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ABSTRACT

X-ray CT Image Reconstruction on Highly-Parallel Architectures

by

Madison G. McGaffin

Chair: Jeffrey A. Fessler

Medical X-ray computed tomography (CT) produces 3D anatomical images by mea-

suring the attenuation of X-rays transmitted through a patient at many locations and

orientations and then processing the acquired 2D projections to form a 3D volume. Be-

cause the X-rays used are ionizing and potentially carcinogenic, doses ideally should be

as low as possible. Unfortunately, conventional reconstruction algorithms, being based

on mathematical idealizations of the CT measurement process, perform poorly at reduced

doses.

Model-based image reconstruction (MBIR) methods use more accurate models of the

CT acquisition process, the statistics of the noisy measurements, and noise-reducing reg-

ularization to produce potentially higher quality images even at reduced doses. They

do this by minimizing a statistically motivated high-dimensional cost function; the high

computational cost of numerically minimizing this function has prevented MBIR meth-

ods from reaching ubiquity in the clinic. Modern highly-parallel hardware like graphics

xi



processing units (GPUs) may offer the computational resources to solve these reconstruc-

tion problems quickly, but simply “translating” existing algorithms designed for conven-

tional processors to the GPU may not fully exploit the hardware’s capabilities.

This thesis proposes GPU-specialized image denoising and image reconstruction al-

gorithms. The proposed image denoising algorithm uses group coordinate descent with

carefully structured groups. The algorithm converges very rapidly: in one experiment, it

denoises a 65 megapixel image in about 1.5 seconds, while the popular Chambolle-Pock

primal-dual algorithm running on the same hardware takes over a minute to reach the

same level of accuracy.

For X-ray CT reconstruction, this thesis uses duality and group coordinate ascent to

propose an alternative to the popular ordered subsets (OS) method. Similar to OS, the

proposed method can use a subset of the data to update the image. Unlike OS, the pro-

posed method is convergent. In one helical CT reconstruction experiment, an implemen-

tation of the proposed algorithm using one GPU converges more quickly than a state-of-

the-art algorithm converges using four GPUs. Using four GPUs, the proposed algorithm

reaches near convergence of a wide-cone axial reconstruction problem with over 220 mil-

lion voxels in 11 minutes.

This thesis also proposes an algorithmic approach to circulant approximation of sym-

metric square matrices and a memory-efficient algorithm for computing structured ma-

jorizers to arbitrary matrices. These techniques provide algorithmic ways to design math-

ematical objects that conventionally have been designed by hand and may be useful for

future algorithms.
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CHAPTER 1

Introduction

All imaging systems collect measurements distorted by physical processes and corrupted
by noise. With enough knowledge about the physical system and the statistical nature
of the noise, these imperfections can be mitigated. Sometimes this process is routine:
modern cellphone cameras routinely denoise the images they take. In other cases, re-
covering an image from a collection of noisy and distorted measurements is remarkable.
Image inpainting [19], refocusing lightfield cameras [62, 68], and powerful denoising al-
gorithms [82], sometimes seem more like magic than mathematics. X-ray computed to-
mography (CT) reconstruction is another example. By carefully modelling the physics
of the CT scanner and the statistics of the noisy measurements, CT image reconstruction
algorithms can produce high-quality 3D anatomical images from a huge number of noisy
2D views.

Image processing and reconstruction has become increasingly ambitious. Algorithm
designers are tackling problems with more measurements and pixels and lower quality
measurements; as these problems grow larger and more difficult, their computational
burden increases significantly. Computer hardware has grown faster and more capa-
ble too, but a recent shift in hardware advances from serial execution speed to parallel
computing has complicated the relationship. To keep up with the demand for faster al-
gorithms, designers must create algorithms with their hardware in mind. Low computa-
tional complexity is good, but high parallelizability and regular memory access patterns
are increasingly important too.

This thesis discusses designing image processing and reconstruction algorithms for
the graphics processing unit (GPU). There is no program code in this thesis, although a
considerable amount of code was written for some of our experiments. Instead, we focus
on the mathematical design of algorithms that take advantage of the GPU’s parallel pro-
cessing capabilities. We have attempted to provide useful and practical results: except for

1



Chapter 7 most experiments measure the “wall-clock” runtime of each algorithm tested.
We also compare our work with existing algorithms that are reasonably effective in CPU
implementations but were not designed with the GPU in mind.

The next chapter includes background material. Beyond that, the rest of this thesis is
organized as follows:

• Chapter 3 discusses circulant approximation. Many operators in image processing
are approximately shift invariant, and approximating these operators with compu-
tationally efficient combinations of circulant and diagonal matrices is a common
and effective technique. We present a novel algorithmic technique for approximat-
ing arbitrary square matrices with combinations of circulant and diagonal matrices.
Even so, dense circulant convolution can be undesirably computationally expensive
for some problems and on some hardware, like the GPU. To mitigate this problem,
we propose an algorithm for approximating dense circulant operators with sparse
convolutional filters. We demonstrate these techniques with problems from CT re-
construction and image denoising. This chapter is partially based on [51, 57].

• Chapter 4 presents an efficient image denoising algorithm for the GPU. The algo-
rithm uses group coordinate descent with carefully designed groups and updates
the image by solving many parallel one-dimensional problems. The image is up-
dated in place, and the algorithm has very low memory overhead. The proposed
algorithm converges very quickly in experiments denoising large 2D and 3D im-
ages. This chapter is based on [52, 54].

• Chapter 5 focuses on a challenging problem from CT reconstruction. Conventional
approaches to solving quadratic minimization problems involving the CT system
matrix (like preconditioning or the ordered subsets approximation) are often either
nonconvergent or slow on 3D problems. We present a duality-based framework
that yields impressive solution speeds and still converges to the “true” solution to
the reconstruction problem. We combine the proposed approach with the denois-
ing algorithm in Chapter 4 for a fast CT reconstruction algorithm. This chapter is
partially based on [53].

• Chapter 6 presents a novel, fast, and convergent CT reconstruction algorithm us-
ing duality and group coordinate ascent. The algorithm is designed with the GPU
in mind: it is composed of highly parallel steps with small memory requirements.
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Data transfers to and from the GPU are interleaved with computation to improve
throughput. We demonstrate state of the art convergence speeds on single and mul-
tiple GPUs. This chapter is partially based on [55, 56].

• Chapter 7 considers designing “minimal majorizing” matrices; that is, structured
matrices that upper-bound a given matrix and have as small values as possible in a
certain sense. Matrix majorizers are ubiquitous in image processing algorithms and
are often designed by hand and without any guarantees of optimality. We present a
novel memory-efficient approach to designing these matrices by optimizing a cost
function and show results for a simple example. This chapter is based on unpub-
lished work.

Finally, Chapter 8 contains some conclusions and directions for future work.
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CHAPTER 2

Background

This chapter highlights some less well-known background material for the subjects dis-
cussed in this thesis.

2.1 Notation

We denote vectors as bold lowercase letters, e.g., x ∈ RN . Matrices are bold uppercase
letters, e.g., A ∈ RM×N .

Scalars are typeset with italics. Constants are written in uppercase, like N and M ,
while variables are written in lowercase, e.g., t. The entry of A in the ith row and jth
column in written [A]ij or aij . The jth column of A is written aj . Similarly, for vectors, xj
and [x]j are both the jth element of x. We prefer the former, and use the latter notation
for more complicated expressions. Unless otherwise noted, the first index is 1.

If D ∈ RN×N is a diagonal matrix, then d ∈ RN is its diagonal:

[D]ij =

di, i = j

0, else.
(2.1)

If C ∈ RN×N is a circulant matrix, then c ∈ RN is its convolution kernel:

[C]ij = c1+((i−j) mod N). (2.2)

Functions from a multi-dimensional space to scalars are written in a sans serif font,
e.g., R : RN → R. Most of the time, these will be convex functions. One dimensional
functions are written with lowercase Arabic or Greek letters. For example, ψ(t) = 1

2
t2. If

F(x,y) is differentiable, its column gradient with respect to x ∈ RN is written∇xF(x,y) ∈
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RN . The matrix of second derivatives, i.e., the Hessian, of a function G : RN → R evalu-
ated at x0 is written∇2

x0
G ∈ RN×N .

This thesis discusses many iterative algorithms. Superscripted numbers in parenthe-
ses normally mean iteration number, e.g., x(n) is the version of x from the nth iteration of
some procedure.

Sometimes we talk about updating a variable “in place,” a concept borrowed from
computer programming languages. We do this when keeping track of iteration super-
scripts would become cumbersome, and only the “most recent” value of a variable is
important. If we replace the value of the variable u with the new value u+, then we write
u← u+.

Sets (that are almost always convex in this thesis) are normally indicated with upper-
case Greek letters, e.g., Ω.

The minimizer of a function F over a set Ω is written

x̂ = argmin
x∈Ω

F(x), (2.3)

if it is unique. A sufficient condition for this is for F to be strongly convex and Ω to be
convex. As a rule of thumb, the output of an optimization procedure is indicated with a
hat, e.g., x̂ or û(n+1). Possibly approximate optimizers are written with a tilde, x̃, or are
unadorned.

2.2 Convex optimization

Convex optimization is far too broad to even approximately summarize in this chapter.
This thesis was written with the books by Boyd et al. [8], Bertsekas et al. [4], and Borwein
et al. [5] near at hand. This section highlights a couple important subjects for this thesis.

2.2.1 Optimization transfer / the majorize-minimize technique

Let F : RN → R be a convex and differentiable cost function that we want to minimize
over the convex set Ω:

x̂ = argmin
x∈Ω

F(x). (2.4)
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Often it is impractical to minimize F “in one step” because x is high dimensional, F con-
tains nonquadratic terms, or because the domain Ω is inconvenient. Instead, we itera-
tively refine an estimate of x̂. In particular, we will generate a sequence of iterates

{
x(n)

}
that steadily decrease the cost function F.

One way to do this is with optimization transfer, also called the majorize minimize
method. We generate a series of functions G(n) that satisfy the following two conditions:

G(n)
(
x(n)

)
= F

(
x(n)

)
, (2.5)

G(n)(x) ≥ F(x) ∀x ∈ Ω. (2.6)

We use these surrogate functions to refine our estimate of x̂:

x(n+1) = argmin
x∈Ω

G(n)(x). (2.7)

Clearly, this produces a nonincreasing sequence of cost function values. Under mild reg-
ularity conditions [35],

{
x(n)

}
converges to a minimizer of F.

An intuitive way to build the surrogate function G(n) is with the Taylor-like expansion:

G(n)(x) = F
(
x(n)

)
+
(
x− x(n)

)′∇F(x(n)
)

+
1

2

∣∣∣∣x− x(n)
∣∣∣∣2

M
, (2.8)

where the matrix M � F majorizes the Hessian of F. We discuss majorization more in
Chapter 4, 5, 6 and 7.

2.2.2 Convex conjugates

Let f : Ω→ R, Ω ⊆ R be a function. The convex conjugate of f is

f ∗(z) = sup
x

zx− f(x). (2.9)

The convex conjugate is always a convex function. The biconjugate of f , f ∗∗, is the convex
conjugate of f ∗. If f is convex and closed, then f ∗∗ = f . This allows us to write the often
helpful representation

f(x) = sup
z

xz − f ∗(z). (2.10)
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Combined with a minimax theorem like the ones below, convex conjugacy can lead to
useful algorithms.

2.2.3 Minimax theorems

Chapters 4, 5, 6, and 7 consider problems of the following form:

argmin
x∈Ω

sup
u∈Γ

S(x,u). (2.11)

The inner supremum normally arises from a convex conjugate, but Chapter 7 uses a more
exotic sort of duality. Often transposing the order of minimization and maximization
leads to a useful algorithm. There are standard tools we use to perform this transposition:
Sion’s minimax theorem and Fenchel duality.

2.2.3.1 Sion’s minimax theorem

Let S(x,u) : RN × RM → R, Ω ⊆ RN and Γ ⊆ RM be given. Sion’s minimax theorem
states [80] that

inf
x∈Ω

sup
u∈Γ

S(x,u) = sup
u∈Γ

inf
x∈Ω

S(x,u) (2.12)

provided the following conditions hold:

• both Ω and Γ are convex,

• at least one of Ω or Γ is compact,

• S is quasiconcave and upper semicontinuous in u for any fixed x ∈ Ω, and

• S is quasiconvex and lower semicontinuous in x for any fixed u ∈ Γ.

Sion’s minimax theorem places relatively loose requirements on S, but the compactness
requirement for one of the domains can be restrictive. Fenchel duality, which uses convex
conjugates, can be more useful.

2.2.3.2 Fenchel duality

Let F : RN → {∞} ∪ R and G : RM → {∞} ∪ R be extended convex functions, and let
A ∈ RM×N . Let Ω be the set over which F is finite and let Γ be the set over which G is
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continuous. The image of Ω under A is

AΩ = {u : ∃x ∈ Ω such that Ax = u}. (2.13)

Fenchel’s duality theorem [5, Theorem 4.4.3] states that if AΩ ∩ Γ is not empty,

inf
x

F(x) + G(Ax) = sup
u

−F∗(A′u)− G∗(−u) (2.14)

= sup
u

−F∗(−A′u)− G∗(u). (2.15)

The minimax structure in Fenchel’s duality theorem is less obvious than in Sion’s mini-
max theorem. If we rewrite G and F∗ using biconjugacy, the relationship becomes more
clear:

inf
x

F(x) + G(Ax) = inf
x

sup
u

F(x) + u′Ax− G∗(u) (2.16)

= sup
u

−F∗(−A′u)− G∗(u) (2.17)

= sup
u

−
[

sup
x

x′A′u− F(−x)

]
− G∗(u) (2.18)

= sup
u

−
[

sup
x

−x′A′u− F(x)

]
− G∗(u) (2.19)

= sup
u

inf
x

F(x) + x′Au− G∗(u). (2.20)

We exploit Fenchel’s duality theorem in Chapters 5 and 6.

2.3 Image denoising

Let y ∈ RM be noisy pixel measurements and W be a positive diagonal matrix. In chap-
ters 3 and 4 we study the following edge-preserving image denoising problem:

x̂ = argmin
x∈Ω

1

2
||x− y||2W + R(Cx). (2.21)

The matrix C ∈ RK×N is a finite differences matrix. It computes the differences between
every pixel in the image x and its neighbors. Conceptually, C is a stack of N ×N banded
matrices. Each banded matrix has 1s along the diagonal and a band of−1s corresponding
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to a particular offset.
The function R : RK → R is a sum of convex functions:

R(v) =
K∑
k=1

βkψ(vk). (2.22)

The one-dimensional function ψ is called the potential function. It is even, convex, and
often coercive. The nonnegative weights {βk} can be used to adjust the local strength of
the regularizer. We can absorb C into (2.22) for the following more intuitive form:

R(x) =
N∑
j=1

∑
k∈Nj

βjkψ(xj − xk). (2.23)

The set Nj contains the spatial neighbors of the jth pixel. Conventionally the neighbor-
hoods do not contain their centers: j 6∈ Nj . The potential function penalizes differences
between neighboring pixels. A heuristic description of noisy images is that they have a
lot of “speckles” in them; i.e., they appear very rough. The regularizer R takes larger val-
ues for images with more differences between neighboring pixels, i.e., noisier images. By
finding the minimizer of the cost function (2.21), we remove some of that noise.

The potential function has a significant qualitative effect on the edges in the denoised
image x̂. Potential functions ψ(t) that are relatively large as |t| → ∞, e.g., the quadratic
potential 1

2
t2 tend to over-penalize edges in the image, which appear to the regularizer

as large differences between adjacent pixels. On the other hand, potential functions that
are large around the origin, e.g., ψ(t) = |t|, tend to heavily-penalize small differences.
This can lead to “cartoony” looking images with large uniform regions. Many potential
functions attempt to split the difference, with quadratic-like behavior around the origin
and absolute value-like behavior away from it.

Finally, the convex set Ω codifies the acceptable range of pixel values, e.g., 0−255 gray
levels.

Chapters 3 and 4 present algorithms for solving this denoising problem.

2.4 Model-based X-ray CT reconstruction

X-ray computed tomography (CT) is a widely-used medical, industrial and security imag-
ing tool. During a CT scan, an X-ray source illuminates a region of space with radiation.
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X-rays interact with the matter in that space, and some of these X-rays are detected by
a receiver. By comparing the known intensity of the emitted X-rays on one side of the
irradiated region to the received intensity on the other side, we can infer clinically use-
ful information about the X-ray-interacting matter between the source and the detector.
And by taking many measurements at different positions and orientations, we can recon-
struct useful three-dimensional “images” of the X-ray absorbing matter within a region
of interest.

2.4.1 Families of algorithms

There are two broad families of X-ray reconstruction algorithms: analytical methods and
iterative methods. Most analytical methods are based on mathematical idealizations of
the CT acquisition process [21, 29, 37]. Many do not incorporate information about noise
statistics and correspondingly perform poorly at low signal-to-noise ratios. The upside
to these algorithms is that they are very fast and able to perform a CT reconstruction in
minutes or less. In this thesis, fast analytical methods are used to initialize slower iterative
algorithms.

Model-based image reconstruction (MBIR) algorithms incorporate more information
about CT physics and noise statistics [83]. Similar to the denoising problem above, they
can use regularization to reduce noise. This additional information allows MBIR methods
to produce higher quality images than analytical methods, and provide useful images and
much lower doses, but generating an image with MBIR methods is often expensive and
time consuming. This long runtime has conventionally meant that MBIR methods have
achieved only limited adoption in the clinic.

One of the goals of this thesis, and other recent theses [45, 62], is to find faster ways to
perform MBIR.

2.4.2 Optimization problem

We study the following model-based image reconstruction (MBIR) problem [83]:

x̂ = argmin
x≥0

1

2
||Ax− y||2W + R(Cx). (2.24)

The edge-preserving regularizer R is the same as in image denoising; see Section 2.3. The
CT system matrix, A ∈ RM×N , models the geometry of the CT system. Multiplication by
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A is called projection and simulates the acquisition of an image by the CT scanner. The
adjoint operation, multiplication by A′, is called backprojection. The noisy measurements
are contained in y ∈ RM , and the positive matrix W conventionally contains the variances
of those measurements, W = diag

i

{
1
σ2
i

}
.

Solving (2.24) numerically is challenging. The number of pixels in the image is very
large, and A contains too many entries to store or factor. Computing a gradient of the
cost function for an iterative algorithm is expensive because of the large number of mea-
surements. The Hessian of the data-fit term, A′WA has high dynamic range because of
the statistical weights and is difficult to precondition, as we explore in Chapter 3.

Many algorithms have been proposed to solve (2.24) quickly [1, 23, 44, 67, 74]. (We
suggest a few more in Chapters 5 and 6.) The next section overviews one particularly
influential algorithm.

2.4.3 Ordered subsets

The most expensive operation in a gradient-based method to solve the MBIR CT recon-
struction problem (2.24) is computing the gradient of the quadratic “tomography” term:

g(n) = ∇1

2

∣∣∣∣Ax(n) − y
∣∣∣∣2

W
(2.25)

= A′W
(
Ax(n) − y

)
(2.26)

=

Nviews∑
v=1

Av
′Wv

(
Avx

(n) − yv
)
, (2.27)

where Av is the one-view CT projection matrix for view v. The term involves a forward
projection (multiplication by A) and a backprojection (multiplication by A′) of all the
views in the acquisition geometry. Forward and backprojecting a single view is not ex-
tremely expensive by itself, but because there are often thousands of views in a dataset,
the total computation often overwhelms all other parts of the reconstruction algorithm.

Although there are many views in a CT acquisition, the views are often heavily cor-
related. The experiments in this thesis use data in which sequential views come from
detector rotations less than 0.37 degrees apart! Assuming the data is somewhat consis-
tent, for v ≈ k,

Av
′Wv

(
Avx

(n) − yv
)
≈ Ak

′Wk

(
Akx

(n) − yk
)
. (2.28)
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This leads to the following ordered subsets approximation [1]:

g(n) ≈ Nview

|Sm|
∑
v∈Sm

Av
′Wv

(
Avx

(n) − yv
)
. (2.29)

Ideally, the groups of views {Sm} are chosen so the approximation (2.29) is accurate. In
this thesis, each the {Sm} partition the views into interleaved subsets that are evenly
spaced apart by a constant offset.

The ordered subsets approximation is used in iterative algorithms, and more than
one gradient approximation g(n) will be computed before the algorithm is finished. The
ordered part of “ordered subsets” means that the subsets {Sm} are chosen in each iteration
to mitigate compounding errors from the subsets approximation. Generally speaking,
this means selecting subsets that are as uncorrelated from one another as possible. In
this thesis, we select subsets using the “bit reversal” or “FFT” ordering; see [44] for more
details.

The ordered subsets with separable quadratic surrogates (OS-SQS) [1] algorithm uses
the ordered subsets approximation with a simple diagonal majorizer. Let D be a diagonal
matrix that majorizes the Hessian of the MBIR reconstruction cost function (2.24):

D � A′WA + sup
x

∇2R(x). (2.30)

The OS-SQS algorithm iteratively chooses a subset Sm and performs

x+ =

[
x− −D−1

(
∇R
(
x−
)

+
Nview

|Sm|
∑
v∈Sm

Av
′Wv

(
Avx

− − yv
))]

Ω

. (2.31)

This algorithm computes x+ using only the views in Sm. Because the computational cost
of the forward and backprojections dominates computing the regularizer gradient (which
can be less expensive than a one-view forward-backprojection pair), this leads to an ap-
proximately Nview

|Sm| -times speedup. Conventionally, one “iteration” of OS-SQS involves one
update using each of the subsets.

The disadvantage of the ordered subsets approximation is that the “subset balance”
condition (2.29) is mostly heuristic. Algorithms that use the OS approximation without
some sort of stabilizing relaxation have unknown convergence properties. Generally, us-
ing more subsets (and fewer views in each subset) leads to a looser approximation (2.29)
and a more unstable algorithm. The duality-based method we use in Chapters 5 and 6
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partially overcomes these problems and allows the image to be updated one view at a time
while remaining convergent.

The OS-SQS algorithm was extended with first-order accelerations by Kim et al. [38,
44]. The resulting algorithm has demonstrated state of the art performance and serves as
a benchmark for our reconstruction experiments in Chapters 5 and 6.

13



CHAPTER 3

Circulant Approximation

Many operators in image processing have “somewhat shift-invariant” behavior. Mod-
eling these operators with combinations of circulant and diagonal matrices can yield fast
algorithms, but most circulant approximations are currently designed by hand, guided by
intuition rather than direct analysis of the operators in question. This chapter proposes
a systematic way to analyze arbitrary symmetric linear operators. To make implemen-
tations of circulant preconditioners more efficient on the GPU, we present an algorithm
that approximates a dense positive-definite circulant matrix with another, more efficient
convolution-based operator. We present results from quadratic tomography problems
and image denoising.

3.1 Introduction

Let Y ∈ RN×N be a given symmetric operator. We suppose that Y is “somewhat shift
invariant;” i.e., it can be well-approximated by a circulant matrix:

Ĉ = argmin
C circulant

1

2
||Y −C||2F , (3.1)

with
∣∣∣∣∣∣Ĉ−Y

∣∣∣∣∣∣2
F

small. This is an easy projection to perform:

Ĉ =
1

N

N∑
j=1

circ {Pjyj}, (3.2)

This chapter is partially based on [51, 57].
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where yj is the jth column of Y and Pj rotates the coordinates of yj until the jth element
lies in the first entry. Purely circulant approximations like this have been successful in
image denoising and 2D CT reconstruction [15, 74]. Although this approximation is easy
to compute, many practical operators in imaging are not well approximated by a lone cir-
culant matrix. Adding additional space-varying weights and modes of circulant behavior
can improve performance [23, 27].

In this chapter, we consider approximating Y with sums of diagonal-circulant-diagonal
matrix products:

Y ≈
K∑
k=1

DkCkDk. (3.3)

We use our proposed method to analyze a case where circulant preconditioning by ap-
proximating the cost function Hessian works very well (image denoising), and a case
where it does not (quadratic 3D CT tomography problems). To improve performance on
GPUs, we present a method to replace the full circulant matrices Ck with positive-definite
sparse approximations.

3.2 Circulant decomposition

To tease out the circulant structures in Y we first apply a permutation operator. The
approach we take is similar to the Kronecker product approximation technique in [84].

Let Pk be a permutation matrix that “rotates” the kth element of vectors it operates on
to the 1st coordinate:

[Pkv]j = v1+(|k+j−2|mod N) (3.4)

Let C : RN×N → RN×N be the following matrix permutation operator:

C(Y) =
[
P1h1 P2h2 · · · PNhN

]
. (3.5)

This operator rotates the elements each column of Y until the coordinate that was on the
diagonal is the 1st entry. Figure 3.1 illustrates the behavior of C. Because C only permutes
the entries of its argument it is invertible, linear, and preserves Frobenius norm.
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(a) M (b) C(M)

Figure 3.1: Illustration of a matrix M and its permuted form C(M).

Let X be a matrix of the following form:

X =
K∑
k=1

CkDk, (3.6)

with circulant {Ck} and diagonal {Dk}. Applying C to a matrix of this form transforms it
into a rank-K outer product1:

C

(
K∑
k=1

CkDk

)
=

K∑
k=1

ckdk
′. (3.7)

The {ck} are the convolution kernels of the {Ck} and the {dk} are the diagonals of the
{Dk}.

The permutation operator C transforms the diagonal-circulant matrix approximation
problem,

X̂ = argmin
{Ck},{Dk}

1

2

∣∣∣∣∣
∣∣∣∣∣Y −

K∑
k=1

CkDk

∣∣∣∣∣
∣∣∣∣∣
2

F

, (3.8)

1See Appendix A.
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into a low-rank approximation problem,

= argmin
{Ck},{Dk}

1

2

∣∣∣∣∣
∣∣∣∣∣C
(

Y −
K∑
k=1

CkDk

)∣∣∣∣∣
∣∣∣∣∣
2

F

(3.9)

= argmin
{ck},{dk}

1

2

∣∣∣∣∣
∣∣∣∣∣C(Y)−

K∑
k=1

ckdk
′

∣∣∣∣∣
∣∣∣∣∣
2

F

. (3.10)

The solution to (3.10), by the Eckart-Young theorem, is composed of the first K singular
values and vectors of C(Y). One interesting result of (3.10) is that any square matrix can be
written as a sum of N circulant-diagonal matrix products of the form (3.6). How well this
approximation can be performed with a low number of terms depends on the singular
value spectrum of C(Y). We use this property to investigate the suitability of circulant
approximations for a couple applications in Section 3.3.

3.2.1 Large matrices

Although it is theoretically simple to invoke the singular value decomposition (SVD) of
C(Y), computing the full SVD of anN×N matrix from an image processing problem often
infeasible because of the high dimension N . There are many algorithms to approximate
the SVD of a matrix from limited samples [6, 32, 75].

3.2.2 Post-processing

The low-rank approximation X̂ is neither symmetric nor in the diagonal-circulant-diagonal
form we want (3.3). This section gives a series of manipulations and approximations to
get X̂ into this form.

First, we compute the symmetric matrix S = 1
2

(
X̂ + X̂′

)
. Because Y is symmetric, this
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actually improves the quality of the approximation:

||S−Y|| =
∣∣∣∣∣∣∣∣12(X̂ + X̂′

)
−Y

∣∣∣∣∣∣∣∣ (3.11)

=

∣∣∣∣∣∣∣∣12(X̂−Y
)

+
1

2

(
X̂′ −Y′

)∣∣∣∣∣∣∣∣ (3.12)

≤ 1

2

∣∣∣∣∣∣X̂−Y
∣∣∣∣∣∣+

1

2

∣∣∣∣∣∣X̂′ −Y′
∣∣∣∣∣∣ (3.13)

=
∣∣∣∣∣∣X̂−Y

∣∣∣∣∣∣. (3.14)

Next, we need to write S as a sum of diagonal-circulant-diagonal matrices. Let Ck =

Ek+Ok be the decomposition of the circulant matrix Ck into its even and odd components.
That is, Ek = Ek

′ and Ok = −Ok
′. There exist diagonal matrices {Gk}, {Hk} and scalars

{σk,1} and {σk,2} such that2

S =
K∑
k=1

σk,1GkEkGk + σk,2HkEkHk. (3.15)

If one wants to approximate H using a sum of only positive-semidefinite terms, we need
to further expand Ek into its positive-semidefinite and negative-definite terms. Let

Ek = E+
k + E−k (3.16)

with E+
k � 0 and E−k ≺ 0. Because Ek is circulant, its diagonalization via the discrete

Fourier transform is readily accessible, so E+
k and E−k can be easily computed. The fol-

lowing matrix is not necessarily optimal (as it does not account for interactions between
the K terms in the sum), but is positive-semidefinite:

S̃+ =
K∑
k=1

max {0, σk,1} ·
(
GkE

+
k Gk

)
+ max {0, σk,2} ·

(
HkE

+
k Hk

)
+ min {0, σk,1} ·

(
GkE

−
k Gk

)
+ min {0, σk,2} ·

(
HkE

−
k Hk

)
. (3.17)

2See Appendix (B).
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3.3 Two examples

In this section, we evaluate how well several Hessian matrices from denoising and CT
reconstruction problems can be approximated by circulant matrices.

3.3.1 CT system Gram matrix

The “tomography Hessian,” both without statistical weights (A′A) and with statistical
weights (A′WA) is an important operator in CT reconstruction. Many attempts have
been made to model or precondition it with circulant operators, with varying degrees of
success [15, 23, 57, 74, 89]. Folk knowledge holds the following:

• it is much easier to model A′WA and A′A in 2D than in 3D, and in 2D the A′A is
very well approximated with a circulant operator; and

• it is generally harder to model A′WA than A′A, due to considerable shift variance
introduced by the statistical weights.

In this experiment, we mostly validate these claims.
The columns of the tomography Hessian are dense. Consequently, we cannot com-

pute and store the entire Hessian. In this experiment, we downsampled a 512× 512× 96

cone-beam axial geometry by a factor of 16 in all dimensions. We also considered a 16x-
downsampled 512 × 512 two-dimensional geometry. We computed all entries of the to-
mography Hessian both with and without statical weights (from a simulated XCAT phan-
tom [78]) on the downsampled geometry.

Figure 3.2 contains scree plots of the spectra of the permuted tomography Hessians
for the two-dimensional and three-dimensional geometries. Figure 3.2 supports both the
items of folk knowledge above. For both the two-dimensional and three-dimensional
geometries, A′A was easier to approximate with circulant and diagonal matrices than
A′WA. The two-dimensional Hessians also had significantly more concentrated spectra
than the three-dimensional Hessians. Figures 3.3 and 3.4 illustrate the first few principle
filters and weights for A′A and A′WA in the downsampled three-dimensional geometry.

These are negative results. After circulant approximations were used so effectively
to build circulant preconditioners in the 2D setting [74], we had hoped to find the same
in 3D [57]. Unfortunately, we have found it challenging to design effective circulant ap-
proximations in 3D by hand. Instead of showing us a counterintuitive way to form such
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Figure 3.2: Scree plots for the spectrum of the permuted tomography Hessian for down-
sampled two-dimensional and three-dimensional geometries.

a circulant approximation, these results indicate that a good circulant approximation to
A′WA and even A′A may not exist in 3D.

3.3.2 Denoising

Consider the edge-preserving regularizer R:

R(Cx) =
K∑
k=1

βkψ([Cx]k) (3.18)

=
N∑
j=1

∑
k∈Nj

βjkψ(xj − xk). (3.19)

In this 2D example, we penalize all eight two-dimensional neighbors with the Fair poten-
tial function ψ,

ψ(t) = δ2

(∣∣∣∣ tδ
∣∣∣∣− log

(
1 +

∣∣∣∣ tδ
∣∣∣∣)), (3.20)

with δ = 1 gray level. The weights βjk are uniform.
Figure 3.5 illustrates the standard 512 × 512-pixel cameraman test image with and

without additional additive white Gaussian noise. The Hessian of R is very sparse: each
column will have at most nine nonzero entries. Consequently, it is feasible to compute the
and store the permuted Hessian C(∇2R) as a 9 × 5122 matrix. We did so, evaluating the
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Figure 3.3: Filters (left singular vectors) and weights (right singular vectors) from the
circulant representation of A′A in the three-dimensional geometry. Only the center slice
of the filters and the weights is shown.
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Figure 3.4: Filters (left singular vectors) and weights (right singular vectors) from the
circulant representation of A′WA in the three-dimensional geometry. Only the center
slice of the filters and the weights is shown.
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Figure 3.5: Cameraman images with and without additional noise.
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Figure 3.6: Scree plot of circulant spectra of the regularizer Hessian for the noisy and
noiseless cases.
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Figure 3.7: Filters (left singular vectors) and weights (right singular vectors) of the regu-
larizer Hessian for the noiseless cameraman image.

regularizer Hessian at both the noiseless and noisy cameraman images. To test our expec-
tation that the regularizer Hessian is “somewhat shift invariant,” we generated scree plots
of the singular values of C(∇2R) for both cases. Figure 3.6 demonstrates that the spectrum
is highly concentrated; i.e., C(∇2R) can be succinctly approximated using a small number
of circulant-diagonal matrix pairs. Intuitively, the spectrum in the noisy case was less
concentrated than in the case without additional noise. In either case, this experiment
validates our expectation that regularizer Hessian is “somewhat shift invariant.”

Figures 3.7 and 3.8 illustrate the filters (left singular vectors) and weights (right singu-
lar vectors) derived from the singular value decomposition of the permuted regularizer
Hessian, C(∇2R), for the noisy and noiseless cases, respectively. (The images are very
high-DPI, and detail becomes clear upon zooming in.)

Viewed this way, the regularizer Hessian can be used as a sort of edge detector: each
“mode” of ∇2R (illustrated on the left) corresponds to a certain type of edge, and those
edges are highlighted by the weights (illustrated on the right). In both cases, the first
singular value/vector pair dominates the rest, and in both cases this is the only seemingly
“anisotropic” mode.

Encouraged by these results, in Section 3.5 we design circulant preconditioners for 3D
denoising problems that exploit the apparent shift-invariant structure in the regularizer
Hessian. But first, in the next section, we present a way to approximate dense circulant
matrices (i.e., the Ck) with sparse positive-definite circulant approximations that are clas-
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Figure 3.8: Filters (left singular vectors) and weights (right singular vectors) of the regu-
larizer Hessian for the noisy cameraman image.

sically appropriate for preconditioning.

3.4 Sparse positive-definite convolution filters

Suppose we have a dense positive-definite circulant matrix C and our goal is to find a
sparse circulant matrix F such that F ≈ C. Mathematically, we seek

F̂ = argmin
F∈Ω,F�0

||F−C||pp, (3.21)

where ||·||p is the Schatten p-norm and Ω is the set of circulant matrices with a predeter-
mined sparsity pattern:

Ω =
{

X = circ {x} : [x]j 6= 0⇔ j ∈ I
}
. (3.22)

We assume the sparsity pattern I is symmetric and includes the diagonal.
Simultaneously satisfying the positive-definiteness constraint (F � 0) and the foot-

print constraint (F ∈ Ω) is challenging. Without the positive-definiteness requirement,
(3.21) is trivially solved by projecting onto Ω; i.e., setting all the entries of C outside I to
zero. Under the Schatten∞-norm and with no positive-definiteness requirement, (3.21) is
the problem solved by the classical Parks-McClellan algorithm [72]. The design problem
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(3.21) with the positive-definiteness requirement but no footprint requirement is trivial,
as C is assumed to be positive-definite.

Fortunately, the Schatten p-norms are convex for p ≥ 1 and both the positive-definite
cone and Ω are convex, so we can use variable splitting to separate the two difficult con-
straints. We introduce the auxiliary variable H ∈ RN×N with the constraint H = F and
rewrite (3.21) as

F̂ = argmin
F∈Ω,H�0

||H−C||pp such that F = H. (3.23)

The modified augmented Lagrangian corresponding to this constrained problem is

L(F,H; Γ) = ||H−C||pp +
µ

2
||F−H + Γ||2F , (3.24)

with penalty parameter µ and dual variable Γ. The alternating directions method of mul-
tipliers updates are

F(n+1) = argmin
F∈Ω

µ

2

∣∣∣∣F−H(n) + Γ(n)
∣∣∣∣2
F

= projΩ
{
H(n) − Γ(n)

}
, (3.25)

H(n+1) = argmin
H�0

||H−C||pp +
µ

2

∣∣∣∣H− F(n+1) − Γ(n)
∣∣∣∣2
F
, (3.26)

Γ(n+1) = Γ(n) + F(n+1) −H(n+1). (3.27)

As written, these updates are in terms of RN×N matrices. Fortunately, F(n) is always a
circulant matrix. With Γ(0) = 0, as is conventional, H(n) and Γ(n) are also always circulant
matrices. We can then rewrite the ADMM updates in terms of the filter kernels of F(n),
H(n), C and Γ(n). The H update (3.26), can be further simplified in terms of the DFTs of
f (n), c and γ(n), which we indicate with a tilde:

f (n+1) = projΩ
{
h(n) − γ(n)

}
, (3.28)

h(n+1) = UDFT
′h̃(n+1) (3.29)

h̃(n+1) = argmin
h̃≥0

∣∣∣∣∣∣h̃−UDFTc
∣∣∣∣∣∣p
p

+
µ

2

∣∣∣∣∣∣h̃−UDFT
(
f (n+1) − γ(n)

)∣∣∣∣∣∣2
2

(3.30)

γ(n+1) = γ(n) + f (n+1) − h(n+1). (3.31)

The f update (3.28) sets entries of h(n) + γ(n) outside of the index set I to zero. The h̃

update, which computes the spectrum of h(n+1), is a shrinkage-type update. For all p ≥ 1
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Figure 3.9: Profiles of 1D filters generated by the sparse filter design algorithm. The
target spectrum, a low-pass filter similar to those in the denoising experiment, is drawn
in black. Green, blue and red lines correspond to filters derived with the Schatten 1, 2 and
∞ norms. The solid lines are 5-tap filters, and the dashed lines are 11-tap filters.

except p = ∞, this optimization is separable in the entries of p. For common choices of p
(e.g., p = 1, p = 2), the shrinkage operation can be written in closed form. Altogether, one
iteration of the algorithm requires at most three FFTs and a number of coordinate-wise
operations.

3.4.1 Footprint selection

In setting up the design problem, we took the index set I that determines the filter foot-
print as given. The successive thinning algorithm [3], for example, could be used to algo-
rithmically determine the footprint. Another approach is to replace the projection in the
f -update (3.28) with a basis-pursuit-like update:

f (n+1) = argmin
||f ||0≤K

∣∣∣∣f − (h(n) − γ(n)
)∣∣∣∣2

2
. (3.32)

We do not consider either of these alternatives further in this chapter. In practice, dense
“box-like” footprints appear sufficiently effective. Using more coefficients increases the
approximation accuracy at the cost of more expensive convolutions. The optimal trade-
off between accuracy and efficiency, as usual, can vary from application to application.

Figure 3.9 illustrates a set of 1D example filters designed by the sparse approximation
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algorithm for different footprints and Schatten p-norms. Naturally, increasing the number
of taps in the designed filter increased approximation accuracy. Higher-order Schatten p-
norms are more sensitive to maximum deviation, normally at the cost of stronger ripples
in the spectrum. Despite these differences, we found that the choice of Schatten p-norm
had no effect on the convergence rate of the resulting preconditioner algorithms.

3.4.2 Improving accuracy with iteration

Depending on the shape of the spectrum of the full circulant matrix G, it may be more
efficient to approximate C ≈ Fk ⇔ F ≈ C1/k for k ≥ 1 instead of enlarging F’s footprint.
For example, an 11 × 11 two-dimensional convolution has the same “effective footprint”
as two composed 5 × 5 convolutions. However, the 11 × 11 convolution requires 121

multiply-and-add (MAD) operations, but the two 5× 5 convolutions require only 50.

3.5 Denoising experiment

The experiments in Section 3.3 indicate that the Hessian of the denoising problem can
be well-approximated by a circulant matrix. This suggests that we can create an effec-
tive diagonal-circulant-diagonal preconditioner for these problems. In this section, we
partition the image into regions and develop a circulant preconditioner in each one.

Consider the following unconstrained 3D denoising problem

x̂ = argmin
x

{
J(x) =

1

2
||x− y||2 + R(x)

}
. (3.33)

We consider this denoising problem in the context of splitting-based X-ray CT recon-
struction. Assume that some variable splitting has been performed to separate the to-
mographic data-fit term (involving the CT system matrix A) and the edge-preserving
regularizer seen in (3.33). In our application, the space-varying weights {βjk} are used to
encourage uniform spatial resolution in the reconstructed object [81].

For this section, we assume that the potential function ψ in the edge preserving reg-
ularizer is twice differentiable. We estimate the local strength of the regularizer Hessian
with the following approximation:

αj =
ej
′R(x0 + ejε)

εej ′C′Cej
(3.34)
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Figure 3.10: Images of αj for the three central slices of a helical dataset. In clockwise order
from the upper left, the slices are transaxial (xy), sagittal (yz) and coronal (xz).

with ε small, about 0.01. Figure 3.10 illustrates the αjs for the center slice of a helical chest
reconstruction. The figure illustrates a useful property of the local regularizer strength: it
is spatially slowly-varying.

3.5.1 Region partitioning

Figure 3.10 shows that the local regularizer strength is slowly-varying over space. In other
words, αj ≈ αi for i spatially near j. Turning this relationship around, if we quantize the
αj into K values, {α̃k}Kk=1, then the coordinates with αj best represented by α̃k tend to
form contiguous regions of the image. More formally, define the regionRk as

Rk =

{
j : k = argmin

l∈{1,...,K}
(αj − α̃l)2

}
. (3.35)

In each regionRk, we approximate the Hessian with the shift-invariant matrix

Hk = I + α̃kC
′C. (3.36)

Figure 3.11 illustrates the quantized values of αj from the helical dataset illustrated in
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Figure 3.11: Image of the quantized values of αj from the data illustrated in Figure 3.10
with K = 4.
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Figure 3.10 with K = 4. In each of the differently colored regions we approximate the
shift-varying Hessian with a different shift-invariant operator.

Recall that our goal is to design a preconditioner of the following form:

P =
K∑
k=1

DkCkDk. (3.37)

In [51] we used the Dk to partition the volume into the K different regions and use Ck =

H−1
k . Specifically,

dk = diag {Dk} (3.38)

= vec
j

1, j ∈ Rk

0, else.
(3.39)

These Dk partition the image and the Ck are positive-definite, so the resulting precondi-
tioner is positive-definite.

The partition-based weights are intuitive and simple to design, but the “hard” thresh-
olding between regions may introduce undesired artifacts in the preconditioner’s output,
reducing its effectiveness as an approximation to the Hessian. Fortunately, in the case
of the denoising problem, the filters Ck = H−1

k are all “low-pass”-like operators. Conse-
quently, they tend to suppress the high-frequency “ringing” artifacts that appear at the
boundary of these regions.

3.5.2 Implementation considerations

Consider implementing a general diagonal-circulant-diagonal preconditioner with the
form

P =
K∑
k=1

DkCkDk.

The “worst-case” scenario, in terms of computational complexity, is if the Ck are dense
circulant matrices and the Dk are arbitrary. Storing the Ck and Dk on the GPU requires
2K image-sized vectors. This is impractical for CT reconstruction problems, where each
image-sized vector can be over 670 MB. Consequently the Ck and Dk must be expensively
transferred to the GPU, or the preconditioner must be implemented on the CPU (i.e., the
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(b) Denoised reference image.

Figure 3.12: Original and reference images for the denoising experiment.

gradient is transferred to the CPU, processed, then transferred back to the GPU). This is
may be an unacceptably high cost. And, as discussed earlier, the computational cost of
the K FFT and IFFT operations may also be too great.

If the Ck are instead sparse circulant filters, we must still store the K diagonals of the
Dk on the GPU. This is still a considerable but possibly acceptable cost. The computa-
tional complexity of applying the filter is determined mostly by the K convolutions. If
the filter footprints are small enough, this can be more efficient than the dense FFT oper-
ations. However as K grows, this may grow too large.

Finally suppose the Ck are sparse circulant filters and the Dk partition the image do-
main. Now we can store the Dk implicitly by instead storing the vector of class indices

v = vec
j
{k : j ∈ Rk}. (3.40)

Because the partitioning diagonal matrix Dk appears on both sides of the convolution
Ck, we can also reduce the complexity of the convolution. Observe that the jth pixel of
Pg is a convolution of only pixels in Rk, where j ∈ Rk. Therefore computing each pixel
in d = Pg requires performing only one convolution. Consequently, the computational
complexity of implementing the preconditioner is essentially independent of K.
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3.5.3 Experiment

Figure 3.12a illustrates the central three slices of the noisy filtered backprojection image
from a helical CT scan. We constructed a denoising problem (3.33) similar to one that
would appear in as an inner step in a splitting-based CT reconstruction algorithm. The
regularizer penalized differences with all 26 neighbors and used the q-generalized Gaus-
sian potential function. A converged solution is illustrated in Figure 3.12b.

We ran the following algorithms and measured their distance at each iteration to the
converged reference:

• steepest descent (SD) with no preconditioner;

• preconditioned steepest descent (PSD-FFT) with a one-term (K = 1) diagonal-circulant-
diagonal preconditioner implemented with the FFT;

• PSD-FIR, which replaced the dense circulant operator in PSD-FFT with a sparse
approximation;

• PSD-Multi-FFT, aK = 4-term diagonal-circulant-diagonal preconditioner with dense
circulant operators; and

• PSD-Multi-FIR, which replaced the dense circulant operators with sparse approxi-
mations.

• GCD, a group coordinate descent algorithm we propose in Chapter 4.

The dense circulant operators were implemented on the CPU using multi-threaded fftw

calls, and the sparse approximations were 7×7×7 convolutions. These experiments were
run on a workstation with an NVIDIA GTX 480 GPU and an Intel Core i7 860 CPU. We
chose steepest descent (instead of conjugate gradients) for its relatively modest memory
requirements, but expect similar trends in our results if the experiments were repeated
with conjugate gradients.

Figure 3.13a illustrates the RMSD of each algorithm to the converged reference as a
function of iteration. All the preconditioned methods converge more quickly per iter-
ation than unpreconditioned steepest descent, and the preconditioner with more terms
outperformed the one-term preconditioner. The “-FIR” algorithms, which used sparse
approximations instead of dense FFT-based convolutions, performed comparably to their
dense counterparts. Figure 3.13a supports both the Hessian parameterization technique
for preconditioner design and the proposed sparse approximation algorithm.
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Figure 3.13: Convergence curves for the denoising experiment.

The RMSD of each algorithm to the reference is plotted in Figure 3.13b against time.
The computational burden of performing the FFTs on the CPU is striking: both the “-FFT”
algorithms converge more slowly than unpreconditioned steepest descent. The cost of
transferring the gradient to the host, performing multiple FFTs, and then transferring the
preconditioned gradient back to the GPU completely erased the per-iteration acceleration
illustrated in Figure 3.13a. On the other hand, the “-FIR” preconditioners, implemented
entirely on the GPU, were relatively inexpensive to apply. The 4-term FIR preconditioner
was within 2 HU RMSD of the reference in under five seconds. Finally, although the
preconditioned steepest descent algorithms using the preconditioners in this section per-
formed very well, the GCD algorithms we introduce in the next chapter converged even
more rapidly.

3.6 Conclusions

In this chapter, we presented a method for systematically analyzing the circulant structure
of square linear operators. We originally hoped to find useful approximations to various
Hessians that appear in CT reconstruction, and we had mixed results. Our experiments
on a heavily-downsampled CT system Gram matrix indicated that the system matrix A′A

is difficult to approximate with circulant matrices in three dimensions, even without the
statistical weights W. While our experiments with the regularizer Hessian lead to a fast
preconditioner for image denoising problems, the performance of our preconditioners is
superseded by the denoising algorithm in the next chapter. We present an algorithm to
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solve the difficult-to-precondition tomography problem in Chapter 5.
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CHAPTER 4

Fast GPU Denoising

This chapter focuses on the following image denoising problem:

x̂ = argmin
x∈Ω

1

2
||x− y||2W + R(x) (4.1)

with possibly nonuniform weights W = diagj {wj}, pixel bounds Ω, and the edge-preserving
regularizer R. This type of problem arises from variable splitting algorithms [57, 67],
majorize-minimize algorithms [1, 44, 58], and in algorithms for photographic enhance-
ment. Using group coordinate descent, we develop an algorithm that iteratively per-
forms thousands of independent one-dimensional pixel update problems. The algorithm
has low memory requirements, is highly parallelizable, and maps very well to the GPU.
The denoising updates in Chapter 6 are inspired by the algorithm in this chapter.

4.1 Introduction

Image acquisition systems produce measurements corrupted by noise. Removing that
noise is called image denoising. Despite decades of research and remarkable successes,
image denoising remains a vibrant field [13]. Over that time, image sizes have increased,
the computational machinery available has grown in power and undergone significant
architectural changes, and new algorithms have been developed for recovering useful
information from noise-corrupted data.

Meanwhile, developments in image reconstruction have produced algorithms that rely
on efficient denoising routines [57,74]. The measurements in this setting are corrupted by

This chapter is partially based on [52, 54].
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noise and distorted by some physical process. Through variable splitting and alternating
minimization techniques, the task of forming an image is decomposed into a series of
smaller iterated subproblems. One successful family of algorithms separates “inverting”
the physical system’s behavior from denoising the image. Majorize-minimize algorithms
like [1, 42] also involve denoising-like subproblems. These problems can be very high-
dimensional: a routine chest X-ray computed tomography (CT) scan has the equivalent
number of voxels as a 40 megapixel image and the reconstruction must account for 3D
correlations between voxels.

Growing problem sizes pose computational challenges for algorithm designers. Tran-
sistor densities continue to increase roughly with Moore’s Law, but advances in mod-
ern hardware increasingly appear mostly in greater parallel-computing capabilities rather
than single-threaded performance. Algorithm designers can no longer rely on develop-
ments in processor clock speed to ensure serial algorithms keep pace with increasing
problem size. To provide acceptable performance for growing problem sizes, new algo-
rithms should exploit highly parallel hardware architectures.

A poster-child for highly parallel hardware is the graphics processing unit (GPU).
GPUs have always been specialized devices for performing many computations in paral-
lel, but using GPU hardware for non-graphics tasks has in the past involved laboriously
translating algorithms into “graphics terminology.” Fortunately, in the past decade, pro-
gramming platforms have developed around modern GPUs that enable algorithm de-
signers to harness these massively parallel architectures using familiar C-like languages.

Despite these advances, designing algorithms for the GPU involves different consid-
erations than designing for a conventional CPU. Algorithms for the CPU are often charac-
terized by the number of floating point operations (FLOPs) they perform or the number
of times they compute a cost function gradient. To accelerate convergence, algorithms
may store extra information (e.g., previous update directions or auxiliary/dual variables)
or perform “global” operations (e.g., line searches or inner products). These designs can
accelerate an algorithm’s per-iteration convergence or reduce the number of FLOPs re-
quired to achieve a desired level of accuracy, but their memory requirements do not map
well onto the GPU.

An ideal GPU algorithm is composed of a series of entirely independent and parallel
tasks performing the same operations on different data. The number of FLOPs can be less
important than the parallelizability of those operations. Operations that are classically
considered fast, like inner products and FFTs, can be relatively slow on the GPU due to
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memory accesses. Memory is also a far more scarce resource on the GPU. This makes suc-
cessful, but memory-hungry, frameworks like the primal-dual algorithm [10] or variable
splitting less suitable on the GPU. Fully exploiting GPU parallelism requires algorithms
with local memory accesses and limited memory requirements.

This chapter presents a pair of image denoising algorithms for the GPU. To exploit
GPU parallelism, the algorithms use group coordinate descent (GCD) to decompose the
image denoising problem into an iterated sequence of independent one-dimensional pixel-
update subproblems. They avoid any additional memory requirements and are highly
parallelizable. Both algorithms solve these inner pixel-update subproblems using the
well-known majorize-minimize framework [34,35] and can handle a range of edge-preserving
regularizers. Because of these properties, the proposed algorithms can efficiently solve
large image denoising problems.

Section 4.1.1 introduces the image denoising framework and poses the two classes of
problems our algorithms solve. Section 4.2 describes the shared GCD structure of our
algorithms, and Section 4.3 describes how two specific algorithms solve the inner one-
dimensional update problems. The experimental results from large-image denoising and
X-ray CT reconstruction in Section 4.4 illustrate the proposed algorithms’ performance,
and Section 4.5 contains some concluding remarks.

4.1.1 Optimization-based image denoising

Let y ∈ RN be noisy pixel measurements collected by an imaging system. In this chapter,
bold type indicates a vector quantity, and variables not in bold are scalars; the jth element
of y is written yj . Let wj be some confidence we have in the jth measurement, e.g., wj =
1
σ2
j
, the inverse of the variance of yj . Let x ∈ χ ⊆ RN be a candidate denoised image, and

let R denote a regularizer on x. The penalized weighted least squares (PWLS) estimate of
the image given the noisy measurements y is the minimizer of the cost function J(x):

J(x) =
1

2
||x− y||2W + R(x), (4.2)

x̂ = argmin
x∈χ

J(x), (4.3)

where W = diagj {wj}. The domain χ = χ1 × χ2 × · · · × χN , with χj convex, may codify
a range of admissible pixel levels (e.g., 0-255 for image denoising) or nonnegative values
for e.g., X-ray CT [83]. Similar to a prior distribution on x, R is chosen to encourage
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expectations we have for the image. A simple and popular choice is the first-order edge-
preserving regularizer:

R(x) = β
N∑
j=1

∑
l∈Nj

κjlψ(xj − xl). (4.4)

This regularizer imposes a higher penalty on x as its “roughness” (measured as the dif-
ferences between nearby pixels) increases. The global parameter β and local parameters
κjl ≥ 0 adjust the strength of the regularizer relative to the data-fit term [26]. The set Nj
contains the neighbors of the jth pixel, as selected by the algorithm designer. The neigh-
borhoods do not contain their centers: i.e., j 6∈ Nj . In 2D image denoising, using the four
or eight nearest neighbors of the jth pixel are common choices; in 3D common choices are
the six cardinal neighbors or the twenty-six adjacent voxels. This chapter focuses on these
first-order neighborhoods in 2D and 3D, but the presented algorithms can be extended to
larger neighborhoods and higher dimensions.

The symmetric and convex potential function ψ adjusts qualitatively how adjacent
pixel differences are penalized. Examples of ψ are:

• the quadratic function, ψquad(t) = 1
2
t2;

• smooth nonquadratic regularizers, e.g., the Fair potential [47]

ψFair(t; δ) = δ2(|t/δ| − log (1 + |t/δ|));

• and the absolute value function, ψabs(t) = |t|.

Potential functions that are relatively small around the origin (e.g., ψquad and ψFair) pre-
serve small variations between neighboring pixels. The absolute value function is com-
paratively large around the origin, and can lead to denoised images with “cartoony” uni-
form regions [69]. On the other hand, potential functions that are relatively small away
from the origin (e.g., ψabs and ψFair) penalize large differences (i.e., edges) less than ψquad.
Choosing one of these potential functions makes R an edge-preserving regularizer, and
avoids over-smoothing edges in the denoised image x̂, but it also makes the denoising
problem (4.3) more difficult to solve.

Using ψabs in (4.4) yields the anisotropic TV regularizer [77].
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4.2 Group coordinate descent

This section describes the “outer loop” of algorithms designed to solve (4.3) rapidly on
the GPU. We use a superscript (n), e.g., x(n), to indicate the state of a variable in the nth
iteration of the algorithm.

Consider optimizing J(x) in (4.3) with respect to the jth pixel while holding the other
pixels constant at x = x(n):

argmin
xj : x∈χ

wj
2

(xj − yj)2 + 2β
∑
l∈Nj

κjlψ
(
xj − x(n)

l

)
. (4.5)

The only pixels involved in this optimization are the jth pixel and its neighbors,Nj . Con-
sequently, if the pixels inNj are held constant, we can optimize over the jth pixel without
any regard for the pixels outside Nj .

Looping j through the pixels of x, j = 1, . . . , N , and performing the one-dimensional
update (4.5) is called the coordinate descent algorithm [70]. This algorithm is conver-
gent and monotone in cost function. However, because each optimization is performed
serially, coordinate descent is ill-suited to modern highly parallel hardware like the GPU.

GCD algorithms instead optimize over a group of elements of x at a time while holding
the others constant. The key to using GCD on a GPU efficiently is choosing appropriate
groups that allow massive parallelism. Let S1, . . . ,SM be a partition of the pixel coor-
dinates of x; we write x = [xS1 , . . . ,xSM ]. A GCD algorithm that uses these groups to
optimize (4.3) will loop over m = 1, . . .M and solve

x
(n+1)
Sm = argmin

xSm : x∈χ
J
(
x

(n+1)
S1 , . . .x

(n+1)
Sm−1

,xSm ,x
(n)
Sm+1

, . . . ,x
(n)
SM

)
. (4.6)

The mth group update subproblem (4.6) is a |Sm|-dimensional problem in general. How-
ever, we can design the groups such that each of these subproblems decomposes into |Sm|
completely independent one-dimensional subproblems. If

∀m,∀j ∈ Sm, Nj ∩ Sm = ∅, (4.7)

then in each of the group update subproblems (4.6), the neighbors of all the pixels be-
ing optimized are held constant. By the local separability property observed above, this
breaks the optimization over the pixels in Sm into |Sm| independent one-dimensional sub-
problems.
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Figure 4.1: Illustration of the groups in (4.7) for a 2D imaging problem withNj containing
the four or eight pixels adjacent to the jth pixel. Optimizing over the pixels in S1 (shaded)
involves independent one-dimensional update problems for each pixel in the group.

Figure 4.1 illustrates a set of groups that satisfies the “contains no neighbors” (4.7)
requirement for a 2D problem and Nj containing the four or eight pixels adjacent to j. In
3D, both six-neighbor and twenty-six-neighborNj use eight groups arranged in a 2×2×2

“checkerboard” pattern.
To summarize, we propose GCD algorithms for (4.3) that loop over the groups m =

1, . . . ,M and update the pixels in Sm:

x
(n+1)
Sm = argmin

xSm : x∈χ

∑
j∈Sm

Ψ
(n)
j (xj), where (4.8)

Ψ
(n)
j (xj) =

wj
2

(xj − yj)2 + 2β
∑
l∈Nj

κjlψ
(
xj − x(n)

l

)
. (4.9)

Each of the Ψ
(n)
j are independent one-dimensional functions and are minimized in par-

allel. Because the pixel updates are performed in-place, this algorithm requires no addi-
tional memory beyond storing x, y, W and the regularizer weights. In many cases, W

and the regularizer weights are uniform, and the algorithm must store only two image-
sized vectors! These low memory requirements make the GCD algorithm remarkably
well-suited to the GPU. This GCD algorithm is guaranteed to decrease the cost function J

monotonically. Convergence to a minimizer of J is ensured under mild regularity condi-
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for n = 1 up to Niter do
for m = 1 up to M do

Parfor j ∈ Sm
Minimize Ψ

(n)
j (xj) w.r.t. xj ∈ χj .

EndParfor
end for

end for

Figure 4.2: The GCD algorithm structure. The Parfor block contains |Sk| minimizations
that are independent and implemented in parallel. Section 4.3 details these optimizations.

tions [35, 36]. Figure 4.2 summarizes the proposed algorithm structure.

4.3 One-dimensional subproblems

The complexity of solving each of the one-dimensional subproblems in (4.8) depends on
the choice of potential function ψ. In this chapter, we consider two cases:

• when ψ is convex and differentiable (Section 4.3.1); and

• when ψ is the absolute value function, thus convex but not differentiable (Section
4.3.2).

One could also adapt these methods to non-convex potential functions ψ, albeit with
weaker convergence guarantees. In all cases, we approximately solve the one-dimensional
subproblem (4.8) using the well-known majorize-minimize (MM) approach, also called
optimization transfer and functional substitution [12, 28]. In iteration n, the MM frame-
work generates a surrogate function Φ

(n)
j that may depend on x(n) and satisfies the fol-

lowing “equality” and “lies-above” properties:

Φ
(n)
j

(
x

(n)
j

)
= Ψ

(n)
j

(
x

(n)
j

)
(4.10)

Φ
(n)
j (xj) ≥ Ψ

(n)
j (xj) ∀xj ∈ χj. (4.11)

Majorize-minimize methods update xj by minimizing Φ
(n)
j ,

x
(n+1)
j = argmin

xj∈χj
Φ

(n)
j (xj). (4.12)
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Because χj is convex, we find the unconstrained solution to (4.12) then project it onto χj .
This update is guaranteed to decrease both the 1D cost function Ψ

(n)
j (xj) and the global

cost function J. Even though we are minimizing the surrogate instead of the single-pixel
cost function Ψ

(n)
j (xj), the GCD-MM algorithm is convergent [35].

To implement the MM iteration (4.12), we need to efficiently construct and minimize
the surrogate Φ

(n)
j . The one-dimensional cost function Ψ

(n)
j is the sum of a quadratic term

and |Nj| often nonquadratically penalized differences (the ψ
(
xj − x(n)

l

)
terms). Figure 4.3

illustrates an example Ψ
(n)
j using only three neighbors and the absolute value potential

function. The next two subsections describe how we construct a surrogate φ(n)
jl for each

of the nonquadratic terms in Ψ
(n)
j . Replacing each ψ

(
xj − x(n)

l

)
in (4.9) with its surrogate

φ
(n)
jl (xj) gives us the following majorizer for Ψ

(n)
j in (4.12):

Φ
(n)
j (xj) =

wj
2

(xj − yj)2 + 2β
∑
l∈Nj

κjlφ
(n)
jl (xj). (4.13)

Constructing and minimizing (4.13) requires only a few registers and a small number of
visits to each pixel inNj . This keeps the number of memory accesses low and the acccess
pattern regular, which is necessary for good GPU performance.

4.3.1 Convex and differentiable potential function

First we consider the simpler case of a convex and differentiable cost function. Define the
Huber curvature ω(n)

jl as

ω
(n)
jl =

ψ′
(
x

(n)
j − x

(n)
l

)
x

(n)
j − x

(n)
l

. (4.14)

If ω(n)
jl is bounded and nonincreasing as

∣∣∣x(n)
j − x

(n)
l

∣∣∣ → ∞, then the following quadratic

surrogate majorizes ψ
(
xj − x(n)

jl

)
at x(n)

j and has optimal (i.e., minimal) curvature [33,
page 185]:

φ
(n)
jl (xj) = ψ

(
x

(n)
j

)
+
(
xj − x(n)

l

)
ψ′
(
x

(n)
j − x

(n)
l

)
+
ω

(n)
jl

2

(
xj − x(n)

l

)2

. (4.15)
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Many potential functions have bounded and monotone nonincreasing Huber curvatures,
including the Fair potential [47] and the q-Generalized Gaussian potential function some-
times used in X-ray CT reconstruction [83]. Because the Huber curvature is optimally
small, the closed-form MM update,

x
(n+1)
j = x

(n)
j −

wj

(
x

(n)
j − y

)
+ 2β

∑
l∈Nj κjlψ

′
(
x

(n)
j − x

(n)
l

)
wj + 2β

∑
l∈Nj κjlω

(n)
jl

, (4.16)

takes the largest step possible for a quadratic majorizer of the form (4.13). To implement
(4.16) efficiently, we use (4.14) to replace the ψ′ terms with the product of ω(n)

jl and x
(n)
j −

x
(n)
l . The resulting algorithm is implemented with only one potential function derivative

per neighboring pixel.

4.3.2 The absolute value potential function

The quadratic majorizer in (4.15) applies to a class of differentiable potential functions.
TV uses the absolute value potential function, and ψabs is not differentiable at the origin.
In the previous section’s terminology, the curvature ω(n)

jl “explodes” if x(n)
j ≈ x

(n)
l . TV

denoising encourages neighboring pixels to be identical to one another so this is a signif-
icant concern. Even if x(n)

j 6= x
(n)
l in practice [71], the exploding surrogate curvature may

cause numerical problems.
A way to avoid this problem is to modify the curvatures to prevent the ω

(n)
jl from

exploding. One approach is to replace ψabs with the hyperbola potential function, ψ(t) =√
ε+ t2 −

√
ε, with ε > 0 small, or similar “corner-rounded” absolute-value-like function.

While this makes the techniques in the previous section directly applicable, it changes the
global cost function J, which may be suboptimal.

Another corner rounding approach is to “cap” the curvatures at ε−1 for small ε > 0:

ω
(n)
jl,ε =

1

max
{
ε,
∣∣∣x(n)
j − x

(n)
l

∣∣∣} . (4.17)

Unfortunately, the quadratic function with curvature ω(n)
jl,ε does not satisfy the “lies above”

surrogate requirement (4.11) when
∣∣∣x(n)
j − x

(n)
l

∣∣∣ < ε. Because Φ
(n)
j would not then be a

“proper” surrogate for Ψ
(n)
j , a GCD algorithm based on (4.17) may not monotonically

decrease the cost function J. Empirically, we found that using ω(n)
jl,ε appears to cause x(n)
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to enter a suboptimal limit cycle around the optimum. Thus we developed the following
duality approach.

4.3.2.1 Duality approach

One way to handle the absolute value function is to use its dual formulation [10,11,54,91].
We write the absolute value function implicitly in terms of a maximization over a dual
variable γ(n)

jl : ∣∣∣xj − x(n)
l

∣∣∣ = max
γ
(n)
jl ∈[−1,1]

γ
(n)
jl

(
xj − x(n)

l

)
. (4.18)

Thus, by choosing any closed interval Ω(n) ⊇ [−1, 1], the following is a surrogate for∣∣∣xj − x(n)
l

∣∣∣ that satisfies both the “equality” (4.10) and “lies above” (4.11) majorizer prop-
erties:

φ
(n)

jl,Ω(n)(xj) = max
γ
(n)
jl ∈Ω(n)

γ
(n)
jl

(
xj − x(n)

l

)
κjl −

δ
(n)
jl

2

((
γ

(n)
jl

)2

− 1

)
, (4.19)

where δ(n)
jl =

∣∣∣x(n)
j − x

(n)
l

∣∣∣κjl. When Ω(n) = [−1, 1], φ(n)

jl,Ω(n) = ψ
(n)
jl . Selecting Ω(n) larger than

[−1, 1] increases the domain of maximization in (4.19) and loosens the majorization, and
satisfies the “equality” (4.10) and “lies above” (4.11) majorization conditions. Figure 4.4
illustrates φ(n)

jl,Ω(n) for several choices of Ω(n).
Let D = |Nj| be the number of neighbors of the jth pixel. Denote the vector of dual

variables γj =
[
γ

(n)
j1 , . . . , γ

(n)
jD

]
and their domain Ω(n) = Ω(n) × · · · × Ω(n). We plug φ(n)

jl,Ω(n)

into (4.13) to construct the surrogate function Φ
(n)
j :

Φ
(n)
j (xj) = argmax

γj∈Ω(n)

L(n)
j (xj,γj), where (4.20)

L(n)
j (xj,γj) =

wj
2

(xj − yj)2 + 2β
∑
l∈Nj

κjlγ
(n)
jl

(
xj − x(n)

l

)
−
δ

(n)
jl

2

((
γ

(n)
jl

)2

− 1

)
(4.21)

Figure 4.3 illustrates Ψ
(n)
j and Φ

(n)
j for two values of x(n)

j . Note that, unlike the “corner-
rounding” approximations, Φ

(n)
j faithfully preserves the nondifferentiable “corner” of

Ψ
(n)
j at the minimizer, x(n)

j = 0.1.
To implement the majorize-minimize procedure (4.12) by minimizing (4.21), we pass
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into the dual domain. Observe that L(n)
j is convex and continuous in xj and concave and

continuous in the γ(n)
jl , and the set Ω(n) is compact. We invoke Sion’s minimax theorem

[80] to transpose the order of minimization and maximization:

argmin
xj

argmax
γj∈Ω(n)

L(n)
j (xj,γj) = argmax

γj∈Ω(n)

argmin
xj

L(n)
j (xj,γj). (4.22)

The inner minimization over xj can now be solved trivially in terms of γ(n)
j :

xj(γj) = yj −
β

w

∑
l∈Nj

γ
(n)
jl κjl. (4.23)

Plugging (4.23) into (4.21) and maximizing over γj ∈ Ω(n), we arrive at the following
quadratic dual problem:

γ∗j ∈ argmax
γj∈Ω(n)

D(n)(γj), where (4.24)

D(n)(γj) = −1

2
γj
′
(

D +
1

w
ββ′

)
γj + γj

′Λβ, (4.25)

where D = diagl
{

2βδ
(n)
jl

}
, Λ = diagl

{
yj − x(n)

l

}
, and β = vecl {2βκjl}. Because ex-

panding Ω(n) only “loosens” the majorization φ(n)

jl,Ω(n) we simply define Ω(n) to include the
pseudoinverse

γ+
j =

(
D +

1

w
ββ′

)+

Λβ, (4.26)

and then solve (4.24) by finding the pseudoinverse. In practice, this means we can solve
the dual problem (4.24) as if it were unconstrained.

4.3.2.2 Solving the dual problem

The dual problem (4.24) has a diagonal-plus-rank-1 Hessian that can be trivially inverted
when the diagonal matrix D is full rank. However, when at least one entry of D is small
(i.e., when x

(n)
j ≈ x

(n)
l for some l), the problem becomes ill-conditioned and requires an

iterative method or an expensive “direct method” (e.g., computing the eigenvalue decom-
position of D+ 1

w
ββ′ or the “matrix pseudoinverse lemma” [46]). We propose an iterative

minorize-maximize procedure that exploits the diagonal-plus-rank-1 Hessian.
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This inner minorize-maximize procedure is iterative, so we denote the subiteration
number with a superscripted m. The following function, S(m)

j (γj) is a minorizer for
D

(n)
j (γj) at γ(m)

j in the sense that it satisfies the “equality” property (4.10) at γ(m)
j and a

“lies-below” property analogous to the “lies above” majorization property (4.11):

S
(m)
j (γj) = D

(n)
j

(
γ

(m)
j

)
+
(
γj − γ

(m)
j

)
′∇D(n)

j

(
γ

(m)
j

)
− 1

2

(
γj − γ

(m)
j

)
′
(

Dε +
1

w
ββ′

)(
γj − γ

(m)
j

)
,

(4.27)

where Dε = diagl {max {ε,Dll}}. Let Hε = Dε+
1
w
ββ′. Substituting the “min” for a “max”

in the MM procedure (4.12) leads to the following iterative procedure for solving (4.24):

γ
(m+1)
j = argmax

γj

S
(m)
j (γj) (4.28)

= H−1
ε

(
Λβ −Mεγ

(m)
j

)
, (4.29)

where Mε = diagl
{

max
{

0, ε− δ(n)
jl

}}
. We multiply by H−1

ε efficiently using the matrix
inversion lemma.

The recursion (4.29) reveals an interesting quality of the minorize-maximize proce-
dure. When all the neighbors x(n)

l are sufficiently different from x
(n)
j , Mε is the zero-matrix

and the MM recursion (4.29) is stationary. In other words, γ(m)
j converges in a single it-

eration. This corresponds to the case where the heuristic “capped-curvature” majorize-
minimize algorithm produces a valid surrogate. On the other hand, when some δ(n)

jl ≈ 0,
the “capped-curvature” algorithm may produce an invalid majorizer, but the recursion
(4.29) will eventually produce (by finding appropriate values for the corresponding γ

(n)
jl )

and minimize a valid majorizer for Ψ
(n)
j . A practical alternative to running an arbitrar-

ily large number of inner minorize-majorize iterations is to track the cost function value
Ψ

(n)
j

(
xj

(
γ

(m)
j

))
and terminate the minorize-maximize algorithm when

Ψ
(n)
j

(
xj

(
γ

(m)
j

))
≤ Ψ

(n)
j

(
x

(n)
j

)
. (4.30)

This check was inexpensive to integrate into the minorize-maximize iteration, so we used
it in the experiments below. Nonetheless, it is possible that in late iterations, as x(n)

j ≈ x
(n)
l ,

the domain Ω(n) grows and the majorizer Φ
(n)
j becomes increasingly loose. This would

slow the convergence of x(n) → x̂.
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(n)
j  = −1.0
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Ψ
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j (xj )

Figure 4.3: An example of the pixel-update cost function Ψ
(n)
j with three neighbors and

the absolute value potential function. The majorizer Φ
(n)
j described in Section 4.3.2.1 is

drawn at two points: the suboptimal point x(n)
j = −1.0 and the optimum x

(n)
j = 0.1. In

both cases, Ω = [−3, 3].

2.0 0.5 0.0 2.0
xj

0

2

Ω =[−100,100]

Ω =[−3,3]

Ω =[−1,1]

ψabs

Figure 4.4: The absolute value potential function and the majorizer φ(n)
Ω (xj) described in

Section 4.3.2.1 with x(n)
j = −0.5. Enlarging the domain Ω ”loosens” the majorizer.
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(a) Noisy image, y

(b) Converged reference image, x∗

Figure 4.5: Initial noisy and converged reference images from the TV denoising experi-
ment in Section 4.4.1. The original image is an approximately 75-megapixel composite of
pictures taken by NASA’s Mars Opportunity Rover; the insets are 512× 512-pixel subim-
ages.

4.4 Experiments

This section presents two experiments using the TV regularizer (Section 4.4.1) and a dif-
ferentiable edge-preserving regularizer used in CT reconstruction (Section 4.4.2). All the
algorithms in the following experiments were run on an NVIDIA Tesla C2050 GPU with
3 GB of memory and implemented in OpenCL.

In addition to the algorithms described above, we applied Nesterov’s first-order accel-
eration [60] to the GCD algorithm after each loop through all the groups. Future research
may establish the theoretical convergence properties of these accelerated algorithms, and
they appear to be stable.

4.4.1 Anisotropic TV denoising

In 2004, the Mars Opportunity rover transmitted photographs of its landing site in the
“Eagle Crater” back to Earth. Scientists at NASA/JPL combined these photographs into
a 22,780 × 3,301-pixel (approximately 75 megapixel) grayscale image [9]. Pixels were
represented by floating-point numbers between 0 and 255; storing each copy of the image
required approximately 300 MB of memory.

We corrupted the composite image with additive white Gaussian noise with standard
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(b) RMSD to x∗ by time
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Figure 4.6: Root-mean-squared-difference to the converged reference image x∗ by itera-
tion and time for the total variation denoising experiment in Section 4.4.1.

deviation σ = 20 gray levels (see Figure 4.5a). Then we denoised the corrupted image by
solving the iterative denoising problem (4.3) with anisotropic total variation (ψ = ψabs)
using all eight adjacent pixels (|Nj| = 8), empirically selected regularizer weight β = 7,
uniform weights (W = I, κjl = 1), and the constraint xj ∈ [0, 255]. Figure 4.5b shows an
effectively converged reference image, x∗. All the algorithms in this section are initialized
from the noisy data, x(0) = y.

We ran the Chambolle-Pock primal-dual algorithm (CP-PDA) (Algorithm 2 in [10],
adapted to anisotropic TV), the separable quadratic surrogates [1] (SQS-ε) algorithm with
the “capped-curvature” corner-rounding approximation and the proposed GCD algo-
rithm with the same corner-rounding approximation (GCD-ε). We also applied Nes-
terov’s first-order acceleration to SQS (SQS-ε-N) and corner-rounded GCD (GCD-ε-N).
Finally, we ran GCD with two inner iterations of the proposed duality-based majorizer
and Nesterov’s first-order acceleration (GCD(2)-N). In all cases, we chose ε = 2. Figure
4.6 plots cost function and root mean-square difference (RMSD) to the reference image
against algorithm iteration and time.

The Chambolle-Pock primal-dual algorithm converged rapidly in terms of iteration,
but considerably more slowly as a function of time. This behavior, which is hidden when
experiments are performed with small images, is a consequence of PDA’s high memory
requirements. Even on the NVIDIA Tesla with 3GB of memory, we could not store all
the algorithm’s variables (including the regularizer and data-fit weights) on the GPU at
once. Consequently we needed to occasionally transfer memory between RAM and the
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GPU, which slowed down PDA’s convergence speed with respect to time. Because the
PDA uses |Nj| image-sized dual variables, this memory burden would be even greater
for a 3D denoising problem. At least with modern GPU hardware, algorithms with lower
memory requirements like SQS-ε and the GCD algorithms seem more appropriate than
PDA for large problems.

The SQS algorithm can be viewed as a one-group GCD algorithm, where surrogate
functions are used to decouple the image update into a set of one-dimensional updates.
In that light, the major differences between the SQS and GCD algorithms are pixel update
order and majorizer looseness, and both of these differences appear to be advantages for
GCD.

Although both the SQS-ε and GCD-ε algorithms in this experiment perform a corner-
rounding approximation, GCD-ε’s pixel update order appears to make it more robust to
the error introduced by that approximation. This can be seen in the more accurate limit
cycles reached by the GCD-ε algorithms compared to the respective SQS-ε algorithms.
The GCD algorithms also do not need to majorize to produce one-dimensional subprob-
lems; this makes GCD-ε’s one-dimensional surrogate Φ

(n)
j “tighter” than the correspond-

ing one-dimensional surrogate produced by SQS. This increases the step sizes that the
GCDs algorithm take, as seen by GCD-ε reaching its limit cycle more rapidly than SQS-ε.

Unlike the SQS algorithms, the proposed GCD algorithm can achieve more accurate
solutions by performing more iterations of the inner MM algorithm. This allows GCD(2)-
N to rapidly achieve a more accurate solution than the corner-rounding algorithms.

4.4.1.1 Late-iteration behavior and multiple MM steps

To further explore the effect of the number of inner MM iterations on algorithm conver-
gence, we also initialized GCD with

x(0) = x∗ + w, w ∼ N(0, I), (4.31)

a point near the reference image. We ran GCD with up to 1, 2, 4 and 8 inner MM iterations.
Each algorithm was terminated early if possible using the monotone-cost stopping criteria
(4.30). Figure 4.6c plots RMSD to x∗ against time for each configuration.

This experiment reveals two important things. First, unsurprisingly, increasing the
maximum number of inner MM iterations allows the GCD algorithms to converge to a
solution closer to x∗. In all cases, the GCD algorithms produced a more accurate solution
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than SQS-ε, including GCD-ε, which “corner-rounds” in a similar way. Second, while
more inner iterations requires more time per outer iteration, algorithms with more inner
iterations may converge more quickly in time than those with fewer. The markers in
Figure 4.6c were all placed at the 12th iteration. Although GCD(4) took nearly half as
long per iteration as GCD(8), the eight-inner-iterations algorithm converged roughly as
quickly in time and to a more accurate limit cycle.

4.4.2 X-ray CT denoising

In diagnostic X-ray CT reconstruction, differentiable convex potential functions are often
preferred to the absolute value potential function [83]. One choice of potential function is
the q-generalized Gaussian (qGG),

ψ(t) =
1
2
|t|p

1 + |t/δ|p−q
. (4.32)

The qGG potential function is both convex and differentiable for appropriate choice of p,
q and δ > 0.

While CT reconstruction involves solving a more general regularized least-squares
problem, variable splitting and alternating minimization methods can produce algorithms
that handle the system physics and edge-preserving regularizer in separate subproblems.
In some memory-conservative variable splitting approaches [57] or majorize-minimize
algorithms using separable quadratic surrogates [1, 42], the regularizer appears in a de-
noising problem like (4.3).

In this experiment we solved a denoising problem that could arise from a variable
splitting X-ray CT reconstruction algorithm. The data came from a 512 × 512 × 65-pixel
helical shoulder image provided by GE Healthcare. Pixels were represented between 0
and 2,600 modified Hounsfield units (HU). We used the qGG potential function (with
q = 2, p = 1.2 and δ = 10 HU) and nonuniform regularizer weights typical of helical CT
reconstruction [81]. The regularizer penalized all adjacent 3D neigbhors, i.e., |Nj| = 26.
We set the diagonal weight matrix W to

W = diag
j

{
[A′SA]jj

2

}
, (4.33)

where A is the so-called CT system matrix and S contains the statistical weights of the
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Figure 4.7: Results from the X-ray CT denoising problem. Figure 4.7a displays the center
slices of the initial noisy filtered backprojection image and the converged reference. Both
are displayed on a 800 - 1200 modified Hounsfield unit (HU) scale.

measurements [83].
We initialized each algorithm with x(0) = xFBP, the output of the classical analytical

filtered backprojection (FBP) algorithm. To include second-order methods like precon-
ditioned conjugate gradients in our comparison, we dropped the conventional nonneg-
ativity constraint used in X-ray CT. Figure 4.7a illustrates the center slice of xFBP and an
effectively converged reference image, x∗.

We solved the denoising problem with the proposed GCD algorithm, the separable
quadratic surrogate algorithm (SQS), and preconditioned conjugate gradients (PCG) us-
ing a diagonal preconditioner. We also ran GCD and SQS with Nesterov’s first-order ac-
celeration (GCD-N and SQS-N). Figures 4.7b and 4.7c plot the progress of each algorithm
towards x∗ as a function of iteration and time, respectively.

Preconditioned conjugate gradients converged quickly per iteration but comparably
to SQS by time. The high computational cost of PCG on the GPU is caused by the al-
gorithm’s inner products and multiple inner steps; the diagonal preconditioner added
negligible computational cost. Inner products are classically considered to be computa-
tionally cheap operations, but on the GPU and for this family of denoising problems, they
are a considerable computational burden. The algorithms that perform only local mem-
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ory accesses (SQS and GCD) and their accelerated variants converged significantly more
quickly by wall time. Of these, GCD and GCD-N converged the fastest.

4.5 Conclusions

The trend in modern computing hardware is towards increased parallelism instead of
better serial performance. This chapter presented image denoising algorithms for edge-
preserving regularization that play to the strengths of GPUs, the exemplar of this paral-
lelism trend. By avoiding operations like inner products or complex preconditioners and
minimizing memory usage, the proposed GCD algorithms provide impressive conver-
gence rates. The additional increase in performance provided by Nesterov’s first-order
acceleration is exciting, and further work is needed to characterize the theoretical be-
havior of the accelerated algorithms. This chapter focuses on gray scale images, but the
general approach is extensible to color images and video.
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CHAPTER 5

Duality and Tomography Problems

This chapter treats the following quadratic tomography optimization problem:

x̂ = argmin
x

1

2
||Ax− y||2Λu

+
1

2
||x− z||2Λv

. (5.1)

where A is the X-ray CT system matrix. Problems of this sort can appear in majorize-
minimize algorithms and variable-splitting algorithms [1, 42, 57, 63–66, 74], in addition to
being a rudimentary form of model-based image reconstruction. We present a duality-
based approach to solve this problem that bears similarities to ordered subsets (OS). Un-
like OS, however, the proposed algorithm is convergent, even with an arbitrarily large
number of subsets. We combine the proposed duality approach with the denoising algo-
rithm in Chapter 4 for a fast X-ray CT reconstruction algorithm.

5.1 Introduction

Variable splitting-based X-ray CT reconstruction algorithms often have as an inner step
a quadratic minimization problem involving the CT system matrix, A. For illustration,
consider an algorithm with a single “v = x” split:

L(x) =
1

2
||Ax− y||2W (5.2)

x̂ = argmin
x

min
v∈Ω

L(x) + R(v) such that v = x, (5.3)

This chapter is partially based on [53].
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with edge-preserving regularizer R. Applying ADMM to this constrained optimization
problem yields the following set of iterated updates:

x(n+1) = argmin
x

{
J(n)

x (x) = L(x) +
1

2

∣∣∣∣x− v(n) + ηv
(n)
∣∣∣∣2

Λv

}
(5.4)

v(n+1) = argmin
v∈Ω

R(v) +
1

2

∣∣∣∣v − x(n+1) + ηv
(n+1)

∣∣∣∣2
Λv

(5.5)

ηv
(n+1) = ηv

(n) + x(n+1) − v(n+1). (5.6)

In this case, the x update (5.4) is the quadratic “tomography subproblem.” Similar sub-
problems appear in many other variable splitting and majorize-minimize algorithms [1,
42, 57, 63–66, 74].

5.2 The tomography subproblem

In theory the tomography subproblem (5.4) should not be difficult to solve: it is quadratic,
unconstrained, and the system matrix A is sparse. Conventionally, one would think that
a preconditioned gradient-based method would be effective. In two dimensional CT re-
construction, this is indeed the case [74]. But in three dimensions, accurate and efficient
approximations to A′A (let alone A′WA) are difficult to find.

Regardless of how difficult it is to find a good preconditioner for the tomography
problem, conventional gradient-based methods (intuitively) need to compute a gradient
of the cost function J

(n)
x every iteration:

∇J(n)
x (x) = A′W(Ax− y) + Λv

(
x− v(n) + ηv

(n)
)
. (5.7)

This requires a full forward (A·) and back (A′·) projection. For a reasonably-sized shoul-
der scan, this operation takes around two minutes on an Intel Xeon E7-8860 with a well-
optimized multi-threaded C implementation and 12 threads. This is a disproportionally
large cost compared to computing the regularizer gradient.

Ordered subsets (OS) approximates the tomographic portion of the gradient by using
only a subset of the data and system matrix. This approximation enables the algorithm to
update x while considering only a subset of the data and system matrix, thereby cutting
down on computational costs. (Unfortunately, OS is an approximation and, outside of
an incremental gradient scheme or without some form of relaxation, does not converge to
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the true solution). The method we present below is similar to ordered subsets in this way:
the image x is updated by visiting only a subset of the data and system matrix. Unlike
OS, however, the proposed approach relies on no approximations and is convergent.

5.2.1 The duality trick

Instead of directly minimizing J
(n)
x (5.4) with a preconditioned gradient-based method, we

use a duality-based approach. First, rewrite J
(n)
x implicitly in terms of the sinogram-sized

variable u:

J(n)
x (x) = sup

u

{
S(n)(x,u) = (Ax− y)′Wu +

1

2

∣∣∣∣x− v(n) + ηv
(n)
∣∣∣∣2

Λv
− 1

2
||u||2W

}
. (5.8)

This may be a surprising transformation! If we solve the inner maximization of S(n)(x,u)

over u:

∇uS
(n)(x,u) = W(Ax− y)2

W −Wu = 0, (5.9)

u(x) = Ax− y, (5.10)

S(n)(x,u(x)) = (Ax− y)′W(Ax− y)− 1

2
||Ax− y||2W +

1

2

∣∣∣∣x− v(n) + ηv
(n)
∣∣∣∣2

Λv
(5.11)

= J(n)
x (x), (5.12)

so the two forms are equivalent. Solving the tomography subproblem (i.e., minimizing
J

(n)
x ) is equivalent to finding the saddle point:

x(n+1) = argmin
x

max
u

S(n)(x,u), (5.13)

where solving the interior maximization first (and rewriting u in terms of x) yields the
original minimization over J(n)

x .
Note that S is convex in x, concave in u, and continuous in both. In fact (5.13) can be

written as an example of Fenchel duality (see Section 2.2.3.2) with the dual variable of the
tomography term p scaled as u = Wp. We invoke Fenchel’s duality theorem to reverse
the order of minimization and maximization:

min
x

max
u

S(n)(x,u) = max
u

min
x

S(n)(x,u). (5.14)
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Peforming the now interior maximization over x,

x(u) = argmin
x

S(x,u), (5.15)

= v(n) − ηv
(n) + Λ−1

v A′Wu, (5.16)

and plugging back in to the right-hand side of (5.14) yields the dual problem:

u(n+1) = argmax
u

{
D(n)(u) = S(n)(x(u),u)

}
(5.17)

= argmax
u

−1

2
u′
(
W + WAΛ−1

v A′W
)
u + u′W

(
y −A

(
v(n) − ηv

(n)
))
. (5.18)

After finding an (approximate) solution to the dual problem (5.17), we find the resulting
update x(n+1)(u) using (5.16).

5.2.2 Solving the dual problem

The dual problem for the tomography subproblem (5.17) is an effectively unconstrained
quadratic maximization problem over the dual variable u and involving the CT system
matrix A. At first glance, it may seem that we have made things more difficult. The dual
problem must be solved with some iterative, probably gradient-based method, and the
gradients of D are sinogram-sized, much larger than the image-sized gradients of Jx.

However, recall that our goal is not necessarily to solve the dual problem. That is, if
û(n+1) is the exact solution to (5.17), our goal is not to find u(n+1) such that

∣∣∣∣u(n+1) − û(n+1)
∣∣∣∣2 (5.19)

is small. Instead, our goal is to find u(n+1) such that x(n+1)
(
u(n+1)

)
(via (5.16)) is a good

approximation to x̂(n+1), the exact solution to the tomography problem. In other words,
we want

∣∣∣∣x(u(n+1)
)
− x̂(n+1)

∣∣∣∣2 =
∣∣∣∣Λ−1

v A′W
(
u(n+1) − û(n+1)

)∣∣∣∣2 (5.20)

to be small. Since we’re interested only in the convergence of the backprojection of u(n)

to the solution of the dual problem, we can update only a subset of the variables in u(n)

at a time. Doing so requires only a partial projection and backprojection, but can update
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many of the pixels in the image.

5.2.3 View-by-view minorize-maximize algorithm

The method we used in [53] updates one view of u at a time. While this may result in a
relatively modest convergence rate for u→ û(n+1), updating each view of u updates x(u).
Experimental results indicate that this algorithm quickly finds an accurate approximation
to the tomography subproblem.

We group the entries of u into blocks according to view: u =
[
u1 · · ·uNβ

]
. The gradient

of D(n) with respect to the βth block is

∇uβD
(n)(u) = −

(
Wβ + WβAβΛ

−1
v Aβ

′Wβ

)
u + Wβ

(
yβ + Aβ

(
v(n) − ηv

(n)
))
. (5.21)

In the image domain, computing the gradient of the datafit term with respect to a subset
of the pixels requires a loop over many views. On the other hand, (5.21) indicates that
computing the gradient with respect to a subset of the rays in u involves only the corre-
sponding rays in the CT system model. This is a significant decrease in computational
cost.

Given the group gradient (5.21), the natural next step is to find a step size α(n)
β . Because

the dual problem is quadratic, we may be tempted to find the optimal step size:

α
(n)
β = argmax

α

D(n)
(
u(n) + α

(n)
β ∇uβD

(n)
(
u(n)

))
. (5.22)

Solving (5.22) amounts to performing one inner product in the image domain and one
inner product of a view-sized vector. At first glance, this seems inexpensive, but recall
that we are performing this operation for each view in the system matrix. Many helical
scans have upwards of 7,000 views, and at that scale even relatively inexpensive image-
sized inner products become impractical.

Instead of solving for the exact step size, we use a diagonal majorizer for the Hessian
of D(n) with respect to uβ [1]:

Hβ = Wβ + WβMβWβ, (5.23)
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where

Mβ = diag
i

{[
AβΛ

−1
v Aβ

′1
]
i

}
(5.24)

� AβΛ
−1
v A′β. (5.25)

Because the diagonal matrix Λv is nominally independent of the data, the majorizers Mβ

can be computed offline and stored.1 Since each Mβ majorizes only a subset of the Hessian
of the dual function D(n) (because we are optimizing at each step over only a subset of the
entries of u), it does not appear that using this MM algorithm results in unacceptably
small step sizes.

Figure 5.1 gives pseudocode for this view-by-view minorize-maximize algorithm. Pro-
cessing uβ requires forward projecting and backprojecting the βth view and performing a
few scalar operations. Consequently, running a loop through all the views in the system
matrix requires a comparable amount of computation to performing a full forward and
backprojection.

5.2.4 Update groups and order

The pseudocode in Figure 5.1 states to loop over the views “in a suitable order.” In Sec-
tion 5.4.1 we test this algorithm with several view orders:

• Sequential order, i.e., essentially in the order that the views were acquired by the
scanner. This means that we visit views in the “most correlated” order.

• Bit-reversal order, or FFT order, which visits views in a deterministic order such that
the views are spaced very far apart. This order can be constructed by representing
all the view indices in binary, zero-padded to the next power of two above Nview,
and sorted in reverse bit order.

• Random order, with the views selected uniformly and randomly without replace-
ment.

Our experiments indicate that bit-reversal ordering and random ordering of the views
appear to result in faster convergence than sequential ordering. This agrees with results

1In fact, for some system models, e.g., the separable footprint system model, [49], the Mβ can be com-
puted on-the-fly with each view with only marginal additional cost [42].
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• Precompute denominators mβ = AβΛ
−1
v Aβ

′1β

• At (outer) iteration zero, u(0) = 0, γ = 0

• Set z(n) = v(n) − ηv
(n).

• Loop over view β in a suitable order:

Project view d
(n+1)
β = Aβ

(
z(n) + Λ−1

v γ(n)
)

Compute update r
(n+1)
β =

u
(n)
β − yβ + d

(n+1)
β

1β + mβ �wβ

Update view u
(n+1)
β = u

(n)
β − r

(n+1)
β

Update backprojection γ ← γ + Aβ
′
(
wβ � r

(n+1)
β

)
• Output x(n+1) = z(n) −Λ−1

v γ

Figure 5.1: Pseudocode for the view-by-view duality-based algorithm to solve the tomog-
raphy subproblem

from the algorithmic reconstruction technique (ART) literature [30,31], another sinogram-
centric approach to tomographic reconstruction, that suggest updating an image with
rays that are uncorrelated or nearly orthogonal yields faster convergence than updating
more correlated sequentially.

5.2.4.1 View batches

In our experiments, we update only one view of u at a time. This limits the paralleliz-
ability of our algorithm, and there are several ways to instead update multiple projection
view-sized groups of u simultaneously.

If our data is a helical scan with sufficiently many turns or was acquired by a detector
with sufficiently few rows, some of the projection views may be nonoverlapping. That is,
the rays in some projection views pass through disjoint sets of pixels. These disjoint views
can be simultaneously updated without increasing the size of the diagonal majorizer Mβ .

Axial data sets or helical data sets with smaller coverage or wider detectors have fewer
(or no) disjoint views. In these cases one can still update multiple views of u at once, but
the entries of the diagonal majorizer Mβ will grow, making the updates to each view of u
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smaller. Let ug be a group of projection views. Precompute the diagonal majorizer

Mg = diag
i

{[
AgΛ

−1
v Ag

′1
]
i

}
, (5.26)

where Ag contains the corresponding rows of A. Because ug contains views with over-
lapping rays, the elements of Mg will be larger than in the original one-view groups. The
rest of the algorithm is identical to Figure 5.1, with single-view projections and backpro-
jections replaced by multiple-view ones.

5.2.4.2 Smaller-than-view groups

Instead of updating multiple view-sized groups of u at once, we can instead update
groups of u that contain subsets of projection views. This may be useful for CPU imple-
mentations, because conventionally CPUs can run fewer threads efficiently than GPUs.
An interesting approach is to select subsets of a single projection view; e.g., have ug con-
tain every nth channel of a projection view. For small n, the backprojection of ug may still
update the same set of pixels of x as the group containing all the channels in that view.
Because neighboring channels are “highly correlated” in the same way that neighboring
views are, this approach may result in acceleration (due to computing fewer rays in the
projection and backprojection steps) for architectures with less parallelism.

5.3 Reconstruction algorithm with tomography trick

If we use a duality-based algorithm to solve the tomography subproblem, we no longer
really need to store x(n), because x(n) is determined entirely by u(n) (5.16). Plugging (5.16)
into the ADMM iterates (5.4)-(5.6) and simplifying yields the following equivalent alter-
native form:

u(n+1) = argmin
u

1

2

∣∣∣∣u− u(n)
∣∣∣∣2

WAΛ−1
v A′W

− u′W
(
A
(
v(n) + v(n) − v(n−1)

))
+

1

2
||u− y||2W

(5.27)

v(n+1) = argmin
v∈Ω

1

2

∣∣∣∣v − v(n)
∣∣∣∣2

Λv
+
(
v − v(n)

)′A′Wu(n+1) + R(v). (5.28)

The ηv dual variable has disappeared into the v(n) − v(n−1) “momentum” term in the
u-update (5.27).
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Figure 5.2: Center slice of the converged reference image for the Tikhonov-regularized
example in Section 5.4.1, displayed on a [800, 1200] modified HU window

There are two “proximal terms” in the new update subproblems, (5.27)-(5.28), and
both of them involve the term Λv. The term

∣∣∣∣u− u(n)
∣∣∣∣2

WAΛ−1
v A′W

in (5.27) suggests that
selecting large Λv (and thus small Λ−1

v ) would result in relatively rapid convergence for
the u term. On the other hand, the

∣∣∣∣v − v(n)
∣∣∣∣2

Λv
term in (5.28) suggests that a small Λv

(and thus relatively large Λ−1
v ) will allow the v variable to rapidly evolve. Further analysis

based on these observations may help select a (possibly adaptive) scheme for setting Λv,
which is a common challenge for variable-splitting methods.

5.4 Experiments

This section presents three experiments: one that isolates the tomography subproblem,
and two full reconstruction experiments. All the algorithms in this section were imple-
mented in OpenCL with a lightweight C and Python wrapper. All experiments were run
on an NIVIDA GTX 480 GPU with approximately 2.5 GB of RAM.

5.4.1 Tikhonov-regularized CT reconstruction

The tomography subproblem (5.4) is essentially a Tikhonov-regularized reconstruction
problem. To examine the effect of different view access orders on the performance of
the duality-based minorize-maximize algorithm in Figure 5.1, we solved a Tikhonov-
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Figure 5.3: RMSD to converged reference for several algorithms in the Tikhonov-
regularized CT reconstruction problem in Section 5.4.1

regularized reconstruction problem,

x̂ = argmin
x

1

2
||Ax− y||2W +

µ

2
||x||2, (5.29)

with small µ, for a helical shoulder scan dataset. The center slice of the converged refer-
ence image is given in Figure 5.2. All algorithms were initialized from x(0) = 0.

We ran 10 iterations of ordered subsets with separable quadratic surrogates (OS-SQS)
[1] with 12 subsets. The more recent OS-momentum algorithm [43] was highly unstable
with this number of subsets, and we excluded it from the graph. We also ran the proposed
algorithm (Dual) with three different view-visit orders:

• sequential order, which accesses the views in same order that they were acquired;

• bit-reversal order, which accesses the views in a deterministic but highly non-correlated
order; and

• random order, which accesses the views in random order.
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Sequential order Random order

Figure 5.4: Center slice of Tikhonov-regularized reconstruction using the duality-based
algorithm with sequential and random access orders after one full forward and backpro-
jection; displayed on a [800, 1200] modified HU window.

Figure 5.3 illustrates the root-mean-squared-difference (RMSD) to the converged ref-
erence as a function of the number of full forward and backprojections each algorithm
performed. The duality-based algorithms converged most rapidly, and algorithms that
visited views in “uncorrelated” orders converged more rapidly than the algorithm with
sequential ordering. The center slice of the volume for the dual algorithm with sequential
and random order is illustrated in Figure 5.4. After only one iteration, the dual algorithm
with random access order produces a surprisingly high-quality image.

5.4.2 Axial XCAT reconstruction

We implemented the ADMM algorithm with the duality-based solver described in Sec-
tion 5.3. The penalty parameter Λv = µI was tuned coarsely by hand. We approxi-
mately solved the dual problem by performing one iteration through all the views using
proposed dual MM algorithm in bit-reversal (FFT) order. We ran eight iterations of the
group coordinate descent denoising algorithm described in [52, 54] and Chapter 4 to ap-
proximately implement the v update (5.28).

We instantiated a 1024 × 1024 × 192-voxel XCAT phantom and simulated projections
onto the GE Lightspeed scanner [86] with 888 channels, 64 rows and 984 views. We cor-
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Intial Reference

Figure 5.5: Center slice of initial image and converged reference for axial XCAT phantom
reconstruction in Section 5.4.2

rupted the data with simulated Poisson noise and reconstructed onto a 512×512×96-pixel
grid. The edge-preserving regularizer penalized all 26 three-dimensional neighbors with
the differentiable Fair potential. Figure 5.5 illustrates the center slice of the initial filtered
backprojection image and the converged reference we used in our experiments.

The proposed algorithm is compared to the ordered subsets algorithm (OS-SQS) [1]
and the momentum-accelerated ordered subsets algorithm (OS-SQS + Momentum). Both
ordered subsets algorithms used 12 subsets.

Figure 5.6 illustrates RMSD vs. time and iteration plots for the three algorithms. The
similarity between the two plots indicates the low overhead from the duality-based al-
gorithm and the denoising subproblem. The proposed algorithm also converges more
rapidly in early iterations than the OS-SQS + Momentum and, unlike the ordered subsets
algorithms, will converge to the true solution x̂.

5.4.3 Helical shoulder reconstruction

We performed a similar experiment using patient data from GE Healthcare. This dataset
was a 512×512×101-pixel reconstruction of a helical shoulder scan. The system geometry
had only 32 rows (instead of 64 in Section 5.4.2) and 7,146 views. Figure 5.7 illustrates
the center slice of the initial filtered backprojection image and the converged reference.
The edge-preserving regularizer penalized all 26 neighbors and used the q-generalized
Gaussian penalty function.
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Figure 5.6: Distance to reference image for several algorithms as a function of iteration
and time for the axial XCAT phantom reconstruction in Section 5.4.2, displayed on a [800,
1200] modified HU window

Intial Reference

Figure 5.7: Center slice of initial image and converged reference for helical shoulder re-
construction in Section 5.4.3, displayed on a [800, 1200] modified HU window
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Figure 5.8: Distance to reference image for several algorithms as a function of iteration
and time for the helical shoulder reconstruction in Section 5.4.3

We followed the same procedure in Section 5.4.2 and compared the proposed algo-
rithm to OS and OS + Momentum. Both ordered subsets algorithms used 12 subsets.
Figure 5.8 illustrates RMSD to the converged reference image by iteration and time.

We draw similar conclusions for this dataset as the previous one. The similarity be-
tween the per-iteration and per-time plots indicates that the additional overhead of the
proposed ADMM algorithm in relatively small. The proposed algorithm also converges
more rapidly than the ordered subsets-based algorithms, and can be seen to continue to
converge towards the converged reference even after the OS algorithms have begun to
approach their limit cycles.

5.5 Conclusions and future work

This chapter presented a duality-based approach to solving the tomography subproblem
that appears in many splitting-based and majorize-minimize algorithms. We tested the
algorithm in isolation on a Tikhonov-regularized CT reconstruction problem. The algo-
rithm requires only a small amount of additional computation over ordered subsets-based
algorithms, but unlike OS algorithms it is convergent. Most attractively, the proposed al-
gorithm converges very quickly.
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In our experiments, we updated the sinogram-sized dual variable u in projection
view-sized groups. Section 5.2.4 lists several other options that we have not experimen-
tally explored. Updating more than one group at a time may allow the algorithm to
exploit the high level of parallelism on the GPU. On the other hand, updating a subset of
a projection view at a time (e.g., updating every nth channel) may be more appropriate
for hardware with less parallel capacity like the CPU. Future work is needed to explore
these approaches.

We combined the tomography solver described in this chapter with the denoising al-
gorithm in Chapter 4 using variable splitting and the alternating directions method of
multipliers (ADMM) to form a CT reconstruction algorithm. The resulting algorithm
converges comparably quickly to the popular OS+Momentum algorithm, but unlike OS-
based algorithms will eventually find the true minimizer of the reconstruction cost func-
tion.

There are a few disadvantages of the proposed ADMM algorithm. There are a few
parameters to tune: in addition to the usual ADMM penalty parameters, the algorithm
designer must choose how many iterations to run when solving each subproblem. It is
also not clear how to parallelize the proposed algorithm over many GPUs, whereas the
multiple-GPU implementation of OS+Momentum in the next chapter is very straightfor-
ward.
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CHAPTER 6

Fast X-ray CT Reconstruction on the GPU

This chapter proposed a purely duality-based CT reconstruction algorithm. It com-
bines ideas from Chapters 4 and 5 using duality instead variable splitting and the alter-
nating directions method of multipliers (ADMM). This structure allows the algorithm to
tightly interleave denoising and tomography updates instead of doing them in chunks,
as in the ADMM algorithm in Chapter 5.

We implement the proposed algorithm on single and multiple GPUs. To mitigate
the cost of copying large amount of dual variables to and from the GPU, we perform
computation-heavy operations while the transfers are occurring. Experiments on real
and synthetic datasets indicate the algorithm converges rapidly.

6.1 Introduction

X-ray computed tomography (CT) model-based image reconstruction (MBIR) combines
information about system physics, measurement statistics, and prior knowledge about
images into a high-dimensional cost function [83]. The variate of this function is an image;
the image that minimizes this cost function can contain less noise and fewer artifacts than
those produced with conventional analytical techniques, especially at reduced doses [20,
22, 83].

The primary drawback of MBIR methods is how long it takes to find this minimizer.
In addition to general optimization algorithms like conjugate gradients with special-
ized preconditioners [15, 27], a wide range of CT-specialized algorithms have been pro-
posed to accelerate the optimization. One popular approach uses iterated coordinate

This chapter is partially based on [55, 56].

69



descent (ICD) to sequentially update pixels (or groups of pixels) of the image [25, 90].
ICD faces challenges from stagnating processor clock speeds and increasing paralleliza-
tion in modern computing hardware. Variable splitting and alternating minimization
techniques separate challenging parts of the cost function into more easily solved sub-
problems [65, 67, 73, 74]. When used with the ordered subsets (OS) approximation [1, 67],
these algorithms can converge very rapidly. Unfortunately, without some sort of stabi-
lizing relaxation, OS-based algorithms have uncertain convergence properties and can
diverge under certain circumstances. Nonetheless, combining OS with accelerated first-
order methods [39, 44] has produced simple algorithms with state of the art convergence
speeds.

This paper proposes an algorithm that shares some properties with prior works. Like
some variable splitting methods, our proposed algorithm consists of steps that consider
parts of the cost function in isolation. Separating jointly challenging parts of the cost
function from one another allows us to use specialized and fast solvers for each part. Our
algorithm also uses a group coordinate optimization scheme, somewhat like ICD, but the
variables it updates are in a dual domain; updating a small group of dual variables can
simultaneously update a large number of pixels in the image. Like ordered subsets algo-
rithms, our algorithm does need to visit all the measured data to update the image, but
unlike OS algorithms without relaxation, the proposed algorithm has some convergence
guarantees.

The next section sets up our MBIR CT reconstruction problem. Section 6.2 introduces
the mathematics of the proposed algorithm, and Section 6.3 describes our single- and
multiple-GPU implementations. Section 6.4 provides some experimental results and Sec-
tion 6.5 gives some conclusions and directions for future work.

6.1.1 Model-based image reconstruction

Consider the following X-ray CT reconstruction problem [83]:

x̂ = argmin
x≥0

L(Ax) + R(Cx). (6.1)

The CT projection matrix A ∈ RM×N models system physics and geometry, and the fi-
nite differencing matrix C ∈ RK×N computes the differences between each pixel and its
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neighbors. Both L and R are separable sums of convex functions:

L(p) =
M∑
i=1

li(pi), R(d) =
K∑
k=1

rk(dk). (6.2)

We call L the data-fit term because it penalizes discrepancies between the measured data
y ∈ RM and the CT projection of x. A common choice for L is a weighted sum of quadratic
functions; i.e.,

li(pi) =
wi
2

(pi − yi)2, (6.3)

with the weight wi > 0. Traditionally, the weight is the inverse of the variance of the ith
measurement, wi = 1/σ2

i .
Similarly, R encourages the reconstructed image x̂ to be smooth by penalizing the

differences between neighboring pixels. R is a weighted sum of often nonquadratically
penalized differences,

rk(dk) = βkψ(dk). (6.4)

The potential function ψ is convex, even and often coercive. The quadratic penalty func-
tion, φ(t) = 1

2
t2, while analytically tractable, tends to favor reconstructed images x̂ with

blurry edges because it penalizes large differences between neighboring pixels (i.e., edges)
aggressively. Potential functions ψ(t) that have a smaller rate of growth as |t| → ∞ are
called edge-preserving because they penalize these large differences less aggressively. Ex-
amples include the absolute value function φ(t) = |t| from total variation (TV) regular-
ization, the Fair potential, and the q-generalized Gaussian. The positive weights {βk} are
fixed and encourage certain resolution or noise properties in the image [14, 81].

Heuristically, the functions L and R have opposing effects on the reconstructed image
x̂: L encourages data fidelity and can lift the noise from the data y into the reconstructed
image, and R encourages smoothness at the cost of producing an image x that does not
fit the measurements as well. While combining L and R into one reconstruction prob-
lem allows us to have the “best of both worlds” (i.e., smooth images that fit the noisy
measurements), it significantly complicates the task of solving the reconstruction prob-
lem (6.1). Without the regularizer R, the reconstruction problem (6.1) could possibly be
solved using a fast quadratic solver. Conversely, without the data-fit term L (or using a
simpler one not involving the CT system matrix A), (6.1) becomes a denoising problem,
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for which many fast algorithms exist.
Variable splitting and alternating minimization provide a framework for separating

L and R into different sub-problems [2]. The ADMM algorithm in [74] used a circulant
approximation to the CT Gram matrix A′A to provide rapid convergence rates for 2D CT
problems. Unfortunately, the circulant approximation is less useful in 3D axial and helical
CT geometries. We partially overcame these difficulties in [53] by using a duality-based
approach to solving problems involving the CT system matrix, but the resulting algo-
rithm still used ADMM, which has difficult-to-tune penalty parameters and relatively
high memory use. Gradient-based algorithms like ordered subsets [1] (OS) with accel-
eration [44] and the linearized augmented Lagrangian method with ordered subsets [67]
(OS-LALM), can produce rapid convergence rates but rely on an approximation to the
gradient of data-fit term and have uncertain convergence properties. Some of these algo-
rithms require generalizations to handle non-smooth regularizers like total variation.

This paper describes an extension of the algorithms we introduced in [53,56]. The pro-
posed algorithm uses duality, group coordinate ascent with carefully chosen groups, and
the majorize-minimize framework to rapidly solve the reconstruction problem (6.1). We
extend the work in [56] by also considering the nonnegativity constraint x ≥ 0 in (6.1).
Our algorithm is designed with the GPU in mind: while it uses a large number of vari-
ables, the “working set” for each of the algorithm’s steps is small and easily fits in GPU
memory. We stream these groups of variables to the GPU and hide the latency of these
transfers by performing other, less memory-intensive computations. We show that the
proposed algorithm can be implemented on a machine with multiple GPUs for additional
acceleration.

6.2 Reconstruction algorithm

At a high level, our algorithm approximately performs the following iteration:

x(n+1) = argmin
x

J(n)(x), where (6.5)

J(n)(x) = L(A(x)) + R(Cx) + I(x) +
µ

2

∣∣∣∣x− x(n)
∣∣∣∣2, (6.6)
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with µ > 0. We have expressed the nonnegativity constraint x ≥ 0 as the characteristic
function I:

I(x) =
N∑
j=1

ιj(xj), where (6.7)

ιk(x) =

0, x ≥ 0;

∞, else.
(6.8)

Although ιk is discontinuous, it is convex.
The function on the right-hand side of (6.5) is as difficult to solve exactly as the orig-

inal cost function (6.1), and the additional proximal term µ
2

∣∣∣∣x− x(n)
∣∣∣∣2 would slow con-

vergence if (6.5) were performed exactly. However, the proximal term allows us to use
the following duality approach that “solves” (6.5) inexactly but quickly.

Let l∗i , r∗k and ι∗j denote the convex conjugates of li, rk and ιj , respectively, e.g., :

l∗i (ui) = sup
pi

piui − li(pi). (6.9)

Because li, rk and ιj are convex, they are equal to the convex conjugates of l∗i , r∗k and ι∗j ,
respectively. We use this biconjugacy property to write

li(pi) = sup
ui

piui − l∗i (ui). (6.10)

By summing over the indices i, j and k, we write L, R and I implicitly as the suprema of
sums of one-dimensional dual functions:

L(p) = sup
u

M∑
i=1

piui − l∗i (ui) = sup
u

u′p− L∗(u), (6.11)

R(d) = sup
v

K∑
k=1

vkdk − r∗k(dk) = sup
v

v′d− R∗(v), (6.12)

I(x) = sup
z

N∑
j=1

zjxj − ι∗j(zj) = sup
z

z′x− I∗(z). (6.13)
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With (6.11)-(6.13), we rewrite the update problem (6.5) as

x(n+1) = argmin
x

sup
u, v, z

S(n)(x,u,v, z), (6.14)

S(n)(x,u,v, z)
4
=
µ

2

∣∣∣∣x− x(n)
∣∣∣∣2 + (A′u + C′v + z)′x

− L∗(u)− R∗(v)− I∗(z). (6.15)

Reversing the order of minimization and maximization1 yields:

min
x

sup
u,v,z

S(n)(x,u,v, z) = sup
u,v,z

min
x

S(n)(x,u,v, z). (6.16)

The now inner minimization over x is trivial to perform. We solve for the minimizer x

and write it in terms of the dual variables u, v and z:

x̃(n+1)(u,v, z) = x(n) − 1

µ
(A′u + C′v + z). (6.17)

The value of x induced by the dual variables, x̃(n+1)(u,v, z), minimizes the update cost
function (6.5) when u, v, and z maximize the following dual function2:

D(n)(u,v, z)
4
= S(n)

(
x̃(n+1)(u,v, z),u,v, z

)
(6.18)

= − 1

2µ
||A′u + C′v + z||2

+ (A′u + C′v + z)′x(n)

− L∗(u)− R∗(v)− I∗(z). (6.19)

Solving (6.19) induces a value of x (6.17) that minimizes the original update problem (6.5).
We tackle this optimization problem using a stochastic group coordinate ascent algorithm
described in the next section. To accelerate convergence, we propose to maximize the dual
function D(n) approximately. Under conditions similar to other alternating minimization
algorithms like ADMM [18], the proposed algorithm is convergent even with these ap-
proximate updates; see Appendix E.

At a high level, our proposed algorithm iteratively performs the following steps:

1See Appendix C.
2See Appendix D.

74



1. form the dual function D(n) using x(n),

2. find u(n+1), v(n+1) and z(n+1) by running iterations of the stochastic group coordinate
ascent (SGCA) algorithm detailed in the following sections:

u(n+1),v(n+1), z(n+1) ≈ argmax
u,v,z

D(n)(u,v, z), (6.20)

3. and update x(n+1):

x(n+1) = x̃(n+1)
(
u(n+1),v(n+1), z(n+1)

)
. (6.21)

6.2.1 Stochastic group coordinate ascent

We propose to use a stochastic group coordinate ascent (SGCA) algorithm to perform the
dual maximization (6.20). The algorithm iteratively selects a group of variables (in our
case, a set of the elements of the dual variables u, v and z) via a random process and
updates them to increase the value of the dual function D(n). Because SGCA is conver-
gent [79], enough iterations of the algorithm in this section will produce dual solutions
u(n+1), v(n+1) and z(n+1) that are arbitrarily close to true maximizers û(n+1), v̂(n+1) and
ẑ(n+1). However, the solution accuracy that we really care about is how well the induced
image x(n+1) = x̃(n+1)

(
u(n+1),v(n+1), z(n+1)

)
approximates exact minimizer of (6.5). The

data-fit and regularizer dual variables u and v affect the induced image x̃(n+1), per (6.17),
through the linear operators A′ and C′ respectively. These linear operators propagate the
influence of a possibly small group of dual variables to many pixels: e.g., the elements
of u corresponding to a single projection view are backprojected over a large portion of
the image. Consequently, performing a relatively small number dual group updates can
significantly improve the image x̃(n+1)(u,v, z).

An SGCA algorithm updates one group of variables at a time. We can form these
groups arbitrarily, and as long each group is visited “often enough” the algorithm con-
verges to a solution [79]. To exploit the structure of D(n), we choose each group so that
it contains elements from only u, v or z; i.e., no group contains elements from different
variables. Sections 6.2.2, 6.2.3, and 6.2.4 describe the structures of and updates for each of
these groups.

Because our SGCA algorithm updates elements of the dual variables in random order,
conventional iteration notation becomes cumbersome. Instead, mirroring the algorithm’s
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implementation, we describe the updates as occurring “in-place.” For example, if uβ is
the set of elements of u corresponding to projection view β, then uβ ← u+

β means that we
replace the contents of uβ in memory with u+

β . To refer to the “current” value of a dual
variable in an update problem, we use a superscripted minus; e.g., u−β . It is convenient to
rewrite the quadratic and linear terms in D(n) using this notation and (6.17) by rewriting
the quadratic and linear terms in (6.19):

D(n)(u,v, z) = − 1

2µ

∣∣∣∣A′(u− u−
)

+ C′
(
v − v−

)
+ z− z−

∣∣∣∣2
+ (A′u + C′v + z)′x̃

− L∗(u)− R∗(v)− I∗(z), (6.22)

where the buffer x̃ = x̃(n+1)(u−,v−, z−). After updating a group of dual variables, e.g.,
u← u+, we update x̃ to reflect the update (6.17). The following sections detail these dual
variable updates.

6.2.2 Tomography (u) updates

Consider optimizing (6.22) with respect to some subset of the elements of u,

u+
g = argmax

ug

D(n)
(
u,v−, z−

)
(6.23)

= argmax
ug

− 1

2µ

∣∣∣∣ug − u−g
∣∣∣∣2

AgAg
′ − L∗g(ug) + ug

′Agx̃, (6.24)

where ug is a subset of the elements of u. Each member of this group corresponds to a one-
dimensional function in the original data-fit term (6.2) and also to a row of the projection
matrix A. The elements of ug are coupled together in (6.24) by the matrix AgAg

′, where
Ag contains the rows of A corresponding to the group ug.

If AgAg
′ were diagonal, i.e., if the rays corresponding to elements of ug were nonover-

lapping, then solving (6.24) would be trivial. (Of course this is also the case when ug is a
single element of u). However, updating ug using only nonoverlapping rays would limit
the algorithm’s parallelizability. Existing CT projector software may also not be well-
optimized for computing the projection and backprojection of individual rays instead of
e.g., a projection view at a time. If we allow ug to contain overlapping rays, then the
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coupling induced by AgAg
′ makes (6.24) expensive to solve exactly. Instead of using a

computationally expensive iterative method to find the exact solution to (6.24), we use a
minorize-maximize technique [35, 48] to find an approximate solution that still increases
the dual function D(n).

Let the diagonal matrix Mg majorize AgAg
′, i.e., the matrix Mg −AgAg

′ has no neg-
ative eigenvalues. Solving the following separable problem produces an updated u+

g that
increases the dual function D(n):

u+
g = argmax

ug

− 1

2µ

∣∣∣∣ug − u−g
∣∣∣∣2

Mg
− L∗g(ug) + ug

′Agx̃. (6.25)

In the common case that L(Ax) = 1
2
||Ax− y||2W, i.e., li(pi) = wi

2
(pi − yi)2, the dual L∗g is

L∗g(ug) =
1

2
||ug||2W−1

g
+ ug

′yg (6.26)

and the solution to (6.25) is

u+
g = (WgMg + µI)−1Wg

(
µ(Agx̃− yg) + Mgu

−
g

)
. (6.27)

It is computationally challenging to find an “optimal” diagonal majorizing matrix Mg �
AgAg

′, but the following matrix majorizes AgAg
′ and is easy to compute [1]:

Mg = diag
i

{
[AgAg

′1]i
}
. (6.28)

We precompute Mg for all groups g. This choice of Mg depends only on the system
geometry through Ag and not on any patient-specific data. If the groups are selected in a
regular way, the {Mg}will be very similar between groups and could be precomputed.

In our experiments, we used one group per view, and storing the diagonals of all the
majorizers {Mg} took the same amount of memory as the noisy projections y.

After updating the group ug (6.27), we “backproject” the update into x̃ (6.17):

x̃← x̃− − 1

µ
Ag
′(u+

g − u−g
)
. (6.29)

Altogether, updating ug and x̃ requires a forward projection and backprojection for the
rays in group g and a few vector operations (6.27).
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6.2.3 Denoising (v) updates

The regularizer R penalizes the differences between each pixel and its neighbors along a
predetermined set of Nr directions chosen by the algorithm designer. Common choices
for CT reconstruction are the three axis-aligned directions and the thirteen directions cor-
responding to all 3D neighbors of a voxel. The finite differencing matrix C ∈ RK×N

computes these differences, and each of the K = N ·Nr elements of the dual variable v is
associated with one of these differences.

The dual vector v is enormous: in our experiments, v is as large as thirteen images.
Storing a significant fraction of v on the GPU is impractical, so we want to update the
image x̃ using a group of elements vg. To make that update efficient, we would like the
group update problem,

v+
g = argmax

vg

− 1

2µ

∣∣∣∣vg − v−g
∣∣∣∣2

CC′
− R∗g(vg) + vg

′Cgx̃. (6.30)

to decouple into set of independent one-dimensional update problems.

6.2.3.1 Group design

The elements of vg are coupled in (6.30) only by the matrix CgCg
′. This matrix is banded

and sparse: it couples differences together that involve shared pixels. This coupling is very
local; Figure 6.1 illustrates groups that contain only uncoupled elements of v. Updating
each of these groups of differences has a “denoising” effect on almost all the pixels (up to
edge conditions) in the image and involves solving a set of independent one-dimensional
subproblems.

There are many ways to form groups these “covering but not overlapping” groups
of differences, but in our implementation we use the following simple “half-direction”
groups. Every element of v can be uniquely represented by a pixel location i = (ix, iy, iz)

and an offset o = (ox, oy, oz). The difference that vk represents is between the pixels located
at (ix, iy, iz) and (ix + ox, iy + oy, iz + oz). The elements of v corresponding to a single
direction all share the same offset and differ only in their pixel locations.

For each difference direction r = 1, . . . , Nr, we form two groups, vr,e and vr,o. We
assign every other difference “along the direction r” to each group. For example, if r
indicates vertical differences along the y axis then we assign to vr,e differences with even
iy and those with odd iy to vr,o. In Figure 6.1, the cyan group {v9, v10, v11, v15, v16, v17} and
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Figure 6.1: Illustration of groups of elements of the dual variable v for a two-dimensional
denoising case. Elements of v are updated in groups such that none of the groups affect
overlapping pixels. For examples, the horizontal differences {v1, v3, v5, v7} are one group
and {v2, v4, v6, v8} are another.
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the green group {v12, v13, v14} partition the vertical differences in this way.
More generally, let or = (ox, oy, oz) be the offset corresponding to direction r. Let

cr ∈ {0, 1}3 contain a single “1” in the coordinate corresponding to the first nonzero
element of or. For example,

or = (0, 1,−1)→ cr = (0, 1, 0), (6.31)

or = (0, 0, 1)→ cr = (0, 0, 1). (6.32)

Recall that ik is the location associated with the difference vk. We assign to vr,e those
differences vk along the direction r such that ik

′od is even.

6.2.3.2 One-dimensional subproblems

Assuming that vg has been chosen so that its elements are uncoupled by CgCg
′, the group

update problem (6.30) decomposes into a set of one-dimensional difference update prob-
lems:

v+
k = argmax

vk

− 1

µ
(vk − γ)2 − βkψ∗

(
vk
βk

)
(6.33)

γ
4
= v−k +

µ

2
[Cx̃]k, (6.34)

where ψ∗ is the convex conjugate of the potential function ψ. Some potential functions ψ
have convenient convex conjugates that make (6.33) easy to directly solve:

• Absolute value: If ψ(d) = |d|, then ψ∗ is the characteristic function of [−1, 1]. The
solution to (6.33) is

v+
k = [γ][−βk,βk]. (6.35)

i.e., the projection of γ onto the closed interval [−βk, βk].

• Huber function: If ψ(d) is the Huber function,

ψ(d) =

1
2
d2, |d| ≤ δ

δ
(
|d| − 1

2
δ
)
, else.

(6.36)
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then its dual is

ψ∗(v) =
1

2
v2 + ι[−δ,δ](v). (6.37)

The solution to (6.33) is

v+
k =

[
2βkγ

2βk + µ

]
[−βkδ,βkδ]

, (6.38)

In other cases, ψ∗ more difficult to work with analytically. For example, the Fair potential,

ψ(d) = δ2

(∣∣∣∣dδ
∣∣∣∣− log

(
1 +

∣∣∣∣dδ
∣∣∣∣)). (6.39)

is easier to work with in the primal domain, where it has a closed-form “shrinkage” op-
erator, than the dual domain. To exploit potential functions with convenient shrinkage
operators but inconvenient convex conjugates, we exploit the convexity of ψ∗ and invoke
biconjugacy:

βkψ
∗
(
vk
βk

)
= sup

qk

qkvk − βkψ(qk). (6.40)

Combining (6.40) and (6.33),

v+
k = argmax

vk

inf
qk
− 1

µ
(vk − γ)2 − vkqk + βkψ(qk). (6.41)

By a similar Fenchel duality argument to (6.16), we reverse the “max” and “inf” in (6.41).
The resulting expression involves ψ only through its “shrinkage” operator:

v+
k = γ − µ

2
q+
k , where (6.42)

q+
k = argmin

qk

µ

4

(
qk −

2

µ
γ

)2

+ βkψ(qk). (6.43)

After updating a group of differences vg, we update the buffer x̃ (6.17):

x̃← x̃− − 1

µ
Cg
′(v+

g − v−g
)
. (6.44)
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Because vg contains variables corresponding to nonoverlapping differences, each element
of vg updates two pixels in x̃, and each pixel in x̃ is updated by only one difference in vg.

6.2.4 Nonnegativity (z) updates

Updating each element of the image-sized dual variable z helps enforce the nonnegativity
constraint on the corresponding pixel of x̃. The dual function D(n) is separable in the
elements of z:

z+ = argmax
z

− 1

2µ

∣∣∣∣z− z−
∣∣∣∣2 + z′x̃− I∗(z) (6.45)

=
∑
k

− 1

2µ
(zk − ηk)2 − ι∗k(zk), where (6.46)

ηk
4
= z−k + µ[x̃]k. (6.47)

The dual characteristic function ι∗k is also a characteristic function, but on the nonpositive
numbers:

ι∗k(zk) =

∞, zk > 0

0, else.
(6.48)

We solve (6.46) by clamping ηk to the nonpositive numbers:

z+
k = [ηk](−∞,0]. (6.49)

After updating z (6.46) we update x̃:

x̃← x̃− − 1

µ

(
z+ − z−

)
. (6.50)

6.2.5 Warm starting

The dual variable updates in Sections 6.2.2, 6.2.3 and 6.2.4 find values for the dual vari-
ables, u(n+1), v(n+1) and z(n+1) that approximately maximize the dual update problem (6.19).
We use these dual variables and the induced solution x̃(n+1)

(
u(n+1),v(n+1), z(n+1)

)
, stored
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in the buffer x̃, to determine x(n+1):

x(n+1) = x̃(n+1)
(
u(n+1),v(n+1), z(n+1)

)
= x̃, (6.51)

then re-form the outer update problem (6.5) and repeat the process.
We initialize our algorithm with all the dual variables set to zero. We could also reset

the dual variables to zero every outer iteration, but this empirically leads to slow conver-
gence rates. Instead, mirroring a practice in other alternating directions algorithms, we
warm-start each outer iteration with the previous iteration’s dual variable values. This
has an extrapolation-like effect on the buffer x̃:

x̃← x̃(n+2)
(
u(n+1),v(n+1), z(n+1)

)
(6.52)

= x(n+1) − 1

µ

(
A′u(n+1) + C′v(n+1) + z(n+1)

)
(6.53)

= x(n) − 2

µ

(
A′u(n+1) + C′v(n+1) + z(n+1)

)
(6.54)

= x̃− +
(
x(n+1) − x(n)

)
. (6.55)

After initializing x̃ with this “extrapolated” value, subsequent iterated dual updates re-
fine the update. This extrapolation is just an initial condition for the iterative algorithm
solving the dual problem (6.19). If the dual function D(n+1) were maximized exactly then
this extrapolation would have no effect on x̂(n+1).

This section outlined the mathematical framework of our proposed CT reconstruction
algorithm. Using duality and group coordinate ascent, we decomposed the process of
solving the original reconstruction problem (6.1) into an iterated series of optimization
steps, each considering only a portion of the original cost function. The next section
describes how we implemented these operations on the GPU.

6.3 Implementation

For implementing the algorithm described in Section 6.2, graphics processing units (GPUs)
have two important properties:

• GPUs can provide impressive speedups for highly parallel workloads, and;

• GPUs often have much less memory than their host computers.
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The first property means that algorithm designers should favor independent operations
with regular memory accesses. Our proposed algorithm consists of five operations, each
of which can be efficiently implemented on the GPU:

• Tomography update (6.27): Updating the tomography dual variables correspond-
ing to a group of projection views, vg, consists of projecting those views, a few
vector operations, and then backprojecting those views. Implementing an efficient
CT system model on the GPU is nontrivial, and we rely on previous work in this
area [50, 85, 87].

• Denoising update (6.30): Updating a “half-difference” of elements of v is also highly
parallel. We assign one thread to each element dual variable being updated; each
thread updates two neighboring pixels of the image x̃. The workload for each thread
is independent, and memory accesses are both local and regular.

• The nonnegativity update (6.49) and warm starting operation (6.55) both consist
entirely of separable, parallelizable vector operations.

The GPU’s memory constraints are very relevant for imaging problems with large
amounts of data and many variables. For example, we performed the experiments in Sec-
tion 6.4 on a machine with four NVIDIA Tesla C2050s having 3 GB of memory apiece. The
wide-cone axial experiment in Section 6.4.4 requires about 894 MB each for the noisy data
y and the statistical weights W when stored in single-precision 32-bit floating point. Stor-
ing the regularizer parameters {βk} and a single image x would take an additional 907
MB apiece. Altogether, storing one image and the parameters of the reconstruction prob-
lem would take about 2.7 GB, leaving no room for the algorithm to store any additional
state on a single GPU!

Because the X-ray CT reconstruction problem (6.1) is so memory-intensive, many al-
gorithms will need to periodically transfer some data between the GPU and the host
computer. If performed naı̈vely, these transfers can have a significant effect on algorithm
speed. Fortunately, modern GPUs can perform calculations and memory transfers simul-
taneously, so we can “hide” the latency of these transfers to some degree.
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6.3.1 Streaming

Our algorithm has many variables: the dual variable v alone is often as large as 13 im-
age volumes. Along with the reconstruction problem’s parameters, this is far too much
to fit simultaneously on the GPU for many realistic problem sizes. Fortunately, each of
proposed algorithm’s operations requires a comparatively small subset of these data. For
example, performing a tomography update requires only x̃, and the data, weights and
dual variables corresponding to the view being updated.

The algorithm in Figure 6.2 allocates on the GPU only

• a buffer containing x̃,

• an image-sized buffer for storing z or a subset of v,

• the regularizer parameters {βk},

and several negligibly small view-sized buffers on the GPU. The dual variables are stored
primarily on the host computer and transferred to and from the GPU as needed.

The tomography update requires a relatively small amount of data: several view-sized
buffers. Even for the wide-cone reconstruction in Section 6.4.4, each tomography update
requires less than 4 MB of projection-domain data. The projection and backprojection
involved in the tomography update take much longer to perform than it takes to transfer
the dual variables and weights to and from the GPU. Therefore, the tomography update
is computation-bound. On the other hand, the nonnegativity, denoising, and warm-start
operations require whole images to be transferred to and from the GPU with relatively
small amounts of computation. The speed with which these operations can be performed
is bounded by the latency of data transfers between the host computer and the GPU.

Modern GPUs can perform computations and transfer memory at the same time.
This allows us to “hide” some of the cost of latency-bound operations by performing
computation-bound operations and vice versa. The pseudocode in Figure 6.2 interleaves
computation-bound and transfer-bound operations. After each large memory transfer is
begun, the algorithm performs Ntomo tomography updates. These tomography updates
serve to “hide” the latency of the large memory transfer by performing useful work in-
stead of waiting for the relatively slow memory transfer to finish. Section 6.3.3 discusses
selecting Ntomo and other algorithm parameters.

86



6.3.2 Multiple-device implementation

Besides providing more computational resources, implementing a CT reconstruction al-
gorithm on multiple GPUs can reduce the memory burden on each device. Many “dis-
tributed” algorithms either store additional variables on each node and/or perform re-
dundant calculations to avoid very expensive inter-node communications [7, 16, 40, 76].
These designs are based on the assumption that communication between devices is ex-
tremely expensive. It may be tempting to view multiple-GPU programming as a “dis-
tributed” setting, but at least in CT reconstruction, frequent communication between the
host computer and the GPU(s) seems necessary due to GPU memory constraints. Adding
additional GPUs that regularly communicate to the host need not significantly increase
the total amount of communication the algorithm performs. Instead of using a more so-
phisticated “distributed” algorithm framework [40], we distribute the memory and com-
putation of the single-GPU algorithm over multiple devices in a straightforward way.

Similar to [88, Appendix E], we divide all image-sized buffers into Ndevice chunks
transaxially, e.g., along the y direction. Note that this is a different approach from [40,76],
where the image is divided axially along z. Each device also stores two NxNz-pixel
padding buffers. Because the image-sized buffers are the largest buffers our proposed
algorithm stores on the GPU, this effectively reduces the memory burden on each device
by a factor of almost Ndevice.

6.3.2.1 Tomography update

The buffer x̃ is distributed across multiple GPUs. Fortunately, the tomography update (6.27)
is linear in x̃. When updating the group of dual variables ug, each device projects its
chunk of x̃ and sends the projection to the host computer. The host accumulates these
projections, performs the update (6.27), and transmits the dual update u+

g − u−g back to
each device. Each device then backprojects the update into its chunk of the volume, up-
dating the distributed x̃.

6.3.2.2 Denoising update

Every element of the dual variable v couples two pixels together. Most of these pairs of
pixels lie on only one device; in these cases, the denoising update is simple and requires
no additional communication between the GPUs. However, some of the elements of v

couple pixels that are stored on different GPUs. Prior to performing the update for these
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elements, the algorithm must communicate the pixels on the GPU boundaries between
devices.

Fortunately, such communication is needed for only roughly a quarter of the denois-
ing updates. Most of the “half-difference” groups in which v is updated require no com-
munication. For example, in Figure 6.1 suppose that {x1, . . . , x6} were stored on one
device and {x7, . . . , x12} are stored on another. Updating the green group of differences
{v12, v13, v14} would require communication between the devices, but updating the cyan
group {v9, v10, v11, v15, v16, v17}would not.

6.3.2.3 Nonnegativity update and warm-starting

The nonnegativity update and warm-stating operation are both separable in the elements
of the dual variables and x̃, so implementing these operations on multiple devices is
straightforward.

6.3.3 Parameter selection

There are three parameters in the algorithm listed in Figure 6.2: Ntomo,Nsubset and µ. These
parameters affect the algorithm’s convergence speed but not the converged image. This
section gives the heuristics we used to set the values of these parameters, but the pro-
posed algorithm can be used with a wide range of values for these variables.

The algorithm performs an outer update (i.e., increments the iteration n) after updat-
ing Nview/Nsubset views of u, chosen randomly with replacement. In that time, it performs

Ndenoise =
Nview

2NtomoNsubset
(6.56)

denoising updates. We heuristically setNdenoise to be large enough that the expected num-
ber of outer iterations between updating an element of v is about one. Because each de-
noising update modifies half of the elements of v corresponding to a single direction,
this means Ndenoise ≈ 2Nr, where Nr is the number of directions along which the regular-
izer penalizes differences. For the common case of penalizing differences in 13 directions
around each pixel (as in our experiments), we want Ndenoise ≈ 26. We then choose Nsubset

to be about twice Ntomo.
For example, in the shoulder case below, Nview = 6852. We set Ntomo = 8 and Nsubset =

18, yielding Ndenoise = 23. The wide cone case had Nview = 984; we used with Nsubset = 6
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and Ntomo = 3, resulting in Ndenoise = 27.
We chose µ using the mean of the entries of the diagonal matrix MW, where W con-

tains the weights in the data-fit term and M contains the entries of all the diagonal ma-
jorizers for the tomography update (6.28):

µ =

∑M
i=1 [MW]ii

4 ·M
. (6.57)

This heuristic is intended to yield a well-conditioned tomography update (6.27). Smaller
µ would make outer proximal majorization tighter (6.5) at the cost of making the dual
problem (6.19) possibly more ill-conditioned.

6.4 Experiments

This section presents experimental results on two datasets: a helical shoulder scan using
real patient data in Section 6.4.3 and a wide-cone axial scan using simulated data in Sec-
tion 6.4.4. For both cases we measured the progress of all algorithms tested towards a
converged reference x̂ using the root mean squared difference (RMSD):

RMSD
(
x(n)

)
=

√
||x(n) − x̂||2MROI

NROI
. (6.58)

The diagonal matrix MROI discards images’ “end slices” that are needed due to the “long
object problem” in cone-beam CT reconstruction but not used clinically.

All algorithms were implemented with the OpenCL GPU programming interface and
the Rust programming language. We used the separable footprints CT system model [49].
Experiments were run on a machine with 48 GB of RAM and four aging NVIDIA Tesla
C2050s with 3 GB of memory apiece. We expect that more modern hardware would
accelerate the runtimes of all the algorithms tested, but their relative speeds would be
mostly unchanged.

6.4.1 Ordered subsets

In addition to the proposed algorithm, we implemented multiple-device versions of the
popular ordered subsets (OS) algorithm with several types of momentum-based acceler-
ation [1, 39, 44]. The OS implementations store the following variables on the GPU:
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• the current image x,

• the coefficients of the diagonal majorizer D � A′WA,

• an accumulator for the current search direction,

• the regularizer parameters {βk}, and

• an additional image-sized variable to store the momentum state, if applicable.

The OS methods require more image-sized buffers than our proposed algorithm. Like
the proposed algorithm, these image-sized volumes are divided across multiple GPUs
transaxially, so the memory burden for each device decreases almost linearly with the
number of devices. The devices must communicate pixels that lie on an edge between
devices before computing a regularizer gradient; this happens Nsubset times per iteration.

6.4.2 Equivalent iterations

To meaningfully compare the per-iteration performance of the proposed algorithm and
the ordered subsets (OS) algorithms we use “equivalent iterations,” or equits [90]. Be-
cause the most computationally intensive part of these algorithms is projection and back-
projection, one equit corresponds to computing roughly the same number of forward and
backprojections:

• For OS, one equit corresponds to a loop through all the data.

• For the proposed algorithm, one equit corresponds to Nsubset iterations; e.g., x(Nsubset)

and x(2Nsubset) are the outputs of successive equits. Over this time, our algorithm
computes about Nview forward and backprojections.

The proposed algorithm performs more denoising updates than OS and transfers more
memory between the host and GPU in an equit, so each equit takes longer to perform.
Nonetheless, as the following experiments show, the proposed algorithm converges con-
siderably more quickly than the OS algorithms in terms of runtime.

6.4.3 Helical shoulder scan

Our first reconstruction experiment uses data from a helical scan provided by GE Health-
care. The data were 6852 views with 888 channels and 32 rows. We reconstructed the im-
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(a) Filtered backprojection (b) Reference

(c) OS-OGM with 4 GPUs after 8 equits (5.2
minutes)

(d) Proposed with 4 GPUs after 5 equits (4.8
minutes)

Figure 6.3: Top row: initial FBP and reference images for the helical shoulder case in
Section 6.4.3. Bottom row: images from the proposed algorithm and the state of the art
OS-OGM algorithm on 4 GPUs after about 5 minutes. Images have been trimmed and are
displayed in a [800, 1200] modified Hounsfield unit window.
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Figure 6.4: Convergence plots for the helical shoulder case in Section 6.4.3. Markers
are placed every five equits. The proposed algorithm on one device converges about
as quickly as the state of the art OS-OGM algorithm does on four devices. Additional
devices provide further acceleration.
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Time to converge within
Algorithm Per equit 5 HU RMSD 2 HU RMSD

OGM-1 114 sec. 1290 sec. 21.5 min. 3519 sec. 58.6 min.
OGM-2 62 sec. 702 sec. 11.7 min. 1786 sec. 29.8 min.
OGM-4 38 sec. 430 sec. 7.2 min. 1092 sec. 18.2 min.

Proposed-1 130 sec. 565 sec. 9.4 min. 973 sec. 16.2 min.
Proposed-2 82 sec. 332 sec. 5.5 min. 587 sec. 9.8 min.
Proposed-4 57 sec. 229 sec. 3.8 min. 408 sec. 6.8 min.

Table 6.1: Timings for the helical case in Section 6.4.3.

age on a 512×512×109-pixel grid. The regularizer penalized differences along all 13 direc-
tions (i.e., 26 3D neighbors) with the Fair potential function (6.39) with δ = 10 Hounsfield
units (HU). All iterative algorithms were initialized using the filtered backprojection im-
age in Figure 6.3a. Figure 6.3b shows an essentially converged reference, generated by
running thousands of iterations of momentum-accelerated separable quadratic surro-
gates [44] (i.e., ordered subsets with one subset).

We ran the proposed algorithm with Ntomo = 8 and Nsubset = 18. We also ran ordered
subsets with 12 subsets (OS) [1], OS with Nesterov’s momentum [44] (FGM), and OS with
a faster acceleration [39] (OGM) on one, two and four GPUs. Figure 6.4 shows RMSD in
Hounsfield units against time and equivalent iteration.

Figure 6.4a shows the proposed algorithm converging considerably faster than the
OS-type algorithms in terms of equits, and unlike the OS-type algorithms will converge
to the solution x̂ if run for long enough3. The per-equit acceleration is not only a result of
the proposed algorithm doing more work per equit than the OS algorithms: Figure 6.4c
shows that the proposed algorithm on one GPU achieves early-iteration performance
comparable to the fastest OS algorithm with four GPUs.

Table 6.1 lists several timings for the algorithms in this experiment. Although the OS
algorithms achieved more dramatic speedups using multiple devices than the proposed
algorithm, additional devices did help accelerate convergence. Figures 6.3c and 6.3d
show images from both algorithms on four devices after about five minutes of compu-
tation. The proposed algorithm produced an image that much more closely matches the
converged reference.

3See Appendix E
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Time to converge within
Algorithm Per equit 5 HU RMSD 2 HU RMSD

OGM-2 85 sec. 976 sec. 16.3 min. – –
OGM-4 50 sec. 569 sec. 9.5 min. 1193 sec. 19.9 min.

Proposed-2 126 sec. 516 sec. 8.6 min. 939 sec. 15.6 min.
Proposed-4 98 sec. 380 sec. 6.3 min. 661 sec. 11.0 min.

Table 6.2: Timings for the axial case in Section 6.4.4.

6.4.4 Wide-cone axial simulation

Our second experiment is a wide-cone axial reconstruction with a simulated phantom.
We simulated a noisy scan of the XCAT phantom [78] taken by a scanner with 888 chan-
nels and 256 rows over a single rotation of 984 views. Images were reconstructed onto a
718× 718× 440-pixel grid. As in Section 6.4.3, the regularizer used the Fair potential and
penalized differences along all 13 neighboring directions. All iterative algorithms were
initialized with the filtered backprojection image in Figure 6.5a. An essentially converged
reference image is shown in Figure 6.5b.

This problem was too large to fit on one of our 3 GB GPUs, so we present results for
two and four GPUs. We ran the same set of OS algorithms as the previous experiment
with 12 subsets. The proposed algorithm used Nsubset = 6 and Ntomo = 3.

Figures 6.6a and 6.6c show the progress of the tested algorithms towards the con-
verged reference. The proposed algorithm running on two devices is about as fast as
OS-OGM running on four devices, and additional devices accelerate convergence even
more. Figures 6.5c and 6.5d illustrate outputs from OS-OGM and the proposed algorithm
after about five minutes. After five minutes, the OS algorithm still contains noticeable
streaks that the dual algorithm has already removed. Both algorithms have significant
distance to the reference at the end slices of the image after five minutes.

Table 6.2 lists timings for OS-OGM and the proposed algorithm. The trends are similar
to the smaller helical case in Table 6.1. The OS algorithms scale better (1.7× faster) than the
proposed algorithm (1.2× faster) from two to four GPUs, but the acceleration provided
by the proposed algorithm is enough to compensate for lower parallelizability.
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(a) Filtered backprojection (b) Reference

(c) OS-OGM with 4 GPUs after 6 equits (5.2
minutes)

(d) Proposed with 4 GPUs after 3 equits (4.7
minutes)

Figure 6.5: Top row: initial FBP and reference images for the wide-cone axial case in
Section 6.4.4. Bottom row: images from the proposed algorithm and the state of the art
OS-OGM algorithm on 4 GPUs after about 5 minutes. Images have been trimmed and are
displayed in a [800, 1200] modified Hounsfield unit window.
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Figure 6.6: Convergence plots for the wide-cone axial case in Section 6.4.4. Markers are
placed every five equits. The proposed algorithm converges about as quickly on two
devices as OS-OGM does on four. Additional devices accelerate convergence.
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6.5 Conclusions and future work

We presented a novel CT reconstruction algorithm that uses alternating updates in the
dual domain. The proposed algorithm is fast in terms of per-iteration performance and
“wall clock” runtime, and it converges more quickly than popular state of the art ordered
subsets algorithms. The algorithm also eventually converges to the true solution of the
statistical reconstruction problem, and it can handle a wide range of regularizers includ-
ing the nondifferentiable total variation regularizer.

The algorithm also maps well onto the GPU. Many of its steps are highly parallelizable
and perform regular memory accesses, which are essential qualities for good GPU perfor-
mance. Although the algorithm stores many variables in the host computer’s memory, the
amount of memory required for each update is relatively small, and we hide the latency
of transferring variables to and from the GPU by performing computation-bounded op-
erations. Finally, the proposed algorithm is easily adapted for multiple GPUs, providing
further acceleration and decreasing the memory burden on each GPU.

Due to communication overhead, the acceleration provided by adding additional GPUs
showed diminishing returns. To achieve further acceleration, multiple computers (or
groups of GPUs on a single node) may need to be combined using a “distributed” algo-
rithm framework [7, 40]. How to best adapt the proposed algorithm to these frameworks
is future work.

The proposed algorithm introduces a dual variable for each difference penalized by
the edge-preserving regularizer R. While this memory cost is not too great for a reasonably-
equipped modern computer when only the 13 neighbors around each pixel are considered
by the regularizer, significantly increasing the number of differences computed may make
the approach we take in this paper infeasible. Consequently, adapting the proposed algo-
rithm for patch-based or nonlocal regularizers may be challenging.

The random process we use for choosing which groups of the tomography dual vari-
able u and denoising dual variable v to update is basic and almost certainly suboptimal.
A more sophisticated strategy may provide additional acceleration. We currently also
keep the parameter µ constant, but future work will explore if modifying µ as the algo-
rithm runs, e.g., [67], can accelerate convergence further. Finally, future work will explore
replacing our heuristic operation counts (e.g., Ntomo) with algorithmically tuned values.
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CHAPTER 7

Algorithmic majorizer design

Given a symmetric matrix H, we say that the symmetric matrix M majorizes H if none
of the eigenvalues of M − H are negative. Matrix majorizers are central to majorize-
minimize algorithms and are ubiquitous in image processing algorithms; e.g., Chap-
ters 4, 5, and 6 of this thesis. Better majorizers can significantly affect how quickly al-
gorithms converge [58], but majorizers are usually designed by hand on a per-problem
basis. Algorithmic majorizer design expands the class of usable majorizers and reveals
more effective majorizers, but a straightforward semidefinite programming approach re-
quires too much memory to be computationally feasible.

This chapter presents an algorithmic approach to designing a majorizing matrix M

for a general given symmetric H. The algorithm we present has relatively low memory
requirements, and it is practical for large problems where storing dense N × N matrices
would be infeasible. The goal of this chapter is to enable the design of more exotic ma-
jorizers than are currently accessible using various inequalities. Hopefully this leads to
tighter [17] majorizers and faster convergence [24].

7.1 Introduction

Let H ∈ RN×N be a given symmetric positive semidefinite matrix. Our goal is to find
another matrix M � H that majorizes H. That is, we want the difference matrix M −H

to be positive semidefinite.
Conventionally, M is found using a collection of inequalities and matrix properties. A

simple and common bound is λmax(H)I, which is often used in optimization algorithms
for which the cost function gradient is Lipschitz continuous (with Lipschitz constant
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λmax(H)). This is a very loose bound. A tighter bound is the diagonal matrix

MSQS = diag
j

{
N∑
i=1

|H|ij

}
. (7.1)

We call this the “separable quadratic surrogates” (SQS) majorizer due to its ubituity in
ordered subsets with SQS (OS-SQS) algorithms [1]. If H contains only nonnegative entries
(e.g., A′WA, the Hessian of the X-ray CT datafit term) then MSQS can be quickly computed
via

MSQS = diag
j

{
[H1]j

}
. (7.2)

Our experiments suggest that MSQS is a fairly tight majorizer when H contains only non-
negative entries, and its ease of computation (7.2) make it a very useful tool. However,
when H contains negative entries, MSQS appears to be less tight. In this case, carefully
designed majorizers that exploit the structure of H, e.g., [58], can significantly improve
on MSQS.

We will design majorizers of the following form:

M = K′DK, (7.3)

where D ∈ RK×K is a diagonal matrix and K ∈ RK×N , K ≥ N has full column rank.
We assume the matrix K is given beforehand and focus on designing D. A special case
is K = I, which leads to a diagonal majorizer. To encourage more “tight” majorizers, we
penalize the entries of D:

M = K′D̂K, where (7.4)

D̂ = argmin
D:K′DK�H

1

2
||d||22. (7.5)

7.1.1 Semidefinite programming approach

The design problem (7.5) is a convex optimization problem over a convex set and can
be solved in a conceptually straightforward way with variable splitting and contrained
optimization. Unfortunately, the constraint K′DK � H is difficult to enforce without
storing and manipulating dense N ×N matrices.
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Introduce the auxiliary variable G = K′DK−H. We formulate the design problem as

D̂ = argmin
D

min
G

1

2
||d||22 such that G = K′DK−H and G � 0. (7.6)

We enforce the G = K′DK−H constraint in the following augmented Lagrangian:

L(D,G; E) =
1

2
||d||22 +

µ

2
||G−K′DK−H + E||2F . (7.7)

The alternating directions method of multipliers (ADMM) [18] provides the following
convergent procedure to find the solution of (7.6):

D(n+1) = argmin
D

L
(
D,G(n); E(n)

)
, (7.8)

G(n+1) = argmin
G�0

L
(
D(n+1),G; E(n)

)
(7.9)

= argmin
G�0

µ

2

∣∣∣∣G− (K′D(n+1)K−H− E(n)
)∣∣∣∣2

F
, (7.10)

E(n+1) = E(n) + K′D(n+1)K−H−G(n+1). (7.11)

The updates (7.8)-(7.11) are easy to implement in principle, but (7.10) and (7.11) require
storing dense N ×N matrices. The G update (7.10), projection of the matrix K′D(n+1)K−
H − E(n) onto the semidefinite cone, involves computing the eigenvalue decomposition
of an N ×N matrix and thresholding negative values [8]. The resulting G(n+1) is a struc-
tureless N ×N matrix, so the E(n+1) computed in (7.11) is also a dense N ×N matrix.

While (7.8)-(7.11) produces a series of iterates
{
D(n)

}
that converge to the solution

to (7.5), the associated computation and memory requirements are too great for practically
sized N . The next section presents an algorithm that produces a suboptimal result but
requires only a fraction of the memory.

7.2 Duality-based approach

The duality-based algorithm proposed in this section only stores vectors in RK and RN

and does not store or operate on arbitrary N × N matrices. This makes it feasible to use
this algorithm to majorize the large linear operators used in image processing.
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Let Ω be the set of values of d for which K′DK majorizes H:

Ω = {d : K′DK � H}. (7.12)

Our algorithm relies on the following characterization of the characteristic function on Ω,
IΩ:

IΩ(d) =

0, d ∈ Ω;

+∞, else
(7.13)

= sup
x

x′(H−K′DK)x (7.14)

= sup
x

−d′(Kx)2 + x′Hx, (7.15)

where (Kx)2 contains the elementwise squares of Kx. Although we treat this like a con-
jugate representation of IΩ, it does not use the convex conjugate of IΩ. Plug (7.15) into the
original design cost function (7.5):

d̂ = argmin
d

sup
x

S(d,x) (7.16)

S(d,x) =
1

2
||d||2 − d′(Kx)2 + x′Hx. (7.17)

As is often the case when we write equations of the form (7.16), we want to switch the
order of minimization and maximization. We cannot appeal to the well-known Sion min-
imax theorem or Fenchel duality theorem to perform this transposition. Nonetheless,
there is no duality gap1,

inf
d

sup
x

S(d,x) = sup
x

inf
d

S(d,x), (7.18)

1See Appendix F
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and we proceed:

d̂ = argmin
d

S(d,x) (7.19)

= (Kx̂)2 (7.20)

= d̃(x̂) (7.21)

x̂ = argmax
x

D(x) (7.22)

D(x) = S
(
d̃(x),x

)
(7.23)

= −1

2
||Kx||44 + x′Hx. (7.24)

Because S is strongly convex in d, strong duality can be combined with the proof in Ap-
pendix D to show that the induced primal value d̃(x̂) is the same solution to the original
problem (7.5).

7.2.1 Solving the dual problem

The dual function D (7.23) is neither purely convex nor concave, so we cannot expect
to find x̂ by directly applying a gradient-based method. We use duality to rewrite the
convex part of D for simplicity. The resulting function is not jointly concave in all its
variables, so gradient-based methods and alternating optimization will converge only to
a local maximum.

For the rest of this chapter, we assume that H can be decomposed as H = F′F. This is
often the case for the Hessians in image processing algorithms. Rewrite the x′Hx term in
D (7.23) using biconjugacy:

D(x) = −1

2
||Kx||44 + x′Hx (7.25)

= −1

2
||Kx||44 + ||Fx||22 (7.26)

= −1

2
||Kx||44 + sup

z

z′Fx− 1

4
||z||22, (7.27)
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because the convex conjugate of ||·||22 is 1
4
||·||22. Combine (7.27) with (7.23):

x̂ = argmax
x

sup
z

Q(x, z) (7.28)

Q(x, z) = −1

2
||Kx||44 + z′Fx− 1

4
||z||22. (7.29)

We alternately maximize Q over z and x. Holding x = x(n) fixed and maximizing over
z is trivial:

z(n+1) = 2Fx(n). (7.30)

The optimization over x with z = z(n+1) fixed is slightly more complicated. We perform a
single step of steepest ascent:

x(n+1) = x(n) + α(n)∇xQ
(
x, z(n+1)

)
. (7.31)

The gradient of Q with respect to x is

g(n) = ∇xQ
(
x, z(n+1)

)
= −2K′(Kx)3 + F′z(n+1). (7.32)

The step size α(n) is chosen to maximize Q:

α(n) = argmax
α

Q
(
x(n) + αg(n)

)
(7.33)

≡ argmax
α

−
∣∣∣∣Kg(n)

∣∣∣∣4
4

2
α4

− 2
[(

Kg(n)
)3
]
′(Kx(n)

)
α3

− 3
[(

Kg(n)
)2
]
′
[(

Kx(n)
)2
]
α2

−
(

2
(
Kg(n)

)′[(Kx(n)
)3
]
−
[
d(n)

]′F′z(n+1)
)
α. (7.34)

One can use either a root-finding routine or one of the formulae for the roots of a third
degree polynomial to perform the line search.
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7.2.2 Suboptimality and feasibility

The alternating maximization algorithm in the previous section converges to a local maxi-
mum of D. Fortunately, although the local maxima of Q are suboptimal and do not induce
majorizers of H, we can use them to find an suboptimal (but feasible) solution to the ma-
jorizer design problem (7.5).

Let x̃ be a local maximum of D. The Hessian of D at x̃ is

∇2
x̃D = −6K′

[
diag
j

{
[Kx̃]2j

}]
K + 2H. (7.35)

Because x̃ is a local maximum of D, the Hessian of D must be negative semidefinite at this
point. Therefore,

3K′

[
diag
j

{
[Kx̃]2j

}]
K � H. (7.36)

Alternatively, one can run power iteration to determine the maximum eigenvalue

α = λmax

(K′

[
diag
j

{
[Kx̃]2j

}]
K

)−1/2

H

(
K′

[
diag
j

{
[Kx̃]2j

}]
K

)−1/2
 (7.37)

and use the majorizer

αK′

[
diag
j

{
[Kx̃]2j

}]
K � H. (7.38)

To summarize, our proposed memory-efficient majorizer design procedure is

• Given H and K, find a local maximum of the dual function D (7.23). The alternating
directions procedure in Section 7.2.1 is simple and converges to a local optimum.
Let x̃ be the local maximizer.

• Set the diagonal matrix D to

D̃ = α

[
diag
j

{
[Kx̃]2j

}]
, (7.39)

where 1 ≤ α ≤ 3 is either 3 or determined with power iteration. The resulting
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(a) F (b) H (c) MDesign-Circ+Diag

Figure 7.1: The nonnegative matrices F and H from the experiment in Section 7.3.1, and
the matrix MDesign-Circ+Diag produced by our proposed algorithm.

matrix majorizes H:

M = K′D̃K � H. (7.40)

7.3 Applications

The procedure in Section 7.2 does not find an optimal solution to the majorizer design
problem (7.5), but it does allow us to design more exotic majorizers than are conven-
tionally available. By selecting K, we can design circulant, block separable, banded, and
many other forms of majorizers. This section gives a preliminary experiment for one of
these applications.

7.3.1 Weighted Toeplitz matrices and circulant majorizers

We generated the N ×N weighted Toeplitz matrix F with N = 512 and entries

[F]ij =
0.1 + cos2

(
2π i

N

)√
1 + |i− j|

(7.41)

and set H = F′F. This choice is inspired by the 1/r-like response of the CT system ma-
trix [15]. Figures 7.1a and 7.1b show F and H, respectively. We generated three diagonal
majorizers:

• MLipschitz = λmax(H)I,

105



0 50 100 150 200 250

Iteration

75

80

85

90

95

|| x
(n

)
−

x̂
||

Designed-Diagonal

Lipschitz

SQS

Circulant

Designed-Circulant+Diagonal

(a) Distance to solution

0 100 200 300 400 500

k

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

λ
k
( M

−
1/

2
H

M
−

1
/2

)

Designed-Circulant+Diagonal

Circulant

SQS

Lipschitz

Designed-Diagonal

(b) Majorized spectra

Figure 7.2: Convergence plots and majorized spectra for the small Toeplitz experiment
in Section 7.3.1. The partially circulant majorizer MDesign-Circ+Diag acts like both a ma-
jorizer and a preconditioner, accelerating convergence of the simple majorize-minimize
algorithm. The ideal majorizer inverts the matrix H and produces a uniform majorized
spectrum with value 1.

• MSQS using (7.2), and

• MDesign-Diag, using the algorithing proposed in this chapter with K = I.

We also generated MDesign-Circ+Diag, a combination of circulant and diagonal matrices, us-
ing the proposed algorithm with

KCirc+Diag =

[
UDFT

I

]
. (7.42)

Finally, we computed MCirc

MCirc = βĈ, (7.43)

where

Ĉ = argmin
C circulant

||C−H||2F, (7.44)

and β is chosen with power iteration so βĈ � H.

106



We used each of the majorizers to solve the quadratic minimization problem

x̂ = argmin
x

1

2
x′Hx + x′g, (7.45)

with g and x(0) initialized with zero-mean normal random values. We performed the
following simple majorize-minimize (MM) procedure:

x(n+1) = x(n) −M−1
(
Hx(n) + g

)
. (7.46)

This experiment explores the relative accelerations that different majorizers provide. If
we actually wanted to solve (7.45) quickly with a majorize-minimize algorithm, we would
also use some first order acceleration scheme [41, 59, 61]. Figure 7.2a shows how quickly
the MM algorithm converged to the solution of (7.45) as a function of iteration with each
of the majorizers, and Figure 7.2b shows the eigenvalues of M− 1

2 HM− 1
2 for each majorizer

M.
The designed diagonal majorizer underperforms the more conventional SQS majorizer,

MSQS. This is possibly due to the proposed algorithm producing a suboptimal solution to
the majorizer design dual problem. Regardless, diagonal majorizers are not our primary
interest here: the proposed algorithm is more useful for generating majorizers with more
exotic structures.

Except for edge conditions, circulant matrices and Toeplitz matrices are very simi-
lar. Because MCirc and MDesign-Circ+Diag contain circulant terms, they can approximate H

while majorizing it. When these matrices are inverted in the majorize-minimize proce-
dure (7.46), they act as both preconditioners and majorizers. The preconditioning effect is
appears in better-conditioned spectra (i.e., closer to unform 1s) for MCirc and MDesign-Circ+Diag

in Figure 7.2b and in faster convergence rates in Figure 7.2a. Because the majorizer de-
sign algorithm in this chapter can generate a majorizer with both circulant and diagonal
components, it can capture the nonuniform weighting in H better than Mcirc. This results
in further improvement over Mcirc.

7.4 Conclusions and future work

This chapter proposed an algorithmic approach to designing matrix majorizers. We used
a duality-based method to produce an algorithm that is memory efficient: unlike a straight-
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forward semidefinite programming approach, our algorithm does not store or manipulate
denseN×N matrices. Hopefully, this makes it possible to use for realistically-sized imag-
ing problems. In a preliminary experiment, we majorized a weighted Toeplitz matrix with
a combination of circulant and diagonal matrices. Because the majorizer approximated
the Toeplitz matrix better than purely diagonal or circulant matrix could, it provided
significant acceleration. Future work will explore other applications of algorithmically-
designed majorizers.
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CHAPTER 8

Conclusions and Future Work

This thesis contains two types of results: general techniques to algorithmically perform
analysis and approximations that are conventionally done by hand (Chapters 3 and 7),
and specialized algorithms to quickly solve specific problems for which general tech-
niques are not as well suited (Chapters 4, 5, and 6).

Chapter 3 presents a technique to analyze matrices that may be well-approximated
by circulant operators. We had hoped that by analyzing these matrices numerically, we
could find useful structures that had escaped our intuition, but instead our results con-
firmed existing heuristics. Given the relative success of the problem-specialized algo-
rithms in Chapters 4, 5, and 6, perhaps our general approach was “doomed” to be slower
than algorithms that used easily exploited structures; e.g., the “checkerboard” groups in
Chapter 4. Other problems with more complex structure without obvious inroads for
specialized algorithms may be good applications for the analysis in Chapter 3.

The majorizer design work in Chapter 7 is relatively immature but promising. Algo-
rithmic majorizer design may enable algorithm designers to find intuitive majorizers that
had been out of reach for computational reasons. These majorizers may be tighter than
those accessible by conventional means and may lead to faster-converging algorithms.
Our early results on simplified problems are encouraging, and there are many existing
majorize-minimize algorithms that may benefit from more exotic majorizers, including a
few in this thesis. The majorizer design dual problem involves maximizing a smooth but
nonconcave function. We provide only a very basic algorithm for solving this maximiza-
tion in this thesis that often converges to a suboptimal local maximizer. Future work may
find a more effective approach to solving this problem.

Chapters 4, 5, and 6 contain algorithms that exploit the structure of the cost func-
tions they minimize. We use a combination of duality, variable splitting, and group co-
ordinate optimization to produce algorithms that are not only fast but work well on the
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GPU. The algorithms often converge more quickly than conventional algorithms on a
“per-iteration” basis as well as a “per-time” basis, and we suspect our results may be
translatable to non-GPU architectures as well.

Our approach to handling optimization problems involving the CT system matrix in
Chapters 5 and 6 – using duality and group coordinate ascent instead of ordered subsets
(OS) – yields fast and convergent algorithms with only a modest increase in memory
overhead. Heuristically, this approach appears to yield rapid convergence because many
of the terms in the tomography data-fit term are “correlated;” this is the same intuition
behind OS’s subset approximation. However, we do not have a theoretical understanding
of why this approach is so effective for CT reconstruction, and further analysis would help
us identify in which situations this approach is effective.

The problem-specialized algorithms in this thesis exploit structures in the cost func-
tions they minimize: e.g., the Markov-like property of the edge-preserving regularizer or
the high correlation between measurements in the CT data-fit term. Different problems –
e.g., sparse-view CT, denoising with nonlocal or patch-based regularization – have very
different structures and may require very different approaches. We are slowly getting
closer to solving the CT reconstruction problem in this thesis “quickly enough,” but this
only opens the door to more sophisticated and computationally challenging problems.

110



APPENDIX A

Matrix permutation

Let Pj ∈ RN×N be the permutation operator

[Pjv]k = v1+(|j+k−2| mod N). (A.1)

Define the matrix permutation operator C:

C(H) =
[
P1h1 P2h2 · · · PNhN

]
. (A.2)

Let {Ck} and {Dk} contain K N × N circulant and diagonal matrices, respectively.
Apply C the sum of circulant and diagonal matrices:

C

(
K∑
k=1

CkDk

)
=

K∑
k=1

C(CkDk) (A.3)

=
K∑
k=1

[
P1Cke1[Dk]1,1 P2Cke2[Dk]2,2 · · · PnCkeN [Dk]N,N

]
(A.4)

=
K∑
k=1

[
P1ck[Dk]1,1 ck[Dk]2,2 · · · ck[Dk]N,N

]
(A.5)

=
K∑
k=1

ckdk
′, (A.6)

where ek is the kth elementary basis vector.
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APPENDIX B

From diagonal-circulant to
diagonal-circulant-diagonal

Let S = 1
2

∑K
k=1 CkDk + DkCk

′ with Dk diagonal and Ck circulant, with Ck = Ek + Ok

the even-odd decomposition of Ck. That is, Ek = Ek
′ and Ok = −Ok

′. Let Gk and Hk be
diagonal matrices derived from the eigenvalue decomposition

σk,1gkgk
′ + σk,2hkhk

′ = 1dk
′ + dk1

′. (B.1)

Then

S =
1

2

K∑
k=1

CkDk + DkCk
′ (B.2)

=
1

2

K∑
k=1

σk,1GkEkGk + σk,2HkEkHk. (B.3)

B.1 Proof

Expand S using the even-odd decompositions of the {Ck}:

S =
1

2

K∑
k=1

CkDk + DkCk
′ (B.4)

=
1

2

K∑
k=1

(Ek + Ok)Dk + Dk(Ek −Ok) (B.5)

=
1

2

K∑
k=1

EkDk + DkEk +
1

2

K∑
k=1

OkDk −DkOk. (B.6)
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The first sum is a symmetric matrix, and the second sum is an antisymmetric matrix.
Because S is also symmetric, the second term must sum to zero:

=
1

2

K∑
k=1

EkDk + DkEk. (B.7)

The (i, j)th entry of one of the terms in this sum is

[EkDk + DkEk]i,j = [ek]1+((i−j) mod N)

(
[dk]i + [dk]j

)
(B.8)

= [ek]1+((i−j) mod N)[1dk
′ + dk1

′]i,j (B.9)

= [ek]1+((i−j) mod N)[σk,1gkgk
′ + σk,2hkhk

′]i,j (B.10)

= [σk,1GkEkGk + σk,2HkEkHk]i,j, (B.11)

where Gk, Hk, σk,1 and σk,2 come from the eigenvalue decomposition

σk,1gkgk
′ + σk,2hkhk

′ = 1dk
′ + dk1

′. (B.12)

Thus,

S =
1

2

K∑
k=1

σk,1GkEkGk + σk,2HkEkHk. (B.13)
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APPENDIX C

Fenchel duality for GPU-based reconstruction
algorithm

Proving (6.16) involves a straightforward application of Fenchel’s duality theorem, see
e.g., [5, Theorem 4.4.3]. Define

f(x) =
µ

2

∣∣∣∣x− x(n)
∣∣∣∣2

2
, (C.1)

K =

A

C

I

. (C.2)

We write the blocks of elements of Kx as [Kx]u, [Kx]v and [Kx]z. Define

g(Kx) = L([Kx]u) + R([Kx]v) + I([Kx]z). (C.3)

The value attained by the primal update problem (6.5), can be written in this terminology
as

p = min
x
f(x) + g(Kx) (C.4)

= min
x

J(n)(x). (C.5)

The convex conjugates of f and g are [8, pg. 95]

f ∗(x∗) =
1

2µ
||x∗||22 + (x∗)′x(n), (C.6)

g∗(q∗) = L∗(q∗u) + R∗(q∗v) + I∗(q∗z). (C.7)
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The value attained by maximizing the dual function (6.19) is

d = sup
q∗
−f ∗(−K′q∗)− g∗(q∗) (C.8)

= sup
q∗

D(n)(q∗u,q
∗
v,q

∗
z). (C.9)

Note that although (C.8) apparently differs from the statement in [5, Theorem 4.4.2] by a
sign, the expressions are equivalent.

The domain of f is

dom f = RN , (C.10)

and the image of dom f under K is

K dom f = range K. (C.11)

The set over which g is continuous is

cont g = {θ : θz > 0}. (C.12)

Finally, by Fenchel’s duality theorem, because

K dom f
⋂

cont g 6= ∅, (C.13)

and f and g are both convex functions, p = d.
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APPENDIX D

Equivalence of primal- and dual-based solutions

Let the value of x(n+1) produced by solving the primal update problem (6.5) be

xp = argmin
x

sup
u,v,z

S(n)(x,u,v, z). (D.1)

The value of x(n+1) induced by solving the dual problem (6.19) is

xd = x̃(n+1)
(
û(n+1), v̂(n+1), ẑ(n+1)

)
, (D.2)

x̃(n+1)(u,v, z) = argmin
x

S(n)(x,u,v, z), (D.3)

where

û(n+1), v̂(n+1), ẑ(n+1) = argmax
u,v,z

D(n)(u,v, z) (D.4)

= S(n)
(
x̃(n+1)(u,v, z),u,v, z

)
.

Our goal is to show xp = xd.
We proceed by contradiction. Suppose xp 6= xd. Because S(n) is strongly convex and

xd minimizes S(n) when the dual variables are fixed at
(
û(n+1), v̂(n+1), ẑ(n+1)

)
(D.3),

d = S(n)
(
xd, û

(n+1), v̂(n+1), ẑ(n+1)
)

(D.5)

< S(n)
(
xp, û

(n+1), v̂(n+1), ẑ(n+1)
)

(D.6)

≤ sup
u,v,z

S(n)(xp,u,v, z) (D.7)

= p. (D.8)

But this is impossible because p = d (see Appendix C). Thus, xp = xd.
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APPENDIX E

Convergence for GPU-based reconstruction
algorithm with approximate updates

If the maximizing dual variables are found exactly (i.e., if (6.20) holds with equality), then
the proposed algorithm is a simple majorize-minimize procedure (6.5) and

{
x(n)

}
→ x̂.

In practice finding the exact maximizers of D(n) is too computationally expensive, and
we settle for approximate optimization. Fortunately, under conditions similar to those
for other approximate-update algorithms like ADMM [18], the proposed algorithm con-
verges even with inexact maximization of D(n).

Let ε(n+1)
u , ε(n+1)

v and ε
(n+1)
z be the weighted error between the approximate optimizers

u(n+1), v(n+1) and z(n+1) of D(n) and the true optimizers û(n+1), v̂(n+1), ẑ(n+1):

ε(n)
u =

∣∣∣∣û(n) − u(n)
∣∣∣∣

AA′
, (E.1)

ε(n)
v =

∣∣∣∣v̂(n) − v(n)
∣∣∣∣

CC′
, (E.2)

ε(n)
z =

∣∣∣∣ẑ(n) − z(n)
∣∣∣∣. (E.3)

Assume that we solve the dual maximization subproblem (6.20) well enough that these
errors are summable:

∞∑
n=1

ε(n)
v <∞,

∞∑
n=1

ε(n)
u <∞,

∞∑
n=1

ε(n)
z <∞. (E.4)

Let x̂(n+1) be the exact solution to the primal update problem (6.5). The error between the
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approximate update x(n+1) and the exact update, x̂(n+1), is

ε(n)
x =

∣∣∣∣x(n+1) − x̂(n+1)
∣∣∣∣ (E.5)

=
∣∣∣∣x̃(n+1)

(
u(n+1),v(n+1), z(n+1)

)
− x̃(n+1)

(
û(n+1), v̂(n+1), ẑ(n+1)

)∣∣∣∣ (E.6)

≤ 1

µ

(
ε(n)
v + ε(n)

u + ε(n)
z

)
, (E.7)

using the form of the dual-induced primal solution (6.17) and the triangle inequality. Be-
cause the dual update errors are summable (E.4), the primal update errors

{
ε

(n)
x

}
are also

summable. Then, by [18, Theorem 3], the proposed algorithm is a convergent “general-
ized proximal point algorithm” and produces a sequence of iterates

{
x(n)

}
that converge

to x̂.
In practice, it may be difficult to verify numerically that the conditions (E.4) hold, but

at least this analysis provides some sufficient conditions for convergence. In contrast, the
popular ordered subsets with separable quadratic surrogates (OS-SQS) algorithm [1] has
no convergence theory (and can diverge even for well-conditioned problems).
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APPENDIX F

Minimax result for algorithmic majorizer design

Let H � 0 be a given positive semidefinite matrix, K ∈ RK×N , K ≥ N have full column
rank and define Ω to be

Ω = {d : K′DK � H}. (F.1)

Consider the function

S(d,x) =
1

2
||d||2 − d′(Kx)2 + x′Hx. (F.2)

The primal function is

J(d) = sup
x

S(d,x) (F.3)

=
1

2
||d||2 + I(d). (F.4)

and the dual function is

D(x) = inf
d

S(d,x) (F.5)

= −1

2
||Kx||44 + x′Hx. (F.6)

In this section we show the minimum of the primal function is equal to the maximum of
the dual function:

p = min
d

J(d) = sup
x

D(x) = d. (F.7)
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F.1 Proof

Because J is a strongly convex function and Ω is a convex set, there exists a unique mini-
mizer of J over Ω. Let d̂ be this minimizer:

d̂ = argmin
d∈Ω

J(d). (F.8)

Because H � 0 the unconstrained minimizer of 1
2
||d||2, dunconstrained = 0, does not lie in Ω.

Therefore, d̂ is on the boundary of Ω and −∇J
(
d̂
)

= d̂ is normal to Ω.
We can characterize the feasible set Ω as an intersection of half-spaces:

Ω =
⋂
x

{d : x′(K′DK−H) ≥ 0} (F.9)

=
⋂
x

{
d : d′(Kx)2 ≥ x′Hx

}
. (F.10)

Because−∇J
(
d̂
)

= d̂ is normal to Ω and on the boundary of Ω, there exists an x̂ for which
one of the above inequalities holds with equality. That is,

−∇J
(
d̂
)

= d̂ = α(Kx̂)2 (F.11)

and

x̂′Hx̂ = d̂′(Kx̂)2 = α
(
(Kx̂)2)′(Kx̂)2 = α||Kx̂||44. (F.12)

We use (F.11) to find the minimum of the primal function:

J
(
d̂
)

=
1

2

∣∣∣∣∣∣d̂∣∣∣∣∣∣2
2

(F.13)

=
1

2

∣∣∣∣α(Kx̂)2
∣∣∣∣2

2
(F.14)

=
α2

2
||Kx̂||44 (F.15)

= p. (F.16)

It is widely known that p ≥ d. Therefore, to show p = d it suffices to show that
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D(x) = p for some x. We try D(βx̂), with β2 = α:

D(βx̂) = −1

2
||βKx̂||44 + β2x̂′Hx̂ (F.17)

= −β
4

2
||Kx̂||44 + β2x̂′Hx̂ (F.18)

via (F.12),

= −β
4

2
||Kx̂||44 + β2α||Kx̂||44 (F.19)

=
α2

2
||Kx̂||44 = p, (F.20)

completing the proof.
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