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“Kein versuch ist so dumm, dass man ihn nicht probieren sollte.”

"No experiment is so dumb, that it should not be tried."
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ABSTRACT

Resonant and Time-Resolved Spin Noise Spectroscopy of
Electron Spin Dynamics in Semiconductors

by

Brennan C. Pursley

Chair: Associate Professor Vanessa Sih

Determining the spin properties of novel materials is necessary for the development of

proposed spin-based information processing devices, or spintronics. While existing op-

tical techniques work for some semiconductors, they are ineffective for other strategic

material systems. In this dissertation, we explore gallium arsenide bismuthide alloys

and irradiated gallium arsenide using conventional methods. We then introduce the

novel techniques of Resonant and Time Resolved Spin Noise which may enable optical

studies of previously inaccessible materials.

Gallium arsenide bismuthide has a large tunable spin-orbit splitting, which could

be desirable for spintronic applications. Hanle effect measurements reveal that the

product of the g factor and effective spin lifetime (gTs) ranges from 0.8 ns at 40 K

to 0.1 ns at 120 K, while below 40 K there was negligible change. The temperature

dependence of gTs shows evidence of thermally activated behavior attributed to hole

localization at Bi or Bi cluster sites.

Modern electronics are sensitive to radiation damage and require extensive mod-

ification for use in space, nuclear robotics, and other environments, but the effects of

xiii



long term exposure on spin properties had not previously been investigated. Time Re-

solved Kerr Rotation measurements of irradiated gallium arsenide reveal robust spin

behavior to 5 MeV protons up to a 1014 p/cm2 fluence, even as photoluminescence

intensity decreases by two orders of magnitude.

Spin noise measurements are sensitive and capable of surpassing more established

methods. However, the majority of schemes are restricted to Fourier analysis, record

all sources of noise, and suffer digitizing restrictions. Since digitization involves dis-

crete binning, amplitude resolution is limited by background fluctuations. Our novel

techniques, Resonant and Time Resolved Spin Noise, bypass these issues using ul-

trafast laser pulses in tandem with analog electronic calculations that remove the

background prior to digitizing. In principle, our system’s accessible bandwidth for

spin dynamics is ∼10 THz with sub-nanoradian/
√
Hz signal resolution using com-

mercially available components. We demonstrate this measurement technique on a

bulk n-type gallium arsenide sample and extract values for the g factor and dephas-

ing time that are consistent with results from Time Resolved Faraday Rotation and

Resonant Spin Amplification.
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CHAPTER I

Introduction

1.1 Why Spintronics?

Computer technology is ubiquitous and, in many ways, required for modern life.

Typical smartphones are so powerful that NASA is using them in a fleet of satellites.[3]

These facts are astonishing when contrasted with the age of the transistor–68 years

old this December.[4] At present, there are plans to reduce transistor feature size

through 2028.[5] However, as dimensions decrease, capability improvements are ex-

pected to be modest and there will be many challenges to successful fabrication.[6, 7]

Attempts to achieve order of magnitude improvements beyond today’s technology,

be it computation speed or power consumption, will require something beyond the

electronic transistor.

Transistors are the workhorse of modern technology because they can manip-

ulate and store information through binary encoding—high or low voltages. But

information can be encoded in a near limitless variety of forms. For example, quan-

tum information storage through entangled system elements could allow significantly

denser information storage and processing speeds. The recent 30 GHz manipulation

of two entangled quantum dot electrons separated by 9 nm of material can hold a

superposition of four distinct states in a space comparable to the smallest feature size

of a modern transistor.[8] However, quantum computation is far from being available
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for handheld devices. The first transistor functioned at room temperature with a few

wires and a power supply. The state-of-the-art quantum information systems require

vacuum systems and cryogenic temperatures.[9] If we desire significant and widely

available computation improvements past the year 2030, we will need something else.

One alternative is to encode information using ensemble spin polarizations that

allow classical limit modeling. Electrons are Fermions with a spin of 1/2, and as

such, are a two-state system, follow the Pauli exclusion principle, and obey Fermi-

Dirac statistics. Spintronics exploits these properties of electrons in a myriad of ways.

Most consumers have already used a spintronic device: the read sensor of a hard disk

drive.[10, 11] In 2007, a “spin field-effect transistor” was demonstrated in silicon, the

core material of the electronics industry.[12] If spintronic logic is to become mass

produced, the robust fabrication techniques for silicon would greatly simplify the

endeavor—though there are many other challenges to overcome. With diminishing

improvements for electronic transistors, spintronic gating demonstrated, and some

consumer spintronics already available, one would expect fully spintronic computers

on the horizon.

1.2 Why Spin Noise?

In order to engineer the next generation of technology, we need to thoroughly

understand the material systems available to us and predict the behavior of structures

that may not exist at present. This requires measurement techniques that can extract

the precession frequency and spin dephasing time for a variety of materials that,

respectively, have tunable carrier densities, mobilities and other unique properties.

Spin noise can perform the necessary tasks while also being a contactless, nearly

non-perturbative, optical method.

Spin dephasing times and g factors, beyond their base engineering utility, can also

be used as another level of contrast for imaging and analysis. Proof-of-principle spin

2



noise based experiments have demonstrated three-dimensional carrier density map-

ping in bulk materials and the extraction of a homogeneous transition linewidth for an

ensemble of quantum dots.[13, 14] Pump-probe methods would have proven difficult,

if not impossible, to use for extraction of the same information due to absorption,

beam profile, and energy selectivity issues. We direct the reader to the cited papers

as further discussion of those measurements is beyond the scope of this dissertation.

Conventional continuous wave laser spin noise measurement systems leave a gap

in sensitivity and bandwidth that requires the development of an alternative. Pulsed

laser systems are ideal for accessing high speed dynamics that are well out of range

for most electronics, and a few attempts at incoporating them have already been

made.[15, 16, 17, 18] However, nearly all spin noise methods use a fast analog-to-

digital convertor (ADC) for signal processing. This means that all sources of noise

are recorded, reducing signal resolution. Moreover, aliasing—the appearance of a

high frequency signal at a low frequency due to finite spaced sampling—has to be

employed to observe frequencies beyond the Nyquist cutoff, complicating analysis.

Our techniques of Resonant and Time Resolved Spin Noise bypass these issues while

keeping many of the benefits inherent to spin noise experiments.

1.3 Organization

This dissertation addresses material characterization hurdles through the develop-

ment of Resonant and Time Resolved Spin Noise. In the dissertation, we will survey

physical concepts and experiments, building toward the need for, and understand-

ing the role of, these new techniques. Proof-of-principle measurements demonstrate

capabilities that are unachievable with existing methods.

Our focus will be on how one measures the spin physics of electrons within a semi-

conductor. To understand what we learn through experimentation, Ch. II discusses

semiconductors and spin dynamics modeling. In the hope of clarity, we will keep

3



the development of relevant physics brief, add historical perspective when useful, and

guide the reader to more thorough texts through citations. In Ch. III we discuss

equipment used for conventional measurements, followed by Ch. IV with a discussion

of standard spin dependent optical techniques.

The latter portion of the dissertation discusses experimental results. Chapter

V is dedicated to a study of GaAsBi which promises to offer a tunable spintronic

parameter. Chapter VI explores the robust spin dynamics of GaAs in the face of

proton irradiation. Radiation poses a difficult challenge when designing satellite sys-

tems or equipment that will work in hazardous environments. The possibility that a

spintronic device could function normally in a harsh environment without extensive

modifcations is exciting.

Chapter VII is where we discuss the ideas and modeling behind Resonant and

Time Resolved Spin Noise, including proof-of-principle measurements. We will rely

on information from the previous chapters to aid in analysis and contrast with the

novel capabilities. In Ch. VIII, we summarize this dissertations’ contributions to the

advancement of our understanding of spin dependent physics and the enhancement

of available spin based measurement techniques.
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CHAPTER II

Spin Physics in Semiconductors

Spin is the quantized intrinsic angular momentum of a particle. It is qualita-

tively useful to imagine a charged particle spinning about its central axis where the

rotation—beyond having angular momentum—leads to a magnetic moment. Spin

and magnetic moments are thus intimately related. Oddly enough, neutrons have

a magnetic moment even though the net charge is zero. This is because neutrons

are made up of subatomic particles known as quarks which have their own charge

and associated spin—the charges cancel while the angular momentum does not. It is

important to note that this classical analogy, though a useful way to picture spin, is

not what quantitative calculations should be based upon. A thorough derivation of

spin requires relativistic quantum mechanics using methods developed by Dirac.[19]

In this chapter I will review the physical concepts necessary to understand the

experiments discussed in the manuscript. Each section topic could fill a textbook in

its own right so we guide the reader to useful references for more detailed discussions.

The sections are organized as follows: Sec. 2.1, the Stern-Gerlach experiment and its

analysis; Sec. 2.2, semiconductor band theory, dopants, and scattering; Sec. 2.3, spin

dynamics including the Bloch-Torrey equations, dephasing, optical selection rules,

and Faraday rotation.

5



Figure 2.1: Schematic of Stern-Gerlach apparatus. B is the magnetic field, ∂B/∂z
is the gradient of the field. Both point along the direction of the orange
arrow. The small black arrows represent the orientation of angular mo-
mentum that led to the splitting of the beam of silver atoms. Stern and
Gerlach believed they were measuring effects from quantized orbital an-
gular momentum, when in fact, the splitting of the beam of silver atoms
that they observed was due to quantized spin angular momentum.

2.1 The Stern-Gerlach Experiment

The first experiment to solidify quantum mechanics and imply the existence of

spin, was performed by Otto Stern and Walther Gerlach in 1922.[20] At the time,

the best quantum model was Bohr’s atomic theory which, when combined with

“space quantization”—the quantization of physical orientation—yielded a two state

discretization of orbital angular momentum for the hydrogen atom.[2] Doubt sur-

rounded the validity of quantum mechanics as aspects of Bohr’s predictions could

be accounted for using classical arguments and “space quantization” had not been

observed. In 1921, Stern proposed that if hydrogenic atoms were passed through a

magnetic field with a gradient in the same direction, then the idea of “space quanti-

zation” could be tested directly.[21]

Figure 2.1 shows a schematic of the Stern-Gerlach apparatus. A beam of atoms
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is generated by heating silver to 1000◦ C in an oven and passing the output through

a series of two slits. The beam then passes through specially shaped magnets so that

both the field and its non-zero gradient point in the same direction. If we define the

graded field as pointing in the z-direction, then the force on the magnetic moment of

the atoms is: [22]

Fz =
∂

∂z
(µ ·B) ' µz

∂Bz

∂z
(2.1)

Therefore, if there are only two allowed magnetic moments in the z-direction, a single

unpolarized incident beam will be split by deflection in two directions. If this is not

the case, the single beam would be smeared out over the screen.

Silver was chosen as it has only one electron in its outermost orbital thereby

making it hydrogenic and easier to interpret. The Stern-Gerlach experiment was

both fortuitous and erroneous. On one hand, they had confirmed the quantization of

angular momentum in a visually striking way: the physical separation of two beams

of atoms, sputtered onto a screen due to quantization. On the other hand, their

guiding principle for performing the experiment, and subsequent interpretation of

the results, was wrong. They were truly lucky in observing any effect at all. It

would be several more years before anyone would make the connection between the

Stern-Gerlach measurements and what we now call the spin of the electron.

2.2 Semiconductors

Semiconductors are materials that straddle the resistive and conductive regimes.

Namely, we assume that we can tune the electrical conductivity of the material

through temperature, doping, or some other method enabled by partially filled bands

and a bandgap. The existence of bands and the associated gap allow for optical tran-

sitions to manipulate and interrogate a sample. This is the key to the measurement

7



- 3 0
- 2 5
- 2 0
- 1 5
- 1 0
- 5
0
5

1 0

En
erg

y (
eV

)

G a A s

ΓL X U Γ
- 1 2 . 5
- 1 0 . 0

- 7 . 5
- 5 . 0
- 2 . 5
0 . 0
2 . 5
5 . 0

S i

En
erg

y (
eV

)

ΓL X U Γ

Figure 2.2: Tight binding method calculations of (left) GaAs and (right) Si band-
structure. Dashed rectangles are the bandgaps. Calculations used an 8x8
Hamiltonian with up to next nearest neighbor interactions and include
spin-orbit coupling. Reference data from pseudopotential calculations
was used to seed the interpolation of parameters. Code was developed by
John Hinckley.

techniques we will discuss in Ch. IV.

2.2.1 Band Theory

All materials are made of atoms so it is reasonable to assume that we can build

material models based on our knowledge of the constituent atoms. This idea was

first put forth by Bloch in 1928 and is commonly referred to as the “tight binding

method.”[23] We will briefly discuss the conceptual aspects to the formation of bands

and how one makes calculations from there. Figure 2.2 shows two examples of tight

binding calculations performed for gallium arsenide (GaAs) and silicon (Si). For

an introduction to band theory and all things semiconductor, we recommend the

references [24, 25].
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2.2.1.1 The Tight Binding Method

We begin by assuming that we have solved the time-independent Schrodinger

equation for the energy levels of the relevant atoms of our solid.

Hψn = Enψn (2.2)

H is the Hamiltonian of the atom, En are the allowed energies, and ψn are the

wavefunctions. We then arrange the atoms in a periodic lattice at distances such that

the atoms do not yet “know” they are on a lattice. Slowly, we contract the lattice

such that the energies of the outermost, or valence, electrons of the atoms begin to

be perturbed. Our problem for understanding a solid has reduced to calculating the

perturbation of the electronic wavefunctions when placed in a lattice. “Tight binding”

describes our approximation that the electrons are bound to their host nucleus and

perturbed by neighboring electrons and nuclei.

Wavefunctions in a periodic lattice are described by Bloch’s Theorem and have

the form[25]:

φk (r) = uk (r) exp (ik · r) (2.3)

uk (r) = uk (r +R) (2.4)

where r is the electron position relative to the host nucleus, R is the lattice spacing,

and our label k is the electron wavevector which is proportional to the momentum

and inversely so to the de Broglie wavelength. We now assume we can expand φk (r)

in terms of ψn (r) and solve for the expansion coefficients using the perturbation of

the atomic Hamiltonian. In principle, we are done and have all the information we

need. In practice, solving for the wavefunctions and allowed energies is non-trivial

and requires approximations with varying applicability.
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2.2.1.2 Bandgaps and the “Nearly Free Electron”

Using the tight binding method, we started with atoms so we also started with

discrete energy spacing. We assume that as we brought the atoms together, the

interaction was slight enough to warrant using perturbation theory. The resulting

interactions broaden the atomic levels creating a dispersion relation between momenta

and energy, or “band.” The gaps between atomic energy levels remain assuming the

perturbation is not strong enough to blend them.

There is an alternate approach, as with anything in quantum mechanics, to de-

veloping bands. One that works well for metals is called the “nearly free electron”

model. Basically, start with a free electron and its associated wavefunction, create

a weak periodic potential made up of positive charges—think bare nuclei—and then

solve for the new wavefunction using perturbation theory.

The “nearly free” approach offers an enlightening way to think about bandgaps:

the gaps are the result of Bragg reflection at the Brillouin zone edges. William

Henry Bragg, and his son William Lawrence Bragg, shared the 1915 Nobel Prize in

Physics “for their services in the analysis of crystal structure by means of X-rays.”[26]

What they did was connect the diffraction pattern of x-rays to the underlying crystal

structure of materials.

With the “nearly free electron,” we start with a plane wave solution. Plane waves

will interfere when scattered from a periodic potential, and for certain wavevectors

k—the edges of the Brillouin zone—standing waves form. Since we are using pertur-

bation theory, our original plane waves are no longer solutions, but superpositions of

them are. At the Brillouin zone edges, we have multiple new solutions, all different

superpositions of our original standing waves, which leads to different distributions of

the electron wavefunction. These distributions vary the density of electrons near or

far from the lattice sites resulting in different respective potential energies. Therefore,

at the Brillouin zone boundary, we have the formation of energy gaps.

10



2.2.1.3 Spin-Orbit Coupling and Other Perturbations

We have said we are using perturbation theory, and we have even hinted that

we are using Coulombic potentials, but we have not explicitly addressed this critical

issue. The proper choice of potential determines the validity of our solutions, as well

as their ease of calculation. The simplest case is that of a rigid periodic array of

screened Coulombic-like potentials. Note that we use a rigid lattice. We reserve all

motion, besides that of a nearly free electron, to the subject of scattering theory.

The periodicity of our lattice depends upon the constituent atoms and correspond-

ing unit cell. The unit cell is the smallest collection of elements that can be repeated

and interconnected to form a lattice—the reciprocal of the unit cell in momentum,

or kspace, is the Brillouin zone. In practice, one determines the potential profile of a

unit cell and then perturbs that profile. This allows for the modeling of mono-atomic

materials and multi-atom alloys all the way through superlattice heterostructures.

The next perturbation, typically in terms of importance, is spin-orbit coupling.

Without it, we have neglected a degree of freedom for the electron and eliminated

entirely our ability to model material spin dynamics. Spin-orbit coupling stems from

the Zeeman interaction

HZ = −µ ·Beff (2.5)

where µ ∼ Ŝ is the magnetic dipole moment of the electron with Ŝ its spin angular

momentum. Beff is the effective magnetic field that the electron “sees” as it moves

through the potential gradient of the lattice.

Special relativity tells us that a static electric field in the rest frame appears as a

superposition of static electric and magnetic fields in a moving frame. This can be

written as

Beff ∼ Elat ×
v

c
(2.6)

where Elat is the gradient of the lattice potential, v the electron drift velocity, and c
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the speed of light. We connect the magnetic field to the orbital angular momentum

of the electron by noting that Elat is strictly along r from our choice of potential,

and that

L̂ ∼ r× v (2.7)

where L̂ is the electron orbital angular momentum. Putting everything together, our

Hamiltonian is

HSO ∼ L̂ · Ŝ (2.8)

hence, the spin-orbit interaction. As one might expect, a Zeeman type interaction

will result in energy splitting and we observe more structure in the bands.

2.2.1.4 The k · p Method

There are many, Many, MANY other ways to perturb the bandstructure. The

deformation potential which accounts for strain is but one example and is often re-

quired for heterostructures. While the full band structure can be fairly complicated,

for practical purposes we can ignore almost everything except for a small region in

k-space between the bottom of the conduction band and top of the valence band,

commonly referred to as the bandedges.

All of the action in a material happens where the electrons are mobile. This oc-

curs primarily near the bandedges for many materials. The k ·p method allows us to

approximate the bandedges using quadratic functions where the curvature is deter-

mined through an “effective mass.” All of the relevant material information resides

in the effective mass parameter and the energy separation of the bands. Rather than

interpolate behavior between lattice sites like the tight binding method, we extrap-

olate from solutions at the bandedges using the quadratic functions. The simplest

type of semiconductor has a direct gap where the bandedges are both at the Γ-point

where k = 0. GaAs has a direct gap and will be our focus for the remainder of
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this manuscript. Silicon, the backbone of the electronics industry, has an indirect

gap because the highest point in the valence band is at Γ while the conduction band

minimum is at X (see Fig. 2.2) and is a bit tougher to work with both optically and

theoretically.

k · p theory gets its name from a term in the modified unit cell Hamiltonian. We

start with the standard Schrodinger equation, assume it operates on Bloch states,

and perform some mathematical manipulations to reach

(
p2

2m0

+ V (r) +
~
m0

k · p+
~2k2

2m0

)
un,k = En,kun,k (2.9)

Using the above equation with perturbation theory allows us, in certain symmetry

conditions, to write

En,k = En,0 +
∑
i,j

~2

m∗i,j
ki · kj (2.10)

with m∗i,j being an effective mass. We will now jump to some results, but for the

interested reader, a useful derivation can be found in Ref. [24].

In materials like GaAs, we can limit our focus to the following four bands: Con-

duction, Heavy Hole, Light Hole, and Split-Off. For GaAs, the conduction band has

s-like wavefunctions
(
j = 1

2
→ Φ 1

2
, 1
2
,Φ 1

2
,−1

2

)
and a simple dispersion relation for the

energy:

Ec = Eg +
~2k2

2m∗c
(2.11)

with Eg being the bandgap and m∗c being an effective mass of the conduction band

electron. For the remaining valence bands, life is more complicated as they are p-like

with corresponding total angular momentum j = 3
2
. If we assume there is large spin-

orbit coupling, as in many semiconductors, we can ignore the split-off band and use

the 4 × 4 Luttinger-Kohn matrix equation.[24, 27]
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with the following element definitions

Hhh =
~2

2m0

[
(γ1 + γ2)

(
k2
x + k2

y

)
+ (γ1 − 2γ2) k2

z

]
(2.13)

Hlh =
~2

2m0

[
(γ1 − γ2)

(
k2
x + k2

y

)
+ (γ1 + 2γ2) k2

z

]
(2.14)

b =
−
√

3i~2

m0

γ3 (kx − iky) kz (2.15)

c =

√
3~2

2m0

[
γ2

(
k2
x − k2

y

)
− 2iγ3kxky

]
(2.16)

For GaAs, the Kohn-Luttinger parameters are [24]

γ1 = 6.85

γ2 = 2.1

γ3 = 2.9

The band structure is certainly simpler to work with when compared to the tight

binding model, but the valence band result is still too complicated for back of the

envelope calculations. If we make the further approximation that the relevant physics

near the Γ-point can be represented with just a parabolic dispersion relation, then

we can empirically extract an effective mass. The values for GaAs below, taken from
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Figure 2.3: Plot of the approximate bandstructure of GaAs about the Γ-point using
the effective mass approximation. k is in units of the inverse lattice
constant, equal to (5.65 Å)−1.

Ref. [24], can be used for density of states calculations.

m∗c = 0.067m0

m∗hh = 0.45m∗0

m∗lh = 0.08m∗0

We use the above effective mass values to make Fig. 2.3. Often, such a figure is used

to represent the direct gap behavior of various materials. It should be clear that the

diagram is only accurate near the bandedge.

2.2.2 Holes

At this point, the reader may wonder “What are holes?” We discussed band theory

from the perspective of perturbations of electron wavefunctions but then called certain

bands “heavy hole” and “light hole.” A “hole” is a pseudoparticle that conveniently

represents the motion of a missing electron from a collection of many electrons. As
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such, it has opposite charge, momentum, and spin compared to the electron that used

to be there—a full band should be charge-neutral with no net momentum or spin at

equilibrium, with a few exceptions that we will not discuss. Holes are commonly

formed when an electron is promoted from the valence band to the conduction band

or an acceptor site (impurity that attracts an electron). Since we will be doing

optical studies, we will purposefully promote electrons to the conduction band, and

must acknowledge the formation of holes. However, many spin dependent theories

disregard their behavior as the hole spin lifetime is often significantly shorter than the

electron spin lifetime. This is due to the complexity of the valence band, compared to

the conduction conduction band, which leads to more dramatic hole scattering from

the same mechanisms we will discuss in section 2.2.4.

2.2.3 Doping

The term “acceptor”, introduced in the previous subsection (2.2.2), comes from

the notion that impurities can modify the free carrier density. The idea of “doping”

is the introduction of more electrons to the conduction band than are intrinsically

available through “donors,” or comparably, more holes to the valence band through

“acceptors.” A material with more donors than acceptors is called “n-type” with the

inverse being “p-type.” The number of dopants affects the conductivity through a

modified carrier density, and the momentum relaxation time through ionized impu-

rity scattering (discussed below). Our focus is not on the modification of electronic

properties of materials and we will see later (Ch. VI) that they can be divorced

almost entirely from the relevant spin parameters. Doping does alter the bandstruc-

ture through modification of the spin orbit interaction which affects dephasing. It

also makes a difference in how certain experiments are carried out (Ch. IV). If an

experimenter wanted to apply a bias to a sample and make the carriers move in a spe-

cific direction, then doping would play a much larger role. We will reserve ourselves
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to thinking of it as a tunable parameter with qualitative behavior modifications, but

will not explore the trends in detail.

2.2.4 Momentum Scattering

No discussion of semiconductors would be complete without mentioning momen-

tum scattering. We are only concerned with scattering that might perturb the spin

state and will keep our discussion of particular mechanisms brief. Spin dephasing

is discussed in section 2.3. Classical scattering theory is encompassed by the Boltz-

mann transport equation so we introduce the model and quickly reach the relaxation

time approximation. The Boltzmann equation can be used as a jumping point to

derive spin dynamics as outlined in Ref. [28]. For practical purposes, we discuss the

scattering matrix and its utility in determining scattering times.

2.2.4.1 Boltzmann Transport

We will follow the treatment outlined in Appendix F of Ref. [25]. Let us define

a distribution function in terms of time, position and particle velocity → f (t, r,v).

Now we let it evolve some differential amount f (t, r,v)→ f (t+ dt, r + dr,v + dv).

According to the Liouville theorem, the volume element is conserved unless there are

collisions. Therefore

f (t+ dt, r + dr,v + dv)− f (t, r,v) = dt

(
∂f

∂t

)
coll

(2.17)

Rewriting the left hand side as a differential equation, we have

∂f

∂t
+ v · ∇rf +α · ∇vf =

(
∂f

∂t

)
coll

(2.18)

where α is an acceleration of the particles. This is known as the Boltzmann transport

equation.
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We now make the relaxation time approximation for collisions. All this means is

that we assume an exponential decay towards equilibrium. We write the approxima-

tion as (
∂f

∂t

)
coll

=
− (f − f0)

τc
(2.19)

where f0 is the equilibrium distribution and τc is the carrier relaxation time. This

should not be confused with momentum or energy relaxation. In order to calculate

momentum, energy, or any other relaxation that depends upon carrier scattering, we

must perform a weighted average. In the notation of Ref. [24]

〈〈τc〉〉 =
〈τcχ〉
〈χ〉

(2.20)

where single brackets are an average over the equilibrium distribution of χ while the

double brackets represents an average of the perturbed distribution. Such averaging

is only valid for small perturbations of the distribution function. The Boltzmann

equation assumes that we are following a single particle while the averaging takes

into account that we experimentally work with ensembles.

Our final form of the Boltzmann equation is

∂f

∂t
+ v · ∇rf +α · ∇vf =

− (f − f0)

τc
(2.21)

We can introduce whatever external forces we want via the α term and extract

an associated relaxation time. It should be noted that the differential equation is

four dimensional (three spatial, plus time) and has two different gradients (velocity

and position). The Boltzmann equation is non-trivial to solve and a host of other

approximations typically go into its use. The interested reader should consult [25, 24]
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2.2.4.2 Scattering Matrix Formalism

The scattering matrix element determines how a particle with state k at time 0

gets to state k′ through a unitary perturbing Hamiltonian Hpert (r, t).

Hk′,k = 〈ψk′ |Hpert (r, t) |ψk〉 (2.22)

We invoke Fermi’s Golden Rule to get the scattering rate from k→ k′ and achieve

Sk,k′ =
2π

~
|Hk′,k|2δ (Ek′ − Ek) (2.23)

Equation 2.23 assumes the scattering is elastic (i.e. no emission or absorption). This is

fine for many cases but we require a more general form. If we assume the perturbation

is harmonic
(
i.e. Hpert (r, t)→ H (r, t) e+iωt +H† (r, t) e−iωt

)
, then we can generalize

Eq. 2.23 to

Sk,k′ =
2π

~
(
|Ha

k′,k|2δ (Ek′ − Ek − ~ω) + |He
k′,k|2δ (Ek′ − Ek + ~ω)

)
(2.24)

where a stands for absorption and e for emission. We note that |He
k′,k|2 = |Ha

k′,k|2

since we have assumed our perturbation to be Hermitian.

2.2.4.3 Ionized Impurities

Ionized impurities are accounted for by assuming they are isolated and have a

screened Coulombic potential. Such a perturbation changes the spin-orbit coupling

in a localized region and leads to spin scattering. We set Hpert (r, t) = q
4πεr

e−λr, where

ε is the dielectric constant and λ the screening constant. We get the carrier scattering

rate by integrating over all final states using Eq. 4.26 from [24]

1

τc
=

∫
Sk,k′ (1− cos ξ) d3k′ (2.25)
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The angle ξ, determined by cos ξ ' vk·E
v
k′ ·E

where E is the electric field, stems from

the assumption that the bands are isotropic at the scattering point and accounts for

directional dependence. We must then perform an appropriate weighted average as

discussed above for Boltzmann transport. In the end, we can calculate the temper-

ature dependence for ionized impurity momentum scattering (when our assumptions

hold)

τion ∼ T
3
2 (2.26)

2.2.4.4 Phonons

Phonons are quantized oscillations of the entire crystal lattice. As such, they

perturb the spin orbit coupling through strain via the deformation potential leading

to spin flips. A thorough derivation of phonon dispersion is beyond the scope of this

section but can be found in Ref. [25]. Once the dispersion relation is known, the

scattering matrix formalism can be used to derive physical behavior. The important

point here is that phonons have momentum and energy dispersion such that electrons

with different energy and momenta experience different phonon scattering. This can

lead to unique spin dependent phenomena beyond the scope of this thesis.

2.2.4.5 Other Mechanisms

There are many other mechanisms that we did not address here. Most require poor

quality samples with different kinds of defects or the fabrication of a heterostructure.

For our purposes, they play a diminished role. A few of the more common scatterings

are: alloy disorder, neutral impurity scattering, and interface roughness.

2.3 Spin Dynamics

Although spin is inherently quantum mechanical, we are able to very accurately

describe ensemble measurements using classical equations of motion. Experiments
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dating back to the first observations of the Hanle effect (ca. 1924) and before im-

plied that a collection of magnetic moments were precessing and dephasing due to

an applied magnetic field. It feels contradictory to think of a two state system as

precessing continuously, but we can map the quantum behavior onto a continuum by

thinking in terms of probabilities.

For a single spin, we will only ever measure two states: up or down. We can think

of the probability for the spin to transition between states as continuously evolving

over time, dependent upon external perturbations. If we can prepare a spin in a

known state with controlled perturbations, then repeatedly measure its state at a

later time, we can map out the expected measurement as a function of time. If we

probe an ensemble of many independent spins, then we will essentially be perform-

ing many independent measurements of the later spin states as a function of time,

leading to continuum-like signal. In this way, we can observe, on average, classical

behavior. Rabi oscillations are a prime example of the success in such thinking where

the probability of being in a given state oscillates dependent upon the strength and

frequency of an applied field.[29]

Figure 2.4 shows a simple spherical geometry used to represent spin dynamics,

commonly referred to as the Bloch sphere. Experimental demonstrations have re-

peatedly shown that β and φ can be used as real parameters to extract meaningful

behavior. Two unique uses are control of an initial phase offset in β and φ (what we

call β0 and φ0 respectively) for the determination of the sign of the Lande g-factor in

GaAsBi and the study of current induced spin polarization.[30, 31]

2.3.1 Bloch-Torrey Equations

The governing differential equations for spin dynamics were derived empirically

and are commonly known as the Bloch-Torrey equations. They describe a mag-

netic dipole moment experiencing a torque from an applied field with some decay
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Figure 2.4: Spherical geometry of the spin density vector. G is the unit Green’s
function vector solution, with GX being the measured component. The
angles φ and β account for the orientation of the unit vector.

in amplitude over time. Felix Bloch formalized the theory in two 1946 papers, in-

cluding an experimental demonstration of nuclear magnetic resonance in condensed

matter.[32, 33] Ten years later, H. C. Torrey generalized the equations by incorpo-

rating diffusion.[34] A more modern route has been taken in a 2003 paper (Ref. [28])

to derive Bloch-Torrey like equations from first principles using the semi-classical

Boltzmann equation. With this method, the quantum mechanical behavior of spins

is mathematically connected to a very classical seeming function.

A generalized form of the Bloch-Torrey equations is

∂S

∂t
−Ω× S +

1

T
S −∇ · [D∇S − vdS] = F (t, r) (2.27)

where S is the spin density vector, Ω is the Larmor precession frequency, T is the

dephasing tensor, D is the diffusion tensor, vd is the drift velocity of the electrons, and

F (t, r) is a forcing function. The gradient operators act on position only and it is

assumed that each component of each spin and velocity vector is a scalar function of
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position. This form accounts for asymmetric drift, asymmetric diffusion, asymmetric

dephasing, precession, and forcing.

2.3.2 The Green’s Function Solution To Spin Dynamics

We do not require the inclusion of drift or diffusion for later discussion so we

can limit ourselves to the simplicity of the 1946 Bloch equations. We further ease

our burden by assuming isotropic spin dephasing—if we assume an isotropic band

structure, why not? This holds well enough to describe many experimental results.

For the interested reader, the effects of anisotropic spin dephasing are discussed in

Refs. [35, 36, 31]. We also choose a Dirac-delta as our forcing function so that we

may solve for the Green’s function. Our simplified governing differential equation is

∂G

∂t
−Ω×G+

1

τs
G = Ĝ0δ (t) (2.28)

where G is the Green’s function, Ĝ0 is a normalized initial orientation, and the

Larmor precession frequency can be written as

Ω =
µBgB

~
(2.29)

where g is the Lande g-factor.[11]

Using spherical geometry (see Fig. 2.4), we can define the initial orientation using

only two angles where at time 0, β = β0, and φ = φ0. We usually assume φ does not

evolve with time.

Ĝ0 = 〈cos β0 sinφ0, sin β0 sinφ0, cosφ0〉 (2.30)

Orienting B in the z-direction, setting β = Ωt + β0, and measuring along the

x-direction, we arrive at

GX = H (t) e−t/τs sinφ0 cos (Ωt+ β0) (2.31)
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where H is the Heaviside step function. Equation 2.31 is what we base all of our ex-

periment analysis upon using τs to encompass all relevant spin scattering mechanisms

and Ω to account for precession of the electron spin ensembles. It is worth mentioning

that the appearance of τs in the differential equation can be derived from using the

relaxation time approximation in the semi-classical Boltzmann equation.

2.3.2.1 Applicability of The Model

We should also note that this functional form is not restricted to spins in semicon-

ductors—although one might have guessed that already. We have hidden all mention

of whatever material system we might be working with in the g-factor and dephasing

time τs. In this way, we can think of the vast majority of spin measurements as

probing a gas of spins that behave differently in different containers. We should note

that spin, though a property of an electron and attached to its movement, can change

independently. This is similar to the rotation speed of a planet being independent of

its orbit. This allows for spin waves and other unique phenomena to exist, whereby

an electron can be stationary but the spin changes with time. If we reincorporate

diffusion to our model, we would find that there is also a spin diffusion length, inde-

pendent of the charge diffusion length as polarization can be scrambled as an electron

bounces through a material. We ignore all these interesting things as higher order

corrections, unnecessary for the simplest forms of the experiments we will discuss.

However, it is these very same measurement systems, when combined with samples

that are biased, strained or otherwise, that can extract data on such behavior. The

resulting tweaks to 2.31 are fairly straightforward.

2.3.3 Spin Dephasing

We have said that we are at the bottom of the conduction band where k = 0. It

turns out that the optical transitions we will use to perform measurements will impart
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Figure 2.5: The dephasing mechanisms are represented schematically. From top to
bottom: D’yakanov-Perel, Elliot-Yafet, and Bir-Aranov-Pikus

negligible momentum (Sec.2.3.4). It is a fair question to ask, “Why should we care

about scattering?” Quantum mechanics has built into it, an uncertainty principle—we

never really know the exact position and momentum of ourselves or anything else.

On top of that, electrons are Fermions implying that only two (one spin up and one

spin down) of the ∼ 1013 to 1019 carriers/cm3 can ever have a k value of 0, even

in the ground state. Classical mechanics also says that finite temperature implies

finite movement. Therefore, with actual materials at finite temperature, nearly every

electron spin is slightly away from k = 0.

The electrons will explore momentum space within their allowed portion of disper-

sion, and in doing so, undergo scattering. The rate and type of momentum scattering

determines how quickly the ensemble spin polarization becomes scrambled, or de-

phased. We can think of each electron’s spin polarization as having some relative

angle (or phase) with all the other electron spins. If that phase changes, the overall

polarization will change as well. We will discuss three main dephasing mechanisms

and give citations for the interested reader to study their derivation.
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2.3.3.1 D’yakanov-Perel

We know from our discussion of spin orbit coupling that electrons experience an

effective magnetic field as they move through the lattice. This can be a pronounced

effect when the lattice is made up of two different kinds of atoms. In 1972, M. I.

D’yakonov and V. Perel published a theory for spin ensemble dephasing based on

the spin orbit field of a non-centrosymmetric semiconductor.[37] In short, moving one

way in a unit cell of GaAs is not the same as moving another way. This means that

spins will experience different effective magnetic fields dependent on their direction

of travel and that the orthogonal component of the spin will precess about the field

they experience.

If the spins could continue moving along a straight path indefinitely, dephasing

would not occur. Instead, there would be beating of the polarization signal dependent

upon the average velocity and the periodicity of the lattice. In order to randomize the

spin polarization, scattering of some kind must occur. Subsequent scattering events

will randomize the electron’s movement through the lattice. This introduces random

phase shifts from random amounts of precession between scattering.

In an interesting twist, if the momentum scattering time is significantly shorter

than a single period of precession, the dephasing is minimized. This is defined as

“motional narrowing” where the randomized effects from carrier movement are quickly

averaged, leading to much longer dephasing times. This has the counter-intuitive

result that a bad crystal with lots of defects for momentum scattering, can minimize

spin dephasing from the D’yakanov-Perel mechanism.

We list two limiting cases where the momentum scattering time is τp, and the Lar-

mor precession frequency Ω is momentum dependent with some distribution ∆Ω.[11]

In the first case, a spin ensemble can make a full precession prior to a momentum
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scattering event which leads to dephasing dependent upon ∆Ω

τpΩavg & 1→ 1

τs
≈ ∆Ω (2.32)

In the second case, momentum scattering is very rapid leading to motional narrowing,

with the dephasing time depending upon the product of the mean square of the

precession frequency and the momentum scattering time

τpΩavg . 1→ 1

τs
≈ Ω2

avgτp (2.33)

2.3.3.2 Elliot-Yafet

In 1954, R. J. Elliot published work showing that the spin orbit field could lead to

dephasing in a centrosymmetric material if momentum scattering were present.[38]

Spin orbit coupling is a perturbation of the simple rigid lattice bandstructure solutions

and therefore mixes those Bloch states. Elliot considered the case where the mixed

states were degenerate in energy but could have the same momenta. Therefore, a

momentum scattering event could lead to a spin flip, even if the momenta remained

the same after scattering. In 1963, Y. Yafet explored the role of scattering from

phonons—another way to change momentum, yielding a more complete picture.[39]

The main results are the Elliot and Yafet relations. The Elliot relation gives an

order of magnitude estimate for the dephasing rate, while the Yafet relation high-

lights the qualitative temperature dependence by noting 1
τp(T )

∼ ρ (T ) where T is the

temperature and τp the momentum relaxation time. The relations are summarized as

1

τs
' (g0 − g)2

τp
∼ (g0 − g)2ρ (T ) (2.34)

where g0 is the free electron g-factor and g the effective g-factor. The key distinction

between the D’yakonov-Perel and Elliot-Yafet mechanisms is their opposite relation-
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ship with momentum scattering.[11]

2.3.3.3 Bir-Aranov-Pikus

The Bir-Aranov-Pikus (BAP) mechanism is the dephasing of spins through an ex-

change interaction between electrons and holes.[40, 41] It is primarily found in p-type

materials as it requires sufficient overlap between the electron and hole wavefunctions

to be effective. The exchange interaction has to do with the symmetry operations of

a wavefunction made up of indistinguishable particles. As we have mentioned before,

a hole is a pseudoparticle that really represents a missing electron from a collection

of many electrons. Since electrons are Fermions, the exchange interaction must be

antisymmetric. This leads to a spin flip where the spin of the electron in the con-

duction band is exchanged with the spin of the hole. One could think of a spin up

electron going back to the valence band while a spin down electron is promoted.

In GaAs, holes undergo rapid momentum scattering and typically dephase orders

of magnitude faster than electrons in the conduction band.[42] In n-type materials,

there are also very few holes to interact with as the equilibrium state of the material is

to have a full valence band with many free conduction electrons. The BAP mechanism

typically plays a small role.

2.3.4 Spin Dependent Optical Selection Rules

We want to probe the spin behavior optically, but this is only possible if there are

spin selective optical transitions. As we saw with our development of band theory,

spin plays a significant role so it is fair to assume we have something to work with.

We begin by noting that for the tight binding model, we used the atomic wave-

functions as a basis to develop our bands. We also note that our assumption from

the k · p model was that most of the interesting things happen at the bottom of the

band and the dispersion is approximated to be quadratic in momentum. For GaAs
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and other direct gap semiconductors, this means that we are centered about k = 0.

Light imparts negligible momentum to an excited electron so we can further simplify

our view to just k = 0. In short, we are working with atomic like transitions that

have been shifted in energy and we can ignore any role of momentum. This is not

the case for indirect gap materials, but we will ignore that for now.

For GaAs, the conduction band is s-like and the valence band is p-like. We

further assume that transitions to the conduction band are isotropic, which about

the Γ-point is a very good approximation. By noting that electric dipole transitions

are proportional to

〈ψf |p |ψi〉 (2.35)

where ψi and ψf are initial and final states respectively, we can write

〈px| px |s〉 = 〈py| py |s〉 = 〈pz| pz |s〉 (2.36)

Using the notation of Ref. [24] where the kets |j,mj〉 are written in terms of total

angular momentum j and the z-component mj, we expand the heavy and light hole

states in terms of linear momenta p and spin states represented by arrows. The heavy

hole states are ∣∣3
2
, 3

2

〉
= −1√

2
(|px〉+ i |py〉) ↑∣∣3

2
, −3

2

〉
= 1√

2
(|px〉 − i |py〉) ↓

(2.37)

The light hole states are

∣∣3
2
, 1

2

〉
= −1√

6
[(|px〉+ i |py〉) ↓ −2 |pz〉 ↑]∣∣3

2
, −1

2

〉
= 1√

6
[(|px〉 − i |py〉) ↑ +2 |pz〉 ↓]

(2.38)

We can see that the holes are eigenstates of a circular polarization basis with
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Figure 2.6: (left) Direct Gap Optical Selection Rules for circularly polarized
light. (right) Schematic of spin polarization in the different bands
immediately after a σ+ transition. The hole polarization typi-
cally dephases on very short time scales and is neglected in most
analysis. Red = σ+, blue = σ−, numbers and line thicknesses

indicate the relative probability of the optical transitions

operators of the form

σ+ =
px + ipy√

2
(2.39)

σ− =
px − ipy√

2
(2.40)

Evaluating transitions from the hole states to the conduction band defined by |Φc〉

and using the approximation px = py = pz = p we get

〈
3
2
, 3

2

∣∣σ+ |Φc〉 = 〈p| p |Φc〉 ↑〈
3
2
, 1

2

∣∣σ+ |Φc〉 = −1√
3
〈p| p |Φc〉 ↓

(2.41)

for σ+ polarized transitions and

〈
3
2
, −3

2

∣∣σ+ |Φc〉 = −〈p| p |Φc〉 ↓〈
3
2
, −1

2

∣∣σ+ |Φc〉 = 1√
3
〈p| p |Φc〉 ↑

(2.42)
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for σ− polarized transitions with all other matrix elements being 0. We are left with

a 3:1 ratio of up:down or down:up conduction electron spins, dependent upon the

choice of circular polarization of incident light. The valence band is also polarized

with opposite polarizations in the heavy hole and light hole bands. However, as we

discussed before, it is common for the hole polarizations to rapidly dephase. Hole spins

are typically disregarded from measurement analysis, but can be accessed through the

same type of measurements discussed in Ch. IV. We can now probe spins through

polarized photoluminescence (PL) or spin selective differential absorption.

2.3.5 Faraday and Kerr Rotation

Faraday and Kerr Rotation are essentially the same physical phenomena: the rota-

tion of the linear polarization of a beam of light after transmission through (Faraday)

or reflection from (Kerr) a magnetized material. The original experiments by Michael

Faraday and John Kerr were conducted in the 1840s and 1870s respectively. Spins are

magnetic moments and if they are polarized, the sample is magnetized. The under-

lying mechanism for the rotation is a difference in the circular indexes of refraction

based on the difference in absorption for σ+ and σ− polarized light of a probe beam.

Linear polarization is equal parts σ+ and σ−, so differential absorption should lead

to an ellipticity in the probe beam after interaction. However, if the absorption is a

small enough percentage of the beam that we can ignore losses, we can approximate

the effect as a rotation of the linear polarization.[43]

We can describe Faraday rotation using the Jones vector formulation (see Ap-

pendix A).[44] We start by decomposing a linearly polarized incident ray into its

circularly polarized components

Ei = E0e
iϕ

1

0

 = E0e
iϕ

√
2

2

 1√
2

1

i

+
1√
2

 1

−i


 (2.43)
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Figure 2.7: Faraday Rotation Experiment Geometries. The blue rectangular box rep-
resents a sample of thickness d. The red line is the optical path with an
arrowhead indicating direction of propagation. B is the applied magnetic
field with orientation represented schematically by a green cylinder. θ is
the angle of rotation that a linear polarization (black arrow) undergoes
after passing through the sample.

Initially both circularly components have the same phase. If we assume negligible

losses, when the components pass through a material, they each pick up a new phase

based on their respective circular indexes of refraction, n+ and n−. The amount of

the phase shift ∆ϕ will depend upon the effective path length of the light d, the

wavevector amplitude in the direction of propagation k, and the respective indexes

of refraction. We arrive at

∆ϕ± = n±kd (2.44)

If we define θ as half of the relative phase shift between the two components, we can

write down the phase shifts as

∆ϕ± =
(n+ + n−) kd

2
± (n+ − n−) kd

2
(2.45)

=
(n+ + n−) kd

2
± θ (2.46)
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The final polarization state is then

Ef = E0e
i

(
ϕ+

(n++n−)kd
2

)√
2

2

eiθ 1√
2

1

i

+ e−iθ
1√
2

 1

−i


 (2.47)

Using trigonometric identities, we can write Eq. 2.47 as

Ef = E0e
i

(
ϕ+

(n++n−)kd
2

) cos θ sin θ

− sin θ cos θ


1

0

 (2.48)

This is the rotation of a linear polarization with an overall complex phase. Since our

measurements are restricted to intensities, we can ignore the constant phase factor.

2.3.5.1 Verdet Coefficient vs. Faraday Cross Section

The amount of rotation θ has been experimentally shown to be linear in the

amount of magnetization of most materials. However, there is more than one way

to magnetize a material. When Faraday first performed his experiment, he magne-

tized a sample using a magnetic field. In this way, he reoriented the orbital angular

momentum, as well as the spin angular momentum, along the magnetic field lines.

The optical rotation he measured has been shown to be proportional to the Verdet

coefficient V where

θ = V d
B

µ0

(2.49)

with B the applied magnetic field strength, d the thickness of the material, and µ0

the vacuum permeability.[43]

The majority of our experiments are performed in the Voigt or transverse field

geometry (see Fig. 2.7) and we do not polarize the material along the optical path.
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In this case, the appropriate scaling comes from the Faraday cross section σF where

θ = σFSd (2.50)

with S the spin polarization density and d the same as before.[45] The theory is rela-

tively new (published in 2012) and few measurements have been attempted to directly

test the predictions. However, σF holds promise as a useful material parameter with

guidance for future spintronic engineering.

2.3.5.2 Kramers-Kronig Relations

We would like to quantitatively relate the differential absorption we expect from

polarizing spins to the differential index of refraction we measure. We can write

down relationships between the complex wavevector k̃, the complex susceptibility χ̃,

the index of refraction n, and the absorption coefficient α as follows:[46]

k̃ =
ω

c

√
1 + χ̃ (2.51)

k̃ = k + 2iα (2.52)

n =
c

ω
k (2.53)

For a three-dimensional system, the density of states should go as (E − Eg)1/2 where

Eg is the bandgap. Combining that behavior piecewise with an exponential function

representing the Urbach tail gives us a model for absorption.[47] If we assume 1� χ̃

then we can Taylor expand the square root and get:

n = 1 +Re {χ̃} (2.54)

α =
ω

2c
Im {χ̃} (2.55)
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Figure 2.8: (left) Model of absorption spectra and index of refraction behavior. α±
and n± are the circular absorption coefficients and indexes of refraction
respectively. (right) Differential circular refractive index dependence upon
energy.

We should mention that the Taylor expansion assumption is acceptable for dilute

gasses but a bit of a stretch for GaAs. We will use it for qualitative analysis a little

bit later.

Our goal now is to relate the real and imaginary parts of χ̃ so we can use what we

know about α. Expressions for this very purpose exist and are called the Kramers-

Kronig relations:[25]

Re {χ̃ (ω)} =
2

π
P

∞∫
0

ds
s Im {χ̃ (s)}
s2 − ω2

(2.56)

Im {χ̃ (ω)} =
−2ω

π
P

∞∫
0

ds
Re {χ̃ (s)}
s2 − ω2

(2.57)

where P means take the Cauchy principal part of the integral. A figure depicting

differential absorption and the associated differential index of refraction using this

model is shown in figure 2.8.
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CHAPTER III

Manipulating, Detecting, and Recording Optical

Polarization

In Chapter VII, we will discuss a novel optical spin measurement technique. We

must understand the behavior of available equipment prior to discussing the design

of such an experiment. Therefore, in this chapter, we discuss how to manipulate

and detect the polarization of light, along with the types of electronic devices used to

process the resultant information. The sections are organized as follows: light sources

(Sec. 3.1), manipulating and detecting light polarization (Sec. 3.2), conventional

analog electronic processing (Sec. 3.3), and analog to digital conversion (Sec. 3.4).

3.1 Light Sources

We primarily treat light as a classical wave, though we note that light comes in

discrete quanta called “photons.” There are two asymptotic types of light sources:

coherent (the electromagnetic field has a predictable phase for temporal and spatial

evolution) or incoherent (the electromagnetic field has a random phase for temporal

and spatial evolution). There are also two asymptotic types of light polarization: po-

larized (the electromagnetic field has a predictable temporal and spatial orientation),

and random (the temporal and spatial orientation is not predictable).
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3.1.1 Coherence and Polarization

In general, there is a varying degree of coherence, dependent upon the source. We

can describe regions where we can approximate a source as coherent with values for

a coherence length and time, respectively. Coherence is the key to interference in

that controlled manipulations of the relative phase between two or more wavefronts

is possible. We will exploit this fact shortly. Further development of the concept of

coherence is beyond the scope of this dissertation. We recommend Ref. [44] for the

interested reader.

Beyond coherence, light can be polarized, where the orientation of the electric

field follows a predictable temporal and spatial evolution—a fact that we have already

used with optical selection rules. Similarly, we can have randomly polarized light with

random electric field orientation. It is common to define polarization in terms of the

orientation of the electric field vector alone, and we do so as well.

Polarization and coherence are not entirely separate entities. We are able to ma-

nipulate the polarization of light independent of the coherence of the source. However,

only light of the same polarization will lead to interference while randomly polarized

light must be incoherent by our definitions. It is worth noting that the interface of

polarization and coherence of light is an area of active research and that our above

definitions are too primitive for certain cases.[48] For our purposes, they will suffice.

3.1.2 Laser Light Sources

Lasers are nearly coherent light sources and can be broken down into two broad

categories: continuous wave (CW) and pulsed. The key aspect leading to coherence

in lasers is stimulated emission, whereby subsequent transitions are induced by pass-

ing photons of approximately the same energy. Lasers are often polarized with the

stimulating photon helping determine the emitted photon’s polarization state. All of

our pump sources will be lasers. Our probes will be lasers that are nearly coherent
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or PL whose coherence depends upon the state of the sample.

High quality CW lasers can approach the single wavelength idealization making

them very useful for extracting precise energy dependent information. They also have

extremely high spatial and temporal coherence allowing for sensitive interferometry

experiments. Pulsed lasers are broad in the energy spectra but can achieve very short

pulse widths in time (.1 ps for many modern systems). Pulsed laser systems are said

to have a short coherence time while retaining high spatial coherence.

The energy broadening of a pulsed laser can be traced to a superposition of inter-

fering sinusoids. A titanium-sapphire (Ti:Saph) pulsed laser, used in the experiments

of the later chapters, works on the principle of “mode-locking,” which is the coherent

interference of sinusoids with a distribution of frequencies that maintain a fixed phase

relationship. As the sinusoids evolve in time, they periodically all have the same mod-

ulo 2π phase. The frequency of the pulsing depends upon the laser cavity length and

the range of available lasing frequencies. The broader the range of frequencies used,

the narrower the pulse width in time. An excellent resource for those interested in

lasers is Ref. [49].

3.2 Manipulating and Detecting The Polarization of Light

Optical access to spin dynamics comes from spin dependent selection rules (see Sec.

2.3.4) where we can “pump” a spin polarization through an appropriate polarization

of incident absorbed light, then “probe” that spin polarization through radiative

recombination along the same pathways or through the differential index of refraction

of a probe laser. An alternative to pumping is to make use of spin noise, the random

orientation of spin polarization. We will assume that we have the appropriate optical

access (decidedly the case for GaAs).
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3.2.1 Manipulating Polarization

In order to pump or probe spin polarizations, we need to be able to control the

polarization of light. Our assumed range of operation is that of a Ti:Saph laser (710

nm - 980 nm) putting us in the near infrared. There are many convenient materials in

this regime for the fabrication of optical polarizers and waveplates so apparatus are

straightforward to purchase and assemble. We only need three elemental components

in order to perform our experiments and they are: a 1/4-waveplate, a 1/2-waveplate,

and a linear polarizer. As the names imply, a 1/4-waveplate imparts a 1/4-wave

relative retardance between the two orthogonal components, while a 1/2-waveplate

introduces a 1/2-wave shift.

Waveplates are made from materials where the linear index of refraction is dif-

ferent for one axis compared to the other. Such materials are said to have linear

birefringence, which allows one polarization of light to travel faster than the other

through the material—hence “fast” and “slow” axes. Waveplates are fixed at the time

of manufacture, while variable retarders and photo-elastic modulators are continu-

ously tunable over some range. Tunability requires exploitation of various material

systems, such as liquid crystals, but the end goal is the same—linear birefringence.

We can substitute a single electro-optic component such as a retarder or modulator

for the waveplates reducing our required number of elemental components to two.

By combining the components in the proper order, we can change and analyze

the polarization of light as we desire. Linear and circular polarizations of light are

special cases. Elliptical polarization is the general case where the relative phase

between orthogonal electric field components is not an integer multiple of π/4. In

order to extract the exact polarization of light, all four Stokes parameters must be

measured.[50] We will assume that we are only working with the special cases of

circular and linear polarization. A collection of schematics showing combinations of

optics for polarization modification can be found in Fig. 3.1. The polarized light
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Figure 3.1: Schematics of the behavior of various optical polarization elements: (top)
Vertical and horizontal linear polarizers. (middle) Half-wave plate acting
on linear polarization. (bottom) Quarter-wave plates acting on left/σ+

(blue) and right/σ− (red) circularly polarized incident light.

and optical components can be mathematically represented by the Jones vectors and

matrices respectively, found in Appendix A.

3.2.2 Detecting Polarization

As our optical selection rules suggest (see Sec. 2.3.4), PL of direct gap materials

will have some emission in the circular polarization basis. We have neglected linearly

polarized transitions as they are not spin selective and their magnitude will be can-

celed out with our detection schemes. The net circular polarization of PL emitted

after right circular (σ+) excitation can be calculated as

P =
Iσ+,σ+ − Iσ+,σ−
Iσ+,σ+ + Iσ+,σ−

(3.1)
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Figure 3.2: Differential rotation measurement of linear polarization. The linear po-
larization is initially balanced with equal amplitude of orthogonal com-
ponents EX and EY . After passing through a sample, the polarization is
rotated by an angle θ which can be related to the new values of EX and
EY .

where Ij,k is the intensity of k polarized PL from j polarized excitation (see top of Fig.

3.3). With our assumption of isotropic selection rules, we could permute j and k to

measure only one polarization of emitted light under differing excitation conditions.

P =
Iσ+,σ+ − Iσ−,σ+
Iσ+,σ+ + Iσ−,σ+

(3.2)

In practice, fixing the incident polarization can lead to unintended effects such

as dynamic nuclear polarization complicating a measurement—unless the effect is

desired.[51] Therefore, we use alternating excitation polarizations and Eq. 3.2 for

measurement. Evaluation of such data is typically in terms of “percent polarization”

as we are working in the circular polarization basis.

For Faraday and Kerr rotation, we have assumed that absorption is negligible when

light passes through the sample allowing us to work exclusively in a linear basis. This

approximation is quite reasonable for the small rotations we typically measure (. 100
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µrad). Using Fig. 3.2, we can see that if we decompose the initial linear polarization

onto two orthogonal axes, the rotated polarization involves opposing electric field

amplitude changes for the components.

We will be measuring the intensity of the light, but can relate it to the field

strength as I ∼ |E|2. We can relate the electric field components to the angle θ as

EX =
E0√

2
cos (θ + π/4) , EY =

E0√
2

sin (θ + π/4) (3.3)

If we perform a differential intensity measurement, similar to what we discussed for

PL, then use some trigonometric identities, we get

IY − IX
IY + IX

=
|EY |2 − |EX |2

|EY |2 + |EX |2
(3.4)

= sin2 (θ + π/4)− cos2 (θ + π/4) (3.5)

= − cos (2θ + π/2) (3.6)

= sin (2θ) (3.7)

' 2θ (3.8)

where we have used the small angle approximation. Therefore

θ ' 1

2

(
IY − IX
IY + IX

)
(3.9)

We can perform the two measurements of polarization dependent intensity at

separate instances in time, as we must for PL, assuming our sample’s state remains

nearly static for a given set of experiment parameters. However, our efficiency in

performing an experiment would be significantly improved if we could measure the two

polarizations simultaneously. We will discuss how to make that possible shortly. The

excitation and detection schemes for interacting with polarized light are summarized
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Figure 3.3: (top) Schematic representing the detection of PL polarization assuming a
circular polarization basis. A variable retarder switches between λ/4 and
3λ/4 retardance to switch between the circular and linear polarization
bases, along with modulating the resultant linear polarization by λ/2.
(bottom) Schematic representing the detection of the rotation of a linear
polarization using a Walloston prism and balanced photo-diode bridge.
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schematically in Fig. 3.3.

3.3 Conventional Analog Electronic Processing

There are a variety of photodetectors capable of generating a voltage that is lin-

early proportional to the incident light intensity. They all work on one relatively

simple principle: if a photon’s energy is greater than the material’s bandedge, an

electron will be promoted to the conduction band. Through bandstructure engineer-

ing and applied bias, the promoted carrier is swept towards a current or voltage

detector and counted. Different devices have varying levels of “quantum efficiency”

that gauges the carrier promotion probability, with some reaching near 100%.

As we have seen previously, the desired information is proportional to the dif-

ference in amplitude between two orthogonal polarizations. If two separate mea-

surements are conducted and recorded, postprocessing requires that subtraction be

performed. For very small net polarizations this is problematic, as random fluctua-

tions in the signal, or noise, can change the sign of the calculation dependent upon

the relative amplitudes. We will discuss below a few options for minimizing the noise.

3.3.1 The Balanced Photo-diode Bridge

Rather than measuring one polarization state, followed by a measurement of the

other, the balanced photo-diode bridge (BPD) allows for two orthogonal polarization

states to be measured and subtracted simultaneously. The electrical processing, be-

yond performing the required difference calculation, removes any fluctuation in the

difference that is common to both photodiode signals. This is known as common mode

rejection and reduces various sources of noise including laser power fluctuations. The

full polarization measurement apparatus involves placing a linear polarizing beam

splitter, such as a Walloston prism, on the optical path immediately before the BPD

(see Fig. 3.3).
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Figure 3.4: Balanced Photo-diode Bridge. The dashed lines represent incident light
leading to photo-diodes (squares with diode symbol inside. Electrical cur-
rents I are represented by red arrows and traverse the black line wiring of
the circuit. The triangles with ± symbols are op amps arranged for linear
amplification and conversion of a current to a voltage. The amplification
is dependent upon the choice of resistors R in green. At the right are ter-
minals where voltages (blue) are measured with their respective quantity
in terms of I and R.
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Each beam is sent to its own photo-diode on the BPD and generates a respective

current IA or IB. Due to the diode behavior, a difference current forms (IA − IB)

at their junction (see Fig. 3.4). We can then convert all of the currents into volt-

ages VA, VB, and Vdif with amplification dependent upon the values of the resistors

RA/B and Rdif . Measuring the three voltages gives us everything necessary to calcu-

late the probe polarization’s angle of rotation.

Performing the difference calculation using analog electronics on the board allows

us to achieve high quality “common mode rejection,” where the common amplitude

between the resultant voltages generated by each polarized beam is canceled out. The

fewer electronic components between the photodiode and the difference calculation,

the fewer sources of noise in the measurement. The amplification allows us to magnify

the difference signal for improved resolution. While the BPD design is superior to

a single photodiode for measuring relative polarizations, the electronic components

and other aspects of the experiment can be noisy enough to prevent detection of

sufficiently small signals.

3.3.2 Lock-In Amplifiers

The key concept behind a lock-in amplifier is that noise has different amplitudes

for different frequency components, or spectra. If we look at a noisy voltage without

spectral resolution, we have essentially integrated over all possible allowed frequencies,

or the bandwidth, of our instrument. Looking at the spectra directly (see Fig. 3.5),

we can see each frequency in our allowed bandwidth is contributing some amplitude

to the integral. If we can filter out all but one frequency component, we will have

reduced the integrated noise by several orders of magnitude.

Lock-in amplifiers ideally extract the the signal at a given frequency, which is anal-

ogous to finding the coefficient of a single Fourier component. This is accomplished

in much the same way mathematical calculations do, but with a twist: multiply the
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Figure 3.5: Noise spectra scaled assuming a beam splitter cuts the detected power in
half from the 200 µW at the sample location. Data was collected in Kerr
rotation geometry from an n-GaAs sample at 10 K → no spin pumping.
Noise should include the contributions from all sources, includng spin
noise.

input voltage/current by an unit amplitude oscillating reference voltage/current, then

apply a low-pass filter.

Through orthogonality of Fourier components, a signal oscillation that matches

the reference frequency will yield a constant term.

∞∫
−∞

dtA cos (ωt) cos (ω0t) = Aδω,ω0 (3.10)

This is the mapping of any component oscillating at the reference frequency to 0 Hz.

Through realistic electronic behavior, an infinite integral cannot be calculated.

We are also contending with a frequency continuum the size of our bandwidth. In

general, components of the input are mapped to sum and difference frequencies,

through trigonometric identities, relative to the reference.

A cos (ωt) cos (ω0t) =
A

2
{cos [(ω + ω0) t] + cos [(ω − ω0) t]} (3.11)
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By applying a low pass filter, we restrict the possible frequency distribution

through bandwidth reduction. In principle, our signal to noise ratio can improve

indefinitely through continued reduction of the bandwith, approaching the Fourier

integral. In practice, the filtration takes time and there will always be a finite noise

signal. Figure 3.6 shows, for a particular implementation of time resolved Kerr ro-

tation, the measured relationship between the mean rotation noise amplitude, three

times the error of the mean (EOM), the lock-in filtration time-constant tc, and the

number of measurements N . Rotation noise assumes an error in the difference por-

tion of the calculation for Eq. 3.9 which is directly related to measured voltages. The

bandwidth dependent EOM for the rotation measurement goes as

EOM =
1√
2πtc

σ

N
∼ (Ntc)

−1/2 (3.12)

where σ is the standard deviation per root Hz of the noise amplitude and 1/
√

2πtc is

the square root of the bandwidth determined by the lock-in time constant tc.

3.3.3 Cascaded Lock-Ins

The concept of “locking in” to a signal can be extended to multiple reference

frequencies. In this case, a cascade of lock-in amplifiers are used where an input signal

has been modulated at two or more frequencies. The signal is demodulated through

subsequent multiplication by reference sinusoids and low pass filtration. There is

one important point to the use of cascade lock-ins: the bandwidth reduction must

be sequential eliminating the highest frequencies first. In other words, the reduced

bandwidth from the first lock-in of the cascade must be large enough to contain

the subsequent modulation frequencies, but small enough to eliminate the highest

modulation frequency at the time of input.

Beyond noise reduction, one can also use this technique to measure a function and
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geometry from an n-GaAs sample at 10 K → no spin pumping. Noise
should include the contributions from all sources, including spin noise.
Black → tc = 0.02s, Red → tc = 0.20s, Blue → tc = 2.00s.

its subsequent derivatives simultaneously. This stems from the fact that a lock-in is

a differential measurement. We must remember that the coefficient of the extracted

Fourier component is proportional to the difference of two physical states of the

system. We will label the state of the system as f (x1, x2, ...) where the xi are some

variables that the state can depend on. As an example, we will limit ourselves to

two variables: polarization (P ) and magnetic field (B). The amplitude of the Fourier

component A from a single lock-in polarization measurement under a constant field

can be written as

A1 = f (P1, B0)− f (P0, B0) (3.13)

If we perform a cascaded measurement where we modulate the magnetic field by some

amount, our resultant value would be the product of two amplitudes. This might be

better thought of as extracting a single Fourier component at the sum frequency which

involves the multiplication of two sinusoids and their respective amplitudes. The logic
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continues for a product of N number of amplitudes if N modulation frequencies and

lock-ins are used.

Our final signal from two cascaded lock-ins will go as

A1A2 = [f (P1, B1)− f (P0, B1)]− [f (P1, B0)− f (P0, B0)] (3.14)

We can rewrite the equation in a slightly more familiar form if we say that the

difference of function f between the two polarization states yields the net polarization

Pnet at a given applied field.

A1A2 = Pnet (B1)− Pnet (B0) (3.15)

If we divide Eq. 3.15 by the difference between the two applied magnetic fields, we

get

Pnet (B1)− Pnet (B0)

B1 −B0

' ∂Pnet
∂B

∣∣∣∣
B=B0

(3.16)

If we modulated the modulation of the magnetic field (i.e. modulate the value where

we evaluate the derivative) then we would be able to get the second derivative of

the net polarization as a function of magnetic field. We could choose to modulate

with some other variable (pump laser intensity, etc.) and get a mixed partial second

derivative.

Figure 3.7 shows an odd-Lorentzian, indicative of a Hanle effect measurement

with an initial spin polarization in a plane parallel to the sample surface. The figure

also shows the derivative with respect to applied magnetic field. The sample was

an InGaAs eplilayer where alternating in-plane spin polarizations were generated

using Current Induced Spin Polarization (CISP) from a ∼1 kHz modulated applied

voltage.[31, 51] The applied magnetic field was modulated about a central value at

∼1 Hz allowing for the cascaded lock-in measurement.
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Figure 3.7: Cascaded lock-in measurement of Current Induced Spin Polarization
Hanle and its derivative with respect to magnetic field in an InGaAs
sample at 30 K. The amplitude of an oscillating voltage controlling the
magnetic field modulation was varied: (blue dash-dot) 0.250 Vrms, (red
dash) 0.125 Vrms, (black solid) 0.060 Vrms.

3.4 Analog to Digital Conversion

The key component of any modern measurement device, prior to data storage, is

the analog-to-digital converter (ADC). In this chapter, we will discuss the relatively

simple implementation of a 2-bit unipolar flash ADC whose circuit diagram is shown

in Fig. 3.8. The interested reader should consult Ref. [52] for a more thorough

discussion.

An ADC encodes a continuous variable’s value as a discrete binary number. For

our case, the continuous variable is a voltage in a circuit. The resolution of our

measurement system is determined by the allowed voltage range and how many bits

we use to record a value. In this example, we will use two bits, allowing us to record

four different binary states: 00, 01, 10, and 11. We will also limit ourselves to a

unipolar measurement where we can only measure positive values. Assuming ground
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is 0 and the highest possible voltage is Vmax, our resolution is

resolution =
Vmax − Vmin

2Nbits − 1
(3.17)

=
Vmax

3
(3.18)

Therefore we can label our four states as: 0 Volts (00), Vmax/3 (01), 2Vmax/3 (10),

and Vmax (11).

We now need to define how we will apply the labels to a voltage between 0 and

Vmax when it enters our circuit. We will use the common scheme of taking the halfway

point between our label values as a threshold. If we measure V ≤ Vmax/6, then we

apply the label “0 Volts” or 00. If V > Vmax/6, then we apply the label “Vmax/3”

or 01, and so on. We can implement this labeling scheme by using what is called an

“R-2R” resistor ladder (shown in Fig. 3.8). By placing one terminal of a resistor R

at ground, one terminal of another resistor R at Vref = Vmax, and then connecting

them in series with 2Nbits−2 resistors of value 2R, the junctions between the resistors

will be at the voltages Vmax/6 + (x− 1) (Vmax/3), where x is the number of junctions

up the ladder, starting from x = 0.

We have just created a voltage labeling scheme with a ladder of threshold voltages

that we can use for comparison with our input voltage. Now, we use what are called

comparators and compare our input voltage to all of the threshold voltages simulta-

neously. This simultaneous comparison is where the term “flash” comes from in the

ADC name, since all possible digitization states are evaluated in parallel. The com-

parators can be implemented with a simple operational amplifier (Op-amp), where

one terminal is held at the threshold voltage, while the other terminal is at the mea-

sured voltage. If the measured voltage is above a given threshold, the comparator

output is 0, otherwise it is 1. The comparator output is then sent to an “exclusive

or” gate, where the output is 0 unless one, and only one, input of the gate is 1. The
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Figure 3.8: 2-bit unipolar flash analog-to-digital converter circuit with a truth table
output. The input wire (blue) is held at Vin, the voltage to be measured.
Vref is held at Vmax for the example in the text. R and 2R label the
resistance values of an “R-2R” ladder. The triangle symbols with + and
- are comparators implemented using a standard Op-amp. The stretched
triangles with curved lines are “exclusive or” gates. The small filled black
triangles with lines at the point are diodes. Ground is the standard three-
line symbol with decreasing line length at the termination.
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resulting logic allows for the proper encoding, left to the reader as an exercise.

To finalize the encoding, we must remember that there are only Nbits number

of bits, but that we are working with 2Nbits − 1 junctions for our “R-2R” ladder

labeling system. By placing diodes after the “exclusive or” gates, we can prevent any

undesirable currents and strictly record a binary value. The result of the processing

is shown as a truth table connected to the output wires for each bit.

Standard ADCs are more complex with protection circuitry, bipolar functionality,

and other features. It is rare for an individual to build a custom ADC, but it remains

useful for the average scientist to understand the key workings of nearly every mea-

surement device. One important result of our discussion is that, at least for “flash”

ADC design, halving the resolution means doubling the number of necessary compo-

nents. Since it takes a finite amount of time for any information to travel, the length

of the wiring in the circuit, along with the individual components’ response, sets an

upper bound for bandwidth. A common feature of commercially available ADCs is

the reduction in the number of bits in order to achieve faster sampling rates. This

tradeoff plays a limiting role in conventional spin noise measurements (see Sec. 4.4),

spurring our development of Resonant and Time Resolved Spin Noise (see Ch. VII).
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CHAPTER IV

Modern Optical Spin Sensitive Measurements

There are many ways of measuring spin dynamics, with and without physically

contacting a sample. We will restrict our discussion to optical techniques, their im-

plementation, and subsequent analysis. A primary benefit of optical techniques is

that they do not require altering the sample in any appreciable fashion. This is in

stark contrast to electrical measurements which can require extensive processing in

highly specialized facilities before experimentation. We note that optical techniques

have their own unique complications and discuss them for each measurement system.

The sections are organized as follows: The Hanle effect (Sec. 4.1), Time Resolved

Photoluminescence (TRPL) (Sec. 4.2), Time Resolved Faraday and Kerr Rotation

(TRFR/KR) (Sec. 4.3), and conventional spin noise techniques (Sec. 4.4).

4.1 The Hanle Effect

The Hanle Effect is the depolarization of a steady-state spin ensemble by an

applied magnetic field. It is named for Wilhelm Hanle who in 1924 published a

paper postulating that a Zeeman “level crossing” explained the observed signal in his

experiment and the 1923 work of Wood and Ellet.[53, 54, 55, 56] In the same year

that Hanle published his work, John Eldridge published a theory paper postulating

that Larmor precession of classical “electric vibrators” would lead to a Lorentzian
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lineshape.[57] In the abstract, he points out his classical theory does not account for

the Zeeman splitting of Sodium lines. Hanle’s “level crossing” hypothesis, a distinctly

quantum perspective in that discrete transition energies are thought to be tuned into,

and out of, resonance with one another, is what bridges the gap. Moreover, it requires

that there be coherence between these transitions when they are in resonance, or else

a net polarization would not be observed. At the time, the best quantum theories

assumed radiative transitions were random. It is worth noting that the Stern-Gerlach

experiment was published only two years before, and quantum mechanics still had

not reached a mature form.

Hanle’s revelation has led to a wealth of experiments in systems ranging from

atomic gasses to interstellar radiation. More recently, the Hanle effect has been used

to characterize solid state spintronic material systems ranging from optical measure-

ments of GaAsBi to highly contested “3-T” electrical measurements in Si.[58, 59, 60]

The optics path for two variations of Hanle effect experiments are shown in Fig.

4.1. For PL detection, we make use of the modulated incident polarization scheme

discussed previously (see Eq. 3.2), where

P =
Iσ+,σ+ − Iσ−,σ+
Iσ+,σ+ + Iσ−,σ+

For Faraday rotation detection, we will also modulate the incident polarization, but

make use of a balanced photodiode bridge and Eq. 3.9 for detection where:

θ ' 1

2

(
IY − IX
IY + IX

)

4.1.1 The Model

The conventional method for deriving the Hanle effect is to start from Eq. 2.28

and solve for the steady state condition. We will take a different route and begin with
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Figure 4.1: Optics paths for two different Hanle effect measurement schemes. (left)
laser pumping with PL detection. (bottom) laser pumping with probe
laser Faraday rotation detection. Dashed red lines are pump paths.
Solid lines are for probes: laser (probe), PL (purple), and polarization
filtered PL (yellow). BS = beamsplitter, EM = electromagnet, LP =

linear polarizer, PD = photodiode, PDB = photodiode bridge,

QWP = λ/4 waveplate, VR = variable retarder, WP = Walloston

prism.

Eq. 2.31 and integrate assuming a constant polarization rate as our forcing function.

The end result is the same, however we do need to let the spin lifetime τs → Ts

where Ts is an effective spin dephasing time that includes mechanisms beyond the

spin dephasing we have already discussed. In this case, we assume that there will be

some amount of PL generated from radiative recombination as we will be continuously

pumping our sample and want to reach a steady state. At steady state, our pumping

rate should be S0

τR
where τR is the radiative recombination time. We limit ourselves

to τs and τR and can use Matthiessen’s rule for summing rates to achieve

1

Ts
=

1

τs
+

1

τR
(4.1)
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Putting everything together we get

SX (Ω) =

∞∫
−∞

dt
S0

τR
GX (t) (4.2)

=
S0

τR
sinφ0

∞∫
−∞

dtH (t) e−t/Ts cos (Ωt+ β0) (4.3)

=
S0

τR
sinφ0

∞∫
0

dt e−t/Ts cos (Ωt+ β0) (4.4)

=
SX (0,Ω, β0, φ0)

1 + Ω2T 2
s

(4.5)

where

SX (0,Ω, β0, φ0) =
S0

1 + τR
τs

sinφ0 (cos β0 + ΩTs sin β0) (4.6)

If we were to use a probe laser and perform Faraday rotation measurements, then

we can combine Eqs. 4.5 and 4.6 with 2.50 and our derivation is complete. If instead,

we plan to use PL for the measurement, as was originally done, we need to connect

the injected spin polarization to the detected percent PL polarization. Assuming

that the excitation and recombination pathways are identical—not generally true as

non radiative pathways may exist—then we can make the substitution S0 → S2
0 ∼ P0

where P0 is the maximum possible percent polarization. Equations 4.5 and 4.6 become

P (Ω) =
P (0,Ω, β0, φ0)

1 + Ω2T 2
s

(4.7)

P (0,Ω, β0, φ0) =
P0

1 + τR
τs

sinφ0 (cos β0 + ΩTs sin β0) (4.8)

Figure 4.2 shows the expected signal for two cases of φ and β values. We can see

that the factor gTs determines the width of the Hanle curves while the ratio τR/τs

determines the maximum measured polarization. This shows that an appreciable

amount of information for a given material’s spin dynamics can be inferred from
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Hanle measurements. However, exact value extraction of any of the parameters is

problematic.

4.1.2 Pros and Cons

The Hanle effect is one of the simplest ways to show that a sample exhibits spin

dependent behavior, but a main drawback is the inability to deconvolute g and Ts.

In essence, Hanle data must be supplemented by another type of measurement to

completely determine the spin dependent parameters. One remedy is to perform

time resolved PL (TRPL) with a pulsed laser system and extract τR. We will discuss

TRPL in the next section.

Another complication is the convolution of τR and τs. The spin evolution continues

up until carrier recombination occurs. We can see from Fig. 4.2 that if τR � τs, then

the polarization signal will be strong at 0-field but the ensemble will not have had

sufficient time to evolve, broadening the Hanle curve. If the opposite is true, then

the polarization signal will be negligible due to the spins appreciably dephasing long

before radiative recombination, on top of broadening the Hanle curve.

Samples must be chosen carefully when attempting Hanle measurements. Increas-

ing the dopant level will typically decrease τR, but it also places more unpolarized

carriers in the bands. If pumping is not sufficient to overwhelm the doped carrier den-

sity of the sample with polarized spins, then the magnitude of the PL polarization

signal will suffer. If pumping is too high, sample heating could occur, complicating

data analysis. On the positive side, Hanle PL measurements can be performed on

samples that have broad emission spectra. Such samples are problematic for Faraday

and Kerr rotation as, by symmetry arguments, they likely have broad absorption

spectra which can diminish the differential index of refraction—the key physical pa-

rameter in those measurements.
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Figure 4.2: Expected Hanle curves plotted for two different initial polarization direc-
tions with various values for the product gTs and the ratio τR/τs. (top)
initial polarization is orthogonal to the sample surface and parallel to the
optical path. (bottom) initial polarization is parallel to the plane of the
sample surface and orthogonal to the optical path.
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4.2 Polarization Dependent Time Resolved Photolumines-

cence

In order to perform TRPL measurements, we must have a way of pumping, and

then probing, a sample on time scales much shorter than the time scale of the studied

dynamics. To do this, we will assume we have access to a pulsed laser system with

appropriately small pulse widths. We will modulate the circular polarization of the

laser and use it as a pump. A streak camera with polarization filtering will be used

to time resolve the emitted photoluminescence. We further assume that the pulse

repetition time is much longer than all relevant dynamics, including τR. We will

address the opposite case, specifically for Faraday and Kerr rotation, in Sec. 4.12. The

optics path of polarization dependent TRPL is identical to a Hanle PL experiment,

with the exceptions of a pulsed excitation laser and a streak camera detector (see Fig.

4.1).

4.2.1 The Model

Our pump pulse is modeled well by the Dirac-delta function used to acquire Eq.

2.31. We directly relate the spin polarization to the detected PL circular polarization,

the same as we did in our discussion of the Hanle effect. We arrive at

P (∆t,Ω, φ0, β0) = P0H (∆t) e−t/τs sinφ0 cos (Ω∆t+ β0) (4.9)

Expected signal is plotted in Fig. 4.3 where the spin dependent behavior rides on

top of a radiative decay signal that can be much larger. Taking the difference of the

signals generated by opposite pump conditions isolates the spin dependent behavior,

modeled by Eq. 4.9.
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Figure 4.3: Expected polarization dependent TRPL signal curves plotted for β0 = 0,
φ0 = π/2, τs = τR =1ns, g = 0.4, and B = 160 mT. (left) TRPL simulated
for two different incident polarizations. (right) The differential signal is
obtained from the raw signals using Eq. 3.2 and modeled by Eq. 4.9

4.2.2 Streak Cameras

PL has an associated recombination rate which can be calculated with the help of

Fermi’s Golden Rule (see Sec. 2.2.4.2). If we assume that we briefly excite a popula-

tion of N number of electrons to the conduction band and that their recombination

rate 1/τR remains constant, we can write the following differential equation:

∂N

∂t
=
−1

τR
N (4.10)

In other words, the excited population exponentially decays asN (t) = N0 exp (−t/τR)

where N0 is the initial number of excited carriers. If we could count all the carriers

that arrive at a detector during a given window of time δt and vary the position of

that window, then we could map out the approximate form of Eq. 4.10

N (ti + δt)−N (ti)

δt
' −N (ti)

τR
(4.11)

62



Figure 4.4: A schematic of a streak camera generating time dependent data. A
constant bias is applied between the photocathode and the phosphor
screen. A field is swept orthogonal to the direction of travel for the
free electrons. PC = photocathode, PDA = photodetector array, PS

= phosphor screen, SEF = swept electric field

A streak camera is a specialized piece of equipment that attempts to map out the

function N (t) that could be modeled by Eq. 4.10 or more complex rate equations.

The camera must be used in tandem with a pulsed laser system so that a population

of carriers can be excited quickly and then decay freely.

Streak cameras work by first exploiting the photoelectric effect, where light quanta

of high enough energy emitted as PL from a sample can help free an electron from its

Coulombic attraction to a given material. We call the material that emits the elec-

trons a photocathode. The free electrons are accelerated towards, and collide into,

a phosphor plate with an applied voltage between the photocathode and the phos-

phor plate. While accelerating toward the plate, an electric field is rapidly swept in

magnitude orthogonal to the electron’s direction of travel, causing a streak in the free

electron distribution, dependent upon when each electron was released from the pho-

tocathode. Upon hitting the phosphor screen, each electron’s energy is converted into

photons that are released by the phosphor. Those photons hit a photodetector array

and are counted. The arrival time distribution of the photons is thereby converted
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into a spatial distribution at a photodetector array. The size of the photodetectors,

rate of the electric field sweep, and a number of other factors determine the sensitivity

and applicability of the streak camera. A diagram of a typical streak camera system

is shown in Fig. 4.4.

4.2.3 Pros and Cons

Polarization dependent TRPL measurements do not have to contend with the

convolution of gTs during fitting, a major improvement over Hanle. This is because

we can also map out the time evolution directly rather than infer its existence from a

field scan. We can also isolate the spin dependence from a simple subtraction of two

opposite excitation state measurements, while extracting τR from an average of the

same signals.

On the downside, the signal to noise decays as τR as opposed to τs due to the

time dependent behavior of radiative recombination. As time evolves, there are fewer

and fewer carriers available in the conduction band leading to a smaller and smaller

overall signal. Hanle measurements do not have this issue as they are performed

under steady state conditions. Compounding the problem is that if τR � τs, the

spins will not have enough time to evolve and we will not extract any appreciable

time dependent spin signal. If τR � τs, then like Hanle, we will not see any spin

dependent signal at all. The same care with sample selection for Hanle applies to

TRPL.

4.3 Time Resolved Faraday and Kerr Rotation

TRFR/KR are the time resolved measurements of induced circular birefringence

of a sample. The technique was developed circa 1994 by David Awschalom’s research

group at the University of California, Santa Barbara.[61] Like polarization dependent

TRPL, these techniques require a pulsed laser system, but rather than just use pulses
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Figure 4.5: Time resolved Faraday (left) and Kerr (right) rotation optics paths. Red
lines are pump (dash-dot) and probe (solid) lasers. BS = beamsplitter,

DL = delay line, EM = electromagnet, LP = linear polarizer,

PEM = photo-elastic modulator, PDB = photodiode bridge, WP =

Walloston prism.

for excitation, we must also use them for detection.

In order to achieve accurate time resolution, we make use of the fact that the

speed of light is constant. By splitting a single pulse along two paths, and then

varying one path length relative to the other using a mirror on a delay stage (see

Fig. 4.5) we can control the relative pump and probe arrival times. It is possible to

purchase commercial piezos that allow sub-nm positioning but for practical purposes

such accuracy is not needed. To the best of the author’s knowledge, the shortest

obtained pulsewidth in time is 67 attoseconds.[62] This corresponds to the spatial

halfwidth of the pulse intensity being ∼20 nm. For the experiments discussed in this

dissertation, the pulsewidths were ∼3 picoseconds corresponding to a need for ∼1

mm resolution in pathlength accuracy.

4.3.1 The Model

Like TRPL, we do not need to make any appreciable modifications to Eq. 2.31

to model TRFR/KR. Moreover, we assume we can reach a minimally perturbative

condition where we can ignore radiative recombination. We are not attempting to
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Figure 4.6: Interference of Time Resolved Faraday/Kerr Signals.

reach a steady state as in the Hanle effect, so minimizing perturbation is possible.

We rewrite Eq. 2.31 explicitly as a rotation angle by using Eq. 2.50 and let t → ∆t

to represent the relative pulse delay time.

θ (∆t,Ω, φ0, β0) = θ0H (∆t) e−∆t/τs sinφ0 cos (Ω∆t+ β0) (4.12)

where

θ0 = S0σFd (4.13)

with S0 the maximum spin density amplitude, σF the Faraday cross-section, and d

the physical path length of the probe light through the sample.

4.3.2 Resonant Spin Amplification

Pulsed laser systems have pulse repetition periods trep of varying length based on

design. If τs & trep, then we must account for contributions from subsequent pulses

(shown schematically in Fig. 4.7). We do this by assuming each pump pulse excites

its own isolated spin population and sum over many pump pulses delayed by trep. We

give a simplified expression with β0 = 0 and φ0 = π/2, useful for most experiments.

θ (∆t,Ω) = θ0

∞∑
n=0

H (∆t+ ntrep) e
−(∆t+ntrep)/τs cos [Ω (∆t+ ntrep)] (4.14)
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If we assume that ∆t ≥ 0, we can derive a closed form solution.

θ (∆t,Ω) = θ0e
−∆t/τs

cos [Ω∆t]− e−∆t/τs cos [Ω (∆t− trep)]
sin2 [Ωtrep] + (cos [Ωtrep]− etrep/τs)2 (4.15)

When τs & trep, it is typically very difficult to fit time dependent experimental data

for the parameter τs. The feasible range for a time delay scan is fixed by trep while the

ideal delay window would be > τs. Therefore, we must use another tunable parameter

to extract functional behavior. In this case, we can tune an external magnetic field

to change the Larmor precession frequency and directly observe interference. The

resultant signal is referred to as Resonant Spin Amplification, also developed by

the Awschalom group, with the first publication in 1998.[63] Plots of Eq. 4.15’s

dependence upon ∆t and Ω are shown in Fig. 4.7. In the limit that trep � τs, Eq.

4.15 reduces to Eq. 4.12.

4.3.3 Pros and Cons

TRFR/KR have the distinct advantage over Hanle measurements of having g and

τs as independent model parameters. Moreover, if we choose appropriately small laser

powers for the pump and probe, we can avoid significant perturbations and neglect

radiative recombination effects in our signal. We also have direct access to the short

and long timescale evolution of our samples through resonant spin amplification.

However, there are some drawbacks. One important issue is the need for steep

absorption curves at the bandedge of a given sample. Steep slopes will lead to steep

changes in the index of refraction, thereby amplifying any differential index measure-

ment. If a sample is a high quality bulk crystal, or has reduced carrier dimensionality

(e.g. a quantum well, wire or dot), then absorption curves are quite steep by design.

The issues typically arise with novel materials in the early stages of growth character-

ization which can correlate with defects and inhomogeneity. Of course, these are the
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Figure 4.7: (left) Expected Time Resolved Faraday/Kerr Rotation and (right) Res-
onant Spin Amplification Curves for various parameter values. All plots
use Eq. 4.15. The color coding is the same for both plots, allowing for
direct comparison of time delay scans at fixed field and field scans at fixed
time delay.
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types of materials that can be most promising to study. Indirect bandgaps are also

problematic, with Ge being one of the few indirect gap materials successfully probed

by TRFR/KR.[64, 65] This is, at least in part, due to the close proximity of a direct

gap allowing for more efficient pumping.

Another problem arises when the carrier density is low, as there are few carriers

with which to interact, leading to a proportional decrease in signal. If a sample is

doped with ∼ 1016 carriers/cm2, then we could excite ∼ 1015 carriers/cm2 without

significant perturbation. In an undoped sample of GaAs, the intrinsic carrier density

is ∼ 1013 carriers/cm2 implying we would have to decrease our pump intensity by

∼3 orders of magnitude to avoid significant perturbation. PL measurements such as

Hanle or polarization dependent TRPL complement TRFR/KR with their opposite

strengths and weaknesses.

4.4 Conventional Spin Noise

Conventional spin noise spectroscopy is the detection of spin fluctuations and

analysis of their Fourier spectra. Experiments attempt to extract information from

the covariance of subsequent spin polarization measurements of a sample at thermal

equilibrium. The fluctuation dissipation theorem implies that a randomly oriented

spin ensemble should decay to equilibrium in the same fashion as a purposefully

oriented ensemble.[66] Therefore, if we apply a magnetic field to a sample containing

an ensemble of spins, the normal dynamics apply. For typical measurements, a signal

proportional to the spin polarization is rapidly digitized in the time domain and then

processed with a Fast Fourier Transform.

Spin noise can trace its roots to Felix Bloch’s 1946 paper titled ”Nuclear Induc-

tion.” [33] In that paper, he mentions that for N nuclei of magnetic moment µ, there

should be a “resultant moment of the order (N)1/2 µ” due to “statistically incomplete

cancellation.” The first published measurement of nuclear spin noise did not occur
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until 1985.[67] The earliest published Faraday rotation measurement of spin noise was

slightly earlier in 1981.[68] Neither paper seemed to spark much interest in spin noise

for analysis, possibly due to the difficulty in achieving appreciable signal.

In 2004, Scott Crooker et al. published a paper using what is arguably the current

standard design for optical spin noise measurements.[69] They measured fluctuations

in spin polarization for two isotopes of rubidium using the simple optics path shown

in Fig. 4.8. Extraction of the noise spectra was performed by a spectrum analyzer

connected to a balanced photodiode bridge. The very next year, Michael Oestreich

and collaborators published their measurements of the spin noise of electrons in GaAs

using a similar setup.[70] The research groups led by Crooker in the United States and

Oestreich in Germany have continued to develop innovative capabilities for spin noise

measurements. The interested reader should consult the following review papers for

a bit more of the history and discussion of available methods: Refs. [71, 72].

The literature is somewhat unclear on the accepted derivation of spin noise. It is

near universally accepted that the Fourier transform of the spin noise spectrum should

be a Lorentzian, stemming from the decaying sinusoidal behavior of spin dynamics.

Numerous measurements support this analysis, but to date, there has not been any

publication directly mapping the correlation function. There is one measurement that

reports the derivative of a time resolved signal, but the analysis is atypical and our

modeling runs counter to some of their claims.[15]

For the time being, we will only address spectrally resolved spin noise measure-

ments and leave the time resolved discussion for Ch. VII. Spectrally resolved ex-

periments typically use linearly polarized continuous wave (CW) lasers as Faraday

rotation probes with an optical path comparable to Fig. 4.8. The electronics used

must be fast enough to record signal peaks at tuned Larmor precession frequencies,

so ∼MHz to ∼GHz photodiode bridges followed by comparably fast spectral analysis

systems are required. Since the electronic sampling is rapid, the system performs time
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Figure 4.8: Conventional Spin Noise optics path. The laser (solid red line) can
be continuous wave or pulsed. EM = electromagnet, LP = linear

polarizer, PDB = photodiode bridge, WP = Walloston prism.

resolved Faraday rotation but the signal only becomes useful after a Fourier trans-

form. We will derive the covariance function and expected Fourier spectra below.

The covariance function is a key result that we will need again in Ch. VII.

4.4.1 The Model

We begin, much as we have in previous sections, with Eq. 2.31. We will also make

use of the relation θ0 = S0σFd to put our result in terms of the covariance of our

rotation measurement. The covariance of a random variable X can be written as

Cov (Xi, Xj) = 〈XiXj〉 − 〈X〉2 (4.16)

where 〈X〉 is the expectation value for X and the Xi are independent measurements.

If we take 〈θ〉 = 0, an acceptable approximation for GaAs and many non-magnetic

materials, then we have reduced our work to finding

Cov (θi, θj) = 〈θiθj〉 (4.17)
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Invoking the fluctuation dissipation theorem, we say

θi = θ0H (ti) e
−ti/τs sinφ0 cos (Ωti + β0) (4.18)

Substituting Eq. 4.18 into Eq. 4.17, we get

Cov (θi, θj) =
〈
θ2

0e
−(2ti+∆t)/τs sin2 φ0 cos (Ωti + β0) cos [Ω (ti + ∆t) + β0]

〉
(4.19)

where we have assumed both values of θ are from the same evolving spin ensemble.

This assumption allows the substitution of tj = ti + ∆t and the subsequent dropping

of the Heaviside function. We are allowed to make this assumption because the value

of Cov (θi, θj) is 0 otherwise. This can be confirmed by the equality 〈θiθj〉 = 〈θi〉 〈θj〉

for uncorrelated measurements and our assumption that 〈θ〉 = 0.

We must now average over all possible orientations and amplitudes of our spin

polarization. This appears somewhat complicated by the time variable ti, but is

straightforward to address. We set ti = 0 and let ∆t → |∆t| as our spin noise

experiments should not depend upon the absolute time they were conducted, only

the relative time between measurements ∆t. If averaging over ti were necessary, it

could not be taken over all time as the value of the covariance becomes 0. It is difficult

to justify a truncated time average as all ∆t values should be allowed in our covariance

function. To truncate the time average is to truncate the allowed ∆t values.

From here, our covariance becomes

Cov (θi, θj) =
〈
θ2

0e
−|∆t|/τs sin2 φ0 cos (β0) cos [Ω|∆t|+ β0]

〉
(4.20)

=
〈
θ2

0

〉 〈
sin2 φ0

〉
e−|∆t|/τs

×
[
cos Ω|∆t|

〈
cos2 β0

〉
− 1

2
sin Ω|∆t| 〈sin 2β0〉

]
(4.21)

where we have broken up the averaging over the respective variables θ0, β0, and φ0.
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Letting 0 ≤ φ0 < π and 0 ≤ β0 < 2π, we average over the angles and reduce Eq. 4.21

to

Cov (θi, θj) =
1

4

〈
θ2

0

〉
e−|∆t|/τs cos Ω|∆t| (4.22)

We can separate the covariance into the variance of single measurement values and

the unit magnitude correlation function as

V ar (θi) =
1

4

〈
θ2

0

〉
(4.23)

Corr (θi, θj) = e−|∆t|/τs cos Ω|∆t| (4.24)

Equation 4.24 is sufficient for application of a Fourier transform which will yield the

expected Lorentzian spectral shape. If we are interested in the amplitude of the signal,

we will have to do a bit more work.

4.4.2 Fourier Spectra

We briefly postpone discussion of the amplitude and define a Fourier transform

and its inverse as

F (ω) =

∞∫
−∞

d∆tf (∆t) e−iω∆t (4.25)

f (∆t) =
1

2π

∞∫
−∞

dwF (ω) eiω∆t (4.26)
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Figure 4.9: Fourier spectra of conventional spin noise spectroscopy. Vertical axis is
in units of τs = 1. Horizontal axis is in units of Ω. Various values for Ω
are plot using Eq. 4.29. A similar figure, but of data collected by Scott
Crooker et al., can be found in Ref. [73]

Operating on Eq. 4.24 and taking the real part yields

Re {F [Corr (θi, θj)]} = Re


∞∫

−∞

d∆t e−|∆t|/τs cos Ω|∆t|

 (4.27)

= 2

∞∫
0

d∆t e−∆t/τs cos Ω∆t cosω∆t (4.28)

= τs

[
1

1 + τ 2
s (ω − Ω)2 +

1

1 + τ 2
s (ω + Ω)2

]
(4.29)

We plot the behavior in Fig. 4.9. Since the lineshapes are Lorentzian, the width

dependence upon τs is equivalent to the even-Lorentzian Hanle lineshape dependence

on gTs (see Fig. 4.2). However, with spin noise, we are able to shift the peak away

from 0 and extract g from the linear relationship between field strength and peak

location.
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4.4.3 Amplitude Behavior

We will now derive the value of 〈θ2
0〉 found in Eq. 4.23. We start, by using Eq.

2.50, yielding 〈
θ2

0

〉
= σ2

Fd
2
〈
S2

0

〉
(4.30)

Since S0 is a spin polarization density, we can rewrite it as

S0 =
N+ −N−

V
(4.31)

where N± are the total number of probed carriers for a given spin. V = Ad is the

volume probed by the laser, assumed to be cylindrical, and defined by the cross-

section A and sample thickness d. We substitute these values back into Eq. 4.30,

arriving at 〈
θ2

0

〉
=
σ2
F

A2

〈
(N+ −N−)2〉 (4.32)

Using the fact that the spins we are discussing are a two state system, the distribution

for the polarization along the radius of our spherical geometry should be binomial. In

that case, we can interpret
〈
(N+ −N−)2〉 as the variance of a binomial distribution of

N = N+ +N− total spins. Therefore
〈
(N+ −N−)2〉 = (1/4)N . For those concerned

about having negative radial values, the variance calculation yields the same magni-

tude, whether we integrate over the entire number line, or just restrict ourselves to

positive values.

Equation 4.32 is now 〈
θ2

0

〉
=
σ2
F

4

N

A2
(4.33)

If we multiply top and bottom by d, we can write our result in terms of the more

useful value of carrier density n, yielding

〈
θ2

0

〉
=
σ2
F

4

nd

A
(4.34)
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We can now see that the variance of our measurements θi goes as

V ar (θi) =
σ2
F

16

nd

A
(4.35)

with an inverse dependence upon probe beam cross-section, and linear dependence

upon carrier density and sample thickness. The carrier density and cross-section

dependence have already been experimentally demonstrated.[73, 69]

We can also quantitatively compare the square root of Eq. 4.35 to published

theory and measurements using Ref. [45]. They did not perform an average over the

angles of the Bloch sphere and essentially use 4.34, leading to a factor of two difference

compared to our final result. To highlight this difference, we explicitly use 〈θ2
0〉 in

their calculation, instead of V ar (θi). Solving for σF where σφ0,β0F is our calculation

and σGiriF is from Ref. [45], we get

σφ0,β0F = 4

√
V ar (θi)

fn

A

d
(4.36)

σGiriF = 2

√
〈θ2

0〉
fn

A

d
(4.37)

where we have introduced the factor f from Ref. [45] to account for the Fermi

distribution of carriers and the relative probe energy. Using values from Table I in

Ref. [45] and defining σGiri: thF as the value calculated from first principles, we see that

Eq. 4.36 has slightly worse agreement between experiment and theory compared to

Eq. 4.37.

It is unclear if this is a sign of breakdown in the Bloch sphere utility or assumption

errors in the relatively new calculation of Ref. [45]. We should note that there is

no classical argument to avoid averaging over the angles φ0 and β0. All values are

within an order of magnitude with the first principles calculation being consistently

lower than those extracted from data. This includes the cases discussed in Ref. [45]
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Spin Noise Data

Ref. [45] This Work

σGiri: thF σGiri: expF σφ0,β0: exp
F

rad×cm2 rad×cm2 rad×cm2

Ref. [74] −1.2× 10−15 ±3× 10−15 ±6× 10−15

Ref. [73] −0.85× 10−15 ±2.9× 10−15 ±5.8× 10−15

Table 4.1: Comparison of Faraday Coefficient Calculations using sample information
and spin noise data from Refs. [74, 73]. σGiri: thF is a calculation of the
Faraday cross-section from first principles made by Ref. [45]. σGiri: expF is
the extraction of the Faraday cross-section by Ref. [45] using Eq. 4.37 and
the available data set. σφ0,β0: exp

F is our extraction of the Faraday cross-
section using Eq. 4.36 which includes the factor of 2 relative to σGiri: expF

due to averaging over φ0 and β0.

involving TRFR/KR, an experiment that involves active spin pumping. One would

expect some variation of the experimentally extracted magnitudes both above and

below the theoretical predictions if all the relevant physics were included. However,

the available calculation can aide in experiment planning as a lower bound is a useful

predictor of feasibility.

4.4.4 Pros and Cons

Conventional spin noise is a simple and powerful tool. As it is strictly a probe

rather than pump-probe, measurement, it has found applications as wide ranging

as three-dimensional mapping of charge density, determination of the homogeneous

linewidth of quantum dots, and observing the Zeeman splitting of an atomic gas.[69,

13, 14] Those measurements go well above and beyond the general utility of nearly

non-perturbative spin dependent parameter extraction.

However, there are some key downsides to this method. Similar to the Hanle effect,

if τs is very small, the signal is very broad with a low peak amplitude. For Hanle

measurements, we could simply apply larger and larger magnetic fields in order to

map out the spin behavior. For conventional spin noise, we would observe the broad
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peak shift out of the bandwidth limited measurement window as we increased the

magnetic field. This brings us to another point: the fastest observable precession

frequency is fixed by the bandwidth of the detectors. For practical purposes, this

restricts modern spin noise detection of Larmor precession frequencies to below ∼1

GHz.

Much of this has to do with the capabilities of the fastest digitizing boards and

balanced diode bridge response. It is foreseeable that with improved technology,

faster sampling rates will become available, and indeed, there exist digitizers that can

operate up to ∼100 GHz, but they bring another issue: effective bit depth. Digitizing

a voltage requires an ADC where an array of logic gates allow for discretized recording.

The size and speed of those gates determines the rate at which information can be

stored. If we desire slow sampling, we can have a large array of gates which will allow

for many more discrete bins giving us high resolution. If instead, we want a very fast

board, we need to remove gates, reducing the number of bins, or “bit depth.” Modern

∼1 GHz oscilloscopes have an effective bit depth of ∼6 bits. This corresponds to

about two digits of precision.

Two digits of precision should be plenty for large signal to noise ratios, but many

reported measurements are in the single to tens of nanoradian/
√

Hz. Background

voltage fluctuations from shot noise, thermal noise, and a host of other sources can

become comparable or larger than the spin noise signal at this range. There has

been some work on creating sampling schemes to push the envelope, but digitization

remains a roadblock for the study of fast oscillations, rapid dephasing, and very small

signals.[75] We discuss the complement to this technique that overcomes the above

roadblocks, and is the key result of this disseration, in Ch. VII.
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CHAPTER V

Spin Dynamics of GaAsBi

In this chapter, we discuss Hanle effect measurements of the novel alloy GaAsBi

that were published in an original paper, listed as Ref. [58]. We begin with the

motivation for the experiment (Sec. 5.1), detail the measurement conditions (Sec.

5.2), analyze the data (Sec. 5.3), and provide a summary in (Sec. 5.4). Our measure-

ments show that the product of the g factor and effective spin dephasing time (gTs)

range from 0.8 ns to 0.1 ns between 40 K and 120 K respectively. Below 40 K, gTs

is approximately constant. The temperature dependence of gTs shows evidence of

thermally activated behavior attributed to hole localization at Bi or Bi cluster sites.

5.1 Motivation

Dilute bismuthides (GaAs1−xBix), also known as bismides, are GaAs based semi-

conductor alloys with many desirable properties. They can be grown on common

GaAs substrates, minimally perturb electron mobility, and when combined with ni-

trogen, can remain lattice matched to GaAs while tuning the bandgap over a broad

range.[76, 77, 78] For our purposes, the observation of giant spin-orbit bowing is more

intriguing.[79]

The strength of spin-orbit coupling influences both bandstructure and spin de-

phasing rates, as we saw in Ch. II. GaAsBi alloys hold the promise of a tunable
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spin-orbit coupling which is exciting for both academic and engineering purposes.

On one hand, we could directly test dephasing mechanism behavior in a single ma-

terial type, but with various spin-orbit fields. On the other, we could, in principle,

optimize the spin-orbit field strength during a device’s design phase and then fabri-

cate a product using the appropriate concentration of Bi. With that in mind, we now

discuss our experiment that highlights some of the challenges of this material system.

5.2 Experiment Details

GaAsBi epilayers were grown to 100 nm thickness by molecular beam epitaxy at

350◦ C with a growth rate of 0.1µm/hr on 500 nm GaAs buffer layers that were grown

on semi-insulating (001) GaAs substrates.1 Details of the sample growth conditions

can be found in Refs. [58, 80]. The bandgaps of the respective materials should form

a Type I heterojunction shown schematically in Fig. 5.1.

Samples were mounted on the cold-finger of a liquid helium continuous flow cryo-

stat allowing data collection between 10 K and 200 K. PL was excited using a tunable-

wavelength mode-locked Ti:Sapphire laser with ∼3 ps pulsewidth and 76 MHz repe-

tition rate. Two excitation wavelengths—ExA = 780 nm (1.59 eV) and ExB = 855

nm (1.45 eV)—were used to selectively excite carriers above (ExA) or below (ExB)

the observed GaAs substrate bandgap at all temperatures.

Excitation and collection paths were normal to the sample surface using the PL

geometry of Fig. 4.1. The incident beam was focused to a 75 µm diameter cross-

section on the sample surface with intensities ranging from 1 W/cm2 to 250 W/cm2.

A grating spectrometer with 0.2 nm resolution and a liquid nitrogen cooled charge-

coupled device (CCD) array were used for analysis.

Hanle effect measurements were conducted with a constant irradiance of 23 W/cm2

using either ExA or ExB between 10 K and 120 K. Energy dependence of the PL

was recorded between 1.30 eV and 1.38 eV with averaging over 4 meV intervals
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Figure 5.1: (left)Bismuthide sample structure and (right) excitation pathways in the
Type I heterojunction. The bandgap of the buffer layer GaAs is ap-
proximately 1.51 eV at 10 K, while the bandgap of the GaAsBi layer is
estimated to be 1.35 eV.

about a central energy value. An applied magnetic field was varied from -250 mT to

+250mT to observe the Hanle effect. Averaging over several complete measurements

was performed to improve the signal to noise ratio. Fitting was performed using Eqs.

4.7 and 4.8 with φ0 = π/2 and β0 = 0. For reference, the simplified equations with

explicit inclusion of the magnetic field (B), g factor (g), Bohr magneton (µB), reduced

Planck’s constant (~), dephasing time (τs), and recombination time (τR) are below.

P (B) =
P (0)

1 +
(
µB
~ gTsB

)2 (5.1)

P (0) =
P0

1 + τR
τs

1

Ts
=

1

τs
+

1

τR
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5.3 Data Analysis

We first characterized our samples using PL excitation and laser intensity de-

pendence revealing features that are common in other studies of GaAsBi epilay-

ers. We then performed a temperature dependent Hanle effect study on a single

GaAs0.992Bi0.008 epilayer. We discuss our data and analysis below.

5.3.1 Photoluminescence Characterization

Figure 5.2a shows the laser intensity dependent behavior of the GaAs0.992Bi0.008

epilayer using ExB excitation. The PL peak emission monotonically blue shifts with

increasing laser intensity, while retaining a low energy tail. In Fig. 5.2b we plot the

PL peak emission energy associated with the GaAsBi epilayer versus laser intensity

for both ExA and ExB excitation. Both excitation conditions show a blue shift in

bismuthide emission with increasing laser intensity. However, ExA PL peak emission

energies are consistently higher than ExB PL peak emission energies, and seem to

plateau around 100 W/cm2. In Fig. 5.2c we directly compare the PL spectra from the

two excitation conditions allowing us to confirm that ExB does not excite carriers in

the GaAs buffer layer, while also observing that GaAs0.992Bi0.008 epilayer PL excited

by ExA has a broader emission spectra than for ExB excitation. PL measured at 10

K, 40 K, 80 K, and 120 K all exhibit the same laser intensity dependence, though PL

intensity diminishes with increasing temperature.

The minimal dependence upon temperature for PL peak emission energy, allows us

to discount sample heating as a cause for energy shifts in the peak location. Instead,

we attribute the blue shift in GaAsBi emission to the filling of, first, defect and Bi

cluster states, then the bandedge states, by photoexcited and migrating carriers. Bi is

thought to form cluster sites in GaAs leading to energy states near the valence band.

Such sites should lead to hole localization, with a variety of experiments that can be

interpreted as having that behavior.[81, 82, 83, 84, 85, 86, 87] Our spin dependent
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Figure 5.2: Bismuthide PL trends. Shown data collected at 10 K, although the be-
havior is representative of all PL data collected for 10 K, 40 K, 80 K and
120 K. (a) Laser intensity dependent bismuthide PL for ExB excitation.
(b) Energy location of the bismuthide PL peak emission for ExA and
ExB excitations as a function of incident laser intensity. (c) Comparison
of bismuthide PL spectra for ExA and ExB excitations and selected laser
intensities.
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measurements show further evidence of hole localization in dilute GaAsBi.

We attribute the linewidth differences between ExA and ExB excitation conditions

of the GaAsBi PL emission to carrier migration from the GaAs buffer layer into the

GaAsBi epilayer. Carrier transfer is supported by theoretical prediction and experi-

mental observation of Type I heterojunction behavior.[88, 89, 90] Carrier migration

can also explain the different GaAsBi peak emission energies for different excitation

energy but the same intensity. ExB is below the GaAs bandgap in energy, therefore it

cannot excite carriers into the GaAs conduction band and no appreciable migration

should occur. ExA is above the GaAs bandgap, therefore it can excite carriers into

the GaAs conduction band that can migrate to the GaAsBi epilayer. The result is an

increase in the number of carriers in the GaAsBi epilayer for ExA compared to ExB,

with the same incident laser intensity. From our above analysis, this should lead to

a larger number of defect and cluster states being filled for ExA relative to ExB, and

a corresponding blue shift in bismuthide emission which is what we observe.

5.3.2 Hanle Effect Measurements

Figures 5.3a-b shows the temperature dependence of the Hanle curves under ExA

and ExB excitation, both with an incident laser intensity of 23 W/cm2. We observe

that as temperature increases, so does the maximum polarization and linewidth of the

Hanle curves. ExA Hanle curves are consistently lower in polarization and broader in

linewidth than ExB Hanle curves, implying that electron spins dephase more rapidly

with ExA compared to ExB. We can attribute such behavior to spin dependent scat-

tering at the GaAs/GaAsBi interface, based on our analysis that carriers migrate from

GaAs into the GaAsBi epilayer with ExA excitation. Spin scattering has previously

been reported for GaAs/GaNAs and GaAs/ZnSe heterointerfaces.[91, 92]

Figures 5.3c-d show the temperature and emission energy dependence of the max-

imum polarization under ExA or ExB excitation respectively. Across the majority of
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examined emission energies, there is a trend for an increase in polarization with tem-

perature. For the peak emission energies, the polarization increases by over an order

of magnitude, regardless of excitation. If we assume that the maximum obtainable

PL polarization based on optical selection rules is constant with temperature, this

implies that the ratio τR/τs decreases by over an order of magnitude between 10 K

and 120 K (see Eq. 5.1). Moreover, it means that τR is at least an order of magnitude

larger than τs at temperatures below 80 K, allowing us to make the approximation

Ts ' τs for that low temperature range.

Figures 5.3e-f show the temperature dependent behavior of gTs under ExA or

ExB excitation and for various PL emission energies. The extracted values show a

consistent trend of near constant behavior below 40 K followed by a steep decline in

magnitude above 40 K, regardless of excitation energy. Such behavior is unexpected

as the common D’yakonov-Perel and Elliot-Yafet spin dephasing mechanisms usually

exhibit a power law temperature dependence.[93] We were unable to acquire Hanle

data beyond 120 K, leaving us with insufficient data to determine if power law be-

havior is exhibited beyond 40 K. Therefore we focus our efforts on understanding the

low temperature behavior.

As discussed above, hole localization appears to be a byproduct of dilute GaAsBi

alloys, which we believe explains the temperature dependence of the spin dynamics.

Ref. [87] conducted a hole diffusivity experiment for various levels of Bi incorporation

and observed evidence of strong hole localization. They quantified the behavior of

their sample’s diffusion coefficient and radiative recombination time using an Arrhe-

nius function. We will do the same using 5.2 to describe the behavior of gTs in our

sample.

1

gTs
= αe−∆E/kT +

1

gτ0

(5.2)

∆E is the activation energy, k is Boltzmann’s constant, T is temperature in Kelvin,
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α is the pre-exponential coefficient, and τ0 is the 0 K limit of the spin lifetime. Upon

fitting (solid black lines in Fig. 5.3), we extract ∆E = 33 ± 8 meV for ExA and

∆E = 40 ± 6 meV for ExB excitation Hanle data. These values are comparable

to the value of ∆E = 46 meV extracted by Ref. [87]’s Arrhenius function models

for radiative recombination and hole diffusion, supporting our model and analysis.

While it is possible defects or impurities other than Bi and Bi clusters play a role

in localization, Ref. [83] found similar binding energies through PL analysis and,

when accounting for phonon behavior, ruled out alternative explanations. Moreover,

the growth temperature of 350◦ C for our samples has been shown to be sufficient

for the suppression of AsGa antisites, the leading alternative to Bi sites for carrier

localization.[94] A literature search failed to materialize a direct comparison study

of shallow localization effects in low temperature growth GaAs versus GaAsBi. If

undertaken, such a study could give deeper insight to role of Bi incorporation.

5.4 Summary

In summary, we measured the spin dependent behavior of a 100 nm GaAs0.992Bi0.008

epilayer using the Hanle effect with PL detection. Our results show that spin dephas-

ing in our sample is dominated at low temperatures (below 40 K) by hole localization.

The hole localization Arrhenius activation energies are found to be ∆E = 33±8 meV

for ExA and ∆E = 40 ± 6 meV for ExB excitation, comparable to ∆E = 46 meV

extracted by Ref. [87] from radiative recombination and hole diffusion measurements.

Hole localization is a common feature of dilute GaAsBi epilayers, and complicates the

applicability of GaAsBi as a novel spintronic material.

Notes

1The sample discussed in this chapter is RMBE809C2
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Figure 5.3: Temperature dependent bismuthide Hanle curves evaluated at (a) 1.35 eV
PL emission for ExA excitation and (b) 1.33 eV PL emission for ExB ex-
citation, both with an incident laser intensity of 23 W/cm2. Temperature
dependence of the fitting parameters (c,d) P (0) and (e,f) gTs. The solid
black lines are fits to the temperature dependence using an Arrhenius
function (Eq. 5.2). The solid navy blue up and orange down triangles
respectively correspond to values extracted from Hanle data sets shown
in (a) for ExA and (b) for ExB excitation.
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CHAPTER VI

Robustness of n-GaAs Carrier Spins to Irradiation

In this chapter, we discuss Resonant Spin Amplification (RSA) measurements of

bulk GaAs samples that were exposed to various fluences of 5 MeV protons. The

results were published in an original paper, listed as Ref. [95]. We begin with the

motivation for the experiment (Sec. 6.1), detail the measurement conditions (Sec.

6.2), analyze the data (Sec. 6.3), and then provide a summary (Sec. 6.4). Our

measurements show that GaAs spin dependent optical properties are robust to 5

MeV proton radiation, up to a fluence of 1×1014 p/cm2, even though PL intensity

decreases by over two orders of magnitude.

6.1 Motivation

Modern electronics rely upon counting charges and shuffling them from one place

to another. We can make digital electronics by labeling a given quantity of charge at

a terminal “1” and a reduction of that quantity by more than half “0.” As technology

has progressed, the minimum quantities of charge required for proper labeling have

decreased leading to improved computing speeds and lower power consumption. How-

ever, this makes electronic devices more susceptible to fluctuations in charge quantity

when exposed to harsh, radiation filled environments.

Radiation, be it gamma rays or ionized particles, can induce large transient fluc-
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tuations of charge in a circuit that can scramble digital logic or destroy circuit com-

ponents. Long term, the energy imparted by radiation on a given device can degrade

electronic properties beyond a useful level. Certain earth monitoring satellites can

expect a fluence of approximately 1011 protons/cm2 per year, while a detector on the

CERN beamline may experience beyond 1013 particles/cm2 per year, be they neutrons

or protons.[95, 96]

If information were encoded with electron spins, rather than quantities of electrons

themselves, the information should be robust to transient radiation driven events as

randomly induced carriers should have a no net polarization. Circuitry could also be

optimized for magnetic moment sensitivity while remaining capable of handling large

charge fluctuations. There are already many options for spin based logic systems

that are actively being pursued.[11, 12, 97, 98, 99, 100, 101, 102, 103] However, it is

unclear how the spin properties of semiconductors fare with long-term exposure to

irradiation, compared to the known degradation of electronic properties. Our work

directly addresses the question of long term spin property stability in the technolog-

ically applicable material system of GaAs.

6.2 Experiment Details

All samples we will discuss were cleaved from a 2 in. diameter × 0.5 mm thick

parent wafer of Si-doped n-type GaAs. The manufacturer specifications for the wafer

are: (4.3-6.2)×1016/cm3 carrier concentration, (3450-3880) cm2/V s mobility, and

(2.8-3.9)×10−2 Ω cm resistivity. Seven samples were cut into 4 mm × 4 mm ×

0.5 mm chips with one held for reference and the other six irradiated at Western

Michigan’s Van de Graaf accelerator facility. The selected 5 MeV proton fluences

were 2.5×1012, 1×1013, 1×1014, 1×1015, 1×1016, and 1×1017 protons/cm2.1

All samples were mounted in a continuous flow liquid helium cryostat in order

to perform PL characterization at 10 K using 1 W/cm2 of 1.96 eV emission from a
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HeNe laser. PL intensity decreased monotonically with fluence by approximately two

orders of magnitude from the reference value till the fluence of 1×1014 protons/cm2.

Negligible PL emission was observed for samples exposed to 1×1015 p/cm2 fluence

and higher. However, the highest fluence sample emit sufficient gamma radiation for

spectral analysis over one month after exposoure. We kept the 1×1017 p/cm2 sample

at room temperature and recorded gamma spectra using a high purity Ge solid state

detector at the University of Michigan Advanced Physics Teaching Laboratory.

Following PL and gamma characterization, we performed RSA measurements us-

ing the Kerr rotation geometry of Fig. 4.5. A wavelength tunable Ti:Sapphire laser

with ∼3 ps pulsewidth and 76 MHz repetition rate was split into pump and probe

paths. The pump path included a photoelastic modulator providing 50 kHz sinusoidal

oscillation between right and left circular polarizations. The probe path included an

optical chopper operating at 500 Hz, allowing for cascaded lock-in detection. Probe

pulses of 60 W/cm2 average intensity were delayed by 12.96 ns relative to 420 W/cm2

average intensity pump pulses with overlapping 30 µm diameter spots on the sample

surface. Incident laser energy dependence of the spin dependent material parameters

was mapped out between 1.505 eV and 1.538 eV. All spin dependent parameters were

extracted from fits using Eq. 4.15, shown below for reference.

θ (∆t,Ω) = θ0e
−∆t/τs

cos [Ω∆t]− e−∆t/τs cos [Ω (∆t− trep)]
sin2 [Ωtrep] + (cos [Ωtrep]− etrep/τs)2 (6.1)

∆t is fixed at 12.96 ns and trep ' 13.2 ns is the repetition period of the laser pulses.

Ω = µB g B/~ where µB is the Bohr magneton, g is the Lande g factor, ~ is the

reduced Planck’s constant, and B is the applied magnetic field strength.
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Figure 6.1: (left) Degradation of PL emission peak intensities as a function of fluence.
(right) PL spectra of the reference and irradiated n-GaAs samples, up
to a fluence of 1×1014 p/cm2. Emission peaks are labeled P1-P6 and
correspond to the symbols in the degradation trend figure on the left.

6.3 Data and Analysis

We first characterized our samples using PL and gamma spectra revealing our

samples were damaged by irradiation in ways comparable to other reports in the

literature. We then performed RSA measurements that show the remarkable resilience

of optical spin dependent properties in 5 MeV irradiated n-GaAs. We discuss our data

and analysis below.

6.3.1 Photoluminescence Characterization

The right side of Fig. 6.1 shows PL spectra collected from reference and irradiated

samples up to a fluence of 1×1014 p/cm2. The emission peaks are labeled P1-P6 and

are associated with: band-to-band transitions (P1 = 1.512 eV), excitonic and shallow

acceptor transitions (P2 = 1.485 eV), possible phonon replicas of P1 and P2 (P3 =

1.443 eV and P4 = 1.408 eV), and possible impurity bands (P5 = 1.326 eV and P6

= 1.297 eV). The identification of P1 is further supported by comparing the minima
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Figure 6.2: Gamma spectra of 1017 p/cm2 fluence irradiated n-GaAs. Spectral peaks
are identified by their energy in keV.

in Faraday rotation amplitude θ0 observed at ∼1.512 eV shown in Fig. 6.3 with the

expected behavior from induced linear birefringence shown in Fig. 2.8.

The left side of Fig. 6.1 allows us to evaluate the fluence dependent behavior of

the emission peak intensity with Eq. 6.2 from Ref. [104] where I0 is PL emission

intensity prior to irradiation, I is the PL emission intensity after irradiation, K is

the degradation constant, and φ is the corresponding fluence. The exponent m is

determined by the degradation induced in the sample with m = 1 corresponding to

mid gap state formation while m = 2 corresponds to radiation induced complexes.

I0

I
− 1 = Kφm (6.2)

The degradation slope of PL emission with fluence is linear to modestly superlinear

which agrees with the literature for 5 MeV proton irradiation of n-GaAs.[104] In other

words, our sample was damaged as expected for the applied fluences.
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6.3.2 Gamma Spectra Characterization

Figure 6.2 shows gamma spectra collected from the 1017 p/cm2 fluence irradiated

sample, allowing us to better understand any nuclear reactions that took place. The

likely culprit of the gamma emission is the decay of 75Se back to 75As. There is only

one stable isotope of As (75As) which has a 1.6 MeV barrier for nuclear reaction

between an incident proton and a neutron in the As nucleus.[105] 75Se has a half-life

of 120 days and the vast majority of the gamma spectra can be attributed to its

decay.[106] This has the novel behavior of returning the sample to its original GaAs

composition after sufficient time. It should be noted that higher energy protons (&10

MeV) can lead to substantially more complex nuclear reactions that permanently

alter the chemical composition in localized regions.[105]

6.3.3 Resonant Spin Amplification Measurements

Once we had confirmed that our samples were appropriately damaged, we per-

formed RSA at 10 K. Figure 6.3 shows selected laser energy dependent RSA scans of

the 1×1014 p/cm2 fluence exposed sample, along with the fitting parameters θ0, τs,

and |g| for all samples of exposed to lower fluences. RSA Signal was not obtained in

samples exposed to higher fluences.

We can observe that all the samples exhibit an expected laser energy dependence to

their maximum measured rotation angle θ0 which is proportional to the induced linear

birefringence (compare to Fig. 2.8). Surprisingly, there is no apparent dependence of

the RSA signal upon fluence with the exception of τs at the lowest three laser energy

data points. We briefly postpone further discussion of the anomalous data.

The magnitudes of g and τs, excluding the lowest three laser energies, experience

a 2% and 40% increase respectively for the lowest two fluences when compared to the

reference values. g and τs return to their reference values at the 1×1014 p/cm2 fluence.

Such modest behavior, when compared to the orders of magnitude degradation of PL,
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Figure 6.3: (left) Selected resonant spin amplification data for the 1×1014 p/cm2 flu-
ence sample. Fitting curves are shown as solid black lines. (right) Ex-
tracted fitting parameters for all samples up to the 1×1014 p/cm2 fluence,
as a function of laser energy.

could be attributed to the formation of charge traps via defect states that can alter a

sample’s carrier density. Low fluences of neutrons have been shown to yield modest

improvement in electrical properties, supporting this argument.[107]

Addressing the lowest three laser energy data points, we specifically note the large

error bars on the reference sample data points. All data shown for a particular sample

was taken on one day with all but the explicitly referenced experiment parameters

held constant. The three lowest laser energy data points were retaken on another

day with finer resolution field scans, leading to a reduction in the error bar size (data
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not shown). However, the central values of the data points did not shift appreciably.

Therefore we treat the nearly 10 ns decrease of τs from the reference value to the

exposed samples as real.

We can explain the behavior as stemming from an enhanced Bir-Aranov-Pikus

mechanism due to radiation induced charge traps near the valence band. Beyond

modifying the carrier density, the traps can also modify absorption behavior by cre-

ating new energy states within the original bandgap. It has been shown that a change

in absorbed probe power can lead to a corresponding change in τs through an increase

in the number of photo-excited holes.[73] The Bir-Aranov-Pikus mechanism improves

in efficiency as the number of holes increases due to more efficient exchange inter-

action from improved wavefunction overlap of electrons and holes. Any changes in

efficiency would be expected to be more pronounced for carriers near the bandedges

as they have lower momenta leading to longer periods of interaction compared to car-

riers higher up the band. This could explain why only the three lowest laser energies

underwent noticeable change, and at that, only appreciably between the reference

sample and the lowest measured fluence.

6.4 Summary

In summary, we measured the spin dependent behavior of irradiated n-type GaAs

samples at 10 K using RSA. Our results show that the optically accessible spin

dependent properties of n-GaAs are robust to 5 MeV proton irradiation up to a

1×1014 p/cm2 fluence. Dephasing near the bandedge may be influenced by radiation

induced charge traps leading to an enhanced Bir-Aranov-Pikus mechanism. Our

results show that GaAs is a promising material for further development of radiation

resistant spintronic devices.
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Notes

1The samples discussed in this chapter are:

MTI-001-C2 (reference)

MTI-001-D3 (2.5×1012 protons/cm2)

MTI-001-D4 (1×1013 protons/cm2)

MTI-001-C1 (1×1014 protons/cm2)

MTI-001-C3 (1×1015 protons/cm2)

MTI-001-B2 (1×1016 protons/cm2)

MTI-001-B1 (1×1017 protons/cm2)
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CHAPTER VII

Resonant and Time Resolved Spin Noise

Spin noise measurements are powerful and relatively new techniques for accessing

spin dependent material parameters (see Sec. 4.4). In this chapter, we discuss two

novel implementations of optical spin noise measurements that use a pulsed laser sys-

tem. Our techniques offer previously unobtainable capabilities including the ability

to directly map out the correlation function and achieve significantly improved sig-

nal to background ratios. We name them as Resonant Spin Noise (RSN) and Time

Resolved Spin Noise (TRSN) in direct analogy to Resonant Spin Amplification and

Time Resolved Faraday/Kerr Rotation (see Sec. 4.3). The overlap between the con-

ventional and novel techniques extends to much of the optical path. This allows for

straightforward implementation through minimal modification of existing TRFR/KR

systems.

We begin the chapter by motivating the development of the techniques (Sec. 7.1).

We then discuss the overarching measurement concept and its unique standing among

conventional methods (Sec. 7.2). We move on to discuss the basics of our model and

electronic implementation (Sec. 7.3). From there, we discuss specific experimental

cases and develop equations for fitting our data using a single evenly spaced pulse train

or two pulse trains separated by a relative time delay (Sec. 7.4). Section 7.5 covers

our proof-of-principle measurements for RSN and TRSN, including comparisons to
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RSA and Time Resolved Faraday Rotation (TRFR) data collected from the same

sample. We conclude the chapter with a summary of our results (Sec. 7.6).

7.1 Motivation

As we saw in Ch. IV, there are a wide variety of existing optical techniques

for probing spin dynamics. Each has their own unique strengths and weaknesses,

however they all share one trait: they have not shown the ability to measure the spin

dynamics of silicon in a contactles, purely optical arrangement. This is not to say

that one of the techniques will not improve to achieve such a capability. Nor is it

to claim that silicon is the only useful material system that cannot be accessed by

the optical methods in Ch. IV. Rather it is a glaring shortcoming that the most

widely used material system in modern technology, with distinct promise for future

spintronic system development, has not been accessed by the most robust optical

methods available.

Lack of optical access hinders the advancement of spintronics by requiring alter-

nate measurement techniques that have reduced spatial resolution (e.g. Electron Spin

Resonance) or require extensive sample preparation (e.g. device behavior studies).

Electronic device studies have proven useful but require complex and time consuming

fabrication—it can take over a month to make working spin injectors and detectors

for a single batch of devices. The number of components involved in a sample struc-

ture more than linearly increase the complexity of fabrication and the possibility of

device failure. Moreover, the sample structures themselves can bring complexities

and new physical phenomena that cloud the picture. It has been shown that four

terminals, each with unique roles, are sufficient to explore novel spin dynamics in

silicon.[12] Many measurements of devices with only three terminals have been made,

but the validity of those measurements has been called into question with an uncertain

outlook for future work.[60, 108, 59]
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Therefore, we have sufficient impetus to try a new optical technique. The primary

challenge facing optical methods for silicon comes from its indirect gap. An indirect

gap requires a photon and a phonon, each of appropriate energy and momentum,

in order to promote an electron to the conduction band. This translates into more

complicated optical selection rules with a subsequently reduced efficiency in spin

pumping. The end result is a smaller spin dependent signal that requires resolution

beyond available capabilities. If we were to find a way to improve upon the signal

to noise ratio of any of the available optical techniques, that may be sufficient to

optically probe silicon. It may also open the door to study other difficult material

systems with equally small optical signal.

Optical orientation PL studies are not practical in silicon due to weak spin de-

pendent selection rules.[109, 110] Moreover, the measured carrier lifetimes in silicon

exceed the predicted and measured spin lifetimes.[111, 112, 113] Recently, the indi-

rect gap material germanium was successfully studied using TRFR.[65, 64, 114] The

broad energy spectra of a pulsed laser system exploited the narrow energy separa-

tion of the direct and indirect transitions (less than 0.2 eV) in germanium. In this

way, they could efficiently pump spins through direct transitions with comparable

selection rules to Sec. 2.3.4, let the electrons quickly relax to the indirect conduction

band without extensive loss of spin polarization, and then probe the spin behavior

of the relaxed carriers. Such a novel experiment is not practical with silicon as the

separation between direct and indirect transitions exceeds 2.0 eV with other indirect

transitions at lower energies.

We are left with spin noise as a possible optical measurement candidate for silicon

and other material systems with small spin dependent signals. Since there is no

spin pumping involved, our probe signal should go linearly with optical selection

rule efficiency compared to the square for pump-probe methods. This is a major

improvement when working with low efficiency spin selection rules. However, as we
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discussed in Sec. 4.4, digital processing limits the resolution capabilities of common

spin noise techniques. We will now discuss an analog signal processing technique that

bypasses the digital measurement issues of conventional spin noise, promising orders

of magnitude signal to noise improvements while demonstrating novel capabilities.

7.2 The Measurement Concept

RSN and TRSN build off the success of numerous advancements in theory and

measurement capabilities dating back to the first observation of Faraday rotation.

Many aspects of the new techniques are not new on their own. Instead, it is the

novel combination of components that lead to enhanced performance. For instance,

the optical path of Ref. [15], including a novel filtering scheme immediately before

detection, is the basis for our optical path (see Fig. 7.1). However, we should note

that Ref. [15] used digital electronics for signal processing, they did not report their

measurements of the correlation function, only its derivative, and their model does

not agree with ours, nor most of the existing literature.

A pulsed laser system is required and for all measurements discussed in this chap-

ter, we use a wavelength tunable Ti:Sapphire laser with ∼3 ps pulsewidth and 76

MHz repetition rate. An incident beam is split by a beamsplitter (BS) into two

probe paths where the relative difference in path lengths is controllable. Both paths

recombine at a second BS and are coupled into a polarization maintaining fiber op-

tic cable (FOC). The FOC serves one main purpose: to guarantee that both probe

pulses overlap spatially for the remainder of the optics path. After passing through

a sample mounted in a cryostat, nestled between the poles of an electromagnet, the

probe beams are sent through a set of detection optics. The Wollaston prism (WP)

and photodiode bridge (PDB) are common to TRFR/KR and conventional spin noise

experiments for the detection of a rotated linear polarization. The role of the electro-

optic modulator (EOM) immediately before the WP and PDB is to filter for spin noise,
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Figure 7.1: Resonant and Time Resolved Spin Noise optics path. The electro-optic
modulator (EOM) immediately before the Walloston prism (WP) and
photodiode bridge (PDB) acts as a spin noise filter. At 0-retardance,
a linear polarization is allowed to propagate and be detected. At
λ/4 retardance, linear polarization is broken into its constituent cir-
cularly polarized components leading to no net signal at the PDB.
BS = beamsplitter, DL = delay line, EM = electromagnet, EOM

= electro-optic modulator, FOC = fiber optic cable, LP =

linear polarizer, PDB = photodiode bridge, WP = Wollaston

prism.

allowing lock-in detection. This is accomplished by alternating the EOM between 0

retardance that allows a linear polarization through unmodified, and λ/4 retardance

where a linear polarization is decomposed into circular polarizations whose intensity

is split evenly at the PDB.

We cannot lock-in to a signal that is purely noise, even if we have modulated

whether or not we can detect that type of noise. Therefore we require some sort

of analog electronic processing that will allow us to achieve a lock-in measurement.

For this, we utilize an analog root-mean-square (RMS) circuit that will output a

square wave based on our modulation scheme. The processing is shown schematically

in Fig. 7.2. We will see shortly that a mean-square calculation would yield better

measurement results, however we require a circuit that can respond at the repetition
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Figure 7.2: Electronic processing concept behind Resonant and Time Resolved Spin
Noise. (top) An electrical signal is generated at a photodiode bridge where
the presence of spin noise is modulated using a EOM. (bottom) After an
analog RMS calculation, a square wave is generated where the amplitude
of the modulation (red arrows) contains the spin noise information. The
modulation amplitude can now be detected at a lock-in, directly accessing
the spin noise information.

rate of the pulsed laser, or faster. We were able to acquire an off-the-shelf testing

board from Analog Devices (ADL5511-EVALZ) that was within desired specifications,

drastically reducing the time for development and testing of the measurement system.

Though we now have a method for measuring the spin noise amplitude, we would

like to access the correlation function. This requires achieving a product of two

separate measurements in our electrical signal (see Sub. 4.4.1). If we combine a

weighted average of signal through the finite electronic response of our circuitry, then

perform an analog RMS calculation of the weighted average, the result is a summation

over many of our desired product of measurements.

We can visualize the finite response time of an electronic circuit with Fig. 7.3.

On the left, we see an idealized pulse response where the electronics are infinitely

fast. On the right, we show more realistic behavior where a pulse has a characteristic
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Figure 7.3: (left) An idealized electronic system response where pulsing is completely
resolved. (right) Realistic behavior where there is a characteristic de-
cay of the electrical signal after a pulse. The yellow box shows overlap
of previous values that have decayed with the most recent pulse. This
represents weighted averaging within the electronics of the pulsed signals.

decay in amplitude with a decay time tRC . We choose the subscript “RC” as we

consider the response coming from the effective RC-time constant of the combined

electronics. We ignore finite rise times as our source of electrical signal is a very short

pulse that does not interact with the system very long. We will see shortly that this

approximation is acceptable to extract quantitative values from measurements. The

yellow box shows overlap of previous pulse values that have decayed with the most

recent pulse. This represents weighted averaging within the electronics of the pulsed

signals. We assemble the core of our measurement mathematically below.

7.3 Basics of Modeling and Implementation

We only require a few core mathematical components in order to adequately per-

form our desired measurement. They are a weighted average (XWA), a mean calcu-
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lation (µX), and a RMS calculation (XRMS), defined below.

XWA ≡

1

δ

δ∫
0

dte−t/tRC

∑∞n=0Xne
−tn/tRC∑∞

n=0 e
−tn/tRC

=
tRC
δ

(
1− e−δ/tRC

) ∑∞
n=0 Xne

−tn/tRC∑∞
n=0 e

−tn/tRC
(7.1)

µX ≡ 〈X〉

= lim
N→∞

1

N

N∑
n=0

Xn (7.2)

XRMS ≡
√
〈X2〉

=

√√√√ lim
N→∞

1

N

N∑
n=0

X2
n (7.3)

There are two main factors to XWA. The first is a scaling factor (integral over

continuous time) for the average value obtained over the period δ, the spacing between

pulses. The second factor is a discrete weighted average where the times tn do not

have to be evenly spaced. δ is dependent upon the time spacing between the 0-th

pulse in the sum and the next future pulse. The summation is over all previous pulses.

Both factors contain an exponentially decaying weight that depends upon the circuit

response time (tRC). µX and XRMS are fairly standard definitions for an average and

a RMS respectively.

If we let θ represent the magnitude of spin noise and ξ the magnitude of other

sources of noise for a given measurement, we can write our expected signal after

lock-in detection as:

Signal = [(θ + ξ)WA]RMS − [ξWA]RMS (7.4)

104



We now assume µθ ∼ 0, which is acceptable for GaAs and many other nonmagnetic

semiconductors. We also note that 〈θWA〉 ∼ µθ regardless of how µθ is calculated.

Assuming θRMS � ξRMS and µθµξ we can simplify Eq. 7.4 to

Signal = [θWA]RMS (7.5)

Our assumptions about the size of θRMS do not help us long term with resolution

issues, but they do allow us to perform a proof-of-principle experiment that directly

accesses spin dependent behavior. If we were to replace our RMS with a mean-square

calculation, than Eq. 7.5 becomes

Signal =
〈
θ2
WA

〉
+ 2µθµξ

'
〈
θ2
WA

〉
(7.6)

The last approximation becomes exact if µθ or µξ is 0. It is Eq. 7.6 that will allow

for vast improvements in resolution over existing spin noise methods.

Implementing the necessary analog calculations is straightforward. The weighted

averaging XWA can be accomplished by a passive low pass filter or simply the inherent

response of the electronic circuitry. The choice of the response time tRC should be

sufficiently large to overlap multiple pulse residues, but be kept small enough so as to

not include many terms that are negligible due to dephasing. There are a variety of

ways to implement analog square or square-root of a square calculations, for which we

recommend Ref. [52]. The output of the squaring or root-squaring circuit should be

followed by another low-pass filter with a response time much larger than tRC , though

not so large as to block the modulation frequency of the spin noise signal. We use a

commercial circuit inside the Analog Devices AD5511 chip, more commonly used to

measure wireless signal strength, to combine the last two capabilities in a single RMS

calculation. We represent the analog calculations schematically in Fig. 7.4
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Figure 7.4: Analog calculation schematic showing. (top) A breakdown of the required
mathematics. (middle) A rough guideline for analog circuit implementa-
tion. Available Op-amp math circuitry should be consulted using Ref.
[52]. (bottom) Our implementation of the required components relying
upon intrinsic system response and the Analog Devices ADL5511 chip.

7.4 Experiment Specific Models

We are now in a position to assemble a model for specific experimental cases,

allowing us to analyze our proof-of-principle measurements. We begin by simplifying

our optics path through the removal of the delay line. This yields a single train of

equally spaced probe pulses to interrogate the sample. After discussing that simpler

case and corresponding measurements, we incorporate the delay line and examine the

more interesting signal from two pulse trains with a relative time delay.

7.4.1 Single Pulse Train

We start by combining Eq. 7.5 with our definition Eqs. 7.1, 7.2, and 7.3, along

with letting δ → trep where trep is the laser repetition period. Our resulting equation
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is:

[θWA]RMS =
tRC
trep

(
1− e−trep/tRC

)√∑∞n,m=0 e
−(tn+tm)/tRC 〈θnθm〉∑∞

n,m=0 e
−(tn+tm)/tRC

=
tRC
trep

(
1− e−trep/tRC

)2

√√√√ ∞∑
n,m=0

e−(n+m)trep/tRC 〈θnθm〉 (7.7)

We now have our desired 〈θnθm〉 allowing us to access the covariance of our measure-

ments.

At this point, Eq. 7.7 is generally applicable. It is strictly dependent upon the

electrical signal processing techniques and some assumptions about the behavior of

the θi. To make our equation explicitly spin dependent, we note that (see Sec. 4.4)

〈θnθm〉 = V ar(θ) e−|tn−tm|/τs cos Ω|tn − tm| (7.8)

Combining Eq. 7.8 with Eq. 7.7 we achieve:

[θWA]RMS =
tRC
trep

(
1− e−trep/tRC

)2√
V ar(θ)

×

√√√√√√ ∞∑
n,m=0

 e−(n+m)trep/tRC

× e−|n−m|trep/τs cos (Ω|n−m|trep)

 (7.9)

Our result is reminiscent of RSA with a sum over many decaying sinusoids. One

major difference is the inclusion of the weighting factor:

e−(n+m)trep/tRC

If we did not have the weighted summation from a low pass filter, we would have no

signal at all, so it plays a visible role in the mathematics. It is worth noting that the

only practical tunable parameter for measurement is an applied magnetic field. Time
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resolved experiments are not possible unless we have two pulse trains with a tunable

delay spacing between them.

7.4.2 Two Pulse Trains with Relative Delay

Using the delay line complicates both the measurement system and the mod-

eling, but our reward is a much richer signal and expanded capabilities. We can

begin our modeling by thinking of the fixed and delay paths as containing two sep-

arate pulse trains with some relative delay. However, we must quickly note that our

measurement is continuous since it is analog. Moreover, the relative delay between

sequential pulses changes periodically between two values, requiring that we perform

two weighted average calculations. Immediately after, our circuit will perform a root-

square calculation, not RMS. The circuit then performs an average over many of the

root-square calculations. Therefore we must take a different, but simpler, weighted

average of two separate root-square calculations of weighted averages over pulses.

For clarification, we show the process schematically in Fig. 7.5. The mathematical

relationship is written below:

[θWA]RMS =
δ1

trep

√√√√〈[tRC
δ1

(1− e−δ1/tRC )

(∑
a θae

−ta/tRC∑
a e
−ta,n/tRC

)]2
〉

+
δ2

trep

√√√√〈[tRC
δ2

(1− e−δ2/tRC )

(∑
b θbe

−tb/tRC∑
b e
−tb/tRC

)]2
〉

(7.10)
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with the following definitions

δ1 ≡ trep − |∆t| (7.11)

δ2 ≡ |∆t| (7.12)

ta ∈ {0, |∆t|, trep, trep + |∆t|, 2trep, ...} (7.13)

tb ∈ {0, trep − |∆t|, trep, 2trep − |∆t|, 2trep, ...} (7.14)

We use δ1
trep

and δ2
trep

as relative weighting factors for averaging over the two pulse

spacing cases. We can pull factors out of the averaging and analytically evaluate the

denominator summations of Eq. 7.10, leading to:

[θWA]RMS =
tRC
trep

(
1− e−trep/tRC

)
×

(
1− e−(trep−|∆t|)/tRC

1 + e−|∆t|/tRC

√∑
a1,a2

e−(ta1+ta2)/tRC 〈θa1θa2〉

+
1− e−|∆t|/tRC

1 + e−(trep−|∆t|)/tRC

√∑
b1,b2

e−(tb1+tb2)/tRC 〈θb1θb2〉

)
(7.15)

We use Eq. 7.15, combined with Eq. 7.8 to model two pulse RSN and TRSN. For

the former, we tune magnetic field and the latter we vary the delay separation ∆t.

7.5 Proof-of-Principle Measurements

All proof-of-principle measurements discussed in this chapter involve a single sam-

ple cut from a 2 in. diameter × 0.5 mm thick parent wafer of Si-doped n-type GaAs.1

The manufacturer specifications for the wafer are: (4.3-6.2)×1016/cm3 carrier con-

centration, (3450-3880) cm2/V s mobility, and (2.8-3.9)×10−2 Ω cm resistivity. The

choice of sample stems from the extensive literature on its spin dependent behavior

and the ability to use existing techniques as a reference.
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Figure 7.5: Schematic showing two pulse train intervals and calculation process. (top)
The two different weighted sum conditions. (bottom) Evaluation process
performed by analog electronics with numbers signifying the order of op-
erations.
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We used ∼10 mW of incident Ti:Sapphire laser power with ∼2 mW transmission

for each linearly polarized laser pulse train. For two pulse train data, this means a

total of ∼20 mW was incident upon the sample with ∼4 mW transmitted. We likely

perturbed the sample, but our probing conditions kept us within the θRMS � ξRMS

and µθµξ regime. From wavelength dependent measurements, we chose to operate

with ∼ 50% of maximum possible transmission. Therefore a sizable portion of the

incident light was likely reflected by the sample and cryostat windows. Wavelengths

were shifted appropriately to maintain that condition at all temperatures for all col-

lected data.

At the moment, we have no independent way of determining our system’s tRC ,

therefore we performed RSA on the same sample to extract a dephasing time at 10

K (data not shown) and used tRC as a fitting parameter. The tRC used in all figures

comes from an average of different two pulse train measurements at 10 K as the signal

has more features leading to improved fitting.

7.5.1 Resonant Spin Noise

Figure 7.6 shows measurements for a single pulse train RSN experiment conducted

at 10 K on an n-type GaAs sample. We extracted a g factor of 0.41 in good agreement

with RSA extracted values. The model fit using Eq. 7.9, shown as a solid black line,

follows the data set quite well.

We explore some of the variety of two pulse train measurements at 10 K in Fig.

7.7. For reference, a larger magnetic field range of single pulse train data with corre-

sponding model are shown. For the two pulse train modeling, we used Eq. 7.15, and

extracted tRC = 29 ns from the data while holding τs fixed to an RSA measured value.

The ∆t = 2 ns data shows an interesting beating that our model picks up fairly well.

The added features allow for improved extraction of fit parameters as they change at

different rates for different dephasing times. Figure 7.8 show temperature dependent
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Figure 7.6: Single Pulse Train Resonant Spin Noise

∆t = 2 ns two pulse train data and associated modeling. We can see the diminishing

features as the temperature rises corresponding to a decrease in the dephasing time.

We can also see that beyond τs ∼ 1 ns, it is impractical to fit the data using RSN

due to a convergence towards sinusoidal behavior. For large τs, RSN using a tunable

magnetic field is ideal. Short τs require an alternative.

7.5.2 Time Resolved Spin Noise

TRSN is the ideal method to observe short timescale effects, similar to TRFR/KR.

Like RSN, we use Eq. 7.9 for modeling, however we fix the applied magnetic field

value and tune the relative delay spacing. Figure 7.9 shows temperature dependent

TRSN and associated fitting curves. As evidence that only the relative delay matters,

the data is symmetric about ∆t = 0. Conceivably, the only limit on resolution is the

strength of available magnetic fields and the laser pulsewidth in time.
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Figure 7.7: Resonant Spin Noise: 10 K, Various ∆t. (top) Two pulse trains, ∆t ∼ 6.6

ns or half the repetition period. (middle) Two pulse trains, ∆t = 2 ns.
(bottom) One pulse train for reference.
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Figure 7.8: Temperature dependent Resonant Spin Noise with ∆t = 2ns. (top) 75
K data, scaled by a factor of 5 to improve visibility, (middle) 50 K data,
(bottom) 10 K data.
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Figure 7.9: Time Resolved Spin Noise with temperature dependence and fits. All
fitting curves are shown as black lines. (top) 200 K data and fit, (middle)
150 K data and fit, (bottom) 100 K data and fit.

7.5.3 Comparison with TRFR and RSA

Figure 7.10 compares conventional RSA and TRFR measurements to the novel

RSN and TRSN techniques for parameter extraction. We note the use of 10 K RSA

data for reference in the extraction of tRC . An improved analog circuit design and

access to appropriate test equipment could yield an alternative method for extracting

tRC . However, it appears that our use of a conventional method for calibration at

a single temperature point gives acceptable results. As we can see, the agreement

between methods is quite good through our explored temperature range. We also

note the apparent power law behavior, shown as a dashed blue line in Fig. 7.10,

where τs ∼ T−5/2 for 50 K through 200 K. Such behavior implies the dominance of

the D’yakonov-Perel dephasing mechanism, influenced by some mixture of phonon

and ionized impurity momentum scattering.[93] Below 50 K, other mechanisms for

dephasing and momentum scattering are expected to play more prominent roles. Our

single data point at 10 K from RSA is insufficient for extraction of details in the

low temperature regime. Future work could address the relevant phenomena in more
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Figure 7.10: A comparison of fit values for RSA and TRFR versus RSN and TRSN.
Extracted (top) dephasing times and (bottom) g factors as functions
of temperature. The blue dashed line is a power law trend line with
τs ∼ T−5/2 from 50 K to 200 K.

detail, supplementing experimental results in the literature.[115, 116, 63]

At 200 K, the extracted g factor magnitudes are likely less accurate due to the

limited strength of our electromagnet. For adequate fitting, the precession period

should be at least a factor of two smaller than the dephasing time. A field of a

few Tesla should be sufficient for extracting g factors up to, and possibly beyond,

room temperature in n-GaAs. At 75 K, we note the discrepancy in τs between RSN

and TRFR. We were restricted to attempting data collection with RSN at 75 K as

our stable delay path was too short to acquire a time resolved scan for fitting. This

analysis makes our extracted value of τs a lower bound with a corresponding upper

bound extracted for the amplitude. We will discuss the amplitude in more detail

shortly. We were still able to acquire an accurate g factor as, unlike the amplitude,

discrepancies in τs should not affect its extraction from fitting. Future systems should

incorporate modifications that will lead to improved time resolved scanning ranges.

We conclude our analysis with a discussion of the temperature dependence of the

RMS Faraday rotation from the spin noise measurements. In Fig. 7.11, if we neglect

the 75 K data point, we see an increase in the RMS rotation noise from ∼34 µrad to an

116



0 5 0 1 0 0 1 5 0 2 0 0
1 0

1 0 0
RM

S R
ota

tion
 (µ

rad
)

T e m p e r a t u r e  ( K )
Figure 7.11: Root mean square (RMS) Faraday rotation amplitude temperature de-

pendence for Resonant and Time Resolved Spin Noise data. The red
dashed line represents the average maximum RMS rotation, evaluated
using 100, 150, and 200 K data. The data point at 75 K is treated as an
upper bound for the rotation at that temperature and is neglected from
the average maximum rotation calculation.

average peak of ∼80 µrad. The increase in rotation noise below 75 K with subsequent

saturation above 75 K agrees with behavior reported and predicted respectively by

Ref. [73]. Since our sample doping is near the metal-to-insulator transition, we can

assume that the saturation behavior stems from the complete ionization of donor Si

atoms, thereby providing a temperature independent carrier density beyond 75 K.

Combined with our data, this would imply that our sample’s Faraday cross-section,

σF , can be treated as a constant for the same temperature range. Using Eq. 4.36 with

f = 1, n = 5× 1016 cm−3, d = 500 µm, and A = 500 µm2, we arrive at an estimate:

σF ' 1 × 10−14 rad·cm2. Our value appears to be in agreement with Ref. [45] and,

to the best of our knowledge, is the only other instance of extraction of σF . With

improved equipment, we believe that models for σF could be tested rigorously using

RSN and TRSN, leading to a better understanding of Faraday rotation, along with

providing key material parameter measurements useful for spintronic engineering.
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7.6 Summary

We have discussed the concepts behind RSN and TRSN experiments, along with

the mathematical modeling. Proof-of-principle measurements using spin noise in n-

GaAs show that the data and modeling agree quite well. Comparison of extracted

fitting parameters between RSN/TRSN and RSA/TRFR further show that measure-

ments are quantitatively accurate.

Our novel analog signal processing scheme, the core of our measurement system, is

quite general and should be applicable to fields beyond the scope of our expertise. In

principle, one must have a pulsed sampling scheme that results in an analog electronic

signal, a way to modulate the detection of the desired noise component, a tunable

parameter that varies the noise amplitude in an experiment, and the electronic pro-

cessing outlined in Fig. 7.4. For modeling, all derived equations are applicable, so

long as the relevant covariance function is substituted in for 〈θnθm〉. It is our hope

that improvements in the near future will lead to large advancements in the field of

spintronics and beyond.

Notes

1The sample discussed in this chapter is MTI-001-A2

118



CHAPTER VIII

Summary and Outlook

In this dissertation, we have revealed an intrinsic material challenge in the promis-

ing spintronic system of GaAsBi (Ch. V), highlighted exciting results for future ra-

diation resistant spintronics made from n-GaAs (Ch. VI), and demonstrated a mea-

surement system that may be the key to implementing practical silicon spintronics

(Ch. VII). We have attempted to give context to these developments through a dis-

cussion of the relevant physics (Ch. II), along with the present state of measurement

capabilities (Chs. III and IV). We will now briefly look towards the future.

The right material system is key to the eventual implementation of spintronics.

It is safe to say that we have not yet demonstrated the ideal candidate nor the tools

necessary to utilize ones that are already available. However, this dissertation has

made progress on both fronts. By exploring GaAsBi, we have enhanced the list

of available material systems. Even though carrier localization seems to dominate

any changes to the dephasing time in GaAsBi, the reduction in hole diffusivity and

large changes to spin-orbit coupling may provide a unique platform to study spin

helix phenomena.[117] As new growth techniques are attempted and perfected, it

may become possible to minimize or remove localization due to Bi clusters, thereby

enabling the full spintronic engineering potential of this unique material.

Our work on irradiated n-GaAs provides an encouraging outlook for the replace-
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ment of conventional electronics with spin based systems in harsh environments. In

performing our study, we have also created an entirely new field with a sea of unan-

swered questions. Due to the apparent detachment of spin properties from electrical

properties in our n-GaAs samples, it is unclear what predictions we can make about

the behavior of other irradiated material systems at this point in time. We expect

that as the body of experimental knowledge grows regarding the spin behavior of ir-

radiated materials, improvements to our theoretical understanding of spin dephasing

mechanisms and defect physics will improve by leaps and bounds.

Our development of Resonant and Time Resolved Spin Noise (RSN and TRSN)

is on the leading edge of a new age in optical spin dependent measurements. Our

technique is capable of acquiring spin dynamics and noise amplitude information in a

straightforward manner over a 10 THz bandwidth with existing equipment. Moreover,

the ideal sensitivity of our measurement system should allow the study of previously

inaccessible materials. We are already attempting measurements of bulk silicon, a

long sought after but difficult system for optical study due to predicted properties

and robust device fabrication techniques. It is the opinion of the author that it

is simply a matter of when, not if, we will be able to optically measure the spin

properties of silicon and other difficult materials.

In the near term, the implementation of mean-square circuitry should lead to vast

improvements in our signal resolution. Off-the-shelf components are widely available

and consultation with practicing electrical engineers could lead to high quality cir-

cuitry. In the long term, RSN, TRSN, or a future alternative, could be the workhorse

of production lines. It is impractical to test material quality with the fabrication

of devices. Realistic assembly lines demand non-demolition characterization and we

believe our method currently delivers the widest range of capabilities.

Beyond spintronics development, spin noise measurements have shown that they

can provide 3-dimensional resolution of material properties (see Sec. 4.4). We be-

120



lieve that continuous improvements to spin noise measurement systems will make

them a standard tool for conventional electronics development and production. This

could potentially simplify a transition to large scale assembly of spintronic devices as

the quality control elements would already be in place. A technology revolution is

approaching and it will inevitably revolve around spins.

121



APPENDICES

122



APPENDIX A

Jones Vectors and Matrices

Jones vectors and matrices allow relatively straightforward calculation of polar-

ization states, assuming the direction of light propagation is constant and that we

can neglect the field component along the optical axis. Taking EX and EY to be in

the plane orthogonal to propagation, we write

EX (t)

EY (t)

 = ei(kz−ωt)

E0Xe
iφX

E0Y e
iφY

 (A.1)

where the Jones vector is E0Xe
iφX

E0Y e
iφY

 (A.2)

We now list various Jones vectors and the matrices that operate on them.
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Horizontal

1

0

 = 1
2


1

i

+

 1

−i




Vertical

0

1

 = 1
2i


1

i

−
 1

−i




Right Circular 1√
2

 1

−i

 = 1√
2


0

1

− i
1

0




Left Circular 1√
2

1

i

 = 1√
2


0

1

+ i

1

0




Horizontal Polar-

izer

1 0

0 0

 Vertical Polarizer

0 0

0 1



phase retarder

eiφX 0

0 eiφY

 λ
2
-waveplate,

fast→horizontal

−1 0

0 1



λ
4
-waveplate,

fast→horizontal

eiπ/4

1 0

0 i

 λ
4
-waveplate,

fast→vertical

eiπ/4

1 0

0 −i



Counterclockwise

Rotation

cos θ − sin θ

sin θ cos θ

 Clockwise Rotation

 cos θ sin θ

− sin θ cos θ
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APPENDIX B

Tips for Acquiring Spin Noise

1. Before fiber coupling on incident path

• Collimation is key

– Fiber coupling is one of the trickiest parts of the system, especially

with a moving delay line. If the delay path is not collimated very well,

then the intensity will fluctuate considerably between delay positions.

• Defocusing can help with fiber coupling

– By moving the fiber input away from the focus, slight changes in the

exact focal position (likely from slight errors in collimation) will have

a reduced impact. The cost is attenuation of the output beam due to

coupling losses.

– In some cases, moving the fiber away from the focal point is required.

This is especially true with losing mode-lock of the laser from back-

reflections. By moving the fiber along the optical path, but away from

the focus, any back-reflections become diffuse scatter and do not affect

mode-lock.
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2. After fiber coupling on incident path

• Recollimate

– One cannot count on the fiber output coupler to provide a collimated

beam. Place a lens pair after the output coupler and recollimate in

order to achieve the smallest spot size possible.

• Make sure the linear polarizer is at a 45◦ angle to the Wollaston prism

axes.

– The orientation is critical for achieving the best signal and aligning

the polarizer appropriately, as opposed to using a half-wave plate for

adjustment, improves stability.

3. At the sample

• Make sure the sample is at the focal point

– This is good advice for optics experiments in general, but can be dif-

ficult achieve. Note that the sample center should be at the focal

point, not simply a surface. For transmission of a laser through GaAs

at high laser intensity ( 10 - 20 mW at the sample), a linear polar-

ized beam undegoes a visible rotation and stretching as the sample is

moved through the focal point. This provides an excellent reference

for alignment. If the sample is at a known focal point, and then imag-

ing with a shallow depth of field is put in place, finding the optimal

sample position can become relatively easy–simply move the sample

into a position where the image is clear.

4. After the sample

• Always block the optics path after the sample, until the laser power can

be verified to be low enough for safe detection.
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– Damage can occur to the variable retarder and/or the photo-diode

bridge if they are exposed to excessive power. A potential damage sit-

uation is easily possible during alignment and wavelength adjustment

so it is best to put up a beam block after the sample, but before the

retarder and photo-diode bridge when tweaking alignment.

• Alignment of the variable retarder axes, relative to the Wollaston prism

axes, is critical.

– The fast and slow axes should be at a 45◦ angle relative to the Wol-

laston prism axes. The probe linear polarization should be oriented

along either the fast or slow axes. Any other configuration will lead

to reductions in signal. Nothing can be aligned perfectly so the goal

is to minimize the signal loss.

• Always check to make sure fiber coupling to the photo-diode bridge is

maximized.

– Slight changes in the probe beam location can lead to losses in signal

and skewed rotation values. The same losses and skew can also happen

if the fiber positioners migrate. Temperature fluctuations can cause

noticeable problems so it is advised to check the positioning periodi-

cally throughout a day of data collection, and even better, use thermal

insulation.

5. The Electronics

• Unplug BNC cables connected to the analog circuitry while aligning optics

– The circuitry is sensitive so a spike in signal could fry a component

and ruin the board.

• Maximize the gain
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– As long as the voltage is not pinned for the output of the board, the

measurement has a chance be successful. The larger the final output

signal, the better measurements overall.
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APPENDIX C

Modeling and Fitting: Mathematica Code

A printout of the Mathematica Code used for modeling and fitting spin noise data

makes up the next several pages as reference for future work.
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Clear@"Global`*"D

Definitions

Creating a list of pulse times

In[1]:= tsingle@np_, trep_D := Table@i * trep, 8i, 0, np<D

ta@np_, trep_, dt_D := Flatten@Table@8i * trep, i * trep + Abs@dtD<, 8i, 0, np<DD

tb@np_, trep_, dt_D :=

Flatten@Table@8i * trep , Hi + 1L * trep - Abs@dtD<, 8i, 0, np<DD

Implementing the single pulse train model

In[4]:= fsingle@trep_, tau_, w_, trc_, sumLim_D :=

Htrc � trepL * H1 - Exp@-trep � trcDL^2 * Sqrt@Total@Flatten@ParallelTable@

Exp@-Htsingle@sumLim, trepD@@iDD + tsingle@sumLim, trepD@@jDDL � trcD *

Exp@-Abs@tsingle@sumLim, trepD@@iDD - tsingle@sumLim, trepD@@jDDD � tauD *

Cos@w * Abs@tsingle@sumLim, trepD@@iDD - tsingle@sumLim, trepD@@jDDDD,

8i, 1, sumLim<, 8j, 1, sumLim<DDDD

Implementing the two pulse train model

In[5]:= fdouble@dt_, trep_, tau_, w_, trc_, sumLim_D :=

Htrc � trepL * H1 - Exp@-trep � trcDL *

HH1 - Exp@-Htrep - Abs@dtDL � trcDL � H1 + Exp@-Abs@dtD � trcDLL * Sqrt@

H Total@Flatten@ParallelTable@

Exp@-Hta@sumLim, trep, dtD@@iDD + ta@sumLim, trep, dtD@@jDDL � trcD *

Exp@-Abs@ta@sumLim, trep, dtD@@iDD - ta@sumLim, trep, dtD@@jDDD � tauD *

Cos@w * Abs@ta@sumLim, trep, dtD@@iDD - ta@sumLim, trep, dtD@@jDDDD,

8i, 1, sumLim<, 8j, 1, sumLim<DDDLD +

Htrc � trepL * H1 - Exp@-trep � trcDL * HH1 - Exp@-Abs@dtD � trcDL �

H1 + Exp@-Htrep - Abs@dtDL � trcDLL * Sqrt@

HTotal@Flatten@ParallelTable@

Exp@-Htb@sumLim, trep, dtD@@iDD + tb@sumLim, trep, dtD@@jDDL � trcD *

Exp@-Abs@tb@sumLim, trep, dtD@@iDD - tb@sumLim, trep, dtD@@jDDD � tauD *

Cos@w * Abs@tb@sumLim, trep, dtD@@iDD - tb@sumLim, trep, dtD@@jDDDD,

8i, 1, sumLim<, 8j, 1, sumLim<DDDLD

Defining functions with a finite number of pulses in the summation

In[6]:= fSingle16@trep_, tau_, w_, trc_D = fsingle@trep, tau, w, trc, 16D;

In[7]:= fDouble32@dt_, trep_, tau_, w_, trc_D = fdouble@dt, trep, tau, w, trc, 32D;

Printed by Wolfram Mathematica Student Edition
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Function Behavior

Amplitude behavior as function of trc in units of trep

In[9]:= Plot@ HtrcL * H1 - Exp@-1 � trcDL^2, 8trc, 0.0001, 10<D

Out[9]=

2 4 6 8 10

0.1

0.2

0.3

0.4

In[8]:= Plot@fDouble32@2000, 13 157.89, 22 360, H8.7941 * 10^-5L * 0.4 * HwL, 30 000D^2,

8w, -150, 150<D

Out[8]=

-150 -100 -50 50 100 150

0.05

0.10

0.15

0.20

0.25

0.30

In[12]:= Plot@8fDouble32@dt, 1, 0.05, 0, 3D<, 8dt, -1, 1<, PlotRange ® AllD

Out[12]=

-1.0 -0.5 0.5 1.0

0.28

0.30

0.32

0.34

2     ModelFittingMathematicaCode.nb

Printed by Wolfram Mathematica Student Edition
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Data

highRes10K = Import@"C:\\Users\\bpursley\\Box

Sync\\SihLab-Selected\\Publications\\Papers\\SpinNoise_2014-2015\\

Figures\\RSN_10K_HiRes_ForFits.dat"D;

ListPlot@highRes10K, PlotRange ® AllD

-30 -20 -10 10 20 30

0.2
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0.6

0.8

1.0

RSNvaried10K = Import@"C:\\Users\\bpursley\\Box

Sync\\SihLab-Selected\\Publications\\Papers\\SpinNoise_2014-2015\\

Figures\\RSN_10K_varied_ForFits.dat"D;

RSNsinlgle10K = Table@8RSNvaried10K@@iDD@@1DD, RSNvaried10K@@iDD@@2DD<,

8i, 1, Length@RSNvaried10KD<D;

RSNdouble2ns10K = Table@8RSNvaried10K@@iDD@@1DD, RSNvaried10K@@iDD@@3DD<,

8i, 1, Length@RSNvaried10KD<D;

RSNdoubleTwiceRep10K = Table@8RSNvaried10K@@iDD@@1DD, RSNvaried10K@@iDD@@4DD<,

8i, 1, Length@RSNvaried10KD<D;

ListPlot@

8RSNsinlgle10K, RSNdouble2ns10K + 1, RSNdoubleTwiceRep10K + 2<, PlotRange ® AllD
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0.5

1.0
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2.0

2.5

3.0

ModelFittingMathematicaCode.nb    3

Printed by Wolfram Mathematica Student Edition
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RSNvaried50and75K = Import@"C:\\Users\\bpursley\\Box

Sync\\SihLab-Selected\\Publications\\Papers\\SpinNoise_2014-2015\\

Figures\\RSN_50K_and_75K_varied_ForFits.dat"D;

RSNdouble2ns50K =

Table@8RSNvaried50and75K@@iDD@@1DD, RSNvaried50and75K@@iDD@@2DD<,

8i, 1, Length@RSNvaried50and75KD<D;

RSNdouble2ns75K = Table@8RSNvaried50and75K@@iDD@@1DD,

RSNvaried50and75K@@iDD@@3DD<, 8i, 1, Length@RSNvaried50and75KD<D;

ListPlot@8RSNdouble2ns50K, RSNdouble2ns75K + 1<, PlotRange ® AllD

-150 -100 -50 50 100 150

0.5

1.0

1.5

2.0

TRSNfrom100to200K = Import@"C:\\Users\\bpursley\\Box

Sync\\SihLab-Selected\\Publications\\Papers\\SpinNoise_2014-2015\\

Figures\\TRSN_100-200K_DataForFits.dat"D;

TRSNdouble100K =

Table@8TRSNfrom100to200K@@iDD@@1DD, TRSNfrom100to200K@@iDD@@2DD<,

8i, 1, Length@TRSNfrom100to200KD<D;

TRSNdouble150K = Table@8TRSNfrom100to200K@@iDD@@1DD,

TRSNfrom100to200K@@iDD@@3DD<, 8i, 1, Length@TRSNfrom100to200KD<D;

TRSNdouble200K = Table@8TRSNfrom100to200K@@iDD@@1DD,

TRSNfrom100to200K@@iDD@@4DD<, 8i, 1, Length@TRSNfrom100to200KD<D;

ListPlot@8TRSNdouble100K, TRSNdouble150K + 1, TRSNdouble200K + 2<, PlotRange ® AllD

500 1000 1500 2000 2500 3000

0.5
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1.5

2.0
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3.0

4     ModelFittingMathematicaCode.nb

Printed by Wolfram Mathematica Student Edition
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Fitting

10 K Two Pulse Train RSN 2 ns -- tau = 22.360 ns (Xin’s data, April 8)

modelDoubleTau = mag * fDouble32@2000, 13 157.89, 22 360,

H8.7941 * 10^-5L * g * Hbfield - b0L, trcD + y0 + y1 * bfield;

fitForRSNdouble2ns10KTau = NonlinearModelFit@RSNdouble2ns10K, 8modelDoubleTau,

8mag > 0, 0.30 <= g <= 0.45, trc > 13 157.89, -2 <= b0 <= 2<<,

88mag, 1.4<, 8g, 0.41<, 8trc, 60 000<, 8y0, 0<, 8b0, -1<, 8y1, 0<<,

bfield, MaxIterations -> 5000, PrecisionGoal -> 10D

fitForRSNdouble2ns10KTau@"ParameterTable"D

Show@ListPlot@RSNdouble2ns10K, PlotRange -> AllD,

Plot@fitForRSNdouble2ns10KTau@bfieldD,

8bfield, -150, 150<, PlotStyle -> Directive@Thick, RedDDD

ListPlot@fitForRSNdouble2ns10KTau@"FitResiduals"D, Filling -> AxisD

FittedModelB

-0.0594498 +�22��6�+

1.52468 K0.149983-I2.75427 + 2.50971 Cos@0.0723869 H0.704932 + bfieldLD +�44�+ 6.05915´10-8

Cos@7.21583 H0.704932 + bfieldLDM + 0.0381617 �19� +�45�+�23��1� O
F

FittedModel::constr :

The property values 8ParameterTable< assume an unconstrained model. The results for these properties may

not be valid, particularly if the fitted parameters are near a constraint boundary.�

Estimate Standard Error t-Statistic P-Value

mag 1.52468 0.0153444 99.364 1.081663321960´10-372

g 0.411565 0.000168196 2446.94 4.893775706940´10-1193

trc 23 745.7 921.502 25.7685 6.48934´10-99

y0 -0.0594498 0.00592237 -10.0382 5.20091´10-22

b0 -0.704932 0.0316195 -22.2942 1.69141´10-80

y1 0.000901125 0.0000199399 45.192 1.55882´10-194
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ModelFittingMathematicaCode.nb    5
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10 K Twice Rep Rate Two Pulse RSN -- tau = 22.360 ns (Xin’s data, April 8) 

**Double Model**

13 157.89 � 2

6578.95

modelDoubleTwiceRepTau = mag * fDouble64@6578.95, 13 157.89,

22 360, H8.7941 * 10^-5L * g * Hbfield - b0L, trcD + y0 + y1 * bfield;

fitForRSNdoubleTwiceRep10KTau =

NonlinearModelFit@RSNdoubleTwiceRep10K, 8modelDoubleTwiceRepTau,

8mag > 0, 0.30 <= g <= 0.45, trc > 10 000, -2 <= b0 <= 2<<,

88mag, 1<, 8g, 0.41<, 8trc, 30 000<, 8y0, 0<, 8b0, -1<, 8y1, 0<<,

bfield, MaxIterations -> 1000, PrecisionGoal -> 10D

fitForRSNdoubleTwiceRep10KTau@"ParameterTable"D

Show@ListPlot@RSNdoubleTwiceRep10K, PlotRange -> AllD,

Plot@fitForRSNdoubleTwiceRep10KTau@bfieldD,

8bfield, -150, 150<, PlotStyle -> Directive@Thick, RedDDD

ListPlot@fitForRSNdoubleTwiceRep10KTau@"FitResiduals"D, Filling -> AxisD

FittedModelB

-0.111179 +�22� bfield +

1.79757 K0.0797124-I3.12661 + 2.28706 Cos@0.237324 H0.656846 + bfieldLD +�92�+

9.50866´10-14 Cos@14.9515 H0.656846 + bfieldLDM + 0.0797123 �1� O
F

FittedModel::constr :

The property values 8ParameterTable< assume an unconstrained model. The results for these properties may

not be valid, particularly if the fitted parameters are near a constraint boundary.�

Estimate Standard Error t-Statistic P-Value

mag 1.79757 0.0117531 152.944 7.87730614535´10-480

g 0.4102 0.0000552147 7429.18 5.275114805391´10-1480

trc 34 139. 974.275 35.0405 8.84129´10-147

y0 -0.111179 0.00412606 -26.9456 3.86758´10-105

b0 -0.656846 0.011279 -58.236 6.22852´10-248

y1 0.000793587 0.0000107499 73.8227 9.88402´10-302

6     ModelFittingMathematicaCode.nb
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10 K Twice Rep Rate Two Pulse RSN -- tau = 22.360 ns (Xin’s data, April 8) 

**Single Model**

modelSingleTwiceRepTau =

mag * fSingle64@6578.95, 22 360, H8.7941 * 10^-5L * g * Hbfield - b0L, trcD +

y0 + y1 * bfield;

ModelFittingMathematicaCode.nb    7
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fitForRSNsingleTwiceRep10KTau =

NonlinearModelFit@RSNdoubleTwiceRep10K, 8modelSingleTwiceRepTau,

8mag > 0, 0.30 <= g <= 0.45, trc > 10 000, -2 <= b0 <= 2<<,

88mag, 1<, 8g, 0.41<, 8trc, 30 000<, 8y0, 0<, 8b0, -1<, 8y1, 0<<,

bfield, MaxIterations -> 1000, PrecisionGoal -> 10D

fitForRSNsingleTwiceRep10KTau@"ParameterTable"D

Show@ListPlot@RSNdoubleTwiceRep10K, PlotRange -> AllD,

Plot@fitForRSNsingleTwiceRep10KTau@bfieldD,

8bfield, -150, 150<, PlotStyle -> Directive@Thick, RedDDD

ListPlot@fitForRSNsingleTwiceRep10KTau@"FitResiduals"D, Filling -> AxisD

FittedModelB -0.111179 + 0.000793587 bfield + 0.286577-I3.12661 +

3.84263 Cos@0.237325 H0.656846 + bfieldLD +�61�+ 9.50865´10-14 Cos@14.9515 H0.656846

FittedModel::constr :

The property values 8ParameterTable< assume an unconstrained model. The results for these properties may

not be valid, particularly if the fitted parameters are near a constraint boundary.�

Estimate Standard Error t-Statistic P-Value

mag 1.79757 0.0117531 152.944 7.88645447629´10-480

g 0.410199 0.0000552146 7429.18 5.275120234344´10-1480

trc 34 139.1 974.278 35.0404 8.84539´10-147

y0 -0.111179 0.00412606 -26.9456 3.86757´10-105

b0 -0.656846 0.011279 -58.236 6.22855´10-248

y1 0.000793587 0.0000107499 73.8227 9.88402´10-302
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10 K Twice Rep Rate Two Pulse RSN -- tau = 22.360 ns (Xin’s data, April 8) 

**Double Model** **trc = 29 +/-1 ns

modelDoubleTwiceRepTau29 = mag * fDouble64@6578.95, 13 157.89, 22 360,

H8.7941 * 10^-5L * g * Hbfield - b0L, 29 000D + y0 + y1 * bfield;

fitForRSNdoubleTwiceRep10KTau29 = NonlinearModelFit@RSNdoubleTwiceRep10K,

8modelDoubleTwiceRepTau29, 8mag > 0, 0.30 <= g <= 0.45, -2 <= b0 <= 2<<,

88mag, 1<, 8g, 0.41<, 8y0, 0<, 8b0, -1<, 8y1, 0<<,

bfield, MaxIterations -> 5000, PrecisionGoal -> 10D

fitForRSNdoubleTwiceRep10KTau29@"ParameterTable"D

Show@ListPlot@RSNdoubleTwiceRep10K, PlotRange -> AllD,

Plot@fitForRSNdoubleTwiceRep10KTau29@bfieldD,

8bfield, -150, 150<, PlotStyle -> Directive@Thick, RedDDD

ListPlot@fitForRSNdoubleTwiceRep10KTau29@"FitResiduals"D, Filling -> AxisD

NonlinearModelFit::eit :

The algorithm does not converge to the tolerance of 4.806217383937354`*^-6 in 5000 iterations. The best

estimated solution, with feasibility residual, KKT residual, or complementary

residual of 97.40313´10-7, 0.0000313379, 2.15894´10-7=, is returned.�

FittedModelB

-0.133661 +�22��6�+

1.75189 K0.0907959-I2.74168 + 1.99138 Cos@0.237324 H0.656348 + bfieldLD +�92�+

1.10602´10-14 Cos@14.9514 H0.656348 + bfieldLDM + 0.0907958 �19� +�93�+�1� O
F

FittedModel::constr :

The property values 8ParameterTable< assume an unconstrained model. The results for these properties may

not be valid, particularly if the fitted parameters are near a constraint boundary.�

Estimate Standard Error t-Statistic P-Value

mag 1.75189 0.00718028 243.986 2.402868900305´10-599

g 0.410198 0.0000588692 6967.96 1.108820673392´10-1465

y0 -0.133661 0.00213487 -62.6085 2.86082´10-264

b0 -0.656348 0.0120299 -54.5598 6.04629´10-234

y1 0.000793724 0.0000110754 71.6652 3.87402´10-295
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Export Model Fits

10 K Double 2 ns

fitForRSNdouble2ns10KTau@"BestFitParameters"D

8mag ® 1.52468, g ® 0.411565, trc ® 23 745.7,

y0 ® -0.0594498, b0 ® -0.704932, y1 ® 0.000901125<

Export@"C:\\Users\\bpursley\\Box

Sync\\SihLab-Selected\\Publications\\Papers\\SpinNoise_2014-2015\\

MathematicaExports\\RSN_Double_2ns_10K_table.dat",

Table@8bfield, fDouble64@2000, 13 157.89, 22 360, H8.7941 * 10^-5L *

fitForRSNdouble2ns10KTau@"BestFitParameters"D@@2DD@@2DD * bfield,

fitForRSNdouble2ns10KTau@"BestFitParameters"D@@3DD@@2DDD<,

8bfield, -150, 150, 0.05<D, "Table"D;

10 K Double Twice Rep

fitForRSNdoubleTwiceRep10KTau29@"BestFitParameters"D

8mag ® 1.75189, g ® 0.410198, y0 ® -0.133661, b0 ® -0.656348, y1 ® 0.000793724<

Export@"C:\\Users\\bpursley\\Box

Sync\\SihLab-Selected\\Publications\\Papers\\SpinNoise_2014-2015\\

MathematicaExports\\RSN_Double_TwiceRep_10K_table.dat",

Table@8bfield, fDouble64@6578.95, 13 157.89, 22 360, H8.7941 * 10^-5L *

fitForRSNdoubleTwiceRep10KTau29@"BestFitParameters"D@@2DD@@2DD * bfield,

29 000D<, 8bfield, -150, 150, 0.05<D, "Table"D;

TRSN Fitting trc = 29 +/- 1 ns from two-pulse 2ns and 

twice rep fits using 10K tau = 22.360 ns

modelTime29 =

mag * fDouble16@dt - t0, 13 157.89, tau, H8.7941 * 10^-5L * g * H300L, 29 000D +

y0 + y1 * dt ;

10    ModelFittingMathematicaCode.nb
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100 K -- 16 terms

fitForTRSNdouble100K29 = NonlinearModelFit@TRSNdouble100K,

8modelTime29, 8mag > 0 , 0.30 < g < 0.42, 10 000 > tau > 0, 0 > y1<<,

88mag, 5<, 8g, 0.38<, 8tau, 1000<, 8t0, 1650<, 8y0, 0<, 8y1, 0<<,

dt, MaxIterations -> 5000, PrecisionGoal -> 10D

fitForTRSNdouble100K29@"ParameterTable"D

Show@ListPlot@TRSNdouble100K, PlotRange -> AllD,

Plot@fitForTRSNdouble100K29@dtD, 8dt, 400, 3240<,

PlotStyle -> Directive@Thick, RedDD, PlotRange -> AllD

ListPlot@fitForTRSNdouble100K29@"FitResiduals"D, Filling -> AxisD

FittedModelB

-0.390669 - 0.000128048 dt +

3.88193 K0.803886 H1 -�1�L -K1.67543 +�156�+ ã
-�10�+�1�

29000
-�22�Abs@�1�D

Cos@0.0100425 Abs

1 + ã
-13157.9+Abs@�1�D

29000 +

0.803886 K1 - ã�1�

�5� O �1�

1 + ã
-

Abs�1��1�E
29000

FittedModel::constr :

The property values 8ParameterTable< assume an unconstrained model. The results for these properties may

not be valid, particularly if the fitted parameters are near a constraint boundary.�

Estimate Standard Error t-Statistic P-Value

mag 3.88193 0.207742 18.6863 4.67921´10-28

g 0.380651 0.0021814 174.499 1.11316´10-89

tau 1064.17 103.814 10.2507 2.76715´10-15

t0 1657.5 2.99946 552.601 1.07963´10-122

y0 -0.390669 0.0592326 -6.59551 8.4324´10-9

y1 -0.000128048 8.46773´10-6
-15.1219 3.98632´10-23
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Export Model Fits

100 K 16-terms

fitForTRSNdouble100K29@"BestFitParameters"D

8mag ® 3.88193, g ® 0.380651, tau ® 1064.17,

t0 ® 1657.5, y0 ® -0.390669, y1 ® -0.000128048<

Export@"C:\\Users\\bpursley\\Box

Sync\\SihLab-Selected\\Publications\\Papers\\SpinNoise_2014-2015\\

MathematicaExports\\TRSN_100K_16terms_table.dat",

Table@8dt, fDouble16@dt , 13 157.89,

fitForTRSNdouble100K29@"BestFitParameters"D@@3DD@@2DD,

H8.7941 * 10^-5L * fitForTRSNdouble100K29@"BestFitParameters"D@@2DD@@2DD *

H300L, 29 000D<, 8dt, -1250, 1250, 10<D, "Table"D;

12    ModelFittingMathematicaCode.nb
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GaAs. Physical Review Letters, 95(21):216603, November 2005.

[71] Georg M. Müller, Michael Oestreich, Michael Römer, and Jens Hübner. Semi-
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