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Abstract

A new class of “2D/1D” approximations is proposed for the 3D linear Boltzmann

equation. These approximate equations preserve the exact transport physics in the

radial directions x and y and employ approximate diffusion physics in the axial di-

rection z. Thus, the 2D/1D equations are more accurate approximations of the 3D

Boltzmann equation than the conventional 3D diffusion equation. The 2D/1D equa-

tions can be systematically discretized, to yield accurate simulation methods for 3D

reactor core problems. The resulting solutions are more accurate than 3D diffusion

solutions, and less expensive to generate than standard 3D transport solutions. In this

work, we (i) introduce several new “2D/1D equations” as accurate approximations to

the 3D Boltzmann transport equation, (ii) show that the 2D/1D equations have cer-

tain desirable properties, (iii) systematically discretize the equations, and (iv) derive

a stable iteration scheme for solving the discrete system of equations. Additionally,

we give numerical results that confirm the theoretical predictions of accuracy and

iterative stability.

xi



Chapter 1

Introduction and History

The term “2D/1D” has been used to describe recently-developed computational

methods for solving 3D whole-core neutronics problems in which the (1D) axial and

(2D) radial derivative terms are approximated differently. These methods were orig-

inally proposed and implemented by two groups in Korea during 2002-2007 [1–11].

One group, located at KAIST (N.Z. Cho, G.S. Lee, C.J. Park, and colleagues), de-

veloped the “2D/1D Fusion” method for the CRX code [1, 3–5, 8, 9]. In this method,

the 3D Boltzmann transport equation is solved by discretizing the radial derivative

terms on a “fine” radial grid and the axial derivative term on a “coarse” radial grid.

The other group, located at at KAERI (J.Y. Cho, H.G. Joo, K.S. Kim, and S.Q. Zee

and colleagues), developed a different “planar MOC solution-based 3D heterogeneous

core method” for the DeCART code [2, 6, 10, 11]. This method also discretizes the

axial derivative term using a “coarse” radial grid, but most importantly, it simplifies

this term in a way that (i) is accurate for problems in which the axial leakage can be

represented by Fick’s Law, and (ii) offers major advantages for parallel-architecture

computers. In some publications, the KAERI method was simply called “2D/1D” [6].

In this work, we refer to the KAIST method in CRX by its original “2D/1D Fusion”

name, and we refer to the KAERI method in DeCART by its abbreviated “2D/1D”

name. The purpose of this work is to outline a systematic mathematical theory for

the 2D/1D methodology developed at KAERI for DeCART.
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DeCART (Deterministic Core Analysis Based on Ray Tracing) was originally de-

veloped under an I-NERI project between KAERI and ANL. An early version of

DeCART was acquired by the University of Michigan (UM), where it has been ex-

tensively used in the DOE CASL project. This version has certain deficiencies – in

particular, a failure to converge for small axial cell widths ∆z. In more recent ver-

sions of DeCART, the staff at KAERI and ANL have “suppressed” these instabilities.

However, in these revisions, the cause of the original iterative instabilities and other

basic questions were not answered.

The use of (the UM version of) DeCART demonstrated that for problems in which

DeCART converged, it had major computational advantages over other 3D Discrete

Ordinates (DO) or Method of Characteristics (MOC) codes. Unfortunately, the failure

of DeCART to converge for small ∆z and the lack of a mathematical foundation for

the 2D/1D methodology were major concerns. Nonetheless, discussions took place at

UM on the desirability of developing a new 3D reactor physics code that would employ

a more robust (but then nonexistent) 2D/1D methodology. To accomplish this, we

decided to try to develop a mathematical foundation for the 2D/1D methodology in

DeCART – in order to better understand this methodology, and to suggest systematic

ways to improve it. The theoretical work has so far been completed for monoenergetic

problems in classically “diffusive” media. Our numerical results cover a wider and

more interesting range of lattice problems. We have implemented and tested the

2D/1D method in the new MPACT (Michigan Parallel Characteristics Transport

Code) code [12].

Our goal in this work is to demonstrate that stable and accurate 2D/1D methods

similar to the DeCART method can be systematically derived from a new second-

order, integrodifferential “2D/1D equation.” The proposed 2D/1D equation and the

classic 3D diffusion equation have a similar status: both approximate (simplify) the

3D linear Boltzmann equation. The 2D/1D equation is (i) less expensive to solve

than the 3D transport equation, (ii) more complicated and expensive to solve than

the 3D diffusion equation, and (iii) well-approximates the 3D Boltzmann equation

over a much larger range of problems than the diffusion equation. Specifically: the

2D/1D equation preserves exact transport physics in the radial directions (x and y),
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but it uses approximate diffusion physics in the axial direction z.

We systematically discretize the 2D/1D equation to obtain a system of discrete

equations whose solution converges to the exact 2D/1D solution as the grid (of all

independent variables) becomes increasingly fine. We also derive iterative methods for

solving the discrete system and analyze these methods by Fourier analysis techniques.

This analysis makes it possible to predict the performance of an iterative method

before it is implemented, and to avoid iteration methods that are unstable.

In this work, we (i) introduce several new “2D/1D equations” as accurate approx-

imations to the 3D Boltzmann transport equation, (ii) systematically discretize these

equation in a straightforward manner, (iii) develop a simple stable iteration strat-

egy for solving the discretized equations, and (iv) apply acceleration to more rapidly

converge the solution. Additionally, we provide numerical evidence showing that for

geometrically simple 3D problems, the theoretical predictions of (v) the accuracy of

the simplest 2D/1D solutions, and (vi) the stability of the “source iteration with

under-relaxation” and “CMFD with under-relaxation” iterative methods are valid.

More specifically, we show the following:

• Numerical solutions of the 2D/1D equation exist and can be obtained iteratively,

in accordance with the theory.

• For 3D problems that are “classically diffusive” (optically thick and highly scat-

tering), the 2D/1D and diffusion solutions both well-approximate the transport

solution.

• For problems which are diffusive axially, but not radially, the 2D/1D solutions

are more accurate (closer to the solution of the Boltzmann equation) than the

standard diffusion solution.

• The “source iteration with under-relaxation” and ‘CMFD with under-relaxation”

iteration schemes for solving the 2D/1D equation is experimentally stable, and

the performance (spectral radius) of this scheme is accurately predicted by the

Fourier analysis.

The remainder of this thesis is organized as follows. In Chapter 2, we give a basic

3



description of solution methods for the 3D Boltzmann equation.

In Chapter 3, we propose several 2D/1D equations that approximate the linear

Boltzmann equation in a manner consistent with the spirit of the method in DeCART,

and we show some basic properties of these 2D/1D equations. Also, we systematically

discretize the 2D/1D equation, and we propose unaccelerated and accelerated itera-

tion methods to solve the discrete equations. This method is related to the original

iterative method in DeCART, but the new method has a modification that renders

it stable. We additionally describe the use of shape functions to further improve the

accuracy of the method.

In Chapter 4, we apply Fourier analysis to predict the convergence behavior of the

new iteration schemes. We confirm these predictions with numerical experiments. We

also describe a set of problems on which the methods were implemented to test their

accuracy. The solutions produced by the 2D/1D method are compared to 3D MOC

and 3D diffusion solutions for their accuracy. Finally, we describe a set of problems

to evaluate the improved accuracy from the use of shape functions.

In Chapter 5, we apply the 2D/1D method to some more realistic benchmark

problems — namely, the C5G7 3D extended problems and the first of the Takeda

benchmarks. Additionally, we apply the method to the CASL AMA 3A milestone

problem to observe the effects of realistic anisotropic scattering.

In Chapter 6, we provide conclusions regarding the numerical accuracy and the

numerical performance of the method. We also discuss future work for the improve-

ment of the method through (i) better diffusion coefficients, (ii) shape functions, (iii)

alternate axial methods, and (iv) alternate leakage splitting.
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Chapter 2

Background

The derivation of the 2D/1D equation begins with the linear 3D Boltzmann trans-

port equation formulated on a “cylindrical” system V , consisting of points r = (x, y, z)

with the radial variables (x, y) ∈ R (a convex 2D region), and the axial variable z in

the interval 0 ≤ z ≤ Z. (Aside from being convex, R is arbitrary.)

Figure 1: The Cylindrical System V
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The approximations that we will introduce to derive the 2D/1D equation only

affect the axial streaming term; therefore, for simplicity, we assume monoenergetic

transport. Using the notation for the unit angle vector:

Ω = (Ωx,Ωy,Ωz) = (
√

1− µ2 cosα,
√

1− µ2 sinα, µ) , (2.1)

we have the fixed-source monoenergetic transport equation:

Ω ·∇ψ(r,Ω) + Σt(r)ψ(r,Ω) = S(r,Ω) , r ∈ V , Ω ∈ 4π , (2.2a)

with the vacuum boundary condition:

ψ(r,Ω) = 0 , r ∈ ∂V , Ω · n < 0 . (2.2b)

The source terms

S(r,Ω) = Ss(r,Ω) + Sf (r,Ω) , (2.3)

consist of the scattering source,

Ss(r,Ω) =

∫
4π

Σs(r,Ω ·Ω′)ψ(r,Ω′)dΩ′ , (2.4)

and the fixed-source,

Sf (r,Ω) = Q(r,Ω) , (2.5)

or the fission source (in an inner iteration of an eigenvalue problem),

Sf (r,Ω) =
νΣf (r)

4πkeff

∫
4π

ψ(r,Ω′)dΩ′ . (2.6)

Alternative boundary conditions could be either an external source, or a spectral

albedo source

ψ(r,Ω) = ψb(Ω) = βψ(r,Ω′) , Ω′ = Ω− 2(Ω · n)n . (2.7)

If β = 0 this is a vacuum boundary condition, while if β = 1, it is a reflecting

6



boundary condition.

2.1 Anisotropic Scattering

By applying a Legendre expansion to the scattering kernel,

Σs(r,Ω ·Ω′) =

NS∑
n=0

2n+ 1

4π
Σs,n(r)Pn(Ω ·Ω′) ,

we can write Eq. (2.4) as:

Ss(r,Ω) =

NS∑
n=0

2n+ 1

4π
Σs,n(r)

∫
4π

Pn(Ω ·Ω′)ψ(r,Ω′)dΩ′ . (2.8)

Finally, we can use the spherical harmonic addition theorem,

Pn(Ω ·Ω′) =
4π

2n+ 1
Yn,m(Ω)Yn,m(Ω′) ,

to obtain:

Ss(r,Ω) =

NS∑
n=0

Σs,n(r)
n∑

m=−n

Yn,m(Ω)

∫
4π

Yn,m(Ω′)ψ(r,Ω′)dΩ′ . (2.9)

Here, Yn,m(Ω) are the real-valued spherical harmonics:

Yn,m(Ω) =

√
2n+ 1

4π

(n−m)!

(n+m)!
Pn,m(µ)ϕm(α) , (2.10a)

ϕm(α) =


√

2 sin(mα) , m < 0

1 , m = 0√
2 cos(mα) , m > 0

, (2.10b)
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and, Pn,m(µ) are the associated Legendre polynomials:

Pn,m(µ) =

√
(1− µ2)m

2nn!

dn+m

dµn+m (µ2 − 1)
n
. (2.11)

2.2 The Method of Characteristics

A prevalent method of solving the transport PDE is the Method of Characteris-

tics. Introduced over four decades ago [13], [14], it has become a common method for

solving lattice problems and reactor physics problems. We use the Method of Char-

acteristics to solve the 2D transport portion of the 2D/1D method. In this method,

the transport PDE is converted to an ODE by replacing the directional derivative of

the streaming term with an ordinary derivative:

Ω =
∂r

∂s
→ r = r0 + sΩ ,

Ω ·∇ψ(r,Ω) =
∂

∂s
ψ(r,Ω) ,

∂

∂s
ψ(r,Ω) + Σt(r)ψ(r,Ω) = S(r,Ω) .

A finite number of directions are chosen as the angular quadrature over which the

directions are traversed. This transport equation can then be solved analytically with

the use of an integrating factor:

∂

∂s
I(r) = Σt(r)I(r) ;

we solve this ODE for the integrating factor,

I(r) = exp

 s∫
0

Σt(r0 + s′Ω)ds′

 .
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With this, we can write the transport ODE as:

∂

∂s

(
I(r)ψ(r,Ω)

)
= I(r)S(r,Ω) ,

Integrating this rearranged transport equation over some length s results in:

ψ(r0 + sΩ,Ω) = ψ(r0,Ω)e−
∫ s
0 Σt(r0+s′Ω)ds′

+ e−
∫ s
0 Σt(r0+s′Ω)ds′

s∫
0

S(r0 + sΩ,Ω)e
∫ s′
0 Σt(r0+s′′Ω)ds′′ds′ .

(2.12)

By assuming the spatial shape of the source S (e.g. constant) over the domain of

integration, Eq. (2.12) can be evaluated explicitly. To produce the MOC numerical

solution scheme, we couple this with a discretized version of the transport ODE,

ψ(r0 + siΩ,Ω)− ψ(r0,Ω)

si
+ Σt,iψi(Ω) = Si(Ω) , (2.13)

where Σt,i,ψi(Ω), and Si(Ω) are the average collision cross section, angular flux, and

source, respectively, along ray i. In order to complete this method, the domain needs

to be decomposed into such “flat source regions” as seen below in Figure 2.

Figure 2: An Example of Flat Source Regions on a Pin Cell

Additionally, as the characteristic equation (Eq. (2.12)) is formed along a line,

many such rays must be used to traverse the problem domain. For a given direction

within an angular quadrature, parallel rays are placed over the domain. Each ray is

used to represent the solution over a section of the problem, based on the spacing

9



between the rays. In Figure 3, we show multiple rays traversing a flat source region.

Figure 3: An Example of Rays Traversing a Flat Source Region

Each ray is shown enclosed within a region, which is used to area weight the flat

source region angular flux. The length of this region is the ray length si, and the width

is the ray spacing ∆ri. The flat source region average angular flux is then,

ψj(Ω) =

∑
i∈j si∆riψi(Ω)∑

i∈j si∆ri
. (2.14)

The scalar flux for this region is,

φj =

∫
4π

ψj(Ω)dΩ . (2.15)

As the ray separation distance decreases, the error that occurs due to the area inte-

gration of the angular flux vanishes. Therefore, it is necessary to use numerous rays

in order to see good accuracy when using the Method of Characteristics.

2.3 Nodal Diffusion

The nodal diffusion methods are commonly used for the solution of 3D diffusion

problems [15]. They can be applied to multiple dimensions in a manner similar to ADI

or with CMFD acceleration. We use nodal diffusion methods as an improvement over

finite difference methods to solve the 1D diffusion equation of the 2D/1D method. In

10



our work, nodal methods are applied to the 1D diffusion equation.

− d

dz

(
D(z)

dφ

dz

)
+ Σr(z)φ(z) = S(z) . (2.16)

The right hand term S(z) is the combination of the fixed source, fission source (in mul-

tiplying media), in-scatter source (in multi-group problems), and transverse leakage

(in multi-dimension problems). All nodal methods begin with a change of variable

applied to the diffusion coefficient to isolate nodal regions. First we define a local

spatial variable:

ξ(z) = 2
z − zj

∆j

when zj−1/2 ≤ z ≤ zj+1/2 , (2.17a)

where

2zj = zj+1/2 + zj−1/2 , (2.17b)

and

∆j = zj+1/2 − zj−1/2 . (2.17c)

Next, we make a change of variables on the scalar flux and source terms:

φ(z)dz = φj(ξ)dξ , (2.17d)

S(z)dz = Sj(ξ)dξ . (2.17e)

On each of these nodes, the cross sections are assumed constant, so that the only

spatial variation is due to the scalar flux and source. With this approximation, the

diffusion equation becomes:

−ΣD,jφ
′′
j (ξ) + Σr,jφj(ξ) = Sj(ξ) , (2.18a)
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where

ΣD,j =
4Dj

∆2
j

, (2.18b)

and

βj =
2Dj

∆j

. (2.18c)

Boundary conditions for the nodal methods are determined from diffusion boundary

conditions. Fick’s law is used to determine the current from the scalar flux:

J(z) = −D(z)
dφ

dz
,

or

Jj(ξ) = βjφ
′
j(ξ) . (2.19)

If we have a reflecting boundary condition at the bottom of the problem, we have:

J0(−1) = β0φ
′
j(−1) = 0 . (2.20)

If we have a vacuum boundary condition at the top of the problem, we have:

φJ(1)− 2JJ(1) = 4J−J+1/2 = 0 ,

or

φJ(1) + 2φ′J(1) = 0 . (2.21)

2.3.1 Nodal Approximation

In both the NEM (Nodal Expansion Method) and SANM (Semi-Analytical Nodal

Method), the scalar flux and source are approximated on the node with a finite

order sum of Legendre polynomials (and solutions to the homogeneous problem with

SANM). In both approximations, a Legendre polynomial expansion is applied to the

12



source:

Sj(ξ) =
4∑

n=0

Sn,jPn(ξ) . (2.22)

The NEM approximation is given by:

φj(ξ) ≈
4∑

n=0

φn,jPn(ξ) . (2.23)

The SANM approximation is given by:

φj(ξ) ≈ Aj sinh(κjξ) +Bj cosh(κjξ) +
4∑

n=0

φn,jPn(ξ) , (2.24a)

κj =

√
Σr,j

ΣD,j

. (2.24b)

Applying either of these approximations to the diffusion equation, Eq. (2.18a) yields

−ΣD,j

4∑
n=0

φn,jP
′′
n (ξ) + Σr,j

4∑
n=0

φn,jPn(ξ) =
4∑
l=0

Sn,jPn(ξ) . (2.25)

We do not solve this equation in this form, but we take five relevant moments of this

equation,
∫ 1

−1
dξPm(ξ) for m = 0, ..., 4. The results of these moments are:

Σr,jφ0,j − 3ΣD,jφ2,j − 10ΣD,jφ4,j = S0,j , (2.26a)

Σr,jφ1,j − 15ΣD,jφ3,j = S1,j , (2.26b)

Σr,jφ2,j − 35ΣD,jφ4,j = S2,j , (2.26c)

Σr,jφ3,j = S3,j , (2.26d)

Σr,jφ4,j = S4,j . (2.26e)

If the NEM approximation is used, only the first three of these moments are used. If

the SANM approximation is used, all five of these moments are used, and they can

13



easily be inverted to solve for the scalar flux moments:

φ0,j =
1

Σr,j

(
S0,j + 3

S2,j

κ2
j

+ 10
S4,j

κ2
j

+ 105
S4,j

κ4
j

)
, (2.27a)

φ1,j =
1

Σr,j

(
S1,j + 15

S3,j

κ2
j

)
, (2.27b)

φ2,j =
1

Σr,j

(
S2,j + 35

S4,j

κ2
j

)
, (2.27c)

φ3,j =
S3,j

Σr,j

, (2.27d)

φ4,j =
S4,j

Σr,j

. (2.27e)

2.3.2 Single Node Method

In the 1-node method, inbound partial currents are used as boundary conditions for

the node, and the node average scalar flux and outward partial currents are calculated;

this can be used to form a complete iteration scheme, but can be improved with a

low order update, such as CMFD [16]. The partial current node boundary conditions

are:

φ(z)− 2J(z) = 4J−(z) ,

φ(z) + 2J(z) = 4J+(z) ,

or

φj(1) + 2βjφ
′
j(1) = 4J−j+1/2 , (2.28a)

φj(−1)− 2βjφ
′
j(−1) = 4J+

j−1/2 . (2.28b)

Applying either the NEM or SANM approximation yields an iterative system of equa-

tions.
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One-Node NEM

Applying the NEM approximation to the node boundary conditions shown before

yields two equations towards the five unknowns in the node:

4∑
n=0

φ
(`+1)
n,j + βj

4∑
n=0

n(n+ 1)φ
(`+1)
n,j = 4J

−,(`)
j+1/2 , (2.29a)

4∑
n=0

φ
(`+1)
n,j (−1)n + βj

4∑
n=0

n(n+ 1)φ
(`+1)
n,j (−1)n = 4J

+,(`)
j−1/2 . (2.29b)

The remaining three equations are the taken from Equations (2.26a-c),

Σr,jφ
(`+1)
0,j − 3ΣD,jφ

(`+1)
2,j − 10ΣD,jφ

(`+1)
4,j = S

(`)
0,j , (2.29c)

Σr,jφ
(`+1)
1,j − 15ΣD,jφ

(`+1)
3,j = S

(`)
1,j , (2.29d)

Σr,jφ
(`+1)
2,j − 35ΣD,jφ

(`+1)
4,j = S

(`)
2,j . (2.29e)

The updated node edge partial currents are,

J
+,(`+1)
j+1/2 =

1

4

4∑
n=0

φ
(`+1)
n,j − ∆jΣD,j

4

4∑
n=0

φ
(`+1)
n,j

n(n+ 1)

2
, (2.29f)

and

J
−,(`+1)
j−1/2 =

1

4

4∑
n=0

φ
(`+1)
n,j (−1)n − ∆jΣD,j

4

4∑
n=0

φ
(`+1)
n,j (−1)n

n(n+ 1)

2
. (2.29g)

The node average scalar flux is then given by:

φ̄j =
1

∆j

k+1/2∫
k−1/2

φ(z)dz =
1

2

1∫
−1

φj(ξ)dξ = φ0,j . (2.30)

Together, these equations form an iterative system of equations.
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One-Node SANM

Applying the SANM approximation to the node boundary conditions yields two

equations towards the seven unknowns in the node:(
sinh(κj) + 2βjκj cosh(κj)

)
A

(`+1)
j

+
(
cosh(κj) + 2βjκj sinh(κj)

)
B

(`+1)
j

= 4J
−,(`)
j+1/2 −

4∑
n=0

(
1 + βjn(n+ 1)

)
φ

(`+1)
n,j ,

(2.31a)

(
− sinh(κj) + 2βjκj cosh(κj)

)
A

(`+1)
j

+
(
cosh(κj)− 2βjκj sinh(κj)

)
B

(`+1)
j

= 4J
+,(`)
j−1/2 −

4∑
n=0

(−1)n
(
1 + βjn(n+ 1)

)
φ

(`+1)
n,j .

(2.31b)

The remaining five equations are the taken from Equations (2.27),

φ
(`+1)
0,j =

1

Σr,j

(
S

(`)
0,j + 3

S
(`)
2,j

κ2
j

+ 10
S

(`)
4,j

κ2
j

+ 105
S

(`)
4,j

κ4
j

)
, (2.31c)

φ
(`+1)
1,j =

1

Σr,j

(
S

(`)
1,j + 15

S
(`)
3,j

κ2
j

)
, (2.31d)

φ
(`+1)
2,j =

1

Σr,j

(
S

(`)
2,j + 35

S
(`)
4,j

κ2
j

)
, (2.31e)

φ
(`+1)
3,j =

S
(`)
3,j

Σr,j

, (2.31f)

φ
(`+1)
4,j =

S
(`)
4,j

Σr,j

. (2.31g)
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The updated node edge partial currents are,

J
+,(`+1)
j+1/2 =

1

4

((
sinh(κj) + 2βjκj cosh(κj)

)
A

(`+1)
j

+
(

cosh(κj) + 2βjκj sinh(κj)
)
B

(`+1)
j

+
4∑

n=0

(
1− βjn(n+ 1)

)
φ

(`+1)
n,j

)
,

(2.31h)

and

J
−,(`+1)
j−1/2 =

1

4

((
− sinh(κj) + 2βjκj cosh(κj)

)
A

(`+1)
j

+
(

cosh(κj)− 2βjκj sinh(κj)
)
B

(`+1)
j

+
4∑

n=0

(−1)n
(
1− βjn(n+ 1)

)
φ

(`+1)
n,j

)
.

(2.31i)

The node average scalar flux is then given by:

φ̄j =
1

∆j

k+1/2∫
k−1/2

φ(z)dz =
1

2

1∫
−1

φj(ξ)dξ =
sinh(κj)

κj
Bj + φ0,j . (2.32)

Together, these equations form an iterative system of equations.

2.3.3 Double Node Method

In the 2-node method, the node average scalar fluxes are held constant and a flux

continuity and current continuity are enforced on the boundary between two nodes;

the iteration scheme ultimately produces updates for the current between each node.

This method then requires a low order update (CMFD) to complete the iteration and

update the node average scalar flux. The inter-node boundary conditions are:

φj+1(−1) = φj(1) , (2.33a)

17



∆j+1ΣD,j+1φ
′
j+1(−1) = ∆jΣD,jφ

′
j(1) . (2.33b)

Two-Node NEM

Applying the NEM approximation to the inter-node boundary conditions shown

above yields two equations towards the eight unknowns in the two nodes; from con-

tinuity of flux, we obtain:

φ̄
(`)
j +

4∑
n=1

φ
(`+1)
n,j = φ̄

(`)
j+1 +

4∑
n=1

φ
(`+1)
n,j+1(−1)n . (2.34)

From continuity of current, we obtain:

βj

4∑
n=1

n(n+ 1)φ
(`+1)
n,j = βj+1

4∑
n=1

n(n+ 1)φ
(`+1)
n,j+1(−1)n . (2.35)

The remaining six equations are the taken from Equations (2.26a-c); for the bottom

node, we have:

−3ΣD,jφ
(`+1)
2,j − 10ΣD,jφ

(`+1)
4,j = S

(`)
0,j − Σr,jφ̄

(`)
j , (2.36a)

Σr,jφ
(`+1)
1,j − 15ΣD,jφ

(`+1)
3,j = S

(`)
1,j , (2.36b)

Σr,jφ
(`+1)
2,j − 35ΣD,jφ

(`+1)
4,j = S

(`)
2,j . (2.36c)

For the top node, we have:

−3ΣD,j+1φ
(`+1)
2,j+1 − 10ΣD,j+1φ

(`+1)
4,j+1 = S

(`)
0,j+1 − Σr,j+1φ̄

(`)
j+1 , (2.36d)

Σr,j+1φ
(`+1)
1,j+1 − 15ΣD,j+1φ

(`+1)
3,j+1 = S

(`)
1,j+1 , (2.36e)

Σr,j+1φ
(`+1)
2,j+1 − 35ΣD,j+1φ

(`+1)
4,j+1 = S

(`)
2,j+1 . (2.36f)

The updated inter-node current is,

J
(`+1/2)
j+1/2 = −βj

(
φ

(`+1/2)
1,j + 3φ

(`+1/2)
2,j + 6φ

(`+1/2)
3,j + 10φ

(`+1/2)
4,j

)
. (2.36g)
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By coupling this with a low order update, we have a complete iterative system of

equations.

Two-Node SANM

Applying the SANM approximation to the node interface boundary conditions

yields two equations towards the fourteen unknowns in the two nodes; from continuity

of flux, we obtain:

sinh(κj)A
(`+1/2)
j + sinh(κj+1)A

(`+1/2)
j+1

= cosh(κj+1)B
(`+1/2)
j+1 − cosh(κj)B

(`+1/2)
j

+
4∑

n=0

(
(−1)nφ

(`+1/2)
n,j+1 − φ

(`+1/2)
n,j

)
.

(2.37)

From continuity of current, we obtain:

−βjκj cosh(κj)A
(`+1/2)
j + βj+1κj+1 cosh(κj+1)A

(`+1/2)
j+1

=βj+1κj+1 sinh(κj+1)B
(`+1/2)
j+1 + βjκj sinh(κj)B

(`+1/2)
j

+
4∑

n=0

n(n+ 1)

2

(
(−1)nβj+1φ

(`+1/2)
n,j+1 + βjφ

(`+1/2)
n,j

)
.

(2.38)

Ten of the remaining equations are the taken from Equations (2.27); for the bottom

node, we have:

φ
(`+1/2)
0,j =

1

Σr,j

(
S

(`)
0,j + 3

S
(`)
2,j

κ2
j

+ 10
S

(`)
4,j

κ2
j

+ 105
S

(`)
4,j

κ4
j

)
, (2.39)

φ
(`+1/2)
1,j =

1

Σr,j

(
S

(`)
1,j + 15

S
(`)
3,j

κ2
j

)
, (2.40)

φ
(`+1/2)
2,j =

1

Σr,j

(
S

(`)
2,j + 35

S
(`)
4,j

κ2
j

)
, (2.41)

φ
(`+1/2)
3,j =

S
(`)
3,j

Σr,j

, (2.42)
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φ
(`+1/2)
4,j =

S
(`)
4,j

Σr,j

. (2.43)

For the top node, we have:

φ
(`+1/2)
0,j+1 =

1

Σr,j+1

(
S

(`)
0,j+1 + 3

S
(`)
2,j+1

κ2
j+1

+ 10
S

(`)
4,j+1

κ2
j+1

+ 105
S

(`)
4,j+1

κ4
j+1

)
, (2.44)

φ
(`+1/2)
1,j+1 =

1

Σr,j+1

(
S

(`)
1,j+1 + 15

S
(`)
3,j+1

κ2
j+1

)
, (2.45)

φ
(`+1/2)
2,j+1 =

1

Σr,j+1

(
S

(`)
2,j+1 + 35

S
(`)
4,j+1

κ2
j+1

)
, (2.46)

φ
(`+1/2)
3,j+1 =

S
(`)
3,j+1

Σr,j+1

, (2.47)

φ
(`+1/2)
4,j+1 =

S
(`)
4,j+1

Σr,j+1

. (2.48)

The other two equations are taken from Eq. (2.32); using this node average flux

relation, we obtain:

B
(`+1/2)
j =

κj

(
φ̄

(`)
j − φ

(`+1/2)
0,j

)
sinh(κj)

, (2.49a)

and

B
(`+1/2)
j+1 =

κj+1

(
φ̄

(`)
j+1 − φ

(`+1/2)
0,j+1

)
sinh(κj+1)

. (2.49b)

The updated inter-node current is,

J
(`+1/2)
j+1/2 =− βjκj

(
cosh(κj)A

(`+1/2)
j + sinh(κj)B

(`+1/2)
j

)
− βj

4∑
n=0

n(n+ 1)

2
φ

(`+1/2)
n,j .

(2.49c)
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By coupling this with a low order update, we have a complete iterative system of

equations.

2.4 Chapter Summary

In this chapter, we have discussed the existing transport solution methods that

are utilized in the 2D/1D method. We use the 2D Method of Characteristics and

either 1D finite difference or 1D nodal methods to solve the 2D/1D equation. In

the next chapter we discuss (i) various 2D/1D approximations, (ii) properties of the

2D/1D equation, and (iii) the iterative methods that we consider to solve the 2D/1D

equation.
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Chapter 3

Derivation

In typical light water reactors, the cross sections are highly complicated functions

of the radial variables x and y, but are relatively simple (almost constant) functions

of the axial variable z. This suggests that the z-dependence of ψ is weak, and that the

axial leakage term µ∂ψ/∂z in Eq. (2.2a) can be approximated advantageously, with a

minimal loss of accuracy. Thus, we write Eq. (2.2a) as:√
1− µ2Ωr ·∇rψ(r,Ω) + Σt(r)ψ(r,Ω) = S(r,Ω)− Lz(r,Ω) , (3.1a)

Ωr = (cosα, sinα) , ∇r = (∂/∂x, ∂/∂y) ,

Lz(r,Ω) = µ
∂

∂z
ψ(r,Ω) , (3.1b)

and we consider various approximations to Lz.

NB: The MOC integral kernel, Eq. (2.12), was defined for three-dimensional sweeps.

The approximations that we will make to Lz allow us to perform two dimensional

MOC calculations. This results in a significant improvement in computational ef-

ficiency while still allowing us to solve three dimensional problems. The 2D MOC

kernel posseses the same form as the 3D kernel, but with Σt becoming Σt/
√

1−µ2 and

S becoming (S−Lz)/
√

1−µ2.
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3.1 2D/1D Approximation Hierarchy

Two spherical harmonic expansions can be made of Eq. (3.1b). The first is obtained

by using a spherical harmonic expansion of the angular flux:

Lz(r,Ω) =
∂

∂z

∞∑
n=0

n∑
m=−n

µYn,m(Ω)

∫
4π

Yn,m(Ω′)ψ(r,Ω′)dΩ′ ; (3.2a)

alternatively, the expansion can be made on the product of the polar cosine and the

angular flux:

Lz(r,Ω) =
∂

∂z

∞∑
n=0

n∑
m=−n

Yn,m(Ω)

∫
4π

µ′Yn,m(Ω′)ψ(r,Ω′)dΩ′ . (3.2b)

The first of these expansions is akin to the standard application of the spherical har-

monic functions to the solution of transport equations, whereas the second explicity

captures the moments of Lz. In order to preserve particle balance, any approximations

to Lz must preserve its isotropic moment:∫
4π

Lz(r,Ω)dΩ =
∂

∂z

∫
4π

µψ(r,Ω)dΩ =
∂

∂z
Jz(r) . (3.3)

In both forms of Eq. (3.2), the term µYn,m(Ω) appears. The influence of this term

can be better understood using the recurrence relation of the associated Legendre

polynomials:

(n+ 1−m)Pn+1,m(µ) = µ(2n+ 1)Pn,m(µ)− (n+m)Pn−1,m(µ) . (3.4)

This can be rearranged to isolate µPn,m as:

µPn,m(µ) =
n+ 1−m

2n+ 1
Pn+1,m(µ) +

n+m

2n+ 1
Pn−1,m(µ) .
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Using the definition of the spherical harmonics in Eq. (2.10a):

µYn,m(Ω) =

√
2n+ 1

4π

(n−m)!

(n+m)!
µPn,m(µ)ϕm(α)

=

√
2n+ 1

4π

(n−m)!

(n+m)!

(
n+ 1−m

2n+ 1
Pn+1,m(µ) +

n+m

2n+ 1
Pn−1,m(µ)

)
ϕm(α)

=

√
2(n+ 1) + 1

4π

(n+ 1−m)!

(n+ 1 +m)!

√
2n+ 1

2n+ 3

n+ 1 +m

n+ 1−m
n+ 1−m

2n+ 1
Pn+1,m(µ)ϕm(α)

+

√
2(n− 1) + 1

4π

(n− 1−m)!

(n− 1 +m)!

√
2n+ 1

2n− 1

n−m
n+m

n+m

2n+ 1
Pn−1,m(µ)ϕm(α)

=

√
n+ 1 +m

2n+ 3

n+ 1−m
2n+ 1

Yn+1,m(Ω) +

√
n+m

2n+ 1

n−m
2n− 1

Yn−1,m(Ω)

µYn,m(Ω) =

√
(n+ 1)2 −m2

4(n+ 1)2 − 1
Yn+1,m(Ω) +

√
n2 −m2

4n2 − 1
Yn−1,m(Ω) .

This result shows how the axial streaming term causes moments of the angular flux

to be broadcast to other moments of the source.

The expansions presented in Eq. (3.2) can be truncated at various values of n = NL

to obtain different approximations; while higher order truncations are of interest,

only zeroth and first order truncations have thus far been considered. If Eq. (3.2a) is

truncated at NL = 1 and rearranged, the standard P1 approximation is obtained for

the angular flux:

Lz(r,Ω) ≈ ∂

∂z

µ

4π
(φ(r) + 3Ω · J(r)) , (3.5a)

where:

φ(r) =

∫
4π

ψ(r,Ω)dΩ ,

J(r) = (Jx, Jy, Jz) =

∫
4π

Ωψ(r,Ω)dΩ .

In a simpler approximation, the radial current terms in Eq. (3.5a) are discarded,
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yielding the “diffusion leakage”:

Lz(r,Ω) ≈ µ

4π

∂

∂z
(φ+ 3µJz(r)) . (3.5b)

A further simpler approximation, the “quadratic leakage”, can be obtained by ne-

glecting the odd polar cosine moment:

Lz(r,Ω) ≈ 3µ2

4π

∂

∂z
Jz(r) . (3.5c)

If the approximation Eq. 3.2b is truncated at NL = 1 and only zonal harmonics are

retained, a “linear leakage” approximation is obtained:

Lz(r,Ω) ≈ 1

4π

∂

∂z
(Jz(r) + µφ(r)) . (3.6a)

If only the zeroth order term of Eq. 3.2b is retained, an “isotropic leakage” is ob-

tained:

Lz(r,Ω) ≈ 1

4π

∂

∂z
Jz(r) . (3.6b)

Fick’s law is used in the quadratic and isotropic leakage approximations to ap-

proximate the axial current, as the 2D transport sweep cannot solely generate odd

polar cosine moments without an odd polar cosine driving source:

Jz(r) ≈ −D ∂

∂z
φ(r) . (3.7)

In the approximations using Fick’s law, D is the diffusion coefficient and in ho-

mogeneous media, D = 1/3Σt. The progression from Eq. (3.5a) to (3.6b) becomes

increasingly simple and (presumably) less accurate. In this work, we consider this

spectrum of approximations, Eq. (3.5 – 3.6). The vacuum boundary conditions for

Eq. (3.1) remain the standard transport vacuum boundary condition on the “sides”

of ∂V :

ψ(r,Ω) = 0 , (x, y) ∈ ∂R , 0 < z < Z , Ω · n < 0 , (3.8a)

but become P1 boundary conditions on the “top” and “bottom” of V , with diffusion
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boundary conditions occurring if Fick’s law is used. The P1 boundary conditions

are:

φ(x, y, 0) + 2Jz(x, y, 0) = 0 , (x, y) ∈ R , (3.8b)

φ(x, y, Z)− 2Jz(x, y, Z) = 0 , (x, y) ∈ R . (3.8c)

The integrodifferential 2D/1D Eq. (3.1) approximates the linear Boltzmann equa-

tion only in its axial derivative term; this equation is first or second order depending

on the explicit use of Fick’s law for some leakage approximations. The radial deriva-

tive terms in Eq. (3.1) are not approximated, and—unlike the standard diffusion

equation—the angular variable is not eliminated from the 2D/1D equation.

3.1.1 Considerations of the 2D Transport Equation

In the simulation of nuclear reactors, generally only power and reaction rates

(therefore the scalar flux) are of interest. By using the 2D Boltzmann transport equa-

tion, the polar symmetry of the transport operator can result in different leakage

approximations producing the same scalar flux if care is not taken. Consider the

streaming and collision operator of the 2D Boltzmann transport equation:

Lµ,αψ(r,Ω) =
√

1− µ2

(
cosα

∂

∂x
+ sinα

∂

∂y

)
ψ(r,Ω) + Σt(r)ψ(r,Ω) . (3.9)

The 2D/1D transport equation (see Eq. 3.1) can now be rewritten as:

Lµ,αψ(r,Ω) = S(r,Ω)− Lz(r,Ω) . (3.10)

We solve this equation for the angular flux and then integrate to obtain the scalar

flux:

ψ(r,Ω) = L−1
µ,α {S(r,Ω)− Lz(r,Ω)} ,

φ(r,Ω) =

∫
4π

L−1
µ,α {S(r,Ω)− Lz(r,Ω)} dΩ .
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The transport operator Lµ,α is clearly symmetric in µ; therefore, in the equation for

the scalar flux, any odd moments in µ of the integrand are eliminated. For the P1,

diffusion, and quadratic leakage approximations, we obtain:

φ(r,Ω) =

∫
4π

L−1
µ,α

{
S(r,Ω)− 3µ2

4π

∂

∂z
Jz(r)

}
dΩ .

For the linear and isotropic leakage approximations, we obtain:

φ(r,Ω) =

∫
4π

L−1
µ,α

{
S(r,Ω)− 1

4π

∂

∂z
Jz(r)

}
dΩ .

In both of these forms, even with arbitrary anisotropic scattering, the only odd polar

cosine moment that the scalar flux is coupled to is the current in the axial leakage

term. If we use Fick’s law to approximate the current using the scalar flux, we break

this final coupling and completely decouple the scalar flux from the polar cosine odd

moments of the angular flux. Thus, if the polar cosine odd moments of the angular

flux are to be effectively incorporated into an axial leakage approximation, other

calculations are necessary that avoid the use of Fick’s law.

3.1.2 Choosing the Diffusion Coefficient

For diffusive homogeneous medium problems, the diffusion coefficient can be con-

fidently chosen as D = 1/3Σtr, where Σtr = Σt − Σs,1; however, for reactor cores,

in which ψ is a strong function of x, y, and Ω, classic diffusion theory is not valid,

and a more sophisticated approximation to the axial leakage term becomes necessary

for optimum accuracy. An asymptotic theory has been developed that provides the

logic needed to specify D on a heterogeneous lattice problem [18, 19]. More simply,

the diffusion coefficient can be estimated as an Eddington factor–the ratio

D =

∫
4π
µ2ψ(r,Ω)dΩ

Σt

∫
4π
ψ(r,Ω)dΩ

. (3.11)
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Alternatively, the diffusion coefficient on a discretized problem can be chosen to ex-

actly preserve the transport behavior of a continuous homogeneous 1D transport

equation. We will discuss how this could be done for different region types in the fol-

lowing subsections. These approximations would still rely on a simple flux-weighted

averaging method for homogenizing the lattice structure, but would introduce more

transport physics into the diffusion coefficient than the standard choice.

Shielding

It is possible to formulate a discrete diffusion coefficient so that—with no error—a

numerical solution will decay exponentially at a specified rate. This would be appro-

priate in a reflector region of realistic reactor problem and in control rod, absorber

rod, and water rod regions. We derive this by starting with a continuous transport

equation with an ansatz for the solution and apply the result to a discrete diffusion

equation.

Continuous Transport Solution We consider the following 1-D shielding prob-

lem:

µ
∂ψ

∂z
+ Σtψ =

Σs

2

1∫
−1

ψdµ′ 0 < z <∞ , (3.12a)

ψ(0, µ) = ψb(µ) µ > 0 . (3.12b)

We assume the solution has the form

ψ(z, µ) = f(µ)e−Σtκz . (3.13)

Inserting the ansatz into the original problem, we obtain

Σt(1− κµ)f(µ) =
Σs

2

1∫
−1

f(µ′)dµ′ . (3.14)
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Dividing this equation by 1−κµ, integrating this equation over all angles
∫ 1

−1
dµ, and

defining the scattering ratio as c = Σs/Σt, yields the dispersion relation:

1 =
c

2

1∫
−1

dµ

1− κµ

=
c

2

1∫
−1

1 + κµ

1− (κµ)2
dµ

= c

1∫
0

dµ

1− (κµ)2

=
c

κ

κ∫
0

dµ′

1− µ′2
,

or

κ

c
= tanh−1 κ . (3.15)

Although this relation cannot be solved explicitly, Newton’s iteration can successfully

be applied to solve it iteratively. Many iterative forms are possible; but, for the most

fast and stable version that we found, we seek the zero of:

g(κ) = κ− tanh
(
κ/c
)
.

The derivative of this function is:

g′(κ) = 1−
sech2

(
κ/c
)2

c
,

Applying Newton’s iteration, we obtain:

κn+1 = κn −
g(κn)

g′(κn)
,

= κn − c
κn − tanh

(
κn/c
)

c− sech2
(
κn/c
) . (3.16)
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The initial guess can be well approximated (within 1% for c ≤ 0.96) with the empirical

relation,

κ0 =
(
1− cP

)R
, (3.17)

where

P = 3.43965192818363 ,

R = 0.534370910533648 .

For every 0 < c < 1, ∃ exactly one ± pair of κ satisfying Eq. (3.15). Suppose κ > 0

is the positive solution. Then, for z � 1,

ψ(z, µ) ≈ C0f(µ)e−Σtκz , (3.18a)

and

φ(z) ≈ C1e
−Σtκz . (3.18b)

Discrete Diffusion Solution By formulating a diffusion problem on a grid, we

can find a diffusion coefficient that causes the numerical diffusion solution to decay

exactly as Eq. (3.18b),

− D

∆2
z

(
φk+1 − 2φk + φk−1

)
+ Σaφk = 0 .

Applying the scalar flux ansatz from Eq. (3.18b), we obtain the desired diffusion

coefficient,

− D

∆2
z

(
e−Σt∆zκ − 2 + eΣt∆zκ

)
+ Σa = 0 ,

or

2D

∆2
z

(
cosh (Σt∆zκ)− 1

)
= Σa .
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Solving for D, we get:

D =
Σa∆

2
z

2
(
cosh (Σt∆zκ)− 1

) . (3.19)

Buckling

It is possible to formulate a discrete diffusion coefficient so that—with no error—a

numerical solution will preserve a specified buckling. This would be appropriate in the

fuel region of a realistic reactor problem. We derive this by starting with a continuous

transport equation with an ansatz for the solution and apply the result to a discrete

diffusion equation.

Continuous Transport Solution Consider the following eigenvalue problem:

µ
∂ψ

∂z
+ Σtψ =

1

2

(
Σs + λνΣf

) 1∫
−1

ψdµ′ − Z < z < Z , (3.20a)

ψ(−Z, µ) = 0 µ > 0 , (3.20b)

ψ(Z, µ) = 0 µ < 0 . (3.20c)

We assume the solution has the form

ψ(z, µ) = f(µ)eiΣtκz . (3.21)

Inserting the ansatz into Eq. (3.20a), we obtain

Σt(1 + iκµ)f(µ) =
1

2

(
Σs + λνΣf

) 1∫
−1

f(µ′)dµ′ . (3.22)
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Dividing this equation by 1 + iκµ, integrating this equation over all angles
∫ 1

−1
dµ

yields the dispersion relation:

1 =
Σs + λνΣf

2Σt

1∫
−1

dµ

1 + iκµ

=
Σs + λνΣf

2Σt

1∫
−1

1− iκµ
1 + (κµ)2dµ

=
Σs + λνΣf

Σt

1∫
0

dµ

1 + (κµ)2

=
Σs + λνΣf

Σt

κ∫
0

dµ′

1 + µ′2
,

or

κΣt

Σs + λνΣf

= tan−1 κ . (3.23)

For every 0 < Σt/Σs+λνΣf < 1, ∃ exactly one ± pair of κ satisfying this equation.

Suppose κ > 0 is the positive solution. Then, for z � 1,

ψ(z, µ) ≈ C0f(µ)eiΣtκz , (3.24a)

and

φ(z) ≈ C1e
iΣtκz . (3.24b)

Discrete Diffusion Solution By formulating a diffusion problem on a grid, we

can find a diffusion coefficient that causes the solution to buckle exactly as Eq.
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(3.24b),

− D

∆2
z

(
φk+1 − 2φk + φk−1

)
+
(
Σa − λνΣf

)
φk = 0 .

Applying the scalar flux ansatz from Eq. (3.24b), we obtain the desired diffusion

coefficient,

− D

∆2
z

(
eiΣt∆zκ − 2 + e−iΣt∆zκ

)
+ Σa − λνΣf = 0 ,

or

2D

∆2
z

(
1− cos (Σt∆zκ)

)
= λνΣf − Σa .

Solving for D, we get:

D =

(
λνΣf − Σa

)
∆2
z

4 sin2 (Σt∆zκ/2)
. (3.25)

In this thesis, we use the D = 1/3Σt, but these and possibly other definitions of

D are possible and could be explored in future work.

3.2 Properties of the 2D/1D Approximation

Here we discuss some basic properties of the 2D/1D Eq. (3.1).

1. Conjecture: The 2D/1D equation with vacuum boundary conditions [Eqs. (3.1)

and (3.8)] has a positive solution. Eq. (3.1) is an unfamiliar (second-order inte-

grodifferential) equation which, to our knowledge, has not been studied previ-

ously. Our work has shown experimentally that positive solution exist for dis-

crete versions of Eqs. (3.1) and (3.8) for many problems. Unfortunately, proving

the stated conjecture for the continuous 2D/1D equation is beyond our capa-

bility at this time. To proceed, we assume that the conjecture is true for our

problems of interest, but concede that negative solutions may exist given the
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form of Eq. (3.1)

2. If the 2D/1D equation with vacuum boundary conditions has a solution, it is

unique. To prove this statement, let us assume there are two different solutions

to this equation ψ1(r,Ω) and ψ2(r,Ω). Taking the difference between these two

equations and setting ψD(r,Ω) = ψ1(r,Ω)− ψ2(r,Ω) results in the equation:

Ωr ·∇rψD(r,Ω)
√

1− µ2 + Lz(r,Ω) + Σt(r)ψD(r,Ω) = Ss(r,Ω) ,

ψD(r,Ω) = 0 , (x, y) ∈ ∂R , 0 < z < Z , Ω · n < 0 .

Multiplying this equation by ψD(r,Ω) and integrating over the phase space

results in:∫∫
4π×V

ψD(r,Ω)Ωr ·∇rψD(r,Ω)
√

1− µ2dΩdV +

∫∫
4π×V

ψD(r,Ω)Lz(r,Ω)dΩdv

+

∫
V

Σt(r)

∫
4π

ψ2
D(r,Ω)dΩdV =

∫∫
4π×V

ψD(r,Ω)Ss(r,Ω)dΩdV .

(3.26)

To handle the scattering source kernel, consider the nonnegative integral:

0 ≤
∫∫

4π×4π

Σs(r,Ω ·Ω′) (ψD(r,Ω)− ψD(r,Ω′))
2
dΩ′dΩ ,

=

∫∫
4π×4π

Σs(r,Ω ·Ω′)
(
ψ2
D(r,Ω)− 2ψD(r,Ω)ψD(r,Ω′) + ψ2

D(r,Ω′)
)
dΩ′dΩ ,

or

Σs0(r)

∫
4π

ψ2
D(r,Ω)dΩ ≥

∫∫
4π×4π

Σs(r,Ω ·Ω′)ψD(r,Ω)ψD(r,Ω′)dΩ′dΩ ,

=

∫
4π

ψD(r,Ω)Ss(r,Ω)dΩ ,
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where

Ss(r,Ω) =

∫
4π

Σs(r,Ω ·Ω′)ψD(r,Ω′)dΩ′ .

Applying this to Eq. (3.26), we get:∫∫
4π×V

ψD(r,Ω)Ωr ·∇rψD(r,Ω)
√

1− µ2dΩdV +

∫∫
4π×V

ψD(r,Ω)Lz(r,Ω)dΩdv

+

∫
V

Σt(r)

∫
4π

ψ2
D(r,Ω)dΩdV ≤

∫
V

Σs0(r)

∫
4π

ψ2
D(r,Ω)dΩ ,

or ∫∫
4π×V

ψD(r,Ω)Ωr ·∇rψD(r,Ω)
√

1− µ2dΩdV +

∫∫
4π×V

ψD(r,Ω)Lz(r,Ω)dΩdv

+

∫
V

(Σt(r)− Σs0(r))

∫
4π

ψ2
D(r,Ω)dΩdV ≤ 0 .

Now we consider the first integral of Eq. (3.26):∫∫
4π×V

ψD(r,Ω)Ωr ·∇rψD(r,Ω)
√

1− µ2dΩdV .

By rearranging the angular flux gradient and applying the divergence theorem,

we find that it is equivalent to∫∫
4π×δR×Z

Ωr · nr
2

ψ2
D(r,Ω)

√
1− µ2dΩdAdz .

From the boundary condition ψD(r,Ω) = 0 when Ω ·n < 0, therefore, it is clear

that this integral is nonnegative. Next, we consider the second integral of Eq.
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(3.26): ∫∫
4π×V

ψD(r,Ω)Lz(r,Ω)dΩdV .

It is easier to show the nonnegativity of this integral for some leakage approxi-

mations than others. The linear approximation given by Eq. (3.6a) is a straight-

forward example:∫∫
4π×V

ψD(r,Ω)Lz(r,Ω)dΩdV =
1

4π

∫∫
4π×V

ψD(r,Ω)
∂

∂z
(Jz(r) + µφ(r)) dΩdV

=
1

4π

∫
V

φ(r)
∂

∂z
Jz(r) + Jz(r)

∂

∂z
φ(r)dV

=
1

4π

∫
V

∂

∂z
(Jz(r)φ(r)) dV

=
1

4π

∫
R

Jz(x, y, Z)φ(x, y, Z)− Jz(x, y, 0)φ(x, y, 0)dA .

By applying the boundary conditions of Eq. (3.8b-3.8c), we obtain:∫∫
4π×V

ψD(r,Ω)Lz(r,Ω)dΩdV =
1

2π

∫
R

(
Jz(x, y, Z)

)2
+
(
Jz(x, y, 0)

)2
dA . (3.27)

This integral is clearly nonnegative; combining these results, we obtain:∫∫
4π×δR×Z

Ωr · nr
2

ψ2
D(r,Ω)

√
1− µ2dΩdAdz

+
1

2π

∫
R

(
Jz(x, y, Z)

)2
+
(
Jz(x, y, 0)

)2
dA

+

∫
V

(Σt(r)− Σs0(r))

∫
4π

ψ2
D(r,Ω)dΩdV ≤ 0 .

Thus, if Σt(r) ≥ Σs0(r), then ψD(r,Ω) = 0, and the solutions are unique. �
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3. The 2D/1D equation preserves 2D radial transport. If any problem is considered

in which the cross sections and source are independent of z, and the boundary

conditions (3.8b) and (3.8c) are replaced by reflecting boundary conditions:

Jz(x, y, 0) = 0 = Jz(x, y, Z) , (x, y) ∈ R ,

then ψ is independent of z. In this case, the 2D/1D Eq. (3.1) directly reduces

to the 2D Boltzmann equation. Thus, for problems with no axial dependence,

the 2D/1D equation and the 2D Boltzmann equation are identical.

4. The 2D/1D equation preserves 1D axial diffusion. If any problem is considered

in which the cross sections and source are independent of x and y, and the

boundary condition (3.8a) is replaced by a reflecting boundary condition, then

ψ is independent of x and y. In this case, Eqs. (3.1), (3.8b), and (3.8c) reduce

to:

Lz(z,Ω) + Σt(z)ψ(z,Ω) = S(z,Ω) , (3.28a)

φ(0) + 2Jz(0) = 0 , (3.28b)

φ(Z)− 2Jz(Z) = 0 . (3.28c)

Operating on Eq. (3.28a) by
∫

(·)dΩ, we immediately get

∂

∂z
Jz(z) + Σt(z)φ(z) = S0(z) . (3.29)

Thus — if either a Fick’s law approximation or a transverse leakage that includes

the µφ moment is used — for problems with no radial dependence, the 2D/1D

equation reduces to the standard 1D axial diffusion equation.

5. The 2D/1D equation preserves the standard 3D P1 approximation. Operating

on Eq. (3.1) by∫
(·) dΩ ,

∫
Ωx(·) dΩ ,

∫
Ωy(·) dΩ , and

∫
Ωz(·) dΩ ,
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we obtain:

∂

∂x
Jx(r) +

∂

∂y
Jy(r) +

∂

∂z
Jz(r) + Σt(r)φ(r) = S0,0(r) , (3.30a)

∂

∂x

∫
Ω2
xψ(r,Ω)dΩ +

∂

∂y

∫
ΩxΩyψ(r,Ω)dΩ

+

∫
ΩxLz(r,Ω)dΩ + Σt(r)Jx(r) = 0 ,

(3.30b)

∂

∂x

∫
ΩxΩyψ(r,Ω) dΩ +

∂

∂y

∫
Ω2
yψ(r,Ω) dΩ

+

∫
ΩyLz(r,Ω)dΩ + Σt(r)Jy(r) = 0 ,

(3.30c)

∂

∂x

∫
ΩxΩzψ(r,Ω) dΩ +

∂

∂y

∫
ΩyΩzψ(r,Ω) dΩ

+

∫
ΩzLz(r,Ω)dΩ + Σt(r)Jy(r) = 0 .

(3.30d)

Assuming the standard P1 approximation for ψ:

ψ(r,Ω) ≈ 1

4π

(
φ(r) + 3Ω · J(r)

)
,

Given that all the various approximations that we make to Lz (Eqs. (3.5-3.6))

are anti-symmetric in Ωx and Ωy, Eqs. (3.30b) and (3.30c) reduce to

∂

∂x

φ

3
+ ΣtJx = 0 , (3.31a)

∂

∂y

φ

3
+ ΣtJy = 0 . (3.31b)

If a Fick’s law approximation in the transverse leakage approximation, Eq.

(3.30d) is unnecessary. If a transverse leakage that includes the µφ moment

is used, Eq. (3.30d) reduces to

∂

∂z

φ

3
+ ΣtJz = 0 . (3.31c)

For both cases, using Eqs. (3.31a) and (3.31b) to eliminate Jx and Jy from Eq.

(3.30a) and either a Fick’s law based transverse leakage approximation or Eq.
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(3.31c) to eliminate Jz, we obtain the standard diffusion equation. For some

higher order leakage approximations (not investigated here), a higher order PN

solution can be preserved rather than diffusion.

The above results show that the 2D/1D equation (i) preserves the correct transport

physics in the radial variables x and y, and (ii) uses diffusion physics in the axial

variable z, in such a way that (iii) the standard 3D (x, y, z) diffusion approximation

is preserved. (Applying the standard asymptotic analysis to Eq. (3.1) also yields the

standard diffusion equation.)

These favorable results hold for the “simplest” 2D/1D equation, derived earlier

from Eqs. (3.1) and (3.6b). The same results also hold for more complicated 2D/1D

equations, obtained using any of equations (3.5) or (3.6) .

3.3 Discretization of the 2D/1D Approximation

An axial discretization for the 2D/1D Eq. (3.1) can be derived by integrating

the equation over axial “slices” zk−1/2 < z < zk+1/2 of width ∆k = zk+1/2 − zk−1/2.

Assuming that the cross sections are independent of z on each slice, we define the

angular and scalar fluxes:

ψk(x, y,Ω) =
1

∆k

zk+1/2∫
zk−1/2

ψ(r,Ω)dz , (3.32a)

φk(x, y) =
1

∆k

zk+1/2∫
zk−1/2

φ(r)dz =

∫
ψk(x, y,Ω)dΩ . (3.32b)

The discretization of the axial leakage term clearly depends on the choice of approx-

imation. We define the discretized leakage as:

Lz,k(x, y,Ω) =
1

∆k

zk+1/2∫
zk−1/2

Lz(r,Ω)dz =
Lz,k+1/2(x, y,Ω)− Lz,k−1/2(x, y,Ω)

∆z

, (3.32c)
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where the exact values of Lz,k+1/2(x, y,Ω) are:

Lz,k+1/2(x, y,Ω) = µψk+1/2(x, y,Ω) .

The discretized forms of the various approximations to the axial leakage are then:

• The P1 approximation:

Lz,k+1/2(x, y,Ω) ≈ µ

4π

(
φk+1/2(x, y) + 3Ω · Jk+1/2(x, y)

)
. (3.32d)

• The diffusion approximation:

Lz,k+1/2(x, y,Ω) ≈ µ

4π

(
φk+1/2(x, y) + 3µJz,k+1/2(x, y)

)
. (3.32e)

• The quadratic approximation:

Lz,k+1/2(x, y,Ω) ≈ 3µ2

4π
Jz,k+1/2(x, y) . (3.32f)

• The linear approximation:

Lz,k+1/2(x, y,Ω) ≈ 1

4π

(
Jz,k+1/2(x, y) + µφk+1/2(x, y)

)
. (3.32g)

• The isotropic approximation:

Lz,k+1/2(x, y,Ω) ≈
Jz,k+1/2(x, y)

4π
. (3.32h)

When these approximations are used with Fick’s Law, a finite difference approxima-

tion can be used to discretize the derivative of the scalar flux:

Jz,k+1/2(x, y) ≈ −Dk+1/2(x, y)
∂

∂z
φk+1/2(x, y)

Jz,k+1/2(x, y) ≈ −Dk+1/2(x, y)
φk+1(x, y)− φk(x, y)

∆k+1/2

, (3.33a)

40



where:

Dk+1/2(x, y) =
∆k + ∆k+1

∆k

Dk
+ ∆k+1

Dk+1

, ∆k+1/2 =
1

2
(∆k + ∆k+1) . (3.33b)

Likewise, the scalar flux on the surfaces φk+1/2 — and cross currents on the surfaces

Jx,k+1/2, Jy,k+1/2, for the P1 approximation — are calculated by a finite difference

approximation:

φk+1/2(x, y) ≈ φk+1(x, y)∆k+1 + φk(x, y)∆k

∆k+1 + ∆k

, (3.33c)

Jxy,k+1/2(x, y) ≈ Jxy,k+1(x, y)∆k+1 + Jxy,k(x, y)∆k

∆k+1 + ∆k

. (3.33d)

With these definitions, the axially-discretized 2D/1D equation becomes:(
Ωx

∂

∂x
+ Ωy

∂

∂y
+ Σt,k(x, y)

)
ψk(x, y,Ω) = Sk(x, y,Ω)− Lz,k(x, y,Ω) . (3.34)

For each 1 ≤ k ≤ K, this is a 2-D transport equation, which is coupled in a simple

way (requiring minimal storage and passage of information) to the neighboring slices

k − 1 and k + 1. The special cases k = 1 and K are handled using the boundary

conditions (3.8b) and (3.8c) in the standard manner. For example, for k = K, Eq.

(3.8c) can be written

φK+1/2(x, y)− 2Jz,K+1/2(x, y) = 0 .

This result, when using Fick’s law, is coupled with

Jz,K+1/2 = − DK

∆K/2

(
φK+1/2(x, y)− φK(x, y)

)
= −

DK+1/2

∆K+1/2

(
φK+1(x, y)− φK(x, y)

)
,
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to give:

−
DK+1/2(x, y)

∆K+1/2

(
φK+1(x, y)− φK(x, y)

)
=

(
2DK(x, y)

∆K + 4DK(x, y)

)
φK(x, y) . (3.35)

This result enables the term containing φK+1, in Eq. (3.33a) with k = K, to be

replaced by an equivalent term containing only DK , ∆K , and φK .

In our numerical simulations, we employed the 2D Method-of-Characteristics (MOC)

[17] to discretize the radial and angular variables in Eq. (3.34). The only feature of

these discretizations requiring comment is that in DeCART and MPACT, the axial

leakage terms Eq. (3.32c) are discretized on a coarse radial grid, while the remaining

terms are discretized on a fine radial grid. Typically, a coarse spatial cell consists of

a pin cell (which is about one mean free path in width), and the fine spatial cells

resolve the inner structure of a pin cell (and are small fractions of a mean free path in

width). In practice, the radially discretized terms in the axial leakage of Eq. (3.33a)

are volume-averaged over a coarse cell, and the axial diffusion coefficients Dk±1/2 are

homogenized over a coarse cell.

The restriction of the axial leakage terms to coarse mesh scalar fluxes implies that

the resulting 2D/1D equation can be parallelized, in such a way that each processor

performs sweeps on one slice, and only minimal information (coarse grid scalar fluxes)

needs to be passed between processors. (If spatially fine-grid or angularly fine-grid

information had to be transmitted between processors, the method would have much

less parallel efficiency.)

For highly-scattering homogeneous medium problems in which classic diffusion

theory is valid, the axial diffusion coefficients do not need to be radially homogenized,

and the prescription D = 1/3Σt in Eq. (3.33b) is valid. This prescription is used both

under valid circumstances in Chapter 4 and approximating circumstances in Chapter

5, and discussed in these numerical results.
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3.3.1 Applying a Shape Function

In a heterogeneous lattice problem, the grid upon which the radial transport is

solved will resolve the fine structure of the system, whereas the axial diffusion term

will apply to larger homogenized regions of the system. Thus, a mapping is required

to go from the coarse mesh quantities to the fine mesh. The simplest choice (although

incorrect) is a flat mapping, where no shape is given. A more accurate shape can again

be derived from the asymptotic theory of Trahan and Larsen [18,19]. An intermediate

approximation can be obtained as follows. We consider the axial leakage term before

it is approximated:

Lz(r,Ω) = µ
∂

∂z
ψ(r,Ω) .

The angular flux within this derivative possesses its complete radial description; as

stated above, the axial leakage is treated on a coarser grid. Applying a coarse grid to

the problem, xj −∆x/2 < x < xj + ∆x/2 and yj −∆y/2 < y < yj + ∆y/2, then we

can define a spatially coarse grid angular flux:

ψi,j(z,Ω) =

∫∫
Ri,j

ψ(r,Ω)dxdy∫∫
Ri,j

dxdy
.

This can then be used in the leakage description:

Lz(r,Ω) = µ
∂

∂z

(
ψi,j(z,Ω)

ψ(r,Ω)

ψi,j(z,Ω)

)
.

This ratio of the fine to coarse radial cell angular flux is the shape function of interest.

We denote this as:

Vi,j(r,Ω) =
ψ(r,Ω)

ψi,j(z,Ω)
.

Two approximations can be made to this shape function: (i) a spatial approxima-

tion in the z-direction and (ii) an angular approximation. If we integrate this axially
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to get the discretized leakage, we obtain:

Lz,k(x, y,Ω) = µ
ψi,j,k+1/2(x, y,Ω)Vi,j,k+1/2(x, y,Ω)− ψi,j,k−1/2(x, y,Ω)Vi,j,k−1/2(x, y,Ω)

∆k

,

Vi,j,k+1/2(x, y,Ω) =
ψk+1/2(x, y,Ω)

ψi,j,k+1/2(Ω)
.

Alternatively, we can assume that the shapes functions at the top and bottom of the

plane are well approximated by a plane average shape function:

Lz,k(x, y,Ω) = µ
ψi,j,k+1/2(x, y,Ω)− ψi,j,k−1/2(x, y,Ω)

∆k

Vi,j,k(x, y,Ω) ,

Vi,j,k(x, y,Ω) =
ψk(x, y,Ω)

ψi,j,k(Ω)
.

This is the kind of axial approximation that we use in this work. There are many

possible angular approximations that we can make of the shape function; for example a

smaller subset of discrete angles could be used, or spherical harmonic expansions could

be made of the coarse and fine grid angular flux in the numerator and denominator.

In this work, we consider the simplest (isotropic) approximation:

Vi,j,k(x, y,Ω) ≈ φk(x, y)

φi,j,k
.

3.4 Iterative Solution Methods for the 2D/1D Ap-

proximation

It is possible to conceive of many different iteration schemes for the 2D/1D equa-

tion. Here, we consider the simple “source iteration” scheme in which the RHS is

updated after each transport sweep. Another straightforward method employs the

well known CMFD acceleration scheme [16] and gives improved convergence rates.

Both of these methods are considered below.
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3.4.1 Source Iteration of the 2D/1D Approximation

Next, we consider what is likely the simplest possible iteration scheme for solving

Eq. (3.34) that can be made stable for all ∆z > 0. We consider a simple 2D sweep on

each slice to update the scalar flux:(
Ωx

∂

∂x
+ Ωy

∂

∂y
+ Σt,k(x, y)

)
ψ

(`+1/2)
k (x, y,Ω)

= S
(`)
k (x, y,Ω)− L(`)

z,k(x, y,Ω) ,

(3.36a)

φ
(`+1/2)
k (x, y) =

∫
ψ

(`+1/2)
k (x, y,Ω′)dΩ′ , (3.36b)

followed by a (nonstandard) relaxation step to define the end-of-iteration scalar

flux:

φ
(`+1)
k (x, y) = θφ

(`+1/2)
k (x, y) + (1− θ)φ(`)

k (x, y) . (3.36c)

The source term S
(`+1)
k (x, y,Ω) and the axial leakage term L

(`+1)
z,k (x, y,Ω) for the next

iteration are defined as they would for their non-iterative counterparts, but with the

scalar flux replaced by the end-of-iteration scalar flux φ
(`+1)
k (x, y). In analyzing this

method, we do not treat Eq. (3.36) with any angular or radial spatial discretizations;

our experience is that although these choices affect the accuracy of the discrete solu-

tion, they do not significantly affect the iterative performance in converging to this

solution. The relaxation parameter θ in Eq. (3.36c) is to be determined; if θ = 1, the

method defined by Eqs. (3.36) is basically Source Iteration (and is very similar, if not

identical, to the original iteration method encoded in DeCART). We note that in each

iteration, the numerical solutions in slice k are directly coupled only to the numerical

solutions in the neighboring slices k + 1 and k − 1. Therefore, many iterations may

be required for the numerical fluxes in all the axial slices 1 ≤ k ≤ K to sufficiently

“communicate.”
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3.4.2 CMFD Acceleration of the 2D/1D Approximation

We apply CMFD acceleration to the 2D/1D approximation to both (i) more rapidly

converge the transport solution, and (ii) couple the axial planes to more than their

nearest neighbor by solving an axial diffusion equation (embedded within the CMFD

method). This iterative scheme begins in the same manner as source iteration with

both a transport sweep, Eq. (3.36a), and an angular integral of the angular flux

to obtain the scalar flux, Eq. (3.36b); however, some steps are inserted before the

relaxation step. First, we define the post-sweep radial currents:

J (`+1/2)
x (x, y) =

∫
4π

Ωxψ
(`+1/2)
k (x, y,Ω)dΩ , (3.37a)

J (`+1/2)
y (x, y) =

∫
4π

Ωyψ
(`+1/2)
k (x, y,Ω)dΩ . (3.37b)

Also, we define the non-linear, current consistency terms:

D̂
(`+1/2)
x,k (x, y) =

J
(`+1/2)
x,k (x, y) +Dk(x, y) ∂

∂x
φ

(`+1/2)
k

φ
(`+1/2)
k

, (3.37c)

D̂
(`+1/2)
y,k (x, y) =

J
(`+1/2)
y,k (x, y) +Dk(x, y) ∂

∂y
φ

(`+1/2)
k

φ
(`+1/2)
k

. (3.37d)

Using these definitions, we can define the relation between the updated radial current

and updated scalar flux:

J
(`+3/4)
x,k (x, y) =

(
−Dk(x, y)

∂

∂x
+ D̂

(`+1/2)
x,k (x, y)

)
φ

(`+3/4)
k , (3.37e)

J
(`+3/4)
y,k (x, y) =

(
−Dk(x, y)

∂

∂y
+ D̂

(`+1/2)
y,k (x, y)

)
φ

(`+3/4)
k . (3.37f)

If we are using a finite difference axial approximation, we define the relation between

the update axial current and scalar flux,

J
(`+3/4)
z,k+1/2(x, y) = −Dk+1/2(x, y)

φ
(`+3/4)
k+1 (x, y)− φ(`+3/4)

k (x, y)

∆k+1/2

. (3.37g)
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We will define the axial current update when using nodal methods in the next section.

To complete the CMFD acceleration, we define the update balance equation:

∂

∂x
J

(`+3/4)
x,k (x, y) +

∂

∂y
J

(`+3/4)
y,k (x, y) +

J
(`+3/4)
z,k+1/2(x, y)− J (`+3/4)

z,k−1/2(x, y)

∆k

(3.37h)

+ Σa0,k(x, y)φ
(`+3/4)
k (x, y) = Sf0,k(x, y) , (3.37i)

where,

Σa0,k(x, y) = Σt,k(x, y)− Σs0,k(x, y) ,

Sf0,k(x, y) =
1

∆k

zk+1/2∫
zk−1/2

∫
4π

Sf (r,Ω)dΩdz .

Finally, to complete the overall iterative scheme, we define the post CMFD relax-

ation:

φ
(`+1)
k (x, y) = θφ

(`+3/4)
k (x, y) + (1− θ)φ(`)

k (x, y) . (3.37j)

Radially, the CMFD acceleration preserves the relations between the radial currents

and the scalar flux produced by the transport equation; whereas axially, it calculates

values for the axial current using Fick’s law. The (nonstandard) relaxation step is

again used to provide a means to stabilize this method.

Linearization of CMFD

Before a Fourier analysis can be applied to this method, it must first be linearized.

A linear update term is defined for the scalar flux for simplicity:

δφ
(`+1/2)
k (x, y) = φ

(`+3/4)
k (x, y)− φ(`+1/2)

k (x, y) . (3.38)
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We linearize the method by changing the definition of D̂ to be a measurement of the

absolute error of Fick’s law rather than a relative error to the scalar flux:

D̂
(`+1/2)
x,k (x, y) = J

(`+1/2)
x,k (x, y) +Dk(x, y)

∂

∂x
φ

(`+1/2)
k (x, y) ,

D̂
(`+1/2)
y,k (x, y) = J

(`+1/2)
y,k (x, y) +Dk(x, y)

∂

∂y
φ

(`+1/2)
k (x, y) .

This results in the update of the currents to be equal to the updates of the Fick’s law

approximation:

J
(`+3/4)
x,k (x, y)− J (`+1/2)

x,k (x, y) = −Dk(x, y)
∂

∂x
δφ

(`+1/2)
k (x, y) , (3.39a)

J
(`+3/4)
y,k (x, y)− J (`+1/2)

y,k (x, y) = −Dk(x, y)
∂

∂y
δφ

(`+1/2)
k (x, y) . (3.39b)

Integrating Eq. (3.36a) over all angles yields the intermediate balance equation for

the sweep:

∂

∂x
J

(`+1/2)
x,k (x, y) +

∂

∂y
J

(`+1/2)
y,k (x, y) + Σt,k(x, y)φ

(`+1/2)
k (x, y)

= Σs0,k(x, y)φ
(`)
k (x, y) + Sf0,k(x, y)− L(`)

z0,k(x, y) .

(3.40)

By the requirement of Eq. (3.3), the zeroth moment of Lz,k must be

L
(`)
z0,k(x, y) =

J
(`)
z,k+1/2(x, y)− J (`)

z,k−1/2(x, y)

∆k

. (3.41)

The axial currents of this equation can be estimated by Fick’s law in Eq. (3.33a)

consistently with the CMFD acceleration. Subtracting Eq. (3.40) from Eq. (3.37h)
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yields:

∂

∂x

(
J

(`+3/4)
x,k (x, y)− J (`+1/2)

x,k (x, y)
)

+
∂

∂y

(
J

(`+3/4)
y,k (x, y)− J (`+1/2)

y,k (x, y)
)

+
J

(`+3/4)
z,k+1/2(x, y)− J (`+3/4)

z,k−1/2(x, y)

∆k

+ Σt,k(x, y)
(
φ

(`+3/4)
k (x, y)− φ(`+1/2)

k (x, y)
)

= Σs0,k(x, y)
(
φ

(`+3/4)
k (x, y)− φ(`)

k (x, y)
)

+
J

(`)
z,k+1/2(x, y)− J (`)

z,k−1/2(x, y)

∆k

.

Applying Eqs. (3.38),(3.39), and (3.33a) to this equation, and rearranging yields:

−Dk(x, y)

(
∂2

∂x2
+

∂2

∂y2

)
δφ

(`+1/2)
k (x, y)

−Dk+1/2(x, y)
δφ

(`+1/2)
k+1 (x, y)− δφ(`+1/2)

k (x, y)

∆k∆k+1/2

+Dk−1/2(x, y)
δφ

(`+1/2)
k (x, y)− δφ(`+1/2)

k−1 (x, y)

∆k∆k−1/2

+Σa0,k(x, y)δφ
(`+1/2)
k (x, y) = Σs0,k(x, y)

(
φ

(`+1/2)
k (x, y)− φ(`)

k (x, y)
)

+Dk+1/2(x, y)
φ

(`+1/2)
k+1 (x, y)− φ(`+1/2)

k (x, y)

∆k∆k+1/2

−Dk−1/2(x, y)
φ

(`+1/2)
k (x, y)− φ(`+1/2)

k−1 (x, y)

∆k∆k−1/2

−Dk+1/2(x, y)
φ

(`)
k+1(x, y)− φ(`)

k (x, y)

∆k∆k+1/2

+Dk−1/2(x, y)
φ

(`)
k (x, y)− φ(`)

k−1(x, y)

∆k∆k−1/2

.

(3.42)

The update equation becomes:

φ
(`+1)
k (x, y) = θ

(
φ

(`+1/2)
k (x, y) + δφ

(`+1/2)
k

)
+ (1− θ)φ(`)

k (x, y) . (3.43)
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3.4.3 Inclusion of a Nodal Diffusion Axial Solver

As the 2D/1D method is often intended to be used with thick axial planes, the

accuracy of the axial diffusion calculation can suffer when it is treated with a finite

difference method. Instead, an additional nodal diffusion sweep can be included be-

tween the transport sweep and the CMFD update. To form the 1D nodal diffusion

equation that we will solve, we consider again the 2D/1D equation (Eq. (3.1)),√
1− µ2Ωr ·∇rψ(r,Ω) + Σt(r)ψ(r,Ω) = S(r,Ω)− Lz(r,Ω) .

First, we integrate this equation over all angles. Because of the balance restriction

we imposed in Eq. (3.3), for all transverse leakage approximations we consider, we

obtain:
∂Jx(r)

∂x
+
∂Jy(r)

∂y
+ Σaφ(r) = S0(r)− ∂Jz(r)

∂z
,

or
∂Jz(r)

∂z
+ Σaφ(r) = S0(r)−

[
∂Jx(r)

∂x
+
∂Jy(r)

∂y

]
. (3.44)

By consistently using the Fick’s law approximation for the axial current, we obtain a

1D axial diffusion equation consistent with our original 2D/1D equation.

Using the 2-node SANM style nodal calculation of Section 2.3.3, the source term

definitions are:

S
(`)
0,j → S

(`+1/2)
0,k (x, y) = −

∂J
(`+1/2)
x,k

∂x
−
∂J

(`+1/2)
y,k

∂y
, (3.45a)

S
(`)
1,j → S

(`+1/2)
1,k (x, y) =

1

4

(
S

(`+1/2)
0,k+1 − S

(`+1/2)
0,k−1

)
, (3.45b)

S
(`)
2,j → S

(`+1/2)
2,k (x, y) =

1

12

(
S

(`+1/2)
0,k+1 − 2S

(`+1/2)
0,k + S

(`+1/2)
0,k−1

)
, (3.45c)

S
(`)
3,j = 0 , (3.45d)

S
(`)
4,j = 0 . (3.45e)

The equations for the nodal terms and inter-node current remain the same as they

were in Section 2.3.3, but are relabeled to match the 3D labeling of the 2D/1D

50



method:

φ̄
(`)
j → φ

(`+1/2)
k (x, y)

φ
(`+1/2)
n,j → φ

(`+1/2)
n,k (x, y)

A
(`+1/2)
j → A

(`+1/2)
k (x, y)

B
(`+1/2)
j → B

(`+1/2)
k (x, y)

J
(`+1/2)
j+1/2 → J

(`+1/2)
z,k+1/2(x, y)

Dj → Dk(x, y)

∆j → ∆k(x, y)

βj → βk(x, y)

Σr,j → Σr,k(x, y)

ΣD,j → ΣD,k(x, y)

κj → κk(x, y)

Finally, the CMFD calculation is different, as a current coupling term is used for the

axial diffusion, and an additional update/relaxation equation exists for the inter-plane

axial current:

D̂
(`+1/2)
z,k+1/2 =

J
(`+1/2)
z,k+1/2(x, y) +Dk+1/2(x, y)

φ
(`+1/2)
k+1 −φ(`+1/2)

k

∆k+1/2

φ
(`+1/2)
k+1 + φ

(`+1/2)
k

, (3.46)

J
(`+3/4)
z,k (x, y) =−Dk+1/2(x, y)

φ
(`+3/4)
k+1 − φ(`+3/4)

k

∆k+1/2

+ D̂
(`+1/2)
y,k (x, y)

(
φ

(`+3/4)
k+1 + φ

(`+3/4)
k

)
,

(3.47)

J
(`+1)
z,k+1/2 = θJ

(`+3/4)
z,k+1/2 + (1− θ)J (`)

z,k+1/2 . (3.48)

For the application of Fourier analysis to be done, the linearized version of this
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is:

−Dk(x, y)

(
∂2

∂x2
+

∂2

∂y2

)
δφ

(`+1/2)
k (x, y)

−Dk+1/2(x, y)
δφ

(`+1/2)
k+1 (x, y)− δφ(`+1/2)

k (x, y)

∆k∆k+1/2

+Dk−1/2(x, y)
δφ

(`+1/2)
k (x, y)− δφ(`+1/2)

k−1 (x, y)

∆k∆k−1/2

+Σa0,k(x, y)δφ
(`+1/2)
k (x, y) = Σs0,k(x, y)

(
φ

(`+1/2)
k (x, y)− φ(`)

k (x, y)
)

−
(
J

(`+1/2)
z,k+1/2(x, y)− J (`+1/2)

z,k−1/2(x, y)

∆k

−
J

(`)
z,k+1/2(x, y)− J (`)

z,k−1/2(x, y)

∆k

)
,

(3.49)

J
(`+1)
z,k+1/2 =θ

(
J

(`+1/2)
z,k+1/2 −

Dk+1/2(x, y)

∆k+1/2

(
δφ

(`+1/2)
k+1 (x, y)− δφ(`+1/2)

k (x, y)
))

+ (1− θ)J (`)
z,k+1/2 .

(3.50)

3.4.4 Transverse Leakage Splitting

A practical difficulty occurs when using the 2D/1D approximation with CMFD

acceleration. As CMFD is a non-linear method, it is sensitive to the presence of nega-

tive values (particularly non-positive scalar fluxes). With the 2D/1D approximation,

nothing precludes the leakage term appearing on the right hand side of the trans-

port equation from being negative. If the magnitude of such a leakage is sufficiently

large, the transport sweep can potentially generate angular and scalar fluxes that

are non-positive. To prevent this from occurring, a technique has been adopted in

the MPACT code, whereby the source is “corrected”, to make the right hand side

of the transport equation non-negative while artificially increasing the collision cross

section non-linearly. Compared to the transport sweep of Eq. (3.36a), the following
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is used:(
Ωx

∂

∂x
+ Ωy

∂

∂y
+ Σt,k(x, y) +

L̃
(`)
z,k(x, y)

φ
(`)
k (x, y)

)
ψ

(`+1/2)
k (x, y,Ω)

= S
(`)
k (x, y,Ω)− L(`)

z,k(x, y,Ω) +
L̃

(`)
z,k(x, y)

4π
.

(3.51)

It is not a preferable choice to induce this splitting technique, as all moments of

the angular flux other than the scalar flux are perturbed; however, some practical

problems require this choice for a convergent solution with CMFD. This splitting

could be done more carefully by using the old angular flux as the scaling parameter

(rather than the scalar flux), but this would result in a computational burden in both

storage (storing these old angular fluxes) and calculation (the MOC method is well

optimized for an isotropic collision term). The value L̃
(`)
z,k(x, y) is non-negative and

chosen such that,

S
(`)
k (x, y,Ω)− L(`)

z,k(x, y,Ω) +
L̃

(`)
z,k(x, y)

4π
≥ 0 . (3.52)

The calculation of L̃
(`)
z,k(x, y) varies with the 2D/1D leakage approximation, but is

never more complicated than an optimization problem. The values for each approx-

imation method follow; in these equations, the finite difference derivatives are given

by:

D
(`)
0,k(x, y) =

φ
(`)
k+1/2(x, y)− φ(`)

k−1/2(x, y)

∆k

,

D
(`)
z,k(x, y) =

J
(`)
z,k+1/2(x, y)− J (`)

z,k−1/2(x, y)

∆k

,

D
(`)
x,k(x, y) =

J
(`)
x,k+1/2(x, y)− J (`)

x,k−1/2(x, y)

∆k

,

D
(`)
y,k(x, y) =

J
(`)
y,k+1/2(x, y)− J (`)

y,k−1/2(x, y)

∆k

,

D
(`)
r,k(x, y) =

√(
D

(`)
x,k(x, y)

)2

+
(

D
(`)
y,k(x, y)

)2

.
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• The “correction” term for the isotropic leakage is simply,

L̃
(`)
z,k(x, y) = D

(`)
z,k(x, y)− S(`)

0,k(x, y) . (3.53)

• For the linear leakage, we use:

L̃
(`)
z,k(x, y) = D

(`)
z,k(x, y) +

∣∣∣D(`)
0,k(x, y)

∣∣∣− S(`)
0,k(x, y) . (3.54)

• For the quadratic leakage, we use:

L̃
(`)
z,k(x, y) = 3D

(`)
z,k(x, y)− S(`)

0,k(x, y) . (3.55)

• For the diffusion leakage, a non-trivial optimization problem occurs. The “cor-

rection” term for the bounds of the polar cosine domain, µ = ±1, is,

L̃
(`)
z,k(x, y) = 3D

(`)
z,k(x, y) +

∣∣∣D(`)
0,k(x, y)

∣∣∣− S(`)
0,k(x, y) . (3.56)

This will be the “correction” term if the leakage is concave down with respect

to µ; however, if it is concave up (D
(`)
z,k(x, y) > 0), the maximum leakage may

occur within the domain of µ. The extremum value of µ is given by:

µ̌ = −
D

(`)
0,k(x, y)

6D
(`)
z,k(x, y)

.

If this value lies within the domain of µ, then another “correction” to consider

is,

L̃
(`)
z,k(x, y) = 3µ̌2D

(`)
z,k(x, y)− S(`)

0,k(x, y) . (3.57)

• Finally, for the P1 leakage, a more complicated optimization problem occurs.

The exact maximum leakage cannot be found due to the presence of the cross-

currents with the polar dependence µ
√

1− µ2. For the purpose of estimating
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the maximum leakage, this polar dependence is instead approximated as:

µ
√

1− µ2 ≈


−0.5 −1 ≤ µ ≤ −0.5

µ −0.5 ≤ µ ≤ 0.5

0.5 0.5 ≤ µ ≤ 1

.

Maximizing over the azimuthal angle is straightforward, resulting in:∣∣∣∣D(`)
x,k(x, y) cosα + D

(`)
y,k(x, y) sinα

∣∣∣∣ ≤ D
(`)
r,k(x, y) .

The “correction” leakage for the bounds of the polar cosine domain, µ = ±1,

is:

L̃
(`)
z,k(x, y) = 3D

(`)
z,k(x, y) +

∣∣∣D(`)
0,k(x, y)

∣∣∣+
3

2
D

(`)
r,k(x, y)− S(`)

0,k(x, y) . (3.58)

Additionally, the “correction” leakage on the kink in the approximating func-

tion, µ = ±0.5 is:

L̃
(`)
z,k(x, y) =

3

4
D

(`)
z,k(x, y) +

1

2

∣∣∣D(`)
0,k(x, y)

∣∣∣+
3

2
D

(`)
r,k(x, y)− S(`)

0,k(x, y) . (3.59)

If an extremum lies within the linear portion of the approximating function,

then it will occur at:

µ̌ = −
D

(`)
0,k(x, y)

6D
(`)
z,k(x, y)

1 +
3D

(`)
r,k(x, y)∣∣∣D(`)

0,k(x, y)
∣∣∣
 ,

or, if D
(`)
0,k(x, y) = 0,

µ̌ = ±
D

(`)
r,k(x, y)

2D
(`)
z,k(x, y)

,

with value:

L̃
(`)
z,k(x, y) = 3µ̌2D

(`)
z,k(x, y)− S(`)

0,k(x, y) . (3.60)

If an extemum lies within either of the flat portions of the approximating func-
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tion, then it will occur at:

µ̌ = −
D

(`)
0,k(x, y)

6D
(`)
z,k(x, y)

L̃
(`)
z,k(x, y) = 3µ̌2D

(`)
z,k(x, y) +

3

2
D

(`)
r,k(x, y)− S(`)

0,k(x, y) . (3.61)

By using these axial leakage splitting techniques, we can prevent negative sources in

the transport sweep, which could lead to negative scalar fluxes. This prevents stability

issues in the non-linear CMFD acceleration scheme that can arise from negative scalar

fluxes.

3.5 Chapter Summary

In this chapter, we have defined the 2D/1D equation and several different axial

leakage approximations. We have discussed some aspects of the radial 2D transport

equation and the axial diffusion equation. We have discussed some of the properties of

the 2D/1D approximation. We have discretized this method and developed iterative

methods to apply to it. Finally, we described the process of transverse leakage splitting

to improve the stability of non-linear acceleration.

In the next chapter, we apply Fourier analysis to the various iteration schemes that

we have developed. This analysis will allow us to predict the optimal under-relaxation

factor for efficient convergence. We test these predictions with numerical estimates

of the spectral radius with and without under-relaxation. We also consider the accu-

racy of the method by comparing it to 3D MOC and diffusion solutions of a nearly

classically diffusive problem. Finally, we provide motivation for the development of

accurate shape functions.
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Chapter 4

Analysis

4.1 Efficiency and Stability

Given that the greatest deficiency of the 2D/1D method in DeCART is stability,

it is of utmost importance that we ensure that the 2D/1D method used in MPACT

is as stable and efficient as possible. We do this theoretically using Fourier analysis

and then numerically to confirm the analysis. Uniquely, we also use the results of the

Fourier analysis to define the relaxation factor to optimize the convergence of the

numerical results.

4.1.1 Fourier Analysis of Source Iteration 2D/1D

In Section 3.4, we described several iterative methods for solving the 2D/1D equa-

tions. We now Fourier analyze each transverse leakage approximation and solution

method.
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Isotropic Axial Leakage

The isotropic approximation is considered first, using D = 1/3Σt:

L
(`)
z,k(x, y,Ω) ≈ − 1

4π∆k

(
Dk+1/2(x, y)

φ
(`)
k+1(x, y)− φ(`)

k (x, y)

∆k+1/2

−Dk−1/2(x, y)
φ

(`)
k (x, y)− φ(`)

k−1(x, y)

∆k−1/2

)
.

For an infinite, homogeneous medium with uniform ∆k = ∆z, the standard Fourier

ansatz is:

Sf (r) = 0 , (4.1a)

φ
(`)
k (rk) = ω`eiΣt(λ·rk) , (4.1b)

ψ
(`+1/2)
k (rk,Ω) = ω`ψ̃(λ,Ω)eiΣt(λ·rk) , (4.1c)

φ
(`+1/2)
k (rk) = ω`φ̃(λ)eiΣt(λ·rk) , (4.1d)

where λ = (λx, λy, λz) is an arbitrary fixed 3-vector. Introducing Eqs. (4.1) into (3.36),

and neglecting anisotropic scattering, we easily obtain(
i
(
Ωxλx + Ωyλy

)
+ 1
)
ψ̃(λ,Ω) =

1

4π

(
c− 1

3
Λ2
z

)
, (4.2a)

φ̃(λ) =

∫
ψ̃(λ,Ω) dΩ , (4.2b)

ω = θφ̃(λ) + 1− θ , (4.2c)

where

Λz = Λz(λz; Σt∆z) =
sin(λzΣt∆z/2)

Σt∆z/2
.

Introducing Eq. (4.2a) into Eq. (4.2b), we get

φ̃(λ) =

(
c− 1

3
Λ2
z

)
I0(λr) , (4.3)
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where c = Σs/Σt is the scattering ratio, and

I0(λr) =
1

4π

∫
4π

dΩ

1 + i(Ωxλx + Ωyλy)

=
1

2

1∫
−1

dµ

1 + (λrµ)2

(
λr =

√
λ2
x + λ2

y

)
,

=
tan−1 λr
λr

.

I0(λr) monotonically decreases from 1 to 0 as λr increases from 0 to ∞. Thus, since

I0(λr) > 0, Eq. (4.3) gives[
c− 4

3(Σt∆z)2

]
I0(λr) ≤ φ̃(λ) ≤ cI0(λr) .

This implies

φ̃max = c , (4.4a)

which is attained for “flat” radial and axial modes (λr ≈ 0 and λz ≈ 0). Also,

φ̃min =

 0 , Σt∆z ≥ 2√
3c
, ( “large” ∆z) ,

c− 4
3(Σt∆z)2

, Σt∆z <
2√
3c
, ( “small” ∆z) ,

(4.4b)

which is attained (i) for “large” ∆z by λr ≈ ∞ (radially oscillatory modes), and (ii)

for “small” ∆z by λr ≈ 0 (radially flat modes) and λz ≈ π/Σt∆z (axially oscillatory

modes).

By Eq. (4.2c), we have for 0 ≤ θ ≤ 1

θφ̃min + 1− θ ≤ ω ≤ θφ̃max + 1− θ . (4.5)

For θ = 1 (the “Source Iteration” method originally in DeCART), Eqs. (4.4) and

(4.5) give

φ̃min ≤ ω ≤ φ̃max ,
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and therefore

ρ = |ω|max =

 c ,
√

2
3c
< Σt∆z ,

4
3(Σt∆z)2

− c , Σt∆z ≤
√

2
3c
.

(4.6)

This method is stable for

Σt∆z >
2√

3(1 + c)
,

but for small ∆z it becomes unstable, similar to the original method in DeCART.

Since φ̃max > 0, it can be shown that the optimum value of θ in Eq. (4.5) is the

value for which the left and right sides are equal in magnitude but opposite in sign:

θoptφ̃min + 1− θopt = −
[
θoptφ̃max + 1− θopt

]
. (4.7a)

Thus,

θopt =
2

2− (φ̃max + φ̃min)
, (4.7b)

and then

ρ = |ω|max = θoptφ̃max + 1− θopt

=
φ̃max − φ̃min

2− (φ̃max + φ̃min)
. (4.7c)

Combining Eqs. (4.4) and (4.7), we obtain:

θopt =

 2
2−c , 2√

3c
< Σt∆z ,

3(Σt∆z)2

2+3(1−c)(Σt∆z)2
, Σt∆z ≤ 2√

3c
,

(4.8a)

ρ =

 c
2−c , 2√

3c
< Σt∆z ,

2
2+3(1−c)(Σt∆z)2

, Σt∆z ≤ 2√
3c
.

(4.8b)

Eq. (4.8b) shows that the iterative method defined by Eqs. (3.36) with θ defined

by Eq. (4.8a) is stable for all scattering ratios 0 ≤ c ≤ 1 and all axial grids ∆z > 0.

An example of this is shown in Figure 4. Like standard Source Iteration applied to

the SN equations, this method become slowly converging as c → 1. It also becomes
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slowly converging as ∆z → 0. However, like Source Iteration, it does not become

unstable.

Figure 4: Spectral Radius ρ vs Axial Optical Thickness Σt∆z for c = 0.9

Linear Axial Leakage

Next, we consider the linear approximation, again using D = 1/3Σt:

L
(`)
z,k(x, y,Ω) ≈ 1

4π∆k

[
−Dk+1/2(x, y)

φ
(`)
k+1(x, y)− φ(`)

k (x, y)

∆k+1/2

+Dk−1/2(x, y)
φ

(`)
k (x, y)− φ(`)

k−1(x, y)

∆k−1/2

+ µ
φ

(`)
k+1(x, y)∆k+1 + φ

(`)
k (x, y)∆k

∆k+1 + ∆k

− µ
φ

(`)
k (x, y)∆k + φ

(`)
k−1(x, y)∆k−1

∆k + ∆k−1

]
.
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Again, introducing Eqs. (4.1) into (3.36) for the linear axial leakage, and neglecting

anisotropic scattering, we easily obtain(
i
(
Ωxλx + Ωyλy

)
+ 1
)
ψ̃(λ,Ω) =

1

4π

(
c− 1

3
Λ2
z − iΩz

sinλΣt∆z

Σt∆z

)
, (4.9a)

φ̃(λ) =

∫
ψ̃(λ,Ω) dΩ , (4.9b)

ω = θφ̃(λ) + 1− θ . (4.9c)

Introducing Eq. (4.9a) into Eq. (4.9b), we get

φ̃(λ) =

(
c− 1

3
Λ2
z

)
I0(λr)− i

sinλΣt∆z

Σt∆z

I1(λr) , (4.10)

where I0(λr) was previously defined, and

I1(λr) =
1

4π

∫
4π

ΩzdΩ

1 + i(Ωxλx + Ωyλy)
= 0 .

This integral is clearly zero, as it is anti-symmetric in the polar cosine and an inte-

gral over all angles. Thus, for approximations in which only the scalar flux is iter-

ated upon, any moments that are anti-symmetric in the polar cosine do not affect

the convergence rate; thus, the linear approximation converges at the same rate as

the isotropic approximation. Also, this means that the quadratic approximation, the

diffusion approximation, and the P1 approximation will all have the same spectral

radius. This further confirms the discussion of the considerations of the 2D transport

equation.
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Quadratic Axial Leakage

Finally, we consider the quadratic approximation, again using D = 1/3Σt:

L
(`)
z,k(x, y,Ω) ≈ 3µ2

4π∆k

(
−Dk+1/2(x, y)

φ
(`)
k+1(x, y)− φ(`)

k (x, y)

∆k+1/2

+Dk−1/2(x, y)
φ

(`)
k (x, y)− φ(`)

k−1(x, y)

∆k−1/2

)
.

Again, introducing Eqs. (4.1) into (3.36) for the linear axial leakage, and neglecting

anisotropic scattering, we easily obtain(
i
(
Ωxλx + Ωyλy

)
+ 1
)
ψ̃(λ,Ω) =

1

4π

(
c− Ω2

zΛ
2
z

)
, (4.11a)

φ̃(λ) =

∫
ψ̃(λ,Ω) dΩ , (4.11b)

ω = θφ̃(λ) + 1− θ . (4.11c)

Introducing Eq. (4.11a) into Eq. (4.11b), we get

φ̃(λ) = cI0(λr)− Λ2
zI2(λr), (4.12)

where I0(λr) was previously defined, and

I2(λr) =
1

4π

∫
4π

Ω2
zdΩ

1 + i(Ωxλx + Ωyλy)

=
1

4π

2π∫
0

sin2 αdα

1∫
−1

1− µ2

1 + (λrµ)2
dµ ,

=
1

2

1∫
0

1− µ2

1 + (λrµ)2
dµ ,

=
(1 + λ2

r) tan−1 λr − λr
2λ3

r

.
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I2(λr) monotonically decreases from 1/3 to 0 as λr increases from 0 to∞. Thus, since

I0(λr) > 0 and I2(λr) > 0, Eq. (4.12) gives

cI0(λr)−
4

(Σt∆z)2
I2(λr) ≤ φ̃(λ) ≤ cI0(λr) .

This implies

φ̃max = c , (4.13a)

which is attained for “flat” radial and axial modes (λr ≈ 0 and λz ≈ 0). Also,

φ̃min =

 0 , Σt∆z ≥ 2√
3c
, ( “large” ∆z) ,

c− 4
3(Σt∆z)2

, Σt∆z <
2√
3c
, ( “small” ∆z) ,

(4.13b)

which is attained (i) for “large” ∆z by λr ≈ ∞ (radially oscillatory modes), and (ii)

for “small” ∆z by λr ≈ 0 (radially flat modes) and λz ≈ π/Σt∆z (axially oscillatory

modes). At this point, the analysis is identical to that of the isotropic axial leakage

approximation. However, this does not imply that convergence is identical between

the isotropic and quadratic axial leakage approximations when CMFD acceleration is

applied.

4.1.2 Fourier Analysis of CMFD Accelerated 2D/1D

From the section on iterative methods, Eq. (3.36a), (3.36b), (3.42), and (3.43) form

a complete, linearized CMFD, 2D/1D iteration scheme. The same standard Fourier

ansatz for the source iteration method, Eq. (4.1), can be applied, with the addition

of an ansatz for the update term:

δφ
(`+1/2)
k (rk) = ω`δ̃φ(λ)eiΣt(λ·rk) . (4.14)

Because the transport sweep and the scalar flux integral equations are unchanged, so

are their corresponding equations in the Fourier analysis. The CMFD and relaxation

equations do not depend on the choice of 2D/1D approximation, so they can be

analyzed outside of that context. Applying the ansatz to Eqs. (3.42) and (3.43) easily
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yields: (
λ2
r + Λ2

z

3
+ 1− c

)
δ̃φ(λ) =

(
c− Λ2

z

3

)(
φ̃(λ)− 1

)
. (4.15)

The update equation becomes:

ω(λ) = θ
(
φ̃(λ) + δ̃φ(λ)

)
+ 1− θ . (4.16)

Combining these two results yields:

ω(λ) = 1− θ 1− φ̃(λ)

1−
(
c− Λ2

z

3

)(
1 + λ2r

3

)−1 . (4.17)

In both isotropic-like and quadratic-like axial leakage approximations, the radially

flat modes are the most slowly convergent modes as,

φ̃(0, 0, λz) = c− Λ2
z

3
. (4.18)

Inserting this into the CMFD acceleration growth factor equation, we see that

ω(0, 0, λz) = 1− θ .

Thus, if θ = 1, the flat modes are perfectly accelerated and converge immediately.

The extremum for ω occurs at some |λr| > 0. To proceed from this point, the choice

of transverse leakage approximation matters.

Isotropic-like Leakage Approximations

From the source iteration section, the equation for φ̃(λ) was found in Eq. (4.3); in-

serting this into Eq. (4.17) — the CMFD equation for the growth factor — yields:

ω(λ) = 1− θ
1−

(
c− Λ3

z

3

)
I0(λr)

1−
(
c− Λ2

z

3

)(
1 + λ2r

3

)−1 . (4.19)
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In this form, it is clear that the CMFD acceleration operator well-approximates the

transport operator for slowly oscillating radial modes, leading to efficient acceleration

of the most slowly converging modes of the source iteration method,

I0(λr) =
tan−1 λr
λr

≈ 1− λ2

3
+
λ4

5
+ · · · ≈

(
1 +

λ2
r

3

)−1

.

Aside from the trivial minimum found in Eq.(4.18), the extremum of the growth factor

cannot be determined explicitly given the form of I0(λr). However, this function can

be parametrized with ζ = c−Λ2
z/3. Evaluating this function numerically, the extremum

value can be seen in Figure 5. It is seen that the extrema of the growth factor decrease

monotonically with the parameter ζ, with the maximum value occurring for ζ = c =

1, ω ≈ 0.2247 (this is the standard result from traditional CMFD). Even though

the extremum cannot be calculated explicitly, the numerical results indicate that an

empirical estimation should perform well.

Figure 5: Growth Factor ω for Various Radial Frequencies λr for a Sample of
Parametrized Values ζ

To make a good empirical approximation, we look at a wide range of values for

−100 ≤ ζ ≤ 1. Figure 6 shows the extremum values of ω, calculated numerically, for
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these values of ζ. These data show that the trend seen in Figure 5 continues — a

monotonic decrease in ωext with ζ. It is possible to determine an empirical relation

for ω directly, but it is better to determine it for the maximizing/minimizing value of

λr. This is the case because the equation for ω is available explicitly, and because this

is an optimization problem, ∂ω
∂λr
≈ 0 near the extremum. Thus, small errors in λext

will result in negligible errors in ωext. Figure 7 shows the extremum inducing value of

λr for the large set of ζ sampled. We determine the empirical relation using a least-

squares method, recognizing that the data have a form like a shifted root equation. In

the range considered, this empirical relation gives values for ωext less than 5× 10−5,

and for negative ζ, these errors become less than 10−6.

λext ≈ S +M(F − ζ)P ,

S = 1.93801895412889 , M = 1.88037759461481 ,

F = 1.07821249297909 , P = 0.487975837139675 .

(4.20)

Figure 6: Extremum Growth Factor ωext vs Parametrized Value ζ

With implicit values of ωext in hand, we can make some statements about the
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Figure 7: Radial Frequency λext which yields Extremum Growth Factor ωext vs
Parametrized Value ζ

method. Traditional CMFD occurs when θ = 1, and this method is conditionally

stable if ζ ' −10.947 or,

Σt∆z '
2√

3(c+ 10.947)
. (4.21)

The region of conditional stability for the CMFD accelerated, isotropic 2D/1D

approximation is much larger than that of source iteration. This improvement comes

from the improved communication between the planes — at each iterate, the planes

receive information from the whole system rather than just neighboring planes.

As with source iteration, the relaxation factor can be chosen to yield optimal

convergence. We have upper and lower bounds for the growth factor with relaxation

based on the Fourier analysis without relaxation:

θωmin,θ=1 + 1− θ ≤ ω ≤ θωmax,θ=1 + 1− θ . (4.22)

We can determine the optimal relaxation factor by choosing it such that the magni-
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Figure 8: Spectral Radius ρ Comparison of SI and CMFD vs Optical Thickness Σt∆z

with Scattering Ratio c = 0.9

tudes of the most positive and negative growth factors are equal:

− (θoptωmin,θ=1 + 1− θopt) = θoptωmax,θ=1 + 1− θopt . (4.23)

The optimal relaxation factor is then:

θopt =
2

2− (ωmax,θ=1 + ωmin,θ=1)
. (4.24)

The spectral radius that results from using this optimal relaxation factor is then:

ρopt =
ωmax,θ=1 − ωmin,θ=1

2− (ωmax,θ=1 + ωmin,θ=1)
. (4.25)

To summarize the Fourier analysis results thus far, we plot the spectral radius of

the relaxed and unrelaxed “source iteration” and CMFD accelerated 2D/1D iteration

schemes when using isotropic leakage in Figure 8. As expected, we see that CMFD

converges much more rapidly than the “source iteration” counterpart. In fact, the

relaxed CMFD iteration scheme is rapidly convergent for all but the thinnest of axial

planes; in comparison, the relaxed “source iteration” scheme also guarantees stability
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but is slow to converge for even for medium thickness planes. When these methods

are not relaxed, we see that the CMFD iteration scheme has a lower plane thickness

bound for stability than “source iteration”, but the bounding plane is not thin enough

to avoid potential stability issues if applied to realistic reactor problems.

Quadratic-like Leakage Approximations

From the source iteration section, the equation for φ̃(λ) was found in Eq. (4.12); in-

serting this into Eq. (4.17) — the CMFD equation for the growth factor — yields:

ω(λ) = 1− θ 1− (cI0(λr)− Λ3
zI2(λr))

1−
(
c− Λ2

z

3

)(
1 + λ2r

3

)−1 . (4.26)

Unlike the isotropic-like leakages, this growth factor cannot be directly parameterized

on a single value. The integral I2(λr) is clearly bounded between 1/3 and 0; further-

more, it can be bounded more closely in relation to the integral I0(λr). Bounding

from above,

I2(λr) =
(1 + λ2

r) tan−1 λr − λr
2λ3

r

,

=
tan−1 λr

2λr
− λr − tan−1 λr

2λ3
r

,

≤ I0(λr)

2
.

Bounding from below,

I2(λr) =
tan−1 λr

3λr
+

(1 + λ2r
3

) tan−1 λr − λr
2λ3

r

,

I2(λr) ≥
I0(λr)

3
.

These bounds are displayed in Figure 9.

From this, we expect the isotropic-like leakage empirical formula, Eq. (4.20), to

give a good approximate value for λext. To get the true extremum value, we could
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Figure 9: Bounded Limits of I2(λr), Relative to I0(λr)

apply a finite difference Newton’s method iteration:

λn+1 = λn −
dλ

2

ω(λn + dλ)− ω(λn − dλ)

ω(λn + dλ)− 2ω(λn) + ω(λn − dλ)
, (4.27a)

λext ≈ lim
n→∞

λn . (4.27b)

In practice, we do not employ the Newton’s method iteration. The Fourier analysis

is based on an idealized problem and the initial estimate provided by Eq. (4.20) is

sufficient for the purposes of stabilizing and nearly optimizing the method when using

the quadratic leakage approximation.

4.1.3 Fourier Analysis of 2D/1D with Nodal Axial Diffusion

and CMFD

In this iterative method, both the plane scalar flux and inter-plane current are

retained each iteration; we must therefore use a different Fourier ansatz than previous

to proceed:

φ
(`)
k (rk) = ω`φ̃eiΣt(λ·rk) , (4.28a)

71



J
(`)
z,k+1/2(rk) = ω`J̃ze

iΣt(λ·rk+1/2) , (4.28b)

ψ
(`+1/2)
k (rk) = ω`ψ̃eiΣt(λ·rk) , (4.28c)

φ
(`+1/2)
k (rk) = ω`φ̂eiΣt(λ·rk) , (4.28d)

J
(`+1/2)
x/y,k (rk) = ω`Ĵx/ye

iΣt(λ·rk) , (4.28e)

S
(`+1/2)
n,k (rk) = ω`Ŝne

iΣt(λ·rk) , (4.28f)

φ
(`+1/2)
n,k (rk) = ω`φ̂ne

iΣt(λ·rk) , (4.28g)

A
(`+1/2)
k (rk) = ω`ÂeiΣt(λ·rk) , (4.28h)

B
(`+1/2)
k (rk) = ω`B̂eiΣt(λ·rk) , (4.28i)

J
(`+1/2)
z,k+1/2(rk) = ω`Ĵze

iΣt(λ·rk+1/2) , (4.28j)

δφ
(`+1/2)
k (rk) = ω`δ̃φeiΣt(λ·rk) . (4.28k)

Applying this ansatz to the transport equation and the equations for the resulting

scalar flux and radial currents, we obtain:

(
1 + i(λxΩx + λyΩy)

)
ψ̃ =

1

4π

(
cφ̃− iΛzJ̃

)
, (4.29a)

φ̂ =
(
cφ̃− iΛzJ̃

)
I0(λr) , (4.29b)

Ĵx,y =
(
cφ̃− iΛzJ̃

) 1

4π

∫
4π

Ωx/ydΩ

1 + i(λxΩx + λyΩy)
. (4.29c)

Moving on to the flat nodal source term, we get:

S̃0 = −iΣt

(
λxĴx + λyĴy

)
= −Σt

(
cφ̃− iΛzJ̃

) 1

4π

∫
4π

i(λxΩx + λyΩy)dΩ

1 + i(λxΩx + λyΩy)
,

or

S̃0 = −Σt

(
cφ̃− iΛzJ̃

)(
1− I0(λr)

)
. (4.30a)
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The remaining non-zero nodal source terms become:

S̃1 = −iΣt

(
cφ̃− iΛzJ̃

)(
1− I0(λr)

)
sin(λzΣt∆z/2) cos(λzΣt∆z/2) , (4.30b)

S̃2 =
Σt

3

(
cφ̃− iΛzJ̃

)(
1− I0(λr)

)
sin2(λzΣt∆z/2) . (4.30c)

The nodal flux terms become:

φ̂0 =
cφ̃− iΛzJ̃

1− c
(
1− I0(λr)

)( Λ2
z

3(1− c)
− 1

)
, (4.31a)

φ̂1 = −icφ̃− iΛzJ̃

1− c
(
1− I0(λr)

)
sin(λzΣt∆z/2) cos(λzΣt∆z/2) , (4.31b)

φ̂2 =
1

3

cφ̃− iΛzJ̃

1− c
(
1− I0(λr)

)
sin2(λzΣt∆z/2) . (4.31c)

The hyperbolic cosine nodal term becomes:

B̂ =
κ

sinh(κ)

(
φ̂− φ̂0

)
=

κ

sinh(κ)

(
cφ̃− iΛzJ̃

) [
I0(λr) +

1− Λ2
z/3(1−c)

1− c
(
1− I0(λr)

)]
,

or

B̂ =
κ

sinh(κ)

cφ̃− iΛzJ̃

1− c

[
1− Λ2

z

3(1− c)
−
(
c− Λ2

z

3(1− c)

)
I0(λr)

]
. (4.32)

The Fourier ansatz cannot be directly applied to the matrix equation for the hy-

perbolic sine nodal term as the A
(`+1/2)
k (x, y) obtained when solving the two nodes

for J
(`+1/2)
k−1/2 (x, y) is not the same as that obtained whens solving the two nodes for

J
(`+1/2)
k+1/2 (x, y). Applying the Fourier ansatz to the solution of the matrix equation

yields:

Âe−iλzΣt∆z/2 = −
cos(λzΣt∆z/2)

(
κ sinh2(κ)B̂ + κ cosh(κ)φ̂1 + 3 sinh(κ)φ̂2

)
κ sinh(κ) cosh(κ)

+
i sin(λzΣt∆z/2)

(
κ cosh2(κ)B̂ + κ cosh(κ)

(
φ̂0 + φ̂2

)
+ sinh(κ)φ̂1

)
κ sinh(κ) cosh(κ)

.

(4.33)
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The final nodal equation, the edge current becomes:

Ĵz = −β
(
κ cosh(κ)Â+ κ sinh(κ)B̂ + φ̂1 + 3φ̂2

)
e−iλzΣt∆z/2

= −β

[
− cos(λzΣt∆z/2)

(
κ sinh(κ)B̂ +

κ

tanh(κ)
φ̂1 + 3φ̂2

)
+ i sin(λzΣt∆z/2)

(
κ cosh2(κ)

sinh(κ)
B̂ +

κ

tanh(κ)

(
φ̂0 + φ̂2

)
+ φ̂1

)
+

(
κ sinh(κ)B̂ + φ̂1 + 3φ̂2

)
e−iλzΣt∆z/2

]

= −β

[
cos(λzΣt∆z/2)

(
1− κ

tanh(κ)

)
φ̂1

+ i sin(λzΣt∆z/2)

(
κ

sinh(κ)
B̂ +

κ

tanh(κ)

(
φ̂0 + φ̂2

)
− 3φ̂2

)]
,

or

iΛzĴz =
Λ2
z

3

cφ̃− iΛzJ̃

1− c

[
κ2

sinh2(κ)

(
1− Λ2

z

3(1− c)
−
(
c− Λ2

z

3(1− c)

)
I0(λr)

)

−
(
1− I0(λr)

)(
1− κ

tanh(κ)

Λ2
z

3(1− c)

(
1− 2

3
κ2

))]
.

(4.34)

With the transform of the nodal equations complete, only the CMFD equations re-

main. Applying the Fourier ansatz to these equations yields:(
λ2
r + Λ2

z

3
+ 1− c

)
=
(
cφ̂− iΛzĴz

)
−
(
cφ̃− iΛzJ̃z

)
, (4.35)

ωφ̃ = φ̂+ δ̃φ , (4.36)

ωJ̃z = Ĵz −
iΛz

3
δ̃φ . (4.37)
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The update equations can be combined to avoid a matrix equation for the growth

factor:

ω
(
cφ̃− iΛzJ̃z

)
=
(
cφ̂− iΛzĴz

)
+

(
c− Λ2

z

3

)
δ̃φ . (4.38)

The growth factor of the method if CMFD were not used would be:

ωNODAL,SI =
cφ̂− iΛzĴz

cφ̃− iΛzJ̃z
. (4.39)

This notation is useful for the simplifying the CMFD equation:

ω = ωNODAL,SI −
Λ2
z/3− c

Λ2
z/3 + λ2r/3 + 1− c

(ωNODAL,SI − 1) ,

ω = 1− 1− ωNODAL,SI
1− (c− Λ2

z/3) (1 + λ2r/3)
−1 . (4.40)

From this and Eq. (4.19), we see that whether finite difference or nodal methods are

used, the accelerated and unaccelerated growth factors are related by the form:

ωCMFD = 1− 1− ωSI
1− (c− Λ2

z/3) (1 + λ2r/3)
−1 .

Coincidentally, the growth factor–while difficult to evaluate theoretically–is seen

computationally to be bounded by the finite difference method. From this, we take for

granted that the under-relaxation factors produced from the finite difference method

will conservatively stabilize the nodal methods.

We see below in Figure 10, that for a particular case of scattering ratio and plane

thickness, the negative growth factor for nodal axial diffusion with unrelaxed CMFD

is bounded by the finite difference equivalent. This is our motivation for using the

finite difference relaxation when using nodal solvers.
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Figure 10: Comparison of the Most Negative Growth Factors between Finite Differ-
ence and Nodal Leakage Accelerated by Unrelaxed CMFD for c = 0.9 and Σt∆z = 0.1

4.1.4 A Comment on the use of Fourier Analysis

We apply the results of this Fourier analysis to the MPACT code, such that the

code itself chooses the optimal relaxation factor based on the plane optical thickness

and the scattering ratio (within-group scattering ratio for multi-group problems). To

our knowledge, this is the first time that Fourier analysis has been directly used to

improve the performance of a neutron transport code. Generally, Fourier analysis is

used as a demonstrative technique to predict and confirm the convergence properties

of an iterative method. We have gone one step further, to use the results to also

improve and optimize the convergence of an iterative method.
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4.1.5 Numerical Estimates of Spectral Radius

To test the stability and convergence rates of the “source iteration with under-

relaxation” scheme, we considered a total of 35 different problems, defined by:

X = Y = Z = 10 cm ,

Σt = 1.0 cm−1 ,

Σs = c = 0.0, 0.25. 0.5, 0.75, and 0.95 (5 cases) ,

Q = 0.0 cm−3 sec−1 ,

∆x = ∆y = 0.5 cm ,

∆z = 10.0, 5.0, 2.0, 1.0, 0.5, 0.2, and 0.1 cm (7 cases) .

These problems differ by their 5 values of the scattering ratio c and their 7 values of

the axial cell width ∆z, but they all have the solution φk(x, y) = 0. To estimate the

spectral radius ρ for each of the 35 cases, we started the iterations with a noisy initial

guess and monitored the rate at which the solutions converged to 0. The spectral

radius ρ was estimated as

ρ =
||φ(n+1)||
||φ(n)||

,

where || · || denotes the L2 norm over all three spatial dimensions, and n (the iteration

count) is sufficiently high that the estimate of ρ is stable.

Source Iteration

When the iterations are run with θ = 1, there is no under-relaxation, and the

iteration method becomes very similar to the original iteration method in DeCART.

The estimated and predicted (via Fourier analysis) values of ρ are shown below in

Figure 11.
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Figure 11: ρ vs Σt∆z for θ = 1

We see that the estimated values of ρ (symbols) and the theoretical values of ρ

(lines) agree quite well, with ρ = c = scattering ratio for Σt∆z sufficiently large, and

ρ > 1 (unstable) for roughly Σt∆x < 1.

Figure 12: θopt vs Σt∆z
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In Figure 12, the optimal relaxation factor θopt is plotted as a function of Σt∆z,

for 5 different values of the scattering ratio c. As expected, this figure shows that for

small Σt∆z we have θopt < 1, which corresponds to under-relaxation. Interestingly, for

large Σt∆z, we have θopt > 1, which corresponds to over-relaxation. For large Σt∆z, it

is not necessary to over-relax; if one simply uses θ = 1, the theoretical spectral radius

ρ = c results. However, the use of θ = θopt does reduce the theoretical spectral radius

to ρ = c/(2− c).

For θ = θopt, Figure 13 shows the theoretical (solid lines) and the observed (sym-

bols) estimates of the spectral radius ρ:

Figure 13: ρ vs Σt∆z for θ = θopt

Again, the agreement between theory and experiment is very good. We have deter-

mined that the reason for the faster-than-theoretically-predicted rates of convergence

observed experimentally for larger values of Σt∆z are due to the vacuum bound-

ary conditions. (For large values of ∆z, the most slowly converging Fourier modes are

flat, and these modes are not present unless the system becomes very optically thick.)

Overall, the most significant result is that the inclusion of under-relaxation stabilizes

the method, and the convergence rates are well- (and conservatively- ) predicted by

the Fourier analysis.
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CMFD Accerlation

In Figure 14 below, we see again that the Fourier analysis accurately predicts

the spectral radius of the unrelaxed method. The method is more stable than source

iteration, but it becomes unstable for planes with optical thickness Σt∆z / 0.35.

Figure 14: Non-optimized Spectral Radius ρopt vs Plane Optical Thickness Σt∆z for
Various Scattering Ratios c

In Figure 15 we see that for large plane optical thicknesses, the method can again

be over-relaxed for optimal convergence; whereas for small plane optical thicknesses,

the method requires under-relaxation for stability. In Figure 16, we observe that the

application of the optimal relaxation factor yields a method that is unconditionally

stable with more rapid convergence for thick planes than traditional CMFD.
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Figure 15: Optimal Relaxation Factor θopt vs Plane Optical Thickness Σt∆z for Var-
ious Scattering Ratios c

Figure 16: Optimal Spectral Radius ρopt vs Plane Optical Thickness Σt∆z for Various
Scattering Ratios c
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4.2 Accuracy

To demonstrate these properties of the 2D/1D equations, we consider the 3D fixed-

source homogeneous-medium transport equation with a flat source:

Ω ·∇ψ(r,Ω) + Σtψ(r,Ω) =
Σs

4π

∫
4π

ψ(r,Ω′)dΩ′ +
Q

4π
, r ∈ V , Ω ∈ 4π , (4.41)

defined on a hexahedral domain V consisting of points r = (x, y, z), with (x, y) ∈ the

square R consisting of points 0 < x, y < L, and 0 ≤ z ≤ Z. The boundary conditions

(i) on the “inner” three sides of V touching the point (0, 0, 0) are reflecting, and (ii)

on the “outer” three sides of V are vacuum.

We discretize z by a uniform grid 0 = z1/2 < · · · < zk−1/2 < zk+1/2 < · · · zK+1/2 =

Z, with zk+1/2 − zk−1/2 = ∆z. For the kth axial “slice,” we define

ψk(x, y,Ω) =
1

∆z

zk+1/2∫
zk−1/2

ψ(x, y, z′,Ω)dz′ , 1 ≤ k ≤ K . (4.42)

In Chapter 3, we derived for this (homogeneous medium, uniform axial grid) problem,

the following axially-discretized 2D/1D approximation to Eqs. (4.41):

(
Ωx

∂

∂x
+ Ωy

∂

∂y
+ Σt

)
ψk(x, y,Ω) =

1

4π

[
Σsφk(x, y) +Q

+
D

∆2
z

(
φk+1(x, y)− 2φk(x, y) + φk−1(x, y)

)]
, (4.43)

where

φk(x, y) =

∫
4π

ψk(x, y,Ω
′) dΩ′ , D =

1

3Σt

. (4.44)

The boundary of V has six planar surfaces. The boundary conditions on the four

“radial” bounding surfaces of V (whose normal vectors point in the radial directions)

are the usual transport reflecting or vacuum boundary conditions. On the two “axial”
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Figure 17: The Hexahedral System V

bounding surfaces of V , whose normal vectors point in the ± axial directions, the

reflecting and vacuum boundary conditions can be formulated as

φ0(x, y) = φ1(x, y) , (x, y) ∈ R (reflecting) , (4.45a)

φK+1(x, y) =

(
4D −∆z

4D + ∆z

)
φK(x, y) , (x, y) ∈ R(vacuum) . (4.45b)

These conditions specify φ0 and φK+1 and thus make Eq. (4.43) valid for all 1 ≤ k ≤
K.
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In the MPACT code [12], we have discretized the 2D/1D equation in x, y, and Ω

using the method of characteristics [17]. In this chapter we discuss the accuracy of

the resulting 2D/1D solutions (by showing plots of the scalar flux on the four rows of

spatial cells shown in Figure 1) and the performance of the iterative “source iteration

with under-relaxation” iteration scheme.

4.2.1 Accuracy in Homogeneous, Purely Scattering Media

To test the accuracy of the 2D/1D solutions, we consider six homogeneous, purely-

scattering problems, defined as follows:

Z = 10 cm ,

X = Y = L = 10, 5, and 2.5 cm (3 cases) ,

Σt = Σs = 1.0 cm−1 ,

Q = 1.0 cm−3 sec−1 ,

∆x = ∆y = 0.05L ,

∆z = 0.5 and 1.0 cm (2 cases) .

The problems differ by their values of ∆z and L, with ∆x = ∆y scaled proportional

to L. For L = 10 cm, the system is a cube of width, height, and depth equal to 20

mean free paths. This problem is reasonably “diffusive,” so the 3D MOC, 2D/1D

and standard diffusion solutions should agree reasonably well. Figure 18 plots the

cell-averaged scalar fluxes along the four rows of cells depicted in Figure 17: the

“Inner Radial” row, which adjoins the center of the system and extends to the outer

boundary in the radial (y) direction, the “Inner Axial” row, which adjoins the center

of the system and extends to the outer boundary in the axial (z) direction, and the

“Outer Radial” and “Outer Axial” rows, which adjoin the outer boundary of the

system.

The 3D MOC and 2D/1D solutions agree closely on the inner radial, inner axial,

and outer axial rows of cells. Along these rows, the axial derivative (diffusion) term in

the 2D/1D equation does not dominate the radial derivative (transport) term – and
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(a) Inner Radial (b) Inner Axial

(c) Outer Radial (d) Outer Axial

Figure 18: Scalar Flux Plots for L = 10 cm and ∆z = 0.5 cm

the resulting approximation should be accurate. The accuracy is not as good on the

outer radial row of cells, in which an axial transport boundary layer occurs. Here the

diffusion axial derivative term of the 2D/1D equation dominates the transport radial

derivative terms, and the axial transport boundary layer is treated with diffusion (not

transport) accuracy.

In all four subplots of Figure 18, the diffusion solution has the correct qualitative

shape, but its amplitude is consistently about 6% high. The reason for the reasonable

but not tight accuracy of the diffusion approximation is that the L = 10 problem is

not sufficiently large (optically thick).

Overall, the 2D/1D solution agrees closely with the 3D MOC solution (i.e. has

“transport accuracy”) in the interior of V , and on the parts of ∂V where the axial

derivative does not dominate the radial derivative. On the parts of ∂V where the

axial derivative dominates the radial derivative, the 2D/1D solution has “diffusion

accuracy.” (Where this happens – on the outer radial row of cells – the 2D/1D error
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is about half that of the diffusion solution.)

As L = width = depth of V is reduced, V becomes more “leaky” (and hence more

transport-like) in the radial directions x and y. However, V remains optically thick

in the z-direction, and the scalar flux should continue to vary smoothly and slowly in

z. The 2D/1D solutions for smaller L should continue to have transport accuracy –

except possibly on the outer radial row of cells, where at worst it should have diffusion

accuracy. Figure 19 depicts similar plots as in Figure 18, but instead for the L = 5

problem.

(a) Inner Radial (b) Inner Axial

(c) Outer Radial (d) Outer Axial

Figure 19: Scalar Flux Plots for L = 5 cm and ∆z = 0.5 cm

Figure 19 shows that indeed, the 2D/1D solution has transport accuracy away

from the outer radial rows of cells, and in this row it is more accurate than before!

The likely reason for this is that the axial derivatives in this row are similar to those in

the previous problem, but the radial derivatives are larger. Thus, the axial derivatives

in this problem do not dominate to the same extent that they did in the previous

problem. In this problem, the diffusion solution is about 10% low in the center of

the problem, 20% high on the outer radial row, and reasonably accurate on the outer
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axial row of cells.

Next, Figure 20 depicts the same types of plots as in Figure 18, for the L = 2.5

problem:

(a) Inner Radial (b) Inner Axial

(c) Outer Radial (d) Outer Axial

Figure 20: Scalar Flux Plots for L = 2.5 cm and ∆z = 0.5 cm

These plots continue the same basic trends seen – and discussed – in Figures 18 and

19. Overall, Figures 2-4 show that the 2D/1D solutions treat “radial” boundary layers

(along surfaces whose normals point in a radial direction) with transport accuracy,

and “axial” boundary layers (along surfaces whose normals point in an axial direction)

with at worst diffusion accuracy. (If the axial boundary layers contain significant radial

derivative terms, the 2D/1D accuracy increases.)

The next three figures present the same three problems depicted in Figures 18-20,

but now calculated with a coarser axial grid size of ∆z = 1.0 cm. We include these

results to give evidence that – provided the solution varies slowy in z – the 2D/1D

solution will remain accurate if ∆z is chosen to be on the order of (or smaller than)

a diffusion length. The discretization of the transport part of the 2D/1D equation
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generally requires the radial variables x and y to be discretized on a grid which is

small compared to a mean free path. Thus: for the 3D problems in which the 2D/1D

approximation is valid, it should be possible to discretize the 2D/1D equations on

a coarser axial grid than the 3D transport equation. (This is another advantage of

the 2D/1D approximation.) We note that DeCART and MPACT are routinely run

in this manner – with an axial grid which is much coarser than the radial grid.

(a) Inner Radial (b) Inner Axial

(c) Outer Radial (d) Outer Axial

Figure 21: Scalar Flux Plots for L = 10 cm and ∆z = 1.0 cm

The results in Figures 21-23 are similar to those in Figures 18-20. Overall, the

diffusion solution is less accurate than before, due to the transport boundary layer on

the outer radial surface, which is now even less resolved by the diffusion solution on

the coarser axial grid. In all cases, 2D/1D solution has transport accuracy at points

where axial boundary layers do not occur, and at worst diffusion accuracy at points

where axial boundary layers do occur. This property of the 2D/1D solutions should

continue to hold in heterogeneous reactor cores – which possess a multitude of radial

boundary layers, but few axial boundary layers.
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(a) Inner Radial (b) Inner Axial

(c) Outer Radial (d) Outer Axial

Figure 22: Scalar Flux Plots for L = 5 cm and ∆z = 1.0 cm

(a) Inner Radial (b) Inner Axial

(c) Outer Radial (d) Outer Axial

Figure 23: Scalar Flux Plots for L = 2.5 cm and ∆z = 1.0 cm
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Although not measured explicitly, it is worth mentioning that, anecdotally, the

2D/1D algorithm is at least two orders of magnitude faster than 3D MOC. This

occurs for a number of reasons:

1. A 3D ray intersects with mesh geometry more frequently than a 2D ray and is

thus more computationally expensive individually.

2. Many axial ray segments are needed within each plane for 3D MOC, increasing

the overall number of rays to be traced.

3. In 2D MOC, there are no differences in the geometry intersections as the polar

cosine changes. This is not the case in 3D MOC, further increasing the com-

plexity of tracing 3D rays.

4.2.2 Motivation for Shape Functions

In order to demonstrate the need for shape functions and evaluate the accuracy

of the scalar flux weighting shape function developed in subsection 3.3.1, we consider

a 2-group, rectilinear, simplified reactor problem in which we vary no aspect of the

discretization other than the use of a shape function. We consider three cases for the

same problem: an “exact” shape function (in which the fine mesh and coarse mesh

are identical), a “flat” shape function (in which the shape function is unity for each

fine mesh region), and a “scalar flux” shape function (in which the shape function is

the ratio of the previous iteration fine mesh scalar flux to coarse mesh scalar flux).

In all cases, we choose an identical MOC discretization (quadrature and ray spacing)

and fine mesh.

Unlike the previous accuracy test, we consider an eigenvalue problem, as the real-

istic problems we will consider in Chapter 5 will be eigenvalue problems. The 2D/1D
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eigenvalue problem that we are solving is:

(
Ωx

∂

∂x
+ Ωy

∂

∂y
+ Σt,g

)
ψk,g(x, y,Ω) =

1

4π

[
2∑

g′=1

(
Σs,g′→g +

χgνg′Σf,g′

keff

)
φk,g′(x, y)

+
D

∆2
z

(
φg,i,j,k+1 − 2φg,i,j,k + φg,i,j,k−1

)
Vg,i,j,k(x, y)

]
.

(4.46)

We use the same hexahedral system shown in Figure 17, but we now have Cartesian

“pin cells” with both fuel and moderator.

Table 1: Cross Sections of Shape Function Test Problem in cm−1

Cross Section Fuel Moderator
Σt,1 0.44 1.01
Σa,1 0.03 0.01
νΣf,1 0.04 0
χ1 1.0 0

Σt,2 0.9 3.05
Σa,2 0.6 0.05
νΣf,2 1.1 0
χ2 0 0

Σs,1→1 0.4 0.4
Σs,2→1 0 0
Σs,1→2 0.01 0.6
Σs,2→2 0.3 3.0

The core dimensions and plane thickness are

Z = 15 cm ,

X = Y = L = 8 cm ,

∆z = 1.0 cm .

Also, in this problem, we consider two different mesh arrangements. For the “exact”
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shape function results, the fine mesh and coarse mesh are identical:

∆x = ∆y = 0.125 cm ;

whereas, for the “flat” and “scalar flux” shape functions, we use two different meshes:

δx = δy = 0.125 cm ,

∆x = ∆y = 1.0 cm .

The coarse cell and repeated fine cell structure is shown below in Figure 24.

Figure 24: Coarse Cell of the Shape Function Test Problem

To first consider the impact of the shape function, we look at the eigenvalue. We

see that, for this problem, the lack of a shape function when comparing the “flat”

shape function solution to the “exact” solution results in a significant error. The

inclusion of the “scalar flux” shape function ameliorates only a slim portion of this

error. Clearly, to obtain more accurate results, much more robust shape functions

need to be used.

Table 2: Comparison of k-Eigenvalues with Different Shape Functions

Shape Function keff error [pcm]
Exact 1.1090720 —
Flat 1.1143052 523.32
Flux 1.1142447 517.27

Next, we look at the flux distribution itself. Because this is a “toy” problem, we
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care more about the relative error than the actual results.

Table 3: Global Flux Distribution Error with Different Shape Functions

Error Flat Flux
RMS Absolute 0.011916 0.011903
RMS Relative 3.50% 3.49%
Max Absolute 0.0415 0.0415
Max Relative 12.92% 12.92%

Again, the “flat” shape function results in noticeable error in the scalar flux dis-

tribution when compared to the “exact” solution. Unfortunately, using the “scalar

flux” shape function results in negligible reduction of error. Given that we slight im-

provement when using the simplest possible shape function, we would anticipate more

accurate shape functions showing even better accuracy. In fact, another MPACT de-

veloper implemented a method similar to the 2D/1D “fusion” method [20] where they

observed precisely this fact. In their work, they found it necessary to at least include

first order Chebyshev moments in the azimuthal angle (cosα and sinα) in order to

see significant gains in using a shape function.

4.3 Chapter Summary

In this chapter, we have applied Fourier analysis to both predict and optimize the

iteration schemes that we have considered for the 2D/1D method. With numerical

simulation, we have confirmed the predicted spectral radius of the methods and the

basic accuracy of the method. In the next chapter, we will apply the 2D/1D method

to established, benchmark problems, to determine their accuracy when applied to

realistic reactor problems.
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Chapter 5

Simulation

In Chapter 4, we considered a few simple problems to test the stability and fun-

damental accuracy of the methods developed. While these problems are useful in

understanding the method, testing against verified benchmark problems lets us verify

the performance of the method for realistic problems. We also consider the merits

of the two-node, NEM nodal method as opposed to finite differencing of the axial

leakage.

5.1 The Takeda Benchmark

The Takeda Benchmarks [21] are a collection of four different benchmark problems

of varying complexity. Model one is the simplest benchmark, yet it is challenging for

the 2D/1D method due to stark material heterogeneities. As we will only consider

model one of the four benchmarks, we will refer to it as the Takeda Benchmark.

The following figures are from the Takeda Benchmark [21] specification and are

used to illustrate the geometry. In Figure 25, we see the three regions of the problem:

(i) the core, (ii) the reflector, and (iii) the control rod/void region. Each of these

regions is homogeneous. The core/rod interface poses the greatest challenge to 2D/1D

as the flux is highly anisotropic in this region.
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Figure 25: Top Down View of the Takeda Geometry [21]
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Figure 26: Side View of the Takeda Geometry [21]
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5.2 Results of 2D/1D Applied to the Takeda Bench-

mark

For the solution of this problem with 2D/1D, we use 1 cm × 1 cm radial coarse

cells with 0.5 cm×0.5 cm fine cells within. For each plane, the thickness is ∆z = 1

cm. A Chebyshev-Gauss product quadrature is used with 16 azimuthal angles per

quarter and 4 polar angles per half for the 2D MOC, with a ray spacing of 0.05 cm.

Our solution matrix consists of 40 method combinations for each of the two problem

cases: finite difference vs. nodal, five angular descriptions, two shape function, and

axial splitting on/off. We choose to be exhaustive for this benchmark, as it is relatively

quick to solve it.

5.2.1 The Unrodded Configuration

The eigenvalues produced by the various methods for the unrodded configuration

with finite difference leakage methods are shown below in Table 4. When axial splitting

is used, we see that some of these cases could not converge to the desired tolerance;

this is a consequence of the source term being split in some iterations and not others,

leading to two solutions slightly too different to reconcile.

Table 4: The Finite Difference Eigenvalue Results for the Unrodded Configuration

Shape Function FLAT FLAT FLUX FLUX
Leakage Splitting? FALSE TRUE FALSE TRUE

ISO 0.9506628 0.9577284 0.9505832 0.9576517
LIN 0.9506628 0.9742434 0.9505832 0.9741743

QUAD 0.9454783 0.9668799∗ 0.9453714 0.9666814∗

DIFF 0.9454783 0.9829008∗ 0.9453714 0.9827104∗

P1 0.9454783 1.0007217∗ 0.9453714 1.0004884∗

(reference: keff = 0.978± 0.0006)
(∗ the desired k-eff/flux residual tolerance of 1× 10−6 could not be achieved)

We also note that our predictions of the different angular methods–that odd polar

cosine moments have no influence on the scalar flux due to the use of Fick’s law–
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are confirmed. Although not shown, the power profiles of the “isotropic” and “linear”

leakage approximations are identical. Also, the power profiles of the “quadratic”, “dif-

fusion”, and “P1” leakage approximations are identical. This is only true when axial

splitting in disabled, because when enabled, each leakage method uses a unique split-

ting logic. With this confirmed, we will only consider the “isotropic” and “quadratic”

leakage approximations for the other benchmarks.

The errors of these eigenvalues when compared to the benchmark are shown below

in Table 5. We see that, as expected, this problem is very 3D in nature and is therefore

difficult to accurately solve with the 2D/1D method. The use of transverse leakage

splitting leads to a large variance in the solution, with different values occurring for all

angular approximations due to the different logic being used for each method.

Table 5: The Finite Difference Eigenvalue Error in pcm for the Unrodded Configura-
tion

Shape Function FLAT FLAT FLUX FLUX
Leakage Splitting? FALSE TRUE FALSE TRUE

ISO -2733.72 -2027.16 -2741.68 -2034.83
LIN -2733.72 -375.66 -2741.68 -382.57

QUAD -3252.17 -1112.01 -3262.86 -1131.86
DIFF -3252.17 490.08 -3262.86 471.04

P1 -3252.17 2272.17 -3262.86 2248.84

Next, we consider the results when using nodal methods rather than finite differ-

ence methods for the unrodded configuration. In Table 6, we see the eigenvalues; in

Table 7, we see the associated errors.
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Table 6: The Nodal Eigenvalue Results for the Unrodded Configuration

Shape Function FLAT FLAT FLUX FLUX
Leakage Splitting? FALSE TRUE FALSE TRUE

ISO DNC 0.9160434* DNC 0.9173312*
LIN DNC DNC DNC DNC

QUAD DNC 0.9766204* DNC 0.9836573*
DIFF DNC 0.9775694* DNC 0.9820469*

P1 DNC DNC DNC DNC
(reference: keff = 0.978± 0.0006)

(∗ the desired k-eff/flux residual tolerance of 1× 10−6 could not be achieved)
(DNC: Did Not Converge)

Unfortunately, we see that this problem poses a tremendous challenge for the nodal

method used with 2D/1D, as no cases converged successfully. For the few that did

manage partial convergence, some cases did produce good estimates of the eigenvalue.

Given the issues observed with other methods within this test matrix subset, we do

not have great confidence in these results.

Table 7: The Nodal Eigenvalue Error in pcm for the Unrodded Configuration

Shape Function FLAT FLAT FLUX FLUX
Leakage Splitting? FALSE TRUE FALSE TRUE

ISO DNC -6195.66 DNC -6066.88
LIN DNC DNC DNC DNC

QUAD DNC -137.96 DNC 565.73
DIFF DNC -43.06 DNC 404.69

P1 DNC DNC DNC DNC
(DNC: Did Not Converge)

We see that the nodal methods have great difficulty with convergence for this

problem. In the next section, we will see that the convergence issues are lessened in

the rodded configuration. We can deduce that the void region (not well approximated

by diffusion theory) is the culprit for these issues.
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5.2.2 The Rodded Configuration

The eigenvalues produced by the various methods for the rodded configuration

with finite difference leakage methods are shown below in Table 8. The same patterns

persist from the previous case, with the exception of the diffusion angular approxi-

mation converging when axial leakage splitting is enabled.

Table 8: The Finite Difference Eigenvalue Results for the Rodded Configuration

Shape Function FLAT FLAT FLUX FLUX
Leakage Splitting? FALSE TRUE FALSE TRUE

ISO 0.9487457 0.9519845 0.9486799 0.9519225
LIN 0.9487457 0.9702874 0.9486799 0.9702272

QUAD 0.9435999 0.9549328∗ 0.9435247 0.9548492∗

DIFF 0.9435999 0.9728765 0.9435247 0.9728006
P1 0.9435999 0.9919363∗ 0.9435247 0.9918602∗

(reference: keff = 0.9624± 0.0006)
(∗ the desired k-eff/flux residual tolerance of 1× 10−6 could not be achieved)

The errors of these eigenvalues when compared to the benchmark are shown below

in Table 9. With the control rod inserted, the 2D/1D method performs better, due

to the removal of the void region. Regardless, the method is greatly challenged. For

both cases, we see that the higher order leakage approximation seems to be less

accurate than the lower order counterparts. Also, the “scalar flux” shape function

has negligible effect on the solution, marginally increasing the error. For both of

these counterintuitive results, it is possible that this is a removal of cancellation of

error

Table 9: The Eigenvalue Error in pcm for the Rodded Configuration

Shape Function FLAT FLAT FLUX FLUX
Leakage Splitting? FALSE TRUE FALSE TRUE

ISO -1365.43 -1041.55 -1372.01 -1047.75
LIN -1365.43 788.74 -1372.01 782.72

QUAD -1880.01 -746.72 -1887.53 -755.08
DIFF -1880.01 1047.65 -1887.53 1040.06

P1 -1880.01 2953.63 -1887.53 2946.02
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Next, we consider the results obtained using nodal methods rather than finite

difference methods for the unrodded configuration. In Table 10, we see the eigenvalues;

in Table 11, we see the associated errors.

Table 10: The Nodal Eigenvalue Results for the Rodded Configuration

Shape Function FLAT FLAT FLUX FLUX
Leakage Splitting? FALSE TRUE FALSE TRUE

ISO 0.9498518 0.9586234∗ 0.9497863 0.9584979∗

LIN 0.9498518 1.0265975∗ 0.9497863 1.0291577∗

QUAD DNC 0.9811197∗ DNC 0.9828844∗

DIFF DNC 1.0981441∗ DNC DNC
P1 DNC 1.1097580∗ DNC 1.1110824∗

(reference: keff = 0.9624± 0.0006)
(∗ the desired k-eff/flux residual tolerance of 1× 10−6 could not be achieved)

(DNC: Did Not Converge)

Table 11: The Nodal Eigenvalue Error in pcm for the Rodded Configuration

Shape Function FLAT FLAT FLUX FLUX
Leakage Splitting? FALSE TRUE FALSE TRUE

ISO -1254.82 -377.66 -1261.37 -390.21
LIN -1254.82 6419.75 -1261.37 6675.77

QUAD DNC 1871.97 DNC 2048.44
DIFF DNC 13574.41 DNC DNC

P1 DNC 14735.80 DNC 14868.24
(DNC: Did Not Converge)

As with the unrodded configuration, convergence issues persist, but the nodal

methods do possess better accuracy than their finite difference counterparts for this

configuration. The “isotropic” and “linear” approximations produce identical solu-

tions with leakage splitting disabled, confirming that the axial differencing method

does not affect this symmetry fact. Again, this feature is purely due to the use of a

Fick’s law approximation; it is present in both the finite difference and nodal diffusion

methods.

The Takeda Benchmark specification only details the group average material fluxes;

whereas the standard output of MPACT was designed to specify power distributions.
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Thus, we only have the eigenvalue to compare our method to the benchmark. Not

surprisingly, the strong material gradients challenge the 2D/1D method greatly.

5.3 The C5G7 Extended Benchmark

The original C5G7 benchmark [22] provided heterogeneous 2D and 3D problems

that reasonably represent realistic reactors. A multitude of numerical codes (both

deterministic and Monte Carlo) were used to generate the benchmark standard. Two

years later, an extension of these problems [23] was generated that includes absorbing

control rods uninserted, partially inserted, and moderately inserted into the core. We

apply the 2D/1D method with the various leakage approximations to the extended

C5G7 benchmark problems.

The following figures are from the extended benchmark [23] and illustrate the pin

and reactor geometry. In Figure 27, the region surrounding and above the fuel is

just moderator. In the unrodded (Figure 31), rodded-A (Figure 32), and rodded-B

(Figure 33) configurations, the shaded region of the corresponding figures denotes the

presence of control rods inserted into the region.

5.4 Results of 2D/1D Applied to the C5G7 Bench-

mark

In MPACT, twenty cases were simulated for each of the three rod configurations.

The problem was divided into eighteen planes, each 3.57cm thick. The rodded pin

cells had five annular divisions in the fuel/absorber/guide tube region and two in

the moderator region, with eight azimuthal divisions in each to form the flat source

regions. The unrodded pin cells were divided into 25 square flat source regions. A

Chebyshev-Gauss product quadrature was again used with 16 azimuthal angles per

quarter and 4 polar angles per half for the 2D MOC, with a ray spacing of 0.05

cm.
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Figure 27: The Extended C5G7 Core Configuration [23]
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Figure 28: The C5G7 Pin Structure [23]

Figure 29: The C5G7 Assembly Pin Arrangement [23]
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Figure 30: The Extended C5G7 Reflector Pin Arrangement [23]

Figure 31: The Extended C5G7 Unrodded Core Configuration [23]
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Figure 32: The Extended C5G7 Rodded-A Core Configuration [23]

Figure 33: The Extended C5G7 Rodded-B Core Configuration [23]
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5.4.1 The Unrodded Configuration

The eigenvalues and their errors compared to the benchmark for the unrodded

configuration are shown in Table 12 and Table 13, respectively. We see that the

higher-order leakage approximations seem to be less accurate than the lower-order

counterparts–we presume that this is a removal of error cancellation. The nodal meth-

ods are also consistently more accurate than the finite difference methods. In addition,

the inclusion of the flux shape function has little bearing on the result, as was the case

in Chapter 4. Surprisingly, for the unrodded case, splitting the leakage to maintain

positivity of the source universally improves the accuracy of the eigenvalue.

Table 12: The Eigenvalue Results for the Unrodded Configuration

Shape Function FLAT FLAT FLUX FLUX
Leakage Splitting? FALSE TRUE FALSE TRUE

ISO-FD 1.1416391 1.1418438 1.1416266 1.1418277
ISO-NODAL 1.1419941 1.1422042 1.1419794 1.1421855
QUAD-FD 1.1411530 1.1417664 1.1411310 1.1417339

QUAD-NODAL 1.1414666 1.1421031 1.1414360 1.1420609
(reference: keff = 1.14308± 0.006%)

Table 13: The Eigenvalue Error in pcm for the Unrodded Configuration

Shape Function FLAT FLAT FLUX FLUX
Leakage Splitting? FALSE TRUE FALSE TRUE

ISO-FD -144.09 -123.62 -145.34 -125.23
ISO-NODAL -108.59 -87.58 -110.06 -89.45
QUAD-FD -192.70 -131.36 -194.90 -134.61

QUAD-NODAL -161.34 -97.69 -164.40 -101.91

Table 14 summarizes the power profile information for the “isotropic” leakage

approximations with nodal diffusion, a “flat” shape function, and leakage splitting

enabled. We see that the maximum pin power for each of the three axial fuel regions

is quite accurate; the third plane (closest to the problem boundary) has the most error

and is most likely due to the axial diffusion boundary conditions that exist with the

2D/1D approximation. Overall, the errors associated with the pin power distribution

are within 3%.
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5.4.2 The Rodded-A Configuration

The eigenvalues and their errors compared to the benchmark for the rodded-A con-

figuration are shown in Table 15 and Table 16, respectively. Again, we see that the use

of leakage splitting improves the accuracy of the method in calculating the eigenvalue.

This may occur as the splitting process generates an implicit shape function.

Table 15: The Eigenvalue Results for the Rodded-A Configuration

Shape Function FLAT FLAT FLUX FLUX
Leakage Splitting? FALSE TRUE FALSE TRUE

ISO-FD 1.1273792 1.1275939 1.1273743 1.1275852
ISO-NODAL 1.1270744 1.1272912 1.1270785 1.1272914
QUAD-FD 1.1267410 1.1273839 1.1267559 1.1273879

QUAD-NODAL 1.1261915 1.1268471 1.1262464 1.1268901
(reference: keff = 1.12806± 0.006%)

Table 16: The Eigenvalue Error in pcm for the Rodded-A Configuration

Shape Function FLAT FLAT FLUX FLUX
Leakage Splitting? FALSE TRUE FALSE TRUE

ISO-FD -68.08 -46.61 -68.57 -47.48
ISO-NODAL -98.56 -76.88 -98.15 -76.86
QUAD-FD -131.90 -67.61 -130.41 -67.21

QUAD-NODAL -186.85 -121.29 -181.36 -116.99

Table 17 summarizes the power profile information for the “isotropic” leakage

approximations with nodal diffusion, a “flat” shape function, and leakage splitting

enabled. We see that the maximum pin power for each of the three axial fuel regions

is quite accurate; the presence of the control rods has improved the accuracy of the

third plane (the one with the worst error in the unrodded configuration). Overall,

the errors associated with the pin power distribution are again within 3%. Compared

to the unrodded case, we see that more of the individual pins are within the Monte

Carlo solution statistical errors. From this, we can presume that the guide tubes,

being void, present more difficulty for the 2D/1D approximation than the control

rods. This intuitively makes sense as the control rods, although heavily absorbing,

have a much larger collision cross section and are more diffusive in comparison.
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5.4.3 The Rodded-B Configuration

The eigenvalues and their errors compared to the benchmark for the rodded-B

configuration are shown in Table 18 and Table 19, respectively. The same patterns

persist as for the rodded-A case: (i) better results with lower-order leakage, (ii) neg-

ligible change/improvement when using the flux shape functions, and (iii) leakage

splitting improves the eigenvalue solution.

Table 18: The Eigenvalue Results for the Rodded-B Configuration

Shape Function FLAT FLAT FLUX FLUX
Leakage Splitting? FALSE TRUE FALSE TRUE

ISO-FD 1.0774628 1.0777238 1.0774706 1.0777272
ISO-NODAL 1.0761943 1.0764548 1.0762326 1.0764886
QUAD-FD 1.0764876 1.0772709 1.0765603 1.0773308

QUAD-NODAL 1.0744857 1.0752708 1.0746901 1.0754617
(reference: keff = 1.07777± 0.006%)

Table 19: The Eigenvalue Error in pcm for the Rodded-B Configuration

Shape Function FLAT FLAT FLUX FLUX
Leakage Splitting? FALSE TRUE FALSE TRUE

ISO-FD -30.72 -4.62 -29.94 -4.28
ISO-NODAL -157.57 -131.52 -153.74 -128.14
QUAD-FD -128.24 -49.91 -120.97 -43.92

QUAD-NODAL -328.43 -249.92 -307.99 -230.83

Table 20 summarizes the power profile information for the “isotropic” leakage

approximations with nodal diffusion, a “flat” shape function, and leakage splitting

enabled. We see that the maximum pin power for each of the three axial fuel regions

is again quite accurate; the deeper insertion of the control rods has further harmed

the accuracy of the first plane, but improved the accuracy of the second and third

plane. Overall, the errors associated with the pin power distribution are again within

3%. Compared to the previous two cases, we see that even more of the individual

pins are within the Monte Carlo solution statistical errors. This further confirms

our prior statements that void regions present the greatest challenge to the 2D/1D

approximation.
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5.5 CASL VERA 3A Milestone Problem

The final simulation we consider comes from the Advanced Modeling Applications

(AMA) branch of CASL [24]. Of the five core physics problems described, we consider

the 3D assembly–specifically, the first case with no absorber rods. This problem is the

most realistic of the three, with sixty energy groups. Due to the detailed isotopics and

fine energy grouping of this model, a critical step to the correct solution of this model

is the resonance calculation; within MPACT, the subgroup method [25] is used to

perform these resonance calculations. We use this method as a “black-box” to obtain

better results.

This assembly is a 17x17 grid of fuel rods, guide tubes, and an instrumentation

tube as shown in Figure 34. These pins have three material regions: pin interior (e.g.

fuel), clad, and moderator.

fuel pin

instrument tube*

guide tube

Figure 34: The Quarter Assembly Configuration of the VERA 3A Benchmark
* The instrument tube is the center of the assembly.

Figure 35 is from the benchmark document to show the axial distribution of ma-

terials in the assembly.
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Figure 35: The VERA 3A Benchmark Assembly Axial Geometry [24]
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5.6 Results of 2D/1D Applied to the CASL VERA

3A Milestone Problem

In MPACT, twenty cases were performed for this benchmark. The problem was

divided into 58 axial planes of variable thickness to match the problem geometry. The

rodded pin cells had three annular divisions in the fuel/absorber/guide tube region

and one each in the clad and moderator region, with eight azimuthal divisions in each

to form the flat source regions. The unrodded pin cells were divided into 16 square flat

source regions (4 for quarter pin cells). Again, we use a Chebyshev-Gauss quadrature,

but with 8 azimuthal angles per quadrant and two polar angles per half for the 2D

MOC, with a ray spacing of 0.05 cm. Unlike the previous benchmarks, the VERA

3A Benchmark has a great deal of axial heterogeneity, with six grid spacers within

the fuel region and more structural components above and below the fuel assembly.

Because of this, we expect this benchmark to challenge the 2D/1D approximation in

a way different than the cases we have studied thus far.

Running this problem, we see that the eigenvalue results are similar for all methods

considered. The nodal methods perform better overall, with shape functions and axial

leakage having little effect. Because enabling leakage splitting has little effect, we

presume that, for this problem, splitting to maintain a positive source occurs very

infrequently.

Table 21: The Eigenvalue Results for VERA 3A Benchmark

Shape Function FLAT FLAT FLUX FLUX
Leakage Splitting? FALSE TRUE FALSE TRUE

ISO-FD 1.1709894 1.1709895 1.1709893 1.1709893
ISO-NODAL 1.1710347 1.1710347 1.1710345 1.1710346
QUAD-FD 1.1709670 1.1709672 1.1709668 1.1709671

QUAD-NODAL 1.1710124 1.1710126 1.1710122 1.1710125
(reference: keff = 1.176286± 0.00001)

Examining the 2D radial and 1D axial power profiles, we find again that the

isotropic leakage, with nodal diffusion, a “flat” shape function, and axial leakage
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Table 22: The Eigenvalue Error in pcm for the VERA 3A Benchmark

Shape Function FLAT FLAT FLUX FLUX
Leakage Splitting? FALSE TRUE FALSE TRUE

ISO-FD -473.26 -473.25 -473.27 -473.27
ISO-NODAL -468.73 -468.73 -468.75 -468.74
QUAD-FD -475.50 -475.48 -475.52 -475.49

QUAD-NODAL -470.96 -470.94 -470.98 -470.95

splitting enabled produces the best results. The following tables and figures show

these results and the relative error when compared to the benchmark solution. In

Table 23 and Table 24, the pin powers are shown for the pin configuration shown in

Figure 34.

Table 23: The 2D Radial Pin Powers for VERA 3A Benchmark

– 1.0348 1.0356 – 1.0346 1.0310 – 1.0113 0.9771
1.0348 1.0097 1.0099 1.0357 1.0092 1.0063 1.0254 0.9887 0.9729
1.0356 1.0099 1.0108 1.0376 1.0118 1.0090 1.0266 0.9884 0.9724

– 1.0357 1.0376 – 1.0441 1.0437 – 1.0109 0.9748
1.0346 1.0092 1.0118 1.0441 1.0322 1.0497 1.0350 0.9840 0.9656
1.0310 1.0063 1.0090 1.0437 1.0497 – 1.0167 0.9658 0.9561

– 1.0254 1.0266 – 1.0350 1.0167 0.9745 0.9496 0.9472
1.0113 0.9887 0.9884 1.0109 0.9840 0.9658 0.9496 0.9405 0.9428
0.9771 0.9729 0.9724 0.9748 0.9656 0.9561 0.9472 0.9428 0.9480

Table 24: The 2D Radial Pin Power Relative Errors in pcm for the VERA 3A Bench-
mark

– -80.14 -63.69 – -29.95 -75.60 – 12.86 -3.07
-80.14 13.87 -6.93 -78.15 13.87 22.86 -15.60 40.47 1.03
-63.69 -6.93 13.85 -56.83 11.86 -13.87 -44.79 -2.02 -7.20

– -78.15 -56.83 – -14.36 -60.33 – 2.97 21.55
-29.95 13.87 11.86 -14.36 47.49 -27.62 1.93 49.82 10.36
-75.60 22.86 -13.87 -60.33 -27.62 – 7.87 19.68 26.15

– -15.60 -44.79 – 1.93 7.87 61.61 55.84 44.36
12.86 40.47 -2.02 2.97 49.82 19.68 55.84 79.81 25.46
-3.07 1.03 -7.20 21.55 10.36 26.15 44.36 25.46 14.77

116



F
ig

u
re

36
:

T
h
e

1D
A

x
ia

l
C

or
e

P
ow

er
P

ro
fi
le

fo
r

th
e

V
E

R
A

3A
B

en
ch

m
ar

k

117



Chapter 6

Conclusion

In this thesis we have proposed a basic mathematical foundation for the 2D/1D

methodology in DeCART and MPACT. The starting point of our analysis is a 2D/1D

equation – a second-order integrodifferential equation that approximates the linear 3D

Boltzmann equation only in its axial leakage term. Many approximations to the axial

leakage are possible; in this thesis we have treated the five simplest: (i) isotropic,

(ii) linear, (iii) quadratic, (iv) diffusion, (v) and P1. By systematically discretizing

the 2D/1D equation in each of its independent variables, and then by formulating

and Fourier-analyzing various iterative methods for solving the discrete equations,

we obtain computational methods that (i) iteratively converge for each fixed grid,

and (ii) also converge as the grid is refined – to the analytic solution of the original

2D/1D equation. Numerical results confirm these theoretical predictions and show

that for 3D problems in which the standard diffusion approximation is valid, the

2D/1D and linear Boltzmann equations yield highly similar solutions. Furthermore,

applying this method to benchmark problems, we see good agreement for reactor-like

problems–those with radial heterogeneity and weak axial derivatives of the angular

flux.

The theory presented in this thesis fulfills two goals:

1. By using the 2D/1D equation as the starting point, numerical 2D/1D solutions

can be interpreted in the limit as the numerical grids become fine: these solutions
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will consistently limit to the analytic solution of the continuous 2D/1D equation

– which approximates the Boltzmann equation more accurately than the stan-

dard diffusion equation. (Without an underlying integro-differential equation as

a starting point, it is not evident that a discretization method will possess a

limiting solution as the grids are refined.)

2. By using a standard Fourier analysis, stable iteration methods have been devel-

oped for solving the consistently-discretized 2D/1D equations.

Both of these goals are confirmed by the numerical results.

The following issues should be kept in mind:

1. If the angular discretizations of Lz and ψ satisfy Eq. (3.1b), then the angularly-

discretized 2D/1D Eq. (3.1) becomes identical to the angularly-discretized linear

Boltzmann equation. Thus, by systematically increasing the accuracy of the

angular dependence of the axial leakage term, the solution of the continuous

2D/1D equation should systematically limit to the solution of the continuous

Boltzmann equation.

2. As the angular complexity of the transverse leakage term increases, the amount

of information that must be passed between processors will increase, and the

parallel efficiency of the resulting method will decrease. Thus, there is a tradeoff

between accuracy and parallelizability.

3. An extra degree of complexity occurs because of the fine and coarse radial

spatial grids: no amount of angular refinement will cause the discrete 2D/1D

solution to limit to the discrete Boltzmann solution unless all the spatial grids

are refined.

To summarize the results of our numerical simulations, they show that the 2D/1D

solutions treat “radial” boundary layers (along surfaces whose normals point in a

radial direction) with transport accuracy, and “axial” boundary layers (along surfaces

whose normals point in an axial direction) with at worst diffusion accuracy. If an

axial boundary layer contains strong radial derivatives, then the accuracy of the

2D/1D solution actually increases. This is all that one would hope for, from solving
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an equation that preserves the correct transport physics in the radial directions and

the approximate diffusion physics in the axial direction.

Our simulations also confirm that a key element of stability of the 2D/1D iteration

scheme is the under-relaxation step. Under-relaxation is never used for iteratively

solving standard SN calculations; the necessary inclusion of this step for solving the

2D/1D equation demonstrates a fundamental difference between this equation and

the Boltzmann transport equation.

If the under-relaxation step is not performed, the iteration method used in our

simulations becomes quite similar to the original iteration method used in DeCART

– and it becomes unstable for sufficiently small ∆z. This true for both the “source

iteration” and CMFD accelerated method, with the “source iteration” method be-

ing more sensitive to instability and requiring more under-relaxation to guarantee

stability.

In MPACT, the radial transport solver of the 2D/1D equation itself is discretized

on the fine radial grid, and the axial leakage of the 2D/1D equation and low-order

“diffusion” equation in the CMFD method is discretized consistently on the coarse

radial grid. The axial leakage of the 2D/1D equation on a coarse grid results in the

need to employ shape functions in order to reduce this error. We employed the “scalar

flux” shape function as an improvement over the lack of a shape function (“flat”) but

found little improvement. This agrees with the findings of another MPACT devel-

oper [20], who noted that in order to get a shape function to work with the 2D/1D

fusion method, at least first-order Chebyshev moments of the azimuthal angle must

be included.

The resulting 2D/1D solutions are not identical to solutions of the 3D Boltzmann

transport equation, because the 2D/1D physics in the axial direction is diffusion not

transport. However, more accurate approximations to the axial derivative term can

be envisioned, as was discussed in Chapter 3. In particular, approximations more

sophisticated than P1 (for example, P3) can be used. In fact, the current KAERI

version of DeCART now uses an SP3 approximation to the transverse leakage term

[11].

120



The main point to emphasize is that many different possibilities exist for approx-

imating the axial leakage term in the 3D Boltzmann transport equation, so that the

resulting “2D/1D” equation (i) models practical reactor core problems with sufficient

accuracy, and (ii) can be solved more efficiently than the standard 3D Boltzmann

transport equation. We discuss some of these possibilities next.

6.1 Future Work

The theory presented here is developed for only the five “simplest” 2D/1D equa-

tions; for the 1D axial diffusion discretization, we use either (i) a standard finite-

difference approximation, or (ii) a nodal approximation; for iteration schemes, we

consider a relatively simple “Source Iteration” method with under-relaxation and a

CMFD accelerated method, also with under-relaxation. The theory presented here

certainly does not include all possible improvements to the 2D/1D method. For the

theory to become more applicable to realistic reactor core problems than in its current

form, it could be improved in the following ways.

6.1.1 Diffusion Coefficient

The standard diffusion coefficient in Eq. (3.34) can be directly applied to problems

with radial spatial variation of the type found in reactor cores. This basic procedure

is followed in DeCART and MPACT, and useful numerical results are obtained. How-

ever, accuracy will be improved when the methods in subsection 3.1.2 are adopted.

The methods from this section are using asymptotic lattice-diffusion theory, using an

Eddington factor, or preserving some desired transport behavior.

The accuracy of the 2D/1D solution depends strongly on the use of the correct

diffusion coefficient in the approximate axial derivative term. For problems that are

classically diffusive, such as the ones tested here in Chapter 4, our numerical results

show that the standard diffusion coefficient D = 1/3Σtr is correct. However, for a

reactor lattice, where classic diffusion theory is not valid (because the angular depen-
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dence of the neutron flux is much more complicated than linear), the classic formula

D = 1/3Σtr (or a homogenized version of this formula) is not justified theoretically.

Fortunately, for lattice problems, a systematic asymptotic theory does predict an

axial diffusion coefficient [18, 19], and we recommend that this be implemented and

tested in MPACT.

6.1.2 Shape Functions

In this thesis, we presented the two most very basic shape functions possible:

“flat” and “scalar flux” weighted. It is possible to formulate more detailed and accu-

rate shape functions. For instance, a smaller subset of discrete angles could be used to

define a shape function, or a shape function could be defined using spherical harmonic

expansions of the coarse and fine grid angular fluxes in the numerator and denomina-

tor of the fundamental shape function. The systematic asymptotic theory for lattice

problems [18,19] also predicts an appropriate lattice diffusion shape function.

6.1.3 Alternate Axial Solvers

In this thesis, we considered finite difference and nodal axial diffusion. Both of these

approximations agree with the underlying 2D/1D equation. Alternate, more accurate

axial solvers exist in MPACT, such as 1D nodal P3 and SN solvers. The underlying

integrodifferential equation when using these methods with the axial leakage methods

presented here is unclear and may not exist. In order to state an underlying 2D/1D

equation when using these methods, it may be a requirement to use a more accurate

axial leakage approximation.

6.1.4 Alternate Leakage Splitting

In Chapter 4, we discussed the concept of axial leakage splitting to preserve the

flat-source region-wise positivity of the source. In Chapter 5, we observed that its

inclusion also seemed to improve the pin power distribution by working as an implicit
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shape function. This suggests that the inclusion of the transverse axial leakage as an

absorption term, rather than a source term, could produce more accurate solutions

than the methodologies investigated here. The difficulty of this approach would be

the possibility of negative, effective absorption cross sections which would cause the

angular flux of the 2D sweep to grow, rather than decay, exponentially along the ray

sweep.

6.2 Final Thoughts

In conclusion: we have presented in this thesis the beginning of a mathematical the-

ory for the 2D/1D methodology in DeCART and MPACT, so that this methodology

can be systematically developed and improved for practical reactor core problems.

This lays the ground work for more advanced 2D/1D approximations to be made

with a solid mathematical basis. We have presented results of 2D/1D and 3D calcu-

lations for some geometrically simple problems, showing that (i) the 2D/1D solutions

exist and are more accurate than standard diffusion, and (ii) the iterative method

is stable and behaves as predicted by the Fourier analysis. We have also shown that

the method performs admirably when applied to benchmark reactor problems. From

this, we look favorably on the 2D/1D methodology, as a fast, accurate tool for the

numerical simulation of reactor physics problems.
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