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ABSTRACT 

 

Advances in exome sequencing and the development of exome genotyping arrays are 

enabling explorations of association between rare coding variants and complex traits 

using sequencing-based GWAS. However, the cost of sequencing remains high, optimal 

study design for sequencing-based association studies is an open question, powerful 

association methods and software to detect trait-associated rare and low-frequency 

variants are in great need. Containing 5% of information in human genome sequence, 

chromosome X analysis has been largely neglected in routine GWAS analysis. In this 

dissertation, I focus on three topics: 

 

First, I describe a computationally efficient approach to re-construct gene-level 

association test statistics from single-variant summary statistics and their covariance 

matrices for single studies and meta-analyses. By simulation and real data examples, I 

evaluate our methods under the null, investigate scenarios when family samples have 

larger power than population samples, compare power of different types of gene-level 

tests under various trait-generating models, and demonstrate the usage of our methods 

and the C++ software, RAREMETAL, by meta-analyzing SardiNIA and HUNT data on 

lipids levels.  

 

Second, I describe a variance component approach and a series of gene-level tests for X-

linked rare variants analysis. By simulations, I demonstrate that our methods are well 



   

 x  

controlled under the null. I evaluate power to detect an autosomal or X-linked gene of 

same effect size, and investigate the effect of sex ratio in a sample to power of detecting 

an X-linked gene.  Finally I demonstrate usage of our method and the C++ software by 

analyzing various quantitative traits measured in the SardiNIA study and report detected 

X-linked variants and genes. 

 

Third, I describe a novel likelihood-based approach and the C++ software, RAREFY, to 

prioritize samples that are more likely to be carriers of trait-associated variants in a 

sample, with limited budget. I first describe the statistical method for small pedigrees and 

then describe an MCMC approach to make our method computationally feasible for large 

pedigrees. By simulations and real data analysis, I compare our approach with other 

methods in both trait-associated allele discovery power and association power, and 

demonstrate the usage of our method on pedigrees from the SardiNIA study.  
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CHAPTER 1: INTRODUCTION 

Mapping Human Complex Traits 

Focus of gene mapping of human complex traits migrated from linkage studies to 

association studies gradually since the end of the 20
th

 century. As pointed out by [Risch 

and Merikangas 1996], association studies can have greater power than linkage studies 

but were limited by the fact that not many polymorphisms or genes were identified at that 

time. The number of markers that were available for analysis was usually in the tens and 

sample size was in the hundreds. 

 

Advances in genotyping technology and rapidly reduced genotyping cost in the beginning 

of the 21
st
 century have facilitated detecting a large amount of polymorphisms across the 

entire human genome and brought a plethora of discoveries through genome-wide 

association studies (GWAS) for various human complex diseases and traits [Teslovich et 

al. 2010; Willer et al. 2008]. Genotyping arrays allow scientists to analyze association of 

variants that are in linkage disequilibrium with causal variants, instead of analyzing 

markers that might be several cM away from the causal gene on the same chromosome in 

linkage studies. However, , because not enough features could be captured on the chip, 

polymorphisms studied in GWAS were usually relatively common in frequency, which 

has been shown to contribute to a very small proportion of human DNA variations 

according to the observations from 1000 Genome Project [Abecasis et al. 2010]. The fact 

that GWAS findings altogether were not able to fully explain the trait variance  brought 
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up the well-known “missing heritability” question. A natural conjecture for a possible 

solution of this question was that rare and low-frequency variants with large effects might 

exist and could explain the missing heritability, but we were simply not able to detect 

them.  

Advances in Sequencing Studies 

While  array-basedGWAS continued to succeed, sequencing technology has been 

improving at a fast speed and sequencing cost has been decreasing rapidly. In 2014, a 

decade after the completion of the first GWAS, whole-genome sequencing cost reached 

the $1,000 per genome milestone. Unlike in array-based GWAS, sequencing makes it 

possible to analyze causal genes and variants directly instead of studying their linkage 

disequilibrium proxies - the common variants that are in linkage disequilibrium with 

them. Many sequencing studies have been conducted or are on-going [Lange et al. 2014; 

T2D-GENES-Consortium,In Preparation].  

 

Sequencing also allows discoveries of rare and low-frequency variants with moderate to 

large effects which are expected to explain at least part of the “missing heritability” 

mystery. Although, at present, there is no sequencing study that is able to show that rare 

variant discoveries could explain the missing heritability from GWAS findings fully for 

any trait, thorough investigations of rare and low-frequency variants are expected to bring 

biological insights to biology of human diseases and traits because rare variants are more 

likely to be functional [Nelson et al. 2012]. Besides whole-genome sequencing, exome 

sequencing and exome chip arrays are also cost-effective strategies for rare and low-
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frequency discoveries and significant amount of successful findings have been reported 

[Crosby et al. 2014; Lange et al. 2014].  

 

Sequencing studies can also provide valuable source to generate imputation reference 

panels to increase imputation accuracy for rare and common variants. Imputation using 

reference panels generated from 1000 Genome sequencing study has become routine 

analysis in GWAS. Sequencing a proportion of samples from a cohort to build an 

enriched reference panel with disease-causing rare mutations together with the currently 

existing reference panel followed by imputation to large well-phenotyped cohort can 

greatly enlarge power to detect trait-associated or disease-causal genes [Hoffmann et al. 

2015]. The Haplotype Reference Consortium (HRC) [REF] creates a large reference 

panel of human haplotypes combining whole-genome sequencing data from multiple 

cohorts, enabling imputation of large amount of rare and low-frequency variants to 

enlarge GWAS power.   

Challenges in Sequencing-based GWAS 

Challenges are non-negligible for design and analysis of sequencing-based genome-wide 

association studies.  First, optimal study design for sequencing-based GWAS is an open 

question. Family samples were essential for linkage studies because transmission patterns 

which are the core to detect linkage signal, can  be tracked or inferred in pedigrees. 

Array-based GWAS largely used population samples, because unrelated samples 

naturally have large power to detect common variants in association than family samples. 

However, in sequencing-based GWAS, rare and low-frequency variants are the focus for 

association analysis, and sampling unrelated individuals from a population requires very 
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large sample size to be able to capture enough rare alleles for enough power. Family 

samples sometimes can capture more than average copies of rare alleles due to the 

“Jackpot” effect where multiple copies of a rare allele can be observed in a single 

pedigree. But how this could affect association power remains an open question. What’s 

more, sequencing cost remains high. Novel methods for cost-efficient study design of 

sequencing studies are in great need.  

 

Second, detecting the associations of rare and low-frequency variants that contribute to 

the majority of polymorphisms from sequencing data has extremely limited power unless 

there are large enough samples to be sequenced or large enough number of rare alleles 

captured. One popular strategy is to aggregate rare variants within a gene or a region to 

bring a synergy of information to enlarge power. Many different statistical methods have 

been published and they can be summarized into two types of gene-level association 

methods based on whether genetic effect of a gene is modeled as a fixed effect, for 

example, in burden [Li and Leal 2008; Madsen and Browning 2009] and Variable 

Threshold [Lin and Tang 2011; Price et al. 2010] tests, or random, for example, Sequence 

Kernel Association Test (SKAT) [Wu et al. 2011] and SKAT-O [Lee et al. 2012a]. These 

gene-level tests have certain advantages and disadvantages for different disease models. 

For example, burden type tests are more powerful when causal variant counts in a gene is 

large and all causal variants have effect sizes of the same direction, yet loses power 

quickly when causal variants are bi-directional; kernel-based variance component tests, 

such as SKAT, are most powerful when causal variant count is small or causal variants 

have opposite directions in effect sizes. The other popular strategy is Meta-analysis, 
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which has been extremely successful in array-based GWAS studying common variants 

[Scott et al. 2007; Willer et al. 2010]. Meta-analysis naturally enlarges power by 

increasing sample sizes without sharing raw data. However, powerful meta-analysis 

association methods for sequencing data for family samples are sparse. Many association 

methods for quantitative traits to detect single common variant associations in nuclear 

families and sib-pairs [Abecasis et al. 2000; Abecasis et al. 2001b; Laird et al. 2000], and 

in general pedigrees [Chen and Abecasis 2007] have been published. But gene-level tests 

and meta-analysis methods for rare variant associations in families are under 

development. 

 

Third, chromosome X association analyses have been largely neglected in array-based 

GWAS, although containing 5% of human DNA sequences. X-linked QTL linkage 

analysis methods have been extensively studies and implemented in tools that are widely 

used [Abecasis 2002; Abecasis et al. 2000; Almasy and Blangero 1998; Lange and Sobel 

2006]. X-linked single variant association tests for quantitative traits in unrelated and 

related samples have also been studied [Abecasis 2002; Clayton 2008; Clayton 2009; 

Zhang et al. 2009]. However, gene-level association methods and meta-analysis methods 

for X-linked rare and low-frequency variants are in great need.  

Outline of this Thesis 

In this dissertation, I focus on three topics related to design and association methods for 

sequencing data analysis for quantitative traits. First, I describe the gene-level association 

and meta-analysis methods for sequencing data in family and population samples [Feng 

et al. 2015]. Second, I address the association methods for X-linked rare and low-
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frequency variants in family and population samples. Third, I describe a novel likelihood-

based method to prioritize samples that are more likely to carry trait-associated rare 

variants. 

 

In chapter 2, I investigate the advantages and disadvantages of family and population 

samples in modern genetic association studies, especially sequencing-based GWAS. I 

describe scenarios when family samples have more power than population sample using 

simulation. I then propose efficient gene-level association methods for single studies and 

for meta-analysis of family and population samples. By simulations, I seek to 1) 

demonstrate that our methods are well calibrated under the null by calculating type I 

errors and 2) compare power of different gene-level association tests under various trait-

generating model and 3) compare power and computational performance of our method 

and software with other published methods and tool. Finally, using SardiNIA and HUNT 

exome chip data, I demonstrate the usage of our methods in meta-analysis by finding 

confirmed trait-associated genes for blood lipid traits. 

 

In chapter 3, I describe our statistical approach to analyze X-linked rare variants. I 

describe a variance component model to properly handle relatedness and cryptic 

relatedness and population structure in a sample. By simulations, I demonstrate that 1) 

our methods are under control under the null and 2) there is larger power to detect a X-

linked gene than an autosomal gene with the same effect when complete X-inactivation is 

assumed and then I further evaluate the relationship between power and proportion of 

females in a sample. Finally, using SardiNIA quantitative traits and exome chip data, I 
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demonstrate the usage of our method and tool and report associated X-linked genes and 

rare variants to some of the quantitative traits measured in SardiNIA sample.  

 

In chapter 4, I describe a novel likelihood-based approach to select samples that are more 

likely to carry trait associated rare variants in a currently existing sample, with limited 

sequencing cost. I first describe the statistical method for small pedigrees and then 

describe an MCMC approach for large pedigrees to make our method computationally 

feasible. By simulations, I compare our approach with methods that select phenotypic 

extremes by evaluating both trait-associated allele discovery power and association 

power, and I demonstrate that our method is not affected by the choice of prior values of 

frequency and effect size. Finally, using SardiNIA data, I demonstrate the usage of our 

method on large pedigrees (as many as ~1,200 individuals per family) and show that our 

method has larger discovery power than the competing method which considers only 

phenotypic extremes.  

 

In chapter 5, I summarize my work and propose possible interesting topics in design and 

analysis methods for sequencing-based studies. 
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CHAPTER 2: STUDY DESIGN AND ASSOCIATION AND META-ANALYSIS 

METHODS IN FAMILIES 

Introduction 

Variants of functional consequence, including non-synonymous, splice altering, and 

protein truncating variants, usually segregate at very low frequency in human 

populations [Abecasis et al. 2010; Abecasis et al. 2012; Marth et al. 2011; Nelson et 

al. 2012]. Recent advances in exome sequencing and the development of exome 

genotyping arrays are enabling explorations of their contributions to complex 

disease [Kiezun et al. 2012]. 

 

Association of rare variants with disease will bring biological insights about disease 

processes, but standard variant-by-variant association tests lack power when 

applied to these variants unless sample sizes are very large. Our work builds upon 

three strategies to increase the power of rare variant association studies: grouping 

variants by gene or functional unit, combining results across many studies through 

meta-analysis, and analysis of family samples. 

 

Grouping rare variants by gene or functional unit [Li and Leal 2008], whether with 

weights [Madsen and Browning 2009] or without [Morris and Zeggini 2010], is now 

a popular strategy for rare variant association analysis [Lee et al. 2012a; Lee et al. 

2012b; Lin and Tang 2011; Price et al. 2010; Wu et al. 2011]. The approach assumes 
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that rare variants in the same gene or functional unit have similar functional 

consequences. When the assumption is correct and rare variants in a region are 

analyzed together, association signals will be  stronger than when evaluating 

variants individually. 

 

A second strategy to increase power is meta-analysis, which increases sample size 

and provides a practical approach to difficulties in data-sharing and concerns about 

heterogeneity [Lin and Zeng 2010; Willer et al. 2010].  Meta-analysis of single 

variants has been key in establishing association between common variants and 

complex diseases [Scott et al. 2007; Willer et al. 2010]. Meta-analysis methods for 

rare variant association tests have now been proposed, although these initial 

proposals and their implementations have generally focused on samples of 

unrelated individuals [Lee et al. 2013; Liu et al. 2014; Tang and Lin 2013]. 

 

Finally, a third strategy is to study samples of closely related individuals, increasing 

the odds that multiple copies of each rare variant are observed. Family samples are 

key in studies of Mendelian disorders but can also have advantages for studies of 

complex traits [Laird and Lange 2006, 2008; Ott et al. 2011]. For example, they can 

be more robust to population stratification (which may be more acute in rare 

variant association studies [Gravel et al. 2011]), allow checks for genotyping errors, 

improving data quality [Abecasis et al. 2001a; Abecasis et al. 2002][Abecasis et al. 

2001; Abecasis et al. 2002] and can be enriched for variants of large effect by 

focusing on families with multiple individuals with extreme phenotypes. Early tests 
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for family based association [Abecasis et al. 2000; Laird et al. 2000; Laird and Lange 

2008] focused on analysis of transmission disequilibrium, but newer tests rely on 

variance component models [Chen and Abecasis 2007; Kang et al. 2010] to account 

for stratification, resulting in tests of association that are typically more powerful 

[Chen and Abecasis 2007]. Our work also builds on computational enhancements in 

methods for variance component analysis, which have now been extended to 

samples of unrelated individuals (using empirical kinship matrices, estimated from 

genotype data) [Kang et al. 2010; Lippert et al. 2011; Zhou and Stephens 2012]. 

 

Here, we describe family-based association tests for rare variants that allow analysis 

of quantitative traits, with or without covariates, and show how these tests can be 

applied in meta-analysis settings. Our methods are based on the insight that gene-

level test statistics can be constructed from single variant score statistics and 

estimates of the covariance between those [Liu et al. 2014]. We first analyze single 

variants using efficient computational algorithms for evaluation of variance 

component models [Lippert et al. 2011]. We then develop family-based burden 

(weighted and un-weighted), sequence-kernel association (SKAT), and variable 

frequency threshold (VT) tests. Using simulation we show that type I error is well 

controlled and compare different testing approaches. As expected, SKAT tests are 

more powerful when the fraction of associated variants in each gene is small or 

associated rare variants have opposite directions of effect; VT tests are more robust 

to the choice of allele frequency threshold for grouping variants. Our analysis of 

exome chip genotypes and HDL level data from the HUNT and SardiNIA studies 
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shows that our methods are well calibrated and powerful enough to identify several 

signals at lipid associated loci. 

 

There has been much recent work focused on extending gene-level association tests 

to families. Examples include various family-based burden tests [De et al. 2013; Saad 

and Wijsman 2014; Schaid et al. 2013] and variance component based tests [Chen et 

al. 2013; Ionita-Laza et al. 2013; Saad and Wijsman 2014; Schaid et al. 2013; 

Schifano et al. 2012; Svishcheva et al. 2014]. A key difference in our implementation, 

compared to previous work is that we construct our gene-level statistics using 

single-variant statistics as input. This allows us to quickly re-evaluate gene-level 

statistics when gene definitions or variant masks change, makes it practical to 

implement variable frequency-threshold based tests, and facilitates meta-analyses. 

To ensure computational efficiency in genome-wide analyses, our implementation 

uses a score-test that requires fitting a maximum likelihood model only once, rather 

than a Wald-test that would require it for every gene [Saad and Wijsman 

2014]Madsen and Browning 2009]. We also focused on methods that could 

accommodate a diverse mix of family structures or even samples that include both 

families and unrelated individuals. This is in contrast to transmission-based tests 

[De et al. 2013; Ionita-Laza et al. 2013] that are limited to simpler family structures 

and cannot account for cryptic relatedness. As usual, we expect transmission based 

tests may provide greater protection against stratification – but at the cost of greatly 

reduced power.   
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We characterize settings where family studies can provide greater power to detect 

rare variants with moderate to large phenotypic consequences than studies of 

unrelated individuals. In studies of unselected samples, this is due to a “Jackpot” 

effect, where multiple copies of a extremely rare allele can be observed in a single 

pedigree. While for each locus the expected number of rare alleles will be the same 

in a family sample or an unrelated sample of same size, family samples are much 

more likely to exceed this expectation by a large amount. Our simulations show that 

this difference can have a large impact on power. All the methods described here are 

implemented in freely available C++ code and tools. 

Methods 

 
In this section, we first describe a variance component model to handle familial 

relationships. Then, we describe how single variant association statistics and their 

covariance matrices can be calculated and how gene-level association tests can be 

constructed. Next, we describe meta-analytic approaches for both single variant and 

gene-level association tests. Finally, we discuss the computational cost of our 

proposed approach and provide practical suggestions to improve computational 

performance.  

Modeling Relatedness 

 
In a sample of n individuals, we model the observed phenotype vector (y) as a sum 

of covariate effects (specified by a design matrix X and a vector of covariate 
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effects 𝜷 ), additive genetic effects (modeled in vector g) and non-shared 

environmental effects (modeled in vector 𝝐). Thus: 

𝐲 = 𝐗𝛃 + 𝐠 + 𝛜.    (Equation 1) 

We assume that genetic effects are normally distributed, with mean 0 and 

covariance 2σg
2𝐊  where the matrix K summarizes kinship coefficients [Lange 1997] 

between sampled individuals and  𝜎𝑔
2 is a positive scalar describing the genetic 

contribution to the overall variance. We assume that non-shared environmental 

effects are normally distributed with mean  and covariance 𝐈σe
2, where I is the 

identity matrix. 

 

To estimate K, we either use recorded pedigree structure to define 𝐊̂ following the 

method described in [Lange 1997] or else use the Balding-Nicols empirical 

estimator [Astle and Balding 2009], which uses observed genotypes to estimate 

kinship as  𝐊̂ =
1

𝑣
∑

(𝐆𝐢−2𝑓𝑖𝟏)(𝐆𝐢−2𝑓𝑖𝟏)𝐓

4𝑓𝑖(1−𝑓𝑖)

𝑣
𝑖=1 (here, v is the count of variants, 𝐆𝐢 is a 

genotype vector where each element encodes the number of observed minor alleles 

in a particular individual, and fi is the estimated allele frequency for the ith variant). 

Model parameters ,  and , are estimated using maximum likelihood and the 

efficient algorithm described in Lippert et al. [Lippert et al. 2011]. For convenience, 

let the estimated covariance matrix of  be 𝛀̂ = 2σg
2̂𝐊̂ + 𝜎𝑒

2̂I.  

Single-variant Association Tests and Summary Statistics 

 

0

y
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Since our gene level association tests will build on single-variant test statistics [Chen 

and Abecasis 2007], we will first describe single variant test statistics and their 

corresponding variance-covariance matrix.  

Consider the model 

. 

This model is a refinement of equation (1) above, adding a scalar parameter  to 

measure the additive genetic effect of the ith variant. As usual [Lange 1997], the 

score statistic for testing  is 

  

And the variance-covariance matrix of these statistics is: 

                        . 

Under the null, test statistics  are asymptotically distributed as chi-squared 

with one degree of freedom. 

Gene-level Association Tests for Family Samples 

 
Using single variant statistics and their variance-covariance matrix V, we are 

now ready to construct a variety of gene-level association test statistics that 

combine information across variants.  

 

The simplest statistic for a burden test is to estimate the average genetic effect 

across a series of variants satisfying certain functional (for example, non-

U i
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synonymous or protein truncating variants) and frequency criteria (for example, 

allele frequency <.05).  Then the rare variant burden for each individual can be 

defined as a weighted sum of allele counts for variants satisfying these criteria. 

Abstractly, we define the rare variant burden as , where 

 is a vector of weights for each of the  variants in the gene. A 

regression parameter measuring the average effect of each variant can be estimated 

using the model: 

. 

To test the null hypothesis , we use a score statistic, expressed as a function of 

single variant statistics  with variance . 

Then the burden test statistic  is asymptotically normal with mean 

zero and variance one.  

Variable Threshold Tests for Family Samples 

 
The simplest burden tests will be effective when appropriate frequency thresholds 

and functional annotation are used to select functional variants for analysis. 

However, this is challenging to do, because the optimal frequency thresholds will 

vary by gene and by phenotype [Lange et al. 2014]. One possibility is to define a test 

statistic that considers many alternative frequency thresholds [Lin and Tang 2011; 

Price et al. 2010]. 

 

m

wTU wTVw
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Following the suggestions of Price et al. 2010 and Lin et al. 2011, we will define the 

variable threshold test statistic as the maximal absolute value of burden test 

statistics across all possible frequency thresholds, , where 

 is the burden test statistic calculated with frequency threshold F 

and  is a vector of 0s and 1s indicating whether a variant has allele frequency 

below F. Burden statistics calculated using different frequency thresholds jointly 

follow a multivariate normal distribution with mean 0, and variance-covariance 

matrix  [Lin and Tang 2011]P-values can be evaluated using the 

cumulative density function of this multivariate normal distribution [Genz 1992]. 

Sequence Kernel Association Tests 

 
Another refinement is to use a test statistic that allows for variants in the same gene 

to modify the phenotype in opposite directions [Chen et al. 2013; Ionita-Laza et al. 

2013; Wu et al. 2011; Yan et al. 2014]. For example, in some genes [Abifadel et al. 

2003], both gain-of-function and loss-of-function alleles have been described and 

these signals might cancel each other in a standard burden analysis. The model for 

this type of test is 

, 

In this alternative model, the single variant effects are assumed to follow a shared 

distribution, with mean 0 and variance twi
. We test the null hypothesis of no 
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association using the statistic  to evaluate whether  is nonzero 

[Chen et al. 2013; Wu et al. 2011]. As usual,   is a diagonal 

matrix indicating the weight of each variant. TSKAT is distributed as a mixture chi-

squared with weights  corresponding to the eigenvalues of , and 

the χ1
2(𝑖) correspond to independently distributed chi-squared variables, each with 

1 degree of freedom [Wu et al. 2011]. P-values can be approximated using the 

Davies algorithm [Davies 1980] or a moment matching algorithm [Liu et al. 2009]. 

Meta-Analysis 

 
Since we derived all the statistics above from single variant score statistics and their 

covariance matrix, our approach can be readily extended to meta-analyses. We first 

define the overall single variant score statistics and their variance-covariance 

matrix as  and , where  and  are the single 

variant score statistic and variance-covariance matrix components from study  

and  is the total number of studies. Whenever variant i is unobserved in study k, 

we set Uik = 0 and Vij,k = 0 for all j.  Next, we simply calculate burden, VT and SKAT 

meta-analysis statistics using the formulae above. 

Computational Efficiency 

 
Since we rely on score statistics and their covariance, we only need to fit the linear 

mixed model once under the null hypothesis. Fitting parameters for this null mixed 

model is a major part of the computational cost of our approach. Standard EM or 

wm )

V
1

2WV
1

2

U ik
Vij,k

k
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Newton–Raphson methods require calculating the inverse of the covariance matrix 

in each iteration – with time complexity O(n3), too costly for large datasets. Instead, 

we used the computationally efficient algorithm described in  [Lippert et al. 2011] to 

estimate the variance components and fixed effects under the null (Equation 1). 

The algorithm begins with a one-time singular value decomposition (SVD) of the 

relationship matrix , a step which has time complexity O(n3). The results of this 

decomposition are used in a factorization that transforms the phenotype vector and 

design matrix so that transformed phenotypes are identically and independently 

distributed. This second step has time complexity O(n2). After transformation, the 

cost of updating the log likelihood becomes linear with respect to sample size n 

(instead of O(n3) using the standard approach). Calculating the score statistics and 

their covariance for all single variants simply requires a transformation of 

genotypes and has time complexity O(mn2) for a dataset with m variants. In reality, 

we calculate covariance of score statistics from markers within a sliding window. 

For large samples, calculating the SVD of  is the computationally most expensive 

step. A similar idea with comparable computational efficiency has also been 

described in Zhou and Stephens (2012]. Both ideas build upon the algorithm 

described by Kang et al. and implemented in EMMAX [Kang et al. 2010]. 

 

When variants are grouped in gene-level tests, the computational cost of calculating 

the combined test statistics is small after single variants have been analyzed. 

Obtaining p-values corresponding to these statistics, especially for SKAT and VT 

analyses, can still be challenging when the number of rare variants in a gene is large. 

K̂

K̂



   

 19  

To speed up this step, we used computationally efficient algorithms to evaluate the 

multivariate normal probabilities [Genz 1992] and the mixture chi-squared 

distribution [Davies 1980]. 

Simulation 

 
We carried out a series of simulations to evaluate the type I error and power of our 

method. We first simulated a set of 1000 base-pair sequences, which is close to the 

length of an average protein coding sequence in humans, using the coalescent (as 

implemented in the program ms [Hudson 2002]) and a demographic model  

calibrated to mimic European population history [Adams and Hudson 2004; 

Novembre et al. 2008]. We then carried out gene-dropping simulations [Abecasis et 

al. 2002] using these simulated sequences as founder haplotypes that were 

propagated through various pedigree structures (Figure 2.1).  

 

To evaluate power, we assigned a fraction of variants below a desired frequency 

threshold (<0.01 in simulations unless addressed otherwise) as causal. Typically, we 

assigned minor alleles at causal variants to all have effects in the same direction but, 

in some cases, a fraction of causal minor alleles were assigned effects in the opposite 

direction. When assigning effect sizes to causal variants, we considered two trait-

generating models - an equal variance model (where the effect size for each variant 

is proportional to , a function of the allele frequency p that ensures each 

causal variant explains the same amount of trait variance) and an equal effect-size 
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model (where the effect size is the same for all causal variants, irrespective of allele 

frequency). In the equal effect size model, relatively common variants explain a 

larger amount of the variance; while in the equal variance model, rarer variants 

have larger effect sizes (See Figure S2.1 for demonstration). Genetic effects were 

set so that the total variance explained by each gene (h2gene) was in the 0.1-2% 

range. Empirical power was calculated using 10,000 simulations for each parameter 

combination. We used =1x10-8 for single variant association power and =2.5x10-

6 for gene-level association power, following the consensus of significance level used 

in GWAS with Bonferroni correction. Type I error rate for gene-level tests was 

estimated using 5,000,000 simulations. To compare studies of families and 

unrelated individuals, we held the number of genotyped (or sequenced) individuals 

constant and compared our power to detect associated variants in studies using 

different sampling units. In simulations and following association analysis, kinship 

matrices estimated from pedigree were used to fit the null linear mixed model. 

SardiNIA and HUNT Samples Description 

 
To demonstrate usage of our methods in real data analysis, we used exome chip data 

from the HUNT [Holmen et al. 2014a; Holmen et al. 2014b] and SardiNIA [Giorgio et 

al. 2014; Pilia et al. 2006] studies, which genotyped 5,803 and 6,602 individuals, 

respectively. Here, we analyze HDL, adjusted for age and sex (Table S2.3). 

Genotypes were called using the Illumina GenCall algorithm in combination with 

zCall V2.2. Detailed QC procedures can be found in Holmen et al. [Holmen et al. 
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2014a] for the HUNT study and Pistis et al. [Giorgio et al. 2014] for the SardiNIA 

study.  

Results 

Type I Error Rate 

To evaluate type I error rate, we simulated family samples of 1,000 or 5,000 

individuals with with families of 3 generation pedigrees with 10 (Pedigree10) or 50 

(Pedigree50) individuals (see Figure 2.1 for details). Within each gene, variants 

with frequency <.01 were grouped for analysis. Each type I error estimate 

summarizes results from five-million simulations. Table S2.1 shows that the type I 

error of our gene-level association tests is well controlled for a variety of pedigree 

structures. Empirical error rates are a little below nominal levels when sample sizes 

are small (N=1,000), but approach nominal significance as sample size increases 

(N=5,000).   

Power of Different Rare Variant Association Tests 

Next, we evaluated the power of our proposed association tests under various 

scenarios. We used significance level =2.5x10-6, which corresponds to Bonferroni 

adjustment for testing of 20,000 genes. We first simulated samples of 5,000 

individuals distributed in 3-generation pedigrees with 10 individuals each 

(Pedigree10 in Figure 2.1). Variants with frequency <1% (<5% where noted) 

explained 1% of the variance in a simulated quantitative trait. When all associated 

variants had the same effect size and the proportion of causal variants was small 

(~20%), SKAT had the largest power. When this proportion grew larger (~80%, 
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although this might not be very realistic, we increased the proportion to 80% for 

scientific investigation), VT became the most powerful test (Table 2.1). Although 

we did not simulate a relationship between frequency and effect size among causal 

variants, VT provided greater power because it sometimes excluded relatively 

common unassociated variants from consideration, reducing noise. When fraction of 

causal variants is small, methods that explicitly allow for heterogeneity in effect 

sizes do better, since no correlation between causality and effect size was simulated, 

VT can’t easily exclude most of the unassociated variants. In practice, the true list of 

causal variants is usually unknown; and allele frequency is often a good proxy to 

identify variants likely to modify gene function [Nelson et al. 2012].  In a simplified 

scenario where only causal variants were grouped and other variants were 

discarded, the basic burden test became optimal (Table 2.1).  

 

We next considered more complex scenarios. When 20% causal variants decreased 

trait values and the remainder increased trait values, the power of burden and VT 

tests dropped dramatically and SKAT became the most powerful test, regardless of 

the proportion of causal variants (Table 2.2). When we set up our simulation so 

that each variant explained the same fraction of trait variance (and, thus, so that 

rarer variants had larger effects), SKAT remained the most powerful test when the 

proportion of causal variants was small, but the Madson-Browning weighted burden 

(MB) test outperformed VT and SKAT when the proportion of causal variants was 

large (80%) (Table 2.3). This was expected since, in this setting, relative effect sizes 

match those predicted by the Madson-Browning weighting scheme.  
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Power when Misspecifying Frequency Threshold 

 
We next investigated the impact of misspecifying frequency thresholds during 

analysis. Figure S2.2A shows that when causal variants have the same effect sizes, 

VT and Madson-Browning-weighted burden tests perform well as long as the 

frequency cut-off used during analysis is larger than the cutoff used for simulation. 

In contrast, the power of SKAT and simple burden tests is greatly reduced when 

incorrect frequency thresholds are used for analysis. Figure S2.2B shows that when 

rare causal variants have larger effects and all variants explain the same amount of 

trait variance, all tests reach maximum power at a frequency threshold less than or 

equal to 0.01, the threshold for simulating causal variants. Whereas the power of VT 

and MB remain close to optimal, the power of SKAT and the simple burden tests 

drops greatly as the frequency threshold used for analysis increases and non-causal 

and small effect variants enter the analysis. In real data analysis, because true 

disease model is unclear, we recommend multiple frequency thresholds should be 

used when using SKAT or simple burden tests [Lange et al. 2014]. 

Relative Power of Family Samples and Unrelated Individuals 

 
We used simulations to compare the benefits of samples of families and unrelated 

individuals in association studies. Family samples can allow many copies of the 

same trait associated rare alleles to be observed in a single study. Variability in 

allele counts is larger in families, particularly in pedigrees with many descendants 

for each founder. For example, for a variant with allele frequency 0.0005 (~5 alleles 

expected when 5000 individuals are sequenced), the standard deviation of the allele 
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counts in a sample matching Pedigree50 (from Figure 2.1) is >3 times larger than a 

sample of unrelated individuals (see Table S2.2 for details) – meaning that the 

chance of observing >10 copies of the variant is 20% when families matching 

Pedigree50 are sampled, but 4% in samples of unrelated individuals.  

 

We speculated that the increased variability in allele counts in family samples would 

mean that family samples might sometimes hit a “jackpot” and sample many copies 

of a trait associated rare allele, increasing power. This speculation was supported by 

our simulations: a sample of 5,000 individuals in families matching Pedigree50 

provides >2-fold greater power to detect a variant with frequency 0.001 and effect 

size 1 than a population sample of the same size (power was 0.9% in sample of 

unrelated individuals and 2.3% in sample of families, Figure S2.3). This increase 

may seem paltry, but it is important to remember that many susceptibility loci 

underlie each human complex trait: if there are hundreds of such loci and power 

increases from 0.9% to 2.3% at each of those, the odds of a successful discovery will 

increase dramatically. The idea of “jackpot” effect was also supported by close 

examination of our simulation results. Among all 10,000 simulated samples, the 

average frequency of trait associated alleles was 0.0010, but in samples that have 

association p-value <1x10-8, the frequency of trait associated alleles was higher, 

averaging 0.0032, a >3 fold increase. The relative advantages of family samples over 

unrelated samples decrease in settings where power (and, typically, the number of 

expected rare allele carriers) is high. For example, when sample size increases, allele 



   

 25  

frequency increases, or effect size (or variance explained) increases unrelated 

samples quickly become more powerful (Figure S2.3). 

 

Consistent with patterns in single variant association power, Figure 2.2 shows that 

family studies have the similar advantages in studies of gene-level rare variant 

associations. For example, in a sample of 5,000 individuals, power to detect a gene 

where 20% of variants with frequency <1% are causal and explain 0.5% trait 

variance increases from 1% for unrelated individuals to 13% for family samples. 

 

Advantages in power from studies of families are strongly correlated to the variance 

of allele counts (which is a function of family size and pedigree structure). For 

example, a sample of families matching Pedigree50 (Figure 2.1) has largest 

variance in allele counts (Table S2.2) and also the largest power for detecting a 

gene explaining 0.5% of trait variance in a sample of 5,000 individuals (Figure 2.3), 

whereas a sample of families matching Nuclear4 (Figure 2.1) has the smallest 

variance in allele counts and provides the smallest increase in power relative to 

samples of unrelated individuals (in this simulation, 20% of variants with frequency 

1% were causal). All family samples have larger variance in allele counts than 

unrelated samples. For example, for a variant with frequency .1%, the standard 

deviation of the allele count in family samples with 5,000 individuals in Pedigree50 

structure is 10.3, which is ~3 times the standard deviation of allele counts from 

unrelated samples of the same size.  
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The advantage of family samples extends to extremely rare variants. Figure 2.4A 

shows that when 20% of singleton variants (defined as alleles present only once in 

our initial pool of 10,000 simulated sequences) in a gene were causal explaining 

0.5% trait variance, power to detect gene-level association increased dramatically 

from 3.5% in a study of 5,000 unrelated individuals to as much as 19.3% in a study 

of 5,000 related individuals. Figure 2.4B shows that when sample size increase to 

10,000 individuals, the window where family samples are more advantageous 

becomes narrower.  

 

In all examples highlighted so far, family studies outperform studies of unrelated 

individuals but in all of these examples power was low for both families and 

unrelated individuals. We expect that this is actually a common situation in human 

genetic studies – there may be very large numbers of trait associated loci but any 

single study may only provide enough power to detect a few of these. To explore 

this situation directly, we estimated power to detect at least one of several disease-

associated loci. Assuming power to detecting association at a specific gene is p and x 

genes with similar effect variants exist, then the power to detecting at least one of 

these is 1-(1-p)x, assuming independent genes. Figure 2.5 shows dramatic 

advantages in the power to detecting at least one of 20 trait associated genes, each 

explaining the same proportion of trait variance. For example, power to detect at 

least one gene explaining 0.5% trait variance (when 20% variants in the gene and 

with frequency <1% are causal) when 20 such genes exist is >90% in sample of 

5,000 individuals distributed in families matching Pedigree50 (Figure 2.1), whereas 
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only ~20% in a sample of 5,000 unrelated individuals. The power advantage in 

family samples increases with the variability in allele counts, which in turn is driven 

by pedigree structure (Figure 2.6).  

 

Families matching Pedigree50 are not easy to find. For a more realistic comparison 

of the power of studies of families and unrelated individuals, we repeated our 

simulations using the family structures and phenotypes observed in the SardiNIA 

sample. To preserve the correlation of phenotypes among family members, we 

started with observed HDL values together with sex, age and age-squared as 

covariates. Figure S2.4 shows that the SardiNIA families provide larger power for 

discovering rare variants with moderate effect sizes than studies of same numbers 

of unrelated individuals. For example, the SardiNIA sample provides 1.6% power to 

detect a variant with frequency 0.0001 and effect of 2.5 trait standard deviation 

units, whereas unrelated samples provide only 0.05% power (Figure S2.4A). If 100 

such variants exist, the SardiNIA sample provides ~80% power to detect at least 

one, but an equal number of unrelated individuals provides only ~5% power to 

detect at least one of such a variant (Figure S2.4B). When allele frequency increases 

(Figure S2.4C, S2.4D, S2.4E, S2.4F), the SardiNIA sample is still advantageous 

when effect sizes are moderate. 

Real Data Analysis Using SardiNIA and HUNT Studies 

 
To evaluate our approach further, we meta-analyzed blood HDL levels for 11,556 

individuals from the HUNT and SardiNIA studies (See Table S2.3 for descriptive 
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statistics for traits). Overall, 93,831 and 76,828 sites were polymorphic in the HUNT 

and SardiNIA studies respectively, resulting in 117,958 polymorphic variants when 

combining the two studies (Table S2.4). Among those, 52,700 variants were shared 

in both studies (Table S2.5), 41,130 variants are unique to the HUNT study, and 

24,128 variants are unique to the SardiNIA study (Table S2.6). Using our meta-

analysis method, both shared and non-shared variants contribute to association 

signals. 

  

We first generated summary statistics for each study adjusting for relatedness using 

empirical kinship matrices estimated from genotype data. Within each sample, test 

statistics were well calibrated with Genomic Control 1.00 in HUNT study and 1.01 in 

SardiNIA sample (See Figure S2.5 for QQ plots). To illustrate the importance of 

taking into account phenotype correlations, consider that analyzing the SardiNIA 

exome chip data and treating the samples as unrelated results in a genomic control 

value of 1.45, which is unacceptably high (results not shown); but using our 

approach, genomic control becomes 1.01. We next proceeded to meta-analyze single 

variants. Figure S2.5 shows that our meta-analysis statistics were also well 

calibrated with genomic control value <1.05, both for common and rare variants. At 

a significance threshold of p<4.23x10-7 (corresponding to 0.05/117,958), we found 

significantly associated low-frequency and rare variants at CETP, LIPC, LIPG, and LPL 

for HDL (MAF < 5%; See Figure S2.6 for Manhattan plots). Significant rare variants 

were only found in LIPC and LIPG (MAF < 1%).  
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We then proceeded to gene-level meta-analyses. Again, test statistics appear well 

calibrated, with genomic control value <1.05 (See Figure S2.7 for QQ plots). Also, by 

examining QQ plots from SardiNIA and HUNT study (See Figure S2.7), we 

discovered that, for family samples or samples from isolated population, in the 

analysis of rare variants, a small number of individuals can be quite influential such 

that all variants that are shared between this set of individuals (or families) will 

exhibit similar and often small p-values. This can lead to apparent inflation in QQ-

plots, where confidence intervals are calculated assuming all statistics are 

independent. At a significance threshold of p<2.84x10-6 (corresponding to 

0.05/17,574 and thus allowing for the number of genes tested), we found 

association at APOC3, CETP, LIPC, LIPG, and LPL for HDL (See Table 2.4 for 

tabulated results and Figure S2.8 for Manhattan plots). Among those, APOC3, LIPG, 

and LPL had evidence of association stronger than the most significant single 

variant in the region. In APOC3, none of the individual low frequency and rare 

variants had p-value lower than 10-4 on its own (Table 2.4).  

Comparison with other Methods and Tools 

 
To validate our approach, we compared our implementation to several others in a 

simulated family sample of 10,000 individuals distributed across 1000 families 

matching Pedigree10 (see Figure 2.1). 4000 genes with 1,000 base-pair were 

simulated in families from a pool of haplotypes. A quantitative trait was simulated 

under the null. Variants with MAF<0.05 were grouped for gene-level tests. Pedigree-

based kinship matrices were used in all analyses. We then analyzed the simulated 
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sample using our own famrvtest (SKAT, burden and VT tests), pedgene (burden and 

Kernel test) [Schaid et al. 2013], famSKAT [Chen et al. 2013], and FFBSKAT 

[Svishcheva et al. 2014]. Figure S2.9 shows that all tests generate well-controlled 

QQ plots under the null. 

 

To compare methods under the alternative, we simulated a dataset of 5,000 

individuals (500 x Pedigree10) with a 1,000 base-pair long gene where 50% 

variants with MAF<0.05 were causal and together explained 1% trait variance. We 

simulated data sets where all causal variants had the same direction and also where 

half of the causal variants had opposite effects. In this simulation, our method 

always matched or slightly outperformed alternative implementations (see Figure 

S2.10). 

 

These comparisons also allowed us to evaluate computation performance and 

requirements for our tool. Wherever possible, we tried to provide faster 

computation, less memory use, while still allowing for flexible input formats and 

varied choices of association tests. famrvtest is a command line tool  implemented in 

C++. It uses computationally efficient algorithms to fit linear mixed models [Lippert 

et al. 2011], and recognizes pedigree-based kinship estimates as block-diagonal 

matrices to save computational effort. For our simulated dataset with 10,000 

individuals and 164,323Z variants distributed across 4,000  genes, analysis with 

famrvtest required 1.5 hours and 1.3GB of memory to calculate both SKAT and 
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burden test statistics, a savings of up to 10-100 fold relative to alternative tools (see 

Table S2.7).  

Discussion 

 
Gene-level association tests and meta-analysis are important tools for discovering 

rare variant associations. We have proposed a series of methods that facilitate these 

analyses in family samples (or in samples where cryptic relatedness is modeled 

using variance components). Our C++ tools implement simple burden tests, 

weighted or un-weighted; and variable threshold tests as well as SKAT tests that 

outperform other tests when only small fractions of variants in each gene are causal 

or when variants with opposite effects reside in the same gene.           

 

We compare the relative benefits of family samples and population samples. By 

simulation, we show that family samples can provide substantially greater power 

for rare variant association studies because of a “jackpot” effect – the potential for 

observing many copies of a trait associated rare variant. This advantage is likely to 

be extremely important in the first generation of rare variant association studies, 

each of which is only expected to detect a small fraction of all the true rare variant 

association signals. An example of successful discovery of such variant is 

rs72658864/V578A in LDLR, a rare variant associated to LDL with effect size 23.7 

mg/dl [Sanna et al. 2011]. This variant was observed with frequency 0.00035 in the 

SardiNIA sample, where it was present in multiple families, but has not yet been 

observed in the 1000 Genomes [Abecasis et al. 2012] or the NHLBI Exome 
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Sequencing Projects [Fu et al. 2013; Tennessen et al. 2012] suggesting that it is rare 

indeed.  

 

We demonstrate the utility of our methods by analyzing two samples with complex 

inter-relatedness. Meta-analysis of SardiNIA and HUNT resulted in a well-calibrated 

genomic control value of 1.02 and increased signal at many loci known to be 

associated with HDL – demonstrating the feasibility of including family samples in 

rare variant meta-analysis. We expect that meta-analysis will be useful not only for 

combining data across studies but also to facilitate analysis of large samples 

genotyped or sequenced across multiple platforms or analyzed using a single 

platform but in a batched manner.  

 

We foresee several potential areas for refinement of our methods. For example, a 

limitation for our current approach to meta-analysis is that cross study relatedness 

and sample overlap are not modeled. In genome-wide studies, it may be possible to 

overcome this limitation by using the genome-wide correlation of test statistics 

between pairs of studies to calculate an adjustment factor that could account for 

overlap or relatedness between individuals in two studies [Lin and Sullivan 2009]– 

as suggested by Lin et al. for single marker meta-analyses. Extension of this idea has 

also been proposed in Han et al. 2013. Extending our methods to non-coding 

variants will also be attractive, particularly since the majority of trait-associated 

variants found to date are located in non-coding regions. A difficulty will be the 

development of good grouping strategies for non-coding variants, where 
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interpretation of functional consequence is more challenging. Another challenge we 

foresee is the extension of our methods to discrete traits. The natural way to do this 

is to consider an underlying continuous liability scale and use multivariate 

integration to fit the model, but there may be more computationally efficient 

alternatives to be discovered. 

 

In summary, we have proposed a series of gene-level association tests for family 

samples and methods for calculating these in a meta-analysis of related and/or 

unrelated samples. We also implemented our methods in freely available and open 

source C++ tools:  http://genome.sph.umich.edu/wiki/FamRvTest and 

http://genome.sph.umich.edu/wiki/RAREMETAL. We hope these tools and methods 

will facilitate the next round of gene-mapping studies.   
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Tables 

Table 2. 1 Power when Causal Variants All Increase Trait Values and Have the Same Effect 

Sizes 

MAF 

Cuto

ff 

Causal 

Percenta

ge 

Group by MAF Cutoff Group Only Causal Variants
b
 

Burde

n 

Madsen

-

Browni

ng 

VT 
SKA

T
a
 

Burde

n 

Madsen

-

Browni

ng 

VT 

SKA

T 

0.01 20% 
9.7 3 

13.

1 
36.6 94.3 86.7 

92.

9 
82.6 

80% 
82.4 64.7 

88.

1 
61 96 82.1 

94.

3 
70.7 

0.05 20% 
14.6 2.6 

24.

9 
36.3 95.4 75.3 

93.

8 
86.5 

80% 
81.3 39.5 

89.

2 
75 96.3 55.3 

94.

3 
82.9 

 

Simulated samples each had 5,000 individuals, organized in families with pedigree10 

structure (See Figure 1). Causal variants were selected among those identified in 

simulated 1,000 base-pair sequences and explained 1% of trait variance. Each causal 

variant had the same effect size and direction. Power is tabulated as a percentage of 

simulations exceeding significance threshold. Significance level α = 2.5 x 10
-6 

was used 

in all simulations.  

  

a. Power calculated from Madsen-Browning weighted SKAT. 

b. Power when grouping only causal variants. This column represents the largest power 

we can achieve for each simulation setting. 
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Table 2. 2 Power Comparison when Causal Variants Can Have Opposite Effects 

MAF 

Cuto

ff 

Causal 

Percenta

ge 

Group by MAF Cutoff Group Only Causal Variants 

Burde

n 

Madsen

-

Browni

ng 

VT 
SKA

T 

Burde

n 

Madsen

-

Browni

ng 

VT 
SKA

T 

0.01 20% 
4.6 0.4 6.0 36.7 38.9 21.1 

43.

4 
83.2 

80% 
30.5 10.4 

33.

4 
60.0 42.6 18.8 

42.

2 
69.0 

0.05 20% 
11.7 1.3 

15.

0 
35.7 55.4 22.3 

58.

3 
88.3 

80% 
44.0 7.8 

47.

1 
74.7 55.1 12.2 

54.

3 
81.6 

 
Simulated samples each had 5,000 individuals, organized in families with pedigree10 

structure (See Figure 1). Causal variants were selected among those identified in 

simulated 1,000 base-pair sequences and explained 1% of trait variance. Among causal 

variants, 20% were randomly selected to be trait-decreasing, and the rest causal variants 

were trait-increasing. Power is tabulated as a percentage of simulations exceeding 

significance threshold. Significance level α = 2.5 x 10
-6 

was used in all simulations.  
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Table 2. 3 Power Comparison when Causal Variants All Increase Trait Values and Explain the Same Amount of Trait Variance 

MAF 

Cutoff 

Causal 

Percentage 

Group by MAF Cutoff Group Only Causal Variants 

Burden 
Madsen-

Browning 
VT SKAT Burden 

Madsen-

Browning 
VT SKAT 

0.01 20% 4.3 4.2 9.1 20.8 88.7 94.9 90.8 67.0 

80% 66.9 86.6 85.4 20.1 85.5 97.1 93.8 27.0 

0.05 20% 3.8 5.1 9.3 9.8 78.8 98.0 90.1 53.0 

80% 38.6 88.5 82.1 9.4 56.0 97.9 92.6 12.4 

 
Simulated samples each had 5,000 individuals, organized in families with pedigree10 structure (See Figure 1). Causal variants were 

selected among those identified in simulated 1,000 base-pair sequences and explained 1% of trait variance. Each causal variant 

explained the same amount of trait variance. All causal variants were trait-increasing. Power is tabulated as a percentage of 

simulations exceeding significance threshold. Significance level α = 2.5 x 10
-6 

was used in all simulations.  
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Table 2. 4 Significant Genes from Gene-level Meta Analysis of HUNT and SardiNIA Exome Chip Data (HDL) 

Gene Burden 
Madsen-

Browning 

VT 

(Actual 

MAF 

Cutoff) 

SKAT
c
 Variants Included

d
 MAF 

Effect 

Sizes 

(SD) 

Single Variant p-

values 

APOC3
b
 2.3×10

-6
 1.9×10

-6
 

6.4×10
-6

 

(6.1×10
-4

) 
4.5×10

-5
 

11:116701560:G:A 4.8×10
-4

 0.959 1.4×10
-3

 

11:116701353:C:T 5.6×10
-4

 1.009 1.5×10
-3

 

11:116701354:G:A 6.1×10
-4

 0.528 5.7×10
-2

 

CETP 6×10
-20

 2.7×10
-3

 
2.4×10

-19 

(3.2×10
-2

) 
1.2×10

-20
 

16:57015091:G:C 3.2×10
-2

 -0.359 1.3×10
-20

 

16:57007387:C:T 4.3×10
-5

 2.241 2.3×10
-2

 

16:56995935:C:G 4.3×10
-5

 -1.572 1.1×10
-1

 

16:57012039:G:A 4.3×10
-5

 -0.803 4.2×10
-1

 

16:57009022:G:A 1.7×10
-4

 0.309 5.3×10
-1

 

16:57015076:G:A 2.2×10
-4

 0.144 7.4×10
-1

 

16:57012094:A:G 4.3×10
-5

 0.182 8.5×10
-1

 

LIPG
b
 1.3×10

-10
 6.7×10

-9
 

4.5×10
-10

 

(9.4×10
-3

) 
1.9×10

-8
 

18:47109955:A:G 9.4×10
-3

 0.375 4.5×10
-8

 

18:47113165:C:T 9.1×10
-4

 0.668 2.3×10
-3

 

18:47109939:G:A 1.7×10
-4

 1.012 3.9×10
-2

 

18:47101838:G:A 4.3×10
-5

 1.000 3.1×10
-1

 

LPL
b
 3.7×10

-11
 4.5×10

-5
 

1.2×10
-10

 

(2.0×10
-2

) 
2×10

-11
 

8:19813529:A:G 2.0×10
-2

 -0.273 1.3×10
-8

 

8:19805708:G:A 1.1×10
-2

 -0.254 7.5×10
-5

 

8:19816888:C:T 1.1×10
-3

 0.234 2.3×10
-1

 

8:19819628:T:G 4.3×10
-5

 0.193 8.4×10
-1

 

LIPC 1.8×10
-4

 1.5×10
-4

 
3.2×10

-5
 

(6.2×10
-3

) 
1.7×10

-7
 

15:58855748:C:T 6.2×10
-3

 0.539 4.9×10
-10

 

15:58837989:G:A 7.4×10
-4

 0.542 2.5×10
-2

 

15:58833993:G:A 3.1×10
-2

 0.054 1.7×10
-1

 

15:58830716:G:A 8.7×10
-5

 0.123 8.6×10
-1

 

15:58853079:A:C 5.9×10
-3

 -0.003 9.8×10
-1

 

15:58860956:G:A 4.3×10
-5

 0.025 9.8×10
-1

 

Significance level 2.84×10-6 was used for reporting significant genes. Non-synonymous, splice, and stop variants with MAF<0.05 were included in 
analysis. 
b: The gene-level p-value is smaller than the p-value for each of the single variants included in the test. 
c: P-values of SKAT were generated using weights suggested in Wu el al. [Wu et al. 2011].  
d: Variants are in the following format: CHR:POS:REF:ALT. 
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Figures  

 

 
Figure 2. 1 Pedigree Structures Used in Simulations 
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Figure 2. 2 Power to Detect Gene-level Association in Family and Population Samples 

All samples had 5,000 individuals. All family samples used the Pedigree50 structure 
(see Figure 1 for details). In every simulation, 10,000 haplotypes were simulated 
and 20% of variants with MAF<0.01 were randomly selected as causal variants, each 
explaining the same amount of trait variance. Then, a subset of simulated 
haplotypes were selected as founder haplotypes, segregated through families 
according to Mendel’s laws, and used to simulate quantitative traits. Power of the 
SKAT test was evaluated using 10,000 simulations and significance level α = 2.5 x 
10-6.  
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Figure 2. 3 Power to Detect Gene-level Association as a Function of Pedigree Structure 

In each simulation, 20% of variants with MAF<0.01 were randomly assigned as 
causal, each explaining the same amount of trait variance. Together, causal variants 
explained 0.5% of trait variance. For comparison, the red line shows the power for 
one variant with frequency of 0.5 and explaining 0.5% of the trait variance. Power of 
the SKAT test was evaluated using 10,000 simulations and significance level α = 2.5 
x 10-6.  
 



   

 41  

 
Figure 2. 4 Power to Detect Gene-level Association When Singletons are Causal 

In each simulation, 10,000 simulated haplotypes were simulated. 20% singletons from these haplotypes were chosen as causal 
variants, together explaining various proportions of trait variance. Trait heritability was 40%. Then, a subset of haplotypes 
were used to seed founder haplotypes in each family sample. Only singletons or private variants were grouped for association 
tests. 10,000 simulations were used to evaluate power in samples of 5,000 individuals (panel A) or 10,000 individuals (panel 
B). See Figure 1 for details of pedigree structures. Power was evaluated in 10,000 simulations using significance level α = 2.5 x 
10-6. 
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Figure 2. 5 Power to Detect at least one of Twenty Causal Genes 

Assuming power to detect association at a specific gene is p and n genes with similar 
effect variants exist, then the power to detect at least one of these is 1-(1-p)n. See 
Figure 2 for power to detect a single gene and additional details of simulation 
settings.  
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Figure 2. 6 Power to Detect at least One of Twenty Causal Genes as a Function of Pedigree 

Structure 

The blue bars show power to detect at least one gene where rare variants explain 
20% of trait variance and 20 such genes exist. The red line shows the power to 
detect at least one common variant with frequency 0.5 that explains 0.5% of trait 
variance when 20 such variants exist. See the legends of Figure 3 for simulation 
settings. See the legends of Figure 5 for calculating power to detect at least one of n 
genes with similar effect variants exist. 
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Supplementary 

 

 
Figure S2. 1 Example Effect Sizes and Variable Explained in Equal Effect Size Model and Equal Variance Model 

80% variants with MAF<0.05 from one simulated population sample of 5,000 individuals were randomly selected as causal. Bars of 

count of variants represent the actual count of causal variants with a certain minor allele frequency.  
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Figure S2. 2 Power of Detecting Association of a Gene when Grouping Rare Variants Using 

Various Frequency Thresholds 

 (A) and (B) Causal variants have the same effect sizes. (C) and (D) Causal variants 

explain the same amount of variance. All samples have pedigree10 structure with 5,000 

individuals. 20% or 50% variants below frequency 1% were selected as causal variants 

that are unidirectional, explaining 2% of trait variance. Then various frequency thresholds 

were used to form the group of variants to test upon. Power was evaluated using 1000 

simulations. 
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Figure S2. 3 Power of Rare Variant Associations in Family Samples and Population 

Samples 

To simulate genotype, 16,000 founder haplotypes of a single variant with certain allele frequency 

were simulated and then gene-dropped to children in family samples (for samples with less than 

8,000 founders, founder haplotypes were randomly selected from the pool of 16,000). Then 

genotypes of each individual were calculated as the count of rare alleles. Null phenotypes were 

simulated at first: in unrelated samples, null phenotypes were random draws from a normal 

distribution; in family samples, null phenotypes were simulated such that family members have 

correlated trait values (with heritability 0.4) based on covariance matrix. Then, final phenotypes 

were modified based on genotype and effect sizes: individuals with rare alleles have phenotypes 

added the amount of effect size ×genotype. A), C), and E) show the power of detecting a single 

variant. B), D), and F) show the power of discovering at least one variant assuming 200 trait-

associated variants of the same frequency and effect size exist. We used α=1x10
-8

 for power.  



   

 47  

 
Figure S2. 4 Power of Discovering a Single Variant of Various Effect Sizes in SardiNIA 

Sample and Population Sample 

SardiNIA sample has 5,916 individuals with both HDL and covariates (age, age2, and sex) 

measured. To compare power with SardiNIA sample, unrelated samples of size 5,916 were 

simulated. To simulate genotypes, 11,832 haplotypes of a single variant were simulated and 

assigned to individuals in the unrelated sample; then, a subset of 7,222 haplotypes were randomly 

selected as founder haplotypes and dropped to children in the SardiNIA sample by Mendelian 

inheritance. Phenotypes were simulated using the same method described in Figure S2.3. Power 

was calculated using 10,000 simulations. A), C) and E) show the power of discovering a single 

variant with frequency 0.0001. B), D), and F) show the power of discovering one variant 

assuming 100 variants of the same frequency and effect size exist. We used α=1x10
-8

 to 

determine power. 
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Figure S2. 5 QQ Plots of HUNT, SardiNIA, and Meta-analysis Single Variant Associations 

Variants with HWE p-value < 1.0e-05 or call rate < 0.95 were excluded from the analyses. 
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Figure S2. 6 Manhattan Plots of HUNT, SardiNIA, and Meta-analysis Single Variant 

Associations  
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Figure S2. 7 HUNT SardiNIA and Meta-analysis Gene-level Associations QQ Plots 

 

Variants with MAF<0.05 were grouped for gene-level tests. Variants with HWE p-value < 1.0e-

05 or call rate < 0.95 were excluded.  
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Figure S2. 8 Manhattan Plots for HUNT and SardiNIA Gene-level Associations 
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Figure S2. 9 QQ Plots Generated by Various Tools from Various Family-based Gene-level Tests Analyzing a Simulated Data Set 

 

A), B), C), and D) are from VT and un-weighted and Madson-Browning-weighed burden and tests. E), F), G), and H) are from family-

based SKAT and kernel tests. 4000 genes of 1k bp were simulated in a family sample with 10,000 individuals in 1000 families. A 

quantitative trait was simulated under the null. All analyses used pedigree-based kinship matrix. Davies method was used to calculate 

pvalue from SKAT test in famSKAT.
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Figure S2. 10 Power Comparison among Various Methods and Implementations 

 

1000 simulations of 5,000 individuals in 500 families were used to evaluate power for 

each method and implementation. A gene of 1000 base-pair explaining 1% trait variance 

was simulated in each data set. 50% variants with MAF<0.05 were selected as causal 

variants. In bidirectional scenario, half causal variants were selected to have opposite 

effects.  
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Table S2. 1 Type I Error of Gene-level Association Tests 

 

 

a. MB is the Madsen-Browning weighted burden test. 

b. SKAT uses the Beta(MAF,1,25) density weight. 

c. 95% confidence interval calculated based on 5,000,000 simulations.  

All estimates are within 95% confidence interval or below the lower 

level of the 95% confidence interval.  

 

  

Pedigree N Method 0.05 1×10
-4

 1×10
-5

 2.5×10
-6 

95% Confidence Intervals
c
  

(0.0498, 

0.050) 

(9.12x10
-5

, 

1.09x10
-4

) 

(7.23x10
-6

, 

1.28x10
-5

 
(1.11x10

-6
, 

3.89x10
-6

) 

Pedigree10 1000 Burden 0.050 9.06×10
-5

 7.84×10
-6

 1.67×10
-6

 

Pedigree10 1000 MB
a
 0.050 9.19×10

-5
 6.84×10

-6
 1.67×10

-6
 

Pedigree10 1000 VT 0.050 7.54×10
-5

 7.34×10
-6

 1.17×10
-6

 

Pedigree10 1000 SKAT
b
 0.050 7.99×10

-5
 8.51×10

-6
 2.50×10

-6
 

Pedigree10 5000 Burden 0.050 9.95×10
-5

 8.00×10
-6

 1.75×10
-6

 

Pedigree10 5000 MB 0.050 9.38×10
-5

 8.25×10
-6

 1.00×10
-6

 

Pedigree10 5000 VT 0.050 8.20×10
-5

 8.25×10
-6

 1.75×10
-6

 

Pedigree10 5000 SKAT 0.050 8.73×10
-5

 9.00×10
-6

 2.50×10
-6

 

Pedigree50 1000 Burden 0.049 8.43×10
-5

 7.00×10
-6

 1.33×10
-6

 

Pedigree50 1000 MB 0.049 8.02×10
-5

 6.83×10
-6

 1.50×10
-6

 

Pedigree50 1000 VT 0.050 8.03×10
-5

 6.83×10
-6

 1.83×10
-6

 

Pedigree50 1000 SKAT 0.048 8.28×10
-5

 6.33×10
-6

 1.33×10
-6

 

Pedigree50 5000 Burden 0.050 1.01×10
-4

 1.02×10
-5

 1.50×10
-6

 

Pedigree50 5000 MB 0.050 9.95×10
-5

 9.00×10
-6

 1.75×10
-6

 

Pedigree50 5000 VT 0.050 9.03×10
-5

 8.75×10
-6

 2.25×10
-6

 

Pedigree50 5000 SKAT 0.050 9.83×10
-5

 8.50×10
-6

 2.50×10
-6
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Table S2. 2 Allele Counts in Population and Family Samples by Frequency 

 

Sample 
N 

(Founder) 

Allele Counts (StDev)  

MAF=            0.05 0.01 0.005 0.001 

Unrelated 5000 (5000) 500.2 (21.4)  100.2 (9.7) 50.0 (6.7) 10.0 (3.2) 

Nuclear4 5000 (2500) 499.8 (32.1) 100.3 (14.6) 49.9 (10.7) 10.0 (4.8) 

Pedigree10 5000 (2000) 499.2 (38.3) 100.7 (17.7) 50.1 (12.7) 9.8 (5.6) 

Pedigree25 5000 (1600) 501.1 (48.8) 99.5 (22.3) 50.0 (16.1) 10.0 (7.2) 

Pedigree50 5000 (800) 503.21 (69.1) 99.8 (31.8) 49.9 (23.0) 10.0 (10.3) 
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Table S2. 3 Summary Statistics for HUNT and SardiNIA HDL Phenotype 

 

 

  

Sample 

Size 

Male Female 

N Mean Median Min Max 

Age 

(mean, 

median) N Mean Median Min Max 

Age 

(mean, 

median) 

HUNT 5637 3717 47.9 46.4 19.3 116.0 62,61 1920 56.7 54.1 23.2 139.2 70,68 

SardiNIA 5916 2506 58.7 57.1 21.3 147.7 42,44 3410 68.4 66.9 28.0 135.1 42,43 

 

  



   

 57  

Table S2. 4 Count of Variants in HUNT and SardiNIA Exome Chip Data 

 

 

[0,0.01] (0.01,0.05] (0.05,1] Total 

HUNT 63,202 9,094 21,535 93,831 

SardiNIA 41,986 9,699 25,143 76,828 

Total 117,958
a
 

 

a. This is the total number of sites that are polymorphic in the pooled HUNT and 

SardiNIA sample.  
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Table S2. 5 Count of Shared Variants in HUNT and SardiNIA Exome Chip Data 

 

  

HUNT 

[0,0.01] (0.01,0.05] (0.05,1] Total 
S

a
rd

iN
IA

 

[0,0.01] 20,149 3,646 212 24,007 

(0.01,0.05] 2,817 3,631 1,534 7,982 

(0.05,1] 168 1,345 19,198 20,711 

Total 23,134 8,622 20,944 52,700
a
 

 

a: This is the number of shared variants between HUNT and SardiNIA ExomeChip data.  
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Table S2. 6 Count of Non-Shared Variants in HUNT and SardiNIA Exome Chip Data 

 

MAF [0,0.01] (0.01,0.05] (0.05,0.5] Total 

HUNT 40,068 472 590 41,130
a
 

SardiNIA 17,979 1,717 4,432 24,128
b
 

Total 65,258
c
 

 

a: this is the number of variants that are polymorphic in HUNT but not in SardiNIA. 

b: this is the number of variants that are polymorphic in SardiNIA but not in HUNT. 

         c: the count of variants that are monomorphic in one study, but polymorphic in the other. 
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Table S2. 7 Time Usage and Key Features of Various Tools 

  
Run 
Time 

Peak 
Memory 

Use Kinship Options Input Files Implementation 

famrvtest 1.5 hrsa 1.3G 

Pedigree-based 
kinship or empirical 
kinship estimated 
from genotype 
within tool 

VCF or 
Merlin 
PED/DAT file 

C++ command 
line software 

famskat 
798 

hrsb* 3.9G 

Pedigree-based 
kinship generated by 
kinship R package 

summarized 
genotype 
matrix R function 

pedgene 20 hrs* 4.4G 

Pedigree-based 
kinship generated by 
kinship2 R package  

summarized 
genotype 
matrix R package 

FFBSKAT 13 hrsc* 22G 

Pedigree-based 
kinship generated by 
kinship2 R package 
or estimated from 
genotype by 
GenABEL 

summarized 
genotype 
matrix R package 

 

All time collections were based on one CPU time analyzing 4000 genes of 1000 base-pair 

in a family sample of 10,000 individuals in 1000 families.  

a. Time used for generating both burden and SKAT results starting from a VCF file.  

b. famSKAT only allows a gene per run, thus the total run time is linear to number 

of genes analyzed. Time to analyze one gene is 2.6 minutes.  

c. 9.9 hours were used to fit the linear mixed model under the null. 3.3 hours were 

used for calculating SKAT association statistics and p-values.  

*. Time usage does not include summarizing raw data into usable genotype matrix.  
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CHAPTER 3: ASSOCIATION AND META-ANALYSIS METHODS FOR 

CHROMOSOME X 

Introduction 

The X chromosome contains 5% information of the human genome sequence, but 

contributes fewer GWAS findings than even chromosome 21 [Wise et al. 2013], which is 

considerably smaller. This is mostly because appropriate statistical methods and tools are 

sparse making analysis inconvenient, especially for family samples. Although low 

frequency and rare variant association analysis is becoming routine for GWAS, there are 

limited tools and methods for gene-level and rare variant association on the X 

chromosome. 

 

Many work on X chromosome association methods for quantitative traits have been 

published. The work of Clayton et al. [Clayton 2008] proposed a score test for single 

variants on X chromosome in unrelated individuals.The XQTL approach [Zhang et al. 

2009]uses a mixed model including separate random effects for X chromosome and the 

autosomes while modeling X-linked marker association as a fixed effect, which can be 

further decomposed into within family and between family contributions to overcome 

population stratification [Abecasis et al. 2000; Fulker et al. 1999]. However, this method 

is limited to nuclear families, and the decomposition naturally causes loss of power. 

MINX [Abecasis 2002], MERLIN in X, uses a variance component approach to model 

polygenic effects from both autosome and X chromosome and provides score and 
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likelihood ratio tests for X-linked marker associations, which allows analysis with small 

arbitrary pedigrees. We are also aware that much work has been done on qualitative traits 

X-linked marker associations in family samples [Chung et al. 2007; Clayton 2008; 

Thornton et al. 2012; Zhang et al. 2008; Zheng et al. 2007], and X-linked QTL linkage 

analysis methods have been extensively studied and implemented in tools that are now 

widely used [Abecasis et al. 2002; Almasy and Blangero 1998; Ekstrom 2004; Lange and 

Sobel 2006]. We extend this prior work, which focused on linkage analysis methods and 

also on the analysis of single variants. Here, our work focuses on gene-level association 

and meta-analysis methods for quantitative trait in families and also on enabling practical 

strategies for modeling and controlling for population structure. All our methods are 

naturally applicable to unrelated individuals – since these are simply a special sampling 

strategy where each family includes a single individual. 

 

In this paper, we extend currently popular gene-level association and meta-analysis 

methods, SKAT, burden and VT tests, to X chromosome rare variants analysis. Our 

methods build upon the recent insight that gene-level association test statistics and meta-

analysis statistics can be reconstructed from single-variant summary statistics [Feng et al. 

2015; Liu et al. 2014]. Since most genes on X chromosome are down regulated through 

X-inactivation, such that only one “randomly” selected allele is expressed in cell or cell 

lineage [Chow et al. 2005], our methods are designed to account for this: basically, they 

assume that males hemizygous for an allele A will have the same phenotype as a female 

homozygous for A/A and that the phenotype of heterozygous females will be 

intermediate relative to the phenotype of opposite homozygotes. We evaluate type I error 
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and power of our approach using simulated data and 74 quantitative traits collected from 

SardiNIA study [Pilia et al. 2006].  

 

Method  

In this section, we describe a variance component model to handle relatedness among 

individuals and how to reconstruct gene-level association statistics from single variant 

summary statistics and covariance matrices, for both single study and meta analysis. 

Then, we summarize how we evaluated our method under the null and alternative 

hypothesis and the SardiNIA study dataset where we evaluated real life performance of 

our approach.  

Variance Component Model 

Given a sample of n individuals, we model quantitative trait values y as:  

𝐲 = 𝐗𝛃 + βsex𝐒𝐞𝐱 +  𝐠 + 𝐠𝐗 + 𝛜 

Here, Sex is the indicator variable vector encoding sex for each sample, βsex is the effect 

size for sex, X is the design matrix with relevant clinical covariates and intercept, 𝛃 is the 

vector of effect sizes of the covariates, g and gX are vectors of random effects modeling 

additive genetic effects from the autosomes and the X chromosome respectively, and 𝛜 is 

the vector of random error. We assume 𝛜 follows a multivariate normal distribution with 

mean 0 and covariance 𝐈σe
2. We also assume the autosomal and X chromosome genetic 

effects g and 𝐠𝐗 follow multivariate normal distributions with mean 0 and covariance 

2σg
2𝐊 and 2σgX

2 𝐊𝐗 , respectively. Matrices K and KX summarizes kinship coefficients 

from the autosomes and X chromosome[Lange 1997]. σg
2  is a  non-negative number 
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describing the autosomal polygenic variance contribution. σgX
2  is a  non-negative number 

that quantifies the X chromosome’s polygenic contribution to trait variance. As 

systematically described in previous works [Kent et al. 2005; Zhang et al. 2009], 

assuming complete female X-inactivation, variance explained by X-linked polygenic 

effect in females (σgX
2 ) will be half of the variance explained in males (2σgX

2 ). In the 

overall sample, the variance explained by X-linked polygenes is (2 − r)σgX
2  where r is the 

proportion of females in the sample, and total phenotypic variance equals σg
2 +

(2 − r)σgX
2 + σe

2 . Mean and covariance of y are E(𝐲) =  𝐗𝛃  and Cov(𝐲) = 2σg
2𝐊 +

2σgX
2 𝐊𝐗 + 𝐈σe

2 . Parameter estimates 𝛃̂ , σg
2̂ , σgX

2̂  and σe
2̂  are obtained using maximum 

likelihood. Although, in simple models of X-inactivation, males and females can have the 

same mean, we strongly recommend including sex as a covariate in the model to account 

for possible mean differences between the sexes.  

 

Kinship coefficient is the probability of randomly drawing two chromosomes that are 

identical by decent (IBD) from a pair of individuals. We consider two approaches for 

estimating kinship matrices K and KX. One approach uses known pedigree structure to 

calculate the expected kinship, an alternative approach uses marker genotypes across the 

entire genome to calculate observed kinship. Since males inherit X chromosome only 

from their mothers, the values and algorithms for KX are different from those for K. For 

example, for non-inbred individuals, the self-kinship coefficients for are 1 (for males) and 

0.5 (for females) on chromosome X; they are 0.5 (for both sexes) on autosomes. 

Estimating KX between family members was fully discussed in [Kent et al. 2005; Lange 

1997] and summarized in [Zhang et al. 2009].  
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Our alternative method estimates kinship using the Balding-Nicols empirical estimator 

[Astle and Balding 2009], 𝐊̂ =
1

𝑣
∑

(𝐆𝐢−2𝑓𝑖𝟏)(𝐆𝐢−2𝑓𝑖𝟏)𝐓

4𝑓𝑖(1−𝑓𝑖)

𝑣
𝑖=1  (here, v is the count of variants, 

𝐆𝐢  is a genotype vector where each element encodes the number of observed minor 

alleles in a particular individual, and fi is the estimated minor allele frequency for the i
th

 

variant). We estimate KX using this equation, but coding female genotypes as 0,1, or 2 

(depending on the number of minor alleles), and male genotypes as 0 or 2 (depending on 

presence or absence of the minor allele). This method allows us to quantify relatedness 

between apparently unrelated individuals and also allows for stochastic variation among 

pairs of individuals with the same degree of relatedness based on available pedigree data.   

Association and Meta-analysis Methods 

As previously described in our work [Feng et al. 2015], autosomal gene-level association 

test statistics can be reconstructed from single variant summary statistics and their 

covariance matrix. In this section, we apply the same idea to gene-level association and 

meta-analysis statistics for the X chromosome. 

 

We first calculate use a score test for each variant [Chen and Abecasis 2007] and 

compute summary statistics and their covariance.  The score statistic for the i
th 

variant is 

Ui = (𝐆𝐢 − 𝐆𝐢)
T𝛀̂−1(𝐲 − 𝐗𝛃̂) where Gi is the genotype vector of this variant, 𝛀̂ is the 

estimated covariance matrix of phenotype 𝐲, and 𝛃̂ is the estimated fixed effect of clinical 

covariates. The covariance matrix of m score statistics of m variants in a gene is 𝐕 =
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(𝐆 − 𝐆)T(𝛀̂−1 − 𝛀̂−1𝐗(𝐗𝐓𝛀̂−𝟏𝐗)
−𝟏

𝐗𝐓𝛀̂−𝟏)(𝐆 − 𝐆)  where G is the 𝑛 × 𝑚  genotype 

matrix. Under the null, score test of i
th

 variant Ti =
Ui

√𝑉𝑖𝑖
~N(0,1) asymptotically.  

 

Burden and Variable Threshold (VT) tests evaluate a similar model  

𝐲 = βsex𝐒𝐞𝐱 + 𝐗𝛃 + γ(𝐆 − 𝐆)𝐰 + 𝐠 + 𝐠𝐗 + 𝛆 

where γ is the fixed effect of the tested gene and null hypothesis is H0: γ = 0. The burden 

score test statistic for an X-lined gene can be reconstructed from U and V as Tburden =

𝐰𝐓𝐔

√𝐰𝐓𝐕𝐰
~N(0,1) asymptotically. w is the vector of weights for the m variants in a gene. 

The VT test uses the maximum absolute burden score statistics over all possible 

frequency thresholds as the test statistic TVT = maxF |TburdenF
|, and TburdenF

=
𝛟𝐅

𝐓𝐔

√𝛟𝐅
𝐓𝐕𝛟𝐅

 

where 𝛟𝐅
𝐓  is a vector of 0s and 1s indicating if a variant is included by a specific 

frequency threshold Null distribution and p-value evaluation has been described in detail 

in [Lin and Tang 2011; Liu et al. 2014]. 

 

Sequence Kernel Association Test (SKAT) evaluates a different model 

𝐲 = 𝐗𝛃 + βsex𝐒𝐞𝐱 + 𝛄(𝐆 − 𝐆) + 𝐠 + 𝐠𝐗 + 𝛆 

where γi is effect size of the i
th 

variant in a gene and is randomly distributed with mean 0 

and variance 𝜏𝑤𝑖 . The null hypothesis is H0: τ = 0 . The SKAT statistic is TSKAT =

𝐔𝐓𝐖𝐔 where 𝐖 = diag(w1, w2, … , wm) is a diagonal matrix of weights for each variant 

in a gene. Null distribution of TSKAT and evaluation of significance was thoroughly 

described in [Chen et al. 2013; Wu et al. 2011]. 
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To reconstruct gene-level meta-analysis statistics, we define single variant score statistics 

for meta-analysis as Umetai
= ∑ Uik

s
k=1  and Vmetaij

= ∑ Vij,k
s
k=1 , where s is the total 

number of studies,  Uik and Vij,k are score statistics and elements of covariance matrix 

from study k [Liu et al. 2014]. Then, gene-level association statistics can be established 

using the same method as described above for a single study. 

Simulations  

To evaluate our variance component model, we simulated quantitative traits under the 

null. We used three-generation pedigrees with a female to male ratio of 1:1 (see Figure 

S1 for pedigree structure).  Then the maximum likelihood estimates of variance 

components were averaged over 1,000 simulations and compared with the true generating 

values. To evaluate power, we simulated 10,000 haplotypes of 1,000 base-pair sequences, 

which is close to the length of an average protein coding sequence in humans. We 

simulated the haplotypes using ms [Hudson 2002] and a demographic model calibrated to 

mimic European population history [Adams and Hudson 2004; Novembre et al. 2008], 

and then we randomly selected 20% variants with frequency <0.01 as causal variants and 

defined effect sizes so that they altogether explained various amount of trait variance. We 

then randomly assigned founder haplotypes from the pool of haplotypes generated by ms, 

assigning one haplotype to each male founder and two to each female founder. We then 

successively sampled haplotypes for each descendant according to Mendel’s Laws. When 

evaluating type I error, autosomal and X-linked polygenic effects, together with random 

error, were simulated. When evaluating power, causal gene effects were simulated on top 

of these.. We note autosomal heritability h2 =
σg

2

Var(y)
, and X heritability hX

2 =
σgX

2

σg
2+σgX

2 +σe
2. 
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SardiNIA Study 

To evaluate our method in real data, we used exome chip data from the SardiNIA 

[Giorgio et al. 2014; Pilia et al. 2006] study, which genotyped 6,602 individuals. We 

analyzed 74 cardiovascular and personality quantitative traits, adjusted for age, sex and 

squared age, on 81,559 variants on exome chip where 1,543 variants were from 

chromosome X. Among X-linked variants, 817 had MAF<.01, 1,012 had MAF<.05. 

Among 79,980 autosomal variants, 44,557 had MAF<.01, and 53,742 had MAF<.05. 

Genotypes were called using the Illumina GenCall algorithm in combination with zCall 

V2.2. Detailed QC procedures can be found in [Giorgio et al. 2014].  

Results  

Accuracy of Heritability Estimates 

To calibrate our variance component model, we simulated quantitative traits under the 

null where autosomal heritability were either 40% or none and X heritability varied from 

5% to 40%, in samples of 1,000 individuals with a three-generation pedigree with 10 

individuals in each family and sex ratio 1:1 (see Figure S1). We then averaged variance 

component estimates over 1,000 simulations for each setting. Table 1 shows that when 

both autosomal and X chromosomal heritability are not zero, all 95% confidence 

intervals include true values. Table 1 also shows that when true X heritability was zero, 

including X variance component in the model caused minimal false attribution of 

variance (1%) to chromosome X; this is expected since variance components are always 

estimated as positive. When the autosomal heritability was zero (Table S1), autosomal 

variance component captured a minimal amount of variance (<2% among all scenarios), 

and X heritability estimates were less than 1% smaller than true simulated values.  
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Type I error 

To evaluate type I error, we simulated quantitative traits under the null in samples of 

5,000 individuals in pedigree10 (see Figure S1) together with 2,000 genes under the null. 

Figure 2 and Figure S2 show that when X heritability was 10%, regardless autosome 

heritability was zero or 40%, QQ plots from all of our four gene-level tests were under 

control. Figure S3 shows that if X heritability was 10% but we ignored the X variance 

component in the model, then QQ plot was really out of calibration under the null.  

Power and Proportion of Females 

Assuming complete X-inactivation in female, additive genetic effect from a causal gene 

from male samples has variance that is twice of that from female samples [Kent et al. 

2005]. This leads to a hypothesis that including more males in a sample has larger 

association power to detect a single variant or a gene of the same allelic effect size in 

both male and female. To evaluate this hypothesis, we simulated quantitative traits of 

5,000 unrelated individuals with different proportion of females in the sample and genes 

with 1,000 base-pair length and pre-defined causal variants (20% variants with 

MAF<.01) and effect sizes such that the gene explains 1% of trait variance in female 

samples, and performed burden test grouping variants with MAF<.01. Figure 2 confirms 

that, although larger male proportion means less causal variants collected in a sample, 

more males in a sample leads to larger association power to detect a gene explaining the 

same amount of variance in females. In a more extreme situation, all-male sample has 

three times more power (26%) than all-female sample (5%) to detect a gene explaining 

1% of trait variance in females.  Figure S4 shows similar power advantage in all-male 

sample when the variance explained by a gene in females varied from 0.5% to 2%.  
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Autosome vs. X Chromosome Power  

In practice, if a causal gene has the same set of causal variants and effect sizes, the power 

should be identical if the gene is autosomal compared to if the gene is X-linked and the 

sample contains only female. This is because causal variants have the same chances to be 

sampled in both situations and following the same segregation pattern in families. 

However, if there are males in a sample, then power is expected to be larger if the gene is 

X-linked than if the gene is autosomal. As before, we simulated 10,000 haplotypes of a 

gene with 1,000 base-pairs and randomly selected 20% variants with MAF<.01 to be 

causal and calculated effect sizes such that the gene explains 0.5%-2% trait variance as if 

the gene was autosomal (the same amount of variance explained in females if the gene 

was X-linked). We simulated quantitative traits with 40% autosomal heritability and 10% 

X heritability in families with Pedigree10 (Figure S1) where half of the samples were 

male. Figure 3 shows that there was much larger power to detect an X-linked gene than 

an autosomal gene explaining the same amount of variance. For example, when the gene 

explained 1% trait variance, power to detect an autosomal gene of such effect was 5% 

while power to detect such an X-linked gene was 12%. Figure S5 shows similar power 

advantage over an X-linked gene with 0% autosomal heritability and 10% X heritability 

compared with an autosomal gene explaining the same amount of variance with 40% 

autosomal heritability. 

SardiNIA results 

To demonstrate our methods using real data, we analyzed exome chip data from 

SardiNIA study on multiple cardiovascular and personality quantitative traits using both 

single variant and gene-level tests. Empirical kinship matrices from autosome and X 
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chromosome were estimated from genotype of variants with MAF>0.05. Seventy traits 

have genomic controls between 0.95 and 1.05. There are four traits with genomic control 

(GC) greater than 1.05 where the largest is 1.08. Among all traits, X chromosome have 

substantial amount of contribution to trait variance in G6PD level and HbA1C, with X 

heritability 27% and 10% individually, whereas the others showed X heritability of <4%. 

70 traits showed greater than zero autosomal heritability over a range of 5%-56%. Figure 

4 uses G6PD level as an exemplar trait showing that type I error and GC were under 

control. Table 2 reports signal detected from single variant tests of 1,543 polymorphic 

sites from X chromosome from exome chip using significance level 6.13x10
-7

 according 

by Bonferroni correction with 81,566 variants tested. All signal belong to three variants 

where two of them were rare with frequency <.01, and these variants were associated 

with twelve traits. Except G6PD level, all other eleven traits have only one significant 

association. Conditional analysis conditioning on the top signal in G6PD level, which is a 

relatively common variant with frequency 0.08 and p-value 6.7x10
-77

,
 

showed 

strengthened significance from 1.3x10
-24

 to 4.4x10
-26

 for the other significant rare variant 

with frequency 0.9%. This shows that this rare variant with position 153774337 on X 

chromosome with major allele C and minor allele A is not a shadow of the common 

variant nearby with the strikingly small p-value. Condition upon this rare variant obtained 

a smaller p-value for the common variant at position 153762634 with major and minor 

alleles G and A also. The conditional analysis shows that these two variants are likely to 

be independent signals instead of being shadows of each other.   
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Gene-level tests of all quantitative traits detected the association of gene G6PD with 

G6PD level using significance level 2.8x10
-6

 as shown in Table 3. All three variants 

included in gene-level tests had MAF<.01 and all had negative effects. Although the 

single variant at position 153774337 with frequency .009 and effect size of -0.8 largely 

drives the signal from gene-level tests (p=***), the burden p-value 7.8x10
-29

 is smaller 

than any of the single variant p-value. The other two extremely rare variants with 

frequency 3x10
-4

 and 4x10
-4

 both had larger effect sizes than the variant that dominates 

the signal. P-value from VT test was closer to burden p-value but a little less significant 

due to tradeoff of multiple testing. SKAT p-value was less significant compare to burden 

and VT tests in this example, since all variants had the same direction of effect. Table 3 

also shows that condition upon the common variant with the most significant p-value 

from single variant test at position 153762634 (see Table 2) leads to an even smaller p-

value for all four gene-level tests. This is evidence showing that the gene-level test signal 

of G6PD is not due to shadowing the single common significant variant of strikingly low 

p-value nearby. Analyses that condition on the most significant variant at position 

153774337 included in the gene with frequency 0.009 had a much less significant p-

value, suggesting that the gene-level test signal was mostly driven by this variant. 

However, all four conditional p-values from four gene-level tests was smaller than either 

of the rare variant included in the test, which shows synergy of these two low-frequency 

variants contributing toward the significance of these gene-level tests.  

Conclusion and Discussion  

In this paper, as an extension of our previous work [Feng et al. 2015], we described gene-

level association tests, including burden, variable threshold and sequence kernel 
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association tests that can be reconstructed from summary statistics and their covariance 

matrices from single-variant scan. This approach allows fast computation for multiple 

gene-level tests and flexible grouping strategies without analyzing raw data repeatedly. 

This also extends to powerful meta-analysis approach where raw data sharing is 

impossible. We also demonstrated that for an X-linked gene with same effects, more 

males in a sample have larger power; and there is larger power to detect an X-linked gene 

than an autosomal gene with same effect sizes.   

 

As pointed out by [Kent et al. 2005], assuming complete X-inactivation, male variance is 

twice of female and male and female have equal mean. Using this simple relationship, we 

use a variance component model with three variance components accounting autosomal, 

X chromosomal, and non-shared environmental contributions. We also described that 

empirical relationship from X chromosome can be estimated using genotypes from X-

linked common variants. This expands our methods to handling possible cryptic 

relatedness, relatedness when pedigree structure is not known, distant relatedness, and 

possible population structure and provide more calibrated results under the null.  

 

However, like any other method, our approach has assumptions that can be violated such 

that the model is not valid. For example, residual correlation may still exit after modeling 

relatedness from autosome and X chromosome because of other causes of phenotypic 

similarity such as shared-environment. If we fail to take account variance contribution of 

these extra causes in the model, and they happen to be quite large, then the model that we 

proposed might be off calibration. In this sense, checking QQ plots for any evidence of 
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inflated or deflated type I error after analysis is always recommended before making any 

conclusions.  

 

The assumption of complete X-inactivation might not always be true either. However, as 

pointed out in [Carrel and Willard 2005; Payer and Lee 2008], incomplete X-inactivation 

is often the basis of various degrees of female X chromosome anomaly. As discussed in 

[Ober et al. 2008], if the trait of interest is not about X chromosome abnormalities in 

female, then the assumption of complete X-inactivation is valid, but we recommend 

excluding samples with this anomalies from analysis when feasible.  It is also worth to 

point out that, in the situation of incomplete X-inactivation, female and male might have 

different mean. In this case, sex should be included as a covariate in the model.  

 

There are other assumptions that could be violated in real data analysis. For example, 

allele frequencies might be different in male and female due to many causes, such as 

heterogeneous ethnicity and sequencing or genotyping error. Many other reasons might 

also cause difference in mean between sexes, for example men and women differ 

naturally in average height, BMI and some personality traits. Thus, we recommend to 

always add sex as a covariate to account for the possible difference in mean. Equal effect 

sizes in male and female might also be violated due to regulatory difference between 

sexes in some traits. If there is previous knowledge showing that this is true, then the 

interaction between sex and genotype should be included in the model and sex should be 

included as a covariate. 
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Finally, although this paper mainly focuses on methods for family samples, population 

samples can be considered a special case of family sample and our methods and tools are 

feasible to samples of unrelated individuals. Our method has been implemented in 

RAREMETAL, a freely available software that supports multiple platforms including 

Linux, MAC, and Windows. The documentation, source code and executable can be 

downloaded in the following: 

http://genome.sph.umich.edu/wiki/RAREMETAL_Documentation 

 

  

http://genome.sph.umich.edu/wiki/RAREMETAL_Documentation
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Tables 

 
Table 3. 1 Autosomal and X Chromosomal Heritability Estimates Under the Null 

Polygenic 

Source 

True 

Heritability 

Mean 

Estimates SE 

Lower 95% 

Confidence 

Level 

Upper 95% 

Confidence 

Level 

Chr. X 0.05 0.05 0.0007 0.050 0.052 

Autosome 0.40 0.40 0.0012 0.396 0.401 

Chr. X 0.15 0.15 0.0008 0.149 0.152 

Autosome 0.40 0.40 0.0012 0.396 0.401 

Chr X 0.10 0.10 0.0008 0.099 0.103 

Autosome 0.40 0.40 0.0013 0.397 0.402 

Chr. X 0.25 0.25 0.0008 0.249 0.252 

Autosome 0.40 0.40 0.0012 0.396 0.401 

Chr. X 0.20 0.20 0.0008 0.199 0.203 

Autosome 0.40 0.40 0.0012 0.396 0.401 

Chr. X 0.35 0.35 0.0009 0.349 0.352 

Autosome 0.40 0.40 0.0012 0.396 0.401 

Chr. X 0.30 0.30 0.0008 0.299 0.302 

Autosome 0.40 0.40 0.0012 0.396 0.401 

Chr. X 0.40 0.40 0.0009 0.399 0.402 

Autosome 0.40 0.40 0.0012 0.397 0.402 

Chr. X 0.00 0.01 0.0004 0.007 0.009 

Autosome 0.40 0.39 0.0009 0.388 0.392 

 

Each grid represents a simulation setting with a certain combination of autosomal 

heritability (h
2
) and X chromosomal heritability (hx

2
). Results were summarized from 

1,000 simulations.  
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Table 3. 2 Single Variant Hits on Chromosome X from SardiNIA Quantitative Traits 

Association Tests 

Trait GC* Chr:Pos:A1:A2
$
 N MAF

@
 

Effect Size 

(SD)
#
 

p-value 
Conditional 

p-value** 

G6PD Level 0.99 X:153762634:G:A 6613 0.08 -1.19 6.7x10
-77

 2.3x10
-78 

G6PD Level 0.99 X:153774337:C:A 6613 0.009 -0.79 1.3x10
-24

 4.4x10
-26

 

HbA1C 1.03 X:153762634:G:A 6434 0.08 -0.74 1.1x10
-58

 
 

RBC 1.03 X:153762634:G:A 6724 0.08 -0.29 9.9x10
-20

   
Bilirubin, 

total 
0.96 X:153762634:G:A 6198 0.08 0.32 2.4x10

-18
 

 MCV 1.02 X:153762634:G:A 6724 0.08 0.27 9.9x10
-15

   
Serum Iron 0.96 X:153762634:G:A 6769 0.08 0.22 1.6x10

-12
 

 MCH 1.03 X:153762634:G:A 6724 0.08 0.23 3.4x10
-11

   
BMI 1.05 X:153036439:A:G 6770 0.0003 2.87 1.0x10

-8
 

 Waist 1.06 X:153036439:A:G 6770 0.0003 2.53 6.6x10
-8

   
Weight 1.03 X:153036439:A:G 6770 0.0003 2.68 4.4x10

-8
 

 Bilirubin, 

fractionated 
1.01 X:153762634:G:A 6198 0.08 0.18 2.2x10

-8
   

Ferritin 0.98 X:153762634:G:A 4936 0.09 0.17 2.3x10
-7

   

 
6.13x10

-7
 was used as p-value cutoff for hits. Table is sorted by smallest p-value and trait.  

*GC represents genomic control.  
$
A1 is the major allele, and A2 is the minor allele.  

@
MAF is the minor allele frequency and was calculated from founders. 

#
Effect sizes of minor 

allele were measured in standard deviations.  

**If there are more than one significant variants for a trait, then conditional analysis was 

performed. Only G6PD level has two hits. The first p-value was from conditional analysis 

conditioning on X:153774337:C:A, and the second p-value was p-value from conditioning on 

X:153762634:G:A. 
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Table 3. 3 Gene-level Association and Conditional Analysis of SardiNIA G6PD Level 

Gene 
Variants 

Included
$
 

MAF 

Effect 

Size 

(SD)* 

P-value* 
Gene-level Test p-value 

Burden MB SKAT VT 

Unconditioned 

G6PD 

X:153761811:C:G 0.0004 -1.24 1.0x10
-4

 

7.8x10
-29

 1.3x10
-21

 4.0x10
-25

 2.3x10
-28

 X:153764217:C:T 0.0003 -1.18 9.8x10
-3

 

X:153774337:C:A 0.009 -0.79 1.3x10
-24

 

Condition on X:153762634:G:A
&

 

G6PD 

X:153761811:C:G 0.0004 -1.22 1.2x10
-4

 

2.3x10
-30

 2.1x10
-22

 1.3x10
-26

 6.8x10
-30

 X:153764217:C:T 0.0003 -1.22 8.0x10
-3

 

X:153774337:C:A 0.009 -0.81 4.4x10
-26

 

Condition on X:153774337:C:A 

G6PD 

X:153761811:C:G 0.0004 -1.21 1.4x10
-4

 

3.2x10
-6

 3.2x10
-6

 2.2x10
-5

 5.6x10
-6

 X:153764217:C:T 0.0003 -1.24 6.7x10
-3

 

X:153774337:C:A 0.009 
  

 
*These are results from single variant tests. Effect sizes are for minor alleles. 
$Variants included are in the format of Chr:Pos:MajorAllele:MinorAllele. 
&

X:153762634:G:A is the variant that is most significant from single variant test for 

G6PD (See Table 3.2) with frequency 0.08.  

G6PD levels were quantile normalized before association analysis.  
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Figures 

 
Figure 3. 1 QQ Plots under Null with both Autosomal and X Contribution to Variance 

 
 
Quantitative traits were simulated in 5,000 individuals with pedigree10 (see Figure 
S3.1 for structure) under the null model. Autosomal heritability was 40% and X 
heritability was 10%. 2,000 genes were simulated starting from founder haplotypes 
and then gene-drop to children along pedigrees. Variant with frequency <0.01 were 
grouped for four gene-level tests and then QQ plots were generated based on the 
obtained p-values.  
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Figure 3. 2 Power and Proportion of Females in a Sample 

 
Power was averaged over 1,000 simulations. 10,000 haplotypes for a gene with 1k 
base-pair were simulated. Then 20% variant with frequency <0.01 were assigned to 
be causal. Effect sizes of causal variants were calculated such that causal variants 
altogether explain 1% trait variance in females. Then quantitative traits of 5,000 
unrelated individuals were simulated based on causal effects and with various 
proportion of female samples. Simple burden test was performed on each simulated 
data set.  
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Figure 3. 3 Power to Detect an Autosomal Gene and an X-linked Gene 

 
10,000 haplotypes with1k base-pairs in length were simulated. 20% variants with 
frequency <0.01 were selected to be causal and effect sizes calculated such that the 
gene explains 0.5%-2% proportion of trait variance in females. Founder haplotypes 
of 5,000 individuals with pedigree structure shown in Figure S3.1 were randomly 
selected from the pool of haplotypes. Children haplotypes were gene-dropped from 
parents haplotypes. Quantitative traits were simulated with 40% autosomal 
heritability (for autosomal associations) and 10% X heritability plus 40% autosomal 
heritability (for X-linked associations) together with causal gene effects. 
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Figure 3. 4 QQ and Manhattan Plots of SardiNIA G6PD Trait Association from Exome 

Chip Single Variant Test 

 
 
Autosomal and X-chromosomal empirical kinship matrices were estimated from 
common variants with frequency >0.05 on Exome Chip, and used for fitting the 
variance component model for this analysis. Autosomal and X-chromosomal 
heritability was estimated to be 28% and 27% individually. Genomic control was 
0.99.  

a) is the QQ plot for all variants.  
b) is the QQ plot for variants with frequency <5%.  
c) is the Manhattan plot of all variants. Green dots are variants that passed p-

value threshold using Bonferroni correction, which was 6.13x10-7. 
 

  

a) b) 

c) 
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Supplementary 

 
Figure S3. 1 Pedigree Structure Used in Simulation 
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Figure S3. 2 QQ Plots under Null with no Autosomal Contribution to Variance 

 

 
 
Quantitative traits were simulated in 5,000 individuals with pedigree10 (see Figure 
S3.1 for structure) under the null model. Autosomal heritability was 0% and X 
heritability was 10%. 2,000 genes were simulated starting from founder haplotypes 
and then gene-drop to children along pedigrees. Variant with frequency <0.01 were 
grouped for four gene-level tests and then QQ plots were generated based on the 
obtained p-values.  
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Figure S3. 3 QQ plot when Ignoring X Variance Component 

 

 
 
The QQ plot was generated from associations of 2,000 genes under the null where 
autosomal and X heritability was 40% and 10%, individually. A simple variance 
component model was fit where X variance component was ignored.   
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Figure S3. 4 Power Comparison in All-male vs. All-female Samples to Detect a Gene 

Explaining Various Proportion of Trait Variance in Females 

 

 
Power was averaged over 1,000 simulations. 10,000 haplotypes for a gene with 1k 
base-pair were simulated. Then 20% variant with frequency <0.01 were assigned to 
be causal. Effect sizes of causal variants were calculated such that causal variants 
altogether explain various trait variance in females, ranging from 0.5% to 2%. Then 
quantitative traits of 5,000 unrelated individuals were simulated based on causal 
effects and were either all male or all female. Simple burden test was performed on 
each simulated data set.  
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Figure S3. 5 Power to Detect an Autosomal Gene and an X-linked Gene 

 
10,000 haplotypes with1k base-pairs in length were simulated. 20% variants with 
frequency <0.01 were selected to be causal and effect sizes calculated such that the 
gene explains 0.5%-2% proportion of trait variance in females. Founder haplotypes 
of 5,000 individuals with pedigree structure shown in Figure S3.1 were randomly 
selected from the pool of haplotypes. Children haplotypes were gene-dropped from 
parents haplotypes. Quantitative traits were simulated with 40% autosomal 
heritability (for autosomal associations) and 10% X heritability plus 0% autosomal 
heritability (for X-linked associations) together with causal gene effects.  
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Table S3. 1 Autosomal and X Chromosomal Heritability Estimates Under the Null with no 

Autosomal Polygenic Effects 

 

Polygenic 

Source 

True 

Heritability 

Mean 

Estimates SE 

Lower 

95% 

Confidence 

Level 

Upper 

95% 

Confidence 

Level 

Chr X 0.05 0.04 0.0007 0.041 0.044 

Autosome 0.00 0.01 0.0008 0.013 0.016 

Chr X 0.15 0.14 0.0007 0.141 0.143 

Autosome 0.00 0.01 0.0007 0.013 0.016 

Chr X 0.10 0.09 0.0007 0.091 0.093 

Autosome 0.00 0.01 0.0007 0.013 0.016 

Chr X 0.25 0.24 0.0007 0.239 0.242 

Autosome 0.00 0.02 0.0008 0.014 0.017 

Chr X 0.20 0.19 0.0007 0.190 0.193 

Autosome 0.00 0.02 0.0008 0.014 0.017 

Chr X 0.35 0.34 0.0008 0.339 0.342 

Autosome 0.00 0.02 0.0008 0.014 0.017 

Chr X 0.30 0.29 0.0008 0.289 0.292 

Autosome 0.00 0.02 0.0008 0.014 0.017 

Chr X 0.40 0.39 0.0008 0.388 0.391 

Autosome 0.00 0.02 0.0008 0.015 0.018 

Chr X 0.00 0.00 0.0002 0.003 0.004 

Autosome 0.00 0.01 0.0004 0.005 0.006 

 
Each grid represents a simulation setting with a certain combination of autosomal 
heritability (h2) and X chromosomal heritability (hx2). Results were summarized 
from 1,000 simulations.  
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CHAPTER 4: IDENTIFYING TRAIT-ASSOCIATED RARE VARIANTS 

BEFORE SEQUENCING  

Introduction 

Most non-synonymous, splice altering, and protein truncating variants are very 

rare[Abecasis et al. 2010; Abecasis et al. 2012; Marth et al. 2011; Nelson et al. 

2012].Because these variants have clear functional consequence, discovery of association 

between a medically relevant trait and these variants can provide clear insights about 

disease biology.[Boucas et al. 2013; Raychaudhuri et al. 2011; Zhan et al. 2013] Next-

generation sequencing has been accelerating the discovery of these rare trait-associated 

variants, but remains expensive.  

 

Prioritizing individuals and families to sequence from existing samples remains 

important, and often relies on the simple identification of phenotypic extremes.[Ahituv et 

al. 2007; Cohen et al. 2004; Cohen et al. 2006; Sanna et al. 2011] This approach can 

enrich samples for rare alleles with large effects, and facilitates discovery of trait-

associated rare variants.[Guey et al. 2011; Kryukov et al. 2009; Sanna et al. 2011; Van 

Gestel et al. 2000] Another popular strategy is to study family samples, because 

pedigrees make it simpler to identify multiple copies of trait associated rare variants. 

Many publications successfully discussed selection strategies typically for sibship 

samples to gain association power.[Abecasis et al. 2001b; Kwan et al. 2009; Risch and 

Zhang 1995; Risch and Zhang 1996] In addition, in families, it may often be possible to 
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sequence a subset of individuals and, through genotype imputation, propagate this 

information to their relatives.[Cheung et al. 2014] This strategy is implemented in tools 

such as PRIMUS,[Staples et al. 2013] which selects a set of maximally unrelated 

samples; GIGI-Pick,[Cheung et al. 2014] which optimizes genotype imputation in 

candidate regions based on pedigree structure and genotype; and ExomePicks,[Abecasis 

2011] which selects individuals from large families to maximize ability to estimate and 

impute rare variant haplotypes.  

 

Here, we propose a new approach for prioritizing individuals for sequencing. RAREFY 

selects individuals and families that are likely to carry trait-associated rare variants. The 

approach models background polygenic effects using a variance component model and 

can adjust for covariates and the effects of known variants. Our approach relies on the 

intuition that by examining the segregation of phenotypes across the entire pedigree, it 

should be possible to better prioritize individuals for sequencing than by examining 

individual phenotypes alone. For example, intuitively, we might expect that an individual 

with an extreme phenotype who has a parent and a child who are also phenotypically 

extreme in the same direction may be more likely to carry a variant of large effect than an 

individual whose parent and child are phenotypically average (Figure S4.1). Our 

approach considers all possible variant segregation patterns and prioritizes individuals 

and families that seem more likely to carry a trait associated rare variant.  
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We show that for a fixed sequencing effort our approach has more power to discover and 

associate more trait-associated rare variants than methods that focus on individuals 

phenotypic extremes alone.  

 

Method 

In this section, we first explain the variance component model that is used to handle 

familial relationship. Then, we describe our approach for small pedigrees, where we 

enumerate and evaluate all possible genotype configurations, conditional on family 

structure. This is followed by a description of a Markov Chain Monte Carlo (MCMC) 

approach for larger pedigrees to evaluate the most likely genotype configurations, 

conditional on family structure and available phenotypes. The reason that the MCMC 

method is introduced is that for large pedigrees computational cost grows exponentially 

using the former approach, but the MCMC approach avoids the enumerations thus makes 

our method computationally feasible for large pedigrees. Finally, we describe simulations 

and the data set used as a real data example. 

 

Modeling Familial Relatedness 

Our first step is to calculate residuals of quantitative traits, taking account familial 

relationship and key covariates. We assume the usual linear model[Falconer and Mackay 

1996]  

E(𝐲𝐢) = 𝛍 + 𝐗𝐢𝛃𝐱, 

(Equation 1)  
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where 𝐲𝐢 is the phenotype vector for n individuals in the i
th

 family, 𝛍 is the vector of 

population mean, 𝐗𝐢 is the design matrix, and 𝛃𝐱 is the vector of covariate effects. Then 

𝐲𝐢 follows multivariate normal distribution with mean 𝛍 + 𝐗𝐢𝛃𝐱 and covariance matrix 

𝛀𝐢 = σg
2𝐊𝐢 + σe

2𝐈, where 𝐊𝐢 is the kinship matrix,[Lange 1997] σg
2 is the genetic variance 

component, and σe
2 is residual environmental variance. Parameters 𝛍, 𝛃𝐱, σg

2, and σe
2 are 

estimated using maximum likelihood. For convenience, we define 𝛀𝐢̂̂ = σg
2̂𝐊𝐢 + σe

2̂𝐈, as 

the estimated covariance matrix of 𝐲𝐢 and the trait residuals vector as 𝐲𝐢̃ = 𝐲𝐢 − 𝛍̂ − 𝐗𝐢𝛃𝐱̂. 

Method for Smaller Pedigrees 

Our approach calculates the expected number of copies of a rare allele in each individual 

or family for a putative rare variant with large effect size, based on observed phenotype 

and estimated variance components and fixed effects. Let 𝐠𝐢 = (gi1, gi2, … , gin), be a 

vector of genotypes coded 0, 1, or 2 copies of the rare allele. Define a random variable Sij 

as the count of trait-associated rare alleles in the j
th

 individual of the i
th

 family. Then the 

expectation of Sij given the residual vector 𝐲𝐢̃ is 

E(Sij|𝐲𝐢̃) = ∑ gijP(𝐠𝐢|𝐲𝐢̃) =
∑ gijP(𝐲𝐢̃|𝐠𝐢)P(𝐠𝐢)𝐠𝐢

∑ P(𝐲𝐢̃|𝐠𝐢)P(𝐠𝐢)𝐠𝐢𝐠𝐢

 

(Equation 2) 

where the summations range over all possible genotype configurations. P(𝐠𝐢)  is the 

probability of observing the genotype configuration 𝐠𝐢  in a pedigree. P(𝐲𝐢̃|𝐠𝐢)  is the 

conditional probability of residuals given a specific genotype configuration 𝐠𝐢.  
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To calculate P(𝐲𝐢̃|𝐠𝐢) in equation (2), we let βg be the postulated additive effect size of a 

trait-associated variant with frequency p. Then 𝐲𝐢̃|𝐠𝐢  follows the multivariate normal 

distribution with mean βg𝐠𝐢  and covariance 𝛀𝐢̃ = σg
2̃𝐊𝐢 + σe

2̂𝐈 , in which σg
2̃ = σg

2̂ −

2p(1 − p)βg
2. We write the conditional likelihood as 

 

P(𝐲𝐢̃|𝐠𝐢) = (2π)−
n
2|𝛀𝐢̃|

−
n
2exp {−

1

2
(𝐲𝐢̃ − βg𝐠𝐢)

T
𝛀𝐢̃

−𝟏
(𝐲𝐢̃ − βg𝐠𝐢)} 

(Equation 3) 

 

It is straightforward that the expected count of the rare alleles for the i
th

 family can be 

calculated using 

 

E(Si|𝐲𝐢̃) = ∑ E(Sij|𝐲𝐢̃)𝒋 . 

(Equation 4) 

 

For convenience, we name E(Si|𝐲𝐢̃) as the RAREFY-Family score and E(Sij|𝐲𝐢̃) as the 

RAREFY-Individual score. 

 

As described, our method requires enumerating all possible genotype configurations in a 

pedigree and calculating the likelihood for each. The complexity of this calculation is 

exponential with family size n. In our implementation, exhaustive enumeration is only 

feasible for pedigrees with <25 individuals. In the next section, we describe a MCMC 
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approach for larger pedigrees. In our example dataset, we apply the MCMC approach to 

pedigrees including as many as 1,453 members. 

MCMC for Larger Pedigrees 

For large pedigrees, we use a Metropolis-Hastings[Hastings 1970; Metropolis et al. 1953] 

algorithm to sample from the posterior distribution of P(𝐠𝐢|𝐲𝐢̃). For a family with n 

individuals, we consider each of 3
n
 possible genotype vectors as a potential state for a 

Markov chain. The Markov chain starts by randomly assigning founder genotypes and 

then randomly propagating founder alleles to offspring according to Mendel’s laws. After 

the initial likelihood is calculated, new states are proposed by randomly selecting an 

individual to update in the genotype vector. The probability of a state at the  iteration is  

 

L(t) = P(𝐠𝐢
(𝐭)

|𝐲𝐢̃) ∝ P(𝐲𝐢̃|𝐠𝐢
(𝐭)

)P(𝐠𝐢
(𝐭)

), 

 

where P(𝐲𝐢̃|𝐠𝐢
(𝐭)

) is calculated from Equation 3. If the updated genotype vector is 

inconsistent with Mendelian inheritance, then  P(𝐲𝐢̃|𝐠𝐢
(𝐭)

) is zero. 

 

After convergence (typically millions of iterations), allowing burn-in period and thinning, 

we estimate the posterior mean of the genotype vector  𝐠𝐢|𝐲𝐢̃  of the i
th

 family. Then 

RAREFY-Individual score E(Sij|𝐲𝐢̃) can be obtained from the posterior mean of 𝐠𝐢|𝐲𝐢̃. 

RAREFY-Family score E(Si|𝐲𝐢̃) can then be calculated using Equation 4. 

 t
th
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Simulations 

We considered three types of pedigree structures (See Figure S4.2) in simulations: a 

nuclear family with three siblings and extended 3-generation pedigrees with 10 and 15 

individuals, respectively. To simulate genotypes, we first simulated haplotypes for 

founders, using a population genetic model implemented in ms[Hudson 2002] to simulate 

1,000 base-pair sequences, and then used gene-dropping to propagate these to other 

individuals in the pedigree. Causal single variants were simulated with effect size 1 or 2 

trait standard deviations, and causal genes were simulated to explain 0.1-1.0% trait 

variance. In causal genes 20% variants with frequency <1% were selected to be causal 

and each assigned the same amount of trait variance (resulting in a different effect size 

for each variant). Total heritability for simulated quantitative traits was 40%, including 

polygenic background effects. 

 

Empirical Significance Level and Power  

We evaluated association power empirically using a family-based score test.[Chen and 

Abecasis 2007; Feng et al. 2014] 1,000 simulations were used to obtain power of each 

setting. To mimic the process of real studies, we first used phenotypes from the entire 

sample to estimate variance component and fixed effect parameters and to select 

individuals for “sequencing”. In the association analysis stage, only genotypes of these 

selected individuals contributed to association tests. Because normality is usually violated 

and sample sizes were often small after selection, we estimated association p-values 

empirically using 300,000 permutations. In each permutation, we first simulated founder 

haplotypes for the variant using estimated founder allele frequency in selected samples, 



   

 96  

and then used gene-dropping to simulate offspring haplotypes. The Besag-Clifford 

stopping rule[J. and P. 1991] was used to approximate the p-value with  faster 

computation. Power was calculated as the proportion of the original 1,000 datasets that 

showed evidence of association at empirical significance level of 10
-5

, due to limitation of 

computational cost from massive amount of permutation tests. This could limit our 

insight of the performance of our method at lower significance levels..  

Selection Methods for Comparison  

To evaluate the strengths and weaknesses of our approach, we compared RAREFY-

Individual and RAREFY-Family methods with two other popular approaches: Extreme 

Phenotype and Extreme Unrelated Phenotype strategies. All methods used residuals 

generated after adjusting for study-specific covariates and known variants in linear 

models. The Extreme Phenotype method selects individuals with extremely high or low 

residuals. The Extreme Unrelated Phenotype method picks unrelated individuals with 

extremely low or high residuals, based on a modified implementation of the PRIMUS 

approach for selecting a maximum set of unrelated individuals with extreme phenotypes. 

We compared both discovery power (the number of the trait associated allele among 

selected individuals) and association power.  

Exemplar Dataset  

To evaluate the performance of our approach we also reanalyzed LDL-cholesterol levels 

in sample of individuals from the Lanusei valley in Sardinia (see Table S4.2 for 

descriptive statistics), adjusting for age, sex, and squared age as covariates. Quantitative 

traits were quantile normalized before analysis but covariates were not transformed. The 
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SardiNIA sample includes 6,602 genotyped individuals (9,720 individuals including non-

genotyped founders and ancestors). The largest pedigree includes 1,453 individuals 

spanning five generations. Genotypes were called using the Illumina GenCall algorithm 

in combination with zCall V2.2. Detailed QC procedures can be found in Pistis et 

al.[Giorgio et al. 2014] 

Results 

In this section, we compare the power to detect trait-associated rare variants and genes 

using RAREFY and alternative approaches. We also explore the impact of misspecified 

parameters on RAREFY analyses. Finally, we apply RAREFY to a study of LDL 

cholesterol in the isolated population of SardiNIA. 

Discovery Power  

To evaluate power for a single trait-associated rare variant, we simulated family samples 

of various sizes (N=2,500~20,000) and configurations (see Figure S4.2) and a causal 

variant with minor allele frequency 0.001 with effect size 1 or 2 trait standard deviations. 

We then compared the number of causal alleles captured using the RAREFY, Extreme 

Phenotype, Extreme Unrelated Phenotype, and random selection strategies.  

 

Figure 4.1 shows that the RAREFY-Individual and RAREFY-Family methods always 

provide largest discover power for trait-associated rare alleles. Random selection 

provided the least power for variant discovery. Selecting extreme individuals without 

regard to their relatedness (the Extreme Phenotype approach) was better than selecting 

unrelated individuals with extreme phenotypes (the Extreme Unrelated Phenotype 
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approach) but still performed less well than RAREFY. For example, for a variant with 

frequency 0.001 and effect size 1 trait standard deviation, sequencing 200 individuals 

from the original sample of 20,0000 individuals using RAREFY captured approximately 

the same number of causal alleles (~4 copies) as sequencing 2,000 individuals selected 

randomly. Similarly, sequencing 500 individuals by RAREFY was as efficient as 

sequencing 1,000 or 1,800 individuals selected by Extreme Phenotype or Extreme 

Unrelated Phenotype strategies. When effect sizes are larger (2 trait standard deviations), 

RAREFY performed even better (see Figure 4.1B). For example, sequencing 500 

individuals selected by RAREFY had the same discovery power for causal alleles (~25 

captured) as sequencing 1,800 individuals by Extreme Phenotype method, and as 

sequencing > 2,000 individuals by other strategies.  

 

Figure 4.1 also shows substantial enrichment of rare causal alleles in selected samples 

using RAREFY. For example, in Figure 4.1B, applying RAREFY-Individual to a sample 

of 20,000 individuals (and on average of 40 trait associated variants), prioritizing 1,000 

individuals captured 28.2 causal alleles (versus 20.8 selecting phenotypic extremes alone) 

with effect size 2 trait standard deviations. In other words, sequencing 5% individuals 

captured 70.5% rare alleles, increasing the frequency of trait-associated variants from 

0.1% in the original sample to 1.4% in the selected sample, a 14-fold increase. 

 

Figure 4.2 shows that, with a fixed number of individuals to sequence, selecting from 

larger samples improves the value of selected individuals. For example, for a causal 

variant with frequency 0.001 and an original sample with 2,500 individuals, sequencing 
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1,000 captured 4.6 causal alleles (almost all of the 5 copies in the original sample). When 

the sample of phenotyped individuals increased to 20,000, the same sequencing effort 

(1,000 individuals sequenced) captured 28.2 causal alleles. Thus enriched allele 

frequency in two selected samples of 1,000 individuals was 0.2% and 1.4%, respectively. 

 

Complex diseases are likely to be affected by multiple variants.[Willer et al. 2008] To 

explore this situation, we simulated a 1,000 base pair sequence where 20% of variants 

with frequency <0.01 were trait-increasing and, altogether, explained 1% of trait 

variance. In this setting, each variant has a different effect size and the model used by 

RAREFY to analyze the data is misspecified. Again, both RAREFY-Family and 

RAREFY-Individual scores were able to prioritize more causal alleles for “sequencing” 

(Figure S4.3), and the RAREFY-Individual method was able to pick the most causal 

alleles. Since variants with opposite effects can reside in the same gene,[Abifadel et al. 

2003] we simulated genes where half of causal variants were trait-increasing and the 

remainder were trait-decreasing. Figure S4.4 shows that, among the methods examined, 

RAREFY provided the best power compare to others in this situation.  

  

RAREFY methods performed well regardless of pedigree size. Figure S4.3-S5 show that 

pedigree structure and size does not affect discovery power of RAREFY-Individual 

method. In Figure S4.3-S5, Discovery power for RAREFY-Family method decreased 

with increasing family size, but remained second best.  
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Impact of Model Misspecification 

Since RAREFY analyses requires postulating a frequency and effect size for trait-

associated variants, we evaluated the impact of misspecifying these parameters. Figure 

S4.6 shows that choice of MAF has almost no effect on discovery power of RAREFY 

when a true MAF ranged from 5x10
-4

 and 0.01 is misspecified between 5x10
-4

 and 0.05, 

and effect size is specified correctly. Figure S4.7 shows that RAREFY continues to 

outperform selection strategies based on individual phenotypic extremes when true effect 

size ranged from 0.5 and 1.5 was misspecified as between 0.25 and 2.5, and MAF was 

specified correctly. However, parameter settings closer to the true (and typically 

unknown) effect size produced better discovery power. With the expectation that most 

interesting trait-associated variants for complex traits will have  effect sizes greater than 

0.5 standard deviations, together with simulation results shown in Figure S4.6, we 

choose MAF 0.001 and effect size 1 as default parameter values in RAREFY. All 

simulation results shown in previous sections were based on this default parameter 

setting. 

Association Power 

To evaluate power of association analysis in samples prioritized by RAREFY, we 

performed single variant association score test[Chen and Abecasis 2007] on selected 

samples evaluating p-value empirically using 300,000 gene-drops per simulated sample. 

Figure 4.3 and Figure 4.4 shows that, among the methods we considered, RAREFY-

Family and RAREFY-Individual provides the largest and second-largest power for 

detecting a single trait-associated variant and random selection provides the least power. 

For example, using significance level 10
-5

, Figure 4.3 shows that sequencing 400 
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individuals or more from a sample of 20,000 individuals provides 89.9% and 82.8% 

power by RAREFY-Family and RAREFY-Individual; however, to obtain power >80%, 

Extreme Phenotype based selection required sequencing 800 individuals or more. 

Sequencing 2,000 individuals selected randomly only provided 22% power. Figure 4.4 

shows that, with fixed sequencing effort, selecting from a larger sample provides larger 

association power. For example, by RAREFY-Family, selecting 1,000 from 5,000, 

10,000, and 15,000 individuals to sequence provides 48.1%, 78.9%, and 91.7% power 

respectively. Obtaining 80% power by selecting 1,000 individuals with Extreme 

Phenotypes required >18,000 phenotyped individuals. 

 

Analysis of Exemplar Data Set  

To evaluate RAREFY in real data, we analyzed LDL cholesterol levels in 6,602 

individuals from the Lanusei valley in Sardinia. This is a relatively isolated population 

and includes many families, small and large[Pilia et al. 2006].  Age, sex and square of 

age were used as clinical covariates (see Table S4.1 for descriptive statistics). Known 

associated variants (See Table S4.2 for list of variants) were also used as covariates to 

obtain better discover power by RAREFY. We then evaluated our ability to identify 

carriers of rare variant V578A[Sanna et al. 2011] in LDLR, which  is unique in SardiNIA 

and has frequency 0.005 (61 copies in the sample) and effect size 23.7mg/dl (0.63 

standard deviation).  To show the impact of misspecification of parameters to RAREFY 

power, we used various parameter combinations to run RAREFY. Figure 4.5 shows that 

RAREFY typically provided higher power than methods based on selecting phenotypic 

extremes, even after parameter misspecification. For example, sequencing 1,000 
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individual by RAREFY using the default parameter settings (MAF=0.001, effect=1), 

RAREFY captured 26 copies of the rare allele, but sequencing Extreme Phenotype 

individuals captured 19. Sequencing 2,000 individuals (<1/3 of the entire sample), 

captured more than half of the rare alleles (32 copies). Figure 4.5 also shows that 

RAREFY prioritizes carriers even when only small number of individuals are sequenced. 

For example, the top 100 individuals prioritized by RAREFY include 11 copies of V578, 

but those selected based on phenotype extremes alone include only 3. Figure S4.9 and 

S10 show that including known variants as covariates boost RAREFY power but provide 

only a limited benefit when selecting phenotypic extremes.       

Tool and Computational Performance 

We implemented our method in a C++. RAREFY is a command line tool that uses 

Merlin[Abecasis et al. 2002] format input files and can prioritize carriers of trait-

increasing and trait-decreasing rare variants in small or large pedigrees. RAREFY rapidly 

handles most small pedigrees and supports parallel computing for samples including 

larger pedigrees. A RAREFY analysis of a sample of 20,000 individuals in 4,000 nuclear 

families of size five, searching for both trait-increasing and trait-decreasing variants, 

required 10.95 seconds on a single CPU. A RAREFY analysis of a family with ~1,500 

individuals using MCMC with 50,000,000 iterations in five chains takes 8 hours using 5 

CPUs.  

Discussion 

We describe a new approach to prioritize individuals and families that carry trait-

associated rare alleles. Using simulation and real data analysis, our approach greatly 
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outperforms selection based on extreme phenotypes alone. RAREFY is able to handle 

both families and unrelated samples.  

 

Our RAREFY-Individual method is able to capture more associated rare alleles than 

RAREFY-Family method, but our RAREFY-Family approach provided greater power for 

association analyses in our simulations. Part of the explanation, is that the RAREFY-

Family method typically results in samples that include more diverse sets of phenotypes – 

including family members who are unlikely to carry trait associated rare variants but 

which help estimate phenotypic values for non-carriers.  

 

Adjusting for previously associated variants is helpful in guiding searches for new trait-

associated rare variants. Working in combination, these variants can account for extreme 

phenotypes in many individuals. We suggest genotyping samples at known loci and using 

these genotypes to adjust phenotype residuals. When direct genotyping is not feasible, 

existing array data together with genotype imputation procedure can also be 

useful.[Cheung et al. 2014] We do caution that adjusting for previously associated 

common variants could reduce the chance identifying rare causal variants that are in 

linkage disequilibrium with these.  

 

RAREFY could be improved further by specifying a distribution for effect size, instead 

of a fixed value. Normal distribution has been widely used for distribution of effect sizes, 

but an appropriate prior distribution of parameters to specify the variance of the 

distribution of effect sizes should be carefully evaluated. For random effect size, 
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computational cost could also increase exponentially, depends on the distribution 

specified. Another improvement could be optimizing association test statistics, instead of 

discovery power.  

We suggest selecting individuals and families for both trait-increasing and trait-

decreasing rare variants, because both gain-of-function and loss-of-function rare variants 

are typically of interest[Abifadel et al. 2003]. After individuals and families are 

prioritized and sequenced and candidate rare variant are identified, genotyping the entire 

sample for these variants may help confirm and extend potential discoveries. 

 

In summary, RAREFY provides powerful solutions, fast computation, and command-line 

tool to prioritize families and unrelated individuals to sequence among phenotyped 

individuals.  
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Figures  

Figure 4. 1 Number of Alleles Captured for a Rare Variant (MAF=0.001) Sequencing 100-2,000 Individuals from a Sample of 20,000 

Individuals 

 

A single variant with frequency 0.001 with effect size = 1 or 2 trait standard deviation was simulated in founders and gene-dropped to 

children in original samples of 20,000 individuals, with Pedigree5 (see Figure S4.1) family structure.  
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Figure 4. 2 Number of Alleles Captured for a Rare Variant (MAF=0.001) Sequencing 1,000 Individuals from Original Samples of Various 

Sizes 

 
A single variant with frequency 0.001 with effect size = 1 or 2 trait standard deviation was simulated in founders and gene-dropped to 

children in original samples of various sizes (2,500~20,000), with Pedigree5 (see Figure S4.1) family structure.  
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Figure 4. 3 Association Power of Sequencing 200-2,000 Individuals from 20,000 Individuals 

 

 

200-2,000 Individuals were selected from 20,000 individuals, using various selection strategies. 300,000 

permutations and significance level 10
-5

 were used to obtain association power. All phenotyped samples 

were used to fit variance component model. Un-selected samples were set to have genotypes missing. 
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Figure 4. 4 Association Power of Sequencing 1,000 Individuals from Samples of Various 

Sizes by Different Strategies 

 

1,000 Individuals were selected from original samples with 2,500-20,000 individuals, using various 

selection strategies. 300,000 permutations and significance level 10
-5

 were used to obtain association 

power. All phenotyped samples were used to fit variance component model. Un-selected samples were 

set to have genotypes missing. 

 

  



   

 109  

Figure 4. 5 Power to Discover Rare Allele of V578* from SardiNIA Sample Using 

RAREFY-Individual and Extreme Phenotype Strategies 

 

50-2,000 individuals were selected for sequencing from SardiNIA sample of 6410 phenotyped 

individuals and covariates adjusted. Adjusted LDL values (40 individuals taking cholesterol-

lowering drugs were added 40 to their LDL values) were used as phenotype. LDL values were 

inverse-normalized before fitting linear mixed model. Covariates were age, sex, and squared age, 

together with known variants (See Table S4.2 for list of known variants adjusted).  

*V578A is a rare variant on chr19, position 11227562 in LDLR with minor allele frequency 

0.005 and effect size 0.63 standard deviation, which is unique in SardiNIA sample. It has total 

allele count 61 in the sample.  
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Supplementary 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure S4. 1 An Example of Who Are Selected by RAREFY and Phenotypic Extremes 

Alone. 

 

The example family was selected from a simulated sample with 20,000 individuals in 

2,000 families. A trait-associated rare variant with frequency 0.001 and effect 2 standard 

deviation was simulated in founders and then gene-dropped to children. Blue numbers 

represent rank of calculated RAREFY score. Black numbers represent rank of phenotype. 

Individuals marked as red in the pedigrees are carries.  
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Figure S4. 2 Pedigree Structures Used in Simulations. 
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Figure S4. 3 Gene-level Discovery Power Selecting from 20,000 individuals and All Causal Variants were Trait-Increasing 

DNA sequences of 1,000 base-pair were simulated in founders and then gene drop to children in various pedigree structures 
Pedigree5, Pedigree10, and Pedigree15 (See Figure S4.1). 20% of variants with frequency < 0.01 were selected as causal 
variants and explained 1% trait variance in total. All causal variants were trait-increasing. 200-2,000 individuals were selected 
from samples with 20,000 individuals.  
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Figure S4. 4 Gene-level Discovery Power Selecting from 20,000 individuals and 50% Causal Variants were Trait-Increasing 

DNA sequences of 1,000 base-pair were simulated in founders and then gene drop to children in various pedigree structures Pedigree5, 

Pedigree10, and Pedigree15 (See Figure S4.1). 20% of variants with frequency < 0.01 were selected as causal variants and explained 1% trait 

variance in total. All causal variants were trait-increasing. 200-2,000 individuals were selected from samples with 20,000 individuals.  
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Figure S4. 5 Pedigree Structure and Size on Single Variant Discovery Power. 

A single variant with frequency 0.001 and effect size 2 was simulated in founders and then gene-dropped to children in Pedigree5, 

Pedigree10, and Pedigree15. 200-2,000 individuals were selected from a sample with 20,000 individuals. 
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Figure S4. 6 Effect of Misspecifying MAF on Selection Efficiency 

1000 family samples of 10,000 individuals with Pedigree5 (See Figure1) structure were 

used to collect each data point. True effect sizes were used in these simulations.  
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Figure S4. 7 Effect of Misspecifying Effect Sizes on Selection Efficiency 

1000 family samples of 10,000 individuals with Pedigree5 (See Figure1) structure were 

used to collect each data point. True MAFs were used in these simulations.
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Figure S4. 8 Power to Discover Rare Allele of V578 from SardiNIA Sample Using 

RAREFY-Individual and Extreme Phenotype Strategies. 

 
50-6,400 individuals were selected for sequencing from SardiNIA sample of 6410 phenotyped 

individuals and covariates adjusted. Adjusted LDL values (40 individuals taking cholesterol-lowering 

drugs were added 40 to their LDL values) were used as phenotype. Covariates were age, sex, and 

squared age, together with known variants (See Table S4.1 for list of known variants adjusted).  
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Figure S4. 9 Effect of Adjusting Known Variants to RAREFY and Extreme Phenotype Methods. 

50-2,000 individuals were selected for sequencing from SardiNIA sample of 6410 phenotyped individuals and covariates adjusted. Adjusted LDL values 

(40 individuals taking cholesterol-lowering drugs were added 40 to their LDL values) were used as phenotype. Covariates were age, sex, and squared age, 

together with known variants (See Table S4.1 for list of known variants adjusted).  Default parameters (MAF=0.001 and effect size =1) were used 

running RAREFY. 
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Table S4. 1 Summary Statistics for LDL in SardiNIA Sample. 

 

  

Sample 

Size* 

Male Female 

N Mean Median Min Max 

Age 

(mean, 

median) N Mean Median Min Max 

Age (mean, 

median) 

SardiNIA 6290 2670 129.5 128.2 27.4 330.5 44.1, 42.4 3620 125.9 132.4 27.9 293.3 43.7, 42.0 

 

* Counting samples who were phenotyped and had age and sex recorded, and known variants genotyped (See Table S4.2 

for list of known variants adjusted).   
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Table S4. 2 Variants Known to be Associated to LDL and Adjusted in Analysis. 

 

Chr:Pos Status* Chr:Pos Status Chr:Pos Status Chr:Pos Status 

1:25775733 included 2:27741237 included 6:161010118 included 12:121388962 included 

1:55496039 included 2:44065090 included 7:21607352 included 12:121416650 included 

1:55504650 included 2:44072576 included 7:44579180 included 14:24883887 included 

1:55505647 included 2:44073881 included 8:9183358 included 16:56993324 included 

1:63025942 included 4:89039082 included 8:9185146 included 16:72108093 included 

1:63118196 included 5:74625487 included 8:59388565 included 17:45425115 included 

1:109817590 included 5:74648603 included 8:126482077 included 19:11195030 not included  

1:109817838 included 5:74651084 included 8:126490972 included 19:11202306 not included  

1:109818306 included 5:74655726 included 8:126504726 included 19:11210912 not included  

1:109818530 included 5:74656539 included 8:145043543 included 19:11238473 not included  

1:109822166 included 5:156390297 included 9:91540059 included 19:19407718 not included  

1:207875175 included 5:156398169 included 9:136155000 included 19:19407718 not included  

1:220973563 included 6:16127407 included 10:113933886 included 19:19658472 not included  

1:234858597 included 6:16161425 included 11:61569830 included 19:19789528 not included  

2:20903015 included 6:16197194 included 11:61597212 included 19:22614122 not included  

2:21231524 included 6:26093141 included 11:116603724 included 19:45395266 not included  

2:21232195 included 6:32412435 included 11:116607437 included 19:45412079 not included  

2:21232195 included 6:33143948 included 11:116648917 included 19:45422946 not included  

2:21263900 included 6:116312893 included 11:116652423 included 20:39091487 included  

2:21286057 included 6:131256364 included 11:126243952 included 20:39228784 included  

2:21288321 included 6:160578860 included 12:112072424 included 20:39672618 included  

 

*: Variants from chr19 were not included in analysis, in case of possible LD with LDLR V578 variant that we are interested in testing.  
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CHAPTER 5: SUMMARY AND FUTURE DIRECTIONS 

 

Summary  

In this dissertation, I discuss efficient study design for sequencing-based GWAS, 

describe a novel approach to prioritize informative families and individuals to sequence 

first, and proposed gene-level association methods for both single studies and meta-

analyzing family and population samples across multiple studies for both autosomal and 

X-linked genes.  

 

In chapter 2, I demonstrate that with the same sample size, family samples have larger 

power to detect trait-associated rare and low-frequency variants with moderate to large 

effect sizes because family samples can allow multiple copies of trait-associated rare 

alleles to be observed in a single family or a “Jackpot” effect. Although on average, when 

sample size is the same, rare allele count is expected to be the same in family samples 

and population samples, variability in allele counts is larger in families particularly in 

pedigrees with many descendants per founder. This power advantage is particularly 

obvious for variants with extremely low frequency, for example singletons and 

doubletons where population samples barely have any power, or low-frequency with 

large effect sizes. When variants become more frequent or effect sizes become moderate 

to low, population samples quickly catch up and exceed family samples in power.  
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In chapter2, I also describe a series of computationally efficient gene-level tests for 

family samples including burden, variable threshold, and sequence kernel association 

tests that are built upon single-variant summary statistics and covariance matrices without 

utilizing raw data. This also makes our methods to be easily adapted to gene-level tests in 

meta-analysis where raw data sharing is usually not feasible across studies. The fact that 

all gene-level statistics are reconstructed from single-variant scan makes it 

computationally efficient to perform multiple gene-level tests and using various grouping 

strategies without going through raw data repeatedly. Together with our efficient 

implementation in C++ code and computational considerations whenever possible in 

terms of speed and memory use, our software uses the least CPU time and memory 

compare to other implementations. Another major difference between our methods and 

others is that our variance component model is flexible enough to handle known familial 

relatedness, cryptic relatedness and population structure. Using simulations, I confirm 

that burden type tests are more powerful than kernel-based tests when number of causal 

variants in a gene is large and all causal variants have the same direction in effect sizes, 

and kernel-based tests are more powerful when number of causal variants in a gene is 

small or causal variants have opposite directions in effect sizes. I further demonstrate the 

usage of our method and software by meta-analyzing SardiNIA and HUNT exome chip 

data for HDL level by not only successfully detect known genes that are associated with 

HDL but also particularly detect APOC3 with a smaller burden p-value using ~12,000 

individuals than previous studies where 10 times more samples were analyzed [Crosby et 

al. 2014].  
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In chapter 3, I describe a series of gene-level tests for X-linked variants and genes in 

families and unrelated individuals. I describe the variance component model where 

autosome and chromosome X polygenic contributions are modeled separately. This 

variance component is flexible enough to model familial relatedness, cryptic relatedness, 

and population structure manifested through both autosome and chromosome X. I further 

describe the method to estimate relatedness from genotypes of X-linked markers to model 

phenotypic correlation contributed by X chromosome. Our work assumes complete X-

inactivation in female, and code genotypes of females as 0,1, or 2 and males as 0 or 2 

correspondingly. In this case, male samples contribute twice the variance of female 

samples toward total trait variance for genes of the same effect sizes. Using simulations, I 

show that our gene-level association methods and implementation are well controlled 

under the null. I also demonstrate that there is larger power to detect an X-linked gene 

than an autosomal gene of the same effect sizes, and more males in a sample provides 

larger power to detect an X-linked gene when sample size is fixed. Finally, I demonstrate 

the usage of our methods and tool using SardiNIA quantitative traits and report the 

association of G6PD with multiple traits measured in this study.  

 

In chapter 4, I describe a novel likelihood-based approach to prioritize individuals who 

are likely to be carriers of traits associated rare variants, when budget is limited but 

sequencing cost is high. I describe the exact calculation for small pedigrees and an 

MCMC approach to estimate the quantity when exact calculation is not feasible to large 

pedigrees. By simulations, I demonstrate that our method has larger power in both 

capturing trait-associated rare alleles and detecting association of these variants compare 
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to selecting individuals with phenotypic extremes alone. I also demonstrate that the 

constant prior value of frequency and effect sizes have minimal effect on power if they 

are specified within a reasonable range. Using SardiNIA data where the largest family 

has ~1,200 individuals, I demonstrate the usage and computational cost of our method 

and implementation and show that RAREFY has larger discovery power than others. 

 

Future Directions 

There are many open questions in sequencing-based association studies. They can be 

statistical and computational challenges. In the future, I seek solutions or improvements 

in the following three topics.  

 

First, I seek to develop more efficient statistical method or computational approach to fit 

variance component model in large samples. Our current method and implementation has 

been tested to be able to analyze 20,000 individuals and 200,000 variants in a week on 

*** CPUs. However, larger samples might be available in the near future, which requires 

more efficient implementation and statistical approach. Although a convenient way to 

analyze very large sample is to divide a sample into smaller ones that have the minimal 

relatedness in between, for example, a division by ancestry, the correlation between the 

sub samples is un-avoidable. Also, when multiple variance components are included in 

the model, for example, when chromosome X variance component or shared-environment 

component is included in the model, currently available fast algorithms for simple 

variance component model, which contains only one genetic component and non-shared 
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environment, are not applicable. Faster likelihood maximizing algorithms are in great 

need for this type of variance component models.  

 

Second, there are many interesting topics that need further investigation in meta-analysis. 

In my dissertation, we propose methods to meta-analyze both related and unrelated 

samples or samples with population structure or cryptic relatedness. However, in real data 

analysis, relatedness between samples is possible. This type of relatedness, cryptic or 

distant, is usually ignored. The other topic in meta-analysis that might be interesting is 

that when meta-analyzing genotyping array data across studies, effect size estimates are 

not homogeneous even for the same variant because variants have very different linkage 

disequilibrium patterns in different populations. This issue has more impact on rare 

variants than on common ones because rare variant frequencies are more likely to be 

confounded with population structure and geological locations. Special considerations are 

needed for the existence of heterogeneity in meta-analysis. 

 

Third, there are a few topics that are in need of discussion in chromosome X analysis. 

Our current approach has a few assumptions, for example, variants in male and female 

have the same frequency and effect sizes. These assumptions could easily be violated in 

real data. For example, a gene could be differently expressed between sexes in some 

tissues but not in others, which suggests that male and female might have different 

architecture of regulatory interactions. This could lead to different effect sizes between 

male and female. In this situation, sex and genotype interactions might be a reasonable 

way to evaluate association thoroughly. Also, when frequency for the same variant is 
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different between sexes, our basic assumption is violated. Then a different variance 

component model where both female and male variance components are included might 

be more appropriate.  

 

Conclusion 

New problems emerge with rapid improvement in technology in human genetic studies. 

With more biological insight of disease and human health-related traits are revealed, the 

need of appropriate statistical methods and efficient computational solutions will be in 

great need. To this end, I propose power statistical methods and provide computationally 

efficient tools to facilitate the science community with discoveries of rare and low-

frequency variants that contribute to the majority of polymorphism from sequencing 

studies. I evaluate study designs and provide insight on powerful discoveries from 

sequencing-based association studies. I propose powerful approach to identify possible 

carriers of variants of interest to sequence first which could be easily imputed to the rest 

of the sample, to gain power with limited cost. These statistical approach and design 

strategies will facilitate scientific investigators for faster and powerful discoveries.  
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