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ABSTRACT

Risk and Return in Equity and Options Markets

by

Matthew P. Linn

Chair: Tyler Shumway

Option and equity markets are well known to be intimately linked due to the fact

that options are contingent claims on underlying equity. A large literature has studied

the theoretical link between these markets in terms of relative pricing of options and

stocks. While theory can tell us about the relationship between prices of risk in the

two markets within the context of a specific model, what we observe in the data rarely

fits any single option pricing model with perfect precision. In fact, there seems to be

little consensus on a single option pricing model with superior performance above all

others. The broad purpose of this thesis is to empirically investigate the risk-return

relation in options markets directly, without resorting to the use of option pricing

models based upon relative pricing of options in terms of their underlying assets.

Options markets provide a rich cross-section of data with which to study how in-

vestors price assets. Option contracts vary across strike prices and times to maturity

as well as varying across underlying assets. As a result, options data provides addi-

tional and complimentary information beyond the information contained in stocks.

Using these facts, in this thesis I empirically investigate the risk-return relationship

across stock option, index option and equity markets.
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In Chapter I of the thesis I empirically show how to use options data to better

estimate the cross-sectional price of market-wide volatility risk. I furthermore com-

pare the price of volatility implicit in the cross-section of stock returns with the price

implicit in the cross-section of option returns. In the same chapter I exploit the fact

that options can be used to study the term structure properties of risk and return

by examining the volatility risk and return tradeoff in options of different times to

maturity.

In Chapter II, based upon the paper “Pricing Kernel Monotonicity and Condi-

tional Information,” co-authored with Sophie Shive and Tyler Shumway, I use data

on index options and the underlying index to extract estimates of stochastic discount

factors used by investors to determine prices of assets. We propose a new method for

non-parametrically estimating the stochastic discount factor. Our method improves

upon existing methods by aligning information sets available to investors at each time

in our sample and taking these into consideration in our estimation scheme. Empirical

results suggest that this may be the solution to a well known anomaly in the literature

whereby non-parametric estimates of the pricing kernel tend to be non-monotonic in

market returns.
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CHAPTER I

Market-Wide Volatility Price in Options Markets

1.1 Introduction

The role of volatility risk in markets has been intensely studied in the recent

literature. Evidence from the cross-section of equity returns suggests a negative price

of risk for market-wide volatility, meaning that investors are willing to accept lower

expected returns on stocks that hedge increases in market volatility.1 Evidence from

index options also suggests a negative price of volatility risk.2 Surprisingly however,

the volatility risk premium implicit in individual stock options does not appear to

coincide with the premium implied by index options.3 Attempts to cross-sectionally

identify a negative price of market-wide volatility risk using stock options have also

met with little success.4 Taken together these results are puzzling, especially when

such a tight relationship exists between options and their underlying stocks.

The options market offers an ideal setting in which to study the pricing impact

1Ang et al. (2006b), Adrian and Rosenberg (2008), Drechsler and Yaron (2011), Dittmar and
Lundblad (2014), Boguth and Kuehn (2013), Campbell et al. (2012) and Bansal et al. (2013) study
the role of market-wide volatility risk in the cross-section of equity returns.

2See Bakshi and Kapadia (2003a) and Coval and Shumway (2001).
3See Bakshi and Kapadia (2003b), Carr and Wu (2009) and Driessen et al. (2009).
4Using delta-hedged individual option returns, Duarte and Jones (2007) find no significant price

of volatility risk orthogonal to underlying assets in unconditional models but a significant price in
conditional models. Da and Schaumburg (2009) and Di Pietro and Vainberg (2006) estimate the
price of volatility risk in the cross-section of option-implied variance swap returns but find opposite
signs for the price of risk. Driessen et al. (2009) argue that returns on individual options are largely
orthogonal to the part of market-wide volatility that is priced in the cross-section.
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of systematic volatility. While far less studied than index options, individual options

offer a much richer cross-section with which to study variation in returns because they

vary at the firm level in addition to the contract level. Furthermore, option prices

depend critically on volatility. Together these facts suggest that using individual stock

options data improves the potential of accurately estimating the price of market-wide

volatility risk in the cross-section.

While stock options offer a very promising asset class with which to study the

price of market-wide volatility and potentially other market-wide risks, relatively lit-

tle is known about the systematic factors that determine their expected returns. In

fact, several papers have offered strong evidence that options are not redundant secu-

rities.5 Coupled with evidence that option returns exhibit some surprising patterns6

as well as demand-based option pricing,7 this suggests that returns on options are not

determined in exactly the same way as returns on their underlying stocks. Thus, it is

important to independently show that market volatility is priced in the cross-section

of returns of stock options. If it is not priced in the cross-section of a large class of

assets like stock options (as has been suggested in the literature) it would be difficult

to make a compelling argument that market-wide volatility is a state factor.

I empirically investigate the price of market-wide volatility risk in both the equity

and options markets. Specifically, I empirically address two questions: 1) Is a market-

wide volatility factor priced in the cross-section of equity option returns? 2) Is the

price of volatility risk the same in the equity and option markets? It is important to

distinguish between the systematic risk associated with market-wide volatility and the

stock-specific measure of asset volatility, which is often included in models of option

prices. I study whether investors are willing to pay a premium for individual stock

options that hedge market volatility whereas it is commonly accepted that investors

5See for example Bakshi et al. (2000), Buraschi and Jackwerth (2001) and Vanden (2004).
6See Ni (2008) and Boyer and Vorkink (2014)
7See Garleanu et al. (2009) and Bollen and Whaley (2004).
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are willing to pay a premium for options whose underlying stocks are volatile. My

results show that even though the volatility risk premium extracted from individual

stock options data does not appear to be consistent with that of index options, sys-

tematic volatility is priced in the cross-section of stock option returns. This supports

the notion of volatility as a state factor.

To answer the questions stated above, I first create a new set of option portfo-

lios that are optimally designed to facilitate econometric inference and to identify

the price of market volatility. Following Constantinides et al. (2013), I adjust the

realized returns of each option in order to reduce the effect of contract-level leverage.

This paper is the first to apply this leverage adjustment to individual option returns

instead of index option returns. The leverage adjustment is econometrically impor-

tant because it reduces the effect of outliers that arise due to the extreme leverage

especially inherent in out-of-the-money options. Furthermore, the adjustment helps

to stabilize the stochastic relation between option returns and time-varying risk fac-

tors. I also propose a new method of sorting options that results in highly dispersed

sensitivity of portfolio returns to market-wide volatility. The combination of forming

portfolios of options and leverage-adjusting each option’s returns renders standard

econometric techniques feasible. This allows me to examine option returns in a man-

ner typical of cross-sectional studies of stock returns as opposed to the highly stylized

and non-linear models typically used in the option pricing literature.

Using GMM, I test a wide range of stochastic discount factors (SDFs) while con-

trolling for factors commonly used to explain the cross-section of stock returns.8 In

8I use the Generalized Method of Moments (GMM) in cross-sectional tests because it has several
advantages over alternative asset pricing tests when studying option returns. For example, options
of different moneyness tend to exhibit different levels of volatility. Thus standard errors from OLS
cross-sectional regression cannot be applied to options due to heteroskedasticity of test assets. Fur-
thermore, because the sensitivity of an option to time-varying risk factors can dramatically vary
with option-specific parameters, time series regressions used in the first stage of Fama and MacBeth
(1973) regressions may be very unreliable when using options data. GMM does not rely on a first
stage time-series to explicitly estimate betas. In fact applying GMM only requires stationary and
ergodic test assets.

3



addition to augmenting classical linear models with a volatility factor, I also posit

SDFs that include factors from the literature that capture tail risk in equity returns.

These factors help to disentangle volatility risk from the risk of market downturns,

controlling for the well-documented leverage effect whereby market-wide volatility

increases when market returns are negative. I show that market-wide volatility is

an extremely important and robust risk factor in the cross-section. I then compare

estimated prices of risk between the equity and options markets.

I furthermore test the price of market-wide volatility risk using cross-sectional

regressions of both index and individual option returns at different time-to-maturity

horizons. My results indicate that while volatility risk is significantly priced in the

cross section of both index and individual options, the price observed in index option

returns is due mostly to short-dated options. The index options actually show a

term structure of volatility risk that is decreasing in time-to-maturity. Since options

allow us to study prices of risk factors at different horizons as opposed to using the

cross-section of stock returns, option returns provide a potentially important tool

for analyzing asset prices in the cross-section. I propose a simple simulation to show

that leverage-adjusting returns leads to improved cross-sectional tests of linear models

typically used in the traditional asset pricing literature.

My results regarding a priced volatility factor align with the argument that market-

wide volatility is a state factor. However, I find evidence that the price of volatility

risk in the options market is larger in magnitude than in the stock market. This

is somewhat surprising given that others have found volatility risk in options to be

non-distinguishable from zero or to even take the opposite sign. My results are con-

sistent with the demand-based option pricing theory of Bollen and Whaley (2004)

and Garleanu et al. (2009) whereby intermediaries facing high demand for options

charge larger premiums in order to cover positions that cannot be perfectly hedged.

As stochastic volatility is a possibly unhedgeable risk that dealers face, my findings
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may be the result of equilibrium pricing in the market due to market incompleteness.

An alternative explanation is simply that there are limits to arbitrage preventing this

apparent mispricing from being arbitraged away. This explanation is consistent with

Figlewski (1989) who shows that arbitrage opportunities in option markets are costly

and often too expensive to exploit in practice. A third explanation is that the two

markets are segmented in such a way that market participants who are willing to pay

more to hedge volatility invest in options.

The remainder of the paper is organized as follows. Section 2.4 describes the data

used in the paper and the construction of factors used in the econometric analysis.

Section 1.3 describes the test assets used throughout the paper. Sections 1.4 presents

the main results. Section 1.6 provides details of a simulation study demonstrating

the merits of leverage-adjusting option returns. Sections 1.5 and 1.7 provide tests of

comparisons of prices of risk across different asset classes. Section 1.8 concludes.

1.2 Data

This section describes the data used in the study. I begin by describing the data

sources. I then describe the filters used to clean the raw data. Finally, I describe the

formation and properties of risk factors used throughout the paper.

1.2.1 Data Sources

Options data for the paper are from the OptionMetrics Ivy DB database. I use

equity options for the analysis of the cross-section of option returns. I also use index

options on the S&P 500 to construct factors used in the analysis. The OptionMetrics

database begins in January 1996 and currently runs through August 2013. Data

include daily closing bid and ask quotes, open interest, implied volatility and option

greeks. The greeks and implied volatility for European style options on the S&P

500 are computed by OptionMetrics using the standard Black-Scholes-Merton model,
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while implied volatilities and greeks for individual options are computed using the

Cox et al. (1979) binomial tree method. The OptionMetrics security file contains data

on the assets underlying each option in the data. These data include closing prices,

daily returns and shares outstanding for each underlying stock. For the construction

of stock portfolios, I use the entire universe of CRSP stocks over the same time period

as the OptionMetrics data.

As is typical in the empirical options literature, I use options data only for S&P

500 firms. This partially eliminates the problem of illiquidity in options data. I follow

the convention in the literature and calculate option price estimates by taking the

midpoint between closing bid and ask quotes each day. Since the dates I use for

monthly holding period returns are not the first and last trading day of a calendar

month, I use the daily factor and portfolio data from Kenneth French’s website to

construct monthly holding period returns for factors and portfolios alike. The risk-free

rate I use throughout the paper is also taken from Kenneth French’s website.

1.2.2 Data Filters

Option deltas (∆) measure the sensitivity of on option’s price to small move-

ments in the underlying stock. Formally, this is equivalent to defining the delta of

an option as the partial derivative of the option price with respect to the price of the

underlying stock. For a given underlying stock, the delta of put or call options is a

monotonic function of option moneyness. With this logic in mind, I follow the con-

vention in the literature and define option moneyness according to the option’s delta

as reported by OptionMetrics. Out of the money (OTM), at the money (ATM) and

in the money (ITM) puts and calls are defined throughout the paper by the following:
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OTM calls: 0.125 < ∆ ≤ 0.375 OTM puts: −0.375 < ∆ ≤ −0.125

ATM calls: 0.375 < ∆ ≤ 0.625 ATM puts: −0.625 < ∆ ≤ −0.375

ITM calls: 0.625 < ∆ ≤ 0.875 ITM puts: −0.875 < ∆ ≤ −0.625.

I follow Goyal and Saretto (2009), Christoffersen et al. (2011) and Cao and Han

(2013) among others in my data filtering procedure. First I eliminate options for

which the bid price is greater than the ask price or where the bid price is equal to

zero. Next I remove all observations for which the bid ask spread is below the min-

imum tick size. The minimum tick size is $0.05 for options with bid ask midpoint

below $3.00 and is $0.10 for options with bid ask midpoint greater than or equal to

$3.00. In order to further reduce the impact of illiquid options, I remove all options

with zero open interest. I also remove any options for which the implied volatility or

option delta is missing.

Finally, in order to reduce the impact of options that are exercised early, I follow

Frazzini and Pedersen (2012) by eliminating options that are not likely to be held to

maturity. This is done by first calculating each option’s intrinsic value V = (S−K)+

for calls and V = (K−S)+ for puts, where K is the option’s strike price and S is the

price of the underlying stock. I then eliminate all options for which the time value,

defined by (P−V )
P

, is less than 0.05 one month before expiration, where P denotes

the price of the option (estimated by the bid-ask midpoint). This final filter tends

to remove options that are in the money. In unreported results, I verify that failing

to include this final filter does not substantially alter the main results of the paper.

Table 1.1 gives summary statistics for the filtered options data.

1.2.3 Option Returns Calculation

Equity options expire on the Saturday following the third Friday of each month. I

compute option returns over a holding period beginning the first Monday following an

expiration Saturday and ending the third Friday of the following month. Even though
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all options in the sample are American and therefore have the option to exercise early,

I follow the majority of the literature on option returns and assume all options are

held until expiration. The removal of options with low “time value” described above

and in Frazzini and Pedersen (2012) attempts to remove those options that are likely

to be exercised early and not held until the following month’s expiration date.

The payoff to the option is calculated using the cumulative adjustment factor to

adjust for any stock splits that occur over the holding period. Put and call options’

gross returns over the month t are given by

RC
t+τ = max

{
0, St+τ

(
CAFt+τ
CAFt

)
−K

}/
Pt, (1.1)

and

RP
t+τ = max

{
0, K − St+τ

(
CAFt+τ
CAFt

)}/
Pt, (1.2)

where τ is the time to maturity.

1.2.4 Factor Construction

Following Ang et al. (2006b) and Chang et al. (2013), I base my measure of

market-wide volatility on the VIX index. Since the VIX exhibits a high level of au-

tocorrelation, innovations in the VIX can simply be estimated by first differences,

∆V IXt = V IXt−V IXt−1. Throughout the paper I use VIX/100 because the VIX is

quoted in percentages. This way I use a measure of market volatility as opposed to

market volatility scaled by 100. Innovations in the VIX are highly negatively corre-

lated with the market factor. This is the well known “Leverage Effect.” In order to

ensure that the volatility factor I use is not simply picking up negative movements

in the market level, I further follow Chang et al. (2013) by orthogonalizing inno-

vations in the VIX with respect to market excess returns. This is simply done by

regressing ∆V IX on market excess returns and taking the residuals as the orthog-
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onalized volatility factor. This orthogonalized measure of innovations in the VIX is

the volatility factor referred to throughout the paper.

I construct market-wide jump and volatility-jump factors following Constantinides

et al. (2013). The jump factor is defined as the sum of all daily returns on the S&P

500 that are below −4% in a given month. Since each month in my sample begins

immediately following an option expiration date and ends at the following option

expiration date, the jump factor is simply the sum of all daily returns in this time

span for which returns are below the −4% threshold. If no such days exist, then

the jump factor is zero for the month. Approximately 7% of the months in the

sample have a non-zero jump factor. Finally, I include a volatility jump factor which

captures large upward jumps in volatility of the market. To construct the volatility

jump factor, I take all ATM call options on the S&P 500 and calculate the equally

weighted average of implied volatilities over all options between 15 and 45 days to

maturity. This gives me a series of daily average implied volatilities of ATM call

options. Over each holding period I then take the sum of daily changes in implied

volatility for all days in which the change is greater than 0.04. Approximately 29%

of months in the sample have non-zero volatility jump.

Downside risk has been proposed as a state variable in the ICAPM and has been

shown to perform very well for pricing stocks in Ang et al. (2006a) and across a

number of additional asset classes including currencies, bonds and commodities in

Lettau et al. (2013). I follow Lettau et al. (2013) by defining a down state to be

any month in which market returns are below the mean of monthly returns over

the sample period by an amount exceeding one standard deviation of returns over

the sample period. The down-state factor is simply equal to returns on the CRSP

value-weighted index in periods when the returns are below the down state threshold.

In all other months the factor is zero. This gives a factor that is very similar to

the jump factor. The main difference between the two is that the jump factor is
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computed using daily data to determine when the market has experienced a jump.

The magnitude of negative daily returns required to be considered a jump is much

more extreme than the one standard deviation measure used to establish a down

state. Furthermore, because jumps are defined at a daily frequency, they can more

convincingly be considered jumps in the return process as opposed to simply months

where the market slowly declines. Approximately 13% of months in the sample have

non-zero down-side risk.

Finally I include model-free, implied risk-neutral skewness as a down-side risk. I

follow Bakshi et al. (2003) to construct a measure of risk-neutral market-wide skew-

ness. I then take innovations of the skewness factor by estimating an ARMA(1,1)

model and taking residuals of the estimates. I use these residuals as an additional

control for the main tests of volatility risk.

Figure 1.8 shows the time series of each of the volatility, jump, volatility-jump,

down-side and skew factors. Panel B shows the orthogonalized volatility factor with

the original, non-orthogonal factor in the background. Each of the factors has its

largest spike during the recent financial crisis. More recently there are fairly large

spikes during the U.S. debt-ceiling crisis in August of 2011. Volatility and volatility-

jump experienced very large jumps around the terrorist attack of September 11, 2001.

Table 1.6 gives pairwise correlations of the three factors as well as the Fama-French

and Momentum factors. The construction of the latter factors are described in the

appendix.

1.3 Portfolio Construction and Summary Statistics

In order to study the determinants and behavior of risk premia in the cross-

section of option returns I construct 36 portfolios of options that are sorted along

three dimensions. The portfolios are constructed in order to give dispersion in mean

returns and exposure to changes in the VIX.
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1.3.1 Portfolio Construction

I form portfolios of options by first dividing the options into six bins according

to type: calls and puts, and three moneyness categories as defined in Section 1.2.2.

Within each of these six bins I sort into another six portfolios according to each

contract’s Black-Scholes-Merton implied volatility premium. For each option k on

stock j, I measure the implied volatility premium (IVP) by

IV Pj,k = σBSMj,k − σHistj ,

where σBSMj,k denotes the Black-Scholes-Merton implied volatility extracted from op-

tion k’s price and σHistj is the historical volatility of the underlying stock. I estimate

σHistj from daily returns over the previous year leading up to the beginning of each

holding period.

The IVP measure is similar to the sorting measure of Goyal and Saretto (2009)

but rather than measuring the ratio of implied volatility to historical volatility of

the underlying, I take the difference, which represents the premium due to model-

implied volatility in excess of historical volatility. Another difference between the

way I sort options and the method employed by Goyal and Saretto (2009) is that I

sort at the contract level as opposed to just taking a single at-the-money option for

each underlying stock and comparing the two. This gives my set of portfolios greater

dispersion in loadings on innovations in the VIX than does the set of portfolios studied

in Goyal and Saretto (2009).

To construct a set of equity portfolios, I follow Ang et al. (2006b). I use the

entire universe of CRSP stocks to double sort stocks according to their loadings on

the market excess return and changes in the VIX. On the first day of each holding

period I calculate the CAPM betas of each firm over the previous month’s daily

returns. I only include firms for which CRSP reports returns on every trading day
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over the previous month. The stocks are divided into two bins according to their

loading on the market factor. Within each bin I then estimate a two factor model

with market excess returns and changes in the VIX over the previous month and sort

into six portfolios based on loadings on the second factor within each market loading

category. This gives a total of twelve portfolios. I choose twelve portfolios so that

they can be compared with the twelve ATM option portfolios. I choose to divide first

into two market loading bins and then into six VIX innovation portfolios in order to

maximize dispersion in loadings on volatility innovations while still double sorting in

the manner of Ang et al. (2006b). Once the portfolios are formed, they are held for

the one month holding period for which value-weighted returns are calculated. At

the end of the month, the portfolios are rebalanced.

In unreported results, I find that sorting according to the systematic risk preimium

described in Duan and Wei (2009) produces similar results to those described in

Section 1.4. Furthermore, the results do not appear to be sensitive to the number of

portfolios.

1.3.2 Portfolio Returns

Options are levered claims on the underlying stock. As a result of their embedded

leverage, they tend to have loadings on systematic risk factors that are much larger

than those of the underlying stock. It is very common for options to have market

betas up to twenty times that of the underlying. This leverage effect can lead to

very skewed returns on options. Highly volatile and skewed distributions are not well

suited to estimating linear pricing kernels because a linear SDF is typically not able to

capture such extremes. This fact makes linear factor models and the linear stochastic

discount factor they imply a poor tool for analyzing raw option returns.

The embedded leverage of options further reduces the effectiveness of standard

cross-sectional asset pricing techniques by rendering factor loadings less stable. In the
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Black-Scholes-Merton world, loadings of options on any risk factor are approximately

equal to the loading of the underlying on the factor scaled by the leverage of the

option. The leverage of each option is a function of instantaneous volatility of the

underlying which presumably is correlated with volatility of the market. As such the

correlation of an option with a risk factor changes with market volatility. This means

that even if one forms portfolios of options, the portfolio loadings on risk factors will

be sensitive to large changes in volatility. Cross-sectional regressions will thus be

sensitive to the instability of portfolio factor loadings.

Forming portfolios of option returns helps to dampen the effect of outliers and thus

reduces skewness and excess kurtosis. It also mitigates the problem of the sensitivity

of factor loadings to changes in volatility by dampening the effect for those options

whose factor loadings are the most sensitive to volatility. Leverage adjusting returns

further reduces the effect of each problem. In a world where the Black-Scholes-Merton

model holds perfectly, continuously adjusting each option according to its implied

leverage will completely solve both problems. As long as the SDF projected onto

the space of stock returns can be adequately estimated by a linear model, continuous

leverage adjustment renders linear factor models capable of pricing options. Given

the well-documented shortcomings of the Black-Scholes-Merton model and the fact

that it is impossible to adjust leverage in continuous time, the best we can hope to

do with this leverage adjustment is to approximately correct both problems.

The Black-Scholes-Merton implied leverage of an option is given by the elasticity

of the option price with respect to the underlying stock’s price,

ωBSMj,i,t = ∆j,i,t
Si,t
Pj,i,t

,

where ∆j,i,t is the time t Black-Scholes-Merton option delta for option j on stock i, Si,t

is the price of the underlying stock and Pj,i,t is the price of the option. Table 1.2 gives
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summary statistics for the Black-Scholes-Merton implied leverage of option contracts

in the sample. In order to leverage-adjust the returns, I calculate the gross returns to

investing (ωBSMj,i,t )−1 dollars in option j and 1− (ωBSMj,i,t )−1 in the risk free rate. Since

∆ is negative for puts and positive for calls, this amounts to a short position in puts

and long position in calls. Leverage adjusted returns on the individual options are

thus a linear combination of the returns on the risk free rate and returns calculated

in Equations (1.1) and (1.2). Leverage adjustment is done at the beginning of the

holding period, when the position is opened. Thus the leverage-adjusted returns

are the returns to a portfolio composed of an option and the risk-free rate where

the weight in the option is inversely related to its leverage. Unlike Constantinides

et al. (2013), I hold the portfolio fixed over time and do not re-adjust leverage as

the option’s leverage evolves over time. A trading strategy with daily adjustment

would incur very high transaction costs since the costs of buying and selling options

is generally much higher than the cost incurred when buying and selling more liquid

securities. Therefore, in order to replicate a more feasible trading strategy, I create

portfolios that do not change over the course of the holding period. The obvious trade

off is that these portfolios will not be as free of excess kurtosis and skewness as they

would be in the case of daily rebalancing.

The majority of papers in the empirical option pricing literature examine delta-

hedged returns in order to study profitability of trading strategies where investors

have taken a delta-hedged position in options. The risks whose prices are estimated

using delta-hedged option returns like those in Duarte and Jones (2007) are risks

orthogonal to the underlying asset. In this paper I examine the price of total volatility

risk because this is the risk estimated from the cross-section of equity returns. It is also

the risk whose premium is implicitly estimated by looking at the difference between

risk-neutral and physical moments of the underlying asset as in Carr and Wu (2009)

and Driessen et al. (2009). Since the purpose of this paper is to resolve the apparent
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discrepancy between prices of total volatility risk in options and equity, I do not delta

hedge option returns.

Finally, to compute portfolio returns within each of the 36 portfolios, I weight

the leverage-adjusted returns. In order to facilitate the comparison between the

underlying stock returns and portfolios of option returns, I weight the options by the

market capitalization of the underlying stock. This is standard practice in the equity

pricing literature.

1.3.3 Summary Statistics

Table 1.3 gives summary statistics for the 36 value-weighted option portfolios.

Panel A reports the annualized percentage mean returns of each of the 36 portfolios

over the 200 months ranging from January 1997 through August 2013. The mean

of the call portfolios is increasing in implied volatility risk premium while the mean

of the put portfolios tends to decrease progressing from the lowest implied volatility

premium, IVP1 to highest IVP6. Recall however that puts have a negative ∆ and

hence negative leverage, so the put portfolios are actually portfolios of short positions

in the option. Therefore, long positions in the put portfolios earn increasing mean

returns as a function of IVP. The dispersion in mean returns is much larger for the

puts than calls but in all cases except ITM calls, the difference between mean returns

in IVP1 and IVP6 is very large. As has been shown in the literature (see e.g. Coval

and Shumway (2001)), selling puts is very lucrative because investors are willing to

pay a premium to use puts as a hedge against large losses, so the large returns in the

put portfolios is not surprising.

High levels of returns for puts and decreasing mean put returns as a function of

moneyness are consistent with economic theory. The call portfolios however, exhibit

increasing mean returns as a function of moneyness. As shown by Coval and Shumway

(2001), if stock returns are positively correlated with aggregate wealth and investor
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utility is increasing and concave, then returns on European call options should be

negatively sloped as a function of strike prices. While the options used in this paper

are American, I have removed options that are likely to be exercised early so reasoning

similar to that in Coval and Shumway (2001) should be applicable here. This is not

the first paper to document this pattern in mean returns of equity call options; Ni

(2008) documents this puzzle. She shows that considering only calls on stocks that do

not pay dividends and hence should never be exercised early, this pattern still shows

up in the data. Furthermore, the pattern is very robust to different measurements of

returns and moneyness. The explanation proposed by Ni is that investors in OTM

call options have preferences for idiosyncratic skewness for which they are willing to

pay a premium in OTM calls.

Panel B reports annualized return volatility of each value-weighted option portfolio

in percent. Volatility is monotonically decreasing in moneyness for the put portfolios.

For the call portfolios the pattern is less clear. We also see that volatility is higher

for the put portfolios than for the calls. Panels C and D report monthly measures of

skewness and kurtosis for each portfolio. As can be seen in Figure 1.8, the put port-

folios are negatively skewed while the calls are positively skewed. Furthermore, the

magnitude of the skewness is highest in OTM options and tends to decrease mono-

tonically in moneyness. Similarly, kurtosis is largest in OTM options and smallest in

the ITM options, with a monotonic, decreasing pattern in moneyness. The purpose

of forming leverage-adjusted portfolios of option returns is to reduce excess skewness

and kurtosis, thus rendering portfolio returns nearly normally distributed. While the

skewness measures are not equal to zero as one would ideally like to have, they are

much smaller in magnitude than the skewness of raw option returns. For example,

the absolute value of skewness for the empirical distribution of raw returns on all

calls and puts used to form the portfolios are on average 4.769 and 6.263 respectively.

Return kurtosis is reduced even more dramatically by forming the leverage-adjusted
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portfolios. The normal distribution has a kurtosis of 3. The kurtosis of the leverage-

adjusted portfolios ranges from 3.763 to 14.615. The kurtosis of raw realized option

returns of the options dwarfs that of the leverage-adjusted portfolios. This is most

noticeable in the OTM options. The average kurtosis of the empirical distribution

of raw returns on OTM calls is 44.297 while that of the OTM puts is 83.697. This

means that forming portfolios of leverage adjusted returns reduces kurtosis by nearly

90% in OTM puts and 75% in OTM calls. That is, the shape of the tails of the

empirical distribution of the OTM option portfolios is much closer to the that of a

normal distribution than are the tails of the empirical distribution of raw returns on

OTM options.

Panel E shows the CAPM betas for each portfolio. Recall that the put portfolios

are actually short puts. This is why the betas reported for the puts are positive.

Betas are monotonically increasing in moneyness for the calls and for the most part

decreasing in moneyness for the puts. The betas on the calls are below one while the

betas on the puts are mostly above one. Comparing these with the CAPM betas on

the stock portfolios shown in Table 1.5 gives an indication of the leverage reduction

achieved by leverage adjusting the returns in the option portfolios. It is quite common

for options on individual stocks to have Black-Scholes-Merton implied leverages with

magnitudes in excess of 20. If an option on a stock has an implied leverage of 20,

then in the Black-Scholes-Merton world, for any risk factor, the beta of the option

on that risk factor will be 20 times that of the underlying stock. In the case of the

put portfolios, the CAPM betas are magnified by roughly 15% above those of the

corresponding stock portfolios in Panel A of Table 1.5. In the case of calls, the betas

are reduced by about 25% on average. In both cases this suggests a fairly low level

of implied leverage in the options.
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Panel F of Table 1.3 reports betas on systematic volatility in the two factor model

Ri,t = βM,iMKTt + β∆V IX,i∆V IXt + εi,t, (1.3)

where MKTt denotes time t excess returns on the market and ∆V IXt denotes first

differences in the VIX index. The factors used to proxy for market returns and

volatility innovations are formed as described in Section 1.2.4. The volatility betas

of call portfolios are much smaller in magnitude than the volatility betas of the put

portfolios. Half of the call portfolios betas are statistically significant at the 5% level.

On the other hand, all of the volatility betas except that of the ITM IVP6 portfolio

are highly significant. The average t-statistic of the put portfolios’ volatility betas is

−4.33, while that of the call portfolios is only 1.36. The fact that the puts appear

to load so much more on the volatility factor suggests that if systematic volatility is

indeed priced in equity options, the premium is more likely to be evident in the puts

than the calls. Again, since the put portfolios are actually short puts, the loadings

on volatility are negative. In both call and put portfolios, the magnitude of volatility

betas decreases monotonically in moneyness.

As a comparison, in Table 1.4, I include summary statistics for the option port-

folios when returns are not leverage adjusted. The extreme volatility is evident in

panel B where each portfolios has annualized return volatility of roughly ten times

that of the leverage adjusted portfolios. By reducing this volatility and ”de-noising”

the returns we are able to get more accurate estimates of prices of risk and corre-

sponding stochastic discount factors. While the skewness is not significantly reduced

by leverage adjusting, the return kurtosis is. This implies that the tails of the re-

turn distributions are much heavier than the normal distribution meaning that linear

factor are unlikely to accurately identify prices of risk.

Table 1.5 reports summary statistics for the stock portfolios. The portfolios are
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comprised of all CRSP stocks over the 200 months ranging from January 1997 through

August 2013. The columns of each panel in the table represent sorts according to

betas on market excess return over the previous month of daily data. Rows represent

sorts according to loadings on volatility innovations. Panel A reports post formation

value-weighted mean returns. For the most part, the post ranking mean returns are

higher for the high market beta than the low market beta group. Mean returns to the

portfolios are generally decreasing in loadings on the volatility factor as one would

expect given that stocks with higher loadings on the VIX act as a hedge agains high

volatility states and investors are thus willing to pay a premium for these stocks. The

monotonicity in mean returns along the volatility loading dimension is not particularly

strong. This is due to the fact that the formation period is only a month long.

Panel B reports annualized percent volatility. There is clear heteroskedasticity

between the two market loading bins with the higher market-loading stocks having

substantially higher volatility. Skewness is negative for all portfolios and tends to be

larger in magnitude for the low market beta stocks than for the high beta stocks.

The stock portfolios are less skewed than the option portfolios but the difference is

not very dramatic. Similarly, the kurtosis of the stock portfolios is slightly smaller

than the option portfolios except in the case of OTM puts where the kurtosis is most

extreme. Figure 1.8 plots the histograms of realized returns for each of the six put/call

and moneyness bins as well as the realized returns of all puts and all calls separately

and all ATM options. Over each is the kernel density estimate of the empirical return

distribution of the stock portfolios. One can see from the figure that skewness and

variance of the option portfolios is not very different from that of the stocks except

perhaps in the case of the OTM calls.

The post ranking CAPM betas of the stock portfolios are much larger for the

stocks with large formation period betas suggesting that stocks’ covariation with the

market is fairly stable. On the other hand, Panel F shows that the post-ranking
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volatility betas do not exhibit a clear monotonic pattern. This indicates that at least

with the one month formation window, stocks’ loadings on innovations in the VIX

are less stable.

1.4 Pricing Kernel Estimation

In this section I test a number of specifications of pricing kernels to assess the

importance of volatility for the SDF projected onto the space of option returns.

Throughout this section I use the Generalized Method of Moments of Hansen (1982)

and Hansen and Singleton (1982) to perform the asset pricing tests. Since the tests

combine various portfolios of options as well as stocks, using GMM circumvents any

problems that may arise due to heteroskedasticity across asset classes or moneyness-

put/call bins that are shown to exist in Tables 1.3 and 1.5. An additional advantage

of the GMM methodology over regression-based cross-sectional tests like Fama and

MacBeth (1973), is the fact that it avoids the error-in-variables problem associated

with estimating risk factor loadings in time-series regressions which are subsequently

used as independent variables in the cross-sectional regression. This errors in variables

problem is particularly glaring in the case of option returns. If one uses individual op-

tions as test assets and computes returns to the value of the option at multiple times

over the course of the option’s lifetime, then any changes in leverage of the option

will result in changes in factor loadings in time series regressions. Furthermore, the

most liquid options are short dated, meaning that time-series regressions on option

returns used in the first step of a procedure like Fama-MacBeth cannot be estimated

with a very long time series.

The use of GMM coupled with the option portfolios described in Section 1.3 allows

me to circumvent the errors in variables problem. GMM estimation does not require

test asset returns to be iid conditional on risk factors. All we need is for our time
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series of portfolios to be stationary and ergodic.9

1.4.1 GMM specification

In order to investigate the importance of market-wide stochastic volatility in the

cross-section of option returns, I apply the GMM methodology of Hansen and Sin-

gleton (1982) to various specifications of a linear pricing kernel. The specifications

include factors commonly used in the empirical asset pricing literature. In this sense,

the models used in this paper are directly comparable to some of the most well known

reduced form models used to study the cross-section of stock returns. I augment the

models with the volatility factor in order to assess the importance of market-wide

volatility in the SDF.

In addition to factors studied widely in the classical asset pricing literature, I

include factors meant to capture market jump risk and market volatility jump, both

of which are commonly included in theoretical option pricing models.10 I include

additional factors meant to capture extreme movements in the market that have

been shown to perform well in pricing the cross-section of stock returns. All of these

additional factors track extreme movements in the market and are meant to control

for the fact that volatility can be difficult to distinguish from downturns in the market

level or large changes in the market level.11

For each specification of the pricing kernel, I use the two step optimal GMM to

estimate the prices of risk associated with each factor. The first stage estimation uses

the identity weighting matrix. In the second stage estimation the weighting matrix

is set equal to the inverse of the covariance matrix estimated from the first stage.

9In an unreported test, all but one of the 36 option portfolios described in Section 1.3 were
able to reject non-stationarity at the 1% level using an the Augmented Dickey-Fuller test for non-
stationarity. The one portfolio that was not able to reject at the 1% level did reject at the 10%
level and the GMM estimation results of this section are not substantially changed by removing this
single portfolio.

10See for example Pan (2002) and Eraker et al. (2003).
11See Bates (2012) for a discussion of difficulties related to disentangling volatility from large

changes in market level.

21



I estimate the weighting matrix using the Newey and West (1987) spectral density

estimator with 6 lags. As a robustness check I also run the same set of tests with a

one-step GMM using the identity weighting matrix and also the one-step GMM using

the weighting matrix of Hansen and Jagannathan (1997). In both cases the results

are similar to those reported in this section. The volatility factor is significant at the

5% level in all specifications with both versions of the single-step GMM and the point

estimates are very similar to those obtained with the 2-step GMM.

In each specification of the pricing kernel M , the first N moment restrictions in

the GMM test with N test assets are given by

E [MtRj,t]− 1 = 0, (1.4)

for j = 1, 2, ...., N, where Rj,t denotes the time t gross return of portfolio j. The

final moment condition which is implied by the risk-free rate is given by

E [Mt]−
1

Rf
= 0, (1.5)

where Rf denotes the risk-free rate.

1.4.2 Linear Pricing Kernels

In this section I restrict our attention to linear pricing kernels of the form

Mt = a+ b′ft,

where f is a vector of risk factors, b is a fixed vector of prices of risk and a is a

constant.

Tables 1.7, 1.8, 1.9 and 1.11 report the results for five specifications of the linear

pricing kernel. The first is the single factor model with only the volatility factor.

The second and third models are respectively the standard CAPM and the CAPM
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augmented with volatility. Model four is the Fama-French/Carhart four factor model

and the fifth model is the volatility-augmented version of model four. For each model

I report point estimates of the coefficients with t-statistics in parentheses. The final

two columns of each table report the J-statistic and associated p-value as well as

the Hansen-Jagannathan distance which measures the distance between the implied

stochastic discount factor and the set of feasible discount factors.

Table 1.7 reports results of the tests using all 36 option portfolios. The coefficient

on the volatility factor is positive and very significant in each specification. A posi-

tive coefficient in the SDF implies that investors’ marginal rates of substitution are

increasing in volatility. This means that investors are willing to pay a premium for

assets that covary positively with innovations in volatility. In other words the price

of volatility risk is negative. For both the CAPM and the four factor model, adding

volatility substantially reduces the J-statistic and the Hansen-Jagannathan distance

measure, indicating that the model fits the data much better with the volatility factor

than without.

Data filters are implemented to remove illiquid options and I only consider options

on S&P 500 constituents in order to avoid results driven by illiquid options. In order

to further alleviate any concerns about illiquidity driving the results, I examine just

the ATM option portfolios separately as these are the most liquid options according

to trading volume. Table 1.8 reports the results which are quite similar to the tests

with the full set of option portfolios. The volatility factor is always positive and

significant and given the fact that we only have twelve test assets, the significance is

very strong. In each specification, the model fit is substantially improved with the

addition of the volatility factor.

Table 1.11 reports the pricing kernel estimates for the ATM options and the 12

stock portfolios combined. If volatility is a priced risk factor in the SDF, then the

projection of the SDF onto the combined space of stocks and options should also have
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a positive, significant coefficient. This is confirmed in Table 1.11. It is worth noting

that for the combined stock portfolios and ATM option portfolios, the reduction in

J-statistics due to adding the volatility factor are very small. However, the Hansen-

Jagannathan distance is substantially reduced. In the case of the SDF projected onto

the space of stock returns only, Table 1.9 shows that the fit of the four-factor model

improves with the addition of the volatility factor but the two-factor model actually

fits worse with the addition of volatility. The volatility coefficient’s point estimates

for both the stock portfolios as well as the combined stock and ATM option portfolios

are well below the point estimates for the full set of option portfolios.

The takeaway from Tables 1.7, 1.8, 1.9, 1.11 is a clearly priced systematic volatility

risk factor in option returns. To assess the economic magnitude of the volatility

premium one can easily use the coefficient in the SDF to calculate λV OL, the implied

market price of the the volatility risk. λV OL is equivalent to the prices of risk typically

estimated in the second step of Fama-MacBeth regressions. In the case of the full

model (model 5), the market price of volatility, λV OL is equal to -4.13% per month or

-62.5% annualized. We can get a sense of how much of the difference in mean returns

of the OTM puts and ITM puts is driven by volatility risk by comparing the average

volatility betas for each group. For model 5, the average volatility betas for OTM

puts and ITM puts are −0.7042 and −0.3482 respectively. Exposure to aggregate

volatility therefore accounts for (−0.70−(−0.35))×−4.13% = 1.47% monthly or 19%

annualized spread in returns between ITM and OTM puts. For the calls the average

OTM beta is 0.238 and the average ITM beta is −0.013. Exposure to aggregate

volatility therefore accounts for (−0.013−0.238)×−4.13% = 1.37% monthly or 17.7%

annualized spread in returns in the calls. Thus the volatility premium is economically

significant as well as statistically significant. It is also worth noting that the implied

price of risk, −4.13% per month is 18% larger than the −3.49% price of risk estimated

in Chang et al. (2013) using stocks.
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In an unreported robustness check, I run all of the tests with the same portfolio

sorts but weight returns by option open interest rather than stock market capitaliza-

tion. The results are similar. Volatility is always significant at the 5% level and the

point estimates are similar to those reported in Tables 1.7, 1.8, 1.9, 1.11.

For comparison, Table 1.10 shows the results of the at-the-money option portfolios

without leverage adjustment. As shown in Table 1.4, the returns of portfolios without

leverage adjustment are extremely volatile and heavy tailed. We expect this to reduce

the effectiveness of linear models for estimating stochastic discount factors or prices

of risk. Table 1.10 reports the GMM estimation results for the option test assets

without leverage adjustment. The results show that volatility is not significant. This

is consistent with findings in the literature that suggest market-wide volatility may

not be priced in the cross-section of individual option returns (see Driessen et al.

(2009)). In Section 1.6 we verify that leverage adjusting returns can help us estimate

price of risk more accurately in the context of linear models.

1.4.3 Exponentially Affine Pricing Kernels

In order to check that the linear form assigned to our pricing kernel is not respon-

sible for the strong significance of the market-wide volatility factor, I test the same set

of CAPM and Fama-French-Carhart factors augmented with volatility using an ex-

ponentially affine pricing kernel instead of a linear pricing kernel. Whereas standard

asset pricing models assume a linearized SDF, the exponentially affine pricing kernel

is closer to the kernel derived by hypothesizing a utility function for a representative

investor and then solving for the marginal rate of substitution. For an investor with

CRRA utility, the SDF can be expressed as

Mt = β

(
Ct+1

Ct

)−γ
,
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where Ct denotes time t consumption, γ denotes the coefficient of relative risk aversion

and β denotes the investors discount rate. By taking the exponential of the log of the

pricing kernel this can be transformed to the exponentially affine form

Mt+1 = e
logβ−γlogCt+1

Ct .

I use an exponentially affine pricing kernel which assumes a similar form,

Mt+1 = ea+b′ft+1 , (1.6)

where b is a deterministic vector of coefficients and f is a vector of risk factors.

The log-utility CAPM is a special case of the SDF in Equation (1.6) where a = 0,

b = −1, f = logRW and RW is return on the wealth portfolio. The exponentially

affine framework is better suited for analyzing skewed payoffs like options as it does

not rely on linear approximations of the functional form of investors’ marginal rates

of substitution. Continuous time versions of exponentially affine pricing kernels are

commonly used in structural option pricing models, where the factors are typically

specific to the underlying asset as opposed to systematic factors.

Tables 1.12, 1.13, 1.14 and 1.15 report the results of GMM tests using the pricing

kernel defined in Equation 1.6 with the same set of factors from Tables 1.7, 1.8,

1.9, 1.11.12 The results again show that market-wide volatility is a significantly

priced factor in the cross-section of option returns. The point estimates cannot be

directly compared to those in the linear models. However, the volatility factor is

estimated to be significantly positive. Table 1.12 reports the results from a one-step

GMM estimation where the weighting matrix is set equal to the identity matrix. This

greatly reduces the power of the test but is meant to allay any concerns about unstable

12I also test the exponentially affine models with the non-orthogonalized volatility factor. I do
this because the orthogonalization is linear with respect to market excess returns and I want to be
sure that the linear nature of the orthogonalization is not responsible for the results in a nonlinear
model. The results for the coefficient on the volatility factor were virtually unchanged.
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inversion of the weighting matrix in nonlinear GMM estimation when the number of

time series observations is not very large compared to the number of cross-sectional

observations.13 Using all 36 option portfolios, the volatility factor is signifiant at the

5% level for the two models containing the market factor. In the single factor model

the volatility factor is only significant at the 10% level. Given that the combination

of a single step GMM and a non-linear model substantially reduces the power of the

test, the fact that the volatility factor is still significant can be regarded as strong

evidence in favor of the volatility factor.

Tables 1.13 and 1.15 give the results of the tests with only the ATM options

and the combined portfolios of ATM options and the 12 stock portfolios. In all

specifications the volatility factor is very significant. In the case of the test with only

ATM options, including the volatility factor drastically reduces the J-statistic and the

Hansen-Jagannathan distance, especially in the case of the 4-factor model. The results

are not so strong when the ATM options are combined with the 12 stock portfolios

in Table 1.15, however the volatility factor is still significant in all specifications,

indicating that market-wide volatility plays an important role in the SDF projected

onto the joint space of stock and option returns. This holds true despite the fact

that for the stock portfolios alone, there is little evidence that the volatility factor is

significant in Table 1.14. This is important for two reasons. First, it indicates that

we have more power to estimate the role of market-wide volatility in the SDF when

using options than using the same number of stocks portfolios. Comparing the 12

ATM option portfolios with 12 stock portfolios sorted in a way that has been the

most successful thus far in the literature at showing a significant volatility factor,

it is clear that the option portfolios are a more powerful set of test assets. Second,

even if the SDF projected onto one space shows the volatility factor to be statistically

insignificant, it is entirely possible that the factor is still significantly priced in the

13See Ferson and Foerster (1994) and Cochrane (2005) for discussions about GMM and small
sample properties.

27



SDF. It may just be the case that the space of stock returns is orthogonal to the

volatility factor in the SDF while the space of option returns is not orthogonal to the

factor. If this is the case, we still expect to find that when estimated from returns

on the joint space of stock and option returns, the factor should be significant as we

find in Table 1.15.

1.4.4 Pricing Kernels with Tail Risk

As first noted by Black (1976), volatility of the market is negatively correlated

with the market’s level. Table 1.6 shows that in the sample period 1997 through 2013,

monthly innovations in the VIX and excess market returns are highly negatively cor-

related. This is the reason for using orthogonalized VIX innovations in the analysis

throughout the paper. More recently Bates (2012) discusses the difficulty of separat-

ing changes in volatility from jumps. A number of papers have also shown that the

risk neutral distribution of stock indices exhibit higher volatility, more negative skew-

ness and have heavier tails than their corresponding physical distributions.14 This

indicates that option prices reflect premia for skewness and kurtosis as well as volatil-

ity. Furthermore, Bates (2000), Pan (2002) and Eraker et al. (2003) have shown that

jump risk tends to increase during times of higher market volatility. Taken together,

all of these empirical regularities suggest that the risk premium attributed to market-

wide volatility in our earlier tests may actually be due to fears of tail events. In this

section I include additional factors in specifications of the SDF in order to control for

the possibility of tail risk driving the significant volatility premium documented thus

far. Tables 1.16, 1.17, 1.18 and 1.19 give results of linear models for the SDF with

additional factors described in Section 1.2.4.

Tables 1.16 and 1.17 report results for test assets comprised of all 36 option port-

folios and the ATM portfolios respectively. The clear result from these two tables is

14See Jackwerth and Rubinstein (1996), Jackwerth (2000) and Bakshi et al. (2003).
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that volatility risk carries a significant, positive coefficient (and hence a negative price

of risk) even when we control for tail risk. While some of the tail-risk factors appear to

be significant in a number of the specifications, volatility is the only factor that is sig-

nificant in all specifications in both tables. In Table 1.16, with all 36 option portfolios

as the test assets, downside risk also appears significant and skewness is significant

at the 10% level. However, in Table 1.17 where the test assets are the 12 ATM port-

folios, neither is significant. This is likely to be at least partially attributable to the

fact that we have a small number of test assets and thus less cross-sectional variation.

However, volatility is clearly significant even with the small number of test assets and

the additional controls for tail risk. It is also worth noting that the jump factor does

not appear to be significantly priced even though jumps are often modeled in option

returns. However, the jumps included in theoretical option pricing models are jumps

in the underlying asset as opposed to market-wide jumps. Of course in the case of

index options where the relation between jumps and option prices have been most

studied (see for example Pan (2002) and Eraker et al. (2003)), on cannot distinguish

between market-wide risks and risks inherent only in the underlying asset.

Table 1.18 reports the results for the stock portfolios test assets. In this set of

tests the volatility factor remains marginally significant at best. This could largely

be due to the fact there is a small number of test assets. However, when compared

to the 12 ATM option portfolios, it is clear that the volatility factor is much more

prominent in the options than in the stock portfolios. In Table 1.19 where stocks and

ATM options are the combined test assets, volatility is again very significant. Here

skewness and downside risk are also significant.

The results of this section indicate that not only is market-wide volatility a sig-

nificant risk factor in the cross-section of individual option returns, but it is distinct

from market-wide tail risk. Taken together with tests in the previous sections this

suggests that volatility is a very robustly priced risk factor in the cross-section.
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1.5 Likelihood Ratio-Type Tests

In this section I test whether the prices of risk estimated using options differs from

those estimated using the underlying stocks. The tests I use are special cases of those

described in Andrews (1993). They are also known in the econometrics literature as

likelihood ratio-type tests for GMM models. These tests combine stock and options

data in restricted and unrestricted GMM tests and compare the resulting objective

functions. In this way, the intuition behind the tests is similar to likelihood ratio

tests. Of course the difference is that in this setting we have not specified a parametric

likelihood function. Here, as in the previous section, I use GMM because I estimate

models that simultaneously use stock portfolios and different option portfolios to

estimate models. Tables 1.3 and 1.5 demonstrate the need for taking into account

possible heteroskedasticity across assets.

Similar to likelihood ratio tests, the GMM likelihood ratio-type test compares

the value of an objective function under the null hypothesis to its value under an

alternative hypothesis. For the purpose of testing prices of risk in two markets, the

comparison is made between models that fix the coefficients on risk factors to be the

same in the option and equity pricing kernels and those that relax this assumption.

I perform the tests by relaxing the assumption on the volatility factor and compar-

ing the resulting unrestricted GMM objective function to the restricted objective

function. Namely, the null hypothesis is

H0 : bSV OL = bOV OL

where bSV OL and bOV OL are the prices of risk in the stock and option markets respec-

tively.

For each proposed model, I estimate the restricted version by pooling stock port-

folios together with option portfolios so that the test assets are a mix of the 12 stock
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portfolios and 12 ATM option portfolios. The results of estimating the restricted

models are given in Table 1.11. For each model I test the restriction by relaxing H0

and comparing the resulting fit to the corresponding model fit in the restricted model.

Since the tests compare GMM objective functions with and without a linear re-

striction, one needs to be sure that the difference in objective functions is not driven

by the weighting matrix but is driven only by differences due to relaxing the restric-

tion on a given factor. I therefore use the second stage weighting matrix from the

restricted model estimation to estimate the unrestricted model in a single step GMM.

This also ensures that the test statistic has a well defined asymptotic distribution. In

particular, the test statistic has the asymptotic distribution given by

LRGMM = T
(
m(θ̂R)′W (θ̂R)m(θ̂R)−m(θ̂U)′W (θ̂R)m(θ̂U)

)
→ χ2

1, (1.7)

as T →∞, where T denotes total number of observations, θ̂R and θ̂U denote estimated

vectors of prices of risk under the restricted and unrestricted models respectively and

m(θ̂R) and m(θ̂U) denote empirical means of moment restrictions under the restricted

and unrestricted models.

Table 1.20 gives the test statistics and corresponding p-values for each likelihood

ratio-type test. Rows represent the models used for each test. Columns represent

the variable whose price of risk is being tested. Of the three baseline models testing

the volatility factor, one shows a significant difference between the restricted and

unrestricted model at the 5% level and the remaining two give significant test statistics

at the the 10% level. This suggests that the price of systematic volatility risk is not

necessarily the same in the equity and option markets. Although these results suggest

that there may be difference in the prices of volatility risk between the two markets,

the difference is likely to fall within no-arbitrage bands as it is well known that no-

arbitrage option price ranges can be fairly wide.15

15See Figlewski (1989) for example.
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The fact that there is a difference between prices of volatility risk in the stocks and

put options is akin to there being a significant price of risk in delta-hedged returns

of put options. Whereas delta hedged options look directly at the option with the

risk due to the underlying subtracted off, the results here look at the difference in

prices estimated from options and stocks separately. These are two similar ways of

addressing the same question; Is there significantly priced volatility risk inherent in

option contracts that is not due solely to the underlying stock? The fact that I find

a positive difference between implied prices of risks suggests the answer is yes. It

further provides evidence that options are not redundant securities.

1.6 Simulation

In order to verify that leverage adjusting returns does indeed improve the precision

with which we can estimate prices of risk from the cross-section of option returns, I

conduct a simple simulation examining the cross-sectional estimates of a single risk

price. I propose one of the most simple option settings. I assume that underlying

stocks are driven by a single factor. In the case that the single factor is market

excess returns, we are in the CAPM world. As this is the most commonly used factor

model, I will use this as the setting for my simulation. I assume the price of risk

associated with the market factor is fixed over time at λM ≡ 2.5. At each point in

time, I assume that the expected excess return on the market is equal to λM . The

market excess return at time t is given by

Re
M,t = λM + εMt ,

where εMt is distributed normally with mean of zero and a standard deviation set at

σM ≡ 12%. Since excess returns on stock i are assumed to be driven by the stock’s

32



sensitivity to the market factor, the excess returns of stock i are given by

Re
i,t = βMi λM + εi,t.

In order to apply the standard unconditional linear model, I assume βMi is fixed over

time for each stock i. I further assume that the betas of each firm are randomly se-

lected from a continuous uniform distribution between .5 and 1.5. The noise term, εi,t

is assumed to be normally distributed with a mean of zero and standard deviation of

σi where each firms annual return volatility is drawn from a normal distribution with

mean 20% and a standard deviation of 5%. With these parameters and distributions

for annual returns, I simulate 500 months of returns for 1,000 stocks, assuming that

return distributions are the same over each month so that the monthly values are the

same for each month making up a year and the aggregate distribution over the 12

months in the annual distribution.

Next, I again assume the simplest setting and propose that option prices are

set according to the Black-Scholes-Merton model. For each stock I construct prices

of 6 options: an in-the-money call and put, at-the-money call and put and out-

of-the money call and put. I set the definition of in, at and out of the money as

follows, for puts moneyness is defined as strike price divided by stock price. For

calls, moneyness is equal to stock price divided by strike price. I define OTM options

as those with moneyness .925 <= Moneyness < .975, ATM options are defined by

.975 <= Moneyness < 1.025, and in the money options are those with 1.025 <=

Moneyness < 1.075. Within each moneyness range, I randomly select the moneyness

a given stock’s option at time t will be assigned. This is done by randomly drawing

from a uniform distribtion between the upper and lower bound of the moneyness.

The Black-Scholes-Merton prices are then calculated with an assumed fixed annual

risk-free rate of 5%.
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I run cross-sectional regressions for three different sets of test assets. The first in-

volves running cross-sectional regressions with each of the stocks’ six options treated

as a continuously traded asset. This way, the first stage, time series regression

can be applied to options even though each option only exists for a short window

within the simulation. With this resulting panel of options, I next form portfolios

by sorting according to the underlying stocks’ beta. I form 10 portfolios within each

moneyness/put-call category. I then simply equal-weight the portfolio returns. The

first set of portfolios involves returns that are not leverage adjusted while the second

uses option returns that are de-levered monthly. One difference between the leverage

adjustment employed here and the leverage adjustment we employ in the real data

is that here we require that prices be determined via Black-Scholes-Merton pricing.

This means that at each point in time we can perfectly calculate each option’s lever-

age. However, because I only leverage-adjust my option portfolios monthly instead

of instantaneously, this gives an imperfect de-levering as we are bound to have when

de-levering real options data.

I simulate this economy 1000 times. The results are given in Table 1.24 and

Figure 1.8. Panels A and B of Figure 1.8 give the sampling distribution of estimated

prices of market risk in each of the 1000 simulated economies, without and with

leverage adjusted returns respectively. The sampling distribution is more accurate

and much tighter for the leverage adjusted portfolios than it is for the portfolios

without leverage adjustment. When we estimate the price of risk λM from the entire

panel of options data without forming portfolios, the point estimate of 0.082 is far

below the true value of λM = 2.5. The sampling error for the individual options is

much smaller because of the fact that the cross-section is so much larger when we

don’t form portfolios. If one forms portfolios of options without leverage-adjusting,

the results improve dramatically. The point estimate λ̂M = 1.994 which is much

closer to the true price of risk. Clearly forming portfolios is an important way of
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reducing the extreme noise present in option returns. This noise may partially be

due to the leverage embedded in options due to the non-linear payoff structure of

options. The third set of test assets addresses this issue. These test assets are the

same as the second set of test assets except that they are de-levered at the beginning

of each month. The results shown in Table 1.24 suggest that the point estimates

are significantly improved by de-levering. Furthermore, the sampling error is also

improved above and beyond just forming portfolios. The sampling error of the point

estimates using leverage-adjusted portfolios in each of the 1000 economies is 0.159

as opposed to 0.298 when option returns are not leverage-adjusted. This means that

de-levering option returns on top of forming portfolios further improves the efficiency

of using options to estimate the price of risk in the cross-section. If the results of this

simple model can be extrapolated to more complicated models used to price options

for which we have data, this suggests that the prices of risk estimated from portfolios

of leverage-adjusted options are a better indicator of the actual prices of risk.

1.7 Volatility Price in Index and Individual Options

A number of papers have documented the disparity in the magnitude of risk premia

embedded in measures of volatility from index options and individual options (See

for example Driessen et al. (2009) and Bakshi and Kapadia (2003a)). The literature

has found that the so called volatility risk premium, defined as the difference between

return volatility under the risk-neutral and physical probability measures, is much

larger for index options than for individual options. The generally accepted notion

that volatility risk premia measure the premia due to volatility exposure.

In this section I measure the price of volatility risk by examining the cross section

of S&P 500 index options and options on the stocks making up the S&P 500. I

compare the prices of market-wide volatility risk implicit each set of assets separately.

I then compare whether the prices differ. The results point to the price of volatility

35



risk being consistent between the two classes of assets when we look at options with

one month to maturity. This is consistent with a risk-based explanation of the price of

market-wide volatility. At the same time the finding is not trivial given the literature

on volatility risk premia mentioned above.

Recently Dew-Becker et al. (2014) show that the returns to synthetic as well as

traded variance swaps on major stock market indices exhibit a strongly downward

sloping term structure. More specifically, Dew-Becker et al. (2014) find that investors

are willing to pay a large premium for short-maturity variance swaps. However,

for variance swaps of more than two months to maturity, the additional premium

investors are willing to pay is very small. This suggests that investors are only willing

to pay a premium for insurance against short term market volatility. In a related

paper, Andries et al. (2014) show that in a model with stochastic market volatility

and investors with horizon-dependent risk aversion, the term structure of the price of

volatility in a Heston model exhibits a similar term structure. Andries et al. (2014)

use S&P 500 index options and the Heston option pricing models to study the term

structure of prices of volatility.

In this section I study whether this volatility term structure pattern is evident

when applying linear models to de-leveraged option returns. I use both index options

and individual options because both Andries et al. (2014) as well as Dew-Becker et al.

(2014) find evidence for downward sloping term structure of volatility risk. Neither of

these papers uses the traditional linear model typically used to estimate prices of risk

factors from the cross-section of returns. Constantinides et al. (2013) do estimate

a linear model and find a negative price of volatility risk from the cross-section of

returns on index options. However, they use options of maturities 30, 60 and 90 days

with various moneyness as their pooled set of test assets. In doing so, they do not

look at the possibility that the prices of risk may vary across times-to-maturity.

To be consistent with the methods applied in Constantinides et al. (2013) I form
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portfolios of index options by by updating the leverage adjustment on a daily ba-

sis. following Constantinides et al. (2013) I moneyness set target moneyness levels

and target times to maturity. I then weight realized, leverage-adjusted option re-

turns using a bivariate Gaussian weighting kernel in target moneyness and target

time-to-maturity, with bandwidths of 10 days for time-to-maturity and 0.0125 mon-

eyness. I follow Constantinides et al. (2013) by setting target moneyness values

at .9, .925, .95, .975, 1, 1.025, 1.05, 1.075 and 1.10. Since index options typically have

much more trading volume than options on individual stocks, they have a more dense

set of strike prices and hence options are available at more moneyness levels for index

options than individual options. As such, setting such a wide range of target money-

ness values does not leave us with sparsely populated portfolios. The target times to

maturity are set at 30 days, 60 days, 90 days, 120 days, 150 days and 180 days.

Next I form my set of test assets from returns on individual options. In order to

be most consistent with the test assets used for index option portfolios, I perform

leverage adjustment on a daily basis. I break the individual options into moneyness

bins in exactly the same way described earlier. I also value weight the returns in each

portfolio where value is measured by market capitalization of equity for the underly-

ing firm. In order to further be consistent with the results in Constantinides et al.

(2013), I estimate the prices of risk associated test assets’ sensitivity to risk factors.

I perform the standard two-step cross-sectional regression to do so. As in Constan-

tinides et al. (2013), I estimate standard errors by bootstrapping the cross-sectional

test procedure with 10,000 bootstrap draws from the dates used in the sample. Thus

the procedure assumes independent and identical time series distributions but allows

for heterskedasticity in the cross-section. Bootstrapping the standard errors easily

allows me to estimate standard errors for the difference in estimated price of risk

between index option returns and individual option returns.

Tables 1.21 and 1.22 give results of the cross-sectional regressions for index and
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individual options respectively. Since close to 99% of the variation in the returns of

index option portfolios is explained by the first two principle components of the test

asset returns, I only test a two factor model with the market and volatility factors

when using index options as test assets. For the individual options I test the two

factor model as well as a 5 factor model which includes the addition of SMB, HML

and momentum factors. In the individual options, volatility risk, measured by changes

in the VIX, carries a significant price of volatility risk for options of all maturities.

The price of market-wide volatility risk does not seem to fluctuate much across option

maturities. For the index options, however, I find results similar to those described

in Andries et al. (2014) and Dew-Becker et al. (2014). For index options with time

to maturity of 1,2 and 3 months, there is not much difference between the prices of

volatility extracted from index options and that extracted from individual options.

Since the term structure of volatility risk is more or less flat for the individual

options but is decreasing for the index options, I next examine the term structure of

the disparity between the price of risk in the two markets. The top panel of Figure 1.8

shows point estimates for the price of volatility risk separately for the index options

and the individual option portfolios in the case of the two factor model. I only compare

the two factor model results because the index option returns are driven by 2 principle

components. In order to have a meaningful comparison, I thus compare the prices

from the two factor model for both types of test assets. The bottom panel shows

the difference between the point estimates as well as a two standard error confidence

band around the point estimates at each maturity. Standard errors are calculated by

bootstrapping the cross-sectional regression procedure with 10,000 bootstrap draws.

It is clear from the figure that for maturities of 4, 5 and 6 months, the difference in

prices is statistically significant. In addition to Figure 1.8, Table 1.23, gives the point

estimates and standard errors for differences in the price of volatility risk.

One possible explanation for such a disparity in price of volatility between index
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and individual options making up the index is correlation risk. The variance and

volatility of the index is composed of two parts: the weighted sum of variances of

constituent stocks and the weighted cross-covariances of all pairs of stocks. I follow

Driessen et al. (2009) who construct a correlation factor based upon the simplifying

assumption that all pairwise correlation between stocks is the same regardless of which

two stocks we look at. Following this assumption, I construct a correlation factor

and use this factor to control for correlation risk. If correlation risk is driving the

disparity between prices of volatility risk in index and individual options as suggested

in Driessen et al. (2009), then the differences in estimated price of risk displayed in

Figure 1.8 should disappear once we control for correlation risk. However, Figure 1.8

shows that the significant difference between prices in each of the cross sections still

persists even when we control for correlation risk. This further complicates any risk-

based explanation for why the term structure of volatility risk appears to be negative

when estimated from index options.

1.8 Conclusion

Volatility is generally accepted as playing an important role in determining prices

of options. The evidence of a volatility premium in the index options market is well

documented. In addition, the growing literature on individual stock option returns

is largely comprised of papers examining volatility characteristics and their relation

to returns on options. The well documented differences in the volatility and variance

risk premia between index options and individual stock options (see Driessen et al.

(2009) and Bakshi and Kapadia (2003a)) suggests that the volatility risk premium

inherent in index options may not necessarily translate to a similar premium existing

in the cross-section of individual options. In fact, Duarte and Jones (2007) find

that volatility risk is not significantly priced unconditionally in the cross-section of

individual option returns and Di Pietro and Vainberg (2006) find volatility risk has the
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opposite sign in the cross-section of synthetic variance swaps as in the cross-section

of stock returns.

Until now evidence had suggested that market-wide volatility may not be priced

in individual stock options. I find that there is strong evidence of a significant market-

wide volatility risk factor in the pricing kernel for options on individual stocks. This

factor is economically and statistically very significant. My results lend support to

recent papers like Dittmar and Lundblad (2014), Boguth and Kuehn (2013), Campbell

et al. (2012) and Bansal et al. (2013) all of which suggest volatility is a priced state

variable in the ICAPM sense. If volatility is a state variable in the ICAPM sense, it

should be priced in the cross-section of individual options as well. The results of this

paper thus make the make plausible the argument for volatility as a state factor.

I present strong evidence that the term-structure of volatility risk differs between

individual options and index options. Namely, individual options embed a negative

price of volatility risk that is constant across maturities from one to six months. On

the other hand, the term structure of volatility risk in the index options market is

downward sloping and at maturities of 4,5 and 6 months the price of volatility risk is

significantly greater in magnitude for individual options than it is for index options. I

further find evidence that the price of market-wide volatility risk is greater in the the

options than in the underlying stocks. This suggests that options are not redundant

securities. Furthermore, it suggests that a potential reason for the existence of the

option market may be as a market for hedging market-wide volatility risk.
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Table 1.1: Options Sample
This table gives the number of option contracts considered in our sample for each of
the six call/put and moneyness bins over the 200 month sample from January 1997
through August 2013. There are a total of 599,803 options in the filtered data.

Number of Options
OTM ATM ITM

Calls 93,658 127,423 77,348
Puts 101,925 107,419 92,030

Table 1.2: Option Leverage Estimates
This table gives summary statistics for the Black-Scholes-Merton estimates of
leverage in individual stock options in the sample.

Option Leverage
OTM ATM ITM

mean std dev mean std dev mean std dev
Calls 18.31 7.33 14.79 6.43 8.16 3.48
Puts -15.37 6.65 -13.03 6.20 -7.36 3.83
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Table 1.3: Summary statistics for 36 value-weighted option portfolios
This table reports summary statistics for each of the 36 value-weighted option
portfolios. Columns represent OTM, ATM or ITM calls and puts. Rows represent
portfolios sorted by implied volatility premium (IVP) within each moneyness,
option-type portfolio; IVP1 denotes portfolio with the smallest implied volatility
premium while IVP6 represents the portfolio with largest implied volatility premium.
Mean and volatility are reported in terms of annualized returns in percent. Skewness
and kurtosis are measures of monthly holding period returns. The sample covers 200
months, from January 1997 through August 2013.

Calls Puts Calls Puts
OTM ATM ITM OTM ATM ITM OTM ATM ITM OTM ATM ITM

IVP A. Mean (%) B. Volatility (%)
IVP1 3.963 5.818 4.799 4.525 5.532 8.654 33.245 25.593 24.323 42.037 34.630 29.701
IVP2 3.190 5.148 6.082 13.427 8.392 8.466 21.402 19.201 17.955 29.903 26.582 22.706
IVP3 4.704 5.437 4.905 16.617 11.619 13.673 19.859 16.802 17.207 29.806 23.699 21.198
IVP4 3.224 6.281 8.046 17.635 14.150 13.560 18.007 17.121 17.703 29.935 25.196 21.541
IVP5 -5.258 4.395 7.737 25.768 22.448 13.171 18.728 20.395 20.362 31.417 26.620 26.335
IVP6 -14.171 -2.688 1.223 33.907 24.271 25.377 22.941 24.516 26.332 35.676 34.025 28.949

C. Skewness D. Kurtosis
IVP1 5.777 2.611 1.759 -3.343 -2.330 -1.544 9.153 6.475 4.980 11.108 9.838 6.732
IVP2 2.073 1.291 0.315 -3.144 -2.227 -1.306 9.630 6.677 3.935 10.415 10.161 6.168
IVP3 1.993 0.760 0.163 -3.520 -1.902 -1.374 8.812 4.162 3.763 12.348 8.491 6.034
IVP4 1.083 0.481 0.015 -3.706 -2.085 -1.496 4.008 3.572 4.009 14.615 9.633 7.398
IVP5 1.669 0.925 -0.152 -3.057 -2.210 -1.334 7.677 5.343 4.423 11.579 11.809 7.446
IVP6 1.708 0.775 0.030 -2.248 -1.478 -0.929 7.936 4.741 4.073 7.201 8.092 6.448

E. CAPM beta F. Volatility beta (2 factor model)
IVP1 0.874 0.886 0.943 1.589 1.456 1.292 0.545 0.445 0.238 -0.610 -0.394 -0.191
IVP2 0.612 0.726 0.779 1.228 1.179 1.063 0.306 0.180 0.012 -0.616 -0.421 -0.240
IVP3 0.622 0.650 0.766 1.174 1.089 0.988 0.197 0.145 -0.053 -0.663 -0.419 -0.321
IVP4 0.571 0.720 0.816 1.231 1.123 1.009 0.232 0.109 -0.050 -0.697 -0.521 -0.374
IVP5 0.571 0.796 0.913 1.247 1.150 1.130 0.072 0.123 -0.072 -0.851 -0.635 -0.441
IVP6 0.617 0.925 1.073 1.194 1.338 1.180 0.225 0.092 -0.038 -0.720 -0.657 -0.451

42



Table 1.4: Summary statistics for 36 option portfolios without leverage adjustment
This table reports summary statistics for each of the 36 value-weighted option
portfolios without leverage adjusting returns. Columns represent OTM, ATM or
ITM calls and puts. Rows represent portfolios sorted by implied volatility premium
(IVP) within each moneyness, option-type portfolio; IVP1 denotes portfolio with the
smallest implied volatility premium while IVP6 represents the portfolio with largest
implied volatility premium. Mean and volatility are reported in terms of annualized
returns in percent. Skewness and kurtosis are measures of monthly holding pe-
riod returns. The sample covers 200 months, from January 1997 through August 2013.

Calls Puts Calls Puts
OTM ATM ITM OTM ATM ITM OTM ATM ITM OTM ATM ITM

IVP A. Mean (%) B. Volatility (%)
IVP1 7.80 56.5 36.8 -31.0 -70.0 -57.4 415.4 294.9 189.3 452.3 344.6 217.3
IVP2 115 89.3 48.3 -87.6 -71.3 -64.5 436.7 278.1 187.1 490.1 342.5 212.8
IVP3 12.4 103 52.6 -79.1 -67.6 -74.8 453.3 275.8 179.3 536.8 331.1 208.9
IVP4 10.2 141 79.0 -71.1 -69.3 -48.2 524.2 309.5 191.5 437.0 327.1 210.0
IVP5 33.7 36.0 29.0 -81.5 -74.3 -55.7 469.6 297.4 194.1 497.7 311.3 200.2
IVP6 20.2 16.7 41.4 -90.1 -89.4 -67.4 497.1 302.7 190.6 392.7 269.3 167.4

C. Skewness D. Kurtosis
IVP1 1.946 1.255 0.307 3.422 2.445 1.453 6.837 4.972 2.658 17.844 11.494 5.957
IVP2 1.823 0.770 0.206 2.876 1.959 1.388 6.726 3.127 2.582 11.975 7.001 4.973
IVP3 2.481 0.762 0.083 3.646 1.999 1.376 10.814 3.222 2.571 20.436 7.659 5.374
IVP4 3.097 1.062 0.165 3.020 1.653 1.184 15.095 3.909 2.397 13.469 5.244 4.311
IVP5 2.391 1.228 0.461 2.663 1.746 1.012 10.061 4.831 3.470 10.699 6.199 3.754
IVP6 5.062 1.306 0.704 3.258 1.652 0.741 42.658 5.092 5.027 16.507 6.056 3.148

E. CAPM beta F. Volatility beta (2 factor model)
IVP1 11.154 8.840 6.781 -15.927 -13.181 -8.574 3.112 0.790 -0.294 7.258 5.095 2.646
IVP2 12.200 9.840 7.586 -18.522 -14.519 -9.342 4.592 1.553 -0.826 9.537 6.144 3.249
IVP3 11.140 10.413 7.694 -20.098 -14.046 -9.051 2.134 2.289 -0.090 10.381 6.660 3.306
IVP4 10.571 8.720 8.816 11.231 -11.123 -12.009 4.522 2.981 0.582 9.375 5.150 1.472
IVP5 10.571 9.796 8.913 10.247 -12.150 -10.130 6.742 2.879 0.741 7.192 4.030 1.334
IVP6 7.617 8.925 6.073 10.194 -10.338 -9.180 2.784 3.398 1.004 5.654 2.610 1.551

43



Table 1.5: Summary statistics for stock portfolios
This table reports summary statistics for the stock portfolios formed according to
the double sorting procedure. Where the first sort is by βM , each stock’s market
beta. The second sort is by β∆V IX , stock loading on changes in the VIX. Mean
and volatility are reported in terms of annualized returns in percent. Skewness and
kurtosis are measures of monthly holding period returns. The sample includes all
CRSP stocks and covers 200 months, from January 1997 through August 2013.

Stock Portfolios
βM βM

(1) (2) (1) (2)
β∆V IX A. Mean (%) B. Volatility (%)

(1) 11.023 12.499 18.526 30.168
(2) 7.862 7.785 14.912 24.610
(3) 7.987 8.718 14.181 22.403
(4) 6.208 10.955 14.604 24.414
(5) 8.524 11.884 15.761 26.514
(6) 7.494 4.996 22.102 33.240

C. Skewness D. Kurtosis
(1) -0.660 -0.908 4.918 6.458
(2) -1.078 -1.208 4.936 7.320
(3) -1.429 -0.861 7.186 7.094
(4) -1.354 -0.232 7.263 5.967
(5) -1.126 -0.431 5.801 5.600
(6) -1.307 -0.416 6.504 5.115

E. CAPM beta F. Volatility beta
(1) 0.810 1.417 -0.094 -0.074
(2) 0.679 1.210 -0.082 0.055
(3) 0.654 1.115 -0.097 0.013
(4) 0.661 1.209 -0.158 0.008
(5) 0.716 1.289 -0.076 0.040
(6) 0.945 1.535 -0.101 0.149
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Table 1.6: Risk factor correlations
This table presents correlations between the risk factors examined in the paper.
Construction of the factors is described in Section 1.2.4. The sample covers 200
months, from January 1997 through August 2013.

Factor Correlations
MKT SMB HML Mom VOL VOL⊥ DS Skew Jump

MKT 1.000
SMB 0.304 1.000
HML -0.092 -0.148 1.000
Mom -0.348 -0.048 -0.305 1.000
VOL -0.777 -0.218 -0.002 0.284 1.000
VOL⊥ 0.000 0.028 -0.117 0.022 0.630 1.000
DS 0.755 0.260 0.046 -0.215 -0.693 -0.168 1.000
Skew -0.213 -0.079 -0.114 -0.040 0.339 0.275 -0.673 1.000
Jump 0.480 0.224 0.141 -0.119 -0.456 -0.131 0.674 -0.602 1.000
VJ -0.501 -0.281 -0.103 0.120 0.502 0.178 -0.621 0.368 -0.700

45



Table 1.7: Linear GMM Tests with 36 Option Portfolios
This table reports results of GMM tests of linear pricing kernels using all 36 options
portfolios as test assets. Each row represents a model and columns represent factors
included in the model. The point estimates are reported along with t-statistics
in parentheses that are computed using Newey-West adjusted standard errors
with 6-month lags. The final two columns give the J-statistic with corresponding
asymptotic p-value in [brackets] and the Hansen-Jagannathan measure of distance
from the space of valid stochastic discount factors.

All 36 Options Portfolios
intercept MKT SMB HML MOM VOL Jstat HJ dist

(1) 0.960 13.915 141.749 0.671
(40.172) (5.399) [0.000]

(2) 1.014 -0.026 167.332 0.708
(92.067) (-2.802) [0.000]

(3) 0.962 0.015 14.084 139.063 0.684
(38.065) (1.303) (5.340) [0.000]

(4) 1.081 -0.019 0.941 -250.931 9.075 128.420 0.813
(13.471) (-0.776) (0.132) (-3.244) (2.666) [0.000]

(5) 0.991 0.006 -0.153 -55.246 3.260 17.536 73.384 0.668
(9.249) (0.221) (-0.024) (-1.068) (1.577) (3.660) [0.000]
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Table 1.8: Linear GMM Tests ATM Portfolios
This table reports results of GMM tests of pricing kernels using the combination
of 6 ATM put portfolios and 6 ATM call portfolios as test assets. Each row
represents a model and columns represent factors included in the model. The point
estimates are reported along with t-statistics in parentheses that are computed using
Newey-West adjusted standard errors with 6-month lags. The final two columns
give the J-statistic with corresponding asymptotic p-value in [brackets] and the
Hansen-Jagannathan measure of distance from the space of valid stochastic discount
factors.

ATM calls and puts
intercept MKT SMB HML MOM VOL Jstat HJ dist

(1) 1.021 15.982 16.714 0.324
(23.410) (3.498) [0.117]

(2) 1.010 -0.019 26.991 0.388
(88.323) (-1.528) [0.005]

(3) 1.020 -0.004 15.718 17.123 0.322
(23.772) (-0.212) (3.364) [0.072]

(4) 1.182 0.003 -14.857 -179.253 -0.950 29.922 0.385
(14.540) (0.098) (-1.549) (-2.348) (-0.167) [0.000]

(5) 0.981 -0.037 2.896 39.551 -6.911 15.278 12.277 0.325
(15.764) (-1.452) (0.374) (0.456) (-1.674) (2.288) [0.092]
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Table 1.9: Linear GMM Tests for Stocks
This table reports results of GMM tests of pricing kernels using the 12 stock portfolios
as test assets. Each row represents a model and columns represent factors included
in the model. The point estimates are reported along with t-statistics in parentheses
that are computed using Newey-West adjusted standard errors with 6-month lags.
The final two columns give the J-statistic with corresponding asymptotic p-value in
[brackets] and the Hansen-Jagannathan measure of distance from the space of valid
stochastic discount factors.

Stock Portfolios
intercept MKT SMB HML MOM VOL Jstat HJ dist

(1) 0.992 12.005 28.838 0.297
(20.707) (2.011) [0.002]

(2) 1.011 -0.025 25.149 0.306
(74.416) (-1.974) [0.009]

(3) 1.008 -0.047 11.842 25.139 0.335
(25.507) (-2.298) (1.768) [0.005]

(4) 1.061 -0.062 2.107 -35.335 -4.288 17.426 0.363
(20.830) (-2.045) (0.449) (-0.516) (-1.284) [0.026]

(5) 1.006 -0.024 9.532 139.756 5.472 11.644 9.287 0.312
(9.490) (-0.534) (1.127) (1.017) (0.939) (1.513) [0.233]
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Table 1.10: Linear GMM Tests for ATM calls and puts without leverage adjustment
This table reports results of GMM tests of pricing kernels using the 12 ATM
portfolios without leverage adjustment as test assets. The portfolios are sorted in
the same manner as the leverage adjusted portfolios and the weighting is the same.
However, the returns are not leverage adjusted. Each row represents a model and
columns represent factors included in the model. The point estimates are reported
along with t-statistics in parentheses that are computed using Newey-West adjusted
standard errors with 6-month lags. The final two columns give the J-statistic with
corresponding asymptotic p-value in [brackets] and the Hansen-Jagannathan measure
of distance from the space of valid stochastic discount factors.

ATM Portfolios without leverage adjustment
intercept MKT SMB HML MOM VOL Jstat HJ dist

(1) 0.934 24.007 15.503 0.520
(7.302) (0.861) [0.041]

(2) 1.034 -0.023 17.319 0.395
(34.491) (-1.346) [0.003]

(3) 1.038 -0.024 0.996 15.489 0.398
(28.314) (-1.361) (0.111) [0.045]

(4) 1.010 -0.019 2.089 58.815 1.404 12.826 0.401
(13.530) (-0.738) (0.306) (0.549) (0.181) [0.008]

(5) 0.995 -0.017 1.981 79.316 0.781 3.869 10.396 0.394
(16.010) (-0.684) (0.295) (0.798) (0.092) (0.490) [0.055]
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Table 1.11: Linear GMM Tests for Combined Stock Portfolios and ATM Options
This table reports results of GMM tests of pricing kernels using the 12 ATM
option portfolios combined with the 12 stock portfolios as test assets. Each row
represents a model and columns represent factors included in the model. The point
estimates are reported along with t-statistics in parentheses that are computed using
Newey-West adjusted standard errors with 6-month lags. The final two columns
give the J-statistic with corresponding asymptotic p-value in [brackets] and the
Hansen-Jagannathan measure of distance from the space of valid stochastic discount
factors.

12 ATM Options Portfolios and 12 Stock Portfolios
intercept MKT SMB HML MOM VOL Jstat HJ dist

(1) 0.981 8.262 88.983 0.505
(57.297) (3.165) [0.000]

(2) 1.023 -0.038 84.117 0.560
(63.870) (-3.416) [0.000]

(3) 0.994 -0.030 9.052 83.737 0.504
(44.188) (-2.204) (3.000) [0.000]

(4) 1.121 -0.068 2.004 -182.055 -4.373 74.183 0.607
(21.060) (-3.891) (0.517) (-3.611) (-1.868) [0.000]

(5) 1.031 -0.046 0.801 -95.068 -1.797 9.460 73.399 0.523
(22.574) (-2.588) (0.234) (-2.182) (-0.945) (2.828) [0.000]
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Table 1.12: GMM tests 36 option portfolios and Exponentially Affine SDF
This table reports results of GMM tests of exponentially affine pricing kernels using
all 36 option portfolios. This is the only table in the paper that reports results for the
1-step GMM with an identity weighting matrix. I use this test instead of the 2-step
GMM for this particular test in order to avoid problems associated with multiple-step
GMM estimation of non-linear models when the time series of observations is not
long compared to the number of test assets. Each row represents a model and
columns represent factors included in the model. The point estimates are reported
along with t-statistics in parentheses that are computed using Newey-West adjusted
standard errors with 6-month lags. The final two columns give the J-statistic with
corresponding asymptotic p-value in [brackets] and the Hansen-Jagannathan measure
of distance from the space of valid stochastic discount factors.

36 Options Exponentially Affine SDF
intercept MKT SMB HML MOM VOL Jstat HJ dist

(1) -0.068 10.578 164.526 0.669
-(1.026) (1.878) [0.000]

(2) -0.000 -0.035 167.256 0.680
(-0.045) (-1.601) [0.000]

(3) -0.063 -0.002 10.230 163.140 0.678
(-1.010) (-0.072) (1.966) [0.000]

(4) -0.075 -0.012 1.034 -57.061 4.521 187.225 0.935
(-1.114) (-0.516) (0.119) (-0.560) (1.110) [0.000]

(5) -0.259 -0.001 11.357 68.002 2.679 15.457 127.853 0.694
(-1.573) (-0.036) (1.196) (0.962) (0.774) (2.748) [0.000]
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Table 1.13: GMM tests ATM option portfolios and Exponentially Affine SDF
This table reports results of GMM tests of exponentially affine pricing kernels
using portfolios the 12 ATM option portfolios. Each row represents a model and
columns represent factors included in the model. The point estimates are reported
along with t-statistics in parentheses that are computed using Newey-West adjusted
standard errors with 6-month lags. The final two columns give the J-statistic with
corresponding asymptotic p-value in [brackets] and the Hansen-Jagannathan measure
of distance from the space of valid stochastic discount factors.

ATM Options Exponentially Affine SDF
intercept MKT SMB HML MOM VOL Jstat HJ dist

(1) -0.089 12.518 19.560 0.330
-(1.767) (2.999) [0.052]

(2) 0.004 -0.017 26.480 0.386
(0.677) (-1.492) [0.006]

(3) -0.085 -0.002 12.219 19.700 0.329
(-1.705) (-0.117) (2.918) [0.032]

(4) -0.341 -0.036 -22.754 -303.736 -12.031 23.305 0.458
(-1.165) (-1.767) (-2.478) (-4.172) (-2.989) [0.003]

(5) -0.505 0.002 -22.518 -160.048 -11.553 16.424 8.434 0.378
(-1.655) (0.071) (-2.272) (-1.304) (-2.069) (2.379) [0.296]
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Table 1.14: GMM tests 12 Stock Portfolios and Exponentially Affine SDF
This table reports results of GMM tests of exponentially affine pricing kernels using
the 12 stock portfolios. Each row represents a model and columns represent factors
included in the model. The point estimates are reported along with t-statistics
in parentheses that are computed using Newey-West adjusted standard errors
with 6-month lags. The final two columns give the J-statistic with corresponding
asymptotic p-value in [brackets] and the Hansen-Jagannathan measure of distance
from the space of valid stochastic discount factors.

12 Stock Portfolios
intercept MKT SMB HML MOM VOL Jstat HJ dist

(1) -0.013 -3.241 35.386 0.297
(-0.246) (-0.232) [0.006]

(2) -0.001 -0.010 26.088 0.310
(-0.151) (-0.632) [0.073]

(3) -0.033 -0.010 7.535 25.454 0.347
(-0.420) (-0.585) (0.814) [0.062]

(4) -0.001 -0.019 2.300 -8.952 -0.538 25.046 0.367
(-0.028) (-0.896) (0.448) (-0.123) (-0.185) [0.034]

(5) -0.136 -0.001 2.086 59.796 2.487 12.436 22.345 0.452
(-0.871) (-0.048) (0.361) (0.859) (0.650) (1.445) [0.050]
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Table 1.15: GMM Tests with Exponentially Affine SDF
This table reports results of GMM tests of exponentially affine pricing kernels using
portfolios the 12 ATM option portfolios combined with the 12 stock portfolios. Each
row represents a model and columns represent factors included in the model. The

point estimates are reported along with t-statistics in parentheses that are
computed using Newey-West adjusted standard errors with 6-month lags. The final
two columns give the J-statistic with corresponding asymptotic p-value in [brackets]
and the Hansen-Jagannathan measure of distance from the space of valid stochastic

discount factors.
12 ATM Option Portfolios and 12 Stock Portfolios

intercept MKT SMB HML MOM VOL Jstat HJ dist
(1) -0.053 6.301 85.832 0.516

(-2.947) (2.184) [0.000]

(2) 0.004 -0.031 86.080 0.554
(0.643) (-2.984) [0.000]

(3) -0.046 -0.019 6.150 83.037 0.512
(-2.757) (-1.733) (2.092) [0.000]

(4) -0.036 -0.043 4.907 -120.448 -2.315 81.892 0.636
(-0.852) (-3.061) (0.958) (-2.619) (-1.116) [0.000]

(5) -0.105 -0.031 4.972 -97.279 -1.535 8.349 67.327 0.556
(-2.146) (-2.053) (0.875) (-1.794) (-0.659) (2.665) [0.000]
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Table 1.16: Linear GMM tests with Tail Risk
This table reports results of GMM tests of pricing kernels using all 36 options
portfolios as test assets. Each row represents a model and columns represent factors
included in the model. The point estimates are reported along with t-statistics
in parentheses that are computed using Newey-West adjusted standard errors
with 6-month lags. The final two columns give the J-statistic with corresponding
asymptotic p-value in [brackets] and the Hansen-Jagannathan measure of distance
from the space of valid stochastic discount factors.

All 36 Options Portfolios
intercept MKT SMB HML MOM VOL DS SKEW JUMP VOL JUMP Jstat HJ dist

(1) 1.069 -0.052 19.435 13.801 63.047 0.670
(17.045) (-1.965) (5.520) (3.454) [0.001]

(2) 0.985 -0.021 13.326 -6.255 59.437 0.685
(11.144) (-0.866) (3.033) (-1.709) [0.003]

(3) 1.013 -0.008 17.739 0.645 91.861 0.686
(19.489) (-0.491) (5.570) (0.606) [0.000]

(4) 1.115 -0.020 17.256 -6.920 95.473 0.686
(18.961) (-1.076) (5.710) (-3.107) [0.000]

(5) 1.126 -0.066 -2.818 8.808 2.838 21.913 13.933 43.186 0.633
(10.086) (-1.805) (-0.481) (0.144) (1.573) (3.937) (2.450) [0.056]

(6) 0.835 -0.008 -5.807 15.057 3.514 17.502 -7.773 48.943 0.699
(9.206) (-1.213) (-1.280) (0.154) (1.569) (3.064) (-1.850) [0.141]

(7) 1.093 -0.011 1.002 -67.713 2.490 18.722 0.655 63.720 0.683
(8.573) (-0.355) (0.154) (-1.176) (0.824) (3.239) (0.424) [0.000]

(8) 1.146 -0.029 1.671 -9.296 2.904 16.517 -5.846 49.337 0.647
(13.055) (-0.999) (0.286) (-0.162) (1.461) (3.711) (-1.386) [0.015]
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Table 1.17: Linear GMM Tests with Tail Risk
This table reports results of GMM tests of pricing kernels using the combination
of 6 ATM put portfolios and 6 ATM call portfolios as test assets. Each row
represents a model and columns represent factors included in the model. The point
estimates are reported along with t-statistics in parentheses that are computed using
Newey-West adjusted standard errors with 6-month lags. The final two columns
give the J-statistic with corresponding asymptotic p-value in [brackets] and the
Hansen-Jagannathan measure of distance from the space of valid stochastic discount
factors.

ATM Portfolios
intercept MKT SMB HML MOM VOL DS SKEW JUMP VOL JUMP Jstat HJ dist

(1) 1.136 -0.047 19.843 10.239 15.288 0.291
(7.690) (-1.011) (2.245) (1.081) [0.083]

(2) 0.983 -0.003 17.005 -0.318 19.472 0.290
(10.972) (-0.140) (2.688) (-0.144) [0.021]

(3) 0.994 -0.010 16.040 -5.008 17.597 0.325
(18.490) (-0.689) (2.409) (-2.132) [0.057]

(4) 1.129 -0.023 14.137 -3.710 16.065 0.315
(10.510) (-1.041) (3.062) (-0.986) [0.066]

(5) 1.174 -0.084 5.997 72.356 -1.979 24.059 15.124 8.504 0.293
(6.358) (-1.492) (0.649) (0.612) (-0.302) (2.108) (1.260) [0.203]

(6) 0.975 -0.005 -0.120 -2.903 3.374 24.108 -4.972 9.871 0.298
(10.597) (-0.233) (-0.010) (-0.033) (0.515) (2.550) (-1.870) [0.218]

(7) 0.933 -0.023 3.650 13.343 -9.402 11.971 -0.888 16.309 0.319
(10.392) (-0.877) (0.395) (0.152) (-2.419) (1.935) (-0.592) [0.012]

(8) 0.990 -0.042 4.680 63.669 -6.074 15.034 -0.268 11.417 0.336
(7.529) (-1.435) (0.527) (0.701) (-1.402) (2.096) (-0.063) [0.076]
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Table 1.18: Linear GMM Tests with Tail Risk
This table reports results of GMM tests of pricing kernels using 12 stock portfolios
as test assets. Each row represents a model and columns represent factors included
in the model. The point estimates are reported along with t-statistics in parentheses
that are computed using Newey-West adjusted standard errors with 6-month lags.
The final two columns give the J-statistic with corresponding asymptotic p-value in
[brackets] and the Hansen-Jagannathan measure of distance from the space of valid
stochastic discount factors.

12 Stock Portfolios
intercept MKT SMB HML MOM VOL DS SKEW JUMP VOL JUMP Jstat HJ dist

(1) 1.025 -0.049 13.116 4.340 19.652 0.259
(11.794) (-1.611) (2.077) (0.675) [0.186]

(2) 0.958 -0.036 13.527 -2.353 20.648 0.383
(19.566) (-2.044) (1.831) (-1.094) [0.148]

(3) 0.991 -0.039 15.546 0.445 20.668 0.188
(21.655) (-2.209) (2.159) (0.448) [0.148]

(4) 1.001 -0.042 12.859 -1.497 19.939 0.276
(9.096) (-1.954) (1.874) (-0.386) [0.174]

(5) 1.022 -0.056 0.716 5.890 0.515 13.858 4.026 18.971 0.269
(6.188) (-0.860) (0.174) (0.127) (0.163) (2.438) (0.379) [0.089]

(6) 1.009 -0.054 -4.181 -61.357 -4.002 9.870 -5.858 18.032 0.229
(12.897) (-1.762) (-0.716) (-0.732) (-0.857) (1.213) (-1.282) [0.115]

(7) 0.981 -0.038 -0.086 -8.364 0.245 11.648 0.369 19.014 0.209
(14.028) (-1.264) (-0.021) (-0.212) (0.103) (1.663) (0.293) [0.088]

(8) 0.969 -0.033 -0.773 -6.840 -1.276 10.114 -0.749 18.379 0.281
(2.504) (-0.626) (-0.074) (-0.058) (-0.322 (1.595) (-0.065) [0.105]

57



Table 1.19: Linear GMM Tests with Tail Risk
This table reports results of GMM tests of pricing kernels using the 12 ATM
option portfolios combined with the 12 stock portfolios as test assets. Each row
represents a model and columns represent factors included in the model. The point
estimates are reported along with t-statistics in parentheses that are computed using
Newey-West adjusted standard errors with 6-month lags. The final two columns
give the J-statistic with corresponding asymptotic p-value in [brackets] and the
Hansen-Jagannathan distance measure.

12 ATM Options Portfolios and 12 Stock Portfolios
intercept MKT SMB HML MOM VOL DS SKEW JUMP VOL JUMP Jstat HJ dist

(1) 1.116 -0.070 15.024 14.377 67.400 0.488
(14.535) (-2.592) (3.819) (2.772) [0.000]

(2) 0.914 -0.018 16.228 -6.837 60.283 0.503
(26.498) (-1.401) (4.171) (-2.990) [0.000]

(3) 1.055 -0.046 10.216 0.417 91.981 0.512
(14.670) (-2.069) (2.575) (0.262) [0.000]

(4) 0.986 -0.036 8.664 -1.638 71.371 0.499
(11.851) (-2.298) (2.812) (-0.532) [0.000]

(5) 1.098 -0.077 5.106 -154.740 0.127 12.847 13.863 49.322 0.565
(8.849) (-2.008) (0.867) (-2.738) (0.044) (2.822) (1.928) [0.000]

(6) 0.881 -0.028 0.848 -127.291 -0.673 15.976 -7.858 45.738 0.537
(16.309) (-1.959) (0.240) (-2.294) (-0.247) (4.210) (-3.808) [0.000]

(7) 1.121 -0.067 1.725 -144.936 -3.695 7.742 0.404 71.455 0.554
(13.555) (-2.581) (0.347) (-2.613) (-1.338) (1.836) (0.214) [0.000]

(8) 1.008 -0.052 -2.301 -96.950 -3.626 8.493 -0.476 61.052 0.532
(10.099) (-2.677) (-0.937) (-2.348) (-1.860) (2.403) (-0.111) [0.000]

Table 1.20: GMM Likelihood Ratio-type tests
This table reports results of GMM-based likelihood ratio-type tests of restricting
individual factors to be the same in both the stock SDF and the SDF estimated
from option portfolios. Each pair of numbers represents a test where the model
is estimated first under the restriction that the prices of risk for all risk factors
in each model are the same for stocks and call options. This corresponds to the
results in Table 1.11. This restriction is relaxed for volatility factor to estimate the
unrestricted model. The values in the table are the test statistic and corresponding
p-values in brackets. The null hypothesis is that the price of risk for the volatility
factor are the same in options and stocks. The alternative is that the price of risk
differs between the two markets.

Likelihood Ratio tests
One Factor Model Two Factor Model Five Factor Model

Test Statistic p-value Test Statistic p-value Test Statistic p-value
3.557 0.059 3.002 0.083 4.698 0.030
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Table 1.21: Cross-sectional regressions of S&P 500 Index Options
This table reports results of cross-sectional regressions using portfolios of S&P 500
index options as test assets. The test assets include nine moneyness portfolios
for calls 9 moneyness portfolios for puts. Each row represents a different time to
maturity of options in the portfolios. The regressions are run separately for each time
to maturity from one to six months. Columns give point estimates and corresponding
standard errors for prices of risk associated with factors in the model. The point
estimates are reported along with bootstrapped standard errors in parentheses that
are computed using 10,000 bootstrap iterations. The final column gives the adjusted
R2 for the cross-sectional regression.

S&P 500 Index Option Portfolios
intercept MKT VOL adjusted R2

1 month 0.04 -2.85 -4.57 0.41
(0.01) (1.77) (1.28)

2 month 0.04 -2.65 -3.89 0.39
(0.01) (1.88) (1.00)

3 month 0.02 -2.13 -2.62 0.33
(0.01) (1.14) (0.74)

4 month 0.01 -0.99 -1.65 0.35
(0.01) (1.15) (0.76)

5 month 0.01 -0.74 -1.29 0.29
(0.01) (1.29) (0.85)

6 month 0.01 1.02 -1.27 0.31
(0.01) (1.43) (1.31)
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Table 1.22: Cross-sectional regressions of individual options portfolios
This table reports results of cross-sectional regressions using portfolios of S&P 500
index options as test assets. The test assets include nine moneyness portfolios for
calls and 9 moneyness portfolios for puts. Each row represents a different time to
maturity of options in the portfolios. The regressions are run separately for each time
to maturity from one to six months. Columns give point estimates and corresponding
standard errors for prices of risk associated with factors in the model. The point
estimates are reported along with bootstrapped standard errors in parentheses that
are computed using 10,000 bootstrap iterations. The final column gives the adjusted
R2 for the cross-sectional regression.

Individual Option Portfolios
intercept MKT SMB HML MOM VOL Adjusted R2

1 month 0.03 -2.22 -4.82 0.46
(0.01) (0.73) (1.03)

-0.03 2.06 -9.72 2.19 -7.19 -4.91 0.47
(0.02) (1.61) (2.11) (2.17) (3.13) (1.24)

2 month 0.02 -2.00 -3.83 0.43
(0.01) (0.61) (0.84)

-0.00 -0.43 -5.14 -1.94 -5.46 -4.46 0.43
(0.01) (1.05) (1.29) (1.80) (1.81) (1.12)

3 month 0.02 -1.24 -3.17 0.32
(0.01) (0.67) (0.97)

0.02 -1.22 -0.24 2.04 1.61 -2.04 0.41
(0.01) (1.26) (1.44) (1.52) (1.64) (1.35)

4 month 0.02 -1.65 -4.82 0.39
(0.01) (0.64) (0.99)

0.02 -2.09 -1.43 1.14 -1.04 -4.91 0.43
(0.01) (0.91) (1.07) (1.71) (1.64) (1.25)

5 month 0.01 -1.06 -3.61 0.42
(0.01) (0.62) (0.72)

-0.00 -0.27 -1.44 0.60 1.19 -2.72 0.32
(0.01) (0.85) (1.08) (1.31) (1.68) (0.95)

6 month 0.02 -1.33 -6.75 0.30
(0.01) (0.78) (1.26)

0.01 -0.63 -0.47 1.01 5.89 -4.92 0.32
(0.01) (1.08) (1.51) (1.71) (2.49) (1.63)
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Table 1.23: Difference in Volatility Prices: Index vs. Individual Options
This table reports results of estimates of the difference between prices of volatility
risk. The point estimates correspond to the difference between the point estimates
for the price associated with first differences in the VIX extracted from the cross-
sectional regressions of Tables 1.22 and 1.21. The standard errors are calculated
from 10,000 bootstrap draws of the cross-sectional regressions.

Difference in volatility prices
vol diff Standard Errors

1 month -0.25 (1.17)
2 month 0.05 (1.08)
3 month -0.55 (0.98)
4 month -3.17 (1.08)
5 month -2.32 (0.93)
6 month -5.49 (1.66)

Table 1.24: Simulation Parameters
Distribution of parameters used in the simulation to study the effect of leverage
adjusting option returns. Simulation results base on 1,000 underlying stocks each
with 500 months of returns. Each stock has six options: one each of in-the-money
calls and puts, at-the-money calls and puts and out-of-the money calls and puts.

Simulation Paramters
λM σM εM βi σi εi,t
2.5 12% N(0, σM) U [.5, 1.5] N(20%, 5%) N(0, σi)

Simulation Results
λ̂M sampling error

individual options 0.082 0.0136
portfolios of options 1.994 0.298
leverage-adjusted portfolios of options 2.374 0.159
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Figure 1.1: Factors
Panel A plots innovations in the VIX. Panel B plots the time series of residuals from
regressing VIX innovations on market excess returns (MKT). This is the orthogonal-
ized volatility factor used in tests throughout the paper. The time series plotted in
each Panels C, D, E and F represent tail risk factors.
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Figure 1.2: Empirical densities of moneyness, put/call portfolios
Panels A-F plot the empirical densities of OTM Calls, ATM Calls, ITM Calls, OTM
Puts, ATM Puts and ITM Puts respectively. The horizontal axis measures monthly
returns and the vertical axis measures density of the distribution. Each panel has a
kernel density estimate of the realized returns for the 12 stock portfolios overlaying the
empirical density for comparision. Each empirical density in panels A-F is composed
of 1,200 observed returns; 200 monthly holding period returns from each of the 6
implied volatility premium portfolios within a given moneyness-put/call portfolio.
Panel G plots the combined ATM calls and ATM puts. Panels H and I plot the
empirical densities of all call portfolios and all put portfolios respectively, across all
three moneyness bins.
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Figure 1.3: Term Structure of the Price of Volatility
Panel A shows the prices of volatility risk estimated from portfolios of both individual
options as well as S&P 500 index options. The vertical axis measures the price
while the horizontal axis measures time to maturity of the test assets. Panel B plots
the difference in the estimated prices of volatility risk. The solid line represents
point estimate and the dashed line shows confidence intervals of plus and minus two
standard errors as computed from 10,000 bootstrap iterations.
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Figure 1.4: Term Structure of the Price of Volatility Controlling for Correlation Risk
This figure shows the differences of prices of volatility risk extracted from index
options versus individual options at different maturities.
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Figure 1.5: Simulation sampling distribution
This figure shows the sampling distribution of estimated price of the factor risk in the
simulation. The true price is λM ≡ 2.5. Panel A shows the sampling distribution for
portfolios of options without leverage adjusted returns. Panel B shows the sampling
distribution for portfolios of options with monthly leverage adjustment.
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CHAPTER II

Pricing Kernel Monotonicity and Conditional

Information

2.1 Introduction

It is well known that the absence of arbitrage implies the existence of a positive

pricing kernel, or stochastic discount factor (SDF), that prices all assets. Almost all

models of the tradeoff between risk and return specify a pricing kernel that decreases

monotonically with the quality of the state of the world. The state of the world is

often modeled as a function of the change in aggregate wealth, which is measured by

the return on a broad stock market index. A number of researchers combine index

option data with historical returns to estimate the pricing kernel nonparametrically,

but the kernels they estimate are generally not monotonic functions of the market

return. We argue that many of the methods used to estimate the pricing kernel com-

pare a forward-looking, conditional risk-neutral density estimated with option prices

to a backward-looking, essentially unconditional physical density estimated with his-

torical returns. We propose a new, completely nonparametric pricing kernel estimator

that explicitly accounts for the fact that option prices should reflect all information

available. The new estimator suggests that the pricing kernel is a monotonic function

of stock market return realizations.
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Since the pricing kernel summarizes the attitudes of economic agents about risk,

understanding its behavior is one of the primary goals of asset pricing. The research

on SDF estimation from option data starts with Jackwerth (2000) and Ait-Sahalia

and Lo (2000), which exploit the relation between option prices and the risk-neutral

density. The risk-neutral density is proportional to the SDF multiplied by the (phys-

ical) density of the underlying asset. Breeden and Litzenberger (1978) show that the

second derivative of the price of a call option with respect to the strike price is pro-

portional to the risk-neutral density. Both Jackwerth (2000) and Ait-Sahalia and Lo

(2000) cleverly use this fact to estimate the risk-neutral density with market index

option prices for different strike prices and then they divide the resulting risk-neutral

density by a nonparametric estimate of the physical density based on historical return

data. The resulting ratio of densities is what we refer to as the “classic” nonpara-

metric SDF estimator. Existing research has found that it is typically a decreasing

function of the market return over much of its range, but it is also often increas-

ing over part of its range. Many other researchers apply similar techniques, though

sometimes with important improvements, and also find that the SDF appears to be a

nonmonotonic function. More recent papers in this literature include Rosenberg and

Engle (2002), Chaudhuri and Schroder (2009), Audrino and Meier (2012), Härdle

et al. (2014), Beare and Schmidt (2013), Bakshi and Chabi-Yo (2013), and Song and

Xiu (2014). In related research, Bakshi et al. (2010) find that average index option

returns in several countries are consistent with a U-shaped pricing kernel, but the

noise in average returns makes it difficult for them to draw strong conclusions. One

paper that does not appear to find an upward sloping kernel is Barone-Adesi et al.

(2008). Using data from January 2002 to December 2004 and adjusting the variance

of the physical distribution using a GARCH model, they find a pricing kernel that

appears to be decreasing.

If the pricing kernel is truly increasing in some range of aggregate wealth, then
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the marginal value of a dollar is higher when markets rise than when they fall over

that range. For financial economists, this is extremely counterintuitive. Even with a

multidimensional state vector, it is difficult to see how a higher realized value of the

market portfolio could be systematically worse than a lower one. A non-monotonic

pricing kernel is so surprising that it has been coined the “implied risk aversion

puzzle” or the “pricing kernel puzzle” in the literature that has developed to explain

it. Ziegler (2007) attributes it to differences in beliefs among agents about the mean

and variance of expected returns. Polkovnichenko and Zhao (2013) postulate a model

with rank-dependent utility to explain the puzzle. Barone-Adesi et al. (2013) explain

the puzzle with overconfidence, and Grith et al. (2013) propose the heterogeneity of

investor reference points.

Another set of explanations for the puzzle relies on state dependence, generally

with higher moments as additional factors. Chabi-Yo et al. (2007) identify latent

factors as a probable cause and propose a parametric option pricing model that can

generate upward slopes. Christoffersen et al. (2013) and Song and Xiu (2014) propose

models that include volatility as a factor.

One criticism of the empirical papers that find nonmonotonicity is that they do

not agree on the location of nonmonotonicities. In Ait-Sahalia and Lo (2000) and

Audrino and Meier (2012) for example, monotonicities appear in the center, while

Christoffersen et al. (2013) and Bakshi et al. (2010) find a U-shaped kernel. Another

criticism of almost all of the empirical papers that find nonmonotonicity is that they

compare a conditional risk-neutral density to an essentially unconditional physical

density. Since option prices, like all market-determined prices, are discounted expec-

tations of future cash flows conditional on all information available, the risk-neutral

density estimated from option prices is a conditional density. In our data, most of

the moments of the estimated risk-neutral densities change substantially from one

month to the next. Since there is no widely accepted method to nonparametrically
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estimate physical densities conditional on all available information, common practice

is to rely on the use of a rolling window of historical data to make the physical density

conditional. Of course, this is not really comparable to using forward-looking option

prices to back out market expectations. In fact, given that from one period to the

next, the nonparametric estimate of the physical density may only change because of

the inclusion of one new observation and the exclusion of one old one, the estimated

physical density can often be considered almost unconditional. At times when the

conditional risk-neutral density has a higher variance, skewness, kurtosis or other

moment than the estimated physical density, the ratio of the two densities can easily

display nonmonotonicity.

To demonstrate the problem caused by failing to account for conditional informa-

tion in the denominator of the SDF, we give two examples of how nonmonotonicity

can arise in an estimated pricing kernel implied by a misspecified Black-Scholes model.

The first example shows that in a simple single-period setting we can get nonmono-

tonic ratios of risk-neutral densities to physical densities if we allow the variances of

the two to differ as they may when we compare conditional and unconditional den-

sities. In the second example we simulate data from the misspecified Black-Scholes

model in order to show that using a rolling window to estimate the physical den-

sity while using strictly conditional estimates of the risk-neutral density can lead to

nonmonotonic and inaccurate estimators.

We propose a new method that avoids comparing conditional risk-neutral densities

to historical data, and creates an estimate that is fully conditional on all moments of

the forward-looking distributions. Our method exploits the insight that, at any given

time, the conditional density of the future market return is only the density for that

particular return realization. We can think of the observations we have as a series

of risk-neutral densities accompanied by a corresponding series of return realizations,

with each period’s risk-neutral density being different and with only one realization
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available for each density. Given these data, we can integrate each of the risk-neutral

densities up to their corresponding realizations to obtain a set of realized CDF values.

If the risk-neutral density is the same as the physical density, the resulting CDF values

will be uniformly distributed. To the extent that the empirical distribution of the

CDF values is not uniform, we can use the distribution of the CDF values to identify

the pricing kernel. This is the intuition behind our pricing kernel estimator. In

simulations we find that our method substantially outperforms the classic method in

recovering the SDF that generated the data.

To estimate the SDF, we use monthly S&P 500 and FTSE 100 index option data to

nonparametrically estimate risk-neutral densities in the standard fashion, following

Figlewski (2008) with slight improvements. We then assume a stable but flexible

unconditional SDF function, which we model with a spline estimator. Finally, we

estimate the spline, identifying the model with the fact that integrating the inverse

of the SDF times the risk-neutral density up to each realized value should produce

a set of cumulants that are uniformly distributed. In using this fact to identify our

model, we follow Bliss and Panigirtzoglou (2005), who use the same fact to estimate

implied risk aversion coefficients parametrically. We use a bootstrapping procedure

to estimate confidence bounds for our nonparametric SDF. We refer to our method

as a Conditional Density Integration (CDI) method.

We estimate risk-neutral densities from option prices and physical densities from

historical returns, and find that these two sets of densities have surprisingly different

characteristics. Furthermore, when we (incorrectly) follow the classic procedure by di-

viding our risk-neutral densities by our physical densities, we also find implied pricing

kernels that are nonmonotonic. These nonmonotonic pricing kernels are very sensitive

to how the physical densities are estimated, which suggests they are not economet-

rically robust. However, when we properly account for the conditional nature of the

risk-neutral densities estimated from option prices by using the CDI estimator, the
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resulting pricing kernel estimate is monotonically decreasing.

In the next section of the paper, we discuss both the classic estimation method and

our new CDI method in detail. We also motivate our estimation method theoretically

and show that the misspecified Black-Scholes model produces a nonmonotonic SDF.

In Section 3 we report the results of simulations designed to compare the performance

of the CDI method to that of the classic method. Section 4 describes the data that

we use for our tests, and Section 5 reports our primary results. Section 6 concludes.

2.2 Estimating the SDF

The new CDI method we use to derive an estimate of the stochastic discount factor

that properly accounts for conditional information is perhaps the biggest contribution

of our paper, so we describe it in detail in this section. Our CDI method allows an

econometrician to better account for the information set available to investors at the

time investment decisions are made. We carefully explain how this is achieved. We

also discuss the classic nonparametric approach to estimating the SDF, point out

its shortcomings and discuss how these can lead to economically implausible pricing

kernels. In Section 2.5, we apply the estimation procedures described here and show

that the proposed econometric method has the potential to solve the risk aversion

puzzle.

2.2.1 Classic Method

The classic nonparametric method of estimating the SDF of Jackwerth (2000)

and Ait-Sahalia and Lo (2000) relies on a well known result from probability theory

known as the Radon-Nikodym Theorem.1 The theorem implies that if FQ and FP are

measures induced by the risk-neutral and physical cumulative distribution functions,

1See Billingsley (2012), for example.
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the SDF can be expressed as

mt,t+s = e−rs
dFQ

dFP
, (2.1)

a change of measure between two conditional probability measures where each prob-

ability is conditional upon the same information set, Ft.

Furthermore, a corollary to this theorem states that if probability measures P and

Q are equivalent measures, then the Radon-Nikodym derivative of P with respect to

Q is equal to the reciprocal of the Radon-Nikodym derivative of Q with respect to P,

dQ
dP

=

(
dP
dQ

)−1

. (2.2)

Furthermore, if both Q and P are equivalent to dx, then

dQ
dP

=
dQ
dx

/
dP
dx
. (2.3)

The corollary allows one to express the Radon-Nikodym derivative as a ratio of two

derivatives. This corrolary is implicitly invoked in the method we refer to as the

classic nonparametric method of SDF estimation. The classic approach relies on the

fact that the SDF is proportional to the Radon-Nikodym derivative of the risk-neutral

distribution with respect the physical distribution. Furthermore, the method relies on

the fact that for sufficiently well behaved distributions, the Radon-Nikodym derivative

in question is simply the ratio of the risk-neutral density, dFQ

dx
to the physical density,

dFP

dx
. This fact allows econometricians to estimate the SDF by estimating the risk-

neutral and physical densities separately and then taking the ratio of the densities.

Since the classic nonparametric method relies on estimation of the Radon-Nikodym

derivative via Equation (2.3), it reduces to estimating the two densities separately.

Theoretically, the densities in the numerator and denominator of the Radon-Nikodym
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derivative in Equation (2.3) are conditional densities; they take into account investors’

beliefs at the time of investment, conditional on all information available, Ft. As such,

we ideally should take care to estimate the densities in a conditional, forward-looking

manner. For estimation of the numerator, one typically relies on the result of Breeden

and Litzenberger (1978), that dFQ

dK
= erT ∂2C

∂K2 , where C represents the option price, K

represents strike prices and dFQ

dK
represents the risk-neutral density over possible re-

alizations of the underlying. Since options data typically allow us to observe option

prices with a number of strike prices K, we are able to estimate the derivative dFQ

dK

over a collection of points K. Various techniques for estimating or interpolating val-

ues of the density between observed strike prices have been proposed in the literature.

This gives an estimate of the risk-neutral density which is forward-looking and hence

conditional in nature.

On the other hand, there are no known methods for estimating dFPt , the time t

physical density, in a forward-looking manner, taking into account the information

investors base their investment decisions on at time t. In previous studies, dFPt has

been estimated by smoothing or averaging past realized returns. In order to make the

estimates reflect a conditional rather than unconditional density, a rolling window is

typically used to estimate the physical density. This approach clearly leaves much

to be desired. Nonparametric estimates require large amounts of data, thus forcing

recent data, even if it accurately reflects beliefs about the future, to be a small part

of the estimated density.

In effect, the classic method of nonparametrically estimating the SDF implic-

itly assumes that physical probability measures and their corresponding densities are

stable over time, or that the conditional densities are the same as unconditional densi-

ties. The assumption of stable physical densities and distributions is widely believed

to be implausible. The method of Breeden and Litzenberger (1978) for estimating

conditional, risk-neutral densities reveals that their time series is not stable. We
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characterize the risk-neutral densities implied by our option price data in Table 1,

which is discussed in Section 2.5. If the risk-neutral densities are not stable over time,

it is implausible that physical densities are.

To investigate whether comparing a conditional density to an unconditional den-

sity can cause non-monotonicity in practice, we calculate implied pricing kernels under

Black-Scholes assumptions, but with a slightly higher risk-neutral than physical vari-

ance. Our example is motivated by the fact that the risk-neutral density can change

significantly from period to period while the estimated physical density will typically

be more stable. In some periods, the risk-neutral density may have a higher variance

than the physical, while in other periods it may have a lower variance. In Panel

A of Figure 1, we plot the physical and risk-neutral densities under the assumption

that returns are lognormally distributed and have parameter values that correspond

to our risk-neutral sample moments. Panel B plots the corresponding pricing kernel

function, which is monotonically decreasing in market returns. In Panels C and D,

we plot the densities and pricing kernel under the assumption that the variance of

the risk-neutral density is slightly higher than that of the physical density, changing

the (monthly) σ parameter from 5.26% to 5.50% percent. The pricing kernel in Panel

D starts at a very high level and is first decreasing and then increasing, reflecting a

pattern often found in prior work. This example only allows the second moment to

differ across these densities. In typical pricing kernel estimation, all the moments of

the estimated risk-neutral density can, in principle, vary from period to period while

the estimated physical density, based on historical data, is relatively stable. This

shows that if the estimated physical density does not change to reflect new informa-

tion as much as the risk-neutral density does, the corresponding estimated pricing

kernel can be increasing over some range. This problem is inherently present in all

of the nonparametric pricing kernel estimators based on option prices that we are

familiar with.
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In the remainder of this section, we discuss our conditional density integration

method in detail. We begin with an in depth description of how we estimate the

risk-neutral densities of the market’s beliefs about one-month returns on both the

S&P 500 and FTSE 100 indices. Our estimation technique draws from many existing

methods, but it most closely follows Figlewski (2008). Next, we discuss how we use

these densities to estimate the SDF using the CDI method as well as the classic

method. It is important to note that, in both cases, we use the same risk-neutral

densities. This way, when we discuss our empirical results in Section 2.5, we are able

to ensure that the differences in the results come from differences in accounting for

conditioning information as opposed to differences in the risk-neutral densities used

in the estimation.

2.2.2 Estimating Risk-Neutral Densities

In order to estimate the stochastic discount factor over the horizon spanned by

the OptionMetrics data, we first estimate monthly risk-neutral densities following

the method outlined in Figlewski (2008), with a few modifications that we describe

below. Each month, for the options data with best bids (or last prices when bids

are not available) exceeding $3/8, we fit a fourth degree spline to implied volatilities

associated with each observed strike price. This is done by placing a single knot at

the close price on the day the option is traded, with the remainder of the required

knots placed at the minimum and maximum strike prices within our sample. This

creates a continuous curve in the implied volatility space. We then convert the im-

plied volatility curve back to the price space by inverting the transformation used to

obtain implied volatilities. With the given prices we apply the result of Breeden and

Litzenberger (1978), that dFQ

dK
= erT ∂2C

∂K2 , where FQ represents the risk-neutral CDF

and dFQ

dK
represents the density over prices, K. Because we smooth implied volatilities

our estimation procedure always results in reasonable density functions with positive
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values.

The practice of removing options data with very small prices is standard in the

options literature as options with extremely low prices tend to provide misleading

data because they are so far out of the money. While extremely small prices can

often give rise to misleading data, leaving them out of our data poses a problem as

well because our estimated densities are often left truncated in the tails, especially in

the upper tail because far out-of-the-money call options are relatively thinly traded.

The densities obtained by taking second derivatives over strike prices will often look

like that in Figure 2.2. We refer to this part of the density as the truncated density.

It is clear from the figure that truncating the data in our sample can potentially

cause us to miss out on a large portion of the density. We circumvent this problem

by applying the method of Figlewski (2008) to estimate the tails of the risk-neutral

distributions in our sample.

The tail estimation method relies on results from Pickands III (1975) and Balkema

and De Haan (1974) both of which show that for an independent, identically dis-

tributed sequence of random variables, the conditional distribution given that the

variable exceeds some threshold approaches a generalized Pareto distribution as the

specified threshold becomes large. Following the logic of this result, we find the pa-

rameters from a generalized Pareto distribution that give the closest match to the

truncated risk-neutral density. By pasting the resulting generalized Pareto distribu-

tion onto the truncated risk-neutral density, we complete the estimation of the entire

density.2

2Our method differs slightly from that of Figlewski (2008), which uses a generalized extreme value
distribution rather than a generalized Pareto distribution to estimate the tails of the risk-neutral
density. The use of generalized extreme value distribution comes from similar theory of statistics
of extremes. The Fisher-Tippett theorem (see for example Embrechts et al. (1997)) states that the
sample maximum of an independent, identically distributed sequence of random variables approaches
a generalized extreme value distribution as the sample size approaches infinity. However, since we
are looking at matching the tail of the distribution beyond some extreme point determined by our
data, we feel that an application of the results in Pickands III (1975) and Balkema and De Haan
(1974) is most appropriate. So we use a generalized Pareto distribution as opposed to a generalized
extreme value distribution when estimating the tails of the risk-neutral densities. In more recent
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The generalized Pareto distribution is characterized by three parameters: a lo-

cation parameter, a scale parameter and a shape parameter. In order to fit the tail

distribution, we choose three points on each side of the truncated distribution. With

these three points, we then find the three parameter values of the generalized Pareto

distribution that lies closest to the truncated distribution at the three points. By

choosing three points, we are able to identify the three parameter values. We do this

for each tail of the distribution. While Figlewski (2008) only uses two points for each

tail and imposes the additional constraint that the area under the curve must equal

one, we find that the optimization gives smoother transitions between the truncated

density and the tails if we do not include the constraint on the area. Instead, we

match three points in each tail and then normalize our estimate to ensure that the

area of the density is equal to one. In most cases, this normalization does not change

the curve estimation much at all as the tail matching itself gives densities whose area

is nearly equal to one. In the few cases where the normalization has much impact,

imposing a constraint on the area in the tail-matching optimization results in awk-

ward kinks in the density which are clearly just an artifact of the optimization and

its constraints.

In a small number of cases, the truncated part of the distribution does not go far

enough into the tail of the distribution to allow the tail matching procedure to fit well.

This happens when the upper end of the central distribution, which is determined

by our data, does not extend far enough past the peak of the distribution. In these

cases, we interpolate the implied volatility curve to larger return values using cubic

spline interpolation. The resulting implied volatility curve is then transformed back

to the option price space so that we can take the second derivative to obtain the

truncated part of the risk-neutral distribution. This extends the truncated part of

the distribution just far enough that the tail matching procedure gives a meaningful

work Figlewski also adopts the generalized Pareto distribution.
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upper tail.

We use risk-neutral densities estimated with this method to calculate the SDF

using both the classic nonparametric method and our new CDI method. Using the

same set of risk-neutral densities, the classic nonparametric method yields nonmono-

tonic SDF estimates but the CDI method produces monotonic estimates. Thus, our

method of estimating risk-neutral densities does not seem to drive the monotonicity

result that we find.

2.2.3 Standard Approach to Estimating Physical Densities

Once we have the forward-looking, risk-neutral densities, we can proceed with

estimating the stochastic discount factor. For the classic method, which relies on

Equation (2.3), we are left to estimate the physical densities corresponding to each

of the risk-neutral densities. As described above, until now there has been no known

way to estimate the physical density in a forward-looking manner, and the solution

proposed in the literature is to use a rolling window of data to nonparametrically

estimate the physical densities. We use a Gaussian kernel density estimator with a

rolling window. To obtain a conditional estimate, it is best to use as short a window

as possible without compromising the integrity of the kernel estimator.

As discussed earlier, in theory, the physical and risk-neutral densities should have

the same support. Empirically, using a rolling window of data to estimate the kernel

density often results in estimates of the physical density with different (machine

measurable) support from the risk-neutral density for the same period. This is itself

a sign that there is a problem with the estimation procedure. This is a result of

improperly matching conditional information in the numerator and denominator of

the Radon-Nikodym derivative. If, for instance, previous returns within the rolling

window tend to be low but recently the market received news suggesting high returns

in the future, then the upper tail of the forward looking risk-neutral density may
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have support beyond the range of positive support for the physical density estimate.

Similarly, we observe instances where the physical density has wider support than

the risk-neutral density. In practice, when this happens, we need to truncate the

densities such that they have the same region of positive support, to avoid dividing

a positive density by zero for some returns. To avoid this problem, for each date, we

estimate the pricing kernel over the range between the maximum of the lower bounds

of support for the densities and the minimum of the upper bound.

2.2.4 CDI Approach

In order to estimate the SDF with option prices observed over a period of time,

we need to make a stationarity assumption for the SDF. We assume the following:

Assumption II.1. The stochastic discount factor over our sample period is station-

ary up to a rate of time discount factor e−rtτ , where rt is the risk free rate at time t

and τ is the duration of the payoff period over which the SDF is discounting.

While this is a very common assumption in empirical asset pricing, it probably

merits a little extra discussion in this context. It is equivalent to the assumption

that the ratio of risk-neutral to physical densities is stable over time. This is a fairly

plausible assumption if one believes that the representative investor’s preferences are

relatively stable over time, since investor preferences are responsible for the difference

between the risk-neutral and physical densities. This assumption is consistent with

the empirical finding that risk-neutral and physical densities change over time, but

it requires that the two vary together. Mathematically, the assumption reduces to

stability of
dFQ

t

dFP
t
, as opposed to stability of dFPt . Our assumption is also the key iden-

tifying assumption made in Bliss and Panigirtzoglou (2005), where it is argued that

this is a more plausible assumption than the assumption that is implicitly required

for the classical estimator of the stochastic discount factor.
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If we do not take our stationarity assumption to be literally true, our estimate

of the SDF can be interpreted as an average or unconditional SDF over our sample

period. Many of the researchers who apply the classic nonparametric SDF estimation

method report an average SDF, and our estimate can easily be compared to theirs.

While it would be nice to be able to identify variation in the pricing kernel over

time, we argue that there simply is not enough information in the data to do this

consistently. To be able to estimate a pricing kernel month by month, we would need

a convincing way to estimate conditional physical densities. In the absence of such a

method, at least we know that we can estimate the average SDF correctly.

Our identification strategy relies on several well known properties from statistics

and probability theory. The first of these properties, which is central to our method,

allows us to circumvent the need for estimating the physical densities corresponding to

each of the risk-neutral densities. The property is given in the following proposition:

Proposition II.2. For any continuous random variable, X with CDF Fx, the random

variable defined by Fx(X) is uniformly distributed on the interval [0, 1],

Fx(X) ∼ U [0, 1]. (2.4)

We let FPt be the unobserved probability measure representing investors’ aggregate

beliefs about returns on the S&P 500 under the physical measure at time t and let

returns over the subsequent period be given by Xt. Now it follows from Proposition

II.2, that
Xt∫
−∞

dFPt (x) ∼ U [0, 1]. (2.5)

Since there are no known methods for estimating dFPt in a forward-looking manner,

estimating Equation (2.5) directly from the data is not a simple task. It would

presumably require obtaining a long time series of past realizations of ex-dividend
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returns.3 One would then have to find a way to use these returns to estimate forward

looking beliefs about returns under the physical measure. As discussed earlier, this

method would require something beyond simply smoothing a long time series of past

returns, since that does not do a good job of estimating the current beliefs held by

the market. In order to circumvent this problem, we make use of the fact that we

do have forward looking estimates of market beliefs about future returns under the

risk-neutral measure.

We express Equation (2.5) in terms of the risk-neutral densities estimated using

our generalized Pareto distribution tail matching procedure. Let dFQt be the time t

risk-neutral probability measure and let
dFP

t

dFQ
t

denote the Radon-Nikodym derivative

of time t physical distribution with respect to time t risk-neutral distribution. Then

Xt∫
−∞

dFPt =

Xt∫
−∞

dFPt
dFQt

dFQt =

Xt∫
−∞

(
dFQt
dFPt

)−1

dFQt ∼ U [0, 1], (2.6)

where the first equality in Equation (2.6) follows from Theorem ?? and the second

equality follows from Corollary ??.

Since we can estimate the risk-neutral densities and we observe realized returns

over the periods corresponding to each density, it only remains to estimate the ran-

dom variable
(
dFQ

t

dFP
t

)−1

, which is proportional to the inverse of the stochastic discount

factor. Therefore, by estimating
(
dFQ

t

dFP
t

)−1

, we have essentially estimated the stochas-

tic discount factor. It is important, however, that we first establish uniqueness of

the random variable we attempt to estimate. The following proposition ensures that

there is such a unique random variable.

Proposition II.3. For any equivalent measures Q and P on R with random variable

3We use percentage changes in market value because option payoffs are based on the market
value of the S&P 500 at expiration. This amounts to shifting the cum-dividend return density to
the left, but a stable dividend yield does not affect the shape of the SDF.
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X ∼ P, there exists a unique (a.s. Q) non-negative function g : R→ R+ such that

X∫
−∞

g(y)dQ(y) ∼ U [0, 1]. (2.7)

A proof of this proposition appears in the Appendix.

The function denoted g in Proposition II.3 is similar to the Radon-Nikodym term

in Equation (2.6), the main difference being that in Equation (2.7), the region of in-

tegration is itself random. So the Radon-Nikodym Theorem is not directly applicable

here. The functional form of g defines a random variable in Proposition II.3 because it

is evaluated at possible values of the random outcome. We can think of inputs to the

function g as values the random variable X can take. The outcomes of the random

variable depend upon ω ∈ Ω the probability space determining returns, X = X(ω).

As such, the integral with respect to dQ can be interpreted as the integral with re-

spect to the measure Q ({ω : X(ω) ∈ dy}). In this way, g(y) = φ ({ω : X(ω) ∈ dy}),

where φ is a mapping from Ω to the non-negative real line, φ : Ω → R+. So g(y)

represents possible realizations of the random variable g(X(ω)) = φ(ω). We will let

g denote the inverse of the SDF up to a rate of time discount ertτ , where rt is the

risk-free rate at time t and τ is the time to expiration of the option. Our estimation

procedure will focus on estimating g.

Proposition II.3 establishes uniqueness of the function g that transforms the in-

tegral with respect to measure Q, to a specific distribution. This is similar to the

statement of the Radon-Nikodym Theorem. The function g, mapping realizations

of returns to non-negative values is itself a random variable, much the same as the

Radon-Nikodym derivative. The difference is that here we have a random domain

(−∞, X]. We thus estimate the functional form of g that maps random outcome of

percentage changes in the S&P 500 to the unique kernel that transforms the integral

in Equation (2.7) to the uniform distribution.
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It is interesting to note that our methodology is similar to one that would examine

the discrepancy of a time-series average fitted returns on butterfly spreads for each

return realization with a uniform distribution. We believe the CDI method is superior

to this one for several reasons. First, our method of estimating the left tails of the

risk-neutral distribution is more palatable than one that would assume left and right

end-points for the series of butterfly spread returns. Second, butterfly spread returns

are highly non-normal due to the large mass at zero payoffs, and averages of these

returns could be unstable. Last, we want to follow a method that is more comparable

to the existing literature so that a comparison of results is possible along multiple

dimensions.

2.2.5 CDI Approach Estimation and Inference

Our goal is to estimate the SDF in a way that reflects investors’ beliefs as accu-

rately as possible. For this reason, we do not impose any parametric restriction on

the form of the stochastic discount factor. Instead, we use a cubic spline to obtain

nonparametric estimates of the inverse SDF. Since any real valued function can be re-

produced by a cubic spline of infinite order, this is a completely model-free estimation

procedure. We use finite order cubic B-splines to approximate the function g. We

use cubic B-splines as opposed to polynomials because they offer more flexibility in

estimating functional forms. The use of splines of order b requires that we first choose

the placement of knots which will determine the bases to be used for estimation pur-

poses. We simply use equally spaced knots over our range of returns. The minimum

of the range is set to the minimum value for which our estimated risk-neutral den-

sities, over all months in the sample, have a positive (machine measurable) support.

The maximum of the range is the maximum realized return within our sample. This

range corresponds to the values over which the integral in Equation (2.7) is taken,

once we replace −∞ with the minimum value for which dFQ has positive support.
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The cubic B-spline of order b is a linear combination of b basis functions,

g(y) ≈
b∑

j=1

θjBj(y),

where Bj(·) denotes the jth basis function of the spline. Using this approximation

to the function g, we can also approximate the integral in Equation (2.6) as a linear

combination of integrals,

X∫
−∞

g(y)dFQ(y) ≈
b∑

j=1

θj

X∫
−∞

Bj(y)dFQ(y). (2.8)

Since we have a linear function in θ, our estimated function ĝ is given by

ĝ = Aθ̂, (2.9)

where θ = (θ1, ...., θb)
′ and θ̂ = (θ̂1, ...., θ̂b)

′. A is our data matrix which is expressed

in terms of risk-neutral distributions estimated from options data, realized S&P 500

index returns corresponding to each risk-neutral distribution, denoted Xt and the

spline basis functions. We can formally represent the data matrix A ∈ RT×b by

Ai,j =

Xi∫
−∞

Bj(y)dFQi (y), i = 1, ..., T ; , j = 1, ..., b, (2.10)

where T represents the number of monthly estimates of FQ available and b is the

number of basis functions included in our estimated spline approximation of g.

Since we will be using non-overlapping data on monthly options from Option-

Metrics which only goes back as far as 1996 for the S&P 500 and 2002 for the FTSE,

as described in Section 2.4, our sample is not extremely large. For this reason, we

use a GMM type optimization with only the first stage optimization. This has been

shown to perform best when one does not have extremely large data sets with which
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to perform GMM estimation (see for example Hayashi (2000)). In order to make the

best use of the data available to us, we optimally choose model parameters b and m

in order to balance the trade off between the number of moment restrictions and the

number of parameters to be estimated. A larger number of spline basis functions,

b, corresponds to a more flexible and accurate spline approximation of the function

g. However, increasing the number of basis functions requires that we increase the

number of moment restrictions in our estimation because identification of θ requires

that the number of moment restrictions be at least as large as the dimension of θ,

b ≤ m. Arbitrarily increasing the number of moment restrictions, on the other hand,

decreases our degrees of freedom in estimating θ, resulting in data limitations. Our

goal is to make the best possible use of the finite data sample available to us by letting

the data determine the optimal values of b and m.

To estimate θ, we solve the first stage GMM optimization,

θ̂ = argmin
θ∈Rb

m∑
j=1


T∑
t=1


b∑

j=1

θj

Xt∫
−∞

Bj(y)dFQt (y)

︸ ︷︷ ︸
ĝ(θ)


j

− 1

j + 1



2

, (2.11)

where we use the fact that the jth moment of the uniform distribution over the unit

interval is equal to 1
j+1

and we use the the first m moments in estimating the vector

θ. It is important to note that the solution to Equation (2.11) is found by minimizing

over Rb, in other words, we place no restrictions on our estimate of θ.

Once we have the estimated θ̂, it is straight forward to estimate g. We simply

need to plug θ̂ into Equation (2.9) to obtain our estimate for g, the inverse of the

Radon-Nikodym derivative,
dFQ

t

dFP
t

, for all t. By Corollary ??,
dFQ

t

dFP
t

= 1
ĝ

for all t. So our

estimated SDF is given by e−rtτ 1
ĝ(X)

, where rt denotes the risk free rate at time t, τ

represents time to maturity of time t index options on the S&P 500 index and Xt
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denotes returns on the S&P 500 index. This can be re-expressed as

mt,t+τ (X) = e−rtτM(X),

where M(x) ≡ 1
g(x)

.

Since we assume that the function g is time-invariant, it follows that M and M̂ = 1
g

are also time invariant. Since M̂ is time invariant, the SDF will be time invariant up

to the term e−rtτ . The value of e−rtτ is also very stable over our sample period. So

the SDF does not vary substantially over our sample under our set of assumptions.

We focus only on the estimation of M̂ because the time discount factor e−rtτ does

not tell us anything about investors’ preferences over states of the world and returns

on market indices. In Section 2.5, we will discuss our empirical results based upon

estimates of M(x), as described above.

For the purposes of inference, we calculate pointwise confidence intervals for the

estimated SDF. We resample with replacement from the set of rows of the data matrix

in Equation (2.10). This is equivalent to sampling with replacement from the set of

dates associated with each risk-neutral density we estimate. For each sample, we can

re-calculate the SDF estimate using the CDI method. We then calculate the accel-

erated bias-corrected (BCa) percentile bootstrap confidence intervals as described in

Efron and Tibshirani (1993). This gives us a virtual continuum of pointwise confi-

dence intervals if we take a fine partition of the return space. However, as is the case

with most nonparametric methods, in order to get a very tight confidence interval, a

large amount of data is needed.

2.2.6 Model Selection

In order to estimate θ, we use a GMM type estimation to match the resulting

estimate to the moments of the uniform distribution over the unit interval as in
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Equation (2.11). This requires that we choose the number of moment restrictions m

as well as b, the dimension of θ. As we do throughout the paper, we wish to impose as

little structure as possible on the estimation. This allows us to estimate the SDF in

a manner we feel best approximates the market’s beliefs and risk preferences, which

determine the SDF. In keeping with this goal, we optimally choose the m and b

according to our data and we place no restrictions on θ in our estimation.

Our model selection criterion for determining b and m uses the Cramer-von Mises

statistic4 which is a common nonparametric criterion for determining the goodness

of fit of an estimated distribution. The Cramer-von Mises statistic compares an

estimated distribution to a target distribution (uniform in our case) by comparing

the corresponding CDFs, F̂ and FU respectively. Here F̂ is the empirical distribution

function. A small Cramer-von Mises statistic implies a good fit while larger statistics

imply poor fit. The statistic is given by

CvM =

∞∫
x=−∞

(F̂(x)− FU(x))2dFU(x).

In the case of the uniform distribution over the unit interval, we can express this as

CvM =

1∫
x=0

(F̂(x)− x)2dx.

While we choose the model based solely on the value of the Cramer-von Mises

statistic, this doesn’t necessarily tell us how well our optimal model transforms the

4We use the Cramer-von Mises statistics as our criterion because it minimizes the mean-squared
distance between CDFs as opposed to the Kolmogorov-Smirnov statistic, which minimizes the max-
imum distance between two CDFs,

KS = sup
x∈R
|F̂(x)− FU (x)|.

This amounts to choosing the estimate which minimizes the difference over the entire range of values
in a mean-squared sense, as opposed to choosing the statistic which minimizes the size of the largest
error.

87



data to match the uniform distribution. We also calculate the p-values corresponding

to the null hypothesis that the estimated distribution is the same as the hypothesized

distribution. We calculate p-values base upon simulated outcomes as opposed to

asymptotic distributions. This gives us a sense of exactly how well our model selection

and subsequent optimization perform given our finite sample size.

We refer to optimal selection of b and m as model selection, and we will use the

optimal model to estimate θ and hence ĝ as well as the SDF. In order to optimally

select our model, we examine goodness of fit of our estimated CDF with the uni-

form CDF. Our estimated CDF is given by the empirical CDF corresponding to the

estimated vector θ̂ for a given combination of b and m,

F̂b,m(x) =
1

T

T∑
t=1

1

 b∑
j=1

θ̂j

Xt∫
−∞

Bj(y)dFQt (y) ≤ x

 , (2.12)

where 1(E) represents the indicator function taking value 1 in the where event E is

true and the value zero otherwise.

We evaluate Equation (2.12) with the estimated parameter vectors and then com-

pare the Cramer-von Mises statistics for each, keeping in mind that in order for θ to

be identified requires that b ≤ m. That is, the number of moment restrictions must

be at least as large as the dimension of the vector to be estimated, θ. The smallest

Cramer-von Mises statistic corresponds to the model for which the CDI procedure

transforms the data to a distribution closest to the uniform distribution. We refer to

this as the optimal model.

2.3 Simulation

This section examines the efficacy of the CDI method in sample sizes typical of

those in the empirical literature on pricing kernel estimation, and contrasts this with

the efficacy of the classical estimator in the same sample. We extend the example
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described in Section 2.2.1 from a static, single period setting to a multiperiod setting

with data comparable to that which we observe in the S&P 500 and FTSE 100 data.

By simulating data with a known SDF, we can observe how accurately each is able

to estimate the true SDF. Our simulated data assumes underlying index returns are

distributed log-normally as is the case in the Black-Scholes world, but note that

the CDI method is more general and does not make this assumption. We choose

parameters of the distribution to fit the data generated by our risk-neutral S&P 500

densities.

We begin by defining an SDF that will be used to generate our data. As we have

done throughout the paper, we refer to the SDF as the Radon-Nikodym derivative

of the risk-neutral with respect to the physical measure and we ignore the rate of

time discount factor. To be consistent with our data and Assumption II.1, we assume

that the stationary SDF in the economy is given by the SDF in Panel B of Figure

2.6. This is the SDF resulting from taking the ratio of the (risk-neutral) log-normal

density with location parameter µQ = 0.00011 and scale parameter σQ = 0.0526

and the (physical) log-normal density with location parameter µP = 0.0040 and scale

parameter σP = 0.0526. As described in Section 2.2.1, these parameters are chosen to

match the average of the monthly distributions corresponding to those (annualized)

values given in Panel A of Table 2.1. Notice that we have set σQ = σP to be consistent

with the Black-Scholes model. As in the Black-Scholes model, the location parameters

µq and µp differ.

The S&P 500 risk-neutral densities described in Table 2.1 are time varying and it

is generally accepted that both σP and σQ are time varying (but equal to each other

such that the pricing kernel is stable). We fit our series of S&P 500 monthly variances

described in Table 2.1 to an Ornstein-Uhlenbeck process. This is done by simply

taking the variance of each risk-neutral density estimated using the method described

in Section 2.2.2, and maximizing the likelihood function to estimate the parameters of
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the Ornstein-Uhlenbeck process being fit to the series of variances. With the resulting

estimated parameters of the process, we simulate a series of N risk-neutral variances.

Along with the fixed location parameter µQ and the assumption of log-normality,

this variance process gives us a series of N risk-neutral densities. Both the CDI

method and the classical method use these densities to recover the SDF estimates.

Once we have the risk-neutral densities we can use the true stochastic discount factor

to get the physical densities corresponding to each risk-neutral density. Recall that

dFPt =
(
dFQ

t

dFP
t

)−1

dFQt . We use this fact to get the physical densities corresponding

to each risk-neutral density. We then take a single random draw from each of the

physical densities in the series. This is done by first recovering the CDF, FPt from each

physical density dFPt . Next we generate a series of draws from a uniform distribution

over the unit interval, ut ∼ U [0, 1], for t ∈ {1, 2, ..., N}. Draws from the physical

density dFPt are given by (FPt )−1(ut) which has exactly the distribution of our physical

density dFPt . Each of these draws from the physical distribution correspond to the

realized monthly returns we observe in the data. Now we have a series
(
dFQt , Xt

)
for

t ∈ {1, 2, ..., N}, where Xt represents the time t realization of a draw from the time t

physical density dFPt . Since the physical density and the true SDF are unobservable

to the econometrician, this series of risk-neutral densities and single realizations from

physical densities replicates the data that is available to the econometrician.

With the series
(
dFQt , Xt

)
, we estimate true SDF using both the CDI method

and the classical method. We show results of both estimation procedures for N =

200, 500, and 1, 000. By comparing these estimates we can see how well each of the

methods performs with small data samples. In particular, comparing the two meth-

ods allows us to see how estimates can be affected when comparing forward-looking

estimates with backward-looking estimates. We use a 60 period rolling window of re-

alized returns Xt to compute kernel density estimates of the physical densities which

are unknown to the econometrician. The results of the simulations for both esti-
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mators are shown in Figure 2.3. Panel A shows that for all values of N , the CDI

estimator does a very good job of recovering the true SDF. While the smallest data

sample recovers the true SDF fairly well over the range [.95, 1.05], outside of the range

[0.95, 1.05], the CDI estimator veers away from the true SDF when N = 200. This

is hardly surprising given that there are relatively few realized observations outside

this range. For N = 500 and N = 1, 000, the CDI estimator does a very good job

of recovering the true SDF over the entire range depicted, [0.9, 1.1]. This is made

possible by the fact that larger samples have a larger number of observations near

both 0.9 and 1.1, allowing the spline to accurately estimate the SDF near those values

of returns.

Panel B shows the results of the simulation performed for the classical method.

It is clear from the figure that none of the estimates are able to recover the true SDF

with any accuracy. The estimates resulting from N = 200 and N = 1, 000 simulated

months exhibit extreme non-monotonicity and do not come close to recovering the

true SDF. The estimate when N = 500 does far better than the other two estimates

using the classical method. However, if we compare the classical method withN = 500

to the poorest performing CDI estimator, that with N = 200, it is clear that the the

poorest performing CDI estimate significantly outperforms the best estimate using

the classical method. Figure 2.3 shows that the CDI method performs very well while

the classical method performs poorly.5 The reason is that the CDI method properly

accounts for conditional information whereas the classical method uses the ratio of a

forward-looking estimate to a backward-looking estimate, thus failing to take account

of conditional information.

5Work such as Audrino and Meier (2012) and Beare and Schmidt (2013) improve on the classical
approach, and their methods may produce better results.
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2.4 Data

We start with daily S&P 500 and FTSE 100 data from OptionMetrics. For the

S&P 500 index options, price midpoints are available from September, 1996 through

December, 2012, for a total of 196 months. For the FTSE data, closing prices are

available from January 2002 through July 2013. Prior to 2006, FTSE data was col-

lected from the exchange directly. After 2006, Optionmetrics began receiving tick

data with more limited availability until 2007. As a consequence, several months are

unavailable in 2006 and 2007 and we are left with 121 total months of data. We

use options with one month to maturity, giving a non-overlapping time-series of op-

tions prices. This non-overlapping data allow us to obtain independent observations

for beliefs about the coming month and an independent realization of returns. Us-

ing monthly rather than higher frequency data does not cause a significant loss of

information for our analysis because we only have one option expiration per month.

We also use OptionMetrics implied volatilities for each strike price at each date

in our set. We remove data for which there is no available implied volatility as these

violate static no arbitrage conditions. We wind up using put prices for relatively

low strike prices, call prices for relatively high strike prices and weighted averages

for intermediate strike prices. We use a logistic function that is centered at the

closing index value with a volatility parameter that is half of the range of observable

option prices to determine the relative weights of puts and calls when both prices

are observable. Using open interest to calculate the weighted average gives almost

exactly the same result, but the logistic function is slightly smoother.

We obtain S&P 500 closing prices for monthly trading dates and for option expi-

ration dates from CRSP, and closing FTSE 100 values from OptionMetrics Europe.

To estimate the SDF with the classic procedure, we also use prices from up to ten

years prior to the start of our OptionMetrics sample for our rolling window estima-

tions of the physical density. Finally, we calculate the risk-free rate from continuously
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compounded yields on secondary market 3-month Treasury Bills. This data is from

the Federal Reserve report H.15.

2.5 Results

In this section, we present the results of our estimation described in Section 2.2,

using the data described in Section 2.4. We compare CDI results with the results

obtained by using the classic nonparametric method over the same sample period.

We argue that our estimation procedure results in economically plausible SDFs, un-

like the classic method, which does not properly account for conditional information

and suggests the existence of a pricing kernel puzzle. Throughout this section, it is

important to recall that the risk-neutral densities used for estimation of the SDF with

the classic method are the same densities used for the CDI method. This allows us

to compare the methods consistently.

Table 2.1 presents sample averages of the mean, variance, skewness and kurtosis

associated with both the risk-neutral and physical densities estimated for each of the

196 months from September, 1996 through December 2012 for the S&P 500 and the

121 available months from January 2002 to July, 2013 for the FTSE 100. The physical

densities described in Table 1 are estimated with a kernel density method using the

past 60 months of index returns. Looking first at the means of both the risk-neutral

and physical densities, we see that the average means are about the same, but the

physical density means are much more variable than the risk-neutral density means.

Theory dictates that the expected value of the risk-neutral density should equal rt

for all t. The average of the annualized expected return associated with the estimated

risk-neutral S&P 500 densities is 2.76% with a sample standard deviation of 0.97%.

This is remarkably close to the value we obtain when we plug in the mean value

for rt over our sample period, r̄ = 2.64%. Of course, this is not exactly the correct

comparison to make, as one would want to compare ertτ with the expected value
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of each risk-neutral density in our sample. We calculate the absolute value of this

difference for each month in our sample. The mean absolute monthly difference

is 0.18% with a standard deviation of 0.17%. This suggests that our estimation

procedure does very well in terms of matching the risk-free rate. This is rather

remarkable given that our estimation does not constrain the mean of the distributions

in any way. It is interesting to note that even during the crisis, the risk-neutral

densities have means that are close to the risk-free rate. The risk-neutral annualized

mean returns for the S&P 500 index on September 18th and October 23rd of 2008

are estimated to be −2.81% and 7.14%, respectively. The estimated risk-neutral

annualized mean returns on September 17th and October 22nd of 2008 for the FTSE

100 are −5.7% and 13%. It may be that the risk-neutral means are generally close to

the risk-free rate because most option traders use some variant of the Black-Scholes

model, which sets the risk-neutral mean equal to the risk-free rate.

Considering next the annualized standard deviations of risk-neutral and physical

densities, the risk-neutral densities have higher average standard deviations than the

physical densities for both indices. Their standard deviations are also much more

variable than those of the physical densities. This difference is presumably driven by

the conditional nature of the risk-neutral densities. When investors believe the market

will be volatile in the future, this belief is immediately reflected by the risk-neutral

density. However, the kernel density estimator used in the classic procedure smoothes

out any extreme returns and has no way to incorporate investors’ beliefs. For the

S&P 500, the estimated risk-neutral annualized standard deviations for September

18th and October 23rd of 2008 are 61% and 77%, respectively. The corresponding

values for the physical density are 12.96% and 16.4%. The FTSE 100 risk-neutral

densities on September 17th and October 22nd of 2008 have annualized standard

deviations of 38% and 56%, also much higher than the estimates under our rolling

window physical density estimates which have annualized standard deviations of 18%
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for both days. While the physical densities certainly respond to the extreme returns

during the financial crisis, their response is much smaller than the response of the

risk-neutral densities.

The monthly skewness and kurtosis values are quite different for risk-neutral den-

sities than they are for physical densities. The results on these higher moments

combined with those for the means and standard deviations suggest that using a

smoothing method to estimate the conditional physical densities is misguided. As

discussed earlier, the implicit assumption made in order to use rolling window esti-

mates for the physical densities is that the physical densities are stable over time.

In our data, neither the physical nor the risk-neutral densities appear stable over

time. Furthermore, if the pricing kernel is stationary then the physical and the risk-

neutral densities should be related to each other. In fact, in a Black-Scholes world,

the variance, skewness and kurtosis of the risk-neutral density are equal to those of

the physical density. However, in our data the moments of the risk-neutral densi-

ties are not very close to those of the physical densities. Even using models which

forecast variances (e.g. Rosenberg and Engle (2002)) will likely fail to miss variation

in skewness or kurtosis. This highlights a major advantage of the CDI method over

existing methods.

2.5.1 Classic Method Results

We first present the results of estimating the average of a series of estimated SDFs

using the classic nonparametric method similar to those of Jackwerth (2000) and Ait-

Sahalia and Lo (2000). We should point out that while our classic method estimates

are similar to those of other papers, they are not exactly the same as any particular

paper. We use monthly data over a longer time span than most other papers, and

other papers often have slightly different ways to model the SDF. Nevertheless, our

classic method results should be very similar to those of other papers. For both the
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FTSE 100 and the S&P 500 data, we use the same risk-neutral densities that are used

in the CDI method. These risk-neutral densities are estimated using the procedure

described in Section 2.2.2, and an example of a risk-neutral density estimate appears

in Figure 2. We then estimate the corresponding physical densities using a Gaussian

kernel density estimator based upon a rolling window of past returns. We use a

bandwidth of h = n−
1
5 × σdata, where σdata denotes the standard deviation of all the

data used in the kernel estimation for all time periods. The results do not seem to vary

much with different choices of h. When using the kernel density estimator, there is a

trade off between the number of data points available and the temporal proximity of

the data points. A larger number of data points improves the mechanical estimation

of the kernel density estimator, but does not solve the real problem, which is the use

of backward-looking data to estimate conditional beliefs. By taking realized returns

further back, we are using older, possibly irrelevant data as far as investors’ time t

decision making is concerned.

Figures 2.4 and 2.5 present estimation results using the classic nonparametric

method. The panels of Figures 2.4 and 2.5 use different window lengths when cal-

culating the physical densities of returns. In all panels, the same general pattern

appears but significant variations arise across different window lengths. The SDF is

sharply decreasing over states with low returns before displaying nonmonotonicity

and sometimes gradual increasing as returns increase. In both figures the four panels

look similar over lower returns, while there is some variation across the panels as

returns increase. We are not able to estimate the mean SDF with any precision for

gross index returns outside of the range of 0.9 to 1.1. Even though index realizations

of 0.9 (-10% change) are rare, they do exist and we would like to be able to identify

the form of the pricing kernel at such low return values. As we look toward larger re-

turns, in the S&P 500 panels we see a portion of the estimated SDF that is increasing

in returns between 0.95 and 1.0. We also see at least one bump that appears for short
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rolling windows but not for long windows. The FTSE 100 estimates appear almost

flat for some window lengths, and again bumps appear and disappear as the window

length changes. It is surprising how much these classic estimates vary as we change

the window length. An estimator that changes our inference about nonmonotonicity

as we alter the window length for estimating physical densities does not seem very

robust.

The figures include pointwise 95% bootstrapped confidence intervals. Since we

use a rolling window of historical data to estimate the physical densities, we are able

to obtain tighter confidence intervals than we will using the CDI method, which does

not use a window of previous returns. Accordingly, the intervals become tighter as

we increase the length of the rolling window for both the FTSE 100 and the S&P

500 estimates. The confidence intervals are in fact tight enough so that in every

panel in both Figures 2.4 and 2.5, we are able to obtain statistically significant non-

monotonicity. We define a non-monotonicity to be statistically significant in the

estimated SDF if at any point on the returns (horizontal) axis, the lower confidence

bound exceeds the upper bound of any confidence interval at a lower level of returns.

For example, in each panel of Figure 2.4, the lower confidence bound at 1.02 on the

returns axis exceeds the upper confidence bound at 0.98. Therefore the estimates

exhibit a statistically significant non-monotonicity. As one would expect, using a

longer window of returns allows us to identify non-monotonicity at higher confidence

levels. In Panel A of Figure 2.4, the non-monotonicity is just significant at the

95% level. However, as we increase the length of the rolling windows used in our

estimates, the confidence intervals become tighter and the non-monotonicities are

more pronounced and thus are significant at even higher levels of confidence.
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2.5.2 CDI Results

The upward sloping portions of the SDF in Figures 2.4 and 2.5 cannot be easily

reconciled with standard economic theory of risk averse investors, and similar esti-

mates in the literature have perpetuated the pricing kernel puzzle. The remainder of

the paper investigates whether properly accounting for investors’ information sets can

eliminate the non-monotonicities of estimated SDFs as functions of the index returns.

In order to simultaneously select the optimal model and estimate θ, we evaluate

Equation (2.12) for different numbers of moment restrictions and spline bases and

then compare the Cramer-von Mises statistics for each of the 1081 combinations of b

and m satisfying 5 ≤ b ≤ m ≤ 50. The smallest Cramer-von Mises statistic occurs

when b = m = 9, for both the FTSE and S&P data, with values of 0.00016 (p =

0.976) and 0.00047 (p = 0.836), respectively. This means that the optimal model we

choose will solve Equation (2.11) when using the first nine moment restrictions of the

U [0, 1] distribution to estimate the coefficients for a spline with nine bases. The null

hypothesis of each associated goodness of fit test is that the estimated distribution

comes from the hypothesized distribution of U [0, 1].

We also calculate the Cramer-von Mises statistic and corresponding p-value for our

data in the case of no transformation. These statistics indicate the form the results

would take if we did not transform the data by estimating a pricing kernel. More

specifically, the case of no transformation means that we take g(y) ≡ 1 in Equation

(2.8). So the non-transformed data we use to calculate the Cramer-von Mises statistic

is given by the vector V with

Vi =

Xi∫
−∞

dFQi (y), i = 1, ...T.

For the S&P 500 the untransformed data produce a statistic of 0.00057 (p =

0.534), while for the FTSE 100 the statistic is 0.0012 (p = 0.481). These numbers
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imply that our estimation procedure succeeds in transforming the S&P 500 data to

a U [0, 1] sample quite well. We are not able to fit the FTSE data to the uniform

distribution quite as well as we can the S&P data. We can also see from the results

that even prior to our estimation, the data are not statistically different from U [0, 1]

at accepted significance levels. These results should not be considered a formal test

comparing the transformed model to the non-transformed data. That being said, our

transformation does appear to improve the fit and according to the Cramer-von Mises

criterion the fit is very good for the S&P data. For the FTSE data, the fit is not

quite as strong but is still good. Figure 2.6 displays histograms of our data before

and after the transformation. Panels A and B clearly show the Cramer-von Mises

results for the S&P 500 are confirmed. The transformed S&P 500 data appears very

close to a uniform distribution over the unit interval and it does appear more uniform

than the non-transformed data. Panels C and D, on the other hand, show that we

are not able to fit the uniform distribution of with the FTSE data nearly as well as

we can with the S&P data. Furthermore, the histograms in Panels C and D do not

visually display the improvement in fit suggested by the Cramer-von Mises statistics.

This is simply due to the fact that the histogram with fairly thick bars is not always

a good indication of fit. Both the Cramer-von Mises results and Table 2.2, which

we discuss below, show a significant improvement in fit from the non-transformed

to the transformed FTSE data. The vertical axis in Figure 2.6 counts the number

of data points falling within each bin as opposed to the density, which is simply a

normalization of the count.

We focus on the functional form of the inverse of the function ĝ whose estimation is

described in Section 2.2. Below, we plot the estimated functional form of M̂(x) = 1
ĝ(x)

which we will refer to as the SDF since e−rtτ is approximately equal to one for our

entire sample. Furthermore, multiplying M(x) by a constant will not change the

qualitative aspects of the SDF we are attempting to capture.
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It is easily seen from Figure 2.7 that the SDF estimated with the CDI approach

is a downward sloping function of S&P 500 index realizations. Figure 2.8 shows the

estimated SDF for the FTSE data is downward sloping over the returns ranging from

0.88 to 1.03, but is upward sloping at returns larger than 1.03. However, there are

relatively few observed returns larger than 1.05 in the FTSE data set. As a result, our

nonparametric estimator is bound to be imprecise at larger values of index returns.

The SDF estimates based on the FTSE data look similar to the N = 200 estimates

in Panel A of Figure 2.3. This could suggest that the true SDF is actually downward

sloping everywhere while our estimate shows non-monotonicity in the right tail only

as a result of insufficient data. In order to investigate whether there are indeed

non-monotonicities in the SDF, we need to determine whether the non-monotonicity

of the estimated SDF is statistically significant. We include bootstrap confidence

intervals based on 20,000 resamples in Figures 2.7 and 2.8. In virtually all forms

of non-parametric estimation, an extremely large set of data is required for one to

achieve tight confidence intervals. Since options data does not go back very far, we

don’t have many extreme observed returns within the time series of realized returns

corresponding to the options data. As a result, confidence intervals for our estimates

are not very tight at the extreme ends of the estimated SDFs. It can be seen in

Figures 2.7 and 2.8 that the pointwise 95% confidence intervals for the SDF are not

very tight in regions that correspond to far out-of-the-money options. This is to be

expected as we have only 196 months worth of S&P data and 121 months for the

FTSE data.

We note that the estimated SDF based on the S&P 500 data, which has 33% more

observations than the FTSE data, is clearly downward sloping and the pointwise con-

fidence intervals, while wide at certain points, do not allow us to reject monotonicity.

Furthermore, the confidence intervals are rather tight between 0.95 and 1.05, a region

where many previous studies have found the SDF to be increasing. Our estimated
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downward sloping M is in agreement with mainstream financial and economic theory

that risk averse investors’ marginal rates of substitution should be downward slop-

ing as a function of states of the world. While the FTSE 100 SDF appears upward

sloping in the region of large positive returns, the 95% confidence intervals show that

this non-monotonicity is not statistically significant. Thus, our evidence suggests

that avoiding the mixture of forward-looking and historical data is a solution to the

pricing kernel puzzle.

Since the CDI method is related to the estimation method of Bliss and Pani-

girtzoglou (2005), we report results of the Berkowitz test, which is the main test

used in Bliss and Panigirtzoglou (2005) to assess parametric estimates of the risk

aversion function. The test involves two separate likelihood ratio tests. The first,

with a test statistic denoted LR3 is a joint test of the hypothesis that our observed

cumulants,
∫ Xt

−∞ ĝ(y)dFQt (y), t = 1, 2, ..., T , are i.i.d. and are uniformly distributed

over the interval [0, 1]. The LR3 test statistic is distributed χ2
3 asymptotically. The

second likelihood ratio test, with test statistic LR1, tests the null hypothesis that our

observations are iid. The LR1 statistic follows a χ2
1 asymptotic distribution. The two

likelihood ratio tests are complementary in that if we reject the joint test based upon

LR3, but we do not reject the test of independence based upon LR1, then it must

be the case that we reject the null hypothesis of a uniform distribution. Rejecting

the hypothesis of a uniform distribution after the transformation would mean that

we do not have the correct SDF, whose inverse transforms our data to a uniform

distribution. The results of the Berkowitz test are given in Table 2.2. We report the

results of the test for both the transformed data as well as the non-transformed data,∫ Xt

−∞ dF
Q
t (y), t = 1, 2, ..., T .

We can see in Panel A of Table 2.2, that for the untransformed S&P 500 data, we

can reject the joint hypothesis at the 90% confidence level, with a p-value of 0.0732.

This result, along with the fact that we cannot reject the test of independence, implies
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that the non-transformed data cannot be rejected as independent but we can reject

the hypothesis of a uniform distribution. On the other hand, the transformed data

has a p-value of 0.8777 for the joint test, confirming the results of the Cramer-von

Mises statistics and suggesting that the transformation gives a valid SDF. Panel B of

Table 2.2 shows that the transformation of the FTSE data is not able to match the

uniform distribution as well as that of the S&P data. Again the LR1 statistics for

both the non-transformed data and the transformed data are small enough that the

the corresponding p-values are 0.9348 and 0.8544 respectively. This means that the

data appear to be convincingly independent. However, the LR3 statistics of 6.4839

and 2.4112 with corresponding p-values of 0.0903 and 0.4916 suggest that we can

reject the uniform distribution of the non-transformed FTSE 100 data but we cannot

reject the uniform distribution for the transformed data. However, the p-value of

0.4916 corresponding to the LR3 statistic in Panel B does not suggest that we have

a very great fit of the data to the uniform distribution over the unit interval.

2.6 Conclusion

The pricing kernel puzzle is the finding that the stochastic discount factor implied

by option prices and historical returns data is not monotonically decreasing in market

returns. We argue that this finding is an artifact of econometric technique, driven

particularly by comparing two estimates of densities that condition on different infor-

mation sets. We propose a new nonparametric pricing kernel estimator that properly

reflects all the information that option investors use when they set option prices. Our

estimator outperforms the classical method in simulations. In S&P 500 and FTSE

index option data, our estimator suggests that the pricing kernel is monotonically

decreasing in market returns.

It is important to confirm that the stochastic discount factor is monontonically

decreasing in market returns because a discount factor that increases in returns over
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some range implies that the representative agent prefers lower returns (or higher

risk) over that range. It is unnatural to think of the representative agent exhibiting

risk-loving behavior over any range of market returns. Explaining the pricing kernel

puzzle therefore lends credence to standard risk and return theory.
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Figure 2.1: Black-Scholes-implied densities
Panel A plots the log-normal risk-neutral (dashed) and physical (solid) densities that
arise under the Black-Scholes model. We choose location parameters to match those
of our samples for monthly returns. The physical location parameter is thus set to
µP = 0.0040 and the risk-neutral location parameter is set equal to µQ = 0.00011.
Under the Black-Scholes model, both distributions have the same scale parameter, σ,
so we set these both equal to the scale parameter for our sample of (monthly physical)
returns, σP = σQ = 0.0526. Panel B plots the SDF corresponding to the densities in
Panel A. In Panel C we slightly increase σQ to σQ = 0.055, and in Panel D we plot
the corresponding SDF.
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Figure 2.2: Example risk-neutral density
This risk-neutral density was estimated using option prices from April 20, 2006 with
best bids exceeding $3/8. For April 20, 2006, there are 43 valid option prices which
we use, corresponding to 37 unique strike prices. Each month we use option prices to
estimate a risk-neutral density like this one. We estimate the tails of the distribution
by matching a generalized Pareto Distribution to the slope of the density very close
to where we can no longer estimate it. The method for estimating the risk-neutral
densities is described in detail in Section 2.2.2.
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Figure 2.3: Estimated and true SDFs from simulations
The side by side plots compare the performance of the CDI method and classical
method of non-parametric estimates of the SDF. Our simulated data is generated
using the true SDF depicted by the bold line in each panel. The estimates of each
method are depicted with the true SDF.
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Figure 2.4: Estimated SDFs using classic procedure: S&P 500
Version of the classic nonparametric estimates of the stochastic discount factor as the
average of monthly SDF estimates with pointwise bootstrap 95% confidence intervals.
Each monthly SDF is the ratio of a risk-neutral density to a physical density estimate
of returns on the S&P 500 index. Each panel represents the resulting estimate when
a different widow is used to estimate the physical density using a Gaussian kernel
estimator.
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Figure 2.5: Estimated SDFs using classic procedure: FTSE 100
Version of the classic nonparametric estimates of the stochastic discount factor as the
average of monthly SDF estimates with pointwise bootstrap 95% confidence intervals.
Each monthly SDF is the ratio of a risk-neutral density to a physical density estimate
of returns on the FTSE 100 index. Each panel represents the resulting estimate when
a different widow is used to estimate the physical density using a Guassian kernel
estimator.
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Figure 2.6: Histograms of cumulants with and without a pricing kernel
The histograms plotted in Panels A and C are estimates of the density of the cu-
mulants that result from integrating risk-neutral densities up to their corresponding
realized values of the S&P 500 and FTSE 100 data respectively, or

∫ Xt

−∞ dF
Q
t (y), t =

1, 2, ..., T . If the pricing kernel is constant (or there is no compensation for risk)
then we would expect this histogram to be close to a uniform [0,1] density. The
histograms in Panels B and D are estimates of the density of corresponding cumu-
lants resulting from our CDI estimation method. Specifically, it is a histogram of∫ Xt

−∞ ĝ(y)dFQt (y), t = 1, 2, ..., T , where ĝ(y) is the CDI estimate of the inverse of the
pricing kernel. The fact that the histogram in Panel B appears to be approximately
uniformly [0,1] distributed shows that the CDI pricing kernel fits the S&P 500 data
very well. The histogram in Panel D shows that the CDI pricing kernel fits the FTSE
100 data only moderately well.
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Figure 2.7: Estimated stochastic discount factor using CDI method: S&P 500
The result of our CDI estimation of the pricing kernel for the S&P 500 is plotted
above. It is clearly monontonically decreasing on the interval over which we can
estimate it with some precision. The CDI method estimates the pricing kernel by
matching the moments of the distribution of the cumulants,

Xt∫
−∞

ĝ(y)dFQt (y), t = 1, 2, ..., T,

to the moments of the uniform distribution by nonparametrically estimating the func-
tion g(·). The SDF in this formulation is actually the inverse of g(·), so that is what
we plot above. 95% confidence intervals, which are plotted with dashed lines, are
based on 20,000 bootstrap iterations of the CDI method, sampling our set of dates
with replacement.
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Figure 2.8: Estimated stochastic discount factor using CDI method: FTSE 100
The result of our CDI estimation of the pricing kernel for the FTSE 100 is plotted
above. The estimate exhibits some non-monotonicity at the end of the interval over
which we can estimate it with some precision. The non-monotonicity is not statis-
tically significant according to the 95% bootstrapped confidence intervals. The CDI
method estimates the pricing kernel by matching the moments of the distribution of
the cumulants,

Xt∫
−∞

ĝ(y)dFQt (y), t = 1, 2, ..., T,

to the moments of the uniform distribution by nonparametrically estimating the func-
tion g(·). The SDF in this formulation is actually the inverse of g(·), so that is what
we plot above. 95% confidence intervals, which are plotted with dashed lines, are
based on 20,000 bootstrap iterations of the CDI method, sampling our set of dates
with replacement.
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Table 2.1: Summary statistics for risk-neutral densities
For each of the months in our sample (196 months: from September 1996 through
December 2012 for S&P 500 data. 121 months: from January 2002 to December
2012 for FTSE 100 data), we estimate both a risk-neutral density based on option
prices and a physical density based on historical data. The physical densities are
estimated with a Gaussian kernel density estimator using 60 months of past returns,
and the risk-neutral densities are estimated as described in Section 2.2.2. This table
reports summary statistics on the moments of these densities. The table reports both
sample averages and sample standard deviations of the first four centralized moments
in terms of returns: mean, standard deviation, skewness and kurtosis. The average
means and standard deviations are annualized to ease interpretation.

Panel A: S&P 500
Risk-Neutral Densities from Options Prices

Annualized Annualized Monthly Monthly
Mean Ret Standard Dev Skewness Kurtosis

Sample average 2.76% 22.98% -1.1814 6.2283
Sample standard deviation 0.97% 24.00% 0.4844 2.1343

Physical Densities from 60 months of Historical Data
Annualized Annualized Monthly Monthly

Mean Ret Standard Dev Skewness Kurtosis

Sample average 6.48% 18.33% -0.4661 4.1178
Sample standard deviation 2.29% 11.49% 0.3537 1.4569

Panel B: FTSE 100
Risk-Neutral Densities from Options Prices

Annualized Annualized Monthly Monthly
Mean Ret Standard Dev Skewness Kurtosis

Sample average 3.57% 21.43 % -1.0365 7.9168
Sample standard deviation 4.01% 9.00% 0.6857 4.1581

Physical Densities from 60 months of Historical Data
Annualized Annualized Monthly Monthly

Mean Ret Standard Dev Skewness Kurtosis

Sample average 3.45% 16.71 % -0.5273 3.4905
Sample standard deviation 3.08% 1.10% 0.1047 0.2389
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Table 2.2: Berkowitz statistics and p-values
The first line reports likelihood ratio test statistics and corresponding p-values for
Berkowitz tests of the transformed data using the optimal model, b = m = 9.
The second line reports likelihood ratio test statistics and corresponding p-values
for Berkowitz tests of the non-transformed data, or the data without a pricing kernel.
The LR3 statistic tests the joint hypothesis that data is iid and U [0, 1]. The LR1

statistic tests the hypothesis that the data are independent. Rejection based upon
the LR3 statistic can come from the data not being independent or the data not being
uniformly distributed. If we reject base upon the LR3 statistic but fail to reject based
upon the LR1 statistic, this implies that the data does a poor job fitting the U [0, 1]
distribution.

Panel A: S&P 500
Model LR3 p-value LR1 p-value

Optimal model (b = m = 9) 0.6808 0.8777 0.0054 0.9412
No pricing kernel 6.9593 0.0732 0.0447 0.8326

Panel B: FTSE 100
Model LR3 p-value LR1 p-value

Optimal model (b = m = 9) 2.4112 0.4916 0.0337 0.8544
No pricing kernel 6.4839 0.0903 0.0067 0.9348
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APPENDIX A

Proofs

Proof of Proposition II.3: We first prove existence. We can apply the Radon-

Nikodym Theorem on the probability space (R,B(R)), where B(R) is the Borel σ-field

generated on R. Then by the Radon-Nikodym Theorem, there exists (a.s Q) unique

random variable dP
dQ such that

P((−∞, x]) = P(x) =

Xt∫
−∞

dP
dQ

(y)dQ(y) ∀x ∈ R. (A.1)

Now if we define Gt(Xt) by

Gt(Xt) :=

Xt∫
−∞

g(y)dQ(y), (A.2)

we know from Proposition II.2, that if we take g(y) = dP
dQ(y), then we have G(X) ∼

U [0, 1]. This establishes existence.

Next we establish uniqueness. Since we can only show almost sure (Q) uniqueness,

we reduce the space in question by removing all Q−null sets. Call this reduced space

over the real line R′. Since g is non-negative, the function G uniquely determines

where g must be zero over B(R′). So any functions satisfying the criteria of the
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proposition must take the value zero over the exact same subsets of B(R′). Now it

only remains to show that over the sets where g 6= 0, the functional form is unique.

Let N denote the set in B(R′) where g > 0. Over this set, the function G is invertible

because g > 0.

Suppose there is another function g′ satisfying Equation (A.2) over N . Define G ′t

as

G ′t(Xt) ≡
Xt∫
−∞

g′(y)dQ(y),

where, by our assumption on g′, we know G ′(X) ∼ U [0, 1]. Since G and G ′ are invertible

over N , we know that on the restricted domain, for a fixed x,

P(G ′(X) ≤ x) = P(X ≤ G ′−1(x))

and

P(G(X) ≤ x) = P(X ≤ G−1(x)).

Since P and Q are equivalent by assumption, and N does not contain any Q-null

sets, it follows that N does not contain any P-null sets. This implies that P(X ≤ ·)

is a strictly increasing function and hence

G ′−1(x) = G−1(x)

for a fixed x. It follows that for deterministic sets E (e.g. E = (−∞, x] )

∫
E

g′(y)dQ(y) =

∫
E

g(y)dQ(y) ∀E ⊂ B(N ). (A.3)

Now we can apply the Radon-Nikodym Theorem on (N ,B(N ),Q). From Equation

(A.3), the Radon-Nikodym Theorem implies g′ = g a.s. Q on N . Since the values

of g and g′ must be zero on non-null subsets of N c, we have that g′ = g a.s. Q and
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hence g is unique (a.s. Q). �
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APPENDIX B

Correlation Factor

Construction of Correlation Factor B: Since the volatility of the index is

comprised of a weighted average of volatilities of individual constituents of the index as

well as the weighted pairwise covariances of constituents, we can express the volatility

of the index as

σ2
I,t =

∑
ω2
i,tσ

2
i,t + 2

∑
i 6=j

ωiωjσi,tσj,tρij,t, (B.1)

where σ2
I,t denotes index variance at time t, σ2

i,t denotes time t variance of constituent

firm i, ωi denotes the index weight assigned to constituent i and ρij,t denotes the

pairwise correlation between constituents i and j at time t.

Under the simplifying assumption that ρij,t ≡ ρt ∀t, we can rearrange Equation

(B.1) to express correlation as the following:

ρt =
σ2
I −

∑
ω2
i σ

2
i

2
∑

i 6=j ωiωjσiσj
.

Under this representation, I estimate σI and σi for each constituent by taking the

average of the Black-Scholes-Merton implied volatility of at the money calls and put
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options for the particular firm or index. Thus, at each time t I have an estimate of

the average pairwise correlation between stocks in the S&P 500.
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