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ABSTRACT

Improving Deep Representation Learning with Complex and Multimodal Data

by

Kihyuk Sohn

Chair: Honglak Lee

Representation learning has emerged as a way to learn meaningful representation from

data and made a breakthrough in many applications including visual object recognition,

speech recognition, and text understanding. However, learning representation from

complex high-dimensional sensory data is challenging since there exist many irrelevant

factors of variation (e.g., data transformation, random noise). On the other hand, to

build an end-to-end prediction system for structured output variables, one needs to

incorporate probabilistic inference to properly model a mapping from single input to

possible configurations of output variables. This thesis addresses limitations of current

representation learning in two parts.

The first part discusses efficient learning algorithms of invariant representation based

on restricted Boltzmann machines (RBMs). Pointing out the difficulty of learning,

we develop an efficient initialization method for sparse and convolutional RBMs. On

top of that, we develop variants of RBM that learn representations invariant to data

transformations such as translation, rotation, or scale variation by pooling the filter

responses of input data after a transformation, or to irrelevant patterns such as random

or structured noise, by jointly performing feature selection and feature learning. We

xv



demonstrate improved performance on visual object recognition and weakly supervised

foreground object segmentation.

The second part discusses conditional graphical models and learning frameworks

for structured output variables using deep generative models as prior. For example,

we combine the best properties of the CRF and the RBM to enforce both local and

global (e.g., object shape) consistencies for visual object segmentation. Furthermore,

we develop a deep conditional generative model of structured output variables, which is

an end-to-end system trainable by backpropagation. We demonstrate the importance

of global prior and probabilistic inference for visual object segmentation. Second, we

develop a novel multimodal learning framework by casting the problem into structured

output representation learning problems, where the output is one data modality to be

predicted from the other modalities, and vice versa. We explain as to how our method

could be more effective than maximum likelihood learning and demonstrate the state-

of-the-art performance on visual-text and visual-only recognition tasks.

xvi



CHAPTER I

Introduction

1.1 Motivation

In recent years, representation learning algorithms (e.g., clustering [2, 32, 74, 140],

sparse coding [15, 147, 143, 101, 81], restricted Boltzmann machine (RBM) [117], au-

toencoders [9, 91, 73, 6], and deep learning [46, 111, 84, 11, 78, 68]) have emerged as a

way to learn useful features from unlabeled and labeled data.

Representation learning algorithms can be classified into two categories, supervised

and unsupervised learning, depending on the use of supervision during the training.

In unsupervised learning, the goal is to learn features that capture underlying struc-

tures (e.g., statistical dependencies such as co-occurrence) in data, and features that

are learned complement or sometimes outperform manually designed domain-specific

features (e.g., SIFT [88], HOG [22] in computer vision, MFCC [23] in speech process-

ing). Furthermore, these methods make minimal assumptions about the data, and

they have been successfully applied to many tasks in different domains, including vi-

sual recognition [68], speech processing [103], and text understanding [34]. However,

learning representation from complex unlabeled sensory data is still a very challenging

problem due to many reasons; first, raw input data is usually very noisy and highly

variable, and does not provide useful information for the target task. Second, there

are many factors of variation that are not necessarily relevant to the target tasks, such
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as low-level domain-specific transformation (e.g., pixel-level translation or rotation) or

external sources of variation (e.g., lighting condition). To achieve a good recognition

performance, it is important to learn robust feature representations that are invariant

to such kinds of irrelevant intrinsic or extrinsic factors of variation. Finally, it is often

the case that the unsupervised learning algorithms with high expressive power (e.g.,

RBM) are difficult to train and thus require much of an expert’s knowledge and efforts

to train.

On the other side of the story, the supervised representation learning algorithms

have made a significant progress in recent years. Specifically, the convolutional neu-

ral network (CNN) has shown impressive performance on large-scale visual recognition

tasks [68]. Behind the scenes, there are several ingredients that contributed to make a

breakthrough: 1) powerful GPUs that can train very deep (convolutional) neural net-

works with a reasonable time cost, 2) huge number of labeled training examples such as

the ImageNet database [24], 3) stochastic gradient descent with advanced optimization

techniques (e.g., adaptive learning rate schedule algorithms [128, 26], rectified linear

units [149, 97], dropout [123]). Although deep neural networks have been so successful

for simple recognition tasks, not much has been shown yet for complex structured output

prediction problems. Unlike simple recognition problems, the distribution of structured

outputs have multiple modes, i.e., there could be several possible outcomes that can be

derived from the same input, and deep neural networks, which are extremely powerful

function approximators, may not be the optimal for modeling complex outputs. Simi-

lar challenge can often be found in multimodal joint representation learning problems,

where we have input data from multiple channels during the training. The promise of

multimodal representation learning is that the performance improvement is guaranteed

over the single data modality counterpart. However, it becomes non-trivial when we

have a missing data modality for testing, and it is important to learn a generative model

that has an ability to predict or reason about a missing data modality conditioned on
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the observation.

In this thesis, we aim to solve the following research questions to build a robust and

intelligent agent that can effectively learn representations from complex and multiple

heterogeneous data sources:

1. How to make the learning procedure of the highly expressive representation learn-

ing methods a black-box by avoiding extensive hyperparameter search?

2. How to learn representations that are invariant to intrinsic data transformation

from complex sensory data?

3. How to learn representations that are robust to irrelevant input patterns or ran-

dom noise?

4. How to develop a generic supervised learning algorithm for structured output

prediction that incorporates long-range, higher-order interactions among output

variables?

5. How to learn a better joint representation of multiple heterogeneous data that

can reason about a missing data modality?

6. How to develop an end-to-end system for structured output representation learn-

ing and prediction, and multimodal representation learning with deep convolu-

tional neural networks?

1.2 Organization of the Thesis

This thesis is organized in 8 chapters including the introduction (Chapter I), and the

conclusion and future work (Chapter VIII). The main chapters (II – VII) are divided

into 2 parts, 3 chapters each. The first part (Chapter II, III, IV) discusses on efficient

learning algorithms of invariant feature representations from complex sensory data. We
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change gears in the second part (Chapter V, VI, VII) towards learning representations of

structured output or multimodal data using (a combination of) conditional generative

objectives. We briefly state the problem, our approach and contributions for each

chapter.

Chapter II. Efficient Learning of Sparse, Distributed, Convolutional Feature

Representations for Object Recognition.

Informative feature representations are important for achieving state-of-the-art perfor-

mance in machine learning tasks. The RBM has been successfully applied to automati-

cally learn useful patterns from large amount of unlabeled data. Although it has a great

potential due to its rich expressive power and capability to build a deep network, the

difficulty of training RBMs has been a barrier to their wide use. In this chapter, we ad-

dress this difficulty by showing the connections between mixture models and RBMs and

deriving an efficient training method for RBMs from these connections. Along with this

efficient training, we evaluate the importance of convolutional training that can cap-

ture a larger spatial context with less redundancy, as compared to non-convolutional

training. Overall, our method achieves state-of-the-art performance on visual object

recognition benchmarks.

Chapter III. Learning Invariant Representations with Local Transforma-

tions.

The difficulty of developing representation learning algorithms that are robust to data

transformations (e.g., scale, rotation, or translation) has been a challenge in many

applications (e.g., object recognition problems). In this chapter, we address the problem

of learning transformation invariant features by introducing the transformation matrices

into the energy function of the RBMs. The proposed transformation-invariant RBMs

not only learn the diverse patterns by explicitly transforming the weight matrix, but
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they also achieve the invariance of the representation via probabilistic max pooling of

hidden units over the set of transformations. We evaluate our algorithm on several

benchmark on visual recognition, such as the variations of MNIST, or CIFAR-10 and

STL-10, as well as the customized digit datasets with significant transformations, and

show competitive classification performance to the state-of-the-art. Besides the image

data, we apply our method to phone classification task on the TIMIT database to show

the wide applicability of our proposed algorithms to other domains, also achieving

state-of-the-art performance.

Chapter IV. Learning and Selecting Features Jointly with Point-wise Gated

Boltzmann Machines.

Learning useful high-level features is still challenging when the data contains a sig-

nificant amount of irrelevant patterns. In this chapter, we propose a point-wise gated

Boltzmann machine, a unified generative model that combines feature learning and

feature selection. Our model performs not only feature selection on learned high-level

features (i.e., hidden units), but also dynamic feature selection on raw features (i.e.,

visible units) through a gating mechanism. For each example, the model can adap-

tively focus on a variable subset of visible nodes corresponding to the task-relevant

patterns, while ignoring visible units corresponding to the task-irrelevant patterns. In

experiments, our method achieves improved performance over state-of-the-art in several

visual recognition benchmarks.

Chapter V. Augmenting CRFs with Boltzmann Machine Priors for Struc-

tured Output Prediction.

CRFs provide powerful tools for building models to label image segments. They are

particularly well-suited to model local interactions among adjacent regions (e.g., su-

perpixels). However, CRFs are limited in dealing with complex, global (long-range)
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interactions between regions. Complementary to this, RBMs can be used to model

global shapes produced by segmentation models. In this chapter, we present a new

model that combines these two network types to build a state-of-the-art region labeler.

Although the CRF is a good baseline labeler, we show how an RBM can be added to

the architecture to provide a global shape bias that complements the local modeling pro-

vided by the CRF. We demonstrate the labeling performance for the parts of complex

face images from the Labeled Faces in the Wild data set. This hybrid model produces

results that are both quantitatively and qualitatively better than the CRF alone. In

addition, we demonstrate that the hidden units in the RBM portion of our model can

be interpreted as face attributes that have been learned without any attribute-level

supervision.

Chapter VI. Improved Multimodal Deep Learning with Variation of Infor-

mation.

It is important to capture high-level associations between multiple data modalities with

a compact set of latent variables, and deep learning has been successfully applied to

this problem of multimodal representation learning. Nonetheless, there still remains an

important question how to learn a good association between multiple data modalities,

in particular, to reason about the missing data modalities in the testing time. In this

chapter, we propose a novel multimodal representation learning objective that explicitly

aims this goal. Instead of maximum likelihood learning, we train the networks to

minimize the variation of information, an information theoretic measure that computes

the information distance between data modalities. In experiments, we demonstrate

the state-of-the-art visual-textual and visual recognition performance on MIR-Flickr

database and PASCAL VOC 2007 database.
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Chapter VII. Learning to Predict Structured Outputs using Stochastic Con-

volutional Networks.

To build an end-to-end system for structured output prediction one needs to incorporate

probabilistic inference, as it may not be a simple many-to-one function approximation

problem (e.g., recognition and classification), but could be a task of mapping input to

many possible outputs. In this chapter, we propose a stochastic convolutional neural

networks with Gaussian latent variables for structured output prediction and represen-

tation learning. In light of recent development in variational inference and learning

of directed graphical models [62, 107, 63], we propose a conditional variational auto-

encoder (condVAE). We demonstrate the importance of stochastic neurons in modeling

the distribution with multiple major modes using the toy example of MNIST database.

In addition, we demonstrate the effectiveness of our proposed model on several image

segmentation and region labeling database.

1.3 List of Publications

Here, we enumerate the list of publications relevant to each chapter:

[1] Efficient Learning of Sparse, Distributed, Convolutional Feature

Representations for Object Recognition. Kihyuk Sohn, Dae Yon Jung,

Honglak Lee, and Alfred Hero III. In Proceedings of the International Conference

on Computer Vision, 2011. (Chapter II)

[2] Learning Invariant Representations with Local Transformations. Ki-

hyuk Sohn and Honglak Lee. In Proceedings of the International Conference on

Machine Learning, 2012. (Chapter III)

[3] Learning and Selecting Features Jointly with Point-wise Gated Boltz-

mann Machines. Kihyuk Sohn, Guanyu Zhou, Chansoo Lee, and Honglak

Lee. In Proceedings of the International Conference on Machine Learning, 2013.
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(Chapter IV)

[4] Augmenting CRFs with Boltzmann Machine Shape Priors for Image

Labeling. Kihyuk Sohn∗, Andrew Kae∗, Honglak Lee, and Erik Learned-Miller.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-

nition, 2013 (∗ indicates equal contribution) (Chapter V)

[5] Improved Multimodal Deep Learning with Variation of Information.

Kihyuk Sohn, Wenling Shang, and Honglak Lee. In Advances in Neural Infor-

mation Processing Systems, 2014 (Chapter VI)

There are few more publications that I have published during my Ph.D. years:

[6] Online Incremental Feature Learning with Denoising Autoencoders.

Guanyu Zhou, Kihyuk Sohn, and Honglak Lee. In Proceedings of the Interna-

tional Conference on Artificial Intelligence and Statistics, 2012.

[7] Learning to Disentangle Factors of Variation with Manifold Interac-

tion. Scott Reed, Kihyuk Sohn, Yuting Zhang and Honglak Lee. In Proceedings

of the International Conference on Machine Learning, 2015.

[8] Improving Object Detection with Deep Convolutional Networks via

Bayesian Optimization and Structured Prediction. Yuting Zhang, Kihyuk

Sohn, Ruben Villegas, Gang Pan and Honglak Lee. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2015

For reproducible research, the code will be made available in my personal website:

https://sites.google.com/site/kihyuksml/.
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CHAPTER II

Efficient Learning of Sparse, Distributed,

Convolutional Feature Representations

2.1 Introduction

Object recognition poses a significant challenge due to the high pixel-level variability

of objects in images. Therefore, having higher-level, informative image features is a nec-

essary component for achieving state-of-the-art performance in object classification and

detection. In the last decades, many efforts have been made to develop feature repre-

sentations that can provide useful low-level information from images [88, 22]. However,

these feature representations are often hand-designed and require significant amounts

of domain knowledge and human labor.

Therefore, there has been much interest in developing unsupervised and supervised

feature learning algorithms for image representations that address these difficulties. No-

table successes include clustering [2, 32, 74, 140], sparse coding [15, 147, 143], and deep

learning methods [46, 9, 91, 60]. These methods are nonlinear encoding algorithms that

provide new image representations from inputs. For instance, unsupervised learning

algorithms (e.g., sparse coding [101]) can learn representations for low-level descrip-

tors (e.g., SIFT, HOG) and provide discriminative features for visual recognition [143].

From another perspective, these methods can be viewed as generative models with la-
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tent variables that learn salient structures and patterns from inputs. In this view, the

posterior probabilities of the latent variables can be used as features for discriminative

tasks.

Although recently developed models provide powerful feature representations for

visual recognition, some of these models are difficult to train, which has been a barrier

to their wide use in many applications. For example, while the RBM has rich expressive

power and capability to build a deep network, it is difficult to train due to its intractable

partition function and the need to tune many hyperparameters through expensive cross-

validation.

In this section, we investigate black-box training of RBMs. The main idea of our

approach is to examine theoretical links among the unsupervised learning algorithms

and take advantage of simple models to train more complicated models. We provide a

theoretical analysis showing the equivalence between GMM and Gaussian RBM under

specific constraints. This link has far-reaching implications on existing algorithms.

For example, sparse RBMs [82] can be viewed as an approximation to a relaxation of

clustering algorithms, and thus can provide richer image representations than clustering

methods. Using these equivalence and implications, we enhance the training of RBMs

by utilizing Kmeans as a way of initializing the model parameters of RBMs. This

allows for faster training and greater classification performance. We evaluate clustering

methods and sparse RBMs on standard computer vision benchmarks, showing that

sparse RBMs outperform clustering algorithms by allowing distributed and less sparse

encoding.

Furthermore, we provide a simple connection between CRBM and non-convolutional

RBMs. For example, the CRBM becomes equivalent to its non-convolutional counter-

part when the convolution filter size is 1 (i.e., no spatial context). Not surprisingly, the

CRBM thus can capture larger spatial contexts and reduce the redundancy of feature

representations.
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Based on our efficient training method, we systematically evaluate the performance

of CRBMs on standard object recognition benchmarks, such as Caltech 101 and Caltech

256. We also provide an analysis of hyperparameters, such as target sparsity and convo-

lutional filter size, to demonstrate the effectiveness of sparse, distributed, convolutional

feature learning. Overall, our approach leads to enhanced feature representations that

outperform other learning-based encoding methods [143, 135] and achieve state-of-the-

art performance.

The main contributions of this section are as follows:

• We provide a theoretical analysis showing an equivalence between mixture models

and RBMs with specific constraints. We further show that sparse RBMs can be

viewed as an approximation to a relaxation of such mixture models.

• Using these connections, we propose an efficient training method for sparse RBMs

and CRBMs. To the best of our knowledge, this is the first work showing that

the RBM can be trained with almost no hyperparameter tuning to provide clas-

sification performance similar to or significantly better than GMM.

• We evaluate the importance of convolutional training that can capture larger

spatial contexts with less redundancy (compared to non-convolutional training).

Specifically, we learn a feature representation based on SIFT and CRBM. In the

experiments, we show that such convolutional training provides a much better

representation than its non-convolutional counterparts.

• Overall, our method achieves state-of-the-art performance on both Caltech 101

and 256 datasets using a single type of feature.

2.2 Related Work

Recently, researchers have tried to improve image features for object classification

via unsupervised learning. A common unsupervised feature learning framework for

classification is as follows: (1) densely extract image descriptors (e.g., SIFT [88] or
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Figure 2.1: Pipeline for constructing features in object recognition.

HOG [22]); (2) train a feature mapping using an unsupervised learning algorithm;

(3) once the feature mapping is learned, encode the descriptors to obtain “mid-level

features” [15, 143]; (4) pool the single vector from multi-scaled sub-regions (e.g., spatial

pyramid matching [74]) that characterize the entire image. The representations are then

provided as inputs for linear or nonlinear classifiers (e.g., support vector machines). This

pipeline is shown as a diagram in Figure 2.1.

Indeed, advanced encoding algorithms for image descriptors can provide significant

improvements in object recognition. For example, Yang et al. [143] applied patch-

based (non-convolutional) sparse coding on densely extracted SIFT descriptors to obtain

sparse feature representations (ScSPM). Similarly, Wang et al. [135] proposed LLC

based on locality. Boureau et al. [15] also used sparse coding, but they considered

macrofeatures, which encode neighboring low-level descriptors to incorporate the spatial

information. While these models are not trained convolutionally, we use the CRBM [83]

as an unsupervised learning algorithm on top of the SIFT descriptors. Our feature

representation is robust to translation variations of images and effectively captures the

larger spatial context, as shown in the experiments.

Convolutional extensions of unsupervised learning algorithms, such as sparse coding

and RBMs, have been successful in developing powerful image representations. For

example, [148] and [60] developed algorithms for convolutional sparse coding, which
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approximately solves the L1-regularized optimization problem to minimize the recon-

struction error between the data and the higher layer features convolved with the fil-

ters. Our approach is different from these methods in that we used CRBM instead of

convolutional sparse coding. Further, we verified the advantage of convolutional train-

ing through the experimental comparison between convolutional and non-convolutional

training.

Compared to sparse coding, the RBM can compute posterior probabilities in a feed-

forward way, which is usually orders of magnitude faster. This computational efficiency

provides a significant advantage over sparse coding since it scales up to a much larger

number of codes. Furthermore, CRBMs are amenable to GPU computation resulting

in another order of magnitude speedup.

2.3 Preliminaries

2.3.1 Restricted Boltzmann machines

The restricted Boltzmann machine is a bipartite, undirected graphical model with

visible (observed) units and hidden (latent) units. The RBM can be understood as

an MRF with latent factors that explains the input visible data using binary latent

variables. The RBM consists of visible data v of dimension L that can take real values

or binary values, and stochastic binary variables h of dimension K. The parameters of

the model are the weight matrix W ∈ RL×K that defines a potential between visible

input variables and stochastic binary variables, the biases c ∈ RL for visible units, and

the biases b ∈ RK for hidden units.

When the visible units are real-valued, the model is called the Gaussian RBM, and
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its joint probability distribution can be defined as follows:

P (v,h) = 1
Z

exp(−E(v,h)), (2.1)

E(v,h) = 1
2σ2

∑
i

(vi − ci)2 − 1
σ

∑
i,j

viWijhj −
∑
j

bjhj. (2.2)

where Z =
∫

v
∑

h exp (−E(v,h)) is a normalization constant. The conditional distribu-

tion of this model can be written as follows:

P (hj = 1|v) =
exp

(
1
σ

∑
iWijvi + bj

)
∑
hj∈{0,1} exp

(
1
σ

∑
i viWijhj + hjbj

)
=

exp
(

1
σ

∑
iWijvi + bj

)
1 + exp

(
1
σ

∑
iWijvi + bj

) = sigm( 1
σ

∑
i

Wijvi + bj), (2.3)

P (vi|h) ∝ exp
 1

2σ2 (vi − ci)2 − 1
σ

∑
j

viWijhj


= exp

 1
2σ2 (v2

i + c2
i − 2vici − 2σ

∑
j

viWijhj)


∝ exp
 1

2σ2 (vi − σ
∑
j

Wijhj − ci)2

 = N (vi;σ
∑
j

Wijhj + ci, σ
2). (2.4)

where sigm(s) = 1
1+exp(−s) is the sigmoid function, and N (·; ·, ·) is a Gaussian distribu-

tion. Here, the variables in a layer (given the other layers) are conditionally independent,

and thus we can perform block Gibbs sampling in parallel.

The RBM can be trained using sampling-based approximate maximum-likelihood,

e.g., contrastive divergence (CD) approximation [44]. After training the RBM, the

posterior (Equation (2.3)) of the hidden units (given input data) can be used as feature

representations for classification tasks.

2.3.2 Convolutional RBMs

The Gaussian restricted Boltzmann machine is defined for input data in the form

of vectors and does not model spatial context effectively. Thus, to make the RBMs

14



NH (= NV – ws + 1)NV

Visible layer Hidden layer

k=1,…,K (K=6)l=1,…,L (L=4)

hk
ij

+

ws (ws=4)

vlij

Wk,l

Figure 2.2: Illustration of CRBM. NV and NH refer to the size of visible and hidden
layer, and ws to the size of convolution filter. The convolutional filter for the l-th
channel (of size ws× ws) corresponding to k-th hidden group is denoted as Wk,l.

scalable to more realistic and larger images, [84] proposed the convolutional restricted

Boltzmann machine (CRBM). The CRBM can be viewed as a convolutional learning

algorithm that can detect salient patterns in unlabeled (image) data. A schematic

description of the Gaussian CRBM is provided in Figure 2.2, whose energy function is

defined as follows: E(v,h) =

1
2σ2

L∑
l=1

∑
i,j

(vli,j − cl)2 − 1
σ

K∑
k=1

L∑
l=1

∑
i,j,r,s

hki,jW
k,l
r,s v

l
i+r−1,j+s−1 −

K∑
k=1

bk
∑
i,j

hki,j (2.5)

= 1
2σ2

L∑
l=1

∑
i,j

(vli,j − cl)2 −
L∑
l=1

∑
i,j

vli,j

(
K∑
k=1

1
σ

(Wk,l ∗ hk)i,j
)
−

K∑
k=1

bk
∑
i,j

hki,j (2.6)

= 1
2σ2

L∑
l=1

∑
i,j

(vli,j − cl)2 −
K∑
k=1

∑
i,j

hki,j

(
L∑
l=1

1
σ

(W̃k,l ∗ vl)i,j + bk

)
, (2.7)

where v ∈ RNV ×NV ×L denotes the visible nodes with L channels,1,2 and h ∈ RNH×NH×K

denotes the hidden nodes withK groups. The visible nodes and hidden nodes are related

by the 4-d weight matrix W ∈ Rws×ws×L×K . More precisely, Wk,l ∈ Rws×ws represents

the connection between the units in k-th hidden group and l-th visible channel, and it is

shared among the hidden units in the k-th group across all spatial locations. We define
1For the simplicity of presentation, we assume that input images are “square” shaped; however, the

algorithm is applicable to images of arbitrary aspect ratios.
2For example, L will be 128 when we use dense SIFT as an input.
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W̃k,l as the 2-d filter matrix Wk,l flipped vertically and horizontally, i.e., in Matlab

notation, W̃k,l = fliplr(flipud(Wk,l)). The visible units in the l-th channel share the

bias cl, and the hidden units in the k-th hidden group share the bias bk.

The conditional probability of the CRBM can be written as follows:

P (hki,j = 1|v) = sigm
(∑

l

1
σ

(W̃k,l ∗ vl)i,j + bk

)
, (2.8)

P (vl|h) = N
(

vl;σ
∑
k

Wk,l ∗ hk + cl, σ
2I
)
. (2.9)

The convolutional RBM can be trained like the standard RBM using CD. Since the

CRBM is highly overcomplete, sparsity regularization [82] is used to encourage the

hidden units to have sparse activations.

2.4 Efficient Training of RBMs

Although the RBM has shown promise in computer vision problems, it is not yet

as commonly used as other unsupervised learning algorithms primarily because of its

difficulty in training. To address this issue, we provide a novel training algorithm by

exploiting the relationship between clustering methods and RBMs.

2.4.1 Equivalence between mixture models and RBMs with a softmax con-

straint

In this section, we show that a Gaussian RBM with softmax hidden units can be

converted into a GMM, and vice versa. This connection between mixture models and

RBMs with a softmax constraint completes the chain of links between Kmeans, GMMs,

Gaussian-softmax RBMs, sparse RBMs, and CRBMs. This chain of links will motivate

an efficient training method for sparse RBMs and CRBMs.
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Gaussian mixture model is a directed graphical model where the likelihood of visi-

ble units is expressed as a convex combination of Gaussian distributions. The likelihood

of a GMM with K + 1 Gaussians can be written as follows:

P (v) =
K∑
k=0

πkN (v; µk,Σk) (2.10)

For the rest of this section, we denote the GMM with shared spherical covariance as

GMM(µk, σ
2I), when Σk = σ2I for all k ∈ {0, 1, . . . , K}. For the GMM with arbitrary

positive definite covariance matrices, we will use the shorthand notation GMM(µk,Σk).

Gaussian-softmax RBM is a Gaussian RBM with a constraint that at most one

hidden unit can be activated for each input, i.e., ∑j hj ≤ 1. The energy function of the

Gaussian-softmax RBM can be written in a vectorized form as follows:

E(v,h) = 1
2σ2‖v− c‖2 − 1

σ
vTWh− bTh subject to

∑
j

hj ≤ 1 (2.11)

The conditional probabilities can be computed as follows:

P (v|h) = N (v;σWh + c, σ2I) (2.12)

P (hj = 1|v) =
exp( 1

σ
wT
j v + bj)

1 +∑
j′ exp( 1

σ
wT
j′v + bj′) , (2.13)

where wj is the j-th column of the W matrix, often denoted as a “basis” vector for the

j-th hidden unit. In this model, there are K + 1 possible configurations (i.e., all hidden

units are 0, or only one hidden unit hj is 1 for some j).

Equivalence between GMMs and Gaussian-softmax RBMs. The conditional

probability of visible units given the hidden unit activations of Gaussian-softmax RBM

follows a Gaussian distribution, as seen in Equation (2.12). From this perspective,

the Gaussian-softmax RBM can be viewed as a mixture of Gaussians whose mean
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components correspond to possible hidden unit configurations.3 In this section, we

show an explicit equivalence between these two models by formulating the conversion

equations between GMM(µk, σ
2I) with K + 1 Gaussian components and the Gaussian-

softmax RBM with K hidden units.

Proposition II.1. The mixture of K + 1 Gaussians with shared spherical covariance

of σ2I is equivalent to the Gaussian-softmax RBM with K hidden units.

Proof. We prove by constructing the following conversions.

(1) From Gaussian-softmax RBM to GMM(µk, σ
2I): We begin by the decompo-

sition using a chain rule:

P (v,h) = P (v|h)P (h),

where

P (h) = 1
Z

∫
dv exp(−E(v,h)).

Since there are only a finite number of hidden unit configurations, we can explicitly

enumerate the prior probabilities:

P (hj = 1) =
∫
dv exp(−E(v, hj = 1))∑

j′
∫
dv exp(−E(v, hj′ = 1))

If we define π̃j =
∫
dv exp(−E(v, hj = 1)), then we have P (hj = 1) = π̃j∑

j′ π̃j′
, πj. In

fact, π̃j can be analytically calculated as follows:

π̃j =
∫
dv exp(−E(v, hj = 1))

=
∫
dv exp(− 1

2σ2‖v− c‖2 + 1
σ

vTwj + bj)

= (
√

2πσ)L exp(bj + 1
2‖wj‖2 + 1

σ
cTwj)

3In fact, the Gaussian RBM (without any constraints) can be viewed as a mixture of Gaussians with
an exponential number of components. However, it is nontrivial to use this notion itself to develop a
useful algorithm.
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Using this definition, we can show the following equality:

P (v) =
∑
j

πjN (v;σwj + c, σ2I).

(2) From GMM(µk, σ
2I) to Gaussian-softmax RBM: We will also show this by

construction. Suppose we have the following GMM with K + 1 components and the

shared spherical covariance σ2I:

P (v) =
K∑
j=0

πjN (v; µj, σ
2I). (2.14)

We can convert from this GMM(µk, σ
2I) to a Gaussian-softmax RBM using the follow-

ing transformations:

c = µ0

wj = 1
σ

(µj − c), j = 1, ..., K

bj = log πj
π0
− 1

2‖wj‖2 − 1
σ

wT
j c.

(2.15)

It is easy to see that the conditional distribution P (v|hj = 1) can be formulated as

a Gaussian distribution with mean µj = σwj + c, which is identical to that of the

Gaussian-softmax RBM. Further, we can recover the posterior probability of hidden

units given the visible units as follows:

P (hj = 1|v) =
πj exp(− 1

2σ2‖v− σwj − c‖2)∑K
j′=0 πj′ exp(− 1

2σ2‖v− σwj′ − c‖2)

=
exp( 1

σ
wT
j v + bj)

1 +∑K
j′=1 exp( 1

σ
wT
j′v + bj′)

Therefore, a GMM can be converted to Gaussian RBM with a softmax constraint.

Similarly, the GMM with shared diagonal covariance is equivalent to the Gaussian-

softmax RBM with a slightly more general energy function, where each visible unit vi
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has its own noise parameter σi, as stated below.

Corollary II.2. The mixture of K + 1 Gaussians with a shared diagonal covariance

matrix (with diagonal entries σ2
i , i = 1, ..., L) is equivalent to the Gaussian-softmax

RBM with the following energy function: E(v,h) = ∑
i

1
2σ2
i
(vi − ci)2 −∑i,j

1
σi
viWijhj −∑

j bjhj.

Further, the equivalence between mixture models and RBMs can be shown for other

settings. For example, the following corollaries can be derived from Proposition II.1.

Corollary II.3. The binary RBM (i.e., when the visible units are binary) with a softmax

constraint on hidden units and the mixture of Bernoulli models are equivalent.

Corollary II.4. GMM(0,Σk) with arbitrary covariance matrices and the factored 3-

way RBM [104] with a softmax constraint on hidden units are equivalent.

We provide proofs for Corollary II.3 and II.4 in Appendix A.

Implication. Proposition II.1 has important ramifications. First, it is well known

that K-means can be viewed as an approximation of a GMM with spherical covariance

by letting σ → 0 [12]. Compared to GMMs, the training of K-means is highly efficient;

therefore, it is plausible to train K-means to provide an initialization of a GMM.4 Then,

the GMM is trained with expectation-maximization (EM) algorithm, and we convert

it to an RBM with softmax units. As will be discussed, this provides an efficient

initialization for training sparse RBMs and CRBMs.

2.4.2 Activation constrained RBMs, sparse RBMs, and convolutional RBMs

We extend the Gaussian-softmax RBM to more general Gaussian RBMs that allow

at most α ≥ 1 hidden units to be active for a given input example. We call this model
4K-means learns cluster centroids and provides hard-assignment of training examples to the cluster

centroids (i.e., each example is assigned to one centroid). This hard-assignment can be used to initialize
GMM’s parameters, such as πk and σ, by running one M-step in the EM algorithm.
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the activation constrained RBM, and its energy function is written as follows:

E(v,h) = 1
2σ2‖v− c‖2 − 1

σ
vTWh− bTh subject to

∑
j

hj ≤ α (2.16)

Note that the number of possible hidden configurations grows polynomial with α.5

Therefore, such relaxation provides more expressive power than GMMs. However, there

is a trade-off between the expressive power (or capacity), and the tractability of exact

inference and maximum-likelihood training. For example, an exact EM algorithm will

require polynomial time complexity ofO(Kα), which may be computationally expensive.

To address such difficulties, we approximate the activation constrained RBM to the

sparse RBM [82]. Specifically, the sparse RBM is a variant of the RBM trained with a

regularizer that encourages the average activation to be low (i.e., with target sparsity p0)

in the hidden representations. By setting p0 = α/K, the sparse RBM can be regarded

as an approximation to the activation constrained RBM with a constraint ∑j hj ≤ α.

The inference and training of sparse RBMs is much more efficient as α increases.

We further observe that the CRBM is a generalization of the sparse RBM. Specifi-

cally, the two algorithms are equivalent when (1) the filter size of the CRBM is 1 (i.e.,

the convolution does not smooth the image); or (2) the filter size is the same as the

image size (i.e., this is essentially equivalent to vectorizing the whole image, which is

usually not interesting). For example, note that non-convolutional feature learning al-

gorithms (e.g., sparse RBM) on SIFT descriptors would have a weight matrix of size

128×K, which is equivalent to that of convolutional algorithms (1× 1× 128×K, i.e.,

no interactions between adjacent hidden units). In general, CRBMs can model a larger

spatial context using ws× ws× L as weights for each hidden unit.

Predictions. Based on the connections described, we make the following predictions:
5If α → ∞ or there is no such constraint, the model is equivalent to the Gaussian RBM that has

an exponential number of hidden configurations.
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Algorithm 1 Efficient training algorithm for sparse or convolutional RBMs
1: Train K + 1 centroids µk via K-means.
2: Initialize GMM(µk, σ

2I) parameters from K-means.
3: Train GMM(µk, σ

2I) via EM.
4: Initialize the RBM parameters (see Proposition II.1).
5: Train sparse or convolutional RBMs (e.g., via CD).

• K-means, GMM, and Gaussian-softmax RBM (with the same K) should have

similar expressive power and show similar classification performance.

• When α > 1, sparse RBMs can give better classification performance than K-

means or GMMs due to their increased expressive power.

• When convolutional filter size is larger than 1, CRBMs can give better classi-

fication performance than non-convolutional RBMs since they can learn spatial

context more efficiently.

These predictions will be verified with our efficient training method in the following

section.

2.4.3 Algorithm and implementation details

The overall procedure for training sparse or convolutional RBMs is shown in Algo-

rithm 1. In addition, we used the following methods to select hyperparameters.

Setting the σ automatically. As in Equation (2.4), σ roughly controls the noise in

the visible units. Typically, σ is fixed during training and treated as a hyperparameter

that needs to be cross-validated. As an alternative, we used the following heuristic

to automatically tune the σ value. Suppose that we are given a fixed set of hidden

unit values ĥ, then we have the following conditional probability distribution for the

Gaussian RBM:

P (v|h) = N (v;σWĥ + c, σ2I) (2.17)
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If we apply the maximum likelihood estimation of σ given ĥ fixed, then σ should be the

sample standard deviation of v − (σWĥ + c). Here, we use ĥ as the expectation of h

given input v. Thus, we update σ so that it becomes close to the reconstruction error

of the training data.6 The same method also applies to convolutional training.

Setting the L2 regularization. When training RBMs, a hyperparameter for L2

regularization (that penalizes high L2 norm of W ) typically has to be determined via

cross validation. However, due to the connections between mixture models and RBMs

discussed in section 2.4.1, setting the L2 regularization is straightforward. Specifically,

the clustering-based initialization justifies using the L2 regularization hyperparameter

obtained from clustering models, which are often very small. In our experiments, we

used 0.0001 without tuning.

In the following section, we show the efficacy of our training algorithm and provide

experimental evidence for the above predictions. From the experiments, we find that

a combination of moderately sparse (1 < α � K) representations with a moderate

amount of spatial convolution (1 < ws� NV ) performs the best for object recognition.

Further, we show that our feature representation achieves state-of-the-art performance.

2.5 Experiments and Discussions

In this section, we report classification results based on two datasets: Caltech

101 [32] and Caltech 256 [37]. In the experiments, we used SIFT as low-level de-

scriptors, which were extracted densely from every 6 pixels with a patch size of 24. We

resized the images to no larger than 300×300 pixels with a preserved aspect ratio for

computational efficiency. After training the codebook, feature vectors were pooled from

the 4×4, 2×2, and 1×1 subregions using max-pooling and then concatenated to single

6We define the reconstruction error as
√

1
LM

∑M
i=1 ‖v(i) − (σWĥ(i) + c)‖2 for training examples

{v(1), . . . ,v(M)}.
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training images 5 10 15 20 25 30
Lazebnik et al. [74] - - 56.4 - - 64.6
Griffin et al. [37] 44.2 54.5 59.0 63.3 65.8 67.6
Yang et al. [143] - - 67.0 - - 73.2
Wang et al. [135] 51.2 59.8 65.4 67.7 70.2 73.4

Boureau et al. [15] - - - - - 75.7
K-means (K=4096) 47.6 58.1 63.4 66.6 69.1 70.9

GMM (K=4096) 50.2 60.3 65.3 68.6 70.8 72.2
sparse RBM (K=4096) 54.2 64.0 68.6 71.2 73.1 74.9

CRBM (K=2048) 56.5 66.4 70.7 73.5 75.4 77.4
CRBM (K=4096) 56.7 66.7 71.3 74.2 76.2 77.8

Table 2.1: Average test classification accuracy for Caltech 101.

feature vectors. We used linear SVM [30] for classifier on randomly selected training

images (with a fixed number of images per class) and then evaluated the classification

accuracy on the rest of the images. We performed 5-fold cross-validation to determine

hyperparameters on each randomly selected training set and reported the test accuracy

averaged over 10 trials.

2.5.1 Caltech 101

The Caltech 101 dataset [32] is composed of 9,144 images split into 101 object

categories, such as vehicles, artifacts, and animals, as well as one background category

with significant variances in shape. The number of images in each class varies from 31 to

800. For fair comparisons, we performed experiments as in other studies [32, 143, 135].

Specifically, for each trial, we randomly selected 5, 10, . . . , 30 images from each class,

including the background class, and trained a linear classifier. The remaining images

from each class were tested, and the average accuracy over the classes was reported.

We summarize the results from our proposed method and other existing methods in

Table 2.1. Our algorithm clearly outperformed other state-of-the-art algorithms using

a single type of feature. Specifically, our method breaks the record on the Caltech 101

dataset by 4.3% for 15 training images and 2.1% for 30 training images.

24



training images 15 30 45 60
Griffin et al. [37] 28.30 34.10 - -

van Gemert et al. [129] - 27.17 - -
Yang et al. [143] 27.73 34.02 37.46 40.14
Wang et al. [135] 34.36 41.19 45.31 47.68
CRBM (K=4096) 35.09 42.05 45.69 47.94

Table 2.2: Average test classification accuracy for Caltech 256.

2.5.2 Caltech 256

We also tested our algorithm on a more challenging dataset. Caltech 256 dataset [37]

is composed of 30,607 images split into 256 object categories with more variability and

finer classifications, as well as one “clutter” class of random pictures. Each class contains

at least 80 images; the objects in each image are more variant in size, location, pose,

etc., than those of Caltech 101 dataset. We followed the standard experimental settings

from the benchmarks [37, 143], and the overall classification accuracy was averaged over

10 random trials. The summary of the results is reported in Table 2.2. Our algorithm

performed slightly better than the LLC [135] algorithm, with considerably large margins

to many other methods on Caltech 256 dataset.

2.5.3 Analysis of hyperparameters

To provide a better understanding of our proposed algorithm, we give a detailed

analysis of the hyperparameters: sparsity and convolutional filter size. We performed

the control experiments on Caltech 101 dataset while fixing the number of bases to 1024.

In most cases, we observed improvement as the number of hidden bases increased, which

is consistent with what others have reported [21]. All results reported in this section

are validation accuracy (5-fold cross validation on the training set).

Sparsity (α/K). The performance of sparse models, such as sparse coding and sparse

RBMs, can vary significantly as a function of sparsity level. As we discussed in Sec-
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tion 2.4, the sparse RBM can be more expressive than K-means or GMMs. While

K-means and GMM have sparsity of 1/K on average (i.e., allow only one cluster to be

active for a given input), the sparse RBM can control sparsity by setting the target

sparsity value p0 = α/K.

In this experiment, we compared two settings for sparse RBM training—one by

initializing from GMM as described in Section 2.4, and the other by initializing randomly

(baseline). Figure 2.3 (left) shows the average validation accuracy as a function of

sparsity (α/K). Compared to the K-means and GMM, the sparse RBM with random

initialization performed very poorly in the low α regime (i.e., when its corresponding

number of activation is roughly 1). However, by using an efficient training method

described in Section 2.4, the sparse RBM performs as well as K-means and GMM when

the target sparsity is close to 1/K, and significantly outperforms K-means and GMM

when the representation is less sparse. Overall, the effect of accurate initialization

is striking, especially in the high sparsity regime, and the best validation accuracy

(maximum over α) was improved by 2% for both 15 and 30 training images.

Convolution filter size. Convolutional learning is powerful since it captures the

spatial correlation between neighboring descriptors (e.g., pixels or dense SIFT) more

efficiently than non-convolutional learning. The size of the filter, however, should be

selected carefully. For instance, it is difficult to capture enough spatial information

with small size filters; on the other hand, overly large filter size can result in severe

over-smoothing of small details in the image. Therefore, we investigate how the filter

size affects the performance.

In this experiment, we fixed the number of bases (K = 1024) and sparsity (α = 4)

while varying the convolutional filter size from 1 to 5. As shown in Figure 2.3 (right), the

filter size of 3 resulted in highest validation accuracy. We also observed improvements

(up to 2%) using the clustering-based initialization method in the convolutional setting.
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Figure 2.3: (Left) Average cross-validation accuracy on Caltech 101 dataset with 1024
bases using K-means, GMM, and sparse RBM with different sparsity values. The
“sparse RBM (w/ init)” denotes the sparse RBM initialized from GMM as described
in Section 2.4; the “sparse RBM (w/o init)” denotes the sparse RBM initialized ran-
domly (baseline). Blue and cyan represent settings with 30 training images per class.
Red and magenta represent settings with 15 training images per class. (Right) Aver-
age cross-validation accuracy on the Caltech 101 dataset with 1024 bases and different
convolution filter sizes (ws).

Overall, our experimental analysis confirms that a moderately sparse (1 < α �

K) representation that is convolutionally trained with sufficient spatial context (1 <

ws� NV ) outperforms both clustering methods (e.g., K-means and GMMs) and non-

convolutional counterparts (e.g., non-convolutional sparse RBMs).

2.6 Conclusion

In this chapter, we proposed a mid-level feature extraction method using convolu-

tional RBMs. Our key idea is to investigate an efficient training method for sparse

RBMs and convolutional RBMs through the connections between mixture models and

RBMs. In our experiments, we show efficacy of our training algorithm, as well as the

benefit of learning sparse, distributed, convolutional feature representations. Overall,

our method achieves state-of-the-art performance in object recognition benchmarks.
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CHAPTER III

Learning Invariant Representations with Local

Transformations

3.1 Introduction

In recent years, unsupervised feature learning algorithms have emerged as promis-

ing tools for learning representations from data [46, 9, 91]. In particular, it is an

important problem to learn invariant representations that are robust to variability in

high-dimensional data (e.g., images, speech, etc.) since they will enable machine learn-

ing systems to achieve good generalization performance while using a small number of

labeled training examples. In this context, several feature learning algorithms have been

proposed to learn invariant representations for specific transformations by using cus-

tomized approaches. For example, convolutional feature learning methods [84, 60, 148]

can achieve shift-invariance by exploiting convolution operators. As another example,

the denoising autoencoder [132] can learn features that are robust to the input noise

by trying to reconstruct the original data from the hidden representation of the per-

turbed data. However, learning invariant representations with respect to general types

of transformations is still a challenging problem.

In this chapter, we present a novel framework of transformation-invariant feature

learning. We focus on local transformations (e.g., small amounts of translation, ro-
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tation, and scaling in images), which can be approximated as linear transformations,

and incorporate linear transformation operators into the feature learning algorithms.

For example, we present the transformation-invariant restricted Boltzmann machine,

which is a generative model that represents input data as a combination of transformed

weights. In this case, a transformation-invariant feature representation is obtained via

probabilistic max pooling of the hidden units over the set of transformations. In addi-

tion, we show extensions of our transformation-invariant feature learning framework to

other unsupervised feature learning algorithms, such as autoencoders or sparse coding.

In our experiments, we evaluate our method on the variations of the MNIST dataset

and show that our algorithm can significantly outperform the baseline restricted Boltz-

mann machine when underlying transformations in the data are well-matched to those

considered in the model. Furthermore, our method can learn features that are much

more robust to the wide range of local transformations, which results in highly com-

petitive performance in visual recognition tasks on CIFAR-10 [66] and STL-10 [21]

datasets. In addition, our method also achieves state-of-the-art performance on phone

classification tasks on the TIMIT dataset, which demonstrates wide applicability of our

proposed algorithms to other domains.

3.2 Related Work

Researchers have made significant efforts to develop invariant feature representa-

tions. For example, the rotation- or scale-invariant descriptors, such as SIFT [88], have

shown a great success in many computer vision applications. However, these image

descriptors usually demand a domain-specific knowledge with a significant amount of

hand-crafting.

As an alternative approach, several unsupervised learning algorithms have been

proposed to learn robust feature representations automatically from the sensory data.

As an example, the denoising autoencoder [132] can learn robust features by trying to
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reconstruct the original data from the hidden representations of randomly perturbed

data generated from the distortion processes, such as adding noise or multiplying zeros

for randomly selected coordinates.

Among types of transformations relating to temporally or spatially correlated data,

translation has been extensively studied in the context of unsupervised learning. Specif-

ically, convolutional training [77, 60, 148, 84, 119] is one of the most popular methods

that encourages shift-invariance during the feature learning. For example, the con-

volutional deep belief network (CDBN) [84], which is composed of multiple layers of

convolutional restricted Boltzmann machines and probabilistic max pooling, can learn

a representation invariant to local translation.

Besides translation, however, learning invariant features for other types of image

transformations have not been extensively studied. In contemporary work of ours,

Kivinen and Williams [64] proposed the transformation equivariant Boltzmann ma-

chine, which shares a similar mathematical formulation to our models in that both

try to infer the best matching filters by transforming them using linear transformation

matrices. However, while their model was motivated from the “global equivariance”,

the main purpose of our work is to learn locally-invariant features that can be useful

in classification tasks. Thus, rather than considering an algebraic group of transforma-

tion matrices (e.g., “full rotations”), we focus on the variety of local transformations

that include rotation, translation as well as scale variations. Furthermore, we effec-

tively address the boundary effects that can be highly problematic in translation and

scaling by forming a non-square T matrix, rather than zero-padding.1 In addition, we

present a general framework of transformation-invariant feature learning and show ex-

tensions based on the autoencoder and sparse coding. Overall, our argument is strongly

supported by the state-of-the-art performance in image and audio classification tasks.
1We observed that learning with zero-padded squared transformation matrices showed significant

boundary effect in its visualization of filters, and this often resulted in significantly worse classification
performance.
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Apart from learning transformation-invariant features, imposing structures such as

topographic maps [56, 59] on the activation is another way of learning invariant rep-

resentations. Compared to those algorithms, our method can be more compact and

expressive since we factor out the patterns and their transformations and therefore we

only need to learn a smaller number of features.

3.3 Learning Transformation-Invariant Features

3.3.1 Transformation-invariant RBM

In this section, we formulate a novel feature learning framework that can learn

invariance to a set of linear transformations based on the RBM. We begin the section

with describing the transformation operator.

The transformation operator is defined as a mapping T : Rd1 → Rd2 that maps d1-

dimensional input vectors into d2-dimensional output vectors. In our case, we assume

a linear transformation matrix T ∈ Rd2×d1 , i.e., each coordinate of the output vector is

represented as a linear combination of the input coordinates.

With this notation, we formulate the transformation-invariant restricted Boltzmann

machine (TI-RBM) that can learn invariance to a set of transformations. Specifically,

for a given set of transformation matrices Ts (s = 1, · · · , S), the energy function of

TI-RBM is defined as follows:

E(v,H) = −
K∑
j=1

S∑
s=1

(Tsv)Twjhj,s −
K∑
j=1

S∑
s=1

bj,shj,s − cTv (3.1)

s.t.
S∑
s=1

hj,s ≤ 1, hj,s ∈ {0, 1}, j = 1, · · · , K, (3.2)

where v ∈ Rd1 are the visible units, and wj ∈ Rd2 are filters (or bases). The hidden units

are represented as a matrix H ∈ {0, 1}K×S with hj,s as its (j, s)-th entry. In addition,

we denote zj = ∑S
s=1 hj,s, zj ∈ {0, 1} as a pooled hidden unit over the transformations.
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Figure 3.1: Feature encoding of TI-RBM. Shaded pattern inside the v2 reflects the v1,
while the shaded patterns in transformed filters show the corresponding original filters
wi or wj. The filters selected via probabilistic max pooling across the set of trans-
formations are depicted in red arrows (e.g., in the rightmost example, the hidden unit
hj,sj corresponding to the transformation Tsj and the filter wj contributes to activate
zj(v2).)

In Equation (3.2), we impose a softmax constraint on hidden units so that at most

one unit is activated at each row of H. This probabilistic max pooling2 allows us

to obtain a feature representation invariant to linear transformations. More precisely,

suppose that the input v1 activates the filter vector wj. Given another input v2 that is

a transformed version of v1, the TI-RBM will find a transformation matrix Tsj so that

the v2 activates the transformed filter vector T Tsjwj, i.e., wT
j v1 ≈ wT

j Tsjv2. Therefore,

v1 and v2 both activate zj after probabilistic max pooling. Figure 3.1 illustrates this

idea.

Compared to the regular RBM, the TI-RBM can learn more diverse patterns, while

keeping the number of model parameters small. Specifically, multiplying transforma-

tion matrix T Ts wj can be viewed as increasing the number of filters by the factor of S,

but without significantly increasing the number of parameters due to parameter shar-

ing. In addition, by pooling over local transformations, the filters can learn invariant

representations (i.e., zj’s) to these transformations.
2A similar technique is used in convolutional deep belief networks [84], in which spatial probabilistic

max pooling is applied over a small spatial region.
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The conditional probabilities are computed as follows:

p(hj,s = 1|v) =
exp (wT

j Tsv + bj,s)
1 +∑

s′ exp (wT
j Ts′v + bj,s′) (3.3)

p(vi = 1|h) = sigmoid(
∑
j,s

(T Ts wj)ihj,s + ci) (3.4)

Similar to RBM training, we use stochastic gradient descent to train TI-RBM. The

gradient of the log-likelihood is approximated via contrastive divergence by taking the

gradient of the energy function (Equation (3.1)) with respect to the model parameters.

3.3.2 Sparse TI-RBM

The sparseness of the feature representation is often a desirable property. By fol-

lowing Lee et al. [82] approach, we can extend our model to sparse TI-RBM by adding

the following regularizer for a given set of data {v(1), · · · ,v(N)} to the negative log-

likelihood:

Lsp =
K∑
j=1
D
(
p,

1
N

N∑
n=1

E[z(n)
j |v(n)]

)
(3.5)

where D is a distance function, p is the target sparsity. The expectation of pooled

activation is written as

E[zj|v] =
∑
s exp (wT

j Tsv + bj,s)
1 +∑

s exp (wT
j Tsv + bj,s)

. (3.6)

Note that we regularize over the pooled hidden units zj rather than individual hidden

units hj,s. In experiments, we used L2 distance for D(·, ·), but one can also use KL

divergence for the sparsity penalty.
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3.3.3 Generating transformation matrices

In this section, we discuss how to design the transformation matrix T . For the

ease of presentation, we assume 1-d transformations, but it can be extended to 2-d

cases (e.g., image transformations) straightforwardly. Further, we assume the case of

d1 = d2 = d.

As mentioned previously, T ∈ Rd×d is a linear projection matrix from x ∈ Rd to

y ∈ Rd; i.e., each coordinate of y is constructed via linear combination of the coordinates

in x with weight matrix T as follows:

yi =
d∑
j=1

Tijxj,∀i = 1, · · · , d (3.7)

For example, shifting by s can be defined as

Tij(s) =


1 if i = j + s,

0 otherwise

For 2-d image transformations such as rotation and scaling, the contribution of input

coordinates to each output coordinate is computed with bilinear interpolation. Since T ’s

are pre-computed once and usually sparse, Equation (3.7) can be computed efficiently.

3.3.4 Extensions to other methods

We emphasize that our transformation-invariant feature learning framework is not

limited to the energy-based probabilistic models, but can be extended to other unsu-

pervised learning methods as well.

First, it can be readily adapted to autoencoders by defining the following softmax
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encoding and sigmoid decoding functions:

fj,s(v) =
exp (wT

j Tsv + bj,s)
1 +∑

s′ exp (wT
j Ts′v + bj,s′) (3.8)

v̂i = sigmoid(
∑
j,s

(T Ts wj)ifj,s + ci) (3.9)

Following the idea of TI-RBM, we can also formulate the transformation-invariant

sparse coding as follows:

min
W,H

∑
n

‖
K∑
j=1

S∑
s=1

T Ts wjh
(n)
j,s − v(n)‖2, (3.10)

s.t. ‖H‖0 ≤ γ, ‖H(j, :)‖0 ≤ 1, ‖wj‖2 ≤ 1, (3.11)

where γ is a constant. The second constraint in (3.11) can be understood as an analogy

to the softmax constraint in Equation (3.2) of TI-RBMs.

Similar to standard sparse coding, we can optimize the parameters by alternately

optimizing W and H while fixing the other. Specifically, H can be (approximately)

solved using Orthogonal Matching Pursuit, and therefore we refer this algorithm a

transformation-invariant Orthogonal Matching Pursuit (TI-OMP).

3.4 Experiments

We begin by describing the notation. For images, we assume a receptive field size

of r × r pixels (for input image patches) and a filter size of w ×w pixels. We define gs

to denote the number of pixels corresponding to the transformation (e.g., translation

or scaling). For example, we translate the w × w filter across the r × r receptive field

with a stride of gs pixels (Figure 3.2(a)), or scale down from (r− l · gs)× (r− l · gs) to

w × w (where 0 ≤ l ≤ b(r − w)/gsc) by sharing the same center for the filter and the

receptive field (Figure 3.2(b)).

35



r w 

gs 

(a) translation

r gs 

w 

(b) scaling

Figure 3.2: Translation and scale transformations on images.

For classification tasks, we used the posterior probability of the pooled hidden unit

(Equation (3.6)) as a feature. Note that the dimension of the extracted feature vector for

each image patch is K, not K×S. Thus, we argue that the performance gain of the TI-

RBM over the regular RBM comes from the better representation (i.e., transformation-

invariant features), rather than from the classifier’s use of higher-dimensional features.

3.4.1 Handwritten digit recognition with prior transformation information

First, we verified the performance of our algorithm on the variations of a handwrit-

ten digit dataset, assuming that the transformation information is given. From the

MNIST variation datasets [73], we tested on “mnist-rot” (rotated digits, referred to as

rot) and “mnist-rot-back-image” (rotated digits with background images, referred to

as rot-bgimg). To further evaluate with different types of transformations, we cre-

ated four additional datasets that contain scale and translation variations with and

without random background (referred to as scale, scale-bgrand, trans, and trans-bgrand,

respectively).3 Some examples are shown in Figure 3.3.

For these datasets, we trained sparse TI-RBMs on the image patches of size 28× 28
3We followed the generation process described in http://www.iro.umontreal.ca/˜lisa/twiki/

bin/view.cgi/Public/MnistVariations to create the customized scaled and translated digits. For
example, we randomly selected the scale-level uniformly from 0.3 to 1 or the number of pixel shifts
in horizontal and vertical directions without making any truncation of the foreground pixels. For the
datasets with random background, we randomly added the uniform noise in [0, 1] to the background
pixels.
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Dataset RBM TI-RBM Transformation
rot 15.6% 4.2% rotation
rot-bgimg 54.0% 35.5% rotation
scale 6.1% 5.5% scaling
scale-bgrand 32.1% 23.7% scaling
trans 15.3% 9.1% translation
trans-bgrand 57.3% 43.7% translation

Table 3.1: Test classification error on MNIST transformation datasets. The best-
performing methods for each dataset are shown in bold.

pixels with data-specific transformations. For example, we considered 16 equally-spaced

rotations (i.e., the step size of π
8 ) for the rot and rot-bgimg datasets. Similarly, for the

scale and scale-bgrand datasets, we generated scale-transformation matrices with w = 20

and gs = 2, which can map from (28 − 2l) × (28 − 2l) pixels to 20 × 20 pixels with

l ∈ {0, ..., 4}. For the trans and trans-bgrand datasets, we set w = 24 and gs = 2 to

have total nine translation matrices that cover the 28× 28 regions using 24× 24 pixels

with a horizontal and vertical stride of 2 pixels. For classification, we trained 1, 000

filters for both sparse RBMs and sparse TI-RBMs and used a softmax classifier. We

used 10,000 examples for the training set, 2,000 examples for the validation set, and

50,000 examples for the test set.

As reported in Table 3.1, our method (sparse TI-RBMs) consistently outperformed

the baseline method (sparse RBMs) for all datasets. These results suggest that the

TI-RBMs can learn better representations for the foreground objects by transforming

the filters. It is worth noting that our error rates for the mnist-rot and mnist-rot-back-

image datasets are also significantly lower than the best published results obtained with

stacked denoising autoencoders [133] (9.53% and 43.75%, respectively).

For qualitative evaluation, we visualize the learned filters on the mnist-rot dataset

trained with the sparse TI-RBM (Figure 3.3(e)) and the sparse RBM (Figure 3.3(f)),

respectively. The filters learned from sparse TI-RBMs show much clearer pen-strokes

than those learned from sparse RBMs, which partially explains the impressive classifi-
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(a) basic (b) rot (c) scale (d) trans

(e) TI-RBM on mnist-rot (f) RBM on mnist-rot

Figure 3.3: (top) Samples from the handwritten digit datasets with (a) no transfor-
mations, (b) rotation, (c) scaling, and (d) translation. (bottom) Learned filters from
mnist-rot dataset with (e) the sparse TI-RBM and (f) the sparse RBM, respectively.

cation performance.

3.4.2 Learning invariant features from natural images

For handwritten digit recognition in the previous section, we assumed prior in-

formation on global transformations on the image (e.g., translation, rotation, and scale

variations) for each dataset. This assumption enabled the proposed TI-RBMs to achieve

significantly better classification performance than the baseline method, since the data-

specific transformation information was encoded in the TI-RBM.

However, for natural images, it is not reasonable to assume such global transfor-

mations due to the complex image structures. In fact, recent literature [146, 84, 132]

suggests that some level of invariance to local transformations (e.g., few pixel trans-

lation or coordinate-wise noise) leads to improved performance in classification. From

this viewpoint, it makes more sense to learn representations with local receptive fields
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(a) sparse RBM (baseline)

(b) sparse TI-RBM with translation

(c) sparse TI-RBM with rotation

(d) sparse TI-RBM with scaling

Figure 3.4: Visualization of filters trained with RBM and TI-RBMs on natural images.
We trained 24 filters and used nine translations with a step size of 1 pixel, five rotations
with a step size of π/8 radian, and two-level scale transformations with a step size (gs)
of 2 pixels, respectively.

that are invariant to generic image transformations (e.g., small amounts of translation,

rotation, and scaling), which does not require data-specific prior information.

We visualize the learned TI-RBM filters in Figure 3.4, where we used the 14×14

natural image patches taken from the van Hateren dataset [130]. The baseline model

(sparse RBM) learns many similar vertical edges (Figure 3.4(a)) that are shifted by

a few pixels, whereas our methods can learn diverse patterns, including diagonal and

horizontal edges, as shown in Figure 3.4(b), 3.4(c), and 3.4(d).

These results suggest that TI-RBMs can learn diverse sets of filters, which is remi-

niscent of the effects of convolutional training [60]. However, our model is much easier

to train than convolutional models, and it can further handle generic transformations

beyond translations.
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Methods (Linear SVM) Accuracy
sparse RBM† (baseline) 72.4%
sparse TI-RBM (scaling only) 76.8%
sparse TI-RBM (rotation only) 77.7%
sparse TI-RBM (translation only) 77.5%
sparse TI-RBM (combined) 78.8%
sparse TI-RBM (combined, K= 4,000) 80.1%
TI-OMP-1/T (combined) 80.7%
TI-OMP-1/T (combined, K= 4,000) 82.2%
VQ (K= 4,000)† 79.6%
OMP-1/T (K= 1,600)‡ 79.4%
OMP-1/T (K= 6,000)‡ 81.5%
convolutional DBN [67] 78.9%
deep NN [18] 80.5%
deep NN [20] 82.0%

Table 3.2: Test classification accuracy on CIFAR-10 dataset. 1,600 filters were used
unless otherwise stated. The numbers with † and ‡ are from [21] and [19], respectively.

3.4.3 Object recognition

We evaluated on image classification tasks using two datasets. First, we tested on

the widely used CIFAR-10 dataset [66], which is composed of 50,000 training and 10,000

testing examples with 10 categories. Rather than learning features from the whole image

(32 × 32 pixels), we trained TI-RBMs on local image patches while keeping the RGB

channels. As suggested by Coates et al. [21], we used the fixed filter size w = 6 and

determined the receptive field size depending on the types of transformations.4 Then,

after unsupervised training with TI-RBM, we used the convolutional feature extraction

scheme, also following Coates et al. [21]. Specifically, we computed the TI-RBM pooling-

unit activations for each local r× r pixel patch that was densely extracted with a stride

of 1 pixel, and averaged the patch-level activations in the same quadrant (with 2 × 2

regions). Eventually, this procedure yielded 4K-dimensional feature vectors for each

image, which were fed into an L2-regularized linear SVM. We performed 5-fold cross
4For example, we used r = 6 for rotations. For both scale variations or translations, we used r = 8

and gs = 2.
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Methods (Linear SVM) Acc.± std.
sparse RBM 55.0± 0.5%
sparse TI-RBM (scaling only) 55.9± 0.7%
sparse TI-RBM (rotation only) 57.0± 0.7%
sparse TI-RBM (translation only) 57.8± 0.5%
sparse TI-RBM (combined) 58.7± 0.5%
VQ (K= 1,600) [19] 54.9± 0.4%
SC (K= 1,600) [19] 59.0± 0.8%
deep NN [20] 60.1± 1.0%

Table 3.3: Test classification accuracy on STL-10. 1,600 filters were used for all exper-
iments.

validation to determine the hyperparameter C.

For comparison to the baseline model, we separately evaluated the sparse TI-RBMs

with a single type of transformation (translation, rotation, or scaling) using K = 1, 600.

As shown in Table 3.2, each single type of transformation in TI-RBMs brought a signif-

icant performance gain over the baseline sparse RBMs. The classification performance

was further improved by combining different types of transformations into a single

model.

In addition, we also report the classification results obtained using TI-OMP-1 (see

Section 3.3.4) for unsupervised training. In this experiment, we used the following

two-sided soft thresholding encoding function:

fj = max
s

{
max(wT

j Tsv− α, 0)
}

fj+K = max
s

{
max(−wT

j Tsv− α, 0)
}
,

where α is a constant threshold that was cross-validated. As a result, we observed

about 1% improvement over the baseline method (OMP-1/T) using 1,600 filters, which

supports the argument that our transformation-invariant feature learning framework

can be effectively transferred to other unsupervised learning methods. Finally, by in-

creasing the number of filters (K= 4,000), we obtained better results (82.2%) than
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Methods (Linear SVM) Accuracy
MFCC 68.2%
sparse RBM 76.3%
sparse TI-RBM 77.6%
sparse coding [98] 76.8%
sparse filtering [98] 75.7%

Table 3.4: Phone classification accuracy on the TIMIT core test set using linear SVMs.

the previously published results using single-layer models, as well as those using deep

networks.

We also performed the object classification task on STL-10 dataset [21], which is

more challenging due to the smaller number of labeled training examples (100 per

class for each training fold). Since the original images are 96×96 pixels, we down-

sampled the images into 32×32 pixels, while keeping the RGB channels. We followed

the same unsupervised training and classification pipeline as we did for CIFAR-10. As

reported in Table 3.3, there were consistent improvements in classification accuracy by

incorporating the various transformations in learning algorithms. Finally, we achieved

58.7% accuracy using 1,600 filters, which is competitive to the best published single

layer result (59.0%).

3.4.4 Phone classification

To show the broad applicability of our method to other data types, we report the

39-way phone classification accuracy on the TIMIT dataset. By following [98], we

generated 39-dimensional MFCC features and used 11 contiguous frames of them as an

input patch. For TI-RBMs, we applied three temporal translations with the stride of 1

frame.

First, we compared the classification accuracy using the linear SVM to evaluate

the performance gain coming from the unsupervised learning algorithms, by following
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Methods (RBF-kernel SVM) Accuracy
MFCC (baseline) 80.0%
MFCC + TI-RBM (K= 256) 81.0%
MFCC + TI-RBM (K= 512) 81.5%
MFCC + SC [98] 80.1%
MFCC + SF [98] 80.5%
MFCC + CDBN [80] 80.3%
H-LMGMM [17] 81.3%

Table 3.5: Phone classification accuracy on the TIMIT core test set using RBF-kernel
SVMs.

the experimental setup in [98].5 As reported in Table 3.4, the TI-RBM showed an

improvement over the sparse RBM, as well as the sparse coding and sparse filtering.

In the next setting, we used the RBF-kernel SVM [16] on the extracted features

that are concatenated with MFCC features. We used default RBF kernel width for all

experiments and performed cross-validation on the C values. As shown in Table 3.5,

combining MFCC with TI-RBM features was the most effective and resulted in 1%

improvement in classification accuracy over the baseline MFCC features. By increasing

the number of TI-RBM features to 512, we were able to beat the best published results

on the TIMIT phone classification tasks using hierarchical LM-GMM classifier [17].

3.5 Conclusion

In this chapter, we proposed novel feature learning algorithms that can achieve

invariance to the set of pre-defined transformations. Our method can handle general

transformations (e.g., translation, rotation, and scaling), and we experimentally showed

that learning invariant features for such transformations leads to strong classification

performance. In future work, we plan to work on learning transformations from the data

and combine it with our algorithm. By automatically learning transformation matrices
5We used K = 256 with a two-sided encoding function by using the positive and negative weight

matrices [W,−W], as suggested by Ngiam et al. [98].
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from the data, we will be able to learn more robust features, which will potentially lead

to significantly better feature representations.

44



CHAPTER IV

Learning and Selecting Features Jointly with

Point-wise Gated Boltzmann Machines

4.1 Introduction

One fundamental difficulty in building algorithms that can robustly learn from com-

plex real-world data is to deal with significant noise and irrelevant patterns. In partic-

ular, let’s consider a problem of learning from scratch, assuming the lack of useful raw

features. Here, the challenge is how to learn a robust representation that can distin-

guish important (e.g., task-relevant) patterns from significant amounts of distracting

(e.g., task-irrelevant) patterns.

For constructing useful features, unsupervised feature learning [46, 9, 91, 8] has

emerged as a powerful tool in learning representations from unlabeled data. In many

real-world problems, however, the data is not cleaned up and contains significant

amounts of irrelevant sensory patterns. In other words, not all patterns are equally

important.

In this case, the unsupervised learning methods may blindly represent the irrelevant

patterns using the majority of the learned high-level features, and it becomes even

more difficult to learn task-relevant higher-layer features (e.g., by stacking). Although

there are ways to incorporate supervision (e.g., supervised fine-tuning), learning is still
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challenging when the data contains lots of irrelevant patterns, as shown in [73].

To deal with such complex data, one may envision using feature selection. Indeed,

feature selection [57, 145, 139, 39] is an effective method for distinguishing useful raw

features from irrelevant raw features. However, feature selection may fail if there are

no good raw features to start with.

To address this issue, we propose to combine feature learning and feature selection

coherently in a unified framework. Intuitively speaking, given that unsupervised feature

learning can find partially useful high-level abstractions, it may be easier to apply

feature selection on learned high-level features to distinguish the task-relevant ones

from the task-irrelevant ones. Then, the task-relevant high-level features can be used to

trace back where such important patterns occur. This information can help the learning

algorithm to focus on these task-relevant raw features (i.e., visible units corresponding

to task-relevant patterns), while ignoring the rest.

In this section, we formulate a generative feature learning algorithm called the point-

wise gated Boltzmann machine (PGBM). Our model performs feature selection not only

on learned high-level features (i.e., hidden units), but also on raw features (i.e., visible

units) through a gating mechanism using stochastic “switch units.” The switch units

allow our model to estimate where the task-relevant patterns occur, and make only those

visible units to contribute to the final prediction through multiplicative interaction. The

model ignores the task-irrelevant portion of the raw features, thus it performs dynamic

feature selection (i.e., choosing a variable subset of raw features depending on semantic

interpretation of the individual example).

We evaluate our models in two ways: 1) recognizing handwritten digits in the ir-

relevant background, and 2) localizing and classifying objects in the natural scenes. In

the first experiment, our method shows strong performance in learning features and

distinguishing task-relevant features from task-irrelevant features. In the second ex-

periment, our model shows promising results in distinguishing foreground objects from
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background scenes and localizing the object bounding boxes in a weakly-supervised way,

which leads to an improved object recognition performance.

We summarize our main contributions as follows:

• We propose the PGBMs that jointly perform feature learning and feature selection

in a unified framework.

• We propose the semi-supervised PGBM and show its effectiveness when given a

small amount of labeled data and a large amount of unlabeled data.

• We show that the PGBM is an effective building block for constructing deep

networks.

• We propose a convolutional extension of the PGBM. We further show that this

can be used for weakly-supervised object localization. Using predicted bounding

boxes of objects, we demonstrate state-of-the-art object recognition performance

on the Caltech 101 dataset.

• We achieve a significant improvement over state-of-the-art on variations of the

MNIST dataset.

4.2 Related Work

As mentioned in section 4.3.1, the PGBM can be viewed as an extension of the

implicit mixture of RBM (imRBM) [96] that allows per-visible-unit switching. Although

these two models look similar, the per-visible-unit switching property of the PGBM

brings an important benefit over the imRBM because it allows the PGBM to represent

data with multiple components, each of which focusing on different part of the raw

features. In particular, the supervised PGBM represents the data with two groups of

hidden units (one containing task-relevant hidden units and the other containing task-

irrelevant hidden units). In contrast, the imRBM uses a single component to represent

the data, and thus cannot distinguish between the relevant and irrelevant patterns when
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the data contains significant amounts of irrelevant patterns.

The discriminative RBM (discRBM) [72] is another model that can learn discrim-

inative features using class labels. We argue that, however, the PGBM can be more

robust to noisy data since it can prune out (or re-weigh) the irrelevant features dy-

namically for each data instance using switch unit activations, whereas the discRBM

accumulates the contribution from noisy visible units with the fixed weights applied to

all data instances. In section 4.4.1, we empirically show that the PGBM significantly

outperforms both the imRBM and the discRBM in classifying handwritten digits in the

presence of irrelevant background patterns.

Rifai et al. [109] proposed the contractive discriminative analysis (CDA). Similarly

to the PGBM, the CDA has two groups of hidden units, one of which is connected to

labels. The difference is that the CDA is a feed-forward neural network which can learn

distinct features for each group with a contractive penalty term, while the PGBM is a

probabilistic model that performs generative feature selection through a multiplicative

interaction between visible, hidden, and switch units.

The robust Boltzmann machine (RoBM) [126] shares its motivation with our work,

though there are several technical differences. First, the RoBM models each back-

ground noise unit with a unimodal Gaussian distribution, whereas the PGBM models

the background visible units with more complicated multimodal distribution with a

group of hidden units. Furthermore, the PGBM can directly learn from the noisy data

with class labels, but the RoBM requires clean data to pre-train the GRBM.

In terms of energy function, the unsupervised PGBM can be viewed as having a

similar formulation to the masked RBM [76, 43]. However, our main motivation is

to perform joint feature selection at both low-level and high-level. Specifically, the

difference becomes clearer when we use class labels in supervised PGBM that performs

generative feature selection, as discussed in section 4.3.2.
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Figure 4.1: Graphical model representation of the (a) PGBM and (b) supervised PGBM
with two groups of hidden units. The Bernoulli switch unit zi specifies which of the
two components models the visible unit vi. In other words, when zi = 1, vi is generated
from the hidden units in the first group (shown in red); when zi = 2, vi is generated
from the hidden units in the second group (shown in green).

4.3 Proposed Models

In this section, we propose the point-wise gated Boltzmann machine and its ex-

tensions. In Section 4.3.1, we describe the basic unsupervised PGBM that learns and

groups features into semantically distinct components. In Section 4.3.2, we propose the

supervised PGBM that uses class labels as a top-down feedback to partition the hidden

units into the task-relevant and the task-irrelevant components. In Section 4.3.3, we

propose the semi-supervised PGBM that uses unlabeled data as a regularizer when there

are only a small number of labeled training examples. Furthermore, we construct a deep

network using the PGBM as a building block, where we stack neural network layer(s)

on top of the PGBM’s task-relevant hidden units. Finally, we present the convolutional

extension of the PGBM that can efficiently handle spatially correlated high-dimensional

data.

4.3.1 Point-wise gated Boltzmann machines

When we deal with complex data, it is desirable for a learning algorithm to dis-

tinguish semantically distinct patterns. For example, an object recognition algorithm

49



may improve its performance if it can separate the foreground object patterns from

the background clutters. To model this, we propose to represent each visible unit as a

mixture model when conditioned on the hidden units, where each group of hidden units

can generate the corresponding mixture component.

Before going into details, we describe the generative process of the PGBM as fol-

lows: (1) The hidden units are partitioned into components, each of which defines a

distinct distribution over the visible units. (2) Conditioning on the hidden units, we

sample the switch units. (3) The switch units determine which component generates

the corresponding visible units. A schematic diagram is shown in Figure 4.1(a) as an

undirected graphical model.

The PGBM with R mixture components has a multinomial switch unit, denoted zi ∈

{1, · · · , R},1 for each visible unit vi. The PGBM imposes element-wise multiplicative

interaction between the paired switch and visible units, as shown in Figure 4.1(a). Now,

we define the energy function of the PGBM as follows:

EU(v, z,h) =−
R∑
r=1

D∑
i=1

Kr∑
k=1

(zri vi)W r
ikh

r
k −

R∑
r=1

Kr∑
k=1

brkh
r
k −

R∑
r=1

D∑
i=1

(zri vi) cri , (4.1)

s.t.
R∑
r=1

zri = 1, i = 1, · · · , D.

Here, v, zr and h are the visible, switch and hidden unit binary vectors, respectively,

and the model parameters W r
ik, brk, cri are the weights, hidden biases, and the visible

biases of r-th component. The binary-valued switch unit zri is activated (i.e. takes

value 1) if and only if its paired visible unit vi is assigned to the r-th component, and

its conditional probability given hidden units follows a multinomial distribution over R
1For convenience, we also use the vector representation for switch unit in boldface, i.e., zi =

[z1
i , · · · , zRi ]T ∈ {0, 1}R, where

∑R
r=1 z

r
i = 1, for each visible unit vi.
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categories. The energy function can be written in matrix form as follows:

EU(v, z,h) = −
R∑
r=1

(zr � v)TWrhr −
R∑
r=1

(br)Thr −
R∑
r=1

(cr)T (zr � v), (4.2)

where the operator � denotes element-wise multiplication, i.e., (zr � v)i = zri vi.

The visible, hidden, and switch units are conditionally independent given the other

two types of units, and the conditional probabilities can be written as follows:

P (hrk = 1 | z,v) = σ
(
(zr � v)TWr

�k + brk
)
, (4.3)

P (vi = 1 | z,h) = σ

(∑
r

zri (Wr
i�hr + cri )

)
, (4.4)

P (zri = 1 | v,h) = exp (vi (Wr
i�hr + cri ))∑

s exp (vi (Ws
i�hs + csi ))

, (4.5)

where we use Wi� to denote i-th row, and W�k to denote k-th column of W.

It is important to note that, while inferring the hidden units, our model gates (or

re-weighs) each visible unit vi according to the corresponding switch units zri (Equa-

tion 4.3). In other words, the point-wise multiplicative interaction between the switch

and the visible units allows the hidden units in each component to focus on a specific

part of the data, and this makes the hidden units in one component to be robust to the

patterns learned by other components. Moreover, the top-down signal from the hidden

units encourages assigning the same mixture component to semantically-related visible

units during the switch unit inference, and therefore we can prune out the irrelevant

raw features dynamically for each example.

It is worth noting that, when we tie all switch units (i.e., zi = z for all i), the

PGBM becomes equivalent to the implicit mixture of restricted Boltzmann machine [96].

Furthermore, given that there is a multiplicative interaction between three types of

variables, the PGBM can be understood in the context of higher-order Boltzmann

machines [114, 93].
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We train the PGBM with stochastic gradient descent using contrastive divergence.

Since the exact inference is intractable due to the three-way interaction, we use mean-

field or alternating Gibbs sampling (i.e., sample one type of variables given the other

two types using Equations (4.3),(4.4), and (4.5)) for approximate inference.

4.3.2 Generative feature selection with supervised PGBMs

Although the PGBM can learn to group distinct features for each mixture compo-

nent, it doesn’t necessarily learn discriminative features automatically since the gener-

ative training is done in an unsupervised way. One way to make the PGBM implicitly

perform feature selection (i.e., distinguish features into different groups based on their

relevance to the task) is to provide a good initialization of the model parameters. For

example, we can pre-train the regular RBM and divide the hidden units into two groups

based on the score from the simple feature selection algorithms such as the t-test2 to

initialize the weight matrices of the PGBM. As we will discuss in Section 4.4, this

approach improves classification performance of the PGBMs.

Furthermore, to make use of class labels during the generative training, we propose a

supervised PGBM that only connects the hidden units in the task-relevant component(s)

to the label units. The graphical model representation is shown in Figure 4.1(b). By

transferring the label information to the raw features through the task-relevant hidden

units, the supervised PGBM can perform generative feature selection both at the high-

level (i.e., using only a subset of hidden units for classification) and the low-level (e.g.,

dynamically blocking the influence of the task-irrelevant visible units) in a unified way.

For simplicity, we present the supervised PGBM with two mixture components,

where we assign the first component to be task-relevant. The energy function is defined
2http://featureselection.asu.edu/software.php
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as follows:

ES(v, z,h,y) = EU(v, z,h)− yTUh1 − dTy (4.6)

subject to z1
i + z2

i = 1, i = 1, · · · , D. The label vector y ∈ {0, 1}L is in the 1-of-L

representation. U ∈ RL×K1 is the weight matrix between the task-relevant hidden units

and the label units, and d is the label bias vector. The conditional probabilities can be

written as follows:

P
(
h1
k = 1 | z,v,y

)
= σ

(
(z1 � v)TW1

�k + b1
k + UT

�ky
)
, (4.7)

P
(
yl = 1 | h1

)
= exp (Ul�h1 + dl)∑

s exp (Us�h1 + ds)
. (4.8)

The conditional probabilities of the visible and switch units are the same as Equa-

tions (4.4) and (4.5). As we can see in Equation (4.7), the label information, together

with the switch units, modulates the hidden unit activations in the first (task-relevant)

component, and this in turn encourages the switch units z1
i to activate at the task-

relevant visible units3 during the iterative approximate inference.

We can train the supervised PGBM in generative criteria whose objective is to

maximize the joint log-likelihood of the visible and the label units [72]. Similarly to

that of PGBM, the inference can be done with alternating Gibbs sampling between

Equations (4.4),(4.5),(4.7), and (4.8).

4.3.3 Variations of the model

Deep networks. The PGBM can be used as a building block of deep networks.

For example, we can use it as a first layer block and stack neural networks on the

hidden units of task-relevant components. Since the PGBM can select the task-relevant
3Note: In our model, we call that a visible unit (a raw feature) is “task-relevant” (or “task-

irrelevant”) if its switch unit for the task-relevant (or task-irrelevant) component is active, respectively.
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(a) task-relevant filters (b) task-irrelevant fil-
ters

(c) switch unit activa-
tion

(d) original images

Figure 4.2: Visualization of (a, b) filters corresponding to two components learned from
the PGBM, (c) activation of switch units, and (d) corresponding original images on
bg-image dataset. Specifically, (a) represents the group of hidden units that activates
for the foreground digits (task-relevant), and (b) represents the group of hidden units
that activates for the background images (task-irrelevant). See text for details.

hidden units with supervision, the higher-layer networks can focus on the task-relevant

information. In Section 4.4.1, we show that the two-layer model, where we stack a

single-layer neural network on top of a PGBM’s task-relevant component, was sufficient

to outperform existing state-of-the-art classification performance on the variations of

MNIST dataset with irrelevant backgrounds.

Semi-supervised PGBM. There are many classification tasks where we are given a

large number of unlabeled examples in addition to only a few labeled training examples.

For such scenario, it is important to include unlabeled examples during the training to

generalize well to the unseen data, and thus avoid overfitting. Larochelle and Bengio

[72] proposed the semi-supervised training of the discriminative restricted Boltzmann

machine by combining the generative objective defined on the unlabeled examples with

the discriminative objective. Similarly to their approach, the supervised PGBM can

be trained in a semi-supervised learning framework. Specifically, we can use the input

data log-likelihood defined on the unlabeled data as a regularizer.

The joint distribution of the supervised PGBM with two mixture components (i.e.,

54



R = 2) is written as follows:

P (v, z,h,y) = 1
Z

exp (−E(v, z,h,y)) , (4.9)

where

E(v, z,h,y) = −
R∑
r=1

(zr � v)TWrhr −
R∑
r=1

(br)Thr −
R∑
r=1

(cr)T (zr � v)− yTUh1 − dTy

The semi-supervised PGBM is trained to minimize the following objective function:

Lsemi =
∑

(v,y)∈Dl

− logP (v,y) + α
∑

v∈Du

− logP (v) (4.10)

where Dl and Du denote the set of labeled and unlabeled examples, respectively. The

coefficient α controls the contribution of unlabeled data during the training.

We use CD to train the semi-supervised PGBM. The gradient of the first term can be

approximated as described in Section 4.3.2. Similarly, the gradient of the second term

with respect to the parameters Θ = {Wr,br, cr,U,d} can be computed as follows:

∂ logP (v)
∂θ

= EP (z,h,y|v)

[
∂

∂θ
E(v, z,h,y)

]
− EP (v,z,h,y)

[
∂

∂θ
E(v, z,h,y)

]
(4.11)

Since exact inference is intractable, we use alternating Gibbs sampling (or mean-field)

with the following conditional distributions:
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P
(
yl = 1 | h1

)
= exp (Ul�h1 + dl)∑

s exp (Us�h1 + ds)
, (4.12)

P
(
h1
k = 1 | v, z,y

)
= σ

(
(z1 � v)TW1

�k + b1
k + UT

�ky
)
, (4.13)

P
(
h2
k = 1 | v, z

)
= σ

(
(z2 � v)TW2

�k + b2
k

)
, (4.14)

P (zri = 1 | v,h) = exp (vi (Wr
i�hr + cri ))∑

s exp (vi (Ws
i�hs + csi ))

, (4.15)

P (vi = 1 | z,h) = σ

(∑
r

zri (Wr
i�hr + cri )

)
. (4.16)

In the positive phase, we iterate over the Equations (4.12)∼(4.15). In the negative

phase, we iterate over all five Equations (4.12)∼(4.16). For classification, we use the

posterior of the first (i.e. task-relevant) component hidden units as an input to the

linear SVM [30].

Convolutional PGBM. Convolutional models can be useful in representing spa-

tially or temporally correlated data. The PGBM can be extended to a convolutional

setting [84], where we share the filter weights over different locations in large images.

Specifically, we introduce multinomial switch units zm,n ∈ {1, · · · , R}, m,n = 1, · · · , NV

for each input coordinate of the visible unit. Note that each switch unit is shared across

all input channels. The energy function of the CPGBM with R components is written

as follows: E(v, z,h) =

−
R∑
r=1

 L∑
l=1

∑
m,n

zrm,nv
l
m,nc

r
l −

Kr∑
k=1

∑
i,j

hr,ki,j

(
L∑
l=1

(W̃r,k,l ∗ (zr � vl))i,j + brk

) , (4.17)

subject to ∑R
r=1 z

r
m,n = 1, m,n = 1, · · · , NV . The operator � denotes an element-wise

multiplication between two matrices, i.e., (z � v)m,n = zm,nvm,n. We can interpret the

CPGBM’s energy function described in Equation (4.17) as a sum of energy functions of

R CRBM components whose visible units are filtered by the corresponding switch unit
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activations, i.e., vr = zr � v, as follows:

E(v, z,h) =
R∑
r=1

ECRBM(vr,hr; Wr,br, cr). (4.18)

where ECRBM(v,h) is defined in Equation (2.5).

Due to the three way interaction among visible, hidden and switch units, exact

inference is intractable. Instead, we use alternating Gibbs sampling (or mean-field

approximation) to compute the posterior distribution. The conditional probabilities of

hidden, switch, and visible units given the other two types of variables can be written

as follows:

P (hr,ki,j = 1|v, z) = σ

(∑
l

(W̃r,k,l ∗ (zr � vl))i,j + brk

)
(4.19)

P (zrm,n = 1|v,h) =
exp

(∑
l v

l
m,n(∑k(Wr,k,l ∗ hr,k)m,n + crl )

)
∑
s exp

(∑
l vlm,n(∑k(Ws,k,l ∗ hs,k)m,n + csl )

) (4.20)

P (vlm,n = 1|h, z) = σ

(∑
r

zrm,n

[∑
k

(Wr,k,l ∗ hr,k)m,n + crl

])
(4.21)

Similarly to the CRBM, the CPGBM can be trained using CD.

In Section 4.4.2, we present the convolutional PGBM with an application to the

weakly supervised foreground object localization problem. Furthermore, by locating

the bounding box at the foreground object accurately, we achieved state-of-the-art

recognition performance in Caltech 101.

4.4 Experiments

4.4.1 Handwritten digit recognition with background noise

We evaluated the capability of the proposed models in learning task-relevant fea-

tures from noisy data. We tested the single-layer PGBMs and their extensions on the
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variations of MNIST dataset: bg-rand, bg-image, rot-bg-image, and rot-bg-rand.4 The

first two datasets use uniform noise or natural images as background patterns. The

other two have rotated digits in front of the corresponding background patterns. We

used the PGBM with two components of 500 hidden units, and initialized with the

pre-trained RBM using the feature selection as described in Section 4.3.2. We used

mean-field for approximate inference for all our experiments.5

In Figure 4.2, we visualize the filters and the switch unit activations for bg-image.

The foreground filters capture the task-relevant patterns resembling pen strokes (Fig-

ure 4.2(a)), while the background filters (Figure 4.2(b)) capture task-irrelevant patterns

in the natural images. Further, the switch unit activations (the posterior probabilities

that the input pixel belongs to the foreground component, Figure 4.2(c)) are high (col-

ored in white) for the foreground digit pixels, and low (colored in gray) for the back-

ground pixels. This suggests that our model can dynamically separate the task-relevant

raw features from the task-irrelevant raw features for each example.

For quantitative evaluation, we show test classification errors in Table 4.1. For

all experiments with our single-layer models, we used the “task-relevant” hidden unit

activations as the input for the linear SVM [30]. The single-layer PGBM significantly

outperformed the baseline RBM, imRBM, and discRBM.6 We did a careful model selec-

tion to choose the best hyperparameters for each of the compared models. These results

suggest that the point-wise mixture hypothesis is effective in learning task-relevant fea-

tures from complex data containing irrelevant patterns.

Generative feature selection. As a control experiment, we compared our model

to the two-step model which we call “RBM-FS,” where we first trained the RBM and
4The first three datasets are generated by Larochelle et al. [73]. We generated rot-bg-rand following

the procedure described in [73].
5We have tested mean-field and alternating Gibbs sampling with 10 ∼ 25 iterations, and they

showed similar results.
6We used “hybrid” discriminative RBM whose objective is a weighted sum of the discriminative

(conditional) and generative (joint) likelihood.
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Algorithm bg-rand bg-image rot-bg-image rot-bg-rand
RBM 11.39 15.42 49.89 51.97

imRBM 10.46 16.35 51.03 51.02
discRBM 10.29 15.56 48.34 48.28
RBM-FS 11.42 15.20 49.65 51.69
PGBM 7.27 13.33 45.45 45.53

supervised PGBM 6.87 12.85 44.67 43.47

Algorithm bg-rand bg-image rot-bg-image rot-bg-rand
DBN-3 [132] 6.73 16.31 47.39 -
CAE-2 [108] 10.90 15.50 45.23 -

PGBM+ DN-1 6.08 12.25 36.76 30.41

Table 4.1: Test classification errors of (top) single-layer and (bottom) multi-layer models
on MNIST variation datasets. We used 10,000/2,000/50,000 splits for train, validation
and test sets, and report the test classification errors without retraining the model after
hyperparameter search over the validation set. For all RBM variants including imRBM,
discRBM, and PGBM, we used sparsity regularizer [82]. The best performers among
the single-layer models and the deep network models are both in bold.

selected a subset of hidden units using feature selection. As we see in Table 4.1, the

RBM-FS is only marginally better (or sometimes worse) than the baseline RBM. How-

ever, the PGBM significantly outperforms the RBM-FS, which demonstrates the benefit

of the joint training.

Semi-supervised learning. The supervised PGBM can be trained in a semi-supervised

way as described in Section 4.3.3. We used the same experimental setting as in [72],

and provided labels for only 10 percent of training examples (100 labeled examples for

each digit category). We summarize the classification errors of semi-supervised PGBM,

supervised PGBM, RBM and RBM-FS in Table 4.2. The semi-supervised PGBM con-

sistently performed the best for all datasets, showing that semi-supervised training is

effective in utilizing a large number of unlabeled examples.

Deep networks. Finally, we constructed a two-layer deep network by stacking one

layer of neural network with 1,000 hidden units on the task-relevant component of the
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Algorithm bg-rand bg-image rot-bg-image rot-bg-rand
RBM 17.43 ± 0.36 23.71 ± 0.34 63.94 ± 0.50 63.17 ± 0.32

RBM-FS 17.15 ± 0.46 20.22 ± 0.31 61.76 ± 0.43 62.02 ± 0.81
supervised PGBM 16.15 ± 0.70 21.04 ± 0.18 59.39 ± 0.58 63.82 ± 0.68

semi-supervised PGBM 11.98 ± 0.80 20.32 ± 0.15 59.19 ± 0.68 58.57 ± 0.49

Table 4.2: The mean and the standard deviation of the test classification errors of semi-
supervised PGBM, supervised PGBM, RBM, and RBM-FS. We repeated 5 times with
randomly sampled 1,000 labeled training examples in addition to the remaining 9,000
unlabeled training examples. The best model and those within the standard deviation
are in bold.

PGBM. We used softmax classifier for fine-tuning of the second layer neural network.

Table 4.1 shows that our deep network (referred to as “PGBM+DN-1”) outperforms the

DBN-3 and the stacked contractive autoencoder by a large margin. In particular, the

result of the DBN-3 on bg-image implies that adding more layers to the DBN does not

necessarily improve the performance when there are significant amounts of irrelevant

patterns in the data. In contrast, the PGBM can block the task-irrelevant information

from propagating to the higher layers, and hence it is an effective building block for

deep networks. Finally, we note that, to the best of our knowledge, the PGBM+DN-1

achieved state-of-the-art classification performance on all datasets except rot-bg-image,

where the transformation-invariant RBM [118] achieved 35.5% error by incorporating

the rotational invariance.

4.4.2 Weakly supervised object segmentation for object recognition

In this section, we extend our model to learn groups of task-relevant features (i.e.,

foreground patterns) from the images with higher resolution, and apply it to weakly

supervised object segmentation.

Weakly supervised object segmentation. Lee et al. [84] showed that the convolu-

tional deep belief network (CDBN) composed of multiple layers of convolutional RBM

(CRBM) can learn hierarchical feature representations from large images. In particular,
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Figure 4.3: Architecture of the two-layer CPGDN model. We use the CRBM for the
first layer, and the CPGBM with two mixture components for the second layer. We
also visualize the filters for each mixture component learned from the “Face” category.
In this figure, we use z̄ for binary variable z to denote its complement, i.e., z̄ = 1− z.

the first layer of the CDBN mostly learns generic edge filters, and the higher layers learn

not only complex generic patterns, such as corners or contours, but also semantically

meaningful features, such as object parts (e.g., eyes, nose, or wheels) in the second

layer or whole objects (e.g., human face or car) in the third layer. To learn and group

related features from large images, we propose the point-wise gated convolutional deep

network (CPGDN), where we use the convolutional extension of the PGBM (CPGBM)

as a building block.

Specifically, we construct the two-layer CPGDN by stacking the CPGBM on the

first layer CRBM. This construction makes sense because the first layer features are

mostly generic, and the class-specific features emerge in higher layers [84]. We train the

CPGDN using greedy layer-wise training method, and perform feedforward inference

in the first layer. We use mean-field in the second layer for approximate inference of

switch and hidden units. In Figure 4.3, we show the architecture of two-layer CPGDN

model that we used for weakly supervised object segmentation task.

We first trained a CPGDN with two mixture components only on the single class of

images from Caltech 101 dataset [32]. For this experiment, we randomly initialized the
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(a) Task-relevant (b) Task-irrelevant (c) Task-relevant (d) Task-irrelevant

Figure 4.4: Visualization of the second layer CPGBM features from “Faces” (a, b) and
“Car side” (c, d) classes.

weights without pre-training. We visualize the second layer features trained on “Faces”

and “Car side” classes in Figure 4.4. The CPGDN made a good distinction between

the task-relevant patterns such as face parts and wheels, and the generic patterns. In

Figure 4.5, we visualize the switch unit activation map, which shows that the switch

units are selectively activated at the most informative region in each image. Interest-

ingly, using this activation map, we can segment the object region from the background

reasonably well, though our model is not specifically designed for image segmentation.

training images 15 30
Lazebnik et al. [74] 56.4% 64.6%
Griffin et al. [37] 59.0% 67.6%
Yang et al. [143] 67.0% 73.2%

Boureau et al. [15] - 75.7%
Goh et al. [35] 71.1% 78.9%

RBM [119] 68.6% 74.9%
CRBM [119] 71.3% 77.8%

Our method + RBM 70.2% 76.8%
Our method + CRBM 72.4% 78.9%

Table 4.3: Test classification accuracy on Caltech 101.

Object recognition. Inspired by the CPGDN’s ability to distinguish the foreground

object from the background scene, we propose a novel object recognition pipeline on

Caltech 101 dataset, where we first “crop” each image at the bounding box predicted

using the switch unit activations of the CPGDN and perform classification using those
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Figure 4.5: Visualization of the pairs of examples for switch unit activation map and
the corresponding image below overlayed with the predicted (red) and the ground truth
bounding boxes (green). The first row of examples are generated using the CPGDN
trained only on either “Face” (left four examples) or “Car” (right four examples) classes.
The second and third rows of examples are generated using the CPGDN trained on all
categories of images from Caltech 101 dataset.

cropped images. Specifically, we used the CPGDN with two mixture components, each

of which is composed of 100 hidden units. To train the model efficiently from many

different classes of images, we pre-train a set of second layer CRBMs with a small

number of hidden units (e.g., 30) for each class to capture more diverse and class-

specific patterns, and perform feature selection on those CRBM features from all object

categories to initialize the weights of the second layer CPGBM. Once we train the model,

we compute the posterior of switch units arranged in 2d. To predict the bounding box,

we compute the row-wise and column-wise cumulative sum of switch unit activations

and select the region containing (5, 95) percentiles of the total activations as a bounding

box. For classification, we followed the pipeline used in [119], which uses the Gaussian
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(convolutional) RBMs with dense SIFT as input.

We first evaluated the bounding box detection accuracy. We declare that the bound-

ing box prediction is correct when the average overlap ratio (the area of intersection

divided by the union between the predicted and the ground truth bounding boxes) is

greater than 0.5 [29]. We achieved average overlap ratio of 0.702 and detection accuracy

of 88.3%.

Finally, we evaluated the classification accuracy using the cropped Caltech 101

dataset with CPGDN and summarize the results in Table 4.3. The object centered

cropped images brought improvement in classification accuracies, such as 74.9% to

76.8% with RBM, and 77.8% to 78.9% with CRBM using 30 training images per class,

respectively.7 As a baseline, we also report the classification accuracy on the augmented

dataset where we uniformly crop the center region across all the images with a fixed

ratio. After cross-validating with different ratios, we obtain a worse classification ac-

curacy of 75.8% with RBM using 30 training images per class. This suggests that the

classification performance can be improved by localizing the object better than simply

cropping the center region.

4.5 Conclusion

In this chapter, we proposed a point-wise gated Boltzmann machine that can ef-

fectively learn useful feature representations from data containing irrelevant patterns.

Our methods achieve state-of-the-art classification performance on several datasets that

contain irrelevant patterns. We believe our method holds promise in building a robust

algorithm that can learn from large-scale, complex, sensory input data.

7We also performed the same experiment using different CPGDN model without pre-training. We
obtained similar accuracy for the bounding box detection (0.697 for average overlap ratio, 90.2% for
detection accuracy), but got slightly worse classification accuracy (76.4% with RBM using 30 training
images per class).
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CHAPTER V

Augmenting CRFs with Boltzmann Machine Priors

for Structured Output Prediction

5.1 Introduction

Segmentation and region labeling are core techniques for the critical mid-level vision

tasks of grouping and organizing image regions into coherent parts. Segmentation refers

to the grouping of image pixels into parts without applying labels to those parts, and

region labeling assigns specific category names to those parts. While many segmentation

and region labeling algorithms have been used in general object recognition and scene

analysis, they have played a surprisingly small role in the challenging problems of face

recognition.

Recently, Huang et al. [50] identified the potential role of region labeling in face

recognition, noting that a variety of high-level features, such as pose, hair length, and

gender can often be inferred (by people) from the labeling of a face image into hair, skin

and background regions. They further showed that simple learning algorithms could

be used to predict high-level features, or attributes [69, 106], such as pose, from the

labeling.

In this work, we address the problem of labeling face regions with hair, skin, and

background labels as an intermediate step in modeling face structure. In region labeling
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Figure 5.1: The left image shows a “funneled” or aligned LFW image. The center image
shows the superpixel version of the image which is used as a basis for the labeling. The
right image shows the ground truth labeling. Red represents hair, green represents skin,
and the blue represents background.

applications, the conditional random field (CRF) [70] is effective at modeling region

boundaries. For example, the CRF can make a correct transition between the hair and

background labels when there is a clear difference between those regions. However,

when a person’s hair color is similar to that of the background, the CRF may have

difficulty deciding where to draw the boundary between the regions. In such cases, a

global shape constraint can be used to filter out unrealistic label configurations.

It has been shown that restricted Boltzmann machines (RBMs) [117] and their

extension to deeper architectures such as deep Boltzmann machines (DBMs) [111] can

be used to build effective generative models of object shape. Specifically, the recently

proposed shape Boltzmann machine (ShapeBM) [28] showed impressive performance

in generating novel but realistic object shapes while capturing both local and global

elements of shape.

Motivated by these examples, we propose the GLOC (GLObal and LOCal) model, a

strong model for image labeling problems, that combines the best properties of the CRF

(that enforces local consistency between adjacent nodes) and the RBM (that models

global shape prior of the object). The model balances three goals in seeking label

assignments:

• The region labels should be consistent with the underlying image features.

• The region labels should respect image boundaries.

• The complete image labeling should be consistent with shape priors defined by
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the segmentation training data.

In our GLOC model, the first two objectives are achieved primarily by the CRF part,

and the third objective is addressed by the RBM part. For each new image, our model

uses mean-field inference to find a good balance between the CRF and RBM potentials

in setting the image labels and hidden node values.

We evaluate our proposed model on a face labeling task using the Labeled Faces

in the Wild (LFW) data set. As shown in Section 5.5, our model brings significant

improvements in labeling accuracy over the baseline methods, such as the CRF and the

conditional RBM. These gains in numerical accuracy have a significant visual impact

on the resulting labeling, often fixing errors that are small but obvious to any observer.

In addition, we show in Section 5.5.2 that the hidden units in the GLOC model can be

interpreted as face attributes, such as whether an individual has long hair or a beard, or

faces left or right. These attributes can be useful in retrieving face images with similar

structure and properties.

We summarize our main contributions as follows:

• We propose the GLOC model, a strong model for face labeling tasks, that com-

bines the CRF and the RBM to achieve both local and global consistency.

• We present efficient inference and training algorithms for our model.

• We achieve significant improvements over the state-of-the-art in face labeling ac-

curacy on subsets of the LFW data set. Our model also produces qualitatively

better labeling than the baseline CRF models.

• We demonstrate that our model learns face attributes automatically without at-

tribute labels.
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5.2 Related Work

5.2.1 Face segmentation and labeling

Several authors have built systems for segmenting hair, skin, and other face parts [137,

136, 113, 85, 142, 50]. Because of the variety of hair styles, configurations, and amount

of hair, the shape of a hair segmentation can be extremely variable. In our work, we

treat facial hair as part of “hair” in general, hoping to develop hidden units correspond-

ing to beards, sideburns, mustaches, and other hair parts, which further increases the

complexity of the hair segments. Furthermore, we include skin of the neck as part

of the “skin” segmentation when it is visible, which is different from other labeling

regimes. For example, Wang et al. [136] limit the skin region to the face and include

regions covered by beards, hats, and glasses as being skin, which simplifies their labeling

problem.

Yacoob and Davis [142] build a hair color model and then adopt a region growing

algorithm to modify the hair region. This method has difficulty when the hair color

changes significantly from one region to another, especially for dark hair, and the work

was targeted at images with controlled backgrounds. Lee et al. [85] used a mixture model

to learn six distinct hair styles, and other mixture models to learn color distributions

for hair, skin, and background.

Huang et al. [50] used a standard CRF trained on images from LFW to build a

hair, skin, and background labeler. We have implemented their model as a baseline

and report the performance. Scheffler et al. [113] learn color models for hair, skin,

background and clothing. They also learn a spatial prior for each label. They combine

this information with a Markov random field that enforces local label consistency.

Wang et al. [136] used a compositional exemplar-based model, focusing mostly on the

problem of hair segmentation. Following their earlier work, Wang et al. [137] proposed

a model that regularizes the output of a segmentation using parts. In addition, their
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model builds a statistical model of where each part is used in the image and the co-

occurrence probabilities between parts. Using these co-occurrences, they build a tree-

structured model over parts to constrain the final segmentations. To our knowledge,

this is the best-performing algorithm for hair, skin, and background labeling to date.

In Section 5.5, we report the results on two sets of labeled data showing improvements

over these best previous results.

5.2.2 Object shape modeling

There are several related works on using RBMs (or their deeper extensions) for shape

modeling. He et al. [40] proposed multiscale CRFs to model both local and global label

features using RBMs. Specifically, they used multiple RBMs at different scales to model

the regional or global label fields (layers) separately, and combined those conditional

distributions multiplicatively. Recent work by Eslami et al. [28] introduced the Shape

Boltzmann machine (ShapeBM), a two-layer DBM with local connectivity in the first

layer for local consistency and generalization (by weight sharing), and full connectivity

in the second layer for modeling global shapes, as a strong model for object shapes.

Subsequently, Eslami and Williams [27] proposed a generative model by combining the

ShapeBM with an appearance model for parts-based object segmentation. Our model is

similar at a high-level to these models in that we use RBMs for object shape modeling to

solve image labeling problems. However, there are significant technical differences that

distinguish our model from others. First, our model has an edge potential that enforces

local consistency between adjacent superpixel labels. Second, we define our model on the

superpixel graph using a virtual pooling technique, which is computationally much more

efficient. Third, our model is discriminative and can use richer image features than [27]

which used a simple pixel-level appearance model (based on RGB pixel values). Finally,

we propose a model combined with an RBM to act as a shape prior, which makes the

training much easier while showing significant improvement over the baseline models in
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face labeling tasks. See 5.4.4 for more discussions.

5.3 Preliminaries

In this section, we briefly describe the CRF and RBM, followed by our proposed

GLOC model. We present the models in the context of multi-class labeling.

Notation An image I is pre-segmented into S(I) superpixels, where S(I) can vary

over different images. We denote V(I) = {1, · · · , S(I)} as a set of superpixel nodes, and

E (I) as a set of edges connecting adjacent superpixels. We denote X (I) = {X (I)
V ,X (I)

E },

where X (I)
V is a set of node features {xnode

s ∈ RDn , s ∈ V} and X (I)
E is a set of edge

features {xedge
ij ∈ RDe , (i, j) ∈ E}. The set of label nodes are defined as Y(I) = {ys ∈

{0, 1}L, s ∈ V : ∑L
l=1 ysl = 1}. Here, Dn and De denote the dimensions of the node

and edge features, respectively, and L denotes the number of categories for the labeling

task. We frequently omit the superscripts “I”, “node”, or “edge” for clarity, but the

meaning should be clear from the context.

5.3.1 Conditional Random Fields

The conditional random field [70] is a powerful model for structured output predic-

tion (such as sequence prediction, text parsing, and image segmentation), and has been

widely used in computer vision [41, 4, 13, 40]. The conditional distribution and the

energy function can be defined as follows:

Pcrf(Y|X ) ∝ exp(−Ecrf(Y ,X )), (5.1)

Ecrf(Y ,X ) = −
∑
s∈V

L∑
l=1

Dn∑
d=1

yslΓldxsd︸ ︷︷ ︸
=Enode(Y,XV )

−
∑

(i,j)∈E

L∑
l,l′=1

De∑
e=1

yilyjl′Ψll′exije︸ ︷︷ ︸
Eedge(Y,XE)

, (5.2)
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where Ψ ∈ RL×L×De is a 3D tensor for the edge weights, and Γ ∈ RL×Dn are the

node weights. The model parameters {Γ,Ψ} are trained to maximize the conditional

log-likelihood of the training data {Y(m),X (m)}Mm=1,

max
Γ,Ψ

M∑
m=1

logPcrf(Y(m)|X (m)).

We can use loopy belief propagation (LBP) [95] or mean-field approximation [112] for

inference in conjunction with standard optimization methods such as LBFGS.1

5.3.2 Restricted Boltzmann machines with multinomial visible unit

The restricted Boltzmann machine [117] is a bipartite, undirected graphical model

composed of visible and hidden layers. In our context, we assume R2 multinomial visible

units yr ∈ {0, 1}L and K binary hidden units hk ∈ {0, 1}. The joint distribution can

be defined as follows:

Prbm(Y ,h) ∝ exp(−Erbm(Y ,h)), (5.3)

Erbm(Y ,h) = −
R2∑
r=1

L∑
l=1

K∑
k=1

yrlWrlkhk −
K∑
k=1

bkhk −
R2∑
r=1

L∑
l=1

crlyrl, (5.4)

where W ∈ RR2×L×K is a 3D tensor specifying the connection weights between visible

and hidden units, bk is the hidden bias, and crl is the visible bias. The parameters Θ =

{W,b,C} are trained to maximize the log-likelihood of the training data {Y(m)}Mm=1,

max
Θ

M∑
m=1

log
(∑

h
Prbm(Y(m),h)

)
.

We train the model parameters using stochastic gradient descent. Although the exact

gradient is intractable to compute, we can approximate it using CD [44].
1We used LBFGS in minFunc by Mark Schmidt: http://www.di.ens.fr/˜mschmidt/Software/

minFunc.html
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5.4 The Proposed Model

To build a strong model for image labeling, both local consistency (adjacent nodes

are likely to have similar labels) and global consistency (the overall shape of the object

should look realistic) are desirable. On one hand, the CRF is powerful in modeling

local consistency via edge potentials. On the other hand, the RBM is good at capturing

global shape structure through the hidden units. We combine these two ideas in the

GLOC model, which incorporates both local consistency (via CRF-like potentials) and

global consistency (via RBM-like potentials). Specifically, we describe the conditional

likelihood of labels set Y given the superpixel features X as follows:

Pgloc(Y|X ) ∝
∑

h
exp (−Egloc(Y ,X ,h)) , (5.5)

Egloc (Y ,X ,h) = Ecrf (Y ,X ) + Erbm (Y ,h) . (5.6)

As described above, the energy function is written as a combination of CRF and RBM

energy functions. However, due to the varying number of superpixels for different

images, the RBM energy function in Equation (5.4) requires nontrivial modifications.

In other words, we cannot simply connect label (visible) nodes defined over superpixels

to hidden nodes as in Equation (5.4) because 1) the RBM is defined on a fixed number

of visible nodes and 2) the number of superpixels and their underlying graph structure

can vary across images.

5.4.1 Virtual pooling layer

To resolve this issue, we introduce a virtual, fixed-sized pooling layer between the

label and the hidden layers, where we map each superpixel label node into the virtual

visible nodes of the R×R square grid. This is shown in Figure 5.2, where the top two

layers can be thought of as an RBM with the visible nodes ȳr representing a surrogate

(i.e., pooling) for the labels ys that overlap with the grid bin r. Specifically, we define

72



virtual  
visible layer 

hidden layer 

label layer 
(superpixels) 

r 

s 

s1 s2 

s3 

s1 s2 Area(        ) r / Area(            ) 
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Overlap between region r  
and its adjacent superpixels 

Figure 5.2: The GLOC model. The top two layers can be thought of as an RBM with
the (virtual) visible nodes ȳr and the hidden nodes. To define the RBM over a fixed-
size visible node grid, we use an image-specific “projection matrix” {p(I)

rs } that transfers
(top-down and bottom-up) information between the label layer and the virtual grid of
the RBM’s visible layer. See text for details.

the energy function between the label nodes and the hidden nodes for an image I as

follows:

Erbm (Y ,h) = −
R2∑
r=1

L∑
l=1

K∑
k=1

ȳrlWrlkhk −
K∑
k=1

bkhk −
R2∑
r=1

L∑
l=1

crlȳrl. (5.7)

Here, the virtual visible nodes ȳrl = ∑S
s=1 prsysl are deterministically mapped from the

superpixel label nodes using the projection matrix {prs} that determines the contri-

bution of label nodes to each node of the grid. The projection matrix is defined as

follows:2

prs = Area(Region(s) ∩Region(r))
Area(Region(r)) ,

where Region(s) and Region(r) denote sets of pixels corresponding to superpixel s and

grid r, respectively. Due to the deterministic connection, the pooling layer is actually

a virtual layer that only exists to map between the superpixel nodes and the hidden

nodes. We can also view our GLOC model as having a set of grid-structured nodes that

performs average pooling over the adjacent superpixel nodes.
2The projection matrix {prs} is a sparse, non-negative matrix of dimension R2 × S. Note that the

projection matrix is specific to each image since it depends on the structure of the superpixel graph.
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5.4.2 Spatial CRF

As an additional baseline, we describe a modification to the CRF presented in Sec-

tion 5.3.1. In some cases, even after conditioning on class, feature likelihoods may

depend on position. For example, knowing that hair rests on the shoulders makes it

less likely to be gray. This intuition is behind our Spatial CRF model.

Specifically, when the object in the image is aligned, we can learn a spatially depen-

dent set of weights that are specific to a cell in an N ×N grid. (Note that this grid can

be a different size than the R × R grid used by the RBM.) We learn a separate set of

node weights for each cell in a grid, but the edge weights are kept globally stationary.

Using a similar projection technique to that described in Section 5.4.1, we define

the node energy function as

Enode (Y ,XV) = −
∑
s∈V

L∑
l=1

ysl
N2∑
n=1

psn
Dn∑
d=1

Γndlxsd, (5.8)

where Γ ∈ RN2×D×L is a 3D tensor specifying the connection weights between the

superpixel node features and labels at each spatial location. In this energy function, we

define a different projection matrix {psn} which specifies the mapping from the N ×N

virtual grid to superpixel label nodes.3

5.4.3 Inference and learning

Inference. Since the joint inference of superpixel labels and the hidden nodes is in-

tractable, we resort to the mean-field approximation. Specifically, we find a fully fac-

torized distribution Q(Y ,h;µ, γ) = ∏
s∈V Q(ys)

∏K
k=1Q(hk), with Q(ys = l) , µsl and

Q(hk = 1) , γk, that minimizes KL (Q(Y ,h;µ, γ)‖P (Y ,h|X )). We describe the mean-

field inference steps in Algorithm 2 and its derivation in Appendix C.
3Note that the projection matrices used in the RBM and spatial CRF are different in that {prs}

used in the RBM describes a projection from superpixel to grid (
∑S
s=1 prs = 1), whereas {psn} used

in the spatial CRF describes a mapping from a grid to superpixel (
∑N2

n=1 psn = 1).
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Algorithm 2 Mean-Field Inference
1: Initialize µ(0) and γ(0) as follows:

µ
(0)
sl =

exp
(
fnode
sl

)
∑
l′ exp (fnode

sl′ )

γ
(0)
k = σ

∑
r,l

(∑
s

prsµ
(0)
sl

)
Wrlk + bk


where

fnode
sl (XV , {psn},Γ) =

∑
n,d

psnxsdΓndl

2: for t=0:maxiter (or until convergence) do
3: update µ(t+1) as follows: µ(t+1)

sl =

exp
(
fnode
sl + f edge

sl

(
µ(t)

)
+ f rbm

sl

(
γ(t)

))
∑
l′ exp

(
fnode
sl′ + f edge

sl′ (µ(t)) + f rbm
sl′ (γ(t))

)
where

f edge
sl (µ;XE , E ,Ψ) =

∑
j:(s,j)∈E

∑
l′,e

µjl′Ψll′exsje

f rbm
sl (γ; {prs},W,C) =

∑
r,k

prs (Wrlkγk + crl)

4: update γ(t+1) as follows:

γ
(t+1)
k = σ

∑
r,l

(∑
s

prsµ
(t+1)
sl

)
Wrlk + bk


5: end for
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Learning. In principle, we can train the model parameters {W,b,C,Γ,Ψ} simulta-

neously to maximize the conditional log-likelihood. In practice, however, it is beneficial

to provide a proper initialization (or pretrain) to those parameters. We provide an

overview of the training procedure in Algorithm 3.

First, we adapted the pretraining method of deep Boltzmann machines (DBM) [111]

to train the conditional RBM (CRBM).4 Specifically, we pretrain the model parameters

{W,b,C} of the CRBM as if it is a top layer of the DBM to avoid double-counting

when combined with the edge potential in the GLOC model. Second, the CRBM and

the GLOC models can be trained to either maximize the conditional log-likelihood

using contrastive divergence (CD) or minimize generalized perceptron loss [79] using

CD-PercLoss [94]. In fact, Mnih et al. [94] suggested that CD-PercLoss would be a

better choice for structured output prediction problems since it directly penalizes the

model for wrong predictions during training. We empirically observed that CD-PercLoss

performed slightly better than CD.

Algorithm 3 Training GLOC model
1: Pretrain {Γ,Ψ} to maximize the conditional log-likelihood of the spatial CRF model

(See Equations (5.1), (5.2), and (5.8)).
2: Pretrain Θ = {W,b,C} to maximize the conditional log-likelihood of the condi-

tional RBM, which is defined as:

max
Θ

log
∑

h
Pcrbm(Y ,h|XV)

Pcrbm(Y ,h|XV) ∝ exp (−Enode(Y ,XV ; Γ)− Erbm(Y ,h; Θ))

3: Train {W,b,C,Γ,Ψ} to maximize the conditional log-likelihood of the GLOC
model (See Equation (5.5)).

4Note that our CRBM is different from the one defined in [94] in that 1) our model has no connection
between the conditioning nodes X and the hidden nodes, and 2) our model uses a projection (e.g.,
virtual pooling) matrix to deal with the varying number of label nodes over the images.
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Figure 5.3: Generated samples from the RBM (first row) and the closest matching
examples in the training set (second row). The RBM can generate novel, realistic
examples by combining hair, beard and mustache shapes along with diverse face shapes.

5.4.4 Discussion

In many cases, it is advantageous to learn generative models with deep architectures.

In particular, Eslami et al. [28] suggest that the ShapeBM, a special instance of the

DBM, can be a better generative model than the RBM when they are only given several

hundred training examples. However, when given sufficient training data (e.g., a few

thousand), we found that the RBM can still learn a global shape prior with good

generalization performance. In Figure 5.3, we show both generated samples from an

RBM and their closest training examples.5 The generated samples are diverse and are

clearly different from their most similar examples in the training set. This suggests that

our model is learning an interesting decomposition of the shape distributions for faces.

Furthermore, RBMs are easier to train than DBMs in general, which motivates the use

of RBMs in our model. In principle, however, we can also use such deep architectures

in our GLOC model as a rich global shape prior without much modification to inference

and learning.

5.5 Experiments

We evaluated our proposed model on a task to label face images from the LFW

data set [49] as hair, skin, and background. We used the “funneled” version of LFW,

in which images have been coarsely aligned using a congealing-style joint alignment
5We compute the L2 distance between the generated samples and the examples in the training set.
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(a) Successful examples (b) Failure examples

Figure 5.4: Sample segmentation results on images from the LFW data set. The images
contain extremely challenging scenarios such as multiple distractor faces, occlusions,
strong highlights, and pose variation. The left of Figure 5.4(a) shows images in which
the GLOC model made relatively large improvements to the baseline. The right of Fig-
ure 5.4(a) shows more subtle changes made by our model. The results in Figure 5.4(b)
show typical failure cases. The columns correspond to 1) original image which has been
aligned to a canonical position using funneling [48], 2) CRF, 3) spatial CRF, 4) GLOC
and 5) ground truth labeling. Note that the CRBM model results are not shown here.

approach [48]. Although better automatic alignments of these images exist, such as the

LFW-a data set [141], it does not contain color information, which is important for our

application.

The LFW website provides the segmentation of each image into superpixels, which

are small, relatively uniform pixel groupings.6 We provide ground truth for a set of 2927

LFW images by labeling each superpixel as either hair, skin, or background [1]. While

some superpixels may contain pixels from more than one region, most superpixels are

generally “pure” hair, skin, or background.

There are several reasons why we used superpixel labeling instead of pixel labeling

for this problem. First, the superpixel representation is computationally much more

efficient. The number of nodes would be too large for pixel labeling since the LFW

images are of size 250 × 250. However, each image can be segmented into 200-250

superpixels, resulting in the same number of nodes in the CRF, and this allowed us
6Available at http://vis-www.cs.umass.edu/lfw/lfw_funneled_superpixels_fine.tgz.
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to do tractable inference using LBP or mean-field. In addition, superpixels can help

smooth features such as color. For example, if the superpixel is mostly black but

contains a few blue pixels, the blue pixels will be smoothed out from the feature vector,

which can simplify inference.

We adopted the same set of features as in Huang et al. [50]. For each superpixel we

used the following node features:

• Color: Normalized histogram over 64 bins generated by running K-means over

pixels in LAB space.

• Texture: Normalized histogram over 64 textons generated according to [89].

• Position: Normalized histogram of the proportion of a superpixel that falls within

each of the 8× 8 grid elements on the image.7

The following edge features were computed between adjacent superpixels:

• Sum of PB [92] values along the border.

• Euclidean distance between mean color histograms.

• Chi-squared distance between texture histograms as computed in [50].

We evaluated the labeling performance of four different models: a standard CRF, the

spatial CRF, the CRBM, and our GLOC model. We provide the summary results

in Table 5.1. We divided the labeled examples into 2, 000 for training and 927 for

testing, and performed 5-fold cross-validation by randomly splitting the training data

into 5. We trained our model using batch gradient descent and selected the model

hyperparameters that performed best on the validation set. After cross-validation, we

set K = 400, R = 24, and N = 16, and the model was evaluated on the test set. On a

multicore AMD Opteron, average inference time per example was 0.254 seconds for the

GLOC model and 0.063 seconds for the spatial CRF.

As shown in Table 5.1, the GLOC model substantially improves the superpixel

labeling accuracy over the baseline CRF model as well as the spatial CRF and CRBM
7Note that the position feature is only used in the CRF.
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Method Accuracy Error Reduction
LR 90.91% ± 0.011 -22.94%
Spatial LR 92.11% ± 0.021 -6.71%
CRF (baseline) 92.61% ± 0.310 –
Spatial CRF 93.88% ± 0.042 17.23%
CRBM 94.06% ± 0.026 19.58%
GLOC 94.95% ± 0.026 31.72%

Table 5.1: Labeling accuracies for each model. We report the mean of superpixel-wise
labeling accuracy and corresponding 95% confidence interval in the second column, and
the error reduction over the CRF on test set in the third column.

models. While absolute accuracy improvements (necessarily) become small as accuracy

approaches 95%, the reduction in errors are substantial.

Furthermore, there are significant qualitative differences in many cases, as we illus-

trate in Figure 5.4(a). The samples on the left show significant improvement over the

spatial CRF, and the ones on the right show more subtle changes made by the GLOC

model. Here, we represent the confidence of the guess (posterior) by color intensity.

The confident guess appears as a strong red, green, or blue color, and a less confident

guess appears as a lighter mixture of colors. As we can see, the global shape prior of

the GLOC model helps “clean up” the guess made by the spatial CRF in many cases,

resulting in a more confident prediction.

In many cases, the RBM prior encourages a more realistic segmentation by either

“filling in” or removing parts of the hair or face shape. For example, the woman in the

second row on the left set recovers the left side of her hair and gets a more recognizable

hair shape under our model. Also, the man in the first row on the right set gets a more

realistic looking hair shape by removing the small (incorrect) hair shape on top of his

head. This effect may be due to the top-down global prior in our GLOC model, whereas

simpler models such as the spatial CRF do not have this information. In addition, there

were cases (such as the woman in the fifth row of the left set) where an additional face

in close proximity to the centered face may confuse the model. In this case, the CRF
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and spatial CRF models make mistakes, but since the GLOC model has a strong shape

model, it was able to find a more recognizable segmentation of the foreground face.

On the other hand, the GLOC model sometimes makes errors. We show typical

failure examples in Figure 5.4(b). As we can see, the model made significant errors

in their hair regions. Specifically, in the first row, the hair of a nearby face is similar

in color to the hair of the foreground face as well as the background, and our model

incorrectly guesses more hair by emphasizing the hair shape prior, perhaps too strongly.

In addition, there are cases in which occlusions cause problems, such as the third row.

However, we point out that the occlusions are frequently handled correctly by our model

(e.g., the microphone in the third row of the left set in Figure 5.4(a)).

5.5.1 Comparison to prior work

We also evaluated our model on the data set used in [137]. This data set contains

1, 046 LFW (unfunneled) images whose pixels are manually labeled into 4 regions (Hair,

Skin, Background, and Clothing). Following their evaluation setup, we randomly split

the data in half and used one half for training and the rest for testing. We repeated

this procedure five times, and report the average pixel accuracy as a final result.

We first generated the superpixels and features for each image, then ran our GLOC

model to get label guesses for each superpixel, and finally mapped back to pixels for

evaluation (it was necessary to map to pixels at the end because the ground truth is pro-

vided in pixels). We noticed that even with a perfect superpixel labeling, this mapping

already incurs approximately 3% labeling error. However, our approach was sufficient

to obtain a good pixel-wise accuracy of 90.7% (91.7% superpixel-wise accuracy), which

improves by 0.7% upon their best reported result of 90.0%. The ground truth for a

superpixel is a normalized histogram of the pixel labels in the superpixel.
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Figure 5.5: The filter visualization in each column show that the GLOC model learns
latent structure or visual attribute automatically from the data that can be interpreted
as (from left to right) “no hair showing”, “looking left”, “looking right”, “beard/occluded
chin”, “big hair”. In each column, we retrieve the images from LFW (except images
used in training and validation) with the highest activations for each of 5 hidden units,
and provide their segmentation results. Although the retrieved matches are not perfect,
they clearly have semantic, high-level content.

5.5.2 Attributes and retrieval

While the labeling accuracy (as shown in Section 5.5) is a direct way of measuring

progress, we have an additional goal in our work: to build models that capture the

natural statistical structure in faces. It is not an accident that human languages have

words for beards, baldness, and other salient high-level attributes of human face ap-

pearance. These attributes represent coherent and repeated structure across the faces

we see everyday. Furthermore, these attributes are powerful cues for recognition, as

demonstrated by Kumar et al. [69].

One of the most exciting aspects of RBMs and their deeper extensions are that
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these models can learn latent structure automatically. Recent work has shown that

unsupervised learning models can learn meaningful structure without being explicitly

trained to do so (e.g., [75, 51, 52]).

In our experiments, we ran our GLOC model on all LFW images other than those

used in training and validation, and sorted them based on each hidden unit activation.

Each of the five columns in Figure 5.5 shows a set of retrieved images and their guessed

labelings for a particular hidden unit. In many cases, the retrieved results for the hidden

units form meaningful clusters. These units seem highly correlated with “lack of hair”,

“looking left”, “looking right”, “beard or occluded chin”, and “big hair”. Thus, the

learned hidden units may be useful as attribute representations for faces.

5.6 Conclusion

Face segmentation and labeling is challenging due to the diversity of hair styles, head

poses, clothing, occlusions, and other phenomena that are difficult to model, especially

in a database like LFW. Our GLOC model combines the CRF and the RBM to model

both local and global structure in face segmentations. Our model has consistently

reduced the error in face labeling over previous models which lack global shape priors.

In addition, we have shown that the hidden units in our model can be interpreted as

face attributes, which were learned without any attribute-level supervision.
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CHAPTER VI

Improved Multimodal Deep Learning with

Variation of Information

6.1 Introduction

Different types of multiple data modalities can be used to describe the same event.

For example, images, which are often represented with pixels or image descriptors,

can also be described with accompanying text (e.g., user tags or subtitles) or au-

dio data (e.g., human voice or natural sound). There have been several applications

of multimodal learning from multiple domains such as emotion and speech recogni-

tion with audio-visual data [61, 99, 53], robotics applications with visual and depth

data [71, 86, 134, 105], and medical applications with visual and temporal data [115].

For each application, data from multiple sources are semantically correlated, and some-

times provide complementary information about each other. To facilitate information

exchange, it is important to capture a high-level association between data modalities

with a compact set of latent variables. However, learning associations between multiple

heterogeneous data distributions is a challenging problem.

A naive approach is to concatenate the data descriptors from different input sources

to construct a single high-dimensional feature vector and use it to solve a unimodal

representation learning problem. However, the correlation between features in each
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data modality is much stronger than that between data modalities. As a result, the

learning algorithms are easily tempted to learn dominant patterns in each data modal-

ity separately while giving up learning patterns that occur simultaneously in multiple

data modalities, as suggested by [99]. To resolve this issue, deep learning methods,

such as deep autoencoders [45] or deep Boltzmann machines (DBM) [111], have been

adapted [99, 121], where the common strategy is to learn joint representations that are

shared across multiple modalities at the higher layer of the deep network, after learning

layers of modality-specific networks. The rationale is that the learned features may have

less within-modality correlation than raw features, and this makes it easier to capture

patterns across data modalities. This has shown promise, but there still remains the

challenging question of how to learn associations between multiple heterogeneous data

modalities so that we can effectively deal with missing data modalities at testing time.

One necessary condition for a good generative model of multimodal data is the abil-

ity to predict or reason about missing data modalities given partial observation. To this

end, we propose a novel multimodal representation learning framework that explicitly

aims at this goal. The key idea is to minimize the information distance between data

modalities through the shared latent representations. More concretely, we train the

model to minimize the variation of information (VI), an information theoretic measure

that computes the distance between random variables, i.e., multiple data modalities.

Note that this is in contrast to previous approaches on multimodal deep learning, which

are based on maximum (joint) likelihood (ML) learning [99, 121]. We explain as to how

our method could be more effective in learning the joint representation of multimodal

data than ML learning, and show theoretical insights why the proposed learning ob-

jective is sufficient to estimate the data-generating joint distribution of multimodal

data. We apply the proposed framework to multimodal restricted Boltzmann machine

(MRBM) and propose two learning algorithms, based on contrastive divergence [94] and

multi-prediction training [36]. Finally, we extend to multimodal deep recurrent neural
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network (MDRNN) for unsupervised finetuning of whole network. In experiments, we

demonstrate the state-of-the-art visual recognition performance on MIR-Flickr database

and PASCAL VOC2007 database with and without text observations at testing time.

6.2 Multimodal Learning with Variation of Information

In this section, we propose a novel training objective based on the VI. We make

a comparison to the ML objective, a typical learning objective for training generative

models of multimodal data, to give an insight as to how our proposed method can be

better for multimodal data. Finally, we establish a theorem showing that the proposed

learning objective is sufficient to obtain a good generative model that fully recovers the

joint data-generating distribution of multimodal data.

Notation. We use uppercase letters X, Y to denote random variables, lowercase let-

ters x, y for realizations. Let PD be the data-generating distribution and Pθ the model

distribution parametrized by θ. For presentation clarity, we slightly abuse the notation

for Q to denote conditional (Q(x|y), Q(y|x)), marginal (Q(x), Q(y)), as well as joint

distributions (Q(x, y)). The type of distribution of Q should be clear from the context.

6.2.1 Minimum variation of information learning

Motivated by the necessary condition for good generative models to reason about

the missing data modality, it seems natural to learn to maximize the amount of infor-

mation that one data modality has about the others. We quantify such an amount of

information between data modalities using variation of information. The VI is an infor-

mation theoretic measure that computes the information distance between two random
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variables (e.g., data modalities), and is written as follows:1

VIQ(X, Y ) = −EQ(X,Y )
[

logQ(X|Y ) + logQ(Y |X)
]

(6.1)

whereQ(X, Y ) = Pθ(X, Y ) is any joint distribution on random variables (X, Y ) parametrized

by θ. Informally, VI is small when the conditional likelihoods Q(X|Y ) and Q(Y |X) are

“peaked”, meaning that X has low entropy conditioned on Y and vice versa. Follow-

ing the intuition, we define new multimodal learning criteria, a minimum variation of

information (MinVI) learning, as follows:

MinVI : minθ LVI(θ), LVI(θ) = −EPD(X,Y )
[

logPθ(X|Y ) + logPθ(Y |X)
]

(6.2)

Note the difference that we take the expectation over PD in LVI(θ). Furthermore, we

observe that the MinVI objective can be decomposed into a sum of two negative con-

ditional LLs. This indeed aligns well with our initial motivation of reasoning about

missing data modality. In the following, we provide more insight into our MinVI objec-

tive in relation to the ML objective, which is a standard learning objective in generative

models.

6.2.2 Relation to maximum likelihood learning

The ML objective function can be written as a minimization of the negative LL

(NLL) as follows:

ML: minθ LNLL(θ), LNLL(θ) = −EPD(X,Y )
[

logPθ(X, Y )
]
, (6.3)

1In practice, we use finite samples of the training data and use a regularizer (e.g., l2 regularizer) to
avoid overfitting to the finite sample distribution.
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and we can show that the NLL objective function is reformulated as follows:

2LNLL(θ) = KL (PD(X)‖Pθ(X)) +KL (PD(Y )‖Pθ(Y ))︸ ︷︷ ︸
(a)

+

EPD(X)
[
KL (PD(Y |X)‖Pθ(Y |X))

]
+ EPD(Y )

[
KL (PD(X|Y )‖Pθ(X|Y ))

]
︸ ︷︷ ︸

(b)

+ C, (6.4)

where C is a constant which is irrelevant to θ. Note that (b) is equivalent to LVI(θ)

in Equation (6.2) up to a constant. We provide a full derivation of Equation (6.4) in

Appendix D.1.

Ignoring the constant, the NLL objective has four KL divergence terms. Since KL

divergence is non-negative and is zero only when two distributions match, the ML

learning in Equation (6.3) can be viewed as a distribution matching problem involving

(a) marginal likelihoods and (b) conditional likelihoods. Here, we argue that (a) is more

difficult to optimize than (b) because there are often too many modes in the marginal

distribution. Compared to the marginal distribution, the number of modes can be

dramatically reduced in the conditional distribution since the conditioning variables

may restrict the support of random variable effectively. Therefore, (a) may become a

dominant factor to be minimized during the optimization process and as a trade-off, (b)

will be easily compromised, which makes it difficult to learn a good association between

data modalities. On the other hand, the MinVI objective focuses on modeling the

conditional distributions (Equation (6.4)), which is arguably easier to optimize. Indeed,

similar argument has been made for generalized denoising autoencoders (DAEs) [7]

and generative stochastic networks (GSNs) [10], which focus on learning the transition

operators (e.g., Pθ(X|X̃), where X̃ is a corrupted version of data X, or Pθ(X|H), where

H can be arbitrary latent variables) to bypass an intractable problem of learning density

model Pθ(X).
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6.2.3 Theoretical results

Bengio et al. [7, 10] proved that learning transition operators of DAEs or GSNs is

sufficient to learn a good generative model that estimates a data-generating distribution.

Under similar assumptions, we establish a theoretical result that we can obtain a good

density estimator for joint distribution of multimodal data by learning the transition

operators derived from the conditional distributions of one data modality given the

other. In the multimodal learning framework, we define the transition operators TXn
and TYn for Markov chains of data modalities X and Y , respectively. Specifically,

TXn (x[t]|x[t− 1]) = ∑
y∈Y Pθn (x[t]|y)Pθn (y|x[t− 1]), where Pθn (X|Y ) and Pθn (Y |X)

are model conditional distributions after learning from the training data of size n. TYn
is defined in a similar way. Note that we do not require that the model conditionals are

derived from an analytically defined joint distribution. Now, we formalize the theorem

as follows:

Theorem VI.1. For finite state space X ,Y, if, ∀x ∈ X ,∀y ∈ Y, Pθn(·|y) and Pθn(·|x)

converges in probability to PD(·|y) and PD(·|x), respectively, and TXn and TYn are er-

godic Markov chains, then, as the number of examples n → ∞, the asymptotic distri-

bution πn(X) and πn(Y ) converge to data-generating marginal distributions PD(X) and

PD(Y ), respectively. Moreover, the joint probability distribution Pθn (X, Y ) converges to

PD (X, Y ) in probability.

The proof is provided in Appendix D.2. The theorem ensures that the MinVI ob-

jective can lead to a good generative model estimating the joint data-generating dis-

tribution of multimodal data. The theorem holds under two assumptions: consistency

of density estimators and ergodicity of transition operators. The ergodicity condition

is satisfied for a wide variety of neural networks, such as RBM or DBM.2 The consis-

tency assumption is more difficult to satisfy, and the aforementioned deep energy-based
2For energy-based models like RBM and DBM, it is straightforward to see that every state has

non-zero probability and can be reached from any other state. However, the mixing of the chain might
be slow in practice.
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models or RNN may not satisfy the condition due to the model capacity limitation

or approximated posteriors (e.g., factorial distribution). However, deep architectures

are arguably among the most promising models for approximating the true condition-

als from multimodal data. We expect that more accurate approximation of the true

conditional distributions would lead to better performance in our multimodal learning

framework, and we leave it for future work.

We note that our Theorem VI.1 is related to composite likelihood methods [87] and

dependency networks [42]. For composite likelihood, the consistency result is derived

upon a well-defined graphical model (e.g., Markov network) and the joint distribution

converges in the sense that the maximum composite likelihood estimators are consistent

for the parameters associated with the graphical model. However, in Theorem VI.1, it

is not necessary to design a full graphical model (e.g., of the joint distribution) with

analytical forms; for example, the two conditionals can be defined by neural networks

with different parameters. In this case, the joint distribution is defined implicitly, and

the setting is similar to general dependency networks [42]. However, [42] uses ordered

pseudo-Gibbs samplers which may be unstable (i.e., inconsistencies between the local

conditionals and the true conditionals can be amplified to a large inconsistency between

the model joint distribution and the true joint distribution). In our case, we prove that

the implicit model joint distribution will converge to the true joint distribution under

assumptions that can plausibly hold for deep architectures.

6.3 Application to Multimodal Deep Learning

In this section, we describe the MinVI learning in multimodal deep learning frame-

work. To overview our pipeline, we use the commonly used network architecture that

consists of layers of modality-specific deep networks followed by a layer of neural net-

work that jointly models the multiple modalities [99, 121]. The network is trained in two

steps: In layer-wise pretraining, each layer of modality-specific deep network is trained
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using restricted Boltzmann machines (RBMs). For the top-layer shared network, we

train MRBM with MinVI objective (Section 6.3.2). Then, we finetune the whole deep

network by constructing multimodal deep recurrent neural network (MDRNN) (Sec-

tion 6.3.3).

6.3.1 Restricted Boltzmann machines for multimodal learning

The restricted Boltzmann machine (RBM) is an undirected graphical model that

defines the distribution of visible units using hidden units. For multimodal input, we

define the joint distribution of multimodal RBM (MRBM) [99, 121] as P (x, y, h) =
1
Z

exp
(
− E(x, y, h)

)
with the energy function:

E(x, y, h) = −
Dx∑
i=1

K∑
k=1

xiW
x
ikhk −

Dy∑
j=1

K∑
k=1

yjW
y
jkhk −

K∑
k=1

bkhk −
Dx∑
i=1

cxi xi −
Dy∑
j=1

cyjyj, (6.5)

where Z is the normalizing constant, x ∈ {0, 1}Dx , y ∈ {0, 1}Dy are the binary visible

units of multimodal input (i.e., observations), and h ∈ {0, 1}K are the binary hidden

units (i.e., latent variables). W x ∈ RDx×K defines the weights between x and h, and

W y ∈ RDy×K defines the weights between y and h. cx ∈ RDx , cy ∈ RDy , and b ∈ RK

are bias vectors corresponding to x, y, and h, respectively. Note that the MRBM is

equivalent to an RBM whose visible units are constructed by concatenating the visible

units of multiple input modalities, i.e., v = [x ; y].

Due to bipartite structure, units in the same layer are conditionally independent

given the units of the other layer, and the conditional probabilities are written as

follows:

P (hk = 1 | x, y) = σ
(∑

i

W x
ikxi +

∑
j

W y
jkyj + bk

)
, (6.6)

P (xi = 1 | h) = σ
(∑

k

W x
ikhk + cxi

)
, P (yj = 1 | h) = σ

(∑
k

W y
jkhk + cyj

)
, (6.7)
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where σ(x) = 1
1+exp(−x) . Similar to the standard RBM, the MRBM can be trained

to maximize the joint LL (logP (x, y)) using stochastic gradient descent (SGD) while

approximating the gradient with CD [44] or persistent CD (PCD) [127]. In our case,

however, we train the MRBM in MinVI criteria. We will discuss the inference and

training algorithms in Section 6.3.2.

When we have access to all data modalities, we can use Equation (6.6) for exact

posterior inference. On the other hand, when some of the input modalities are missing,

the inference is intractable, and we resort to the variational method. For example, when

we are given x but not y, the true posterior can be approximated with a fully factorized

distribution Q(y, h) = ∏
j

∏
kQ(yj)Q(hk) by minimizing the KL

(
Q(y, h)‖Pθ(y, h|x)

)
.

This leads to the following fixed-point equations:

ĥk = σ
(∑

i

W x
ikxi +

∑
j

W y
jkŷj + bk

)
, ŷj = σ

(∑
k

W y
jkĥk + cyj

)
, (6.8)

where ĥk = Q(hk) and ŷj = Q(yj). We provide a derivation in Appendix D.3. The

variational inference proceeds by alternately updating the mean-field parameters ĥ and

ŷ that are initialized with all zeros.

6.3.2 Training algorithms

CD-PercLoss. As in Equation (6.2), the objective function can be decomposed into

two conditional LLs, and the MRBM with MinVI objective can be trained equivalently

by training the two conditional RBMs (CRBMs) while sharing the weights. Since the

objective functions are the sum of two conditional LLs, we compute the (approximate)

gradient of each CRBM separately using CD-PercLoss [94] and accumulate them to

update parameters.3

3In CD-PercLoss learning, we run separate Gibbs chains for different conditioning variables and
select the negative particles with the lowest free energy among sampled particles. We refer [94] for
further details.
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Multi-Prediction. We found a few practical issues of CD-PercLoss training in our

application. In particular, there exists a difference between the encoding process of

training and testing, especially when the unimodal query (e.g., when one of the data

modalities is missing) is considered for testing. As an alternative objective, we pro-

pose multi-prediction (MP) training of MRBM in MinVI criteria. The MP training

was originally proposed to train deep Boltzmann machines [36] as an alternative to the

stochastic approximation learning [111]. The idea is to train the model to be good at

predicting any subset of input variables given the rest of them by constructing the re-

current network with encoding function derived from the variational inference problem.

The MP training can be adapted to learn MRBM with MinVI objective with some

modifications. For example, the CRBM with an objective logP (y|x) can be trained by

randomly selecting the subset of variables to be predicted only from the target modality

y, but the conditioning modality x is assumed to be given in all cases. Specifically, given

an arbitrary subset S ⊂ {1, · · · , Dy} drawn from the independent Bernoulli distribution

PS, the MP algorithm predicts yS = {yj : j ∈ S} given x and y\S = {yj : j /∈ S} through

the iterative encoding function derived from fixed-point equations:

ĥk = σ
(∑

i

W x
ikxi +

∑
j∈S

W y
jkŷj +

∑
j /∈S

W y
jkyj + bk

)
, ŷj = σ

(∑
k

W y
jkĥk + cyj

)
, j ∈ S, (6.9)

which is a solution to the variational inference problem minQKL
(
Q(yS, h)‖Pθ(yS, h|x, y\S)

)
with factorized distribution Q(yS, h) = ∏

j∈S
∏
kQ(yj)Q(hk). Note that Equation (6.9)

is similar to the Equation (6.8) except that only yj, j ∈ S are updated. Using an itera-

tive encoding function, the network parameters are trained using SGD while computing

the gradient by backpropagating the error between the prediction and the ground truth

of yS through the derived recurrent network. The MP formulation (e.g., encoding func-

tion) of the CRBM with logP (x|y) can be derived similarly, and the gradients are

simply the addition of two gradients that are computed individually.
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Figure 6.1: An instance of MDRNN with target y given x. Multiple iterations of
bottom-up updates (y → h(3); Equation (6.11) and (6.12)) and top-down updates (h(3)

→ y; Equation (6.13)) are performed. The arrow indicates encoding direction.

We have two additional hyper parameters, the number of mean-field updates and

the sampling ratio of a subset S to be predicted from the target data modality. In our

experiments, it was sufficient to use 10 ∼ 20 iterations until convergence. We used a

sampling ratio of 1 (i.e., all the variables in the target data modality are to be predicted)

since we are already conditioned on one data modality, which is sufficient to make a

good prediction of variables in the target data modality.

6.3.3 Finetuning with recurrent neural network

Motivated from the MP training of MRBM, we propose a multimodal deep recurrent

neural network (MDRNN) that tries to predict the target modality given the input

modality through the recurrent encoding function. The MDRNN iteratively performs

a full pass of bottom-up and top-down encoding from bottom-layer visible variables to

top-layer joint representation back to bottom-layer through the modality-specific deep

network corresponding to the target. We show an instance of L = 3 layer MDRNN in
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Figure 6.1, and the encoding functions are written as follows:4

x→ h(L−1)
x : h(l)

x = σ
(
W x,(l)>h(l−1)

x + bx,(l)
)
, l = 1→ L− 1, (6.10)

y → h(L−1)
y : h(l)

y = σ
(
W y,(l)>h(l−1)

y + by,(l)
)
, l = 1→ L− 1, (6.11)

h(L−1)
x , h(L−1)

y → h(L) : h(L) = σ
(
W x,(L)>h(L−1)

x +W y,(L)>h(L−1)
y + b(L)

)
, (6.12)

h(L) → y : h(l−1)
y = σ

(
W y,(l)h(l)

y + by,(l−1)
)
, l = L→ 1. (6.13)

Here, we define h(0)
x = x and h(0)

y = y, and the visible variables of the target modality

are initialized with zeros. In other words, in the initial bottom-up update, we com-

pute h(L) only from x while setting y = 0 using Equations (6.10), (6.11), and (6.12).

Then, we run multiple iterations of top-down (Equation (6.13)) and bottom-up updates

(Equations (6.11) and (6.12)). Finally, we compute the gradient by backpropagating

the reconstruction error of target modality through the network.

6.4 Experiments

6.4.1 Toy example on MNIST

In our first experiment, we evaluate the proposed learning algorithm on the MNIST

handwritten digit recognition dataset [78]. We consider left and right halves of the digit

images as two input modalities and report the recognition performance with different

combinations of input modalities at the test time, such as full (left + right) or missing

(left or right) data modalities. We compare the performance of the MRBM trained

with 1) ML objective using PCD [127], or MinVI objectives with 2) CD-PercLoss or

3) MP training. The recognition errors are provided in Table 6.1. Compared to

ML training, the recognition errors for unimodal queries are reduced by more than a
4There could be different ways of constructing MDRNN; for instance, one can construct the RNN

with DBM-style mean-field updates. In our empirical evaluation, however, running full pass of bottom-
up and top-down updates performed the best, and DBM-style updates didn’t give competitive results.
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MinVI (CD-
PercLoss)
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Figure 6.2: Visualization of samples with inferred missing modality. From top to bot-
tom, we visualize ground truth, left or right halves of digits, generated samples with
inferred missing modality using MRBM with ML objective, MinVI objective using CD-
PercLoss and MP training methods.

Input modalities at test time Left+Right Left Right
ML (PCD) 1.57% 14.98% 18.88%

MinVI (CD-PercLoss) 1.71% 9.42% 11.02%
MinVI (MP) 1.73% 6.58% 7.27%

Table 6.1: Test set errors on handwritten digit recognition dataset using MRBMs with
different training objectives and learning methods. The joint representation was fed
into linear SVM for classification.

half with MP training of MinVI objective. For multimodal queries, the model trained

with ML objective performed the best, although the performance gain was incremental.

CD-PercLoss training of MinVI objective also showed significant improvement over ML

training, but the errors were not as low as those obtained with MP training. We

hypothesize that, although it is an approximation of MinVI objective, the exact gradient

for MP algorithm makes learning more efficient than CD-PercLoss. For the rest of the

chapter, we focus on MP training method.

In Figure 6.2, we visualize the generated samples conditioned on one input modality

(e.g., left or right halves of digits). There are many samples generated by the models

with MinVI objective that look clearly better than those generated by the model with

ML objective.
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6.4.2 MIR-Flickr database

In this section, we evaluate our methods on MIR-Flickr database [54], which is

composed of 1 million examples of images and their user tags collected from the social

photo-sharing website Flickr. Among those, 25000 examples were annotated with 24

potential topics and 14 regular topics, which leads to 38 classes in total with distributed

class membership. The topics included object categories such as dog, flower, and people,

or scenic concepts such as sky, sea, and night.

We used the same visual and text features as in [121].5 Specifically, the image feature

was a 3857 dimensional vector composed of Pyramid Histogram of Words (PHOW)

features [14], GIST [100], and MPEG-7 descriptors [90]. We preprocessed the image

features to have zero mean and unit variance for each dimension across all examples.

The text feature was a word count vector of 2, 000 most frequent tags. The number of

tags varied from 0 to 72, with 5.15 tags per example in average.

Following the experimental protocol [55, 121], we randomly split the labeled exam-

ples into 15, 000 for training and 10, 000 for testing, and used 5, 000 from training set for

validation. We iterated the procedure for 5 times and report the mean average precision

(mAP) averaged over 38 classes.

Model architecture. We used the network composed of [3857, 1024, 1024] variables

for visual pathway, [2000, 1024, 1024] variables for text pathway, and 2048 variables

for top-layer MRBM, as used in [121]. As described in Section 6.3, we pretrained the

modality-specific deep networks in a greedy layerwise way, and finetuned the whole net-

work by initializing MDRNN with the pretrained network. Specifically, we used gaus-

sian RBM for the bottom layer of visual pathway and binary RBM for text pathway.6

The intermediate layers were trained with binary RBMs, and the top-layer MRBM was
5http://www.cs.toronto.edu/˜nitish/multimodal/index.html
6We assumed text features as binary, which is different from [121] where they modeled using

replicated-softmax RBM [110]. The rationale is that the tags are not likely to be assigned more
than once for single image.
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Model Multimodal query
Autoencoder 0.610

Multimodal DBM [121] 0.609
Multimodal DBM† [122] 0.641

MK-SVM [38] 0.623
TagProp [131] 0.640

MDRNN 0.686± 0.003
Model Unimodal query

Autoencoder 0.495
Multimodal DBM [121] 0.531

MK-SVM [38] 0.530
MDRNN 0.607± 0.005

Table 6.2: Test set mAPs on MIR-Flickr database. We implemented autoencoder follow-
ing the description in [99]. Multimodal DBM† is supervised finetuned model. See [122]
for details.

trained using MP training algorithm. For the layer-wise pretraining of RBMs, we used

PCD [127] to approximate the gradient. Since our algorithm requires both data modal-

ities during training, we excluded examples with too sparse or no tags from unlabeled

dataset and used about 750K examples with at least 2 tags. After unsupervised train-

ing, we extracted joint feature representations of the labeled training data and use them

to train multiclass logistic regression classifiers.

Recognition tasks. For recognition tasks, we trained multiclass logistic regression

classifiers using joint representations as input features. Depending on the availability of

data modalities at testing time, we evaluated the performance using multimodal queries

(i.e., both visual and text data are available) and unimodal queries (i.e., visual data is

available while the text data is missing). In Table 6.2, we report the test set mAPs of our

proposed model and compared to other methods. The proposed MDRNN outperformed

the previous state-of-the-art in multimodal queries by 4.5% in mAP. The performance

improvement becomes more significant for unimodal queries, achieving 7.6% improve-

ment in mAP over the best published result. As we used the same input features
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in [121], the results suggest that our proposed algorithm learns better representations

shared across multiple modalities.

For a closer look into our model, we performed an additional control experiment

to explore the benefit of recurrent encoding of MDRNN. Specifically, we compared the

performance of the models with different number of mean-field iterations.7 We report

the validation set mAPs of models with different number of iterations (0 ∼ 10) in Ta-

ble 6.3. For multimodal query, the MDRNN with 10 iterations improves the recognition

performance by only 0.8% compared to the model with 0 iterations. However, the im-

provement becomes significant for unimodal query, achieving 5.0% performance gain. In

addition, the largest improvement was made when we have at least one iteration (from

0 to 1 iteration, 3.4% gain; from 1 to 10 iteration, 1.6% gain). This suggests that a

crucial factor of improvement comes from the inference with reconstructed missing data

modality (e.g., text features), and the quality of inferred missing modality improves as

we increase the number of iterations.

# iterations 0 1 2 3 5 10
Multimodal query 0.677 0.678 0.679 0.680 0.682 0.685
Unimodal query 0.557 0.591 0.599 0.602 0.605 0.607

Table 6.3: Validation set mAPs on MIR-Flickr database with different number of mean-
field iterations.

Retrieval tasks. We performed retrieval tasks using multimodal and unimodal input

queries. Following [121], we selected 5, 000 image-text pairs from the test set to form

a database and use 1, 000 disjoint set of examples from the test set as queries. For

each query example, we computed the relevance score to the data points as a cosine

similarity of joint representations. The binary relevance labels between query and the
7In [99], Ngiam et al. proposed the “video-only” deep autoencoder whose objective is to predict

audio data and reconstruct video data when only video data is given as an input during the train-
ing. Our baseline model (MDRNN with 0 iterations) is similar, but different since we don’t have a
reconstruction training objective.
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data points are determined 1 if any of the 38 class labels are overlapped. Our proposed

model achieves 0.633 mAP with multimodal query and 0.638 mAP with unimodal

query. This significantly outperforms the performance of multimodal DBM [121], which

reported 0.622 mAP with multimodal query and 0.614 mAP with unimodal query. We

show retrieved examples with multimodal queries in Figure 6.3.

skyline, indiana, 1855mm
night, city, river, night, long exposure, city, lights, buildings, nikon, night, d80, asia,

dark, buildings, skyline reflection, buildings, fireworks, skyscrapers skyline, hongkong, harbour
massachusetts, boston

sunset, explore, sun sunset, platinumphoto, sunset, sol, searchthebest, sunset canon, naturesfinest, 30dtrees, silhouette atardecer, nubes, abigfave

toys lego diy, robot toy, plastic, legokitty, miniature

Figure 6.3: Retrieval results with multimodal queries. The leftmost image-text pairs are
multimodal query samples and those in the right side of the bar are retrieved samples
with the highest similarities to the query sample from the database.

6.4.3 PASCAL VOC 2007

We evaluate the proposed algorithm on PASCAL VOC 2007 database. The original

dataset does not contain user tags, but Guillaumin et al. [38] have collected user tags

from Flickr website.8

Motivated by the success of convolutional neural networks (CNNs) on large-scale

visual object recognition [65], we used the DeCAF7 features [25] as an input features

for visual pathway, where DeCAF7 is 4096 dimensional feature extracted from the CNN

trained on ImageNet [24]. For text features, we used the vocabulary of size 804 suggested

by [38]. For unsupervised feature learning of MDRNN, we used unlabeled data of
8http://lear.inrialpes.fr/people/guillaumin/data.php
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MIR-Flickr database while converting the text features using the new vocabulary from

PASCAL database. The network architecture used in this experiment was as follows:

[4096, 1536, 1536] variables for the visual pathway, [804, 512, 1536] variables for the text

pathway, and 2048 variables for top-layer joint network.

Following the standard practice, we reported the mAP over 20 object classes. The

performance improvement of our proposed method was significant, achieving 81.5%

mAP with multimodal queries and 76.2% mAP with unimodal queries, whereas the

performance of the baseline model was 74.5% mAP with multimodal queries (DeCAF7

+ Text) and 74.3% mAP with unimodal queries (DeCAF7).

6.5 Conclusion

Motivated by the property of good generative models of multimodal data, we pro-

posed a novel multimodal deep learning framework based on variation of information.

The minimum variation of information objective enables to learn good shared represen-

tations of multiple heterogeneous data modalities with a better prediction of missing

input modality. We demonstrated the effectiveness of our proposed method on mul-

timodal RBM and its deep extensions and showed state-of-the-art recognition perfor-

mance on MIR-Flickr database and competitive performance on PASCAL VOC 2007

database with multimodal (visual + text) and unimodal (visual only) queries.
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CHAPTER VII

Learning to Predict Structured Outputs using

Stochastic Convolutional Networks

7.1 Introduction

To build an end-to-end system for structured output prediction, one needs to in-

corporate the probabilistic inference, as it may not be a simple many-to-one function

approximation problem (e.g., recognition and classification), but could be a task of

mapping an input to many possible outputs, especially when the input data contains

missing values or ambiguities. In other words, it is desirable to model the non-unimodal

distribution of structured output. Although the great success of convolutional neural

networks (CNNs) on large-scale visual recognition [65] motivates us to apply deep neu-

ral networks to this problem, the CNN with deterministic inference is not suitable in

modeling a distribution with multiple modes [125].

In this chapter, we propose convolutional neural networks with Gaussian stochas-

tic neurons for structured output prediction and representation learning. In the light

of recent development in variational inference and learning of directed graphical mod-

els, such as variational auto-encoder [62, 107, 63], we propose a conditional variational

auto-encoder (condVAE). The condVAE is a conditional directed graphical model whose

input (or observation) modulates both the prior on Gaussian latent variables and the
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output variables. It is trained to maximize the conditional log-likelihood, and we formu-

late the variational learning objective of the condVAE in the framework of stochastic

gradient variational Bayes (SGVB) [62]. In addition, we provide novel strategies to

build robust structured prediction algorithms, such as recurrent prediction network

architecture, input noise-injection, and multi-scale prediction training methods.

In experiments, we demonstrate the effectiveness of our proposed algorithm in com-

parison to the deterministic deep neural network counterparts in generating diverse but

realistic output representations using stochastic inference. First, we demonstrate the

importance of stochastic neurons in modeling the structured output when the input

data is partially provided. Furthermore, we show that the proposed training schemes

are complimentary, leading to strong pixel-level object segmentation and labeling per-

formance on Caltech-UCSD Birds 200 and the subset of Labeled Faces in the Wild

dataset.

7.2 Preliminary

7.2.1 Variational Auto-encoder

The variational auto-encoder (VAE) [62, 107] is a directed graphical model with cer-

tain types of latent variables, such as Gaussian latent variables. A generative process of

the VAE is as follows: a set of latent variable z∗ is generated from the prior distribution

pθ(z) and the data x∗ is generated by the generative distribution pθ(x|z∗) conditioned

on z∗: z∗ ∼ pθ(z),x∗ ∼ pθ(x|z∗).

The parameter estimation and posterior inference of directed graphical models with

distributed latent variable representation is challenging since they exploit intractable

posterior inference problem. However, the model parameters of the VAE can be ef-

ficiently estimated in stochastic gradient variational Bayes (SGVB) [62] framework,

where the variational lower bound of the log-likelihood is used as a surrogate objective
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function. Specifically, the variational lower bound is written as follows:

log pθ(x) = KL (qφ(z|x)‖pθ(z|x)) + Eqφ(z|x)
[
− log qφ(z|x) + log pθ(x, z)

]
(7.1)

≥ Eqφ(z|x)
[
− log qφ(z|x) + log pθ(x, z)

]
(7.2)

= −KL (qφ(z|x)‖pθ(z)) + Eqφ(z|x)
[

log pθ(x|z)
]

(7.3)

In this framework, a proposal distribution qφ(z|x), which is also known as a “recogni-

tion” model, is introduced to approximate the true posterior pθ(z|x). The multilayer

perceptrons (MLPs) are used to model the recognition and the generation models. As-

suming Gaussian latent variables, the first term of Equation (7.3) can be marginalized,

while the second term is not. Instead, the second term can be approximated by drawing

samples z(l) by the recognition distribution qφ(z|x), and the empirical objective of the

VAE with Gaussian latent variables is written as follows:

L̃VAE(x; θ, φ) = −KL (qφ(z|x)‖pθ(z)) + 1
L

L∑
l=1

log pθ(x|z(l)) (7.4)

where z(l) = gφ(x, ε(l)), ε(l) ∼ N (0, I)

Note that the recognition distribution qφ(z|x) is reparameterized with a deterministic,

differentiable function gφ(·, ·), whose arguments are data x and the noise variable ε.

This trick allows error backpropagation through the Gaussian latent variables, which

is essential in VAE training as it is composed of multiple MLPs for recognition and

generation models. As a result, the VAE can be trained efficiently using stochastic

gradient descent (SGD).

7.3 Conditional Variational Auto-encoder

In this section, we formulate a conditional variational auto-encoder (condVAE) for

structured output prediction. There are three types of variables in condVAE: input
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(c) recurrent prediction net

Figure 7.1: (a) A graphical model representation of the condVAE describing the gener-
ative (left) and recognition (right) processes, (b) a schematic flowchart of the condVAE
during the training, and (c) that of the condVAE with recurrent prediction network.

variable x, output variable y, and the latent variable z. The generative process of the

condVAE is given as follows: for given observation x∗, z∗ is drawn from the condi-

tional prior distribution pθ(z|x∗), and the output y∗ is generated from the generation

distribution pθ(y|x∗, z∗). Note that the conditional prior of the latent variable z is

modulated by the input x in our formulation; however, the constraint can be easily

relaxed to make the latent variable statistically independent of an input variable, i.e.,

pθ(z|x) = pθ(z) [63].

The variational lower bound of the condVAE is written as follows:

log pθ(y|x) ≥ −KL (qφ(z|x,y)‖pθ(z|x)) + Eqφ(z|x,y)
[

log pθ(y|x, z)
]

(7.5)

and the empirical objective function of the condVAE is written accordingly:

L̃condVAE(x,y; θ, φ) = −KL (qφ(z|x,y)‖pθ(z|x)) + 1
L

L∑
l=1

log pθ(y|x, z(l)) (7.6)

where z(l) = gφ(x,y, ε(l)), ε(l) ∼ N (0, I)

The condVAE is composed of multiple MLPs as shown in Figure 7.1(b). Specifically, we

construct recognition network netxy2z for qφ(z|x,y), conditional prior network netx2z for

pθ(z|x), and a generation network for pθ(y|x, z), which can be decomposed into latent-

to-output network netz2y and input-to-output network netx2y. We discuss inference and
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learning subsequently.

7.3.1 Output inference and estimation of the conditional likelihood

Once the model parameters are estimated, we make a prediction of an output y from

an input x by following a generative process of the condVAE. To evaluate the model on

structured output prediction tasks, we can measure a prediction accuracy by perform-

ing a deterministic inference without sampling z, i.e., y∗ = arg maxy pθ(y|x, z∗), z∗ =

E
[
z|x

]
.1

Another way of evaluating the conditional generative model is to compute the condi-

tional likelihood (CL) of the test data. A straightforward approach is to draw samples

z’s using conditional prior and take the average of the likelihoods, which we call an

estimation by generative sampling (GS):

pθ(y|x) ≈ 1
S

S∑
s=1

pθ(y|x, z(s)), z(s) ∼ pθ(z|x) (7.7)

A key drawback of this approach is that we need to draw large number of samples to

obtain an accurate estimation to the true conditional likelihoods. Alternatively, as pro-

posed in [107], we use the importance sampling to estimate the conditional likelihoods

of the condVAE:

pθ(y|x) ≈ 1
S

S∑
s=1

pθ(y|x, z(s))pθ(z(s)|x)
qφ(z(s)|x,y) , z(s) ∼ qφ(z|x,y) (7.8)

7.3.2 Learning to predict structured output

The model parameters of the MLP components in condVAE can be jointly trained

in the framework of SGVB, whose gradient can be efficiently computed using backprop-
1Alternatively, we can draw multiple z’s from the conditional prior distribution and use the aver-

age of the posteriors to make a prediction, i.e., y∗ = arg maxy
1
L

∑L
l=1 pθ(y|x, z(l)), z(l) ∼ pθ(z|x). In

practice, however, the stochastic inference is not recommended when evaluating the prediction accu-
racy since it requires a large number of samples to be drawn (e.g., 100 ∼ 10000) to improve upon
deterministic inference.
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agation [62, 107].

One should note that, in the condVAE, there are two pathways to draw samples

that are used for either training or testing. In other words, the generation network

pθ(y|x, z) is modulated by z sampled from the recognition distribution qφ(z|x,y) during

the training, while for testing, it is modulated by z drawn from the conditional prior

pθ(z|x). This implies that, to make an accurate prediction for an unseen test data,

the conditional prior, which draws latent variables without y, should be trained to

hallucinate the recognition distribution modulated by both x and y. Although the

negative KL divergence term in Equation (7.6) enforces two distributions to be similar,

there exists a bit of discrepancy between two inference networks.

To reduce this gap and enhance the discriminative power, we propose to train gen-

eration network of the condVAE in a discriminative way by formulating an instance

of Gaussian stochastic neural network (GSNN). The GSNN is a class of stochastic

feed-forward neural network whose stochastic neurons are all Gaussian variables. We

construct the GSNN by bridging the conditional prior network (netx2z) and the latent-

to-output generation network (netz2y). The objective function of the GSNN induced

from the condVAE is written as follows:

L̃GSNN(x,y; θ, φ) = 1
L

L∑
l=1

log pθ(y|x, z(l)) , where z(l) = gθ(x, ε(l)), ε(l) ∼ N (0, I) (7.9)

Note that in Equation (7.9), we sample z from a differentiable deterministic function

gθ(·, ·), which is a reparameterization of the conditional prior distribution pθ(z|x), not

the recognition distribution qφ(z|x,y) as in Equation (7.6). Finally, we obtain a hybrid

objective function by combining the two objective functions of condVAE and GSNN:

L̃hybrid = αL̃condVAE + (1− α)L̃GSNN (7.10)

α balances the two objectives. Note that when α = 1, we recover the condVAE objective;
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when α = 0, the trained model will be simply a GSNN without recognition network.

7.3.3 Conditional VAE for image segmentation and labeling

There have been several approaches proposed for image segmentation and scene

labeling [31, 102, 33] using CNNs. Indeed, each of the MLPs in the condVAE can be

extended to convolutional architecture while maintaining an efficient learning based on

stochastic optimization. In addition, we provide novel strategies to obtain a robust

model for image segmentation.

7.3.3.1 Training with input omission noise

Learning representation of structured output variables using deep convolutional net-

work is challenging since obtaining sufficient amount of training data with structured

labels is much more expensive than those with class labels. To learn a neural network

for structured prediction that can generalize well to unseen data with a limited number

of labeled data, we propose to train the network while injecting noise to the input. The

learning procedure is very simple; corrupt the input data x into x̃ according to prede-

fined noise process and optimize the network with the following objective: L̃(x̃,y). The

noise process could be arbitrary; for example, for object segmentation application, one

can consider block or random omission noise. This can be viewed as providing more

challenging input-output prediction situation during the training where there exists

block occlusion or missing input, which indeed is motivated by a desirable property of

robust structured prediction algorithms. The proposed training strategy also is related

to the denoising training methods [132], but in our case, we inject noise to the input

data only and does not try to reconstruct them.
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Figure 7.2: Multi-scale training.

7.3.3.2 Very deep convolutional network with recurrent prediction network

The recurrent network architecture has been applied for structured output predic-

tion problems [102, 58, 120] to sequentially update the guess by revising the previous

prediction. Furthermore, the recurrent architecture enables to effectively deepen the

convolutional network, which has shown to be essential in achieving a strong visual

recognition performance [124, 116], while not significantly increasing the number of

model parameters due to weight sharing.

As we see in Figure 7.1(b), there are two pathways to the output y; one from the

latent variable z (netz2y), and the other from the input variable x (netx2y). Although

the latent-to-output pathway plays an important role in final prediction, the direct

input-to-output pathway can make a reasonable initial prediction on y. In our case, we

propose to bridge the output of the direct pathway ỹ = netx2y(x) as an input to the

conditional prior network netx2z. This results in a symmetric network architecture be-

tween the recognition and conditional prior networks, which allows better optimization

with respect to the negative KL divergence term in the objective function. We illustrate

our proposal recurrent architecture in Figure 7.1(c).

7.3.3.3 Multi-scale prediction training

As the image size gets larger (e.g., 128× 128), it becomes more challenging to make

a fine-grained pixel-level prediction (e.g., reconstruction of the image, prediction of
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semantic labels). The multi-scale approaches have been used in the sense of forming a

multi-scale image pyramid for an input [31], rather than multi-scale prediction at the

output, which allows you to make a sequential low-to-high resolution prediction. Here,

we propose to train a proposed stochastic convolutional networks to predict an output

at different scales. By doing so, we can make a global-to-local, coarse-to-fine-grained

prediction of pixel-level semantic labels. Figure 7.2 describes the multi-scale prediction

at 3 different scales (1/4, 1/2, and original) for the training.

7.4 Experiments

We demonstrate the importance of stochastic neurons in modeling the distribution

of the structured output variables with multiple modes. For the proof of concept, we

create an artificial experimental setting for structured output prediction using MNIST

database [78]. Then, we evaluate the proposed condVAE models on several benchmark

database for object segmentation and labeling, such as Caltech-UCSD Birds (CUB) [138]

and Labeled Faces in the Wild (LFW) [49].

7.4.1 Toy example: MNIST

To highlight the importance of probabilistic inference through stochastic neurons for

structured output variables, we execute an experiment using MNIST database. Specif-

ically, we divide each digit image into four quadrants, and take one, two, or three

quadrant(s) as an input and the remaining quadrants as an output.2 As we increase

the number of quadrants for an output, the input to output mapping becomes closer to

a one-to-many mapping.

We trained the proposed models (condVAE, GSNN) and the baseline deep neural

network and compare their performance. The same network architecture, the MLP with
2Similar experimental setting has been used in multimodal learning framework, where the left- and

right halves of the digit images are used as two data modalities [3, 120].
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Figure 7.3: Visualization of generated samples with (left) 1 quadrant and (right) 2
quadrants for an input. We show (first) the input and the ground truth output overlaid
with gray color, and (second) samples generated by the baseline NNs, and (rest) samples
drawn from the condVAEs.

negative CLL 1 quad. 2 quads. 3 quads.
NN (baseline) 100.03 / 99.75 62.14 / 62.18 26.01 / 25.99
GSNN 100.03 / 99.82 62.48 / 62.41 26.20 / 26.29
condVAE 68.62 / 68.39 45.57 / 45.34 20.97 / 20.96
condVAE (IS) 64.05 / 63.91 44.96 / 44.73 20.97 / 20.95
Performance gap 35.98 / 35.91 17.51 / 17.68 5.23 / 5.33

- per pixel 0.061 / 0.061 0.045 / 0.045 0.027 / 0.027

Table 7.1: The negative CLL on the validation/test sets of MNIST database. We
increase the number of quadrants for an input from 1 to 3, and estimate the CLL using
generative sampling by default. The performance gap between the condVAE (IS) and
the baseline NN is reported.

two-layers of 1000 ReLUs for recognition, conditional prior, or generation networks,

followed by 200 Gaussian latent variables, was used for all different models in various

experimental settings. The early stopping is used during the training based on the

estimation of the conditional likelihoods on the validation set.

For qualitative analysis, we visualize the generated output samples in Figure 7.3.

As we can see, the baseline NNs can only make a single deterministic prediction and as

a result the output looks blurry and doesn’t look realistic digit images when combined

with the input. On the other hand, the samples generated by the condVAEs are more

realistic and diverse in shape; sometimes they can even change their identity, such as

from 3 to 5 or 4 to 9, and vice versa.
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Models negative CLL (val) negative CLL
CNN (baseline) 3420.90 ±96.87 3489.00 ±82.09

GSNN 3323.67 ±111.16 3426.57 ±48.49

condVAE 786.60 ±15.32 785.44 ±7.38

hybrid (α = 0.5) 996.39 ±19.18 998.93 ±10.32

Table 7.2: The negative CLL on CUB database. We used importance sampling to
estimate the CLL of condVAE and hybrid models.

We also provide a quantitative evidence by estimating the conditional log-likelihoods

(CLLs) in Table 7.1. The CLLs of the proposed models are estimated in two ways

as described in Section 7.3.1 For generative sampling, we draw 10, 000 samples per

example for accurate estimation. For importance sampling, however, 100 samples per

example was enough to obtain an accurate estimation of the CLL. We observed that the

estimated CLLs of the condVAE significantly outperforms the baseline NN. Moreover,

as measured by the per pixel performance gap, the performance improvement becomes

more significant as we use smaller number of quadrants for an input, which is expected

as the input-output mapping becomes closer to one-to-many mapping.

7.4.2 Visual Object Segmentation and Labeling

Caltech-UCSD Birds (CUB) database [138] includes 6, 033 images of birds from

200 species with annotations such as a bounding box of birds and a segmentation mask.

Later, Yang et al. [144] annotated these images with more fine-grained segmentation

masks by cropping the bird patches using the bounding boxes and resized them into

128× 128 pixels. The training/test split proposed in [138] was used in our experiment,

and for validation purpose, we partition the training set into 10 folds and cross-validated

with the mean intersection over union (IoU) score over the folds. The final prediction on

the test set was made by averaging the posterior from ensemble of 10 networks that are

trained on each of the 10 folds separately. We increase the number of training examples

by horizontal flipping the input and output images.

We extensively evaluate the variations of our proposed methods, such as condVAE,
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Models pixel (val) IoU (val) pixel IoU
CNN (baseline) recur., msc 92.25 ±0.27 81.89 ±0.67 93.24 83.96
GSNN recur., msc 92.46 ±0.24 82.31 ±0.60 93.39 84.26
condVAE flat, ssc 89.62 ±0.35 76.55 ±0.95 90.35 78.05
condVAE recur. ssc 91.17 ±0.35 79.75 ±0.93 91.93 81.31
condVAE recur., msc 92.24 ±0.27 81.86 ±0.74 93.03 83.53
hybrid (α = 0.5) recur., msc 92.60 ±0.25 82.57 ±0.83 93.35 84.16
CNN recur., msc, NI 92.94 ±0.20 83.30 ±0.51 93.76 85.09
GSNN recur., msc, NI 93.09 ±0.18 83.61 ±0.52 93.93 85.38
condVAE recur., msc, NI 92.80 ±0.27 83.03 ±0.70 93.50 84.48
hybrid (α = 0.5) recur., msc, NI 93.03 ±0.30 83.47 ±0.66 93.81 85.13

Table 7.3: Labeling results on CUB database. We report both pixel-wise labeling
accuracy and IoU score of the foreground region. The term “recur.” refers the network
with recurrent prediction architecture, which is used as opposed to the “flat”, and “ssc”
and “msc” refers single-scale and multi-scale prediction training, respectively. The “NI”
refers the noise-injection training.

GSNN, and their combination while changing α, and provide a summary results on

segmentation mask prediction task in Table 7.3. Specifically, we report the performance

of the models with different network architectures (e.g., with and without recurrent

prediction network) and training methods (e.g., multi-scale prediction or noise-injection

training).

First of all, we note the significant performance improvement from all of the tech-

niques proposed in Section 7.3.3, such as recurrent network architecture, multi-scale

prediction training as well as noise-injection training. Having them as a default ar-

chitecture and training method, we evaluated the variations of our proposed models

and the baseline CNN. Interestingly, the baseline CNN already showed much better

segmentation results compared to the previous state-of-the-art obtained by the max-

margin Boltzmann machine (pixel accuracy: 90.42, IoU: 75.92 with GraphCut for post-

processing) [144]. The condVAE model showed slightly worse performance than the

baseline CNN; however, the variations of our proposed methods, such as GSNN and

the hybrid model outperformed the baseline CNNs. In addition, we evaluate the CLL

of the models and summarized the results in Table 7.2. As expected, the proposed
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Models pixel (val) pixel neg. CLL (val) neg. CLL
CNN (baseline) 92.72 ±0.28 92.54 ±0.08 – –
GSNN 92.88 ±0.18 92.61 ±0.19 – –
condVAE 92.80 ±0.30 92.62 ±0.14 – –
hybrid (α = 0.5) 92.95 ±0.21 92.77 ±0.14 – –
CNN (NI) 93.58 ±0.34 93.36 ±0.14 4864.07 ±167.82 5144.48 ±348.47

GSNN (NI) 93.79 ±0.29 93.51 ±0.21 4518.26 ±394.94 4901.84 ±319.20

condVAE (NI) 93.31 ±0.28 93.19 ±0.12 1193.70 ±147.41 1193.23 ±125.98

hybrid (NI, α = 0.5) 93.74 ±0.33 93.50 ±0.14 1835.75 ±172.34 1841.48 ±147.23

Table 7.4: Labeling results and the negative CLL on LFW database. We report the
pixel-wise 4-way (skin, hair, clothes, background) prediction accuracy. We used re-
current architecture and the models are trained with multi-scale prediction training
and noise-injection methods. We used importance sampling to estimate the CLL of
condVAE and hybrid models.

condVAE models (e.g., condVAE, hybrid) significantly outperform the baseline CNN,

which confirms that the condVAE can generate better output representations in terms

of higher compatibility to the ground truth by drawing multiple samples.

Labeled Faces in the Wild (LFW) database [49] has been widely used for face

recognition and verification benchmark. As mentioned in [50], the face images that

are segmented and labeled into semantically meaningful region labels (e.g., hair, skin,

clothes) can greatly help understanding of the image through the visual attributes,

which can be easily obtained from the face shape.

Following the segmentation and region labeling protocols [137, 58], we evaluate the

performance of face parts labeling on the subset of LFW database. Specifically, we used

the labeled dataset used in [137], which contains 1, 046 images that are labeled into 4

semantic categories, such as hair, skin, clothes, and background. We resized the images

from 250× 250 into 128× 128 to use the same network architecture to the one used in

the CUB experiment.

We provide a summary results of pixel-level segmentation accuracy and the negative

CLL in Table 7.4. Similar trend has been observed as in the CUB database; the proposed

stochastic neural networks performed slightly better or competitive to the baseline CNN
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Dataset (measure) CUB (IoU) LFW (pixel)
noise level block size CNN condVAE CNN condVAE

25%
1 89.37 98.52 96.93 99.22
4 88.74 98.07 96.55 99.09
8 90.72 96.78 97.14 98.73

50%
1 74.95 95.95 91.84 97.29
4 70.48 94.25 90.87 97.08
8 76.07 89.10 92.68 96.15

70%
1 62.11 89.44 85.27 89.71
4 57.68 84.36 85.70 93.16
8 63.59 76.87 87.83 92.06

Table 7.5: Interactive segmentation results with input omission noise and weak super-
vision on CUB (left) and LFW (right) database. We report the pixel-level accuracy on
the first validation set.

in terms of segmentation accuracy; however, the negative CLL of the proposed condVAE

model is significantly lower than the baseline CNN, which ensures we can find a realistic

samples from multiple samples. Finally, the performance of our methods outperform

those of other existing methods, which report 90.0% in [137] or 90.7% in [58], setting

state-of-the-art performance on LFW segmentation database.

7.4.3 Interactive object segmentation with input occlusion

We experimented with the interactive object segmentation task for the case of sig-

nificant input noise with a weak supervision or partial output observation. To emulate

the scenario, we randomly omit the input pixels at different levels of noise (25%, 50%,

70%) and different block size (1, 4, 8) and provide it as an input to the algorithm. For

larger block size, the noise becomes more structured and this can be viewed as an in-

teractive segmentation task with an occlusion. We also provide a partial segmentation

with omission using the same mask used to omit the input pixels.

To make a prediction for condVAE with partial output observation (yo), we perform
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Figure 7.4: Visualization of (first row) input image with omission noise (noise level:
50%, block size: 8), (second row) ground truth segmentation, and (third) prediction
by CNN, and (fourth to sixth) the generated samples by condVAE on (left) CUB and
(right) LFW database.

iterative inference of unobserved output (yu) and the latent variables (z) [107], i.e.,

y∗u ∼ pθ(yu|x, z∗)↔ z∗ ∼ qφ(z|x,yo,y∗u) (7.11)

We report the summary results in Table 7.5. The condVAE performs well even when

the noise level is high (e.g., 50%), where the CNN significantly fails. This is because

the condVAE utilizes the partial segmentation information to refine the prediction of

the rest iteratively. We also visualize the generated samples by the CNN and condVAE

at noise level of 50% and in Figure 7.4. As we can see, the prediction made by the CNN

is very blurry, but those samples generated by condVAE are sharper while maintaining

the reasonable shapes. In addition, we can make multiple realistic segmentation masks

that look different to each other using condVAE.

7.5 Conclusion

Modeling multi-modal distribution of the structured output variables is an essen-

tial research question to achieve good performance on structured output prediction

problems. In this chapter, we proposed a stochastic neural networks for structured
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output prediction based on the conditional deep generative model with Gaussian latent

variables. The proposed model is scalable to large images and efficient in inference

and learning. We demonstrated the importance of probabilistic inference when the

distribution of output space has multiple modes, and showed strong performance in

discriminative (e.g., segmentation accuracy) and generative (e.g., estimation of condi-

tional log-likelihood, visualization of generated samples) tasks.
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CHAPTER VIII

Conclusion and Future Work

8.1 Conclusion

Learning representation of the data is fascinating research problem as the machine

can identify and capture the statistical structures and underlying patterns automatically

from the data to better understand the high-level concepts as human do. Deep learning

has shown a great success and promise in representation learning research in recent

decades. In this thesis, we addressed a few of deficiencies in the current deep learning

algorithms and demonstrated the strong empirical performance improvement in many

applications of machine learning and computer vision.

In Part ??, we have focused on research problems of learning low-level generic fea-

tures in the framework of unsupervised learning. The unsupervised learning algorithms

learn a generic representation of the data from a large number of unlabeled data, which

is usually cheap and easy to obtain. The goal of unsupervised learning is often set

as to learn patterns to represent the data well as there is no specific target task from

the beginning. However, a good reconstruction of the training data doesn’t necessar-

ily lead to a good feature representation since the sensory data (e.g., image or audio

signal) is very complex and highly variable, and contains a lot of irrelevant patterns

or factors of variation, such as intrinsic data transformation or the noise from envi-

ronment. One of the biggest criticism of the representation learning algorithms was
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the difficulty of their use for non-experts outside the core deep learning research com-

munity. In Chapter II, we addressed this difficulty of learning by deriving an efficient

strategy for training RBMs by exploring the connections between mixture models and

RBMs and demonstrated both theoretically and empirically that the performance of

sparse RBMs is similar to or significantly better than mixture models. In Chapter III

and IV, we explored solutions to the problem of learning from noisy and complex sen-

sory data. Specifically, we proposed a framework of learning invariant representation to

local transformations, such as translation, rotation, or scale changes of visual sensory

data or frequency or time-domain translations of auditory signals, using a variant of

RBMs and sparse coding in Chapter III. In addition, we developed a point-wise gated

Boltzmann machine in Chapter IV to learn useful representation from noisy data. The

idea is to decompose the noisy components or factors of variation from the data with

higher-order interaction by jointly learning and selecting features via bottom-up and

top-down inference. The model showed effectiveness in learning useful representation

when the data contains irrelevant patterns.

In Part ??, we have developed an improved learning algorithms for structured out-

put prediction. Although they have shown a great success, the current supervised deep

learning methods, such as convolutional neural networks, may not be an optimal solu-

tion for the problems of structured output prediction. To develop an intelligent agent

to make a prediction for complex output, one needs to move from modeling the many-

to-one mapping, which indeed can be solved by the CNNs when sufficient training data

is provided, towards the one-to-many or many-to-many mappings. In Chapter V, we

developed a novel conditional generative model for face parts labeling by combining the

best properties of the CRF for local consistency and the RBM for global shape prior.

As a follow up, in Chapter VII, we took a step towards developing an end-to-end pre-

diction system for such a complex output using stochastic convolutional neural network

that can be trainable simply by backpropagation. We demonstrated an importance
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of probabilistic inference for structured outputs through qualitative analysis as well

as a strong image segmentation and labeling performance. Such a structured output

prediction model can also be applied in multimodal representation learning problems.

In Chapter VI, we proposed a new learning framework for multimodal representation

learning based on the variation of information, whose learning procedure corresponds

to estimating the conditional likelihoods of each data modality given the rest. By doing

so, we can learn associations between data modalities better, and can effectively handle

the case where there are some data modalities missing at testing time. We demon-

strated an effectiveness of our proposed learning algorithm on image+text database for

recognition with multimodal and unimodal scenario.

8.2 Future Work

For future research, I am going to delve into developing end-to-end systems for struc-

tured output prediction tasks using deep learning. Obtaining a sufficiently large volume

of training data with fine-grained structured labels might be the biggest challenge for

this problem. Instead, I am going to tackle the problem by using other resources (e.g.,

multimodal data, weakly or semi-supervised learning with coarse labels) and objective

functions (e.g., variation of information, multi-task learning).

Multimodal representation learning for structured output prediction

Multiple sensory data are sometimes complementary to each other, providing useful in-

formation to improve pattern recognition performance. Learning generative models of

multimodal data is very difficult due to the heterogeneity of the data. Fortunately, we

have established an improved learning algorithm for generative models of multimodal

data using variation of information in Chapter VI. On the other hand, learning classifier

for structured output is challenging due to the lack of fully labeled training data. In

such a case, the semi-supervised learning, where we train the model not only to predict

120



the output, but also to represent the input, can be employed to enhance better general-

ization to an unseen data at test time. We combine these two ideas to resolve the small

training data issue in structured output prediction.

Semi-supervised multi-task learning with fine-grained structured labels

With an improved structured output prediction systems using deep generative models

as a rich prior distribution (e.g., Chapter V), we aim to improve the performance of clas-

sical categorical prediction problems by jointly predicting the structured output labels

and their higher-level concepts (e.g., categorical label). The structured output labels

can be viewed as “attributes”, and the structured prediction task is an intermediate

goal for better categorical prediction in some sense. For example, the visual attributes,

such as the existence of objects in the scene or textual description of the images (e.g.,

user tags from web images), help better predict the high-level concept of the examples,

even when those attribute labels don’t exist in the test time. We can view these struc-

tured output or attribute variables as auxiliary data which can be estimated from or

complement to the original sensory data, and it is important to learn a good associa-

tion among sensory input, attribute, and categorical output variables. To tackle this

problem we develop a hybrid generative and discriminative deep networks for jointly

predicting the (structured) attribute and categorical labels. For discriminative part

between sensory input to output variables, we employ CNNs, a state-of-the-art visual

recognition algorithm. For generative part that models the association between at-

tribute and categorical variables, we use deep generative models such as DBN or DBM.

Similarly to the approach illustrated in Chapter V, we use the pairwise potential across

attribute variables. We train the model with multi-task objectives, where the training

accuracy of structured and categorical variables are jointly maximized. To accommo-

date a large number of training data with missing fine-grained structured labels (e.g.,

we have millions of web images with user tags, but only few of them are labeled with
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high-level visual concept in Flickr database), we train our algorithm in semi-supervised

learning framework.
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APPENDIX A

Supplementary material of Chapter II

A.1 Corollary II.3

Corollary II.3. The binary RBM (i.e., when the visible units are binary) with a

softmax constraint on hidden units and the mixture of Bernoulli models are equivalent.

Proof. Similarly to the proof of Proposition II.1, we prove by constructing the following

conversions. Before that, we first define models; the Bernoulli mixture model (BMM)

is defined as follows:

P (v) =
∑
j

πj
∏
i

θviij (1− θij)1−vi (A.1)

The RBM with binary visible units, or equivalently, the binary RBM, is defined as

follows:

P (v,h) = 1
Z

exp (−E(v,h)) (A.2)

E(v,h) = −
∑
i,j

viWijhj −
∑
j

bjhj (A.3)
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The softmax constraint can be applied on the hidden units, i.e., ∑j hj ≤ 1, to formulate

the binary-softmax RBM.

(1) From binary-softmax RBM to BMM(θk): We begin by the decomposition

using a chain rule:

P (v,h) = P (v|h)P (h),

where

P (h) = 1
Z

∑
v

exp(−E(v,h)).

Since there are only a finite number of hidden unit configurations, we can explicitly

enumerate the prior probabilities:

P (hj = 1) =
∑

v exp(−E(v, hj = 1))∑
j′
∑

v exp(−E(v, hj′ = 1))

Defining π̃j ,
∑

v exp(−E(v, hj = 1)), we have P (hj = 1) = π̃j∑
j′ π̃j′

, πj, where π̃j can

be calculated analytically as follows:

π̃j =
∑

v
exp(−E(v, hj = 1))

=
∑

v
exp(vTwj + vTc + bj)

= exp(bj)
∏
i

(1 + exp(Wij + ci))

Using this definition, we can show the following equality:

P (v) =
∑
j

πj
∏
i

(sigm(Wij + ci))vi(1− sigm(Wij + ci))1−vi .

(2) From BMM(θk) to binary-softmax RBM: We will show this by construction.

Suppose we have the following BMM with K + 1 mixture components:

P (v) =
K∑
j=0

πj
∏
i

θviij (1− θij)1−vi . (A.4)
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We can convert from this BMM(θk) to a binary-softmax RBM using the following

transformations:

ci = log θi0
1− θi0

Wij = log θij
1− θij

− ci, j = 1, ..., K

bj = log πj
π0

+
∑
i

log(1− θij).

(A.5)

Using the transformation equations, we can recover the conditional distributions of

binary-softmax RBM as follows:

P (v|hj = 1) =
∏
i

(sigm(Wij + ci))vi(1− sigm(Wij + ci))1−vi

=
∏
i

 θij
1−θij

1 + θij
1−θij

vi 1−
θij

1−θij

1 + θij
1−θij

1−vi

=
∏
i

θviij (1− θij)1−vi (A.6)

P (hj = 1|v) =
πj
∏
i θ

vi
ij (1− θij)1−vi∑K

j′=0 πj′
∏
i θ

vi
ij′(1− θij′)1−vi

=
πj exp

(∑
i vi log θij

1−θij

)
exp (∑i log(1− θij))∑K

j′=0 πj′ exp
(∑

i vi log θij′

1−θij′

)
exp (∑i log(1− θij′))

=
πj exp (∑i viWij) exp

(
bj − log πj

π0

)
∑K
j′=0 πj′ exp (∑i viWij′) exp

(
bj′ − log πj′

π0

)
= exp (∑i viWij + bj)

1 +∑K
j′=1 exp (∑i viWij′ + bj′)

=
exp

(
wT
j v + bj

)
1 +∑K

j′=1 exp
(
wT
j′v + bj′

) (A.7)

Therefore, a BMM can be converted to binary RBM with a softmax constraint.

A.2 Corollary II.4

Corollary II.4. GMM(0,Σk) with arbitrary covariance matrices and the factored 3-

way RBM [104] with a softmax constraint on hidden units are equivalent.

Proof. We first define models; the GMM with zero mean and arbitrary covariance ma-
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trices Σk is defined as follows:

P (v) =
K∑
k=0

πkN (v; 0,Σk) (A.8)

We also consider a Factored 3-way RBM with softmax constraint on the hidden units

(we will call it a Factored-softmax RBM ). The energy function of the Factored-softmax

RBM is given as follows:

P (v,h) = 1
Z

exp(−E(v,h)) (A.9)

E(v,h) = −1
2

K,F∑
k,f=1

hkPkf
( D∑
i=1

viCif
)2
−

K∑
k=1

bkhk (A.10)

= −1
2

F∑
f=1

hTPf
(
vTCf

)2
− bTh (A.11)

with the softmax constraint ∑k hk ≤ 1. Pf , Cf are f -th columns of P, C, respectively.

The conditional probabilities are derived as follows:

P (v|h) = N (v; 0,−
[
Cdiag(hTP)CT

]−1
) (A.12)

P (hk = 1|v) =
exp(1

2
∑
f Pkf

(∑D
i=1 viCif

)2
+ bk)

1 +∑K
k′=1 exp(1

2
∑F
f Pk′f

(∑D
i=1 viCif

)2
+ bk′)

, (A.13)

(1) From factored-softmax RBM to GMM(0,Σk): We enumerate the prior prob-

ability of hidden configurations as follows:

P (hk = 1) =
∫
dv exp(−E(v, hk = 1))∑K

k′=1
∫
dv exp(−E(v, hk′ = 1))

(A.14)

Defining π̃k =
∫
dv exp(−E(v, hk = 1)), we have P (hk = 1) = π̃k∑K

k′=1 π̃k′
, πk and π̃k
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can be analytically calculated as follows:

π̃k =
∫
dv exp(−E(v, hk = 1))

=
∫
dv exp(1

2

F∑
f=1

PkfvTCfCT
f v + bk)

= (
√

2π)D|Σk|
1
2 exp (bk)

where Σk = −(C diag(Pk·)CT )−1. Using this definition, we have the following equality:

P (v) =
N∑
k=1

P (v|hck = 1)P (hck = 1) =
Kc∑
k=1

πkN (v; 0,Σk). (A.15)

This completes the first part of the proof that Factored-softmax RBM can be written

as a GMM with zero mean and an covariance matrix Σk.

(2) From GMM(0,Σk) to factored-softmax RBM: Now suppose that we have the

following GMM with K + 1 components:

P (v) =
K∑
k=0

πkN (0,Σk). (A.16)

For simplicity, let’s assume Σk’s are positive definite. Then, we can use singular value

decomposition to decompose Σ−1
k into

Σ−1
k = UkΛkU

T
k =

D∑
i=1

(Uk)i(Uk)Ti λk,i. (A.17)

Let F = (K + 1) × D. We define C with dimension D × F and P with dimension

F × (K + 1) as follows:

CkD+i = (Uk)i,

FkD+i,k = −λk,i, i = 1, ..., D, k = 1, ..., K
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where Cj is a j-th column of C and Fi,j is a (i, j)-th component of F. The components

that were not specified in the above equations are set to 0. Finally, by defining bk =

log(πk
∣∣∣Σk

∣∣∣− 1
2 ) − log(π0

∣∣∣Σ0

∣∣∣− 1
2 ), we can write the posterior probability of hidden units

given the visible units as:

P (hk = 1|v) = πkN (v; 0,Σk)∑K
k′=0 πk′N (v; 0,Σk′)

=
πk
∣∣∣Σk

∣∣∣− 1
2 exp (1

2
∑F
f=1 vTCfCT

f vPkf )∑K
k′=0 πk′

∣∣∣Σk′

∣∣∣− 1
2 exp (1

2
∑F
f=1 vTCfCT

f vPk′f )

=
πk
∣∣∣Σk

∣∣∣− 1
2 exp (1

2
∑F
f=1 vTCfCT

f vPkf )∑K
k′=0 πk′

∣∣∣Σk′

∣∣∣− 1
2 exp (1

2
∑F
f=1 vTCfCT

f vPk′f )

=
exp (1

2
∑F
f=1 Pkf (vTCf )2 + bk)

1 +∑K
k′=1 exp (1

2
∑F
f=1 Pk′f (vTCf )2 + bk′)

Therefore, we recover the posterior of the Factored-softmax RBM in Equation (A.13),

and this completes the proof.
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APPENDIX B

Supplementary material of Chapter IV

B.1 Derivation of Equations

B.1.1 Derivation of Equations (4.3)–(4.5)

The energy function of the PGBM is given as follows:

EU(v, z,h) =−
R∑
r=1

D∑
i=1

Kr∑
k=1

(zri vi)W r
ikh

r
k −

R∑
r=1

Kr∑
k=1

brkh
r
k −

R∑
r=1

D∑
i=1

(zri vi) cri (4.1)

=−
R∑
r=1

(zr � v)TWrhr −
R∑
r=1

(br)Thr −
R∑
r=1

(cr)T (zr � v), (4.2)

s.t.
R∑
r=1

zri = 1, i = 1, · · · , D.

where the operator � denotes element-wise multiplication, i.e., (zr � v)i = zri vi. The

visible, hidden, and switch units are conditionally independent given the other two
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types of units and the conditional probabilities can be derived as follows:

P (hrk = 1 | z,v) =
exp

(∑D
i=1 (zri vi)W r

ik + brk
)

∑
hr
k
∈{0,1} exp

(∑D
i=1 (zri vi)W r

ikh
r
k + brkh

r
k

)
=

exp
(∑D

i=1 (zri vi)W r
ik + brk

)
1 + exp

(∑D
i=1 (zri vi)W r

ik + brk
)

= σ

(
D∑
i=1

(zri vi)W r
ik + brk

)
= σ

(
(zr � v)TWr

�k + brk
)

(4.3)

P (vi = 1 | z,h) =
exp

(∑R
r=1

∑Kr
k=1 z

r
iW

r
ikh

r
k +∑R

r=1 z
r
i c
r
i

)
∑
vi∈{0,1} exp

(∑R
r=1

∑Kr
k=1 (zri vi)W r

ikh
r
k +∑R

r=1 (zri vi) cri
)

=
exp

(∑R
r=1

∑Kr
k=1 z

r
iW

r
ikh

r
k +∑R

r=1 z
r
i c
r
i

)
1 + exp

(∑R
r=1

∑Kr
k=1 z

r
iW

r
ikh

r
k +∑R

r=1 z
r
i c
r
i

)
= σ

(∑
r

zri
(∑

k

W r
ikh

r
k + cri

))
= σ

(∑
r

zri (Wr
i�hr + cri )

)
(4.4)

P (zri = 1 | v,h) =
exp

(∑Kr
k=1 viW

r
ikh

r
k + vic

r
i

)
∑
r exp

(∑Kr
k=1 (zri vi)W r

ikh
r
k + (zri vi) cri

)
=

exp
(
vi
(∑Kr

k=1W
r
ikh

r
k + cri

))
∑
r exp

(
(zri vi)

(∑Kr
k=1W

r
ikh

r
k + cri

))
= exp (vi (Wr

i�hr + cri ))∑
s exp (vi (Ws

i�hs + csi ))
(4.5)

B.1.2 Derivation of Equations (4.7)–(4.8)

We present the supervised PGBM with two mixture components, where we assign

the first component to be task-relevant. The energy function is defined as follows:

ES(v, z,h,y) = EU(v, z,h)− yTUh1 − dTy (4.6)

subject to z1
i + z2

i = 1, i = 1, · · · , D. The label vector y ∈ {0, 1}L is in the 1-of-L

representation. U ∈ RL×K1 is the weight matrix between the task-relevant hidden units

and the label units, and d is the label bias vector. The conditional probabilities can be
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derived as follows:

P
(
h1
k = 1 | z,v,y

)
=

exp
(∑D

i=1 (z1
i vi)W 1

ik + b1
k +∑L

l=1 ylUlk
)

∑
h1
k
∈{0,1} exp

(∑D
i=1 (z1

i vi)W 1
ikh

1
k + b1

kh
1
k +∑L

l=1 ylUlkh
1
k

)
=

exp
(∑D

i=1 (z1
i vi)W 1

ik + b1
k +∑L

l=1 ylUlk
)

1 + exp
(∑D

i=1 (z1
i vi)W 1

ik + b1
k +∑L

l=1 ylUlk
)

= σ

(
D∑
i=1

(
z1
i vi
)
W 1
ik + b1

k +
L∑
l=1

ylUlk

)

= σ
(
(z1 � v)TW1

�k + b1
k + UT

�ky
)

(4.7)

P
(
yl = 1 | h1

)
=

exp
(∑K1

k=1 Ulkh
1
k + dl

)
∑L
s=1 exp

(∑K1
k=1 Uskh

1
k + ds

) = exp (Ul�h1 + dl)∑
s exp (Us�h1 + ds)

. (4.8)

B.1.3 Derivation of Equations (4.19)–(4.21)

The energy function of the CPGBM with R components is written as follows:

E(v, z,h) = −
R∑
r=1

 L∑
l=1

∑
m,n

zrm,nv
l
m,nc

r
l −

Kr∑
k=1

∑
i,j

hr,ki,j

(
L∑
l=1

(W̃r,k,l ∗ (zr � vl))i,j + brk

)
s.t.

R∑
r=1

zrm,n = 1, m, n = 1, · · · , NV (4.17)

where the second term can be written as follows:

Kr∑
k=1

∑
i,j

hr,ki,j

(
L∑
l=1

(W̃r,k,l ∗ (zr � vl))i,j + brk

)

=
Kr∑
k=1

L∑
l=1

∑
i,j,m,n

hr,ki,jW
r,k,l
m,n z

r
i+m−1,j+n−1v

l
i+m−1,j+n−1 +

Kr∑
k=1

∑
i,j

hr,ki,j b
r
k

=
L∑
l=1

∑
m,n

zrm,nv
l
m,n

Kr∑
k=1

(Wr,k,l ∗ hr,k)m,n +
Kr∑
k=1

∑
i,j

hr,ki,j b
r
k

Using above variations of the energy function, the conditional probabilities of hidden,

switch, and visible units given the other two types of variables for CPGBM can be

derived as follows:
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P (hr,ki,j = 1|v, z) =
exp

(∑L
l=1(W̃r,k,l ∗ (zr � vl))i,j + brk

)
1 + exp

(∑L
l=1(W̃r,k,l ∗ (zr � vl))i,j + brk

)
= σ

(
L∑
l=1

(W̃r,k,l ∗ (zr � vl))i,j + brk

)
(4.19)

P (zrm,n = 1|v,h) =
exp

(∑
l v

l
m,n(∑k(Wr,k,l ∗ hr,k)m,n + crl )

)
∑
s exp

(∑
l vlm,n(∑k(Ws,k,l ∗ hs,k)m,n + csl )

) (4.20)

P (vlm,n = 1|h, z) = σ

(∑
r

zrm,n

[∑
k

(Wr,k,l ∗ hr,k)m,n + crl

])
(4.21)
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APPENDIX C

Supplementary material of Chapter V

C.1 Derivation of Algorithm 2

We derive the mean-field updates described in Algorithm 2 by solving the following

optimization problem:

Q∗ = arg min
Q(Y,h)

KL (Q(Y ,h)‖Pθ(Y ,h|X )) (C.1)

subject to Q(Y ,h) = ∏
s∈V,kQ(ys)Q(hk). For multinomial output variables and binary

hidden variables, we define γk = Q(hk = 1) and µsl = Q(ys = l), subject to ∑L
l=1 µsl = 1.

The KL divergence can be written as follows:

KL (Q(Y ,h)‖Pθ(Y ,h|X )) =
∑
Y,h

Q(Y ,h) (logQ(Y ,h)− logPθ(Y ,h|X )) (C.2)
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where the first term can be further decomposed into

∑
Y,h

Q(Y ,h) logQ(Y ,h)

=
∑
s,l

∑
ysl

Q(ysl) logQ(ysl) +
∑
k

∑
hk∈{0,1}

Q(hk) logQ(hk) (C.3)

=
∑
s,l

µsl log µsl +
∑
k

γk log γk + (1− γk) log(1− γk) (C.4)

The second term of Equation (C.1) can be written as follows:

∑
Y,h

Q(Y ,h) logPθ(Y ,h|X ) =
∑
Y,h

Q(Y ,h) (log exp (−Egloc(Y ,X ,h))− logZ(X )) (C.5)

Since Z(X ) = ∑
Y,h exp (−Egloc(Y ,X ,h)) is independent of µsl’s and γk’s, we can ignore

the second term for optimization. Before we proceed, let’s remind the energy function

of the model: From Equation (5.6), Egloc(Y ,X ,h) = Ecrf(Y ,X ) + Erbm(Y ,h) where

Ecrf(Y ,X ) = −
S∑
s=1

L∑
l=1

ysl
N2∑
n=1

psn
Dn∑
d=1

Γndlxsd −
∑
(i,j)

L∑
l,l′=1

De∑
e=1

yilyjl′Ψll′exije, (5.2),(5.8)

Erbm (Y ,h) = −
R2∑
r=1

L∑
l=1

K∑
k=1

S∑
s=1

prsyslWrlkhk −
K∑
k=1

bkhk −
R2∑
r=1

L∑
l=1

crl
S∑
s=1

prsysl. (5.7)

Then, the first term of Equation (C.5) can be written as follows:

∑
Y,h

Q(Y ,h) (log exp (−Egloc(Y ,X ,h))) = −
∑
Y,h

Q(Y ,h)Egloc(Y ,X ,h)

=
∑
s,l,n,d

µslpsnΓndlxsd +
∑

(i,j),l,l′,e
µilµjl′Ψll′exije +

∑
s,l,r

µslprs

(∑
k

Wrlkγk + crl

)
+
∑
k

bkγk

(C.6)
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Finally, the optimization problem in Equation (C.1) can be written as follows:

Q∗ = arg min
µsl,γk

− ∑
s,l,n,d

µslpsnΓndlxsd −
∑

(i,j),l,l′,e
µilµjl′Ψll′exije −

∑
k

bkγk− (C.7)

∑
s,l,r

µslprs

(∑
k

Wrlkγk + crl

)
+
∑
s,l

µsl log µsl +
∑
k

γk log γk + (1− γk) log(1− γk)


subject to ∑l µsl = 1. Taking derivatives with respect to µsl and γk, we obtain

∂KL
∂µsl

= log µsl + 1−
∑
n,d

psnΓndlxsd −
∑

(s,j)l′,e
µjl′Ψll′exsje −

∑
r

(∑
k

Wrlkγk + crl

)
(C.8)

∂KL
∂γk

= log γk
1− γk

−
∑
s,l,r

µslprsWrlk − bk = 0 (C.9)

Combining Equation (C.8) with the following multinomial unit constraint ∑l µsl = 1,

we have µsl = µ̃sl∑
l′ µ̃sl′

, where

µ̃sl = exp
(∑
n,d

psnΓndlxsd︸ ︷︷ ︸
fnode
sl

+
∑

(s,j),l′,e
µjl′Ψll′exsje︸ ︷︷ ︸
f textedge
sl

+
∑
r

prs
(∑

k

Wrlkγk + crl
)

︸ ︷︷ ︸
f rbm
sl

)
(C.10)

γk = σ
(∑
s,l,r

µslprsWrlk + bk
)

(C.11)

By formulating the iterative block update equations with respect to µsl and γk, we

complete the derivation of Algorithm 2.
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APPENDIX D

Supplementary material of Chapter VI

D.1 Derivation of Equation (6.4)

The NLL objective function can be written as

2LNLL(θ) = −2EPD

[
logPθ(X, Y )

]
= −EPD

[
logPθ(X|Y ) + logPθ(Y )

]
− EPD

[
logPθ(Y |X) + logPθ(X)

]
= −EPD

[
logPθ(X|Y ) + logPθ(Y |X)

]
− EPD

[
logPθ(X) + logPθ(Y )

]
= LVI(θ)− EPD

[
logPθ(X)

]
− EPD

[
logPθ(Y )

]
(D.1)

= LVI(θ) + EPD

[
log PD(X)

Pθ(X)

]
︸ ︷︷ ︸

KL(PD(X)‖Pθ(X))

+EPD

[
log PD(Y )

Pθ(Y )

]
︸ ︷︷ ︸

KL(PD(Y )‖Pθ(Y ))

(D.2)

−EPD

[
logPD(X)

]
− EPD

[
logPD(Y )

]
︸ ︷︷ ︸

C1

= LVI(θ) + KL (PD(X)‖Pθ(X)) + KL (PD(Y )‖Pθ(Y )) + C1 (D.3)
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where Equation (D.1) holds by the definition of LVI(θ). Note that C1 is independent of

θ. Similarly, we can rewrite the MinVI objective as

LVI(θ) = −EPD

[
logPθ(X|Y ) + logPθ(Y |X)

]
(D.4)

= EPD

[
log PD(X|Y )

Pθ(X|Y )

]
+ EPD

[
log PD(Y |X)

Pθ(Y |X)

]
(D.5)

−EPD

[
logPD(X|Y )

]
− EPD

[
logPD(Y |X)

]
︸ ︷︷ ︸

C2

where in Equation (D.5), we have

EPD

[
log PD(X|Y )

Pθ(X|Y )

]
=
∑
y

PD(y)EPD(X|y)

[
log PD(X|y)

Pθ(X|y)

]
(D.6)

= EPD(Y )
[
KL (PD(X|Y )‖Pθ(X|Y ))

]
(D.7)

Finally, we have

LVI(θ) = EPD(X)
[
KL (PD(Y |X)‖Pθ(Y |X))

]
+

EPD(Y )
[
KL (PD(X|Y )‖Pθ(X|Y ))

]
+ C2. (D.8)

C2 is independent of θ and by setting C = C1 + C2, we derive the Equation (6.4).

D.2 Proof of Theorem VI.1

Proposition D.1 ([7, 10]). Assume that X is a finite state space. Let Tn and T be

irreducible transition matrices that have stationary distributions πn(X) and π(X), re-

spectively, where π(X) = PD(X) is a data-generating distribution of X. If Tn converges

to T entrywise, then πn(X) converges to PD(X) entrywise.

Proof. Let |X | be the number of states of variable X. For simplicity, we denote π =

π(X) and πn = πn(X). Since the transition matrix T is irreducible, the stationary
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distribution π is unique. In other words, π is characterized by the following equations:

|X |∑
k=1

Tj,kπk = πj,∀j ∈ {1, · · · , |X |} (D.9)

|X |∑
k=1

πk = 1, (D.10)

|X |∑
j=1

Tj,k = 1, ∀j ∈ {1, · · · , |X |}. (D.11)

Here, (D.11) holds since T is a transition matrix. It is easy to see that one of the

equations from (D.9) is redundant; for example, ∑|X |k=1 T|X |,kπk = π|X | can be recovered

from other equations of (D.9), (D.10), and (D.11). Therefore, we can combine the above

system of linear equations in an equivalent form as follows:



T1,1 − 1 T1,2 · · · T1,|X |

T2,1 T2,2 − 1 · · · T2,|X |

... · · · · · · ...

T|X |−1,1 · · · · · · T|X |−1,|X |

1 1 · · · 1


︸ ︷︷ ︸

=T̃

π =



0

0
...

1,


(D.12)

where T̃ is defined accordingly. Since π exists and is unique, the null space of T̃ must

be empty and T̃ is invertible. Now we have

π = T̃−1
[
0 0 · · · 1

]>
(D.13)

and similarly,

πn = T̃−1
n

[
0 0 · · · 1

]>
. (D.14)

Since Tn converges to T entrywise, T̃n converges to T̃ entrywise, and T̃−1
n also converges

to T̃−1 entrywise. Therefore, we conclude πn converges to π = PD(X) entrywise [47].
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Since on a finite-dimensional space, all norms are equivalent [5], the above convergence,

in fact, holds for any norm.

Now, we provide a proof of Theorem VI.1.

Proof of Theorem VI.1. To prove the convergence of marginal distributions, it is suffi-

cient to show the convergence of transition operators. Since |X | and |Y| are finite, for

any ε > 0, δ > 0 there exists N such that ∀n ≥ N , with probability at least 1 − δ,

∀x ∈ X ,∀y ∈ Y ,

|Pθn (y|x)− PD (y|x)| < ε, |Pθn (x|y)− PD (x|y)| < ε

The transition operators are defined as follows:

TYn (y[t]|y[t− 1]) =
∑
x∈X

Pθn (y[t]|x)Pθn (x|y[t− 1]) ,

TY (y[t]|y[t− 1]) =
∑
x∈X

PD (y[t]|x)PD (x|y[t− 1]) .

For data-generating distribution, PD (x|y) and PD (y|x) are derived from PD (x, y).

Then, for ∀n ≥ N , we have, for any yt, yt−1 ∈ Y , with probability at least 1− δ,

∣∣∣∣ TYn (yt|yt−1)− TY (yt|yt−1)
∣∣∣∣

≤
∣∣∣∣ ∑
x∈X

Pθn (yt|x)Pθn (x|yt−1)− PD (yt|x)PD (x|yt−1)
∣∣∣∣

≤ |X |max
x∈X

∣∣∣∣Pθn (yt|x)Pθn (x|yt−1)− PD (yt|x)PD (x|yt−1)
∣∣∣∣ (D.15)

≤ |X | (2ε)

As we assume finite sets X and Y , this proves the convergence (in probability) of tran-

sition operator TYn to TY . The same argument holds for the convergence of transition

operator TXn to TX . Together with Proposition D.1, we have proved the convergence of
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asymptotic marginal distribution πn(X) and πn(Y ) to data-generating marginal distri-

butions PD(X) and PD(Y ), respectively.

Now, let’s look at the joint probability distributions Pθn (x, y) = Pθn(x|y)Pθn(y)

and similarly, PD (x, y) = PD(x|y)PD(y). From a similar argument as above, with

probability at least 1 − δ, there exists N ′ such that the following inequalities hold

∀n ≥ N ′, ∀x ∈ X ,∀y ∈ Y :

∣∣∣∣Pθn(y)− PD(y)
∣∣∣∣ < ε,

∣∣∣∣Pθn (x|y)− PD (x|y)
∣∣∣∣ < ε (D.16)

Therefore, using the similar argument in Equation (D.15), we have

∣∣∣∣Pθn(x, y)− PD(x, y)
∣∣∣∣ < 2ε (D.17)

and this completes the proof.

D.3 Derivation of Equation (6.8)

We derive the mean-field updates described by Equation (6.8) by solving the follow-

ing optimization problem:

Q∗ = arg min
Q(y,h)

KL (Q(y, h)‖Pθ(y, h|x)) (D.18)

subject to Q(y, h) = ∏
j,kQ(yj)Q(hk). Assuming binary visible and binary hidden

variables, we define ĥk = Q(hk = 1) and ŷj = Q(yj = 1). The KL divergence can be

written as follows:

KL (Q(y, h)‖Pθ(y, h|x)) =
∑
y,h

Q(y, h) (logQ(y, h)− logPθ(y, h|x)) (D.19)

141



where the first term can be further decomposed into

∑
y,h

Q(y, h) logQ(y, h)

=
∑
j

∑
yj∈{0,1}

Q(yj) logQ(yj) +
∑
k

∑
hk∈{0,1}

Q(hk) logQ(hk)

=
∑
j

ŷj log ŷj + (1− ŷj) log(1− ŷj) +
∑
k

ĥk log ĥk + (1− ĥk) log(1− ĥk) (D.20)

The second term of Equation (D.19) can be written as follows:

∑
y,h

Q(y, h) logPθ(y, h|x) =
∑
y,h

Q(y, h) (log exp (−E(x, y, h))− logZ(x)) (D.21)

Since Z(x) = ∑
y,h exp (−E(x, y, h)) is independent of ĥk’s or ŷj’s, we can ignore the

second term for optimization. Then, ∑y,hQ(y, h) log exp (−E(x, y, h))

=
∑
y,h

Q(y, h)
∑
i,k

xiW
x
ikhk +

∑
j,k

yjW
y
jkhk +

∑
k

bkhk +
∑
i

cxi xi +
∑
j

cyjyj

 (D.22)

=
∑
j,k

(∑
i

xiW
x
ikĥk +

∑
i

cxi xi + ŷjW
y
jkĥk + bkĥk + cyj ŷj

)
(D.23)

Finally, the optimization problem in Equation (D.18) can be written as follows:

Q∗ = arg min
ĥk,ŷj

−∑
j,k

(∑
i

xiW
x
ikĥk +

∑
i

cxi xi + ŷjW
y
jkĥk + bkĥk + cyj ŷj

)

+
∑
j

ŷj log ŷj + (1− ŷj) log(1− ŷj) +
∑
k

ĥk log ĥk + (1− ĥk) log(1− ĥk)
 (D.24)

Taking derivatives with respect to ĥk and ŷj, we obtain

∂KL
∂ĥk

= log ĥk

1− ĥk
−
∑
i

xiW
x
ik −

∑
j

ŷjW
y
jk − bk = 0 (D.25)

∂KL
∂ŷj

= log ŷj
1− ŷj

−
∑
k

ĥkW
y
jk − c

y
j = 0 (D.26)
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Solving these, we have

ĥk =
exp

(∑
i xiW

x
ik +∑

j ŷjW
y
jk + bk

)
1 + exp

(∑
i xiW

x
ik +∑

j ŷjW
y
jk + bk

) = σ

∑
i

xiW
x
ik +

∑
j

ŷjW
y
jk + bk


ŷj =

exp
(∑

k ĥkW
y
jk + cyj

)
1 + exp

(∑
k ĥkW

y
jk + cyj

) = σ

(∑
k

ĥkW
y
jk + cyj

) (6.8)
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