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“For my thoughts are not your thoughts, neither are your ways my ways,” declares

the Lord. “As the heavens are higher than the earth, so are my ways higher than

your ways and my thoughts than your thoughts.” - Isaiah 55:8-9
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ABSTRACT

Toward a Simple, Accurate Lagrangian Hydrocode

by

Tyler B. Lung

Chair: Philip L. Roe

Lagrangian hydrocodes play an important role in the computation of transient, com-

pressible, multi-material flows. This research was aimed at developing a simply

constructed cell-centered Lagrangian method for the Euler equations that respects

multidimensional physics while achieving second-order accuracy. Algorithms that

can account for the multidimensional physics associated with acoustic wave propa-

gation and vorticity transport are needed in order to increase accuracy and prevent

mesh imprinting. Many of the building blocks of traditional finite volume schemes,

such as Riemann solvers and spatial gradient limiters, have their foundations in one-

dimensional ideas and so were not used here. Instead, multidimensional point esti-

mates of the fluxes were computed with a Lax-Wendroff type procedure and then

nonlinearly modified using a temporal flux limiting mechanism.

The linear acoustic equations were used as a simplified test environment for the

Lagrangian Euler system. Here Lax-Wendroff methods that exactly preserve vortic-

ity were investigated and found to resist mesh imprinting. However, the dispersion

properties of the schemes were poor and so third-order accurate vorticity preserving

methods were developed to remedy the problem. The third-order methods guided the

xxi



construction of a temporal limiting mechanism, which was then used in a vorticity

preserving flux-corrected transport scheme. While the acoustic work was interesting

in its own right, it also proved to be a useful stepping stone to Lagrangian hydrody-

namics. The acoustics algorithms were extended to produce the Simple Lagrangian

Method (SLaM). Standard test problems have shown that a first-order accurate ver-

sion of the method is able to resist mesh imprinting and spurious vorticity despite

its minimalistic structure. SLaM is capable of second-order accuracy with a simple

parameter change and some preliminary work was done to extend the temporal flux

limiting ideas from acoustics to the Lagrangian case. The limited SLaM method

converges at second-order for smooth data and is able to capture shocks without

producing large unphysical oscillations.
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CHAPTER I

Introduction

The vast majority of computational fluid dynamics (CFD) methods in common

use, especially in the world of aerospace engineering, make use of Eulerian meshes.

In an Eulerian mesh, the computational points where the solution is approximated

are fixed in space. The prevalence of Eulerian methods is easily explained given

the nature of the fluid flows commonly encountered in aerospace applications and,

more generally, most flows of engineering interest. In these flows, fluid elements

are advected over large distances and undergo severe deformations. A Lagrangian

mesh that moves with the fluid would, therefore, distort and tangle over time making

computations difficult.

There is, however, a class of problems that lends itself to the use of Lagrangian

meshes. In general, these problems involve transient compressible flows which are

highly energetic, brief, and often involve multiple materials. Examples include the

simulation of explosions and hyper-velocity deformations of solids (e.g. projectile-

armor interactions). In the context of this specialized problem set, the flows occur

over exceptionally short time scales. This means that a Lagrangian mesh must only be

advected over relatively short distances, making the approach more viable. There are

two primary advantages related to Lagrangian meshes that make them not just viable,

but preferable for these problems. First, the governing equations for compressible flow
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simplify a great deal in the Lagrangian frame since the nonlinear advective terms

in the governing equations are hidden. Second, a Lagrangian mesh prevents the

numerical mixing of different materials in multi-material problems, thereby avoiding

equation of state modeling difficulties and smeared contact discontinuities.

Lagrangian numerical methods aimed at solving the types of flows mentioned

above trace their origins to the Manhattan Project at Los Alamos National Labora-

tory (LANL) in the 1940s. Of course, it was the quest for nuclear weapons that drove

their development. In particular, it was necessary to understand the implosion of a

nuclear weapon in which high explosives generate strong shocks to compress nuclear

material to its supercritical density. During such an implosion, the enormous temper-

atures and pressures generated by detonating the high explosives cause metals and

other solids to deform like fluids. As a result, the experiments used to understand the

implosion process were referred to as hydrotests [33]. During this period, the compu-

tational work of von Neumann and Richtmyer [88] at LANL allowed one-dimensional

shocks representative of those encountered in an implosion to be computed numer-

ically in Lagrangian coordinates. Their work birthed a class of methods that are

referred to as Lagrangian hydrodynamic codes, or Lagrangian hydrocodes.

1.1 Foundations of Lagrangian Hydrocodes

Since the Manhattan Project, Lagrangian hydrocodes have been the focus of in-

tense, though often isolated, research efforts due to the role they play in solving prob-

lems of importance to national security. Traditionally there are two main classes of

hydrocodes: staggered-grid and cell-centered. staggered-grid hydrodynamics (SGH)

methods are descendants of the one-dimensional method invented by von Neumann

and Richtmyer and have historically been responsible for the bulk of practical hydro-

dynamics computations. These methods are characterized by a stencil that employs

staggered storage, locating the thermodynamic variables (density, internal energy,
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Figure 1.1: Stencils representative of those used for SGH methods (left) and CCH
methods (right) are shown.

pressure) at the center of cells and the kinematic variables (momentum) at cell ver-

tices on a dual mesh. In contrast, cell-centered hydrodynamics (CCH) methods store

the conserved variables (density, momentum, total energy) at cell centers. While

the genesis of cell-centered codes can be attributed to the work of Godunov during

the late 1950s [36], this author also believes that Peter Lax and Burton Wendroff

deserve mention. The original Lax-Wendroff paper [47] solved the one-dimensional

hydrodynamics equations in terms of the conserved variables using Lagrangian coor-

dinates. Figure 1.1 shows conceptual depictions of the computational stencils used

by two-dimensional SGH and CCH methods.

A major reason that SGH methods have been heavily used in the past is that the

staggered storage allows for the mesh motion to be determined in a straight forward

manner. The momentum variables define the mesh motion and they are easily up-

dated by applying Newton’s second law on the staggered mesh. For example, in the
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case of gas dynamics, the force on the staggered control volumes is obtained from the

pressures stored in the adjacent cells. On the other hand, a major drawback of the

staggered storage is that the resulting methods are not naturally conservative. This

arises from fact that the mass and momentum variables are not co-located and the

total energy is not updated directly. It is possible to derive conservative staggered

schemes, which are referred to as compatible, however a careful discretization proce-

dure is required. In contrast, CCH methods are attractive because they are naturally

conservative in the same way as any other finite volume scheme. Time and space

averaged fluxes are computed at cell boundaries to update the conserved variables.

Traditionally, the fluxes are obtained from Riemann solvers that have been modified

to account for moving geometry.

Riemann solvers compute, either exactly or approximately, the one-dimensional

unsteady waves that would form at a cell boundary if the states defined by the cell-

centered data were allowed to interact. This type of initial value problem is known

as Riemann’s problem in gas dynamics. In general, a Riemann solution consists of

the four states shown in Figure 1.2: the initial left and right states and then two

intermediate ones created by the waves. A Riemann solver determines which state

the current face lies in and then computes the fluxes from it. Godunov solved the

Riemann problems at cell faces exactly on Eulerian meshes, inventing what is now

simply referred to as Godunov’s method [35]. Its success led to the development of

many approximate Riemann solvers that were designed to give acceptable solutions

at reduced cost (see e.g. [72; 38; 68]). Schemes that use approximate Riemann solvers

are called Godunov-type methods and they form the basis for most current Eulerian

compressible flow codes.

The primary difficulty with the Godunov-type approach in multidimensional CCH

is that there is no obvious way to determine the motion of mesh vertices from the

one-dimensional Riemann velocities at faces. Early attempts at doing so led to al-
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Figure 1.2: The Riemann problem from gas dynamics is an initial value problem
in which the unsteady interaction of two uniform, discontinuous states is
determined. Riemann solvers are used to compute face fluxes in Godunov-
type methods.

gorithms that were prone to mesh instabilities and spurious vorticity production.

Furthermore, whether one is interested in Lagrangian or Eulerian methods, the wis-

dom in constructing multidimensional methods with Riemann solvers may be called

into question since they are intrinsically one-dimensional.

1.2 An Overview of Staggered-grid Hydrodynamics Methods

The method of von Neumann and Richtmyer has two important characteristics

that are still present in SGH methods today. The first, of course, is the staggered

storage described in Section 1.1. The second is the use of a nonlinear dissipation

term which they termed artificial viscosity. This term was added to the pressure in

the governing equations and was designed to add numerical dissipation near shocks,

but vanish in smooth regions of the flow. This had the practical effect of smooth-

ing out discontinuities and reducing spurious oscillations, which permitted successful

shock-capturing. Another notable early work related to artificial viscosity is due to

Landshoff [46], who added a linear term to von Neumann and Richtmyer’s quadratic

one. Often artificial viscosity is associated with enforcing physical waves (e.g. pro-
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viding an entropy increase across shocks), providing numerical stability, and reducing

spurious overshoots all at the same time. However, from a numerical perspective,

these three issues are distinct. It is often confusing when they are not treated as

such. Regardless, the concept and use of artificial viscosity is deeply embedded in the

hydrodynamics literature, particularly in regard to SGH methods.

The seminal extension of the staggered-grid methodology to multiple space di-

mensions was done by Wilkins [90] in the early 1960s. Here, hydrodynamic flows

in elastic-plastic solids were computed in two space dimensions on moving meshes.

For the next few decades, SGH research was focused on building upon the existing

staggered-grid framework instead of fundamentally changing it. For example, much

emphasis was placed on devising improved artificial viscosities and extending the idea

of artificial viscosities to multidimensional problems (see e.g. [44; 91; 7; 20]). Funda-

mental improvements to the staggered-grid framework did come about in the 1990s

with the invention of the so-called compatible methods. These methods were fully

conservative and constructed in terms of subzonal masses and pressures [12; 19; 21].

The compatible methods used the discrete conservation of energy equation and a

corner-force-based sub-cell discretization to ensure that the discrete energy conver-

sions between kinetic and internal energies (and vice versa) were done in a “com-

patible” manner. That is, any reduction/increase in kinetic energy was accompanied

by the appropriate increase/decrease in internal energy. Compatible methods form

the basis for modern SGH codes, which are still widely used to solve complex, mul-

tiphysics flows of engineering interest. Examples of more recent research related to

SGH include [11], [54], and [64] which focus on the derivation of multidimensional

artificial viscosities using Riemann-like solvers.

6



1.3 A Persistent Failing: Spurious Mesh Movement

While one of the primary benefits of utilizing Lagrangian meshes is that the non-

linear advective terms in the governing equations are hidden, the payment for this

convenience is extracted during the task of moving the mesh. Since each mesh zone

tracks a parcel of fluid, the mesh distorts and moves over time. In vortical flows or

flows with with significant shear the mesh will undergo large distortions and tangle,

eventually requiring the computation to be stopped and the mesh fixed. Of course,

mesh tangling due to physical flow features is unavoidable. Unfortunately, this is not

the sole, or even primary, concern. The mesh can tangle due to nonphysical motions,

instabilities, or some combination of the two. Caramana and Shashkov describe these

problems as the “bane of Lagrangian hydrodynamics calculations” [17]. Specifying

the mesh motion in a simple, stable way that minimizes spurious motions is one of

the central problems related to Lagrangian computations and a major focus of this

work.

As previously noted, SGH codes have been heavily used because the motion of

mesh nodes is easily obtained. However, simplicity does not imply accuracy. Indeed,

SGH methods commonly suffer from spurious mesh tangling, mesh instabilities, and

mesh imprinting when computing multidimensional problems. An example of spuri-

ous mesh motion is shown in Figure 1.3. Here, vertices in the initially square mesh

should only experience radial motion; no vorticity should be present. Instead un-

physical mesh motions have clearly occurred, especially near the origin, and badly

formed high aspect ratio or nonconvex cells have resulted. The badly formed elements

are indicative of past solution errors and a numerical solution that does possess the

proper radial symmetry. Many techniques were developed to fix the spurious motions

in SGH such as damping them with special artificial viscosities, removing them with

filtering techniques, modifying stress-induced forces to match solution symmetries, or

utilizing sub-zonal pressures and masses [34; 57; 10; 18; 17]. Despite these attempts,
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Figure 1.3: Mesh imprinting, which is accompanied by spurious vorticity, destroys a
Lagrangian computation that should possess perfect radial symmetry.

a report from the Methods and Algorithms group at LANL in 2009 noted that there

was no code available in the weapons complex that could correctly compute an ideal-

ized implosion without the use of “artificial symmetrizing constraints” [13]. Clearly,

this represented a large concern. If the available hydrodynamic methods required ad

hoc features that forced solutions to obey known symmetries, how could they be used

to compute general problems with confidence?

In some instances, mesh imprinting problems can be reduced by using meshes that

mimic known symmetries in the solution. For example, when computing a radially

symmetric explosion in two spatial dimensions, one might employ a radial mesh.

However, this approach fails in practice for two main reasons. First, there is no way

to construct a discrete mesh in three dimensions that mimics spherical symmetry

[13; 21]. Second, constructing a tailor-made mesh is only possible if a great deal

is known about the solution a priori and this is obviously not the case for general
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problems. The only way to truly solve these issues is to develop a hydrodynamics

method that does not suffer from mesh imprinting and respects multidimensional

physics without artificial fixes.

1.4 Recent Progress: Cell-centered Hydrodynamics Meth-

ods

The first CCH algorithms originated in Russia due to the work of Godunov and

his co-workers during the late 1950s and they were used to solve multidimensional hy-

drodynamics problems [36]. These methods were, not surprisingly, constructed along

the lines of what are now called Godunov-type finite volume schemes. To update the

conserved variables, which were stored at cell centers, Riemann solvers were modified

to give the fluxes across cell faces on a moving mesh. In the United States, mul-

tidimensional cell-centered algorithms were being worked on by the late 1970s and

into the 1980s with the PISCES [7] and CAVEAT codes [1; 30]. An advantage of the

CCH approach is that it naturally produces conservative methods, while one of the

primary challenges is determining how to relate Riemann face velocities to the mesh

nodes. The CAVEAT code used a least-squares fit of the face velocities around each

node to move the mesh. However, serious problems with spurious mesh motions were

encountered. The problems with the CAVEAT code are particularly well documented

in [29] and [7]. The quandary of how to properly specify the mesh motion in tradi-

tional CCH methods inhibited their use and was another reason for the popularity of

SGH methods.

During the last decade, a large shift toward CCH methods, particularly with

respect to research efforts, has taken place. The impetus behind the shift was a

desire to overcome the problems outlined in Section 1.3 and the success in doing

so originally demonstrated for gas dynamics by Després and Mazeran [27] and then
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Maire et. al. [60] with the cell-centered framework. The key idea proposed in these

works was to shift the emphasis in cell-centered algorithms from computing face fluxes

to computing corner fluxes. Node-based solvers were constructed that compute the

fluxes through each cell corner and the adjacent node velocity in a single, consistent

step. This approach was significant not only because it unambiguously specified

the mesh motion, but also because it resulted in methods that automatically satisfy

the geometric conservation law (GCL). Satisfying the GCL can be thought of as

maintaining consistency between the volume change of a zone due to the mesh motion

and the volume change of the same zone that is defined implicitly through the energy

fluxes (which contain an estimate of the velocity divergence). Satisfying the GCL

is important since violations can lead to mesh instabilities and methods that do not

preserve a uniform flow field.

The works by Després and Mazeran and Maire et. al. have led to a fundamental

shift in the way cell-centered methods are constructed and thought about. A brief

description of Maire’s original first-order accurate method will be given. Again, the

key concept is the construction of a nodal solver which computes the corner fluxes

and mesh motion simultaneously. To construct it, degrees of freedom were added to

the standard cell-centered stencil by way of half-face pressures as shown in Figure

1.4. That is, each cell in the mesh was assumed to possess unique pressures along

each half-face. For a quadrilateral element, this translates to the addition of eight

new pressures. These pressures are independent of the cell-centered one and are not

continuous at cell boundaries. Due to the lack of continuity, the conservative nature

of the algorithm is initially lost (the fluxes for both momentum and total energy

contain the pressure). To regain it, the conservation of momentum (and energy) was

imposed in an integral sense around each vertex. An entropy constraint was then

used to provide the additional information needed to write a fully determined system

of equations at each node for the adjacent half face pressures and the node velocity.
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Figure 1.4: Shown here is a conceptual representation of Maire’s CCH method. The
nodal solver computes the half-face pressures (phf ) and nodal velocity
(Vnode) in a single step.

Then, by taking the velocity of each face to be the average of the adjacent node

velocities, the mesh motion and the fluxes are known and the conserved variables

can be updated by integrating the fluxes around the cell-centered control volumes.

Interestingly, the resulting nodal velocity can be shown to be special fit of the adjacent

one-dimensional half-face velocities predicted by an acoustic Riemann solver. For

additional details, the reader is referred to the journal paper [60].

The corner-based cell-centered methods developed in France were much less prone

to mesh imprinting, with no ad hoc fixes, than any previous methods. This success

did not go unnoticed and triggered a flurry of research activity both in France and

around the world. Després and Mazeran’s scheme (GLACE) was extended to work

on unstructured meshes with second-order accuracy [22] and solve hyperelasticity

problems [41]. Furthermore, the weak consistency of the GLACE scheme was proved

for unstructured meshes [25] and its mesh robustness was improved using sub-zonal
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entropies in [26]. Similarly, the method of Maire et. al. (EUCCLHYD) was extended

to achieve second-order accuracy, accommodate unstructured meshes, provide the La-

grangian capability in an arbitrary Lagrangian-Eulerian (ALE) framework, and solve

problems with strength [58; 59; 61; 62]. Researchers at LANL developed a modified

node-based solver and a method that could solve gas and solid dynamics problems

on unstructured meshes with second-order accuracy [14; 16]. Barlow and Roe took a

slightly different approach and proposed a first-order cell-centered algorithm that used

a dual mesh to define the mesh motion [4] and then Barlow extended the method to

be second-order accurate [3]. This approach relies heavily on Riemann solvers, though

they are slightly modified to account for a vector velocity field.

1.5 Other Approaches

There are many other approaches being used to construct Lagrangian methods and

some will be mentioned here briefly. A large effort, primarily at LANL, has focused on

the development of point-centered Lagrangian methods (see e.g. [89; 65]). They are

designed to work on unstructured tetrahedral meshes and are notable in that the mass

flux between elements is not zero on a discrete mesh. The fluxes are computed via

Riemann solvers at face midpoints. Since in an unstructured mesh there are usually

many faces associated with each point, one-dimensional Riemann problems are solved

in many directions, which helps reduce mesh imprinting. Other Lagrangian methods

are derived from various Galerkin-type approaches. For example, Dobrev et. al. use

the finite element method (FEM) [28]. Their approach allows for arbitrarily high

orders of accuracy, can use curved elements, and recovers standard SGH methods in

the low order limit. Others have utilized the discontinuous Galerkin (DG) framework

to derive methods that compute the solution in Lagrangian coordinates. Li et. al.

develop such a scheme, which they consider cell-centered. It uses a semi-Lagrangian

form of the governing equations and weighted essentially non-oscillatory (WENO)
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reconstructions to limit the spatial discretization [49]. Both essentially non-oscillatory

(ENO) and WENO methodologies have been used within the finite volume frame

work to produce Lagrangian and ALE methods with higher-order accuracy (see e.g.

[23; 63]). The Lagrangian ENO method presented in [51] shares some commonality

with the work presented in this thesis due to the use of Lax-Wendroff type time

stepping.

1.6 A New Proposal

While significant progress has been made in regard to Lagrangian hydrocodes in

the last decade, there is still plenty of room for further work. The project documented

in this thesis was first proposed in 2011 by Philip Roe at the International Conference

on Numerical Methods for Multi-material Fluid Flows [73]. Here Professor Roe pro-

posed a new structure for a cell-centered Lagrangian algorithm that could solve the

Euler equations. The algorithm structure was designed to produce a simple, accurate

algorithm that respects multidimensional physics. There was a strong emphasis on

simplicity of the method, as most of the applications where Lagrangian codes are

used involve additional physics phenomena such as material strength or radiation

transport. Therefore, it would be desirable if the hydrodynamics algorithm was as

simple as possible to better facilitate the addition of other physics models. Of course,

a simple algorithm would also be easier to implement and probably more efficient. In

the view of Professor Roe and the author, simplicity is an attribute of current CCH

methods that could be improved.

Perhaps more importantly, the new structure proposed by Professor Roe was de-

signed to be intrinsically multidimensional. While the corner-based CCH methods

are a step in the right direction, they still rely heavily on the use of Riemann solvers

and, therefore one-dimensional physics. See [53] for a discussion. The motivation

for a new method that properly accounts for multidimensional physics was to reduce
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mesh imprinting. In particular, Roe sought a method that would obey the laws of

vorticity transport, or require only a small correction procedure to eliminate non-

physical vorticity production. The importance of vorticity control was illustrated

in a paper by Dukowicz and Meltz that linked the presence of spurious vorticity

with mesh imprinting and tangling [29]. They demonstrated that the solution to the

Saltzman problem, a one-dimensional piston generated shock that is computed on a

two-dimensional skewed mesh, was vastly improved by removing spurious vorticity.

Roe noted that physical vorticity transport could be guaranteed at the numerical level

for the simpler, but related, case of linear acoustics. There it was demonstrated that

a Lax-Wendroff-type method, the Rotated Richtmyer scheme, could exactly preserve

a discrete definition of the vorticity [66]. The key characteristic of the RR method

that permitted this property was its formulation in terms of vertex fluxes. Now, the

linear acoustic equations can be thought of as the linearized Lagrangian gas dynamic

equations when written in system form. Due to the close relationship between acous-

tics and Lagrangian gas dynamics, Roe hypothesized that a similarly constructed

hydrodynamic algorithm would tend to more closely, though not exactly, follow the

laws of vorticity transport and suffer less from mesh imprinting.

The RR scheme was of interest not only due to the vorticity preservation property,

but also because it has a Lagrangian friendly structure. When used to solve the

acoustic equations, the RR scheme can be viewed as a linearized Lagrangian method.

To better understand the connection, first consider the general update procedure used

by the acoustic RR method in two space dimensions on a box mesh:

1. Using the four neighboring cell-centered values, U = (p,V)T , interpolate vertex

fluxes, f = (a0V, a0p)
T .

2. Evolve each vertex flux through one half time step

3. Update the cell-centered variables by integrating the vertex fluxes around a cell
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Figure 1.5: An illustration to reinforce the connection between the RR scheme and
its Lagrangian analog. The primary difference in the case of a Lagrangian
algorithm is the need to move the mesh. Note that unique nodal velocities
can be defined from the nodal fluxes.

centered control volume with the Trapezium rule

A Lagrangian algorithm would look remarkably similar if we take the view that the

Eulerian form of the equations will be solved on a mesh that moves with the local

fluid velocity. This is to say that instead of working with the Lagrangian form of

the gas dynamic equations, the advective terms will be subtracted from the Eulerian

form. This view point leads to an algorithm that is nearly identical to RR. The

acoustic variables are exchanged for momentum, m, and total energy, E and the

fluxes become f = (p, pV)T . A step can then be added between 2 and 3 in which

the mesh is moved according to nodal velocities defined via the vertex fluxes. Figure

1.5 helps to illustrate the general structure of the acoustic RR method and the link

between it and a Lagrangian algorithm for inviscid gas dynamics.

It should be stressed that the vertex fluxes under consideration here are pointwise,

continuous estimations of the fluxes at vertices. The point estimates are eventually

used in a quadrature rule to compute space-averaged face fluxes. Perhaps, then,

it is preferable to think of the vertex fluxes as integration points. Note that they

differ significantly from the corner fluxes discussed earlier which were composed of
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half-face fluxes. Shifting from the traditional finite volume paradigm of computing

fluxes through faces to computing point estimates of the fluxes has a number of

consequences. First, the vertex fluxes cannot be computed by considering only the

pairwise interaction of states. In other words, Riemann solvers, or related ideas, can-

not be used. This abandonment of one-dimensional thinking also steers us away from

standard limiting techniques which have their foundations in one-dimensional, scalar

problems. Next, it is noted that since the vertex fluxes are shared between adjacent

cells and used to compute a unique flux through each face, the resulting algorithm

is naturally conservative in the same sense as any other finite volume scheme. The

final advantage to the vertex fluxes is that they automatically define the mesh motion

since the Lagrangian Euler fluxes contain estimates of the velocity, as will be shown

in Chapter II. One of the central problems with CCH methods, determining how to

move the mesh, never arises in the proposed framework.

It was mentioned in the last paragraph that the vertex flux formulation is not

conducive to traditional limiters. Professor Roe proposed to use flux-corrected trans-

port (FCT), originally developed by Boris and Book [8], as a general framework for

limiting. It provides a multidimensional approach, provided that a multidimensional

flux limiter can be devised. FCT methods can be broken down into three main steps:

transport, diffusion, and antidiffusion. The transport and diffusion steps are often

implemented simultaneously using a first-order method that guarantees no spurious

features are admitted in the solution. Antidiffusive fluxes are then defined as the

difference between the flux from some higher-order method and the first-order one.

These are modified using a nonlinear limiter just enough to prevent new extrema from

being created during the final antidiffusion step. In order for this procedure to work

in the proposed context, a multidimensional vertex-centered flux limiter is needed.

In summary, Roe proposed to construct a simple, second-order accurate La-

grangian hydrocode with vertex fluxes, which automatically define the mesh motion,
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Figure 1.6: A graphical representation of Roe’s proposed CCH method.

and FCT based limiting. The hydrocode stencil is cell-centered and results in a fully

conservative algorithm. Great emphasis was placed on removing all dependence on

one-dimensional physics from the method. The proposed algorithm structure is pre-

sented graphically in Figure 1.6. This thesis is devoted to exploring the merit and

usefulness of this proposal.

1.7 Research Strategy

Development of a new and improved Lagrangian hydrodynamics algorithm as de-

scribed in Section 1.6 from scratch is an ambitious goal. Instead of using the nonlinear

Euler equations and moving grids as the starting point for this research project, a more

gradual approach was adopted in which the two-dimensional acoustic equations and

Lax-Wendroff (LW) type methods were used as a simplified test environment. Two

central problems, or crises, were studied in the simpler environment that were sure

to arise when solving the Euler equations on moving methods. The goal, of course,

was to develop tools and knowledge that could be easily extended to the Lagrangian

problem. Chapter III discusses vorticity preserving methods of the LW family that
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are second-order accurate and are free of mesh imprinting when computing radially

symmetric solutions on square meshes.

The first crisis was mesh imprinting, which is strongly related to problems with

spurious mesh motion in Lagrangian computations. When computing acoustics prob-

lems on a square mesh, mesh imprinting is easily observed as a failure to preserve

radial symmetry. Acoustic methods were sought which could properly preserve radi-

ally symmetric waves in this situation. The methods were derived by insisting on a

discrete vorticity preservation property and by making the truncation errors in the

numerical dispersion relations isotropic.

The second crisis considered for the acoustic equations was the limiting prob-

lem. As discussed, Professor Roe proposed to use the FCT framework to accomplish

this and so work was focused on developing a multidimensional, vertex-centered flux

limiter. Key areas of emphasis in the limiting work included the incorporation of

physics into limiting decisions, multidimensional construction, and the avoidance of

placing a priori bounds on the solution. This eventually led to a temporal approach.

Chapter IV explores some vorticity preserving third-order methods that are cheaply

obtained using a FCT update procedure. The increased accuracy is made possible by

incorporating information from a first-order provisional solution in antidiffusive fluxes

and eliminates most of the undesirable dispersion behavior commonly associated with

second-order methods. In Chapter V, the temporal flux limiters are developed that

mimic the behavior of the third-order methods and remove the any remaining spurious

extrema.

While the acoustic work is interesting in its own right, it work proved to be very

useful in the context of Lagrangian hydrodynamics. The first foray into the Eu-

ler equations and moving meshes involved a simple, first-order extension of the RR

method. Even this simple extension was able to produce some promising numerical

results and so effort was directed toward detail improvements to the base method.
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No fundamental changes to the algorithm structure were needed to produce excel-

lent results with little to no mesh imprinting. The first-order Lagrangian work is

documented here in Chapters VI and VII. Finally, a the acoustic temporal limiting

strategy was extended to construct a nonlinear Lagrangian method that is second-

order accurate in regions of smooth flow and able to capture shock waves. The final

method and numerical results are detailed in Chapter VIII. Some concluding remarks

and discussion of future work are included in Chapter IX.

1.8 Broader Contributions

While the impetus for this thesis was Lagrangian hydrodynamics, there are signif-

icant contributions that have broader implications. The investigation of the acoustic

RR method and other vorticity preserving Lax-Wendroff variants has led to a deeper

understanding of the Lax-Wendroff family and shown that it has a worse reputation

than deserved. If a Lax-Wendroff method is tailored to the governing equations at

hand, they can be quite effective. Another area of contribution is limiting for mul-

tidimensional methods. The desire for truly multidimensional schemes is not unique

to the Lagrangian community and there is strong interest for the same attribute in

Eulerian algorithms. Major research efforts are currently being undertaken in an

effort to rethink and reformulate the foundations of compressible flow algorithms.

An example of one such effort is the active flux (AF) family of schemes [32]. These

methods are designed from the ground up to solve the gas dynamics equations in a

multidimensional framework that is third-order accurate, yet inexpensive enough for

practical computations. No Riemann solvers are used. One of the major barriers to

the widespread adoption of next-generation methods such as AF is a lack of appropri-

ate limiting techniques. A temporal flux limiting approach is proposed in Chapter V

for acoustics that shows promise. The limiter acts on pointwise estimates of the fluxes

and uses temporal information to produce a compact, multidimensional mechanism.
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The ideas were then extended to produce a second-order Lagrangian algorithm in

Chapter VIII. The author hopes that some of these ideas, particularly in regard to

limiting, will prove useful outside of the Lagrangian community.
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CHAPTER II

Governing Equations

While many of the typical applications for Lagrangian methods involve simulating

solid materials, the field of CFD is very relevant due to the violent nature of the

problems. Events such as hyper-velocity impacts or explosions involve incredibly

large material deformations and pressures. As a result, solids can flow like a fluid

and shock physics play a central role in the problems. Furthermore, the governing

equations for such flows are best cast in terms of stress, strain, and displacement rates.

In some deformation regimes, the governing equations begin to take on a flavor that

is reminiscent of compressible fluid mechanics. If one is primarily concerned with

exploring numerical issues related to shock capturing and mesh motion, then the

nonequilibrium effects due to viscosity may be neglected. Often the time scales are

so short that there is insufficient time for the nonequilibrium effects to be important

anyway. Due to these considerations, the Euler equations of gas dynamics have

been used extensively to develop Lagrangian computational methods as evidenced

by many of the works cited in Chapter I. In some sense, choosing to work with

the Euler equations and ideal gases makes life very difficult despite the simple stress

tensor (it only contains the pressure) and simple closure models (e.g. the ideal gas).

The absence of any physical damping in the system and the nonlinear nature of the

equations tends to be unforgiving. Numerical errors, particularly those related to
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vorticity or entropy, tend to persist and accumulate once incurred.

There are two different approaches that can be taken when numerically solving the

Euler equations in the Lagrangian frame. The first is to write the governing equations

in terms of Lagrangian coordinates and variables. See the first chapter of Zel’dovich

and Raizer [94] for more information. This approach was the first attempted (see

e.g.[88; 47]) and is advantageous because the mesh, which is defined in terms of the

Lagrangian coordinates, does not deform in time. However, to obtain the solution

in Eulerian coordinates a mapping must be performed. Furthermore, it is often

difficult to formulate multidimensional problems in terms of Lagrangian coordinates

and singularities develop in the presence of strong rarefactions (i.e. near vacuum)

which are difficult to treat numerically [36]. Due to these difficulties, most modern

Lagrangian methods use Eulerian coordinates and solve the Eulerian equations on a

mesh that moves with the fluid. Since each mesh element tracks a fixed parcel of fluid,

the advective terms must be removed from the Eulerian fluxes. Solution changes due

to dilatation are easily accounted for by tracking the volume change of each element.

While no coordinate mapping difficulties are encountered, extreme mesh deformations

must be dealt with. The moving mesh approach will be employed in this thesis to

solve the unsteady Euler equations in two space dimensions.

The set of partial differential equations that describe the conservation of mass,

momentum, and total energy for unsteady, inviscid, compressible flows are commonly

referred to as the Euler equations and will be referred to as such here. Using vector

notation, we have

ρt +∇ · (ρV) = 0 (2.1a)

(M)t +∇ · (ρV⊗V) +∇p = 0 (2.1b)

Et +∇ · [V(E + p)] = 0, (2.1c)
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where V = (u, v, w)T and p denote the fluid velocity and pressure, respectively.

The equations are presented in the conservative differential form where the conserved

variables ρ, M, and E denote the mass, momentum, and total energy densities,

respectively. The equations are written with respect to the three dimensional Eulerian

spatial variables x, y and z. The subscript t denotes the partial derivative with

respect to time. An equation of state is needed to close the system. In this thesis,

only the ideal gas relation p = (γ − 1)ρe, where γ is the ratio of specific heats

and e is the specific internal energy, is considered, but no special difficulty would

arise from a different choice. In this chapter some important properties and forms

of the governing equations will be explored. Furthermore, vorticity transport will

be reviewed and the relationship between the Lagrangian Euler equations and linear

acoustics will be discussed to reinforce the point that the acoustic system provides a

useful model problem.

2.1 The Euler Equations in the Lagrangian Frame

The equations (2.1) can be written down in a form familiar to aerospace engineers

in terms of state and flux vectors. In two spatial dimensions, x and y, we have

Ut + Fx + Gy = 0, where (2.2a)

U = (ρ,m, n,E)T , (2.2b)

F = (m,um+ p, un, u(E + p))T and G = (n, vm, vn+ p, v(E + p))T . (2.2c)

Here m = ρu and n = ρv for convenience. We need to write (2.2) in a frame that

moves with the fluid. To illustrate one way to do this, consider the x-momentum

equation

mt + (um+ p)x + (vm)y = 0. (2.3)
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Now differentiate the flux terms with respect to x and y to obtain

mt + uxm+ umx + px + vym+ vmy = 0.

Recalling the substantial derivative

D

Dt
=

∂

∂t
+ V · ∇, (2.4)

which describes the time rate change of a quantity that moves with the fluid, (2.3)

can be written as

Dm

Dt
+m(∇ ·V) + px = 0. (2.5)

The velocity divergence will be eliminated from this relation using the continuity

equation, which is

ρt +mx + ny = 0.

For a Lagrangian fluid parcel, this becomes

Dρ

Dt
+ ρ(∇ ·V) = 0. (2.6)

Now substitute ρ = M/V into (2.6), where M is the mass of a differential Lagrangian

fluid parcel and V is its volume. The mass, M, is constant and after canceling we

have

D1/V

Dt
+

1

V
(∇ ·V) = 0. (2.7)

Equation (2.7) can be further manipulated by noting that

DV(1/V)

Dt
= 0 =

1

V

DV

Dt
+ V

D1/V

Dt
⇒ D1/V

Dt
= − 1

V2

DV

Dt
,
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and, after substitution into (2.7), the familiar expression

1

V

DV

Dt
= ∇ ·V (2.8)

is obtained. Plugging (2.8) into (2.5) gives

1

V

DVm

Dt
+ px = 0. (2.9)

The continuity, y-momentum, and energy equations can be treated in a similar

manner, leading to the Euler system as it is often written when dealing with cell-

centered algorithms:

1

V
UT+Fx + Gy = 0, where (2.10a)

U =(Vρ,Vm,Vn,VE), (2.10b)

F = (0, p, 0,pu), and G = (0, 0, p, pv). (2.10c)

The subscript T denotes the substantial derivative and describes the time rate change

along a particle path. Note that, strictly speaking, the system is not in conservation

form due to the volume term. Additionally, the state variables are the mass, momen-

tum, and total energy as opposed to the densities of each.

2.2 Information Propagation

The unsteady, compressible Euler system is a hyperbolic set of partial differential

equations. This means the solution at any point in the flow only depends on a finite

part of the domain, which is usually referred to as the domain of dependence. It is

imperative that the numerical methods used to solve hyperbolic equations have access

to the information contained therein. Furthermore, a method should use as little
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information outside of the domain of dependence as possible, as this information has

no business affecting the numerical solution. In the CFD literature for compressible

flows, the concept of using only relevant information in a numerical method, and

ensuring that it is only transmitted in physical ways, is referred to as upwinding.

The best way to understand the flow of information in a hyperbolic system is

to perform a characteristic analysis. When the one-dimensional Euler equations are

subjected to such an analysis in a fixed frame, three characteristic speeds emerge.

The acoustic signals propagate with the speeds u± a, where a is the isentropic sound

speed, and entropy changes move with the fluid velocity, u. The acoustic propagation

signals are asymmetric for nonzero flow velocities, which means that the domain of

dependence is also asymmetric. This fact led to the popularity of Riemann solvers in

Eulerian numerical methods, as they naturally incorporate upwinding and facilitate

the proper flow of information.

If the Lagrangian frame is used to analyze the Euler equations then the acoustic

signals propagate in a symmetric manner and travel outward from any point at the

speed of sound, ±a. This result stands in stark contrast to the Eulerian result and

would seem to imply a purely Lagrangian method should be structured very differently

than an Eulerian one. Indeed, it does seem strange that the original CCH methods

used modified Riemann solvers in their formulations since the feature Riemann solvers

were designed to add (biased information flow) is not required. In the Lagrangian case,

a finite difference scheme with a completely symmetric appearance can be properly

upwinded. Or, viewed from the other direction, upwind schemes for systems with

symmetric wave speeds have a symmetrical appearance1. This opens the door for

simple and multidimensional treatment of Lagrangian flows based on central difference

methods, which is the approach pursued in this thesis.

1Consider, for example, the First-order Upwind (FUP) method for acoustics.
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2.3 Vorticity Transport

The mechanisms by which vorticity evolves in a compressible, inviscid flow should

be reviewed since vorticity evolution is a topic that will arise frequently in the chapters

to follow. For such a flow, the vorticity transport equation can be written in vector

form as

Dω

Dt
= −ω∇ ·V + ω · ∇V +

1

ρ2
∇ρ×∇p. (2.11)

See Appendix A for a derivation. The first term on the right hand side (RHS) of

the equation accounts for vortex intensification due to compressibility effects. The

second, usually referred to as the vortex stretching term, accounts for the stretching

of vortices due to gradients in the velocity field. The last term, which is referred to as

the baroclinic term, describes the only means by which vorticity can be produced. It

tells us that the vorticity will change if the density gradient and the pressure gradient

are not parallel. Essentially, the pressure field is able to induce a net torque on a fluid

element in this case. In a single material compressible flow, vorticity production can

arise due to shocks with curved fronts or shocks of varying strength.

In the case of two dimensional flows, the vortex stretching term disappears since

only velocity gradients which act parallel to a vortex tube can change its length. Then

the vorticity transport equation reduces to

Dω

Dt
= ω∇ ·V +

1

ρ
∇ρ×∇p. (2.12)

This equation is not particularly frightening in its appearance. However, as was

discussed in Chapter I, Lagrangian hydrocodes often cannot get the vorticity correct

because its evolution is not strictly enforced. Even small vorticity errors will tend

to accumulate and cause problems over time unless they are purposely damped out.

Designing a Lagrangian algorithm that implicitly obeys this equation to the greatest

extent possible is a primary goal of this work.
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2.4 The Acoustic Equations

The linear acoustic equations describe the propagation of small, isentropic waves

through a gas. They can be derived by linearizing the Euler equations about a

stationary, uniform background state with the pressure, density, and sound speed

denoted by p0, ρ0, and a0, respectively. If small disturbances p0 + p′, ρ0 + ρ′, u′, and

v′ are substituted into the Euler equations and the small terms are neglected, the

acoustic system remains. Additional details will be omitted for the sake of brevity,

but the interested reader can find more information in [50] or [94]. Here, we skip to

the end and write down the equations:

p′t + ρ0a
2
0∇ ·V′ = 0 and (2.13a)

V′t +
1

ρ0

∇p′ = 0. (2.13b)

This system is easily written in conservation form. In two spatial dimensions it is

Ut + Fx + Gy = 0, where (2.14a)

U = (p′,u′, v′)T , (2.14b)

F = (ρ0a
2
0u
′, ρ−1

0 p′, 0)T , and G = (ρ0a
2
0v
′, 0, ρ−1

0 p′)T . (2.14c)

The vorticity transport law for acoustics can be quickly derived by taking the curl

of the velocity evolution equation, which gives

(∇×V)t +∇×
(

1

ρ0

∇p
)

= 0. (2.15)

If the initial density is uniform everywhere and the vorticity is defined as ω = ∇×V,
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then

ωt = − 1

ρ0

∇×∇p. (2.16)

Since for any scalar function, φ, the identity ∇×∇φ = 0 holds, the acoustic vorticity

transport law is

ωt = 0. (2.17)

While this result is not very interesting from the point of view of the exact equations,

most numerical methods fail to satisfy it at the discrete level. As such, numerical

vorticity transport can be studied in this simple context, which is one of the main

focuses of Chapter III.

2.4.1 Relationship with the Lagrangian Euler Equations

It is easy to show that the acoustics equations are hyperbolic partial differential

equations and that the system has symmetric wave speeds (±a0) like the Lagrangian

Euler system. Therefore, both equation sets share key properties that affect the

design of numerical solution techniques. Furthermore, vorticity transport, which is

of keen interest for Lagrangian methods, can be studied in the simpler context of

acoustic methods.

To further illustrate the relationship between the Lagrangian Euler equations and

linear acoustics the primitive form of the Euler equations in the Lagrangian frame will

be derived. The time evolution of the velocity variables are easily obtained from the

momentum equations. Considering first the x-momentum equation (2.3), we expand

it to give

ρtu+ ρut + ρuux + u(ρu)x + px + ρvuy + u(ρv)y = 0. (2.18)

Some slight manipulation yields

ut + uux + vvy +
1

ρ
px +

u

ρ
(ρt + (ρu)x + (ρv)y) = 0. (2.19)
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Right away the substantial derivative can be recognized. Also, note that the left side

of the continuity equation has appeared, which is equal to zero. Therefore, (2.19)

reduces to

uT +
1

ρ
px = 0. (2.20)

Similarly, the time evolution of v is given by

vT +
1

ρ
py = 0. (2.21)

Obtaining the pressure equation requires a bit more work. First, the total energy

equation must be split in order to get the evolution equation for specific internal

energy, which is

ρ
De

Dt
+ p∇ ·V = 0. (2.22)

The interested reader is referred to [50] for additional details on this step. This is

then rewritten as

Dρe

Dt
− eDρ

Dt
+ p∇ ·V = 0

and the continuity equation is used to give

Dρe

Dt
+ (ρe+ p)∇ ·V = 0. (2.23)

Now recall that the ideal gas equation of state is ρe = p/(γ − 1). After substituting

this into (2.23) we have

D

Dt

p

γ − 1
+

pγ

γ − 1
∇ ·V = 0. (2.24)

Simplification then yields

Dp

Dt
+ pγ∇ ·V = 0, (2.25)
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which can be recast by recalling that, for an ideal gas, the isentropic sound speed is

a2 = γp/ρ. Finally, γ is eliminated leaving

pT + ρa2∇ ·V = 0. (2.26)

Taken together, the governing equations in primitive form using vector notation are

pT + ρa2∇ ·V = 0 and (2.27a)

VT + ρ−1∇p = 0. (2.27b)

A system of equations that looks like linear acoustics has been recovered, although

no assumption of linearity has been made.

It is important to note, however, that the nonlinearity is not the only difference.

The system (2.27) is written in terms of substantial derivatives, which are hiding non-

linear advection terms. It would be a mistake to forget that these terms exist. On the

other hand, there are no advection terms in the world of linear acoustics. Fortunately,

this distinction is less important in the context of Lagrangian hydrodynamics since

it is assumed that any necessary computations will take place at points moving with

the local flow velocity. In this case, the advection terms do locally disappear in a

sense and a Lagrangian method could be viewed in terms of solving many nonlinear

acoustics problems on the mesh. The major caveat is that this viewpoint assumes

that it is known how to properly move the mesh, which is not trivial. Nevertheless,

it is clear that the linear acoustic equations provide a useful set of model equations

if one desires to investigate a Lagrangian method that will solve the Euler equations.

By considering linear acoustics, the difficulties associated with nonlinear equations

and mesh movement are avoided. Furthermore, much more numerical analysis is pos-

sible. However, the linear equations are still intrinsically multidimensional since the

changes in pressure are driven by the velocity divergence and a simple vorticity trans-
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port law exists. These attributes permit the study of numerical problems related to

mesh imprinting, vorticity transport, and limiting in a simpler context. Others have

proposed to use the linear acoustic equations as a model problem for Lagrangian

hydrodynamics; one such example is due to Bauer et. al. [6].
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CHAPTER III

Second-order Methods for Acoustics

Chapter II provided justification for the use of linear acoustics as a model problem

for Lagrangian hydrodynamics. This chapter begins the investigation of acoustic

algorithms and focuses on reducing mesh imprinting. Mesh imprinting is the tendency

of the mesh geometry to imprint itself on the solution, which often results in a failure

to preserve symmetry. It is a primary concern for Lagrangian methods as it is related

generally to spurious mesh motions. The goal here is to understand how to eliminate

the problem in the simplified acoustic environment so that the knowledge can be later

incorporated into a Lagrangian method. The family of two-dimensional, acoustic

LW methods will be investigated in hopes of finding members that can accurately

maintain circular solution symmetry on a square mesh. The full LW family, which

uses a nine point stencil, has four free parameters and includes variants in which the

fluxes are evaluated at either edges or vertices or both. The methods are constructed

with central differences, and, therefore have a completely symmetric appearance.

However, they can still be considered upwind schemes. This is possible because

the acoustic system has equal wave speeds in all directions; a trait shared with the

Lagrangian Euler equations. Therefore, despite appearances, the upwinding concept

is not abandoned in this work. While only two spatial dimensions will be considered

here, the extension of these methods to three dimensions should not cause great
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difficulty.

The RR method [92] was the member of the LW family which was initially pre-

ferred because it exactly preserves vorticity and has a Lagrangian friendly structure,

as was discussed in Chapter I. Recall that the method is formulated in terms of

vertex fluxes and it has a simple three step update procedure in which initial point

estimates of the fluxes are interpolated at vertices, evolved through one half time step,

and then integrated around the cell boundaries using the trapezium rule. It may be

preferable to think of the fluxes, then, as integration points. The pointwise nature

of the fluxes eliminates the possibility of computing them from pairwise interactions.

One-dimensional Riemann solutions will never make an appearance. This is a crucial

attribute that prevents the incorporation of strictly one-dimensional physics into the

method. However, the vertex flux formulation is conservative in the same sense as

any other finite volume scheme since the point fluxes are shared between adjacent

cells and eventually averaged over each face via the integration rule.

In his investigation of Lax-Wendroff variants, Turkel recommended against using

the RR variant “because of large phase errors”[82]. However, his analysis related

only to the case of a scalar problem, or, equivalently, a problem with commuting

matrices, and in that case his concerns were warranted. The optimum parameters for

a LW scheme do depend on the problem being solved, which mean his results are not

universally applicable. That being said, the standard dispersion problem common

to second-order accurate methods where undamped modes are propagated with the

incorrect phase speed will be encountered and eventually dealt with in Chapter IV.

This chapter is solely focused on making the errors isotropic.

Some notation and test problems are introduced in Section 3.1. Next, Section 3.2

demonstrates that enforcing physical vorticity evolution successfully reduces mesh

imprinting by comparing numerical results from the RR method to results from the

original two-dimensional LW scheme. In Section 3.3, additional improvements to RR
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are sought via a dispersion analysis. A concrete link between vorticity preservation

and isotropic numerical behavior is established and methods with less mesh imprinting

than the RR method are derived. Some discussion will conclude the chapter in Section

3.4.

3.1 Notation and Test Problems

Here it will be convenient to work with the acoustic system

Ut + Fx + Gy = 0, (3.1)

in the dimensionless form where U = ( p′

ρ0a20
, u

′

a0
, v

′

a0
)T ≡ (p, u, v)T , F = (a0u, a0p, 0)T ,

and G = (a0v, 0, a0p)
T . As in Chapter II, the variables p′, u′, and v′ represent

perturbations of the fluid properties from a uniform, stationary background state

given by ρ0, p0, and a0. The primary test problem utilized in the acoustic test

environment was a discontinuous, radially symmetric pressure perturbation applied

to a fluid at rest. The initial conditions were defined on the domain x ∈ [−6, 6] and

y ∈ [−6, 6] and set as

p = 2 if r ≤ 1, p = 0 if r > 1,

u = 0, v = 0, and

a0 = 0.

A smooth problem was also considered in which the discontinuous pressure distribu-

tion was replaced by the Gaussian profile

p(x, y, 0) = 2 exp[−(x2 + y2)]. (3.2)

35



Figure 3.1: The initial pressure distributions for the discontinuous test problem (a)
and smooth test problem (b) are shown.

The problems were solved on a 100×100 mesh unless otherwise noted. See Figure 3.1

for plots of the initial pressure distributions. These test problems were useful for a

number of reasons. First, the solutions should have perfect radial symmetry and any

deviation from this is easily observed by plotting the data as a function of radius1.

Second, the resulting system of waves includes a pressure expansion that implodes

at the origin and an outgoing compression wave. The shape of the waves changes

over time. Third, the vorticity is zero initially, and therefore should remain zero for

all time. This makes detecting spurious vorticity especially straightforward. Finally,

in the case of the discontinuous problem, the ability of numerical methods to handle

high frequency data is tested.

Some explanation of notation is needed before proceeding. Standard central dif-

ferencing and averaging operators will be used throughout. They are denoted by δ

and µ, respectively, and the result of an operator is located half way between the

1Judging the scatter in radial plots is a more stringent way to assess radial symmetry preservation
than judging the circular appearance of contour lines.
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input values. The definition for each operator is

µx()j,k = 0.5[()j+1/2,k + ()j−1/2,k], δx()j,k = [()j+1/2,k − ()j−1/2,k],

µy()j,k = 0.5[()j,k+1/2 + ()j,k−1/2], and δy()j,k = [()j,k+1/2 − ()j,k−1/2].

Vector quantities are denoted by bold face font, while matrices are underlined. Su-

perscripts appearing in discretizations denote the time level, while subscripts refer

to spatial indices. Since all meshes are square, ∆x = ∆y ≡ h, and the Courant-

Friedrichs-Lewy (CFL) number is defined as ν = a0∆t/h.

3.2 Vorticity Control

Dukowicz and Meltz [29] explored the link between mesh tangling and spurious

vorticity in the context of Lagrangian hydrocodes. They implemented a correction

procedure to remove unwanted vorticity from the final computed solution, and though

expensive and first order, it was successful at reducing mesh imprinting and spurious

vorticity when solving the Saltzman problem. It would, therefore, be desirable to find

a scheme that has built in vorticity control. This makes the RR scheme a good place

to start since Morton and Roe showed that it exactly preserves compact vorticity,

ζ = µyδxv − µxδyu, in [66]. Three questions arise here that will be addressed. First,

is spurious vorticity generation a genuine concern for algorithms that are derived in

the absence of any vorticity considerations? Second, can the link between vorticity

control and mesh imprinting be established in the context of the acoustic equations

and the LW family of schemes? Third, is vorticity control alone an adequate method

to preserve symmetry?

Numerical results from the RR scheme and the original LW method were compared

using the discontinuous test problem. The computations were run with ν = 0.6. Con-

tour plots of compact vorticity, rendered at t = 3, make a strong case that problems
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Figure 3.2: Compact vorticity contours predicted by LW (a) and RR (b) for the dis-
continuous test problem are plotted at t = 3. The computations were run
with ν = 0.6. The LW method generates spurious vorticity, but the RR
method maintains zero vorticity to double precision.

with vorticity will exist if no special care is taken. Figure 3.2 shows that significant

unphysical vorticity is present in the LW solution. In comparison, the RR scheme

has properly maintained zero vorticity to double precision. Morton and Roe showed

that spurious vorticity production will occur on the order of the truncation error of a

scheme, but that the small errors will accumulate over time. While the errors would

accumulate slowly for a smooth problem, here the LW method generates vorticity

around the initial discontinuity early in the solution. In this region the higher-order

terms in the truncation error are not well behaved. While the improvement demon-

strated by RR with respect to vorticity is desirable, changes in mesh imprinting and

isotropy are of keen interest. To gauge the effect of vorticity control on these issues,

the pressure and velocity magnitude profiles were plotted as a function of radius. See

Figure 3.3, which also includes a reference solution computed using standard method-

ology (an unsplit MUSCL-Hancock scheme[80] on on a 600 × 600 grid). Two things

become evident. First, the RR scheme produces a solution that is much more isotropic

than the LW method. In fact, the scatter has been reduced by upwards of 50 percent
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Figure 3.3: LW and RR comparison: Pressure (a) and velocity magnitude (b) profiles
for the discontinuous test problem are plotted at t = 3. The computations
were run with ν = 0.6.

as shown in Appendix B. Second, when compared to the reference solution in the

background, both the RR and LW schemes produce a number of spurious features.

This is to be expected for a discontinuous problem, however, since no limiting was

employed. Figure 3.4 shows results from the smooth, low frequency test problem.

In this case the LW, RR, and the MUSCL-H reference solutions are all nearly the

same. The high frequency dispersion relationships for each scheme and the resulting

performance on the discontinuous test problem are of primary interest. While it

has been demonstrated that the RR scheme is superior to the original LW scheme

with respect to vorticity control and mesh imprinting, further improvements to the

method may still be possible. The entire family of Lax-Wendroff type schemes was

parameterized and investigated to explore this possibility.

3.2.1 Parameterization of the Lax-Wendroff Family

When using a nine point stencil in two spatial dimensions, there is considerable

freedom in how a LW type scheme can be formulated. Here this family of schemes is

parameterized in the most general way possible. The LW scheme can be derived by
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Figure 3.4: LW and RR comparison: Pressure (a) and velocity magnitude (b) profiles
for the Gaussian test problem are plotted at t = 3. The computations
were run with ν = 0.6.

writing the Taylor expansion of U in time

Un+1 = Un + ∆tUn
t +

∆t2

2!
Un
tt +O(∆t3)

and then using (3.1) to replace the first and second order time derivatives with spatial

derivatives. Denoting the flux Jacobians by A = ∂F/∂U and B = ∂G/∂U we have

Un+1 −Un

∆t
= −Fx −Gy +

∆t

2
[A(Fxx + Gyx) +B(Fxy + Gyy)] +O(∆t2). (3.3)

The exact spatial derivatives in (3.3) must now be replaced with appropriate

central difference approximations. These discretizations are not uniquely defined on

the nine point stencil except in the case of the second order mixed partial derivative.

The final approximations for ()x, ()xx, ()y, and ()yy must be constrained so that x is

treated equitably with y, and u with v. However, the weights assigned to the pressure

derivatives need not be the same as those given to the velocities. Taken together, these

guidelines result in four free parameters, α1, α2, φ1 and φ2. The α weights were used

for pressure derivatives, while the φ weights were used for velocity derivatives. The
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𝑼𝑗+1,𝑘+1 

𝑼𝑗,𝑘−1 

𝑼𝑗,𝑘+1 

𝑼𝑗,𝑘 𝑥𝑥
≈ 𝜙𝛿𝑥1

2 𝑼𝑗,𝑘+1 + 1 − 2𝜙 𝛿𝑥2
2 𝑼𝑗,𝑘 + 𝜙𝛿𝑥3

2 𝑼𝑗,𝑘−1 

Figure 3.5: An example parameterization for the approximation of the second deriva-
tive of a generic state variable U with respect to x is shown.

subscripts one and two represent whether the parameter applies to first- or second-

order derivative approximations, respectively. An example parameterization for a

second derivative is shown in Figure 3.5. Writing the general form of the scheme as

Un+1 = Un + TUn (3.4)

the parameterized evolution operator, T , is given by2

T =



ν2

2 (δ2
x(1 + α2δ

2
y) + δ2

y(1 + α2δ
2
x)) −νµxδx(1 + φ1δ

2
y) −νµyδy(1 + φ1δ

2
x)

−νµxδx(1 + α1δ
2
y)

ν2

2 δ
2
x(1 + φ2δ

2
y)

ν2

2 µxµyδxδy

−νµyδy(1 + α1δ
2
x) ν2

2 µxµyδxδy
ν2

2 δ
2
y(1 + φ2δ

2
x)


. (3.5)

The challenge is to determine the best choices for the four free parameters so as to

2The identity 4(µ2
x − 1)φ = δ2

xφ is needed to obtain the form of T shown.
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find an optimal LW type method in two spatial dimensions using a nine point stencil.

Of course, this has been attempted many times in the past. A few examples will be

highlighted here. Lax and Wendroff extended their original one-dimensional method

[47] to two spatial dimensions in [48]. The simplest scheme they proposed, and the

one taken here to be the “original” two-dimensional LW method, did not use the

corner points except in the case of the second order mixed partial derivative. They

also suggested a method that included a dissipation term which is proportional to the

fourth order mixed partial derivative ∂xxyy. Strang constructed a multidimensional

LW type method from the one-dimensional LW difference operators in [76]. Like

the schemes proposed by Lax and Wendroff, the corner points were not used in the

approximations for ux, uxx, uy, or uyy. However, Strang’s scheme included terms that

approximated both third and fourth order derivatives. This and other early work was

summarized by Turkel [82] about a decade later.

Gottlieb and Turkel [37] derived a modified LW method by considering the phase

error. Another class of schemes, which are interesting due to the manner of deriva-

tion, have been developed by Lukáčová-Medvid’ová et. al. [55] using their Evolution-

Galerkin approach and the bicharacteristic form of the equations. In this work a dif-

ferent path was taken in analyzing the parameterized Lax-Wendroff family of schemes.

A two-dimensional dispersion analysis was performed to show how the isotropy of the

numerical dispersion relations depended upon the free parameters. This dependence

was to be minimized. While considerable gains were realized earlier by enforcing

vorticity preservation, only the isotropy of the dispersion relations will be considered

initially. Later, a connection between the two properties is made. All of the schemes

discussed are described by special cases of (3.5).
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3.3 Dispersion Analysis

A two-dimensional von Neumann analysis was performed on the parameterized

scheme. This exposed anisotropic terms in the numerical dispersion relationships and

highlighted choices of parameters that would eliminate them. To begin the analy-

sis, a two-dimensional von Neumann substitution of the form Un
j,k = gn exp[irθ]r =

gn exp[i(θxj + θyk)]r was carried out with (3.4). Here i =
√
−1. This substitution

assumes plane (or line) wave solutions that have frequency θr in the direction ψ,

which is measured from the positive x-axis. Note that the operators in matrix T are

replaced by exponentials that appropriately shift the assumed solution in space. For

example,

δx → exp

[
iθx
2

]
− exp

[
−iθx

2

]
and µy →

1

2

(
exp

[
iθy
2

]
+ exp

[
−iθy

2

])
. (3.6)

With some simplification the equation

gr = r + Tr

is obtained. After letting I +T = T̂ and more manipulation, the standard eigenvalue

problem can be recovered

T̂r = gr.

Here g represents the eigenvalues of the matrix T̂ and r represents the eigenvectors.

For the problem at hand, T̂ is a 3x3 matrix. The three resulting eigenvalues are

interpreted as follows. One is real and relates to the stationary vorticity mode; it

should be exactly unity. The other two eigenvalues, which are a complex conjugate

pair, represent right and left going acoustic waves. The magnitude of the eigenvalues

gives the amplification factors, while their arguments give the phase changes per

time step. After computing the eigenvalues symbolically, they can be expanded with
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respect to the signal frequency θr. The resulting expressions are

g1 =1− ν2θ4
r

32
(1− 4φ2) sin2 2ψ

+
ν2θ6

r

768

[
3(1− 4α1)(1− 4φ1) sin2 2ψ − 2(1− 4φ2)

]
sin2 2ψ +O(θ8

r) (3.7)

g2,3 =1± iνθr −
ν2θ2

r

2
∓ iνθ

3
r

24

[
4− 2(1− 3(α1 + φ1))(1− 2 sin2 2ψ)

]
+
ν2θ4

r

192

[
8 + (1− 12φ2 − 24α2) sin2 2ψ

]
+O(θ5

r). (3.8)

It is immediately apparent that something special will happen to g1 when any

parameter is set equal to 1/4, which corresponds to evaluating the relevant term from

vertex fluxes. For the RR scheme, all of the parameters take this value. To maximize

isotropy, terms that depend on the wave orientation ψ should be eliminated. The

potentially anisotropic fourth-order term in (3.7) can be eliminated if φ2 = 1/4, so

that g1 becomes

g1 = 1− ν2θ6
r

256
(1− 4α1)(1− 4φ1) sin2 2ψ +O(θ8

r). (3.9)

The sixth-order term can also be removed by choosing either α1 = 1/4 or φ1 =

1/43. By comparing the RR evolution operator with our parameterized evolution

operator T , one can deduce that setting α1 = 1/4 and φ2 = 1/4 will recover the

vorticity preservation property. The choice of φ2 is the same as was specified from

the dispersion analysis. In addition, the quandary about whether to set φ1 = 1/4 or

α1 = 1/4 has been resolved. It is interesting, however, that either choice results in a

real, isotropic eigenvalue provided φ2 = 1/4. The choice of α1 = 1/4 corresponds to

a family of schemes that exactly preserve compact vorticity. The choice of φ1 = 1/4

corresponds to a family of schemes that can exactly preserve physically correct steady

solutions.

3In fact with these choices g1 becomes exactly unity, since det(T ) can be shown to vanish.
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A concrete link between vorticity control and isotropy has been demonstrated.

The two unique choices of α1 and φ2 that guarantee vorticity preservation also make

the g1 eigenvalue isotropic. However, there is still complete freedom in choosing

α2 and φ1. This family of schemes will be referred to as vorticity preserving Lax-

Wendroff (VPLW). The eigenvalue expansions now read

g1 =1 and (3.10)

g2,3 =1± iνθr −
ν2θ2

r

2
∓ iνθ

3
r

48

[
8− (1− 12φ1)(1− 2 sin2 2ψ)

]
+
ν2θ4

r

96

[
4− (1 + 12α2) sin2 2ψ +O(θ5

r)
]
. (3.11)

Inspection of (3.11) shows that the next two anisotropic terms could be eliminated

by choosing φ1 = 1/12 and α2 = −1/12. The resulting scheme, denoted as VPLW1,

is maximally isotropic. Results from this scheme are presented in Figure 3.6. The

isotropy of the solution is improved to the point that it exceeds that of the reference

solution obtained on a much finer grid. While this is impressive, numerical experi-

ments showed that the stability of the scheme was reduced, perhaps because of the

negative weight. The RR scheme is maximally stable up to a CFL number of one,

while the VPLW1 method was observed to go unstable around ν = 0.7. It was deter-

mined that stability could be improved by increasing α2 and, since maximal stability

was desired, the negative weight was discarded and a suitable positive replacement

was sought. The α2 parameter controls the discretization of the second-order terms

in the pressure update equation, which approximate the Laplacian of the pressure.

An isotropic spatial discretization for the scalar wave equation was proposed by Vich-

nevetsky and Bowles in [87]. It is obtained here by taking α2 = 1/8, leading to

∇2() ≈ (δ2
x + δ2

y +
1

4
δ2
xδ

2
y)()/h

2 = ∇2() +
h2

12
∇4() +O(h4).
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Figure 3.6: RR and VPLW1 comparison: Pressure (a) and velocity magnitude (b)
profiles for the discontinuous test problem are plotted at t = 3. The
computations were run with ν = 0.6.

This was shown to be the most isotropic way to represent the Laplacian on nine

points in [43]4. The scheme that is defined by φ1 = 1/12 and α2 = 1/8 is denoted as

VPLW2. Inspection of the results shown in Figure 3.7 shows that the isotropy of the

VPLW2 scheme is still improved over RR. A quantitative assessment showed that

deviations from radial symmetry were reduced by over 80 percent when compared

to LW. In addition, numerical experiments have indicated that the VPLW2 scheme

is stable up to a CFL number of one. Due to the favorable combination of isotropy

and stability, the VPLW2 method is selected as the preferred choice. In anticipation

of a future FCT implementation, the method is written in finite volume (FV) form.

Denoting vertex fluxes by (̂) and face fluxes by (̃), the vorticity preserving finite

volume (VPFV)2 scheme is written as

Un+1 = Un − ∆t

h
(µyδxF̂ + µxδyĜ + δxF̃ + δyG̃)

4However, taking α1 = φ2 = 1/4 is not the most isotropic way to evaluate the first derivatives.
Instead it is the choice that gives overall the most isotropic behavior. That is why it was asserted
earlier that the Lax-Wendroff family can only be optimized with a specific problem in mind.
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Figure 3.7: RR and VPLW2 comparison: Pressure (a) and velocity magnitude (b)
profiles for the discontinuous test problem are plotted at t = 3. The
computations were run with ν = 0.6.

where, taking q = ν2, the fluxes are defined by

F̂ =


1
3
µxµyau− qh

4∆t
β̂u

µxµyap− qh
2∆t

β̂p

0

 , Ĝ =


1
3
µxµyav − qh

4∆t
β̂v

0

µxµyap− qh
2∆t

β̂p

 ,

F̃ =


2
3
µxau− qh

4∆t
β̃u

0

0

 , and G̃ =


2
3
µyav − qh

4∆t
β̃v

0

0

 .

The β quantities that appear in the fluxes will be referred to as the “driver quantities”

since they drive temporal changes in the fluxes. The definition for each driver is

contained in Table 3.1. Note that altering the pressure update equation has led to

pressure fluxes being stored at both vertices and faces. Although this adds some

expense, the cost increases appear to be justified by the increase in isotropy.
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Table 3.1: Discrete Driver Definitions

Quantity Vertex Face

Pressure β̂p = µyδxu+ µxδyv N/A

u-Velocity β̂u = µyδxp β̃u = δxp

v-Velocity β̂v = µxδyp β̃v = δyp

3.4 Discussion

An acoustic method that suffers from very little mesh imprinting was obtained

by insisting on vorticity preservation and then making the leading truncation errors

in the dispersion relations isotropic. In fact, it was shown that the two exercises

are directly related. In order to obtain physical vorticity transport in the context of

acoustics, the fluxes for the velocity updates must be stored at vertices. However,

this constraint does not apply to the pressure update and further reductions in mesh

imprinting resulted from using both face and vertex fluxes. Remember, however, that

the “face fluxes” here are still point estimates and really just provide an additional

integration point to use when determining the face-averaged values. Looking ahead to

Lagrangian hydrodynamics, it would appear that constructing the method in terms

of multidimensional point fluxes will be important in hopes that implicit vorticity

control will be retained to the greatest extent possible.

The numerical results shown in this chapter contained many spurious features

since no limiters were used. These were due to the numerical dispersion relation-

ships, which propagate some modes with significant phase errors, but little damping.

This problem is common to second-order accurate methods and easily recognized if

the phase and damping relationships for the VPLW2 method are plotted. See Fig-

ures 3.8 and 3.9. It is disconcerting to note that, according to the figures, the

problem gets much worse at lower CFL numbers. Figure 3.10 shows results from the

discontinuous test problem when ν = 0.15 and the spurious features are so prevalent
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Figure 3.8: The phase and damping relationships for the VPLW2 method are plotted
for the propagation directions ψ = 0, ψ = π/4, and ψ = π/8 when
ν = 0.6.

Figure 3.9: The phase and damping relationships for the VPLW2 method are plotted
for the propagation directions ψ = 0, ψ = π/4, and ψ = π/8 when
ν = 0.15.
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Figure 3.10: Results from the VPLW2 method for the discontinuous test problem
show that the spurious features in the solution become much more severe
when the CFL number is lowered to ν = 0.15.

that the physical solution is almost unrecognizable. Nevertheless, this situation can

be remedied. Some third-order accurate schemes that correct this deficiency will be

explored in the next chapter.
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CHAPTER IV

Third-order Methods for Acoustics

In Chapter III second-order accurate acoustic methods were obtained that suffered

from very little mesh imprinting. However, substantial phase errors were present for

mid- to high-frequency modes that also received little damping, especially at low

CFL numbers. As a result, numerous spurious features persisted in the solutions

to the discontinuous test problem. The unwanted combination of low damping and

large phase errors is typical of schemes with even orders of accuracy and it has been

observed that spurious oscillations can be reduced by using odd-ordered schemes [9].

Eymann and Roe argue that third-order methods are the most practical as they

strike a good balance between performance and cost [32]. To try and improve the

poor dispersion characteristics of the VPLW2 method, this chapter will investigate

some third-order vorticity preserving acoustic methods.

It cannot be forgotten that the problem of spurious extrema in the solution will

eventually need to be addressed by a limiter: Godunov proved that no linear scheme

with better than first-order accuracy can fully prevent them [35]. However, it is a

difficult task to design a limiter that can remove all the spurious features from the

current VPLW2 solutions without damaging the physical ones in the process. To

successfully accomplish this, some guidance was needed. The goal of this chapter is

to find third-order methods that improve the numerical dispersion relations of the
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VPLW2 method in way that maintains, or even enhances the prediction of physi-

cal features in the solution. The focus will remain on linear schemes for now, but

nonlinear acoustic methods will be developed in Chapter V to mimic the third-order

methods developed here.

Recall that FCT was proposed in Chapter I as a multidimensional limiting frame-

work. The third-order methods considered in this chapter will be constructed using

the VPLW2 method from Chapter III and written in terms of a FCT type update

procedure. The increased accuracy will be made possible by incorporating informa-

tion from the first-order provisional solution into antidiffusive corrections. Section

4.1 will use the linear advection equation to present a concise exposition on how a

provisional first-order solution can be used to obtain third-order accuracy. Then, in

Section 4.2 the technique will be carried over to two-dimensional acoustics and the

phase and damping characteristics of some specific third-order methods will be as-

sessed. Numerical results are presented in Section 4.3 to compare the performance of

the new methods to the second-order VPLW2 method. Finally, Section 4.4 concludes

the chapter with some discussion.

4.1 Third-order Accuracy

The technique that will be used to obtain third-order accuracy can be illustrated

by considering the one-dimensional linear advection equation1

ut + aux = 0,

where the quantity u is advected with constant speed a. The family of q-schemes

discussed in [83] will be chosen to solve the problem. The usual single step update is

1The linear advection analysis included here not general, it holds only for the case of single, scalar
CFL number, but it is straightforward and instructive.

52



written

un+1 = un − νµδun +
q

2
δ2un (4.1)

and many well known schemes may be recovered with specific choices of the parameter

q. Stability requires that ν2 ≤ q ≤ 1 and the choice q = ν2 is required for second-

order accuracy. This is the original Lax-Wendroff method. Any other stable choice

for q gives a first-order method and q = |ν|, q = 1, or q = 1/3 + 2ν2/3 result in the

FUP, Lax-Friedrichs (LF), and low phase error (LPE) methods, respectively.

The update in 4.1 will be decomposed into a two step procedure. In the first step,

a first-order provisional solution is obtained according to

u∗ = un − νµδu+
qC
2
δ2u, (4.2)

where the choice of first-order method, which is determined by qC , has not been

specified. Then, an antidiffusive correction step is defined according to the difference

between the cautious method and the accurate LW one. Defining q+ = qC − ν2, it is

un+1 = u∗ +
q+

2
δ2un.

As it stands, the proposed method is only second-order accurate and more information

is required to achieve third-order accuracy. In this case, the information already exists

in u∗; it just needs to be incorporated into the antidiffusion step. This is easily done

by introducing a parameter κ and modifying the antidiffusive update to be

un+1 = u∗ +
q+

2
[(1− κ)δ2un + κδ2u∗]. (4.3)

A limiter could be introduced to modify the antidiffusive correction, but this will be

neglected for now.

To determine the constraints on κ and qC necessary for third-order accuracy, a
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Table 4.1: Third-order Constraints

Embedded First-Order Method qC κ

LF 1 1
3

FUP ν 1
3
ν2−1
ν2−ν

LPE 1+2ν2

3
1

von Neumann substitution was performed on the method described by 4.2 and 4.3.

Then the amplification factor, g, was expanded in terms of the signal frequency θ

giving

g = 1− iνθ − ν2θ2

2
+
iνθ3

6

[
1− 3κq+

]
+O(θ4). (4.4)

From the coefficient on the third-order term, it is evident that the method will be

third-order accurate if

κ =
1− ν2

3q+
. (4.5)

Some specific values of κ are shown in Table 4.1 for choices of qC that correspond to

the FUP, LPE, and LF methods. Note that if the LPE method is chosen, then κ = 1

and the antidiffusive update only depends on the provisional solution. This would

be advantageous from an implementation standpoint. While not explicitly written as

such, the methods proposed here are essentially FCT methods with no flux limiter2.

It should be noted that using the provisional solution in the antidiffusion step is not

a new idea. In fact, when Boris and Book invented the FCT methodology, they

applied the antidiffusion operator to the provisional first-order solution and noted

that this formulation could improve the solution, even in the absence of a flux limiting

mechanism [8]. The accuracy constraint used here is simply another way to make use

of the provisional solution in a FCT method.

2If desired, these methods are easily written in FV form as un+1 = un − k
hδf , where f =

µau − qh
2k δu. Then it follows that a FCT method can be defined by the fluxes fC = µau − qCh

2∆t δu

and fAD = q+h
2∆t δu.
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4.2 Third-order Vorticity Preserving Methods for Acoustics

The update procedure and third-order accuracy constraint developed in the previ-

ous section carry over to acoustics and can be used to construct third-order methods

based on the VPLW2 evolution operator from Chapter III. The methods will be

written in FV form since it will be conducive to limiting in the next chapter. The

cautious (C) first-order provisional solution is obtained from

U∗ = Un − ∆t

h
(µyδxF̂C + µxδyĜC + δxF̃C + δyG̃C), (4.6)

where the fluxes are defined by

F̂C =


1
3
µxµya0u− qCh

4∆t
β̂nu

µxµya0p− qCh
2∆t

β̂np

0

 , ĜC =


1
3
µxµya0v − qCh

4∆t
β̂nv

0

µxµya0p− qCh
2∆t

β̂np

 ,

F̃C =


2
3
µxa0u

n − qCh
4∆t

β̃nu

0

0

 , and G̃C =


2
3
µya0v

n − qCh
4∆t

β̃nv

0

0

 .

The antidiffusive step is then

Un+1 = U∗C −
∆t

h
[µyδxF̂AD + µxδyĜAD + δxF̃AD + δyG̃AD].

After defining enhanced (E) drivers of the form

βE = (1− κ)βn + κβ∗ = βn + κ(β∗ − βn) (4.7)
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the antidiffusive fluxes are

F̂AD =


q+h
4∆t

β̂Eu

q+h
2∆t

β̂Ep

0

 , ĜAD =


q+h
4∆t

β̂Ev

0

q+h
2∆t

β̂Ep

 ,

F̃AD =


q+h
4∆t

β̃Eu

0

0

 , and G̃AD =


q+h
4∆t

β̃Ev

0

0

 .

The definitions for the driver quantities carry over from Chapter III, but two different

estimates exist: one computed from Un and one computed from U∗. While it would be

possible to specify unique κ weights for the pressure and velocity update equations

in this case, this extra degree of freedom will not be considered. Note that the

third-order methods are obtained by repeated application of the vorticity preserving

VPLW2 evolution operator and, therefore, preserve vorticity themselves. This family

of linear schemes will be referred to as VPFCTO3.

4.2.1 Dispersion Analysis

A two-dimensional dispersion analysis was performed to investigate the stability

properties of the third-order methods and to see if their phase and damping character-

istics were improved as compared to the VPLW2 method. The resulting amplification

factor expansions, written in terms of the signal frequency θ, are

g1 = 1 and

g2,3 = 1± iνθ ∓ ν2θ2

2
∓ iνθ3

6
[1− 3κq+] +O(θ4).

The first eigenvalue is one, which confirms that the new family of schemes is vorticity

preserving. As asserted earlier, the same conditions for third-order accuracy derived

56



Figure 4.1: It is somewhat disappointing that none of the VPFCTO3 methods are
optimally stable. It is evident here that the θ = π/8 wave traveling with
direction ψ = π/4 will be unstable by ν ≈ 0.8 regardless of the choice for
qC . The functions qC = ν, qC = ν2, and qC = 1 are plotted for reference.

in the case of linear advection can be obtained from the θ3 term here.

To better understand the stability properties of the new third-order methods, var-

ious combinations of signal frequency and propagation direction were chosen and the

corresponding stability regions were plotted as functions of qC and the CFL number.

In Figure 4.1, the stability regions for θ = π and θ = π/8 waves traveling diagonally

across the grid are shown. It is clear from the figure that the optimal stability limit

is not obtainable since the θ = π/8 mode is unstable above ν ≈ 0.8, regardless of the

choice of first-order scheme. While somewhat disappointing, the decrease in the sta-

bility limit implied in the plot is not catastrophic and the methods still have a larger

stability region than other unsplit methods such as MUSCL-Hancock (MUSCL-H),

which is unstable above ν = 0.5. Perhaps some of the methods will still prove useful.

Three third-order acoustic methods were further investigated by specifying specific

values for qC . The same choices were made as in Section 4.1 so that multidimensional

analogs of the FUP, LPE and LF first-order methods were recovered. Some experi-

mentation revealed that the stability limits for the VPFCTO3-FUP, VPFCTO3-LPE,

and VPFCTO3-LF methods were approximately ν = 0.75, ν = 0.75, and ν = 0.8, re-
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Figure 4.2: The amplification (top) and phase (bottom) relationships for the propa-
gation directions ψ = 0, ψ = π/8, and ψ = π/4 are plotted for the second-
order VPLW2 method and the VPFCTO3-FUP method when ν = 0.6.

spectively. It was expected that the LF based method would have the largest stability

region given Figure 4.1.

The damping and phase relationships for the VPFCTO3-FUP method are com-

pared to the those of the second-order VPLW2 method in Figure 4.2. Here ν = 0.6

and the relations are plotted for the directions ψ = 0, ψ = π/8, and ψ = π/4. It is

clear that the jump to third-order accuracy has reduce the troublesome combination

of high phase error and low damping. Not only are the phase errors smaller in gen-

eral, but greater damping is present in the higher frequency ranges where significant

phase errors occur. At higher CFL numbers the third-order method all exhibit similar

behavior, so only results from the FUP based method are shown for that case.

More variation is observed in the dispersion characteristics of the third-order

schemes at lower CFL numbers, so results from each will be shown for ν = 0.15.
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Figure 4.3: The amplification (top) and phase (bottom) relationships for the propa-
gation directions ψ = 0, ψ = π/8, and ψ = π/4 are plotted for the second-
order VPLW2 method and the VPFCTO3-FUP method when ν = 0.15.

See Figures 4.3, 4.4, and 4.5. In all cases, the improvements in the dispersion proper-

ties brought about by the third-order methods are notable when compared to those

belonging to the VPLW2 method. This is very encouraging. Interestingly, the FUP

based method has more isotropic phase behavior than the LPE based one. The LF

based method has enormous phase error near θ = π, but more damping than the

other methods to help mitigate its effects. However, numerical experiments did show

that this method was inferior to the others for small CFL numbers and so it will not

be discussed further.

4.3 Numerical Results

The VPFCTO3-FUP and VPFCTO3-LPE methods were implemented and a con-

vergence analysis was performed using the smooth test problem found in [55]. In this
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Figure 4.4: The amplification (top) and phase (bottom) relationships for the propa-
gation directions ψ = 0, ψ = π/8, and ψ = π/4 are plotted for the second-
order VPLW2 method and the VPFCTO3-LPE method when ν = 0.15.
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Figure 4.5: The amplification (top) and phase (bottom) relationships for the propaga-
tion directions ψ = 0, ψ = π/8, and ψ = π/4 are plotted for the second-
order VPLW2 method and the VPFCTO3-LF method when ν = 0.15.
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problem a smooth periodic pressure distribution is applied to a fluid at rest. The

initial conditions were defined on the domain x ∈ [−1, 1] and y ∈ [−1, 1] and set to

p(x, y, 0) = − 1

a0

(sin 2πx+ cos 2πy), u(x, y, 0) = v(x, y, 0) = 0, and a0 = 1.

The exact solution is then

p(x, y, t) = − 1

a0

cos 2πa0t(sin 2πx+ cos 2πy),

u(x, y, t) = − 1

a0

sin 2πa0t cos 2πx and v(x, y, t) = − 1

a0

sin 2πa0t cos 2πy.

Computations were run until t = 0.375 with ν = 0.6. The average error in each

cell was measured according to the L2 error norm. Figure 4.6 shows that both of

the methods converged at the design rate. The slight differences observed in the

convergence of the methods are due to fourth-order effects, where the different choices

of qC produce different behavior.

Solutions for the discontinuous test problem from the previous chapter were com-

puted to assess the performance of the third-order methods on high frequency data.

Figures 4.7 and 4.8 show solutions computed with ν = 0.6 and ν = 0.15 with the

VPFCTO3-FUP and VPFCTO3-LPE methods, respectively. Overall, the solutions

are in good agreement with the reference solution and do not contain excessive spuri-

ous features, even though no limiters were used. The scheme derived using the LPE

method is very comparable to the one derived using the FUP method at the higher

CFL number, but the LPE based scheme would require less limiting at ν = 0.15.

The goal of the chapter was improve the poor performance of the VPLW2 method

for high frequency data, especially at low CFL numbers. Figure 4.9 shows velocity

magnitude solutions from the discontinuous test problem for the VPFCT03-FUP

method and the VPLW2 method at ν = 0.6 and ν = 0.15. The results clearly show

this goal has been achieved. At both CFL numbers, the third-order solution is much
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Figure 4.6: Both of the VPFCTO3 variants converge at third-order as expected. The
experiments were run on meshes from 50 × 50 to 300 × 300 with a CFL
number of 0.6 and the plots show the average L2 error norm for the u-
velocity.

Figure 4.7: Results produced by the third-order VPFCTO3-FUP method with no lim-
iter for the discontinuous problem are promising as few spurious features
are present. (a) Pressure; (b) Velocity Magnitude
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Figure 4.8: The performance of the VPFCTO3-LPE method with no limiter for the
discontinuous problem was very similar to that observed with the FUP
based method. (a) Pressure; (b) Velocity Magnitude

better than the second-order one. Fewer spurious features exist and the resolution

of the physical waves is improved. The improvements in the solution when ν = 0.15

are particularly noteworthy. Figure 4.10 displays the same information for the LPE

based scheme, and the same observations apply. Again, the small differences in the

solutions are due to fourth-order effects.

This section is concluded with results from the Gaussian pulse problem introduced

in Chapter III. The solutions here were computed on a very coarse 50 × 50 mesh.

Results from the FUP based method are shown in Figure 4.11 and results from the

LPE based method are shown in Figure 4.12. Once again, the third-order methods

produced solutions that were far superior to those obtained with the VPLW2 method.

It is paradoxical that the LPE based method exhibited larger phase errors than the

FUP based method at ν = 0.15. However, this shows that one-dimensional anal-

ysis does not always translate well to higher dimensions. The FUP variant clearly

outperformed the LPE one on this problem.
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Figure 4.9: Results produced by the third-order VPFCTO3-FUP method for the dis-
continuous problem are clearly improved over those obtained with the
second-order VPLW2 method. (a) ν = 0.6; (b) ν = 0.15

Figure 4.10: Results produced by the third-order VPFCTO3-LPE method for the
discontinuous problem are clearly improved over those obtained with
the second-order VPLW2 method. (a) ν = 0.6; (b) ν = 0.15
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Figure 4.11: Results produced by the third-order VPFCTO3-FUP method for the
smooth test problem on a very coarse 50 × 50 mesh show the improve-
ments in resolution and phase errors due to the increased accuracy. (a)
ν = 0.6; (b) ν = 0.15

Figure 4.12: Results produced by the third-order VPFCTO3-LPE method for the
smooth test problem on a very coarse 50× 50 mesh clearly show the im-
provements in resolution and phase errors over the second-order VPLW2
method. However, at ν = 0.15, the solution is noticeably inferior to the
one produced by the VPFCTO3-FUP method. (a) ν = 0.6; (b) ν = 0.15
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4.4 Discussion

Vorticity preserving methods have been developed that take advantage of the FCT

update procedure to obtain third-order accuracy. By using the provisional solution

that is already computed during a FCT update, the increased accuracy was obtained

in an inexpensive and compact manner. The costs associated with the increased

accuracy are the computation of the provisional drivers and a decrease in the stability

limit of 20− 25%. However, the dispersion characteristics of the third-order methods

were far superior to the VPLW2 method, offsetting the extra expense. The increased

performance was particularly impressive at low CFL numbers.

One way to view the antidiffusive fluxes for the third-order methods is that they

are composed of one part that is responsible for second-order accuracy and then a

correction term that increases the accuracy to third-order. Of course, the third-order

corrections contain the provisional drivers, β∗. In the next chapter, flux limiters will

be proposed that mimic the third-order corrections developed here.
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CHAPTER V

Temporal Flux Limiting

Chapter IV introduced two third-order accurate vorticity preserving methods that

had much better phase and damping characteristics than the second-order VPLW2

method from Chapter III. In this chapter, nonlinearity will be added to the antid-

iffusive fluxes from the third-order methods to produce a vorticity preserving flux-

corrected transport (VPFCT) scheme that is free from spurious features. The de-

sire is for the VPFCT method to converge at second-order in smooth regions of the

flow, but still possess the enhanced dispersion properties of the third-order methods.

Second-order convergence will be considered acceptable since some of the limiting

tools developed here will be applied to the more complex Lagrangian hydrodynamics

problem. When nonlinear physics and moving meshes must be dealt with, produc-

ing formal third-order accuracy becomes much more complicated. In this case it is

probably more practical to impart the desired behavior to an algorithm that is for-

mally second-order accurate. The chapter begins with a general review of limiting

in Section 5.1. In Section 5.3, nonlinear functions are developed that modify the

antidiffusive drivers from Chapter IV. Numerical results are presented in Section 5.4

and the chapter concludes with some discussion in Section 5.5.
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5.1 Limiting Review

Limiting refers to the process of incorporating nonlinearity into better than first-

order numerical methods to prevent spurious features from entering the solution. The

need for limiters in numerical methods for hyperbolic equations was recognized early

on by von Neumann and Richtmyer, though not fully understood. They devised a

nonlinear artificial viscosity [88] that added numerical dissipation to the solution in

regions with steep gradients, which allowed them to successfully capture shocks. Their

rationale for doing so was that discontinuities in the solution must be smeared out so

that the solution derivatives and, therefore, finite differences were defined everywhere.

In 1959, Godunov proved that linear schemes which do not admit spurious overshoots

must be first-order accurate [35]. Researchers were then able to understand that

nonlinear methods were the key to constructing useful higher-order methods. In

general, three different approaches emerged: artificial viscosity, slope limiting, and

flux limiting.

Artificial viscosity methods add nonlinear viscosity like terms to the finite differ-

ence equations to increase dissipation in regions of flow with steep gradients. The

use of artificial viscosity is still very prevalent in the shock hydrodynamics commu-

nity, though it is often discussed in the context of removing mesh instabilities or

achieving numerical stability. Slope limiting methods were first developed by van

Leer in [85] and [86]. He used Godunov’s first-order method as a starting point and

increased its accuracy by reconstructing the solution inside cells. The solution profile

in each cell was obtained from nonlinear combinations of neighboring reconstructions

which were carefully chosen to ensure that new extrema were not introduced. This

method became known as the monotone upstream-centered scheme for conservation

laws (MUSCL). The basic idea of reconstructing the solution data locally and non-

linearly modifying the reconstructions to ensure monotonicity has formed the basis

for many families of schemes which include the ENO [39], and WENO [52] methods.
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Flux limiting methods can be subdivided into two categories, those that are de-

rived from the multiple step FCT method pioneered by Boris and Book [8] and single

step procedures that trace their origins to the works of van Leer [84], Harten [38],

Roe (see e.g. [79]), Sweby [79] and others. In either case, flux correction methods use

a flux decomposition

FAD = FA − FC ,

where an antidiffusive (AD) flux is defined as the difference between accurate (A) and

cautious (C) ones. The cautious flux should produce a first-order scheme that will not

admit spurious extrema. Then the antidiffusive fluxes are reduced using a nonlinear

operation just enough to prevent unphysical features from appearing. The success of

these methods hinges on the limiting step. In FCT, a multistep update procedure is

used that advances the solution in three steps: transport, diffusion, and antidiffusion.

Often the transport and diffusion operators are applied simultaneously in the form

of a first-order method. Then limiting is applied to the antidiffusive fluxes and the

final antidiffusive update is performed. Note that FCT methods generate a provisional

solution, which may be incorporated into the antidiffusion step to yield a final method

that differs from the one described by the accurate flux alone. In contrast, single step

flux correction methods do not compute an intermediate provisional solution and will

always recover the scheme described by the accurate flux if no limiting is applied.

Originally, limiting mechanisms were devised for solving one-dimensional, scalar

conservation laws. In that context, researchers were afforded the luxuries of simple

geometry and simple equations and they made good use of both. Of particular utility

was the concept of the total variation (TV) of a solution

TV =

∫ ∣∣∣∣∂u∂x
∣∣∣∣ dx

and the design of schemes which were guaranteed to be total variation diminishing
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(TVD) [38]. Such schemes could be derived by enforcing appropriate local bounds

on the solution, which were known a priori, via a limiter. However, problems were

immediately encountered when trying to extend these ideas to more difficult problems.

There is no rigorous TVD or monotonicity principle for coupled systems or nonlinear

problems. In addition, geometric considerations in higher dimensions are non-trivial

and simple directional splitting schemes did not always work well, particularly in

regard to FCT. Zalesak was the first to propose a multidimensional flux limiter for

FCT [93], but it still enforced a local maximum principle which, strictly speaking,

is not physical for many problems of interest. Many multidimensional MUSCL type

techniques have subsequently been developed, usually along the lines of the limiter

proposed by Barth and Jespersen [5; 69].

Despite the success of the flux limiting and slope limiting methods, there is more

work to be done. Inadequate limiting techniques are holding back the widespread use

of next generation methods such as DG [45]. These methods require compact and

multidimensional limiters that can affect subtle changes in order to prevent unphys-

ical extrema while preserving high-order accuracy in smooth regions. Much of the

difficulty is related to the fact that no concrete answers exist to three fundamental

questions about the general limiting problem: What quantities should a limiter act

on, how should the limiting mechanism be designed, and how much limiting should

be applied? This chapter proposes some answers to these questions in the form of a

temporal flux limiting approach that will be used to construct a FCT implementation

of the VPFV2 method from Chapter III.

5.2 A Vorticity Preserving Flux-corrected Transport Scheme

The goal of this chapter is to assemble a VPFCT method that resists mesh im-

printing like the second-order VPFV2 method presented in Chapter III and has the

improved dispersion properties of the third-order methods from Chapter IV, but does
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not admit any spurious features into the solution. The update procedure will be im-

plemented in three steps. First, a provisional first-order solution will be computed in

the same fashion as shown in the last chapter. The same two first-order methods will

be considered: FUP (qC = ν) and LPE (qC = 1/3 + 2ν2/3). Second, the enhanced

drivers βE will be modified via a limiting mechanism to become βlim. Third, the final

antidiffusive update will be performed according to

Un+1 = U∗ +
∆t

h
[µyδxF̂AD + µxδyĜAD + δxF̃AD + δyG̃AD], (5.1)

where the antidiffusive fluxes are now

F̂AD =


q+h
4∆t

β̂limu

q+h
2∆t

β̂limp

0

 , ĜAD =


q+h
4∆t

β̂limv

0

q+h
2∆t

β̂limp

 ,

F̃AD =


q+h
4∆t

β̃limu

0

0

 , and G̃AD =


q+h
4∆t

β̃limv

0

0

 .

The critical step in the process is the computation of the limited drivers βlim and the

development of a limiting mechanism is the focus of the rest of the chapter. Note

that, as shown by Morton and Roe [66], the fluxes for the velocity updates must be

limited at vertices to retain the vorticity preservation property. This will be done

here and the limiting for the pressure update will also be performed on the point

estimates. As a reminder, the relevant driver quantity definitions are contained in

Table 5.1.
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Table 5.1: Driver definitions for the VPFCT Scheme
Flux Component Driver Quantity

p̂ µyδxu+ µxδyv
û µyδxp
v̂ µxδyp
ũ δxp
ṽ δyp

5.3 Flux Limiting

Recall from the last chapter that the enhanced drivers from the third-order meth-

ods take the form

βE = βn + κ(β∗ − βn). (5.2)

The first-term is the responsible for second-order accuracy and the second term,

which contains the provisional driver, is a correction that increases the accuracy to

third-order. This means that the second term is responsible for the vastly improved

dispersion properties associated with the third-order methods. The improved dis-

persion relationships take care of most of the work needed to successfully limit the

second-order VPFV2 method and, therefore should be disturbed as little as possible

by any modifications that are introduced. On the other hand, the second-order antid-

iffusive flux causes undesirable behavior in the presence of steep gradients and should

be aggressively modified in those regions. To accomplish these tasks a smoothness

indicator φ is introduced and used to write a flux correction procedure of the form

βE → βlim = F0(φ, ν)βn + F1(κ, φ, ν)(β∗ − βn). (5.3)

The job of the smoothness monitor is to highlight regions of the flow that need

limiting. Then the functions F0 and F1 control how much limiting is applied. In

smooth regions of the flow, the functions should approach F0 = 1 and F1 = κ in order

to return fluxes as close as possible to 5.2.
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Before the limiting function can be determined, a suitable definition for φ must

be specified. Traditionally, smoothness monitors are constructed from the ratio of

neighboring spatial gradients. For example, van Leer’s original definition [84], for a

generic quantity α, was

φV L =
∆j−k/2α

∆j+k/2α
,

where ∆j+1/2() = ()j+1− ()j. Here a different strategy is adopted. The smoothness of

the solution will be assessed by looking at temporal expansions of the fluxes. Take,

for example, the pressure which can be expanded through second-order as

pn+1 = pn + ∆tpnt +
∆t2

2
pntt.

For the acoustic system, this can be written in terms of spatial derivatives as

pn+1 = pn −∆ta0

βnp
h
− ∆t2

2
(a0

βnp
h

)t.

To proceed, it was reasoned that in regions of the flow where limiting is needed the

higher-order terms in the temporal expansion will become large when compared with

the lower-order ones. Therefore, a smoothness monitor was constructed by looking

at the ratio of the second and third terms in the series. The resulting definition for

φp is

φp =

∣∣∣∣∣ ∆t2

2
(a0β

n
p )t

a0∆tβnp

∣∣∣∣∣ =

∣∣∣∣∆t(βnp )t

2βnp

∣∣∣∣ ≈ ∣∣∣∣β∗p − βnp2βnp

∣∣∣∣ . (5.4)

Indicator quantities are defined for each individual point flux by plugging the proper

driver definitions into 5.4.

The smoothness monitor will highlight regions where limiting is needed, but the

amount of limiting applied will depend on the form of the functions F0 and F1 in 5.3.

Since, a precise answer to the question of how much limiting should be applied is not

available for general problems, some empiricism will be relied upon. Starting out it
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was hoped that the function F1 could simply return κ and only the second-order flux

would need to be limited. Consider first, then, F0. In general, the function should

approach zero as φ approaches one. Experiments have shown that a function of the

form

F0(φ, ν) = max [0, 1− f(ν)φ] (5.5)

produces the desired behavior. The part of the antidiffusive flux responsible for

second-order accuracy is reduced as the third term in the temporal expansion ap-

proaches the same magnitude as the second one. In practice, something must be

done when the initial driver is zero. In this case, F0 should evaluate to zero. Either a

local extremum is present in the flux quantity and the first-order method should be

relied upon or nothing is happening in the solution and there is no difference between

the first-order flux and the high-order one. The CFL number dependence introduced

by f(ν) should vary depending on the first-order scheme and this will be determined

later.

Numerical experiments were run using the the definition of F0 described above

in conjunction with various forms of f(ν) while leaving the third-order corrections

unmodified (F1 = κ). Unfortunately, F0 was unable to remove a small spurious wave

from the discontinuous test problem that was located in front of the discontinuity.

Thinking back to Chapter IV, this wave appeared when the antidiffusive fluxes were

modified for third-order accuracy, and so it was inferred that some modification to

the third-order corrections was necessary. The spurious feature was only produced at

the discontinuity. Therefore, it was hypothesized that F1 should only deviate from

κ in the most demanding instances. Some additional experimentation revealed that

the function

F1(κ, φ, ν) = κ min

(
f(ν)

φ
, 1

)
(5.6)

successfully removed the spurious wave. The use of 1/φ ensured that F1 reacts only

75



to the most challenging data. In the numerical implementation, if β∗ − βn = 0, then

F1 = 1, but the value is of no consequence as the third-order corrections are zero

anyway. In both F0 and F1, the functions f(ν) depend on the choice of first-order

scheme. Here the functions are taken to be

f(ν)|FUP =
3(1− ν)

2
and f(ν)|LPE =

3ν

2
.

As a result of basing the structure of the limiter off the third-order fluxes, point

estimates of u and v at a given vertex or face are limited by different amounts.

In contrast, only one limited pressure is computed at each vertex. Note that the

velocity divergence is not split into individual velocity gradients when limiting the

pressure. However, the velocity vector components may be treated individually by

considering the pressure gradient components. As a result, no difficulty arises when

limiting vector quantities or multidimensional scalars. More complicated mechanisms

for vector limiting, such as the one in [56], are avoided.

To summarize, a temporal flux limiting mechanism has been constructed by mim-

icking the fluxes from the VPFCTO3 methods. The temporal structure of the limiter

is due to the use of the provisional first-order solution and smoothness monitors ob-

tained from temporal expansions of the fluxes. The resulting limiter mechanism is

genuinely multidimensional and can be thought of as zero-dimensional with respect

to space. Furthermore, no a priori bounds are placed on the solution.

It should be mentioned briefly that others have used future information when de-

signing limiters before. Two examples will be highlighted. First, the multi-dimensional

optimal order detection (MOOD) method proposed in [24] uses a provisional solu-

tion. There an unlimited high-order step is taken and the order of the method is

then locally reduced in a iterative process until some smoothness criterion has been

satisfied. Second, Duraisamy and Baeder constructed temporal limiters for use with
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implicit schemes in the method-of-lines framework [31]. While their schemes are very

different than the ones considered here, they used MUSCL type reconstructions of

the solution in time in conjunction with standard spatial reconstructions to prevent

spurious oscillations, even when large time steps were taken. Finally, the idea of

building limiters that mimic third-order methods and have CFL number dependence

is also not new. For example, see Arora and Roe [2].

5.4 Numerical Results

Numerical results from the discontinuous test problem computed with the VPFCT

methods were compared with unlimited VPFV2 solutions to judge the effectiveness

of the limited drivers at removing spurious features from the solution. Figures 5.1

and 5.2 show results for the VPFCT-FUP and VPFCT-LPE methods, respectively.

The CFL number was ν = 0.6. In both cases, the limited fluxes remove the spurious

features from the solution and produce a result that is free of mesh imprinting. As

shown in Appendix B, the deviations from radial symmetry produced by the original

LW method have been reduced by over 85 percent.

The VPFCT-FUP and VPFCT-LPE methods were compared to an unsplit MUSCL-

H method that used the MinMod and Superbee slope limiting functions. In all cases,

the CFL numbers were chosen to correspond to the same fraction of the theoretical

maximum for each scheme. For example, 0.8 of the theoretical limit corresponds to

ν = 0.6 for the VPFCT methods and ν = 0.4 for the MUSCL-H methods. Figure

5.3 shows convergence results for all four schemes at these CFL numbers. The re-

sults were obtained using the smooth exact solution described in Chapter IV. The

VPFCT methods have smaller absolute errors than the MUSCL-H methods by nearly

one order of magnitude and they converge at second-order. Figure 5.4 shows the same

analysis, except that the computations were run at ν = 0.15 for the VPFCT meth-

ods and ν = 0.1 for the MUSCL-H methods. The convergence rates of the VPFCT
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Figure 5.1: The limited drivers in the VPFCT-FUP method remove all of the spuri-
ous features from the unlimited VPFV2 method and improve the phase
accuracy of the physical waves.

Figure 5.2: The limited drivers in the VPFCT-LPE method remove all of the spuri-
ous features from the unlimited VPFV2 method and improve the phase
accuracy of the physical waves.
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Figure 5.3: The VPFCT methods (ν = 0.6) have small absolute errors as compared
to the MUSCL-H method (ν = 0.4) when either the Superbee or MinMod
slope limiters are used and converge at second-order

methods improved in this case. In fact, the VPFCT-LPE method converged at nearly

third-order as f(ν)|LPE was able to relax.

Figures 5.5 and 5.6 compare solutions from the discontinuous problem obtained

with the VPFCT-FUP and VPFCT-LPE methods to the Superbee and MinMod lim-

ited MUSCL-H algorithms. The VPFCT methods clearly best the MinMod limited

MUSCL-H method and approach the resolution of the Superbee limiter while pro-

ducing solution that are free from mesh imprinting. Figures 5.7 and 5.8 compare

the schemes at the lower CFL numbers. The same comments apply, except that the
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Figure 5.4: The convergence rates of the VPFCT methods (ν = 0.15) improved when
the CFL number was lowered. The VPFCT-LPE scheme converged near
third-order as the function f(ν)|LPE relaxed.
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Figure 5.5: Results from the discontinuous test problem: (a) VPFCT-FUP method
(ν = 0.6) and the MUSCL-H method (ν = 0.4) with the MinMod limiter
(b) VPFCT-FUP method (ν = 0.6) and the MUSCL-H method (ν = 0.4)
with Superbee limiter

Superbee solutions are notably sharper when compared with the LPE based method.

Solutions to the discontinuous test problem were computed with the first-order

VPFV2-FUP method, unlimited second-order VPFV2 method, and limited VPFCT-

LPE method and plotted on the same set of axes. See Figure 5.9. Results are shown

for two different meshes: 100 × 100 and 300 × 300. The CFL number was ν = 0.6.

Comparing the solutions obtained with the ingredients that make up the VPFCT-FUP

method to the final solution helps illustrate how the limiter functions. No features

are present in the final solution that are no found in the cautious scheme, but the

accuracy is dramatically improved. The limiter is able to identify problem areas in

the second-order solution and correct them while incurring minimal damage to the

physical waves. The limited drivers steepen the discontinuous fronts and remove some

phase errors due to the third-order like behavior.

The ability of the VPFCT scheme to preserve physical vorticity will be demon-

strated with a new test problem that combines a steady vortical flow with the two-

dimensional unsteady interaction of four planar pressure waves. The initial velocity
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Figure 5.6: Results from the discontinuous test problem: (a) VPFCT-LPE method
(ν = 0.6) and the MUSCL-H method (ν = 0.4) with the MinMod limiter
(b) VPFCT-LPE method (ν = 0.6) and the MUSCL-H method (ν = 0.4)
with Superbee limiter

Figure 5.7: Results from the discontinuous test problem:(a) VPFCT-FUP method
(ν = 0.15) and the MUSCL-H method with MinMod limiter (ν = 0.1)
(b) VPFCT-FUP method (ν = 0.15) and the MUSCL-H method (ν = 0.1)
with Superbee limiter
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Figure 5.8: (a) The limited VPFCT-LPE method (ν = 0.15) is superior to the
MUSCL-H method (ν = 0.1) when using the MinMod slope limiter by any
measure for the discontinuous test problem. (b) The limited VPFCT-LPE
method (ν = 0.15) diffuses the waves more than the MUSCL-H method
(ν = 0.1) with the Superbee limiter on the discontinuous test problem,
but is free of spurious features and mesh imprinting.

data form a modified combination vortex in which the core is prescribed as the usual

solid body rotation, but the potential vortex region is replaced with a tangential

velocity field that decays with the square of the radial position, r. This makes the

problem more interesting by introducing additional vorticity. The divergence of the

velocity field is zero and, therefore, the data represent a steady solution if a uniform

pressure field is specified. However, four plane waves centered at x = −10, x = 10,

y = −10, and y = 10 with magnitude two were introduced. Specifically, the initial

conditions were defined on the domain x ∈ [−20, 20] and y ∈ [−20, 20] as

• u(x, y, 0) = −y
5

and v(x, y, 0) = x
5

if r ≤ 2,

• u(x, y, 0) = − 16y
10(x2+y2)3/2

and v(x, y, 0) = 16x
10(x2+y2)3/2

if r > 2,

• p(x, y, 0) = 4 if x, y ∈ (−10.5,−9.5) and x, y ∈ (9.5, 10.5),

• p(x, y, 0) = 2 if x, y ∈ (−10.5,−9.5) or x, y ∈ (9.5, 10.5)
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Figure 5.9: A comparison of the VPFV2-O1, unlimited VPFV2, and VPFCT schemes
for the discontinuous pressure problem on two different meshes (ν = 0.6,
t = 3): (a) Pressure, 100 × 100 mesh; (b) Pressure, 300 × 300 mesh; (c)
Velocity magnitude, 100 × 100 mesh; (d) Velocity magnitude, 300 × 300
mesh
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• p(x, y, 0) = 1 otherwise and

• a0 = 10 everywhere.

The plane waves split and part of each travels toward the origin. These waves

influence the velocity field as they move. Figure 5.10 shows contours of the pressure

and velocity magnitude at t = 1.2 to demonstrate the complexity of the transient flow.

At t = 2, the left and right going wave pairs in each direction have passed through each

other and arrived at the locations of the initial disturbances. The velocity field in the

inner region should have returned to its initial state. Figure 5.11 compares the final

velocity magnitude and vorticity fields obtained from the VPFCT-FUP algorithm and

the Superbee limited MUSCL-H algorithm in a 6 × 6 square centered on the origin.

The VPFCT-FUP method is able to maintain the amplitude of the steady velocity

solution with good accuracy and the radial symmetry of the solution is left intact. As

expected, the vorticity field is exactly preserved. In contrast, the MUSCL-H scheme

is not able to maintain the steady velocity field or the vorticity solution. The radial

symmetry of the problem is severely damaged and very large overshoots are present

in the vorticity.

This section is concluded with more results from the plane wave vortex problem.

Figure 5.12 compares pressure solutions obtained at t = 1.2 from the VPFCT-LPE

method with those computed by the MinMod and Superbee limited MUSCL-H meth-

ods. The extrema that occur where the plane waves intersect makes for a challenging

test for limiters. The same trends in the solutions that have been previously observed

hold here, but these results demonstrate that the VPFCT method is able to properly

limit a complex multidimensional flow. Finally, Figure 5.13 compares the pressure

solutions at t = 1.2 from the unlimited VPFV2 and the VPFCT-FUP methods. The

VPFCT scheme removed both the high frequency ripples and the large spurious waves

from the second-order solution.
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Figure 5.10: Intermediate results from a computation in which four plane waves in-
teract with a steady, rotational velocity field (400 × 400 mesh, t = 1.2)
demonstrate the complexity of the transient flow. (a) Pressure contours
computed with the VPFCT method; (b) Velocity magnitude contours
computed with the VPFCT method

Figure 5.11: Final results (t = 2) from a computation in which four plane waves
interact with a steady, rotational velocity field (400 × 400 mesh) from
the VPFCT-FUP method (ν = 0.6) and the Superbee limited MUSCL-
H method (ν = 0.4). (a) Radial velocity magnitude profiles; (b) Radial
vorticity profiles
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Figure 5.12: Pressure solutions are shown for the vortex-plane wave problem at t =
1.2 on a 400× 400 mesh. Top Left: MUSCL-H MM ν = 0.4; Top Right:
MUSCL-H SB ν = 0.4; Bottom Left: VPFCT-FUP ν = 0.6; Top Right:
VPFCT-LPE ν = 0.6
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Figure 5.13: The temporal flux limiter is able to remove both the high frequency
ripples and large spurious features from the pressure waves in the vortex
problem, even at low CFL numbers. Left: VPFV2 Method with no
limiter, 400 × 400 mesh, ν = 0.15, t=1.2; Right: VPFCT-FUP 400 ×
400 mesh, ν = 0.15, t = 1.2
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5.5 Discussion

Numerical results have shown that the VPFCT scheme developed with temporal

flux limiting performs well on both smooth and discontinuous problems. For smooth

data, the temporal flux limiters allow at least second-order convergence and produce

absolute errors significantly smaller than an unsplit MUSCL-H type method with

either the MinMod or Superbee slope limiters. The general form of the limited fluxes

was obtained from third-order methods. This proved very useful as it greatly im-

proved the dispersion properties of the method. Nonlinear behavior was produced

by empirically determined functions. While some degree of empiricism is necessary

for general problems, it may be beneficial to study the limiting framework presented

here in a context where TVD type constraints are valid. Perhaps such a study could

better motivate the functions F0 and F1 and produce a limiter that obeys a TVD

type constraint when appropriate. At any rate, the present functions are not claimed

to be optimal and may be improved upon in the future.

The incorporation of the provisional driver estimates into the antidiffusive fluxes

was particularly convenient in the FCT framework. A provisional solution is already

computed and so they can be obtained for little additional cost. However, a temporal

approach could still be applied in one-step flux limited schemes. Essentially, if no

provisional data is available, then F1 = 0 and only F0 must be determined. However,

in this case, a new smoothness monitor may need to be developed if second-order

terms are not available in the fluxes.

One of the attractive features of the temporal approach presented here is that

it incorporates physics into the limiting process via the driver quantities and the

provisional solution. This is not the case with methods that modify reconstructions

of the local solution. The reconstruction and limiting steps are essentially separate

from the physics of the problem. While a physics-based limiting procedure may seem

desirable, the practicality of this approach may be called into question for problems
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with complex physics. For the acoustic system, the fluxes were governed by simple

equations. However, this will obviously not always be the case. Perhaps one way

to proceed will be to individually limit the components of fluxes. For example, the

total energy flux for the Euler equations in the Lagrangian frame is pV. Perhaps this

flux could be limited by restricting the values of p and V separately. While there is

much work still to be done, it appears that the ideas presented in this chapter may be

useful in developing genuinely multidimensional, compact flux limiters. To conclude,

we return to the three questions posed at the beginning of the chapter and summarize

the answers that have been proposed here:

Q What quantities should a limiter act on?

A Driver quantities

Q How should the limiting mechanism be designed?

A Temporal construction

Q How much limiting should be applied?

A Guided by a third-order scheme, a smoothness monitor, and empirically deter-

mined functions
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CHAPTER VI

First-order Methods for Lagrangian

Hydrodynamics: Part I

Chapter I began by introducing Lagrangian hydrocodes and discussing the desire

to design a simple cell-centered method that resists mesh imprinting. The past three

chapters have given an account of an extensive investigation in to acoustic algorithms.

In this chapter we finally return to Lagrangian hydrodynamics and extend the acoustic

methods to construct a first-order solver for the Euler equations on a moving mesh.

Recall that the Euler fluxes in the Lagrangian frame are p and pV for the momentum

and total energy, respectively. If it is assumed that each mesh vertex is moving with

the local fluid speed than each component of the flux, the pressure and velocity,

obey the nonlinear acoustic equations. As such, the acoustic flux evolution formulas

from the previous chapters should be useful. This chapter begins in Section 6.1 by

constructing a Lagrangian analog to the RR method that computes estimates of p

and V at cell vertices. All vertex quantities will be denoted by (̂). This algorithm

will be constructed along the lines originally proposed by Roe [73] and will use the

following update procedure:

1. Interpolate initial estimates of the flux components, p̂n and V̂
n
, from cell centers

to the cell vertices.
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2. Evolve the vertex flux components through one-half time step using a Lax-

Wendroff-type (LW) procedure.

3. Move the mesh vertices according to the flux velocities V̂
n+1/2

.

4. Update the conserved variables in cells by integrating the vertex fluxes, p̂n+1/2 and (p̂V̂)n+1/2,

around each cell-centered control volume using the trapezium rule.

The performance of the resulting algorithm will be assessed using some common test

problems in Section 6.2. Some deficiencies will be identified that will be addressed in

the next chapter.

6.1 From Acoustics to a Simple Lagrangian Method (SLaM)

A basic extension of the two-dimensional, acoustic RR method to the two-dimensional

Euler equations on a Lagrangian grid will now be described step-by-step. The result-

ing method will be referred to as the simple Lagrangian method (SLaM)-A. The mesh

is made up of quadrilateral elements and all of the methods presented here will use

the nine cell stencil shown in Figure 6.1. The cell centers are assumed to be located

at the geometric centroid of each quadrilateral, which is consistent with the center of

mass for a uniform density distribution. Extending the RR method to Lagrangian hy-

drodynamics is primarily an exercise in extending the acoustic flux evolution formulas

to deformed meshes. In dimensional form, we have

p̂n+1/2 = p̂n − Q̂pĥ
2

2â2∆t
β̂p, (6.1a)

ûn+1/2 = ûn − Q̂V ĥ
2

2â2∆t
β̂u, and (6.1b)

v̂n+1/2 = v̂n − Q̂V ĥ
2

2â2∆t
β̂v. (6.1c)
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CELL 

VERTEX 

FACE 

Figure 6.1: Lagrangian stencil illustration and nomenclature

As written, the vertex drivers are

β̂p = ρ̂â2 (∆xu+ ∆yv) , β̂u =
1

ρ̂
∆xp, and β̂v =

1

ρ̂
∆yp. (6.2)

To construct the method, an interpolation procedure is needed to obtain initial esti-

mates of the solution at vertices, the Q-parameters must be specified, a definition for

the characteristic cell size h must be established, and the first derivative approxima-

tions ∆x and ∆y must be defined. To aid in these tasks, the vertex centered control

volume shown in Figure 6.2 was used.

6.1.1 Initial Flux Interpolation

Several different approaches could be adopted to provide initial vertex estimates

of the pressure, velocity, density, and sound speed. Here a linear interpolation was

performed by constructing planes from the cell-centered data around each vertex.

Each vertex shares four cells in a quadrilateral mesh and, therefore, a plane cannot

be uniquely determined. Instead, a least-squares best fit was performed by solving the
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𝑝 , 𝑢  , 𝑣  

Figure 6.2: A staggered control volume is used to compute the vertex quantities
ĥ, Q̂p, Q̂V , ĥ, ∆x and ∆y.

normal equations. This procedure has the advantage of being simple and robust in the

sense that the geometry of the surrounding cell centers does not affect the computation

of the plane. However, on highly deformed grids a vertex can fall outside of the control

volume shown in Figure 6.2 and the procedure will turn into an extrapolation. In

this case, the arithmetic mean of the cell-centered quantities was used. Appendix C

contains more details on interpolation.

6.1.2 Characteristic Cell Size

The flux evolution equations require a characteristic length scale, ĥ, to be as-

sociated with each vertex. Once again, there are many possible ways to do this.

Currently, ĥ is taken to be the ratio of the volume (area), V̂, of the vertex centered

control volume to its surface area (perimeter), Â,

ĥ ≡ V̂/Â. (6.3)

Other choices are certainly viable and could be further explored.
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6.1.3 Q-parameter Selection

The Q-parameters Q̂p and Q̂V , which control the dissipation and accuracy of the

method, must be defined. For first-order accuracy, the choice of the Q-parameters

is arbitrary and only constrained by stability considerations. To give a first-order

method, the Q-parameters could be set to Q̂p = Q̂V = ν̂ in analogy with the FUP

method. Here n̂u is a local estimate of the CFL number. We will proceed with this

choice, except that the q-parameter for the pressures will be modified to

Q̂p = ν̂ + min

(
0,

∆tβ̂p
ρ̂â2

)
. (6.4)

This adds an O(h2) nonlinear artificial viscosity like term to the pressure evolution

formulas. The extra dissipation is only active during compression and was useful

for preventing overshoots near strong shocks and ensuring that there is numerical

dissipation in the method in cases were the sound speed is very small.

6.1.4 Differentiation Operators

Second-order accurate approximations for ∂x and ∂y on a nonuniform mesh are

needed. Here we follow the suggestion of Roe [74] and look to Gauss’s theorem to

derive the discrete operators. For a scalar quantity, ξ, defined over a control volume

V, the integral relations

∫
∂xξdV =

∮
ξdSx ⇒ ∂xξ =

∫
∂xξdV∫
dV

=

∮
ξdSx∫
dV

and (6.5a)∫
∂yξdV =

∮
ξdSy ⇒ ∂yξ =

∫
∂yξdV∫
dV

=

∮
ξdSy∫
dV

(6.5b)

hold. The quantities dSx and dSy denote the area-weighted face normal dotted into

the x and y unit vectors, respectively. The discrete operators, ∇x and ∇y, can be ob-

tained by replacing the exact contour integrals with the trapezium rule and applying
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the formulas over the vertex centered control volumes. The resulting discretizations

will be exact for linear data, which was a principle that was followed when selecting

the discretizations for deformed meshes. See Appendix D for more information. Writ-

ing approximations for the first derivatives in terms of surface and volume integrals

is convenient since they can be applied on a discrete volume of arbitrary shape and,

therefore, they are directly extendable to deformed meshes with arbitrary connectiv-

ity.

6.1.5 Mesh Movement and Flux Integration

The mesh motion has already been defined by ûn+1/2 and v̂n+1/2, which are as-

sumed to be constant over each time step. To make second-order accuracy possible,

which will be sought later, the fluxes must be integrated over the mesh geometry at

the half time step. The mesh vertices are first moved over a half time step interval,

the fluxes are integrated over each cell, and then the mesh vertices are moved to the

final locations. The numerical integration is performed with the trapezoidal quadra-

ture rule as in the RR method over bilinear faces in space-time. While the faces are

functions of time, the trapezoidal quadrature naturally handles this by using face end

points at n + 1/2. The momentum fluxes are integrated over a face of length ln+1/2

according to ∫
pdl =

1

2
(p̂
n+1/2
0 + p̂

n+1/2
1 )ln+1/2, (6.6)

where p̂
n+1/2
0 and p̂

n+1/2
1 are the vertex pressures on each end of the face. In the case

of the total energy fluxes, it was assumed that p̂n+1/2, ûn+1/2, and v̂n+1/2 each vary

linearly over the faces. Linear functions for each variable can be reconstructed and
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then integrated exactly. This leads to the quadrature rules

∫
pudl ≈ 1

6
(2(p̂0û0)n+1/2 + (p̂0û1)n+1/2 + (p̂1û0)n+1/2 + 2(p̂1û1)n+1/2)ln+1/2,

(6.7a)

and

∫
pvdl ≈ 1

6
(2(p̂0v̂0)n+1/2 + (p̂0v̂1)n+1/2 + (p̂1v̂0)n+1/2 + 2(p̂1v̂1)n+1/2)ln+1/2.

(6.7b)

6.1.6 Time Step Selection

A local CFL constraint must be used to restrict the time step size for each iteration

of the computation. The local Courant number in each cell was defined by the cell

geometry and the state it contains: ν = a∆t/h. Here the characteristic cell size was

defined according to

h ≡ min(hx, hy), (6.8)

where

hx =

∮
|dSx|
2V

and

∮
|dSy|
2V

.

This definition will return the shortest side of a rectangle, which is more appropriate

than the definition of h previously used for the flux evolution formulas as it helps

to ensure that the numerical domain of dependence contains the physical one. At

the beginning of each time step, an allowable step size is determined in each cell, i,

according to

∆ti = hiνm/ai, (6.9)

where νm is the maximum allowable CFL number specified by the user, ai is the local

sound speed, and hi is computed as described above. The time step is then selected

as ∆t = min(∆ti). Experience has shown that cautious choices for νm (< 0.5) help

to prevent overshoots near shock waves on some difficult problems.

While the CFL constraint would provide a sufficient restriction on the time step
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for an Eulerian method, the same cannot be said in the Lagrangian case. Equation

(6.9) does not consider the motion of the mesh and, therefore, could admit a time

step large enough to invert a cell in regions of compression where the relative velocity

of the nodes in a single cell are large. To avoid this issue, a secondary constraint on

the time step was used that limits the relative volume change of each cell. It was

formulated by taking advantage of the relation

∇ ·V =
1

V

DV

Dt
, (6.10)

which implies that an estimate of the relative volume change could be obtained as

δV

V
≈ ∆t∇ ·V. (6.11)

An arbitrary restriction between zero and one on the relative volume change can then

be specified

∆t∇ ·V ≤ K∆t (6.12)

to reduce the time step from the CFL condition if needed.

The time step selection procedure is implemented as follows. An initial time step

is chosen according to the CFL condition. Then, the vertex fluxes are computed. The

velocity divergence is computed in each cell using the evolved vertex velocities and

then the time step is reduced if the volume change constraint is violated. Since the

flux evolutions depend on the time step, the divergence constraint must be checked

in an iterative manner. While this adds some expense, iterations are usually only

necessary during the initial phases of the solution. Currently, K∆t is taken to be 1/2.
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6.1.7 SLaM-A Update Procedure

All the tools necessary to perform a Lagrangian update with first-order accuracy

have been established. The final update procedure can be summarized as:

1. Compute initial estimates of p̂, û, v̂, ρ̂ and â at each vertex.

2. Evolve p̂, û, and v̂ to n+ 1/2.

3. Move the mesh to n+ 1/2.

4. Integrate the fluxes over each face.

5. Move the mesh to n+ 1.

6. Update the cell centered variables:

Un+1 =
1

Vn+1

[
VnUn −∆t

(
F + G

)]
(6.13)

where,

U = (ρ, ρu, ρv, E), (6.14a)

F =

(
0,

∮
p̂n+1/2dSx, 0,

∮
p̂n+1/2ûn+1/2dSx

)T
, and (6.14b)

G =

(
0, 0,

∮
p̂n+1/2dSy,

∮
p̂n+1/2v̂n+1/2dSy

)T
. (6.14c)

6.2 SLaM-A Numerical Results

Some test problem commonly found in the Lagrangian literature will be used to

assess the performance of SLaM-A. A quick comment about units is in order. The

test problems that will be considered are based on exact solutions to the Euler equa-

tions. The exact solutions are derived under very specific (and somewhat contrived)
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conditions. The units of the quantities do not have much meaning since any con-

sistent system could be specified. However, strictly speaking, dimensional quantities

will be plotted and, therefore, they will be labeled as such. As is commonly done

in the Lagrangian literature, the units will be defined on a centimeter(cm)-gram(g)-

microsecond(µs) basis and the pressure and energy densities will be expressed in

terms of megabars (Mbar). The volume in cubic centimeters will be abbreviated as

“cc”. The fluid will be an ideal gas in all cases.

6.2.1 Convergence Analysis

A convergence analysis was performed using a smooth two-dimensional exact so-

lution to the Euler equations. The test problem is a projection of Kidder’s three-

dimensional isentropic compression problem [40] onto a two-dimensional Cartesian

space that was devised by S. Ramsey at Los Alamos National Laboratory [70]. A

linear velocity field, which is zero at the origin, and a Gaussian density field are pre-

scribed in the initial data. While the exact solution is generally given in terms of a

time variable that goes from t ∈ [−1, 1], here the time variable was shifted such that

t∗ ∈ [0, 2]. The gas is undergoing compression when t ∈ [0, 1) and expansion when

t ∈ (1, 2]. The exact solution is given by

ρ(x, y, t∗) =
2

1 + (t∗ − 1)2
exp

[
− x2 + y2

1 + (t∗ − 1)2

]
g/cc, (6.15a)

e(x, y, t∗) =
1

2[1 + (t∗ − 1)2]
Mbar*cc/g, (6.15b)

u(x, y, t∗) =
x(t∗ − 1)

1 + (t∗ − 1)2
cm/µs and (6.15c)

v(x, y, t∗) =
y(t∗ − 1)

1 + (t∗ − 1)2
cm/µs. (6.15d)

The solution was initialized on the box x, y ∈ [−3, 3] cm and computations were run

until t = 0.6µs with the maximum CFL number specified as 0.4. The ratio of specific
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Figure 6.3: The SLaM-A method converges at first-order on the smooth Cartesian
Kidder test problem.

heats, γ, is 2. The volume averaged L1 norm given by

L1V =
1

VTOTAL

N∑
i=1

Viεi (6.16)

was used to measure the numerical errors on meshes ranging from 100× 100 cells to

450× 450 cells. A circular sample region was defined in the domain that ranged from

r = 0 cm to r = 1.5 cm to avoid any boundary disturbances. The characteristic cell

size was taken to be the average value of h for all of the cells on the last time step

in the sample region using (6.3). Figure 6.3 shows that the Lagrangian method is

converging at first-order as expected.
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6.2.2 Sedov

The two-dimensional Sedov problem [75] is an exact solution to the Euler equations

that models an idealized blast. The blast is generated by a large energy input at the

origin. Here the problem was solved on a square mesh with 50×50 cells per quadrant.

The ratio of specific heats was γ = 5/3 and the problem was solved on the domain

x ∈ [−1.25, 1.25] cm and y ∈ [−1.25, 1.25] cm. In the four cells surrounding the origin,

the total energy density was prescribed to be E = 0.56114/4 Mbar. The initial density

was ρ = 1 g/cc everywhere and the initial pressure was set to ε = 10−12 Mbar outside

the high energy region1. The problem was run until the t = 1 µs with νm = 0.4.

Results that include the final mesh and radial plots2 of the mass density, total energy

density, and pressure are shown in Figure 6.4. The results were encouraging as the

SLaM-A method not only successfully computed the solution, but also preserved

the radial symmetry of the problem to a reasonable degree. While the mesh is not

badly deformed, some scatter is present in the radial plots near the origin. This is

particularly evident in the pressure profile.

6.2.3 Noh

The Noh problem [67] is a challenging test of Lagrangian hydrocodes that can

provoke many pathologies. The flow implodes at the origin and the challenge is to

accurately compute the radial, outgoing shock that brings the flow to rest. The

initial velocity field has a unit radial velocity, vr = −1 cm/µs. The initial pressure

and density are ε = 10−12 Mbar and 1 g/cc, respectively3. The ideal gas was assumed

to have γ = 5/3 and the problem was computed on an initially square mesh with

50× 50 cells per quadrant. The domain was x ∈ [−1, 1] cm and y ∈ [−1, 1] cm. Each

1The exact value of the pre-shock pressure is zero, which enables the exact solution.
2As was done for the acoustic results, these plots contain every point in the computational domain.
3Again, the pre-shock flow is assumed to have zero internal energy and the exact solution specifies

the pressure as zero.
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Figure 6.4: The SLaM-A method was able to successfully compute the two-
dimensional Sedov problem on a Cartesian mesh.

103



computation was run until t = 0.6 µs and the maximum CFL number was specified

as νm = 0.4.

As expected, the Noh problem proved significantly more difficult than the Se-

dov problem. Figure 6.5 shows that while the solution was successfully computed,

significant symmetry loss and mesh imprinting occurred. The symmetry loss was

accompanied by spurious vorticity, as shown in Figure 6.6. This illustrates some of

the new difficulty associated with Lagrangian hydrodynamics that was circumvented

with the acoustics algorithms: Physical vorticity evolution can no longer be guaran-

teed. The large defect in the density near the origin is known as wall heating. It is

a chronic issue that occurs in Lagrangian computations and it is related to excessive

numerical entropy production (or heating). For more discussion see Noh’s paper [67]

or a more recent work by [71]. While this error is universally present in Lagrangian

numerical solutions to problems like Noh, the magnitude observed here is substantial.

Also note that the exact plateau values are not predicted correctly by the code, even

though it is conservative, since the correct post-shock state never properly develops

early in the solution. These discrepancies are related to errors in the mesh motion

and are universally observed in Lagrangian computations of the Noh problem.

6.2.4 Saltzman

The Saltzman problem is another difficult test of the ability of Lagrangian hy-

drocodes to resist spurious mesh motions (see e.g. [29]). A one-dimensional piston

generated shock is computed on a two-dimensional domain in which the mesh ele-

ments have been purposely skewed so they are not aligned with the shock. The mesh

geometry is defined according to

xij = i∆x+ (10− j)∆y sin

[
πi

100

]
+ x0 cm yij = j∆y + y0 cm, (6.17)
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Figure 6.5: The SLaM-A method was able to compute the solution to the Noh prob-
lem, but noticeable symmetry losses and mesh imprinting occurred. In
addition, the wall heating is substantial.
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Figure 6.6: The symmetry loss observed on the Noh problem was accompanied by
spurious vorticity.

where ∆x = ∆y = 0.01 and i, j ∈ [0, 100]. Traditionally, x0 = y0 = 0 cm and the

piston is defined on the domain x ∈ [0, 1] cm and y ∈ [0, 0.1] cm, however, here we take

x0 = −1 cm, y0 = −0.01 cm and use the domain x ∈ [−1, 0] cm and y ∈ [−0.01, 0] cm

for reasons that will be explained shortly. Figure 6.7 shows the initial mesh geometry.

The initial conditions involve a stationary ideal gas with γ = 5/3. The initial density

and specific internal energy are 1 g/cc and 10−4 MbarCC/g, respectively. The piston,

which is on the left side of the domain, moves with the speed 1 cm/µs. The other

three boundaries are reflective walls. The exact solution gives a shock speed of 1.333

cm/µs and a post-shock state with ρ = 4 g/cc and e = 1/2 Mbar*cc/g. While this

problem appears benign, it is famous for breaking Lagrangian methods. The object

of the test problem is to compute the solution for as long as possible while preserving

the one-dimensional shock wave. All codes will eventually crash as the piston will

collide with the end wall when t = 1µs, but failure often occurs much earlier due to

spurious mesh motions.

The SLaM-A method failed prematurely due to mesh tangling when computing

the Saltzman problem. Figure 6.8 shows the mesh just prior the crash at t = 0.34.
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Figure 6.7: The initial Saltzman mesh has skewed elements so that it is not aligned
with the one-dimensional shock generated by the piston on the left bound-
ary.

All of the tangling in the mesh is concentrated near the top wall behind the shock

wave. Initially, it was suspected that the problem was due to boundary conditions. To

further investigate, the original Saltzman mesh was reflected over the x- and y-axes.

This makes the top and bottom wall boundaries periodic and places the end wall in

the interior of the domain. The only boundary conditions that must be specified in

this case are the left and right piston. Figure 6.9 shows the initial mesh geometry in

the left-hand plane. The original Saltzman mesh was placed in quadrant three earlier

to better facilitate this mesh.

The problem was run again on the reflected mesh. Unfortunately, as Figure 6.10

shows, the problem was not due to the boundary conditions. The code crashed at

the same time as before. Inspection of the figure shows that the same difficulty has

occurred in the same location. This illustrates a peculiar feature of the Saltzman

problem: The most difficult part of the problem occurs at the boundaries where the

mesh geometry is discontinuous4.

4Note that the reflected geometry can only be a problem for methods and boundary conditions
that make use of it. A traditional Riemann solver would not care about the geometry; it only is
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Figure 6.8: The SLaM-A method failed prematurely due to mesh tangling near the
top boundary just after t = 0.34µs.

Figure 6.9: The Saltzman mesh was reflected over the x and y axes to study what
happens near the boundaries. Only the left hand plane is shown here.
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Figure 6.10: Reflecting the original Saltzman mesh over the x and y axes allowed
periodic boundaries to be used everywhere except at the pistons. This
mesh configuration shows that the most challenging part of the Saltzman
problem occurs at the top and bottom wall boundaries where the mesh
geometry is discontinuous.

To avoid the distraction of the discontinuous geometry, a new mesh was devised

with smooth Gaussian grading. The mesh was constructed according to

yj = j∆y + y0 and

xj = Kx exp
[
−Kyy

2
j

]
sin
[
π(xUi − x0)

]
sin [2π(|yj|+ y0)] + xUi ,

where Kx =
∆x(2500∆x− |xUi |)

2
, Ky = 20000∆y, and xUi = i∆x+ x0.

The constants were taken to be x0 = −1, y0 = −0.01, and ∆x = ∆y = 0.01 cm. The

left half of the mesh is shown in Figure 6.11. The problem was run once again and

the code failed just as before. Figure 6.12 shows the mesh just before failure and vor-

ticity contours computed from the nodal velocities. The tangling is accompanied by

spurious vorticity as expected. This failure was taken as confirmation of a deficiency

in the SLaM-A method.

concerned with the states on either side of the boundary.
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Figure 6.11: A mesh with smooth Gaussian grading was designed so the Saltzman
problem could be run without the distraction of discontinuous geometry
at boundaries.

It was hypothesized that the problem was related to a break down of the vertex

centered control volumes, which are used to compute the fluxes. Figure 6.13 illustrates

an example where the vertex lies outside of the control volume drawn using the

adjacent cell-centers as specified by the mesh connectivity. In this situation, the

geometrical interpretation of the CFL condition is violated and the flux estimation

procedure breaks down. One situation where this may occur is in regions of the mesh

where high aspect ratio elements are arranged in a chevron pattern. This is exactly

the situation encountered in the Saltzman mesh at the upper and lower walls after

the shock has passed. Some investigation into a way to overcome this issue will be

carried out in the next chapter.

6.3 Discussion

All things considered, the extension of the RR method to Lagrangian hydrody-

namics was encouraging. The Sedov and Noh problems were successfully computed

on Cartesian meshes and the SLaM-A method was able to preserve the radial symme-
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Figure 6.12: The SLaM-A method crashes around t = 0.34µs due to tangling in the
same region as the original Saltzman mesh even on the mesh with smooth
geometry. Spurious vorticity accompanies the mesh tangling.
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Figure 6.13: The vertex centered control volume that is specified according the mesh
connectivity may not contain the vertex on highly deformed meshes,
which means it is no longer useful for interpolation or computing the
driver quantities.

try of the problems to a reasonable degree despite its simple construction. However,

work remains. Compared with other solutions in the literature, excessive mesh im-

printing was still evident, particularly in the Noh problem. Furthermore, the SLaM-A

method failed prematurely on the Saltzman problem. A more robust flux estimation

procedure is needed for badly deformed grids. The next chapter will aim to address

these issues.
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CHAPTER VII

First-order Methods for Lagrangian

Hydrodynamics: Part II

The SLaM-A method presented in Chapter VI was constructed along the lines

originally proposed by Roe. While results show that the proposed algorithm struc-

ture has potential, some improvements are needed. When computing the Noh prob-

lem, excessive mesh distortion and spurious vorticity damaged the solution behind

the shock wave, suggesting that some mechanism is needed to resist badly formed

mesh elements. Furthermore, the Saltzman problem failed prematurely, which was

thought to be caused by a breakdown of the vertex-centered control volumes used

to compute the fluxes. To make the mesh more robust and reduce mesh imprinting,

face pressures will be added to the SLaM algorithm in Section 7.1. Then, in Section

7.2, the robustness of the flux evolution formulas will be improved by modifying the

interpolation algorithms and incorporating face midpoints into the driver control vol-

umes. The resulting algorithm will be referred to as SLaM-B. The usefulness of the

changes will be assessed using the test problems from the previous chapter in Section

7.4 and some closing comments are included in Section 7.5.
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7.1 Face Pressures

Mesh imprinting was reduced in the acoustic algorithms from Chapter III by

adding point estimates of the fluxes for the pressure update at faces. This meant

that unique estimates of the velocity components were assigned to faces. A similar

improvement is needed for the SLaM method to reduce mesh imprinting, however,

unique face velocities may not be specified in the Lagrangian algorithm. Doing so

would create an inconsistency between the mesh motion and the fluxes, resulting in

violations of the GCL. However, there is no such restriction on the pressure.

Point estimates of the pressure were added to the SLaM algorithm using a pro-

cedure analogous to the one used at vertices. Denoting all face quantities by (̃), the

evolution equation for the face pressures is

p̃n+1/2 = p̃n − Q̃ph̃
2

2ã2∆t
β̃p, (7.1)

where β̃p = ρ̃ã2 (∆xu+ ∆yv). Initial estimates of the pressures at each face, p̃n, were

obtained from linear interpolation. Again, see Appendix C for details. To define the

face-centered velocity divergence, the discrete operators from Chapter VI were applied

on the control volume shown in Figure 7.1. The vertex velocities were taken to be the

initial interpolations ûn and v̂n and the cell-centered estimates were obtained from

the momentum and density variables. Using this control volume will ensure that the

face pressures respond to large distortions in the mesh and, therefore, it was expected

that they would improve its robustness.

7.1.1 Q-parameter and Time Step Selection

With the addition of the face pressures, three Q-parameters must now be specified.

Since the face pressures help stabilize the mesh, no artificial viscosity like terms were
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Figure 7.1: The control volume used to compute point estimates of the pressure at
faces is shown.

found necessary. The q-parameters are taken to be

Q̂p = Q̂V = ν̂ and Q̃p = ν̃.

The parameter K∆t used in the velocity divergence constraint was reduced to 0.2 to

help prevent excessive time steps early on in some problems.

7.1.2 Flux Integration

The numerical quadrature rule used to average the fluxes over faces was modified

to account for the face pressures. The quadrature rule was derived by assuming a

quadratic variation of the pressure and linear variations of the velocity components

over each face. After integrating the resulting polynomials exactly, Simpson’s rule

emerges. In the case of the energy fluxes, the velocity estimates at the faces are taken

as the average of the adjacent vertices. This ensures that the GCL is not violated.

For example, the time and space averaged x component of the energy flux at a face
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is given by

pun+1/2 =
1

6
[(p̂n+1/2ûn+1/2)0 + 4p̃n+1/2ũn+1/2 + (p̂n+1/2ûn+1/2)1]ln+1/2. (7.2)

7.2 Flux Formula Robustness

In the previous chapter, the SLaM-A method crashed prematurely due to mesh

tangling when computing the Saltzman problem. The cause of the mesh tangling

was thought to be the break down of the vertex-centered control volumes used to

compute the flux components on highly distorted grids. One way to fix this problem

would to be to stop the computation and fix the distorted cells in the mesh. This is

usually called rezoning. In order to implement a rezoning capability, some indicator

of grid quality would be required to determine when and where mesh modifications

were necessary. Then a new mesh must be specified, at least locally, and the solution

variables mapped to the new geometry.

Two particular cell configurations are known to be problematic when dealing with

quadrilateral meshes. The first is the formation of nonconvex cells in which the

centroid of the zone does not lie in its interior. The other, which is observed in

the Saltzman problem, are high aspect ratio zones that form a chevron pattern. To

prevent nonconvex cells, the mesh could be locally rezoned if intersection point of the

diagonals in a zone approaches the zone boundary. Another indicator that could be

used to trigger a rezoning phase is the distance of the current vertex from the centroid

of its control volume. If the cells are square, the two points will coincide, but they will

generally become distinct on a deformed mesh. Cells could be flagged if the distance

from the centroid to the vertex become too large. The allowable distance would be

a tunable parameter, but could reasonably be specified as a fraction of ĥ, say 1/4.

While more expensive, it may be better to rezone the mesh after every Lagrangian

step. With this strategy it is possible to avoid heuristic measures of mesh quality.
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Figure 7.2: The vertex centered control volume was modified to include the faces.

A smoothing operation can be applied to the mesh after each step as is done using

reference Jacobian matrices and an optimization procedure in [42].

The topic of mesh rezoning techniques falls outside of this thesis and so no addi-

tional discussion on the topic will be included. However, the SLaM method should

be able to compute the Saltzman problem on a purely Lagrangian mesh well past the

initial reflection of the shock from the end wall. Some ways to increase the robustness

of the flux formulas on highly deformed meshes will now be considered.

7.2.1 Control Volume for Driver Estimation

The control volumes used to estimate the vertex driver quantities were modified

to include the face mid-points. This incorporated more data into the driver estimates

and ensured that the each vertex would fall inside its respective control volume, even

on highly distorted grids. Since computing the driver estimate is an intermediate step

in the flux prediction process, it was possible to use unique velocity estimates at the

faces when determining the vertex-centered velocity divergence without violating the

GCL. Figure 7.2 shows the modified vertex-centered control volume.
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7.2.2 Interpolation

On highly deformed grids it is possible that the vertex- and face-centered control

volumes used to interpolate initial estimates of the solution do not contain the vertex

of interest. This forces the values to be extrapolated, which is obviously not desirable

and violates the CFL condition. To help remedy the situation each vertex was checked

to see if it fell inside its respective control volume. It it did not, then a control volume

was sought from the neighboring data that did contain the point and the interpolation

was performed with the new data. More information can be found in Appendix C.

7.3 SLaM-B Update Procedure

The SLaM-B method uses the following procedure to update the cell-centered

conserved variables (ρ, ρV, E) from n to n+ 1:

1. Interpolate initial estimates of p̂n, ûn, v̂n, ρ̂n and the sound speed, ân, at each

vertex.

2. Interpolate initial estimates of p̃n, ũn, ṽn, ρ̃n, and ãn at each face.

3. Evolve p̂n, ûn, v̂n, and p̃n to the n+ 1/2 time level.

4. Update the mesh position to n+ 1/2 using ûn+1/2 and v̂n+1/2.

5. Integrate the fluxes over each face.

6. Update the mesh position to n+ 1.

7. Update the cell centered variables according to

Un+1 =
1

Vn+1

[
VnUn −∆t

(
F + G

)]
(7.3)
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where,

U = (ρ, ρu, ρv, E), (7.4a)

F =

(
0,

∮
pn+1/2dSx, 0,

∮
pn+1/2un+1/2dSx

)T
, and (7.4b)

G =

(
0, 0,

∮
pn+1/2dSy,

∮
pn+1/2vn+1/2dSy

)T
. (7.4c)

Note that the conceptual progression listed here does not represent an efficient im-

plementation strategy.

7.4 SLaM-B Numerical Results

7.4.1 Convergence

The convergence rate of the SLaM-B method was measured using the smooth

Kidder problem and the volume-weighted L1 norm from the previous chapter. Figure

7.3 shows that the method converged at first-order as expected.

7.4.2 Sedov

Sedov solutions computed with the SLaM-B method have near perfect radial sym-

metry as shown in Figure 7.4. The changes discussed in this chapter have removed

nearly all of the mesh imprinting from the solution. Furthermore, the solutions are

in better agreement with the exact answers as compared with those presented for

the SLaM-A method previously. Figure 7.5 shows density contours and the radial

density profile when the solution in computed on a finer mesh with 100 × 100 cells

per quadrant. The solution is converging to the exact answer and no deviations from

radial symmetry are observed.
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Figure 7.3: The SLaM-B method converges at first-order on the smooth Cartesian
Kidder test problem.

7.4.3 The Riemann Solver Pitfall

One might be tempted to to obtain the face pressures in the SLaM-B algorithm

from a Riemann solver of some type. While this is certainly possible and would more

closely parallel traditional finite volume practice, it is not advisable. Figure 7.6 shows

Sedov results from the SLaM-B method if the face pressures are obtained from an

exact Riemann solver. The Riemann solver caused a large degradation in the solution

isotropy by allowing the mesh to imprint itself on the solution. Figure 7.7 shows the

density contours, which have been flattened where the shock is not aligned with

the grid. This example illustrates the importance of incorporating multidimensional

physics into multidimensional algorithms. The Riemann solver has no concept of the

multidimensional velocity divergence and, therefore, is not able to accurately compute

the pressure everywhere in the domain.
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Figure 7.4: The SLaM-B method suffers from almost no mesh imprinting when com-
puting the Sedov problem on a Cartesian mesh with 50 × 50 cells per
quadrant.
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Figure 7.5: No deviations from radial symmetry are present in the Sedov solution
obtained with the SLaM-B method on a mesh with 100 × 100 cells per
quadrant.

7.4.4 Noh

The Noh problem was run with the SLaM-B method to better gauge the effective-

ness of the modifications introduced in this chapter. Figure 7.8 shows the solution

computed on a mesh with 50× 50 cells per quadrant. The results are extremely en-

couraging since nearly all mesh imprinting has been removed from the solution. The

improvement in the mesh quality, and therefore the density profile, in the post-shock

region is impressive when compared to the corresponding SLaM-A results presented

before. In this region, the scatter in the density data was reduced by over 75 percent.

See Appendix B. The severity of the wall heating has also been substantially reduced

by removing the artificial viscosity like term from the q-parameters1. The solution

quality is further improved if the maximum allowable CFL number is lowered. Figure

7.9 shows the density contours and radial profile produced when νm = 0.1. The shock

front is free from overshoots in all directions. Also, Figure 7.10 shows that very little

spurious vorticity is present in the post-shock state. Finally, Figure 7.11 shows a

1Since the most difficult part of the Noh problem occurs near the origin during start-up, an
experiment was done in which the problem was initialized at t = 0.3 µs with the exact data. See
Appendix E for more information
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Figure 7.6: The multidimensional face pressures in the SLaM-B method were replaced
with pressures obtained from an exact Riemann solver. The Riemann
solver caused mesh imprinting and destroyed the radial symmetry of the
problem.
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Figure 7.7: The exact Riemann solver has flattened the density contours in regions
where the shock is not aligned with the grid.

solution computed on a finer mesh with 100 × 100 cells per quadrant. The solution

is converging and maintains all of the positive attributes discussed.

7.4.5 Triple Point

The modifications made when constructing the SLaM-B method were effective

in preventing spurious vorticity from entering the solution when computing the Noh

problem. A valid question then, is whether or not the method prohibits physical

vorticity production. To investigate, the triple point problem was run (see e.g. [15]).

In the version implemented here, three different gas states were initialized at rest.

The states interact at the “triple point” and vorticity should develop due to baroclinic

production. The initial data was specified as shown in Figure 7.12. Results very early

in the solution at t = 0.25 µs show that vortex roll-up is well underway and the mesh

has tangled as a result. See Figure 7.13. Clearly the SLaM-B method still allows

physical vorticity production. The problem cannot be continued unless the mesh is

fixed2.

2Some first-order Lagrangian methods are able to compute the solution up until t ≈ 3 µs. How-
ever, the only way this is possible is if the method strongly damps the physical vorticity.
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Figure 7.8: The SLaM-B method is able to compute the Noh problem with very little
mesh imprinting.
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Figure 7.9: A perfectly radial shock front with no overshoots can be computed with
the SLaM-B method by reducing the maximum allowable CFL number.
Here νm = 0.1.

Figure 7.10: The SLaM-B method generates very little spurious vorticity in the post-
shock region of the flow. Some vorticity is imparted to the mesh as
elements pass through the shock.
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Figure 7.11: A Noh solution obtained with the SLaM-B method on a finer mesh with
100× 100 cells per quadrant is shown.
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Figure 7.12: The graphic shows the initial conditions for the triple point problem.
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Figure 7.13: The SLaM-B method allowed physical vorticity production to occur right
away in the triple point problem. (t = 0.25 µs, νm = 0.4)

7.4.6 Saltzman

The Saltzman problem was computed until t = 0.34 µs with the SLaM-B method,

which is just prior to failure for the SLaM-A method. The resulting meshes from each

method were then compared. Figure 7.14 shows the original Saltzman mesh, while

Figure 7.15 shows the Gaussian mesh. The improvements aimed at increasing the

robustness of the interpolation and flux evolution algorithms in the SLaM-B method

have certainly had a positive effect. The mesh tangling that crashed the SLaM-A

method is not yet evident in either of the SLaM-B results.

The SLaM-B method was allowed to compute the Saltzman problem to failure on

both meshes. In each case, the code crashed around t ≈ 0.81 µs, which is just after the

shock reflects off the end wall. Both meshes were plotted at t = 0.8 µs and included in

Figure 7.16. While the capability of the SLaM-B method is certainly improved over

the SLaM-A method, the results are still somewhat disappointing since a modern

CCH code should be able to compute the solution well past t = 0.9 µs. However, all

is not lost. The remaining problem areas in the solution occur in regions where no

suitable control volume can be found for the vertices using the methodology described
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Figure 7.14: The SLaM-B method shows no indications of mesh tangling at t =
0.34 µs on the original Saltzman mesh, whereas the SLaM-A method
was about to crash. Top: SLaM-A; Bottom: SlaM-B
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Figure 7.15: The SLaM-B method shows no indications of mesh tangling at t =
0.34 µs on the Gaussian mesh. Top: SLaM-A; Bottom: SLaM-B
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in Appendix C. A more robust method for finding appropriate data for interpolation

is needed. Furthermore, even when the procedure works, it is still quite crude and

switches the data used for interpolation instantly when a vertex crosses into another

control volume. It would be preferable to implement a procedure that facilitates a

smooth transition. Instead of devoting resources to resolving this problem now, it will

be dropped in favor of extending some of the limiting ideas developed in Chapter V to

Lagrangian hydrodynamics. Additional improvements to the interpolation procedure

are left to future work.

7.5 Discussion

The improvements incorporated into the SLaM-B method in this chapter led to

an algorithm that was far superior to the SLaM-A method from Chapter VI. Nearly

all mesh imprinting and spurious vorticity were removed from the Sedov and Noh

solutions and, while the Saltzman problem still presents some challenges, much im-

provement was demonstrated there, too. What is, perhaps, most encouraging is that

the large improvements did not require a large increase in the complexity of the

scheme or any fundamental deviations from the framework proposed in Chapter I. It

is interesting to note that the most troublesome problem with the current methods,

the break down of vertex-centered control volumes, is a direct consequence of using

quadrilateral meshes. These problems would be completely avoided on an unstruc-

tured triangular mesh and there is nothing about the methods described here that

would prevent their extension to such. Now, some new difficulties may arise in that

case, but in the author’s opinion, exploration of the idea would be worthwhile. Given

the superior performance of the SLaM-B method, it will taken as the preferred scheme

and referred to in the next chapter simply as SLaM, where a second-order extension

of the method will be done.
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Figure 7.16: The SLaM-B method was able to compute the Saltzman problem past
t = 0.8 µs before failing. The regions with the largest mesh distortions
cause failure as the current algorithm cannot find a suitable vertex con-
trol volume among the nearest neighbors. Top: Original Saltzman mesh;
Bottom: Gaussian mesh
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CHAPTER VIII

A Second-order Method for Lagrangian

Hydrodynamics

The SLaM method developed in the last chapter resists mesh imprinting, but it is

still only first-order accurate. As discussed in Chapter I, the goal of this research was

the development of a second-order accurate Lagrangian scheme. When construct-

ing the first-order SLaM methods in Chapters VI and VII, care was taken to select

discretization techniques that would produce the exact answer for linear data. The

payoff for this prior work is realized in this chapter and it will be shown that SLaM is

capable of second-order accuracy if the q-parameters are properly chosen. Then, some

of the temporal flux limiting ideas from Chapter V will be used to produce a non-

linear method. The SLaM method with temporal flux limiting will be referred to as

SLaM-TFL. The ability of SLaM to achieve second-order convergence on the smooth

Kidder like problem will be demonstrated in Section 8.1. In Section 8.2, a temporal

limiting approach will be described. Numerical results from the Kidder, Sedov and

Noh problems are presented in Section 8.4. Finally, some concluding comments are

made in Section 8.5.
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8.1 Second-order Accuracy

The q-parameters in the first-order implementation of the SLaM method, which

will now be denoted as the cautious (C) choices, were specified as

Q̂C
p = Q̂C

V = ν̂, and Q̃C
p = ν̃. (8.1)

Since the interpolation and differentiation operators used in Chapters VI and VII

are exact for linear data, the only thing that must be done to achieve second-order

accuracy is to compute the time averaged fluxes with to the trapezoidal rule. This is

accomplished with the accurate (A) q-parameters

Q̂A
p = Q̂A

V = ν̂2, and Q̃A
p = ν̃2. (8.2)

To verify that the implementation was carried out correctly, the accurate q-parameters

were specified and a convergence analysis was performed with no limiting. Figure 8.1

shows that the accuracy has increased as expected. It should be stressed that the

increased accuracy comes at no extra expense as compared to the first-order SLaM

method and does not introduce any new complexity in unlimited form.

8.2 General Limiting Approach

The temporal approach used to limit point estimates of the acoustic fluxes in

Chapter V was very successful. Similar ideas will be applied here to construct a

SLaM method with temporal flux limiting, which will be referred to as SLaM-TFL.

The Euler fluxes were obtained by individually computing the acoustic variables p, u

and v and the practice of treating each separately will be carried over to the limiting.

To make this possible, enhanced drivers were defined that incorporate a provisional

solution just as was done for acoustics. They take the form βE = βn + κ(β∗ − βn),
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Figure 8.1: The SLaM method converges at second-order when the accurate q-
parameters are used.
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where the Lagrangian drivers are

βp = ρa2(∆xu+ ∆yv), βu =
1

ρ
∆xp, and βv =

1

ρ
∆yp.

Then the limited drivers are written

βlim = F0(ν, φ)βn + F1(κ, φ)(β∗ − βn), (8.3)

and used to defined antidiffusive flux components. For example, the limited vertex

pressure will be

p̂A → p̂′ = p̂C +
(Q̂C

p − Q̂A
p )ĥ2

2â2∆t
β̂limp . (8.4)

Initially, the indicator quantity φ and the general form of the functions F0 and F1

were carried over from acoustics. However, it was observed that the indicator quantity

did not adequately highlight difficult regions of the flow, resulting in mesh imprinting

and large overshoots when computing the Noh problem. See Figure 8.2.

One way to proceed is to add an additional indicator quantity, which can be taken

as the ratio of the first two terms in the temporal expansions of the acoustic variables.

This means two indicators are available, which, in terms of a generic quantity α, are

φAα =

∣∣∣∣ αn

∆tβnα

∣∣∣∣ and φBα =

∣∣∣∣ 2βnα
(β∗α − βnα)

∣∣∣∣ . (8.5)

The limited drivers now become

βlimα = F0(φAα , ν)βnα + F1(κ, φBα , ν)(β∗α − βnα).

and the empirical functions were taken to be

F0(φAα , ν) = min

[
1,
νφAα
16

]
and F1(κ, φBα , ν) = κ min

[
1,
νφBα

8

]
. (8.6)
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Figure 8.2: The indicator quantity used in the acoustic limiting was found to be
lacking when implemented in the SLaM-TFL method.
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In the implementation, each of these formulas evaluates to zero if the denominator

in the respective indicator quantity is zero. There is one other special case for the

functions F0 when limiting the velocities. Here it does not make sense to automatically

throw away the antidiffusive terms when the initial velocity component and, therefore,

φA is zero. If this situation is detected, the higher-order terms are relied upon and

F0 is set equal to F1.

8.3 SLaM-TFL Update Procedure

The SLaM-TFL method updates the solution according to the following procedure:

1. Interpolate estimates of p̂n, ûn, v̂n, ρ̂n and the sound speed, ân, at each vertex.

2. Interpolate initial estimates of p̃n, ũn, ṽn, ρ̃n, and ãn at each face.

3. Evolve cautious and accurate estimates of p̂n, ûn, v̂n, and p̃n to the n + 1/2

time level.

4. Compute a provisional solution from the cautious flux components as in the

previous chapter. The initial solution data is stored.

5. Compute the provisional driver quantities at faces and vertices.

6. Compute the limited driver quantities according to the methodology described

in the previous section.

7. Perform a final update using the limited flux components according to

Un+1 =
1

Vn+1

[
VnUn −∆t

(
F + G

)]
(8.7)
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where,

U = (ρ, ρu, ρv, E), (8.8a)

F =

(
0,

∮
p′dSx, 0,

∮
p′u′dSx

)T
, and (8.8b)

G =

(
0, 0,

∮
p′dSy,

∮
p′v′dSy

)T
. (8.8c)

Again, the conceptual progression listed here does not represent an efficient imple-

mentation strategy. Note that the final update starts with the data at n, not the

provisional solution as in FCT. This was done to simplify the initial implementation,

but a true FCT update procedure could be used instead. The velocity divergence

time step constraint was reduced in the second-order method (K∆t = 0.1) to prevent

excessive mesh distortions over a single time step.

8.4 Numerical Results

8.4.1 Sedov

Results from the Sedov problem show that the SLaM-TFL method computes

solutions with very little mesh imprinting and the resolution is improved as compared

to the first-order implementation. Figure 8.3 summarizes the solution obtained on a

mesh with 50 × 50 cells per quadrant. The maximum CFL number was νm = 0.4.

In Figure 8.4, solutions are compared from the first-order SLaM method and the

SLaM-TFL method. The second-order method has better resolution as expected and

no unphysical features are found in the solution. However, the limiter appears to be

overly aggressive when limiting the velocities, which is evidenced by the relatively

small improvement in the SLaM-TFL density solution. Additional improvements to

the limiter are left for future work. Finally, density solutions for three different mesh

resolutions are shown in Figure 8.5, which demonstrate that the solution is converging
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Figure 8.3: Sedov results generated by the SLaM-TFL method. (νm = 0.4, 50 ×
50 cells per quadrant)

toward the exact answer.

8.4.2 Noh

Figure 8.6 shows the Noh solution as computed by SLaM-TFL on a mesh with

50×50 cells per quadrant. The addition of the second indicator quantity has removed

the mesh imprinting previously observed near the origin and substantially reduced

the overshoots behind the shock wave. Overall, the solution possesses excellent radial

symmetry and the wall heating is not excessive. As shown in Appendix B, the scatter

in the post-shock density has been reduced by over 80 percent as compared to the
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Figure 8.4: Coarse grid Sedov solutions demonstrate the improved accuracy of the
SLaM-TFL method (25×25 cells per quadrant). Top: First-order SLaM;
Bottom: SLaM-TFL
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Figure 8.5: Sedov results generated by the SLaM-TFL method on three different
meshes: 25× 25, 50× 50, and 100× 100 cells per quadrant. (νm = 0.4)

SLaM-A solution. Once again, solutions were computed on meshes with three different

resolutions to demonstrate that the method is converging to the exact solution. See

Figure 8.7. Finally, Figure 8.8 shows a solution computed on a finer mesh with

100× 100 cells per quadrant and the maximum CFL number lowered to 0.1.

8.4.3 Limited Convergence

A convergence analysis was run with the limiter turned on using the two-dimensional

Kidder like problem. Figure 8.9 shows that the method converges at second-order de-

spite the active limiting mechanism.

8.5 Comments

The numerical results obtained with SLaM-TFL on the Sedov, Noh, and Kidder

problems display very little mesh imprinting while achieving second-order accuracy

in smooth regions of flow. In short, multidimensional design principles have led to
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Figure 8.6: Noh results generated by the SLaM-TFL method show problems. (νm =
0.4, 50× 50 cells per quadrant)
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Figure 8.7: Noh results generated by the SLaM-TFL method on three different
meshes: 25× 25, 50× 50, and 100× 100 cells per quadrant. (νm = 0.4)

a method that is simple and accurate. While the current results are very satisfying,

more work remains. The method still needs to be made more robust on highly de-

formed meshes to overcome the problems documented in Chapter VII when computing

the Saltzman problem. In addition, refinements to the limiting would be desirable,

particularly with regard to the mechanism that modifies the velocities. The challenge

is to design a limiter that is able to turn on when computing a problem like Noh where

there is mesh movement in a fluid with zero pressure, but is not overly aggressive in

less demanding situations.
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Figure 8.8: Noh results generated by the SLaM-TFL method on a mesh with 100×100
cells per quadrant and νm = 0.1.
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Figure 8.9: The SLaM-TFL method converges at second-order on the smooth Kidder
type problem.
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CHAPTER IX

Concluding Remarks and Future Work

The goal of the this thesis was to construct a simple, accurate Lagrangian hy-

drocode and much progress has been made. The preliminary investigation into acous-

tic algorithms proved to be much more interesting than expected and broadened the

scope of the work done considerably. Chapter III led to a greater understanding of

the multidimensional family of Lax-Wendroff schemes and showed that they have a

poorer reputation than they deserve. If they are optimized with respect to a specific

set of governing equations, they can be very effective. For example, the second-order

accurate VPLW methods were able to resist mesh imprinting when computing radi-

ally symmetric problems on square meshes after the leading truncation errors had

been made isotropic.

Chapter IV presented a straightforward and inexpensive method by which the ac-

curacy of the VPLW schemes could be increased to third-order. The third-order meth-

ods used the optimized evolution operators developed in Chapter III, and, therefore,

preserved vorticity and resisted mesh imprinting. However, the dispersion properties

of the third-order methods were far superior to the those of the second-order ones,

especially at low CFL numbers. The large improvement in the solution to problems

with high frequency waves, even with no limiting, provides (more) strong evidence in

favor of the utility of third-order methods.
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In Chapter V, two VPFCT methods were developed that converged with at least

second-order accuracy in smooth regions of the flow. A flux limiting approach was

presented that used the third-order methods for inspiration. This limiter modified

point estimates of the fluxes by considering temporal information in the form of a

provisional first-order solution and a smoothness monitor. The limiter can be thought

of as zero-dimensional with respect to space as a consequence of this construction; it

has a compact structure that is not influenced by the surrounding mesh geometry.

Since a priori bounds on the solution were not available, empirically determined

functions were relied upon. The VPFCT method was able to retain the resistance to

mesh imprinting and desirable dispersion properties of the third-order methods from

Chapter IV, but spurious features were prevented.

The focus returned to Lagrangian hydrodynamics in Chapter VI and the acoustic

RR method was extended to solve the Euler equations on a moving mesh with first-

order accuracy. Point estimates of the fluxes were computed at cell vertices using

a Lax-Wendroff type procedure. The fluxes automatically defined the mesh motion,

and were integrated according to the trapezoid rule. Despite the simple construction

of the method, solutions were successfully computed to the Noh and Sedov problems

on Cartesian meshes. However, substantial mesh imprinting occurred on the Noh

problem. The results showed that while the the approach to cell-centered Lagrangian

hydrodynamics originally proposed by Roe held promise, additional work was needed.

Refinements to the Lagrangian method were presented in Chapter VII, resulting

in the first-order SLaM method. Since undesirable mesh imprinting, accompanied by

spurious vorticity, was encountered in Chapter VI, multidimensional point estimates

of the pressure were introduced at faces. Furthermore, the interpolation and flux

evolution procedures were made more robust for cases where the mesh is highly de-

formed. These additions greatly improved the performance of the algorithm without

requiring any fundamental changes to the SLaM method.
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Finally, it was verified in Chapter VIII that SLaM is capable of second-order accu-

racy with only a simple change of the q-parameters. Some limiting work was presented

that followed the acoustic strategy, but introduced an additional indicator quantity.

The resulting SLaM-TFL method produced excellent results on the Sedov and Noh

problems. In addition, the method converged at second-order when computing the

smooth Kidder like problem.

The beauty of the SLaM methods presented here are truly in their simplicity.

One-dimensional ideas were totally and painstakingly avoided and the payoff was

substantial: The SLaM method has everything it needs to respect multidimensional

physics and resist mesh imprinting and nothing that it does not. It may seem some-

what ironic that so much work was required to produce simple, accurate algorithms.

This fact is well summed up by a quote from Truesdell [81] who noted that, “Sim-

plicity does not come of itself but must be created.”

9.1 Suggestions for Future Work

9.1.1 Lax-Wendroff Methods

Much more investigation into Lax-Wendroff methods could be done. In particular,

the LW family could be optimized with respect other sets of governing equations to

better understand the full scope of its usefulness. Furthermore, a more comprehen-

sive analysis of the work done in this thesis in comparison with other efforts in the

literature could be completed to uncover similarities and differences. These efforts

could produce a comprehensive and authoritative work on Lax-Wendroff methods.

9.1.2 Limiting

The potential for more investigation into the limiting ideas presented here is nearly

endless. More test problems could be run to gain a better understanding of the ca-
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pabilities of the current procedure. Additional work with the the acoustic system

could be aimed at motivating better forms of the limiting functions F0 and F1. Or,

perhaps more insight could be obtained by performing traditional analyses on a prob-

lem where the solution is bounded (e.g. linear advection). Investigation into ways to

extend the temporal limiting ideas to more complicated sets of equations and other

methods could also be done.

9.1.3 SLaM Method

The primary remaining concern with the current SLaM method is the breakdown

in the robustness of the flux prediction formulas on highly deformed grids. One way

to address the robustness of the interpolation and flux evolution procedures could

be to design a more intricate mechanism that is able to find appropriate neighboring

information for interpolation and to identify a valid control volume. A procedure that

smoothly adjusts the data used by the flux formulas as vertices cross control volume

boundaries should be sought. Another way to proceed would be to extend the method

to work on unstructured triangular meshes as the control volumes specified by the

mesh connectivity would always be valid in this case. This would primarily be a coding

exercise; the operators used to construct the SLaM method do not care what the mesh

looks like. More investigation into limiting techniques is warranted. Mechanisms that

can deal with challenging flows like the Noh problem, but adequately relax in less

challenging flows should be sought. Finally, the method could be extended to include

a mesh remapping capability, to compute problems in r − z coordinates, or to solve

problems involving multiple materials or strength.

150



APPENDICES

151



APPENDIX A

The Vorticity Transport Equation for Inviscid Gas

Dynamics

Often the vorticity transport equation is written down with no explanation for its

origins beyond that it is the obtained by “taking the curl of the momentum equation”.

Here we will take the time to derive it for an unsteady, compressible, inviscid fluid.

Perhaps someone will find the derivation useful. The starting point is the momentum

equation, which in conservative form is

∂ρui
∂t

+
∂ρuiul
∂xl

+
∂p

∂xi
= 0 (A.1)

using index notation. Before attempting to take the curl, it will be useful to rewrite

(A.1) in primitive form. To do this, the first two terms can be expanded with the

product rule to give

ρ

(
∂ui
∂t

+ ul
∂ui
∂xl

)
+ ρui

∂ul
∂xl

+ ui
∂ρ

∂t
+ uiul

∂ρ

∂xl
+
∂p

∂xi
= 0. (A.2)
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Now recall that the continuity equation is

∂ρ

∂t
+
∂ρul
∂xl

=
∂ρ

∂t
+ ul

∂ρ

∂xl
+ ρ

∂ul
∂xl

= 0,

and use it to substitute for the time derivative of the density in (A.2). After some

cancellation we have the primitive momentum equation

∂ui
∂t

+ ul
∂ui
∂xl

+
1

ρ

∂p

∂xi
= 0. (A.3)

Now, the curl of a vector ai can be represented as

∇× a =
∂

∂xj
aiεjik,

where εjik is the Levi-Civita symbol. Using this notation, the curl of (A.3) is

∂

∂xj

∂ui
∂t
εjik +

∂

∂xj

(
ul
∂ui
∂xl

)
εjik +

∂

∂xj

(
1

ρ

∂p

∂xi

)
εjik = 0. (A.4)

The first term on the left hand side (LHS) is easily rewritten as

∂

∂xj

∂ui
∂t
εjik =

∂

∂t

∂ui
∂xj

εjik =
∂ωk
∂t

. (A.5)

The third term is also straight forward. Using the product rule and the identity

∇×∇φ = 0, we have

∂

∂xj

(
1

ρ

∂p

∂xi

)
εjik =

(
∂

∂xj

1

ρ

)(
∂p

∂xi

)
εjik. (A.6)
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The second term in (A.4) requires more work. Here, we follow the procedure shown

in [78]. Recalling the vector identity

A · ∇A =
1

2
∇(A ·A) + (∇×A)×A,

we can rewrite the term as

∂

∂xj

(
ul
∂ui
∂xl

)
εjik =

∂

∂xj

[
1

2

∂ulul
∂xi

+

((
∂um
∂xl

umεlmk

)
unεkni

)]
εjio. (A.7)

Again using the identity ∇×∇φ = 0, (A.7) is

∂

∂xj

(
ul
∂ui
∂xl

)
εjik =

∂

∂xj
[(ωkunεkni)] εjio.

One final vector identity is necessary to further modify the previous expression: ∇×

(A×B) = A(∇ ·B)−B(∇ ·A) + (B · ∇)A− (A · ∇)B. We now have

∂

∂xj

(
ul
∂ui
∂xl

)
εjik =

∂

∂xj
[(ωkunεkni)] εjio

= ωk
∂ul
∂xl
− uk

∂ωl
∂xl

+ ul
∂

∂xl
ωk − ωl

∂

∂xl
uk.

Since ∇ · ∇ × a = 0, we finally have

∂

∂xj

(
ul
∂ui
∂xl

)
εjik = ωk

∂ul
∂xl

+ ul
∂

∂xl
ωk − ωl

∂

∂xl
uk. (A.8)

Taking (A.4), (A.5), (A.6), and (A.8) together the vorticity transport equation is

∂ωk
∂t

+ ul
∂ωk
∂xl

= −ωk
∂ul
∂xl

+

(
ωl

∂

∂xl

)
uk −

(
∂

∂xj

1

ρ

)(
∂p

∂xi

)
εjik, (A.9)
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which can be written in vector form as

Dω

Dt
= −ω(∇ ·V) + ω(∇ ·V) +

1

ρ2
∇ρ×∇p. (A.10)
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APPENDIX B

Quantifying Anisotropy

Radial plots were used throughout the thesis to help assess the ability of numeri-

cal methods to preserve radial symmetry and resist mesh imprinting. Here a simple

procedure is presented that allows the amount of scatter in a radial plot to be quan-

tified. The procedure is then used to compare the performance of the acoustic and

Lagrangian methods.

Methodology

A simple measure of the amount of anisotropy in a numerical solution is sought for

the case when the exact solution should possess radial symmetry. To facilitate this, a

sample region was defined in the computational domain according to r ∈ [rmin, rmax]

and ψ ∈ [0, π/4], where ψ is the angle measured counterclockwise from the positive

x-axis. Next, the sample space was divided into bins with constant spacing along

the radial direction. In statistics the standard deviation is commonly used as a

measure of the amount of dispersion in a data set. However, here some amount of

dispersion in the data is correct (the exact solution in each bin is not constant) and so

comparing each solution point with the mean value in a bin would be inappropriate.
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Figure B.1: Local cubic fits of the solution data were used as a reference from which
to quantify deviations from radial symmetry.

Instead, a least-squares procedure1 was used to fit a cubic function, f , to the data

in each bin. Then a standard deviation-like quantity ηi can be computed in the ith

bin by comparing each data point from the numerical solution, sj, with the locally

reconstructed function. The definition for ηi in a bin with N data points is

ηi =

{
1

N

N∑
j=1

[sj − f(rj)]
2

}1/2

. (B.1)

Acoustic Methods

Figure B.1 shows acoustic solutions from the LW and VPLW2 methods that have

been separated into nine bins over the range rmin = 0 to rmax = 4.5. The minimum

number of points in a single bin in the case of the discontinuous test problem and a

100× 100 mesh was eight.

A summary of the ηi values for the acoustic data on the discontinuous test problem

is shown in Figure B.2. Inspection of the figure shows that the RR solution had over

50 percent less scatter in the solution than the original LW method. Furthermore,

1The SciPy function polyfit() was used to calculate the polynomial coefficients.
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the VPLW2 method and the resulting third-order and limited methods all had over

80 percent less scatter than the original LW method.

Lagrangian Methods

The analysis was carried out with the SLaM-A, SLaM-B, and SLaM-TFL methods

on the Noh problem. The post-shock solutions for each method were analyzed by

specifying 5 bins from rmin = 0.2 to rmax = 0.2. Figure B.3 shows the the polynomial

fits for the SLaM-A and SLaM-TFL methods in the sample region.

A summary of the ηi values for the SLaM methods is shown in Figure B.4. The

first-order SLaM-B method had over 75 percent less scatter in the post-shock solution

than the SLaM-A method. Similarly, the limited second-order SLaM-TFL method

removed over 80 percent of the scatter from the SLaM-A solution.
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Figure B.2: The average and maximum ηi values for the acoustic methods on the
discontinuous test problem are shown along with the percentage decrease
in each parameter relative to the original LW method.
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Figure B.3: Five bins were used to quantify the deviations from radial symmetry in
the post-shock Noh solution.
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Figure B.4: The average and maximum ηi values for the SLaM methods on the Noh
problem are shown along with the percentage decrease in each parameter
relative to SLaM-A.
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APPENDIX C

Interpolation

Interpolation at Vertices

Best-fit planes were used to interpolate estimates of p, u, v, ρ, and a at vertices from

the cell-centered data in both the SLaM-A and SLaM-B methods. On a quadrilateral

mesh and for a quantity of interest α, four data points (xi, yi, αi) are available. We

seek a best-fit plane of the form

α(x, y) = Ax+By + C, (C.1)

where the coefficients are chosen to minimize the error in a least-squares sense. The

coefficients can be computed from the normal equations which, in the present case,

corresponds to solving the system

Ax = b, (C.2)

162



where

A =


∑N

i x
2
i

∑N
i xiyi

∑N
i xi∑N

i yixi
∑N

i y
2
i

∑N
i yi∑N

i xi
∑N

i yi
∑N

i 1

 , x =


A

B

C

 , and b =


xiαi

yiαi

αi

 .

Since the system of of equations is only 3 × 3, the solution is easy to write down

explicitly and hard code. More details on the mathematical basis for this procedure

can be found in [77].

Interpolation at Faces

A linear interpolation was used to obtain estimates of the required face quantities

in the SLaM-B method. A local one-dimensional η coordinate system was established

between the cells opposite of each face as shown in Figure C.1. The vectors f and

r were defined according to the figure in the local coordinate system and then the

projection f′ = f · r was computed. The length of the vector f′ is was taken to be the

local coordinate of the face and a standard linear interpolation was carried out with

the cell-centered data. If the the mesh was so deformed that the projection f′ was

negative, than the interpolated values were taken to be the arithmetic mean of the

adjacent cells specified by the mesh connectivity.

Interpolation Robustness at Vertices

In the SLaM-A method, the only check on the interpolation procedure was to

determine if the vertex was outside its control volume. If this was the case, the

interpolated values were taken to be the arithmetic mean of the cell-centered values.

In the SLaM-B method, a switching routine was implemented to use a different control

volume if a vertex did not lie in the control volume specified by the mesh connectivity.
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𝑟 

𝑓 
𝑓′ 

Figure C.1: A linear interpolation was used to infer values at faces from the cell-
centered data in the SLaM-B method.

Figure C.2: A different control volume was sought from the neighboring data if a
vertex did not fall in the original one specified by the mesh connectivity.

The control volumes belonging to the neighboring eight vertices were searched to find

an acceptable one as shown in Figure C.2. Interpolation was then performed on

the new control volume. If still no suitable control volume was found among the

neighboring data, then the interpolated values were again taken to be the arithmetic

mean.
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APPENDIX D

Approximating First Derivatives with

Second-order Accuracy on Deformed Meshes

Second-order accurate approximations for first-derivatives were needed to con-

struct the Lagrangian algorithms presented in this thesis. Consider the quadrilateral

shown in Figure D.1 and form the vectors q0 = v2 − v0 and q1 = v3 − v1. The re-

quired approximations can be easily obtained by taking advantage of the well known

formula for the area of a quadrilateral

A =
1

2
(q0 × q1). (D.1)

v0 

v1 

v2 

v3 

q0 
q1 

Figure D.1: Notation for the vertices and diagonals of a quadrilateral.
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A function could be defined, call it S(x, y), that outputs A given the vertex coordi-

nates. Now consider S(x, φ), where φ is some scalar quantity that is defined at the

vertices of the quadrilateral. Some simple experimentation will shown that if

φ = const., then S(x, φ) = 0

and if φ = x, then S(x, φ) = 0.

Of course, it is also true that

if φ = y, then S(x, φ) = A, and

if φ = f(x, y), then S(x, φ) = const.; (D.2)

by inspection it is clear that for any linear function

S(x, φ) = A
∂φ

∂y
. (D.3)

It follows that

S(φ, y) = A
∂φ

∂x
,

and the necessary second-order accurate approximations are

S(φ, y)

S(x, y)
=
∂φ

∂x
+O(h2) and

S(x, φ)

S(x, y)
=
∂φ

∂y
+O(h2). (D.4)
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APPENDIX E

Initializing the Noh Problem After Shock

Formation

The most challenging part of the Noh problem occurs during start-up when the

initial velocity discontinuity at the origin gives rise to a shock wave. The shock must

bring the flow and, therefore, the mesh to rest. A pressure rise is required to stop the

flow, but the initial fluid has zero internal energy. As a result, it is difficult to prevent

spurious mesh motions from occurring while the fluid “heats up” and develops a non-

zero pressure. It might be interesting, then, to initialize the Noh problem at a later

time with the exact post-shock data and observe the results.

Such an experiment was run with the SLaM-B method. The exact solution was

initialized at t = 0.3 µs on a square mesh and then computed until t = 1 µs. In

cells that contained the shock wave, averaged data was initialized according to the

fraction of the cell area in the pre- and post-shock states. Numerical results show

that start-up errors still occur in this scenario. The initial data does not represent

the shock exactly as the method would prefer and so waves are shed back into the

exact post-shock state while the method resolves the assumed discrepancy. During

this process wall heating like entropy errors are made at the initial shock location.

See Figures E.1 and E.2. Additionally, small amounts of vorticity are introduced into
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Figure E.1: Density profiles early in the solution: Left - The Noh problem is initialized
at t = 0.3 µs on a square mesh. Right - Start up errors still occur in this
scenario that include transient acoustic waves and a wall heating like
entropy error.

the data by the averaging process used for cells that initially contain the shock. This

vorticity persists and slowly damages radial symmetry over time.

Errors in the pressure are self-healing as they are eliminated over time by transient

acoustic waves. The density also tends toward the exact solution over time with the

exception of the entropy and vorticity errors. Both the entropy and circulation are

transported along streamlines and so the Lagrangian method treats the errors as if

they were physical and propagates them with no damping. Figure E.3 shows the

density and pressure profiles late in the solution. The vorticity errors are observed

here in the density solution by scatter. This example illustrates one of the difficulties

associated with solving the gas dynamics equations in the Lagrangian frame: entropy

and vorticity errors are unforgiving.
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Figure E.2: Pressure profiles early in the solution: Left - The Noh problem is ini-
tialized at t = 0.3 µs on a square mesh. Right - The transient acoustic
waves that are produced early in the solution are evident in the pressure
profile.

Figure E.3: Density and pressure profiles late in the solution: Left - While the overall
density profile tends toward the exact solution over time, the entropy and
vorticity errors persist. Right - Acoustic waves are able to remove errors
in the pressure over time.
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