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Abstract 

 

Hotspots are defined as regions on the protein surface that disproportionately contribute to 

binding free energy. Mixed-solvent molecular dynamics (MixMD) is a hotspot mapping 

technique that relies on molecular dynamics simulations of binary solvent mixtures. Previous 

work in the group on MixMD has established the technique’s effectiveness in capturing binding 

sites of small organic compounds. The MixMD approach embraces full protein flexibility while 

allowing for competition between probes and water. Sites preferentially mapped by probe 

molecules are more likely to be hotspots. First, we establish a rigorous protocol for the 

identification of hotspots on the binding surface. There are two important requirements: 1) the 

high-ranking hotspots must be mapped at very high signal-to-noise ratio and 2) the hotspots 

must be mapped by multiple probes. We have focused our probe molecule repertoire to 

include acetonitrile, isopropanol, and pyrimidine as these probes allowed us to capture a range 

of interaction types that include hydrophilic, hydrophobic, hydrogen-bonding and aromatic 

interactions. Second, we use MixMD to identify both competitive and allosteric sites on 

proteins. The test cases include Abl Kinase, Androgen Receptor, Chk1 Kinase, Glucokinase, Pdk1 

Kinase, Protein-Tyrosine Phosphatase 1B, and Farnesyl Pyrophosphate Synthase. The success of 

the technique is demonstrated by the fact that the top four sites map the competitive and 

allosteric sites. We then present methodological developments for characterizing the free 

energies and entropies of binding sites identified by MixMD. Finally, the significance of these 

findings is strengthened by a successful prospective application of MixMD on Heat Shock 

Protein 27. Taken together, these studies demonstrate the powerful utility of MixMD in 

structure based drug design. 
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Chapter 1. Introduction 

1.1 Multiple Solvent Crystal Structures 

 

Some of the first studies of protein crystal structures with co-solvents were motivated by the 

difference in catalytic activities in the presence of organic solvents. Subsequently, the crystal 

structure of Subtilisin was solved in the presence of water and acetonitrile to determine if the 

difference in activities resulted from geometric changes in the active site (1). Similar studies 

were performed with γ-Chymotrypsin in Hexane (2). While there was no difference in the active 

site of the protein in both cases, these studies formed the basis for the seminal work by Dagmar 

Ringe and co-workers who proposed the use of multiple solvent crystal structures (MSCS) for 

locating binding sites on proteins (3). Initial validation studies for MSCS were performed on 

elastase using acetonitrile as the co-solvent (3).  Acetonitrile in this study was found to map the 

active site and crystal packing interfaces in this protein. Subsequent studies with elastase 

extended the range of solvents to include acetone, dimethylformamide, 5-hexene-1,2-diol, 

isopropanol, ethanol, trifluoroethanol (4). Interestingly, when the range of solvents was 

extended, clusters of co-solvent molecules were found to populate the active site (Figure 1-1) 

and were dispersed near the crystal packing region. These results demonstrate the important 

concept that potential binding sites can be identified by requiring them to bind a diverse set of 

co-solvent molecules. Following this work, several studies have come to a similar conclusion 

using MSCS (5–7). 

One of the limitations of MSCS is that many protein crystals are destabilized by the co-solvents. 

This results in a loss of resolution at best and no useful spectra at worst. In fact, the MSCS 

method was developed using cross-linked proteins to circumvent the issue. The limited 

application makes simulation methods an important component of using co-solvents on a wide 

variety of protein systems. 
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Figure 1-1. An overlay of the all the MSCS crystal structure of elastase is shown. The co-solvent 

molecules cluster within the active-site. The active-site is denoted with a red circle. The list of 

crystal structures includes 2FOE, 2FOD, 2FOG, 2FOH, 2FOF, 2FOA, 2FOB, 2FO9, 2FOC. 

 

1.2 Computational approaches for reproducing MSCS 

 

Several computational approaches have been developed, inspired by the MSCS technique. 

These can be broadly classified into two categories based on their reliance on static 

conformations or molecular dynamics (MD) simulations. 

1.2.1 Static protein conformation based approaches 

 

Static protein conformations are readily available from many sources including experimental (X-

ray and NMR) and computational approaches (MD). Some of the first probe mapping 

techniques were performed using static protein conformations. All these approaches involve 

some form of probe minimization on the protein surface in vacuum.  A few of the most 

important ones are described in further detail below. 
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1.2.1.1 Multiple Copy Simultaneous Search (MCSC) 

 

In the MCSC method, the probes acetate, methanol, methyl ammonium, methane, and water 

are minimized onto the protein surface (8, 9). Several copies of the probes are dispersed in the 

site of interest on protein ranging from 1,000 – 5,000. Prior to minimization, probes with 

interaction energies greater than 5 kcal/mol are removed. The remaining probe molecules are 

then minimized independent of each other using the time dependent Harttree approximation 

(10). At regular intervals, a single copy of probe molecules converging to the same location is 

retained. Convergence is achieved during the minimization procedure typically after 3,000 – 

6,000 steps. The remaining probes are then further sampled on a grid limited to the vicinity of 

the final minimized location of probes. This is achieved by fixing the center of mass of the probe 

at each grid point and exploring the rotational degrees of freedom. These results are then 

visualized as density maps. In the first application of MCSC, the sialic acid binding site of 

influenza virus hemagglutinin was examined. The probes molecules were found to satisfactorily 

map the binding sialic acid binding site.  In a follow up study on HIV-1 protease, the technique 

was extended to include N-methyl acetamide (NMA) as an additional probe. Using the MSCS 

approach, favorable locations for NMA in the active site were used successfully to reconstruct 

the binding orientation of MVT-101, a peptide known to bind HIV-1 protease (11).  

1.2.1.2 Multiple Protein Structures Based Receptor Pharmacophore models (MPS) 

 

Our MPS method is an experimentally verified computational mapping approach for obtaining 

receptor based pharmacophore models (12–22). In this approach benzene, ethane, and 

methanol probe molecules are flooded onto the binding site of interest. These probe molecules 

are then minimized independent of each other using a Monte Carlo method called Multi Unit 

Search for Interacting Conformers implemented in the BOSS program (23). The minimized 

probe molecules are clustered to identify favorable interaction sites on the protein surface. 

These clusters are then converted into pharmacophore elements. Overlapping benzene and 

ethane clusters are converted to hydrophobic pharmacophore elements, benzene clusters are 

converted into aromatic pharmacophore elements. Donor, acceptor, and Doneptor 
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pharmacophore elements are obtained from methanol clusters. The size of the pharmacophore 

elements is reflected by the root mean square deviation of the elements in the cluster. Using 

the MPS method, the first receptor based pharmacophore model was derived for HIV-1 

protease (13). Subsequently several optimization studies were undertaken to obtain robust 

pharmacophore models using structures from X-ray, NMR (17) and MD simulations (14, 15, 19). 

A common theme throughout MPS pharmacophore development was the positive impact of 

protein flexibility on MPS pharmacophore model performance. Additionally, MPS 

pharmacophore models were shown to exhibit species specificity for human and Pneumocystis 

carinii variants of Dihydro Folate Reductase (16). Several MPS pharmacophore models were 

experimentally validated by the identification of inhibitors from MPS pharmacophore 

screening.  Small molecules that target the MDM2-p53 interaction were identified using MPS 

pharmacophore models (18). More recently, pharmacophore models created from an allosteric 

site on HIV-1 protease were experimentally verified to be active against drug resistant strains of 

HIV-1 protease (21, 22). 

1.2.1.3 FTMAP 

 

FTMAP developed by Sandor Vajda and co-workers is a mapping technique that samples billions 

of probe molecules on densely space grid. This mapping is performed using sixteen different 

probe molecules which include ethanol, isopropanol, isobutanol, acetone, acetaldehyde, 

dimethyl ether, cyclohexane, ethane, acetonitrile, urea, methylamine, phenol, benzaldehyde, 

benzene, acetamide, and N,N-dimethylformamide. Sampling of several copies of many different 

probe molecules is achieved by an energy function that is evaluated using a fast Fourier 

transform correlation approach. While techniques mentioned earlier include van der Waals and 

electrostatic interactions terms, FTMAP energy function includes cavity terms to reward 

hydrophobic enclosure and statistical knowledge-based pairwise potential to account for 

solvation effects. In a first application of FTMAP, the binding sites of the proteins elastase and 

renin were shown to be mapped by probe molecules. The FTMAP technique was also applied to 

the proteins DJ-1 and glucocerebrosidase (24). The binding sites identified by FTMAP were 

shown to be in agreement with subsequent MSCS solved for these proteins (24). Favorable 
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results were also found upon application of FTMAP to Ras GTPase (25) and Hen Egg-White 

Lysozyme (26). 

 

1.2.2 Molecular dynamic simulation based approaches 

 

MD-based approaches involve simulation of proteins with water and co-solvents, which allows 

one to take protein flexibility and competition with water into account while mapping the 

protein surface. Such techniques have the potential to present a cost effective and widely 

applicable alternative to MSCS. Several approaches that use MD-based methods are 

summarized in Table 1-1 and will be the described in further detail. An important concept that 

is universal across these approaches is that maps of the protein surface are created using grids 

that display the count of co-solvents across the MD simulations. These occupancy maps identify 

binding sites by the grid points that most frequently contain the co-solvents (also called a high 

density of probes). 

Table 1-1. A chronological list of cosolvent simulation techniques that have been used to 

identify binding sites on proteins is presented. The co-solvents and protein systems used in 

their studies are also shown. 

Method Co-solvents Protein systems 

Barril approach 

(MDmix) (27–30) 

Isopropanol, ethanol, 

acetonitrile, methanol, 

acetamide 

Thermolysin, p53 core domain, Porcine 

Pancreatic Elastase, MDM2, LFA-1/ICAM-1, 

PTP-1B, MAP kinase p38, Androgen receptor, 

Hen egg-white lysozyme, Heat shock protein 90 

N-terminal domain, HIV-1 

protease 

MacKerell 

approach (SILCS) 

(31–40) 

Benzene, propane, water 

(both hydrogen and 

oxygen patterns for 

water), acetonitrile, 

Trypsin, α-thrombin, HIV-protease, FKBP12, 

Factor Xa, NadD, Ribonuclease A, cytokine IL-2, 

P38 MAP kinase, Dihydrofolate Reductase, 

Fibroblast Growth Factor Receptor 1 kinase, 
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methanol, formamide, 

acetaldehyde, 

methyl-ammonium, 

acetate, imidazole 

Adenosine deaminase, Estrogen Receptor-α 

Ligand-Binding Domain, AmpC β-lactamase, 

Androgen receptor, Peroxisome proliferator 

activated receptor-γ, Metabotropic glutamate 

receptor, β2-Adrenergic receptor, BTB domain 

of BL6 

Fersht Approach 

(41) 

Isopropanol p53-Y220C 

Yang and Wang 

approach (42–45) 

Isopropanol, phenol, 

trimethylamine N-oxide 

Thermolysin, Bcl-xL, Mcl-1, interleukin-1 

receptor 

Carlson approach 

(MixMD) (46–48) 

Acetonitrile, isopropanol, 

pyrimidine, N-methyl 

acetamide, acetate, 

methyl-ammonium 

Hen egg-white lysozyme, Elastase, p53-core, 

RNase A, Thermolysin, Abl kinase, Androgen 

Receptor, Chk1kinase, FPPS, Glucokinase, 

Pdk1kinase, PTP1B 

Caflisch approach 

(49, 50) 

Dimethylsulfoxide, 

methanol, ethanol 

FKBP12, Bromodomains (BAZ2B and CREBBP) 

GSK and Bahar 

approach (51) 

Isopropanol, 

isopropylamine, acetic 

acid, acetamide 

MDM2, PTP1B, LFA-1, Kinesin Eg5, p38 MAP 

kinase  

Tan and Abell 

approach (52, 53) 

Benzene, chlorobenzene Polo-box domain (PBD) of polo-like kinase 1 

(Plk1), MDM2, Interleukin-2, MCL-1, Bcl-xL 

Gorfe approach 

(pMD) (54) 

Isopropanol K-ras 

 

1.2.2.1 Barril Approach (MDmix) 

 

The  first cosolvent-based simulations for mapping protein surfaces were reported by Barril and 

co-workers (27). In this approach, simulations of isopropanol and water at concentrations of 

20%v/v are run for at least 16ns. The approach was evaluated by its ability to reproduce the 
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locations of isopropanol molecules located in MSCS structures of Thermolysin (6), p53 core 

domain (55) and Porcine Pancreatic Elastase (4). The maps of the protein surfaces were broken 

down into separate occupancy grids for isopropanol’s hydroxyl oxygen and methyl carbons. 

While it is reported that the densities from the isopropanol matched the location of 

isopropanol, there are several additional sites that are mapped on the protein surface that are 

not discussed, despite their likelihood of complicating prospective applications of the method. 

Also, the reasons for not comparing the density of the entire isopropanol probe with the 

location of isopropanol found in MSCS structures were not discussed. Using this approach, they 

calculated free energies with equation (1) where Ni and No are the bin counts at grid point i and 

the expected bin count in the absence of the protein. This is a measure of the free energy 

change for moving an atom from the bulk to grid point i. In their case, this atom could be the 

oxygen atom or the methyl groups of co-solvent isopropanol. 

∆𝐺𝑖 =  −𝑇𝑙𝑛 (
𝑁𝑖

𝑁𝑜
⁄ )      (1) 

When the “atomic” free energies were computed, they note that in some cases, the ΔGbind 

exceeded the empirical limit of free energy of -1.5 kcal/mol on a per atom bases observed by 

Kuntz and Kolllmann (56).  Subsequent work from our group set the limit as -1.75 kcal/mol (57) 

and it is unclear if the values reported exceeded this limit as well. The authors propose that this 

behavior for isopropanol is a result of partial phase separation cause by apolar patches on the 

protein surface. Thus for isopropanol, the expected bin counts were rescaled so that the free 

energy values conformed to the limit of -1.5 kcal/mol. The maximal affinity of the probe 

molecules were then estimated using the principle that atoms in a drug-sized molecule are not 

only involved in establishing affinity, but also form a framework for allowing molecules to 

optimize such interactions. The authors note that probe molecules are under no such constraint 

and their free energies on a per atom basis could be much higher. As such, their maps could be 

used to establish an upper limit for the volume of drug-like molecules. In validating this 

concept, a comparison is made between the maximal limits established by their approach and 

examples of drug molecules with the most favorable free energies. Comparisons between 



 

8 
 

predicted and observed free energies were made for the protein targets MDM2, LFA—1/ICAM-

1 complex, Protein Tyrosine Phosphatase 1B, MAP kinase p38, Androgen receptor. 

In a follow up study, prompted by our work establishing the necessity of full protein flexibility 

for proper mapping of hotspots with co-solvent MD simulations(46), they examined the 

relationship between protein flexibility and its effect on binding free energy (29). They derived 

a logarithmic relationship between flexibility and its effect on ΔGbind. They concluded that if the 

restrained protein has a preformed binding site, ΔGbind would become more favorable as the 

entropic cost of restraining the protein had already been paid. However, if this was not the 

case, then clashes with the protein binding site would make ΔGbind unfavorable. 

More recently, they have moved to a setup where two co-solvent simulations are performed 

separately with 20% ethanol in water and 20% acetamide in water (30). An updated simulation 

protocol consists of 3 runs of 20ns while holding the heavy atoms in the protein restrained at a 

0.01 kcal/mol.Å2 potential. The method was validated on Heat Shock protein 90 N-terminal 

domain (Hsp90) and HIV-1 protease. Pharmacophore models created from ligands bound in 

crystal structures of these proteins were compared with the binding free energy maps 

calculated by equation (1). They observed that some key features in the HIV-protease 

pharmacophore model were not mapped and proposed to extend the technique by using other 

probes in the future. Furthermore, they state that using atoms within the probe molecule to 

define pharmacophore elements is limited by the assumption that these atoms behave 

independently of the probe molecules as a whole. We note that the authors no longer use the 

alcohol parameters from their first paper, which we suspect caused the difficulties with phase 

separation that they found (48). 

1.2.2.2 MacKerell approach (Site-Identification by Ligand Competitive Saturation, SILCS) 

 

SILCS is by far the technique that has made the most progress, expanding use of cosolvent 

simulations from only identifying binding sites to improvements such as pharmacophore 

modelling, free energy perturbation, and developing methods for sampling occluded pockets in 

proteins. The first study used a 1M benzene and propane solution on BCL-6 protein (31).  
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Benzene probes are used to identify aromatic interactions, propane molecules are used to 

identify aliphatic interactions, and water molecules are used to report upon the hydrogen-bond 

donating and accepting properties. Unique to the SILCS methodology, is the use of a dummy 

atom positioned at the geometric center of benzene and the central carbon of propane. A 

repulsive interaction term on these dummy atoms was necessary as the co-solvents under high 

concentration were found to aggregate. SILCS results were analyzed using simulation data 

generated from 10 runs of 5ns. Notably, a weak restraint of 0.01 kcal/mol.Å2 is placed on the Cα 

atoms during the simulations. Snapshots from the simulations are combined and visualized as 

density, described as “FragMaps”. Results from SILCS simulations of BCL-6 were verified by their 

ability to predict biologically relevant binding sites on the protein. 

In a second study across a much wider set of examples (trypsin, α-thrombin, HIV protease, 

FKBP12, NadD, ribonuclease A), the length of SILCS simulations was increased to 20ns and the 

authors converted their FragMaps to Grid Free Energies (GFE) (32). These GFE were computed 

in a manner similar to the Barril approach, wherein equation (1) is used to report upon the free 

energy at each grid point. Using these GFEs, crystal ligand poses were found to score higher 

than decoy sets. Ligands were scored by assigning each atom in the ligand to one of aromatic, 

aliphatic, hydrogen-bond donor, and hydrogen-bond acceptor types. These atom types 

correspond to different probes used in SILCS simulations. After bringing the crystal ligands into 

the GFE frame of reference, the atom type of the ligand and its position within the grid were 

used to obtain the free energy value from the corresponding GFE grid. These values were then 

summed to arrive at the Ligand Grid Free Energy score for a given pose of the ligand.  

In a follow up to this study, the authors assessed the use of free energy perturbation to expand 

the range of fragments that can be predicted to bind to proteins (34). Using benzene as an 

example, they first demonstrate that relative hydration energies for moving to mono-

substituted benzene were correctly captured with an R2 of 0.95.  These benzene analogues 

were chosen based on experimental binding affinities that existed for ligands in α-thrombin and 

P38 MAP kinase. Then, a comparison was made between single-step free energy perturbations 

of benzene to its analogues with changes in experimental binding free energy that involved a 
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similar transition. It is exciting that promising results were obtained for α-thrombin, but the 

same could not be said for P38 MAP kinase. This highlights the inherent limitations of 

extrapolating FEP results from fragments to those found in drug-like ligand molecules. 

SILCS simulations were also used to present an optimum solution for balancing target flexibility 

and possible denaturation in cosolvent-based simulations (33). Using various levels of positional 

restraints on Interleukin-2 (IL-2), the authors found that allowing for full protein flexibility 

resulted in denaturation of the protein in certain runs. In our application of MixMD, we have 

not seen such target denaturation, but these studies in no uncertain terms demonstrate that 

target denaturation should be considered a possibility when running co-solvent simulations and 

adequate inspection of the protein’s behavior should be performed to detect them. In order to 

alleviate these concerns, recently we have moved from a 50% w/w concentration of co-solvent 

to a 5%v/v setup in MixMD. The authors in this SILCS study present two strategies to overcome 

unfolding problems, removing trajectories that denature or restraining the backbone of the 

protein while performing cosolvent simulations. It could be argued that the first option seems 

more appealing since restraining the protein will limit the breathing motions, thereby 

hampering the identification of cryptic pockets on the protein surface. In the case of IL2, this 

did not seem to be an issue, and these cryptic pockets were found even when using a 

restrained potential on the protein. It is interesting that the authors’ simulation with 

acetonitrile at 50% w/w concentration did not map the binding site in IL2. In our application of 

MixMD across several allosteric systems, we also found that some binding sites were not 

mapped by acetonitrile. 

In the  SILCS Tier-II update (35), more co-solvents were introduced. In addition to benzene and 

propane, new probes included methanol, formamide, acetaldehyde, methyl ammonium, and 

acetate. All the aforementioned co-solvents were simulated in a single box of protein and water 

using a concentration 0.2 M for each probe. The simulations were performed for 20ns using a 

0.12 kcal/mol.Å2 to prevent the unfolding of the protein in high concentration of probes, and 

repulsion terms were used to prevent aggregation. The densities of the co-solvents were 

combined in the following manner for analysis, generic polar (benzene and propane carbons), 
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generic neutral donor (methanol and formamide polar hydrogens), generic neutral (methanol, 

formamide and acetaldehyde oxygens), positive donor (methyl ammonium polar hydrogens), 

and negative acceptor (acetate oxygens). Using these combined atom grids, GFE values were 

computed. These were then contoured at various values for each grid type and compared by 

visual inspection of the overlap with example of ligands from crystal structures. The technique 

was validated using Factor Xa, P38 MAP kinase, RNase A, and HIV protease. In addition to a 

visual inspection, the authors developed a suite of scoring functions based around the LGFE 

scoring scheme that they used earlier. A Monte Carlo-based sampling of the ligands within the 

GFE grids gave the best correlation between the scores generated and the experimental binding 

affinity of the ligands. This approach worked for Factor Xa, P38 MAP kinase, and RNase A, but 

the values were anti-correlated for HIV protease. The authors note that this deviation of HIV 

protease behavior emphasized how measures of affinity obtained from GFE come from co-

solvents and do not reflect the configurational entropy and strain in real ligands. 

SILCS simulations have also been converted to pharmacophore models (36, 38). In their initial 

study, the pharmacophore models were derived from benzene, propane, and water locations 

from SILCS ternary simulations. The authors found that generating pharmacophore models 

from SILCS simulations using a GFE cutoff of -1.2 kcal/mol for aromatic/aliphatic FragMaps and -

0.5 kcal/mol for water-based, hydrogen-bond donor/acceptor to be an ideal starting point. Grid 

points that were below the earlier mentioned GFE cutoffs were then clustered using a distance 

cutoff of 1 Å, 2.8 Å, and 2.6 Å for the water, aromatic, and aliphatic SILCS maps, respectively. 

These clusters are converted to “FragMap features” which are modelled as spheres whose 

center is the center of cluster. The radius of the FragMap feature is defined as the radius that 

encloses all the grid points that belong to this cluster. FragMap features were not allowed to 

have a radius greater than 2.5 Å for hydrophobic and 1.5 Å for hydrogen-bond features. The 

sum of the GFE within each cluster is then reported as the Feature Grid Free energy (FGFE) of 

the FragMap feature. In a subsequent step, the FragMap features are converted to 

pharmacophore elements. The most important considerations in generating pharmacophore 

elements was the use of overlapping FragMaps features for defining aromatic|aliphatic 

features and donor|acceptor pharmacophore elements. Overlapping clusters of aromatic and 
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aliphatic FragMap features are considered aromatic|aliphatic pharmacophore elements. Given 

that these simulations are conducted in a ternary system, it might be hard to establish 

overlapping features and this may be an area where simulations using a single co-solvent have 

an advantage. Using an automated approach, water locations of high density were converted to 

donor, acceptor, or donor|acceptor pharmacophore elements. These pharmacophore elements 

are then combined in different combinations and ranked using the cumulative FGFE of the 

elements in the pharmacophore model. That measure is called the hypothesis grid free energy 

(HGFE). The pharmacophore models using this approach were obtained from SILCS simulations 

of HIV-1 protease, Factor Xa, and dihydrofolate reductase. Pharmacophore models lowest HGFE 

values using 3 to 6 pharmacophores were selected for screening. These pharmacophore models 

were then screened against ligands and decoys from the directory of useful decoys (DUD) 

dataset (58). A hit was reported when all pharmacophore elements in the model matched 

features in the ligands using MOE (59). Furthermore, a comparison is made between results 

from pharmacophore screening to the docking programs Dock (60) and AutoDock (61). The 

authors note that the best performing SILCS pharmacophore model outperformed results from 

Dock and AutoDock. A comparison is also made with a receptor-based pharmacophore model 

technique based on hydration data (62), and the authors note the superior performance of 

their approach.  

In a more elaborate study, the authors used SILCS Tier-II to obtain pharmacophore models (38). 

The primary advantage served by this approach was the use of co-solvents that allowed them 

to probe hydrogen-bond donating and accepting capabilities. This meant they could move away 

from using water to obtain such information. As the number of co-solvents expanded, the 

authors were able to add more pharmacophore element types to their repertoire. The 

additions included positive-donor and negative-acceptor pharmacophore elements. Also, 

excluded volumes were placed wherever grid points were not occupied by water or other co-

solvents. In screening the pharmacophore models, all pharmacophore elements were used. 

However, certain pharmacophore elements were required for a match, which the authors 

describe as “key features”. In testing their pharmacophore models, these key features were 

selected after sorting all the pharmacophore elements based on the FGFE value. The authors 
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note that using 3 or 4 key features resulted in the best enrichment. When 5 or more key 

features were used, degradation in performance was observed. The effects of HGFE on model 

performance was also tested, wherein it was found that models that performed well for the 

most part had a low HGFE. The performance of the pharmacophore models using this approach 

was tested against the systems that were used in their earlier approach for pharmacophore 

models (HIV-1 protease, Factor Xa, and dihydrofolate reductase). Additional systems were also 

used to test SILCS pharmacophore models, including P38MAP kinase (P38 MAP), Fibroblast 

Growth Factor Receptor 1 kinase (FGFr1), Adenosine deaminase (ADA), Estrogen Receptor-α 

Ligand-Binding Domain (ER), and AmpC β-lactamase (AmpC). The data sets for evaluating the 

performance of pharmacophore models were obtained from the DUD dataset. Screening results 

for SILCS pharmacophore models were also compared with results from Dock, AutoDock, 

AutoDock Vina, Full Protein Pharmacophore, and Hydration Site Restricted Pharmacophore. In 

comparing across all the methods, the authors note that SILCS pharmacophore models 

outperformed other methods except the case of AmpC. For most of the proteins, an area under 

the curve of 0.7 was observed for ROC plots when SILCS pharmacophore models were 

screened. However, FGFr1 and P38 MAP kinase yielded values that were lower than 0.6. 

Interestingly, similar results were seen for these proteins with the other methods, suggesting 

that they were challenging targets for virtual screening. 

Further advancements in the application of SILCS were made by the development of the Grand 

Canonical-like Monte Carlo (GCMC) approach coupled with molecular dynamics (MD) 

simulations (37). In this method, the excess chemical potential of water and solutes is varied to 

arrive at the target concentrations during the simulation process. The method in brief involves 

the simulated system being coupled to a reservoir of water and co-solvents. The water/co-

solvent molecules from the reservoir are inserted/deleted from the reservoir into the system 

being simulated or translated and rotated if they are already present in the system. These 

moves are accepted or rejected based on Metropolis criteria, which depends on the change in 

energy upon the occurrence of the move, the target density, and excess chemical potential. 

Following several such moves (100,00 moves when used for simulating the protein), an MD 

simulation is performed. Finally, the excess chemical potential is changed. This change in excess 
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chemical potential is based on a function of the deviation of the current concentration from the 

target concentration of the species under consideration. The whole process described above is 

repeated several times till the excess chemical potential converges. This approach was 

validated by reproducing the hydration free energies of the co-solvent molecules used in SILCS-

Tier II simulations. Following this validation, the authors investigated the use of the method to 

map the occluded binding site of T4 lysozyme L99A mutant (T4-L99A). Following the GCMC-MD 

procedure, the occluded binding site of T4-L99A was successfully mapped by SILCS simulations. 

Moreover, the LGFE values correlated with a R2 of 0.72 to the experimental binding affinities for 

the different molecules that are known to bind within this occluded pocket.  

The GCMC-MD approach was further applied to several systems with occluded ligand-binding 

pockets (40). These systems included androgen receptor (AR), peroxisome proliferator 

activated-γ (PPARγ), metabotropic glutamate receptor (mGluR), and β2-adreneric receptor 

(β2AR). The occluded binding sites in all the protein targets were successfully mapped during 

SILCS simulations. Furthermore, a SILCS pharmacophore model obtained from β2AR was 

screened against a compound collection of 1.8 million from the CHEMBRIDGE and MAYBRIDGE 

libraries. Following an elaborate procedure of docking with AutoDock Vina (63) into the active 

and in-active conformations of β2AR, molecules were identified that preferentially bound the 

active conformation. The hits were clustered and handpicked. Of the 16 molecules that were 

handpicked and tested, seven were found to be active. At this point, it is unclear if the 

molecules target the binding site of β2AR, but this exciting result nevertheless points to the 

utility of co-solvent simulations in prospective structure based drug design. 

1.2.2.3 Fersht Approach 

 

Fersht and co-workers have used isopropanol-based co-solvent simulations to study a cancer 

causing mutant of the p53 protein (41). This mutant protein, named p53-Y220C, has a mutation 

of a tyrosine residue (present in the wild type p53) to a cysteine residue resulting in an pocket 

being opened. The authors investigated the use of co-solvent simulations to identify druggable 

binding sites on the protein surface. Interestingly, the site with the highest isopropanol density 

was located at the dimer interface. Two other sites were also found, one within the cavity 
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created by the mutation and another which the authors could not account for. The authors 

note that during their experimental fragment screen, they were only able to identify hits that 

targeted the mutation-induced cavity on p53-Y220C and could not find hits for the other two 

sites. The setup and execution of the isopropanol simulations was similar to the Barril approach 

where a concentration of 20% v/v was used. In the initial equilibration period, the protein was 

simulated at 600K while placing a restraint on the heavy atoms of the protein to allow for the 

distribution of probes.  This was followed by an equilibration of 1ns followed by 19ns of 

production simulation under constant pressure at 300K. Binding free energies for the 

isopropanol molecules were also estimated using the Barril approach. 

1.2.2.4 Yang and Wang approach 

 

In their first use of co-solvent simulations, Yang and Wang compared the co-solvent locations in 

MSCS structures of Thermolysin. This important study was the first to compare free energies 

obtained from equation (1) with more rigorous statistical mechanics based approaches. For this 

study, the MSCS structure of Thermolysin with three different probes (isopropanol, phenol and 

acetone) was used. Their primary focus was on two isopropanol sites identified on Thermolysin 

named site 1 and site 2 that appeared at high concentrations and low (2 and 5% isopropanol), 

respectively. Site 2 was also mapped by phenol and acetone whereas site 1 was not. The double 

decoupling method (64, 65) was initially used to compute the free energies of site 1 and site 2. 

In applying this technique, they note that site 2 (-4.87 kcal/mol) had a more favorable free 

energy for binding isopropanol compared to site 1 (-3.25 kcal/mol); this observation was 

consistent with the identification of site 2 at a lower concentration of isopropanol. For site 1, 

they note the free energy changes for the different co-solvents ranged from -3.35 to -4.32 

kcal/mol. These results from the double decoupling method were compared with the values 

obtained from performing and computing the free energies of isopropanol using the Barril 

approach. The binding free energy for isopropanol in site 1 and site 2 were found to be -3.91 

and -5.01 kcal/mol. The authors note that the values computed using the co-solvent simulation 

was higher compared to the more rigorous double decoupling method, but both methods give 

free energies of binding within 1 kcal/mol for both sites, which is the basic limit of free energy 
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calculations. We consider the agreement in the methods much more interesting than 

differences within error of the techniques. 

In a subsequent study, the authors compared simulations of the protein Bcl-xL in water and 

isopropanol (43). Starting from conformations obtained from one apo and three holo Bcl-xL 

crystal structures,  32ns simulations in water were shown to exhibit hydrophobic collapse which 

prevented Bcl-xL from adopting conformations that allowed it to bind to its partners. However, 

in the presence of isopropanol, conformations that resembled those used to bind with other 

partners were retained. Furthermore, the authors note that the hotspots identified on the 

protein surface changed based on the starting conformation used for co-solvent simulations of 

Bcl-xL. They suggest that such information in principle allows one to target different 

conformations separately. In continuation of their earlier work, co-solvent simulations using 

isopropanol (20% v/v), phenol (10% v/v), and 2M trimethylamine N-oxide (TMAO) were 

performed on Bcl-xL and Mcl-1 (44). In that study, the authors note that there were similarities 

and differences in the location of hotspots within both the proteins. Using this information, it 

was suggested that the differences in the location of hotspots within the active site between 

the two proteins could be exploited to obtain potent and selective drug-like molecules. 

More recently, hotspots on the protein surface of the ectodomain of interleukin-1 receptor 

type 1 (IL-1R1) were investigated using co-solvent simulations of phenol (10% v/v) (45). The 

authors’ primary motivation for using phenol co-solvent simulations came from the frequent 

observation of these groups in fragment screening libraries for targeting protein-protein 

interactions. Co-solvent simulations were used to investigate three druggable sites identified 

using Sitemap (66, 67), which were named P1, P2, and P3. As P1 and P3 could already be 

identified from crystal structures, they focused their attention on assessing the druggability of 

the P2 site using co-solvent simulations. While Sitemap identified four conformations in which 

the P2 site was deemed as druggable, co-solvent simulations identified only two conformations 

of the protein in which the P2 site exhibited high affinity for phenol co-solvent. These studies 

highlight the importance of including protein flexibility in assessing druggability of proteins. 

Based on this analysis, further efforts were focused on one of the two conformations that 
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adopted a novel conformation. Using in silico screening methodology, fragments that bound to 

the P2 site were identified and further simulations of these fragments revealed that when 

bound to the P2 site, these fragments restricted the conformations accessible to IL-1R1. 

1.2.2.5 Carlson approach (MixMD) 

 

Our approach for performing co-solvent simulations is called the mixed-solvent molecular 

dynamics (MixMD). MixMD involves binary solvent simulations of proteins with water and 

water-miscible, organic probe solvents. An emphasis on using water-miscible organics as co-

solvent distinguishes our approach from other techniques. A first step in validating MixMD was 

evaluating its ability to reproduce the co-solvent binding location obtained from MSCS 

experiments. Using the acetonitrile binding site in Hen egg-white lysozyme (HEWL) as a test 

case, MixMD was shown to recapture the binding location of acetonitrile(46). Our first MixMD 

simulations used a 50% w/w concentration of acetonitrile and were run five times for 10 ns 

duration. The last 2ns of these simulations were used for obtaining the preferential location of 

acetonitrile binding on the protein surface. This work also noted the importance of protein 

flexibility on the accuracy of mapping the acetonitrile binding site. Using a series of MixMD 

simulations wherein the protein was subjected to varying levels of restraint, the acetonitrile 

binding site was mapped accurately without spurious minima only when full protein flexibility 

was allowed. When the protein was held rigid, we found that the acetonitrile binding site was 

mapped as strongly as other local minima. Interestingly, when the backbone of the protein was 

held rigid and the side chains were allowed to full explore different conformations, the local 

minima on the protein surface persisted, but the acetonitrile binding site was not mapped well. 

These studies certainly highlight the notion that the rugged landscape found when performing 

minimizations in vacuum are not an artifact of doing simulations in vacuum but result from 

using a rigid conformation. 

In a follow up to the first MixMD study, we focused on extending the approach to protic 

solvents (47). Isopropanol was used as the co-solvent, and several proteins were used as test 

cases: elastase, HEWL, P53 core, RNase, and Thermolysin. MixMD results were shown to be in 

excellent agreement with the isopropanol binding sites found in MSCS of these proteins. During 
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the course of optimizing the technique, the number of runs and the simulation length were also 

investigated. The importance of multiple, short simulations was highlighted, and using 10 runs 

of 20ns was found to be optimal. 

More recently, the importance of probe parameters was established by comparing co-solvent 

simulations using our approach and parameters for isopropanol to that of the Barril approach 

(48). These co-solvent simulations were performed on Thermolysin using a 50% w/w 

isopropanol. To our surprise, the co-solvents separated into two phases when using Barril’s 

parameters. Our simulations based on OPLS parameters for alcohols remained evenly mixed. 

This result made us step back and evaluate water-cosolvent mixtures alone without proteins. 

We used radial distribution functions to monitor miscibility. We recommend that all co-solvent 

simulations included RDFs of the solvents to show proper behavior of the environment. This is 

just as important as monitoring protein’s RMSD to show no unfolding. We investigated the use 

of several different organic probes for MixMD simulations. Upon testing eleven different 

solvents, six were found to have even mixing with TIP3P water. These co-solvents were 

acetonitrile, isopropanol, acetone, N-methyl acetamide, imidazole, and pyrimidine. 

1.2.2.6 Caflisch approach 

 

Caflisch and co-workers performed simulations of FK506 binding protein (FKBP) with 

dimethylsulfoxide (DMSO) (49). Ten simulations lasting for 70ns each using 50 molecules of 

DMSO (~440mM) were performed. DMSO primarily mapped the active site of FKBP in these 

simulations. The authors also note that using DMSO concentrations higher or lower by a factor 

of two did not change the obtained results. Interestingly, the binding and unbinding events of 

DMSO in these simulations were used to obtain the dissociation constant of DMSO for the 

active site. These values were in agreement with results from experiments. 

In a follow up study, co-solvent simulations of the two bromodomains, zinc finger domain 2B 

(BAZ2B) and the binding protein of the cAMP response element binding protein (CERBBP), were 

performed (50). These simulations were conducted separately using the co-solvents DMSO, 

methanol, and ethanol. Two 0.5µs simulations for each co-solvent were performed using 50 co-
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solvent molecules (~440mM). Co-solvent simulations were able to successfully map the acetyl-

lysine binding site of CREBBP. Furthermore, the location of DMSO in these simulations was in 

perfect agreement with the position of DMSO found in a crystal structure of CREBBP (68). 

Similar mapping of the acetyl-lysine binding site by different co-solvents was also noted for 

BAZ2B. The authors note that there were several binding and unbinding events of the co-

solvents observed in the simulation. An analysis of the kinetics of co-solvent binding revealed 

that unbinding events for DMSO and ethanol were slower than methanol possibly due to their 

larger size and hydrophobicity. Interestingly, an analysis of the water molecules within the 

acetyl-lysine binding revealed that while some were retained during the entire simulation, 

others were transiently replaced by co-solvents. Based on this information, the authors 

proposed the use of water molecules that do not exchange with co-solvent be used in high-

throughput docking studies. Furthermore, they suggested that hydroxyl substituents could be 

designed into ligands when water molecules are replaced by co-solvents. 

1.2.2.7 GSK and Bahar approach 

 

Bahar and co-workers utilize co-solvent simulations to address the druggability of proteins (51). 

In this approach, two co-solvent simulations are conducted, one in the presence of isopropanol, 

and another using a mixture of acetamide, acetic acid, and isopropylamine. The ratio of probes 

to water was set at one probe molecule for every 20 water molecules. This corresponds to 

~2.3M probe concentration in the co-solvent simulations. Several simulations of varying time 

length of 32 and 40ns were performed. Free energies were calculated using equation (1). 

However, it is important to note that the free energies were calculated based on the maximally 

occupied grid point in the volume of an entire probe. This is a very important distinction from 

other approaches where these measures are reported on a per-atom basis. These free energies 

calculated for volumes of the size of a probe were termed “interaction spots”. Reasonable 

constraints were placed on the definition of these interaction spots. They were required to not 

overlap with other interaction spots. Only those interaction spots with energy lower than -1 

kcal/mol were considered, and the energy of an interaction spot was determined to be that of 

the central grid point (all other grid points within the radius of the probe were eliminated). In 
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co-solvent simulations using mixtures, the radius of the interaction site was the sum of the radii 

of all the probes used in the simulation. An interaction spot was given a charge based on the 

fraction of time it is occupied by a charged probe. The interaction spots were then clustered 

using a 6.2Å distance to identify druggable sites under the constraint that the clusters can have 

a charge of no more than 2e-. Finally, maximum achievable free energies of binding were 

obtained from the free energies of the interaction spots within the clusters. 

These co-solvent simulations were applied to a test set of five proteins, which included murine 

double mutant-2 (MDM2), protein tyrosine phosphatase 1B (PTP1B), lymphocyte function-

associated antigen 1 (LFA-1), vertebrate kinesin-5 (Eg5), and p38 mitogen-activated protein 

kinase. The authors found that the maximal free energies of binding computed using their 

approach are in perfect agreement with the affinities of the best known ligands for the binding 

sites on these proteins. Interestingly in MDM2, the occluded binding site was opened for access 

only in co-solvent simulations. Similar results were obtained for LFA-1 and Eg5 where 

rearrangement of side chains resulted in access to the allosteric site. The authors attribute the 

opening of partially occluded sites to the use of an annealing procedure during the equilibration 

protocol wherein the system was heated to 600K under a restraint placed on the heavy atoms 

to prevent unfolding. Furthermore, in comparing the water and co-solvent simulations, it was 

noted that the probe molecules prevented hydrophobic collapse of binding sites during the 

equilibration. In Eg5, the pocket opening happened more frequently when a mixture of polar 

and charged co-solvents were used instead of isopropanol. In P38 MAP kinase, the druggability 

of the allosteric site was better captured by a mixture of probes instead of the use of 

isopropanol alone. These results certainly highlight the advantages of using probe mixtures 

over single co-solvent simulations. The authors note that many drug molecules are either 

charged or zwitterionic in nature, so mixtures of probes that include charged co-solvents may 

be required for many druggable proteins. 

1.2.2.8 Tan and Abell approach 

 

Tan, Abell,  and co-workers present an alternative approach for performing co-solvent 

simulations using a low concentration of benzene (0.2M) (52). In an application of this method 



 

21 
 

to the polo-box domain (PBD) of polo-like kinase 1, they note that a tyrosine residue lining the 

secondary binding site of this protein adopts a closed conformation during water simulations. 

However, when co-solvent simulations were performed with benzene, this residue flipped to 

open a cryptic pocket. Furthermore, a ligand was successfully designed to take advantage of 

this cryptic binding site. These studies highlight the potential of co-solvent simulations to open 

cryptic pockets on the protein surface that can then be targeted through SBDD. 

More recently, the authors were motivated by the abundance of halogens in drug-like 

molecules to focus on the use of chlorobenzene as a co-solvent (53). They note that 

chlorobenzene aggregates when used at a concentration of 0.2M and thus decreased the 

concentration of the probe molecules to 0.15M. This decrease in chlorobenzene concentration 

necessitated an increase the simulation length from 5ns to 10ns to achieve adequate sampling. 

Protein targets with halogenated ligands were selected to test the approach. This set of test 

cases included MDM2, Mcl-1, interleukin-2, and Bcl-xL. In starting their co-solvent simulations, 

they chose conformations of the protein where these halogen binding sites were absent. For 

the most part, simulations were able to identify cryptic binding sites on the protein surface. The 

authors note that the only site not mapped by co-solvent simulations was in Bcl-xL, but opening 

that site required major rearrangement of helices. 

1.2.2.9 Gorfe approach (pMD) 

 

Gorfe and co-workers have investigated the location of hotspots on the protein surface of K-ras 

using pMD, an approach that uses isopropanol based co-solvent simulations (54). In their 

approach a simulated annealing procedure was used similar to the one reported by Bahar and 

GSK collaborators. Here, the system was initially restrained using a 4 kcal/mol/Å2 heavy-atom 

restraint and heated to 650K followed by cooling to 310K. This procedure in their opinion 

prevented kinetic trapping of the probe molecules inside the protein. Following further 

equilibration wherein the restraints on the protein were gradually removed, the system was 

simulated for three runs for varying lengths of time ranging from 30 to 100 ns. Further analysis 

was then performed by combining the three runs. The results were visualized by converting 

each grid point to free energy values using equation (1). The maps were then subsequently 
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contoured at -0.5 kcal/mol for visualization. In an approach similar to the one adopted by Bahar 

and co-workers, maximal free energies were calculated for binding sites. The grid point with the 

most favorable free energy was identified, and all other points within a 5Å radius were 

discarded. After exhaustively processing the grid points in this manner, the retained points 

were clustered using a 6Å clustering distance. “Druggable sites” were defined as clusters with 

four or more interaction points and “subsites” were defined as clusters with two or three 

interaction points. Five druggable sites and three subsites were identified on K-ras. These sites 

were then found to capture known allosteric sites on K-ras. An additional comparison was made 

between pockets identified using the curvature analysis MDpocket (69) and pMD simulation 

maps. The authors note that some of the sites were not identified by MDpocket as they did not 

conform to the definition of a pocket. Thereby, the authors point to the advantage of using co-

solvent maps to identify binding sites as opposed to those obtained from techniques such as 

MDpocket that rely on protein curvature (69). A comparison was also made between water 

simulations and pMD using MDpocket, wherein they found that pockets formed during pMD 

simulations were larger in size. 

1.3 Overview of thesis 

 

The major areas addressed in this thesis include method development and application of MPS 

and MixMD techniques developed in the Carlson lab.  

Chapter 2 describes our application of the MPS method to several protein targets with X-ray 

and NMR ensembles. The MPS pharmacophore models from both ensembles are compared and 

contrasted. Across all protein targets, NMR pharmacophore models are shown to outperform 

X-ray models. Reasons for the superior performance of NMR models and the observation of 

several extraneous pharmacophore elements in the X-ray pharmacophore models are 

discussed. 

Chapter 3 presents a protocol for identifying binding sites from MixMD simulations using 

acetonitrile, isopropanol, and pyrimidine. Using an extensive test set of allosteric protein 

targets, MixMD is shown to successfully recapture the competitive and allosteric sites. It is 
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notable that such success was achieved starting from protein conformations with no allosteric 

ligands bound. Chapter 4 then describes our approach for deriving free energies of binding and 

entropies from MixMD simulations. Drawing upon concepts from Statistical Mechanics, 

methods for calculating these important thermodynamic measures are put forth and validated. 

Careful consideration is given to the limitations of free energy calculations from co-solvent 

simulations. This study highlights the pitfalls of using co-solvent simulations to establish 

maximal affinities of ligands for binding sites that are not described in similar techniques put 

forth by other groups. Finally, Chapter 5 describes the first successful prospective application of 

a co-solvent simulation technique. Using Heat Shock Protein 27 (Hsp27) as a test case, binding 

sites identified by MixMD are shown to bind drug-like molecules or represent sites of biological 

relevance. Furthermore, a direct comparison between MixMD results and NMR chemical shift 

data for Hsp27 at 2% v/v concentration demonstrates a high level of agreement between 

theory and experiments. The method development and application of MixMD across Chapter 3 

– Chapter 5 describe the successful application of MixMD for detecting binding site culminating 

in the first ever blinded application of a co-solvent simulation technique in a prospective 

manner on Hsp27. 
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Chapter 2. Comparing pharmacophore models derived from X-ray and NMR 

ensembles 

2.1 Abstract 

NMR and X-ray crystallography are the two most widely used methods for determining protein 

structures. Our previous study examining NMR vs X-Ray sources of protein conformations 

showed improved performance with NMR structures when used in our Multiple Protein 

Structures (MPS) method for receptor-based pharmacophores (17). However, that work was 

based on a single test case, HIV-1 protease, because of the rich data available for that system. 

New data for more systems are available now, which calls for further examination of the effect 

of different sources of protein conformations. The MPS technique was applied to Growth factor 

receptor bound protein 2 (Grb2), Src SH2 homology domain (Src-SH2), FK506-binding protein 

1A (FKBP12), and Peroxisome proliferator-activated receptor-γ (PPAR-γ). Pharmacophore 

models from both crystal and NMR ensembles were able to discriminate between high-affinity, 

low-affinity, and decoy molecules. As we found in our original study, crystal pharmacophore 

models had more pharmacophore elements compared to their NMR counterparts. The crystal-

based models exhibited optimum performance only when pharmacophore elements were 

dropped.  In addition to the comparison between NMR and X-Ray pharmacophore models, we 

note that X-ray pharmacophore models retain performance when pharmacophore elements at 

the periphery are eliminated using a cutoff-based approach. These studies suggest that 

additional pharmacophore elements seen at the periphery in X-ray models arise as a result of 

decreased protein flexibility and make very little contribution to model performance. 
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2.2 Introduction 

 

Experimental techniques such as crystallography and NMR provide a window into the 

microscopic world, allowing one to observe the many varied conformations that proteins 

sample in atomic detail. While proteins are recognized to be inherently flexible and sample 

different conformations, computational techniques have yet to fully exploit this information in 

structure-based drug design (SBDD). Several approaches have been designed to account for 

protein flexibility in drug discovery, based on experimental methods such as crystallography 

and NMR or computational approaches such as molecular dynamics (MD) simulations (70, 71). 

While MD simulations can accommodate these requirements, it is resource intensive and time 

consuming (14, 15).   

 

In this study, we compare ensembles of protein conformations from crystal and NMR 

structures, which were readily available. Our Multiple Protein Structures (MPS) method for 

creating receptor-based pharmacophore models is an experimentally verified, computational 

technique that leverages ensembles of protein conformations. The use of many protein 

conformations reveals areas of the binding site that have consistent criteria for 

complementarity and cause the least entropic penalty (12, 13). Each conformation of the 

protein binding site is mapped to determine the essential pharmacophore elements required to 

complement the pocket. MPS then overlays all the structures of the ensemble to identify 

pharmacophore sites that are common to more than 50% of the structures. This consensus of 

pharmacophore sites describes the essential elements that a ligand must contain to bind the 

target.  

 

One of our previous studies compared the performance of pharmacophore models of HIV-1 

protease derived from a collection of crystal structures and an NMR ensemble, using the MPS 

technique (17). For that system, the pharmacophore models from the NMR ensemble encoded 

a more accurate representation of the essential features of the active site while maintaining 

selectivity for inhibitors over decoy molecules. This was a direct consequence of the greater 

flexibility observed in the NMR ensemble over the collection of crystal structures. HIV-1 
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protease is more flexible than most protein targets, and it is important to determine how 

universal this finding may be. In this study, we extended the MPS technique to several new 

protein targets. Again, we find that incorporating the greater protein flexibility of an NMR 

ensemble in the MPS method translates into an improvement in the quality and performance of 

pharmacophore models over those created with collections of crystal structures. 

  

There are very few systems with both NMR and crystal structures available in the Protein Data 

Bank (72). Even fewer are of biomedical interest so that databases of known inhibitors can be 

generated to test method performance. Growth factor receptor bound protein 2 (Grb2), Src 

SH2 homology domain (Src-SH2), FK506-binding protein 1A (FKBP12), and Peroxisome 

proliferator-activated receptor γ (PPAR-γ) protein targets met all the required criteria. We used 

ligand-bound crystal structures and NMR models whenever possible in order to ensure a fair 

comparison. However, due to the lack of such structures for FKBP12 and PPAR-γ, apo NMR 

structures were used for these particular proteins. Here, we demonstrate that the lesser 

protein conformational sampling seen in the crystal-structure ensemble leads to the 

identification of non-essential pharmacophore elements. In order to further probe the location 

and origin of these extraneous pharmacophore elements, the crystal pharmacophore models 

were systematically truncated. This resulted in retention of crystal pharmacophore model 

performance in most of the target cases studied. In the following sections, we discuss reasons 

for the retention in performance upon truncation of crystal pharmacophore models and 

present results across all the protein targets examining the ability of NMR and crystal 

pharmacophore models to identify inhibitors/agonists over decoy molecules.  

2.3 Methods 

2.3.1 Protein Preparation. 

 

In order to ensure a uniform setup across NMR and crystal structures, all protein-ligand 

complexes were stripped of hydrogen atoms which were added later using Molprobity (73). 

Additionally, structures were manually assigned histidine protonation state and 

histidine/aspargine/glutamine flips. These protein-ligand complexes were then visually 
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inspected and corrected where necessary for errors in hydrogen placement and ligand bond 

orders, followed by partial charge assignment based on MMFF94 force field (74) for the ligand 

and AMBER ff99 force field for the rest of the protein as implemented in Molecular Operating 

Environment (MOE 2010.10) (59). The hydrogen atoms were then minimized while the heavy 

atoms were restrained. 

2.3.2 Probe Flooding, Minimization, and Clustering. 

 

The protein structures extracted from the minimized protein-ligand complexes were then 

flooded separately with 500 molecules of benzene, ethane, and methanol probes with a 

flooding radius of 10 Å from the center of the active site using PyMOL (Figure 2-1A) (75). The 

atom used to define the center of the active site for flooding in each protein target is provided 

in the supplemental information. The probe molecules were then subjected to a low 

temperature, gas-phase minimization using the Multi Unit Search for Interacting Conformers 

(MUSIC) routine in BOSS (23). This type of minimization keeps the protein fixed and does not 

allow the probe molecules to interact with one another. The minimized probes in each 

individual protein structure were then grouped by a Jarvis-Patrick clustering method, and the 

group was represented by the probe with the best interaction energy (the “parent” of the 

cluster). (Figure 2-1C) (20). This process was repeated for all the structures in the crystal and 

NMR ensembles separately. Structures from each ensemble were then aligned using our 

weighted RMSD method (wRMSD) (Figure 2-1D) (76). The parent probes for each structure in 

the ensemble were then compared across the ensemble to identify consensus clusters that 

represent conserved interactions in more than 50% of all protein conformations/models (Figure 

2-1E). Pharmacophore elements were centered at the average coordinates for the 

corresponding parent probes. The RMS deviation of the parent probes in each consensus 

cluster formed the radii of the corresponding pharmacophore elements. Using this approach, 

Donor, Acceptor, and Doneptor (both donor and acceptor) pharmacophore elements were 

derived from Methanol clusters. Aromatic pharmacophore elements were derived from 

Benzene clusters, and hydrophobic pharmacophore elements were created from overlapping 
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Benzene and Ethane clusters. Any pharmacophore element lying outside the 10 Å flooding 

sphere was not included in the final pharmacophore model. 

 

Figure 2-1. A detailed description of the MPS method is presented using benzene probes as an 

example. A) The protein active site is flooded with 500 probe molecules. B) These molecules are 

minimized, independent of each other using the MUSIC routine in BOSS. C) The probe 

molecules are clustered and represented by “parent probes” which are the  single benzene 

molecule with the best interaction energy in each cluster in B. D) Steps A-C are carried out on 

all structures in the ensemble, and they are overlaid using the wRMSD method. E) Clusters of 

“parent probes” are identified manually. F) Consensus clusters are identified when at least 50% 

of the conformations contain a parent probe in the same location. All probes farther than 10Å 

of the center of the active site are ignored. The center of each pharmacophore element is 
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derived from the center of mass of the parents in the consensus cluster, and the radius of the 

element is set by the RMSD of the parents. 

2.3.3 Creation of ligand and decoy databases. 

 

Databases of inhibitors for the four protein targets were gleaned from the CHEMBL Database 

(77). IC50 ≤ 50 nM was the cutoff between high-affinity and low-affinity inhibitors. As a sufficient 

number of high-affinity inhibitors with IC50 ≤ 50 nM could not be found for Src SH2, the cutoff 

for high-affinity inhibitors was relaxed to IC50 ≤ 500 nM (only for Src SH2). In order to ensure 

that the compounds in the inhibitor databases were structurally diverse, they were grouped by 

85% Tanimoto similarity, calculated using the MACCS fingerprint (78) in MOE 2010.10 (59).  The 

inhibitors with the highest affinity in each set of similar structures were retained. A previously 

reported decoy database of 2324 drug like molecules obtained from the Comprehensive 

Medicinal Chemistry Index (79) was used as the decoy set (16). To rule out the possibility of 

finding inhibitors in this decoy set that bind to protein targets under consideration, a similarity 

search was performed for each of the 2324 decoy molecules against the CHEMBL-derived 

database using a path based similarity fingerprint implemented in OEGraphSim toolkit (80). 

Using a Tanimoto coefficient of ≥ 85% as a measure of similarity, if a CHEMBL molecule similar 

to the decoy molecules existed, its activity profile was searched in the CHEMBL database and 

any reported activity against the pfam family of the target under consideration resulted in the 

removal of the compound from the decoy set. This allowed us to establish a decoy set of 

molecules for each protein that is unlikely to contain any true positives.  OMEGA (81) was then 

used to generate multiple conformations for the inhibitors and decoys, limiting the number of 

conformations to 300 while imposing a heavy-atoms RMSD constraint of 2 Å for rejection of 

similar conformers along with a 25 kcal/mol energy cutoff. The number of molecules in the 

high-affinity, low-affinity, and decoy sets used for each protein target are provided in Table 2-1. 
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Table 2-1. The number of high-affinity and low-affinity inhibitors/agonists used to validate MPS 

pharmacophore models are reported below for every protein target. 

Protein Number of High-

Affinity 

Inhibitors/Agonists 

Number of Low-

Affinity Inhibitors/ 

Agonists 

Decoys 

Grb2 61 97 2303 

Src-SH2 16 145 2303 

FKBP12 78 96 2324 

PPAR-γ 54 119 2149 

 

2.3.4 Evaluation of Pharmacophore Models. 

 

Performance of the pharmacophore models were evaluated using Receiver Operator 

Characteristic (ROC) plots. For pharmacophore models, each ligand is evaluated with simple 

fit/no fit criteria, rather than a score. With scores, ROC plots are generated by plotting more 

and more relaxed scores (Figure 2-2). In our use of MPS, relaxation is accomplished by two 

means: 1) systematically increasing the radii of the pharmacophore elements and 2) varying the 

number of pharmacophore elements that need to be matched to identify a molecule as a hit. 

Each line on the ROC plot corresponds to results obtained from a model as the radii of its 

elements are systematically increased from 1× to 3× RMSD (see Figure 2-2). Each line shows hits 

for ligands required to match all N features of the pharmacophore model, N-1 matches, N-2 

matches, etc. To illustrate this point, the label “5/6 sites, 2.66 × RMSD” indicates hits fit five of a 

six-feature pharmacophore model with radii set to 2.66 times the RMSD. Using this approach, 

each pharmacophore model under varying degrees of relaxation was then screened against 

inhibitor and decoy databases using MOE 2010.10. As the database was split into high- and low-

affinity data sets, this allowed us to observe if pharmacophore models exhibited selective 

preference for high-affinity over low-affinity inhibitors. The number of hits in the inhibitor and 

decoy sets were then plotted in a ROC plot. Ideally, one would expect the best results to lie in 
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the upper left quadrant of the ROC plot, indicating that the pharmacophore models exhibit 

greater selectivity for inhibitors/agonists over decoys. The distance of all the data points 

(distance =√(%𝑓𝑎𝑙𝑠𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 − 0)2 +  (%𝑡𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 − 100)2 ) ) on the ROC plot were 

calculated from (0,100) which represented the ideal case scenario where all inhibitors are 

identified and no decoys are detected by the pharmacophore model, the pharmacophore 

model with the least distance from (0,100) was considered to have the best performance in 

screening the ligand sets. 

 

Figure 2-2. Receiver Operator Characteristic plots are shown for two cases, the first one 

corresponds to an exaggerated case of the more traditional use of ROC plots for continuous 

scores such as those obtained from docking results. The second plot illustrates the ROC plots 

generated by screening MPS pharmacophore models. Each discrete point on this line 

corresponds to the pharmacophore screening results obtained by gradually increasing the radii 

of the pharmacophore elements from 1× to 3× RMSD. Thus a label “5/6 2.33×” denotes the 

screening results from a MPS pharmacophore model whose radii have been multiplied by 2.33 

and requires 5 of its 6 pharmacophore elements to be matched for a hit to be identified. 

2.4 Results and Discussion 

2.4.1 Protein conformational sampling in crystal structures and NMR ensembles. 

 

As expected, crystal structures had limited conformational variation in their Cα backbone as 

compared to the NMR structures. The Cα RMSD of the crystal structures and NMR ensembles 
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for each protein was wRMSD aligned to the highest resolution crystal structure and the first 

model from the NMR ensemble, respectively. The results are summarized in Table 2-2 and 

illustrate the greater flexibility in the NMR ensembles. The greater flexibility in the NMR 

structures is also reflected in the heavy atom RMSD of the binding-site residues in the NMR 

ensemble as seen in Table 2-3. The NMR ensembles appear to be derived from high quality 

data, and we believe the conformational sampling exhibited in the NMR ensemble represents 

true sampling of these proteins in solution. While there were no unusually large conformational 

changes between the NMR and crystal structures of Grb2 SH2, Src SH2, and FKBP12, the 

differences in the conformations of PPAR-γ NMR and crystal structures represented a more 

important conformational change from the perspective of identifying MPS pharmacophore 

models. The PPAR-γ NMR structures represented an inactive conformation of the protein, while 

the crystal structures represented an active conformation of the protein. 

 

Table 2-2. The range of pair-wise Cα RMSDs for all the crystal and NMR structures reflects the 

greater flexibility in the NMR ensemble. 

Protein Crystal Structures  

CαRMSD 

NMR Ensemble  

CαRMSD 

Grb2 0.22 – 0.68 Å 0.74 – 2.32 Å 

Src SH2 0.16 – 0.91 Å 0.82 – 1.68 Å 

FKBP12 0.51 – 0.98 Å  0.95 – 1.43 Å 

PPAR-γ 0.69 – 2.43 Å 1.36 – 2.8 Å 
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Table 2-3. The range of heavy-atom RMSDs in the binding site for the crystal structures and 

NMR ensembles provides support for the greater flexibility of the NMR ensemble. 

 

 

 

 

 

 

2.4.2 Comparison of crystal and NMR pharmacophore models.  

 

In general, the pharmacophore models had certain characteristic traits that were common 

across all protein targets investigated in this study. Pharmacophore models from NMR 

structures had fewer pharmacophore elements which were greater in size, as compared to 

their crystal-pharmacophore counterparts. 

2.4.2.1 Comparison of the Src SH2 pharmacophore models 

 

Src SH2 is an important component in the auto regulation of its kinase domain; upon 

phosphorylation the C-terminus of the protein binds to the SH2 domain and results in the 

distortion of the kinase active site (82). The SH2 domain of Src binds with high affinity to 

phosphorylated peptides and recognizes the peptide sequence pYEEI with high affinity (83). The 

phosphotyrosine moiety of peptide ligands bind to the pY site, and the pY+1, pY+2, pY+3 sub-

sites that determine specificity lie C terminal to this phosphotyrosine binding site (Figure 2-3A, 

Figure 2-3B).  Pharmacophore models from both crystal and NMR structures reproduced key 

essential features in the different sub-sites required for binding substrates. As shown in Figure 

2-3B, the NMR pharmacophore model for Src SH2 had six pharmacophore elements compared 

to the ten pharmacophore elements in the crystal model (Figure 2-3A).  The pY site in the 

Protein Crystal Structures 

Binding Site RMSD 

NMR Ensemble 

Binding Site RMSD 

Grb2 0.33 - 1.71 Å 1.02 - 2.08 Å 

Src SH2 0.29 - 1.18 Å 1.00 - 1.79 Å 

FKBP12 0.64 - 2.57 Å 1.58 - 3.95 Å 

PPAR-γ 1.37 - 2.03 Å 1.49 - 3.21 Å 
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crystal pharmacophore model had two extra elements, a donor and a doneptor that were 

absent in the NMR model. Additionally, an extra hydrophobic element in the pY+2 and an 

aromatic element in the pY+3 pockets were located in the crystal pharmacophore model. The 

elements in the NMR pharmacophore model represented a subset of those seen in the crystal 

pharmacophore model. Interestingly, while the exact location of the phosphotyrosine moiety 

was not mapped in the NMR and crystal pharmacophore models, a doneptor element in close 

proximity was identified whose location appeared shifted between the two pharmacophore 

models. The lone hydrogen-bonding element in the pY+3 pocket changed from a hydrogen-

bond donor in the crystal pharmacophore model to a hydrogen-bond acceptor in the NMR 

pharmacophore model. This resulted from differing positions of a tyrosine residue lining the 

pY+3 pocket. Overlaying the crystal-structure ligands with the pharmacophore models as shown 

in Figure 2-3C emphasizes the observation that most elements from the NMR model overlap 

with the ligands in contrast to the crystal model where many elements failed to do so. This is 

particularly surprising because the ligands in Figure 2-3D are from the crystal structures, not the 

NMR model. 
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Figure 2-3. MPS pharmacophores are shown with 1× RMSD radii, which indicates tighter or 

looser position constraints.  Pharmacophore models for all the protein targets are color coded 

to represent different interactions: Red – Donor, Blue – Acceptor, Purple – Doneptor, Green – 

Aromatic, and Cyan – Hydrophobic. A) The MPS pharmacophore model for Src SH2 derived 

from X-ray structures. B) The MPS pharmacophore model for Src SH2 derived from the NMR 

ensemble. C) The ligands from X-ray structures overlaid on top of the Src SH2 X-ray model. D) 

The ligands from X-ray structures overlaid on top of the Src SH2 NMR model. 

2.4.2.2 Comparison of the Grb2 SH2 pharmacophore models 

 

Grb2 is an adaptor protein and consists of two SH3 domains and one SH2 domain.  The SH2 

domain of Grb2 binds to phosphorylated peptides of the general sequence pYXNX and adopts a 
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similar fold seen in other SH2 domains such as Src SH2. Sub-sites in the protein active site that 

accommodate ligands follow a similar nomenclature as noted above for Src SH2 and are named 

pY, pY+1, pY+2 (show in Figure 2-4A and Figure 2-4B). A key difference between the Grb2 and 

Src SH2 domains is Trp 121 in Grb2 which is part of the specificity determining EF loop 

(according to the naming convention described in Eck et al. (84)) that blocks the large pY+3 

pocket seen in Src SH2. As a result, phosphotyrosine peptides that bind to Grb2 SH2 domain 

adopt a beta turn instead of binding in an extended conformation occupying the pY+3 sub-site 

in Src SH2 (85). MPS pharmacophore models in this study were obtained for the SH2 domain of 

Grb2. Pharmacophore models reproduced key features of the active site which included the 

phosphotyrosine binding location in the pY subsite and essential interactions seen across all 

ligands in the pY+1 pocket (shown in Figure 2-4A and Figure 2-4B).  A hydrophobic element that 

overlapped the benzene ring of the phosphotyrosine residue was seen in the pY subsite of both 

pharmacophore models (Figure 2-4C and Figure 2-4D). The pY subsite of the crystal 

pharmacophore model displayed an additional acceptor element not found in the NMR model. 

As seen in Figure 2-4C, this acceptor element overlaps with the carbonyl group of the amide 

bond linking the phosphotyrosine residue to the residue preceding it. Three pharmacophore 

elements in the pY+1 pocket appear in similar locations in the crystal and NMR models. The 

only difference between the two pharmacophore models in the pY+1 pocket was an additional 

doneptor element in the NMR model. The pY+2 sub site followed a similar trend and had more 

elements in the crystal pharmacophore model.  A doneptor and hydrophobic element 

consistent with a key interaction is seen in both NMR and Crystal pharmacophore model (see 

Figure 2-4C and Figure 2-4D). 
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Figure 2-4. Coloring and radii of the pharmacophore elements are the same as in Figure 2-3. A) 

The MPS pharmacophore model for GRB2 SH2 derived from X-ray structures. B) The MPS 

pharmacophore model for GRB2 SH2 derived from the NMR ensemble. C) The ligands from X-

ray structures overlaid on top of the GRB2 SH2 MPS X-ray pharmacophore model. D) The 

ligands from X-ray structures overlaid on top of the GRB2 SH2 MPS NMR pharmacophore 

model. In Figure 2-4A and Figure 2-4B, tryptophan 121 is rendered as sticks between the pY+1 

and pY+2 surfaces. 
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2.4.2.3 Comparison of the FKBP12 pharmacophore models 

 

FKBP12 is a peptidyl prolyl cis/trans-isomerase that catalyzes the isomerization of proline amide 

bonds in proteins and peptides, and it is known to act as an immunosuppressant in complex 

with FK506 or Rapamycin (86, 87). The proline ring of a substrate sits in the center of the active 

site, which is a hydrophobic pocket lined with aromatic and hydrophobic residues with a 

tryptophan residue forming the base of the pocket (88, 89). Pharmacophore models from both 

crystal and NMR structures identify this key hydrophobic pocket in the center of the active site 

as illustrated in Figure 2-5A and Figure 2-5B. While the crystal pharmacophore model identifies 

several elements at the periphery of the active site, the absence of most of these elements 

from the NMR pharmacophore model is quiet apparent and can be attributed to the lack of 

consensus clusters in the more flexible regions of the NMR ensemble of FKBP12. An overlay of 

the pharmacophore models with the ligands bound to FKBP12 in the crystal structures (as seen 

in Figure 2-5C and Figure 2-5D) provides a more detailed understanding of the location of the 

elements. The only hydrogen-bonding element in the NMR pharmacophore model is a 

doneptor element that closely overlaps the carboxylic acid region of the proline residue in the 

ligands, making hydrogen-bonding interactions with the backbone of the protein (Figure 2-5D). 

It is interesting to note that some of the elements that are exclusive to the crystal 

pharmacophore model do not overlap with any ligands from the FKBP12 protein ligand 

complexes. This does not appear to be the case for the NMR model where most ligands from 

the crystal structures overlap with all pharmacophore elements of the NMR model. 
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Figure 2-5. Coloring and radii of the pharmacophore elements are the same as in Figure 2-3. A) 

The MPS pharmacophore model for FKBP12 derived from X-ray structures. B) The MPS 

pharmacophore model for FKBP12 derived from the NMR ensemble. C) The ligands from X-ray 

structures overlaid on top of the FKBP12 X-ray model. D) The ligands from X-ray structures 

overlaid on top of the FKBP12 NMR model. 

2.4.2.4 Comparison of the PPAR-γ pharmacophore models 

 

PPAR-γ is a ligand-activated transcriptional factor. It primarily consists of a ligand-binding 

domain and a DNA-binding domain (90). PPAR-γ agonists bind to the ligand-binding domain and 

stabilize helix 12 located at the C-terminus, resulting in a conformational change to a closed 

form of helix 12. PPAR-γ agonists stabilize helix 12 through a network of hydrogen bonds 
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involving Tyr 473 in helix 12 and several polar residues in the vicinity (His 449, His 323, and Ser 

289) typically through a carboxylic acid or thiazolidienedione moiety (91). MPS pharmacophore 

models in this study were obtained by flooding at the center of the active site in the ligand-

binding domain. The crystal pharmacophore model displayed six elements which included a 

doneptor element that mapped the functional moiety of PPAR-γ agonists that stabilizes helix 12 

(see Figure 2-6A). Four of the six elements in the crystal pharmacophore model were seen to 

overlay well with the crystal structure ligands. As a ligand-bound NMR ensemble for PPAR-γ was 

not available, we had to use an apo NMR ensemble for creating the pharmacophore model. The 

NMR pharmacophore model had three elements and the doneptor element mimicking the key 

functional moiety of PPAR-γ agonists was absent (see Figure 2-6). Helix 12 in the NMR 

ensemble (nine apo structures) sampled a wide variety of open conformations (see Figure 2-6) 

that did not resemble the well-ordered, hydrogen-bonding network seen in the agonist bound 

PPAR-γ crystal structures. Consequently, the flexibility and the absence of a doneptor element 

that mapped the PPAR-γ agonist functional moiety was expected. A hydrophobic element that 

overlapped with the agonists near helix 12 in the crystal pharmacophore model appeared 

shifted in the NMR model and more closely mapped the location of the Tyr 473 seen in the 

crystal structures. It is important to note that while the NMR pharmacophore model mapped 

important locations of the protein, these locations were less important for ligand binding and of 

more relevance for the conformational change going from the inactive form of the protein to 

the ligand-bound, activated form.  The only element in common between the NMR and crystal 

pharmacophore model was a hydrophobic element located at the entrance to the active site of 

PPAR-γ. Interestingly, the aromatic element in the center of the active site of the crystal 

pharmacophore model was replaced by a donor element in the NMR pharmacophore model, 

presumably due to the bent nature of the helix in this region that exposes a cysteine residue 

(Cys 285) backbone amide in the NMR ensemble.  
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Figure 2-6. Coloring and radii of the pharmacophore elements are the same as in Figure 2-3. 

MPS pharmacophore models derived from PPAR-γ X-ray and NMR ensembles are shown along 

with a representative protein conformation. The tyrosine residue 473 which is part of Helix 12 is 

shown in pink. In the X-ray ensemble, there is limited sampling of the tyrosine residue 473, 

which corresponds to the active form of the protein. In the NMR ensemble; this residue 

samples the inactive conformation of the protein. A) The MPS pharmacophore model for PPAR-

γ derived from X-ray structures. B) The MPS pharmacophore model for PPAR-γ derived from the 

NMR ensemble. C) The ligands from X-ray structures overlaid on top of the PPAR-γ MPS X-ray 



 

42 
 

pharmacophore model. D) The ligands from X-ray structures overlaid on top of the PPAR-γ MPS 

NMR pharmacophore model. In Figure 2-6A and Figure 2-6B, the location of the binding site is 

shown by rendering rosiglitazone as a stick model obtained from the PDB ID: 1ZGY (colored 

brown). 

2.4.3 Evaluation of MPS pharmacophore models 

 

Pharmacophore models from NMR ensembles and crystal structures were evaluated by their 

ability to identify inhibitors/agonists over decoy molecules. In addition, the databases were 

split into high- and low-affinity data sets to provide a further measure of the effectiveness of 

the models. Certain unifying trends were observed across all models in general. This included 

the ability of the pharmacophore models to identify high-affinity inhibitors over low-affinity 

inhibitors while maintaining selectivity over decoy molecules. Furthermore, NMR models 

consistently had fewer pharmacophore elements. 

 

The increased flexibility in the NMR ensemble, coupled with the requirement of defining an 

element only when similar interactions are made across more than 50% of the protein 

conformations, decreases the likelihood of requiring elements in locations where proteins 

exhibit greater flexibility. Our goal with MPS is to identify the most essential interactions, so 

these more variable regions are inherently down played. Regions like these may complement 

some ligands, but they are not essential to all ligand binding. Furthermore, locations such as 

these may be associated with entropic costs. With the exception of PPAR-γ, NMR models for all 

protein targets exhibited optimum performance when all pharmacophore elements were 

required to identify a hit. This provided support to the argument that conformational flexibility 

in the NMR ensemble enables one to identify hot spots that closely map functional groups 

retained across diverse inhibitors and represent the most essential features of the active site. 

The poor performance of PPAR-γ NMR pharmacophore model can be attributed to the fact that 

the apo NMR ensemble samples an inactive form of the protein and the resulting 

pharmacophore model is devoid of the ability to identify agonists that bind to the active form 

of the protein. Nevertheless, hot spots mapped by the PPAR-γ NMR pharmacophore model 
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represent locations of protein side chains in the active form of PPAR-γ as seen in the crystal 

structures and hence resemble sites relevant for conformational transition from the inactive to 

the active form of the protein.  

 

Conversely, crystal pharmacophore models were too limited in protein flexibility, which 

resulted in the identification of more non-essential elements. The crystal model’s performance 

was poor when all the pharmacophore elements were used to identify hits. In contrast to NMR 

pharmacophore models, elements had to be dropped in order to obtain optimum performance 

for crystal models, which suggested that the extraneous elements identified in the crystal 

pharmacophore model represented non-essential sites, meaning that inhibitors/agonists may 

or may not have the chemical features. The addition of these elements hindered performance. 

Dropping elements from the crystal pharmacophore model allowed a more diverse set of 

inhibitors to be identified; however, it also resulted in a concomitant increase in the number of 

decoy molecules identified. 

  

Across all protein targets, there was no trend on the number of elements required to be 

dropped from the crystal pharmacophore model in order to achieve optimum performance. 

The lack of such a trend highlights the uncertain nature of the task of optimizing crystal 

pharmacophore models for protein targets where sufficient data to evaluate model 

performance does not exist. It is clear that pharmacophore models derived from NMR 

ensembles do not suffer from such drawbacks since they can be screened by using all of their 

pharmacophore elements to identify a diverse set of inhibitors, completely obviating the need 

to drop elements to achieve optimum performance. 

 

Our objective was to approach the problem in an unbiased manner excluding any prior 

knowledge of the binding mode of ligands and the function of the protein target while 

preparing MPS pharmacophore models. Hence, we flooded the protein structures with probe 

molecules at the center of the binding cavity using a 10Å flooding radius across all protein 

targets the same as one might center a “docking box” on the middle of a binding site. While 
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flooding in this study was performed with 500 probe molecules, we also evaluated the effect of 

flooding with 2000 probe molecules and found that several non-essential sites were identified 

in both NMR and crystal structures, limiting the performance of crystal and NMR 

pharmacophore models (data not shown). 

 

ROC plots for each protein target, characteristics that deviate from general trends discussed 

above, and reasons for such anomalies are elaborated in further detail for each protein target 

below.  

2.4.3.1 Performance of the pharmacophore models of the Src SH2 

 

The optimal NMR pharmacophore model (6/6 sites, 2.66 × RMSD, Figure 2-7) identified 93.7% 

of high-affinity inhibitors and 10.5% decoys. The best performing crystal pharmacophore model 

(7/10, 2.66 × RMSD, Figure 2-7) identified a similar number of inhibitors at the expense of 

11.9% decoys. Pharmacophore models from both NMR and crystal structures were able to 

distinguish high-affinity inhibitors from low-affinity inhibitors. While optimal pharmacophore 

models from both models identified a similar number of inhibitors, it is important to note that 

the NMR pharmacophore model achieved this task using all the elements in the 

pharmacophore model, unlike the crystal pharmacophore model where three elements had to 

be dropped in order to achieve a similar result.  
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Figure 2-7. ROC plots of crystal and NMR pharmacophore models of Src SH2 are shown along 

with a label for the model that displays the best performance. The best performing crystal 

pharmacophore model was at 2.66 × RMSD using seven out of ten pharmacophore elements. 

The best performing NMR pharmacophore model was achieved at 2.66 × RMSD using all six 

pharmacophore elements. 

2.4.3.2 Performance of the pharmacophore models for Grb2 

 

Pharmacophore models from both crystal and NMR Grb2 models were successful in 

differentiating inhibitors over decoys and high-affinity over low-affinity inhibitors. The NMR 

pharmacophore model of Grb2 displayed optimum performance when all elements of the 

pharmacophore model were included (8/8 sites, 3 × RMSD, Figure 2-8). This pharmacophore 

model identified 98.3% of high-affinity inhibitors and 5.6 % of decoys. In contrast, the crystal 

pharmacophore model exhibited optimum performance identifying 98.3% of high-affinity 

inhibitors and 7.5% of decoys when screened with a model (8/9, 3 × RMSD, Figure 2-8) where 

one element was dropped. The crystal pharmacophore models displayed similar characteristics 

observed for Src SH2 where progressively dropping pharmacophore elements improved the 

ability of the models to identify a diverse set of inhibitors. 

 

Figure 2-8. ROC plots of crystal and NMR pharmacophore models of Grb2 SH2 are shown along 

with a label for the model that displays the best performance. The best performing crystal 

pharmacophore model was at 3.00 × RMSD using eight out of nine pharmacophore elements. 
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The best performing NMR pharmacophore model was achieved at 3.00 × RMSD using all six 

pharmacophore elements. 

2.4.3.3 Performance of the pharmacophore models of FKBP12  

 

The FKBP12 NMR pharmacophore model was rather simple and had only four pharmacophore 

elements. Its optimum model (4/4, 1 × RMSD, Figure 2-9) identified 73% of the high-affinity 

inhibitors and 10.3 % of decoys. In contrast, the crystal pharmacophore model identified 14 

pharmacophore elements. Elements of the NMR model represented a subset of the crystal 

pharmacophore model. The inability to identify either inhibitors or decoys using the full crystal 

pharmacophore model points to the fact that several of these sites are not required for 

inhibitors to exhibit activity, and they severely limit performance of the crystal pharmacophore 

model.  The crystal pharmacophore model showed decent performance only when half of the 

pharmacophore elements were dropped, and the optimum model (7/14, 2.66 × RMSD, Figure 

2-9) identified 80.7% of high-affinity inhibitors at the expense of 28.4% decoys.  

 

Figure 2-9. ROC plots of crystal and NMR pharmacophore models of FKBP12 are shown along 

with a label for the model that displays the best performance. The best performing crystal 

pharmacophore model was at 2.66 × RMSD using seven out of fourteen pharmacophore 

elements. The best performing NMR pharmacophore model was achieved at 1.00 × RMSD using 

all four pharmacophore elements. 
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2.4.3.4 Performance of the pharmacophore models of the PPAR-γ 

 

PPAR-γ presented a unique case where the crystal pharmacophore model displayed better 

performance than the NMR pharmacophore model. These differences in performances reflect 

the different conformations upon which crystal and NMR pharmacophore models were built. 

The crystal model was derived from protein conformations of the active form where helix 12 

sampled a “bound conformation” in all of the ligand-bound crystal structures. In contrast, the 

NMR pharmacophore model was based on apo, inactive conformations in the NMR ensemble 

where helix 12 was found in the open conformation. 

 

The optimum crystal pharmacophore model (5/6, 2.33 × RMSD, Figure 2-10) identified 90.7% of 

high-affinity agonists and 21.6 % decoys.  When all six pharmacophore elements of the crystal 

model were used to screen for agonists, very few were identified as hits. Moreover, under such 

a constraint, the crystal pharamacophore displayed a selective preference for low-affinity 

agonists over high-affinity agonists. Similar results were found for our previous MPS models for 

the protein dihydrofolate reductase derived from crystal structures (16, 19). 

 

The NMR pharmacophore model performed poorly in identifying both high-affinity and low-

affinity agonists, and again the flipped specificity was seen. The optimum NMR pharmacophore 

model (3/3, 1.33 × RMSD, Figure 2-10) identified 69.7% low-affinity inhibitors and 37.5% decoy 

molecules. This emphasizes the importance of pharmacophore elements absent in the NMR 

pharmacophore model that interact with the tyrosine residue (Tyr 473) in helix 12 and their key 

role in defining a high-affinity PPAR-γ agonists (91). 



 

48 
 

  

Figure 2-10. ROC plots of crystal and NMR pharmacophore models of PPAR-γ are shown along 

with a label for the model that displays the best performance. The best performing crystal 

model was at 2.33 × RMSD using five out of six pharmacophore elements. The best performing 

NMR model was achieved at 1.33 × RMSD using all three pharmacophore elements. The NMR 

pharmacophore model was built from an NMR ensemble that samples the inactive 

conformation, so this model was expected to perform poorly. 

2.4.4 Locating and characeterizing extraneous elements in crystal pharmacophore models. 

 

Extraneous elements limited the performance of crystal pharmacophore models, and they 

required these extra elements to be dropped (at random) in order to achieve optimal 

performance. Given that crystal structures represent the predominant method of structure 

determination, it is important to develop methods that circumvent these issues. While 

dropping elements at random to achieve optimum performance presents one such alternative, 

it is unclear how to do this in a prospective case since this seems to vary by protein target. In 

order to investigate the location of these extraneous elements and their impact on model 

performance, we removed pharmacophore elements beyond a defined cutoff radius from the 

center of the active site. The resulting truncated model was screened against inhibitor and 

decoy molecules as was done earlier. 
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In PPAR-γ and Grb2, removing elements at the periphery of the active site resulted in 

pharmacophore models that exhibited optimum performance when screened using all of their 

pharmacophore elements. PPAR-γ (Figure 2-11) and Grb2 (Figure 2-12) exhibited such behavior 

when screened after using a cutoff of 7 Å and 8 Å, respectively, to truncate pharmacophore 

models. Interestingly, minor imperfections in the pharmacophore model such as the 

identification of low-affinity inhibitors over high-affinity inhibitors seen with the original PPAR-γ 

crystal pharmacophore model disappeared using a cutoff-based truncation. This is particularly 

important when the active form was only available in crystal structures. 

 

This approach was found to be most useful for FKBP12, where removing pharmacophore 

elements beyond 8 or 9 Å of the center of the active site resulted in models that required less 

elements to be dropped in order to achieve optimal performance (see Figure 2-13). It appears 

that crystal packing effects cause side chains at the periphery of this active site to be artificially 

constrained, creating false consensus elements in the pharmacophore models. This is clearly 

seen Figure 2-14. Coloring the backbone based on Cα RMSD shows that most of the 

pharmacophore elements unique to the crystal pharmacophore model drop out in the NMR 

pharmacophore model due to higher protein flexibility. 

 

Interestingly, when cutoffs were applied to the model of Src SH2, degradation in performance 

was observed (see Figure 2-15). This was due to the removal of pharmacophore elements 

located at the periphery in the pY+3 pocket. The pY+3 pocket is known to determine specificity 

and contributes significantly to the binding affinity of inhibitors. Inhibitors with larger 

hydrophobic residues in the pY+3 pocket are known to bind with higher affinity to Src SH2 (92). 

 



 

50 
 

 

Figure 2-11. ROC plots are shown for the PPAR-γ crystal pharmacophore model with cutoffs of 

8Å and 7Å from the center of the binding site. The best performing crystal pharmacophore 

model at a cutoff of 8Å was 1.00 × RMSD using four out of five pharmacophore elements and 

1.33 × RMSD using four out of four pharmacophore elements for a cutoff of 7Å. 

 

Figure 2-12. ROC plots of Grb2 SH2 crystal model truncated to 8Å and 7Å are shown. The best 

performing model at a cutoff of 8Å was 3.00 × RMSD using eight out of eight pharmacophore 

elements and 2.33 × RMSD using six out of six pharmacophore elements for a cutoff of 7Å. 
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Figure 2-13. ROC plots of FKBP12 crystal pharmacophore model truncated to 9Å and 8Å are 

shown along with a label for the model that displays the best performance. The best 

performing crystal pharmacophore model at a cutoff of 9Å was 2.66 × RMSD using seven out of 

thirteen pharmacophore elements and 3.00 × RMSD using seven out of ten pharmacophore 

elements for a cutoff of 8Å. 

 

 

Figure 2-14. A) FKBP12 crystal pharmacophore model and B) FKBP12 NMR pharmacophore 

model. The models are overlaid on the protein which is color coded by Cα RMSD after wRMSD 



 

52 
 

alignment. The color scale ranges from Blue (0.1 Å RMSD) to Red (3.8 Å RMSD). The increased 

flexibility of the NMR ensemble reduces the consensus across the probes used in constructing 

the model, which removes several elements present in the crystal pharmacophore model. 

 

Figure 2-15. ROC plots of Src SH2 crystal pharmacophore model truncated to 9Å and 8Å are 

shown. The best performing crystal pharmacophore model at a cutoff of 9Å was 2.66 × RMSD 

using six out of eight pharmacophore elements and 2.00 × RMSD using five out of six 

pharmacophore elements for a cutoff of 8Å. 

2.5 Conclusions 

 

MPS pharmacophore models displayed selective preference for high-affinity inhibitors over 

low-affinity inhibitors. NMR pharmacophore models exhibited optimum performance when 

screened using all of their pharmacophore elements, an observation that lends support to the 

argument that greater flexibility in the NMR ensembles aids in identifying only essential 

pharmacophore elements. In contrast, crystal pharmacophore models identified a greater 

number of pharmacophore elements, some of which had to be dropped in order to improve 

performance. However, the number of elements to drop varied across the protein targets. 

 

In order to understand the location and impact of these extraneous pharmacophore elements 

on model performance, we have truncated pharmacophore models using different cutoffs from 

the center of the active site. The X-ray pharmacophore models retained performance for the 



 

53 
 

most part upon truncation of pharmacophore elements at the periphery. These results confirm 

that the extraneous pharmacophore element are primarily located at the periphery and do not 

contribute any value to pharmacophore model performance. This study highlights the 

relationship of protein flexibility with MPS pharmacophore model performance. 

2.6 Supplementary Information 

 

Appendix A provides additional information on pharmacophore model coordinates, used in this 

study, ROC plot data, and a list of PDB structures used for the NMR and crystal structures used 

to build the pharmacophore models. 
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Chapter 3. Moving Beyond Active-site Detection: MixMD Applied to Allosteric 

Systems 

 

3.1 Abstract 

 

Mixed-solvent molecular dynamics (MixMD) is a hotspot-mapping technique that relies on 

molecular dynamics simulations of binary solvent mixtures. Previous work on MixMD has 

established the technique's effectiveness in capturing binding sites of small organic compounds. 

The MixMD approach embraces full protein flexibility while allowing competition between 

probes and water. Sites preferentially mapped by probe molecules are more likely to be 

hotspots. First, we establish a rigorous protocol for the identification of hotspots on the binding 

surface. There are two important requirements: 1) hotspots must be mapped at very high signal 

to noise ratio and 2) the hotspots must be mapped by multiple probes. We have focused our 

probe molecule repertoire to include acetonitrile, isopropanol, and pyrimidine as these probes 

allowed us to capture a range of interaction types that include hydrophilic, hydrophobic, 

hydrogen-bonding and aromatic interactions. Charged probes were needed for mapping one 

target. Second, we used MixMD to identify both competitive and allosteric sites on proteins. In 

order to demonstrate the robust nature and wide applicability of the technique, a combined 

total of 5 µs of MixMD was applied across several protein targets known to exhibit allosteric 

modulation. The protein test cases were Abl Kinase, Androgen Receptor, Chk1 Kinase, 

Glucokinase, Pdk1 Kinase, Protein-Tyrosine Phosphatase 1B, and Farnesyl Pyrophosphate 

Synthase. The success of the technique is demonstrated by the fact that the top-four sites 

solely map the competitive and allosteric sites. While the lower-ranked sites consistently map 

multimerization interfaces, other biologically relevant sites, or crystal packing interfaces. 
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3.2 Introduction 

 

Traditional structure based drug design (SBDD) often relies on targeting the active site as a 

means of inhibiting protein function. However, such an approach may prove to be challenging 

in some protein targets. Allosteric sites on proteins allow an opportunity to circumvent such 

issues. Allostery has traditionally been defined as the modulation of function as a result of an 

effector binding at a site distant from the orthosteric site. Our evolving understanding of 

allosteric modulation has moved us from the sole view of an induced fit and conformational 

change driven mechanism to include mechanisms dominated by population shift and 

conformational selection. Indeed, several studies have shown the existence of allostery in the 

absence of any notable change between the allosteric effector bound and unbound 

conformations, further strengthening the argument of a more dynamic view of allosteric 

mechanisms (93). Allostery is clearly important for drug design. It has a role in regulatory 

feedback mechanisms in controlling the activity of many enzymes. This provides an avenue for 

one to develop drugs to target allosteric sites for curing diseases (94). Furthermore, targeting 

allosteric sites can allow one to circumvent decreased effectiveness of inhibitors targeting the 

orthosteric/active site as a result of escape mutations. Moreover, in certain cases it has been 

shown that targeting allosteric sites allows one to achieve selectivity when structural 

similarities in the orthosteric sites across multiple subtypes of the same protein prevents one 

from achieving desired selectivity (95). 

Many discoveries of allosteric sites have risen through serendipitous approaches involving high 

throughput screens (96).  Experimental approaches such as tethering thiol containing small 

molecules to cysteine residues on the protein surface have also found success in identifying 

allosteric sites (97). There are several computational techniques that complement the detection 

of these allosteric sites.  Computational methods for the detection of allosteric sites range from 

sequence-based analysis of evolutionarily conserved residues to decipher the allosteric network 

(98) to molecular dynamic simulations that attempt to detect an allosteric network through 

correlated motion of residues (99). These methods while promising have only been applied to a 
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handful of protein targets and further assessment needs to be done to evaluate their 

robustness.  

In order to take advantage of allosteric sites, it is also essential to assess if such sites are 

druggable and thereby amenable to drug discovery efforts. Common experimental approaches 

to assess the druggability of sites on the protein surface include NMR-based fragment screening 

(100) and crystallography-based methods such as the multiple solvent crystal structures (MSCS) 

technique (101, 102). Computational probe mapping techniques, inspired by such experimental 

approaches, provide a cost-effective alternative and allow one to overcome practical challenges 

in implementing experimental methods. MixMD is one such probe-mapping technique that 

embraces the dynamic aspect of proteins. The MixMD method uses a molecular dynamics (MD) 

simulation of the protein in a binary solvent of water and a miscible, organic probe to 

determine the location where probes preferentially bind. Our earlier efforts in optimizing the 

MixMD technique have demonstrated that in order to map true hotspots, one needs to take full 

protein flexibility into account (103). Furthermore, we have optimized the conditions to reduce 

the number of spurious minima identified on the protein surface (104). Spurious sites are 

common in other similar methods. Probe-mapping techniques similar with MD have been put 

forth by several groups, the first to be reported used MD simulations with isopropanol as a 

single probe at a concentration of 20% v/v (105). A second probe-mapping technique termed 

SILCS utilized a 1M benzene, 1M propane in water as the solvent mixture to carry out MD 

simulations (106, 107). The third technique used either isopropanol or a mixture of small 

fragments (acetic acid, acetamide, isopropylamine, and isopropanol) at a concentration of 20% 

v/v (100). All probe-mapping techniques reported thus far rely on binning the probe locations 

onto a grid and identifying hotspots through some form of free energy of binding calculation.  

Each probe-mapping technique has its merits and drawbacks. Emphasizing on water-miscible 

organic probes, extending the technique in the pursuit of unknown targets, and using 

conditions amenable to experimental methods have influenced our methodology development 

and distinguish our method from similar methods. 
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Probe-mapping techniques such as MixMD take protein flexibility and competition of organic 

molecules with water into account. In principle, using drug-like fragments should facilitate the 

assessment of druggability of plausible binding sites on the protein surface. Competition with 

water in MixMD allows one to explicitly assess if unfavorable solvation effects can impede 

binding. In this study, we extend MixMD in pursuit of allosteric sites and show that MixMD can 

map both active and allosteric sites on proteins. To this end, we have identified a set of protein 

targets with confirmed allosteric sites. The protein targets used were monomers and included 

Abl Kinase, Androgen Receptor, Pdk1 Kinase, Farnesyl Pyrophosphate Synthase, Chk1 Kinase, 

Glucokinase and Protein Tyrosine Phosphatase 1B (PTP1B). In order to provide a robust 

evaluation of MixMD, it is essential to avoid pre-organization of the allosteric sites. In keeping 

with this philosophy, we have used proteins with competitive ligands bound, but no allosteric 

ligands. In subsequent sections, we present full details of our methodology and show the 

effectiveness of MixMD in identifying both allosteric and competitive sites on proteins. 

3.3 Methods  

3.3.1 MixMD simulation setup  

 

Simulations were started from a protein conformation with no allosteric ligand bound. The 

protein structures were stripped of water molecules and any cofactors or active-site ligands. 

This was followed by the addition of hydrogen atoms using Protonate 3D in MOE (59). The 

aspargine and glutamine residues were flipped as necessary to achieve optimal hydrogen 

bonding. Histidine residue tautomerizations were corrected when required. A sufficient number 

of sodium or chloride ions were added to neutralize the system using the tleap suite of 

AmberTools (108). A layer of probe molecules was added around the protein using tleap 

followed by the addition of a sufficient number of TIP3P (109) water molecules as necessary to 

create a 5% v/v ratio of probe to water. The force field parameters for the probes acetonitrile, 

isopropanol, and pyrimidine were from our previous work (110). Molecular dynamic 

simulations were carried out in AMBER 11 (108) using the FF99SB (111) force field.  The SHAKE 

algorithm (112) was used to restrain bonds to hydrogen atoms and a time step of 2 fs was used 

to integrate the equations of motion. Particle Mesh Ewald approximation as implemented for 
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the GPUs, PMEMDCUDA (113) was used. Non-bonded interactions were limited to a 10 Å cutoff 

and an Anderson Thermostat was used to maintain temperature at 300 K. Using this approach, 

three separate simulations with the probes acetonitrile, isopropanol, and pyrimidine were 

setup for each protein target. The systems were then subjected to an equilibration protocol to 

gradually increase the temperature and allow proper relaxation of all the atoms in the system 

as described previously (104). This was followed by a simulation of 20 ns. For each protein and 

probe, ten such simulations were carried out resulting in 200 ns of cumulative production 

simulation time. 

3.3.2 Parametrization of acetate and methyl ammonium for use in MixMD 

  

Force field parameters for acetate and methyl ammonium used in MixMD simulations of PTP1B 

were developed using the same approach as outlined in our previous work for other organic 

water miscible probes (110). In brief, this approach involves the use of OPLS force field 

parameters for nonbonded interaction terms.  These nonbonded interaction terms were 

converted for use in AMBER using the conversion factor 𝑟𝑚𝑖𝑛 = 2
1

6 ∗  𝜎/2, where σ is the OPLS 

nonbonded interaction term and rmin in AMBER is the distance between the atoms at which the 

Lennard Jones interaction term is at its lowest energy minimum. The OPLS force field 

parameters used for acetate and methyl ammonium are presented in the 0.  

In order to validate these parameters, a mixture of ~2.5%v/v of acetate and methyl ammonium 

in a box of TIP3P water was subjected to 5ns of simulation under constant pressure after a 

series of equilibration steps. The box was ~ 85Å × 85Å × 85Å and consisted of ~64,000 atoms. 

The equilibration procedure consisted of 49,000 steps of conjugate gradient minimization. 

Then, the system was gradually heated from 10 to 300K over 20 ps. This was followed by a 2ns 

constant pressure equilibration. Adequate mixing of acetate and methyl ammonium was 

confirmed by calculating the radial distribution functions (RDF) of the Oxygen-Oxygen distance 

in acetate and Nitrogen-Nitrogen distance in methyl ammonium.  These RDFs were computed 

with the radial command in ptraj by using the last 1ns of the simulation data and a bin size of 

0.1 Å. The RDFs for acetate and methyl ammonium (shown in Figure 3-1B) converge to 1.0 at 

long range distances confirming the adequate mixing of probes and relatively uniform 
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distribution in the box. A snapshot of the last frame (shown in Figure 3-1A) further depicts the 

even mixing of acetate and methyl ammonium. 

 

 

Figure 3-1 (A) The final snapshot from a simulation of ~2.5%v/v mixture of acetate, methyl 

ammonium and water for 5ns demonstrates proper mixing was achieved. Acetate ions are 

colored purple, methyl ammonium ions are colored green and water molecules are colored 

white. (B) Adequate mixing of acetate, methyl ammonium probe molecules in MixMD was 

confirmed by radial distribution functions that displayed a probability of 1.0 at long range 

distances. 

3.3.3 Processing MixMD results  

 

The location of all atoms within the probe molecules from the last five nanoseconds of the ten 

runs for each protein target were binned onto a grid of 0.5 Å spacing using the Ptraj module 

from AmberTools (108). The raw bin counts in each of the grid points were converted to sigma 

values using the equation (𝑥 −  𝜇)/𝜎 where 𝜇 is the mean of the binned grid data and 𝜎 is the 

standard deviation of the binned grid data. This allows us to represent the location of the 

probes in a manner commonly implemented for electron density from X-ray crystallography. 

The resulting maps were contoured at various sigma values and examined in the presence of 

the average protein structure to identify locations of maximal occupancy. A higher sigma value 
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for a particular location on the grid signifies a higher residence time for a probe molecule at 

that particular location across all ten MixMD simulation runs. The maps in this study have been 

color coded as orange for acetonitrile, blue for isopropanol, and magenta for pyrimidine to 

represent the respective probe simulations from which they have been derived. These maps 

were visualized in PyMOL (75). 

3.4 Results and Discussion 

 

3.4.1 Choice of protein targets and conformations 

 

The definition of allostery is broad and in general is used to imply anything that does not 

modulate a protein’s activity by interacting with the competitive site. Under such a definition, 

there are an innumerable number of protein targets that one can choose from to test the 

effectiveness of techniques to identify allosteric sites. In order to avoid misinterpretation of 

allosteric sites, we focused our attention on those targets for which experimental data clearly 

supported an allosteric mechanism; moreover, we limited our choice of protein targets to those 

that had a verified allosteric site confirmed through crystallography. This allowed a proper and 

fair comparison of our MixMD mapping results for competitive and allosteric molecules in 

crystal structures. In order to provide a robust analysis of the technique, we chose to start 

MixMD simulations from crystal structures with no allosteric ligand bound. Complex allosteric 

mechanisms exist where allosteric effectors modulate the quaternary relationship of a 

multimeric complex of a protein. Simulating a large, multimeric complex is computationally 

expensive. As an example, Bacterial L-lactate dehydrogenase converts pyruvate to L-lactate, 

and the protein exists in a tetrameric state that has either high or no affinity for the substrate, 

depending on binding and unbinding of the allosteric effector fructose 1,6-bisphosphate. In 

order to accurately map the allosteric sites, such a system would need to be simulated as a 

tetramer which can be computationally expensive (114, 115). These large systems were left out 

from the current analysis and will be the subject of a future study. Careful curation left us with 

seven protein targets (Abl Kinase, Androgen Receptor, Pdk1 Kinase, Farnesyl Pyrophosphate 

Synthase (FPPS), Glucokinase, Chk1 Kinase, and PTP1B) for which, there were conformations 
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with a competitive ligand bound but no allosteric ligands. Apo structures with no ligands were 

not available for all the systems studied. The PDB IDs of the protein conformation used as the 

starting conformation for MixMD setup are given in Table 3-1.   

Table 3-1 The protein structures used in MixMD are listed. The range of the all-atom RMSD for 

residues within 4Å of the allosteric site is shown from the MixMD starting conformation to 

protein conformations with allosteric ligands bound. 

Protein Name Starting conformation 

used for MixMD 

 

Range of all atom RMSD of 

allosteric site 

(Between MixMD starting structure 

and all Allosteric ligand bound 

structures in the PDB) 

 

ABL Kinase 3KFA (Chain A) 7.93 – 8.02 Å 

Androgen Receptor 2AM9 (Chain A) 1.01 – 1.67 Å 

PDK1 Kinase 3RCJ (Chain A) 1.07 – 2.15 Å 

Farnesyl Pyrophosphate 

Synthase 

4DEM (Chain F) 1.26 – 2.14 Å 

Glucokinase 3IDH (Chain A) 1.05 – 2.82 Å 

CHK1 Kinase 1ZYS (Chain A) 0.45 – 0.87 Å 

Protein Tyrosine 

Phosphatase 1B 

2CMB (Chain A) 2.02 – 2.12 Å 

 

3.4.2 Identifying and ranking hotspots on the protein surface 

 

Assessing the relative importance of hotspots mapped on the protein surface is essential in 

establishing their significance. We assessed the mapped sites based on several criteria. First and 

foremost, sites mapped at a high sigma value were given greater preference since these sites 

represent maximally occupied sites. Second, hotspots must be mapped by more than one probe 
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type, which implies “bindability” by diverse chemical functionalities. Indeed such an approach 

to identifying hotspots has been highlighted by Vajda and co-workers in their FT-MAP 

technique where sites mapped by multiple probes were identified as hotspots (116). It is 

important to note that our binary solvent setup is essential when we require sites to be 

mapped by multiple probes. This is a condition that cannot be met in ternary solvent 

simulations that have been reported earlier (100, 106, 107). This gives MixMD a distinct 

advantage.  

To illustrate the identification of hotspots with MixMD, Figure 3-2 shows Abl Kinase with probe 

occupancies contoured at varying sigma values. At 90σ in Figure 3-2A, the only hotspot mapped 

is in the allosteric site. However, upon decreasing it to 85σ (Figure 3-2B), we see that a second 

hotspot appears in the active site of Abl Kinase. As we continue decreasing the sigma value to 

75σ (Figure 3-2C), a third hotspot appears which maps the hinge region of the active site in Abl 

Kinase. In lowering the sigma value further, we see that a fourth site appears on the protein 

surface at 50σ. As the maps are contoured at lower sigma values successively from Figure 3-2D-

Figure 3-2F, the sites that have already been identified increase in size and start to fuse, while 

less relevant sites appear. This fusion of mapped hotspots can be seen in the case of hotspot 2 

and hotspot 3 that collectively map the entire competitive binding site (Figure 3-2F). Contouring 

hotspots at 20σ allowed us to examine the full extent to which the probes had mapped the 

various binding sites on the protein surface. This was a common feature across all the protein 

targets in this study. Throughout this study, we have found it ideal to focus on the top four 

hotspots. Unless otherwise stated, from here on all maps are contoured in two ways, one at 

20σ to show the full extent to which the top four hotspots map the surface of the protein and 

another showing the raw occupancy maps at 35σ that clearly show the presence of the top-four 

sites before other spurious minima. For clarity, those spurious sites are not shown in the 20σ 

figures. 
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Figure 3-2 The MixMD maps for Abl Kinase are contoured at varying sigma values from 90σ to 

20σ to show the degree of molecular surface mapped by the probe atoms. The maps are color 

coded to represent MixMD maps derived from different probes . Orange - acetonitrile, blue – 

isopropanol, and magenta – pyrimidine. At 90σ (Figure 3-2A), the allosteric site shows the 

highest occupied points. Maps contoured at 85σ, show a second hotspot in the active site. In 
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contouring the MixMD maps from Figure 3-2C-Figure 3-2F at successively lower sigma values, 

additional hotspots appear and are numbered based on their order of appearance. Unless sites 

are mapped by more than one probe type when contoured at 20σ they are ignored. The active 

site ligand (PDB ID: 3KFA, Green) and allosteric site ligand (PDB ID: 3K5V, brown) are only 

shown for reference in E and F to orient the viewer towards the location of the active and 

allosteric sites. We emphasize that no ligands were present in the MixMD simulations. 

3.4.3 Mapping active and allosteric sites with MixMD 

 

Identifying the hotspots as described in the previous section allowed us to evaluate the 

importance of various mapped locations on the protein surface. In analyzing the MixMD maps, 

we have found that the active and allosteric sites are captured in the first-four hotspots for all 

systems examined. As mentioned earlier in the case of Abl Kinase, all four of these hotspots 

correspond to the active and allosteric sites or sub-sites thereof. In Abl Kinase, the first hotspot 

lies in the allosteric site whereas the second and third hotspots map the entire active site 

(Figure 3-3A). However, it was interesting to observe the fourth hotspot at the side of the 

protein. Upon checking the protein data bank for molecules that may complement this hotspot, 

we found that this hotspot location provides the binding interface for the SH2 domain present 

in the full length protein. As shown in Figure 3-3B, the structure of the full length protein of Abl 

has a tyrosine residue from the SH2 domain occupying the location of the fourth hotspot. 

Clearly, this site has an important role in the functionality of Abl kinase. One can envision that 

targeting such a site may likely disrupt the function of the kinase and thereby achieve allosteric 

modulation of ABL Kinase function. It is important to stress that while some sites mapped by 

MixMD may have no known allosteric regulatory role, these may be leveraged in the future to 

yield such a response.  

In the case of the androgen receptor, the first-four hotspots map the active and allosteric sites 

(Figure 3-4A). As observed for Abl Kinase, the individual hotspots map sub-sites of the active 

and allosteric site which when contoured at successively lower sigma values fuse to map the 

entire binding site when contoured at 20σ. It is notable that for Androgen receptor the active 

and the allosteric site are the only ones mapped in the first-four sites. 
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While such striking results were not achieved for other targets such as PDK1 Kinase, it is 

nonetheless important that allosteric sites and active sites were consistently captured in the 

first-four ranked hotspots (Figure 3-5). The active-site hinge region in PDK1 Kinase was mapped 

as the top hotspot whereas the allosteric site was mapped by the fourth hotspot. The second 

hotspot could be traced to a cosolvent binding location (shown in Figure 3-5) and the third 

hotspot corresponded to the binding location of the Proline ring of a peptide bound in the 

3QC4 crystal structure of PDK1 Kinase. These results suggest that MixMD identifies sites that 

could be easily desolvated, a prerequisite for “druggable” binding sites. Similar results were 

seen for Chk1 Kinase where the active site near the hinge region was mapped as the top 

hotspot (Figure 3-7). The allosteric site was ranked as the fourth hotspot and the hotspots 

ranked second and third denoted the peptide substrate binding location on the protein surface. 

MixMD simulations were performed on the proteins as monomers. This allowed the simulations 

to be completed in a reasonable amount of time. Farnesyl Pyrophosphate Synthase was 

interesting in this regard, since it functions as a dimer, but we simulated it as a monomer 

because the active and allosteric sites do not involve the second monomer (of course, a second 

active and allosteric site are contained in that second monomer). We assumed MixMD would 

identify part of the dimer interface. It is notable that the interface contains the first hotspot. A 

tyrosine residue from one of the monomers overlaps with the first hotspot as shown in Figure 

3-6. This provides promising evidence in support of the use of MixMD as a technique to probe 

the location of biologically relevant binding partners of protein-protein interactions. The 

allosteric site was mapped by the second hotspot, and two sub-sites of the active site in 

Farnesyl Pyrophosphate Synthase were mapped by the third and fourth hotspots.  

In two protein targets, we found that the active site was not mapped by probes. Glucokinase, 

which binds sugar molecules in its active site, was not mapped. Instead, the sugar-binding site 

was mapped by water molecules. As sugar-binding proteins are generally not considered 

druggable, it provides evidence in support of the argument that MixMD assists in the 

identification of druggable binding sites. While the active site was not mapped in Glucokinase, 

the allosteric site was extensively mapped by the first hotspot when contoured at 20σ (Figure 
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3-8). However, the second and third ranked hotspots could not be traced back to examples of 

molecules that could bind at these locations. The ATP binding site on Glucokinase was mapped 

as the fourth hotspot.  

Protein Tyrosine Phosphatase 1B (PTP1B) was the other protein target where the active site 

was not mapped. The active site of PTP1B is charged and is known to bind phosphorylated 

residues. The probes used for MixMD are not charged and as a result did not map the binding 

site. Similar results were obtained by Bahar and GSK collaborators who had initially carried out 

a simulation of isopropanol and found no mapping of the active site (100). However, their 

simulation of a mixture of probes mapped the active site with acetate probes (100). While we 

were unable to map the active site with our current set of probes in MixMD, the allosteric site 

was however mapped as expected (Figure 3-9A) and was ranked as the second hotspot. The 

first, third, and fourth hotspots captured cosolvent and protein-interactions sites as shown in 

Figure 3-9A. 

The identification of the active and allosteric sites in the first-four hotspots was a recurring 

theme across all the protein targets. The rest of the four hotspots in each protein mostly 

corresponded to cofactor or cosolvent binding locations and protein-packing interfaces, which 

are in principle easier to desolvate. 

3.4.4 Alternative probes for mapping charged binding sites 

 

Probes selected for MixMD simulations represent fragments derived from drug-like molecules. 

These probes are water soluble and easily locate desolvable sites on the protein surface. 

However, we were not able to map the charged binding sites in the active site of PTP1B, with 

our drug-like probes. This is no surprise as our probes do not complement charge. Moreover, 

targeting the charged binding site of PTP1B in the context of drug discovery has proved difficult 

as multiple iterations of medicinal chemistry efforts have been met with limited success in 

replacing the charged site on inhibitors (117, 118). Several reviews and druggability detection 

methods on the subject have expressed the view of PTP1B as an undruggable target due to the 

difficult and slow progress in optimizing compounds (118–120). In fact, this is one of the 
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primary reasons drug discovery efforts targeting phosphatases have been ignored in favor of 

kinases, even though kinases and phosphatases are known to work in tandem to regulate major 

disease-related pathways (118). The discovery of an allosteric site on PTP1B has renewed 

interest in alternative strategies of targeting PTB1B (121). Our difficulty in mapping the active 

site of PTP1B with our current set of probes is in line with this growing body of evidence. Of 

course, we were interested to see if these sites could be mapped by MixMD using charged 

probes. Bahar and co-workers had noted this in their work and used a cocktail of probes in their 

simulation of PTP1B to show the binding site was mapped by acetate probes (100). In keeping 

with our protocol for performing MixMD simulations, we identified methyl ammonium and 

acetate ions as suitable probes for a ternary solvent simulation. We chose to use a ternary 

solvent system in this particular case as it allowed us to carry out simulations in a charge-

neutral condition. A MixMD simulation of the protein at approx. 2.5 %v/v concentration of each 

probe was carried out in a similar manner outlined in the methods section. Of the first-four 

sites mapped on the protein surface, the first two sites mapped two adjacent pockets in the 

active site. PTP1B acts as a negative regulator of insulin signaling by dephosphorylating tyrosine 

residues of the insulin receptor which inactivates it and reduces insulin signaling (122). A 

fragment of the phosphorylated insulin receptor is shown aligned to the MixMD map in Figure 

3-9B which demonstrates that the two adjacent hotspots overlap with the phosphorylated 

tyrosine residues and have functional relevance. This illustrates that while the primary focus 

our study was to identify druggable, easily desolvable hotspots on the protein surface, the 

MixMD technique can easily be adapted to identify other functional sites of relevance by 

tailoring the set of probes used for performing MixMD simulations. 
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Figure 3-3 The first four hotspots from the Abl Kinase MixMD maps identified the active and 

allosteric sites. The hotspot rankings are shown on top of the protein structure. The active site 

ligand (PDB ID: 3KFA, Green) and the allosteric site ligand (PDB ID: 3K5V, Brown) are shown for 

reference. (A) The four hotspots that map the active and allosteric site are shown contoured at 

20σ with the spurious sites not shown. (B) MixMD maps of Abl Kinase contoured at 35σ (all 

spurious sites are shown) are shown with examples (where available) of molecules from the 

PDB database bound in probe mapped locations on the protein surface. The crystal structure of 

the full length Abl protein (PDB ID: 1OPK) was aligned to show the Kinase and SH2 domain 

interface mapped by the fourth hotspot in MixMD. A tyrosine residue at the packing interface is 

shown in black (PDB ID: 1OPL). The allosteric and competitive ligands are shown in brown (PDB 

ID: 3K5V) and green (PDB ID: 3KFA) respectively. 
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Figure 3-4 (A) The location of just the top four hotspots contoured at 20σ on the surface of the 

androgen receptor are shown. The active site ligand (PDB ID: 2AM9, Green) and the allosteric 

site ligand (PDB ID:  2PIX, Brown) are shown for reference. A part of the alpha helix obstructing 

the view of the active site ligand has been hidden to provide a better view of the hotspots 

mapping the active site. (B) The MixMD maps of Androgen receptor are shown contoured at 

35σ to demonstrate that hotspots ranked lower than the top four hotspots, correspond to 

locations that can be easily desolvated. The different molecules are color coded as follows, 

Black – PDB ID: 2QPY – Nuclear Receptor Co-Activator 2, Yellow – PDB ID: 4HLW – Glycerol, Pink 

– PDB ID: 2QPY – Protein Packing Interface. 
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Figure 3-5 Just the top four hotspots for Pdk 1 Kinase are numbered and shown contoured at 

20σ and raw occupancy maps are shown at 35σ. The first hotspot maps the hinge region of the 

active site. The second hotspot is located at the top of the protein. A cosolvent bound at this 

site is overlaid on top from another PDK1 Kinase protein structure (PDB ID: 3RWQ, Pink). The 

third ranked hotspot is known to bind a peptide (PDB ID: 3QC4, Yellow) and the fourth hotspot 

corresponds to the allosteric site. The active site ligand (PDB ID: 3RCJ, Green) and the allosteric 

site ligand from (PDB ID: 4AW0, Brown) are shown for reference. 
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Figure 3-6 The top four hotspots for Farnesyl Pyrophosphate Synthase are contoured at 20σ. 

The first hotspot maps the dimer interface. The second hotspot maps the allosteric site (PDB ID: 

3N5J, Brown). The third and fourth ranked hotspots map two different sub sites in the active 

site (PDB ID: 4DEM, Green). The protein was simulated as a monomer. However the dimer is 

shown to illustrate that the top ranked hotspot is located at the dimer interface. A tyrosine 

residue from one of the monomers colored dark green is shown to overlap with the first ranked 

hotspot at the dimer interface. 
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Figure 3-7 Chk1 Kinase is shown with just the top four hotspots contoured at 20σ. While the 

first and the fourth hotspots map the active (PDB ID: 1ZYS, Green) and allosteric site (PDB ID: 

3JVS, Brown). The second and the third ranked hotspot are located in the peptide substrate 

binding groove. 

 

Figure 3-8 Glucokinase is shown with just the top four hotspots contoured at 20σ. The first 

hotspot extensively maps the allosteric site (PDB ID: 3H1V, Brown). The fourth ranked hotspot 

maps the ATP binding site on Glucokinase (PDB ID: 3FGU, Grey). However no examples of 

molecules could be found that bound to the second and third ranked hotspots for Glucokinase. 
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B) Only a few very small sites are present 35σ, and they are clearly lower ranked and less 

occupied.  

 

 

Figure 3-9 (A) The location of the top 4 hotspots is shown for Protein Tyrosine Phosphatase 1B 

(PTP1B). The first hotspot maps the location of a cosolvent binding site (PDB ID: 3RWQ, Pink). 

The maps occlude the visibility of this cosolvent). The second hotspot maps the allosteric site 

(PDB ID: 1T49, Brown). The third and fourth ranked hotspots are located in close proximity to 

protein packing interfaces (Hotspot 3 is located near the protein packing interface - Cyan 

colored – PDB ID: 2CMC, Hotspot 4 is located near another protein packing interface – PDB ID: 

4GRY– Pea colored). (B) As PTP1B has a charged active site, we were interested to see if 

charged probes could map these sites. A MixMD simulation of acetate and methyl ammonium 

was carried out and the top four hotspots ranked in the order in which they appear are shown 

contoured at 20σ. Acetate hotspots are colored red and methyl ammonium hotspots are 

colored blue. A fragment of the Insulin Receptor is overlaid on top of the protein (PDB ID: 1G1F, 

Black). The top two ranked hotspots which correspond to the acetate ion overlap both these 

sites which are known to bind phosphorylated tyrosine residues. 
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3.4.5 Identifying co-activator/cofactor and protein oligomerization/ packing interfaces 

(Evaluating MixMD maps at lower sigma values) 

 

The identification of the active and allosteric sites in the first-four hotspots was a recurring 

theme across all the protein targets. The rest of the four hotspots in each protein mostly 

corresponded to cofactor or cosolvent binding locations and protein-packing interfaces, which 

are in principle easier to desolvate. 

While the active and allosteric sites were preferentially mapped at high sigma values, MixMD 

sites with lower sigma values could provide relevant information for SBDD. This possibly stems 

from the fact that we were able to identify cosolvent, cofactor, and substrate binding locations 

in addition to active and allosteric sites.  Our interest in evaluating MixMD maps at a lower 

sigma value stemmed from the fact that in addition to active and allosteric sites we were able 

to identify cosolvent, cofactor and substrate binding locations. These results motivated us to 

evaluate MixMD maps at lower sigma values. For instance, when the androgen receptor MixMD 

maps are contoured at 35σ (Figure 3-4B), most of the sites mapped by multiple probes can be 

traced back to sites of biological and functional relevance. The androgen receptor is a nuclear 

receptor activated by nuclear receptor co-activators; one such co-activator, Nuclear Receptor 

Co-activator 2 (NCOA2), is shown in Figure 3-4B, including several other cosolvent and protein 

packing interfaces. This agreement between MixMD and the location of experimentally known 

sites provides additional support that MixMD properly samples the protein surface for 

“desolvable” sites without getting stuck in irrelevant local minima. However, our reliability in 

identifying binding partners from the PDB for low ranked hotspots decreased, possibly as a 

consequence of lower sigma value and weaker binding. Similar results were observed for other 

protein targets upon which MixMD was performed. 
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Figure 3-10 MixMD simulations were performed using the inactive (PDB ID: 3KFA, Figure 3-10A) 

and active (PDB ID: 1M52, Figure 3-10B) forms of Abl Kinase. The top six ranked hotspots are 

shown for both conformations to illustrate the rearrangement of the hotspot rankings. The 

allosteric and active sites were ranked first and second respectively irrespective of the 

conformation of ABL Kinase used for MixMD. The activation loop is colored red to show the 

difference in this region between the two protein conformations. The third ranked hotspot in 

the inactive conformation (Figure 3-10A) is now occupied by the activation loop in the active 

form of ABL Kinase, this leads to a rearrangement in raking of several sites on the protein. Two 

protein packing interfaces are shown colored black (PDB ID: 1OPL) and pink (PDB ID: 3QRK). The 

allosteric site ligand shown for reference is colored brown (PDB ID: 3K5V) 

 

3.4.6 Limits of conformational sampling with MixMD 

 

Proteins exist in an ensemble of functionally relevant conformations and studying the effect of 

starting conformation on MixMD performance is imperative. In our current test set, primarily 

focused on proteins known to exhibit allosteric modulation, we set out to identify protein 

targets with multiple conformations with an established biological significance. Abl Kinase, 
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being a well studied system had crystal structures of both the active and inactive forms of the 

enzyme thereby allowing us to examine the effect of starting conformation on MixMD 

performance. While there was no inter-conversion between the two conformational states of 

Abl Kinase during the MixMD simulations, the competitive and allosteric sites were consistently 

mapped as the top two ranked hotspots starting from either conformation. Interestingly, the 

third ranked hotspot in MixMD simulations of the inactive form of Abl Kinase (Figure 3-10A) 

was missing in MixMD results from the active form (Figure 3-10B). Upon further examination, 

the reason for the absence of this hotspot became obvious. The activation loop of ABL Kinase in 

the active form occupies the hotspot present in the inactive form and precludes the mapping of 

this site by probe molecules. In addition, we have also observed rearrangement in the ranking 

of hotspots between the two conformations. For instance, the fourth ranked hotspot in the 

inactive form of Abl Kinase (Figure 3-10A) now drops to sixth rank in the active form of Abl 

Kinase (Figure 3-10B). In its place, a hotspot in the peptide substrate binding site takes 

precedence in the active form of Abl Kinase. This is in perfect agreement from the standpoint of 

catalytic activity, as the active form of Abl Kinase binds peptide substrates to phosphorylate 

them. These subtle changes in MixMD rankings starting from different conformations open up 

exciting prospects for the use of MixMD in understanding the functional relevance of different 

conformations of proteins.      

3.5 Conclusion 

 

MixMD simulations map hotspots on protein surfaces while allowing for protein flexibility and 

competition with water. In this study, we have successfully demonstrated the application of 

MixMD to several allosteric systems, identifying the active and allosteric sites within the top 

four sites. In addition, sites that do not correspond to active and allosteric sites represent 

locations of cofactor binding sites and protein multimerization/packing interfaces. While our 

choice of probes reflects the need to map druggable and desolvable binding sites, we have 

proven that one can easily extend the technique by employing a different set of probes to map 

charged binding sites if needed, using PTP1B as an example. We have also explored the role of 

protein starting conformation on MixMD, using Abl Kinase as a test case. The subtle changes in 
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MixMD rankings between the active and inactive conformations of Abl Kinase were found to 

reflect the underlying differences in the functional relevance of these protein conformations. In 

future studies, we intend to explore the relationship between protein starting conformation 

and MixMD results in further detail in order to establish the significance of these findings. 
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Chapter 4. Free energies and entropies of binding sites identified by MixMD 

simulations 

 

4.1 Abstract 

 

In our most recent efforts with MixMD, we were able to successfully capture the active and 

allosteric sites within the top-four MixMD hotspots. In this study, we describe our approach for 

obtaining the thermodynamic profile of the binding sites identified by MixMD. First, we 

establish a framework for calculating free energies from MixMD simulations. Second, we 

present a means to obtain a relative ranking of the binding sites by their configurational 

entropy. The theoretical maximum and minimum free energy and entropy values achievable 

under such a framework along with the limitations of the techniques are discussed. Using this 

approach, the free energy and relative entropy ranking of the top-four MixMD binding sites 

across the allosteric protein targets Ablkinase, Androgen receptor, Pdk1kinase, Farnesyl 

Pyrophosphate Synthase, Chk1 kinase, Glucokinase, and Protein Tyrosine Phosphatase 1B were 

computed and analyzed.  
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4.2 Introduction 

 

Mixed-solvent simulations have gained increasing prominence with the advancements in 

computing power. Several such techniques have been reported in the literature (27, 32, 46, 51, 

53). The ability to incorporate full protein flexibility and direct competition of organic 

compounds with water make these molecular dynamics methods an attractive alternative to 

existing approaches. For instance, docking ignores such contributions or incorporates them only 

to a limited extent (71). Our MixMD approach uses binary-solvent simulations of water and 

water-miscible, organic probes (46–48). Recently, we have applied MixMD on a test set of 

allosteric proteins. The application of MixMD on this test set demonstrated that one could 

capture the active-site and allosteric sites within the top-four sites. The success of the 

technique certainly suggests that MixMD holds great promise as a tool for druggability 

assessment. Identifying druggable binding sites is an important first step in choosing which sites 

on a protein surface to target. Additional information detailing each binding site would allow 

one to make a more informed decision on which sites to target. Thermodynamic measures such 

as free energy and entropy values fall in this important category. It is more straightforward to 

optimize enthalpy-driven binding affinity with typical SBDD scoring functions. Such 

considerations merit the development of techniques that can be used to obtain additional data 

on local thermodynamic properties. Techniques that estimate free energy of a binding site from 

mixed-solvent simulations have been reported by several groups (27, 29, 32, 51). Such 

measures have been used to predict maximal affinity of drug-like ligands, and most of the 

methods decompose the free energy of organic probes onto a sub-atomic grid. In this study, we 

demonstrate the drawbacks of making such assumptions and propose a framework for the 

calculation of free energies. Furthermore, efforts are made to obtain a relative ranking in terms 

of configurational entropies of probe molecules, using the well-established concept of entropy 

as a measure of the density of states (123). Such measures allow one to examine the interplay 

of binding site and probe structures on each other. Taken together, these studies construct and 

demonstrate the utility of a suite of computational techniques that one can use to fully 

characterize binding sites obtained from MixMD simulations. 
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4.3 Methods 

 

4.3.1 Simulation of 5%v/v box of MixMD probes to obtain expected occupancies (no 

proteins present) 

 

Simulations of TIP3P water (109) and 5% v/v boxes of acetonitrile, isopropanol, and pyrimidine 

were performed. These simulations were setup in a similar manner outlined in our earlier work 

on validating probe parameters (110). The 5% v/v boxes of probes and water were prepared to 

be ~ 50Å x 50 Å x 50 Å size. The boxes were simulated in AMBER12 (124) using SHAKE (112) and 

a time step of 1fs. Following an initial minimization, the system was gradually heated to 300K at 

constant volume. An initial 2ns equilibration run was followed by 20ns of constant-pressure 

simulation. The center of mass (CoM) of each probe’s location in the last 5 ns of 10 runs were 

binned onto a grid of 0.5 Å spacing, using an in-house modified version of cpptraj from 

AmberTools14 (125). If there were no bias by the protein, the expected occupancy per grid 

point is simply the number of probe molecules divided by the number of grid points. The 

expected occupancies for a grid point and the volume of a probe for a 5% v/v simulation are 

presented in Table 4-1. 

 

Table 4-1. The Expected occupancy for a grid point and the volume of a probe are presented for 

the MixMD probes acetonitrile, isopropanol, and pyrimidine. 

Probe Expected 

Occupancy per grid 

point 

Probe radius Probe volume 

(no. of grid 

points) 

Expected Occupancy 

for volume of probe 

Acetonitrile 7.109e-05 2.24 Å 47.16 Å3 (389) 0.002346102 

Isopropanol 5.108e-05 2.54 Å 68.74 Å3 (515) 0.002911845 

Pyrimidine 4.683e-05 2.62 Å 75.28 Å3 (619) 0.002669823 
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4.3.2 Deriving free energies from MixMD simulations 

 

Free energies from MixMD simulations were derived using a process illustrated in Figure 4-1. 

Initially, using an in-house modified version of cpptraj module in AmberTools14, the CoM of all 

the probes from MixMD simulations was “binned” onto a grid of 0.5 Å spacing. MixMD 

simulation data from the last 5ns of 10 runs for each probe were used to perform the binning. 

These raw bin counts reflect the number of snapshots (amount of time) a probe molecule has 

spent at a particular location. The raw bin counts are then converted to occupancies by dividing 

the bin count at each grid point with the number of MixMD simulation snapshots that were 

used to obtain the initial raw bin counts.  

The grid point with the highest occupancy is taken to be the center of the first probe site. The 

occupancy of all grid points within an enclosing sphere of the volume of the probe, centered on 

this grid point, are summed to determine the observed occupancy for this probe location 

(Figure 4-1B). In a similar manner, the next grid point with the second highest grid occupancy is 

taken to be the center of the second probe site. Again, the occupancy of the second site is 

calculated summing the grid points within the volume of the probe sphere. (Figure 4-1D).This 

process is iteratively repeated until all grid points are assigned to probe locations.  

In order to calculate the free energies from these observed occupancies, one needs to compare 

them to expected occupancies in Table 4-1, using equation (1). The free energy values from 

equation (1) estimate the change in free energy of moving a probe molecule from the bulk into 

the binding-site location. A negative value for this free energy change indicates that it is more 

favorable for the probe molecule to be in a binding site location compared to the bulk.  

 

∆G𝑏𝑖𝑛𝑑  =  −RTln (
∑ 𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦(𝑖)

𝑠𝑝ℎ𝑒𝑟𝑒
𝑖

∑ 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦
𝑠𝑝ℎ𝑒𝑟𝑒
𝑖

)          (1)   

where (i) is every grid point in the probe’s volume and the expected occupancy is constant. 
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Figure 4-1. The process of obtaining observed occupancies and free energies from MixMD 

simulations is depicted in subfigures a-f. a) The grid points are sorted from highest to lowest 

occupancy, based on the counts of the probe’s CoM. The size of the red circles on the grid 

indicates high vs low occupancies. The top-three grid points with the highest occupancies are 

shown for the purpose of demonstration. b) The grid point with the highest occupancy is taken 

to be the center of the first probe. All grid points enclosed within the volume of a probe are 
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added to obtain its observed occupancy. c) After processing a given probe location, the grid 

points associated with this probe are removed from the search process. d) The observed 

occupancy is calculated for the second probe centered on the next grid point with the highest 

occupancy. e) Upon obtaining the occupancy of the probe at this second grid point, it is 

removed from the search process. e) This process is continued until all the grid points are 

exhaustively searched and assigned to a probe location. 

 

4.4 Results and Discussion 

 

4.4.1 The maximum free energy of a probe is dictated by system setup  

 

The oversimplification of obtaining free energy values using equation (1) does come with its 

own set of limitations which have not been highlighted in previous studies (27, 32, 51). Free 

energies obtained from calculations such as these are subject to the concentration of probe 

molecules used in the mixed-solvent simulation. This concept can be best illustrated by deriving 

the maximum free energy values achievable under such a framework, ΔGbind(max). At best, a 

probe molecule can occupy a given probe volume for the entire simulation, so the maximum 

occupancy at any particular site cannot exceed 1. Using a maximum observable occupancy of 1 

and the expected occupancies for 5% v/v MixMD simulations (Table 4-1), one arrives at -2.14 

kcal/mol, -2.17 kcal/mol, and -2.11 kcal/mol as the ΔGbind(max) for acetonitrile, isopropanol, 

and pyrimidine, respectively. This corresponds to Kd(max) of 27.7 mM, 26.3 mM, and 29.0 mM, 

respectively. Using a lower concentration of probe molecules within the same volume of a 

simulation would result in lower expected occupancies and more favorable free energies for 

the maximum occupancy state. Conversely, using a higher concentration of probe molecules 

would result in higher expected occupancies and poorer ΔGbind(max). 

Free energy calculations using similar mixed-solvent simulations have been used by other 

groups to propose upper limits on the maximum achievable affinity possible for any/all drug-

like molecules at a given site (27, 32, 51). Our findings call in to question, the rationale for 

setting an upper limit on the binding free energy for drug molecules, particularly when the 
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values are inherently dictated by the system setup and the concentration of probes used to 

perform the simulations. 

A more appropriate use for such free energy measures lie in relative ranking. Even as expected 

occupancies increase or decrease, the relative ranking between the sites remains the same. 

This concept is illustrated by calculating the free energy of acetonitrile based on an observed 

occupancy ranging from 0.1 to 1 at increasing expected occupancy from 0.000046839 to 

0.000071094 (Figure 4-2). While the magnitude of the free energy values changes, the spacing 

(relative ranking) between sites of different occupancy remains the same. 

 

Figure 4-2. The relationship between free energy and expected occupancy is shown above using 

acetonitrile as an example. The free energy values for acetonitrile are calculated using equation 

(1) for observed occupancies ranging from 0.1 to 1 while varying the expected occupancy from 

0.000046839 to 0.000071094. While the magnitude of the free energy values varies with the 
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expected occupancy (left to right), the difference in free energies (spacing within the columns) 

increase or decrease same the amount for each expected occupancy. Thus, the relative 

rankings between different occupancies remain the same. 

 

4.4.2 Free energy calculations from mixed-solvent simulations 

 

Several groups have used similar approaches for obtaining free energy changes with a ratio of 

observed and expected occupancies. However, the approach adopted differs from one group to 

another.   

Barril and co-workers, in their use of isopropanol-based binary solvent simulations, calculate 

the binding free energy for the methyl and oxygen atoms of isopropanol separately (27). 

Volumes of the size of typical drug-like molecules are then created using clustering techniques 

by combining grid maps of the free energies for methyl and oxygen atoms of isopropanol. Using 

the argument that ligands of the size of drug molecules are not only involved in achieving 

binding affinity but also serve as a framework for the atoms to interact with the protein, the 

sum of the free energies of all the grid points within these drug molecule sized volumes is 

considered to be the maximal affinity achievable within that site/volume. Interestingly, the 

authors reveal that the ligand efficiencies (LE) for the methyl and oxygen groups of isopropanol 

frequently surpassed the limit of -1.5 kcal/mol per non-hydrogen atom observed by Kuntz and 

co-workers (56). However, using our method for calculating free energies, LE values never 

exceeded this limit (Figure 4-4). The maximum LE we found were for acetonitrile molecules at -

0.65 kcal/mol per heavy atom (HA). The binding affinity of organic solvents to the protein 

surface is very weak, mM level, so a value like ours appears more reasonable. Acetonitrile’s LE 

is in keeping with values desired from fragment screening. 

Similarly, Mackerel and co-workers have developed “Site-Identification by Ligand Competitive 

Saturation” (SILCS), a cosolvent simulation technique that involves performing ternary solvent 

simulations of benzene, propane, and water (32). Free energies for ligands in SILCS are 

calculated separately for the benzene carbons, propane carbons, water hydrogens and oxygens, 
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using equation (1) without summing over the probe volume. The authors describe these free 

energies as “Grid Free Energies” (GFE). The GFE values obtained from benzene carbons 

correspond to interaction energies of aromatic atoms. Similarly, propane carbons, water 

hydrogens and oxygens correspond to aliphatic, donor, and acceptor atoms, respectively. Using 

these GFE values, the authors assign atom types to each ligand and evaluate a ligands free 

energy by first bringing the ligand from a crystal structure into the frame of reference of a grid 

with these GFE values. The free energies of ligands are then computed by summing up the GFE 

values based on the atom type in the ligand and the corresponding GFE values on the grid. 

Bahar and GSK collaborators have also performed cosolvent simulations using a mixture of 

isopropanol, isopropyl amine, acetic acid, and acetamide. Free energies were derived from the 

maximum occupancy of grid points within the volume of a probe (51). Our approach for 

calculating free energies from MixMD simulations is along similar lines to the one proposed by 

Bahar and GSK collaborators, in that free energies should be calculated by taking into 

consideration the entire volume of a probe. We are of the firm belief that ΔGbind values are the 

property of a whole molecule and cannot be decomposed to obtain meaningful information on 

the sub-atomic scale of the grids used by all approaches. 

4.4.3 Free energies of MixMD binding sites calculated by occupancies 

 

The free energies for acetonitrile, isopropanol, and pyrimidine were calculated using the 

aforementioned algorithm. Across all the protein targets, ΔGbind for acetonitrile were lower 

compared to isopropanol and pyrimidine. Figure 4-3 shows the distribution of ΔGbind for the 

top-10 probes from each binary simulation across all the protein targets Interestingly, LE for 

these same probes were flipped; acetonitrile probes had higher LE. The LE for all these sites 

were well within the -1.5 kcal/mol limit established in a study by Kuntz and co-workers (56) and 

the -1.75 kcal/mol observed in our previous work (57). Using our approach, we have calculated 

ΔGbind of the probe molecules within the active and allosteric binding sites on our test 

proteins. Their locations on the protein surface and their free energies are presented in Table 

4-2. We have found it ideal to visualize MixMD binding sites contoured at 20σ contour using all 

atom binned maps; this revealed the full extent of the binding site mapped by MixMD probes. 
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These MixMD maps allow one to understand the all atom contacts of the probe molecules with 

the protein. However, our free energy calculations were performed on CoM binning. Thus we 

found instances were MixMD binding site accommodated multiple probes. For example in pdk1 

kinase, site 4 (allosteric site) can be seen to bind multiple probes in distinct sub-sites. In the 

case of pdk1 kinase, site 4 was subdivided into 4A and 4B. Similar observations were made for 

site 1 (the allosteric site) in Glucokinase where two subsites (site 1A and 1B) could be seen. 

Table 4-2. The ΔGbind of the probes acetonitrile, isopropanol, and pyrimidine within the top-four 

MixMD sites (identified using our all atom binning method) are presented for the protein 

targets Ablkinase, Androgen receptor, Pdk1 kinase, Farnesyl Pyrophosphate Synthase, Chk1 

kinase, Glucokinase, and Protein Tyrosine Phosphatase 1B. On rare occasions, the binding site 

identified by MixMD accommodated more than one probe. These sites were further divided in 

to subsites A and B. 

Protein Site 

No. 

Binding site 

Classification(a) 

Acetonitrile 

(kcal/mol)  

Isopropanol 

(kcal/mol)  

 Pyrimidine 

(kcal/mol)  

 

1 A -1.94 -1.92 -1.69 

2 C -1.12 -1.55 -1.96 

3 C -1.78 -2.07 -2.02 

4 O  --  -1.74 -1.82 

     

Ablkinase      

 

1 C -1.68 -1.36 -1.65 

2 A -1.47 -1.63 -1.95 

3 C -1.46 -1.84 -1.37 

4 A -1.46 -1.23 -1.8 

Androgen receptor      
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1 C -0.85  --  -2.01 

2 O -1.69 -2.08 -1.86 

3 O -1.16 -1.75 -1.59 

 4A  A -1.53 -1.51 -1.75 

 4B  A -1.42 -1.78 -1.7 

Pdk1kinase  

 

    

 

1 O -1.53 -1.81 -1.95 

2 A -1.43 -0.9 -1.28 

3 C -1.24  --  -1.17 

4 C -1.48  --  -0.78 

Farnesyl Pyrophosphate 

Synthase 

     

 

1 C -1.8 -1.62 -1.81 

2 O -1.41 -1.95 -1.96 

3 O -1.62 -1.76 -2.05 

4 A -1.85 -2.08 -2.05 

Chk1kinase      

 

 1A  A -1.65 -1.86 -1.87 

 1B  A  --  -2.04 -1.62 

2 O -1.82 -1.78 -1.8 

3 O -1.19  --  -0.87 

4 O -1.19 -1.49 -1.6 

Glucokinase      

 

1 O -1.66 -2.07 -2.08 
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2 A  --  -1.65 -1.83 

3 O -1.09 -1.22 -1.57 

4 O  --  -1.47 -1.82 

Protein Tyrosine 

Phosphatase 1B 

     

(a) Binding site classification followed C for competitive, A for allosteric, and O for the others. 

 

 

Figure 4-3. The normalized distribution profile of ΔGbind for the top-10 MixMD probes is shown. 

Across the seven protein targets studied, binding free energies for isopropanol and pyrimidine 

were found to be more favorable than acetonitrile. Acetonitrile distribution is colored yellow, 

isopropanol distribution is colored purple, and pyrimidine distribution is colored purple. 
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Figure 4-4. The ligand efficiencies for the top-10 probes from MixMD simulations of seven 

protein systems are presented in the units kcal/mol-HA. Across the seven protein targets 

studied, ligand efficiencies for acetonitrile were more favorable than isopropanol and 

pyrimidine. Acetonitrile distribution is colored yellow, isopropanol distribution is colored 

purple, and pyrimidine distribution is colored purple. 

 

4.4.4 Ranking MixMD binding sites based on configurational entropy 

 

The entropy of a probe in a site (ΔSsite) can be partitioned into 

 ΔSsite = ΔSprobe + ΔStrans    (2) 

where ΔSprobe reflects the behavior of the probe within the site and ΔStrans is the entropy of 

taking a probe from the freedom of occupying anywhere in the simulation box to occupying a 

site identified by the volume of the probe. As noted earlier, we define that site by a sphere 

centered at each high-occupancy point. That sphere definition is the same anywhere on the 

protein surface, so the translational entropy is the same for all sites. It simply reflects the 
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difference in the volume of the sphere vs the volume of the box: ΔStrans = k × ln(number of grid 

points in sphere) – k × ln (total number of grid points in the box). This dependence upon the 

box highlights that ΔStrans is defined by the system setup, just like ΔGbind(max). However, it is 

commonly assumed that the value is basically the same for any probe to any protein because it 

just reflects translation of the CoM. 

In calculating the difference in entropy between the sites (ΔΔSsite), the ΔStrans term cancels. The 

interesting comparison lies in the other 3N-3 degrees of freedom sampled by the probe’s 

atoms. While molecules in the bulk rotate freely, interactions with the protein impart a level of 

structure, limiting the probe’s freedom. ΔSprobe is the difference between a probe evenly and 

freely sampling the sphere, Sprobe(max), to the actual translational and rotational behavior of 

the probe seen during the simulations, Sprobe. Here, we draw upon the concept of entropy as 

the density of states and use our grid points as shown in Figure 4-5. To simplify the analysis, we 

decomposed the probe into its non-hydrogen atoms and used the same binning routine from 

calculating free energies to count the atomic occupancies on the grid points in the sphere. 

Entropy of the probe is calculated using the Gibbs-Shannon equation (126), shown in equation 

(3). The probability of finding an atom at a particular grid point is determined by equation (4). 

The entropy measures obtained for each heavy atom are then combined as shown in equation 

(5) to give Sprobe.  
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Figure 4-5. The concept of entropy as the density of states is applied within the volume of a 

probe sphere. Each grid point within the volume is considered a state. The probability of each 

state (pi) for each heavy atom is calculated using equation (4). 

 

𝑆 = −𝑘 ∫ 𝑝 × 𝑙𝑛(𝑝)      (3) 

𝑝𝑖(𝐻𝐴) =
𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦 𝑜𝑓 𝐻𝐴 𝑎𝑡 𝑔𝑟𝑖𝑑 𝑝𝑜𝑖𝑛𝑡 𝑖

∑ 𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦 𝑜𝑓 𝐻𝐴 𝑎𝑡 𝑔𝑟𝑖𝑑 𝑝𝑜𝑖𝑛𝑡 𝑗𝑠𝑝ℎ𝑒𝑟𝑒
𝑗

    (4) 

𝑆𝐻𝐴 = −𝑅 ∑ 𝑝𝑖(𝐻𝐴) × 𝑙𝑛[𝑝𝑖(𝐻𝐴)]

𝑠𝑝ℎ𝑒𝑟𝑒

𝑖

     (5) 

𝑆𝑝𝑟𝑜𝑏𝑒 = ∑ 𝑆𝐻𝐴

ℎ𝑒𝑎𝑣𝑦 𝑎𝑡𝑜𝑚𝑠

            (6) 

 

Under no constraint while freely exploring the box in the bulk solvent, each grid point is equally 

occupied, and one can establish an upper limit of entropy achievable within the volume of a 

probe. The Sprobe(max) values possible under our framework are presented in equations (7) and 

(8) and listed for acetonitrile, isopropanol, and pyrimidine in Table 4-3. This maximal value may 
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be an over-estimate because the chemical structure of the probe imparts an inherent bias to 

sampling the grid. However, this inherent bias is the same in all sites; furthermore, Sprobe(max) 

drops out when calculating the difference between the sites, ΔΔSsite.  

𝑆𝐻𝐴(𝑚𝑎𝑥) = −𝑅 ∑ 𝑝𝑏𝑢𝑙𝑘 × ln (𝑝𝑏𝑢𝑙𝑘)

𝑠𝑝ℎ𝑒𝑟𝑒

𝑖

    (7) 

𝑆𝑝𝑟𝑜𝑏𝑒(𝑚𝑎𝑥) = ∑ 𝑆𝐻𝐴(𝑚𝑎𝑥)    (8)

ℎ𝑒𝑎𝑣𝑦 𝑎𝑡𝑜𝑚𝑠

 

 

Table 4-3. Maximum entropy at 300K (in kcal/mol) for a freely rotating and translating probe 

molecule is calculated. Under such conditions every grid point within the volume of a probe will 

be occupied with equal probability (pbulk). 

Probe No. of grid points in volume of 

probe (gpt) 

pbulk 

1/(gpt) 

- TSprobe(max) 

(kcal/mol at 300K) 

Acetonitrile 389 0.0025706940874 11.497 

Isopropanol 515 0.00194174757282 15.329 

Pyrimidine 619 0.0016155088853 22.993 

 

4.4.5  Entropies across MixMD binding sites 

 

In order to compare the configurational entropy of MixMD binding sites, we have computed 

the change in entropy of moving a probe molecule from the bulk into each binding site sphere. 

As one would expect, moving a freely rotating probe in the bulk to a binding site decreases the 

entropy and thus one should observe that such a change is unfavorable (but compensated by 

enthalpic gain). We have confirmed this behavior by computing the –TΔSprobe for the top-50 

probes ranked by free energy in all the allosteric protein systems which we simulated in 

MixMD. The distribution of -TΔSprobe for the probes acetonitrile, isopropanol, and pyrimidine 

are shown in Figure 4-6. The high peaks close to zero show that many probe molecules tumble 
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close to the bulk behavior. Most importantly, none of the entropy changes are less than zero; 

this confirms our assumption that none of the probe molecules exceed the maximal entropy we 

have calculated in previous sections (Table 4-3).  

 

Figure 4-6. The distribution of –TΔSprobe for the top-50 MixMD probes ranked by free energy are 

presented for acetonitrile (orange), isopropanol (blue), and pyrimidine (purple). As expected, 

moving from the bulk into the binding site where the probes are restricted is unfavorable, thus 

–TΔSprobe values are positive. 

 

4.4.6 Validating configurational entropies obtained from MixMD binding sites 

 

Entropies measured using our approach report upon the local thermodynamic environment of 

an individual probe molecule and as such cannot be verified using experiments. It is important 
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to note that an experimental measure of a binding event also reflects the entropic costs paid by 

the protein and the reordering of the water around the binding site. While the effect on the 

protein may be partially observed from the order seen for the probes, the effects on water are 

very hard to estimate. More importantly, very subtle changes to ligands can result in significant 

and unexpected changes in water as the work of Klebe shows (127). It is unreasonable to 

assume that the water’s behavior around the solvent probes is a good estimate of their 

behavior in the presence of a drug-like ligand. 

Despite these limitations, these measures describe the structure/order of the probe’s 

conformational sampling within the binding site, and one can in principle visualize the 

occupancies of the HA of the probe molecules to validate these findings. When visualizing the 

occupancies of the probe’s HA, it is important to normalize the HA density within the volume of 

the probe, as we do in equation (3). This is necessary because, raw bin counts not only reflect 

upon the positional preference of a probe, but also on the duration a probe molecule has spent 

its time at a given location. By normalizing the occupancies to give densities of HA within the 

binding site sphere, one can separate the information needed for ΔGbind to reflect each HA’s 

contribution to ΔSprobe and analyze the density for any probe’s configurational sampling within 

their binding site sphere. We have assessed this important metric using -TΔSprobe calculated for 

all the systems and MixMD probes used on our earlier study. The minimum, median, and 

maximum -TΔSprobe are presented for the probes acetonitrile, isopropanol, and pyrimidine in 

Table 4-4. 
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Table 4-4. The change in configurational entropy when moving a co-solvent from the bulk to 

the protein binding site were calculated using the top-fifty MixMD probes ranked by free 

energy from all seven allosteric systems. The minimum, median and maximum –TΔSprobe in this 

dataset was reported for each probe at 300K. The proteins to which these values belong along 

with the rank of the probe according to free energy are provided in brackets. 

Probe Minimum -TΔSprobe 

(kcal/mol at 300K) 

Median -TΔSprobe 

(kcal/mol at 300K) 

Maximum -TΔSprobe 

(kcal/mol at 300K) 

Acetonitrile 0.42 

(Ablkinase, rank 19) 

1.56 

(Pdk1kinase, rank 43) 

5.18 

(Glucokinase, rank 

32) 

Isopropanol 0.42 

(FPPS, rank 3) 

1.3 

(Androgen receptor, rank 38) 

6.31 

(Glucokinase, rank 

31) 

Pyrimidine 0.57 

(FPPS, rank 4) 

2.18 

(Androgen receptor, rank 32) 

10.84 

(FPPS, rank 43) 

 

In order to make a proper comparison across the minimum, median, and maximum -TΔSprobe, 

we have visualized the population density of each HA in the probe molecule at a contour level 

of 0.5% of the population in the binding site. In the case of acetonitrile, these densities are 

show in Figure 4-7. The density of the nitrogen atom of acetonitrile is colored blue, whereas the 

densities of the central and terminal carbons of acetonitrile are colored cyan and brown. The 

CoM that defines the binding site of the probe molecule is shown as an orange colored sphere 

for reference. The maximum -TΔSprobe represents the most unfavorable transfer from the bulk 

to the protein binding site. As expected, in Figure 4-7A, the densities of the three atoms within 

the acetonitrile probe molecule are clearly visible at the atomic level. This demonstrates the 

restriction on the probe when bound to the site. When the density of the probe with the 

median -TΔSprobe is visualized in Figure 4-7B, one sees a lesser degree of structure. Clearly, the 

acetonitrile molecule is oriented with its nitrogen pointing up like the example in Figure 4-7A, 
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but some freedom is seen in the lateral movement. Figure 4-7C shows the probe with the 

minimum -TΔSprobe observed for acetonitrile, where the HA density around the CoM is disperse 

and overlapping. This is consistent with the idea that a low -TΔSprobe probe in this location is 

similar to the bulk environment and thus is freely rotating. In going from maximum to minimum 

-TΔSprobe, there is a trend of decreasing structure/order of the probe molecules seen when 

visualizing the HA density. This is consistent with our theory. 

 

 

Figure 4-7. Acetonitrile HA densities are presented for the maximum, median, and minimum 

entropies reported in Table 4-4. The CoM that defines the binding site of the acetonitrile probe 

is shown as an orange sphere for reference. The normalized occupancies of all the atoms in A, 

B, and C are contoured at 0.005. The density of nitrogen atoms is colored blue, the density of 

the carbon atom in the middle of acetonitrile is colored cyan, and the density of the terminal 

carbon is colored brown. A) The -TΔSprobe is at a maximum, making this the most constrained 

probe in our dataset. Consequently, all atoms of the acetonitrile probe can be clearly seen in 

this case. B) The acetonitrile with the median -TΔSprobe shows some structure in the 

configurational sampling but also some latitude. C) Density for the case of minimum -TΔSprobe 

shows that the probe molecule at this location is freely rotating, and is close to the entropy of 

the bulk. As a result, the density is smeared out and overlapping.  
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Similar trends were observed for isopropanol. When the density of the probe molecule with the 

maximum -TΔSprobe (Figure 4-8A) was visualized clear, structured density could be seen. The 

densities at the median -TΔSprobe (Figure 4-8B) clearly show two conformations with the 

hydroxyl oxygen sampling between two hydrogen-bonding interactions. The minimum -TΔSprobe 

(Figure 4-8C) follows similar trends as seen for acetonitrile. The same results were obtained for 

pyrimidine, where visualization of the densities for the maximum, median, and minimum -

TΔSprobe followed the established trend of increasing structure/order in the probe molecules. 

 

 

Figure 4-8. Normalized HA occupancies of isopropanol are presented for the maximum, 

median, and minimum entropies reported in Table 4-4. The CoM that defines the binding site of 

the isopropanol probe is shown as a blue sphere for reference. The density of all the atoms in A, 

B, and C are contoured at 0.005. The density of oxygen atoms is colored red, the density of the 

central carbon is colored cyan, and the two terminal carbons are colored blue and brown. A) 

The maximum -TΔSprobe example is the most constrained probe in our dataset. Consequently, all 

atoms of the isopropanol probe can be clearly seen in this case. B) The -TΔSprobe in this case is at 

the median of all processed sites, there is some structure in the probe molecule. Notably, the 

hydroxyl oxygen is sampling two hydrogen-bonding interactions. C) For the case of minimum -

TΔSprobe, the molecule at this location is freely rotating, and is close to the entropy of the bulk. 

As a result, the density is smeared out and can only be seen partly. 
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Figure 4-9. Pyrimidine per probe normalized density is presented for the maximum, median, 

and minimum entropies reported in Table 4-4. The CoM that defines the binding site of the 

pyrimidine probe is shown as a purple sphere for reference. The normalized occupancies of all 

the atoms in A, B, and C are contoured at 0.005. The density of two nitrogen atoms are blue 

and green, whereas the density of carbon atoms is colored brown, purple, yellow, and orange. 

A) In the maximum -TΔSprobe case, the molecule is very constrained. Consequently, all atoms of 

the pyrimidine probe can be clearly seen in this case. B) The -TΔSprobe in this case is at the 

median of all processed sites, there is some structure in the probe molecule.  Notably, the 

molecule is rotating and giving HA densities with a torus shape. It appears that the nitrogens 

are sampling three locations, separated by roughly 120°. C) For the minimum -TΔSprobe case, the 

probe molecule at this location is freely rotating, and is close to the entropy of the bulk. As a 

result, the density is smeared out and cannot be seen. 

 

4.4.7 Comparison of entropies across protein targets 

 

We wanted to specifically examine the probes within the top four MixMD binding sites, and the 

results are shown in Table 4-6. As expected, in general pyrimidine probe molecules were more 

restricted in their motions. Visual inspection across all results suggested that using a cutoff of 3 

kcal/mol for -TΔS is ideal to comment upon whether sites displayed a strong configurational 

bias or not. Using this metric, only a few acetonitrile and isopropanol molecules were 

identified. In Ablkinase, site 2 in the active site displayed conformational bias for all the probes. 
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In Androgen receptor, pyrimidine was the only probe with any –TΔSprobe above the 3 kcal/mol 

cutoff. In Chk1 kinase, higher -TΔSprobe was seen for the active-site (site 1) and peptide-

substrate binding site (site 2). In FPPS, pyrimidine probe molecules were significantly ordered in 

sites 3 and 4 which are part of the active site. In Glucokinase, the pyrimidine in the ATP binding 

site (site 4) displayed significant order. One could speculate that this specificity in binding may 

be related to the structural features shared between pyrimidine and adenine. In Pdk1 kinase, 

with the exception of site 1, most of the sites did not exhibit any configurational preference. In 

PTP1B, site 3 and 4 which are at the protein-packing interface displayed high configurational 

bias for bound pyrimidine. 

We have also investigated whether kinases that bind ATP display configurational specificity for 

pyrimidine, as it closely resembles the adenine ring of ATP. In Ablkinase site 1, Pdk1 kinase site 

1, and Chk1 kinase site 1, an ATP molecule binds to perform the phosphorylation function of 

these proteins. In all these cases, a pyrimidine molecule binds with higher -TΔSprobe. In fact, 

pyrimidine’s entropic penalty was on average ~2 kcal/mol higher than that for acetonitrile and 

isopropanol for these sites. 

 

Table 4-5 The entropic penalties (-TΔSprobe) of the MixMD binding sites are computed at 300K 

and are presented for the top-four MixMD binding sites. 

Protein Site 

No. 

Binding site 

Classification(a) 

Acetonitrile 

(kcal/mol)  

Isopropanol 

(kcal/mol)  

 Pyrimidine 

(kcal/mol)  

 

1 A 1.47 1.58 3.12 

2 C 2.45 2.91 3.72 

3 C 0.95 1.39 1.89 

4 O  --  1.07 1.74 

     

Ablkinase      
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1 C 1.99 2.66 4.54 

2 A 1.36 0.97 2.65 

3 C 1.68 2.58 3.95 

4 A 2.0 2.2 4.12 

Androgen receptor      

 

1 C 3.4  --  5.39 

2 O 0.64 1.09 1.45 

3 O 1.45 1.8 2.86 

 4A  A 0.92 0.93 1.19 

 4B  A 0.69 0.75 1.04 

Pdk1kinase  

 

    

 

1 O 1.3 1.85 1.73 

2 A 2.0 2.66 4.58 

3 C 2.09  --  8.14 

4 C 1.61  --  5.4 

Farnesyl Pyrophosphate 

Synthase 

     

 

1 C 2.01 1.76 3.61 

2 O 2.53 4.08 3.44 

3 O 1.31 1.11 1.87 

4 A 1.03 1.15 1.38 

Chk1kinase      
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 1A  A 1.66 2.22 2.95 

 1B  A  --  1.71 1.72 

2 O 1.72 1.6 2.29 

3 O 3.74  --  6.49 

4 O 1.87 1.67 3.99 

Glucokinase      

 

1 O 1.68 1.82 2.46 

2 A  --  2.44 3.15 

3 O 2.79 2.39 8.3 

4 O  --  2.78 4.64 

Protein Tyrosine 

Phosphatase 1B 

     

(a) Binding site classification followed C for competitive, A for allosteric, and O for the others. 

 

4.4.8 Conclusion 

 

We have established a means of obtaining the free energy and entropy rankings based on 

MixMD simulations. The limitations of the free energy calculations were demonstrated. These 

limitations are universal to co-solvent MD simulations, and they call in to question other 

groups’ rationale for trying to use co-solvent grids to establish a maximal free energy 

achievable for any/all drug-like molecules. Furthermore, a framework for calculating entropies 

is proposed and validated. In particular, we note that the entropies are only for the probe, not 

the whole system. The entropic effects on reordering water around protein-ligand complexes 

are very hard to estimate, and very subtle changes to ligands can result in significant and 

unexpected changes in water. It is unreasonable to assume that the water’s behavior around 

the solvent probes is a good estimate of their behavior in the presence of a drug-like ligand. 
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4.5 Supplementary Information 

 

The script for calculating a relative ranking of MixMD binding sites based on free energies and 

entropies are provided in Appendix C and Appendix D respectively. 
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Chapter 5. Hitting an Undruggable Target: A Blinded Test of MixMD on Heat 

Shock Protein 27 

5.1 Abstract 

 

The increasing availability of structural data at early stages of the drug discovery process, 

coupled with a lack of protein information to guide the design of drug molecules, has presented 

a significant challenge in the application of structure based drug design (SBDD). Mixed solvent 

molecular dynamics (MixMD) is a binary-solvent molecular dynamics technique designed to 

overcome these challenges while allowing full protein flexibility and explicit competition with 

water. In our most recent study with MixMD, we have established a protocol for identifying 

druggable binding sites on the protein surface using MixMD simulations with acetonitrile, 

isopropanol, and pyrimidine as probes. Here, we present the first successful blinded application 

of any mixed-solvent molecular dynamics method. MixMD simulations indicated the presence 

of druggable binding sites on the “undruggable” Heat Shock Protein 27 (Hsp27). Using a 

combination of NMR and high throughput screening studies; we have successfully verified our 

predicted binding sites. Furthermore, a direct comparison is made between MixMD results and 

NMR chemical shift data for Hsp27 in the presence of co-solvents. A striking level of agreement 

was found. Taken together, these studies demonstrate the utility of MixMD in SBDD. 
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5.2 Introduction 

 

Genomics has given us many potential new drug targets. All targets cannot be pursued because 

of the high cost of bringing a drug to the market.  Assessing a protein’s druggability has gained 

increasing prominence. The perils of achieving potency by increasing the molecular size are well 

documented. Such attempts fail from a myriad of possible reasons including unfavorable 

physicochemical properties (128). Experimental techniques that assess a protein’s druggability 

abound, like high throughput screening or NMR-based fragment screening (129). 

Computational techniques that provide similar measures would present an alternative, cost-

effective approach to assessing such properties. Currently reported computational techniques 

that assess this important measure rely on static structures of protein (130–133). However with 

our increasing understanding of protein structure and function, including protein flexibility and 

competition with water are important components to include. To overcome these challenges, 

we and others have been developing computational chemistry techniques inspired by the 

seminal contribution by Ringe and coworkers involving multiple solvent crystal structures 

(MSCS) (134, 135). The MSCS method involves solving crystal structures of proteins with a 

variety of probe molecules. The locations on the protein surface that bind several different 

probes are considered to be “hotspots” that contribute disproportionately well to the affinity of 

a ligand. However, applying MSCS to every protein is not possible because many protein 

crystals are not amenable. Cosolvent MD simulations aim to provide the same information 

through computer modelling (103, 136–140). Some hallmarks of our approach are an emphasis 

on using water-miscible organic probe molecules, rigorous analysis and application of force 

field parameters for probes, and application of the technique with minimum to no reliance on 

prior knowledge of the system. Our mixed solvent molecular dynamics computational approach 

(MixMD) relies on performing binary solvent simulations of protein with water and organic, 

water-miscible probes (103, 136).  

 

Our early work on MixMD focused on recapturing the location of organic probe molecules 

found on the protein surface in MSCS experiments (103, 136). We have further optimized the 

technique by decreasing the concentration of probe molecules from an initial concentration of 
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50% v/v to 5% v/v and accelerating the sampling by optimizing the MixMD simulation setup. In 

our most recent application of MixMD, we have established and optimized a protocol for 

identifying druggable binding sites on proteins using MixMD with acetonitrile, isopropanol, and 

pyrimidine as our water-miscible, organic probes. This approach was successful in capturing the 

active and allosteric sites on the proteins with a high signal to noise ratio. In addition to this 

successful application, we have discovered that sites that do not correspond to either active or 

allosteric site represented binding sites that have some form of biological/functional 

significance. 

 

Until now, studies involving MixMD and similar techniques have only been tested in a 

retrospective manner. Such studies are important as they allow one to lay a strong foundation 

and provide means of optimizing protocols to decrease false positives. However in a real world 

setting, the location of druggable sites is unknown, especially for non-enzyme systems. 

Applying computational techniques where very little is known about the protein target is more 

challenging and realistic. Here, to the best of our knowledge, we provide the first successful 

application of such MD-based approaches in a blinded fashion with Heat shock protein-27 

(Hsp27) as the test case. We have raised the question whether binding sites that display 

characteristics one would associate with druggability exist on the surface of Hsp27. 

 

Hsp27 is a 27 kiloDalton protein that consists of a variable N- and C-terminal regions with a 

conserved alpha crystalline domain (ACD) in the middle. Hsp27 functions through a non-ATP-

dependent chaperone mechanism and assists in the refolding of misfolded proteins. It is 

implicated in several diseases such as cancer, myocardial infarction, and cerebral ischemia 

(141–143). Hsp27 negatively regulates the apoptotic mechanism and is considered to be a 

potential anticancer drug target (144, 145). Mutations in Hsp27 have also been linked with 

Charcot-Marie-Tooth disease. Interestingly, most mutations causing this disease are located in 

the ACD region (146). The ACD region is primarily composed of beta sheets that provide a 

dimerization interface. These dimers form the building blocks for higher-order oligomers of 

varying sizes that mediate the biological functions of Hsp27 (141). 
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Current literature presents a very discouraging picture for targeting Hsp27 with small 

molecules. Having been a well-studied system for a long time, the only therapy being 

investigated under clinical trials is Apatorsen (also known as OGX-427) (147, 148). Apatorsen is 

an antisense oligonucleotide that functions indirectly by decreasing the production of Hsp27 as 

a result of silencing mRNA and is being pursued as an anticancer drug (147). Under such 

circumstances it is unclear if adequate efforts have not been invested in obtaining small 

molecules or if Hsp27 is indeed undruggable. 

 

In this study, we focus our attention on the ACD region of Hsp27. We have applied MixMD 

using the NMR structure of the ACD domain of Hsp27 as our only guiding piece of information. 

We have applied our established protocol for identifying druggable binding sites on the protein 

surface. This was achieved using MixMD simulations of Hsp27 with acetonitrile, isopropanol, 

and pyrimidine as our water-miscible probes. Below, we describe the binding sites and the 

experimental data that supports our assertion that they are druggable. 

5.3 Methods 

5.3.1 MixMD simulation setup 

 

The simulations were started from an NMR structure of Hsp27 ACD structure determined by 

Klevit and coworkers (unpublished data). This domain spanned from residues 80 to 178, based 

on the numbering of the full length protein. A 9Å layer of probe molecules was added around 

the protein using tleap in Amber Tools followed by the addition of TIP3P (109) water molecules 

necessary to create a 5% v/v ratio of probe to water. The force field parameters for the probes 

were obtained from our previous work (48) and simulations were carried out in AMBER 12 

(124) using the FF99SB force field (111). The SHAKE algorithm (112) was used to restrain bonds 

to hydrogen atoms, and a time step of 2 fs was used to integrate the equations of motion. 

Particle Mesh Ewald approximation as implemented for the GPUs, PMEMCUDA (113) was used. 

Non-bonded interactions were limited to a 10 Å cutoff, and an Anderson Thermostat (149) was 

used to maintain temperature at 303 K. The simulations were carried out at 303 K to closely 

simulate conditions used in the experiments. Hsp27 was subjected to an equilibration protocol 
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to gradually increase the temperature and allow proper relaxation of all the atoms in the 

system. Using this approach, ten simulations of 20ns each were performed with Hsp27 and 

Acetonitrile, Isopropanol, and Pyrimidine separately. A total of 600ns of sampling was obtained. 

5.3.2 Analyzing MixMD results  

 

The last five nanoseconds of the ten runs for each probe (the final 50 ns) were analyzed. The 

location of all atoms in the probe were binned onto a 0.5 Å X 0.5 Å X 0.5 Å grid centered on the 

protein using the Ptraj (125) module of Amber Tools. The binned data was then converted to 

sigma values by subtracting the mean grid value from each grid point and dividing it by the 

standard deviation of all the grid points. This approach allowed us to visualize the propensity of 

a probe binding at a particular location akin to electron density. A high sigma value denotes 

heavily occupied sites. In order to assess different binding sites, we overlaid sigma maps from 

all three MixMD probe simulations. The binding sites were ranked using the same algorithm 

that successfully identified active and allosteric sites in our previous study. In short, this 

algorithm entails the examination of MixMD maps starting at high sigma value followed by 

subsequent dialing down of the sigma value. The sites that appear earlier during this process 

are the ones that are ranked higher. In addition to this criterion, we also required sites to be 

mapped by more than one probe. 

 

5.3.3 Deriving free energies from MixMD simulations 

 

The center of mass of all the probes was binned onto a grid of 0.5 Å spacing using an in-house 

version of cpptraj. The binned data was converted to free energies for each probe. In this 

procedure, the grid points in the binned simulation data were sorted from highest to lowest 

based on grid count. Each local maximal grid point was the center of an enclosing sphere of the 

volume of the probe. The grid count was added for all the grid points to within the sphere to 

obtain the observed occupancy for the probe molecule. The observed occupancy was converted 

to free energy using equation (1) wherein the natural logarithm of the ratio of the observed and 

expected occupancy is multiplied by the Boltzmann constant and temperature. Expected 
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occupancies represent occupancies one would observe in the absence of the protein; these 

were obtained from our previous study (Chapter 4). Expected occupancy values used for 

calculating free energies were 0.002346102, 0.002911845, 0.002669823 for acetonitrile, 

isopropanol, and pyrimidine respectively. Since Hsp27 is a dimer and NMR studies do not 

distinguish between the two monomers, we have chosen to average the free energies across 

the monomers. 

 

∆G𝑏𝑖𝑛𝑑  =  −RTln (
∑ 𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦(𝑖)𝑖

∑ 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦𝑖
)          (1)   

𝑤ℎ𝑒𝑟𝑒 𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑜𝑢𝑛𝑡 𝑜𝑓 𝑔𝑟𝑖𝑑 𝑝𝑜𝑖𝑛𝑡𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑒′𝑠 𝑣𝑜𝑙𝑢𝑚𝑒,  

𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦(𝑖) 𝑖𝑠 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑔𝑟𝑖𝑑 𝑝𝑜𝑖𝑛𝑡, 𝑎𝑛𝑑 𝑒𝑥𝑝𝑒𝑡𝑒𝑑 𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦 𝑖𝑠 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

5.3.4 NMR HSQC experiments with Hsp27 
 

Our collaborators, Jason Gestwicki, Leah Makley, Rachel Klevit, and Ponni Rajagopal conducted 

the NMR experiments. HSQC spectra were acquired at 30°C on a 600 MHz Bruker Avance  III  

spectrometer equipped with  cryoprobe,  running  Topspin  version  2.1,  or  a  Bruker  DRX500 

with  a  QCI  Z, axis  gradient  cryoprobe, running Topspin version 1.3. Spectra were acquired on 

samples containing 150-200 μM Hsp27 core domain in 50 mM NaPi, pH 7.5, 100 mM NaCl at 

30°C and always compared to solvent, controlled reference spectra. A 2% v/v ratio of 

acetonitrile, isopropanol, and pyrimidine were used.  256 scans were acquired per t1 value and 

spectral widths of 1500 Hz and 9615 Hz were used in the 1H and 15N dimensions, respectively. 

Processing and spectral visualization was performed using Sparky (150) and rNMR (151). 

 

5.4 Results and Discussion  

5.4.1 Mapping binding sites on HSP27 using MixMD 

 

Binding sites on the Hsp27 protein surface were identified by viewing MixMD maps from 

acetonitrile, isopropanol, and pyrimidine simulations. Sites with the highest occupancies on the 

grid maps were the focus of our analysis. Each probe type is analyzed separately. After analysis, 
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the grids are overlaid for the druggability analysis. Binding sites identified by MixMD were 

required to be mapped by more than one type of probe. MixMD simulations revealed the 

presence of six potential binding sites on the protein surface of Hsp27. These six sites are 

shown in Figure 5-1 and are named sites 1, 2, 3, 4, 5, and 6 for convenience. The binding site 

identification process is depicted in Figure F-1. While there are minor differences in the maps 

generated from the three different probes, for the most part there is a striking agreement 

between the three probes and their preference for binding in these three sites. We have 

contoured the MixMD maps at 20σ in Figure 5-1 based on our earlier work that showed that 

this contour value allowed one to adequately visualize the binding sites on the protein surface. 

Moreover, the mapping of the binding sites appears consistently in both monomers of Hsp27 

which supports adequate sampling in the simulations.  

To compare and contrast the MixMD binding sites, we have computed the free energies from 

MixMD simulations. Across the three MixMD binding sites, acetonitrile bound weakly to the 

protein compared to isopropanol and pyrimidine. It is important to note that while acetonitrile 

free energies were relatively less favorable, its ligand efficiency were comparable to those of 

other probes Table 5-1. These ligand efficiencies were also within the theoretical limit of -1.5 

kcal/mol established by Kuntz and co-workers (56) and our limit of -1.75 kcal/mol described in a 

recent work (57). MixMD simulations when contoured at 20σ revealed the extent of the binding 

sites. Our results from previous free energy calculations show that some MixMD binding sites 

(identified using all atom binned data) can bind multiple probes. MixMD contour plots do not 

allow one to examine binding sites at this level of detail. Thus such free energy calculations 

complement our method for detecting binding sites on proteins. For example, site 2 in Hsp27 

could be seen bound to two molecules of acetonitrile (Figure 5-2B) one of which had a free 

energy of -1.08 kcal/mol whereas the other bound to the protein at -0.79 kcal/mol.  
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Figure 5-1. The all atom MixMD maps contoured at 20σ along with the average protein 

structure of Hsp27 are shown above. The protein surface is white, the isopropanol density is 

blue, the pyrimidine density is purple, and the acetonitrile density is orange. The binding sites 

identified by MixMD are marked with red circles, and their symmetric relationships are shown 

by solid and dashed red circles. A) The front view of Hsp27 with the sites 1, 4, 5, and 6 is shown. 

B) The back view of Hsp27 is shown with site 2 and 3.  
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Figure 5-2. The symmetry averaged free energies of the top 6 MixMD sites are shown for 

acetonitrile, isopropanol, and pyrimidine. All solvent maps are contoured at 20σ and are shown 

as a black mesh. A) The front face of Hsp27 along with sites 1, 4, 5, and 6 are shown. B) The 

back face of hsp27 with sites 2 and 3 are shown. 
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Table 5-1. The free energies and ligand efficiencies of acetonitrile, isopropanol, and pyrimidine 

for the MixMD binding sites are presented below. For site 2, there were two acetonitrile probe 

molecules bound in the same site, as a result, the one with weaker binding is listed in 

parenthesis. 

Site 

No. 

Acetonitrile 
free energy 
(kcal/mol) 

Acetonitrile 
ligand 
efficiency 
(kcal/mol-HA)

(a) 

Isopropanol 
free energy 
(kcal/mol) 

Isopropanol 
ligand 
efficiency 
(kcal/mol-HA)

(a) 

Pyrimidine 
free energy 
(kcal/mol) 

Pyrimidine 
ligand 
efficiency 
(kcal/mol-HA)

(a) 

Site 1 -1.11 -0.37 -1.26 -0.31 -1.44 -0.24 

Site 2 -0.99 

(-0.79) 

-0.33 

(-0.26) 

-1.08 -0.27 -1.03 -0.17 

Site 3 -0.99 -0.33 -0.62 -0.16 -0.63 -0.1 

Site 4 -0.85 -0.28 -1.39 -0.35 -1.38 -0.23 

Site 5 -0.79 -0.26 -0.91 -0.23 -1.54 -0.26 

Site 6 -0.74 -0.25 -1.14 -0.28 -1.58 -0.26 

(a) HA stands for non-hydrogen heavy atoms  

5.4.2 Comparing 15N, 1H HSQC spectra of organic probe molecules to MixMD probe 

mapping 

 

NMR chemical shift data for Hsp27 provided us with an avenue for direct comparison with 

MixMD results.  Chemical shift perturbations (CSPs) in the presence of acetonitrile, isopropanol, 

and pyrimidine were obtained at 2% v/v concentration. These chemical shift perturbations 

were calculated from the NMR HSQC spectra of Hsp27 using equation (2). 

Chemical Shift Perturbation =√(𝐻𝑊𝑎𝑡𝑒𝑟 −  𝐻𝑝𝑟𝑜𝑏𝑒)2 + ((𝑁𝑤𝑎𝑡𝑒𝑟 − 𝑁𝑝𝑟𝑜𝑏𝑒)/6.51)2            (2) 

The CSPs were normalized with the total CSPs seen for all residues for that particular solvent 

experiment. Residues with normalized CSPs greater than the 0.02 average were considered to 

be significant.  The comparison between MixMD results and HSQC experiments is shown in 

Figure 5-3 where NMR residues that shift in at least two cosolvent HSQC experiments are 

colored green and MixMD maps contoured at 20σ are colored orange, blue, and purple for 
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acetonitrile, isopropanol, and pyrimidine respectively. Several residues are seen to shift near 

Site 4 and 5 (Figure 5-3A). However, threonine 61 was the only residues with significant NMR 

chemical shift near sites 1 and 6. On the back face of Hsp27 (Figure 5-3B) NMR chemical shifts 

could be seen for residues between sites 2 and 3. Barring site 1 and 6 on the front face, for the 

most part, a striking level of agreement could be seen between MixMD and NMR HSQC 

experiment.   

 

Figure 5-3 MixMD maps of Hsp27 with acetonitrile, isopropanol, and pyrimidine are shown 

contoured at 20σ. These MixMD maps are color coded as orange for acetonitrile, blue for 

isopropanol, and purple for pyrimidine. Hsp27 residues that shift in at least two different co-

solvent NMR experiments are shown colored green. Residues missing assignment and prolines 

which are invisible to the NMR HSQC experiment are colored grey.  
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5.4.3 Experimental support from crystallography 

 

Site 1 and site 6 mapped by MixMD is located in a groove at the dimer interface of Hsp27. This 

binding site is formed by beta 6 and 7 strands from both monomers.  A disulfide-bond between 

two cysteine residues unique to Hsp27 in this region stiches the dimer together. Given the 

location of the site at the dimer interface, molecules binding in this region may have the 

potential to modulate the chaperone activity of Hsp27 by disrupting the dimer formation 

process. Interestingly, structural evidence from human alpha b crystallin (PDB ID: 2Y1Y)(152), a 

protein with similar fold as Hsp27 demonstrates the presence of unmodelled density that 

suggests the presence of a cosolvent in this region. However, no evidence for such cosolvent 

binding can be found in the only reported crystal structure of Hsp27(153). 

MixMD site 2 maps a binding site formed at the interface of the dimer. Examination of crystal 

structure of sHSP reveals that cosolvent molecules bind in this region. In the crystal structure of 

the sHSP Heat shock protein beta-6 (HSPB6), a glycerol molecule is bound in site 2 (154). 

Similarly, in α-crystallin A, 2-Methylpentane-2,4-Diol is bound in site 3 (155). These examples 

provide experimental support for our prediction that site 2 is a relatively easy site to desolvate 

on the protein surface. MixMD probe simulations map two adjacent sites, site 4 and site 5. 

Crystallographic, NMR, and experimental evidence from several small heat shock proteins 

(sHSP) suggest that this site binds the LXL motif of the C-terminal region (153, 156). A recent 

crystal structure of Hsp27 in conjunction with a fragment of the c-terminus containing the LXL 

motif provides direct evidence for this interaction in Hsp27 (153). The two isoleucine residues 

from the c-terminal fragment occupy sites 4 and 5 in this structure (Figure 5-4). Mutations in 

the conserved LXL motif of αB-crystallin, a sHSP closely related to Hsp27, have been shown to 

affect its oligomerization state (157). This evidence suggests that targeting site 2 in Hsp27 

through small molecules could provide a potential avenue for modulating its oligomerization 

state and function. 
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Figure 5-4. A recently reported crystal structure of the LXL motif of the c-terminal region of 

Hsp27 (PDB ID: 4MJH) is shown in black stick model overlaid with the MixMD maps. The leucine 

residues from the LXL motif can be seen to bind site 4 and site 5 thereby validating these sites 

identified via MixMD. MixMD density is contoured at 20σ and is color coded to represent 

acetonitrile (orange), isopropanol (blue), and pyrimidine (purple). 

5.4.4 High Throughput Screening – Derived Inhibitors 

 

A screening campaign initiated by our collaborator Gestwicki (158) using Differential scanning 

fluorimetry identified Captopril (159) as a hit that bound in site 1 and site 6 by means of a 

disulfide bond. Captopril is an Angiotensin Converting enzyme inhibitor (160). It was found to 

retain binding activity for Hsp27 even after mutating the cysteine to an alanine residue. These 

experimental studies present a strong connection between the ability of site 1 and 6 to bind 

drug-like molecules and the propensity of MixMD probes to bind in this region. Similar results 

were found for site 2, where a high throughput screen resulted in an unusually high hit rate of 

0.4%. Further details on the experimental workup related to the identification and 

development of these small molecules will be the subject of a future paper from the Gestwicki 

group. 

5.5 Conclusions 

 

We have described the application of MixMD in a blinded fashion on Hsp27. MixMD identified 

six druggable binding sites on the protein surface. Using experimental verification, we have 
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identified sites 1, 2, and 6 can bind drug like matter. A recently reported crystal structure of 

Hsp27 with the c-terminal LXL motif, confirmed the importance of the site 4 and 5 as an 

interface for oligomerization. Furthermore, a high level of agreement was found when MixMD 

simulation results were compared with NMR chemical shift data. This study to the best of our 

knowledge provides details on the first successful application of a cosolvent-based molecular 

dynamics approach in a blinded fashion. 
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Chapter 6. Conclusions and Future Directions 

 

6.1 Significant contributions of this thesis 

 

The introduction of the thesis (Chapter 1) provided a brief overview of probe mapping based on 

two different approaches, one for static structures and another for MD simulations. Such probe 

mapping techniques aim to serve as an alternative to experimental approaches such as Multiple 

Solvent Crystal Structures. The major focus of my thesis included probe mapping based on two 

different approaches, one for static structures and another for MD simulations. 

Chapter 2 focused on comparing the use of NMR and X-ray structures on the performance of 

our Multiple Protein Structures (MPS) receptor based pharmacophore models (12–17, 19).  The 

MPS method incorporates protein flexibility through the use of many static snapshots of 

proteins obtained from experimental (X-ray, NMR) or computational (MD) methods. Using HIV-

1 protease as a test case, previous work from our group showed that NMR structures provided 

MPS pharmacophore models with superior performance compared to crystal structures (17). In 

this thesis work, the MPS technique was applied to several other systems with NMR and X-ray 

structures. Test systems included Growth factor receptor bound protein 2 (Grb2), Src SH2 

homology domain (Src-SH2), FK506-binding protein 1A (FKBP12), and Peroxisome proliferator-

activated receptor-γ (PPAR-γ). The results from this work demonstrated that NMR 

pharmacophore models displayed superior performance, an observation in line with previous 

work from our lab. We note that pharmacophore models from NMR structures had fewer 

pharmacophore elements, and they represented only essential features observed in a diverse 

set of inhibitors/agonists. This chapter delved deeper to understand the origin and location of 

extraneous pharmacophore elements in X-ray pharmacophore models. In our analysis of MPS 

X-ray pharmacophore models, we note that such extraneous pharmacophore elements 

primarily lie at the periphery of the active site and arise as a result of an increased rigidity of the 
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protein likely from crystal packing effects. X-ray pharmacophore models retained performance 

for the most part when elements at the periphery of the active site were truncated, confirming 

this observation.   

Chapter 3 presented our application of MixMD to allosteric systems. Previous work in the 

Carlson lab demonstrated that under conditions of full protein flexibility, accurate mapping of 

the co-solvent binding locations could be recaptured using MixMD (46). This thesis work, 

presented approaches for moving from identifying co-solvent locations with MixMD to mapping 

hotspots/binding sites on the protein surfaces. Drawing upon seminal contribution of MSCS by 

Dagmar Ringe and co-workers (3, 4, 161), we have identified the optimal approach to require 

sites to be mapped by more than one type of probe. It is important to note that binding sites 

were defined by overlapping locations of co-solvent molecules identified from MD simulations. 

These conditions were only met when each co-solvent simulation is run separately. This 

provided MixMD with a distinct advantage over other co-solvent based MD techniques that use 

multiple co-solvents in MD simulation. In performing MixMD simulations, we have used co-

solvents such as acetonitrile, isopropanol and pyrimidine. This allowed us to map a range of 

interactions including hydrogen-bonding, hydrophobic, and aromatic interactions. An 

application of MixMD using this protocol successfully recaptured the location of competitive 

and allosteric sites on proteins starting from conformations with no allosteric ligands bound. 

Our design, setup, execution, and analysis of MixMD simulations made it amenable for use in 

prospective application. Given the increasing need for driving selectivity by targeting allosteric 

sites, especially in the field of protein kinases, the developments presented in this chapter will 

have a strong impact on the field.    

Chapter 4 described our development of a suite of computational techniques to fully 

characterize MixMD binding sites. Most co-solvent based approaches decompose the atomic 

free energies onto a grid (27, 31). However, we believe that the free energy of binding (ΔGbind) 

is a whole molecule property. In keeping with this philosophy, we have presented our 

procedure for calculating ΔGbind for the probe molecules as a whole. This approach is similar to 

the one described by Bahar and co-workers (51). Furthermore, evidence was provided in 
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support of the argument that measures of ΔGbind calculated using occupancies vary based on 

concentration and cannot be used to obtain maximal free energies of binding for sites on the 

protein surface as reported by other. Additionally, methods for calculating entropies from co-

solvent based simulations were presented. 

Chapter 5 presented the first successful prospective application of any mixed-solvent molecular 

dynamics. Most co-solvent simulation studies presented in the literature thus far have been 

retrospective in nature. It is worthwhile to note that MacKerell and co-workers used 

pharmacophore models derived from SILCS method to prescreen for molecules that can 

potentially bind β2AR (40). This screening was followed by other in silico methods such as 

docking to propose and verify molecules targeting β2AR. Such studies present a step in the right 

direction towards realizing the potential of co-solvent simulations in SBDD. However, it could 

be argued that the binding site of β2AR is a well-known druggable target, and resorting to 

docking in the end throws away the advantage of cosolvent MD, reducing it to a standard 

approach on a known target. Here; by applying MixMD to the “undruggable” target Heat Shock 

Protein 27 (Hsp27), we have presented definitive proof that such simulations can be used to 

identify druggable binding sites in a prospective manner. Prompted by favorable results from 

MixMD, a high throughput screen conducted by Gestwicki and co-workers (unpublished data) 

identified drug-like molecules for MixMD binding sites in Hsp27. In addition to this important 

contribution, this chapter also presented a more direct comparison of MixMD simulation results 

with NMR chemical shifts for Hsp27 in 2% cosolvent mixtures! For the most part, a striking 

agreement could be seen between MixMD results and shifts in the NMR spectra when our co-

solvents were added. 

6.2 Future Directions 

 

Hotspot identification using MD simulations is an appealing method as competition with water 

and protein flexibility is taken into account during the mapping process. Following are some 

potential applications of MixMD in the near future.  
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Converting MixMD maps to pharmacophore models. Latest developments in co-solvent 

simulations have focused on converting the information derived from simulations into 

pharmacophore models. Most method development in this direction has been very similar to 

our highly cited work on the MPS method (12–17, 19, 20). Moving forward, creating 

pharmacophore models by wedding our ideas of MPS and MixMD would be a natural 

progression for us. 

Using MixMD simulations to assist in scoring and ranking ligands. 

In addition to converting MixMD results to pharmacophore models, presenting the binding 

preference of MixMD probe molecules on a gird would allow one to score and rank ligands 

either from crystal structures or after a docking procedure.  This ranking could be performed 

based on a score obtained from summing the occupancy at each grid point when it overlaps 

with an atom from the ligand.  The occupancy used for summation would be obtained from 

different MixMD simulation based on an interaction type classification of the atoms of the 

ligands. As the preference for MixMD probes is a complex interplay between competition with 

water and favorable interaction energies with the protein, accounting for it through scoring and 

ranking would provide an extra dimension to current docking approaches that either lack 

means of dealing with solvation effects or treat it in a rudimentary fashion. Such a ranking 

procedure has been implemented by Mackerell and co-workers in their SILCS simulations (31–

40, 162, 163). As SILCS simulations are performed using repulsion terms between cosolvents to 

drive adequate mixing, it remains to be seen if similar success can be achieved using MixMD 

simulations. 

Identifying cryptic pockets using MixMD. Mixed-solvent simulations including our application of 

MixMD have demonstrated that cryptic pockets that open upon side-chain movement are 

achievable. However, it is yet to be determined if such simulations are enough to observe 

cryptic pockets that open upon large scale protein backbone motions. Methods that accelerate 

conformation sampling such as accelerated molecular dynamics (164) and metadynamics (165) 

are attractive alternatives to these problems and need to be investigated in conjunction with 
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MixMD. These cryptic pockets could then be exploited to drive selectivity between proteins 

where the orthosteric sites are similar. 

Assessing the druggability of protein-protein interactions. Targeting protein-protein interactions 

using small molecules is challenging as these interactions are typically spread over a larger 

shallow surface area (166). Understanding whether sites that disproportionately contribute to 

binding exist and targeting them will be key in assessing the druggability and success rate in 

disrupting protein-protein interactions. In an application of MixMD to Farnesyl Pyrophosphate 

Synthase in this thesis work (Chapter 3), we note that protein-protein interaction interface was 

mapped very strongly. These results suggest that MixMD simulations can be used in the 

identification of protein-protein interaction sites. Furthermore, our application of MixMD on 

Heat Shock Protein 27 demonstrated that binding sites identified by MixMD can be targeted by 

drug-like molecules. Taken together, these results prompt the need to assess the utility of 

MixMD in prioritizing which protein-protein interactions to target with small molecules.   

Expanding the range of probe molecules used with MixMD. In Chapter 3 - Chapter 5, probe 

molecules used for MixMD simulations were acetonitrile, isopropanol, and pyrimidine. These 

probes allowed use to capture a range of hydrophilic, hydrophobic, aromatic, and hydrogen 

bonding interactions. Recent work from our lab identified other organic water miscible probes 

suitable for MixMD (48). Additionally, in this thesis work, OPLS force field parameters were 

validated for acetate and methyl ammonium in order to map charged binding sites. With a wide 

variety of probe molecules at our disposal, it remains to be seen if MixMD simulations with 

different probes can be used to tailor the application for identifying charged binding site of 

functional significance, protein-protein interactions, and if using a different or extended set of 

probes would provide an added advantage in identifying druggable binding sites. 

MixMD simulations with multiple probe molecules. Current protocols developed in Chapter 3 

rely on performing MixMD simulations with each probe separately. This allowed us to detect 

druggable binding sites using approaches similar to MSCS wherein sites were required to be 

mapped by more than one probe. Mapping protein surfaces with MixMD simulations that use 

multiple probes simultaneously could be explored to obtain pharmacophore models from a 
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single MixMD simulation. Furthermore, synergistic effects that arise from two different co-

solvents binding near each other could reveal further insights into the preference of the binding 

sites for different probe types that could be exploited in SBDD.  

Exploring conformational dependence of MixMD simulations. In Chapter 3, we note the 

dependence of MixMD results on starting conformation. This was illustrated using the active 

and inactive conformations of ABL kinase. MixMD simulations starting from both ABL kinase 

conformations resulted in competitive and allosteric sites being mapped within the top-four 

sites. Interestingly, other high-ranking sites appeared in the peptide substrate binding region in 

the active conformation that were absent in the inactive conformation. These results are 

consistent with the biological function of the two different conformations, wherein the inactive 

conformation is not expected to bind peptide substrates. Our results serve as a starting point 

for extending this approach to other protein targets and confirming similar observation. Similar 

results across other systems would strengthen the argument for the use of MixMD to comment 

upon the importance of different conformations in the context of biological function.   

Exploring Structure Activity Relationships with MixMD entropies. A relative ranking in terms of 

local entropies was obtained for MixMD binding sites using our method outlined in Chapter 4. 

These local entropy quantities were validated by visual inspection of normalized occupancies 

for acetonitrile, isopropanol, and pyrimidine. One could envision the use of such local entropy 

measures to assist in structure activity relationships. For example, MixMD binding sites with 

low entropies represent sites with no orientational preference. These locations could be 

available for substitution in ligands by any type of fragment that has similar physicochemical 

properties. However, MixMD sites with high entropies correspond to locations that are 

restricted in motion and make specific interactions with the protein. Substituting such location 

with other fragments might be difficult. The use of entropies in such a manner to guide SAR 

needs to be fully evaluated by comparison across several systems.  
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Appendices 

Appendix A. Raw data for MPS Pharmacophore models  
 

Table A-1 The residue and atom used for flooding the active site of proteins with probe molecules is shown for 
each protein. 

Protei
n 

Residue in Sequence (Highlighted in Red) 

Atom 
used 
for 

MPS 
Floodi

ng 

Src 
SH2 

MGSNKSKPKDASQRRRSLEPAENVHGAGGGAFPASQTPSKPASADGHRGPSAAFAPAAAE 
PKLFGGFNSSDTVTSPQRAGPLAGGVTTFVALYDYESRTETDLSFKKGERLQIVNNTEGD 
WWLAHSLSTGQTGYIPSNYVAPSDSIQAEEWYFGKITRRESERLLLNAENPRGTFLVRES 

ETTKGAYCLSVSDFDNAKGLNVKHYKIRKLDSGGFYITSRTQFNSLQQLVAYYSKHADGL 

CHRLTTVCPTSKPQTQGLAKDAWEIPRESLRLEVKLGQGCFGEVWMGTWNGTTRVAIKTL 
KPGTMSPEAFLQEAQVMKKLRHEKLVQLYAVVSEEPIYIVTEYMSKGSLLDFLKGETGKY 
LRLPQLVDMAAQIASGMAYVERMNYVHRDLRAANILVGENLVCKVADFGLARLIEDNEYT 
ARQGAKFPIKWTAPEAALYGRFTIKSDVWSFGILLTELTTKGRVPYPGMVNREVLDQVER 
GYRMPCPPECPESLHDLMCQCWRKEPEERPTFEYLQAFLEDYFTSTEPQYQPGENL 
 

CA 

Grb2 
SH2 

MEAIAKYDFKATADDELSFKRGDILKVLNEECDQNWYKAELNGKDGFIPKNYIEMKPHPW 

FFGKIPRAKAEEMLSKQRHDGAFLIRESESAPGDFSLSVKFGNDVQHFKVLRDGAGKYFL 

WVVKFNSLNELVDYHRSTSVSRNQQIFLRDIEQVPQQPTYVQALFDFDPQEDGELGFRRG 
DFIHVMDNSDPNWWKGACHGQTGMFPRNYVTPVNRNV 

 

CA 

FKBP1
2 

MGVQVETISPGDGRTFPKRGQTCVVHYTGMLEDGKKFDSSRDRNKPFKFMLGKQEVIRGW 

EEGVAQMSVGQRAKLTISPDYAYGATGHPGIIPPHATLVFDVELLKLE 

 

OH 
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PPAR-
γ 

MGETLGDSPIDPESDSFTDTLSANISQEMTMVDTEMPFWPTNFGISSVDLSVMEDHSHSF 
DIKPFTTVDFSSISTPHYEDIPFTRTDPVVADYKYDLKLQEYQSAIKVEPASPPYYSEKT 
QLYNKPHEEPSNSLMAIECRVCGDKASGFHYGVHACEGCKGFFRRTIRLKLIYDRCDLNC 
RIHKKSRNKCQYCRFQKCLAVGMSHNAIRFGRMPQAEKEKLLAEISSDIDQLNPESADLR 
ALAKHLYDSYIKSFPLTKAKARAILTGKTTDKSPFVIYDMNSLMMGEDKIKFKHITPLQE 

QSKEVAIRIFQGCQFRSVEAVQEITEYAKSIPGFVNLDLNDQVTLLKYGVHEIIYTMLAS 

LMNKDGVLISEGQGFMTREFLKSLRKPFGDFMEPKFEFAVKFNALELDDSDLAIFIAVII 
LSGDRPGLLNVKPIEDIQDNLLQALELQLKLNHPESSQLFAKLLQKMTDLRQIVTEHVQL 
LQVIKKTETDMSLHPLLQEIYKDLY 

 

O 

 

Table A-2 Crystal pharmacophore model coordinates and radius for Src SH2, the location of the pharmacophore 
model is relative to the crystal structure of FKBP12, PDB ID: 1O49. 

Pharmacophore Element Type x y z RMSD, Å 

Acceptor 23.045 25.309 15.744 0.78 

Hydrophobic 22.494 19.634 15.611 1.14 

Hydrophobic 21.056 20.259 19.264 0.82 

Hydrophobic 16.246 28.319 17.404 1.02 

Hydrophobic 19.733 12.946 22.01 0.59 

Hydrophobic 18.206 26.191 25.499 1.03 

Aromatic 21.118 15.93 22.328 0.71 

Donor|Acceptor 18.506 26.537 22.549 0.72 

Donor|Acceptor 20.04 28.426 15.815 1.14 

Donor 20.88 16.386 24.425 0.64 

 

Table A-3 Crystal pharmacophore model coordinates and radius for Src SH2 at a cutoff of 9Å, the location of the 
pharmacophore model is relative to the crystal structure of FKBP12, PDB ID: 1O49. 

Pharmacophore Element Type x y z RMSD, Å 

Hydrophobic 22.494 19.634 15.611 1.14 

Hydrophobic 21.056 20.259 19.264 0.82 

Hydrophobic 16.246 28.319 17.404 1.02 

Hydrophobic 19.733 12.946 22.01 0.59 

Hydrophobic 18.206 26.191 25.499 1.03 

Aromatic 21.118 15.93 22.328 0.71 

Donor|Acceptor 18.506 26.537 22.549 0.72 

Donor 20.88 16.386 24.425 0.64 

 

Table A-4 Crystal pharmacophore model coordinates and radius for Src SH2 at a cutoff of 8Å, the location of the 
pharmacophore model is relative to the crystal structure of FKBP12, PDB ID: 1O49. 

Pharmacophore Element Type x y z RMSD, Å 

Hydrophobic 22.494 19.634 15.611 1.14 

Hydrophobic 21.056 20.259 19.264 0.82 
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Hydrophobic 18.206 26.191 25.499 1.03 

Aromatic 21.118 15.93 22.328 0.71 

Donor|Acceptor 18.506 26.537 22.549 0.72 

Donor 20.88 16.386 24.425 0.64 

 

Table A-5 NMR pharmacophore model coordinates and radius for Src SH2, the location of the pharmacophore 
model is relative to the NMR ensemble of FKBP12, PDB ID: 1FKR. 

Pharmacophore Element Type x y z RMSD, Å 

Acceptor -0.944 9.605 6.074 0.81 

Hydrophobic -3.474 3.708 8.571 0.97 

Hydrophobic -4.927 8.771 3.624 1 

Hydrophobic 2.594 4.854 8.569 1.21 

Hydrophobic 0.697 -4.722 8.361 1.43 

Donor|Acceptor -4.043 -3.668 11.248 1.15 

 

Table A-6 Crystal pharmacophore model coordinates and radius for Grb2 SH2, the location of the pharmacophore 
model is relative to the crystal structure of Grb2 SH2, PDB ID: 1JYR. 

Pharmacophore Element Type x y z RMSD, Å 

Acceptor 32.185 26.561 18.443 0.69 

Acceptor 28.961 28.686 14.664 0.67 

Hydrophobic 32.212 22.944 20.033 0.99 

Hydrophobic 37.887 24.645 13.197 0.82 

Hydrophobic 38.017 19.467 18.022 0.99 

Hydrophobic 31.909 27.788 14.595 0.85 

Donor|Acceptor 37.101 24.974 12.662 0.74 

Donor|Acceptor 36.867 17.705 18.149 0.74 

Donor 38.794 24.65 12.34 0.74 

 

Table A-7 Crystal pharmacophore model coordinates and radius for Grb2 SH2 at a cutoff of 8Å, the location of the 
pharmacophore model is relative to the crystal structure of Grb2 SH2, PDB ID: 1JYR. 

Pharmacophore Element Type x y z RMSD, Å 

Acceptor 32.185 26.561 18.443 0.69 

Acceptor 28.961 28.686 14.664 0.67 

Hydrophobic 32.212 22.944 20.033 0.99 

Hydrophobic 37.887 24.645 13.197 0.82 

Hydrophobic 38.017 19.467 18.022 0.99 

Hydrophobic 31.909 27.788 14.595 0.85 

Donor|Acceptor 37.101 24.974 12.662 0.74 

Donor 38.794 24.65 12.34 0.74 
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Table A-8 Crystal pharmacophore model coordinates and radius for Grb2 SH2 at a cutoff of 7Å, the location of the 
pharmacophore model is relative to the crystal structure of Grb2 SH2, PDB ID: 1JYR. 

Pharmacophore Element Type x y z RMSD, Å 

Acceptor 32.185 26.561 18.443 0.69 

Acceptor 28.961 28.686 14.664 0.67 

Hydrophobic 37.887 24.645 13.197 0.82 

Hydrophobic 31.909 27.788 14.595 0.85 

Donor|Acceptor 37.101 24.974 12.662 0.74 

Donor 38.794 24.65 12.34 0.74 

 

Table A-9 NMR pharmacophore model coordinates and radius for Grb2 SH2, the location of the pharmacophore 
model is relative to the NMR ensemble of Grb2 SH2, PDB ID: 1X0N. 

Pharmacophore Element Type x y z RMSD,Å 

Hydrophobic 10.583 -7.886 -12.445 1.31 

Hydrophobic 18.933 -4.414 -7.544 1.35 

Hydrophobic 18.354 3.699 -11.588 0.99 

Hydrophobic 14.746 -1.428 -14.61 1.36 

Donor|Acceptor 15.406 -4.32 -11.184 0.51 

Donor|Acceptor 17.648 -4.794 -7.216 0.57 

Donor|Acceptor 18.167 4.635 -11.144 1.08 

Donor|Acceptor 9.56 -6.35 -13.362 0.6 

 

 

Table A-10 Crystal pharmacophore model coordinates and radius for FKBP12, the location of the pharmacophore 
model is relative to the crystal structure of FKBP12, PDB ID: 1FKB. 

Elem. Type X Y Z RMSD, Å 

Acceptor 4.575 6.275 15.78 0.57 

Hydrophobic 2.937 6.679 12.549 0.99 

Hydrophobic 8.444 11.583 11.511 0.7 

Hydrophobic 13.271 8.494 9.785 0.7 

Hydrophobic 3.842 7.424 18.287 1.04 

Hydrophobic 12.767 11.235 16.237 1.01 

Aromatic -2.94 10.424 16.155 0.52 

Aromatic 11.756 9.936 9.823 0.46 

Donor|Acceptor 12.235 7.771 10.307 0.57 

Donor|Acceptor 5.089 8.12 11.808 0.52 

Donor -1.936 8.814 17.561 0.37 

Donor 6.678 11.9 11.446 0.83 

Donor 9.412 13.152 9.461 1.11 

Donor 11.61 11.466 18.357 0.82 
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Table A-11 Crystal pharmacophore model coordinates and radius for FKBP12 at a cutoff of 9Å, the location of the 
pharmacophore model is relative to the crystal structure of FKBP12, PDB ID: 1FKB. 

Elem. Type X Y Z RMSD, Å 

Acceptor 4.575 6.275 15.78 0.57 

Hydrophobic 2.937 6.679 12.549 0.99 

Hydrophobic 8.444 11.583 11.511 0.7 

Hydrophobic 13.271 8.494 9.785 0.7 

Hydrophobic 3.842 7.424 18.287 1.04 

Hydrophobic 12.767 11.235 16.237 1.01 

Aromatic 11.756 9.936 9.823 0.46 

Donor|Acceptor 12.235 7.771 10.307 0.57 

Donor|Acceptor 5.089 8.12 11.808 0.52 

Donor -1.936 8.814 17.561 0.37 

Donor 6.678 11.9 11.446 0.83 

Donor 9.412 13.152 9.461 1.11 

Donor 11.61 11.466 18.357 0.82 

 

Table A-12 Crystal pharmacophore model coordinates and radius for FKBP12 at a cutoff of 8Å, the location of the 
pharmacophore model is relative to the crystal structure of FKBP12, PDB ID: 1FKB. 

Elem. Type X Y Z RMSD, Å 

Acceptor 4.575 6.275 15.78 0.57 

Hydrophobic 2.937 6.679 12.549 0.99 

Hydrophobic 8.444 11.583 11.511 0.7 

Hydrophobic 3.842 7.424 18.287 1.04 

Hydrophobic 12.767 11.235 16.237 1.01 

Aromatic 11.756 9.936 9.823 0.46 

Donor|Acceptor 12.235 7.771 10.307 0.57 

Donor|Acceptor 5.089 8.12 11.808 0.52 

Donor 6.678 11.9 11.446 0.83 

Donor 11.61 11.466 18.357 0.82 

 

Table A-13 NMR pharmacophore model coordinates and radius for FKBP12, the location of the pharmacophore 
model is relative to the NMR ensemble of FKBP12, PDB ID: 1FKR. 

Elem. Type X Y Z RMSD, Å 

Hydrophobic -46.867 -29.041 73.395 0.830 

Hydrophobic -40.231 -26.134 72.841 1.200 

Hydrophobic -48.158 -22.092 70.676 0.970 

Donor|Acceptor -47.338 -27.331 72.338 0.670 
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Table A-14 Crystal pharmacophore model coordinates and radius for PPAR-γ, the location of the pharmacophore 
model is relative to the crystal structure of PPAR-γ, PDB ID: 1ZGY. 

Pharmacophore Element Type x y z RMSD, Å 

Acceptor 23.837 3.429 27.071 0.95 

Hydrophobic 27.153 3.864 30.464 0.9 

Hydrophobic 33.506 -4.124 26.833 1.03 

Aromatic 32.508 0.178 25.149 0.77 

Donor|Acceptor 33.958 -4.405 25.491 0.98 

Donor 21.755 1.116 24.65 0.69 

 

Table A-15 Crystal pharmacophore model coordinates and radius for PPAR-γ at a cutoff of 8Å, the location of the 
pharmacophore model is relative to the crystal structure of PPAR-γ, PDB ID: 1ZGY. 

Pharmacophore Element Type x y z RMSD, Å 

Acceptor 23.837 3.429 27.071 0.95 

Hydrophobic 27.153 3.864 30.464 0.9 

Hydrophobic 33.506 -4.124 26.833 1.03 

Aromatic 32.508 0.178 25.149 0.77 

Donor|Acceptor 33.958 -4.405 25.491 0.98 

 

Table A-16 Crystal pharmacophore model coordinates and radius for PPAR-γ at a cutoff of 7Å, the location of the 
pharmacophore model is relative to the crystal structure of PPAR-γ, PDB ID: 1ZGY. 

Pharmacophore Element Type x y z RMSD, Å 

Hydrophobic 27.153 3.864 30.464 0.9 

Hydrophobic 33.506 -4.124 26.833 1.03 

Aromatic 32.508 0.178 25.149 0.77 

Donor|Acceptor 33.958 -4.405 25.491 0.98 

 

Table A-17 NMR pharmacophore model coordinates and radius for PPAR-γ, the location of the pharmacophore 
model is relative to the NMR ensemble of PPAR-γ, PDB ID: 2QMV. 

Pharmacophore Element Type x y z RMSD, Å 

Hydrophobic -1.264 -9.563 1.228 1.81 

Hydrophobic 11.163 -3.189 2.634 1.48 

Donoror 4.161 -4.331 -1.857 1.57 

 

 

Table A-18 PDB IDs and references of 22 SRCSH2 crystal structures used to create the Src SH2 X-ray MPS 
pharmacophore model. 

1O44(167) 1O4Q(167) 1O4N(167) 1A08(168) 1O48(167) 1A1C(168) 1O4M(167) 1O4O(167) 1SHD(168) 1O42(167) 
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1O49(167) 1A1B(168) 1O4P(167) 1O47(167) 1O4H(167) 1O4B(167) 1O4L(167) 1A1E(168) 1O4R(167) 1O4J(167) 

1O46(167) 1A07(168)         

 

Table A-19 PDB IDs and references of 18 GRB2 crystal structures used to create the Grb2 SH2 X-ray MPS 
pharmacophore model. 

1BM2(169) 1BMB(169) 3N84(170) 1JYQ(171) 1TZE(172) 3IN7(173) 3MXY(174) 3IMJ(173) 3IMD(173) 1JYR(171) 

3KFJ(173) 2HUW(175) 3N7Y(170) 3C7I(175) 3MXC(174) 3IN8(173) 1ZFP(176) 3N8M(170)   

 

Table A-20 PDB IDs and references of 22 PPARGAMMA crystal structures used to create the PPAR-γ X-ray MPS 
pharmacophore model. 

2I4J(177) 1ZGY(178) 3GBK(179) 1RDT(180) 2ATH(181) 3G9E(182) 2PRG(183) 2HWR(184) 2Q8S(185) 1FM6(186) 

1ZEO(187) 2HWQ(184) 2F4B(188) 2GTK(189) 2VV1(190) 2ZNO(191) 1I7I(192) 3CWD(193) 3IA6(194) 3HOD(195) 

2VSR(190) 3CS8(196)         

 

Table A-21 PDB IDs and references of 20 FKBP12 crystal structures used to create the FKBP12 X-ray MPS 
pharmacophore model. 

2FKE(197) 1NSG(198) 1FKB(199) 1FKJ(200) 1BKF(201) 2FAP(198) 1J4I(202) 1J4H(202) 1FKI(203) 1FKD(197) 

1FKF(204) 1FKH(203) 1D7J(205) 1J4R(206) 1A7X(207) 1BL4(208) 1QPF(209) 1FKG(203) 1D7I(205) 3FAP(198) 

 

Table A-22 PDB IDS and references of NMR ensembles used to create the NMR MPS pharmacophore models. 

Protein NMR ensemble PDB ID 

Src SH2 1HCT(210) 

Grb2 SH2 1X0N(211) 

FKBP12 1FKR(212) 

PPAR-γ 2QMV(213) 
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Table A-23 ROC plot data for Src SH2 Crystal Pharmacophore model. 
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Table A-24 ROC plot data for Src SH2 Crystal pharmacophore model at a cutoff of 9Å. 
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(0,100) 
Low Affinity distance from 

(0,100) 

Radi
us 

8 of 
8 

7 of 
8 

6 of 
8 

8 of 
8 

7 of 
8 

6 of 
8 

8 of 
8 

7 of 
8 

6 of 
8 

8 of 8 7 of 8 6 of 8 8 of 8 7 of 8 6 of 8 

1.00
x 

0 0 0 0 0 0.69 0 0 0 100 100 100 100 100 99.31 

1.33
x 

0 0 0 0 0 
2.75

9 
0 0 

0.08
7 

100 100 100 100 100 97.241 

1.66
x 

0 0 6.25 0 0 
13.1
03 

0 0 
0.65

1 
100 100 93.752 100 100 86.899 

2.00
x 

0 6.25 
18.7

5 
0 

2.06
9 

28.2
76 

0 0 
2.86

6 
100 93.75 81.301 100 97.931 71.781 

2.33
x 

0 12.5 50 0 
8.27

6 
45.5
17 

0.04
3 

0.60
8 

7.99 100 87.502 50.634 100 91.726 55.066 

2.66
x 

0 12.5 
81.2

5 
2.06

9 
19.3

1 
59.3

1 
0.04

3 
1.82

4 
14.7
63 

100 87.519 23.864 97.931 80.711 43.285 

3.00
x 

0 25 87.5 
2.06

9 
31.0
34 

71.7
24 

0.21
7 

4.34
2 

23.9
69 

100 75.126 27.033 97.931 69.103 37.068 

 

Table A-25 ROC plot data for Src SH2 Crystal pharmacophore model at a cutoff of 8Å. 

CTF8
A 

Src SH2 High 
Affinity 

Src SH2 Low 
Affinity 

Decoy 
Molecules 

High Affinity distance from 
(0,100) 

Low Affinity distance from 
(0,100) 

Radiu
s 

6 of 6 5 of 6 6 of 6 5 of 6 6 of 6 5 of 6 6 of 6 5 of 6 6 of 6 5 of 6 

1.00x 0 0 0 3.448 0 0.347 100 100.001 100 96.553 

1.33x 0 6.25 0 13.103 0.043 1.259 100 93.758 100 86.906 

1.66x 0 25 1.379 35.172 0.434 5.341 100.001 75.19 98.622 65.048 
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2.00x 6.25 81.25 7.586 56.552 0.955 12.245 93.755 22.394 92.419 45.141 

2.33x 12.5 93.75 9.655 68.966 2.692 22.319 87.541 23.178 90.385 38.226 

2.66x 18.75 93.75 20.69 75.172 5.037 34.26 81.406 34.825 79.47 42.31 

3.00x 25 100 34.483 80 7.729 47.069 75.397 47.069 65.971 51.142 

 

 

Table A-26 ROC plot data for Src SH2 NMR pharmacophore model. 

NMR 
Src SH2 High 

Affinity 
Src SH2 Low 

Affinity 
Decoy 

Molecules 
High Affinity distance from 

(0,100) 
Low Affinity distance from 

(0,100) 

Radiu
s 

6 of 6 5 of 6 6 of 6 5 of 6 6 of 6 5 of 6 6 of 6 5 of 6 6 of 6 5 of 6 

1.00x 0 12.5 0 9.655 0 0.261 100 87.5 100 90.345 

1.33x 6.25 25 2.069 43.448 0 1.389 93.75 75.013 97.931 56.569 

1.66x 12.5 68.75 8.966 68.966 0.391 5.341 87.501 31.703 91.035 31.49 

2.00x 25 100 26.207 77.241 1.476 
14.54

6 
75.015 14.546 73.808 27.01 

2.33x 62.5 100 54.483 78.621 4.255 
29.48

3 
37.741 29.483 45.715 36.419 

2.66x 93.75 100 70.345 80 
10.59

5 
46.54

8 
12.301 46.548 31.491 50.663 

3.00x 100 100 78.621 82.759 
20.79

9 
65.00

2 
20.799 65.002 29.827 67.25 

 

Table A-27 ROC plot data for Grb2 Crystal pharmacophore model. 

CRYS 
Grb2 SH2 High 

Affinity 
Grb2 SH2 Low 

Affinity 
Decoy Molecules 

High Affinity distance from 
(0,100) 

Low Affinity distance from 
(0,100) 

Radi
us 

9 of 
9 

8 of 
9 

7 of 
9 

9 of 
9 

8 of 
9 

7 of 
9 

9 of 
9 

8 of 
9 

7 of 
9 

9 of 9 8 of 9 7 of 9 9 of 9 8 of 9 7 of 9 

1.00
x 

0 0 0 0 0 0 0 0 0 100 100 100 100 100 100 

1.33
x 

0 0 
4.91

8 
0 0 

5.15
5 

0 0 0 100 100 95.082 100 100 94.845 

1.66
x 

0 
6.55

7 
60.6
56 

0 
1.03

1 
42.2
68 

0 
0.04

3 
0.95

5 
100 93.443 39.356 100 98.969 57.74 

2.00
x 

3.27
9 

34.4
26 

90.1
64 

0 
28.8
66 

77.3
2 

0.04
3 

0.30
4 

3.82
1 

96.721 65.575 10.552 100 71.135 23 

2.33
x 

18.0
33 

75.4
1 

98.3
61 

10.3
09 

57.7
32 

90.7
22 

0.08
7 

1.52 
8.64

1 
81.967 24.637 8.795 89.691 42.295 12.679 

2.66
x 

57.3
77 

90.1
64 

100 
41.2
37 

82.4
74 

92.7
84 

0.34
7 

4.12
5 

15.1
11 

42.624 10.666 15.111 58.764 18.005 16.746 

3.00
x 

75.4
1 

98.3
61 

100 
58.7
63 

90.7
22 

92.7
84 

1.21
6 

7.55
5 

26.4 24.62 7.731 26.4 41.255 11.965 27.368 

 

Table A-28 ROC plot data for Grb2 Crystal pharmacophore model at a cutoff of 8Å. 

CTF8
A 

Grb2 SH2 High 
Affinity 

Grb2 SH2 Low 
Affinity 

Decoy Molecules 
High Affinity distance from 

(0,100) 
Low Affinity distance from 

(0,100) 

Radi
us 

8 of 
8 

7 of 
8 

6 of 
8 

8 of 
8 

7 of 
8 

6 of 
8 

8 of 
8 

7 of 
8 

6 of 
8 

8 of 8 7 of 8 6 of 8 8 of 8 7 of 8 6 of 8 

1.00
x 

0 0 
3.27

9 
0 0 

1.03
1 

0 0 
0.08

7 
100 100 96.721 100 100 98.969 

1.33 0 0 52.4 0 0 39.1 0 0 1.04 100 100 47.552 100 100 60.834 
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x 59 75 2 

1.66
x 

0 
18.0
33 

81.9
67 

0 
16.4
95 

84.5
36 

0.0
43 

0.43
4 

6.03
6 

100 81.968 19.016 100 83.506 16.6 

2.00
x 

4.91
8 

77.0
49 

100 
7.21

6 
57.7
32 

91.7
53 

0.0
43 

2.38
8 

15.8
92 

95.082 23.075 15.892 92.784 42.335 17.904 

2.33
x 

42.6
23 

88.5
25 

100 
26.8
04 

82.4
74 

92.7
84 

0.2
61 

6.07
9 

30.0
48 

57.378 12.986 30.048 73.196 18.55 30.902 

2.66
x 

75.4
1 

98.3
61 

100 
58.7
63 

92.7
84 

94.8
45 

1.7
37 

11.3
76 

47.0
26 

24.651 11.493 47.026 41.274 13.472 47.308 

3.00
x 

91.8
03 

100 100 
78.3
51 

92.7
84 

96.9
07 

4.3
86 

21.4
5 

65.6
97 

9.297 21.45 65.697 22.089 22.631 65.77 

 

Table A-29 ROC plot data for Grb2 Crystal pharmacophore model at a cutoff of 7Å. 

CTF7
A 

Grb2 SH2 High 
Affinity 

Grb2 SH2 Low 
Affinity 

Decoy 
Molecules 

High Affinity distance from 
(0,100) 

Low Affinity distance from 
(0,100) 

Radiu
s 

6 of 6 5 of 6 6 of 6 5 of 6 6 of 6 5 of 6 6 of 6 5 of 6 6 of 6 5 of 6 

1.00x 0 21.311 0 24.742 0.043 1.346 100 78.701 100 75.27 

1.33x 1.639 75.41 7.216 75.258 0.13 8.424 98.361 25.993 92.784 26.137 

1.66x 21.311 95.082 29.897 93.814 1.216 
21.92

8 
78.698 22.473 70.114 22.784 

2.00x 80.328 100 73.196 94.845 4.559 
39.55

7 
20.193 39.557 27.189 39.891 

2.33x 96.721 100 89.691 97.938 10.03 
53.49

5 
10.552 53.495 14.383 53.535 

2.66x 100 100 93.814 97.938 
17.06

5 
65.56

7 
17.065 65.567 18.152 65.599 

3.00x 100 100 95.876 98.969 
25.48

8 
73.6 25.488 73.6 25.819 73.607 

 

Table A-30 ROC plot data for Grb2 NMR pharmacophore model. 

NMR 
Grb2 SH2 High 

Affinity 
Grb2 SH2 Low 

Affinity 
Decoy Molecules 

High Affinity distance from 
(0,100) 

Low Affinity distance from 
(0,100) 

Radi
us 

8 of 
8 

7 of 
8 

6 of 
8 

8 of 
8 

7 of 
8 

6 of 
8 

8 of 
8 

7 of 
8 

6 of 
8 

8 of 8 7 of 8 6 of 8 8 of 8 7 of 8 6 of 8 

1.00
x 

0 0 
32.7
87 

0 0 
14.4
33 

0 0 
0.26

1 
100 100 67.214 100 100 85.567 

1.33
x 

0 
18.0
33 

86.8
85 

0 
8.24

7 
72.1
65 

0 
0.17

4 
3.08

3 
100 81.967 13.472 100 91.753 28.005 

1.66
x 

6.55
7 

73.7
7 

100 
4.12

4 
50.5
15 

89.6
91 

0.0
43 

1.04
2 

10.5
51 

93.443 26.251 10.551 95.876 49.496 14.751 

2.00
x 

47.5
41 

91.8
03 

100 
36.0
82 

78.3
51 

92.7
84 

0.3
04 

3.43 
22.4
92 

52.46 8.886 22.492 63.919 21.919 23.621 

2.33
x 

78.6
89 

96.7
21 

100 
64.9
48 

91.7
53 

93.8
14 

1.3
89 

7.51
2 

41.9
45 

21.356 8.196 41.945 35.08 11.155 42.399 

2.66
x 

85.2
46 

100 100 
79.3
81 

92.7
84 

94.8
45 

2.9
96 

14.5
46 

61.5
72 

15.055 14.546 61.572 20.836 16.238 61.787 

3.00
x 

98.3
61 

100 100 
90.7
22 

92.7
84 

95.8
76 

5.6
01 

28.6
58 

78.3
33 

5.836 28.658 78.333 10.838 29.553 78.441 

 

Table A-31 ROC plot data for FKBP12 Crytal Pharmacophore model. 

CR
YS 

FKBP12 High Affinity FKBP12 Low Affinity Decoy Molecules 
High Affinity distance 

from (0,100) 
Low Affinity distance 

from (0,100) 
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Ra
diu

s 

14 
of 
14 

13 
of 
14 

12 
of 
14 

11 
of 
14 

14 
of 
14 

13 
of 
14 

12 
of 
14 

11 
of 
14 

14 
of 
14 

13 
of 
14 

12 
of 
14 

11 
of 
14 

14 
of 
14 

13 
of 
14 

12 
of 
14 

11 
of 
14 

14 
of 
14 

13 
of 
14 

12 
of 
14 

11 
of 
14 

1.0
0x 

0 0 0 0 0 0 0 0 0 0 0 0 
10
0 

10
0 

10
0 

10
0 

10
0 

10
0 

10
0 

10
0 

1.3
3x 

0 0 0 0 0 0 0 0 0 0 0 0 
10
0 

10
0 

10
0 

10
0 

10
0 

10
0 

10
0 

10
0 

1.6
6x 

0 0 0 0 0 0 0 0 0 0 0 0 
10
0 

10
0 

10
0 

10
0 

10
0 

10
0 

10
0 

10
0 

2.0
0x 

0 0 0 0 0 0 0 0 0 0 0 0 
10
0 

10
0 

10
0 

10
0 

10
0 

10
0 

10
0 

10
0 

2.3
3x 

0 0 0 0 0 0 0 0 0 0 0 0 
10
0 

10
0 

10
0 

10
0 

10
0 

10
0 

10
0 

10
0 

2.6
6x 

0 0 0 0 0 0 0 0 0 0 0 0 
10
0 

10
0 

10
0 

10
0 

10
0 

10
0 

10
0 

10
0 

3.0
0x 

0 0 0 0 0 0 0 0 0 0 0 
0.1
29 

10
0 

10
0 

10
0 

10
0 

10
0 

10
0 

10
0 

10
0 

 

CR
YS 

FKBP12 High Affinity FKBP12 Low Affinity Decoy Molecules 
High Affinity distance 

from (0,100) 
Low Affinity distance 

from (0,100) 

ra
di
us 

10 
of 
14 

9 
of 
14 

8 
of 
14 

7 
of 
14 

10 
of 
14 

9 
of 
14 

8 
of 
14 

7 
of 
14 

10 
of 
14 

9 
of 
14 

8 
of 
14 

7 
of 
14 

10 
of 
14 

9 
of 
14 

8 
of 
14 

7 
of 
14 

10 
of 
14 

9 
of 
14 

8 
of 
14 

7 
of 
14 

1.0
0x 

0 0 0 0 0 0 0 0 0 0 0 0 100 
10
0 

10
0 

10
0 

100 
10
0 

10
0 

10
0 

1.3
3x 

0 0 
1.2
82 

12.
82
1 

0 0 0 0 0 0 0 
0.2
15 

100 
10
0 

98.
71
8 

87.
17
9 

100 
10
0 

10
0 

10
0 

1.6
6x 

0 0 
5.1
28 

30.
76
9 

0 0 
1.0
42 

7.2
92 

0 0 
0.1
72 

2.4
1 

100 
10
0 

94.
87
2 

69.
27
3 

100 
10
0 

98.
95
8 

92.
73
9 

2.0
0x 

0 0 
19.
23
1 

47.
43
6 

0 0 
6.2
5 

14.
58
3 

0 
0.0
43 

1.4
2 

7.6
59 

100 
10
0 

80.
78
1 

53.
11
9 

100 
10
0 

93.
76
1 

85.
76 

2.3
3x 

0 
12.
82
1 

34.
61
5 

65.
38
5 

0 
2.0
83 

8.3
33 

26.
04
2 

0.0
43 

0.6
88 

4.3
89 

15.
87
8 

100 
87.
18
2 

65.
53
2 

38.
08
3 

100 
97.
91
9 

91.
77
2 

75.
64
3 

2.6
6x 

5.1
28 

32.
05
1 

48.
71
8 

80.
76
9 

1.0
42 

6.2
5 

13.
54
2 

42.
70
8 

0.2
58 

2.6
68 

8.4
34 

28.
48
5 

94.
872 

68.
00
1 

51.
97
1 

34.
36
9 

98.
958 

93.
78
8 

86.
86
8 

63.
98
3 

3.0
0x 

20.
513 

38.
46
2 

61.
53
8 

88.
46
2 

5.2
08 

9.3
75 

23.
95
8 

54.
16
7 

1.4
63 

5.5
08 

16.
91 

48.
06
4 

79.
5 

61.
78
4 

42.
01
5 

49.
42
9 

94.
803 

90.
79
2 

77.
9 

66.
41
4 

 

Table A-32 ROC plot data for FKBP12 Crystal Pharmacophore model at a cutoff of 9Å. 

CT
F9
A 

FKBP12 High Affinity FKBP12 Low Affinity Decoy Molecules 
High Affinity distance 

from (0,100) 
Low Affinity distance 

from (0,100) 

Ra
diu

s 

13 
of 
13 

12 
of 
13 

11 
of 
13 

10 
of 
13 

13 
of 
13 

12 
of 
13 

11 
of 
13 

10 
of 
13 

N 
13of 
13 

12 
of 
13 

11 
of 
13 

10 
of 
13 

13 
of 
13 

12 
of 
13 

11 
of 
13 

10 
of 
13 

13 
of 
13 

12 
of 
13 

11 
of 
13 

10 
of 
13 

1.0
0x 

0 0 0 0 0 0 0 0 0 0 0 0 
10
0 

10
0 

10
0 

10
0 

10
0 

10
0 

10
0 

10
0 

1.3
3x 

0 0 0 0 0 0 0 0 0 0 0 0 
10
0 

10
0 

10
0 

10
0 

10
0 

10
0 

10
0 

10
0 

1.6
6x 

0 0 0 0 0 0 0 0 0 0 0 0 
10
0 

10
0 

10
0 

10
0 

10
0 

10
0 

10
0 

10
0 

2.0
0x 

0 0 0 0 0 0 0 0 0 0 0 0 
10
0 

10
0 

10
0 

10
0 

10
0 

10
0 

10
0 

10
0 
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2.3
3x 

0 0 0 0 0 0 0 0 0 0 0 
0.0
43 

10
0 

10
0 

10
0 

10
0 

10
0 

10
0 

10
0 

10
0 

2.6
6x 

0 0 0 
3.8
46 

0 0 0 
1.0
42 

0 0 0 
0.2
58 

10
0 

10
0 

10
0 

96.
15
4 

10
0 

10
0 

10
0 

98.
95
8 

3.0
0x 

0 0 0 
16.
66
7 

0 0 0 
5.2
08 

0 0 
0.1
29 

1.4
2 

10
0 

10
0 

10
0 

83.
34
5 

10
0 

10
0 

10
0 

94.
80
3 

 

CTF9
A 

FKBP12 High Affinity FKBP12 Low Affinity Decoy Molecules 
High Affinity distance from 

(0,100) 
Low Affinity distance from 

(0,100) 

Radi
us 

9 of 
13 

8 of 
13 

7 of 
13 

9 of 
13 

8 of 
13 

7 of 
13 

9 of 
13 

8 of 
13 

7 of 
13 

9 of 13 8 of 13 7 of 13 9 of 13 8 of 13 7 of 13 

1.00
x 

0 0 0 0 0 0 0 0 0 100 100 100 100 100 100 

1.33
x 

0 
1.28

2 
12.8
21 

0 0 0 0 0 
0.21

5 
100 98.718 87.179 100 100 100 

1.66
x 

0 
5.12

8 
30.7
69 

0 
1.04

2 
7.29

2 
0 

0.17
2 

2.41 100 94.872 69.273 100 98.958 92.739 

2.00
x 

0 
19.2
31 

47.4
36 

0 
5.20

8 
14.5
83 

0.04
3 

1.42 
7.57

3 
100 80.781 53.107 100 94.803 85.752 

2.33
x 

12.8
21 

34.6
15 

65.3
85 

2.08
3 

8.33
3 

26.0
42 

0.64
5 

4.38
9 

15.8
78 

87.181 65.532 38.083 97.919 91.772 75.643 

2.66
x 

30.7
69 

48.7
18 

80.7
69 

6.25 
13.5
42 

42.7
08 

2.66
8 

8.34
8 

28.3
13 

69.282 51.957 34.227 93.788 86.86 63.906 

3.00
x 

38.4
62 

60.2
56 

88.4
62 

9.37
5 

22.9
17 

54.1
67 

5.42
2 

16.8
24 

48.0
21 

61.776 43.158 49.388 90.787 78.898 66.383 

 

Table A-33 ROC plot data for FKBP12 Crystal pharmacophore model at a cutoff of 8Å. 

CT
F8
A 

FKBP12 High Affinity FKBP12 Low Affinity Decoy Molecules 
High Affinity distance 

from (0,100) 
Low Affinity distance 

from (0,100) 

Ra
diu

s 

10 
of 
10 

9 
of 
10 

8 
of 
10 

7 
of 
10 

10 
of 
10 

9 
of 
10 

8 
of 
10 

7 
of 
10 

10 
of 
10 

9 
of 
10 

8 
of 
10 

7 
of 
10 

10 
of 
10 

9 
of 
10 

8 
of 
10 

7 
of 
10 

10 
of 
10 

9 
of 
10 

8 
of 
10 

7 
of 
10 

1.0
0x 

0 0 0 0 0 0 0 0 0 0 0 0 100 
10
0 

10
0 

10
0 

100 
10
0 

10
0 

10
0 

1.3
3x 

0 0 0 
2.5
64 

0 0 0 0 0 0 0 
0.0
43 

100 
10
0 

10
0 

97.
43
6 

100 
10
0 

10
0 

10
0 

1.6
6x 

0 0 
1.2
82 

19.
23
1 

0 0 
1.0
42 

2.0
83 

0 0 0 
0.4
73 

100 
10
0 

98.
71
8 

80.
77 

100 
10
0 

98.
95
8 

97.
91
8 

2.0
0x 

0 0 
10.
25
6 

34.
61
5 

0 0 
1.0
42 

9.3
75 

0 0 
0.0
86 

2.5
82 

100 
10
0 

89.
74
4 

65.
43
6 

100 
10
0 

98.
95
8 

90.
66
2 

2.3
3x 

0 0 
25.
64
1 

42.
30
8 

0 0 
5.2
08 

15.
62
5 

0 0 
0.9
9 

6.3
68 

100 
10
0 

74.
36
6 

58.
04
2 

100 
10
0 

94.
79
7 

84.
61
5 

2.6
6x 

0 
3.8
46 

33.
33
3 

62.
82
1 

0 0 
7.2
92 

31.
25 

0 
0.0
86 

2.8
4 

13.
33
9 

100 
96.
15
4 

66.
72
7 

39.
49
9 

100 
10
0 

92.
75
1 

70.
03
2 

3.0
0x 

0 
20.
51
3 

41.
02
6 

76.
92
3 

0 
2.0
83 

9.3
75 

43.
75 

0.0
43 

0.6
45 

5.9
38 

25.
73
1 

100 
79.
49 

59.
27
2 

34.
56
3 

100 
97.
91
9 

90.
81
9 

61.
85
6 

 



 

136 
 

Table A-34 ROC plot data for FKBP12 NMR pharmacophore model. 

NMR 
FKBP12 High 

Affinity 
FKBP12 Low 

Affinity 
Decoy 

Molecules 
High Affinity distance from 

(0,100) 
Low Affinity distance from 

(0,100) 

Radiu
s 

4 of 4 3 of 4 4 of 4 3 of 4 4 of 4 3 of 4 4 of 4 3 of 4 4 of 4 3 of 4 

0.10x 0 39.744 0 10.417 0 0.775 100 60.261 100 89.586 

0.20x 0 69.231 0 31.25 0 8.003 100 31.793 100 69.214 

0.30x 0 80.769 0 48.958 0 
21.60

1 
100 28.921 100 55.425 

0.40x 0 91.026 0 64.583 0 
37.69

4 
100 38.748 100 51.722 

0.50x 2.564 98.718 2.083 82.292 0.258 
57.61

6 
97.436 57.63 97.917 60.276 

0.60x 21.795 100 6.25 90.625 0.818 
72.46

1 
78.209 72.461 93.754 73.065 

0.70x 37.179 100 9.375 91.667 2.022 
82.22

9 
62.854 82.229 90.648 82.65 

0.80x 51.282 100 14.583 95.833 3.744 
87.86

6 
48.862 87.866 85.499 87.965 

0.90x 64.103 100 17.708 96.875 6.756 
91.73

8 
36.527 91.738 82.569 91.791 

1.00x 73.077 100 26.042 97.917 10.37 
93.67

5 
28.851 93.675 74.681 93.698 

1.33x 88.462 100 54.167 100 
29.81

9 
97.54

7 
31.973 97.547 54.679 97.547 

1.66x 98.718 100 83.333 100 
48.02

1 
98.75

2 
48.038 98.752 50.831 98.752 

2.00x 100 100 97.917 100 
63.94

1 
99.26

9 
63.941 99.269 63.975 99.269 

2.33x 100 100 98.958 100 
79.30

3 
99.61

3 
79.303 99.613 79.31 99.613 

2.66x 100 100 98.958 100 
88.81

2 
99.65

6 
88.812 99.656 88.818 99.656 

3.00x 100 100 98.958 100 
94.79

3 
99.74

2 
94.793 99.742 94.799 99.742 

 

Table A-35 ROC plot data for PPAR-γ Crystal pharmacophore model. 

CRYS PPAR-γ High 

Affinity 

PPAR-γ Low 

Affinity 

Decoy 
Molecules 

High Affinity distance from 
(0,100) 

Low Affinity distance from 
(0,100) 

Radiu
s 

6 of 6 5 of 6 6 of 6 5 of 6 6 of 6 5 of 6 6 of 6 5 of 6 6 of 6 5 of 6 

1.00x 0 0 0 0 0 0.279 100 100 100 100 

1.33x 0 14.815 0 10.084 0 1.582 100 85.2 100 89.93 

1.66x 0 48.148 0 30.252 0.047 5.863 100 52.182 100 69.994 

2.00x 0 77.778 2.521 48.739 0.14 12.517 100 25.505 97.479 52.767 

2.33x 1.852 90.741 5.882 69.748 1.07 21.638 98.154 23.536 94.124 37.194 

2.66x 5.556 98.148 15.126 78.992 3.164 32.899 94.497 32.951 84.933 39.034 

3.00x 18.519 98.148 42.017 93.277 5.351 44.998 81.657 45.036 58.229 45.497 

 

Table A-36 ROC plot data for PPAR-γ Crystal pharmacophore model at a cutoff of 8Å. 

CTF8 PPAR-γ High PPAR-γ Low Decoy High Affinity distance from Low Affinity distance from 
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A Affinity Affinity Molecules (0,100) (0,100) 

Radiu
s 

5 of 5 4 of 5 5 of 5 4 of 5 5 of 5 4 of 5 5 of 5 4 of 5 5 of 5 4 of 5 

0.10x 0 0 0 0 0 0 100 100 100 100 

0.20x 0 0 0 0 0 0 100 100 100 100 

0.30x 0 0 0 1.681 0 0 100 100 100 98.319 

0.40x 0 0 0 1.681 0 0.14 100 100 100 98.319 

0.50x 0 11.111 0 1.681 0 0.419 100 88.89 100 98.32 

0.60x 0 20.37 0 4.202 0 1.07 100 79.637 100 95.804 

0.70x 0 46.296 0 15.966 0 2.839 100 53.779 100 84.082 

0.80x 0 74.074 0 31.092 0 4.979 100 26.4 100 69.088 

0.90x 0 81.481 0 49.58 0.047 7.538 100 19.994 100 50.98 

1.00x 0 90.741 0 60.504 0.14 
11.07

5 
100 14.436 100 41.019 

1.33x 14.815 98.148 8.403 87.395 0.838 
25.36

1 
85.189 25.429 91.601 28.321 

1.66x 48.148 100 26.05 95.798 3.443 
42.81

1 
51.966 42.811 74.03 43.017 

2.00x 77.778 100 47.059 97.479 9.167 
59.51

6 
24.039 59.516 53.729 59.569 

2.33x 88.889 100 67.227 97.479 17.31 
73.19

7 
20.569 73.197 37.064 73.24 

2.66x 96.296 100 78.151 97.479 
26.98

9 
82.92

2 
27.242 82.922 34.724 82.96 

3.00x 98.148 100 92.437 98.319 
37.59

9 
90.50

7 
37.645 90.507 38.352 90.523 

 

Table A-37 ROC plot data for PPAR-γ crystal pharmacophore model at a cutoff of 7Å. 

CTF7A PPAR-γ High 

Affinity 

PPAR-γ Low 

Affinity 

Decoy 
Molecules 

High Affinity distance from 
(0,100) 

Low Affinity distance from 
(0,100) 

Radiu
s 

4 of 4 4 of 4 4 of 4 4 of 4 4 of 4 

0.10x 0 0 0 100 100 

0.20x 0 0 0 100 100 

0.30x 0 0 0 100 100 

0.40x 0 0 0.093 100 100 

0.50x 1.852 0 0.233 98.148 100 

0.60x 5.556 1.681 0.465 94.445 98.32 

0.70x 20.37 9.244 1.303 79.641 90.765 

0.80x 53.704 20.168 2.047 46.341 79.858 

0.90x 66.667 33.613 3.118 33.479 66.46 

1.00x 72.222 47.059 4.839 28.196 53.162 

1.33x 96.296 85.714 13.774 14.263 19.845 

1.66x 100 92.437 29.223 29.223 30.186 

2.00x 100 93.277 44.393 44.393 44.899 

2.33x 100 95.798 57.236 57.236 57.39 

2.66x 100 96.639 68.218 68.218 68.301 
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3.00x 100 96.639 77.757 77.757 77.83 

 

Table A-38 ROC plot data for PPAR-γ NMR pharmacophore model. 

NMR PPAR-γ High 

Affinity 

PPAR-γ Low 

Affinity 

Decoy 
Molecules 

High Affinity distance from 
(0,100) 

Low Affinity distance from 
(0,100) 

Radiu
s 

3 of 3 3 of 3 3 of 3 3 of 3 3 of 3 

0.10x 0 0.84 0.14 100 99.16 

0.80x 14.815 23.529 12.564 86.107 77.496 

1.00x 22.222 35.294 21.266 80.633 68.111 

1.33x 31.481 69.748 37.599 78.157 48.258 

1.66x 35.185 84.034 54.863 84.917 57.139 

2.00x 38.889 91.597 72.359 94.712 72.845 

2.33x 38.889 93.277 85.389 105.004 85.653 

3.00x 38.889 94.958 97.115 114.743 97.246 
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Appendix B. OPLS parameters for Acetate and Methyl Ammonium 
 

 

Figure B-1 The names of the atoms within the probes A) Acetate and B) Methyl ammonium used in MixMD are presented. 

 

Table B-1 The OPLS force field parameters used for acetate and methyl ammonium in MixMD simulations are provided in the 
table below. 

Molecule Atom Atom Type q(e) σ(Å) Ɛ (kcal/mol) 

Acetate (ACT) C c3 -0.28 3.500 0.066 
H2-H4 hc 0.06 2.500 0.030 

C1 c 0.70 3.750 0.105 
O,O1 O -0.80 2.960 0.210 

Methyl 
Ammonium 

(MAI) 

H1-H3 hn 0.33 0 0 
N n4 -0.30 3.25 0.17 
C c3 0.13 3.500 0.066 

H4-H6 hx 0.06 2.500 0.030 
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Appendix C. Python Script for Calculating MixMD Free energies 
 
#!/usr/bin/env python 
# Script used for calculating the free energy of probes using MixMD 
# Author: Phani Ghanakota, Carlson Lab 
# Contact Information: gphani@umich.edu 
 
from __future__ import division 
from optparse import OptionParser 
import numpy as np 
import os, math, sys 
 
usage = "\n This program calculates the free energy of the probes from MixMD simulations\n This script works 
with the xplor density output from cpptraj (AmberTools14)\ 
         \nSAMPLE COMMAND\n\ 
   python MixMD_Free_Energy_Calc.py --solvent ACN --xplor_maps 1zys_1P3_16.0-20.0ns_1P3_COM.xplor 
--num_snapshots 25000\ 
 " 
parser = OptionParser(usage) 
parser.add_option("-s", "--solvent", dest="solvent", 
                  help="The solvent used in MixMD simulations whose free energies will be calculated", metavar="SOLV") 
parser.add_option("-d", "--dir", dest="dir", default = "NONE", 
                  help="The directory where the xplormaps are located, if not given, it assumes the maps are in the 
current directory", metavar="DIR") 
parser.add_option("-n", "--num_snapshots", dest="num_snapshots", type=int, 
                  help="The number of MD snapshots used to create the xplor file", metavar="NUMSNAPSHOTS") 
parser.add_option("-r", "--xplor_maps", dest="xplor_maps", 
                  help="comma separated names of the xplor maps on which this script should run", 
metavar="XPLORMAPS") 
parser.add_option("-t", "--simulation_temp", dest="temp",default=300, type=float, 
                  help="Temperature in Kelvin used for the MixMD simulations", metavar="TEMP") 
parser.add_option("-o", "--outputfile", dest="outfile", default = "MixMD_energies.pdb", 
                  help="The name of the output file into which the MixMD energies are saved", metavar="OUTFILE") 
parser.add_option("-p", "--num_hotspots", dest="num_hotspots", default = 50, type=int, 
                  help="The number of MixMD hotspots to save", metavar="HOTSPOT") 
 
# CONSTANTS ##### 
# List of currently supported probes 
probes = ["ACN", "IPA", "1P3"] 
# Volume of the probe used for calculating occupancy of probe 
probe_volume =  {'ACN': 47.1564, 
   'IPA': 68.7399, 
   '1P3': 75.2784, 
   'H2O': 16.5030} 
# Expected Occupancy calculated using 7 systems upon which MixMD was performed 
expected_occupancy_per_gpt = {'ACN':0.000071094, 
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         'IPA':0.000051085, 
         '1P3':0.000046839, 
         'H2O':0.004111400} 
# The script currently expects an xplor maps obtained from binning in a cube 
################# 
 
class XPLORHeader(object): 
    '''Simple class to represent an XPLOR file header 
    '''  
     
    def __init__(self, headertext): 
        """ 
         
        Arguments: 
        - `headertext`:text string containing the header 
        """ 
 
        # Here's an example header, for reference: 
        # 
        #This line is ignored 
        #       1 
        #rdparm generated grid density 
        #     200     -99     100     200     -99     100     200     -99     100 
        #     100.000     100.000     100.000      90.000      90.000      90.000 
        #ZYX 
        #-99 
 
 ''' 
 There is a discrepancy between the starting grid point reported in the header 
 and after the ZYX in the xplor file output by cpptraj Ambertools 14 version. 
 Cross checking with results from earlier calculations reveals that the value 
 after ZYX is wrong and should be change to match what is mentioned in the  
 header. Future updates to this script must be done if and when "DataIO_Xplor.cpp"  
 file in cpptraj changes. 
 ''' 
 
        self.headertext = headertext 
        headerlines = headertext.split('\n') 
        assert len(headerlines) == 7 
        assert headerlines[6] == '' # .split('\n') gives a blank entry 
                                    # after the last carriage return. 
 
        gridsize = [int(i) for i in headerlines[3].split()] 
        numptsx, numptsy, numptsz = gridsize[0], gridsize[3], gridsize[6] 
        firstx, firsty, firstz    = gridsize[1], gridsize[4], gridsize[7] 
        lastx, lasty, lastz       = gridsize[2], gridsize[5], gridsize[8] 
 
 gridlength = [float(i) for i in headerlines[4].split()] 
 gridlenx, gridleny, gridlenz = gridlength[0], gridlength[1], gridlength[2] 
 
 
        # Maybe this headerlines[4] is physical spacing and angles? 
        # It sounds lke you don't actually need to know for your purposes. 
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        something = [float(i) for i in headerlines[4].split()] 
        assert headerlines[5].strip() == 'ZYX' 
 
 # This assertion is necesary because I am not sure this  
 # algorithm might work for any grid box other than a cube!  
 assert(numptsx == numptsy == numptsz) 
 assert(gridlenx == gridleny == gridlenz) 
  
 # The length of each grid cube would be  
 grid_unit_length = gridlenx/numptsx   
    
        self.numptsx = numptsx 
        self.numptsy = numptsy 
        self.numptsz = numptsz 
        self.firstx = firstx 
        self.firsty = firsty 
        self.firstz = firstz 
        self.lastx = lastx 
        self.lasty = lasty 
        self.lastz = lastz 
        self.something = something 
 self.grid_unit_length = grid_unit_length 
 
 
class XPLORFile(object): 
 '''Read XPLOR ZYX data format into a dict 
       In order to save memory only those points 
       with no zero grid values will make it into the  
       dictionary!  
 '''  
 def __init__(self, fname): 
  data = {}  
  headertext = ''  
  f = open(fname) 
  # 3 junk lines 
  for i in range(6): 
   headertext = headertext + f.next() 
  header = XPLORHeader(headertext) 
   
  # Now we actually read in the data. 
  # I could be wrong, but I'm assuming the ZYX format means: 
  # 1. write the Z value on a line by itself. 
  # 2. For each Y value, write out the numptsx X values in groups of 6. 
  zs = range(header.firstz,header.lastz+1) 
  ys = range(header.firsty,header.lasty+1) 
  xs = range(header.firstx,header.lastx+1) 
  for z in zs: 
      assert int(f.next()) == z+1 
      for y in ys: 
          values = [] 
          for i in range(int(np.ceil(header.numptsy/6))): # 6 values per line 
           values.extend([float(j) for j in f.next().split()]) 
   assert len(values) == header.numptsx 
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   for (xi,x) in enumerate(xs): 
               data[(x,y,z)] = values[xi] # MODIFIED FROM BELOW TO ALLOW NON ZERO VALUES 
    #if values[xi]:  
               # data[(x,y,z)] = values[xi] 
  self.data = data 
         self.header = header 
 
class hotspot(): 
 ''' 
 A class to hold information regarding MixMD hotspots 
 ''' 
 
 def __init__(self,grid_point): 
  # The center remains the same regardless of probeocc or volocc 
  self.gridx,self.gridy,self.gridz = grid_point 
  self.realx = 0 
  self.realy = 0 
  self.realz = 0 
 
  # Stats for the probeocc (This is for the volume of the probe) 
  self.cum_gvalue = 0 
  self.cum_enpts  = 0 # This will be the number of grid points with value greater that the average 
  self.cum_ngpts  = 0 
  self.cum_nzpts  = 0 
  self.cum_zpts   = 0 
  self.cum_nanpts = 0 
  self.occ   = 0 
  self.free_energ = 0 
  # Each spot in the spots list will have a tuple of the real x,y,z cooridnates and the 
  # grid bin count / num snapshots -> the occupancy of that grid point! 
  self.spots   = [] 
 
 def __lt__(self,other): 
  #return self.voloccrad < other.voloccrad 
  return self.occ < other.occ 
 
def get_enclosing_box_indices(k,r): 
 ''' 
 get all the indices that lie within an enclosing box 
 ''' 
 list_of_indices = [] 
 for x in range(k[0]-r,k[0]+r+1): 
  for y in range(k[1]-r, k[1]+r+1): 
   for z in range(k[2]-r,k[2]+r+1): 
    list_of_indices.append((x,y,z)) 
 return list_of_indices 
 
def write_pdb_hotspots(file_out_name,input_hotspot_list,probe,verbose=0): 
 serno = 1 
 resno = 1 
 finalout = open(file_out_name, 'w') 
 # We have to sort the input hotspot list based on the radius, 
 # the smaller the radius the tighter the binding and the lesser the entropy!! 
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 if verbose: 
 
 finalout.write("ATOM,SERNO,ATOM_NAME,RES_NAME,CHAIN_NAME,RES_NUM,X,Y,Z,OCC,BFACTOR,\tO
CC_ENERG,\tOCC,\tCUM_NGPTS,\tCUM_NZPTS,\tCUM_ZPTS,\tCUM_NANPTS,\tCUM_ENPTS\n") 
 # The hotspots will be written starting with the probe with the most favourable free energy 
        for spot in sorted(input_hotspot_list,key=lambda x: x.free_energ): 
                #print "location (%s,%s,%s) --> volume occupancy %s"%(spot.realx,spot.realy,spot.realz,spot.volocc) 
  if verbose == 0: 
                 finalout.write("%-6s%5d  %-4s%3s %s%4d    %8.3f%8.3f%8.3f%6.2f 
%f\n"%("ATOM",serno,"XX","UNX","A",resno, 
             
        spot.realx, 
             
        spot.realy, 
             
        spot.realz, 
             
        0, 
                                                               
spot.free_energ)) 
  else: 
   finalout.write("#REMARK SITE %03d\n"%resno) 
                 finalout.write("%-6s%5d  %-4s%3s %s%4d    
%8.3f%8.3f%8.3f%6.2f%6.2f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\n"%("ATOM",serno,"XX","UNX","A",resno, 
             
        spot.realx, 
             
        spot.realy, 
             
        spot.realz, 
             
        0,0, 
                                                               
spot.free_energ, 
             
        spot.occ, 
             
        spot.cum_ngpts, 
             
        spot.cum_nzpts, 
             
        spot.cum_zpts, 
             
        spot.cum_nanpts, 
             
        spot.cum_enpts)) 
  resno += 1 
        finalout.close() 
 
def generate_probe_occ_map_to_volocc(map,probe,num_snapshots,file_out_name): 
 ''' 
 This function performs the bulk of the free energy calculation from MixMD simulations 
 ''' 
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 grid = XPLORFile(map) 
 
 ############################################################################# 
 # Calculate the radius in grid dimensions 
 try: 
                volume_of_sphere = probe_volume[probe] 
        except KeyError: 
                print "error, there was a mistake in recognizing the probe" 
                sys.exit() 
    radius_of_sphere = math.pow(3 * volume_of_sphere /(4.0 * math.pi), 1/3.0) 
 sqr_radius_of_sphere = math.pow(radius_of_sphere, 2) 
 # This will make it faster to compare distances  
 # Now we need to convert these into values that make sense in the grid dimensions!! 
 # i.e.., from angstroms to units in the grid box unit length 
 grid_radius_of_sphere = radius_of_sphere/grid.header.grid_unit_length  
 grid_sqr_radius_of_sphere = math.pow(radius_of_sphere/grid.header.grid_unit_length, 2) 
 print "The radius of the sphere is %f"%radius_of_sphere 
  ################################################################################ 
 
 gpts_loc = {} # This is the dictionary of the center of all the probes 
        # that constantly gets updated as and when new probes are 
        # created.  
        # This dictionary holds hotspot objects 
 
 hotspot_list   = []  # what is hotspot list?? 
 
 for gpt in sorted(grid.data, key=lambda x: grid.data[x], reverse=True): 
 
  continue_flag     = 0 # This flag is used to check if the newly created point clashes with an older 
one 
  cum_gvalue = 0 # The cumulative grid value,in older versions called final_grid_value 
  cum_enpts  = 0 # The number of points with occupancy 
  cum_ngpts  = 0 # The total no. of points that are required to add to 1 
  cum_nzpts  = 0 # The total number of non zero points 
  cum_zpts   = 0 # The total number of zero points 
  cum_nanpts = 0 # The total number of removed points 
 
  # There can be a possible scenario where during an earlier grid point (higher grid value), 
  # the one near it is removed (i.e.., added) and this does not get updated in the for loop above 
  # so we need to check if that data point has been removed by checking if it has the value 'nan'  
  if math.isnan(grid.data[gpt]): 
   continue 
 
  # We check to make sure that the new probe we create does not overlap with the old one! 
  for chkpt in gpts_loc: 
   #print "chkpt is ", chkpt 
   if ((chkpt[0]-gpt[0])**2 + (chkpt[1]-gpt[1])**2 + (chkpt[2]-gpt[2])**2) < 4 * 
grid_sqr_radius_of_sphere: 
    continue_flag = 1 
    break 
  if continue_flag == 1: 
   # We "continue" since creating a probe from this grid point would lead to two probes  
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   # clashing with each other, so while we prevent the creation of a probe here we 
   # do not delete the grid point thereby making it available for use by probes 
   # created at other centers 
   continue # This continue is for the gpt under question 
 
  # I had to do an int on the radius_of_sphere, since, the grid points are integers,  
  # so in order to avoid confusion I converted it to int, instead making the grid points 
  # float would be better. 
 
   new_hotspot = hotspot(gpt) # what about the realx, realy, realz???? 
 
  for index in get_enclosing_box_indices(gpt,int(math.ceil(grid_radius_of_sphere))): 
   # The get_enlcosing_box_indices may also return some non 
   # existent indices, but since we check to see if it is  
   # the "data" dictionary, it shouldn't matter. 
   # This scenario occurs more commonly for grid indices at the 
   # corner of the entire grid! Since we deal with the top few sites 
   # We will not encounter these out of the grid ones, however, we  
   # may need to implement a variable to track these later on! 
 
   if index in grid.data: 
    # Need to check if this index point is inside the sphere 
    if ((index[0]-gpt[0])**2 + (index[1]-gpt[1])**2 + (index[2]-gpt[2])**2) <= 
grid_sqr_radius_of_sphere: 
     cum_ngpts += 1 
     # I honestly think we will never hit the first condition! 
     if math.isnan(grid.data[index]): 
      cum_nanpts += 1  
      new_hotspot.spots.append((index[0] * 
grid.header.grid_unit_length, 
                                                                  index[1] * grid.header.grid_unit_length, 
                                                                  index[2] * grid.header.grid_unit_length, 
                                                                  0)) 
     elif grid.data[index] != 0: 
      cum_nzpts  += 1 
      cum_gvalue += grid.data[index] 
      if grid.data[index]/num_snapshots > 
expected_occupancy_per_gpt[probe]: 
       cum_enpts += 1 
     else: 
      cum_zpts += 1 
 
     new_hotspot.spots.append((index[0] * grid.header.grid_unit_length, 
                                                                  index[1] * grid.header.grid_unit_length, 
                                                                  index[2] * grid.header.grid_unit_length, 
                                                                  grid.data[index]/num_snapshots)) 
 
     # we will make use of 'nan' to tell us that we have finished reading the 
data point! 
     if math.isnan(grid.data[index]): 
      continue 
     else: 
      grid.data[index] = float('nan') #  Points that we processed will 
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have the grid vaule of nan 
 
 
  #print gpt, " grid value ", cum_gvalue/num_snapshots 
  gpts_loc[gpt] = cum_gvalue 
  #print 
"ngpts,nzpts,zpts,nanpts",cum_volocc_ngpts,cum_volocc_nzpts,cum_volocc_zpts,cum_volocc_nanpts 
  new_hotspot.cum_ngpts  = cum_ngpts 
  new_hotspot.cum_gvalue = cum_gvalue 
  new_hotspot.cum_enpts  = cum_enpts 
  new_hotspot.cum_nzpts  = cum_nzpts 
  new_hotspot.cum_zpts   = cum_zpts 
  new_hotspot.cum_nanpts = cum_nanpts 
  #print 
"ngpts,nzpts,zpts,nanpts",new_hotspot.cum_volocc_ngpts,new_hotspot.cum_volocc_nzpts,new_hotspot.cum_vol
occ_zpts,new_hotspot.cum_volocc_nanpts 
  new_hotspot.occ = cum_gvalue/num_snapshots 
  new_hotspot.realx =  gpt[0] * grid.header.grid_unit_length 
  new_hotspot.realy =  gpt[1] * grid.header.grid_unit_length 
  new_hotspot.realz =  gpt[2] * grid.header.grid_unit_length 
  new_hotspot.free_energ = -RT_VALUE * 
math.log((new_hotspot.occ/(expected_occupancy_per_gpt[probe]*new_hotspot.cum_ngpts)),math.e) 
  hotspot_list.append(new_hotspot) 
 
  print "hotspot number %03d out of %03d is being 
processed"%(len(hotspot_list),NUM_HOTSPOTS_TO_WRITE) 
 
  if len(hotspot_list) >= NUM_HOTSPOTS_TO_WRITE: 
   break 
 
 # Now write all the hotspot information 
 write_pdb_hotspots(file_out_name,hotspot_list,probe) 
 
if __name__ == '__main__': 
 
 (options, args) = parser.parse_args() 
 # Number of hotspots to report 
 NUM_HOTSPOTS_TO_WRITE = options.num_hotspots 
 
 RT_VALUE = 1.9872041 * 0.001 * options.temp # The units are kcal/mol and 10^-3 for the R is shown as 
0.001 
 
 # Verfiy that we support this probe 
 probe = options.solvent 
 if probe not in probes: 
  sys.exit("The probe %s is currently not supported. Exiting...."%probe) 
 
 # Process the xplor maps 
 maplist = options.xplor_maps.split(",") 
 if options.dir != "NONE": 
  maplist = [os.path.join(options.dir,map) for map in maplist] 
  
 print "List of xplor files being processed are .... ", maplist 



 

148 
 

 for map in maplist: 
  "Processing xplor file %s"%map 
  if not os.path.exists(map): 
   print "File %s does not exists skipping it" 
   continue 
  generate_probe_occ_map_to_volocc(map,probe,options.num_snapshots,options.outfile) 
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Appendix D. Python Script for Calculating MixMD Entropies 
 
 
#!/usr/bie/env python 
# Script used for calculating a relative ranking of the entropy of probes using MixMD 
# Author: Phani Ghanakota, Carlson Lab 
# Contact Information: gphani@umich.edu 
 
from __future__ import division 
from optparse import OptionParser 
from scipy.stats.kde import gaussian_kde 
import matplotlib as mpl 
mpl.use('Agg') 
import matplotlib.pyplot as plt 
import numpy as np 
import os, math, sys 
 
usage = "\n This program normalizes the xplor map at the level of a single probe location\ 
  \n It will take in a list of x,y,z coordinates in a file which correspond to the location of\ 
  \n favourable sites, and normalizes the single atom xplor density map\ 
  \n This script works with the xplor density output from cpptraj (AmberTools14)\ 
  \n This script works on the xplor density files generated from single atom binning\ 
  \n Input the free energy output file from MixMD_Free_Energy_Calc.py\ 
         \n SAMPLE COMMAND\n\ 
      python MixMD_Entropy_Per_Probe_Normalized_Maps.py --solvent ACN --hotspot_file=xyz.pdb --
xplor_maps normalized_per_probe_xplor --num_snapshots 25000\ 
 " 
parser = OptionParser(usage) 
parser.add_option("-s", "--solvent", dest="solvent", 
                  help="The solvent used in MixMD simulations", metavar="SOLV") 
parser.add_option("-d", "--dir", dest="dir", default = "NONE", 
                  help="The directory where the xplormap being processed is located, if not given, it assumes the maps 
are in the current directory", metavar="DIR") 
parser.add_option("-n", "--num_snapshots", dest="num_snapshots", type=int, 
                  help="The number of MD snapshots used to create the xplor file", metavar="NUMSNAPSHOTS") 
parser.add_option("-r", "--xplor_map", dest="xplor_map", 
                  help="Name of the xplor map on which this script should run", metavar="XPLORMAPS") 
parser.add_option("-o", "--outputfile", dest="outfile", default = "MixMD_entropies.pdb", 
                  help="The name of the output file into which the MixMD entropies are saved", metavar="OUTFILE") 
parser.add_option("-p", "--num_hotspots", dest="num_hotspots", default = 50, type=int, 
                  help="The number of MixMD hotspots to save", metavar="HOTSPOT") 
parser.add_option("-i", "--hotspotfile", dest="hotspot_file", 
                  help="The file generated by the MixMD_Free_Energy_Calc.py that contains the energies of the probes 
used in MixMD", metavar="ENERGFILE") 
 
# CONSTANTS ##### 
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# List of currently supported probes 
probes = ["ACN", "IPA", "1P3"] 
# Volume of the probe used for calculating occupancy of probe 
probe_volume =  {'ACN': 47.1564, 
   'IPA': 68.7399, 
   '1P3': 75.2784, 
   'H2O': 16.5030} 
 
expected_occupancy_per_gpt = {'ACN':0.000071094, 
         'IPA':0.000051085, 
         '1P3':0.000046839, 
         'H2O':0.004111400} 
# The script currently expects an xplor maps obtained from binning in a cube 
################# 
def splitseq(seq,size): 
    """ Split up seq in pieces of size 
 
    Arguments: 
    - `seq`:the sequence 
    - `size`:the size of the chunks. 
 
    In [34]: u.splitseq(range(30),10) 
    Out[34]: 
    [[0, 1, 2, 3, 4, 5, 6, 7, 8, 9], 
    [10, 11, 12, 13, 14, 15, 16, 17, 18, 19], 
    [20, 21, 22, 23, 24, 25, 26, 27, 28, 29]] 
 
    In [35]: u.splitseq(range(34),10) 
    Out[35]: 
    [[0, 1, 2, 3, 4, 5, 6, 7, 8, 9], 
    [10, 11, 12, 13, 14, 15, 16, 17, 18, 19], 
    [20, 21, 22, 23, 24, 25, 26, 27, 28, 29], 
    [30, 31, 32, 33]] 
    """ 
    try: 
        return [seq[i:i+size] for i in range(0, len(seq), size)] 
    except ValueError: 
        print "Cannot split this seq",seq 
        print "Into this size",size 
        raise 
 
class XPLORHeader(object): 
    '''Simple class to represent an XPLOR file header 
    '''  
     
    def __init__(self, headertext): 
        """ 
         
        Arguments: 
        - `headertext`:text string containing the header 
        """ 
 
        # Here's an example header, for reference: 



 

151 
 

        # 
        #This line is ignored 
        #       1 
        #rdparm generated grid density 
        #     200     -99     100     200     -99     100     200     -99     100 
        #     100.000     100.000     100.000      90.000      90.000      90.000 
        #ZYX 
        #-99 
 
        ''' 
        There is a discrepancy between the starting grid point reported in the header 
        and after the ZYX in the xplor file output by cpptraj Ambertools 14 version. 
        Cross checking with results from earlier calculations reveals that the value 
        after ZYX is wrong and should be change to match what is mentioned in the 
        header. Future updates to this script must be done if and when "DataIO_Xplor.cpp" 
        file in cpptraj changes. 
        ''' 
 
        self.headertext = headertext 
        headerlines = headertext.split('\n') 
        assert len(headerlines) == 7 
        assert headerlines[6] == '' # .split('\n') gives a blank entry 
                                    # after the last carriage return. 
 
        gridsize = [int(i) for i in headerlines[3].split()] 
        numptsx, numptsy, numptsz = gridsize[0], gridsize[3], gridsize[6] 
        firstx, firsty, firstz    = gridsize[1], gridsize[4], gridsize[7] 
        lastx, lasty, lastz       = gridsize[2], gridsize[5], gridsize[8] 
 
 gridlength = [float(i) for i in headerlines[4].split()] 
 gridlenx, gridleny, gridlenz = gridlength[0], gridlength[1], gridlength[2] 
 
 
        # Maybe this headerlines[4] is physical spacing and angles? 
        # It sounds lke you don't actually need to know for your purposes. 
        something = [float(i) for i in headerlines[4].split()] 
        assert headerlines[5].strip() == 'ZYX' 
 
 # This assertion is necesary because I am not sure this  
 # algorithm might work for any grid box other than a cube!  
 assert(numptsx == numptsy == numptsz) 
 assert(gridlenx == gridleny == gridlenz) 
  
 # The length of each grid cube would be  
 grid_unit_length = gridlenx/numptsx   
    
        self.numptsx = numptsx 
        self.numptsy = numptsy 
        self.numptsz = numptsz 
        self.firstx = firstx 
        self.firsty = firsty 
        self.firstz = firstz 
        self.lastx = lastx 
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        self.lasty = lasty 
        self.lastz = lastz 
        self.something = something 
 self.grid_unit_length = grid_unit_length 
 
 
class XPLORFile(object): 
 '''Read XPLOR ZYX data format into a dict 
       In order to save memory only those points 
       with no zero grid values will make it into the  
       dictionary!  
 '''  
 def __init__(self, fname): 
  data = {}  
  headertext = ''  
  f = open(fname) 
  # 3 junk lines 
  for i in range(6): 
   headertext = headertext + f.next() 
  header = XPLORHeader(headertext) 
   
  # Now we actually read in the data. 
  # I could be wrong, but I'm assuming the ZYX format means: 
  # 1. write the Z value on a line by itself. 
  # 2. For each Y value, write out the numptsx X values in groups of 6. 
  zs = range(header.firstz,header.lastz+1) 
  ys = range(header.firsty,header.lasty+1) 
  xs = range(header.firstx,header.lastx+1) 
  for z in zs: 
      assert int(f.next()) == z+100 
      for y in ys: 
          values = [] 
          for i in range(int(np.ceil(header.numptsy/6))): # 6 values per line 
           values.extend([float(j) for j in f.next().split()]) 
   assert len(values) == header.numptsx 
   for (xi,x) in enumerate(xs): 
               data[(x,y,z)] = values[xi] # MODIFIED FROM BELOW TO ALLOW NON ZERO VALUES as 
Heather want's a count of this!! 
    #if values[xi]:  
               # data[(x,y,z)] = values[xi] 
  self.data = data 
         self.header = header 
 
 
 def write(self,fname): 
     """ 
  
     Arguments: 
     - `fname`:name of file to write. 
     """ 
     f = file(fname,'w') 
     f.write(self.header.headertext) 
     # This is based on those same assumptions of how the ZYX 
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     # format actually works, so it could easily be wrong. 
     zs = range(self.header.firstz,self.header.lastz+1) 
     ys = range(self.header.firsty,self.header.lasty+1) 
     xs = range(self.header.firstx,self.header.lastx+1) 
     for z in zs: 
      fm = z + 100 
         f.write('%8i\n'%fm) 
         for y in ys: 
             values = [] 
             for x in xs: 
                 values.append(self.data[(x,y,z)]) 
             for chunk in splitseq(values,6): 
                 line = ['%12.5f'%c for c in chunk] 
                 line = ''.join(line) + '\n' 
                 f.write(line) 
     f.close() 
 
 
class hotspot(): 
 ''' 
 A class to hold information regarding MixMD hotspots 
 ''' 
 
 def __init__(self,grid_point): 
  # The center remains the same regardless of probeocc or volocc 
  self.gridx,self.gridy,self.gridz = grid_point 
  self.realx = 0 
  self.realy = 0 
  self.realz = 0 
 
  # Stats for the probeocc (This is for the volume of the probe) 
  self.cum_gvalue = 0 
  self.cum_enpts  = 0 # This will be the number of grid points with value greater that the average 
  self.cum_ngpts  = 0 
  self.cum_nzpts  = 0 
  self.cum_zpts   = 0 
  self.cum_nanpts = 0 
  self.occ   = 0 
  #self.free_energ = 0 
  # Each spot in the spots list will have a tuple of the real x,y,z cooridnates and the 
  # grid bin count / num snapshots -> the occupancy of that grid point! 
  self.spots   = [] 
 
 def __lt__(self,other): 
  #return self.voloccrad < other.voloccrad 
  return self.occ < other.occ 
 
def get_enclosing_box_indices(k,r): 
 ''' 
 get all the indices that lie within an enclosing box 
 ''' 
 list_of_indices = [] 
 for x in range(k[0]-r,k[0]+r+1): 
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  for y in range(k[1]-r, k[1]+r+1): 
   for z in range(k[2]-r,k[2]+r+1): 
    list_of_indices.append((x,y,z)) 
 return list_of_indices 
 
 
def entropy_ranking(file_out_name,input_hotspot_list,probe): 
        ''' 
        This section outputs the atom occupancy and entropy of the top x hotspots 
 probaility is defined as the occupancy at each grid point divided by the total  
 occupancy of the probe volume it belongs to..... 
        ''' 
        finalout = open(file_out_name, 'w') 
        finalout.write("%s%s%s%s%s\n"%("X".center(14), 
"Y".center(14),"Z".center(14),"Occupancy[Atom]".center(14)," Entropy[sum(plnp)]".center(14))) 
        for spot in input_hotspot_list: 
  data = [ind_spot[-1] for ind_spot in spot.spots] 
  entp = 0 
  for datapoint in data: 
          probability = (datapoint/spot.occ) 
          if probability != 0: 
                  entp += probability*math.log(probability) 
  print len(data) 
 
 finalout.write("%14.3f%14.3f%14.3f%14.3f%20.6f\n"%(spot.realx,spot.realy,spot.realz,spot.occ,entp)) 
        finalout.close() 
 
def plot_occupancy_hist(file_out_name,input_hotspot_list,probe): 
 
 for spot_num,spot in enumerate(sorted(input_hotspot_list, key=lambda x: x.occ, reverse=True)): 
  spot_num += 1 
 
  data = [ind_spot[-1] for ind_spot in spot.spots] 
  # generated a density class 
  density = gaussian_kde(data) 
 
  # set the covariance_factor, lower means more detail 
  density.covariance_factor = lambda : .25 
  density._compute_covariance() 
 
  # generate a range of x values from min to max 
  xs = np.linspace(min(data),max(data),200) 
 
  # fill y values using density class 
  ys = density(xs) 
  plt.plot(xs,density(xs)) 
 
  plt.ylim(0,500) 
  plt.xlim(0,0.035) 
  plt.title("%s %s"%(protein_dir[pdb],probe)) 
  plt.annotate("HOTSPOT number %02d\nSD %s"%(spot_num, np.std(data)), xy=(0.05, 0.85), 
xycoords='axes fraction') 
  plt.savefig("%s_hist_hotspot_%02d.png"%(file_out_name,spot_num)) 
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  plt.clf() 
  
def generate_probe_occ_map_to_volocc(map,probe,num_snapshots,list_of_sites,file_out_name): 
 ''' 
 This function performs the bulk of the calculations from MixMD simulations 
 ''' 
 
 grid = XPLORFile(map) 
 
 ############################################################################# 
 # Calculate the radius in grid dimensions 
 try: 
                volume_of_sphere = probe_volume[probe] 
        except KeyError: 
                print "error, there was a mistake in recognizing the probe" 
                sys.exit() 
    radius_of_sphere = math.pow(3 * volume_of_sphere /(4.0 * math.pi), 1/3.0) 
 sqr_radius_of_sphere = math.pow(radius_of_sphere, 2) 
 # This will make it faster to compare distances  
 # Now we need to convert these into values that make sense in the grid dimensions!! 
 # i.e.., from angstroms to units in the grid box unit length 
 grid_radius_of_sphere = radius_of_sphere/grid.header.grid_unit_length  
 grid_sqr_radius_of_sphere = math.pow(radius_of_sphere/grid.header.grid_unit_length, 2) 
 print "The radius of the sphere is %f"%radius_of_sphere 
  ################################################################################ 
 
 gpts_loc = {} # This is the dictionary of the center of all the probes 
        # that constantly gets updated as and when new probes are 
        # created.  
        # This dictionary holds hotspot objects 
 
 hotspot_list   = []  # what is hotspot list?? 
 
 #for gpt in sorted(grid.data, key=lambda x: grid.data[x], reverse=True): 
 for gpt in 
[(int(pt[0]/grid.header.grid_unit_length),int(pt[1]/grid.header.grid_unit_length),int(pt[2]/grid.header.grid_unit_le
ngth)) for pt in list_of_sites]: 
  #print "Processing entropy for the grid point ", gpt 
 
  continue_flag     = 0 # This flag is used to check if the newly created point clashes with an older 
one 
  cum_gvalue = 0 # The cumulative grid value,in older versions called final_grid_value 
  cum_enpts  = 0 # The number of points with occupancy 
  cum_ngpts  = 0 # The total no. of points that are required to add to 1 
  cum_nzpts  = 0 # The total number of non zero points 
  cum_zpts   = 0 # The total number of zero points 
  cum_nanpts = 0 # The total number of removed points 
 
  # There can be a possible scenario where during an earlier grid point (higher grid value), 
  # the one near it is removed (i.e.., added) and this does not get updated in the for loop above 
  # so we need to check if that data point has been removed by checking if it has the value 'nan'  
  if math.isnan(grid.data[gpt]): 
   continue 
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  # We check to make sure that the new probe we create does not overlap with the old one! 
  for chkpt in gpts_loc: 
   #print "chkpt is ", chkpt 
   if ((chkpt[0]-gpt[0])**2 + (chkpt[1]-gpt[1])**2 + (chkpt[2]-gpt[2])**2) < 4 * 
grid_sqr_radius_of_sphere: 
    continue_flag = 1 
    break 
  if continue_flag == 1: 
   # We "continue" since creating a probe from this grid point would lead to two probes  
   # clashing with each other, so while we prevent the creation of a probe here we 
   # do not delete the grid point thereby making it available for use by probes 
   # created at other centers 
   continue # This continue is for the gpt under question 
 
  # I had to do an int on the radius_of_sphere, since, the grid points are integers,  
  # so in order to avoid confusion I converted it to int, instead making the grid points 
  # float would be better. 
 
   new_hotspot = hotspot(gpt) # what about the realx, realy, realz???? 
 
  for index in get_enclosing_box_indices(gpt,int(math.ceil(grid_radius_of_sphere))): 
   # The get_enlcosing_box_indices may also return some non 
   # existent indices, but since we check to see if it is  
   # the "data" dictionary, it shouldn't matter. 
   # This scenario occurs more commonly for grid indices at the 
   # corner of the entire grid! Since we deal with the top few sites 
   # We will not encounter these out of the grid ones, however, we  
   # may need to implement a variable to track these later on! 
 
   if index in grid.data: 
    # Need to check if this index point is inside the sphere 
    if ((index[0]-gpt[0])**2 + (index[1]-gpt[1])**2 + (index[2]-gpt[2])**2) <= 
grid_sqr_radius_of_sphere: 
     cum_ngpts += 1 
     # I honestly think we will never hit the first condition! 
     if math.isnan(grid.data[index]): 
      cum_nanpts += 1  
      new_hotspot.spots.append((index[0] * 
grid.header.grid_unit_length, 
                                                                  index[1] * grid.header.grid_unit_length, 
                                                                  index[2] * grid.header.grid_unit_length, 
                                                                  0)) 
     elif grid.data[index] != 0: 
      cum_nzpts  += 1 
      cum_gvalue += grid.data[index] 
      if grid.data[index]/num_snapshots > 
expected_occupancy_per_gpt[probe]: 
       cum_enpts += 1 
     else: 
      cum_zpts += 1 
 
     new_hotspot.spots.append((index[0] * grid.header.grid_unit_length, 
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                                                                  index[1] * grid.header.grid_unit_length, 
                                                                  index[2] * grid.header.grid_unit_length, 
                                                                  grid.data[index]/num_snapshots)) 
 
     # we will make use of 'nan' to tell us that we have finished reading the 
data point! 
     if math.isnan(grid.data[index]): 
      continue 
     else: 
      grid.data[index] = float('nan') #  Points that we processed will 
have the grid vaule of nan 
 
 
  #print gpt, " grid value ", cum_gvalue/num_snapshots 
  gpts_loc[gpt] = cum_gvalue 
  #print 
"ngpts,nzpts,zpts,nanpts",cum_volocc_ngpts,cum_volocc_nzpts,cum_volocc_zpts,cum_volocc_nanpts 
  new_hotspot.cum_ngpts  = cum_ngpts 
  new_hotspot.cum_gvalue = cum_gvalue 
  new_hotspot.cum_enpts  = cum_enpts 
  new_hotspot.cum_nzpts  = cum_nzpts 
  new_hotspot.cum_zpts   = cum_zpts 
  new_hotspot.cum_nanpts = cum_nanpts 
  #print 
"ngpts,nzpts,zpts,nanpts",new_hotspot.cum_volocc_ngpts,new_hotspot.cum_volocc_nzpts,new_hotspot.cum_vol
occ_zpts,new_hotspot.cum_volocc_nanpts 
  new_hotspot.occ = cum_gvalue/num_snapshots 
  new_hotspot.realx =  gpt[0] * grid.header.grid_unit_length 
  new_hotspot.realy =  gpt[1] * grid.header.grid_unit_length 
  new_hotspot.realz =  gpt[2] * grid.header.grid_unit_length 
  hotspot_list.append(new_hotspot) 
 
  print "hotspot number %03d out of %03d is being 
processed"%(len(hotspot_list),NUM_HOTSPOTS_TO_WRITE) 
 
  if len(hotspot_list) >= NUM_HOTSPOTS_TO_WRITE: 
   break 
 
 # Now write the free energy, occupancy and entropy values for the hotspots 
 entropy_ranking(file_out_name,hotspot_list,probe) 
 
 normalized_grid = {} # This dict will contain the x,y,z coordinates in the grid dimension 
        # and the normalized bin count, we will zero out all the coordinates 
        # in the data array and write these value back into it and resave it 
        # The save file will have the name _ENTROPYNORM.xplor 
 
 # Zero out the entire grid 
 for key in grid.data: 
  grid.data[key] = 0 
 for spot in hotspot_list: 
  for ind_spot in spot.spots: 
  
 grid.data[(int(ind_spot[0]/grid.header.grid_unit_length),int(ind_spot[1]/grid.header.grid_unit_length),int
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(ind_spot[2]/grid.header.grid_unit_length))] = ind_spot[3]/spot.occ   
 grid.write(os.path.basename(map)[:-6] + "_ENTROPY_NORM.xplor")   
 #plot_occupancy_hist(file_out_name,hotspot_list,probe) 
 
def list_of_grid_points_to_process(energy_file): 
 ''' 
 This function will process the grid points sorted by free energy 
 This file is generated by the MixMD_Free_Energy_Calc.py 
 We will generate a tuple of xyz coordinates  
 The MixMD energy file format is .......... 
 ATOM      1  XX  UNX A   1      14.500   2.500  10.000  0.00 -3.011455 
 ATOM      1  XX  UNX A   2      12.000  -9.500  -8.500  0.00 -2.696113 
 ATOM      1  XX  UNX A   3      17.000  -3.000   5.000  0.00 -2.682999 
 ATOM      1  XX  UNX A   4      13.000 -23.000   2.500  0.00 -2.588952 
 ATOM      1  XX  UNX A   5       7.500 -20.500  -8.500  0.00 -2.558617 
 ATOM      1  XX  UNX A   6     -13.000   0.000  14.000  0.00 -2.549849 
 ''' 
 energ_coord_list = [] 
 infile = open(energy_file, 'r') 
 for idx,line in enumerate(infile.readlines()): 
  if idx+1 > NUM_HOTSPOTS_TO_WRITE: 
   break 
  x = float(line.strip().split()[-5]) 
  y = float(line.strip().split()[-4]) 
  z = float(line.strip().split()[-3]) 
  energ_coord_list.append((x,y,z)) 
 infile.close() 
 #print energ_coord_list 
 return energ_coord_list 
 
if __name__ == '__main__': 
 
 (options, args) = parser.parse_args() 
 # Number of hotspots to report 
 NUM_HOTSPOTS_TO_WRITE = options.num_hotspots 
 num_snapshots = options.num_snapshots 
 
 # Verfiy that we support this probe 
 probe = options.solvent 
 if probe not in probes: 
  sys.exit("The probe %s is currently not supported. Exiting...."%probe) 
 
 if not options.hotspot_file: 
  sys.exit("You need to specify the file with energies") 
 
 # Process the xplor maps 
 map = options.xplor_map 
 if options.dir != "NONE": 
  map = os.path.join(options.dir,map) 
  
 print "xplor files being processed is .... ", map 
 if not os.path.exists(map): 
  print "File %s does not exists skipping it" 
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  sys.exit() 
 generate_probe_occ_map_to_volocc(map,probe,num_snapshots,list_of_grid_points_to_process(options.
hotspot_file),options.outfile) 

 

 



 

160 
 

Appendix E. MixMD maps for Allosteric Systems 

 

 

 

Figure E-1 MixMD maps of Farnesyl Pyrophosphate Synthase (FPPS) contoured at 35σ are 

shown with examples (where available) of molecules from the PDB database bound in probe 

mapped locations on the protein surface. FPPS functions as a dimer and a second copy of the 

dimer counterpart is shown in green with a tyrosine residue rendered as a stick model to 

illustrate the overlap of this residue with the MixMD maps. A protein packing interface 

rendered as cartoon is shown using PDB ID: 2P1C (Black). The allosteric and competitive ligands 

are shown for reference using the crystal structures PDB ID: 3N5J – Brown (Allosteric ligand) 

and PDB ID: 4DEM – Green (Competitive ligand). 
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Figure E-2 MixMD maps of Protein Tyrosine Phosphatase 1B (PTP1B) contoured at 35σ are 

shown with examples (where available) of molecules from the PDB database bound in probe 

mapped locations on the protein surface. The different protein packing interfaces and examples 

of cosolvent molecules known to bind PTP1B and mapped by MixMD are color coded as 

follows, PDB ID: 4GRY – Pea, PDB ID: 2CMC – Cyan, PDB ID: 2CMB – Black, PDB ID: 1GWZ– 

Purple, PDB ID: 1T49 – Brown (Allosteric ligand) and PDB ID: 2CMB – Green (Competitive 

ligand). 
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Figure E-3 The ranking of the top-four sites is shown for MixMD simulations starting from the 

active conformation of Abl Kinase (PDB ID: 1M52) using acetonitrile (orange), isopropanol 

(blue) and pyrimidine (purple) probes. This is achieved by contouring MixMD maps at 

decreasing sigma values starting from 130σ to 20σ (Shown in figures A – F). 
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Figure E-4 The ranking of the top-four sites is shown for MixMD simulations starting from 

Androgen Receptor (PDB ID: 2AM9) using acetonitrile (orange), isopropanol (blue) and 

pyrimidine (purple) probes. This is achieved by contouring MixMD maps at decreasing sigma 

values starting from 100σ to 20σ (Shown in figures A – F). 
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Figure E-5 The ranking of the top-four sites is shown for MixMD simulations starting from Pdk1 

Kinase (PDB ID: 3RCJ) using acetonitrile (orange), isopropanol (blue) and pyrimidine (purple) 

probes. This is achieved by contouring MixMD maps at decreasing sigma values starting from 

100σ to 20σ (Shown in figures A – F). 
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Figure E-6 The ranking of the top-four sites is shown for MixMD simulations starting from 

Farnesyl Pyrophosphate Synthase (PDB ID: 4DEM) using acetonitrile (orange), isopropanol 

(blue) and pyrimidine (purple) probes. This is achieved by contouring MixMD maps at 

decreasing sigma values starting from 80σ to 20σ (Shown in figures A – F). 
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Figure E-7 The ranking of the top-four sites is shown for MixMD simulations starting from 

Glucokinase (PDB ID: 3IDH) using acetonitrile (orange), isopropanol (blue) and pyrimidine 

(purple) probes. This is achieved by contouring MixMD maps at decreasing sigma values 

starting from 95σ to 20σ (Shown in figures A – F). 
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Figure E-8 The ranking of the top-four sites is shown for MixMD simulations starting from CHK1 

Kinase (PDB ID: 1ZYS) using acetonitrile (orange), isopropanol (blue) and pyrimidine (purple) 
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probes. This is achieved by contouring MixMD maps at decreasing sigma values starting from 

110σ to 20σ (Shown in figures A – F). 

 

 

Figure E-9 The ranking of the top-four sites is shown for MixMD simulations starting from 

Protein Tyrosine Phosphatase 1B (PDB ID: 2CMB) using acetonitrile (orange), isopropanol (blue) 

and pyrimidine (purple) probes. This is achieved by contouring MixMD maps at decreasing 

sigma values starting from 110σ to 20σ (Shown in figures A – F). 
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Figure E-10 The ranking of the top-four sites is shown for MixMD simulations starting from 

Protein Tyrosine Phosphatase 1B (PDB ID: 2AM9) using acetate (red) and methyl ammonium 

(blue) probes. This is achieved by contouring MixMD maps at decreasing sigma values starting 

from 150σ to 20σ (Shown in figures A – F). 
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Appendix F. MixMD maps for Heat Shock Protein 27 
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Figure F-1 A detailed description of the MixMD protocol used to predict and rank binding sites 

is shown. The MixMD maps are decreased gradually from high sigma values to low sigma 

values. This process is depicted using the following sigma cutoff values a) 55σ b) 45σ c) 35σ d) 

30σ e) 25σ and f) 20σ. 
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Appendix G. NMR data for Heat Shock Protein 27 
 

 

Table G-1 The Hsp27 NMR chemical shift perturbation (CSP) normalized for each cosolvent are shown for acetonitrile, 
isopropanol, and pyrimidine. Residues that shift significantly are defined as those CSPs above the normalized average of 0.02 
and are highlighted in pink. 

Residue Acetonitrile Isopropanol Pyrimidine 

7 0.043 0.047 0.02 

11 0.022 0.025 0.009 

16 0.048 0.053 0.019 

17 0.049 0.053 0.026 

19 0.006 0.004 0.006 

21 0.013 0.019 0.028 

23 0.021 0.015 0.001 

24 0.01 0.003 0.005 

25 0.003 0.013 0.009 

26 0.024 0.003 0.002 

27 0.038 0.045   

29 0.003 0.032 0.035 

30 0.009 0.001 0.012 

31 0.004 0.005 0.011 

33 0.01 0.02 0.05 

34 0.026 0.028 0.027 

35 0.025 0.005 0.04 

36 0.002 0.003 0.017 

37 0.036 0.005 0.022 

38 0.006 0.011 0.005 

39 0.003 0.012 0.004 

41 0.012 0.002 0.013 

42 0.03 0.007 0.011 

43 0.003 0.016 0.019 

45 0.016 0 0.003 

46 0.009 0.006 0.003 

48 0.029 0.023 0.007 

49 0.003 0.067 0.051 

50 0.007 0.024 0.006 

51 0.009 0.007 0.002 
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52 0.022 0.064 0.114 

53 0.032 0.014 0.002 

54 0.024 0.027 0.02 

55 0.006 0.008 0.009 

56 0.016 0.01 0.035 

58 0.03 0.013 0.003 

59 0.008 0.004 0.002 

60 0.021 0.005 0.008 

61 0.003 0.008 0.025 

62 0.005 0.019 0.024 

63 0.026   0.001 

64 0.032 0.016 0.021 

65 0.002 0.01 0.021 

66 0.022 0.028 0.027 

69 0.005 0.003 0.004 

70 0.002 0.01 0.01 

71 0.019 0.022 0.017 

73 0.011 0 0.001 

75 0.008 0 0.009 

76 0.027 0.022 0.008 

77 0.02 0.02 0.045 

78 0.017 0.017 0.009 

79 0.01 0.018 0.039 

80 0.014 0.003 0.01 

82 0.004     

83 0.002 0.008 0.007 

84 0.015 0.011 0.004 

85 0.007 0.003 0.004 

86 0.009 0.009 0.006 

87 0.003 0.021 0.017 

88 0.037 0.006 0.007 

89 0.008 0.016 0.005 

91 0.008 0.013 0.007 

94 0.004 0.007 0.01 

98 0.002 0.009 0.011 
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