are given by,

A =

2

6666664

0 0.0067 1.3410 0.1689 0.2518

0 �0.8693 43.2230 �17.2510 �1.5766
0 0.9933 �1.3410 �0.1689 �0.2518
0 0 0 �20 0

0 0 0 0 �20

3

7777775
,

K =

"
�0.931 �0.149 �3.25 �0.153 0.747

0.954 0.210 6.10 0.537 �1.04

#
,

C =

2

6666664

0 1 0 0 0

0 �0.268 47.76 �4.56 4.45

1 0 0 0 0

0 0 0 1 0

0 0 0 0 1

3

7777775
,

B =

2

6666664

0 0

0 0

0 0

20 0

0 20

3

7777775
, G =

"
�2.88 �0.367
2.02 4.08

#
, H =

"
1 0 1 0 0

1 0 0 0 0

#
.

The system is subject to constraints on the elevator and flaperon deflections where,

in degrees,

�25  �e  25, (3.19a)

�20  �f  20. (3.19b)

If the controller signals violate these limits, the closed-loop system can easily become

unstable as the open-loop system is unstable and the inputs will saturate. Since the

closed-loop system is stable, the RG may be used in order to enforce these constraints.

We discretize the system using a zero-order hold with time-step T = 0.01. We

perform two simulations starting from a zero initial condition x(0) = 0, with the

desired reference values set constant at (✓c(t), �c(t)) ⌘ (11�, 13.65�). The simulations

are performed corresponding to two di↵erent prioritizations.

The first simulation is done by ordering the vector r(t) = (✓c(t), �c(t)) so that the

pitch attitude is given higher priority than flight path angle. The second simulation

is done vice versa, with r(t) = (�c(t), ✓c(t)). The results are presented in Figs. 3.6-3.8
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Figure 3.6: Top: First order of priority; Middle: Second order of priority; Bottom:
Ordinary RG; the responses are ✓c(t) (dashed) and �c(t) (dotted)

along with a plot of the ordinary RG response.

The e↵ect of prioritization is seen in Fig. 3.6. The figure first shows that, when

�c(t) is prioritized, the initial value for �c(t) is slightly higher than for the second

prioritization. The same is true for ✓c(t) with the second prioritization. Fig. 3.6 also

suggests that both references converge faster when ✓c(t) is prioritized, with only a

modest reduction in the initial value of �c(t). The response of the ordinary RG is

between that of the other two subplots, since the ordinary RG gives equal priority to

both inputs.

Figs. 3.7-3.8 show the responses of �e(t) and �f (t) with respect to the two prior-

itizations. It is shown that the RG keeps the elevator and flaperon responses within

system constraints; the results also show that only the flaperon constraint becomes

active for both orders of priority, with slightly faster convergence rate when ✓c(t) is

prioritized.
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Figure 3.7: Responses of �e(t) corresponding to the first (dashed) and second (dotted)
orders of priority plotted against the ordinary RG (solid) and constraints
(dot-dashed)
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Figure 3.8: Responses of �f (t) corresponding to the first (dashed) and second (dotted)
orders of priority plotted against the ordinary RG (solid) and constraints
(dot-dashed)
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CHAPTER 4

Reference governors for linear systems subject to

nonlinear constraints

4.1 Introduction

In this chapter, we consider the case where the system dynamics are linear but

the output constraints are specified by requiring that a set of nonlinear functional

inequalities be satisfied.

To motivate the consideration of this problem, we note that control constraints

may impede e↵ective implementation of controllers based on feedback linearization,

where nonlinear dynamics are rendered linear by a coordinate transformation and an

appropriately defined feedback law [67]. After the transformation of the dynamics into

linear form, the control input becomes a function of the state, and control constraints

may become nonlinear state constraints.

The main developments relate to computing the parameter (t) 2 [0, 1] in (0.11a).

We show that, in the case of convex constraints, a typical situation is when the

constraint-admissible values of (t) form a proper interval [0,max(t)] ⇢ [0, 1]. The

value of max(t) can then be computed using bisections or other root finding pro-

cedures. In the case when the constraints are convex and quadratic, max can be

computed by solving simple quadratic equations. A similar approach of character-

izing the constraint-admissible values of (t) and showing that they form a proper

interval is then applied in the case of mixed logical-dynamic (MLD) constraints of

if-then type. Finally, concave nonlinear constraints are considered by approximating

them with dynamically reconfigurable linear constraints.

Furthermore, we consider two applications. An application to a spacecraft ren-

dezvous and proximity maneuvering problem is considered first, in which the model

for the relative spacecraft motion in this problem is linear, and the constraints on
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thrust magnitude, line-of-sight (LOS) cone positioning, and velocity of approach are

of quadratic and of if-then type. The RG algorithm developed based on the results

in this paper is shown to successfully guide the rendezvous maneuver for docking

with another spacecraft moving around the Earth in a circular orbit. Then an appli-

cation to an electromagnetically actuated mass-spring-damper system is considered.

The constraint on the maximum force applied by the electromagnet is shown to be

concave and is handled using approximations with dynamically reconfigurable linear

constraints.

This chapter is organized as follows. Section 4.2 considers various cases of nonlin-

ear constraints. Section 4.3 presents the spacecraft rendezvous example. Section 4.4

presents the mass-spring-damper example.

4.2 Reference governors for nonlinear constraints

We consider an application of RGs to disturbance-free, i.e., W = 0, linear systems

(0.1) where we relax the specification that Y be polyhedral. Specifically, we consider

the case when Y is specified by nonlinear functional inequalities,

Y = {y : hi(y)  0, i = 1, . . . , r}, (4.1)

where hi are continuous functions. We note that the existing theoretical results in

[15, 7] for treating the constrained problem for system (0.1) with constraints (4.1)

apply as long as Y is compact, convex, and 0 2 intY . Hence we focus on the

computational treatment of di↵erent classes of nonlinear constraints.

When Y is not polyhedral, it can be approximated by a polyhedron; however

such approximations may not be easy to obtain or accurate, especially when Y has

multiple dimensions, and it can lead to many linear inequalities and significant on-

line computational e↵ort. Our approach is to use the linear model (0.1) to predict

the output response but treat the nonlinear functions hi(y) directly and without

modification, thereby avoiding the need for approximation by polyhedral constraints.

Results in [2] apply to the case of linear systems with nonlinear constraints and

can be used to guarantee finite time convergence of v(t) to r(t) for several classes

of r(t). This is a desirable property indicating that after transients caused by large

changes in r(t), the RG becomes inactive and nominal closed-loop system perfor-

mance is recovered. In this chapter, we therefore focus on issues pertinent to the RG

implementation for several di↵erent classes of nonlinear constraints.
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4.2.1 Output prediction

The state and output response of (0.1) at the time instant t + k can be easily

predicted, given the state x(t) at time instant t, and assuming a constant v(t+ k) =

v(t) for k � 0. We define,

 k
x=CAk,

 k
v=(C � k

x)�+D,

where � = (In �A)�1B is defined as in the introduction. Then the predicted output

k steps ahead of the current time instant t can be expressed using the state transition

formula for linear discrete-time systems as,

y(t+ k|t) =  k
xx(t) + 

k
vv(t). (4.2)

With (0.2), it follows that,

y(t+ k|t) =  k
xx(t) + 

k
v (v(t� 1) + (t)(r(t)� v(t� 1))) ,

=  k
xx(t) + 

k
vv(t� 1) + (t) k

v(r(t)� v(t� 1)). (4.3)

4.2.2 Convex constraints

Suppose that hi, i = 1, . . . , r, in (4.1) are convex functions satisfying,

hi(↵y1 + (1� ↵)y2)  ↵hi(y1) + (1� ↵)hi(y2),

8i = 1, . . . , r, 8y1, y2 2 Rp, 0  ↵  1. (4.4)

Consider now the values of (t) in (4.3) such that hi(y(t + k|t))  0. By convexity

of hi and linearity of y(t + k|t) in (t), it follows that hi(y(t + k|t)) with y(t + k|t)
given by (4.3) is a convex function of (t) 2 [0, 1]. This in turn shows that the set of

allowed values for (t) is either empty or is a connected interval. In what follows, let

the set be denoted by

Kk
i = [k

i,min,
k
i,max] ⇢ [0, 1]. (4.5)

By intersecting the intervalsKk
i for all k = 0, . . . , t⇤, and i = 1, . . . , r, we obtain an

admissible interval for the values of (t), which is denoted byK(t) = [min(t),max(t)].

Here t⇤ is the length of time which guarantees that if the constraints are satisfied for

t  t⇤, then the constraints will be satisfied for all future t. See [12, 2] for details.
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The RG guarantees that the output response with v(t + k) = v(t) satisfies the

imposed constraints, and hence it guarantees the recursive feasibility of (t) = 0 ,

i.e., if v(�1) can be chosen for the given x(0), so that (0) = 0 at the time instant

0, then there exist a feasible choice for (t), namely (t) = 0 for t � 0. This leads to

the following result.

Proposition 4.1. If hi, i = 1, . . . , r, are convex and (0) = 0 is feasible at the

initial time 0, then an admissible interval for the values of (t) is of the form K(t) =

[0,
max

(t)], and the RG sets (t) = 
max

(t), where 0  
max

(t)  1.

Proposition 4.1 leads to an easily implementable Algorithm 2 to determine (t).

The algorithm performs a bisection search whenever the value of (t) under consid-

eration does not satisfy the constraints. The “tol” variable is a small tolerance that

is used to facilitate the bisection search. Typically, only a few bisections need to be

performed. Re-ordering the r ⇥ t⇤ constraints to firstly evaluate the ones active at

the previous time instant can practically speed up the computations.

Algorithm 2: RG algorithm for convex constraints

input : x(t), r(t), v(t� 1), tol
output: v(t)

↵ 1;
for i 1 to r do

for k  0 to t⇤ do
if hi( k

xx(t) + 
k
vv(t� 1) + ↵ k

v(r(t)� v(t� 1))) > 0 then
↵+  ↵;
↵�  0;
while ↵+ � ↵� > tol do

↵m = ↵++↵�

2
;

if hi( k
xx(t) + 

k
vv(t� 1) + ↵m k

v(r(t)� v(t� 1))) > 0 then
↵+ = ↵m;
;
else ↵� = ↵m;
;

↵ = ↵�;

v(t) = v(t� 1) + ↵(r(t)� v(t� 1);
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4.2.3 Quadratic constraints

Further simplifications in calculating Kk
i occur if hi are convex, quadratic con-

straints of the form,

yTQ̃y + S̃y + C̃  0, (4.6)

where Q̃ = Q̃T ⌫ 0. Note that we focus on the case where Q̃ 6= 0, because the case

where Q̃ = 0 reduces to the ordinary RG.

When constraints are of the form in (4.6), the algorithm for determining Kk
i

reduces to a simple and explicit formula which is derived from the solution of the

quadratic equation.

Suppressing the use of the independent variable t, along with sub- and super-

scripts, k and i, we define,

Q̄k=

"
 kT

x Q̃ k
x  kT

x Q̃ k
v

 kT
v Q̃ k

x  kT
v Q̃ k

v

#
,

S̄k=
h
S̃ k

x S̃ k
v

i
.

In determining feasible values of  = (t), i.e., the interval K = K(t), we set the

left hand side of (4.6) to zero,

yTQ̃y + S̃y + C̃ = 0, (4.7)

which becomes,

h
xT vT + (r � v)T

i
Q̄k

"
x

v + (r � v)

#
+ S̄k

"
x

v + (r � v)

#
+ C̃ = 0. (4.8)

Expanding and collecting, this results in a quadratic equation in . Specifically,

define,

q̃k=
h
0 (r � v)T

i
Q̄k

"
0

r � v

#
,

s̃k=
⇣
2
h
xT vT

i
Q̄k + S̄k

⌘"
0

r � v

#
,

c̃k=
h
xT vT

i
Q̄k

"
x

v

#
+ S̄k

"
x

v

#
+ C̃,
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we obtain the quadratic equations,

2q̃k + s̃k + c̃k = 0. (4.9)

If q̃k 6= 0, the solution to (4.9) is,

K =

"
�
p

s̃2k � 4q̃kc̃k � s̃k
2q̃k

,

p
s̃2k � 4q̃kc̃k � s̃k

2q̃k

#
\

[0, 1], (4.10)

and otherwise, if s̃k 6= 0, the solution is,

K =

✓
�1,� c̃k

s̃k

�\
[0, 1] or


� c̃k
s̃k
,1

◆\
[0, 1]. (4.11)

Otherwise, K = ; or [0, 1].

4.2.4 Mixed logical-dynamic constraints

We now consider a set of constraints of if-then type,

gi(y) > 0! hi(y)  0, i = 1, . . . , r, (4.12)

where gi and hi are convex functions. Consistently with [68], we refer to the constraint

(4.12) as an MLD constraint, since this constraint depends on the output variables

that change dynamically.

The treatment of (4.12) relies on the observation that the set of (t) 2 [0, 1] for

which gi(y(t + k|t))  0 where y(t + k|t) is given by (4.3) is an interval K̂k
i ✓ [0, 1],

which may be possibly empty, and the set of (t) 2 [0, 1] for which hi(y(t+ k|t))  0

is another interval Kk
i ✓ [0, 1], which may also be possibly empty. Then the set of

(t) for which (4.12) is satisfied with y = y(t+ k|t) given by (4.3) is also an interval,

K̃k
i = [k

i,min,
k
i,max],

K̃k
i = [0, 1] \

⇣
K̂k

i [
⇣
(K̂k

i )
C \Kk

i

⌘⌘
= [0, 1] \ K̂k

i \Kk
i , (4.13)

where (K̂k
i )

C is the complement of K̂k
i . Assuming that the recursive feasibility of

(t) = 0 is preserved by the RG, it follows that k
i,min = 0,

(t) = min
k=0,...,t⇤,i=1,...,r

k
i,max. (4.14)
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The confinement of the values of (t) to a single connected interval considerably

simplifies computations and, while it is of interest to handle other classes of MLD

constraints, this appears to be a special property of if-then constraints and and -type

constraints. For instance, handling or -type constraints, that can be quite useful in

non-convex obstacle avoidance problems, appears to be significantly more involved.

Remark 4.2. The ability to treat if-then constraints significantly enlarges the class

of nonlinear constraints that can handled. For instance, nonlinear constraints approx-

imated by piecewise a�ne or piecewise quadratic functions can be treated following

this approach.

4.2.5 Concave constraints

Suppose that the constraint set Y is of the form (4.1), where hi are concave

functions. In this case, we approximate the constraints y(t + k|t) 2 Y by the a�ne,

and therefore convex, constraints,

y(t+ k|t) 2 Yc(t), (4.15)

where,

Yc(t) = {y : hi(yi,⇤(t)) + h0
i(yi,⇤(t))(y � yi,⇤(t))  0}, i = 1, . . . , r. (4.16)

Note that yi,⇤(t) can depend on t or x(t) so that the linear constraints in (4.16) are

dynamically reconfigurable online. Since hi are concave functions, it follows that if

y(t + k|t) 2 Yc(t) then y(t + k|t) 2 Y so Yc(t) ⇢ Y . Compared to the previous

development, in addition to computing (t), we now also need to compute yi,⇤(t). We

now note that this approach guarantees the recursive feasibility; however, while the

constraints can be satisfied using the RG, the conditions guaranteeing the convergence

of v(t) to r(t) to a constant r(t) appear to be considerably more involved.

Proposition 4.3. If yi⇤(0), i = 1, . . . , r exist such that (0) = 0 is feasible, then

(t) = 0 and yi,⇤(t) = yi,⇤(t� 1) are feasible for t > 0.

Numerical examples are now presented that illustrate the above approaches to the

handling of constraints.
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4.3 Example 1: Satellite rendezvous and proximity maneu-

vering

We use an example of spacecraft rendezvous and proximity maneuvering to illus-

trate the RG capability to handle nonlinear convex quadratic constraints and con-

straints of MLD type. While the constraints are nonlinear, the use of a linear model

to represent the spacecraft relative motion dynamics at small relative distance and

velocity is standard [69]. References [70, 71, 72] reported applications of MPC to

spacecraft rendezvous and docking problems. In [71], various approximations had to

be employed to deal with the same constraints as in this paper, while using compu-

tationally e↵ective linear quadratic MPC solutions. The need to make these approx-

imations is avoided altogether with the RG, while the nominal unconstrained control

strategy need not be replaced by a new controller.

4.3.1 Problem formulation

Let there be two spacecraft, a Chief and a Deputy. The Deputy performs a ren-

dezvous with the Chief, while the Chief orbits around the Earth along a circular orbit.

In this problem, we attach the non-inertial Hill frame to the Chief, in which the 1-2-3

axes point respectively in the radial direction away from earth, the along-track direc-

tion towards the Chief’s motion, and in the cross-track direction towards the Chief’s

angular momentum. Linearizing and neglecting perturbation e↵ects during the short

maneuver time period, the discrete Hill-Clohessy-Wiltshire (HCW) equations,

x(t+ 1) = AHCWx(t) + BHCWu(t), (4.17)

describe the motion of the Deputy in the Hill frame [73], where,

x(t) =

2

6666666664

x1

x2

x3

ẋ1

ẋ2

ẋ3

3

7777777775

,
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is the state vector of the Deputy’s positions and velocities in the 3 axes, and,

u(t) =

2

64
F1

F2

F3

3

75 ,

is the vector of thrust forces with entries corresponding to the axes. The AHCW and

BHCW matrices of the discrete version of the HCW equations for the sampling period

h are,

AHCW =

2

6666666664

4� 3 cos!h 0 0 1
!
sin!h 2

!
(1� cos!h) 0

6(sin!h� !h) 1 0 � 2
!
(1� cos!h) 4

!
sin!h� 3h 0

0 0 cos!h 0 0 1
!
sin!h

3! sin!h 0 0 cos!h 2 sin!h 0

6!(cos!h� 1) 0 0 �2 sin!h 4 cos!h� 3 0

0 0 �! sin!h 0 0 cos!h

3

7777777775

BHCW =

2

6666666664

1
m!2

(1� cos!h) 2
m!2

(!h� sin!h) 0

� 2
m!2

(!h� sin!h) 4
m!2

(1� cos!h)� 3h2

2m
0

0 0 1
m!2

(1� cos!h)
1

m!
sin!h 2

m!
(1� cos!h) 0

� 2
m!

(1� cos!h) 4
m!

sin!h� 3h 0

0 0 1
m!

sin!h

3

7777777775

,

where ! =
p

µ/rO, and µ and rO are the Earth’s gravitational constant and the

radius of the Chief’s orbit, respectively, and m is the mass of the Deputy. The first

three states are the positions of the Deputy in the x-y-z-axes of the Hill frame, the

last three are the velocities, and the three inputs are the forces in the three directions.

We first design a feedback linear-quadratic regulator (LQR) control gain KHCW,

to control the Deputy in the Hill frame. For our solution, we choose our Q and R

cost matrices to be Q = diag(100, 1, 100, 0, 0, 0) and R = I, penalizing the 1- and

3-directions more than the 2-direction, in which the Deputy approaches the Chief’s

dock. We further introduce a feedforward gain GHCW, so that v(t) 2 R3 becomes the

reference position of the Deputy, with u(t) = GHCWv(t). The closed loop dynamics

are,

x(t+ 1) = (AHCW +BKHCW)x(t) + BHCWGHCWv(t) = Âx(t) + B̂v(t). (4.18)
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Furthermore, we define the C and D matrices such that the output consists of all

the states and reference inputs,

y(t) = Cx(t) +Dv(t) =

"
I

0

#
x(t) +

"
0

I

#
v(t). (4.19)

We use the theory developed in this chapter to satisfy constraints related to the

problem. The first is the LOS constraint or the requirement that the Deputy stay

within a half-cone in the along-track direction so that the Chief can visually detect

it. This is described as a half-cone with its center 1m behind the docking point, with

a 15� half-angle. In convex quadratic form, this is written,

h1(y) = x2
1 + x2

3 � tan2 15�(x2 + 1)2,

= x2
1 � (7� 4

p
3)x2

2 + x2
3 � 2(7� 4

p
3)x2 � (7� 4

p
3)  0. (4.20)

The second constraint is that the Deputy always stay in front of the docking point

in the along-track direction,

h2(y) = �x2  0. (4.21)

The third constraint is that of thrust limitation; the maximum force allowed is

4N,

h3(y) = uTu� 42, (4.22)

= (KHCWx+GHCWv)T(KHCWx+GHCWv)� 42, (4.23)

=
h
xT vT

i "KT
HCWKHCW KT

HCWGHCW

GT
HCWKHCW GT

HCWGHCW

#"
x

v

#
� 42  0. (4.24)

We assume that the spacecraft is reoriented instantaneously to provide the thrust

vector. The thrust magnitude is realized through the modulation of thruster on/o↵

times [74].

The final constraint is MLD of if-then type. If the spacecraft approaches to within

1m of the dock in the along-track direction, then its speed must be less than 0.1m/s.

g4(y) = �x2 + 1 > 0! h4(y) = ẋ2
1 + ẋ2

2 + ẋ2
3 � 0.12  0. (4.25)
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Figure 4.1: Trajectories (dotted) of the Deputy in the 1-2 and 2-3 planes of the Hill
frame, respectively, with constraint boundaries (solid) and docking point
(⇥)

4.3.2 Simulation results

Using a sampling period of h = 0.1s, the constraint-admissible initial conditions

for the Deputy are chosen to be, in meters and seconds,

x(0) =

2

6666666664

100

1000

200

0

0

0

3

7777777775

, (4.26)

implying that,

u(0) =

2

64
100

1000

200

3

75 . (4.27)

We set a constant reference r(t) ⌘ 0.

The resulting trajectory is shown in Fig. 4.1, showing the Deputy staying within

the LOS-cone as it approaches the Chief. Fig. 4.2 shows the trajectory close up,

with the additional constraint that the Deputy stay in the positive half-plane in the
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Figure 4.2: Close-up views of the trajectories (dotted) of the Deputy in the 1-2 and 2-
3 planes of the Hill frame, respectively, with constraint boundaries (solid)
and docking point (⇥)
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Figure 4.3: Thrust force (dotted) plotted against the thrust constraint (solid)
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Figure 4.4: Along-track position (dot-dashed) and the relative velocity (dotted) in
the Hill frame plotted with soft-docking constraint boundaries (solid)

along-track direction. As it comes close to the Chief, the Deputy moves to the side

in order to stay within the LOS-cone and to perpendicularly dock with the Chief.

The other two constraints are also satisfied, as shown in Figs. 4.3 and 4.4. In

Fig. 4.3, the thrust force magnitude never exceeds 4N and in Fig. 4.4, when the along-

track position is less than 1m (after the 189.4s mark), the Deputy is guaranteed to

have a relative velocity of at most 0.1m/s.

4.4 Example 2: Electromagentically actuated mass-spring-

damper system

In this section, we apply the RG to the same electromagnetically actuated mass-

spring damper system as considered in Section 3.4. This example was also considered

in [75] and a nonlinear RG was applied to this example in [2]. Here we demonstrate an

alternative treatment of this example using the linear system model and a nonlinear

constraint model.
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4.4.1 Problem formulation

In continuous-time, the nonlinear system dynamics are given by,

"
ẋ1

ẋ2

#
=

"
0 1

�k/m �c/m

#"
x1

x2

#
+

"
0

1/m

#
u, (4.28)

u =
↵iµ

(d0 � x1)�
, (4.29)

where x1, x2, and i are the position and velocity of the mass and the applied current,

respectively. The rest are parameters with values as in [2]. As in Section 3.4, we

choose feedback and feedforward gains, K =
h
0� cd

i
and G = k, where cd = 4.0, so

that the system is in the form (4.18) and u = kv � cdx2. We delay the choice of the

C and D matrices until formulating the constraints.

The first constraint is that the position of the mass not be too close to the actuator,

h1(y) = x1 � 0.008  0. (4.30)

The other two constraints are related to actuator limitations,

0  u  ↵iµmax

(d0 � x1)�
, (4.31)

where imax is the maximum current available in the electromagnet. The left-hand side

of the constraint is a simple linear constraint,

h2(y) = �u = cdx2 � kv  0. (4.32)

The right-hand side of (4.31) is nonlinear in x1. To handle this nonlinear constraint,

we linearize the constraint about (x̄1, ū) at which the constraint is active so that,

0 � (u� ū)� ↵�iµmax

(d0 � x̄1)�+1
(x1� x̄1) = u� ↵iµmax

(d0 � x̄1)�
� ↵�iµmax

(d0 � x̄1)�+1
(x1� x̄1). (4.33)

This approach is visualized in Fig. 4.5 and satisfies the requirement for Proposition

4.3 to apply. To deal with this constraint, we define two new variables,

⇠0=
↵iµmax

(d0 � x̄1)�
, ⇠1=

↵�iµmax

(d0 � x̄1)�+1
. (4.34)

If these variables, along with x̄1, are treated as constant state variables, then this
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Figure 4.5: The upper limit on the control u(t), with the nonlinear limit (dashed)
and the linearized limit (solid) about the equilibrium x̄1 = 0.006m

creates a constraint that is linear with respect to the non-constant states,

h3(y) = �x1⇠1 + x̄1⇠1 � cdx2 � ⇠0 + kv. (4.35)

4.4.2 Simulation results

Following the example in [2], we choose initial conditions, x1(0) = 0 and x2(0) =

0.012 and a time-step of 0.01s. We then run two simulations, with imax = 0.5342 and

with imax = 0.365. The former limit corresponds to that in [2], but the latter is close

to the minimum limit that is needed to achieve any equilibrium position within the

commanded range in steady-state [29]. The simulations for the two situations, along

with the unconstrained case, are presented in Figs. 4.6-4.8.

In Figs. 4.6 and 4.7, we see that the RG takes two di↵erent approaches depending

on the current limitation. For the larger limit, it acts similarly to the unconstrained

case, the reason for which can be seen in Fig. 4.8, where umax(t), the maximum allowed

value of the control at time t, is plotted alongside u(t). In this case, the actuator

limits in the latter simulation are imposed for a longer period of time since there

is not much di↵erence between the available current and the maximum equilibrium

current. Furthermore, Fig. 4.8 shows a seperation between the control limit and the

governed input; this is due to sequential linearizations and suggests that decreasing
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0.5342 (dashed), and imax = 0.365 (dot-dashed), with constraint shown
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Figure 4.7: Current responses for the three cases: unconstrained (solid), imax =
0.5342 (dashed), and imax = 0.365 (dot-dashed), with constraints shown
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the time-step and therefore more frequent approximations would result in a better

response.
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CHAPTER 5

Reference and command governors for systems

with slowly time-varying references and

time-dependent constraints

5.1 Introduction

In this chapter, we replace the use of O1 with sets that, in addition to being

invariant, are also contractive in cross-sections by v(t). Specifically, this new set,

which we denote by O�
1, has cross-sections O�

1(v) such that if x(t) 2 O�
1(v(t)), then

x(t+ 1) 2 �O�
1(v(t)) for some 0 < � < 1.

The use of �-contractive sets in RG and CG design enables us to handle slowly

time-varying references and constraints. In particular, we show that because the

parameter � is strictly less than 1, we can determine a neighborhood of admissible

references v0 around v(t), guaranteeing that the pair (x(t + 1), v0) will be contained

in O�
1. We exploit this property of O�

1 to show that if the rate of change in r(t) is

bounded by a set that depends on �, then v(t) converges to r(t) in finite time. We

also consider the case of constraints that vary in time and show that if they vary

slowly enough, we are able to guarantee constraint adherence.

These results are important because of their potential use in applications. In

particular, the finite-time convergence results of RGs and CGs are extended to the

case of ramp or other slowly-varying command tracking. The time-varying constraints

emerge in many practical situations, including when one desires to avoid moving

obstacles. We consider two examples. In the first example, we consider an F-16

aircraft with a time-varying pitch and flight path angle commands and in the second

example, we consider a mass-spring-damper system with a time-varying overshoot

constraint.
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This chapter is organized as follows. Section 5.2 introduces robustly �-contractive

sets. Section 5.3 reports results for the case of time-varying references and Section

5.4 reports results for the case of time-varying constraints. Sections 5.5 and 5.6 are

the examples.

5.2 Robustly �-contractive sets

Consider the linear discrete-time system (0.1) without control input, i.e., v(t) ⌘ 0,

x̄(t+ 1) = Ax̄(t) + Bww(t), (5.1a)

ȳ(t) = Cx̄(t) +Dww(t) 2 Y. (5.1b)

As before, we assume w(t) 2 W , where W is compact with 0 2 W , A is Schur and

(C,A) is observable. The maximal output admissible set Ō1 for (5.1) is defined by,

Ō1 = {x̄ : x̄(0) = x̄, (5.1) is satisfied for all {w(t)} 2 W, t 2 Z+}. (5.2)

It follows that Ō1 is a disturbance invariant set, i.e.,

AŌ1 � BwW ⇢ Ō1. (5.3)

We now turn our attention to �-contractive sets, which satisfy the following defi-

nition.

Definition 5.1. For a linear system (5.1), a set H ⇢ Rn is �-contractive [76] if it

satisfies the Minkowski assumptions, i.e., H is compact, convex, and contains 0 in its

interior, along with,

AH� BwW ⇢ �H, (5.4)

for some scalar 0 < � < 1.

A method of computing the maximal �-contractive set for (5.1) is to consider the

state update equation,

x̄(t+ 1) =
1

�
Ax̄(t) +

1

�
Bww(t), (5.5a)

with output (5.1b) and compute its maximal output admissible set Ō1, which we
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denote by Ō�
1. It is necessary that,

|⇢(A)| < � < 1, (5.6)

be satisfied because otherwise Ō�
1 will either have empty interior1 or will not nec-

essarily be contractive2. Note that, depending on the size of W , � may need be

substantially larger than |⇢(A)|, and if W = {0}, then (5.6) becomes a su�cient

condition. It remains to show that Ō�
1 is indeed �-contractive and this is done in the

following.

Proposition 5.2. Ō�
1 is �-contractive for (5.1).

Proof. By the definition and invariance properties of Ō�
1, it follows that 1

�
(AŌ�

1 �
BwW ) ⇢ Ō�

1. Multiplying both sides by �, we obtain AŌ�
1 � BwW ⇢ �Ō�

1.

The set Ō�
1 is maximal because any �-contractive set for (5.1) is an invariant set

for (5.5a). Ō�
1 satisfies the following sequence of subset inclusions,

AŌ�
1 � BwW ⇢ �Ō�

1 ⇢ Ō�
1 ⇢ Ō1. (5.7)

An illustration of the sets above is shown in Fig. 5.1 for a two-dimensional system

with eigenvalues 0.8 and 0.6 where,

A =

"
0 1

�0.8 · 0.6 0.8 + 0.6

#
, � = 0.81, Bw = I2, W = [�10�3, 10�3]2.

5.3 Slowly-varying references

In the RG and CG, the reference is kept constant over the prediction horizon,

so we can treat it as a dynamic variable with a simple eigenvalue at 1 as in [15, 7].

A method of constructing O1 is to introduce the dynamics v(t + 1) = v(t) for the

admissible reference so that the state update equation (5.1a) becomes,

x(t+ 1) = Ax(t) + Bv(t) + Bww(t), (5.8aa)

v(t+ 1) = v(t). (5.8ab)

1If �  |⇢(A)|, (5.5a) is unstable.
2If � � 1, Ō�

1 is not necessarily contractive.
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Figure 5.1: An illustration of the set inclusions in (5.7) generated using [77]

We then compute the maximal output admissible set for these dynamics, using the

sets ⌦ and ⌦d from (0.6) to ensure finite determination.

Now consider the system above with the state update equation for x(t) replaced

with,

x(t+ 1) =
1

�
(Ax(t) + Bv(t) + Bww(t)), (5.9aa)

with |⇢(A)| < � < 1. Denote the maximal output admissible set for the system

(5.9aa), (5.8ab), (0.1b) as O�
1. This new set has two properties that will be useful

and are stated in the following.

Proposition 5.3. Let O�
1(v) = {x : (x, v) 2 O�

1} be the cross section of O�
1 at v.

Then (i) O�
1(v) is �-contractive for the dynamics (5.9aa), (5.8ab) and (ii) O�

1 is

�-contractive if the reference dynamics in (5.8ab) are replaced with,

v(t+ 1) = �v(t). (5.9ab)

Proof. By the definition of O�
1, (x(t), v) 2 O�

1 =) ( 1
�
(Ax(t) + Bv + Bww(t)), v) 2

O�
1 =) 1

�
(Ax(t) + Bv + Bww(t)) 2 O�

1(v) =) x(t + 1) = Ax(t) + Bv +

Bww(t) 2 �O�
1(v), proving part (i). Part (ii) is a direct consequence of 1

�
� = 1 and

Proposition 5.2.

Because O�
1(v0) is �-contractive for all v0 for which O�

1(v0) is neither empty nor
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a singleton, it follows that there exists a neighborhood around v0 such that for all v

in this neighborhood, (Ax(t) + Bv +Bww(t), v) 2 O�
1. Define,

E = C�+D. (5.10)

E : Rm ! Rp is the matrix map from the constant v to the steady-state solution y(t)

for (0.1b). For v0 such that O�
1(v0) 6= ;, the size of the neighborhood or admissible

references around v0 can be determined with the help of the following result.

Proposition 5.4. Let ⌦� = {v : (�v, v) 2 O�
1} be the set of all feasible admissible

references in steady-state and let v0 2 ⌦�. Then �O�
1(v0) ⇢ O�

1(v) for all v 2
(1� �)(⌦� ⇠ {v0})� {v0}.

Proof. For r 2 ⌦�, apply the a�ne transformations xr(t) := x(t) � �r and vr(t) :=

v(t)� r. Then the dynamics in (5.8a), (0.1b) become,

"
xr(t+ 1)

vr(t+ 1)

#
=

"
A B

0 Im

#"
xr(t)

vr(t)

#
+

"
Bw

0

#
w(t), (5.11a)

y(t) =
h
C D

i "xr(t)

vr(t)

#
+Dww(t) 2 Y ⇠ {Er}. (5.11b)

The maximal �-contractive output admissible set for this system isO�
1 ⇠ {(�r, r)}.

Applying Proposition 5.3(ii), we obtain that O�
1 ⇠ {(�r, r)} and therefore ⌦� ⇠ {r}

are �-contractive for the dynamics (5.11a) with Im replaced by �Im. This implies

that �O�
1(v0) ⇢ O�

1(�(v0 � r) + r) = O�
1((1 � �)(r � v0) + v0) for all r 2 ⌦�. To

complete the proof, let v = (1� �)(r � v0) + v0.

From the proposition, given a v0 2 ⌦�, the references in (1 � �)(⌦� ⇠ {v0}) are
admissible provided O�

1(v0) is not a singleton.

Corollary 5.5. Let r 2 ⌦�, where ⌦� is defined as in Proposition 5.4. Let P be a

set satisfying the Minkowski assumptions and inclusion P ⇢ (1 � �)(⌦� ⇠ {v0}) for

all v0 2 ⌦�. Assume the desired reference varies within the neighborhood P of r, i.e.,

{r(t)} 2 {r} � P. Further assume that v(t) is computed according to (0.11) where

O1 is replaced by O�
1 in the definition of the set ⇧(x) in (0.12). Then there exists a

finite time tf 2 Z+ such that v(t) = r(t) for all t � tf .

Proof. The proof is similar to the proof of Theorem 4.2 in [7] and is based on the

compactness of ⌦� along with the fact that (1��)(⌦� ⇠ {r}) has non-empty interior

for all r 2 ⌦�.
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The following result is a su�cient condition on how quickly the desired reference

r(t) can vary so that v(t) will converge to r(t) in finite time for the case of the CG.

Proposition 5.6. Let ⌦� be defined as in Proposition 5.4. Assume the desired ref-

erence {r(t)} 2 ⌦� varies such that r(t + 1) � r(t) 2 (1 � �)(⌦� ⇠ {r(t)}) for all

t 2 Z+. Then for any v(0) 2 ⌦�, if v(t) is determined according to (0.18) where

O1 is replaced by O�
1 in the definition of the set ⇧(x) in (0.12), there exists a time

t⇤ 2 Z+ such that v(t) = r(t) for all t � t⇤.

Proof. Represent r(t), v(t), r(t + 1), v(t + 1) by r, v, r+, v+, respectively. Note that

the constraint r+ � r 2 (1� �)(⌦� ⇠ {r}) can be rewritten as r+ � �r 2 (1� �)⌦�.

Also, the result in Proposition 5.4 implies that v+ = v0 is feasible if v0 � �v 2
(1 � �)⌦� ⇢ (1 � �)⌦�. Therefore v+ = r+ � �r + �v is feasible and by optimality,

kr+� v+k  kr+� (r+� �r+ �v)k = k�(r� v)k = �kr� vk where � < 1. Therefore

kr(t)� v(t)k ! 0 as t!1. By compactness of ⌦� and similar arguments as in [7],

the convergence occurs in finite time.

5.4 Slowly-varying constraints

We now consider the case of time-varying constraints, i.e., the case where the set

Y in (0.1b) depends on t,

Y = Yt.

We also assume that the constrained output has no feed-forward term, i.e., D = 0. As

a consequence of Proposition 5.6, if the desired reference varies slowly enough, then

we are able to ensure constraint satisfaction with the use of maximal �-contractive

admissible sets. Alternatively, in some applications the constraints vary while the

desired reference stays constant. In this case, because Proposition 5.4 guarantees

that admissible references exist within a neighborhood of the presently admissible

reference, if the constraints vary slowly enough and our present reference is constraint

admissible, we are able to enforce constraint adherence for all future time. The result

relies on the following.

Proposition 5.7. Let Yt ⇢ Rp be a set and let O�
1,t be the maximal �-contractive

constraint admissible set corresponding to Yt. Let ⌦�
t be the time-varying set ⌦�

corresponding to Yt defined as in Proposition 5.4, i.e., ⌦�
t = {v : (�v, v) 2 O�

1,t}.
Assume that Yt+1 � �(Yt ⇠ {Ev0})� {Ev0} for some v0 2 ⌦�

t .

If (x(t), v(t�1)) 2 O�
1,t, then (Ax(t)+Bv1+Bww(t), v1) 2 O�

1,t+1 for all {w(t)} 2
W where v1 = �(v(t� 1)� v0) + v0.
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Proof. O�
1,t ⇠ {(�v0, v0)} is the maximal �-contractive constraint admissible set

corresponding to Yt ⇠ {Ev0}. Due to �-contractivity, since x(t) 2 O�
1,t, then

(Ax(t) + Bv1 + Bww(t), v1) 2 �(O�
1,t ⇠ {(�v0, v0)})� {(�v0, v0)}. Therefore, Yt+1 �

�(Yt ⇠ {Ev0})�{Ev0} implies that �(O�
1,t ⇠ {(�v0, v0)})�{(�v0, v0)} ⇢ O�

1,t+1.

Remark 5.8. When using the RG to enforce time-varying constraints, the RG update

equation (0.2) for v(t) must be modified to,

v(t) = v1 + (t)(r(t)� v1), (5.12)

where v1 = �(v(t � 1) � v0) + v0, and v0 2 ⌦�
t at time t but is otherwise arbitrary.

The RG solves an optimization problem similar to (0.11),

max (t) 2 [0, 1], (5.13a)

sub. to (x(t), v1 + (t)(r(t)� v1)) 2 O�
1,t. (5.13b)

This way, v(t) is varied along the line segment connecting v1 and r(t) instead of v(t�1)
and r(t). The modification is done so that constraints that decay at a rate slower

than or equal to � are enforceable while ensuring that the solution v1 corresponding

to (t) = 0 is feasible. It is not necessary to modify the CG algorithm (0.18) because

it considers all inputs as solution candidates.

Remark 5.9. According to the proposition above, the constraint at the next time

instant, i.e., y(t + 1) 2 Yt+1, is enforced at time t. The constraint (Ax(t) + Bv(t) +

Bww(t), v(t)) 2 O�
1,t+1 does not take into account the present-time constraint y(t) =

Cx(t) +Dv(t) 2 Yt. For this reason, we require D = 0.

5.5 Example 1: Slowly-varying reference

Here we apply the results presented above to a linear simulation of an F-16 aircraft.

This example is considered as an application of the prioritized RG in Section 3.4.

where the linear model is taken from [66]. Applying Design No. 2 in [66], x(t) =

(�(t), q(t),↵(t), �e(t), �f (t)) is the state vector of flight path angle, pitch rate, angle

of attack, elevator deflection, and flaperon deflection, v(t) = (✓c(t), �c(t)) is the input

vector of commanded pitch attitude and commanded flight path angle, and y(t) =

(�e(t), �f (t), �̇e(t), �̇f (t)) is the output vector. The pitch attitude ✓(t) is related to the

flight path angle and angle of attack by ✓(t) = �(t) + ↵(t). The system is discretized
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using a zero-order hold with time-step T = 0.02 sec. The constraint set is,

Y = [�25, 25]⇥ [�20, 20]⇥ [�42, 42]⇥ [�56, 56]. (5.14)

The magnitudes of the discrete-time eigenvalues range between 0.678 and 0.980.

Because there are no disturbances a↵ecting the system, we choose � = 0.99, which is

greater than 0.980, and compute O�
1.

In this example, we apply a CG (0.18) with Q = I2 for the calculation of v(t).

The simulation time is 12 sec and the reference input is given by,

r(t+ T ) =

8
<

:
r(t), t < 6 sec,

�r(t) + (1� �)ps, 6 sec  t  12 sec,

where r(0) = ps = (9, 6.5) is the initial value of the reference that stays constant for 6

sec. By choosing the decay rate of r(t) after 6 sec to be �, we satisfy the assumption

of Proposition 5.6. The results are presented in Figs. 5.2-5.4.

Fig. 5.2 shows the only constraints to become active and we can see that the

reference v(t) plotted in Figs. 5.3-5.4 converges to r(t) after 6 sec. Before 6 sec, even

though the output y(t) is in the interior of the constraint set, as we can see in Fig. 5.2,

v(t) converges to a value that does not equal r(t). This is because O�
1 is smaller than

O1 and steady-state values that satisfy constraints may not be in the �-contractive

set. To show that this is indeed the case, we run another simulation with the same

parameters with the exception that we now use O1 as the CG constraint set. The

results are plotted in Fig. 5.5, where in the second subplot we see circled that there is

a small di↵erence between the desired and commanded ✓(t). This confirms that the

rate of decay � is too fast for the command governor to guarantee v(t) = r(t).

5.6 Example 2: Slowly-varying constraint

In this section, we consider a mass-spring-damper system with a slowly-varying

constraint representing a moving obstacle. The goal is to bring the mass to a desired

reference r(t) ⌘ 1 without violating the moving constraint.

The parameters of the system are the spring constant k = 10N/m, the damp-

ing coe�cient c = 1N·s/m, and the mass m = 0.5kg. The continuous-time system
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dynamics are,

ẋ(t) =

"
0 1

� k
m
� c

m

#
x(t) +

"
0
1
m

#
u(t), (5.15a)

y(t) =

"
1

0

#
x(t) 2 Yt, (5.15b)

where Yt = [�1, a(t)] and a(t) = 1 + A0 sin(!0⇡t). The parameter A0 = 0.05 and

!0 will vary in the subsequent analysis. We now discretize the system with time-

step T = 0.01s so that |⇢(A)| = 0.99 and we let u(t) = kv(t) so that the output

steady-state map is E = 1. Because the constraint y(t) � �1 will never be active,

we redefine the constraint set to be Ȳt = [�a(t), a(t)] so that we may use the theory

from Section 5.4. Finally, we choose � = 0.999 and compute v(t) using the update

equation (5.12) with v0 = 0.

Because of our choice of v0 = 0, according to Propostion 5.7, we require Ȳt+1 � �Ȳt

for all time. The constraint set evolves according to Ȳt+1 = a(t+T )
a(t)

Ȳt for all t 2 Z+

and the minimum of a(t+T )
a(t)

occurs when t = 1
!
0

� 1
2
T . Define,

�⇤ =
1� 1

2
A0!0⇡T

1 + 1
2
A0!0⇡T

<
1 + A0 sin(!0⇡(

1
!
0

+ 1
2
T ))

1 + A0 sin(!0⇡(
1
!
0

� 1
2
T ))

=
a(1/!0 + T/2)

a(1/!0 � T/2)
.

The above implies that if !0  2
⇡T

1��
1+�

, then �  �⇤ and Ȳt+1 � �⇤Ȳt � �Ȳt for all

t 2 Z+.

The analysis is performed for fixed A0 = 0.05 and three di↵erent choices of !0,

which are tabulated in Table 5.1 along with corresponding values of �⇤. The results

are presented in Figs. 5.6-5.8.

! (rad/s) �⇤

0.350 0.9995
0.637 �
0.800 0.9987

Table 5.1: Table of parameters for the function a(t)

The results show that the constraints are enforceable in the first two cases but are

violated in the third. However, because the CG is more flexible, it is possible that we

can use it to achieve constraint enforcement for the case where �⇤ < �. We perform

a second simulation, using the CG instead of the RG, to modify the reference. The

results are presented in Fig. 5.9 and show that it is possible to achieve constraint

95



0 2 4 6 8 10
0.8

0.9

1

1.1

0 2 4 6 8 10
0.8

0.9

1

1.1

time (s)
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moving constraint a(t) with ! = 0.350rad/s

adherence with the use of the CG, but the CG must be much more aggressive in

order to enforce constraints.
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Part II

Practical applications of reference

governors

CHAPTER 6

Reference governors for the enforcement of

compressor surge constraints

6.1 Introduction

In this chapter, we consider an approach for enforcing compressor surge constraints

in turbocharged gasoline engines using the RG. Compressor surge is an unstable flow

process that is characterized by oscillations in the compressor flow and pressure ratio

[78] which lead to noise and driveability concerns. Surge typically occurs during rapid

reductions in throttle angle that happen, for example, when the driver tips out of the

accelerator pedal. We utilize the RG to minimally limit the air demand or the throttle

actuator command to avoid compressor surge during such tip-outs. This approach

does not rely on the compressor bypass valve (CBV), which is an extra component

conventionally used to prevent tip-out surge. The successful application of the RG to

the surge constraint suggests that the CBV can be eliminated in some engine designs,

thereby providing a cost save.

The RG provides a computationally simple and minimally intrusive mechanism

to enforce constraints. Its use to enforce surge constraints in turbocharged engines is

considered in Section 1.5, where the RG was applied to modify the throttle command.

In this chapter, we refer to the placement of the RG ahead of the throttle as the

inner-loop RG because of its placement inside the control loop. This placement was
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considered initially as it can be easily integrated into the existing control strategy and

software. This placement of the RG gives rise to a number of interesting theoretical

issues in terms of ensuring that interactions of RG with upstream subsystems are

well-behaved; these are further addressed in our recent work [79] but are not included

as a part of this thesis. Apart from this, we develop a new outer-loop RG, which

governs the desired air flow command, and compare the two RG designs in vehicle

experiments. We demonstrate that unlike the inner-loop design, the outer-loop design

can be based on a single linear model for prediction and does not require scheduling

based on engine speed.

The chapter is organized as follows. Section 6.2 formulates the surge constraint

enforcement problem. Section 6.3 describes the engine model. Sections 6.4 and 6.5

present the development and analysis of the inner- and outer-loop RGs along with

vehicle results. Section 6.6 presents a discussion comparing the two RG approaches.

6.2 Surge constraint

Compressor surge is an unstable flow process that is characterized by oscillations

in the compressor flow and pressure ratio [78, 80, 81, 82]. In the worst of cases,

these oscillations can lead to compressor damage but more often lead to noise and

vibration and driveability concerns. The area of stable compressor operation is typi-

cally provided by the manufacturer in terms of a compressor map, like one shown in

Fig. 6.1.

The compressor map is a chart of the region of allowable compressor operation

plotted on the plane of corrected compressor flow and pressure ratio. Corrected

compressor flow Wc,corr(t) is the flow through the compressor at ambient temperature

and pressure conditions and is given by the formula,

Wc,corr(t) = Wc(t)

p
Tc,in(t)/Tref

pc,in(t)/pref
, (6.1)

where Wc(t) is the flow through the compressor, Tc,in(t) is the temperature at the

compressor inlet, pc,in(t) is the pressure, at the compressor inlet and Tref and pref are

the temperature and pressure at which the compressor map was constructed by the

manufacturer.

In Fig. 6.1, the left-hand boundary of the compressor map is called the surge line

and the onset of surge may occur when the compressor operates past the boundary.

We thus wish to operate to the right of the surge line and whenever possible avoid
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the surge region to the left.

A surge frequently occurs very quickly during a tip-out, i.e., a closing of the

throttle [80]. When the throttle closes rapidly, flow through the compressor decreases

faster than compressor exit pressure, which decreases relatively slowly. This can force

compressor operation to the left of the surge line for an extended period of time.

An illustration of this is provided in Fig. 6.1, which shows a typical tip-in/tip-out

trajectory using vehicle data plotted on the compressor map.

Corrected compressor flow rate (lbm/min)

C
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m
p

re
ss

o
r 

p
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u
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a
tio

tip−in

tip−out

Figure 6.1: Typical tip-in/tip-out trajectory (red) with manufacturer’s surge con-
straint (solid) and approximate linearized constraint (dashed); the bot-
tom arrow shows the direction of the tip-in and the top arrow shows the
direction of the tip-out

In this chapter, we apply the RG to enforce the surge constraint. Applications

of the RG to the enforcement of surge constraints in fuel cell compressors have been

considered in [33, 34] but no experimental results were presented.

Typical RG computational procedures require that the constraint set be a poly-

tope. The true surge line in Fig. 6.1 is jagged but can be closely approximated by

a single line segment so we choose a single line to be our constraint boundary on

the compressor map, i.e., the dashed line in Fig. 6.1. With the assumption that the

correction factor in (6.1) is approximately equal to 1, we choose the linear constraint
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to be similar to that in [45],

pb(t)

pref
� 30.62Wc(t)  1.15, (6.2)

where pb(t) is the boost pressure in kPa, and Wc is the compressor flow in kg/s.

The approach is generalized to an arbitrary choice of linearization point. Lineariz-

ing about an equilibrium output yop, the S and s matrices in (0.7) become,

S =
h
0.01 �30.62

i
, s = 1.15� Syop, (6.3)

where y(t) = (pb(t),Wc(t)) is the system output and yop is the output at equilibrium.

6.3 Engine model

A schematic of the engine system is shown in Fig. 6.2. The locations of sensors

used by the PCM and additional instrumentation installed for testing are shown in

the figure. Measurements available for use by the PCM are:

• boost pressure, pb(t),

• intake manifold pressure, pi(t),

• mass air flow to both compressors, W2c(t),

• and engine speed, Ne(t).

Additional instrumentation on the test vehicle measures the compressor inlet tem-

perature, Tc,in.

A Simulink model of the engine, which is developed based on physical principles

[81, 82, 83], has been calibrated to reflect the engine used in our test vehicle. The

state variables of the model are the intake manifold pressure pi(t), the boost pressure

or the pressure at the throttle inlet pb(t), the exhaust manifold pressure pe(t), the

turbocharger shaft speed Ntc(t), and the wastegate canister pressure pcan(t). The

actuation variables are throttle angle command ✓(t), the wastegate duty cycle com-

mand uwg(t), and the CBV command ucbv(t). Engine speed Ne(t) is considered as a

disturbance input and the input to the control strategy is the desired cylinder flow

Wcyl,d(t) which is computed from the desired engine torque assuming stoichiometric

air-to-fuel ratio. The output of the model is,

y(t) = (pb(t),Wc(t)), (6.4)
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Figure 6.2: Engine schematic

where we set Wc(t) = W2c(t)/2, i.e., half of the flow through both compressors.

The model is validated by comparing simulation results with data collected from

the test vehicle. An example showing four successive tip-in/tip-out maneuvers is

given in Figs. 6.3-6.4. The actuator commands from the vehicle, shown in Fig. 6.3,

are inputs to the Simulink model, which produces the results of Fig. 6.4. The model

captures the system response to the aggressive inputs reasonably well.

6.4 Inner-loop reference governor

We begin by considering an inner-loop RG design in which the RG is placed

downstream of the vehicle control strategy in order to govern the throttle input ✓(t).

From a software implementation perspective, this design is minimally invasive and

easy to integrate with the rest of the control strategy. The model we consider is of

the form,

ẋ(t) = fin(x(t), ✓(t), p(t)), (6.5a)

y(t) = hin(x(t), ✓(t), p(t)), (6.5b)

where x(t) is the vector of model states and p(t) is the vector of ungoverned variables.
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6.4.1 Linear control development

We derive a linearization of the system (6.5) in order to apply the RG.

�x(t) = x(t)� xop,

�✓(t) = ✓(t)� ✓op,

�p(t) = p(t)� pop,

�y(t) = y(t)� yop,

where the subscript op refers to a value of the variable at an operating point. Note

that the values xop and yop are steady-state values that depend on the inputs ✓op and

pop.

The linear model is computed through numerical linearization of the nonlinear

model (6.5); the Jacobian matrices are computed by numerical di↵erentiation, result-

ing in a linear system of the form,

�ẋ(t) =
h
@f

in

@x

i

op
�x(t) +

h
@f

in

@✓

i

op
�✓(t), (6.6a)

�y(t) =
h
@h

in

@x

i

op
�x(t) +

h
@h

in

@✓

i

op
�✓(t). (6.6b)

The inner-loop RG is designed based on the dynamics of (6.6). Note that in the

linear model (6.6) used by the RG for prediction of constraint violation, the vector of

ungoverned inputs is assumed to stay constant at the nominal operating point value,

i.e. �p(t) ⌘ 0.

After choosing inputs ✓op and pop, we compute the steady-state variables xop and

the corresponding continuous-time linear system matrices and upon discretization we

have a linear dynamic model of the form (0.1). The discretization time-step is equal

to the rate at which the ECU executes software commands to update the control

inputs.

6.4.2 Nonlinear control development and analysis

6.4.2.1 Surge Margin O↵set

We apply the linear RG with full state-measurement to the nonlinear model (6.5).

Applying step changes in the desired throttle angle, as shown in Fig. 6.5, the governed

throttle command gets stuck after the first tip-out because the linear RG predicts

constraint infeasibility for all future time and sets (t) ⌘ 0. To address this problem,
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we apply an o↵set that is equal to the di↵erence in the predicted and measured surge

margins, i.e. the di↵erence in the distances from the surge line that are predicted by

the linear model and measured through the nonlinear model.

The basic approach to compensate for the di↵erences between linear prediction

model and nonlinear plant is based on [34]. In it, we replace O1 in the development

of the RG by,

Oo↵

1 (t) = {(x0, r
0) : Hxx0 +Hrr

0  h+ s
o↵

(t)1n
c

}, (6.7)

where s
o↵

(t) = max (S(y(t)� (�y(t) + yop)), 0). The constraintOo↵

1 (t) is time-varying

and corresponds to replacing Y by the time varying constraint set,

Y
o↵

(t) = {y0 : y0 � (y(t)� (�y(t) + yop)) 2 Y }. (6.8)

Note that if the linear model over-predicts the surge margin, the constraints are

tightened, however the constraints are not relaxed in case of under-prediction.

The governed throttle command using this approach and the response trajectories

are shown Figs. 6.6-6.7. The arrows in Fig. 6.7 represent the direction of the trajectory

in time. The governed throttle command behaves as it did in the linear analysis and

the surge constraint is not violated.

We further evaluate our design in a more realistic scenario by obtaining a set
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Figure 6.6: Reference and governed throttle commands with surge margin o↵set based
on nonlinear model simulation
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Figure 6.7: Response trajectory with surge margin o↵set based on nonlinear model
simulation

107



0 0.02 0.04 0.06 0.08 0.1 0.12
0.5

1

1.5

2

2.5

3

compressor flow (kg/s)

p
re

ss
u
re

 r
a
tio

Figure 6.8: Tip-in/tip-out response on a compressor map using a high-flow OP

of inputs from a vehicle run and applying them to the model. Specifically, we use

measured values of ✓(t), uwg(t), ucbv(t), and Ne(t) as inputs to the nonlinear model

in the simulations.

Figs. 6.8-6.9 show the nonlinear model’s response to these inputs. The excursion

to the left of the surge line is small and brief. However, the throttle does not return

to the reference after the tip-out. Also, the response is quite conservative, in that it

is relatively far away from the surge line for most of the maneuver.

Therefore we consider an alternate calibration. Specifically, we choose an operat-

ing point corresponding to a lower turbocharger speed line on the compressor map

and define a linear model based on this point. This results in an operating point that

is lower on the compressor map (see Fig. 6.1). The results are shown in Figs. 6.10-6.11

where we observe that the response is less conservative but violates the constraint be-

cause the true dynamics higher on the compressor map are faster than the predicted

dynamics.

The two approaches are complementary; the more aggressive calibration performs

well at higher points on the compressor map, whereas the less aggressive calibration

on lower ones. This motivates us to use a scheduled RG approach.

6.4.2.2 Scheduled RG

To retain the performance of the RG design based on the high-speed operating

point while still allowing the throttle to settle after tip-out, we design an algorithm

that is scheduled on engine speed. We use the high-speed linearization when the
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Figure 6.9: Governed (solid) and reference (dashed) throttle inputs using a high-flow
OP
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Figure 6.10: Tip-in/tip-out response on a compressor map using a low-flow OP
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Figure 6.11: Governed (solid) and reference (dashed) throttle inputs using a low-flow
OP

engine speed is over 2000 rpm and the low-speed linearization otherwise. The cor-

responding results are shown in Figs. 6.12-6.13. The response is not as conservative

and the surge constraint is mostly enforced.

6.4.2.3 Linear state observer

We obtain our state estimates from an observer that takes advantage of avail-

able measurements. Specifically, we subsequently employ a constant gain Luenberger

observer to obtain the estimated state �x̂(t), which is the input to the RG.

With the addition of an observer matrix gain L, we obtain a linear observer,

� ˙̂x(t) =
h
@f

in

@x

i

op
�x̂(t) +

h
@f

in

@✓

i

op
�✓(t)

+ L(y(t)� (�ŷ(t) + yop)),
(6.9a)

�ŷ(t) =
h
@h

in

@x

i

op
�x̂(t) +

h
@h

in

@✓

i

op
�✓(t), (6.9b)

where �ŷ(t) is the estimated linear model output.

6.4.2.4 Nonlinear inner-loop RG scheme

We summarize the developments above into a block diagram in Fig. 6.14. This

diagram shows the interconnection of all components within the closed-loop control

system.
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Figure 6.12: Tip-in/tip-out response on a compressor map using scheduled RGs
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Figure 6.13: Governed (solid) and reference (dashed) throttle inputs using scheduled
RGs
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Figure 6.14: Inner-loop RG schematic

6.4.3 Vehicle implementation and experimental results

We present the results of vehicle testing on the vehicle test-bed using the modified

inner-loop RG algorithm described above. In order to make sure that the e↵ects of

surge avoidance are due to the RG, the testing was done with a manually closed CBV.

Two sets of tests were performed: a test of the inner-loop RG, and a baseline test

using the conventional vehicle strategy for comparison. The tests were performed in

Dearborn, Michigan, on a Ford test vehicle. In order to test the RG, the baseline

strategy was modified and the ECU was flashed with this new version of software.

Although the implementation of the RG required a significant portion of ROM ca-

pacity, the additional computations involved in executing the RG strategy did not

impose a burden on the ECU, as it was able to execute the modified strategy at the

update rate of the baseline strategy.

The results are plotted in Figs. 6.15-6.19. Fig. 6.15 shows a tip-in/tip-out tra-

jectory plotted on a compressor map, Fig. 6.16 shows the corrected compressor flow

response, Fig. 6.17 shows the boost pressure response. Fig. 6.18 shows the cylinder

flow response as compared to the requested cylinder flow. Note that these plots su-

perimpose the results of two representative runs with RG on and RG o↵ at similar

tip-outs and are consistent with results observed for other tests. The reason that the

ungoverned trajectory begins at 2 sec is that the trajectories have been aligned to tip

out at the same time.

The results show that the reference governor has reduced the incursion into the

surge region along with compressor flow oscillations. This can be seen in Fig. 6.15,

where the governed trajectory does not overshoot the constraint boundary as much as

the ungoverned. Furthermore, the results in Fig. 6.16 show that the flow oscillations

are lessened with the use of the RG. The cylinder flow response, plotted in Fig. 6.18, is

di↵erent from the nominal controller in the case of RG operation which a↵ects engine
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Figure 6.15: Vehicle data: Ungoverned (dash-dotted) and governed (solid) tip-in/tip-
out responses on a compressor map using the inner-loop RG

torque response. Fig. 6.19 shows the engine speed response, from which we can see

that the switch from the high-flow to the low-flow calibrated RG occurs shortly after

the 6 sec mark.

6.5 Outer-loop reference governor

The inner-loop RG is an RG placed downstream of the control strategy in order

to govern the throttle input ✓(t). This placement governs only the throttle input and

does not directly a↵ect the performance of other actuators in the system. Since the

engine dynamics are nonlinear, to implement the inner-loop RG we resorted to the

use of multiple linear models and scheduling based on engine speed. This requires

more ROM because we need to generate a new linearization and constraint set O1

with the addition of every operating point.

An outer-loop RG, placed before the closed-loop and governing a reference input

may avoid the need for scheduling. Specifically in our outer-loop RG design, we

choose to govern the desired cylinder flow Wcyl,d(t), using the RG and then compute

the corresponding throttle command ✓(t), while using the ungoverned reference input

Wcyl,d(t) where required in the rest of the strategy.
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Figure 6.16: Vehicle data: Ungoverned (dash-dotted) and governed (solid) compres-
sor flow responses using the inner-loop RG
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Figure 6.17: Vehicle data: Ungoverned (dash-dotted) and governed (solid) boost pres-
sure responses using the inner-loop RG
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Figure 6.18: Vehicle data: Ungoverned (top) and governed (bottom) desired (dash-
dotted) and actual (solid) cylinder flow responses using the inner-loop
RG
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Figure 6.19: Vehicle data: Ungoverned (dash-dotted) and governed (solid) engine
speed responses using the inner-loop RG with the 2000 rpm switching
line (dashed)
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The model dynamics are now of the form,

ẋ(t) = fout(x(t),Wcyl,d(t), p(t)), (6.10a)

y(t) = hout(x(t),Wcyl,d(t), p(t)), (6.10b)

where p(t) is a vector of ungoverned parameters. The outer-loop RG scheme is de-

signed in the same way as the inner-loop RG scheme with the exception of scheduling

(compare the schematic in Fig. 6.20 to the schematic in Fig. 6.14), which we have

found to be unnecessary.
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Figure 6.20: Outer-loop RG schematic

6.5.1 Vehicle implementation and experimental results

In this section, we present results of vehicle tests of the outer-loop RG strategy.

Testing was performed in the same vehicle and under similar conditions as the tests

of the inner-loop RG.

The results from two representative tip-in/tip-out sequences with RG turned on

and o↵ are plotted in Figs. 6.21-6.24. Fig. 6.21 shows a tip-in/tip-out trajectory

plotted on a compressor map, Fig. 6.22 shows the corrected compressor flow response,

Fig. 6.23 shows the boost pressure ratio response, and Fig. 6.24 shows the cylinder

flow response as compared to the requested cylinder flow. From Fig. 6.21, we can see

that the outer-loop RG is able to reduce the incursion into the surge region without

scheduling. Furthermore, a comparison of Fig. 6.22 with Fig. 6.16 also shows that

during the tip-in, the flow response tracks the flow request much more closely in the

case of the outer-loop RG.
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Figure 6.21: Vehicle data: Ungoverned (dash-dotted) and governed (solid) tip-in/tip-
out response on a compressor map using the outer-loop RG
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Figure 6.22: Vehicle data: Ungoverned (dash-dotted) and governed (solid) compres-
sor flow response using the outer-loop RG
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Figure 6.23: Vehicle data: Ungoverned (dash-dotted) and governed (solid) boost pres-
sure response using the outer-loop RG
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Figure 6.24: Vehicle data: Ungoverned (top) and governed (bottom) desired (dash-
dotted) and actual (solid) cylinder flow response response using the
outer-loop RG
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6.6 Discussion

In this chapter, we presented two RG designs for the enforcement of the compressor

surge constraint. The first design is an inner-loop RG that governs the throttle

actuator command. The second design is an outer-loop RG that governs the desired

cylinder flow command.

Vehicle tests verify that both designs are able of enforcing the surge constraint,

with the inner-loop reference governor requiring a modification using scheduling on

engine speed in order to do so.

Both RG designs e↵ectively reduce excursions into the surge region and the oscilla-

tions observed in the vehicle during tip-outs is reduced. Based on our simulations and

experiments, the outer-loop RG design, which modifies the desired air flow demand,

is preferred over the inner-loop design that directly modifies the throttle command.

In particular, the outer-loop RG does not require scheduling of multiple linear mod-

els at di↵erent operating points. Therefore it has a smaller computational footprint;

specifically it has half the memory requirement. The placement of the outer-loop

RG is also more consistent with the existing theoretical results in which the RG is

normally applied to the set-points. Further theoretical analysis of inner-loop RGs is

considered in recent work [79].

The RG approach changes the response of cylinder flow to a driver tip-out request.

Since cylinder flow is closely linked to engine torque in a gasoline engine, driveability

may be a↵ected.
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CHAPTER 7

Reference governors for airborne wind energy

systems

7.1 Introduction

Wind represents a substantial source of new renewable energy installations. Lim-

itations on ground-level wind speeds and large tower installation costs have moti-

vated the study of tethered, high-altitude airborne wind energy systems, described in

[84, 85, 86, 87, 88, 89, 90, 91, 92, 93]. Based on studies presented in [94, 95], wind at

600m altitude carries upwards of 5 times the power density of ground level wind in

many locations. Furthermore, tethered systems o↵er the advantage of rapid deploy-

ability, which makes them an attractive alternative to diesel generators for o↵-grid

and short-term applications, including oil and gas exploration, military bases, and

disaster relief.

This chapter considers the application of the RG to the Altaeros system, shown in

Fig. 7.1, which uses a buoyant shroud to elevate a horizontal axis turbine to altitudes

of up to 600m. The full Altaeros system consists of a rotating base station which

houses winches that regulate the release of tethers leading to the shroud.

Although, under normal atmospheric conditions, Altaeros’s Helium shroud pro-

vides constant buoyancy approximately equal to 120 percent of the shroud’s weight,

it is nevertheless essential that the system maintains non-negative aerodynamic lift in

high wind speeds through an acceptable angle of attack. Furthermore, it is important

that the tethers remain in an acceptable tension range where they neither become

slack, resulting in a loss of controllability, nor exceed structural limitations.

Several control strategies have been proposed in an e↵ort to track setpoints while

satisfying the aforementioned constraints. In [92], a heuristically-designed hierarchi-

cal control system was proposed, wherein a static outer loop controller maps setpoints
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Figure 7.1: Photograph of Altaeros’s proof-of-concept system, which was flown at
Loring Air Force Base during the winter of 2012 [46]

to a steady-state flying envelope, and an inner loop controller performs setpoint track-

ing. This strategy was successfully flight-tested in winter, 2012; however, the pro-

posed control strategy provided no guarantee of constraint satisfaction. In order to

provide guaranteed transient constraint enforcement, an MPC strategy was proposed

in [93], which does guarantee transient constraint satisfaction but is computationally

burdensome.

This chapter presents an alternative, computationally simpler, RG approach for

guaranteeing transient constraint satisfaction. The approach adjusts altitude and

pitch angle setpoints in order to satisfy pointwise-in-time state and control input

constraints, including constraints on altitude, angle of attack and tether tensions.

The RG serves as an add-on to a closed-form base controller, which is designed using

LQ techniques in this paper. Under realistic bounds on the wind speed disturbance,

the approach guarantees that the system constraints are satisfied during both tran-

sient and steady-state operation. Ultimately, this RG-based approach accomplishes
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Table 7.1: Key shroud model variables
Component Variable Description
Shroud xg,zg ground-fixed c.m. pos.
States u,w body-fixed c.m. velocity

✓ pitch angle
q pitch rate

Winch li tether i unstretched length
States v̄i tether i release speed
Tether Ti tether i tension
Control ūi winch speed command
Disturbances uwind horizontal wind speed

wwind vertical wind speed

constraint enforcement under a fraction of the computational load that is required by

the MPC algorithm of [93]. In this paper, we apply the RG to the longitudinal system

dynamics, which dominate the motion of the system once it has been stabilized to a

downwind condition [92].

The chapter is organized as follows. Section 7.2 provides the details of the lon-

gitudinal dynamic model, and Section 7.3 describes the constrained control design.

Section 7.4 provides simulation results on the linearized model, and Section 7.5 pro-

vides simulation results on the nonlinear model. These results demonstrate that the

RG does an e↵ective job of ensuring that critical state constraints are enforced.

7.2 Longitudinal dynamic model

The longitudinal dynamic model of the shroud is based on the model introduced

in [92] and is briefly discussed in this section. The model components and variables

are summarized in Table 7.1. Because this chapter focuses on the treatment of the

system longitudinal dynamics, the model of [92] is reduced to the 10 states that are

relevant when the dynamic behavior is restricted to the vertical x-z plane. Further-

more, this work on the longitudinal system assumes synchronized port and starboard

tether motions, and therefore the control space is limited to 2 control variables. The

subscript i (used with control inputs, tether tensions, and unstretched lengths) de-

notes a particular tether set, where i = 1 represents the forward tether set and i = 2

represents the aft tether set.
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Nonlinear shroud dynamics

The shroud dynamics follow a standard 3-degree-of-freedom model in which the

body-fixed x and z axes are in the direction of the aft and top of the shroud, respec-

tively. The rotational equations of motion are given by,

✓̇ = q, (7.1a)

q̇ =
1

Iyy
(Maero

y +M tether
y +M b

y), (7.1b)

where Iyy represents the pitch moment of inertia and Maero
y , M tether

y , and M b
y respec-

tively represent the total aerodynamic, tether-generated, and buoyancy-generated

moments about the y-axis.

The translational equations of motion are given by,

u̇ = �wq + 1

m
(F eb

x + F aero
x + F tether

x ), (7.2a)

ẇ = uq +
1

m
(F eb

z + F aero
z + F tether

z ), (7.2b)

where m represents the shroud mass and F eb
x,z, F

aero
x,z , and F tether

x,z respectively repre-

sent the excess buoyant (buoyant force minus gravitational force), aerodynamic, and

tether forces along both axes. Using the rotation matrix associated with ✓, the body-

frame velocities are easily converted to ground-fixed frame, and xg and zg are readily

calculated using integration.

Winch and tether spooling dynamics

The winches comprise AC motors that drive a drum and regulate the unstretched

line length of each of the control tethers. They are governed by the following equa-

tions.

l̇i = v̄i, (7.3a)

˙̄vi =
1

⌧winches

(ūi � v̄i). (7.3b)

Here, ⌧winches represents the approximate actuator time constant associated with the

winches, which is taken as 0.1 sec for this work.
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Table 7.2: Nominal Operating Point for Linearized Model
System Nominal

parameters values
uwind,0 20

wwind,0 (m/s) 0
lunstretchedi,0 (m) 595

xg,0 (m) 258
zg,0 (m) 543
↵0 (�) 10.8
T1,0 (N) 10852
T2,0 (N) 8113
ūi,0 (m/s) 0

Tether tension calculation

The tethers are modeled, as in [96, 97], as spring-dampers that can assume only

positive tension. Specifically, the tether tension is given by,

Ti = max
�
0, ktethers(krshroudi � rbsi k � lunstretchedi ) + btethers

d

dt
krshroudi � rbsi k

�
, (7.4)

where rshroud,bsi represents the two-dimensional position vector of the attachment point

of tether i relative to the base station, ktethers represents the tether sti↵ness, and btethers

represents the tether damping. Sti↵ness and damping terms are the for the forward

and aft tethers. Note also that in the longitudinal model we lump two forward tethers

into a single equivalent tether and the two aft tethers into a single equivalent tether.

Linearized system dynamics

The RG design for the Altaeros system is based on linear models. In this chapter,

we consider the linearizations of the longitudinal dynamics of the system about a

representative operating condition summarized in Table 7.2.

The continuous-time linear model of the system has the following form,

ẋ(t) = Acx(t) + Bcū(t) + Bc,ww̄(t), (7.5a)

y(t) = Cx(t) +Dū(t) +Dww̄(t). (7.5b)

The components of the output vector y(t) are the variables to be constrained. These

are deviations in the altitude �zg(t), front tether tension �T1(t), aft tether tension

�T2(t), angle of attack �↵(t), front tether rate �ū1(t), and aft tether rate �ū2(t) from
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Figure 7.2: Horizontal (top) and vertical (bottom) wind speeds

the nominal conditions. The components of the input vector ū(t) for the linear model

are the commanded front tether rate ū1(t) and the aft tether rate ū2(t). As with the

disturbance w̄(t), the upper bar notation is used in ū(t) in order to distinguish the

control input vector from the body-fixed x velocity, denoted by u. The 10 states in

(7.5) are denoted by x(t). The components of the disturbance vector w̄(t) are the

deviations of the base wind speed �uwind(t) and the vertical wind speed �wwind(t)

from the nominal wind speeds, about which the linearization was taken.

In the simulations, the wind speed disturbances are modeled using a Dryden

turbulence model [98], which characterizes the spectral properties of turbulence as

a function of altitude and base wind speed. This is incorporated into the model

by passing band-limited white noise through a coloring filter whose parameters are

directly related to turbulence intensity, scale length, and base wind speed. Fig. 7.2

shows the wind speed disturbance inputs.

System constraints

A summary of the system constraints follows. The altitude is constrained to a

limit of 609m, arising from an FAA limit of 2000ft above ground level for moored

balloons. The angle of attack is constrained to between 0� and 20�, where the limits

correspond to insu�cient lift and stall, respectively. The tether tensions Ti, are

constrained to between 100N and 20kN, where the lower limit prevents slack tethers,
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with a margin for robustness, and the upper limit arises from material limitations.

Finally, the control inputs ūi are constrained to between ±1m/s in order to account

for saturation limits.

The constraint set Y is given as, Y = {y(t) : 0  zg,0 + �zg  609, 0  ↵0 + �↵ 
20, 100  Ti,0 + �Ti  20000, �1  ūi,0 + �ūi,0  1, i = 1, 2}. Note that Y is

polyhedral.

7.3 Baseline controller design

To begin the controller design, the system (7.5) is discretized using a zero-order

hold using a sampling time of Ts = 0.1s.

The base controller is designed to track set-points for altitude and pitch com-

mands. Define the constraint-admissible and reference command, respectively,

v(t) =

"
�zg,gov(t)

�✓gov(t)

#
, r(t) =

"
�zg,d(t)

�✓d(t)

#
. (7.6)

Let Cr be such that Crx(t) = (�zg(t), �✓(t)). Since ū(t) are rate inputs, we design

the tracking controller so that Crx(t) ! r(t) while ū(t) ! 0. This proceeds by

defining error dynamics, e(t + 1) = e(t) + Crx(t) � r(t), and coupling them with

(7.5a) to obtain,

"
e(t+ 1)

x(t+ 1)

#
=

"
I Cr

0 A

#"
e(t)

x(t)

#
+

"
0

B

#
ū(t)�

"
I

0

#
r(t). (7.7)

The nominal controller is a linear quadratic regulator to minimize,

J =
1

2

1X

t=0

�
eT(t)Qee(t) + xT(t)Qx(t) + ūT(t)Rū(t)

�
dt, (7.8)

for r(t) ⌘ 0, where Q" and Q are positive semi-definite, and R is positive definite, so

that the control is of the following form,

ū(t) = �Kee(t)�Kx(t). (7.9)

Note that this controller achieves zero tracking error for constant commands r(t), due

to the fact that the plant contains an integrator.
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Figure 7.3: Projections of O1 onto the ↵-q (top) and ✓-q (bottom) planes

7.4 Linear model simulation

The following results correspond to a 3 minute simulation with reference inputs

r(t) given in Fig. 7.4 and disturbances w̄(t) given in Fig. 7.2. Practical considerations

have governed the selection of the disturbance set as W = [�0.2, 0.2]2 and two projec-

tions of the resulting O1 corresponding to the linear system are provided in Fig. 7.3.

To avoid conservatism in the RG response and recognizing that wind velocity does

not change instantaneously between extreme values as assumed in the theory of the

RG, the choice of length of W is set slightly larger than the rms of the expected

disturbance (corresponding to one standard deviation), which is approximately 0.13.

This size of W provides adequate protection against simulated wind disturbances.

The results are given in Figs. 7.4-7.8. Fig. 7.4 shows the constraint-admissible

reference v(t) as computed by the RG.

Overall, this set of simulations demonstrates that the RG keeps the system re-

sponses within acceptable bounds over the course of setpoint changes superimposed

on top of realistic wind disturbance scenarios. On the other hand, the ungoverned

system exhibits a variety of constraint violation at some point. Fig. 7.5 shows im-

proved tracking and constraint satisfaction with the RG, whereas the ungoverned
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Figure 7.4: Desired (dotted) and governed (solid) reference inputs for zg,d(t) (top)
and ✓d(t) (bottom)
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Figure 7.5: zg and ✓ ungoverned (dotted) and governed (solid) responses plotted
against desired set-point r(t) (dashed) and the altitude constraint (dot-
dashed)
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the magnitudes of negative tether tensions do not carry physical signifi-
cance but rather merely reflect the fact that the tethers are slack
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Figure 7.8: ū1(t) (top) and ū2(t) (bottom) ungoverned (dotted) and governed (solid)
responses plotted against saturation limits (dot-dashed)

controller exhibits transient altitudes that exceed the FAA limitation of 2000ft above

ground level. Furthermore, Fig. 7.6 shows that while the ungoverned controller ex-

hibits severe angle of attack ↵(t) violations upon altitude setpoint changes, the RG

ensures that ↵(t) stays within acceptable bounds in order to prevent the loss of lift

that results from stall or a nose-down configuration. Finally, Fig. 7.7 demonstrates

that both tether tensions remain within acceptable bounds upon altitude changes,

whereas the ungoverned response exhibits slack tethers and excessive tether tensions

at di↵erent times. It is important to note that although the linearized model gener-

ates negative tension, the magnitude of these negative values do not carry physical

significance since they merely reflect slack tethers.

7.5 Nonlinear model simulation

In this section we apply a few modifications to the linear RG in order to use the

RG for nonlinear constraint enforcement. Firstly, we develop an observer to estimate

the output y(t) and use the nonlinear model output as an input to the observer. The

RG is consequently applied to the observer estimate. We also tighten the constraint

on ↵(t) to the set [3, 17] instead of [0, 20] and lower the altitude constraint to 604m,

because these two variables exhibit more sensitivity to the reference input close to

the constraints than they do at the operating point.
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Figure 7.9: Nonlinear simulation: zg and ✓ responses (solid) plotted against governed
set-point r(t) (dashed) and the altitude constraint (dot-dashed)

Furthermore, we do not present ungoverned response results because the applica-

tion of the above controller without an RG results in nonrobust operation; specifically,

its application leads the system to stall, which ultimately causes catastrophic loss of

lift.

The results are presented in Figs. 7.9-7.12. The results show similar response

properties to that found in the previous section, demonstrating that all state and

control input constraints are successfully enforced by the RG. The success of the

approach on the fully nonlinear model indicates promise for the practical application

of the RG approach in future flight testing.
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Figure 7.10: Nonlinear simulation: ↵(t) responses plotted against constraints (dot-
dashed)
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Figure 7.11: Nonlinear simulation: Forward (top) and aft (bottom) tension responses
plotted against constraints (dot-dashed)
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Figure 7.12: Nonlinear simulation: ū1(t) (top) and ū2(t) (bottom) responses plotted
against saturation limits (dot-dashed)
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CHAPTER 8

Reference governors for constrained spacecraft

attitude control on SO(3)

8.1 Introduction

In this chapter, we consider an RG scheme for constrained control of spacecraft

maneuvers that exploits predictions based on discrete-time models with dynamics that

evolve on SO(3). The scheme developed here uses a prediction model obtained using

the Lie group variational integrator (LGVI) [99, 100, 101, 102, 103, 104, 105, 106];

this predictive model leads to improvements in prediction since it preserves conserved

quantities of motion, such as momentum and energy.

The use of an LGVI can lead to large improvements in prediction [99] because the

LGVI has been developed to preserve the underlying group structure of dynamics that

evolve on Lie groups. Unlike standard integration schemes such as Runge-Kutta, the

LGVI preserves conserved quantities of motion up to a bounded error. In the case

of SO(3), the LGVI achieves this by updating the rotation matrix by multiplying

two matrices in SO(3), thereby ensuring that the rotation matrix evolves on SO(3)

and the conserved quantities of motion are preserved. For other types of variational

integrators which also have this property, see [107, 108].

Theoretical results presented in this chapter show recursive feasibility and con-

vergence for the RG scheme. Furthermore, we show that the RG exhibits global

convergence properties for all initial states satisfying feasibility properties with re-

spect to constraints. This amounts to global rest-to-rest reorientation capability if

there are no constraints; this conclusion is interesting since global stabilization on

SO(3) by smooth or even continuous time-invariant feedback laws cannot be achieved

[47].

A simulation using the scheme is also reported. We simulate a rest-to-rest space-
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craft attitude control maneuver, where the objective of the spacecraft attitude control

problem is to reorient the spacecraft from a given attitude to the desired attitude.

The chapter is organized as follows. In Section 8.2, we describe the Lie group

variational integrator that we employ for making predictions on SO(3). In Section 8.3,

we introduce the RG scheme. In Section 8.4, we present a simulation of a rotational

maneuver.

8.2 Constrained LGVI dynamics

To account for the discrete-time character of RG updates and constraint enforce-

ment at discrete-time instants, we exploit the LGVI model as a prediction model.

The LGVI dynamics for a controlled rigid spacecraft on SO(3) in discrete-time are

given by [109, 102],

(h⇧(t))⇥ = F(t)J� JF(t)T, (8.1a)

C(t+ 1) = C(t)F(t), (8.1b)

⇧(t+ 1) = F(t)T⇧(t) + hT(t), (8.1c)

where ⇧(t) 2 R3 is the angular momentum of the spacecraft expressed in the body

frame, F(t) 2 SO(3) is a one time-step change inC(t) 2 SO(3), which is the spacecraft

rotation matrix, T(t) 2 R3 is the applied torque, h is the discretization time-step,

and J = 1
2
tr(Jc)I�Jc, where Jc is the spacecraft inertia matrix. For subsequent ease

of exposition, we define a new variable, X(t) = (C(t),F(t)) 2 SO(3)⇥ SO(3).

The dynamics are subject to the state- and control-constraint,

(X(t),T(t)) 2 C, 8t 2 Z+, (8.2)

where C ⇢ SO(3)⇥ SO(3)⇥ R3 is a compact set with nonempty interior.

The solution to (8.1) proceeds by first computing F(t) in (8.1a) from a given ⇧(t)

and then computing (8.1b) and (8.1c) based on this value. F(t) in (8.1a) can be

computed by solving a continuous-time algebraic Riccati equation [110]. However, a

special orthogonal solution F(t) to (8.1a) exists if and only if [110],

(h⇧(t)⇥)2 + 4J2 ⌫ 0. (8.3)

This implies that, in order to guarantee a solution to (8.1a) at the next time step,
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the convex [47] condition (8.3) must be enforced at the current time-step, i.e.,

(h⇧⇥
k+1)

2 + 4J2 ⌫ 0. (8.4)

Therefore, in addition to all other constraints, (8.4) is always included in the con-

straint set C.

Remark 8.1. Condition (8.3) ensures the angular velocity ⌦(t) = J�1
c ⇧(t) is small

enough so there exists a solution F(t) corresponding to ⌦(t). Physically, the change in

rotation F(t) can correspond to an infinite number of values of ⌦(t), but the solution

to (8.1a) only corresponds to one.

The RG that we present in the following section utilizes (8.1) to propagate the

given rotation and angular momentum in order to predict the constraint violation of

the spacecraft and to ensure the tracking of a desired reference rotation.

8.3 Reference governor for SO(3)

Below we describe the required modifications of the nonlinear RG to the SO(3)

setting while relying on [2, 3] for supporting theoretical results. The RG described

in [3, 2] is applied to an asymptotically stable closed-loop nonlinear system, which

consists of an open-loop plant and a stabilizing controller with the reference as an

input. The dynamics of this system are of the form,

x(t+ 1) = f(x(t), v(t)), (8.5)

where x(t) 2 Rn is the state variable and v(t) 2 Rm is a reference input. Given a

desired reference input r(t) 2 Rm, the RG computes v(t) according to (0.2) and where

(t) 2 [0, 1] is maximized subject to constraints being satisfied for all t 2 Z+ by the

predicted response with v(t + k|t) ⌘ v(t), i.e., while v is held constant. It is shown

in [3, 2] that if,

v(t) 2 V , (8.6)

where V is a compact, nonempty, and convex set whose corresponding set of equilib-

rium points is contained in the interior of the set of all constraint-admissible equilibria,

there exists a time t⇤ such that if the constraints are satisfied for all t 2 Zt⇤ , then

they are satisfied for all t � t⇤.
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8.3.1 Unconstrained closed-loop control law

Because the RG is applied to closed-loop systems, we need to develop a stabilizing

nominal controller for the dynamics of the discrete-time model described in Section

8.2. The constraint admissible reference rotation is denoted V(t) and, for this con-

troller, we use the almost-globally stabilizing continuous-time control law, which, in

the unconstrained case, guarantees C(t) ! V(t) 2 SO(3) for almost every rotation

C(t). The closed-loop control design is described in the subsequent paragraph.

At every time-step t, given V(t), we compute the attitude error, which evolves on

SO(3),

E(t) = V(t)TC(t). (8.7)

We apply the feedback,

T(t) = �K⇧(t)� E(t), (8.8)

where K 2 R3⇥3 is a positive-definite feedback gain and E(t) is given by,

E(t)⇥ = AE(t)� E(t)TA, (8.9)

for some symmetric positive-semidefinite matrix A 2 R3⇥3, with three distinct eigen-

values. In continuous-time, where the state is (C(t),⌦(t)), (8.8) can be shown to

be asymptotically stabilizing [111] on all of SO(3) ⇥ R3 except for a set of mea-

sure zero, with stable equilibrium E(t) = I and unstable equilibria given by the set

UA = {E(t) 2 SO(3) : E(t)⇥ = 0, E(t) 6= I}; the set on which the control is not

stabilizing is the union of all stable manifolds for the unstable equilibria in UA. In

this work, we assume that the continuous-time result is preserved in the discrete-

time case for su�ciently small time-step1 h. Note that when A is diagonal, then

UA = {Ci(⇡) : i = 1, 2, 3}, where Ci is an Euler rotation about the i-th axis by the

angle ⇡.

8.3.2 Determining V(t)

Because SO(3) is not closed under addition, the reference update equation (0.2) is

not appropriate for references that are elements of the group. SO(3) is closed under

multiplication however, so we introduce a new update equation similar to (0.2), but

1This appears to be the case based on simulation results; we leave a rigorous proof of this to
future work.
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based on multiplication and exponentiation instead of addition and multiplication,

V(t) = (R(t)V(t� 1)T)(t)V(t� 1) 2 V , (8.10)

where V ⇢ SO(3) is the constraint set for the reference, which satisfies the convexity-

like condition,

V,V0 2 V =) (V0VT)V 2 V , 8 2 [0, 1]. (8.11)

Note that the curve described by varying (t) 2 [0, 1] in (8.10) is the shortest geodesic

connecting V(t � 1) and R(t) [112]; also note that V(t) = V(t � 1) if (t) = 0 and

V(t) = R(t) if (t) = 1.

In order to maintain the system trajectory in the stable region, we impose an

artificial constraint of the form,

(X(t),V(t)) 2W , (8.12)

where W is positively invariant under the dynamics (8.1)-(8.2), (8.7)-(8.9), and

V(t) held constant over the prediction horizon. The set W can be chosen to be

a sublevel set of the closed-loop Lyapunov function [113]. For example, let W =

{(X,V) : V (X,V)  c}, where V (X,V) is a Lyapunov function for the continuous-

time analog to (8.1)-(8.2), (8.7)-(8.9) and c < infX2UA V (X, I).

Thus at every time-step t, (t) is obtained through numerical optimization by

choosing the largest value of (t) for which constraint admissibility can be guaranteed

if the reference is kept constant for all future time-steps. In this way, we obtain a

recursively feasible reference that guarantees constraint admissibility for all future

time-steps. Specifically, we perform the following optimization online,

max {(t) 2 [0, 1] : V(t+ k|t) ⌘ V(t),

(8.1)-(8.2), (8.7)-(8.9), (8.12) are satisfied for all t 2 Zts}. (8.13)

The optimization is performed through a bisection algorithm similar to [3, 2]. Note

that the simulation is only performed until the time-instant ts � 1, and this may not

predict constraint violation for all future time. However, under suitable assumptions,

such that if ts � t⇤ and all constraints are satisfied for all t 2 Zts , they will also be

satisfied for any t � ts.

Due to the properties of SO(3), for some pair R(t) and V(t � 1), (8.10) may

not have a unique solution. This occurs when R(t) is a cut point of V(t � 1), i.e.,
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(R(t)V(t� 1)T)2 = I but R(t)V(t� 1)T 6= I. In this case, both geodesics connecting

V(t�1) and R(t) are equal in length and R(t)V(t�1)T = Log ⇡N⇥, for some N 2 R3

where kNk2 = 1.2

By the definition of V , both geodesics are contained in V , so the choice of geodesic

is arbitrary. Accordingly, our approach is to perturb the target reference by,

R(t) := exp(�"⇡N⇥)R(t), (8.14)

for some small 0 < " < 1, before performing the optimization (8.13). With this small

modification of the reference, we guarantee a unique solution to (8.13).

We now present the online algorithm in Algorithm 3 for calculating V(t). In the

algorithm, the initial state values are set to the current state estimates and cand, a

candidate (t), is chosen. Simulations are then performed over a finite time horizon

to determine if a constraint is violated. When cand converges to a preset tolerance,

the algorithm stops.

Algorithm 3: RG for SO(3)

input : X(t), R(t), V(t� 1)
output: V(t)

max  1;
min  0;
if (R(t)V(t� 1)T)2 = I and R(t)V(t� 1)T 6= I then R(t) exp(�"⇡N⇥)R(t);
(t) 1;
Simulate (8.1), (8.7)-(8.10) until t = ts;
if (X(t),T(t)) 2 C, 8t 2 Z+ then solutionNotFound  false;
cand  1;
while solutionNotFound do

cand  
max

+
min

2
;

(t) cand;
Simulate (8.1), (8.7)-(8.10) until t = ts;
if (X(t),T(t)) 2 C, 8t 2 Z+ then min  cand;
else max  cand;
if max � min < tol then solutionNotFound  false;

V(t) (R(t)V(t� 1)T)minV(t)

Using the above algorithm, we show that under the assumption that ts � t⇤, the

reference governor exhibits the properties of recursive feasibility and finite settling

2We define the map Log : SO(3)! so(3) as in [112] with an extension to the case when tr(C) =
�1. Log(C) = ✓

2 sin ✓ (C � CT) if 0 < |✓| < ⇡, where tr(C) = 1 + 2 cos ✓; if tr(C) = 3, then

Log(C) = 0, and if tr(C) = �1, then Log(C) = ⇡N⇥.
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time.

Proposition 8.2. Assume that R(t) ⌘ R is constant for t 2 Z+, V(�1) is feasible

for (8.13), and ts � t⇤.

Then the following holds: (i) The control scheme described by Algorithm 3 is

recursively feasible, i.e., the solution V(t) = V(t � 1) is always feasible for (8.13);

(ii) the scheme ensures finite-time convergence to a constraint-admissible reference,

i.e., there exists a tc 2 Z+ such that V(t) = R̃ 2 V for all k � tc; (iii) if R 2 V, then
R̃ = R.

Proof. The proof follows from the theorems and propositions in [3, 2], with a modifi-

cation needed due to the step (8.14) in Algorithm 3 to show that we are always able to

avoid antipodal points by redefining the admissible and desired references according

to the algorithm.

Specifically, if RV(t� 1)T = exp(⇡N⇥), then before modification, exp(�"⇡N⇥)R ·
V(t � 1)T = exp(�"⇡N⇥) exp(⇡N⇥) = exp((1 � ")⇡N⇥) 6= exp(⇡N⇥). Therefore, if

(t) 6= 0 for some t 2 Z+, then RV(t0 � 1)T 6= exp(⇡N⇥) for all t0 � t, if not, then

R̃ = V(t� 1).

8.4 Numerical simulation results

In this section, we consider a spacecraft with inertia matrix Jc = diag(10, 8, 8) and

discretization time-step h = 0.1. In the figures, we plot the orientation maneuvers

on the sphere S2, where the vector [x y z]T, corresponding to the first column of

C(t), is plotted in green; the second is in blue; and the third is in red. These vectors

correspond to the alignments of body fixed frame axes relative to an inertial frame.

The objective is to achieve tracking of an equilibrium reference signal, while si-

multaneously satisfying spacecraft constraints. We consider two constraints to be

enforced by the RG: a pointing inclusion constraint and a thrust limit. The pointing

inclusion constraint is given as a constraint that the spacecraft point in the direction

of a fixed target, such as the Earth; this inclusion constraint may also be considered

as an exclusion constraint, requiring the spacecraft not point outside of the inclusion

zone. For example, in order to avoid damage to the photosensitive equipment, we

may require that the spacecraft not point towards the Sun. The inclusion constraint

that we consider here is that the spacecraft point within 60� of the fixed axis, e3.

This can be expressed as a constraint on the (3, 3) entry of the matrix C(t),

C33(t) � cos 60� = 0.5. (8.15)
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Figure 8.1: kT(t)k2 (solid) response plotted against the torque constraint (dot-
dashed)

The other constraint is a limit on the thrust force, which is expressed as,

kT(t)k2  0.02. (8.16)

We choose the set V as a compact set, the elements of which result in equilibria that

strictly satisfy (8.15) in steady state.

Figs. 8.1-8.4 present simulation results corresponding to the reference governor

simulation with closed-loop control gains A = diag(0.1, 0.2, 0.3) and K = 0.2I. The

reference governor modifies the reference to command the rotation, while enforcing all

constraints, from an initial condition close to the inclusion constraint boundary to the

reference rotation R(t) ⌘ I. The only constraint that becomes active in the closed-

loop trajectory is the control constraint, which is plotted in Fig. 8.1; the corresponding

time history of the angular velocity is plotted in Fig. 8.2; that of the reference governor

parameter k is plotted in Fig. 8.3 and shows that the reference governor modifies the

desired rotation signal until the desired reference is admissible. In Fig. 8.4, we plot

the orientation maneuver of the spacecraft along with the trajectory of the admissible

reference V(t).
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Figure 8.2: ⌦1(t) (solid), ⌦2(t) (dot-dash), and ⌦3(t) (dotted) responses
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Conclusions and future work

Conclusions

This dissertation has focused on the theoretical developments and practical ap-

plications of RGs and related schemes. The RG and ECG theory has been extended

in various ways. In particular, we have developed a theory for governors applied to

reduced order and decentralized systems. We have also developed prioritized gover-

nor schemes and schemes for the case where a linear system is subject to nonlinear

constraints. We also derived results for the case of governors applied to systems

that track time-varying references or enforce time-depended constraints. Three ap-

plications were considered. The first was the enforcement of the compressor surge

constraint in turbocharged gasoline engines. The second was the enforcement of con-

straints for a flying wind-energy system. The third was the enforcement of spacecraft

attitude constraints, in which case the dynamics evolve on the Lie group SO(3). In

the first application, we successfully tested the RG in an experimental vehicle, while

in the second and third application we simulated the RG on nonlinear models.

The main developments and results are summarized below for each of the above

developments.

Reduced-order reference governors and extended command governors

We presented an approach to implementing RGs and ECGs based on reduced-order

models while guaranteeing that constraints are enforced for the full-order system.

Our approach takes advantage of a system decomposition into fast and slow states

and a reduced-order model design that reflects the dynamics of the slow states with

tightened constraints. We have extended the theory to include observers and handle

observer errors. Finally, we presented numerical examples; the first example was a

turbocharged gasoline engine and the second was an infinite-dimensional system that

was motivated by applications to control of very flexible aircraft.
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Reference governors for decentralized systems

We presented two di↵erent decentralized constrained control methods that exploit

RG techniques. The first design is for systems of lower-order that are connected over

a network, where it is feasible for every subsystem to reconstruct the full state but

where there is a delay in communicating the other subsystems’ reference inputs. The

second design is for higher-order systems, where the constraint enforcement by every

subsystem is handled through a partition of the constraint set, so that the satisfac-

tion of every constraint partition ensures that the full constraint is enforced overall.

Numerical simulations using these methods were presented and showed that they en-

forced constraints in a decentralized manner. The first method was applied to an

aircraft engine and the second to a mass-spring-damper, and appropriate simulation

results were reported.

Command governors for prioritized constraints and reference governors

for prioritized references

We presented two strategies in applying the theories of RGs and CGs to con-

strained systems subject to prioritization. The first scheme is applicable to soft con-

straints which are satisfied in order of priority by applying the CG to slack variables

that augment the constraints. The second scheme considers an RG applied to a prior-

itized sequence of inputs whose goal is to maintain the set-points with highest priority

as close as possible to their desired values. Theoretical results and simulations have

been presented for both schemes.

Reference governors for linear systems subject to nonlinear constraints

We considered applications of the RG to linear system models but with nonlin-

ear constraints. This case frequently occurs in practice, including when feedback

linearization is used. We discussed di↵erent cases: convex, convex-quadratic, MLD

(specifically if-then), and concave constraints. The response properties of the RG are

based on previous work [2], but the computations can be arranged elegantly and in

the same spirit as the explicit solution [7] for the linear RG with linear constraints.

Finally, using the developed ideas, we presented an e↵ective treatment of constraints

in the examples of spacecraft rendezvous as well as in an electromagnetically actuated

mass-spring-damper.
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Reference and command governors for systems with slowly time-varying

references and time-dependent constraints

We considered the application of RGs and CGs to systems subject to slowly-

varying reference inputs and slowly-varying constraints. The use of constraint-ad-

missible �-contractive sets was exploited in place of invariant sets in the ordinary

theory. This was done to guarantee that the system can respond quickly enough to

changes in either the desired reference or constraints.

In the case of slowly-varying references, we showed constraint adherence and finite-

time convergence of the admissible reference to the desired reference, i.e., the usual

RG and CG convergence properties, have been generalized to the case of time-varying

references. We also showed that we are able to enforce time-dependent constraints

and guarantee recursive feasibility if the constraints vary slowly enough. The results

of numerical simulations were also presented for each case.

Reference governors for the enforcement of compressor surge constraints

We considered the application of a linear RG to the enforcement of surge con-

straints in a turbocharged vehicle engine. Two strategies were proposed. The first

was an inner-loop RG strategy that governed the throttle actuator. The second was

an outer-loop RG strategy that governed the desired air mass. After appropriate

modifications that took system nonlinearities into account, both strategies were able

to enforce the surge constriants; however, the inner-loop RG required gain scheduling

on engine speed to do so. Experimental results from vehicle tests were presented

showing surge mitigation in both cases.

Reference governors for airborne wind energy systems

We presented an RG-based approach for guaranteeing that critical flight con-

straints are satisfied for a wind energy system. We detailed the modifications made

to the RG in order to apply it to a nonlinear longitudinal dynamic model and we

demonstrated the satisfaction of critical altitude, tether tension, and angle of at-

tack constraints in the presence of realistic set-point variations and wind disturbance

inputs through simulation.

Reference governors for constrained spacecraft attitude control on SO(3)

We considered the problem of applying an RG to the constrained control of space-

craft attitude dynamics. The RG uses the LGVI to update the predicted trajectory
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on SO(3). We showed that the RG guarantees constraint admissibility and conver-

gence to the desired equilibrium and presented numerical results illustrating these

properties.

Future work

Synthesis of decentralized schemes

It is clear that the two decentralized methods considered in Chapter 2 are not

mutually exclusive. A natural extension is to change the second scheme to the scheme

where the subsystem RGs communicate on a network with some delay. In such a case,

there would be no need to partition Y , but each subsystem would need to handle

modified versions of the constraints (2.7).

Furthermore, we are able to extend the case of decentralized RGs coupled with

an observer to the case of multiple delays. The development of this would be similar

to that of RGs for network control systems subject to observer delay as in [49].

Designing ordinary RGs using maximal contractive sets

Ordinary RGs use O1, which has been constructed to include all references reach-

able in steady-state. Computationally this may take a long time, and methods of

approximating O1 have been created for this reason. An alternative method of

approximating O1 may be to consider a set with properties similar to O�
1, which in-

cludes only the set of references which are guaranteed to exponentially approach the

desired reference faster than a certain rate � < 1. This approximation is smaller than

O1 and as a result may be computed more quickly. As � ! 1, the approximation

likely approaches O1; however, this result remains to be shown.

Designing the auxiliary dynamics (C̄, Ā) in the ECG

The choice of auxiliary dynamics in the case of the ECG is unclear. Based on ex-

perience and numerical simulations, it appears that we obtain good performance when

choosing the eigenvalues of Ā to coincide with that of the system dynamicsA. Further-

more, consider the optimal control problem of minimizing
P1

t=0(r�v(t))TR(r�v(t))

subject to the dynamics (0.1) where A is invertible. When constraints are not active,
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the controller dynamics are of the form,

x̄(t+ 1) = A�Tx̄(t),

v(t) = �R�1BTA�Tx̄(t) + r,

which is similar to the auxiliary dynamics (0.13). Since A�T is unstable, if A is

asymptotically stable then the above cannot be used as an auxiliary subsystem, yet

the connection is still interesting. The best choice of C̄ and Ā requires more attention.

RGs for Lie groups and manifolds

The main idea behind the modified RG in Chapter 8 is that it varies the reference

V(t) along the geodesic connecting V(t�1) and R(t) on SO(3). This is an extension

of the ordinary RG, which varies the reference v(t) along the line segment connecting

v(t � 1) and r(t) in Rn. Such an extension could naturally be made to any smooth

manifold, provided at least one geodesic exists between any two points on a manifold.
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