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ABSTRACT 
 

 

The field of molecular evolution has progressed with the accumulation of various 

molecular data. It started with the analysis of protein sequence data, followed by that of gene 

sequence dada and genome sequence data. In recent years, two rapidly developing areas, 

structural genomics and proteomics, have offered new types of data for addressing molecular 

evolution questions. Structural genomics refers to genome-wide collection and analysis of 

protein structures, whereas proteomics is the study of all proteins in a cell or organism. In this 

thesis, I conducted molecular evolutionary projects using data provided by structural genomics 

and proteomics. First, I used protein structure information to explain why some human-disease 

associated amino acid residues (DARs) appear as the wild-type in other species.  Because 

destabilizing protein structures is a primary reason why DARs are deleterious, I focused on 

protein stability in this analysis and discovered that, in species where a DAR represents the wild-

type, the destabilizing effect of the DAR is generally lessened by the observed amino acid 

substitutions in the spatial proximity of the DAR. This finding of compensatory amino acid 

substitutions in evolution has important implications for understanding epistasis in protein 

evolution and for using animal models of human diseases. Second, the recently published human 

proteomes include peptides encoded by annotated pseudogenes, which are relics of formerly 

functional genes. These translated pseudogenes may actually be functional and subject to 

purifying selection. Alternatively, their translations may be accidental and do not indicate 
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functionality. My evolutionary analysis strongly suggests that a sizable fraction of the translated 

pseudogenes are subject to purifying selection acting at the protein level. Third, for the purpose 

of understanding protein evolution and structure-function relationships, protein structures are 

commonly classified according to their structure similarities. A fold encompasses protein 

structures with similar core topologies. Current fold classifications implicitly assume that folds 

are discrete islands in the protein structure space, whereas increasing evidence suggests 

significant similarities among folds and supports a continuous fold space. I developed a 

likelihood method to classify proteins into existing folds by considering the continuity in fold 

space. My results using this method demonstrated the growing importance of considering this 

continuity in fold classification. Together, my work illustrated the utility of structural genomics 

and proteomics in answering evolutionary questions and provided better understanding of gene 

and protein evolution.
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CHAPTER 1 

INTRODUCTION 

 

1.1 INTRODUCTION 

The development of molecular evolution has been closely synchronized with the 

emergence of new molecular techniques and data. The advent of protein sequencing led to the 

invention of molecular phylogenetics (Fitch and Margoliash 1967) and the discovery of 

molecular clocks (Zuckerkandl and Pauling 1965). Gel electrophoresis allowed probing protein 

polymorphisms in populations (Lewontin and Hubby 1966). Comparing DNA sequences led to 

developments of statistical tests for detecting natural selection at the molecular level. Genome 

sequencing and comparison led to the discovery of rampant horizontal gene transfers in 

prokaryotes. In recent years, structural genomics and proteomics have emerged and progressed 

rapidly. The abundant data produced by the two fields provide enormous opportunities for the 

study of molecular evolution. 

Structural genomics combines high-throughput experimental and modeling approaches to 

describe 3D structures of proteins encoded by a genome (Kim 1998; Montelione and Anderson 

1999; Skolnick et al. 2000). All proteins are first organized into homology families. From each 

family without known structures, a representative protein is subject to experiments such as X-ray 

crystallography or NMR spectroscopy for solving its structure. This structure is taken as a 

template to model the structures of its homologous proteins. With this strategy, structural



2"
"

genomics produces the solved structures that cover the complete protein space, whereas 

traditional structural biology prefers to solve the structures with known important functions. 

Since 2000, a coordinated international project, protein structure initiative (PSI), has been carried 

out for structural genomics (Gaasterland 1998). The PSI has generated more than 5,000 protein 

structures so far. These structures are annotated by automatic pipelines and expert knowledge 

(Ellrott et al. 2011). The semi-completely described structure space renders genome-wide studies 

of structure-function relationship and structure evolution possible. 

In molecular evolution, phylogenomics has been used to date the relative ages of protein 

structures (Caetano-Anolles et al. 2011). Information on ancient structures and their functions 

shed lights on how primordial functions evolved and interacted to give rise to expanded 

functional repertoires (Caetano-Anolles et al. 2012).  Moreover, the structures can be used to 

date geological events because the appearances of structures with particular functions are found 

correlated with the times of corresponding geological events (Kim et al. 2012). For example, 

structures for aerobic respiration appeared around the Great Oxidation Event (GOE) (Kim et al. 

2012), which is congruent with other evidence (Stolper et al. 2010; David and Alm 2011). 

Besides, structure properties such as solvent accessibility influence protein evolutionary rate 

substantially (Bloom et al. 2006; Franzosa and Xia 2009). Therefore, the abundant structures are 

useful for improving models of protein evolution. 

The goal of proteomics is to achieve a quantitative description of all protein expressions 

and modifications in a cell, tissue, or organism, via primarily mass spectrometry (James 1997; 

Anderson and Anderson 1998; Blackstock and Weir 1999). Proteomic data can be used to 

quantify protein expressions and sequence proteins. These applications are useful for addressing 

some molecular evolutionary questions. For example, human proteomic data have been used to 
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test Ohno’s hypothesis, which asserts that the expression levels of X-linked genes are doubled in 

males to compensate the degeneration of their Y homologs (Ohno 1967). Using human 

proteomic data from 22 tissues, Chen and Zhang found no X-upregulation at the protein level, 

refuting Ohno’s hypothesis (Chen and Zhang 2015). Moreover, mass spectrometry is used to 

sequence collagen proteins from the remains of the extinct species: Toxondon sp. and 

Macrauchenia sp. of South American native ungulates (SANUs). The alignment of the fossil 

proteins and available collagens from extant mammals resolve the evolutionary history of 

SANUs (Welker et al. 2015), whereas phylogenies based on morphology and ancient DNA have 

been proved unconvincing (Welker et al. 2015). Despite a few examples, proteomics has not 

been widely used in molecular evolution. However, its importance is gradually being recognized 

(Diz et al. 2012). 

In this thesis, I used structural genomic and proteomic data to address four questions in 

molecular evolution. In Chapter 2, I used protein structure information to understand the 

enigmatic phenomenon that some human-disease associated amino acid residues (DARs) appear 

as wild-type residues in other species. This phenomenon is commonly explained by the presence 

of compensatory residues in these other species that alleviate the deleterious effects of the DARs 

(Kondrashov et al. 2002). However, the general validity of the hypothesis remains unclear 

because only a few compensatory residues have been identified and tested. I mapped DARs that 

appear as wild-type residues in non-human species onto their protein structures, and took the 

residues that are spatially close to the DAR as potential compensatory residues. This is 

reasonable because neighboring residues can interact with, and thus have strong effects on the 

DARs via non-covalent interactions. I demonstrated that the potential compensatory residues 
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mitigate the deleterious destabilizing effects of DARs, providing evidence for the compensation 

hypothesis at the genomic scale. 

 The work in Chapter 3 was inspired by a surprising observation that the human 

proteomes published very recently include peptides encoded by 322 annotated pseudogenes 

(Kim et al. 2014; Wilhelm et al. 2014). An interesting question is whether these translated 

pseudogenes are functional as proteins. Alternatively, the pseudogenes may be transcribed and 

translated by chance, indicating no functionality. The functions studied here include all 

biochemical and physiological functions that have been under purifying selection. That is, I used 

the action of purifying selection as an indicator for function. I found that a sizeable fraction of 

the translated pseudogenes are subject to purifying selection. This and other lines of evidence 

indicate that some translated pseudogenes are functional.  

 In Chapter 4, I developed a method to classify protein structures into existing folds, 

where a fold contains protein structures with similar secondary structure compositions, 

orientations, and connection orders (Andreeva et al. 2008; Cuff et al. 2011). Current fold 

classifications assume that folds are discrete islands in the structure space. However, increasing 

evidence suggests significant similarities among folds and supports a continuous fold space 

(Harrison et al. 2002; Kolodny et al. 2006). My method considers the fold space continuity in 

classifying a query structure into the existing folds. My classifications differ from the current 

classifications for 4-12% of all domains and up to 5%-20% of recently solved domains. These 

differences confirm the continuous nature of the fold space and demonstrate the importance of 

considering this continuity in fold classification.  

 In the addition to the main chapters, I addressed, in Appendix 1, a fundamental question 

in protein structure comparison: how to interpret structure similarity scores. Many structure 
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similarity scores have been developed to gauge the similarity between two protein structures 

(Kabsch 1978; Holm and Sander 1995; Zemla 2003). Nevertheless, none of the scores can by 

itself provide information on (1) how significant the structure similarity is and (2) how likely the 

two structures in comparison are from the same fold. Some have tried to use Z-scores to answer 

the first question by measuring the deviation of a structure similarity score from similarity scores 

of randomly paired structures (Hasegawa and Holm 2009). However, structure similarity scores 

do not follow a Gaussian distribution but follow an extreme value distribution (EVD) (Levitt and 

Gerstein 1998). Therefore, using Z-scores of structure similarity is inappropriate. I answered the 

two questions for the TM-score, which is a widely used structure similarity score (Zhang and 

Skolnick 2004; Zhang and Skolnick 2005). For the first question, I fitted TM-scores of random 

structure pairs using EVD, and calculated p-value from the distribution for any focal TM-score. 

The p-value is the probability that the random structure pairs have TM-scores equal to or higher 

than the focal TM-score, indicating the significance of the focal TM-score. For the second 

question, I derived a posterior probability that two structures share a fold given their TM-score. 

The p-value and posterior probability make TM-scores easy to interpret and use for structure 

classifications.    
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CHAPTER 2 
 
WHY HUMAN DISEASE-ASSOCIATED RESIDUES APPEAR AS THE WILD-TYPE IN 

OTHER SPECIES: GENOME-WIDE STRUCTURAL EVIDENCE FOR THE 
COMPENSATION HYPOTHESIS 

  
 
 
2.1 ABSTRACT 

Many human-disease associated amino acid residues (DARs) appear as the wild-type in 

other species.  This phenomenon is commonly explained by the presence of compensatory 

residues in these other species that alleviate the deleterious effects of the DARs.  The general 

validity of this hypothesis, however, is unclear, because few compensatory residues have been 

identified.  Here we test the compensation hypothesis by assembling and analyzing 1077 DARs 

located in 177 proteins of known crystal structures.  Because destabilizing protein structures is a 

primary reason why DARs are deleterious, we focus on protein stability in this analysis.  We 

discover that, in species where a DAR represents the wild-type, the destabilizing effect of the 

DAR is generally lessened by the observed amino acid substitutions in the spatial proximity of 

the DAR.  This and other findings provide genome-scale evidence for the compensation 

hypothesis and have important implications for understanding epistasis in protein evolution and 

for using animal models of human diseases.  

 
 
2.2 INTRUDUCTION  

It was first reported 2002 that a number of human disease-associated amino acid residues 

(DARs) appear as the wild-type in the laboratory mouse and various other species (Kondrashov 
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et al. 2002; Waterston et al. 2002).  For example, mutation from Gly to Ser at amino acid 

position 471 of human androgen receptor causes the complete androgen insensitivity syndrome, 

characterized by feminization of genetic males, but Ser is the wild-type residue (WTR) in both 

mouse and rat (Gao and Zhang 2003).  Uncovering the cause of this interesting phenomenon can 

help understand both the molecular basis of human disease and the mechanisms of protein 

evolution.  We previously reported that these special DARs are not enriched in associations with 

late-onset or mild diseases and that their wild-type status in non-human species is not attributable 

to founder effects, as one might hypothesize in the case of the laboratory mouse (Gao and Zhang 

2003).  Instead, it was proposed from the very beginning (Kondrashov et al. 2002) and is now 

widely believed (Gao and Zhang 2003; Kulathinal et al. 2004; Ferrer-Costa et al. 2007; Baresic 

et al. 2010) that human DARs can become WTRs in other species because of the presence in 

these species of compensatory residues that alleviate the deleterious effects of the DARs.  

Nevertheless, because potential compensatory residues have been identified in only a few cases 

(Kondrashov et al. 2002), the general validity of the compensation hypothesis remains unclear.  

For two reasons, protein structural analysis may provide significant insights.  First, a primary 

mechanism by which DARs cause diseases is reducing protein structural stability (Yue et al. 

2005).  Second, compensatory residues of a DAR likely reside in the same protein as the DAR 

and interact with the DAR (Poon et al. 2005; Davis et al. 2009; Baresic et al. 2010), and thus 

may be detected through structural analysis.  Here we assemble a large set of structurally mapped 

DARs that appear as the wild-type in at least one non-human species and test whether the 

potential compensatory residues in the spatial neighborhood of the DARs mitigate the 

destabilizing effects of the DARs in the non-human species.   

 



!
!

10!

2.3 RESULTS 

2.3.1 Protein stability reduction caused by DARs 

We began with 51,920 DARs from the Human Gene Mutation Database (HGMD) 

(Stenson et al. 2003) and Universal Protein Resource (UniProt) (The_UniProt_Consortium 

2011).  Among them, 9,212 DARs were mapped to 579 unique human protein structures from 

the Protein Data Bank (PDB) (Berman 2008).  Of these structurally mapped DARs, 1077 appear 

as the wild-type in the one-to-one orthologous proteins of at least one non-human species 

(Altenhoff et al. 2011) and thus are called wt-DARs.  Although wt-DARs are often referred to as 

compensated pathogenic deviations (CPDs) (Kondrashov et al. 2002) in the literature, we avoid 

the use of this term because it equates a phenomenon (DAR observed as the wild-type in other 

species) with one of its potential causes (compensation).  The remaining 8135 DARs are referred 

to as regular DARs, or rg-DARs.  We used Rosetta (Kellogg et al. 2011) to predict the change in 

human protein stability upon mutation from the WTR to the corresponding DAR (ΔΔG = 

ΔGDAR-ΔGWTR).  The more positive ΔΔG is, the bigger the stability reduction is.  Thus, ΔΔG is 

referred to as the stability reduction upon mutation.  The median ΔΔG for mutations to wt-DARs 

is 1.44 Rosetta Energy Unit (REU), which is equivalent to ~0.79 kcal/mol according to a linear 

conversion model (Fig. A.2.1.1).  This amount is significantly smaller than the median ΔΔG 

(4.09 REU or ~2.25 kcal/mol) for mutations to rg-DARs (p < 10-41, Mann-Whitney U test; Fig. 

2.1), consistent with an earlier observation that mutations to wt-DARs have on average weaker 

impacts on structural stabilities than mutations to rg-DARs (Ferrer-Costa et al. 2007).   

That wt-DARs impose milder destabilizing effects than rg-DARs has two reasons.  First, 

wt-DARs are more similar to WTRs than are rg-DARs in physicochemical properties (Ferrer-

Costa et al. 2007).  Second, the structural positions of wt-DARs and rg-DARs may be different 
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such that the same type of mutation has different destabilizing effects when leading to wt-DARs 

vs. rg-DARs.  To explore this possibility, we analyzed, among all 380 possible types of amino 

acid changes, the 128 types that are observed in mutations to both wt-DARs and rg-DARs in our 

dataset (Table A.2.1.1).  Among these 128 types, 13 showed a significantly smaller median ΔΔG 

for mutations to wt-DARs than mutations to rg-DARs (p < 0.05, Mann-Whitney U test; Table 

A.2.1.1), while none showed the opposite pattern.  Thus, for some mutation types, wt-DARs are 

located at positions with milder stability impacts than rg-DARs.  Furthermore, there is a negative 

correlation between sample size and log(p-value) in the above Mann-Whitney U test (Fig. 

A.2.1.2), suggesting that more mutation types would show the same significant trend as the 13 

mutation types should the samples be larger.  Thus, there is indeed evidence that on average wt-

DARs are located at positions that have milder stability impacts than are rg-DARs.  

The observation that wt-DARs are less destabilizing than rg-DARs suggests that the 

mechanism mitigating the deleterious effects of DARs in non-human species has a limited 

power.  As a comparison, we also computed the average ΔΔG for mutations to known common 

single amino acid polymorphisms (SAAPs) in humans (i.e., with allele frequencies >0.01) 

(Sherry et al. 2001), which should be mostly neutral.  As expected, this ΔΔG (median = 0.47 

REU or ~0.26 kcal/mol) is significantly lower than that for wt-DARs (p < 10-14; Fig. 2.1).  

 

2.3.2 Testing the compensation hypothesis 

Intramolecular compensatory residues may appear anywhere in a protein to mitigate 

protein stability reduction caused by a wt-DAR, because protein stability is contributed by all 

residues.  However, spatially neighboring residues of the wt-DAR can have strong stabilizing 

effects via non-covalent bonds.  Furthermore, it is currently infeasible to examine the potential 
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compensatory effects of a large number of residues simultaneously, while examining these 

residues one by one requires the information of the order with which these residues emerged in 

evolution, which is difficult to obtain.  Thus, in this study, we focused on only the spatial 

neighborhood of a wt-DAR when examining potential compensatory residues.  For reasons 

detailed in Materials and Methods, we considered all residues that are within 4Å from a focal 

residue to be its neighboring residues, where the distance between two residues is measured by 

the shortest spatial distance of their non-hydrogen atoms.  We found that, in 94.6% of the cases 

when a DAR is the wild-type in a species, the neighboring residues are not identical between that 

species and human; these cases were subject to further analysis.   

Let us use the example of plasminogen to illustrate our analysis (Fig. 2.2).  Plasminogen 

is the precursor of plasmin, which dissolves the fibrin of blood clots.  Normal humans have Arg 

at amino acid position 532 of plasminogen, but mutation to His at this position causes 

plasminogen deficiency (OMIM: 217090), characterized by decreased serum plasminogen 

activity.  Interestingly, His is the wild-type in the giant panda.  Four neighboring residues of this 

DAR differ between wild-type human and giant panda and are candidate compensatory residues.  

We computed the stability reduction caused by the mutation from Arg to His in the human 

structure (ΔΔG1; Fig. 2.2A).  We also computed the corresponding stability reduction caused by 

the same mutation in the “pandanized” human structure where all neighboring residues are of the 

panda version (ΔΔG2; Fig. 2.2B).  Consistent with the compensation hypothesis, ΔΔG2 (-4.43 

REU or ~-2.43 kcal/mol) is substantially smaller than ΔΔG1 (1.19 REU or ~0.65 kcal/mol), 

suggesting that one or more of the four neighboring residues in panda that differ from human are 

compensatory.  The negative ΔΔG2 suggests that the replacement of Arg with His increases the 

panda plasminogen stability and thus may have been beneficial.  As a negative control, we 
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considered horse, in which Arg is the wild-type.  We computed the stability reduction caused by 

the mutation from Arg to His in the “horsenized” human structure where all neighboring residues 

are of the horse version (ΔΔG3; Fig. 2.2C).  As expected, ΔΔG3 (2.99 REU or ~1.65 kcal/mol) is 

not smaller than ΔΔG1, indicating that the smaller ΔΔG2, compared with ΔΔG1, is not due to 

random substitutions.  We caution, however, that ΔΔG prediction is notoriously difficult and that 

Rosetta and other top ranked prediction programs have only moderate accuracies (Khan and 

Vihinen 2010; Thiltgen and Goldstein 2012).  Consequently, ΔΔG comparison for any individual 

case may not be reliable; only comparisons based on large samples are trustable.  

We conducted the same analyses for a large set of wt-DARs.  For each wt-DAR, we 

averaged ΔΔG2 from multiple species if the DAR is found to be the wild-type in multiple 

species.  We then compared the average ΔΔG2 with the corresponding ΔΔG1.  Overall, ΔΔG2 

(median = 1.23 REU or ~0.68 kcal/mol) is significantly smaller than ΔΔG1 (median = 1.59 REU 

or ~0.87 kcal/mol) (p < 10-7, Wilcoxon signed-rank test; Fig. 2.3).  For each wt-DAR, ΔΔG1 – 

ΔΔG2 measures the stabilizing effect of the neighboring residues from the species where the 

DAR is the wild-type.  A positive value of (ΔΔG1 – ΔΔG2) indicates that those neighboring 

residues are compensatory.  In spite of the statistically significant difference between ΔΔG1 and 

ΔΔG2, the median of (ΔΔG1 – ΔΔG2) is rather small (0.17 REU or 0.09 kcal/mol).  We found that 

in fact 52.7% of the wt-DARs have ΔΔG1 < 1 kcal/mol, which are not conventionally considered 

to be destabilizing (Tokuriki and Tawfik 2009).  For those wt-DARs considered to be 

destabilizing (ΔΔG1 > 1 kcal/mol), the median of (ΔΔG1 – ΔΔG2) is 1.03 REU or ~0.56 kcal/mol 

(p < 10-10, Fig. 2.3).  Because some proteins harbor many more wt-DARs than do other proteins, 

we also respectively averaged ΔΔG1 and ΔΔG2 values from different wt-DARs in the same 
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protein before comparison, but the results were similar (p < 0.003; p < 0.007 for destabilizing wt-

DARs; Fig. A.2.1.3).  

To compare ΔΔG3 and ΔΔG2, we focused on destabilizing wt-DARs.  For each wt-DAR, 

we need a pair of species whose wild-type residues are the same as the human DAR and the 

human WTR, respectively.  We chose those species pairs that have the same numbers of 

neighboring residue differences from the human protein.  This requirement reduced our sample 

size substantially but allowed a fair comparison between ΔΔG3 and ΔΔG2.  We found that ΔΔG2 

remains significantly smaller than ΔΔG1 (p = 0.02; Fig. 2.4), whereas ΔΔG3 is not significantly 

different from ΔΔG1 (P > 0.5; Fig. 2.4).  Furthermore, ΔΔG2 is significantly smaller than ΔΔG3 

(P < 0.01; Fig. 2.4).  Thus, as predicted by the compensation hypothesis, the compensatory 

effects are bestowed by the neighboring residues in species where the human DARs are the wild-

type, but not by the neighboring residues in species where the human WTRs are the wild-type.  

 

2.3.3 Compensatory effects extend to amino acids similar to DARs 

If the above detected compensatory effects of neighboring residues are due to physical 

interactions between the neighboring residues and the DARs, the compensatory effects may also 

exert on amino acids that are physicochemically similar to the DARs.  Because the greater the 

physicochemical similarity between two amino acids, the higher the substitution rate between 

them in evolution (Miyata et al. 1979; Zhang 2000), we used the PAM250 substitution matrix 

(Dayhoff et al. 1978) to gauge physicochemical similarities between amino acids.  For each 

DAR, we identified the non-WTR amino acid(s) that the DAR will most likely be replaced with 

in evolution according to PAM250 and referred to it as DAR-like (DARL).  There may be more 

than one DARL if several amino acids are equally likely to replace the DAR.  Similarly, for each 
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WTR, we identified the non-DAR amino acid(s) that the WTR will most likely be replaced with 

in evolution (WTRL).  If the WTRL set and DARL set identified for a WTR and its DAR 

overlap, we do not consider the case further.  We then examined the stability reduction caused by 

mutation from WTR to DARL in the human protein (ΔΔG1) and the corresponding stability 

reduction in the presence of the neighboring residues from a species in which the DAR is the 

wild-type (ΔΔG2).  As predicted, the compensatory effects of the neighboring residues also exert 

on DARLs (p < 10-6; Fig. 2.5A).  By contrast, no such effect for WTRLs is detectable (p > 0.2; 

Fig. 2.5B).  

 

2.4 DISCUSSION 

Taken together, our results provide genome-scale evidence that, in species where DARs 

appear as the wild-type, residues at the spatial proximities of the DARs mitigate their deleterious 

effects in destabilizing the protein structures.  Because reducing protein stability is a primary 

mechanism by which DARs cause diseases, our findings support the hypothesis that 

compensatory residues render the otherwise unacceptable DARs acceptable in evolution.  

A few biologically or medically important protein families have been intensively 

crystalized, while most other protein families have few members with solved structures.  To 

examine whether our results have been influenced by this imbalanced data, we focused on a 

subset of protein structures with pairwise sequence identity <60%.  We found that our results in 

Fig. 2.3 can be repeated by this subset of data (Fig. A.2.1.4), suggesting that the compensation 

hypothesis is supported robustly by many protein families rather than a few.  It is worth pointing 

out that Rosetta predictions of ΔΔG are not always accurate (Kellogg et al. 2011), which limits 
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the statistical power of our analysis, but also means that our conclusions are likely to be 

conservative.  

Despite the detection of statistically significant compensatory effects, the median 

difference between ΔΔG1 and ΔΔG2 is quite small even for destabilizing wt-DARs (0.56 

kcal/mol), indicating that the overall compensatory effect detected is small.  While the actual 

compensation may be larger if some compensatory residues are outside the 4Å neighborhood 

examined, even the small compensatory effect detected could have appreciable impacts.  

Because wild-type proteins are only marginally stable (folding energy = -3 to -10 kcal/mol) 

(Tokuriki and Tawfik 2009) and mutations to destabilizing wt-DARs have a median ∆∆G of 3.54 

kcal/mol, proteins with wt-DARs could become marginally unstable (∆G > 0 kcal/mol).  When 

∆G ~ 0, a small change in ∆G could result in a substantial change in the fraction of folded 

protein molecules.  For example, a wild-type protein with ∆G = -3 kcal/mol has >99% of 

molecules folded under 37°C (see Materials and Methods).  Upon mutation to an average 

destabilizing wt-DAR (∆∆G = 3.54 kcal/mol), folded protein molecules drop to 30% (∆G = 0.54 

kcal/mol).  With the help of the detected median compensatory effect (∆∆G = -0.56 kcal/mol), 

the fraction of folded molecules rises to 51% (∆G = -0.02 kcal/mol).  Because most diseases are 

recessive, heterozygotes with one wild-type allele and one null allele (i.e., having 50% functional 

molecules as in the wild-type) are often phenotypically normal.  Hence, a homozygote with the 

median destabilizing wt-DAR and median compensatory effect, producing 51% of folded 

molecules, likely has a normal phenotype.  In other words, the compensation detected, although 

small in terms of ∆∆G, may be sufficient in restoring the normal phenotype.  The substantial 

reduction of the fraction of unfolded molecules, which are often cytotoxic, may render the 

compensation even more important.  
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That a large fraction of wt-DARs are explainable, at the genomic scale, by the presence 

of spatially neighboring compensatory residues supports the importance of (intramolecular) 

epistasis in protein evolution (Breen et al. 2012).  The compensatory residues of the DARs 

identified through our evolutionary analysis may help understand the molecular basis of the 

involved diseases.  Nevertheless, rampart epistasis in protein evolution also means that findings 

from animal models of human diseases need to be interpreted with care (Liao and Zhang 2008).  

It is noteworthy that in 5.4% of the cases when a DAR is the wild-type in a species, that species 

has identical neighboring residues as human.  In these cases, whether compensatory residues 

reside outside the neighborhood defined or other mechanisms are at work remains to be 

explored. 

 

2.5 MATERIALS AND METHODS 

2.5.1 Neighboring residues 

For each residue in a protein, we calculated the number of residues whose spatial distance 

from this focal residue is between 0 and 0.1Å, between 0.1 and 0.2Å, and so on.  We then 

computed the residue density, defined as the number of residues per Å3, for each range of radial 

distance.  We averaged the density across all residues of all non-redundant protein structures 

from the protein structure database CATH (Sillitoe et al. 2013).  The density peaks at 1.4 and 3.3 

Å (Fig. A.2.1.5), representing residue pairs in contact via N-O and hydrogen bonds, respectively.  

The density drops drastically and appears uniformly distributed at spatial distances above 4Å.  

Because the density is contributed by residues that are in contact and residues that are not in 

contact, the uniformly low density suggests that residues with distances beyond 4Å tend not to be 

in contact.  Further, proteins are primarily stabilized by electrostatic bonds, hydrogen bonds, and 
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van der Waals interactions, which have distances of ~3.0Å, 2.6-3.5Å, and averaging 3.6Å 

between two non-hydrogen atoms, respectively.  Therefore, we identify potential compensatory 

residues within the 4Å radius. 

 

2.5.2 Protein structures 

Human protein structures were downloaded from PDB (Berman 2008), while the SIFTS 

database (Velankar et al. 2013) was used to map the structures with corresponding proteins in 

UniProt (The_UniProt_Consortium 2011).  Based on the alignments of the structures and their 

corresponding wild-type sequences, we removed the structures that have point mutations or 

insertions/deletions (indels) totaling >10% of amino acids in the structures.  For the remaining 

structures that contain point mutations or indels totaling ≤ 10%, we used them as templates to 

predict structure models of their corresponding wild-type proteins for the aligned regions, by 

MODELLER (Eswar et al. 2008).  Because the templates and queries have sequence identities ≥ 

90%, the predicted structure models are likely to be highly accurate.  These models and native 

structures formed the structure pool for testing the compensation hypothesis.       

We mapped DARs onto the protein structures.  When one DAR is mapped to multiple 

structures, we used the structure containing the highest number of DARs, which reduces 

structure redundancy in the sample and saves computational time.  One-to-one orthologs were 

obtained from the orthologous matrix (OMA) database (Altenhoff et al. 2011).  Only structure-

ortholog alignments with deletion sites <10% of the amino acid residues in the structures were 

used.  From these alignments, we found that 1077 human DARs appear as the wild-type in at 

least one non-human species.  In an alignment between a human protein and one of its orthologs 

where a DAR appears as the wild-type, if none of the neighboring residues of the DAR site in the 
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human protein correspond to a gap site in the ortholog and at least one neighboring residue 

differs between the human protein and the ortholog, the corresponding neighboring residues in 

the ortholog are considered to be potential compensatory residues for the DAR.  A total of 1008 

wt-DARs have at least one set of potential compensatory residues.  

Human single amino acid polymorphisms (SAAPs) were acquired from UniProt.  SAAPs 

were cross-linked to their single nucleotide polymorphisms (SNPs) in dbSNP where the minor 

allele frequencies (MAFs) in humans were obtained.  Only SAAPs with MAFs ≥ 0.01 were used.   

 

2.5.3 Prediction of ΔΔG 

Program ddg_min in Rosetta with default parameters was used for energy minimizations 

of protein structures.  Then, ddg_monomer was used to predict protein stability reductions upon 

point mutations.  Low Resolution Protocol was set for the prediction using default parameters 

except for the following changes.  We repacked the residues with C� in 7Å rather than 8Å to the 

site of the point mutation.  The 7Å in C� distance was chosen because we found it corresponds 

to 4Å in heavy atom distance from the structures used in the “neighboring residues” section.  The 

iteration parameter was set to 30 instead of 50 to save computational time.  FoldX (Guerois et al. 

2002) was used to optimize the neighboring residue side chain orientation in a protein structure 

upon the replacement of neighboring residues. 

 

2.5.4 Relationship between fraction of protein molecules folded and protein stability 

Under the assumption of thermodynamic equilibrium, the fraction of protein molecules 

folded is given by !
!!!∆!/(!"), where ΔG is protein stability, k is Boltzmann constant (1.986 

cal/mol/K), and T is absolute temperature (Pakula and Sauer 1989). 
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2.5.5 Data availability 

All data used in this study can be obtained at 

http://www.umich.edu/~zhanglab/download/Jinrui_MBE_Suppl/index.htm.  
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Figure 2.1 Frequency distribution of human protein stability reduction upon mutation. The 
stability reductions are caused by mutations to human single amino acid polymorphisms (SAAPs) 
with minor allele frequencies (MAF) > 0.01 (black), disease-associated residues that appear as 
the wild-type in at least one non-human species (wt-DARs) (green), and other disease-associated 
residues (rg-DARs) (red).  The samples include 482 SAAPs, 1077 wt-DARs, and 8124 of the 
8135 rg-DARs (11 rg-DARs are not included because Rosetta failed to complete the 
computations in 72 hours), respectively.  Protein stability reduction is expressed in kcal/mol 
estimated from Rosetta Energy Unit (REU) by linear regression (Fig. A.2.1.1).  Arrows indicate 
median values of the distributions.  The three distributions are all significantly different from one 
another (p < 10-14, Mann-Whitney U Test). 
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Figure 2.2 Testing the compensation hypothesis for the disease-associated residue (DAR) at 
position 532 of human plasminogen (UniProt accession number: P00747).  The DAR site and 
its orthologous site in non-human species are squared, and the DAR is shaded.  Spatial neighbors 
of the DAR site, shown as circles, are identified using the human plasminogen model 2KNF in 
PDB as the template.  (A) Wild-type sequence in human (P00747) and the stability reduction 
(ΔΔG1) of the human plasminogen caused by mutation from the wild type (R) to the DAR (H).  
(B) Panda wild-type plasminogen (G1MBX3), “pandanized” human plasminogen, and the 
stability reduction (ΔΔG2) of the pandanized human plasminogen caused by mutation from the 
human wild type (R) to the DAR (H).  The neighboring residues in panda that differ from those 
in human are shown in green.  (C) Horse wild-type plasminogen (F6USP9), “horsenized” human 
plasminogen, and the stability reduction (ΔΔG3) of the horsenized human plasminogen caused by 
mutation from the human wild type (R) to the DAR (H).  The neighboring residues in horse that 
differ from those in human are shown in red.  Sequence alignment is provided in Fig. A.2.1.6. 
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Figure 2.3 Frequency distribution of the difference in protein stability reduction upon 
mutation from a human wild-type residue (WTR) to a disease-associated residue (DAR) in 
the absence (ΔΔG1) and presence (ΔΔG2) of neighboring residues from a species where the 
DAR is the wild-type.  The larger the difference, the greater the compensation effect.  
Destabilizing wt-DARs have ΔΔG1 > 1 kcal/mol.  Arrows indicate median values of the 
corresponding distributions.  For both distributions, ΔΔG1-ΔΔG2 is significantly biased toward 
positive values, as indicated by the p-values from the Wilcoxon signed-rank test. 
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Figure 2.4 Frequency distribution of the difference in protein stability reduction upon 
mutation from a human wild-type residue (WTR) to a destabilizing disease-associated 
residue (DAR) among various genetic backgrounds.  ΔΔG1, in the human background (see 
Fig. 2.2A); ΔΔG2, in the presence of neighboring residues from a species where the DAR is the 
wild-type (see Fig. 2.2B); ΔΔG3, in the presence of neighboring residues from a non-human 
species where the human WTR is the wild-type (see Fig. 2.2C).  The p-values are from one-tail 
Wilcoxon signed-rank test.  A total of 314 pairs of WTRs and destabilizing DARs are examined. 
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Figure 2.5 Protein stability reduction upon mutation to a residue that is physicochemically 
similar to DAR or WTR.  (A) Distribution of protein stability reduction upon mutation from a 
human wild-type residue (WTR) to a residue that is physicochemically similar to a disease-
associated residue (DARL) in the absence (ΔΔG1, grey bar) and presence (ΔΔG2, striped bar) of 
neighboring residues from a species where the disease-associated residue (DAR) is the wild-type.  
(B) Distribution of protein stability reduction upon mutation from a human wild-type residue 
(WTR) to a residue that is physicochemically similar to the WTR (WTRL) in the absence (ΔΔG1, 
grey bar) and presence (ΔΔG2, striped bar) of neighboring residues from a species where the 
DAR is the wild-type.  The p-values are from Wilcoxon signed-rank test.  A total of 590 pairs of 
WTRs and DARs are examined in each panel. 
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CHAPTER 3 
 

ARE HUMAN TRANSLATED PSEUDOGENES FUNCTIONAL? 
 
 
 
3.1 ABSTRACT 

Pseudogenes are relics of former genes that no longer possess biological functions.  

Operationally, they are identified based on disruptions of open reading frames (ORFs) or 

presumed losses of promoters.  Intriguingly, two recent human proteomic studies reported 

peptides encoded by 322 pseudogenes.  These peptides may play previously unrecognized 

physiological functions.  Alternatively, they may have resulted from accidental translations of 

pseudogene transcripts and possess no function.  Comparing between human and macaque 

orthologs, we show that the nonsynonymous to synonymous substitution rate ratio (!) is 

significantly smaller for translated pseudogenes than other pseudogenes.  In particular, 15% of 

translated pseudogenes have ! values significantly lower than 1, indicative of the action of 

purifying selection.  This and other findings provide unambiguous evidence that some but not all 

translated pseudogenes have selected functions at the protein level.  Hence, neither ORF 

disruption nor evidence for translation disproves or proves gene functionality.   

 
 
3.2 INTRODUCTION!!

 The term “pseudogene” was coined by Jacq and colleagues to describe a DNA 

sequence that resembles a gene coding for the frog 5S ribosomal RNA but contains mutations 

rendering its product nonfunctional (Jacq et al. 1977).  Since then, “pseudogene” has been used 
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to denote gene relics that no longer encode functional products.  Pseudogenes have been 

identified abundantly in human and many other genomes (Karro et al. 2007). 

 Most pseudogenes originate from duplicate copies of functional genes.  They are referred 

to as unprocessed or processed pseudogenes, depending on whether the duplication is DNA 

mediated or RNA mediated (Podlaha and Zhang 2010).  A functional gene may also become a 

pseudogene without duplication, if its function no longer confers a fitness advantage to the 

organism due to a change in the environment or genetic background.  Such pseudogenes are 

called unitary pseudogenes (Zhang et al. 2010).  Because it is difficult to prove the lack of 

biological function for a segment of DNA, a pseudogene is operationally defined by its 

homology to a functional gene yet the presence of signs of non-functionality.  The most obvious 

sign of non-functionality is a disruption of the canonical open reading frame (ORF) that exists in 

a homologous functional gene.  Because RNA-mediated gene duplication only copies the 

transcribed region of a gene, the duplicate lacks the original promoter and is most likely “dead-

on-arrival” (Podlaha and Zhang 2010).  Thus, RNA-mediated duplicates, which typically lack 

introns that exist in their parental genes, are commonly considered pseudogenes.  Based on these 

operational criteria, numerous pseudogenes have been annotated in sequenced genomes (Karro et 

al. 2007; Podlaha and Zhang 2010). 

 Because the operational definition of pseudogene does not require a definitive proof of 

non-functionality, claims of functionality have been made a number of times for operationally 

defined pseudogenes especially when they are transcribed.  For example, human PTENP1, a 

highly transcribed pseudogene originating from a copy of the tumor suppressor gene PTEN, 

competes with PTEN for the microRNAs that normally suppress PTEN expression and PTENP1 

tends to be lost in cancer patients compared with healthy controls (Poliseno et al. 2010).  But 



!
!

30!

because biochemical activities may have no fitness benefit, proof of a true biological function 

requires the demonstration that the activity or the pseudogene is under natural selection.  No such 

proof has been given in the case of PTENP1.  In another example, mouse pseudogene Makorin1-

p1 was shown to regulate its parental gene (Hirotsune et al. 2003) and be under purifying 

selection (Podlaha and Zhang 2004).  But subsequent studies questioned the validities of both the 

functional data (Gray et al. 2006) and evolutionary data (Kaneko et al. 2006).  More recently, an 

evolutionary genomic analysis of human transcribed pseudogenes that have macaque orthologs 

found a small yet significant decrease in human-macaque sequence divergence in transcribed 

pseudogene regions, compared with corresponding flanking regions, suggesting that some 

transcribed pseudogenes are under purifying selection (Khachane and Harrison 2009).  But it is 

unknown how many transcribed pseudogenes have selected functions.   

 Very recently, two human proteomic studies reported peptides encoded by 322 human 

pseudogenes (Kim et al. 2014; Wilhelm et al. 2014).  These peptides may signal pseudogene 

function at the protein level, a rarely considered possibility.  Alternatively, they may have 

resulted from spurious translations and indicate no protein function.  We here distinguish 

between these two hypotheses by comparing the nonsynonymous/synonymous substitution rate 

ratio (!) between translated pseudogenes and other pseudogenes based on human-macaque 

orthologs.   

 

3.3 RESULTS!

3.3.1 Detecting purifying selections of translated pseudogenes 

 We subjected 15,343 human pseudogenes annotated in Ensembl (version 78) to a 

bioinformatics pipeline to acquire a set of 78 human-macaque orthologous pseudogenes that 



!
!

31!

encode peptides on the basis of human proteomic data (see Materials and Methods).  For 

comparison, we acquired a set of 644 human-macaque orthologous pseudogenes that are 

transcribed (but have no proteomic hit) in humans and a set of 1455 human-macaque orthologous 

pseudogenes that are not transcribed (and have no proteomic hits) in humans (see Materials and 

Methods).  

 We estimated ! for the ORF region of each human-macaque orthologous pseudogene 

alignment (see Materials and Methods).  The median ! of the translated pseudogenes is 0.70, 

significantly lower than that (0.90) of the transcribed pseudogenes (P = 0.04, Mann-Whitney U 

test; Fig. 3.1) and that (0.88) of non-transcribed pseudogenes (P = 0.01; Fig. 3.1), whereas the 

latter two groups have similar ! (P = 0.21; Fig. 3.1). 

 Some annotated pseudogenes exist in the genome regions of other genes referred to as 

host genes. Such pseudogenes are transcribed with the host genes, and thus may be translated as 

part of the protein product of the host genes.  We removed the 27 translated pseudogenes that 

overlap with coding genes, and found the median ! of the remaining translated pseudogenes to 

be still 0.70 and significantly lower than that of transcribed pseudogenes (P = 0.05; Fig. 3.1), 

indicating that the relatively low ! of translated pseudogenes is not due to hitchhiking 

pseudogenes. 

 We found the median ORF length of the translated pseudogenes to be 369 nucleotides, 

significantly greater than that (333) of the transcribed pseudogenes (P = 0.006), supporting the 

notion that the coding capacity is selectively maintained in some translated pseudogenes. 

 Perhaps not surprisingly, the median ! of the translated pseudogenes (0.70) is 

substantially larger than that (0.11) of their parental genes (P < 7×10-13).  This high median ! 

may be because the translated pseudogenes are subject to weaker purifying selection, or because 
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only a subset of them is subject to purifying selection.  We found that only 15% of the 78 

translated pseudogenes have ! values significantly lower than 1 (nominal P < 0.05, likelihood 

ratio test).  These translated pseudogenes have a median ! of 0.27.  The other 85% of translated 

pseudogenes have a median ! of 0.85, which is not significantly lower than that of transcribed 

pseudogenes (P = 0.38; Fig. 3.1), suggesting that pseudogene translation does not indicate 

functionality in most cases.  

 In the 12 translated pseudogenes with ! significantly lower than 1, we found that, 

when the original ORF is disrupted by a premature stop codon, the pseudogene can exploit 

another in-frame start codon to circumvent the premature stop codon.  The resultant protein is 

shortened but contains at least one complete or partial protein domain.  For example, 

FUNDC2P2 is a pseudogene of a duplicate of FUNDC2 (FUN14 domain containing 2).  In the 

pseudogene transcript, a premature stop codon appears downstream of the original start codon, 

which would result in a truncated peptide of 24 residues (Fig. 3.2).  Interestingly, a peptide 

identified in the proteomic data is uniquely mapped to the transcript sequence after the premature 

stop codon.  An alternative ORF that starts with an in-frame ATG closely following the 

premature stop codon could code for a protein that contains the identified peptide (Fig. 3.2).  

Thus, this in-frame ATG is likely the alternative start codon for the transcript.  The protein 

encoded by the alternative ORF is 81% the length of the parental protein and contains the 

complete FUN14 domain of the parental protein, suggesting that it carries a similar molecular 

function.  Furthermore, the human FUNDC2P2 has orthologs from all species surveyed: 

chimpanzee, gorilla, orangutan, macaque, and mouse, suggesting that it has been maintained by 

natural selection in genome evolution.  
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3.3.2 Preferred types of pseudogenes to transcribe and translate   

The 1,455 non-transcribed pseudogenes encompass more processed pseudogenes than 

unprocessed pseudogene, with the ratio equal to 5.7. This ratio is significantly higher than that 

(4.3) in the 644 transcribed pseudogenes (P = 0.02, Fisher exact test). This is expected because 

the processed pseudogenes lost their original promoters, and thus unlikely to transcribe. 

Interestingly, the processed to unprocessed pseudogene ratio (12) in the 78 translated 

pseudogenes is significantly higher than those in the transcribed (P = 0.01, Fisher exact test) and 

non-transcribed (P = 0.05) pseudogenes. Moreover, 11 of the 12 translated pseudogenes with ! 

significantly lower than 1 are processed pseudogenes. We apply this analysis on all shared 

pseudogenes, and observe similar results. Given transcription, a processed pseudogene is more 

likely than an unprocessed pseudogene to be translated, probably because the translational 

product of the former is more likely to be beneficial or less likely to be deleterious than that of 

the latter, due to the interference of potentially mis-spliced exons/introns in the latter. 

 

3.3.3 Tissue specific expression of translated pseudogenes  

We found that each of the 78 translated pseudogenes have peptides identified from on 

average two tissues (including cell lines) out of 157 tissues surveyed in the human proteomic 

data.  The corresponding number (118) is much larger for their parental genes.  Furthermore, the 

protein expression tissues of each translated pseudogene are a subset of those of its parental 

gene.  The translated pseudogenes appear in 140 tissues in total (a tissue is counted as many 

times as the number of pseudogenes found translated in the tissue), including 13 times in testis 

and 127 times in other tissues.  This ratio of 13/127 = 0.1 is significantly greater than the 

corresponding ratio (0.02) for their parental genes (P < 10-4, Fisher’s exact test).  A similar ratio 
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of 0.1 was found among the translated pseudogenes with ! significantly smaller than 1. Given 

the enrichment of processed genes in translated pseudogenes, the preferred translation of 

pseudogenes in testis can be explained by the hyper-transcription hypothesis, which states that in 

haploid germ cells of the testis, abundant RNA polymerase II complexes and an overall 

permissive chromatin promote widespread gene expression (Schmidt 1996; Soumillon et al. 

2013). 

 

3.4 DISCUSSION 

 In summary, our evolutionary analysis showed that human translated pseudogenes have 

significantly lower ! values than transcribed or non-transcribed pseudogenes.  About 15% of 

translated pseudogenes have ! values significantly smaller than 1, suggesting that they possess 

selected functions at the protein level.  But the rest of them have ! values similar to transcribed 

or non-transcribed pseudogenes, suggesting that most if not all of them likely possess no selected 

function at the protein level.  Therefore, while a small fraction of translated pseudogenes have 

selected functions, translation per se is not a guarantee of functionality. 

 In the translated pseudogenes, processed pseudogenes are more enriched than 

unprocessed pseudogenes. A potential reason may be that translation of unprocessed pseudogens 

is more deleterious than that of processed pseudogenes, and thus purged out quickly. Transcripts 

of unprocessed pseudogenes tend to be truncated and retain introns, and thus their protein 

products are usually unfolded, which is non-functional or even toxic. Moreover, newly born 

unprocessed pseudogenes tend to carry their parental promoters, and thus are often highly 

expressed together with their parental genes. The highly expressed gene copy is very likely to be 

deleterious and need to be purged out.  
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We find that the translated pseudogenes are enriched in testis. Because the majority of 

translated pseudogenes are processed, the phenomenon may be explained by the hyper-

transcription hypothesis (Schmidt 1996; Soumillon et al. 2013). Furthermore, according to the 

out-of-testes hypothesis (Kaessmann 2010), normally non-transcribed genes tend to express first 

there. And then with beneficial products, the testis-expressed genes are preserved and evolve 

efficient promoters to be expressed in other tissues and function there. Therefore, the translated 

pseudogenes expressed in the testis with no significant purifying selection detected may be in the 

out-of-testes process and stand a chance to be new functional genes.  

 

3.5 MATERIALS AND METHODS 

3.5.1 Genome, transcriptome, and proteome data 

Human (hg38) and macaque (rhsMac3) genome sequences and exon coordinates were 

obtained from the UCSC genome browser (Rosenbloom et al. 2015).  RNA-Seq data of all 

human genes in 16 tissues were downloaded from the human body map (Petryszak et al. 2014).  

Human pseudogenes and their peptides identified by mass spectrometry were collected from two 

human proteome drafts (Kim et al. 2014; Wilhelm et al. 2014).  

 

3.5.2 Orthologous pseudogene identification, sequence alignment, and ! estimation 

 Human pseudogenes were obtained from Ensembl version 78 (Cunningham et al. 2015), 

including gene coordinates and pseudogene transcripts, which were annotated but not necessarily 

transcribed.  From 15,343 annotated human pseudogenes, we removed 69 polymorphic and 226 

immunity-related pseudogenes.  The polymorphic pseudogenes have intact alleles in some 

human individuals and therefore were excluded.  We removed immunity-related (i.e., 
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immunoglobulin or T-cell receptor) pseudogenes because they may be subject to positive rather 

than negative selection when functional.  For each human pseudogene, its syntenic region in 

macaque was identified in the LiftOver Browser (Kent et al. 2003).  In parallel, the human 

pseudogene transcript was searched against the macaque genome using BLASTN (Altschul et al. 

1990).  The resulting high-scoring segment pairs (HSPs) that overlap the macaque syntenic 

region but not any coding exon were considered as orthologous exons of the human 

pseudogenes.  These macaque exons were tilted up to the human transcript following the BLAST 

alignment.  A total of 8,070 human pseudogenes were found to have macaque orthologs.  

 We first aligned human and macaque orthologous pseudogene transcripts using 

ClustalW (Larkin et al. 2007).  If the human transcript had peptide hits in the proteomic data, the 

longest ORF that codes for the peptide was identified as the coding ORF.  If there was no peptide 

hit, the longest ORF was chosen as the potential coding ORF.  In the coding ORF alignment, 

stop codons and codons with gaps were considered interruptive codons.  The aligned codons 

between the human start codon and the first interruptive codon in the alignment were considered 

as the coding region for the pseudogene.  The likelihood-based CODEML program (Yang 2007) 

was used to calculate ! for this region.  As for the parental gene of a pseudogene, its CODEML-

derived estimate of ! based on human and macaque orthologs was obtained from Ensembl.  The 

parental gene was defined as the human functional gene with the lowest E-value to the human 

pseudogene by BLAST.  

  

3.5.3 Datasets of translated, transcribed, and non-transcribed pseudogenes  

Kim et al. identified peptides encoded by 107 pseudogenes annotated in Ensembl version 

78 (Kim et al. 2014) and Wilhelm et al. identified peptides encoded by 241 pseudogenes 
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(Wilhelm et al. 2014).  However, the two data sets have only 26 pseudogenes in common.  This 

small overlap may be due to a high false negative rate caused by low concentrations of 

pseudogene-encoded peptides.  This is particularly likely in the present case because the two 

proteomic datasets were generated using different tissue samples, pipelines, and protocols.  

Additionally, the small overlap may also signal a high false positive rate.  For instance, we found 

that, for 122 cases, no ORF in any pseudogene matched the identified peptides, and thus 

excluded them from further analyses.  We combined the remaining pseudogenes in the two 

datasets and regarded the 200 unique pseudogenes as the translated pseudogenes.  Only 135 of 

the 200 human pseudogenes have macaque orthologs.  The alignments with 100% sequence 

identity or with fewer than 30 codons were removed because ! cannot be estimated reliably.  

Occasionally, a pseudogene may have multiple transcripts and thus multiple alignments.  The 

longest alignment was chosen for analysis.  The procedure above resulted in 78 translated 

pseudogenes with qualified alignments for further analyses. 

 Because transcriptions of pseudogenes may be tissue-specific, we used the human body 

map data to identify transcribed pseudogenes.  The human body map provided mRNA-Seq 

profiles of all genes in Ensembl across 16 human tissues.  We followed the literature to use 

FPKM ≥ 1 as a criterion for expression (Blazie et al. 2015).  We found that 1,164 of the 8,070 

shared pseudogenes have FPKM ≥ 1 in at least one of the 16 tissues, but without peptide hits in 

the two human proteomic datasets.  These pseudogenes are referred to as transcribed 

pseudogenes.  We assumed the longest ORF as the conceptually coding ORF in each pseudogene 

transcript, and then applied the same procedure used for translated pseudogenes to generate 

codon alignments for these genes between human and macaque.  This ended up with 644 

transcribed pseudogenes with codon alignments.  
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 To generate non-transcribed pseudogenes, we identified 2,576 shared pseudogenes that 

have 0 FPKM in each of the 16 tissues and no peptide hit reported in the two human proteomes. 

From these pseudogenes, 1,455 of them have qualified codon alignments and are subject to 

further analyses. 
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Figure 3.1 Comparison of nonsynonymous to synonymous rate ratio among translated, 
transcribed and non-transcribed pseudogenes. 
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Figure 3.2 An example of translated pseudogene using alternative start codon to 
circumvent premature stop codon. FUNDC2 (FUN14 domain containing 2) is the parental 
gene. FUNDC2P2 is the pseudogene. 
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CHAPTER 4 
 

PROTEIN FOLD CLASSIFICATION IN A CONTINUOUS STRUCTURE SPACE  
 
 
 
4.1 ABSTRACT 
 

Protein domain structure classification is important for understanding the structure-

function relationship and protein evolution.  Classification at the fold level is of special interest 

because it is the lowest level of classification that does not depend on protein sequence similarity.  

However, the current fold classifications such as those in SCOP and CATH are controversial 

because they implicitly assume that folds are discrete islands in the structure space, whereas 

increasing evidence suggests significant similarities among folds and supports a continuous fold 

space.  Ignoring this continuity compromises protein structure classification and hinders the 

understanding of structure-function relationship and protein evolution.  Here we develop a 

likelihood method to classify a query domain into the existing folds of CATH or SCOP by 

considering both the structural similarity between the query and various folds and within-fold 

structural heterogeneities.  Depending on the structural similarity score used and the original 

classification scheme, the new classification differs from the original classification for 4-12% of 

all domains and up to 20% of domains with recently solved structures.  These results confirm the 

continuous nature of the fold space and demonstrate the growing importance of considering this 

continuity in fold classification.  Our method is in principle applicable to classifications at all 

levels. 

 



!
!

44!

4.2 INTRODUCTION 
  
 Since the 1970s, classification of protein domain structures has gained wide popularity 

because of its utility in predicting protein function and studying protein evolution.  Many 

hierarchical classifications of domain structures have been developed (Swindells et al. 1998).  

Among them, SCOP (Andreeva et al. 2008) and CATH (Orengo et al. 1997; Cuff et al. 2011; 

Sillitoe et al. 2013) databases are commonly regarded as the gold standards because of their 

substantial manual inspections.  The hierarchical levels of SCOP from bottom to top are family, 

superfamily, fold, and class.  Families and superfamilies consist of domains that are homologous 

or structurally very similar.  Folds comprise superfamilies of domains with similar secondary 

structure compositions, orientations, and connection orders.  Classes, as the top level, include 

folds with similar secondary structure compositions.  In CATH, the hierarchies are homology 

superfamily (H), topology (T), architecture (A), and class (C).  The H, T, and C levels in CATH 

are respectively equivalent to the superfamily, fold, and class levels in SCOP.  Fold in SCOP or 

T in CATH is of special interest to structural biologists because members of a fold are 

structurally similar yet have no detectable protein sequence similarity (Orengo et al. 1999; 

Grishin 2001; Caetano-Anolles and Caetano-Anolles 2003; Wang and Caetano-Anolles 2009).  

Thus, fold classification can provide significant insights into protein function and evolution that 

are beyond the realm of sequence analysis.  

 The current fold classification in SCOP and CATH implicitly assumes that different 

folds represent isolated islands in the structure space.  This assumption was based on early visual 

observations from a small number of folds that are structurally highly dissimilar.  With the 

explosion of the number of solved domain structures and the use of structure similarity metrics, 

increasing evidence supports the concept of a continuous fold space where domains from 
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different folds have significant structural similarities (Shindyalov and Bourne 2000; Harrison et 

al. 2002; Kolodny et al. 2006; Pascual-Garcia et al. 2009).  This discovery prompted multiple 

authors to question the current fold hierarchy (Kolodny et al. 2006) and propose alternative 

representations such as structure similarity networks (Nepomnyachiy et al. 2014) and maps 

(Choi and Kim 2006; Osadchy and Kolodny 2011).  In a network, domains are connected if their 

structure similarity exceeds an arbitrary threshold, whereas in a map, domains are points in a 

plane or space reduced from a pairwise structure similarity matrix of all domains.  However, 

none of these new representations are intuitive due to the lack of obvious fold boundaries.  As a 

result, the conventional fold representation still dominates the literature in the study of protein 

structure-function relationship and protein evolution.  Thus, we use “fold space” interchangeably 

with “structure space” in this work. 

 Various automatic pipelines have been developed to classify domain structures into 

folds, and they can be generally divided into two types.  The first type (Taylor and Orengo 1989; 

Pearl et al. 2001; Getz et al. 2002; Harrison et al. 2003; Rogen and Fain 2003; Cheek et al. 2004; 

Camoglu et al. 2005; Fox et al. 2014) directly classifies domains according to their structure 

and/or sequence similarities with existing folds.  The second type (Cheng and Baldi 2006; Kim 

and Patel 2006; Yan et al. 2009; Jo and Cheng 2014) uses a machine learning approach.  It first 

collects positive samples from domain pairs in the same folds and then train classifiers on these 

domain pairs.  These classifiers are then used to predict whether a query domain is in the same 

fold as another domain.  To our knowledge, none of the current classification methods explicitly 

consider fold space continuity. As a result, it is unclear to what degree the fold space continuity 

affects protein structure classification and whether it is legitimate to ignore this continuity in 

classification.   
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 To answer these questions, we here propose and implement a new method to classify 

domain structures to existing folds by considering fold space continuity.  Briefly, we calculate 

the likelihood that a structure belongs to a fold by considering the similarity between the 

structure and the fold as well as the similarities among the structures already classified into the 

fold.  By comparing our new classification with the current CATH and SCOP classifications, we 

assess the importance of considering the fold space continuity in fold classification.  

 

4.3 RESULTS 

4.3.1 Fold classification without considering within-fold structure heterogeneity 

To classify domain structures, we need an objective quantity to measure structure 

similarities between two domains.  TM-score (Zhang and Skolnick 2004; Xu and Zhang 2010), 

calculated by the software TM-align (Zhang and Skolnick 2005), is chosen for this purpose.  

High TM-score indicates short average spatial distance between aligned residues in a structure 

alignment (see Materials and Methods).  Unlike many other similarity scores (Kabsch 1978; 

Holm and Sander 1995; Siew et al. 2000; Zemla 2003), TM-scores of different domain pairs are 

directly comparable (Zhang and Skolnick 2004; Zhang and Skolnick 2005; Xu and Zhang 2010) 

due to the normalization using either the average sequence length of the two domains under 

comparison or the length of the shorter domain.  The former normalization penalizes the length 

difference between the two domains, which is appropriate when both domains are complete and 

comparable (i.e., one is not a subunit of the other).  This normalization emphasizes the global 

structure similarity between domains, and the obtained TM-score is referred to as the global TM-

score.  By contrast, the latter normalization is appropriate when one domain corresponds to a 

subunit of the other or when one or both domains are incomplete.  We refer to such normalized 
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TM-scores as local TM-scores.  After normalization, the range of TM-scores is between 0 and 1.  

Larger TM-scores indicate higher structural similarities.  Both types of TM-scores are used in 

our analyses.   

We focus primarily on the CATH database in this study because it is updated regularly 

and contains more recently solved domain structures than other databases.  We refer to the T 

level in CATH as fold, because it is equivalent to the fold hierarchy in SCOP.  We collected 

from CATH (version 3.5.0) 21,309 representative domains whose mutual sequence identities are 

≤ 60% and sequence lengths are ≥ 40 residues.  These domains are from 1,158 folds in the 

CATH classification.  Of these folds, 141 comprise at least 25 representative domains each.  We 

used these large folds in subsequent analysis, because smaller folds provide insufficient 

information for statistical analysis.  In spite of the low fraction of folds analyzed here, for two 

reasons, these large folds are highly likely to cover most continuous regions of the fold space.  

First, these large folds include 17,043 or 82% of all representative domains.  Second, the large 

folds are closer to one another than they are to the 1017 small folds (P < 1.5e-18; Wilcoxon rank 

test), where the closeness between two folds is measured by the highest TM-score of all domain 

pairs across the two folds.   

We randomly choose 10% of domains from each of the large folds as our query domains, 

whereas the rest of the domains stay in their originally classified folds.  To classify a query, TM-

scores are calculated between the query and all domains in a fold.  The maximum TM-score 

observed represents the query-fold similarity, and is referred to as query-fold TMmax-score.  The 

query is assigned to the fold with the highest query-fold TMmax-score.  We repeated this entire 

process 30 times to estimate the frequency of inconsistency between the TMmax-based 

classification and the CATH classification. 
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Our global TMmax-score-based classification is inconsistent with the current CATH fold 

classification for an average of 1.1% of queries (Fig. 4.1).  This value increases to 2.9% under 

the local TMmax-score-based classification (Fig. 4.1).  We also tried using either the mean or 

median TM-score instead of TMmax-score to define domain-fold similarity, but the frequency of 

inconsistency rises to 17-30% (Fig. 4.1).  These results indicate that the CATH fold 

classification is primarily based on the information contained in TMmax-scores, especially in 

terms of the global structural similarity.  Thus, global TMmax-score-based fold classification, 

which can be fully automated, may be used as a proxy for CATH classification. 

 

4.3.2 Within-fold structure heterogeneity varies among folds 

Different folds in the current CATH classification may have different levels of structure 

heterogeneity.  To measure structure heterogeneity within a fold, we first calculated the (global 

or local) TMmax-score for each domain in the fold, which is defined by the highest TM-score 

between the focal domain and all other domains in the fold.  We then calculated the mean and 

standard deviation of TMmax-scores of all domains in the fold.  The higher the mean within-fold 

TMmax-score, the lower the structure heterogeneity within the fold.  Our analysis reveals that 

some folds are highly homogenous with the mean within-fold TMmax-score approaching 1, 

whereas some other folds are highly heterogeneous with the mean within-fold TMmax-score as 

low as 0.6-0.7 (Fig. 4.2A).  Furthermore, the standard deviation of within-fold TMmax-scores also 

varies greatly among folds and a very strong negative correlation exists between the mean and 

standard deviation of within-fold TMmax-scores (Fig. 4.2B).  This latter observation indicates 

that, when a fold has a low mean TMmax-score, it is typically because some of the within-fold 

TMmax-scores are very low rather than all within-fold TMmax-scores are low. 
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4.3.3 A likelihood method for fold classification considering within-fold structure 

heterogeneity 

How well a query fits a fold should not only be determined by the query-fold TMmax-

score, but also the distribution of within-fold TMmax-scores; folds with wider distributions of 

within-fold TMmax-scores are more accommodating to a query than those with narrower 

distributions.  The likelihood that a query belongs to a particular fold can be measured by the 

probability that the fraction of within-fold TMmax-scores equal to or smaller than the query-fold 

TMmax-score.  We refer to this probability as the cumulative empirical probability (CEP).  Note 

that CEP is a measure of the fit of a query-fold TMmax-score to the TMmax-scores of all members 

already classified to the fold.  CEP is not the posterior probability that a query belongs to a fold, 

and the sum of CEPs for all folds is not necessarily 1.  Fig. 4.3 shows a hypothetical example 

where CEP classifies a query into fold2 despite that the query-fold2 TMmax-score is lower than 

the query-fold1 TMmax-score (Fig. 4.3A).  This occurs because the fraction of within-fold 

TMmax-scores that are equal to or smaller than the corresponding query-fold TMmax-score is 

smaller for fold1 (Fig. 4.3B) than for fold2 (Fig. 4.3C).  Note, however, that classifications by 

CEP and TMmax-score would always be consistent if the fold space is completely discrete, 

because then the TMmax-scores of a query with fold1 and fold2 would be extremely different.    

Estimating CEP requires the information on the empirical distribution of within-fold 

TMmax-scores.  When the number of domains in a fold is not very large, CEP estimates may be 

inaccurate.  For example, when the query-fold TMmax-score is lower than all observed within-

fold TMmax-scores, one assigns CEP = 0, although the true CEP must be > 0.  To minimize this 

problem, we can fit the observed within-fold TMmax-scores (!) by a Gaussian mixture model 
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(GMM) and then estimate CEP using the fitted continuous distribution (see Materials and 

Methods).  The use of GMM is inspired by the fact that (i) the distribution of within-fold TMmax-

scores usually has multiple modes presumably due to the existence of multiple superfamilies in 

the fold and (ii) that GMM is highly flexible and fits almost any distribution.  The parameters of 

the GMM are inferred under the Bayesian framework with model settings proposed by 

Richardson and Green (Richardson and Green 1997).  With the posterior distributions of the 

parameters, the posterior predictive distribution of TMmax-scores ! ! !  is estimated using a 

Monte Carlo method, where ! ! !  denotes the probability density of a potentially observed 

TMmax-score (!) given the observed TMmax-scores (!).  CEP is then determined using ! ! !  as 

if the potentially observed TMmax-scores are actually observed.  We refer to this CEP estimate as 

the cumulative posterior predictive probability (C3P). 

 

4.3.4 Domain classification using CEP and C3P with global TMmax-scores 

Let us first use global TMmax-scores in CEP and C3P classifications.  This way of TM-

score normalization emphasizes the global similarity between domains.  For the same 30 random 

sets of queries previously used, the CEP classification differs from the CATH classification in 

3.4% of cases on average (Fig. 4.1).  We refer to the query domains that have different 

classifications by CEP and CATH as reclassified domains.  The majority of these domains are 

attracted to a small number of folds in CEP classification (Fig. 4.4A).  These folds tend to have 

large structure heterogeneities (i.e., with low averages and high standard deviations of within-

fold TMmax-scores).  In fact, the structure heterogeneity of a fold and the number of reclassified 

domains attracted to the fold are significantly correlated (Fig. 4.5A, B).  By contrast, there is no 
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significant correlation between the number of reclassified domains attracted to a fold and the fold 

size (Fig. 4.5C).  

On average, C3P classification differs from the CATH classification in 4.3% of cases 

(Fig. 4.1), and the reclassified queries by C3P are also attracted to a small number of folds (Fig. 

4.4A).  The general patterns of C3P reclassifications are similar to what was observed in CEP 

reclassifications (Fig. A.2.2.1A-C).  Averaged over the 30 query sets, 97% of the queries are 

classified consistently by CEP and C3P (Fig. 4.4B).  Moreover, 60% of the reclassifications by 

CEP are reclassified the same way by C3P, and 49% of the reclassifications by C3P are 

reclassified the same way by CEP (Fig. 4.4B).   

Below we provide an example of reclassification by global TMmax-score-based C3P (Fig. 

4.6).  Domain 1ny8A00 (CATH Id) has a TMmax-score of 0.55 with fold 3.30.300 (Fig. 4.6A) 

and a TMmax-score of 0.54 with fold 3.30.460 (Fig. 4.6B), and was classified into fold 3.30.300 

by CATH.  However, the mean within-fold TMmax-score is quite high (0.81) for fold 3.30.300 

(Fig. 4.6C).  Consequently, the probability for a within-fold TMmax-score to be ≤ 0.55 is small 

(C3P = 0.06).  By contrast, fold 3.30.460 has a substantial structure heterogeneity (mean within-

fold TMmax-score = 0.71; Fig. 4.6D), rendering it quite likely that a within-fold TMmax-score is 

≤0.54 (C3P = 0.15).  As a result, 1ny8A00 is reclassified to fold 3.30.460 by C3P.   

 

4.3.5 Domain classification using CEP and C3P with local TMmax-scores  

In this section, we use CEP and C3P with local TMmax-scores for classification.  This 

treatment is consistent with the focus on substructure similarity between domains in the study of 

fold space continuity.  For the 30 sets of queries, CEP and C3P classifications both differ from 

CATH classification for 12% of cases (Fig. 4.1), suggesting that the impact of fold space 
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continuity on fold classification is larger if local structure similarity is considered.  Similar to 

what was observed in the previous section, the reclassified queries are also attracted to a small 

number of folds (Fig. 4.4C). And the number of domains reclassified into a fold correlates with 

measures of the fold's structure heterogeneity (Fig. 4.5D, E; Fig. A.2.2.1D, E), but is 

uncorrelated with the number of domains in the fold (Fig. 4.5F; Fig. A.2.2.1F).  CEP and C3P 

classifications are consistent with each other for 97% of cases (Fig. 4.4D).  Seventy-seven 

percent of the reclassifications by CEP are reclassified the same way by C3P, while 81% of the 

reclassifications by C3P are reclassified the same way by CEP (Fig. 4.4D).   

 

4.3.6 Classification of newly solved domain structures in CATH by CEP and C3P 

The query domains used in previous sections were randomly chosen from the 17,043 

representative domains in CATH v3.5.0.  These queries are unbiased samples and their 

reclassification results by CEP and C3P represent the overall impact of structure space continuity 

on fold classification.  However, if we need to classify a newly solved domain structure into the 

current CATH fold hierarchy, how big of an impact would the use of CEP or C3P have?  To 

address this question, we took the 17,043 representative domains from the 141 large folds in 

CATH v3.5.0 (available from Sept., 2011) as the initial classification.  In CATH v4.0.0 

(available from March 2013), these large folds contain 8280 representative domains that did not 

exist in CATH v3.5.0.  We now use these 8280 newly added domains as queries.  When the 

global TMmax-score is used, CEP (or C3P) classifications differ from CATH classifications for 

4.0% (or 4.8%) of these 8280 domains.  When the local TM-score is used, CEP (or C3P) 

classifications differ from CATH classifications for 20.8% (or 20.5%) of these domains.  These 

values are higher than the corresponding numbers for the 30 sets of randomly picked domains, 
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suggesting that the current research biases towards domains whose classifications are affected 

more by the structure space continuity, relative to the past research. 

 

4.3.7 Classification of domains in the SCOP database 

  We next examined the fold classification in SCOP, another widely used protein 

classification system.  Using the same criteria as used for CATH, we generated 30 sets of 606 

representative queries from 89 large folds in SCOP version 1.73.  Global TMmax-score-based fold 

classification is largely consistent with the SCOP classification, with only 0.9% of inconsistent 

cases (Fig. 4.7).  This number increases to 2.4% under local TMmax-score-based classification.  

The frequency of inconsistent classification is much greater when the query-fold similarity is 

measured by either the mean or median TM-score instead of TMmax-score (Fig. 4.7).  These 

results indicate that, similar to CATH, SCOP fold classification can be automated using query-

fold global TMmax-score.  

For the same 30 random sets of queries, the global TMmax-score-based and local TMmax-

score-based CEP classifications differ from the SCOP classification for an average of 5.9% and 

7.6% of queries, respectively (Fig. 4.7).  These numbers become 7.8% and 8.6%, respectively, 

for global and local TMmax-score-based C3P classifications, respectively (Fig. 4.7).  

By comparing SCOP versions 1.73 (available from Nov. 2007) and 1.75 (available from 

June 2009 and the most updated version), we found that 801 representative domains were added 

into the 89 large folds in version 1.75 since version 1.73.  These most recent additions to SCOP 

were subject to CEP and C3P classifications.  The global and local TMmax-score-based CEP 

classifications of these domains are inconsistent with the SCOP classification for 5.9% and 7.5% 

of the cases, respectively.  These numbers become 7.2% and 9.1%, respectively, under C3P. 
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Reclassifications are rarer for SCOP than for CATH except under global TMmax-score-

based CEP and C3P (Fig. 4.1; Fig. 4.7).  The SCOP data used here comprise 89 large folds and 

65% of the total 9,964 representative domains in v1.73, whereas the CATH data consist of 141 

large folds and 82% of the total 21,309 representative domains in v3.5.0.  The sparser SCOP data 

than CATH data may render the classification more straightforward for the former than the latter.  

Intriguingly, however, global TMmax-score-based CEP and C3P classifications are less consistent 

with SCOP than CATH classifications.  To identify the underlying reason, we focus on the CEP 

classifications of the 6,134 non-redundant queries in the 30 SCOP sets.  Each query has an 

original fold assigned by SCOP.  The domain used to calculate query-original fold TMmax-score 

is referred to as the partner domain.  The relative length difference between the query and the 

partner domain is defined by the absolute value of their length difference divided by the shorter 

length.  We found the relative length difference significantly greater for SCOP than CATH 

queries (Fig. 4.8).  Because length difference reduces global TMmax-scores, query-original fold 

global TMmax-scores are reduced more drastically for SCOP than CATH queries, resulting in 

more reclassifications for the former than the latter.  Indeed, reclassified SCOP queries tend to 

have larger relative length differences with their partner domains than average SCOP queries 

(Fig. 4.8).    

 

4.4 DISCUSSION 

In this work, we first showed that the fold classification in CATH is highly similar to the 

classification by the query-fold TMmax-score, especially the global TMmax-score.  Considering 

fold space continuity, we developed the CEP and C3P methods to classify domain structures into 

existing folds using both query-fold TMmax-scores and within-fold TMmax-scores.  We found that, 
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using global TMmax-scores, considering space continuity leads to reclassifications of ~4% of 

domains.  However, when local TMmax-scores are used, considering space continuity leads to 

reclassification of ~12% of domains.  This increased reclassification rate under local TMmax-

scores is potentially due to prevalent substructure similarities across folds (Orengo et al. 1997; 

Harrison et al. 2002; Krishna and Grishin 2005) known as the Russian doll effect (Orengo et al. 

1997).  With this effect, a query is similar to multiple folds when local TMmax-scores are used.  

Consequently, the reclassification rate is increased.  

Under the global TMmax-score, considering fold space continuity leads to the 

reclassification of 6~8% SCOP domains, compared to 3~4% of CATH domains.  This increased 

reclassification rate for SCOP domains is potentially because the Russian doll effect is stronger 

for SCOP folds than CATH folds (Fig. 4.8), which renders the global query-original fold TMmax-

score lower for SCOP queries than CATH queries, prompting more reclassifications for the 

former than the latter.  These considerations suggest that fold space continuity is affected by 

within-fold domain length heterogeneity. 

Our results show that fold space continuity requires a sizable number of domain 

reclassifications.  We may have underestimated the number of required reclassifications because 

the datasets used are sparser than the complete fold space due to the removal of small folds.  

With more domain structures solved, the fold space will become more continuous.  Furthermore, 

we observed a rise in reclassification rates for newly solved structures in CATH.  Given the 

potential future surge of new domain structures predicted from the substantial increase of 

domains in CATH in recent years, considering fold space continuity is urgently needed for fold 

classifications. 
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As mentioned, some automatic fold classifiers (Cheng and Baldi 2006; Kim and Patel 

2006; Yan et al. 2009; Jo and Cheng 2014) use machine learning approaches and are trained with 

within-fold domain pairs from multiple folds.  However, pooling domain pairs from many folds 

for training ignores the among-fold variation in within-fold structure heterogeneity.  As a result, 

the impact of fold space continuity is not adequately considered in classification.  One might 

think that such classifiers can be improved by training with individual folds, but this is infeasible 

because of small sample sizes of most folds that cause overfitting of the classifiers with large 

numbers of parameters.  Thus, CEP and C3P are unique in that they explicitly consider structure 

space continuity in fold classification.  Furthermore, CEP and C3P are probabilities and are thus 

easy to interpret.  In addition, C3P is derived using Bayesian hierarchical models, which alleviate 

overfitting and allow experts to set various priors according to their beliefs on fold structural 

variations.  

We found that the classification using global query-fold TMmax-scores is inconsistent 

with CATH classification for only 1% of cases, confirming that CATH classifies a new domain 

based on its best match to existing members of various folds.  It is clear that this way of 

classification will result in the problem that some domains of the same fold are less similar to 

one another than to domains from other folds, which is observed in CATH (Xu and Zhang 2010).  

For example, domains A and B with low similarity to each other may be classified into the same 

fold because of their respective high similarities to some existing members in the fold.  The non-

transitive domain pairs such as A and B were observed previously (Orengo et al. 1997; Pascual-

Garcia et al. 2009), but its prevalence and impact on classification in CATH were unclear.  We 

found that when a query is classified based on the mean instead of maximal query-fold TM-
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score, the classification differs from CATH for ~20% of cases.  This substantial rise in 

inconsistency suggests that non-transitive domain pairs are quite common in CATH.   

Due to numerous non-transitive domain pairs in a fold, mean within-fold TMmax-scores 

are much larger than mean within-fold TMmean-scores.  Because CEP and C3P are designed to 

improve current fold classifications such as CATH and SCOP, which are similar to TMmax-score-

based classification, it is reasonable to use TMmax-scores in CEP and C3P.  Classification 

methods based on machine learning approaches are also designed to facilitate current fold 

classifications.  However, their practice is inappropriate due to the use of all pairs of domains 

within a fold rather than the most similar pairs as training sets.  This may explain high 

reclassification rates (~20%) of machine learning methods even though fold space continuity is 

not considered.  

In summary, we have developed CEP and C3P to classify domains into folds by 

considering fold space continuity.  The inconsistencies between CEP/C3P and current 

hierarchical classifications in CATH and SCOP demonstrate a substantial impact of structure 

continuity on fold classification, requiring considering structure continuality in future 

classifications of domain structures.  Structure continuity also calls for model-based clustering of 

domains where the number of folds and memberships in each fold are both probabilistic.  

 

4.5 MATERIALS AND METHODS 

4.5.1 Protein structure similarity score 

TM-score defined below is used to assess the structural similarity between two protein 

structures.  TM!score = !
!

!
!!!!! !!!

!!"#
!!! max

, where ! is the length of the shorter protein or mean 

length of the two proteins being compared, !!"# is the number of equivalent residues in the two 
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proteins, !! is the distance of the !th pair of the equivalent residues between the two superposed 

structures, !! = 1.24 ! − 15! − 1.8 is used to normalize the TM-score so that the average 

magnitude of the TM-score for random protein pairs is independent of the size of the proteins, 

and "max" indicates the highest value among all possible superposition.  TM-score ranges in (0, 

1] with a higher value indicating a higher similarity.  TM-scores between two domains are 

calculated using the TM-align software (Zhang and Skolnick 2005).  

 

4.5.2 Initial classifications and query domains 

From CATH v4.0.0, we collected 23,682 representative single domains with mutual 

sequence identities ≤ 60% and lengths ≥ 40 residues using CD-Hit (Fu et al. 2012).  Among 

them, 21,309 representative domains existed in an older version of CATH (v3.5.0).  These 

21,309 domains are from 1,158 folds in CATH v3.5.0.  A total of 141 of these folds each have at 

least 25 domains.  From each of these 141 large folds, we randomly sampled 10% of domains; 

these 1623 queries sampled were subjected to classification by other methods.  The remaining 

15,420 domains in the 141 folds constitute the initial fold classification.  This procedure was 

repeated 30 times, generating 30 random sets of queries.  To examine the CATH classifications 

of newly solved domain structures, representative domains of the 136 large folds in CATH 

v3.5.0 were used as the initial classification, whereas the 8280 domains newly added to the 136 

folds in CATH v4.0.0 were queries.  With the same criterion, 6,476 representative domains in 89 

large folds were collected from SCOP v1.73.  Using only the large folds, 30 sets of query 

domains were randomly picked.  Each of the sets contained 606 queries, and the other 5,870 

domains in large folds were treated as the initial classifications.  A total of 801 domains newly 

added to the 86 folds in SCOP v1.74 since v.1.73 were identified as newly solved queries. 
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4.5.3 Gaussian mixture model and posterior predictive distribution 

The observed within-fold TMmax-scores for a fold are denoted as x!= !!,… , !! , which 

are assumed to have been independently drawn from a mixture of ! Gaussian components.  N is 

the number of representative domains in the fold.  The probability of observing an x is 

! ! !,!, !,!! = !!!
!!! ! !; !! ,!!! ,   (1) 

where !!, !!!, and !! are the mean, variance, and mixture proportion of component !.  Latent 

allocation data are referred to as ! = !!,… , !! , in which !! specifies the mixture component to 

the observation !!.  Here, !! 's are independently and identically distributed samples from the 

following probability mass function (PMF). 

! !! = ! !, !,!! = !!.        (2) 

Conditional on the allocation value !!, the observed !! is a random number from the following 

Gaussian probability density function. 

 ! !! !! = !,!, !,!! = ! !!; !! ,!!! = ! !!; !! ,!!! = !
!!!!!

!
!

!!!!!
!

!!!
!

 .  (3) 

We assume the following priors of the parameters:  

!|!~!"#"$ℎ!"#(!!,… , !!);        (4) 

!!~!"#$%& !, !!! ;          (5) 

!!!!~!"##" !,! ;         (6) 

!~!"#$$"% !  .         (7) 

We set !! = 1, ! = median of observed TMmax-scores of a fold, and !!! = !!,where ! is the 

difference between the maximum and minimum of !.  These parameters make the prior 

distributions of ! and !! rather flat.  We set ! = 2 and !~Γ !, ℎ , which is a gamma distribution 
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with the shape parameter ! = 0.2 and rate parameter ℎ equal to 10/!!, to express the belief that 

the !!!!s are similar.  At last, ! follows a Poisson distribution with parameter ! = 1.  All the 

settings together render the priors weakly informative and thus allow observed TMmax-scores to 

dominate the parameter inference.  The joint prior probability can be written as  

! !,!, !,!!! !,!, !, !, !!!, ! = ! ! ! ! ! !, ! ! !!! !,!,! ! ! !, !, !!! , (8) 

and therefore the joint posterior probability is  

! !,!, !,!!! ! ∝ ! ! !,!, !,!!! ! !,!, !,!!! !,!, !, !, !!!, ! .  (9) 

Let ! = !,!, !,!!!  and ! denote unobserved TMmax-scores of the fold.  The posterior 

predictive distribution is  

! ! ! = ! !,! ! !" = ! ! ! ! ! ! !",     (10) 

which is the probability density function (PDF) of potential query-fold TMmax-scores (!) given 

the observed within-fold TMmax-scores (!).  

Due to the lack of a closed form,!!'s are sampled from the posterior distribution ! ! !  

using reversible-jump Markov chain Monte Carlo implemented in the R package of miscF (Feng 

2013). The simulation had 30,000 iterations, 5000 burn-in steps, and a thinning parameter of 5.  

Initial values unspecified previously are assigned automatically by the miscF package.  

Conditional on each!!, ! is sampled from the Gaussian mixture ! ! ! .  This model was used to 

develop the C3P method for fold classifications.  The C3P package including scripts to run CEP 

can be obtained at http://www.umich.edu/~zhanglab/download.htm. 
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Figure 4.1 Comparing classifications by various TM-scores, CEP, C3P and CATH. 
Fractions of fold-level domain structure classifications by various TM-scores, CEP, and C3P that 
are inconsistent with the CATH classification. (A) 30 sets of 10% randomly chosen domains 
from CATH v3.5.0 and (B) 8280 newly added domains in CATH v4.0.0 since v3.5.0.  Error bars 
show one standard deviation. 
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Figure 4.2 Within-fold structural heterogeneities of the 141 large folds in CATH version 
3.5.0.  (A) Mean within-fold TMmax-score of each fold.  A whisker indicates the standard 
deviation (SD) of the within-fold TMmax-scores.  (B) Correlation between the mean and SD of 
within-fold TMmax-scores across folds. 
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Figure 4.3 A hypothetical example contrasting fold classifications by TMmax-score and CEP.  
(A) query-fold TMmax-scores of a query to two folds.  (B) Frequency distribution of within-fold1 
TMmax-scores.  (C) Frequency distribution of within-fold2 TMmax-scores.  In (B) and (C), CEP is 
the area left to the vertical line under the distribution. 
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Figure 4.4 CEP and C3P classifications of randomly picked domains from large folds in 
CATH.  (A) Reclassifications by global TMmax-score-based CEP and C3P.  A vertical bar 
corresponds to a fold, and its width is proportional to the number of domains in the fold.  
Domains within a fold are sorted by length ascendingly.  The red, green, and blue colors 
represent folds from !, ! and !" classes in CATH, respectively.  A line linking vertical bars of 
two horizontal bars connects the same domain that is classified into different folds by the two 
different methods, although a vertical bar with the same width of a line denotes 20 domains.  
This discrepancy is introduced for clearer visualization.  (B) Venn diagram of classifications by 
CATH and global TMmax-score-based CEP and C3P.  (C) Reclassifications by local TMmax-
score-based CEP and C3P.  (D) Venn diagram of classifications by CATH and local TMmax-
score-based CEP and C3P.  In (A) and (B), results from the first of the 30 sets of queries are 
presented.  In (C) and (D), average results from the 30 sets of queries are presented. 
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Figure 4.5 Rank correlations between various properties of a fold and the number of 
domains reclassified into the fold by CEP. The domains are reclassified by (A-C) global 
TMmax-score-based CEP and (D-F) local TMmax-score-based CEP.  The lines show linear 
regressions.  ρ, Spearman’s rank correlation coefficient. 
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Figure 4.6 Reclassification of a CATH domain by global TMmax-score-based C3P.  The 
green structure shows the query domain (CATH id = 1ny8A00).  The query is reclassified into 
fold 3.30.460 from fold 3.30.300.  (A) Structure alignment with 1egaA02 (red) of fold 3.30.300 
(query-fold TMmax-score = 0.55).  (B) Structure alignment with 1ylqA00 (red) of fold 3.30.460 
(query-fold TMmax-score = 0.54).  (C) Structure alignment of the query with 10 randomly picked 
domain members in fold 3.30.300 (C3P = 0.06, domain members in red).  (D) Structure 
alignment of the query with 10 randomly picked domain members in fold 3.30.460 (C3P = 0.15, 
domain members in red).  In (C)-(D), the red lines are 10 randomly selected domains from the 
fold. All structures are displayed by PyMOL 
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Figure 4.7 Comparing classifications by various TM-scores, CEP, C3P and SCOP. Fractions 
of fold-level domain structure classifications by various TM-scores, CEP, and C3P that are 
inconsistent with the SCOP classification for (A) 30 sets of 10% randomly chosen domains from 
CATH v3.5.0 and (B) 523 newly added domains in SCOP v1.75 since v1.73.  Error bars show 
one standard deviation. 
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Figure 4.8 Relative length difference between domains within folds.  The relative length 
difference is defined as the absolute length difference between a query from a fold and its best-
matched domain (i.e., with the highest TM-score) in the fold, divided by the length of the shorter 
of the two.  Domains included in the CATH bar are 16,173 nonredundant domains from the 30 
sets of random queries in CATH v3.5.0.  Domains included in the red SCOP bar are 6,134 
nonredundant domains from the 30 sets of random queries in SCOP v1.73.  Domains included in 
the blue SCOP bar are 456 queries reclassified by global TMmax-score-based CEP.  In this bar 
plot, the notch indicates the median and the bar corresponds to the interquartile range (IQR), 
covering from the first quartile to the third quartile of the sample.  The two whiskers of the bar 
show the minimum value not smaller than the 1st quartile minus 1.5 times IQR and the maximum 
value not greater than the 3rd quartile plus 1.5 times IQR, respectively.  These values are default 
in the boxplot package of R.  P values are from Mann-Whitney U tests. 
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CONCLUSION 
 
 

In this thesis, I addressed three questions of molecular evolution: (1) testing the 

compensatory hypothesis that explains why some human disease-associated residues (DARs) 

appear as wild-types in other species; (2) testing the functionality of translated pseudogenes and 

(3) classifying protein structure domains into folds in a continuous space continuity. 

In Chapter 2, I identified potential compensatory residues for human DARs using 

structure information, and then demonstrated that they alleviate destabilizing effects of the 

DARs. Because reducing protein stability is a primary cause of disease by DARs, this observed 

alleviation in destabilizing effects indicates that the potential compensatory residues mitigate the 

harm of DARs. I also demonstrated that on average, the observed compensatory effects might be 

sufficient to restore normal phenotypes. Moreover, because compensatory residues are not 

necessarily close to the DARs, using only local compensatory residues here underestimates the 

compensatory effects. Taken together, my results strongly suggest that compensatory residues 

alleviate the disease-causing effects of DARs, supporting the compensatory hypothesis. 

It would be interesting to know how a DAR and their compensatory residues get fixed in 

a population. In general, there are two scenarios. First, the compensatory residues are neutral or 

beneficial, and thus reach fixation in the population. Their fixations create a genetic background 

that alleviates deleterious effects of the DAR, allowing the spread of the DAR to the entire 

population. Second, the DAR exists with a low allele frequency in the population due to its mild 

fitness effect. During this time, compensatory residues appear and make the originally 

deleterious DAR beneficial or neutral. Therefore, the DAR together with the compensatory 
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residues reach fixation. These two scenarios may be distinguished by examining the order with 

which the compensatory residues and the DAR appear in a phylogeny. 

In Chapter 3, due to advances of mass spectrometry, low concentration proteins can be 

identified. The high-resolution human proteomes include 322 translated pseudogenes. Seventy-

eight of them are qualified for evolutionary studies. The median nonsynonymous and 

synonymous rate ratio (!) of these translated pseudogenes is significantly lower than that of 

transcribed pseudogenes and that of non-transcribed pseudogenes, respectively. Fifteen percent 

of the translated pseudogenes have ! significantly lower than 1. These results indicate purifying 

selection acting on this subset of translated pseudogenes, suggesting their functionality. I found 

that this subset of translated pseudogenes either have uninterrupted coding ORFs as their 

parental genes or use alternative start codons to express relatively complete protein domains, 

which are often independent functional units. The remaining 85% of translated pseudogenes 

have their median ! similar to non-translated pseudogenes. This indicates that their translations 

are either non-functional or falsely discovered by mass spectrometry.    

The finding that 15% of translated pseudogenes are potentially functional is contradictory 

to their annotation as pseudogenes. Moreover, 8% of transcribed pseudogenes have ! 

significantly lower than 1. These selected pseudogenes might be missed by the mass 

spectrometry or expressed in tissues that were not screened. The selected translated and 

transcribed pseudogenes have at most 11% and 27% false discovery rates on average when 

multiple tests are corrected. Therefore, the truly selected pseudogenes still account for 11% and 

6% of translated and transcribed pseudogenes, respectively. These results indicate that a sizeable 

fraction of annotated pseudogenes are potentially functional. Consequently, the current standard 

for pseudogene annotation needs to be modified. I suggest that ! should be calculated for 
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pseudogene candidates. If the ! is significantly lower than 1, the pseudogene candidate is 

probably still functional even with signs of pseudogenization, and thus requires further 

inspection before being classified as a pseudogene. 

In Chapter 4, I developed CEP/C3P to classify a domain structure into existing folds by 

considering the continuity of fold space. Depending on local/global similarity scores and fold 

schemes, CEP/C3P classifications differ from the current classifications for 4-12% of all 

domains. The differences confirm the continuous nature of the fold space and demonstrate 

impacts of the continuity on current fold classifications. Although CEP/C3P classification is in 

principle more reasonable than current fold classifications, its advantage is difficult to 

demonstrate in practice due to the lack of gold standards. A compromised benchmark is the 

classification based on sequence homology. However, there are two caveats for this validation. 

One is that many domains have no detectable homology to one another, and thus cannot be 

classified using sequence homology. The second is that homologous proteins do not necessarily 

have similar structures. These two facts impair the use of homology relationships for validating 

CEP/C3P classifications.  

 CEP/C3P takes a current classification as the initial fold classification, which was 

generated without considering fold space continuity. Thus, CEP/C3P is not able to remove the 

ignorance of the continuity completely from its classification. To fix this problem, a de novo 

classification is needed. For example, a Gaussian mixture distribution can be used to model the 

whole structure space. The number of Gaussian components in the mixture distribution 

corresponds to the number of folds. For instance, a Gaussian mixture distribution with K 

components partitions all the domains into K folds. Within each fold, a domain is assigned as the 

center (C) of the fold. The similarities between the central domain and the other domains in the 
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fold are modeled by a Gaussian distribution. The key is to find the values of parameters K, Cs 

and memberships of other domains to best fit the mixture distribution. This analytically 

impossible task can be achieved using Markov Chain Monte Carlo (MCMC) technique under 

Bayesian frameworks. Similarly to CEP and C3P, this de novo method classifies domains into 

folds by considering distributions of within-fold similarities, and thus takes fold space continuity 

into account for classifications. 

 In sum, Chapter 2 and 3 used structural genomic and proteomic data respectively to 

address important questions in molecular evolution, which are otherwise unapproachable. They 

demonstrate the usefulness of structural genomic and proteomic data in molecular evolution. In 

Chapter 4, I demonstrated the importance of considering fold space continuity in fold 

classifications, and developed CEP and C3P to assist current fold classification by considering 

this important factor. The more reasonable fold classifications with my method are expected to 

play important roles in the study of protein structures, functions, and evolution.  
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APPENDIX 1 
 

HOW SIGNIFICANT IS A PROTEIN STRUCTURE SIMILARITY WITH TM-
SCORE=0.5? 

 
 
ABSTRACT 
 

Motivation: Protein structure similarity is often measured by RMSD, GDT-score, and 

TM-score. However, the scores themselves cannot provide information on how significance the 

structural similarity is. Also, it lacks a quantitative relation between the scores and conventional 

fold classifications. This paper aims to answer two questions: (1) what is the statistical 

significance of TM-score? (2) What is the probability of two proteins having the same fold given 

a specific TM-score? We first made an all-to-all gapless structural match on 6,684 non-

homologous single-domain proteins in the PDB and found that the TM-scores follow an extreme 

value distribution. The data allow us to assign each TM-score a P-value that measures the chance 

of two randomly selected proteins obtaining an equal or higher TM-score. With a TM-score at 

0.5, for instance, its P-value is 5.5×10-7, which means we need to consider at least 1.8 millions of 

random protein pairs to acquire a TM-score no less than 0.5. Second, we examine the posterior 

probability of the same fold proteins from three datasets SCOP, CATH and the consensus of 

SCOP and CATH. It is found that the posterior probability from different datasets has a similar 

rapid phase transition around TM-score=0.5. This finding indicates that TM-score can be used as 

an approximate but quantitative criterion for protein topology classification, i.e. protein pairs 

with TM-score>0.5 are mostly in the same fold while those with TM-score<0.5 are mainly not in 

the same fold
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INTRODUCTION 

 Protein structure comparison is essential in almost every aspect of modern structural 

biology, ranging from experimental protein structure determination to computer-based protein 

folding and structure prediction, from protein topology classification to structure-based protein 

function annotation, and from protein-ligand docking to new compound screening and drug 

design (Kuntz 1992; Murzin et al. 1995; Orengo et al. 1997; Zhang 2009). The most commonly 

used means to compare protein structures is to calculate the root mean squared deviation, RMSD, 

of all the equivalent atom pairs after the optimal superposition of the two structures (Kabsch 

1978). However, because all atoms in the structures are equally weighted in the calculation, one 

of the major drawbacks of RMSD is that it becomes more sensitive to the local structure 

deviation than to the global topology when the RMSD value is big. For example, the RMSD of 

two protein structures can be high if the tails or some loops have a different orientation even 

though the global topology of the core part is the same; this cannot be distinguishable, based on 

the RMSD value alone, from the case where two structures have completely different topologies. 

 Aiming at developing protein topology-sensitive measures, Zemla et al proposed a 

global distance test score, GDT-score (Zemla et al. 1999; Zemla 2003), which count the number 

of Cα pairs which have a distance below 1 Å, 2 Å, 4 Å, and 8 Å after the optimal superposition. 

This measurement has been used as one of the major criteria in the community-wide CASP 

experiments for assessing the modeling accuracy of structure predictions (Zemla et al. 1999; 

Moult et al. 2007). However, the distance cutoffs in the GDT score are subjective and may need 

to be manually tuned for different categories of modeling targets (Kopp et al. 2007). Moreover, 

similar as RMSD, the magnitude of GDT scores for random structure pairs has a power-law 



!

!

78!

dependence with the protein length (Zhang and Skolnick 2004), which renders the absolute value 

of GDT-score less meaningful.  

 To address these issues, Zhang and Skolnick recently developed a template modeling 

score, TM-score (Zhang and Skolnick 2004), which counts all residue pairs using the Levitt-

Gerstein weight (Levitt and Gerstein 1998) and therefore does not need discrete distance cutoffs. 

Since the short distance in the Levitt-Gerstein matrix is weighted stronger than the long distance, 

TM-score is more sensitive to the global topology. Moreover, because it adopts a protein size-

dependence scale to normalize the residue distances, the magnitude of TM-score of random 

structure pairs is protein size independent.  

 Despite the advantage and usefulness of RMSD, GDT- and TM-scores in quantitatively 

measure of protein structure similarities, the scores themselves does not tell the statistical 

significance of each score value, which is essential in many of the statistical studies of protein 

structure comparisons and alignment analysis (Levitt and Gerstein 1998; Sadreyev et al. 2009). 

As another highly-related issue, proteins have been categorized into various structural families 

based on the structure and/or evolutionary similarities, using either human visual intuition 

(Murzin et al. 1995) or semi- or fully-automated structural comparisons (Holm et al. 1992; 

Orengo et al. 1997). These hierarchical databases provide important facilities to our 

understanding of protein structure and function, and gauge the structural comparison and 

categorizations. However, it generally lacks a quantitative correspondence between the structural 

similarity scores and the various levels of protein structure categorizations. For example, a 

simple but often-asked question in protein structure prediction and assessment is: does the 

predicted model have the correct fold (compared to the native structure) given all the RMSD, 

GDT-score, and TM-score? 
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 In this work, we try to address these issues by answering two questions: (1) what is the 

statistical significance of each TM-score value; and (2) what is the probability of two proteins to 

have the same fold given the TM-score. Here, the reason for us to choose TM-score is that the 

magnitude of TM-score is protein size independent, which facilitates the attainment of length-

independent analytical results of the calculations. Although our focus in the second question is 

on the fold level, the results can be easily extended to other level of structural similarities. 

 

MATERIALS AND METHODS 

Definition of TM-score 

TM-score is defined to assess the topological similarity of two protein structures (Zhang 

and Skolnick 2004): 

TM!score = !
!

!
!!!!! !!!

!!"#
!!! max

  (1) 

where ! is the length of the target protein, !!"# is the number of the equivalent residues in two 

proteins. !! is the distance of the ith pair of the equivalent residues between the two structures, 

which depends on the superposition matrix; the ‘max’ means the procedure to identify the 

optimal superposition matrix to maximize the sum in Eq. (1). The scale !! = 1.24 ! − 15! −

1.8 is defined to normalize the TM-score in a way that the average magnitude of the TM-score 

for random protein pairs is independent on the size of the proteins. TM-score stays in (0, 1] with 

a higher value indicating a stronger similarity. 

 

Dataset of random protein structure pairs 

6,684 single domain structures were culled from the PDB database (Berman et al. 2002). 

These proteins share a low pair-wise sequence similarities (with sequence identity < 25%), as 
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filtered by PISCES (Wang and Dunbrack 2003), with the protein length between 80-200 amino 

acids.  

Each protein structure in this dataset is used as the target protein to compare with all the 

other proteins in the dataset with the same or longer length. For each protein pair, the target 

protein is first superposed by the TM-score program on the N-terminal fragment of the bigger 

protein structure with the TM-score normalized by the target protein. The target sequence then 

slides gaplessly along the sequence of the bigger protein with a window size of 20 residues until 

less than 20 amino acids remain on the larger protein; a TM-score is obtained with each of the 

gapless alignments. This procedure on the dataset ends up with a total of 71,583,085 random and 

protein-like structure pairs.  

It should be mentioned that the TM-score superimpositions are obtained from a set of 

gapless sliding alignments rather than from the optimal structural alignments of the two proteins. 

The purpose of the gapless alignment is for generating random structure background, because a 

structural alignment, produced by such as Dali (Holm and Sander 1995) and TM-align (Zhang 

and Skolnick 2005), for instance, usually represents an optimal match of a given pair of protein 

structures that is selected from a huge number of possible combinations of corresponding 

residues assignments. Thus, a structural alignment does not constitute random structural 

comparisons even though the non-homologous protein pairs are randomly selected.  

 

Dataset of proteins with same/different folds 

To estimate the posterior probability for structure pairs at given TM-scores to share the 

same topology, a collection of protein pairs in both the same and the different folds is necessary. 

For this purpose, we borrow the Fold and Topology definition from the standard protein structure 
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classification databases: SCOP (Murzin et al. 1995) and CATH (Orengo et al. 1997), to generate 

the same and different fold datasets. 

Three sets of same fold structure pairs. The first set of protein domains (Set-I) are 

collected from the SCOP 1.73 database (Murzin et al. 1995). After filtering out the redundant 

proteins with a sequence identity > 95% and the small proteins with length below 80 amino 

acids, 11,239 protein domains remain, which cover 551 main Fold families in SCOP. An all-to-

all pairing is then carried out for the proteins within the same Fold family and ends up with a 

total of 746,420 protein pairs which are considered as sharing the same fold in SCOP. Many of 

the same fold domains, however, have only similar core regions but include some long-tails and 

outlier super-secondary structures that have different orientation and structures. To rule out the 

possible contamination of the outliers on the structure scores, we further remove those domain 

pairs that have a radius gyration difference larger than 10%. Thus, 449,281 valid structure pairs 

are finally obtained from the SCOP library at the “Fold” level. 

The second set of protein domains (Set-II) are from CATH 3.2.0 (Orengo et al. 1997). 

The structure pairs are generated from the proteins in the same “Topology”, a structural level 

equivalent to the “Fold” in SCOP (Hadley and Jones 1999). After the same redundancy and 

length filtering, 12,248 domains covering 598 main Topologies in CATH are obtained. An all-to-

all pairing among proteins of the same Topology families result in 2,769,868 domain pairs. By 

applying the radius gyration cut-off, 1,360,782 pairs were left for the domains at the CATH 

“Topology” level. 

The third protein pair set (Set-III) is a consensus of the SCOP and CATH databases. Due 

to the different domain splitting system, SCOP and CATH may have protein domains with the 

same ID (the same PDB names and chains) but having different sequence segments. To ensure 
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that SCOP and CATH deal with the same structures, we filter out those inconsistent domains and 

collect only the structures which have the same IDs in the SCOP and CATH and meanwhile have 

a sequence identity >90% between the SCOP and CATH domains. By these criteria, 5,105 

domain structures are culled from SCOP with counterparts in CATH, which cover 328 different 

fold families. An all-to-all pairing is carried out among the proteins which are consistently 

defined by SCOP and CATH as the same fold, resulting in 186,359 protein pairs. After the radius 

gyration filtering, 117,446 pairs are finally collected and used. 

Three sets of differnt fold structure pairs. There are three sets of different (or non-same) 

fold protein pairs corresponding to the same fold pairs in Set I, II and III. Due to the big size of 

the protein sets, we found that the TM-score distributions for non-same fold proteins are very 

similar for different protein sets. Therefore, we generate all the non-same fold protein pairs from 

the well-defined and consensus set of the 5,105 protein domains. 

The first non-same fold protein set is named Set-I’. It contains an all-to-all pairings of the 

5,105 protein domains but excluding all the pairs that are in the same SCOP Fold family, which 

results in 12,815,737 protein pairs. The Set-II’ is similar as Set-I’ but excluding the domain pairs 

that are in the same CATH Topology family, which results in 12,507,855 protein pairs. To 

generate Set-III’, any pairs which are either in the same SCOP Fold family or in the same CATH 

Topology family are excluded. This results in 12,497,203 protein pairs.  

 

RESULTS 

Statistical significance of TM-score 

Extreme Value Distribution (EVD) is often used to model the smallest or largest value 

among a large set of independent, identically distributed random values (Embrechts et al. 1997). 
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It has been shown that both sequence and structure comparison scores of proteins follow the 

EVD (Levitt and Gerstein 1998). The general function of EVD is described as 

! = ! ! !,! = !!!exp !!x
σ exp −exp !!!

!   (2) 

where µ is the so-called location parameter and σ is the scale parameter. 

In Figure A.1.1, we show the distribution of TM-score values calculated from 71,583,085 

random protein pairs which are collected from 6,684 non-homologous proteins in the PDB 

library by gapless threading. The distribution matches well to the Eq. (2) with the best fitting 

parameter µ =0.1512 and σ =0.0242 estimated by the Maximum Likelihood method. We also 

split the protein samples into 4 groups according to the protein size, i.e. [80, 100], [101, 120], 

[121, 160], [161, 200]; all of them follow well the same EVD. This data on one hand 

demonstrates the robustness of the extreme value distribution for the TM-score distribution of 

random protein pairs. On the other hand, it confirms the previous conclusion that the TM-score 

magnitude and distribution of random proteins are independent of protein size (Zhang and 

Skolnick 2004). 

We are interested in the probability of having a TM-score equal to or greater than a 

certain value (x) among random protein pairs, i.e. P-value of a TM-score. The P-value can be 

obtained by integrating Eq. (2) from x to 1, i.e.  

!!value ! != ! ! !,!!
! =1− exp −exp !!x

σ  (3) 

Figure A.1.2 shows the overall shape of the P-value versus TM-score with µ and σ taken 

from the data in Figure A.1.1. In general, the probability to find a TM-score ≤0.17 from random 

structural pairs is close to 1. The P-value then decreases rapidly with TM-score >0.17; it 

becomes significantly below 1 when TM-score >0.3. In the Inset of Figure A.1.2, we plot the P-
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value for the TM-score range in [0.3, 1], which follows approximately an exponential regression. 

When TM-score=0.5, it corresponds to a P-value of 5.5×10-7.  

Many authors have demonstrated that the magnitude of RMSD, GDT-score, and several 

other matrices are all protein length-dependent (Levitt and Gerstein 1998; Betancourt and 

Skolnick 2001; Ortiz et al. 2002; Zhang and Skolnick 2004). A basic assumption of this work is 

that the magnitude of TM-score is protein length-independent, which gives the opportunity to 

express the P-value as a sole function of TM-score. Figure A.1.3 shows explicitly the average 

TM-score value and the deviations with different protein size, where a bin-width of protein 

size=10 residues is taken. The data again confirm the size independence of the TM-score values 

in random protein pairs.  

As an intuitive explanation of the P-value, we also present in Figure A.1.3 the number of 

random protein pairs which are needed to achieve or surpass certain TM-score values; this is 

converted from the P-value data shown in Figure A.1.2. For TM-score=0.5, for example, it needs 

at least 1.8 millions of random structural matches so that one structure match can hit a TM-score 

equal to or higher than 0.5. When TM-score=0.72, this number increases to 10 billion. 

 

TM-score of proteins with the same fold 

Although the P-value can give a quantitative measure of the statistical significance of 

each TM-score value, researcher often wants to know what TM-score approximately corresponds 

to the protein pairs sharing the same fold. For example, an often-asked question in ab initio and 

template-based protein structure prediction is how to judge whether a predicted model has the 

same fold or topology as the experimental structure (Jauch et al. 2007; Kopp et al. 2007; Zhang 

2009). Here, we address this issue by calculating the Posterior Probability for proteins at certain 



!

!

85!

TM-score to have the same or different folds. We will examine the results of the posterior 

probabilities using three different fold/topology standards.  

TM-score corresponding to the SCOP Fold level. According to the Bayesian rules, for a 

given TM-score, the posterior probability of proteins having the same or different Fold can be 

expressed as: 

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( )!

!
"

!!
#

$

+
=

+
=

FPFTM|PFPTM|FP
FPFTM|P|TMFP

FPFTM|PFPTM|FP
FPTM|FPF|TMP

  (4) 

Here, TM stands for the TM-score of the compared proteins as calculated by the structural 

alignment program TM-align (Zhang and Skolnick 2005); F and F represent the events that the 

proteins belong to the same and different Fold in SCOP, respectively; ( )FP and ( )FP  are the prior 

probabilities of proteins in same and different folds; ( )FTMP |  and ( )FTMP |  are the conditional 

probabilities of TM-score when the two proteins are in the same or different Fold families, 

respectively.  

In the Set I and Set-I’, 449,281 pairs of proteins are considered by SCOP1.73 as the same 

Fold and 12,815,737 are as not in the same Fold. Thus, the conditional probabilities can be 

calculated by 
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    (5) 

where ( )TMN  is the number of protein pairs with a certain TM-score (TM) in the Set-I, and ( )TMN  

is the number of protein pairs with the TM-score in the non-same fold protein Set-I’. The 
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denominators are the summation of the same and non-same fold protein pairs for all TM-scores 

in (0, 1], which equals to the total number of protein pairs in Set I and Set-I’ respectively.  

In Figure A.1.4 (‘squares’), we divide the TM-score space into 20 bins and present the 

conditional probability for both the same and non-same fold proteins. As expected, the same 

Fold and the non-same Fold proteins are well grouped in different TM-score ranges. However, 

since TM-score and SCOP fold is not a one-to-one correspondence, there is a small overlap of 

TM-score between the two protein data sets.  

To calculate the prior probabilities of ( )FP  and ( )FP , for the purpose of minimizing 

statistical bias, we collect all 85,685 protein domains in the SCOP database. An all-to-all pairing 

is then carried out on these proteins. The prior probability can be calculated by 

( ) ( )
( ) ( )

( ) ( )!
"

!
#

$

−=

+
=

FPFP

FNFN
NFP

1

F

    (6) 

where ( )FN  and ( )FN  are the number of the same Fold and the non-same Fold pairs according to the 

SCOP definition. Overall, ( )FP =0.0142 and ( )FP =0.958 in our counting. 

Figure A.1.5 (‘squares’) is the posterior probability for proteins of certain TM-score to be 

in the same SCOP Fold, when we integrate the data of Eqs. (5) and (6) into Eq. (4). When TM-

score <0.4, there almost never have a pair of proteins which are in the same SCOP Fold family. 

On the other hand, when TM-score >0.6, the probability of the two proteins in the same SCOP 

Fold rapidly increases to >65%. There is a clear phase transition occurring around the half score 

of TM-score.  

TM-score corresponding to the CATH Topology level. Since the fold definition can be 

dependent on subjective choices, to examine the robustness of the TM-score distribution, we 

calculate the posterior probability using another widely-used database, CATH (Orengo et al. 
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1997). 1,360,782 protein pairs are considered by CATH as of the same Topology in Set-II and 

12,507,855 pairs as of different Topology in Set-II’. 

In Figure A.1.4 (triangles), we show the conditional probabilities of the same and non-

same fold protein pairs in the CATH database. Compared with the SCOP data, there is a clear 

shift of the distribution towards smaller TM-score, which indicates that the fold definition in 

CATH Topology is on average broader than that in SCOP Fold, although the non-fold protein 

distribution of CATH is similar as that of SCOP. Correspondingly, the prior probability ( )FP  of 

CATH Topology calculated from all the 114,125 CATH domains based on Eq. (6) is 0.0299, 

which is higher than that of SCOP (0.0142), because more protein pairs are categorized into the 

same Topology families due to the broader structural cut-off in CATH. The prior probability of 

the non-same Fold proteins ( )FP =0.97. 

Figure A.1.5 (triangles) shows the posterior probability of protein pairs to be in the same 

CATH Topology families with given TM-scores. There is a slight shift of CATH compared with 

SCOP towards smaller TM-score as well; but a similar rapid phase transition is observed in TM-

score between 0.4 and 0.6. 

TM-score corresponding to the consensus SCOP&CATH fold families. Due to the 

slight inconsistence between SCOP and CATH database, we here consider a consensus set of 

protein pairs, Set-III, where the proteins are considered as the same Fold by both SCOP and 

CATH, which covers 328 consensus structural families. The non-same fold protein pairs (Set-III’) 

are those where both SCOP and CATH categorize them into different structural families. 

As shown in Figure A.1.4 (stars), the conditional probabilities of TM-score for proteins in the 

same families in the consensus set are slightly shifted towards larger TM-score related to SCOP, 
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because of the even tighter definition of the fold family. Similarly, the prior probability for the 

same fold P(F)= 0.0149 while ( )FP =0.985 for the non-same fold proteins. 

In Figure A.1.5 (stars), we present a posterior probability of proteins at the same fold and 

non-same Fold families based on the stricter and consensus definition from both SCOP and 

CATH. There is again a rapid phase transition around TM-score=0.5. Compared with SCOP and 

CATH, however, this transition is more rapid.  

Combining the results of the three different datasets, it seem quite safe to assign TM-

score=0.5 as a rough but quantitative cutoff for protein Fold/Topology definition, i.e. most of 

proteins with TM-score > 0.5 can be considered as of the same topology whereas most proteins 

with a TM-score < 0.5 should be of different topology. When the TM-score is further away from 

the cutoff value, the conclusion becomes gradually safer. When TM-score=0.4, for example, > 

99.9% of proteins are not in the same fold according to the consensus definition of SCOP and 

CATH; when TM-score = 0.6, > 90% of proteins are in the same fold based on the consensus 

criterion. 

 

DISCUSSION AND CONCLUSION 

We first examined the TM-score distribution of randomly-selected non-homologous 

protein pairs using gapless threading and found that it follows a simple extreme value 

distribution. This allows us to calculate P-value to estimate the statistical significance of each 

TM-score value. When TM-score <0.17, the P-value is close to 1, which means that any protein 

structures or computer models at this level of similarity is indistinguishable from random 

structure pairs. The P-value decreases rapidly below 0.001 when TM-score>0.3, a region of 

structural similarity which is significantly different from random structures. When TM-
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score=0.5, the P-value is reduced to 5.5×10-7, meaning that at least 1.8 millions of random 

protein pairs are needed to achieve on average one of this similarity.  

It should be noted that this data does not contradict with a previous study (Zhang et al. 

2006) where the average TM-score of the structural alignment by TM-align on random structure 

pairs is around 0.3, because the structural alignment in TM-align (Zhang and Skolnick 2005) has 

been optimally selected from a huge number of possible structural matches, which is therefore 

far from random structural matches although the protein structure pairs are randomly selected. 

Interestingly, in the recent CASP7 and CASP8 blind protein structural predictions, the average 

TM-score of the worst three models for each target are 0.161±0.041 and 0.168±0.042, 

respectively (data taken from http://zhang.bioinformatics.ku.edu/casp7 and 

http://zhang.bioinformatics.ku.edu/casp8); both are below and near 0.17. This means that the 

predicted models from these bottom groups are not more than a random pickup of structures 

from the PDB library. 

Second, we developed an approach for estimating the posterior probability of proteins 

with given TM-scores to be in the same or different fold family. Using three different datasets 

which has Fold/Topology defined from the standard SCOP and CATH databases, we observed a 

similar rapid phase transition of the probability around TM-score=0.5. This indicates that TM-

score may be used as a quantitative criterion for assessing whether protein structures or model 

predictions are of the same topology, i.e. for TM-score <0.5, proteins are mostly not in the same 

fold while for TM-score >0.5, proteins are generally in the same fold. This criterion becomes 

gradually safer when the actual TM-score reaches a value further away from the cut-off.  

It should be mentioned that this TM-score cutoff may not be directly applicable for 

comparing protein structures in the CATH and SCOP databases, i.e. there are actually 
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considerable proteins in the same fold family in SCOP and CATH which may have a TM-score 

below 0.5; this is mainly due to the outlier of protein structures, such as long tails. In our culled 

dataset and calculations, we only focused on the topology of the core regions and had the 

abnormal protein domains filtered out. Therefore, when applying TM-score in real protein 

comparison, one should either cut the structural outliers or normalize the TM-score in the correct 

target length that only corresponds to the important core structures. 

The second part of the studies in this paper has been focused on the fold level of protein 

structures, which is mainly because this concept of topology has been most generally used in 

protein folding and protein structure prediction. Also, this category of structure similarity is 

clearly defined and has equivalency in both SCOP and CATH databases (Hadley and Jones 

1999). Nevertheless, the extension of our approach to other levels of homologous family and 

super-family should be straightforward.  
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Figure A.1.1. TM-score distribution of gapless comparisons among non-homologous 
protein structures. The continuous curve represents an extreme value distribution with the 
location parameter and the scale parameter being 0.1512 and 0.0242 respectively; the Chi-square 
error of fitting is 0.001. The TM-score distributions of 4 subdivisions are from proteins with 
length in [80, 100], [101, 120], [121, 160], and [161, 200], respectively. 
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Figure A.1.2. The p-value versus TM-score. The curve is a sigmoid like Boltzmann function 
with chi square equal to 0.0001. Inset: P-value (in logarithm scale) vs. TM-score in [0.3, 1]. 
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Figure A.1.3. The average TM-scores (with error bars) of random structure matches with 
protein length from 80 to 200 amino acids. The straight and dash lines above TM-scores=0.2 
show the number of random protein pairs (values on the right-hand side) needed to achieve or 
surpass a certain TM-score level. By doing random structure comparisons in 102, 104, 1010, and 
1016 times, one can hit a match with a TM-score equal to or above 0.263, 0.374, 0.709, and 0.977, 
respectively. 1.8×106 random matches are needed to achieve a TM-score ≥0.5. 
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Figure A.1.4. Conditional probability versus TM-score. The conditional probabilities of TM-
score for proteins in the same fold and different fold families as defined by SCOP (Set I, Set I’), 
CATH (Set II, Set II’) and SCOP&CATH (Set III, Set III’).  
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Figure A.1.5. The posterior probability of proteins with a given TM-score to be in the same 
Fold (open points) or non-same Fold family (solid points). The Fold family is defined based 
on either the SCOP Fold level, or the CATH Topology level, or a consensus of SCOP Fold and 
CATH Topology families.  
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APPENDIX 2 
 

SUPPLIMENTARY FIGURES AND TABLES 
 
 
Figure A.2.1.1 Linear regression between predicted and experimentally measured stability 
reductions caused by point mutations.  Experimentally determined stability reductions caused 
by 1201 mutations are provided by the authors of Rosetta (Kellogg et al. 2011).  Predicted 
stability reductions are calculated by Rosetta using the parameters described in Materials and 
Methods.  The linear regression forced to go through the origin is obtained using the robust 
package in R (http://cran.r-project.org/web/packages/robust/index.html).  REU, Rosetta Energy 
Unit. 
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Figure A.2.1.2 Correlation between log(p-value) and log(sample size) in the comparison 
between mutations to wt-DARs and rg-DARs.  Each circle represents a mutation type listed in 
Table A.2.1.1.  For each mutation type, protein stability reductions upon mutations to wt-DARs 
and rg-DARs are compared by a one-tail Mann-Whitney U test.  Mutation types with p-values < 
0.05 are shown as red circles. 
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Figure A.2.1.3 Frequency distribution of the mean difference between ΔΔG1 and ΔΔG2 
averaged over protein. The larger the difference, the greater the compensation effect.  
Destabilizing wt-DARs have ΔΔG1 > 1 kcal/mol.  Arrows indicate median values of the 
corresponding distributions.  For both distributions, ΔΔG1-ΔΔG2 is significantly biased toward 
positive values, as indicated by the p-values from the Wilcoxon signed-rank test.  This figure is 
the same as Fig. 2.3 except that, when a protein harbors multiple wt-DARs, we respectively 
averaged ΔΔG1 and ΔΔG2 values from different wt-DARs in the same protein before 
comparison. 
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Figure A.2.1.4 Frequency distribution of the mean difference between ΔΔG1 and ΔΔG2 for 
non-redundant protein set. The larger the difference, the greater the compensation effect.  
Destabilizing wt-DARs have ΔΔG1 > 1kcal/mol.  Arrows indicate median values of the 
corresponding distributions.  For both distributions, ΔΔG1-ΔΔG2 is significantly biased toward 
positive values, as indicated by the p-values from the Wilcoxon signed-rank test.  This figure is 
the same as Fig. 2.3 except that only a subset of protein structures with pairwise sequence 
identity <60% are used. 
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Figure A.2.1.5  Radial distribution of residue densities in protein structures.  The residue 
density in each bin (bin size is 0.1 Å) for a focal residue is the number of residues that fall into 
the bin divided by the volume corresponding to the bin.  This density is then averaged over all 
residues of all proteins. 
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Figure A.2.1.6 Alignment of plasminogen sequences.  The disease-associated residue (DAR) is 
at the underlined position, where the wild-type residue in human is R and the DAR is H.  The 
residues highlighted in green are the potential compensatory neighboring residues in panda.  The 
residues in red are the non-compensatory neighboring residues in horse.  All protein sequences 
are from UniProt.  Structure 2KNFA in PDB is used to model the structure of human 
plasminogen.  The residue positions are assigned according to P00747 in UniProt. 
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Figure A.2.2.1 Rank correlations between various properties of a fold and the number of 
domains reclassified into the fold by C3P. The domains are reclassified (A-C) global TMmax-
score-based C3P and (D-F) local TMmax-score-based C3P.  The lines show linear regressions.  ρ, 
Spearman’s rank correlation coefficient.
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Table A.2.1.1. List of the 128 mutation types shared by mutations to wt-DAR and rg-DAR. 
p-values are from Mann-Whitney U test (one-tail). 

 
Wild%type%to%
Mutant%

Average%
Sample%Size%

P7value%

R"to"P" 45.5" 4.00E+04"
V"to"A" 50" 0.0095"
S"to"F" 37.5" 0.01"
S"to"N" 31.5" 0.012"
A"to"E" 18" 0.0125"
V"to"F" 25.5" 0.0187"
G"to"R" 158.5" 0.019"
R"to"K" 19" 0.0199"
N"to"K" 39" 0.0231"
E"to"K" 166" 0.0251"
K"to"Q" 8.5" 0.0386"
L"to"Q" 15.5" 0.0456"
G"to"D" 82" 0.0462"
L"to"P" 189" 0.0539"
H"to"D" 19.5" 0.0604"
A"to"T" 102.5" 0.0641"
P"to"L" 93" 0.0753"
T"to"N" 14.5" 0.0757"
I"to"T" 79" 0.0762"
G"to"V" 58.5" 0.0776"
T"to"S" 10" 0.0781"
P"to"R" 31.5" 0.08"
C"to"R" 37" 0.0828"
M"to"L" 12" 0.0847"
F"to"C" 19.5" 0.0853"
Q"to"H" 21" 0.092"
R"to"S" 28" 0.0922"
K"to"N" 34.5" 0.0991"
H"to"Q" 26.5" 0.1025"
M"to"T" 41" 0.1163"
W"to"C" 31.5" 0.1185"
V"to"E" 20" 0.1192"
R"to"T" 12" 0.1375"
E"to"D" 26" 0.1401"
I"to"N" 28.5" 0.1437"
A"to"D" 36" 0.1518"
K"to"R" 22" 0.1748"
Q"to"R" 31" 0.1796"
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W"to"S" 9.5" 0.1805"
W"to"R" 39.5" 0.2137"
V"to"M" 79.5" 0.2212"
S"to"T" 13" 0.2259"
D"to"V" 38" 0.2283"
M"to"R" 25" 0.2289"
L"to"I" 2.5" 0.2341"
D"to"N" 94" 0.235"
I"to"S" 16.5" 0.2424"
Y"to"D" 13.5" 0.2437"
C"to"F" 18" 0.2476"
M"to"V" 32.5" 0.2507"
R"to"G" 46.5" 0.2545"
V"to"G" 32" 0.2595"
L"to"S" 25.5" 0.2741"
D"to"E" 36.5" 0.2894"
R"to"W" 83.5" 0.3022"
N"to"T" 13.5" 0.3079"
F"to"L" 65" 0.3086"
S"to"R" 35" 0.3108"
D"to"G" 42.5" 0.3117"
E"to"A" 16" 0.3242"
A"to"S" 29.5" 0.3252"
P"to"T" 24" 0.334"
T"to"P" 37" 0.3349"
R"to"H" 98" 0.3417"
F"to"Y" 8" 0.343"
T"to"I" 69.5" 0.3448"
T"to"K" 11" 0.3467"
P"to"S" 52" 0.3507"
S"to"P" 58" 0.3543"
G"to"E" 64" 0.3612"
K"to"T" 11" 0.3659"
G"to"A" 31.5" 0.3756"
T"to"A" 27" 0.3758"
N"to"D" 21" 0.3839"
N"to"H" 12.5" 0.3848"
M"to"I" 27" 0.3859"
V"to"L" 35" 0.3973"
F"to"I" 14.5" 0.4055"
R"to"L" 31.5" 0.4134"
Y"to"H" 40" 0.4136"
L"to"R" 50.5" 0.4168"
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Y"to"C" 84.5" 0.4275"
S"to"I" 10.5" 0.4344"
A"to"P" 56" 0.4377"
F"to"S" 42" 0.4416"
Q"to"P" 35" 0.4501"
F"to"V" 21" 0.453"
Y"to"S" 13" 0.4617"
G"to"C" 26.5" 0.4617"
D"to"A" 13.5" 0.4651"
N"to"S" 51" 0.4983"
L"to"W" 6" 0.5"
R"to"Q" 103" 0.5187"
C"to"Y" 42.5" 0.5274"
R"to"C" 120" 0.5275"
W"to"L" 6.5" 0.5385"
H"to"L" 9" 0.5472"
C"to"S" 10" 0.5521"
E"to"V" 9" 0.5817"
T"to"M" 38.5" 0.6001"
G"to"S" 81.5" 0.6317"
A"to"V" 99.5" 0.6384"
Q"to"L" 8.5" 0.6544"
E"to"Q" 19" 0.6598"
E"to"G" 35.5" 0.6604"
L"to"V" 39.5" 0.6664"
V"to"D" 18.5" 0.6688"
M"to"K" 16.5" 0.6694"
I"to"M" 21" 0.6734"
P"to"A" 12" 0.6739"
L"to"M" 8" 0.6832"
I"to"L" 5.5" 0.6848"
A"to"G" 15" 0.698"
H"to"Y" 31" 0.7119"
H"to"R" 44" 0.7464"
W"to"G" 10.5" 0.7619"
K"to"E" 49" 0.7684"
S"to"L" 41.5" 0.7699"
Y"to"F" 4.5" 0.8189"
L"to"F" 56" 0.8367"
H"to"P" 18.5" 0.8695"
V"to"I" 33" 0.8738"
I"to"R" 1.5" 0.9214"
I"to"F" 17" 0.9378"
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I"to"V" 18" 0.9381"
S"to"G" 10" 0.9498"
Q"to"E" 15" 0.9531"
V"to"Q" 1" 1"
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