
Statistical Inference and Computational Methods
for Large High-Dimensional Data with Network

Structure

by

Sandipan Roy

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Statistics)

in The University of Michigan
2015

Doctoral Committee:

Associate Professor Yves Atchadé, Co-Chair
Professor George Michailidis, University of Florida, Co-Chair
Assistant Professor Rajesh Rao Nadakuditi
Professor Ji Zhu

c© Sandipan Roy 2015

All Rights Reserved

ACKNOWLEDGEMENTS

I would like to express my deepest appreciation to my thesis advisors Yves Atchadé

and George Michailidis whose continuous guidance and support has been the greatest

source of encouragement throughout these five years. Several discussions and meet-

ings with them on various research topics not only enriched my knowledge but also

gave me a broader perspective of research. Their insights have certainly helped me

to zoom out and see the big picture in the context of a particular research problem.

I have benefited a lot from their clarity of thought and creative intellect.

I would like to thank my committee members Ji Zhu and Raj Rao Nadakuditi. Some

helpful discussion with Ji Zhu on various topics has helped me quite a bit. Some of

his work were definitely a great source of motivation for my research work and the

thesis in general. Some of Raj Rao Nadakuditi’s paper on Random matrix theory

were definitely a source of motivation for my personal interest in that topic.

Moreover, I would like to express my gratitude to Professor Xuming He for his won-

derful course on Research Appreciations in Statistics that provided a great learning

experience for a young researcher like me; I would also like to thank Professor Susan

Murphy for her great insights and in general encouragement for doing research during

my research assistantship in the first semester at the University of Michigan. My sin-

cere thanks to our graduate chair Liza Levina for some helpful discussions and same

to professor Ambuj Tewari and Long Ngyuen for some light-hearted discussions.

Thanks to all my class mates here in Michigan for being great friends and special

thanks to my roommate Naveen and some other college friends like Parichoy, Sayan-

tan, Soumalya for their continuing support and helpful discussion. I would also like

to express my sincere gratitude to Bhramardi, Mousumidi and Anandada for their

love, affection and continuous encouragements. They were an integral part of this

five-year period. Finally, a big thank you to my parents, my brother and all my

family members for their love and encouragements.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . ii

LIST OF FIGURES . v

LIST OF TABLES . vii

LIST OF ABBREVIATIONS . viii

ABSTRACT . ix

CHAPTER

1. Introduction . 1

1.1 Challenges of Analyzing Large High-Dimensional Data 2
1.2 Statistical Challenges . 2
1.3 Computational Challenges . 4
1.4 Contributions of the Thesis 6

2. Change-point Estimation in High-dimensional Markov Ran-
dom Fields . 8

2.1 Introduction . 8
2.2 Literature Review and Modeling Framework 8
2.3 Methodology . 11
2.4 Theoretical Results . 13
2.5 Algorithm and Implementation Issues 17
2.6 Performance Assessment . 19

2.6.1 Comparing Algorithm 1 and Algorithm 2 19
2.6.2 A community based network structure 22

2.7 Application to Roll Call Data of the US Senate 24
2.8 Proof of Main Theorem 2.8 and Associated lemmas 29

2.8.1 Preliminary results 30
2.8.2 Proof of Theorem 2.8 32
2.8.3 Proof of lemma 2.13 34

iii

2.8.4 Proof of lemma 2.14 36
2.8.5 Proof of lemma 2.15 38

2.9 Different Methods of Missing Data Imputation for the Real
Data Application . 40

2.10 Discussion . 41

3. Parallel Optimization Algorithm for Large Heterogeneous Data 42

3.1 Introduction . 42
3.2 Parallel Algorithms for Large Dataset 43
3.3 Optimization via parallel random subsampling 45
3.4 Theoretical Results . 47

3.4.1 Algorithm with Parallel Communication 47
3.4.2 Parallel Algorithm without Communication 52
3.4.3 Discussion of Results of Theorem 3.3 and 3.4 55

3.5 An application: EM Algorithm for Gaussian Mixture Model . 56
3.5.1 Derivation of EM Algorithm for GMM 58

3.6 Review of Convergence of EM in GMM 61
3.6.1 Identifying true Map M and the approximate map

Mi,j . 62
3.7 Numerical Results . 67

4. Likelihood Inference for Large Stochastic Blockmodels with
Covariates . 75

4.1 Introduction . 75
4.2 Stochastic BlockModel in Network Data Analysis 76
4.3 Data Subsampling for Parameter Estimation in SBM 78

4.3.1 K-class Stochastic Blockmodel with Covariates . . . 78
4.3.2 Approximate Parallel Optimization method by Data

Sampling . 80
4.3.3 Approximate Parallel Monte Carlo EM 81

4.4 Discussion about the true EM map M and the approximate
random map Mi,j . 85

4.4.1 Review of Some Convergence Results related to MCEM 86
4.5 Numerical Results . 87
4.6 Application to Collegiate Facebook Data 89
4.7 Discussion . 93

BIBLIOGRAPHY . 96

iv

LIST OF FIGURES

Figure

1.1 Example of Pairwise Markov Property 4
2.1 Smoothed profile pseudo-log-likelihood functions from one run of Al-

gorithm 2. Different values of similarity (0%, 20% and 40%) in rows.
Different values of p (p = 40, 60 & 100) in column. The green curve is
the non-smoothed profile pseudo-log-likelihood from Stage 1 of Algo-
rithm 2, and the black curve is its smoothed version. The orange and
the blue curve are respectively the non-smoothed and the smoothed
profile pseudo-log-likelihood functions from Stage 2 of Algorithm 2. 23

2.2 Change-point estimate for the two community model with p = 50,
T = 1500 and τ ∗=754 . 24

2.3 Proportion of negative edges for network structures before (left fig-
ure) and after (right figure) the estimated change-point for BIC and
stability selection with threshold=0.8 27

2.4 Proportion of positive edges for network structures before (left fig-
ure) and after (right figure) the estimated change-point for BIC and
stability selection with threshold=0.8 28

2.5 Estimate of the change-point for the combined US senate data from
1979-2012 . 28

2.6 Heatmap of the stable network structures before and after the esti-
mated change-point . 29

2.7 Estimated Change-points via imputation technique (i) and (ii) re-
spectively . 40

3.1 Bias comparison of two parallel algorithms over number of machines
and varying overlap percentages for estimating µ1, µ2 and µ3. “par1”
is the estimation bias for parallel algorithm with communication and
“par2” is the estimation bias for parallel algorithm without com-
munication over different number of machines. The average overlap
percentage is varied along the columns in the figure as 20%, 30% and
40% respectively. 71

v

3.2 Bias comparison of two parallel algorithms over number of machines
and varying overlap percentages for estimating Σ1, Σ2 and Σ3. “par1”
is the estimation bias for parallel algorithm with communication and
“par2” is the estimation bias for parallel algorithm without com-
munication over different number of machines. The average overlap
percentage is varied along the columns in the figure as 20%, 30% and
40% respectively. 72

3.3 Bias comparison of two parallel algorithms over number of machines
and varying overlap percentages for estimating π. “par1” is the es-
timation bias for parallel algorithm with communication and “par2”
is the estimation bias for parallel algorithm without communication
over different number of machines. The average overlap percentage
is varied along the columns in the figure as 20%, 30% and 40% re-
spectively. 72

3.4 Variance comparison of two parallel algorithms over number of ma-
chines and varying overlap percentages for estimating µ1, µ2 and µ3.
“par1” is the Variance for parallel algorithm with communication and
“par2” is the Variance for parallel algorithm without communication
over different number of machines. The average overlap percentage
is varied along the columns in the figure as 20%, 30% and 40% re-
spectively. 73

3.5 Variance comparison of two parallel algorithms over number of ma-
chines and varying overlap percentages for estimating Σ1, Σ2 and Σ3.
“par1” is the Variance for parallel algorithm with communication and
“par2” is the Variance for parallel algorithm without communication
over different number of machines. The average overlap percentage
is varied along the columns in the figure as 20%, 30% and 40% re-
spectively. 74

3.6 Variance comparison of two parallel algorithms over number of ma-
chines and varying overlap percentages for estimating π. “par1” is
the Variance for parallel algorithm with communication and “par2” is
the Variance for parallel algorithm without communication over dif-
ferent number of machines. The average overlap percentage is varied
along the columns in the figure as 20%, 30% and 40% respectively. . 74

4.1 Plot of BIC values for possible number of communities in the Rice
University dataset . 91

4.2 Plot of the degree distribution of the Rice University network 92
4.3 Heatmap plots for the edge probability matrix and the bar plot of the

class probabilities for parallel MCEM applied to SBM with covariate 93
4.4 Community detection plots for parallel MCEM with and without

covariate respectively. 94
4.5 Table showing difference in the communities found by without co-

variate and with covariate SBM . 95

vi

LIST OF TABLES

Table

2.1 Change-point estimation results using the Basic Algorithm, for dif-
ferent percentages of similarity. 20

2.2 Specificity, sensitivity and relative error in estimating θ
(1)
? and θ

(2)
?

from the Basic Algorithm, with different percentages of similarity. . 21
2.3 Ratio of the computing time of one iteration of Algorithm 1 and

Algorithm 2. 21
2.4 Change-point Estimation Results for different values of p and differ-

ent percentages of similarity for the Fast Implementation Algorithm.(T =

700, s1 = s2 = 10p(p+1)
2

%, τ ∗ = 354) 21
2.5 Specificity, sensitivity and relative error of the two parameters for

different values of p and different percentages of similarity for the
Fast Implementation Algorithm. 22

2.6 Positive and negative edges before and after the true change-point
for two community model . 24

2.7 Different network statistic values for stability selection with thresh-
old=0.9 and 0.8 respectively . 27

3.1 Pairwise overlaps among clusters 1, 2 and 3 68
3.2 RMSE Comparison of µ and Σ for method 1 and method 2 with 40%

average overlap . 69
3.3 Ratio of the computing times of Algorithm 3.1 and Algorithm 3.2

averaged over 50 replication . 70
4.1 Estimation Errors and NMI Values for Balanced Community Size

with Varying OIR . 88
4.2 Estimation Errors and NMI Values for Unbalanced Community Size

with Varying OIR . 88
4.3 Estimation Errors and NMI Values for Balanced Community Size

with Varying λ . 88
4.4 Estimation Errors and NMI Values for Unbalanced Community Size

with Varying λ . 88

vii

LIST OF ABBREVIATIONS

BIC Bayesian Information Criterion

BLB Bag of Little Bootstraps

EM Expectation-Maximization

GMM Gaussian Mixture Model

MCEM Monte Carlo EM

MLE Maximum-Likelihood Estimator

MRF Markov Random Field

MSE Mean-Squared Error

NMI Normalized Mutual Information

OIR Out-In-Ratio

RMSE Root Mean-Squared Error

SBM Stochastic Block Model

viii

ABSTRACT

Statistical Inference and Computational Methods for Large High-Dimensional Data
with Network Structure

by

Sandipan Roy

Chair: Yves Atchadé and George Michailidis

New technological advancements have allowed collection of datasets of large volume

and different levels of complexity. Many of these datasets have an underlying net-

work structure. Networks are capable of capturing dependence relationship among

a group of entities and hence analyzing these datasets unearth the underlying struc-

tural dependence among the individuals. Examples include gene regulatory networks,

understanding stock markets, protein-protein interaction within the cell, online social

networks etc.

The thesis addresses two important aspects of large high-dimensional data with net-

work structure. The first one focuses on a high-dimensional data with network struc-

ture that evolves over time. Examples of such data sets include time course gene

expression data, voting records of legislative bodies etc. The main task is to estimate

the change-point as well as the network structures prior and post it. The network

structures are obtained by l1-penalized optimization method and we establish a finite

sample estimation error bound for the change-point in the high-dimensional regime.

The other aspect that we examine is about parameter estimation in large heteroge-

neous data with network structure. Our primary goal is to develop efficient com-

putational techniques based on random subsampling and parallelization to estimate

the parameters. We provide an analysis of rate of decay of bias and variance of our

parallel implementation with a single round of communication after every iteration.

We further show two applications of our methodology in the case of Gaussian Mixture

Model (GMM) and Stochastic Block Model (SBM).

ix

The emphasis is placed on developing new theoretical techniques and computational

tools for network problems and applying the corresponding methodology in many

fields, including biomedical and social science research, where network modeling and

analysis plays an exceedingly important role.

x

CHAPTER 1

Introduction

Modern era has seen a explosion in the amount of information available. One

of the main challenges in front of the researchers is how to deal with the massive

amounts of data that are being generated frequently. Due to new technological ad-

vancements large amounts of very high-dimensional or unstructured data are contin-

uously produced and stored with much cheaper cost than they used to be. These

large high-dimensional datasets have brought forward a number of theoretical and

computational challenges for the researchers in statistics, mathematics, computer sci-

ence and various other fields. “Big Data” promise new levels of scientific discovery

and economic value.

Some of the common examples of “Big Data” occur in networks. Networks are a

collection of individuals or entities with possible relationships (Friendship, protein-

protein interaction, relationship between stock prices etc.). It is not unusual for

network data to be large, dynamic, heterogeneous, noisy, incomplete or even unob-

servable. Examples of time-varying network structures are ubiquitous in the nature

and the increasing availability of data sets that evolve over time has accentuated the

need for developing models for time varying networks. Examples of such data sets

include time course gene expression data, voting records of legislative bodies etc.

Heterogeneity is another salient feature of large high-dimensional data. Mixture mod-

els are a prime example of generating large heterogeneous data. Gaussian Mixture

Model (GMM) is a powerful tool for data clustering (McLachlan and Peel (2004)).

We see its applications in the context of large heterogeneous data. In the next couple

of sections we describe briefly the challenges one faces in dealing with large high-

dimensional data.

1

1.1 Challenges of Analyzing Large High-Dimensional Data

Recent years have seen a surge in the volume and the size of the data being

processed and analyzed in different applications. Modern technology has enabled

collection of massive amount of data such as high-throughput biological assay data,

large-scale genomic sequencing data, climate data, website transaction logs, online

social network data etc. Such a “Big Data” movement is driven by the fact that mas-

sive amounts of very high-dimensional or unstructured data are continuously produced

and stored with much cheaper cost than they used to be. Many of these large datasets

have an underlying network structure. Further datasets with network structure that

evolve over time are more ubiquitous in nature. This has emphasized the need to

come up with model that can handle dynamic network or datasets with network

structure varying over time. The time varying aspect of large networks has accentu-

ated the need for developing time-varying network models. Heterogeneity is another

common feature in these large datasets. To do efficient statistical analysis with large

heterogeneous data is a challenging problem in this paradigm. Scientific advances

are becoming more and more data-driven and researchers will more and more think

of themselves as consumers of data. The massive amounts of high-dimensional data

bring both opportunities and new challenges to data analysis. Hence valid statistical

analysis for this large amount of data is becoming increasingly important.

1.2 Statistical Challenges

Massive sample size and the high-dimensionality of the dataset introduce unique

statistical challenges that one encounters in “Big Data” regime. We need new statis-

tical techniques to handle theoretical issues we might face in developing the method-

ology for dealing with large high-dimensional data. For example, many traditional

methods that perform well for moderate sample sizes do not scale to massive data.

Similarly, many statistical methods that perform well for low-dimensional data are

facing significant challenges in analyzing high-dimensional data. Variable selection,

dimension reduction are some of the common statistical problems one face with these

“Big” data sets. As we discussed before many of these datasets have a time varying

network structure and modeling the time varying aspect is another area of focus in the

recent years. Kolar and Xing (2012); Kolar et al. (2010); Zhou et al. (2010) are some

of the recent works on modeling dynamic network. One of the interesting features in

2

a dataset with time evolving network structure is the locations where it undergoes

changes in the structure viz. the change-points. Investigating change-point in a high-

dimensional network is a novel problem. Further theoretical analysis of consistency

of the estimated change-point in high-dimensional regime is itself an intriguing prob-

lem.

There has been lot of research done in the statistics community for consistency of

point estimates or even model selection consistency in high-dimensional regime but

less work has been done so far in developing meaningful inference framework (con-

fidence interval, hypothesis testing) for quantifying uncertainty. Hence the problem

of constructing confidence interval or doing hypothesis testing for the change-point

in this setting is still an open problem. The difficulty comes from the fact that the

estimates of the underlying parameters in the model do not have a tractable limit

distribution and the change-point estimate is typically a function of those parameters.

We below describe a model that is widely used for relational structure over a fixed set

of entities and can be used to model high-dimensional data with network structure.

Markov Random Field: A Markov Random field (MRF) (Wainwright and Jordan

(2008)) is another term for a undirected graphical model. In physics, a field is an as-

signment of a physical quantity to points in space-time. For instance, a gravitational

field is an assignment of a gravitational vector to points in space-time. Consider now

a p-dimensional space, spanned by values of p random variables instead of just the

four of space and time. A random field is an assignment of a probability measure

to points in the p-dimensional space. Just as a gravitational field describes a gravi-

tational system, a random field describes a stochastic system. Thus a random field

with a compact representation, and accessible inference procedures can be used as an

interface layer for stochastic system applications.

Markov random fields use Markov assumptions to give compact representations for

random fields. Let G = (V,E) denote an undirected graph, with V the set of nodes

and E the set of undirected edges. Let Xi denote the variable associated with node i,

for i ∈ V ; giving a collated random vector X = {X1, ..., Xp}. The pairwise Markov

property tells that

Xu ⊥⊥ Xv | XV \{u,v} if {u, v} /∈ E

. In the following figure Xu and Xv are independent given Xw and Xx. We use

high-dimensional MRF in Chapter 2 to model the underlying network structure for

the given data.

3

u

v x

w

Figure 1.1: Example of Pairwise Markov Property

1.3 Computational Challenges

The current explosion in the size and amount of data available in statistical stud-

ies have motivated the development of new computational infrastructure and data-

storage methods. Many standard algorithms for optimization that perform well on

small datasets tend to perform inefficiently when applied to large datsets. Such

a paradigm change has led to significant progresses on developments of fast algo-

rithms that are scalable to massive data with high dimensionality. The study of

some distributed and communication-efficient procedures for large scale optimization

has come into forefront of dealing with the computational challenges posed by these

large amount of data. Some of the recent works on distributed approaches to solv-

ing very large-scale statistical optimization problems are Nedic and Ozdaglar (2009);

Ram et al. (2010); Johansson et al. (2009); Duchi et al. (2012); Dekel et al. (2012);

Agarwal and Duchi (2011); Recht et al. (2011) etc. Many of these works depend on a

common theme of splitting the original data into several small datasets, sending them

to several machines to perform the optimization on those fractions of original data

in a parallel manner and finally aggregating them via simple averaging. An interest-

ing alternative to random splitting would be to use random subsampling which we

focus on Chapter 3. Further, using a communication step among the machines after

every iteration it is possible to show a bias reduction of the estimate relative to the

parallel implementation without communication. Most of the parallelization schemes

for solving large-scale optimization are certainly able to show the variance reduction

relative to the serial implementation but the bias reduction of a parallel optimization

procedure is a novel feature. We mention here a recent paper by Kleiner et al. (2014)

that describes an automatic, accurate means of assessing estimator quality that is

scalable to large dataset, known as Bag of Little Bootstraps (BLB). This work can

also be seen as a way of constructing computationally efficient estimators in the “Big

Data” setting.

4

As we have pointed out before heterogeneity is a common feature in large high-

dimensional data. Those datasets are often created via aggregating many data sources

corresponding to different subpopulations. Each subpopulation might exhibit some

unique features not shared by others. To better illustrate this point we introduce two

models that give rise to heterogeneous data.

Gaussian Mixture Model: A Gaussian Mixture Model (GMM) is a parametric

probability density function represented as a weighted sum of Gaussian component

densities. GMMs are commonly used as a parametric model of the probability distri-

bution of continuous measurements or features in a biometric system, such as vocal-

tract related spectral features in a speaker recognition system. Although GMMs are

widely used for clustering it is used for density estimation as well.

Let D = {xn, n = 1, 2, . . . , N} be N iid observations obtained from a mixture model

whose components are d-dimensional Gaussian distribution. The observations are

assumed iid from the following model

p(xn|µ,Σ) =
K∑
i=1

πif (xn|µi,Σi) (1.1)

where f (xn|µi,Σi) = 1

(2π)
m
2 |Σi|1/2

exp
[
−1

2
(xn − µi)T Σ−1

i (xn − µi)
]
. K is the number

of mixture components. µi,Σi, i = 1, 2 are the mean and the covariance matrix for

the ith mixture component. πi is the mixing proportion for the ith component. The

objective is to estimate the parameters {πi, µi,Σi}Ki=1 of this mixture model in 3.39.

The log-likelihood for the observed data is given by

l (θ|D) =
N∑
n=1

log p (xn|µ,Σ)

=
N∑
n=1

log
K∑
i=1

πif (xn|µi,Σi) (1.2)

GMM parameters are estimated from training data using the iterative Expectation-

Maximization (EM) algorithm (See Dempster et al. (1977)). Typically in the context

of a large high-dimensional data N and p would be both large and just applying the

traditional EM for the entire dataset may not be feasible. Another source of hetero-

geneous data is the following

Stochastic BlockModel: Stochastic Blockmodels (SBM) are one of the prime ex-

5

amples of a latent variable model used for community detection in networks. Block-

models and its stochastic versions have been popularly used for finding “Groups” or

“Communities” in social networks. (See Lorrain and White (1971); Holland et al.

(1983); Fienberg et al. (1985); Airoldi et al. (2008); Nowicki and Snijders (2001);

Girvan and Newman (2002); Handcock et al. (2007)). The basic framework is the

following: Let A = (aij) be the adjacency matrix of a network with n individuals.

Suppose there are K groups. Assume z1, z2, . . . , zn be the latent node labels for those

n individuals. Let P = (pij) denote the link probability matrix of order K ×K. The

probabilistic model is given by

Aij
ind∼ Ber

(
pzizj

)
(1.3)

z
def
= (z1, . . . , zn) ∼ Mult (π)

where π = (π1, . . . , πK) are the class probabilities for the K-groups (classes). The

main challenge comes in computing the parameter estimates in a SBM since the

likelihood involving the latent membership of the nodes is not in general tractable.

Monte Carlo EM (MCEM) may be employed for parameter estimation in SBM but

with large n each iteration of MCEM requiring O(n2) update, the algorithm becomes

computationally infeasible.

1.4 Contributions of the Thesis

In this thesis, we address two specific aspects of large high-dimensional data. The

two aspects are the following- (1) a change-point estimation problem arising from a

large high dimensional data evolving over time and (2) a computational problem in-

volving a communication-efficient algorithm for statistical optimization in large scale

data.

In Chapter 2 we investigate a change-point estimation problem in the context of a

high-dimensional MRF. Change-point estimation has a long history in the statistics

literature (see Bai (1997), Carlstein (1988), Hinkley (1970), Loader et al. (1996), Lan

et al. (2009) etc.) but its use in the context of a high-dimensional time evolving net-

work is novel and supported by a Senate voting network data. Further we established

a tight bound for the estimate, up to a logarithmic factor, even in settings where the

number of possible edges in the network far exceeds the sample size. The technical

details require a careful handling of model misspecification in Markov random fields

6

(Atchade (2014)), a novel aspect not present when estimating a single MRF from in-

dependent and identically distributed observations. The methodology we developed

is also useful in other areas such as change-point estimation in a gene regulatory net-

work or in a financial network that may undergo a significant change for some major

economic announcements.

In Chapter 3 we propose a novel parallel optimization algorithm for large hetero-

geneous data. The algorithm is based on random subsampling and a single round

of communication after every iteration of the optimization routine. The algorithm

offers a fast computation of estimates of the model parameters relative to the serial

implementation in a single machine with the entire data. Most of the existing par-

allel/distributed algorithms(Zinkevich et al. (2010); Zhang et al. (2013) etc.) ensure

variance reduction of the final estimate relative to a serial implementation but does

not reduce the bias of the estimate. Our parallel algorithm involves a communication

step that results in a bias reduction of the final estimate relative to the parallel imple-

mentation without communication. We provide a sharp analysis on the rate of decay

of bias and variance of our parallel scheme and compare it with a non-communication

parallel scheme. The performance of the proposed algorithm is evaluated on large

high-dimensional datasets generated from a GMM.

In Chapter 4 we examine the likelihood based inference in stochastic blockmodels

for large network data. We focus on parameter estimation in stochastic blockmodels

with covariate. Usual EM type algorithms do not scale well to large networks. Amini

et al. (2013) developed a fast algorithm based on pseudo-likelihood approximation for

community detection in large sparse networks. But in presence of covariate values in

a blockmodel such approximation is hard to obtain. We present a computational al-

gorithm based on case-control approximations of the likelihood (Raftery et al. (2012))

along with a parallel implementation of the Monte Carlo EM (MCEM) via the tech-

nique developed in Chapter 3. The performance of our algorithm is validated on

synthetic datasets generated from large stochastic blockmodels with covariates. Fur-

ther, to illustrate the performance of our methodology, we use a publicly available

social network dataset that focuses on Facebook profiles of students in US colleges

and Universities at a single point of time.

7

CHAPTER 2

Change-point Estimation in High-dimensional

Markov Random Fields

2.1 Introduction

This chapter describes a change-point estimation problem in the context of high-

dimensional Markov Random Field (MRF) models. Change-points represent a key

feature in many dynamically evolving network structures. The change-point estimate

is obtained by maximizing a profile penalized pseudo-likelihood function under a spar-

sity assumption. We also derive a tight bound for the estimate, up to a logarithmic

factor, even in settings where the number of possible edges in the network far exceeds

the sample size. The performance of the proposed estimator is evaluated on synthetic

data sets and is also used to explore voting patterns in the US Senate in the 1979-2012

period.

2.2 Literature Review and Modeling Framework

Networks are capable of capturing dependence relationships and have been exten-

sively employed in diverse scientific fields including biology, economics and the social

sciences. A rich literature has been developed for static networks leveraging advances

in estimating sparse graphical models. However, increasing availability of data sets

that evolve over time has accentuated the need for developing models for time vary-

ing networks. Examples of such data sets include time course gene expression data,

voting records of legislative bodies, etc.

In this work, we consider modeling the underlying network through a MRF that

exhibits a change in its structure at some point in time. Specifically, suppose we have

8

T observations
{
X(t), 1 ≤ t ≤ T

}
over p-variables with X(t) =

(
X

(t)
1 , . . . , X

(t)
p

)
and

X
(t)
j ∈ X, for some finite set X. Further, we assume that there exists a time point

1 ≤ τ? < T such that
{
X(t), 1 ≤ t ≤ τ?

}
is an independent and identically distributed

sequence from a distribution g
θ
(1)
?

(·) parametrized by a real symmetric matrix θ
(1)
? ,

while the remaining observations
{
X(t), τ? + 1 ≤ t ≤ T

}
forms also an independent

and identically distributed sequence from a distribution g
θ
(2)
?

(·) parametrized by an-

other real symmetric matrix θ
(2)
? . We assume that the two distributions g

θ
(1)
?

(·), g
θ
(2)
?

(·)
belong to a parametric family of MRF distributions given by

gθ(x) =
1

Z (θ)
exp

(
p∑
j=1

θjjB0(xj) +
∑

1≤k<j≤p

θjkB(xj, xk)

)
, x ∈ Xp, (2.1)

for a function B0 : X→ R, and a symmetric function B : X×X→ R which encodes

the interactions between the nodes. The term Z (θ) is the corresponding normalizing

constant. Thus, the observations over time come from a MRF that exhibits a change

in its structure at time τ? and the matrices θ
(1)
? and θ

(2)
? encode the dependence

between the p random variables respectively before and after the change-point.

The objective is to estimate the change-point τ?, as well as the network structures

θ
(1)
? and θ

(2)
? . Although the problem of identifying a change point has a long history

in statistics (see Bai (1997), Carlstein (1988), Hinkley (1970), Loader et al. (1996),

Lan et al. (2009), Muller (1992), Raimondo (1998) and references therein), its use in

a high-dimensional network problem is novel and motivated by the US Senate voting

record application discussed in Section 2.7 Note that in a low-dimensional setting, the

results obtained for the change-point depend on the regime considered; specifically, if

there is a fixed shift then the asymptotic distribution of the change-point is given by

the minimizer of a compound Poisson process (see Kosorok (2007)), while if the shift

decreases to 0 as a function of the sample size, the distribution corresponds to that

of Brownian motion with triangular drift (see Bhattacharya (1987), Muller (1992)).

Note that the methodology developed in this paper is useful in other areas, where

similar problems occur. Examples include biological settings, where a gene regulatory

network may exhibit a significant change at a particular dose of a drug treatment, or

in finance where major economic announcements may disrupt financial networks.

Estimation of time invariant networks from independent and identically distributed

data based on the MRF model has been a very active research area (see e.g. Baner-

jee et al. (2008); Höfling and Tibshirani (2009); Ravikumar et al. (2010); Xue et al.

9

(2012); Guo et al. (2010) and references therein). Sparsity (an often realistic as-

sumption) plays an important role in this literature, and allows the recovery of the

underlying network with relatively few observations (Ravikumar et al. (2010); Guo

et al. (2010)).

On the other hand, there is significant less work on time varying networks (see

Zhou et al. (2010), Kolar et al. (2010), Kolar and Xing (2012) etc.). The closest

setting to our work is the one in Kolar and Xing (2012), which considers Gaussian

graphical models where each node can exhibit multiple change points. In contrast,

this paper focuses on a single change-point impacting the global network structure of

the underlying Markov random field. In general, which setting is more appropriate

depends on the application. In biological applications where the focus is on partic-

ular biomolecules (e.g. genes, proteins, metabolites), nodewise change-point analysis

would typically be preferred, whereas is many social network applications (such as the

political network example considered below), global structural changes in the network

are of primary interest. Further, note that node-level changes detected at multiple

nodes can be inconsistent, noisy and difficult to reconcile to extract global structural

changes.

Another key difference with their work is the modeling framework employed.

Specifically, in Kolar and Xing (2012) the number of nodes in the Gaussian graphi-

cal model is fixed and smaller than the available sample size. The high-dimensional

challenge comes from the possible presence of multiple change-points per node, which

leads to a large number of parameters to be estimated. To overcome this issue, a total

variation penalty is introduced, a strategy that has worked well in regression model-

ing where the number of parameters is the same as the number of observations. On

the other hand, this paper assumes a high-dimensional framework where the number

of nodes (and hence the number of parameters of interest, namely the edges) grow

with the number of time points and focuses on estimating a single change-point in a

general MRF model.

To avoid the intractable normalizing constant issue in estimating the network

structures, we employ a pseudo-likelihood framework. As customary in the analysis

of change-point problems (Bai (1997); Lan et al. (2009)), we employ a profile pseudo-

likelihood function to obtain the estimate τ̂ of the true change-point τ?. Under a

sparsity assumption, and some regularity conditions that allow the number of param-

eters p(p+ 1) to be much larger than the sample size T , we establish that with high

10

probability, |τ̂−τ?| = O(log(pT)), as p→∞. Note that in classical change-point prob-

lems with a fixed-magnitude change, it is well-known that the maximum likelihood

estimator of the change-point satisfies |τ̂ − τ?| = Op(1) (see e.g. Bhattacharya (1987),

Bai (1997)). The derivation of the result requires a careful handling of model mis-

specification in Markov random fields as explained in Section 2.4, a novel aspect not

present when estimating a single MRF from independent and identically distributed

observations. See also Atchade (2014) for another example of misspecification in

Markov random fields. Further, to speed up the computation of the change-point

estimator τ̂ , we discuss a sampling strategy of the available observations, coupled

with a smoothing procedure of the resulting likelihood function.

Last but not least, we employ the developed methodology to analyze the US Senate

voting record from 1979 to 2012. In this application, each Senate seat represents a

node of the network and the voting record of these 100 Senate seats on a given

bill is viewed as a realization of an underlying MRF that captures dependencies

between them. The analysis strongly points to the presence of a change-point around

January, 1995, the beginning of the tenure of the 104th Congress. This change-point

comes at the footsteps of the November 1994 election that witnessed the Republican

Party capturing the US House of Representatives for the first time since 1956. Other

analyses based on more ad hoc methods, also point to a significant change occurring

after the November 1994 election (e.g. Moody and Mucha (2013)).

The remainder of the chapter is organized as follows. Modeling assumptions and

the estimation framework are presented in Section 2.3, while Section 2.4 establishes

the key technical results. Section 2.5 discusses computational issues and Section 2.6

evaluates the performance of the estimation procedure using synthetic data. Section

2.7 illustrates the procedure on the US Senate voting record. Finally, proofs are

deferred to the Supplement.

2.3 Methodology

Let {X(t), 1 ≤ t ≤ T} be a sequence of independent random vector, where

X(t) = (X
(t)
1 , . . . , X

(t)
p) is a p-dimensional MRF whose j-th component X

(t)
j takes

values in a finite set X. We assume that there exists a time point (change point)

τ? ∈ {1, . . . , T − 1} and symmetric matrices θ
(1)
? , θ

(2)
? ∈ Rp×p, such that for all x ∈ Xp,

P
(
X(t) = x

)
= g

θ
(1)
?

(x), for t = 1, . . . , τ?,

11

and

P
(
X(t) = x

)
= g

θ
(2)
?

(x), for t = τ? + 1, . . . , T,

where gθ is the MRF distribution given in (2.1). The likelihood function of the

observations {X(t), 1 ≤ t ≤ T} is then given by

LT
(
τ, θ(1), θ(2)|x1:T

)
=

τ∏
t=1

gθ(1)(x
(t))

T∏
t=τ+1

gθ(2)(x
(t))

=

(
1

Z(θ(1))

)τ
exp

(
τ∑
t=1

p∑
j=1

θ
(1)
jj B0

(
x

(t)
j

)
+

τ∑
t=1

∑
k 6=j

θ
(1)
jk B

(
x

(t)
j , x

(t)
k

))

×
(

1

Z(θ(2))

)T−τ
exp

(
T∑

t=τ+1

p∑
j=1

θ
(2)
jj B0

(
x

(t)
j

)
+

T∑
t=τ+1

∑
k 6=j

θ
(2)
jk B

(
x

(t)
j , x

(t)
k

))
. (2.2)

We write E to denote the expectation operator with respect to P. For a symmetric

matrix θ ∈ Rp×p, we write Pθ to denote the probability distribution on Xp with

probability mass function gθ and Eθ its expectation operator.

We are interested in estimating both the change point τ?, as well as the parameters

θ
(1)
? , θ

(2)
? . Let Mp be the space of all p × p real symmetric matrices. We equip Mp

with the Frobenius inner product 〈θ, ϑ〉F
def
=
∑

k≤j θjkϑjk, and the associated norm

‖θ‖F
def
=
√
〈θ, θ〉. This is equivalent to identifying Mp with the Euclidean space

Rp(p+1)/2, and this identification prevails whenever we define gradients and Hessians

of functions f : Mp → R. For θ ∈ Mp we also define ‖θ‖1
def
=
∑

k≤j |θjk|, and

‖θ‖∞
def
= supk≤j |θjk|. If u ∈ Rd, for some d ≥ 1, and A is an ordered subset of

{1, . . . , d}, we define uA
def
= (uj, j ∈ A), and u−j is a shortcut for u{1,...,d}\{j}.

To avoid some of the computational difficulties in dealing with the normaliz-

ing constant of gθ, we take a pseudo-likelihood approach. For θ ∈ Mp and j ∈
{1, 2, . . . , p}, define f

(j)
θ (u|x)

def
= Pθ(Xj = u|X−j = x−j), for u ∈ X, and x ∈ Xp. From

the expression of the joint distribution gθ in (2.1), we have

f
(j)
θ (u|x) =

1

Z
(j)
θ (x)

exp

(
θjjB0(u) +

∑
k 6=j

θjkB(u, xk)

)
, u ∈ X, x ∈ Xp, (2.3)

where

Z
(j)
θ (x)

def
=

∫
X

exp

(
θjjB0(z) +

∑
k 6=j

θjkB(z, xk)

)
dz. (2.4)

12

The normalizing constant Z
(j)
θ (x) defined in (2.4) is actually a summation over X, but

for notational convenience we write it as an integral against the counting measure on

X. Next, we introduce

φ(θ, x)
def
= −

p∑
j=1

log f
(j)
θ (xj|x). (2.5)

The negative log-pseudo-likelihood of the model (divided by T) is given by

`T (τ ; θ1, θ2)
def
=

1

T

τ∑
t=1

φ(θ1, X
(t)) +

1

T

T∑
t=(τ+1)

φ(θ2, X
(t)), (2.6)

We propose to estimate the change point τ? using a profile pseudo-likelihood approach.

More precisely our estimator τ̂ is defined as

τ̂ = Argmin
τ∈T

`T (τ ; θ̂1,τ , θ̂2,τ), (2.7)

for a search domain T ⊂ {1, . . . , T} of the form {kl, kl + 1, . . . , T − ku}, where for

each τ ∈ T , θ̂1,τ and θ̂2,τ are defined as

θ̂1,τ
def
= Argmin

θ∈Mp

1

T

τ∑
t=1

φ(θ,X(t)) + λ1,τ‖θ‖1,

and

θ̂2,τ
def
= Argmin

θ∈Mp

1

T

T∑
t=τ+1

φ(θ,X(t)) + λ2,τ‖θ‖1,

for some positive penalty parameters λ1,τ , λ2,τ . Since the network estimation errors

at the boundaries of the time-line {1, . . . , T} are typically large, a restriction on the

search domain is needed to guarantee the consistency of the method. This motivates

the introduction of T . We give more details on T below.

2.4 Theoretical Results

The recovery of τ? rests upon the ability of the estimators θ̂j,τ to correctly estimate

θ
(j)
? , j ∈ {1, 2}. Estimators for the static version of the problem where one has i.i.d.

observations from a single MRF have been extensively studied; see Guo et al. (2010),

Höfling and Tibshirani (2009), Meinshausen and Bühlmann (2006), Ravikumar et al.

(2010) and references therein for computational and theoretical details. However, in

13

the present setting one of the estimators θ̂j,τ , j ∈ {1, 2} is derived from a misspecified

model. Hence, to establish the error bound for ‖θ̂j,τ − θ
(j)
? ‖2, we borrow from the

approach in Atchade (2014). For penalty terms λj,τ as in (2.8) and under some

regularity assumptions, we derive a bound on the estimator errors ‖θ̂j,τ − θ(j)
? ‖2, for

all τ ∈ T . We then use this result to show that the profile pseudo-log-likelihood

estimator τ̂ is an approximate minimizer of τ 7→ `T (τ ; θ
(1)
? , θ

(2)
?) and this allows us to

establish a bound on the distance between τ̂ and the true change point τ?.

We assume that the penalty parameters take the following specific form.

λ1,τ =
16c0

√
τ log (dT)

T
and λ2,τ =

16c0

√
(T − τ) log (dT)

T
, (2.8)

where d
def
= p(p+ 1)/2, and

c0 = sup
u,v∈X

|B0(u)−B0(v)| ∨ sup
x,u,v∈X

|B(x, u)−B(x, v)|, (2.9)

which serves as (an upper bound on the) standard deviation of the random vari-

ables B0(X), B(X, Y). In practice, we use λ1,τ = a1T
−1c0

√
τ log(dT), and λ2,τ =

a2T
−1c0

√
(T − τ) log(dT), where a1, a2 are chosen from the data by an analogue of

the Bayesian Information Criterion (Schwarz et al. (1978)).

For j = 1, 2, define Aj
def
=
{

1 ≤ k ≤ i ≤ p : θ
(j)
?ik 6= 0

}
, with sj = |Aj| denoting the

cardinality (and hence the sparsity) of the true model parameters. We also define

Cj
def
=

θ ∈Mp :
∑

(k,i)∈Acj

|θ(j)
ik | ≤ 3

∑
(k,i)∈Aj

|θ(j)
ik |

 , j ∈ {1, 2}, (2.10)

used next in the definition of the restricted strong convexity assumption.

Assumption 2.1. [Restricted Strong Convexity] For j ∈ {1, 2}, and X ∼ g
θ
(j)
?

, there

exists ρj > 0 such that for all ∆ ∈ Cj,

p∑
i=1

E
θ
(j)
?

[
Var

θ
(j)
?

(
p∑

k=1

∆ikBik(Xi, Xk)|X−i

)]
≥ 2ρj ‖∆Aj‖2

2, (2.11)

where Bik(x, y) = B0(x) if i = k, and Bik(x, y) = B(x, y) if i 6= k.

Remark 2.2. Assumption 2.1 is a restricted strong convexity assumption on the

negative log-pseudo-likelihood function φ(θ, x). This can be seen by noting that

14

(2.11) can also be written as

∆′E
[
∇(2)φ(θ(j)

? , X(j))
]

∆ ≥ 2ρj‖∆Aj‖2
2, X(j) ∼ g

θ
(j)
?
, ∆ ∈ Cj, j ∈ {1, 2}.

These restricted strong convexity assumptions of objective functions are more perti-

nent in high-dimensional problems and appear in one form or another in the analysis

of high-dimensional statistical methods (see e.g. Neghaban et al. (2012) and refer-

ences therein).

We impose the following condition on the change point and the sample size.

Assumption 2.3. [Sample size requirement] We assume that there exists α? ∈ (0, 1)

such that τ? = α?T , and the sample size T satisfies

min

(
T

211 log(p)
,

T

482 × 162 log (dT)

)
≥ c2

0 max

(
s2

1

α?ρ2
1

,
s2

2

(1− α?) ρ2
2

)
,

where ρ1, and ρ2 are as in Assumption 2.1.

Remark 2.4. Note that the constants 211 and 482× 162 required in Assumption 2.3

will typically yield a very conservative bound on the sample size T . We believe these

large constants are mostly artifacts of our techniques, and can be improved. The

key point of Assumption 2.3 is the fact that we require the sample T to increase

as a linear function of max(s2
1, s

2
2) log(p). This is in agreement with other results in

high-dimensional sparse recovery.

The ability to detect the change-point requires that the change from θ
(1)
? to θ

(2)
?

be identifiable. Define

κ0
def
= E

θ
(2)
?

[
φ(θ(1)

? , X)− φ(θ(2)
? , X)

]
. (2.12)

Assumption 2.5. [Identifiability Condition] Assume that θ
(1)
? 6= θ

(2)
? , and there also

exists ε > 0 that does not depend on p, T such that

κ0 ≥
√
ε‖θ(2)
∗ − θ(1)

∗ ‖1. (2.13)

Remark 2.6. Obviously Assumption 2.5 is stronger than a mere identifiability con-

dition κ0 > 0. In the case where θ
(1)
? and θ

(2)
? have similar sparsity patterns, As-

sumption 2.5 can be shown to hold provided that most of the individual differences

15

|θ(2)
?,ij − θ

(1)
?,ij| are sufficiently large. To see this, notice that by a Taylor expansion one

can show that

κ0 ≥
1

2 + c0‖θ(2)
? − θ(1)

? ‖1

p∑
i=1

E
θ
(2)
?

[
Var

θ
(2)
?

(
p∑

k=1

(
θ

(1)
?,ik − θ

(2)
?,ik

)
Bik(Xi, Xk)|X−i

)]
,

where c0 is as in (2.9). Hence, if the restricted strong convexity assumption As-

sumption 2.1 holds and θ
(1)
? and θ

(2)
? have similar sparsity structures, in the sense

that θ
(1)
? − θ(2)

? ∈ C2, then using (2.11), we see that

κ0 ≥
2ρ2‖θ(2)

? − θ(1)
? ‖2

2

2 + c0‖θ(2)
? − θ(1)

? ‖1

.

In this case (2.13) holds if the term ‖θ(2)
? −θ(1)

? ‖2/‖θ(2)
? −θ(1)

? ‖1 remains bounded away

from zero as p → ∞, which in turn holds true for instance if most of the differences

|θ(2)
?,ij − θ

(1)
?,ij| are sufficiently large.

Finally, we define the search domain as the set

T = T+ ∪ T−, (2.14)

where T+ is defined as the set of all time-points τ ∈ {τ? + 1, . . . , T} such that

c0b(τ − τ?) ≤ 2
√
τ log(dT), and 64c3

0bs1(τ − τ?) ≤ ρ1τ, (2.15)

and T− is defined as the set of all time-point τ ∈ {1, . . . , τ?} such that

c0b(τ? − τ) ≤ 2
√

(T − τ) log(dT), and 64c3
0bs2(τ? − τ) ≤ ρ2(T − τ), (2.16)

where

b
def
= sup

1≤j≤p

p∑
k=1

∣∣θ(2)
?jk − θ

(1)
?jk

∣∣. (2.17)

Remark 2.7. Notice that T is of the form {kl, kl + 1, . . . , τ?, τ? + 1, . . . , T − ku}, since

for τ close to τ? both (2.15) and (2.16) hold provided that T is large enough.

We can then establish the key result of this paper.

Theorem 2.8. Under assumptions Assumption 2.1-Assumption 2.5, with α? as

in Assumption 2.3, for the model posited in (2.2), and for the estimator defined in

16

(2.7), we have that with probability tending to one as p→∞,∣∣∣∣ τ̂T − α?
∣∣∣∣ . (1 +

c2
0

ε
+
M

κ0

)
log (dT)

T
, (2.18)

where M = s1
ρ1

(
1 +

c20s1
ρ1

)
+ s2

ρ2

(
1 +

c20s2
ρ2

)
, and the notation a . b means that a ≤ cb

for some universal constant c.

Remark 2.9. Theorem 2.8 gives a theoretical guarantee that even for large p and

for large enough sample size T , 1
T
|τ̂ − τ?| = O(log(pT)

T
) with high-probability. For

fixed-parameter change-point problems, the maximum likelihood estimator of the

change-point is known to satisfy 1
T
|τ̂ − τ?| = OP (1

T
) (see e. g. Bai (1997)).

Another nice feature of Theorem 2.8 is the fact that the constant
(

1 +
c20
ε

+ M
κ0

)
describes the behavior of the change-point estimator as a function of the key param-

eters of the problem. In particular, the bound in (2.18) shows that the change-point

estimator improves as s1, s2 (the number of non-zero entries of the matrices θ
(1)
? , θ

(2)
?

resp.), or c0 (the maximum fluctuation of B0 and B) decrease. The estimator also

improves as the identifiability parameter κ0 increases.

2.5 Algorithm and Implementation Issues

The key steps of the algorithm to compute the estimates
(
τ̂ , θ̂1,τ̂ , θ̂2,τ̂

)
based on

a sequence of observed p-dimensional vectors {x(t), 1 ≤ t ≤ T} are described in the

following algorithm.

Algorithm 2.10 (Basic Algorithm). Input: a sequence of observed p-dimensional

vectors {x(t), 1 ≤ t ≤ T}, and T ⊆ {1, . . . , T} the search domain.

1. For each τ ∈ T , estimate θ̂1,τ , θ̂2,τ using for instance the algorithm in Höfling

and Tibshirani (2009) to obtain sparse estimates of the underlying network

structures.

2. For each τ ∈ T , plug-in the estimates θ̂1,τ , θ̂2,τ in (2.6) and obtain the profile

(negative) pseudo-log-likelihood function P`(τ)
def
= `T (τ ; θ̂1,τ , θ̂2,τ).

3. Identify τ̂ that achieves the minimum of P`(τ) over the grid T , and use θ̂1,τ̂ , θ̂2,τ̂

as the estimates of θ
(1)
? and θ

(2)
? , respectively.

17

In our implementation of the Basic Algorithm, we choose the set T in such a way

that we could avoid the large estimation errors at the boundaries. More specifically,

we choose the search domain as T = {kl, kl + 1, . . . , T − kl} where kl is much larger

than 1. Thus we ensure that the errors of estimation remain small by staying suf-

ficiently away from both boundaries. For example, for a particular implementation

with T = 700, we choose kl = 60 as described in detail in Section 2.6.

Note that to identify the change-point τ̂ the algorithm requires a full scan of all the

time points in the set T , which can be expensive in the presence of a large number

of them. To that end, we discuss a fast implementation that operates in two stages.

In the first stage, a coarser grid T1 ⊂ T of time points is used and steps (a) and (b)

of the Basic Algorithm are used to obtain `T (τ ; θ̂1,τ , θ̂2,τ), τ ∈ T1. Subsequently, the

profile likelihood function `T is smoothed using a Nadaraya-Watson kernel (Nadaraya

(1965)). Based on this smoothed version of the profile likelihood, an initial estimate

of the change-point is obtained. In the second stage, a new fine-resolution grid T2

is formed around the first stage estimate of τ̂ . Then, the Basic Algorithm is used

for the grid points in T2 to obtain the final estimate. This leads to a more practical

algorithm summarized next.

Algorithm 2.11 (Fast Implementation Algorithm). Input: a sequence of ob-

served p-dimensional vectors {x(t), 1 ≤ t ≤ T}, and T ⊆ {1, . . . , T} the search do-

main.

1. Find a coarser grid T1 of time points.

2. For each τ ∈ T1, use steps (a) and (b) of the Basic Algorithm to obtain

P`T (τ), τ ∈ T1.

3. Compute the profile negative pseudo-log-likelihood over the interval [1, T] by

Nadaraya-Watson kernel smoothing:

P̃`1s(τ)
def
=

∑
τi∈T1 Khν (τ, τi) `(τi; θ̂1,τi , θ̂2,τi)∑

τi∈T1 `
(
τi; θ̂1,τi , θ̂2,τi

) , 1 ≤ τ ≤ T.

The first stage change-point estimate is then obtained as

τ̂ = Argmin
1<τ<T

P̃`1s(τ).

18

4. Form a second stage grid T2 around the first stage estimate τ̂ and for each

τ ∈ T2, estimate
̂̂
θ1,τ and

̂̂
θ2,τ using steps (a) and (b) of the Basic Algorithm.

5. Construct the second stage smoothed profile pseudo-likelihood

P̃`2s(τ)
def
=

∑
τi∈T2 Khν (τ, τi) `

(
τi;
̂̂
θ1,τi ,

̂̂
θ2,τi

)
∑

τi∈T2 `

(
τi;
̂̂
θ1,τi ,

̂̂
θ2,τi

) , min(T2) ≤ τ ≤ max(T2).

The final change-point estimate is then given by

̂̂τ = Argmin
min(T2)≤τ≤max(T2)

P̃`2s(τ).

2.6 Performance Assessment

2.6.1 Comparing Algorithm 1 and Algorithm 2

We start by examining the relative performance of both the Basic (Algorithm 1)

and the Fast Implementation Algorithms (Algorithm 2). We use the so called Ising

model; i.e. when (2.1) has B0 (xj) = xj, B (xj, xk) = xjxk and X ≡ {0, 1}. In all

simulation setting the sample size is set to T = 700, and the true change-point is

at τ? = 350, while the network size p varies from 40-100. All the simulation results

reported below are based on 30 replications of Algorithm 1 and Algorithm 2.

The data are generated as follows. We first generate two p×p symmetric adjacency

matrices each having density 10%; i.e. only∼10% of the entries are different than zero.

Each off-diagonal element of θ
(i)
?jk, (i = 1, 2) is drawn uniformly from [−1,−0.5]∪[0.5, 1]

if there is an edge between nodes j and k, otherwise θ
(i)
?jk = 0. All the diagonal

entries are set to zero. Given the two matrices θ
(1)
? and θ

(2)
? , we generate the data{

X(t)
}τ?
t=1

iid∼ g
θ
(1)
∗

and
{
X(t)

}T
t=τ?+1

iid∼ g
θ
(2)
∗

by Gibbs sampling.

Different “signal strenghts” are considered, by setting the degree of similarity

between θ
(1)
? and θ

(2)
? to 0%, 20% and 40%. The degree of similarity is the proportion

of equal off-diagonal elements between θ
(1)
? and θ

(2)
? . Thus, the difference ‖θ(2)

? −θ(1)
? ‖1

becomes smaller for higher degree of similarity and as can be seen from Assumption

H3, the estimation problem becomes harder in such cases.

The choice of the tuning parameters λ1,τ and λ2,τ were made based on Bayesian

Information Criterion (BIC) where we search λ1,τ and λ2,τ over a grid Λ and for each

19

penalty parameter the λ value that minimizes the BIC score (defined below) over Λ

is selected. If we define λBIC1 and λBIC2 as the selected λ values for λ1 and λ2 by BIC

we have

λBIC1 = Argmin
λ1∈Λ

−2× 1

T

τ∑
t=1

φ
(
θ1, X

(t)
)

+ log(τ)|Â1| and

λBIC2 = Argmin
λ2∈Λ

−2× 1

T

T∑
t=τ+1

φ
(
θ2, X

(t)
)

+ log(T − τ)|Â2|

where Âi =
{

(j, k) : θ̂
(i)
jk 6= 0, j < k

}
, i = 1, 2.

For the fast algorithm (Algorithm 2), the first stage grid employed had a step

size of 10 and ranged from 60 to 640, while the second stage grid was chosen in the

interval [τ̂ − 30, τ̂ + 30] with a step-size of 3.

We present the results for Algorithm 1 in Table 2.1 for the case p = 40. It can be

seen that Algorithm 1 performs very well for stronger signals (0% and 20% similarity),

while there is a small degradation for the 40% similarity setting. The results on the

specificity, sensitivity and the relative error of the estimated network structures are

given in Table 2.2. Specificity is defined as the proportion of true negatives and

can also be interpretated as (1-Type 1 error). On the other hand sensitivity is the

proportion of true positives and can be interpreted as the power of the method. The

results for Algorithm 2 for p = 40, 60 and p = 100, for the change-point estimates are

given in Table 2.4, while the specificity, sensitivity and relative error of the estimated

network structures are given in Table 2.5. These results show that Algorithm 2 has

about 20% higher mean-squared error (MSE) compared to Algorithm 1. However as

pointed out in Section 2.5, Algorithm 2 is significantly faster. In fact in this particular

simulation setting, Algorithm 2 is almost 5 times faster in a standard computing

environment with 4 CPU cores. See also the results in Table 2.3 which reports the

ratio of the run-time of a single iteration of Algorithm 1 and Algorithm 2.

Further, selected plots of the profile smoothed pseudo-log-likelihood functions

P̃`1s(τ) and P̃`2s(τ) from the first and second stage of Algorithm 2 are given in

Figure 2.1.

Table 2.1: Change-point estimation results using the Basic Algorithm, for different
percentages of similarity.

20

p % of Similarity τ̂ RMSE CV

40

0 355 14.77 0.03

20 362 24.65 0.06

40 375 38.49 0.08

Table 2.2: Specificity, sensitivity and relative error in estimating θ
(1)
? and θ

(2)
? from

the Basic Algorithm, with different percentages of similarity.

p % of Similarity Specificity Sensitivity Relative error

θ
(1)
∗ θ

(2)
∗ θ

(1)
∗ θ

(2)
∗ θ

(1)
∗ θ

(2)
∗

40

0 0.78 0.87 0.79 0.89 0.70 0.63

20 0.74 0.88 0.80 0.88 0.72 0.67

40 0.71 0.80 0.77 0.81 0.75 0.72

Table 2.3: Ratio of the computing time of one iteration of Algorithm 1 and Algorithm
2.

p Ratio of computing times

40 4.93

60 4.82

100 4.81

Table 2.4: Change-point Estimation Results for different values of p and different
percentages of similarity for the Fast Implementation Algorithm.(T = 700, s1 = s2 =
10p(p+1)

2
%, τ ∗ = 354)

21

p % of Similarity τ̂ ̂̂τ RMSE CV

40

0 360 360 17.89 0.04

20 363 361 30.07 0.08

40 375 373 47.97 0.10

60

0 357 356 23.05 0.06

20 388 386 43.20 0.08

40 410 408 61.45 0.09

100

0 356 355 35.93 0.10

20 408 401 62.89 0.10

40 424 421 85.04 0.12

Table 2.5: Specificity, sensitivity and relative error of the two parameters for differ-
ent values of p and different percentages of similarity for the Fast Implementation
Algorithm.

p % of Similarity Specificity Sensitivity Relative error

θ
(1)
∗ θ

(2)
∗ θ

(1)
∗ θ

(2)
∗ θ

(1)
∗ θ

(2)
∗

40

0 0.74 0.86 0.78 0.86 0.74 0.67

20 0.74 0.81 0.76 0.82 0.73 0.71

40 0.72 0.78 0.78 0.82 0.74 0.70

60

0 0.81 0.83 0.77 0.82 0.75 0.66

20 0.82 0.87 0.70 0.72 0.79 0.73

40 0.80 0.86 0.65 0.68 0.81 0.78

100

0 0.82 0.88 0.75 0.84 0.78 0.66

20 0.81 0.87 0.66 0.70 0.81 0.78

40 0.85 0.87 0.63 0.68 0.83 0.81

2.6.2 A community based network structure

Next, we examine a setting similar to the one that emerges from the US Senate

analysis presented in the next Section. Specifically, there are two highly “connected”

communities of size p = 50 that are more sparsely connected before the change-

point, but exhibit fairly strong negative association between their members after the

change-point. Further, the within community connections are increased for one of

them and decreased for the other after the occurrence of the change-point. We keep

22

0 100 200 300 400 500 600 700

16
40

0
16

60
0

16
80

0
17

00
0

17
20

0
17

40
0

Timepoints

N
eg

at
iv

e
lo

g−
lik

el
ih

oo
d

0 100 200 300 400 500 600 700

24
50

0
25

00
0

25
50

0
26

00
0

26
50

0

Timepoints

N
eg

at
iv

e
lo

g−
lik

el
ih

oo
d

0 100 200 300 400 500 600 700

37
00

0
38

00
0

39
00

0
40

00
0

41
00

0
42

00
0

Timepoints

N
eg

at
iv

e
lo

g−
lik

el
ih

oo
d

0 100 200 300 400 500 600 700

16
50

0
17

00
0

17
50

0

Timepoints

N
eg

at
iv

e
lo

g−
lik

el
ih

oo
d

0 100 200 300 400 500 600 700

23
00

0
23

50
0

24
00

0
24

50
0

25
00

0

Timepoints

N
eg

at
iv

e
lo

g−
lik

el
ih

oo
d

0 100 200 300 400 500 600 700

38
50

0
39

00
0

39
50

0
40

00
0

40
50

0

Timepoints

N
eg

at
iv

e
lo

g−
lik

el
ih

oo
d

0 100 200 300 400 500 600 700

16
60

0
16

80
0

17
00

0
17

20
0

17
40

0
17

60
0

Timepoints

N
eg

at
iv

e
lo

g−
lik

el
ih

oo
d

0 100 200 300 400 500 600 700

24
50

0
25

00
0

25
50

0
26

00
0

Timepoints

N
eg

at
iv

e
lo

g−
lik

el
ih

oo
d

0 100 200 300 400 500 600 700

37
00

0
38

00
0

39
00

0
40

00
0

41
00

0
42

00
0

Timepoints

N
eg

at
iv

e
lo

g−
lik

el
ih

oo
d

Figure 2.1: Smoothed profile pseudo-log-likelihood functions from one run of Algo-
rithm 2. Different values of similarity (0%, 20% and 40%) in rows. Different values of
p (p = 40, 60 & 100) in column. The green curve is the non-smoothed profile pseudo-
log-likelihood from Stage 1 of Algorithm 2, and the black curve is its smoothed version.
The orange and the blue curve are respectively the non-smoothed and the smoothed
profile pseudo-log-likelihood functions from Stage 2 of Algorithm 2.

the density of the two matrices encoding the network structure before and after the

true change-point at 10%. In the pre change-point regime, 40% of the non-zero entries

are attributed to within group connections in community 1 (see Table 2.6), and 50%

to community 2 (see Table 2.6), while the remaining 10% non-zeros represent between

group connections and are negative. Note that the within group connections are all

positive. In the post change-point regime, the community 1 within group connections

slightly increase to 42% of the non-zero entries, whereas those of community 2 decrease

to 17% of the non-zero entries. The between group connections increase to 41% of

the non-zero entries in the post change-point regime. As before, each off-diagonal

element θ
(i)
jk , i = 1, 2 is drawn uniformly from [−1,−0.5] ∪ [0.5, 1] if nodes j and k

are linked by an edge, otherwise θ
(i)
∗,jk = 0, i = 1, 2 and the diagonals for both the

matrices are assigned as zeros. Given the two matrices θ
(1)
∗ and θ

(2)
∗ , we generate data

using the “BMN” package (Hoefling (2010)) as described earlier. The total sample

size employed is T = 1500 and the true change-point is at τ ∗ = 750. We choose the

first stage grid comprising of 50 points with a step size of 27 and the second stage

grid is chosen in a neighborhood of the first stage estimate with a step size of 3 with

20 points. We replicate the study 5 times and find that the estimated change-point

averaged over the 5 replications as τ̂ = 768. The relevant figure (see Figure 2.2) for

23

this two community model is given below. The analysis indicates that our proposed

methodology is able to estimate the true change-point sufficiently well in the presence

of varying degrees of connections between two communities over two different time

periods, a reassuring feature for the US Senate application presented next.

Table 2.6: Positive and negative edges before and after the true change-point for two
community model

Edges Before After

comm 1 comm 2 between comm 1 comm 2 between

positive 50 63 0 52 21 0

negative 0 0 10 0 0 50

Total 50 63 10 52 21 50

0 500 1000 1500

38
00

0
40

00
0

42
00

0
44

00
0

46
00

0
48

00
0

Timepoints

N
eg

at
iv

e
lo

g−
lik

el
ih

oo
d

Figure 2.2: Change-point estimate for the two community model with p = 50, T =
1500 and τ ∗=754

2.7 Application to Roll Call Data of the US Senate

The data examined correspond to voting records of the US Senate covering the

period 1979 (96th Congress) to 2012 (112th Congress) and were obtained from the

website www.voteview.com. Specifically, for each of the 12129 votes cast during this

period, the following information is recorded: the date that the vote occurred and

the response to the bill/resolution under consideration -yes/no, or abstain- of the 100

Senate members. Due to the length of the time period under consideration, there was

significant turnover of Senate members due to retirements, loss of re-election bids,

appointments to cabinet or other administrative positions, or physical demise. In

24

order to hold the number of nodes fixed to 100 (the membership size of the US Senate

at any point in time), we considered Senate seats (e.g. Michigan 1 and Michigan

2) and carefully mapped the senators to their corresponding seats, thus creating a

continuous record of the voting pattern of each Senate seat.

Note that a significant number of the 12129 votes deal with fairly mundane pro-

cedural matters, thus resulting in nearly unanimous outcomes. Hence, only votes

exhibiting conformity less than 75% (yes/no) in either direction were retained, thus

resulting in an effective sample size of T = 7949 votes. Further, missing values due to

abstentions were imputed by the value (yes/no) of that member’s party majority po-

sition on that particular vote. Note that other imputation methods of missing values

were employed: (i) replacing all missing values by the value (yes/no) representing the

winning majority on that bill and (ii) replacing the missing value of a Senator by the

value that the majority of the opposite party voted on that particular bill. The results

based on these two alternative imputation methods are given in the Supplement.

Finally, the yes/no votes were encoded as 1/0, respectively. Under the posited

model, votes are considered as i.i.d. from the same underlying distribution pre and

post any change-point. In reality, voting patterns are more complex and in all likeli-

hood exhibit temporal dependence within the two year period that a Congress serves

and probably even beyond that due to the slow turnover of Senate members. Never-

theless, the proposed model serves as a working model that captures essential features

of the evolving voting dependency structure between Senate seats over time.

The likelihood function together with an estimate of a change-point are depicted in

Figure 2.5 based on the Fast Implementation Algorithm presented in Section 2.5. We

choose our first stage grid with a step-size of 50 that yields 157 points excluding time

points close to both boundaries. In the second stage, we choose a finer-resolution grid

with a step size of 20 in a neighborhood of the first stage change-point estimate. The

vote corresponding to the change point occurred on January 17, 1995 at the beginning

of the tenure of the 104th Congress. This change-point comes at the footsteps of

the November 1994 election that witnessed the Republican Party capturing the US

House of Representatives for the first time after 1956. As discussed in the political

science literature, the 1994 election marked the end of the “Conservative Coalition”, a

bipartisan coalition of conservative oriented Republicans and Democrats on President

Roosevelt’s “New Deal” policies, which had often managed to control Congressional

outcomes since the “New Deal” era. Note that other analyses based on fairly ad hoc

25

methods (e.g. Moody and Mucha (2013)) also point to a significant change occurring

after the November 1994 election.

Next, we examine more closely the pre and post change-point network structures,

shown in the form of heatmaps of the adjacency matrices in Figure 2.6. To obtain

stable estimates of the respective network structures, stability selection (Meinshausen

and Bühlmann (2010)) was employed with edges retained if they were present in more

than 90% of the 50 networks estimated from bootstrapped data. To aid interpreta-

tion, the 100 Senate seats were assigned to three categories: Democrat (blue), mixed

(yellow) and Republican (red). Specifically, a seat was assigned to the Democrat or

Republican categories if it were held for more than 70% of the time by the correspond-

ing party within the pre or post change-point periods; otherwise, it was assigned to

the mixed one. This means that if a seat was held for more than 5 out of the 8

Congresses in the pre change-point period and similarly 6 out of 9 Congresses in the

post period by the Democrats, then it is assigned to that category and similarly for

Republican assignments; otherwise, it is categorized as mixed.

In the depicted heatmaps, the ordering of the Senate seats in the pre and post

change-point regimes are kept as similar as possible, since some of the seats changed

their category membership completely across periods. Further, the green dots rep-

resent positive edge weights, mostly corresponding to within categories interactions,

while black dots represent negative edge weights, mostly between category interac-

tions. It can be clearly seen an emergence of a significant number of black dots in

the post change-point regimes, indicative of sharper disagreements between politi-

cal parties and thus increased polarization. Further, it can be seen that in the post

change-point regime the mixed group becomes more prominent, indicating that it

contributes to the emergence of a change-point.

To further explore the reasons behind the presence of a change-point, we provide

some network statistics in Figure 2.3 and Figure 2.4. Specifically, the two figures

present the proportion of positive and negative edges, before and after the estimated

change-point using two different methods for selecting the penalty tuning parameters;

an analogue of the Bayesian Information Criterion and threshold 0.8 for the stability

selection method respectively. The patterns shown across the figures for the two

different methods are very similar- high proportion of positive edges within groups

and very low or almost negligible proportion of negative edges within the “republican”

or “democrat” groups in both pre and post-change-point periods. Further, a large

26

proportion of negative edges can be accounted for “republican” and “democrat” group

interactions, which tend to increase in the post regime. One noticeable fact is that the

proportion of positive edges within the “republican” and “democrat” groups remain

almost same from pre to post change-point regime under BIC and stability selection

both whereas the proportion of positive edges between the two groups decrease and

the proportion of negative edges between them tend to increase from pre to post

change-point regime for both the methods. It can also be observed that the “mixed”

and the “democrat” groups exhibit a large proportion of positive edges between them

in the pre regime, as gleaned from their overlap in the corresponding heatmap.

We also present some other network statistics, such as average degree, centrality

scores and average clustering coefficients for the three groups “republican”, “demo-

crat” and “mixed” in Table 2.7. We observe that in terms of centrality scores the

“democrat” group is more influential than the “republican” one, in both the pre and

post change-point network structures, whereas in terms of clustering coefficient values

the “republican” group is ahead of the “democrat” one and the gap increases from pre

to post change-point regime, also reflected in the finding that the number of edges

within the “republican” group mostly remains the same from pre to post regimes,

whereas for the democrats it decreases. These results suggest that the Republicans

form a tight cluster, whereas the Democrats not to the same extent.

R D

R
D M

M
D

M
R

0.0

0.2

0.4

0.6

0.8

1.0

R D

R
D M

M
D

M
R

0.0

0.2

0.4

0.6

0.8

1.0

R D

R
D M

M
D

M
R

0.0

0.2

0.4

0.6

0.8

1.0

R D

R
D M

M
D

M
R

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2.3: Proportion of negative edges for network structures before (left figure)
and after (right figure) the estimated change-point for BIC and stability selection
with threshold=0.8

Table 2.7: Different network statistic values for stability selection with threshold=0.9
and 0.8 respectively

27

R D

R
D M

M
D

M
R

0.0

0.2

0.4

0.6

0.8

1.0

R D

R
D M

M
D

M
R

0.0

0.2

0.4

0.6

0.8

1.0

R D

R
D M

M
D

M
R

0.0

0.2

0.4

0.6

0.8

1.0

R D

R
D M

M
D

M
R

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2.4: Proportion of positive edges for network structures before (left figure) and
after (right figure) the estimated change-point for BIC and stability selection with
threshold=0.8

Methods Network Statistic Before After

Rep Dem Mixed Rep Dem Mixed

Stable (0.9) Centrality Score 0.004 0.368 0.054 0.001 0.483 0.034

Clustering Coefficient 0.346 0.311 0.339 0.334 0.251 0.391

Stable (0.8) Centrality Score 0.004 0.378 0.055 0.001 0.481 0.078

Clustering Coefficient 0.366 0.371 0.360 0.378 0.307 0.364

1980 1990 2000 2010

43
00

00
43

50
00

44
00

00
44

50
00

45
00

00

Timepoints

N
eg

at
iv

e
lo

g−
lik

el
ih

oo
d

Figure 2.5: Estimate of the change-point for the combined US senate data from
1979-2012

28

A
K

 1
A

K
 2

A
Z

 2
C

O
 2

ID
 1

ID
 2

IN
 2

IA
 2

K
S

 1
K

S
 2

K
Y

 2
M

E
 1

M
S

 1
N

H
 1

N
H

 2
N

M
 2

N
C

 1
O

K
 1

O
R

 2
PA

 1
PA

 2
R

I 2
S

C
 2

T
X

 2
U

T
 1

U
T

 2
V

A
 1

W
Y

 1
W

Y
 2

C
A

 1
C

T
 1

D
E

 2
IN

 1
M

N
 1

M
N

 2
M

O
 2

N
Y

 1
O

R
 1

S
D

 2
V

T
 2

W
A

 2
W

I 1
A

R
 1

A
R

 2
C

A
 2

C
T

 2
D

E
 1

F
L

1
H

I 1
H

I 2 IL
 2

IA
 1

LA
 2

M
D

 1
M

A
 1

M
A

 2
M

I 1
M

I 2
M

T
 2

N
E

 2
N

J
1

N
J

2
N

M
 1

N
Y

 2
N

D
 2

R
I 1

V
T

 1
W

A
 1

W
V

 1
W

V
 2

W
I 2

A
L

1
A

L
2

A
Z

 1
C

O
 1

F
L

2
G

A
 2

IL
 1

K
Y

 1
LA

 1
M

E
 2

M
S

 2
M

T
 1

N
E

 1
N

V
 2

O
H

 1
O

H
 2

O
K

 2
S

C
 1

S
D

 1
T

N
 1

T
N

 2
T

X
 1

G
A

 1
M

D
 2

M
O

 1
N

V
 1

N
C

 2
N

D
 1

V
A

 2

VA 2ND 1NC 2NV 1MO 1MD 2GA 1TX 1TN 2TN 1SD 1SC 1OK 2OH 2OH 1NV 2NE 1MT 1MS 2ME 2LA 1KY 1IL 1GA 2FL 2CO 1AZ 1AL 2AL 1WI 2WV 2WV 1WA 1VT 1RI 1ND 2NY 2NM 1NJ 2NJ 1NE 2MT 2MI 2MI 1MA 2MA 1MD 1LA 2IA 1IL 2HI 2HI 1FL 1DE 1CT 2CA 2AR 2AR 1WI 1WA 2VT 2SD 2OR 1NY 1MO 2MN 2MN 1IN 1DE 2CT 1CA 1WY 2WY 1VA 1UT 2UT 1TX 2SC 2RI 2PA 2PA 1OR 2OK 1NC 1NM 2NH 2NH 1MS 1ME 1KY 2KS 2KS 1IA 2IN 2ID 2ID 1CO 2AZ 2AK 2AK 1

Party Memberships

Republican Democrat Mixed

A
K

 1
A

K
 2

A
Z

 2
C

O
 2

ID
 1

ID
 2

IN
 2

IA
 2

K
S

 1
K

S
 2

K
Y

 2
M

E
 1

M
S

 1
N

H
 1

N
H

 2
N

M
 2

N
C

 1
O

K
 1

O
R

 2
PA

 1
PA

 2
R

I 2
S

C
 2

T
X

 2
U

T
 1

U
T

 2
V

A
 1

W
Y

 1
W

Y
 2

A
L

1
A

L
2

A
Z

 1
G

A
 1

K
Y

 1
M

E
 2

M
S

 2
M

O
 1

M
T

 1
N

E
 1

N
C

 2
O

H
 1

O
H

 2
O

K
 2

T
N

 1
T

N
 2

T
X

 1
A

R
 1

A
R

 2
C

A
 2

C
T

 2
D

E
 1

F
L

1
H

I 1
H

I 2 IL
 2

IA
 1

LA
 2

M
D

 1
M

A
 1

M
A

 2
M

I 1
M

I 2
M

T
 2

N
E

 2
N

J
1

N
J

2
N

M
 1

N
Y

 2
N

D
 2

R
I 1

V
T

 1
W

A
 1

W
V

 1
W

V
 2

W
I 2

C
A

 1
C

T
 1

D
E

 2
IN

 1
M

D
 2

M
N

 1
M

N
 2

N
V

 1
N

Y
 1

N
D

 1
O

R
 1

S
D

 2
V

A
 2

W
A

 2
W

I 1
C

O
 1

F
L

2
G

A
 2

IL
 1

LA
 1

M
O

 2
N

V
 2

S
C

 1
S

D
 1

V
T

 2

VT 2SD 1SC 1NV 2MO 2LA 1IL 1GA 2FL 2CO 1WI 1WA 2VA 2SD 2OR 1ND 1NY 1NV 1MN 2MN 1MD 2IN 1DE 2CT 1CA 1WI 2WV 2WV 1WA 1VT 1RI 1ND 2NY 2NM 1NJ 2NJ 1NE 2MT 2MI 2MI 1MA 2MA 1MD 1LA 2IA 1IL 2HI 2HI 1FL 1DE 1CT 2CA 2AR 2AR 1TX 1TN 2TN 1OK 2OH 2OH 1NC 2NE 1MT 1MO 1MS 2ME 2KY 1GA 1AZ 1AL 2AL 1WY 2WY 1VA 1UT 2UT 1TX 2SC 2RI 2PA 2PA 1OR 2OK 1NC 1NM 2NH 2NH 1MS 1ME 1KY 2KS 2KS 1IA 2IN 2ID 2ID 1CO 2AZ 2AK 2AK 1

Party Memberships

Republican Democrat Mixed

Figure 2.6: Heatmap of the stable network structures before and after the estimated
change-point

2.8 Proof of Main Theorem 2.8 and Associated lemmas

We organize the proofs as follows. We start with some preliminary lemmas in

Section 2.8.1. In particular under assumptions Assumption 2.1-Assumption 2.3,

we derive a bound on the estimation errors ‖θ̂j,τ − θ(j)
? ‖2 and this yields a control on

the term maxτ |`T (τ, θ̂1,τ , θ̂2,τ) − `T (τ, θ
(1)
? , θ

(2)
?)|, which allows us to conclude that τ̂

is an approximate minimizer of τ 7→ `T (τ, θ
(1)
? , θ

(2)
?). Using these results we establish

Theorem 1 in Section 2.8.2. The proofs of the preliminary lemmas are postponed to

Section 2.8.3-2.8.5.

We recall some of the notation defined above. Mp denote the set of all p× p real

symmetric matrices, equipped with the (modified) Frobenius inner product 〈θ, ϑ〉F
def
=∑

k≤j θjkϑjk, and the associated norm ‖θ‖F
def
=
√
〈θ, θ〉. With this inner product,

we identify Mp with the Euclidean space Rp(p+1)/2, and we systematically use this

identification when defining first and second order derivative of functions f : Mp →
R. For θ ∈Mp we also define ‖θ‖1

def
=
∑

k≤j |θjk|, and ‖θ‖∞
def
= supk≤j |θjk|. If u ∈ Rd,

for some d ≥ 1, and A is an ordered subset of {1, . . . , d}, we define uA
def
= (uj, j ∈ A),

and u−j is a shortcut for u{1,...,d}\{j}. Finally we also recall that T = T+ ∪T− denotes

the search domain as defined in (2.14)-(2.16).

The following properties of the conditional distribution (2.3) will be used below. It

is well known (and easy to prove using Fisher’s identity) that the function θ 7→ φ(θ, x)

is Lispchitz and

|φ(θ, x)− φ(ϑ, x)| ≤ 2c0‖θ − ϑ‖1, θ, ϑ ∈Mp, x ∈ Xp, (2.19)

29

where c0 is as in (2.9).

From the expression (2.3) of the conditional densities, using straightforward algebra,

it is easy to show that the negative log-pseudo-likelihood function φ(θ, x) satisfies the

following. For all θ,∆ ∈Mp, and x ∈ Xp,

φ(θ + ∆, x)− φ(θ, x)− 〈∇θφ(θ, x),∆〉F

=

p∑
j=1

[
logZ

(j)
θ+∆(x)− logZ

(j)
θ (x)−

p∑
k=1

∆jk
∂

∂θjk
logZ

(j)
θ (x)

]
. (2.20)

Furthermore by Taylor expansion, we have

logZ
(j)
θ+∆(x)− logZ

(j)
θ (x)−

p∑
k=1

∆jk
∂

∂θjk
logZ

(j)
θ (x)

=

1∫
0

(1− t)Varθ+t∆

(
p∑

k=1

∆jkBjk(Xj, Xk)|X−j

)
dt ≤ c2

0

2

(
p∑

k=1

|∆jk|

)2

. (2.21)

2.8.1 Preliminary results

We introduce

V1 (τ,∆)
def
=

1

τ

τ∑
t=1

p∑
j=1

Var
θ
(1)
?

(
p∑

k=1

∆jkBjk(Xj, Xk)|X−j

)
, ∆ ∈Mp, τ ∈ T ,

which is the sample version of the left hand side of (2.11). Similarly we define

V2 (τ,∆)
def
=

1

T − τ

T∑
t=τ+1

p∑
j=1

Var
θ
(2)
?

(
p∑

k=1

∆jkBjk(Xj, Xk)|X−j

)
, ∆ ∈Mp, τ ∈ T .

We introduce

G1
τ

def
=

1

T

τ∑
t=1

∇φ
(
θ(1)
? ;X(t)

)
and G2

τ
def
=

1

T

T∑
t=τ+1

∇φ
(
θ(2)
? ;X(t)

)
.

For τ > 1, ρ > 0, λ > 0, and for j = 1, 2 we work with the event

E jτ (ρ, λ)
def
=

Vj (τ,∆) ≥ ρ
∑

(i,k)∈Aj

|∆ik|2 for all ∆ ∈ Cj and ‖Gj
τ‖∞ ≤

λ

2

 .

30

The following key lemma is a straightforward variant of lemma 2.2 of Atchade (2014),

which itself follows closely Neghaban et al. (2012). For brevity we omit the details

here.

Lemma 2.12. Fix τ ∈ {1, 2, . . . , T − 1}. Suppose that there exists ρ̌1,τ > 0 and

ρ̌2,τ > 0 such that the event E1
τ (ρ̌1,τ , λ1,τ) ∩ E2

τ (ρ̌2,τ , λ2,τ) holds, where λ1,τ and λ2,τ

are as in equation (2.8). Suppose also that

τ

T
ρ̌1,τ ≥ 48λ1,τs1 and

T − τ
T

ρ̌2,τ ≥ 48λ2,τs2. (2.22)

Then θ̂j,τ − θ(j)
? ∈ Cj, (j = 1, 2), where Cj is defined in (2.10), and

‖θ̂1,τ − θ(1)
? ‖2 ≤

T

τ

24s
1/2
1 λ1,τ

ρ̌1,τ

and ‖θ̂2,τ − θ(2)
? ‖2 ≤

T

T − τ
24s

1/2
2 λ2,τ

ρ̌2,τ

. (2.23)

The next result follows easily.

Lemma 2.13. Fix τ ∈ {1, 2, . . . , T − 1}. Under the assumptions of lemma 2.12,

∣∣∣`T (τ, θ̂1,τ , θ̂2,τ)− `T (τ, θ(1)
? , θ(2)

?)
∣∣∣ .M

log (dT)

T
,

where M = s1
ρ̌1,τ

(
1 +

c20s1
ρ̌1,τ

)
+ s2

ρ̌2,τ

(
1 +

c20s2
ρ̌2,τ

)
.

Proof. See Section 2.8.3.

The next two lemmas imply that under Assumption 2.1 and Assumption 2.3,

the event E1
τ (ρ̌1,τ , λ1,τ) ∩ E2

τ (ρ̌2,τ , λ2,τ) holds with high probability. This is explicitly

stated in the following corollary.

Lemma 2.14. Assume Assumption 2.1 and Assumption 2.3, and T 6= ∅. With

λ1,τ , λ2,τ as in equation (2.8),

P
[
max
τ∈T

2λ−1
1,τ

∥∥G1
τ

∥∥
∞ > 1

]
≤ 2

Td
, and P

[
max
τ∈T

2λ−1
2,τ

∥∥G2
τ

∥∥
∞ > 1

]
≤ 2

Td

where d = p(p+ 1)/2.

Proof. See Section 2.8.4.

31

Lemma 2.15. Assume Assumption 2.1 and Assumption 2.3, and T 6= ∅. With

probability at least 1− 4
d

the following holds: for all τ ∈ T , for all ∆(1) ∈ C1, and for

all ∆(2) ∈ C2,

V(1)
(
τ,∆(1)

)
≥ ρ1‖∆(1)

A1
‖2

2, and V(2)
(
τ,∆(2)

)
≥ ρ2‖∆(2)

A2
‖2

2.

Proof. See Section 2.8.5.

We combine the last two lemmas to obtain the following.

Corollary 2.16. Assume Assumption 2.1 and Assumption 2.3, and T 6= ∅. Let

λ1,τ and λ2,τ as in equation (2.8). Then the event
⋂
τ∈T [E1

τ (ρ1, λ1,τ) ∩ E2
τ (ρ2, λ2,τ)]

holds with probability at least 1− 8
d
.

2.8.2 Proof of Theorem 2.8

Proof. We use `T (τ) instead of `T

(
τ ; θ̂1,τ , θ̂2,τ

)
for notational convenience, and we

define rT (τ)
def
= `T (τ)− `T

(
τ, θ

(1)
? , θ

(2)
?

)
. Fix τ ∈ T+. We have

`T (τ) = `T
(
τ, θ(1)

? , θ(2)
?

)
+ rT (τ),

=
[
`T
(
τ, θ(1)

? , θ(2)
?

)
− `T

(
τ?, θ

(1)
? , θ(2)

?

)]
+ `T

(
τ?, θ

(1)
? , θ(2)

?

)
+ rT (τ). (2.24)

It is straightforward to check that

`T
(
τ, θ(1)

? , θ(2)
?

)
− `T

(
τ?, θ

(1)
? , θ(2)

?

)
=

1

T

τ∑
t=τ?+1

(
φ(θ(1)

? , X(t))− φ(θ(2)
? , X(t))

)
.

Recall that κ0 is defined in Assumption 2.5 as

κ0 = E
θ
(2)
?

[
φ(θ(1)

? , X(t))− φ(θ(2)
? , X(t))

]
.

32

We then define Z(t) = φ(θ
(1)
? , X(t)) − φ(θ

(2)
? , X(t)) − κ0. Hence E

θ
(2)
∗

(
Z(t)

)
= 0, and

(2.24) becomes

`T (τ)− `T (τ?) =
(τ − τ?)κ0

T
+

1

T

τ∑
t=τ?+1

Zt +
[
`T
(
τ?, θ

(1)
? , θ(2)

?

)
− `T (τ?)

]
+ rT (τ)

=
(τ − τ?)κ0

T
+

1

T

τ∑
t=τ?+1

Zt + rT (τ)− rT (τ∗)

(2.25)

We conclude from lemma 2.13 that on the event
⋂
τ∈T [E1

τ (ρ1, λ1,τ) ∩ E2
τ (ρ2, λ2,τ)],

`T (τ)− `T (τ?) =
(τ − τ?)κ0

T
+

1

T

τ∑
t=τ?+1

Zt + εT (τ),

where εT (τ) = rT (τ)− rT (τ∗) and max
τ∈T
|εT (τ)| ≤ CM

log(dT)

T
, (2.26)

for some universal constant C, and where M is as defined in the statement of Theorem

1. For δ > 0, we set B
def
= CM(1+δ)

κ0
log (dT). Notice that the event

{τ̂ > τ? +B} ⊂
⋃

j≥0,{τ?+dBe+j}∈T

{τ̂ = τ? + dBe+ j} .

Equation (2.26) implies that on the event
⋂
τ∈T [E1

τ (ρ1, λ1,τ) ∩ E2
τ (ρ2, λ2,τ)], and for

τ? + dBe+ j ∈ T , the event {τ̂ = τ? + dBe+ j} is also a subset of

{`T (τ? + dBe+ j) ≤ `T (τ?)} ⊆

−
τ?+dBe+j∑
t=τ?+1

Zt ≥ (dBe+ j)κ0 − CM log(dT)

 .

(2.27)

However by Corollary 2.16, the event ∩τ∈T [E1
τ (ρ1, λ1,τ) ∩ E2

τ (ρ2, λ2,τ)] occurs with

probability at least 1− 8/d. This, together with (2.26) and (2.27) imply that

P [τ̂ > τ? +B] ≤ 8

d
+
∑
j≥0

P

− τ?+dBe+j∑
t=τ?+1

Z(t) > κ0j + CMδ log (dT)

 (2.28)

We set

A
def
= CMδ log (dT) , and L

def
=

1

8c2
0‖θ

(2)
? − θ(1)

? ‖2
1

,

33

where c0 is as in (2.9). Using (2.19), Hoeffding’s inequality and the inequality
(A+κ0j)

2

(dBe+j) ≥ (A+ κ0j)
A
dBe , we deduce that

P [τ̂ > τ? +B] ≤ 8

d
+
∑
j≥0

exp

(
−L (A+ κ0j)

2

dBe+ j

)

≤ 8

d
+ exp

(
−LA

2

dBe

)∑
j≥0

exp

(
−LAκ0j

dBe

)

≤ 8

d
+ exp

(
−LA

2

dBe

)(
1− exp

(
−LAκ0

dBe

))−1

. (2.29)

Using Assumption 2.5 and the monotonicity of x 7→ ax/(bx+ c) for ac > 0 we write

Lκ0A

dBe
≥ Lκ2

0CMδ

CM(1 + δ) + κ0

≥ 8

c2
0

εCMδ

CMδ + κ0 + CM
≥ 4ε

c2
0

,

provided that δ ≥ 1 + κ0
CM

. Using again the fact that x 7→ ax/(bx + c) is increasing

for ac > 0, we get
LA2

dBe
≥
(

κ0LC
2M2δ2

CMδ + CM + κ0

)
log(dT).

We also use the fact that for a, b, c > 0, ax2

bx+c
≥ 1 for x ≥ b+

√
b2+4ac
2a

to deduce that
κ0LC2M2δ2

CMδ+CM+κ0
≥ 1, for δ = 1 + κ0

CM
+ 1

Lκ0CM
. Hence for δ = 1 + κ0

CM
+ 1

Lκ0CM

P [τ̂ > τ? +B] ≤ 8

d
+

1

dT

(
1− exp

(
−4ε

c2
0

))−1

. (2.30)

A similar bound holds for P [τ̂ < τ? −B]. Thus we conclude that with a probability

tending to one as p→∞, |τ̂ − τ?| ≤
(

1 + 2CM
κ0

+ 1
Lκ20

)
log(dT), as claimed.

2.8.3 Proof of lemma 2.13

Proof. Set ∆̂
(j)
τ

def
= θ̂j,τ − θ(j)

∗ . From (2.20) we have

1

T

τ∑
t=1

[
φ
(
θ(1)
∗ + ∆̂(1)

τ , X(t)
)
− φ

(
θ(1)
∗ , X(t)

)]
=

1

T

τ∑
t=1

〈
∇θφ

(
θ(1)
∗ , X(t)

)
, ∆̂(1)

τ

〉
F

+
1

T

τ∑
t=1

[
p∑
j=1

logZ
(j)

θ
(1)
? +∆̂

(1)
τ

(X(t))− logZ
(j)

θ
(1)
?

(X(t))−
p∑

k=1

∆jk
∂

∂θjk
logZ

(j)

θ
(1)
?

(X(t))

]
.

34

On E1
τ (ρ̌1,τ , λ1,τ),

∥∥T−1

τ∑
t=1

∇φ
(
θ(1)
∗ , X(t)

) ∥∥
∞ ≤

λ1,τ

2
and ∆̂

(1)
τ ∈ C1. Hence

∣∣∣∣∣ 1

T

τ∑
t=1

〈
∇θφ

(
θ(1)
∗ , X(t)

)
, ∆̂(1)

τ

〉
F

∣∣∣∣∣ ≤
∥∥∥∥∥ 1

T

τ∑
t=1

∇θφ
(
θ(1)
∗ , X(t)

)∥∥∥∥∥
∞

‖∆̂(1)
τ ‖1

≤ λ1,τ

2
‖θ̂1,τ − θ(1)

∗ ‖1

≤ 2λ1,τs
1/2
1

∥∥∥θ̂1,τ − θ(1)
∗

∥∥∥
F

≤ C
s1

ρ̌1,τ

log (dT)

T
,

where C can be taken as 2 · 24 · 482. On E1
τ (ρ̌1,τ , λ1,τ), using (2.21) and lemma 2.12,

∣∣∣∣∣ 1

T

τ∑
t=1

[
p∑
j=1

logZ
(j)

θ
(1)
? +∆̂

(1)
τ

(X(t))− logZ
(j)

θ
(1)
?

(X(t))−
p∑

k=1

∆jk
∂

∂θjk
logZ

(j)

θ
(1)
?

(X(t))

]∣∣∣∣∣
≤ c2

0τ

2T

p∑
j=1

(
p∑

k=1

|∆̂(1)
jk |

)2

≤ c2
0τ

T
‖∆̂(1)

τ ‖2
1 ≤ 8 · 482 · 242c2

0

(
s1

ρ̌1,τ

)2
log(dT)

T
.

We combine these two bound to conclude that on E1
τ (ρ̌1,τ , λ1,τ)∣∣∣∣ 1

T

τ∑
t=1

[
φ
(
θ̂1,τ , X

(t)
)
− φ

(
θ(1)
∗ , X(t)

)] ∣∣∣∣ .M1
log (dT)

T
,

where M1 = s1
ρ̌1,τ

(
1 +

c20s1
ρ̌1,τ

)
. A similar bound holds for the second term

1

T

T∑
t=τ+1

[
φ
(
θ̂2,τ , X

(t)
)
− φ

(
θ(2)
∗ , X(t)

)]
,

and the lemma follows.

35

2.8.4 Proof of lemma 2.14

Proof. We carry the details for the first bound. The second is done similarly. For

τ ∈ T+, we calculate that for 1 ≤ j ≤ i ≤ p,

∂

∂θij

[
− 1

T

τ∑
t=1

φ
(
θ(1)
? , X(t)

)]

=

− 1
T

τ∑
t=1

[
B0(X

(t)
i)− E

θ
(1)
?

(B0(Xi|X(t)
−i)
]

if i = j

− 1
T

τ∑
t=1

[
2B(X

(t)
i , X

(t)
j)− E

θ
(1)
?

(
B(Xi, Xj)|X(t)

−i

)
−E

θ
(1)
?

(
B(Xi, Xj)|X(t)

−j

)]
if j < i

In the above display the notation E
θ
(1)
?

(
B(Xi, Xj)|X(t)

−i

)
is defined as the function

z 7→ E
θ
(1)
?

(B(Xi, Xj)|X−i = z−i) evaluated on X(t).

Fix a pair of nodes j < i (the argument is similar for i = j). Set

µ
(t)
ij

def
= E

[
2B(X

(t)
i , X

(t)
j)− E

θ
(1)
?

(
B(Xi, Xj)|X(t)

−i

)
− E

θ
(1)
?

(
B(Xi, Xj)|X(t)

−j

)]
,

and

V
(t)
ij

def
= 2B(X

(t)
i , X

(t)
j)− E

θ
(1)
?

(
B(Xi, Xj)|X(t)

−i

)
− E

θ
(1)
?

(
B(Xi, Xj)|X(t)

−j

)
− µ(t)

ij ,

so that E
(
V

(t)
ij

)
= 0 and

∂

∂θij

[
1

T

τ∑
t=1

φ
(
θ(1)
∗ , X(t)

)]
=

1

T

τ∑
t=1

V
(t)
ij +

1

T

τ∑
t=1

µ
(t)
ij .

The important point to notice is that for t ≤ τ?, µ
(t)
ij = 0. For t > τ?, we can bound

µ
(t)
ij by comparing the conditional expectation of B(Xi, Xj) under g

θ
(1)
?

and g
θ
(2)
?

. To

36

this end, we use lemma 2.17 which gives that for t > τ?,∣∣∣E [B(X
(t)
i , X

(t)
j)− E

θ
(1)
?

(
B(Xi, Xj)|X(t)

−i

)]∣∣∣
=

∣∣∣∣∣∣E
∫

X

B(u,X
(t)
j)f

θ
(2)
?

(u|X(t)
−i)du−

∫
X

B(u,X
(t)
j)f

θ
(1)
?

(u|X(t)
−i)du

∣∣∣∣∣∣
≤ c2

0

p∑
j=1

|θ(2)
?,ij − θ

(1)
?,ij| ≤ bc2

0,

where b is as in (2.17). Hence∣∣∣µ(t)
ij

∣∣∣ ≤ 2 max
j≤i

∣∣∣E
θ
(2)
?

(
B(X

(t)
i , X

(t)
j)|X(t)

−i

)
− E

θ
(1)
?

(
B(X

(t)
i , X

(t)
j)|X(t)

−j

)∣∣∣ ≤ 2bc2
0.

Using the fact that for τ ∈ T+, 8bc2
0 (τ − τ∗) ≤ λ1,τT we conclude that

1

T

∣∣∣∣ τ∑
t=τ∗+1

µ
(t)
ij

∣∣∣∣ ≤ (τ − τ∗) c2
0b

T
≤ λ1,τ

4
.

Now by Hoeffding’s inequality,

P∗

[∣∣∣∣ ∂∂θij
[

1

T

τ∑
t=1

φ
(
θ(1)
∗ , X(t)

)] ∣∣∣∣ > λ1,τ

2

]
≤ P∗

[∣∣∣∣ τ∑
t=1

V
(t)
ij

∣∣∣∣ > Tλ1,τ

4

]

≤ 2 exp

(
−
T 2λ2

1,τ

27c2
0τ

)
≤ 2 exp (−2 log (Td)) .

A similar bound holds when i = j, and for τ ∈ T−. We conclude by a union-sum

inequality that

P∗
[
max
τ∈T

2λ−1
1,τ

∥∥G1
τ

∥∥
∞ > 1

]
≤ 2 exp (log (Td)− 2 log (Td)) ≤ 2

Td
.

37

2.8.5 Proof of lemma 2.15

Proof. We prove the first bound, the second bound is similar, if not simpler since

there is no misspecification. We define

W
(t)
jkk′

def
= Cov

θ
(1)
?

(
B(X

(t)
j , X

(t)
k), B(X

(t)
j , X

(t)
k′)|X(t)

−j

)
− E

[
Cov

θ
(1)
?

(
B(X

(t)
j , X

(t)
k), B(X

(t)
j , X

(t)
k′)|X(t)

−j

)]
Then for ∆(1) = ∆ ∈ C1 \ {0},

V1 (τ,∆) =
1

τ

τ∑
t=1

p∑
j=1

p∑
k,k′=1

∆jk∆jk′W
(t)
jkk′ (2.31)

+
1

τ

τ∑
t=1

p∑
j=1

p∑
k,k′=1

∆jk∆jk′E
[
Cov

θ
(1)
?

(
B(X

(t)
j , X

(t)
k), B(X

(t)
j , X

(t)
k′)|X(t)

−j

)]
.

Using Assumption 2.1, we deduce that

V1 (τ,∆) ≥ 2ρ1‖∆A1‖2
2 +

1

τ

τ∑
t=1

p∑
j=1

p∑
k,k′=1

∆jk∆jk′W
(t)
jkk′

+
τ − τ∗
τ

p∑
j=1

E
θ
(2)
?

[
Var

θ
(1)
?

(
p∑

k=1

∆jkBik(Xj, Xk)|X−j

)]

− τ − τ∗
τ

p∑
j=1

E
θ
(1)
?

[
Var

θ
(1)
?

(
p∑

k=1

∆jkBik(Xj, Xk)|X−j

)]
. (2.32)

By the comparison lemma 2.17

∣∣∣∣Eθ(2)?
[
Var

θ
(1)
?

(
p∑

k=1

∆jkBik(Xj, Xk)|X−j

)]

− E
θ
(1)
?

[
Var

θ
(1)
?

(
p∑

k=1

∆jkBik(Xj, Xk)|X−j

)] ∣∣∣∣
≤ c3

0

(
p∑

k=1

|∆jk|

)2 p∑
k=1

|θ(1)
?jk − θ

(2)
?jk| ≤ c3

0b

(
p∑

k=1

|∆jk|

)2

,

38

which implies that

V1 (τ,∆) ≥
(

2ρ1 − 32

(
τ − τ?
τ

)
s1c

3
0b

)
‖∆A1‖2

2 +
1

τ

τ∑
t=1

p∑
j=1

p∑
k,k′=1

∆jk∆jk′W
(t)
jkk′ .

Given that on T+, 64(τ − τ?)s1c
3
0b ≤ ρ1τ , it follows that

V1 (τ,∆) ≥ 3

2
ρ1‖∆A1‖2

2 +
1

τ

τ∑
t=1

p∑
j=1

p∑
k,k′=1

∆jk∆jk′W
(t)
jkk′ (2.33)

Set Zτ
jkk′

def
= 1

τ

τ∑
t=1

W
(t)
jkk′ . We conclude from equation (2.33) that if for some ∆ ∈

C1 \ {0}, and for some τ ≥ τ ∗,

V1 (τ,∆) ≤ ρ1‖∆A1‖2
2 (2.34)

then
p∑
j=1

p∑
k,k′=1

∆jk∆jk′Z
(τ)
jkk′ ≤ −

ρ1

2
‖∆A1‖2

2.

But on the other hand, using the fact that ∆ ∈ C1,

p∑
j=1

p∑
k,k′=1

∆jk∆jk′Z
(τ)
jkk′ ≥ −

(
sup
j,k,k′
|Z(τ)

jkk′|
)(p∑

i=1

p∑
k=1

|∆ik|

)2

≥ −
(

sup
j,k,k′
|Z(τ)

jkk′|
)

16‖∆A1‖2
1

≥ −16s1

(
sup
j,k,k′
|Z(τ)

jkk′ |
)
‖∆A1‖2

2.

Therefore if there exists a non-zero ∆ ∈ C1 and τ ≥ τ∗ such that equation (2.34)

holds then

(
sup
j,k,k′
|Z(τ)

jkk′ |
)
≥ ρ1/32s1. But by Hoeffding’s inequality and a union-sum

bound,

P
[

sup
j,k,k′
|Z(τ)

jkk′ | ≥
ρ1

32s1

]
≤ 2 exp

(
3 log p− τρ2

1

29c2
0s

2
1

)
≤ 2

p
,

since for τ ∈ T , τ ≥ 211c2
0s

2
1ρ
−2
1 log p.

Lemma 2.17. Let (Y,A, ν) be a measure space where ν is a finite measure. Let

g1, g2, f1, f2 : Y → R be bounded measurable functions. Set Zgi
def
=
∫
Y
egi(y)ν(dy),

39

Figure 2.7: Estimated Change-points via imputation technique (i) and (ii) respec-
tively

i ∈ {1, 2}. Then

∣∣∣∣ 1

Zg1

∫
f1(y)eg1(y)ν(dy)− 1

Zg2

∫
f2(y)eg2(y)ν(dy)

∣∣∣∣
≤ ‖f2 − f1‖∞ +

1

2
osc(g2 − g1) (osc(f1) + osc(f2)) ,

where ‖f‖∞ = supx∈Y |f(x)|, and osc(f)
def
= supx,y∈Y |f(x)− f(y)| is the oscillation of

f .

Proof. The proof follows from Atchade (2014) lemma A.4.

2.9 Different Methods of Missing Data Imputation for the

Real Data Application

In the main paper we replaced the missing votes by the value (yes/no) of that

member’s party majority position on that particular vote. Here we employed two

other missing data imputation techniques viz. (i) replacing all missing values by the

value (yes/no) representing the winning majority on that bill and (ii) replacing the

missing value of a Senator by the value that the majority of the opposite party voted

on that particular bill. The estimated change-point obtained following these two

imputation methods are not much different . The imputation technique (i) results in

a estimated change-point at January 19, 1995 and the technique (ii) yields estimated

change-point at January 17, 1995 respectively. The change-point estimate we obtained

in the main paper was January 17, 1995. Clearly there is not much difference between

the different imputation techniques and Fig. 2.7 also conveys the same message.

40

2.10 Discussion

We analyzed a change-point estimation problem in the context of a high dimen-

sional MRF and established the rate of convergence of O (log(dT)) for the estimated

change-point to the truth. Recall that the usual rate of convergence in the low dimen-

sional setting is O(1), as discussed in Bai (1997); Kosorok (2007). The logarithmic

factor seems to be the cost that one has to account for the high dimensionality of

the problem. Another key aspect that we investigate in our theoretical analysis is

the model misspecification in high dimensional setting which can be of independent

interest in some other problems as well.

41

CHAPTER 3

Parallel Optimization Algorithm for Large

Heterogeneous Data

3.1 Introduction

Heterogeneity is one of the important features exhibited in a large high-dimensional

data. In this chapter, we consider a computational problem involving efficient param-

eter estimation in a large heterogeneous data. The two main problems one faces in

dealing with these large datasets are -(1) the size of the data is so large that it may

be infeasible to store all of the data on a single computer and (2) the standard al-

gorithms used to solve the optimization problem for parameter estimation becomes

extremely slow. To tackle these issues one of the common strategies that most of the

distributed algorithms (Agarwal and Duchi (2011), Zinkevich et al. (2010), Zhang

et al. (2013) etc.) utilize is to split the large data into small parts and use some opti-

mization algorithm to perform parameter estimation on those fractions of data using

several machines (“Divide and Conquer”). The final parameter estimate is obtained

by taking a simple average of the individual estimates from different machines. The

only communication step in these algorithms is the final aggregation step combining

estimates from different machines.

The averaging step at the end of the parallel implementation ensure variance reduc-

tion of the estimate relative to a serial implementation. But the bias of the estimate

is not reduced by simple averaging. We provide a parallel algorithm that involves

random subsampling and a communication step among different machines after each

iteration of the optimization algorithm. Instead of data splitting, we use a random

subsample of the full data on individual machines. The communication is done in

such a way that the estimates in each machine can utilize all the subsamples on dif-

42

ferent machines over the iterations. This yields bias reduction of the estimate relative

to a parallel implementation where we do not communicate among the machines. As

before, the final estimate is obtained by taking a simple average of all the different

estimates at the end of the iterations. We provide a sharp analysis on the rate of

decay of bias and variance of our parallel implementation and compare it with the

parallel scheme without communication.

Gaussian Mixture Model (GMM) is a prime example that can be used to generate

heterogeneous data. We provide experimental evaluation of our method by simulating

large dataset from GMM with high dimension and different levels of overlap among

the mixture components. We compare the performance of our parallel implemen-

tation with communication with the one that is employed in a parallel manner but

without communication.

3.2 Parallel Algorithms for Large Dataset

Many procedures for statistical estimation involves minimizing a objective func-

tion iteratively with respect to the parameters. Given the current explosion in the

size and amount of data available in statistical studies, a central challenge is to design

efficient algorithms for solving large-scale problem instances. In a centralized setting

there are many procedures for performing iterative optimization of a objective func-

tion viz. EM algorithm and its variants (Dempster et al. (1977); Wei and Tanner

(1990); Nielsen (2000)), Stochastic approximation and optimization algorithms (Rob-

bins and Monro (1951); Spall (1998)), gradient descent (Boyd and Vandenberghe

(2004)), coorodinate descent (Boyd and Vandenberghe (2004)) etc. When the size of

the dataset becomes extremely large, however, it may be infeasible to store all of the

data on a single computer, or at least to keep the data in memory. Accordingly, the

focus of this paper is the study of some parallel communication-efficient procedures

for iterative optimization of a objective function.

Recent years have witnessed a flurry of research on distributed approaches to solving

very large-scale statistical optimization problems. To name a few Nedic and Ozdaglar

(2009); Ram et al. (2010); Johansson et al. (2009); Duchi et al. (2012); Dekel et al.

(2012); Agarwal and Duchi (2011); Recht et al. (2011) etc. It can be difficult within

a purely optimization theoretic setting to show explicit benefits arising from parallel

computation. In statistical settings, however, parallel computation can lead to gains

in computational efficiency, as shown by a number of authors (Agarwal and Duchi

43

(2011); Dekel et al. (2012); Recht et al. (2011); Duchi et al. (2012)). Within the fam-

ily of distributed algorithms, there can be significant differences in communication

complexity: different computers must be synchronized, and when the dimensionality

of the data is high, communication can be prohibitively expensive. It is thus interest-

ing to study parallel estimation algorithms that require fairly limited synchronization

and communication while still enjoying the greater statistical accuracy that is usually

associated with a larger dataset.

With this context, perhaps the simplest algorithm is the average mixture(AVGM) al-

gorithm considered in Zhang et al. (2013). It is an appealingly simple method: given

m machines and a dataset of size N, first assign to each machine a dataset (distinct)

of size n = N/m, then have each machine perform the iterative optimization on its

fraction of the data to compute estimates θi and then average all the parameter es-

timates θi across machines. This approach has been studied for some classification

and estimation problems by Mcdonald et al. (2009) and McDonald et al. (2010), as

well as for certain stochastic approximation methods by Zinkevich et al. (2010). Mc-

donald et al. (2009) showed the variance reduction via this parallelization scheme

compared to the single processor solution. Zinkevich et al. (2010) showed that the

bias reduction is possible with a stochastic gradient descent algorithm which digests

not a fixed fraction of data but rather a random fixed subset of data (See Algorithm

3 in Zinkevich et al. (2010)).

However we introduce a parallel algorithm that does not require distinct datasets in

different machines i.e. instead of splitting the dataset as in Zhang et al. (2013) or

Zinkevich et al. (2010) we use a random subsampling from the full dataset. The pa-

per makes two contributions. First in Section 3.3 we introduce our parallel algorithm

based on random subsampling and with a single round of communication after every

iteration. Our second contribution is to provide a detailed analysis of our parallel

algorithm with communication and to compare the results with the one without com-

munication. We show that the bias reduction is possible in the communication case

by comparing the two algorithms after running a finite number of iterations with same

number of machines as the number of iterations. Notice that, in both communication

and non-communication case we employ random subsampling rather than random

splitting of the data. Further in Zhang et al. (2013) the mean squared error (MSE)

is considered for the parameter vector minimizing the population risk whereas in our

case we consider the MSE of our estimates that approximates the maximum-likelihood

44

estimator (MLE). In other words the only randomness in our case is induced by the

random subsampling and we assume that we have a fixed dataset of size N.

We present the two parallel algorithms in Section 3.3. We provide a brief review of

the EM algorithm implementation in GMM in Section 3.5. Also, some convergence

results related to EM in GMM is also discussed in section 3.6. Finally in Section

3.7 we provide an illustration of our algorithm in the case of parameter estimation in

GMM and compare the two parallel algorithms. The empirical results validate that

parallel implementation with communication does reduce the bias relative to the par-

allel scheme without communication. The proof of the technical results are deferred

to the Appendix.

3.3 Optimization via parallel random subsampling

Consider a dataset D containing N observations where N typically would be very

large. Assume that we have T machines available for parallel computation and the

iterative optimization is also run for T iterations in each machine. We repeat drawing

random subsample of size m from the pool of N observations T times and then send

them to the T machines available. An optimization routine with a communication

step after every iteration is then performed with the fraction of data available in each

machine. The final estimate is obtained by taking a simple average of the estimates

obtained from individual machines after running T iterations. We now describe some

notations useful for presenting the algorithm and the theoretical analysis thereafter.

Let S1, S2, . . . , ST be the subsamples in the respective machines. We also have |Si| =
m, for all i = 1, 2, . . . , T . For any vector U and any subsample S we denote US =

{ui, i ∈ S}. Let θ ∈ Θ ⊂ Rp be the parameters in the model. We denote Mi,j(θ) :

Θ 7→ Θ as a random iterative map in ith machine at the jth iteration. This is the

approximate version of the true map M which can be used with the entire dataset

D. The notationMi,j indicates that the random map depends on the subsample si,j

which denotes the subsample in ith machine at the jth iteration. Here si,j ∈ S =

{S1, S2, . . . , ST}. We associate the usual uniform norm (sup norm) with the notation

‖f‖. For any real-valued function f defined on a set S, the uniform norm (sup norm)

is defined as

‖f‖∞ = ‖f‖∞,S = sup { |f(x)| : x ∈ S }

45

In particular, for the case of a vector x = (x1, . . . , xn) in finite dimensional coordinate

space, it takes the form

‖x‖∞ = max{|x1|, . . . , |xn|}

which we again simply denote as ‖x‖. Further we use the notation θ
(i)
j to denote the

estimate in the ith core at jth iteration and θ̄T as the final estimate averaged across

T machines. We desribe the steps of both the parallel algorithm with communication

and without communication below.

Algorithm 3.1 Parallel Optimization via Random Subsampling with communica-
tion(PORSWC)

Input: Data D of size N , Number of machines T , subsamples S = {S1, S2, . . . , ST}
each of size m, initial estimates

{
θ

(i)
0

}T
i=1

in T machines, Number of iterations T

Output: θ̄T = 1
T

T∑
i=1

θ
(i)
T

1: procedure PORSWC

(
D,N, T, S,m,

{
θ

(i)
0

}T
i=1

)
2: loop:

3: for j = 1 to T do

4: loop:

5: for each i = 1 to T do

6: θ
(i)
j =Mi,j

(
θ

(i)
j−1

)
7: end . communication among machines

8: loop:

9: for i = 1 to (T − 1) do

10: si+1,j ← si,j

11: end

12: s1,j ← sT,j

13: end

The type of communication that we have proposed in Algorithm 3.1 allows each

initial estimate θ
(i)
0 , i = 1, 2, . . . , T to update itself through different subsample over

each iteration. In practice when we implement Algorithm 3.1, rather than transfer-

ring the subsamples among the machines (which is a more expensive communication

scheme) we transfer the estimates among the machines in the following manner: for

46

i = 1 to (T − 1)

θ
(i+1)
j ← θ

(i)
j and

θ
(1)
j ← θ

(T)
j

Nevertheless, the description in Algorithm 3.1 is useful for mathematical analysis

of the algorithm. We show later in the theoretical analysis that this communication

scheme reduces the bias of the final estimate θ̄T compared to a parallel implementation

without communication. We describe the non-communication scheme below in detail.

Algorithm 3.2 Parallel Optimization via Random Subsampling without communi-
cation(PORSWOC)

Input: Data D of size N , Number of machines T , subsamples S = {S1, S2, . . . , ST}
each of size m, initial estimates

{
θ

(i)
0

}T
i=1

in T machines, Number of iterations T

Output: θ̄T = 1
T

T∑
i=1

θ
(i)
T

1: procedure PORSWOC

(
D,N, T, S,m,

{
θ

(i)
0

}T
i=1

)
2: loop:

3: for j = 1 to T do

4: loop:

5: for each i = 1 to T do

6: θ
(i)
j =Mi,i

(
θ

(i)
j−1

)
7: end

8: end

3.4 Theoretical Results

3.4.1 Algorithm with Parallel Communication

For the communication scheme in each machine we provide new subsamples in ev-

ery iteration. This allows initial estimate in each core to use different subsamples over

the entire length of the optimization routine. We make assumption about contraction

property of the true map M and the approximate one Mi,j below.

Assumption 3.1. [Contraction property of the approximate EM map] Suppose for

λ ∈ (0, 1), the map M and Mi,j satisfies

47

‖M(θ)−M(θ′)‖ ≤ λ‖θ − θ′‖ (3.1)

and

‖Mi,j(θ)−Mi,j(θ
′)‖ ≤ λ‖θ − θ′‖ (3.2)

Further, we make the following assumption on the unbiasedness of the approximate

map Mi,j

Assumption 3.2. [Unbiasedness of the approximate EM map] For the approximate

map Mi,j we assume,

E [Mi,j(θ)] =M(θ) (3.3)

We define the following quantity which can be interpreted as the variance of the

approximate random map Mi.j based on the iid random subsamples S1, S2, . . . , ST .

σ2 def
= E

[
‖Mi,j(θ)−M(θ)‖2

]
, i, j = 1, 2, . . . , T (3.4)

We now state a theorem regarding the bias and the variance in the parallel algorithm

with communication.

Theorem 3.3. Assume Assumption 3.1. Let us assume an implementation of

our parallel algorithm Algorithm 3.1 with T machines and T number of iterations

starting from θ
(i)
0 ∈ Θ in ith machine, i = 1, 2, . . . , T and θ̄T

def
= 1

T

T∑
i=1

θ
(i)
T . Then

∥∥∥∥E(θ̄T)− θ?
∥∥∥∥ ≤ 1

T
λT

T∑
i=1

∥∥∥∥θ(i)
0 − θ?

∥∥∥∥ (3.5)

and

Var
(
θ̄T
)
≤ 1

T

(
σ

1− λ

)2
1 + λ

1− λ
(
1− λT

)
(3.6)

Proof. We start writing the update after T iterations in the lth machine following

Algorithm 3.1 as

θ
(l)
T =Ml,T (Ml,T−1(. . .Ml,1(θ

(l)
0))) (3.7)

We can subtract the update obtained via the true map and write Eq.(3.7) using a

48

telescoping sum in the following way

θ
(l)
T =MT (θ

(l)
0) +Ml,T . . .Ml,2(Ml,1 −M)θ

(l)
0

+Ml,T . . .Ml,3(Ml,2 −M)Mθ
(l)
0

+ . . .+Ml,T (Ml,T−1 −M)MT−2θ
(l)
0 + (Ml,T −M)MT−1θ

(l)
0 (3.8)

Hence we can write the above expression as

θ
(l)
T =MT (θ

(l)
0) +

T∑
j=1

Ml,T . . .Ml,j+1(Ml,j −M)Mj−1θ
(l)
0 (3.9)

Therefore,

E
[
θ

(l)
T

∣∣∣∣ {sl,r}Tr=j+1

]
=MT (θ

(l)
0) +

T∑
j=1

Ml,T . . .Ml,j+1E
[
(Ml,j −M)Mj−1θ

(l)
0

∣∣∣∣ {sl,r}Tr=j+1

]
(3.10)

But since each machine uses a new subsample every iteration and the subsamples

S1, . . . , ST are drawn independently we have,

E
[
(Ml,j −M)Mj−1θ

(l)
0

∣∣∣∣ {sl,r}Tr=j+1

]
= E

[
(Ml,j −M)Mj−1θ

(l)
0

]
(i)
=Mjθ

(l)
0 −MMj−1(θ

(l)
0)

= 0

Here (i) follows from assumption Assumption 3.2. Hence from Eq. (3.10) we

arrive at

E
(
θ

(l)
T

)
=MT (θ

(l)
0) (3.11)

49

Therefore we can write∥∥∥∥E(θ̄T)− θ?
∥∥∥∥ =

∥∥∥∥ 1

T

T∑
i=1

E(θ
(i)
T)− θ?

∥∥∥∥
=

∥∥∥∥ 1

T

T∑
i=1

MT (θ
(i)
0)−MT (θ?)

∥∥∥∥
(i)

≤ 1

T
λT

T∑
i=1

∥∥∥∥θ(i)
0 − θ?

∥∥∥∥
where in inequality (i) we used contraction property of the map M.

Let’s now look at the variance term i.e.

Var
(
θ̄T
)

=
1

T 2
Var

(
T∑
i=1

θ
(i)
T

)
=

1

T 2

∑
i

∑
j

Cov
(
θ

(i)
T , θ

(j)
T

)
=

T∑
i=1

T∑
k=1

Cov
(
θ

(i)
T , θ

(i+k)
T

)
(3.12)

Here we identify index (T + k) as (T + k) ≡ mod (T + k, T) = k, k = 1, 2, . . . , T

according to our parallel scheme of communication.

Let us look at the covariance term first and consider j = i+k where k = 1, 2, . . . , T .

We can write

Cov
(
θ

(i)
T , θ

(i+k)
T

)
= E

[
θ

(i)
T − E

(
θ

(i)
T

)] [
θ

(i+k)
T − E

(
θ

(i+k)
T

)]′
(3.13)

Now using E
(
θ

(l)
T

)
=MT (θ

(l)
0) from the first part of the proof we have

E
[
θ

(i)
T − E

(
θ

(i)
T

)] [
θ

(i+k)
T − E

(
θ

(i+k)
T

)]′
=

T∑
j1=1

T∑
j2=1

E
[
CMi,j1

(
CMi+k,j2

)′]
(3.14)

where

CMi,j1 =Mi,T . . .Mi,j1+1(Mi,j1 −M)θ̃
(i)
j1−1

where θ̃
(s)
r =Mr(θ

(s)
0), r = 0, 1, . . . , T − 1 and s = 1, 2, . . . , T

50

Consider the following diagram that explains which subsamples the estimates in

machine i and i+ k uses over the iterations respectively.

i :

j1︷ ︸︸ ︷
i→ i+ 1→ i+ 2→ . . .→ i+ k → . . .→ T → 1→ 2→ i− 1

i : i+ k → i+ k + 1→ i+ k + 2→ . . .→ T → 1→ 2→ . . .→ i︸ ︷︷ ︸
j2

→ . . .→ i+ k − 1

Hence for j1 ≥ k + 1 and j2 ≥ (T − k + 1),

E
[
CMi,j1

(
CMi+k,j2

)′] (i)
= E

[
CMi,j1

]
E
[
CMi+k,j2

] (ii)
= 0 (3.15)

where (i) follows from the fact that estimates in machine i and i + k goes through

independent subsamples for j1 ≥ k + 1 and j2 ≥ (T − k + 1) and (ii) utilizes As-

sumption 3.2 with the conditioning argument shown in Eq. (3.10). Therefore we

can write

Cov
(
θ

(i)
T , θ

(i+k)
T

)
=

k∑
j1=1

T∑
j2=1

E
[
CMi,j1

(
CMi+k,j2

)′]
+

T∑
j1=k+1

T−k∑
j2=1

E
[
CMi,j1

(
CMi+k,j2

)′]
(3.16)

Considering the first term in Eq. (3.16) we can write

k∑
j1=1

T∑
j2=1

E
[
CMi,j1

(
CMi+k,j2

)′]
(3.17)

≤
k∑

j1=1

T∑
j2=1

E
[∣∣∣∣CMi,j1 (CMi+k,j2)′ ∣∣∣∣]

(i)

≤
k∑

j1=1

T∑
j2=1

E
[
λT−j1‖Mi,j1(θ̃

(i)
j1−1)−M(θ̃

(i)
j1−1)‖λT−j2‖Mi+k,j2(θ̃

(i+k)
j2−1)−M(θ̃

(i+k)
j2−1)‖

]
=

k∑
j1=1

T∑
j2=1

λT−j1λT−j2E
[
‖Mi,j1(θ̃

(i)
j1−1)−M(θ̃

(i)
j1−1)‖‖Mi+k,j2(θ̃

(i+k)
j2−1)−M(θ̃

(i+k)
j2−1)‖

]
(ii)

≤ σ2

k∑
j1=1

T∑
j2=1

λT−j1λT−j2 (3.18)

where (i) follows from repeated use of Assumption 3.1, (ii) is obtained by Cauchy-

Schwarz inequality and Eq.(3.4). Similar algebraic calculations for the second term

in Eq.(3.16) yields

51

T∑
j1=k+1

T−k∑
j2=1

E
[
CMi,j1

(
CMi+k,j2

)′] ≤ σ2

T∑
j1=k+1

T−k∑
j2=1

λT−j1λT−j2 (3.19)

Hence using Eq.(3.18) and Eq.(3.19) in Eq.(3.16) we have

Cov
(
θ

(i)
T , θ

(i+k)
T

)
≤ σ2

(
k∑

j1=1

T∑
j2=1

λT−j1λT−j2 +
T∑

j1=k+1

T−k∑
j2=1

λT−j1λT−j2

)

≤
(

σ

1− λ

)2 (
λT−k + λk

)
(3.20)

Now from Eq.(3.12) we derive

Var
(
θ̄T
)
≤ 1

T 2

(
σ

1− λ

)2 T∑
i=1

T∑
k=1

(
λT−k + λk

)
=

1

T 2

(
σ

1− λ

)2

(1 + λ)T
1− λT

1− λ

=
1

T

(
σ

1− λ

)2
1 + λ

1− λ
(
1− λT

)
(3.21)

Hence the proof.

3.4.2 Parallel Algorithm without Communication

Since for the non-communication scheme the subsamples in any machine are kept

same over the iterations we can simplify the notationsMi,j asMi where i stands for

the machine i, i = 1, 2, . . . , T . The subsample Si is used in core i (i = 1, 2, . . . , T)

through out the iterations. We now state a theorem regarding the bias and the

variance in the parallel algorithm without communication.

Theorem 3.4. Assume Assumption 3.1. Let us assume an implementation of our

parallel algorithm without communication (Algorithm 3.2) with T machines and

T number of iterations starting from θ
(i)
0 ∈ Θ in ith machine, i = 1, 2, . . . , T and

θ̄T
def
= 1

T

T∑
i=1

θ
(i)
T . Then

∥∥∥∥E(θ̄T)− θ?
∥∥∥∥ ≤ 1

T
λT

T∑
i=1

‖θ(i)
0 − θ?‖+ σ

1− λT

1− λ
(3.22)

52

and

Var
(
θ̄T
)
≤ 4

T

(
σ

1− λ

)2

(1− λT)2 (3.23)

Proof. We start by writing the update after T iterations in any machine l, l =

1, 2, . . . , T following Algorithm 3.2

θ
(l)
T =Ml(θ

(l)
T−1) (3.24)

Iterating this update over T − 1, T − 2, . . . , 1 and using a telescoping sum we have

θ
(l)
T =MT (θ

(i)
0) +

T∑
j=1

MT−j
l (Ml −M)Mj−1(θ

(l)
0) (3.25)

Taking expectation on both sides of Eq. (3.25) we get

E(θ
(i)
T) =MT (θ

(l)
0) +

T∑
j=1

E
[
MT−j

l (Ml −M)Mj−1(θ
(l)
0)
]

(3.26)

Hence the bias of this parallel algorithm can be formalized as∥∥∥∥E(θ̄T)− θ?
∥∥∥∥

=

∥∥∥∥ 1

T

T∑
i=1

E(θ
(i)
T)− θ?

∥∥∥∥
=

∥∥∥∥ 1

T

T∑
i=1

(
MT (θ

(i)
0) +

T∑
j=1

E
[
MT−j

i (Mi −M)Mj−1(θ
(i)
0)
])
−MT (θ?)

∥∥∥∥
(i)

≤ 1

T
λT

T∑
i=1

‖θ(i)
0 − θ?‖+

1

T

T∑
i=1

T∑
j=1

E‖MT−j
i (Mi −M)Mj−1(θ

(i)
0)‖

(ii)

≤ 1

T
λT

T∑
i=1

‖θ(i)
0 − θ?‖+

1

T

T∑
i=1

T∑
j=1

λT−jE‖Mi(θ̃
(l)
j−1)−M(θ̃

(l)
j−1)‖

(iii)

≤ 1

T
λT

T∑
i=1

‖θ(i)
0 − θ?‖+ σ

1− λT

1− λ
(3.27)

where (i) follows from triangle inequality, (ii) follows from repeated use of Assump-

tion 3.1 and we use θ̃
(s)
r =Mr(θ

(s)
0), r = 0, 1, . . . , T − 1 and s = 1, 2, . . . , T . Further

in (iii) we use Eq. (3.4).

53

Let us now look at the variance term i.e.

Var
(
θ̄T
) (i)

=
1

T 2

T∑
i=1

Var
(
θ

(i)
T

)
(3.28)

Here (i) follows from the fact that the estimates θ
(i)
T in each machine i are based on

independent random subsample. Now

Var
(
θ

(i)
T

)
= E

[
θ

(i)
T − E(θ

(i)
T)
] [
θ

(i)
T − E(θ

(i)
T)
]′

(3.29)

Using Eq. (3.25) and Eq. (3.26) we can write

[
θ

(i)
T − E(θ

(i)
T)
]

=
T∑
j=1

[
MT−j

i (Mi −M)θ̃j−1 − E(MT−j
i (Mi −M)θ̃j−1)

]
(3.30)

Therefore∣∣∣∣MT−j
i (Mi −M)θ̃j−1 − E(MT−j

i (Mi −M)θ̃j−1)

∣∣∣∣
(i)

≤ λT−j‖Mi(θ̃j−1)−M(θ̃j−1)‖+ E‖MT−j
i (Mi −M)θ̃

(i)
j−1‖

(ii)

≤ λT−j‖Mi(θ̃j−1)−M(θ̃j−1)‖+ λT−jσ (3.31)

where (i) follows from repeated use of Assumption 3.1 and (ii) uses Eq. (3.4). Let

us denote

Vi,j(σ) = ‖Mi(θ̃j−1)−M(θ̃j−1)‖+ σ

Hence

54

E
[
θ

(i)
T − E(θ

(i)
T)
] [
θ

(i)
T − E(θ

(i)
T)
]′

≤
T∑

j1=1

T∑
j2=1

λT−j1λT−j2E [Vi,j1(σ)Vi,j2(σ)]

(i)

≤ 4σ2

T∑
j1=1

T∑
j2=1

λT−j1λT−j2

= 4σ2

T∑
j1=1

λT−j1
T∑

j2=1

λT−j2

= 4

(
σ

1− λ

)2 (
1− λT

)2
(3.32)

where (i) follows from Cauchy-Schwarz inequality and Eq. (3.4). Therefore from

Eq. (3.28) we have

Var
(
θ̄T
)
≤ 4

T

(
σ

1− λ

)2 (
1− λT

)2

Hence the proof.

3.4.3 Discussion of Results of Theorem 3.3 and 3.4

We first make a comparison of the bias term for the two parallel schemes. From

Theorem 3.3 we have,

∥∥∥∥E(θ̄T)− θ?
∥∥∥∥ ≤ 1

T
λT

T∑
i=1

∥∥∥∥θ(i)
0 − θ?

∥∥∥∥ (3.33)

On the other hand, Theorem 3.4 yields

∥∥∥∥E(θ̄T)− θ?
∥∥∥∥ ≤ 1

T
λT

T∑
i=1

‖θ(i)
0 − θ?‖+ σ

1− λT

1− λ
(3.34)

Looking at Eq. (3.33) and Eq. (3.34) we observe as T becomes large , R.H.S. of

Eq. (3.33) tends to zero whereas R.H.S. of Eq. (3.34) tends to σ
1−λ which clearly

highlights the gain of Algorithm 3.1 over Algorithm 3.2 in reducing the bias.

Now let us look at the two variance terms. From Theorem 3.3 we have,

55

Var
(
θ̄T
)
≤ 1

T

(
σ

1− λ

)2
1 + λ

1− λ
(
1− λT

)
(3.35)

Theorem 3.4 tells that

Var
(
θ̄T
)
≤ 1

T
4

(
σ

1− λ

)2 (
1− λT

)2
(3.36)

Therefore

R.H.S. of 3.35 < R.H.S. of 3.36

⇒ 1 + λ

1− λ
(
1− λT

)
< 4

(
1− λT

)2

⇒ 1 + λ

1− λ
< 4

(
1− λT

)
(3.37)

Since λ ∈ (0, 1), for large T we have from Eq. (3.37),

1 + λ

1− λ
< 4

⇒ 5λ < 3

⇒ λ < 0.6 (3.38)

Therefore for large T , variance of the parallel scheme with communication is

smaller than the variance of the non-communication scheme if λ < 0.6.

3.5 An application: EM Algorithm for Gaussian Mixture

Model

The EM algorithm is an iterative algorithm used for maximum likelihood (ML)

or maximum a posteriori (MAP) estimation. EM and it’s several variants have been

popular in parameter estimation in latent-variable models (see Dempster et al. (1977);

Wei and Tanner (1990); Nielsen (2000) etc.). EM has been used for parameter es-

timation in Gaussian Mixture Model (GMM) as well (see Ghahramani and Jordan

(1994); Nowlan (1991); Xu and Jordan (1993b,a); Tresp et al. (1994); Redner and

Walker (1984); Xu and Jordan (1996); Ma et al. (2000) etc.). GMM is a popular tool

56

for clustering data (McLachlan & Peal(2000)). It models the data as a mixture of

multiple Gaussian distributions where each Gaussian component corresponds to one

cluster. Let D = {xn, n = 1, 2, . . . , N} be N iid observations obtained from a mixture

model whose components are d-dimensional Gaussian distribution. The observations

are assumed iid from the following model

p(xn|µ,Σ) =
K∑
i=1

πif (xn|µi,Σi) (3.39)

where f (xn|µi,Σi) = 1

(2π)
m
2 |Σi|1/2

exp
[
−1

2
(xn − µi)T Σ−1

i (xn − µi)
]
. K is the number

of mixture components. µi,Σi, i = 1, 2 are the mean and the covariance matrix

for the ith mixture component. πi is the mixing proportion for the ith component.

The objective is to estimate the parameters {πi, µi,Σi}Ki=1 of model (3.39). The log-

likelihood for the observed data is given by

l (θ|D) =
N∑
n=1

log p (xn|µ,Σ)

=
N∑
n=1

log
K∑
i=1

πif (xn|µi,Σi) (3.40)

The above log-likelihood can be optimized via the following iterative algorithm (See

Dempster et.al. (1977)):

π
(t+1)
i =

1

N

N∑
n=1

τ i(t)n (3.41)

µ
(t+1)
i =

N∑
n=1

τ i(t)n xn

N∑
n=1

τ i(t)n

Σ
(t+1)
i =

N∑
n=1

τ i(t)n

(
xn − µ(t+1)

i

)(
xn − µ(t+1)

i

)T
N∑
n=1

τ i(t)n

where the posterior probabilities are defined as follows:

57

τ i(t)n

def
=

π
(t)
i f

(
xn|µ(t)

i ,Σ
(t)
i

)
K∑
j=1

π
(t)
j f

(
xn|µ(t)

j ,Σ
(t)
j

) (3.42)

3.5.1 Derivation of EM Algorithm for GMM

EM algorithm has been employed for successful analysis of GMM for heterogeneous

data. See Ghahramani and Jordan (1994); Nowlan (1991); Xu and Jordan (1993b,a)

etc. The computational complexity for computing the GMM likelihood is O(nKp2)

which for a fixed number of clusters K, grows with large number of observations and

increasing dimension of the feature space. Hence applying EM to the entire dataset

becomes computationally infeasible. Therefore, we use Algorithm 3.1 to overcome

the large size of the data and implement EM on random subsamples (much smaller

size then the full data) in each machine with a communication step in every iteration.

For completeness, we describe here the derivation of the EM updates given in Eq.

(3.41). First we take the derivative of Eq. (3.40) with respect to µi:

∂l

∂µi
=

∂

∂µi

{
N∑
n=1

log
K∑
i=1

πif (xn|µi,Σi)

}
(3.43)

=
N∑
n=1

πif (xn|µi,Σi)
K∑
j=1

πjf (xn|µj,Σj)

∂

∂µi
log f (xn|µiΣi) (3.44)

=
N∑
n=1

τ in
∂

∂µi
log f (xn|µiΣi) (3.45)

=
N∑
n=1

τ inΣ−1
i (xn − µi) (3.46)

where in Eq. (3.45) we use definition of τ in as given in Eq. (3.42). Setting to zero

yields

µi =

N∑
n=1

τ inxn

N∑
n=1

τ in

(3.47)

58

at a stationary point of the log-likelihood. A very similar calculations yield the

following condition for the covariance matrices

Σi =

N∑
n=1

τn (xn − µi) (xn − µi)T

N∑
n=1

τ in

(3.48)

and the mixing proportions

πi =
1

N

N∑
n=1

τ in (3.49)

where in the latter case we use Lagrange multipliers. These equations certainly do

not constitute an explicit solution since the posterior probabilities are themselves

functions of the parameters and so equations (3.47), (3.48) and (3.49) constitute a

system of coupled non-linear equations. We try to solve these system of equations

iteratively as given in Eq. (3.41). To connect with the usual E and the M-step of the

EM algorithm we explain the arguments in the following paragraphs.

In the EM algorithm generally E-step is defined as the “Calculation of complete data

log-likelihood” and the M-step amounts to maximization of the expected complete

data log-likelihood with respect to the parameters. Let us denote

Dc = {(xn, zn) : n = 1, 2, . . . , N}

to be the complete data for the GMM. We also denote θ = (µ,Σ). The complete data

log-likelihood is given by

lc(θ|Dc) =
N∑
n=1

log p (xn, zn|θ) (3.50)

=
N∑
n=1

K∏
i=1

[πf (xn|µi,Σi)]
zin (3.51)

=
N∑
n=1

K∑
i=1

zin log [πif (xn|µi,Σi)] (3.52)

59

One can clearly observe the difference between this log-likelihood and the one in Eq.

(3.40). We repeat that here for convenience

l (θ|D) =
N∑
n=1

log
K∑
i=1

πif (xn|µi,Σi) (3.53)

In the latter log is outside the sum over i which reflects that it is a marginal probability.

The complete data log-likelihood, on the other hand is not a marginal probability and

hence the log is inside the sum. Since we do not know the latent variables Zn, the next

step is to compute the conditional expectation of the latent variables given the data

Xn and fixing the parameter θ to a particular value θ(t). Using the operator notation

〈.〉θ(t) to denote these conditional expectations we define the expected complete data

log-likelihood as

〈lc (θ|Dc)〉θ(t) =
〈 N∑
n=1

K∑
i=1

zin log [πif (xn|µi,Σi)]
〉
θ(t)

(3.54)

=
N∑
n=1

K∑
i=1

〈zin〉θ(t) log [πif (xn|µi,Σi)] (3.55)

=
N∑
n=1

K∑
i=1

τ i(t)n log [πif (xn|µi,Σi)] (3.56)

The M-step requires maximization of the expected complete data log-likelihood in

Eq. (3.56) with respect to the parameters. Let us first consider the update for the

means. Collecting terms that involve µi in 3.56 and writing as J(µi) we obtain:

J(µi) = −1

2

N∑
n=1

τ i(t)n (xn − µi)T Σ−1
i (xn − µi) (3.57)

Notice that this is a weighted least-squares problem. Calculating the derivative of

J(µi) with respect to µi and setting to zero yields:

µ
(t+1)
i =

N∑
n=1

τ i(t)n xn

N∑
n=1

τ i(t)n

(3.58)

60

which is same as the update for µ in Eq. (3.41) and one can also see that it is identical

with the Eq. (3.47).

Similarly, collecting together terms that reference the covariance matrix Σi in Eq.

(3.56) we have

J(Σi) = −1

2

N∑
n=1

τ i(t)n

{
log |Σi|+ (xn − µi)T Σ−1

i (xn − µi)
}

(3.59)

This is the weighted variant of the problem of estimating the covariance matrix of a

multivariate Gaussian. Taking the derivative with respect to Σi and setting it to zero

yields:

Σ
(t+1)
i =

N∑
n=1

τ i(t)n

(
xn − µ(t+1)

i

)(
xn − µ(t+1)

i

)T
N∑
n=1

τ i(t)n

(3.60)

which is the update for Σ in Eq. (3.41). Again one can also observe the similarity of

Eq. (3.60) and Eq. (3.48).

Finally the terms in the expected complete data log-likelihood that reference π are:

J(π) =
N∑
n=1

K∑
i=1

τ i(t)n log πi (3.61)

Adding a Lagrangian term to account for the constraint that
K∑
i=1

πi = 1, taking

derivatives and setting to zero yields:

π
(t+1)
i =

1

N

N∑
n=1

τ i(t)n (3.62)

which is the update for π in Eq. (3.41) and coincides with Eq. (3.49) as well.

3.6 Review of Convergence of EM in GMM

The EM algorithm is guaranteed to monotonically converge to local optima un-

der mild continuity conditions (See Dempster et al. (1977); Wu (1983)). Redner and

Walker (1984) show that EM has linear rate of convergence. Xu and Jordan (1996)

61

provides some insight into the convergence rate of EM in the setting of Gaussian

mixtures. For the convenience of mathematical analyses, they studied a variant of

the original EM algorithm for Gaussian mixtures and showed that the condition num-

ber associated with this variant EM algorithm is guaranteed to be smaller than the

condition number associated with gradient ascent, providing a general guarantee of

the dominance of this variant EM algorithm over the gradient algorithm.They forge a

connection between the EM algorithm and gradient ascent and prove that rate of con-

vergence of the EM algorithm depends on the condition number of a projected Hessian

matrix ETP (Θ∗)H(Θ∗)E where Θ∗ is the optimum parameter value. E = [e1, . . . , em]

is a set of unit basis vectors spanning the constrained parameter space (satisfying the

constraint
K∑
j=1

αj = 1). P (Θ∗) is a projection matrix, and H(Θ∗) is the Hessian of

the log-likelihood function. Moreover, in cases in which the mixture components are

well separated, they showed that the condition number for this EM algorithm ap-

proximately converges to one, corresponding to a local superlinear convergence rate.

Thus, in this restrictive case,this type of EM algorithm has the favorable property

of showing quasi-Newton behavior as it nears the ML or MAP solution. Xu (1997)

further showed that the original EM algorithm has the same convergence properties

as this variant EM algorithm.

3.6.1 Identifying true Map M and the approximate map Mi,j

We discuss here identifying the true map M and the approximate map Mi,j which

will be necessary for understanding Algorithm 3.1 and Algorithm 3.2 as well as

comprehending the theoretical results in Theorem 3.3 and Theorem 3.4 repectively.

We follow the proof of Theorem 1 in Xu and Jordan (1996). This theorem illustrates

the connection between EM and gradient ascent algorithm. This connection helps us

to identify map M and Mi,j

Theorem 3.5. (Theorem 1 of Xu and Jordan, 1996) At each iteration of the EM

algorithm we have

π(t+1) − π(t) = P (t)
π

∂l

∂π

∣∣∣∣
π=π(t)

(3.63)

µ
(t+1)
j − µ(t)

j = P (t)
µj

∂l

∂µj

∣∣∣∣
µj=µ

(t)
j

(3.64)

62

vec
[
Σ

(t+1)
j

]
− vec

[
Σ

(t)
j

]
= P

(t)
Σj

∂l

∂Σj

∣∣∣∣
Σj=Σ

(t)
j

(3.65)

where

P (t)
π =

1

N

{
diag

[
π

(t)
1 , . . . , π

(t)
K

]
− π(t)(π(t))T

}
(3.66)

P (t)
µj

=
Σ

(t)
j

N∑
n=1

τ j(t)n

(3.67)

P
(t)
Σj

=
2

N∑
n=1

τ j(t)n

(
Σ

(t)
j ⊗ Σ

(t)
j

)
(3.68)

where π denotes the vector of mixing proportions [π1, . . . , πK]T , j indexes the mixture

components (j = 1, 2, . . . , K), k denotes the iteration number, “vec[B]” is defined

as the vectors obtained by stacking the column vectors of matrix B, ⊗ denotes the

Kronecker product. Moreover given the constraints
K∑
j=1

π
(t)
j = 1 and π

(t)
j ≥ 0, P

(t)
π is

positive definite matrix and the matrices P
(t)
µj and P

(t)
Σj

are positive definite matrices

with probability one for N sufficiently large.

Proof. We start by looking at the update for the mixing proportions. Using Eq. 3.40

we have

∂l

∂π

∣∣∣∣
π=π(t)

=
N∑
n=1

[
f(xn|θ(t)

1 , . . . , f(xn|θ(t)
K

]T
K∑
i=1

π
(t)
i f(xn|θ(t)

i)

where θ
(t)
j =

(
µ

(t)
j ,Σ

(t)
j

)
for j = 1, 2, . . . , K. Now premultiplying the above by P

(t)
π

we obtain

P (t)
π

∂l

∂π

∣∣∣∣
π=π(t)

=
1

N

N∑
n=1

[
τ 1(t)
n , . . . , τK(t)

n

]T − π(t)

Thus update formula for π in Eq. 3.41 can be rewritten as

π(t+1) = π(t) +
1

N

N∑
n=1

[
τ 1(t)
n , . . . , τK(t)

n

]T − π(t)

Combining the last two equations establish the update rule for π in Eq. 3.63. Fur-

thermore for an arbitrary vector u, we have NuTP
(t)
π u = uTdiag

[
π

(t)
1 , . . . , π

(t)
K

]
u −

63

(
uTπ(t)

)2
. Using Jensen’s inequality we have

uTdiag
[
π

(t)
1 , . . . , π

(t)
K

]
u =

K∑
j=1

π
(t)
j u

2
j

>

(
K∑
j=1

π
(t)
j uj

)2

=
(
uTπ(t)

)2

Thus uTP
(t)
π u > 0 and P

(t)
π is positive definite given the constraints

K∑
j=1

π
(t)
j = 1 and

π
(t)
j ≥ 0 for all j.

We now consider the update for the means µj. Notice that from Eq. 3.40 we can

write
∂l

∂µj

∣∣∣∣
µj=µ

(t)
j

=
N∑
n=1

τ j(t)n (Σ
(t)
j)−1

(
xn − µ(t)

j

)
Premultiplying by P

(t)
µj yields,

P (t)
µj

∂l

∂µj

∣∣∣∣
µj=µ

(t)
j

=
1

N∑
n=1

τ j(t)n

N∑
n=1

τ j(t)n

(
xn − µ(t)

j

)

= µ
(t+1)
j − µ(t)

j

From Eq. (3.41),
N∑
n=1

τ j(t)n > 0; moreover Σ
(t)
j is positive definite assuming N is large

enough such that the matrix is of full rank. Thus it follows from Eq. 3.67 that P
(t)
µj

is positive definite with probability one.

Finally we look at the update for Σ. As before from Eq. 3.40 we have

∂l

∂Σj

∣∣∣∣
Σj=Σ

(t)
j

= −1

2

N∑
n=1

τ j(t)n

(
Σ

(t)
j

)−1
{

Σ
(t)
j −

(
xn − µ(t)

j

)(
xn − µ(t)

j

)T}(
Σ

(t)
j

)−1

64

With this in mind, we rewrite the update formula for Σ in Eq. 3.41 as

Σ
(t+1)
j = Σ

(t)
j +

1
N∑
n=1

τ j(t)n

N∑
n=1

τ j(t)n

(
xn − µ(t)

j

)(
xn − µ(t)

j

)T
− Σ

(t)
j

= Σ
(t)
j +

2Σ
(t)
j

N∑
n=1

τ j(t)n

VΣjΣ
(t)
j

where

VΣj = −1

2

N∑
n=1

τ j(t)n

(
Σ

(t)
j

)−1
{

Σ
(t)
j −

(
xn − µ(t)

j

)(
xn − µ(t)

j

)T}(
Σ

(t)
j

)−1

=
∂l

∂Σj

∣∣∣∣
Σj=Σ

(t)
j

That is we have,

Σ
(t+1)
j = Σ

(t)
j +

2Σ
(t)
j

N∑
n=1

τ j(t)n

∂l

∂Σj

∣∣∣∣
Σj=Σ

(t)
j

Σ
(t)
j

Utilizing the identity vec [ABC] = (C ⊗ A) vec [B] we obtain

vec
(

Σ
(t+1)
j

)
= vec

(
Σ

(t)
j

)
+

2
N∑
n=1

τ j(t)n

(
Σ

(t)
j ⊗ Σ

(t)
j

) ∂l

∂Σj

∣∣∣∣
Σj=Σ

(t)
j

Σ
(t)
j

Thus P
(t)
Σj

= 2
N∑
n=1

τ j(t)n

(
Σ

(t)
j ⊗ Σ

(t)
j

)
, moreover for an arbitrary matrix U we have

vec[U]T
(

Σ
(t)
j ⊗ Σ

(t)
j

)
vec[U] = trace

(
Σ

(t)
j UΣ

(t)
j U

T
)

= trace

((
Σ

(t)
j U

)T (
Σ

(t)
j U

))
vec
[
Σ

(t)
j U

]T
vec
[
Σ

(t)
j U

]
≥ 0

65

where equality holds only when Σ
(t)
j U = 0. Equality is impossible since Σ

(t)
j is positive

definite with probability one for N sufficiently large. Thus it follows from Eq. 3.68

and
N∑
n=1

τ j(t)n > 0 that P
(t)
Σj

is postive definite with probability one.

Notice that we can write the updates in Eq. (3.63), (3.64) and (3.65) in the

combined form as the following

Θ(t+1) = Θ(t) + P (Θ(t))
∂l

∂Θ

∣∣
Θ=Θ(t) (3.69)

where Θ =
[
µT1 , . . . , µ

T
K , . . . , vec(Σ1)T , . . . , vec(ΣK)T , . . . , πT

]T
, the combined param-

eters in the model. “vec(B)” stands for the vector obtained by stacking the column

vectors of matrix B and P (Θ) = diag [Pµ1 , . . . , PµK , PΣ1 , . . . , PΣk , Pπ] is the combined

projection matrix for Θ. That is, the EM algorithm can be viewed as a variable

metric gradient ascent algorithm for which the projection matrix P (Θ(k)) changes at

each iteration as a function of the current parameter value Θ(k).

Now notice that we can write Eq. (3.69) as

Θ(t+1) =M(Θ(t)) (3.70)

where the true EM map is

M(θ) = θ + P (θ)∇l(θ)

. Ma et al. (2000) showed linear convergence for EM in GMM locally around the

true solution θ? but in Assumption 3.1 we require a global property of the mapM.

Further, for any subsample s of size m drawn from data D of size N, we can write

subsampled log-likelihood following Eq. (3.40) as

ls (θ) =
N

m

m∑
n=1

log
K∑
i=1

πif (xsn|µi,Σi) (3.71)

where {xs1, . . . , xsm} ∈ s. Now let θ be the parameter value at (j − 1)th iteration in

machine i and s denote the subsample in ith machine at jth iteration. Then we can

write the approximate map Mi,j as

Mi,j(θ) = θ + P (θ)∇ls(θ)

66

which indicates that Assumption 3.2 holds here as ls(θ) is a simple random sample

estimate of l(θ).

3.7 Numerical Results

We start by examining the relative performance of Algorithm 3.1 and Algo-

rithm 3.2. We clarify here that in practice we use a little modified version of Algo-

rithm 3.1 and Algorithm 3.2 due to limitation in resources. In practice, we may not

have a large number of machines available (number of machines equal to the number

of iterations) and hence we may have to reuse subsampled datasets after a certain

number of iterations has passed in Algorithm 3.1. For Algorithm 3.2 we have to

use lesser number of machines relative to the number of iterations but here we don’t

have to reuse subsamples since there is no communication and each machine performs

the EM algorithm with the subsample provided for all the iterations. We provide in

Table 3.2 a comparative analysis (root-mean-square error (RMSE) and bias in paren-

thesis) of implementing the parallel algorithm with communication in two different

ways where in method 1 every iteration uses a new subsampled dataset but in method

2 a limited pool (equivalently limited number of machines) of subsampled datasets

are there and we have to reuse the same subsample after a certain number of itera-

tions. Here we use a GMM with number of components K = 2, dimension p = 2 and

number of observations n = 1000. We draw a random subsample of size 250 in each

machine. The number of machines we have used for the two methods are given in

the parenthesis in second column of Table 3.2. One can observe that when method 2

uses small number of machines compared to method 1 the performance gap between

them is much larger and with increment in number of machines for method 2 the gap

in performance reduces.

For comparing the parallel schemes with communication and without communication

we use a GMM with number of components K = 3, dimension p = 10 and num-

ber of observations n = 50000. We vary the number of machines as 4,8, 16 and 32.

The subsample size in each machine is 2000. Different percentages of average over-

lap of the mixture components are considered viz. 20%, 30% and 40% respectively.

All the simulation results are based on 50 replications of both the algorithms. The

data are generated as follows. We use the MixSim package available in R (Melnykov

et al. (2012b)) which allows simulating mixtures of Gaussian distributions with dif-

ferent levels of overlap between mixture components. The key quantity in such data

67

generation mechanism is the pairwise overlap which is the sum of misclassification

probabilities between any two clusters. It measures the degree of interaction between

the clusters and can be used to control the clustering complexity of the data simulated

from the mixtures. The mixture model parameters in their package are generated in

the following way.

Mean vectors of the K-component GMM are obtained as K independent realizations

from a uniform p-variate hypercube with bounds specified by the user. Covariance

matrices ΣK are drawn from the Wishart distributions with parameter p and (p+ 1)

degrees of freedom. Finally, mixing proportions πK are generated on the [0, 1] in-

terval subject to the restriction
K∑
i=1

πK = 1 with the lower bound pre-specified by

the user. To simulate a dataset from a generated mixture, first, cluster sizes are ob-

tained as a draw from a multinomial distribution based on mixing proportions. Then,

the corresponding number of realizations are obtained from each multivariate normal

component.

Melnykov et al. (2010) used two algorithms to generate dataset from GMM based

on controlling the average or maximum pairwise overlap. After initial drawing of

the model parameters they use an iterative algorithm to obtain the desired level of

average or maximum overlap. For details see Melnykov et al. (2010) and Melnykov

et al. (2012a). To be specific we provide in Table 3.1 the pairwise overlaps among

the three cluster components that we’ve used for the simulations. We use the average

pairwise overlap to control the complexity of the problem and as one can infer the

problem of clustering becomes more challenging with higher percentage of overlap.

Nevertheless, here our aim is to compare the two parallel implementations in terms

of the model parameter estimation and we focus on comparing the performance of

the two parallel methods based on relative bias and variance respectively. The ideal

implementation of Algorithm 3.1 allows initial estimates in each machine to use

different subsamples over the iterations and thereby bias reduction is possible. In our

modified implementation of Algorithm 3.1 although we reuse subsamples after a cer-

tain iteration, we can still gain in reducing estimation bias compared to Algorithm

3.2 and will be evident from the following figures.

Table 3.1: Pairwise overlaps among clusters 1, 2 and 3

68

Avg. Overlap 1 and 2 1 and 3 2 and 3

20% 0.11 0.27 0.21

30% 0.23 0.37 0.30

40% 0.38 0.44 0.38

Table 3.2: RMSE Comparison of µ and Σ for method 1 and method 2 with 40%
average overlap

Methods rmse(µ1) rmse(µ2) rmse(Σ1) rmse(Σ2)

method 1 0.1186(0.0173) 0.0999(0.0198) 0.1025(0.0098) 0.1272(0.0187)

method 2 (4) 0.2612(0.1116) 0.2039(0.0880) 0.1701(0.0444) 0.2557(0.0833)

method 2 (8) 0.2292(0.1005) 0.1700(0.0705) 0.1674(0.0362) 0.2474(0.0826)

method 2 (16) 0.1836(0.0447) 0.1237(0.0314) 0.1370(0.0135) 0.1667(0.0305)

We define

θ? = Argmax
θ

l(θ|D)

where l(θ|D) as defined in Eq. (3.40). The bias and variance for comparing the two

parallel methods are computed as following:

MSE = E
[
‖θ̄T − θ?‖2

]
,

bias = ‖E
(
θ̄T
)
− θ?‖

and

variance = MSE− (bias)2

where θ̄T = 1
T

T∑
i=1

θ
(i)
T is the combined estimate obtained after T iterations by simple

averaging the estimates in individual machines i = 1, 2, . . . , T . We provide the com-

parison of the two methods in terms of relative bias in Figure 3.1-3.3. The figures

for the corresponding relative standard deviations are given in Figure 3.4-3.6. It can

be seen from the figures that our parallel algorithm with communication significantly

reduces the bias compared to the one without communication. Further the gap be-

tween the two bias curves for the two methods widens with increase in number of

machines. Another noticeable fact is that with increase in the overlap percentage

our parallel algorithm with communication reduces the bias to a greater extent in

comparison to the method without communication. To this end when the pairwise

69

overlap between the two clusters is maximum for example as can be observed be-

tween cluster 1 and 3 from Table 3.1, the gap between the two bias curves for the

parameters corresponding to those clusters is widest. We also provide results of the

time comparison for the two parallel methods in Table 3.3 and the results there show

that cost of communication is not too large and additionally we gain in terms of bias

reduction if we do the parallel implementation with communication. We plot the

square root of variance i.e. standard deviation of the two parallel methods in Figure

3.4-3.6. We expect the variance for both the methods to go down over the number of

machines and Figure 3.4-3.6 suggest the same. However the variance for the parallel

communication scheme (shown as “par1” in figure) still remains a bit smaller than

the variance for the parallel non-communication scheme (shown as “par2” in figure).

Table 3.3: Ratio of the computing times of Algorithm 3.1 and Algorithm 3.2
averaged over 50 replication

Number of Machines Ratio of computing times

4 1.01

8 1.02

16 1.09

32 1.22

70

Figure 3.1: Bias comparison of two parallel algorithms over number of machines and
varying overlap percentages for estimating µ1, µ2 and µ3. “par1” is the estimation
bias for parallel algorithm with communication and “par2” is the estimation bias for
parallel algorithm without communication over different number of machines. The
average overlap percentage is varied along the columns in the figure as 20%, 30% and
40% respectively.

71

Figure 3.2: Bias comparison of two parallel algorithms over number of machines and
varying overlap percentages for estimating Σ1, Σ2 and Σ3. “par1” is the estimation
bias for parallel algorithm with communication and “par2” is the estimation bias for
parallel algorithm without communication over different number of machines. The
average overlap percentage is varied along the columns in the figure as 20%, 30% and
40% respectively.

Figure 3.3: Bias comparison of two parallel algorithms over number of machines
and varying overlap percentages for estimating π. “par1” is the estimation bias for
parallel algorithm with communication and “par2” is the estimation bias for parallel
algorithm without communication over different number of machines. The average
overlap percentage is varied along the columns in the figure as 20%, 30% and 40%
respectively.

72

Figure 3.4: Variance comparison of two parallel algorithms over number of machines
and varying overlap percentages for estimating µ1, µ2 and µ3. “par1” is the Variance
for parallel algorithm with communication and “par2” is the Variance for parallel
algorithm without communication over different number of machines. The average
overlap percentage is varied along the columns in the figure as 20%, 30% and 40%
respectively.

73

Figure 3.5: Variance comparison of two parallel algorithms over number of machines
and varying overlap percentages for estimating Σ1, Σ2 and Σ3. “par1” is the Variance
for parallel algorithm with communication and “par2” is the Variance for parallel
algorithm without communication over different number of machines. The average
overlap percentage is varied along the columns in the figure as 20%, 30% and 40%
respectively.

Figure 3.6: Variance comparison of two parallel algorithms over number of machines
and varying overlap percentages for estimating π. “par1” is the Variance for paral-
lel algorithm with communication and “par2” is the Variance for parallel algorithm
without communication over different number of machines. The average overlap per-
centage is varied along the columns in the figure as 20%, 30% and 40% respectively.

74

CHAPTER 4

Likelihood Inference for Large Stochastic

Blockmodels with Covariates

4.1 Introduction

Stochastic Blockmodels are used to model relational structure among a group of

individuals. It has been widely used to model relationships in a social network (Hol-

land et al. (1983), Nowicki and Snijders (2001), Hoff (2008) etc.). Typically parameter

estimation in a large Stochastic Block Model (SBM) is a difficult problem. EM can

be used for parameter estimation in these kind of latent variable models (mixture

models). But EM requires O(n2) update in every iteration and hence will be compu-

tationally infeasible for large n (size of the blockmodel). Amini et al. (2013) provided

a pseudo-likelihood method for community detection in large sparse networks. This

can be used for fast parameter estimation in a regular SBM but it is not readily

applicable to settings when a blockmodel has covariate values. The pseudo-likelihood

approximation is not simple to obtain in a covariate blockmodeling framework.

We introduce a model that captures observations coming from a large SBM along

with certain number of covariates. We model the log odds of link probability between

any two individuals as a composition of the latent block effect and the covariate effect.

Our implementation depends on the parallel algorithm (Algorithm 3.1) introduced

in Chapter 4. The algorithm is based on a case-control approximation of the log-

likelihood combined with a subsampling approach. Following Algorithm 3.1 we

subsample the original adjacency matrix several times and send those small chunks of

the original matrix to several machines. We use a parallel Monte Carlo EM (MCEM)

type algorithm with a communication step among the machines after each iteration.

Final estimate is obtained by taking a simple average of the estimates from each

75

machine at the end of the iterations.

The performance of our algorithm is shown on datasets simulated from large SBM

with covariates and we also provide a network data example comprising a collection

of Facebook profiles of individuals in different US colleges with few specific covariates.

4.2 Stochastic BlockModel in Network Data Analysis

Networks are used to model relational data among a set of individuals or a group of

entities. With the recent explosion of large datasets, analyzing large network structure

involving groups or communities becoming more and more common in practice. Some

common examples of large networks with groups or communities are online social net-

works such as Facebook, Twitter etc. , gene-gene interaction network where group

of genes behave in a similar manner due to some external stimulus, co-authorship

networks etc.

In analyzing the relational structure among a group of individuals, blockmodels are

used to analyze the group structure and position of an individual in that group. They

were first introduced in a deterministic sense in the pioneering work by Lorrain and

White (1971) in explaining the concept of structural equivalence in social network

analysis. Relative to the deterministic model the stochastic one allows us a theoreti-

cal model for the relations among the individuals or the actors and assign a edge or

link probability for relation between two individuals depending on their memberships.

Some initial works by Holland et al. (1983) and Fienberg et al. (1985) led the founda-

tion for analyzing a SBM. Later on the model and its variants have been applied in a

variety of disciplines (Airoldi et al. (2008); Hoff (2008); Nowicki and Snijders (2001);

Girvan and Newman (2002); Handcock et al. (2007); Copic et al. (2009); Mariadassou

et al. (2010); Karrer and Newman (2011)).

But so far there has been less work on introducing covariates into the SBM set up and

analyzing the covariate blockmodel as a whole. There are generally two ways of intro-

ducing covariates in a network viz. (1) individual/actor level (node specific covariate)

and (2) dyadic level (edge specific covariate). Some of the works that has been done

towards incorporating covariates in a SBM (or some variant of SBM) are Tallberg

(2004); Mariadassou et al. (2010); Choi et al. (2012); Airoldi et al. (2008) etc. But

many of these works incorporate covariates in a individual level in the model whereas

we introduce dyadic level covariates that is the probability of presence or absence of

an edge is combined effect of the latent part plus the edge specific covariate value.

76

To this end we can mention the work of Hoff et al. (2002) who introduced dyadic-

level covariate in the context of a Latent Space Model. Mariadassou et al. (2010)

extended general SBM to valued graphs and use a general mixture model describing

the intensities of the connections between nodes spread among a certain number of

classes. They used a variational approximation for the likelihood and used a varia-

tional EM algorithm to estimate the parameters. Choi et al. (2012) worked with the

general SBM and used likelihood based inference for the independent Bernoulli data.

They considered the log-likelihood as a function of latent variables z and parameter

θ where they treat the latent variables z as fixed parameters. They employed Gibbs

sampling to explore the function maxθ L(A; z, θ) and recorded the best value of z vis-

ited by the sampler. L(A; z, θ) is the log-likelihood for the blockmodel. They allow

incorporation of covariates in the model such that the log-odds ratio of connection

probability between two nodes follows a linear model. In this context they introduce a

edge-specific covariate blockmodel. Airoldi et al. (2008) introduced a variant of SBM

known as the “Mixed Membership Stochastic Block Model (MMSBM)” which allows

inclusion of covariates for the actors belonging to different possible clusters. In all

these models the difficulty comes in computing the parameter estimates even without

covariate since the likelihood involving the latent membership of the nodes is not in

general tractable. The EM algorithm generally is not efficient for large network sizes.

The incorporation of the covariates adds another layer of computational hurdle. The

objective of this work is to perform likelihood inference for data coming from large

stochastic blockmodels with covariates in a efficient way.

We consider a general SBM that incorporates the covariates in a manner similar to

that used in Choi et al. (2012) i.e. the logit of the edge probability is a linear model

with latent membership part plays the role of the intercept and X(i, j) are the co-

variate values for each pair of individuals i and j. For a K-class SBM the logit of the

edge probability is given as following

log
Pij

1− Pij
= θ̃zizj + βTX(i, j) i = 1, . . . , n; j = i+ 1, . . . , n (4.1)

where P is the matrix describing the probability of the edges between any two indi-

viduals in the network and the probability of a link between i and j is assumed to

be composed of the “latent” part given by θ̃zizj and the “covariate” part given by

βTX(i, j) where X(i, j) a vector of covariates of the same order indicating shared

group membership. We then subsample the entire data available into several ma-

77

chines and perform a MCEM type algorithm to estimate the model parameters in

each individual machine with a communication step after every iteration of the opti-

mization algorithm. Finally at the end of all the iterations, we combine the estimates

from different machines via simple averaging and the latent membership of the nodes

is given by majority voting across machines. The methodology and the algorithm is

discussed in detail in Section 4.3. In Section 4.3.1, we describe the general K-class

SBM with covariates and Monte-Carlo EM in estimating the parameters of the model;

In section 4.3.2, we propose our generic parallel algorithm involving data subsampling

using several machines; In section 4.3.3, we discuss the implementation of the parallel

algorithm specific to the SBM case. In section 4.5, we show some numerical results

of our algorithm. We conclude the chapter with a real data application involving

Facebook networks of US colleges with a specific number of covariates.

4.3 Data Subsampling for Parameter Estimation in SBM

4.3.1 K-class Stochastic Blockmodel with Covariates

We consider independent Bernoulli data {Aij} (i = 1, 2, . . . , n; j = 1, 2, . . . , n),

which are the entries of a symmetric adjacency matrix A = ((aij)) of order n ×
n defined on a undirected graph with n nodes. We model the Bernoulli success

probabilities or the link probabilities {Pij} as following

Pij = θzizj (4.2)

for some symmetric matrix θ ∈ [0, 1]K×K and latent membership vector

z ∈ {1, 2, . . . , K}n

. Thus the probability of an edge between any two nodes is assumed to depend only

on the class memberships of each of them. The true node labels z = (z1, z2, . . . , zn) are

assumed to be drawn independently from multinomial distribution with parameter

π = (π1, π2, . . . , πK) where πi > 0 for all i. Suppose in addition to the independent

Bernoulli data {aij} we have some covariate values observed for each pair of nodes in

the undirected graph with n nodes. Instead of model (4.2) we then model the odds

78

of Bernoulli success probability as below

log
Pij

1− Pij
= θzizj + βTX(i, j) (4.3)

where X(i, j) are the covariate values observed for each pair of individuals i and j

where i = 1, 2, . . . , n and j = 1, 2, . . . , n. β is the corresponding coefficient vector for

the covariates. The parameters in the model we want to estimate are θ , β and π

(class probabilities for the latent membership vector). We model the entries of the

adjacency matrix A = ((aij)) as follows

Aij
ind∼ Ber(Pij) (4.4)

The log-likelihood for the observed data is given by

`(θ, β, π) = log

∫
z∈Z

L(θ, β|A, z)
n∏
i=1

K∏
k=1

π
1(zi=k)
k dzi (4.5)

Although Z is a discrete set we write it as a integration against the counting measure.

When n is large computing the maximum-likelihood estimate (MLE)

(θ̂, β̂, π̂) = Argmax
θ,β,π

`(θ, β, π)

is a difficult computational problem. Here L(θ, β|A, z) is the complete data likelihood

given by

L(θ, β|A, z) =
∏
i,j

(
eθzizj+βTX(i,j)

1 + eθzizj+βTX(i,j)

)aij (
1

1 + eθzizj+βTX(i,j)

)1−aij
(4.6)

Fitting blockmodel is nontrivial, especially for large networks, since in principle the

problem of optimizing over all possible class memberships is NP-hard. The implemen-

tation of EM for (4.2) or for (4.3) is also computationally time consuming for large

networks. Typically MCMC is needed to update the latent variables z, and because

the adjacency matrix A is not sparse in general, each iteration of EM to find (θ̂, β̂, π̂)

is O(n2), and can be very slow.

79

The Q-function for implementing EM for SBM with covariate is given by

Q(θ, β, π; θ0, β0, π0) =

∫
logL(θ, β|A, z)p(z|A, θ0, β0, π0)dz (4.7)

Here θ0, β0, π0 are some given values of the parameters. Since the integral on the RHS

of (4.7) is hard to compute the usual procedure is to approximate the Q-function by

sampling latent variables {zj,r+1}, j = 1, 2, . . . , ng(ng is the number of Gibbs samples

) at the (r + 1)th iteration from the conditional distribution of the latent variables

given the observed data and the parameters i.e. from p(z|A, θr, βr, πr) (usual E-

step of MCEM). The next step (usual M-step of MCEM) that follows then is the

maximization of the approximated Q-function i.e.

θ̂(r+1) = Argmax
θ

Q̂ (θ, β, π; θr, βr, πr) (4.8)

where Q̂ (θ, β, π; θr, βr, πr) = 1
ng

ng∑
j=1

logL (θ, β|A, zj)

4.3.2 Approximate Parallel Optimization method by Data Sampling

Many optimization algorithms when applied to a large dataset becomes reasonably

slow with increase of the size of the data. The common cause being either the update

of the parameters in every iterations involves MCMC sampling which slows down with

increase in size of the data (a standard example is the parameter update in SBM

where each involves MCMC sampling with O(n2), n is the number of observations)

or the method in general is sensitive to the size of the datamatrix (a typical example

would be EM in the context of Mixture model with large number of observations and

high dimension of the parameters within the mixture components, or even with large

number of mixing components). We apply Algorithm 3.1 discussed in Chapter 3

to perform the parameter estimation in such instances when we are faced with large

datasets.

We explore the use of parallel computing for faster computation where only a subset

of the data is sent to any processors. We perform an optimization routine on each of

the subsampled data in individual machines with a single communication step after

every iteration of the optimization algorithm. At the end of the iterations we combine

the estimates by simple averaging of the estimates from different machines. For the

sake of completeness we once more describe our generic algorithm exploiting parallel

80

computation.

Algorithm 4.1 Parallel Optimization via Random Subsampling with communica-
tion(PORSWC)

Input: Data D of size N , Number of machines T , subsamples S = {S1, S2, . . . , ST}
each of size m, initial estimates

{
θ

(i)
0

}T
i=1

in T machines, Number of iterations T

Output: θ̄T = 1
T

T∑
i=1

θ
(i)
T

1: procedure PORSWC

(
D,N, T, S,m,

{
θ

(i)
0

}T
i=1

)
2: loop:

3: for j = 1 to T do

4: loop:

5: parfor i = 1 to T do

6: θ
(i)
j =Mi,j

(
θ

(i)
j−1

)
7: end . communication among machines

8: loop:

9: for i = 1 to (T − 1) do

10: si+1,j ← si,j

11: end

12: s1,j ← sT,j

13: end

We use the above algorithm specific to our problem involving parameter estimation

in SBM with covariate. In the next section we describe the specific implementation

of the Monte-Carlo EM in parallel for parameter estimation in SBM. The latent node

labels that define the communities are estimated by majority voting across several

machines.

4.3.3 Approximate Parallel Monte Carlo EM

We first describe the approximate MCEM that we perform in individual machines.

4.3.3.1 Approximate Monte Carlo EM

We use spectral clustering with perturbation(Amini et al. (2013)) to obtain an

initial cluster labels for the actors in the network. Then based on the initial labeling

81

we sample only a few individuals from each of the cluster. We then approximate

the log-likelihood logL(θ, β|A, z) appearing in Eq. (4.7) via initial random sampling

followed by a case-control approximation (Raftery et al. (2012)). The basic idea of

case-control approximation is as follows. Typically an adjacency matrix corresponding

to a large network will tend to have more “0”s than the number of “1”s. We will treat

the “1”s as cases and for each individual contribution of the “1”s in the likelihood

would be unaltered where as “0”s will be treated as controls and we will select(via

simple random sampling without replacement) only a few of them for any particular

individual. We write the approximate complete data log-likelihood as

log L̃(θ, β|A, z) ≈
K∑
k=1

Nk

Mk

∑
i:i∈Mk(s)

l̃
(k)
i (4.9)

where

l̃
(k)
i =

∑
j:Aij=1

(
θkzj + βTX(i, j)

)
− log

(
1 + eθkzj+βTX(i,j)

)

+
n

(k)
i0

m
(k)
i0

m
(k)
i0∑

j=1

− log
(

1 + eθkzj+βTX(i,j)
)

Mk(s) ⊂ Ck and Ck =
{
i : z0

i = k
}

, k=1,2,. . . ,K

Here z0
i is the cluster label of the ith individual at the initial stage via spectral clus-

tering with perturbation. Nk =
∑
i

1(z0
i = k) = |Ck| for k = 1, 2, . . . , K and Mk are

the number of individuals sampled from the kth class i.e. |Mk(s)| = Mk and denote

M(s) = ∪Kk=1Mk(s) as the total number of individuals selected combining all the

clusters. Here n
(k)
i0 is the number of “zero connections” for the ith individual selected

from the kth class and m
(k)
i0 is the case-control sample size for the ith individual se-

lected from the kth class, i = 1, 2, . . . ,Mk. For simplicity, we keep m
(k)
i0 = m0 for each

i and k and choose m0 = λr where λ is the average node degree of the network and

r is the global case-to-control rate.

Now using the approximation Eq. (4.9) in Eq. (4.7) we can write the E-step of the

MCEM as the following

̂̂
Q (θ, β, π; θ0, β0, π0) =

1

ng

ng∑
j=1

log L̃ (θ, β|A, zj) (4.10)

82

The latent variables zj are drawn from the distribution p(z|A, θ0, β0, π0) using Gibbs

sampling and ng is the number of Gibbs samples. The approximate Monte-Carlo EM

that we perform here differs from the usual E-step in the sense that we only update

those latent variables which are selected in the random set M(s) i.e. {zj,r+1}j∈M(s)

are being updated. The M-step then follows as(
θ̂r+1, βr+1, πr+1

)
= Argmax

θ

̂̂
Q (θ, β, π; θr, βr, πr) (4.11)

We repeat the two steps for r = 1, 2, . . . , till convergence.

4.3.3.2 Parallel Implementation of the Approximate Monte-Carlo EM

We now describe the implementation of the approximate Monte-Carlo EM de-

scribed in section 4.3.3.1 using parallel computation with several machines. The key

idea is that for a large network instead of working with the entire adjacency matrix

in a single core we draw several subsamples from the adjacency matrix based on some

initial labeling of the nodes. Typically as discussed in section 4.3.3.1 we use spec-

tral clustering with perturbation as a initialization method. Then we perform our

approximate Monte-Carlo EM in each machine on the subsampled data with a single

round of communication among the machines after every iteration. Algorithm 4.2

summarizes the details of the proposed approximate parallel MCEM based on ran-

dom subsampling.

Before describing the specific algorithm we present some notations needed for ex-

plaining the algorithm. Let T denote the total number of machines as well as the

total number of iterations. S1, . . . , ST denote the T subsamples. z0, θ0, β0 and

π0 denote the initial node label, initial link probability matrix, initial covariate pa-

rameter and initial class probability values respectively. Initial node labels z0 are

calculate via spectral clustering with perturbation (See Amini et al. (2013)). Let z
(s)
t

denote the node label of the individuals in the sth machine at the tth iteration, where

s = 1, 2, . . . , T . Similarly π
(s)
t , θ

(s)
t and β

(s)
t denote the parameter estimates at the

tth iteration in the sth machine. As we have pointed it out before in Chapter 3 that

transferring the subsamples among machines is a expensive communication step, we

do the communication in a equivalent manner by transferring the estimates among

the machines in every iteration.

83

Algorithm 4.2 Approximate Parallel MCEM

1: procedure Parallel Implementation
2: Compute z0, θ0, β0 and π0

3: Use initial node label z0 to draw T random subsamples S1, . . . , ST and send
them to T machines available

4: loop:
5: for t = 1 to T do
6: loop:
7: parfor s = 1 to T do

8:
̂̂
Q

(s)

t

(
θ, β, π; θ

(s)
t−1, β

(s)
t−1, π

(s)
t−1

)
= 1

ng

ng∑
j=1

log L̃
(
θ, β|A, z(s)

j,t−1

)
9: θ̂

(s)
t = Argmax

θ

̂̂
Q
(
θ, β, π; θ

(s)
t−1, β

(s)
t−1, π

(s)
t−1

)
10: end
11: loop:
12: for s = 1 to (T − 1) do

13:

(
θ

(s+1)
t , β

(s+1)
t , π

(s+1)
t

)
←
(
θ

(s)
t , β

(s)
t , π

(s)
t

)
14: end
15:

(
θ

(1)
t , β

(1)
t , π

(1)
t

)
←
(
θ

(T)
t , β

(T)
t , π

(T)
t

)
16: end

17: Compute θ̄T = 1
T

T∑
s=1

θ
(s)
T , β̄T = 1

T

T∑
s=1

β
(s)
T and π̄T = 1

T

T∑
s=1

π
(s)
T

84

4.4 Discussion about the true EM map M and the approxi-

mate random map Mi,j

We first present the true EM map M in case of SBM without covariates.The

sequence of EM iterates {θn} can be written as the following map

θn+1 = M (θn)

= Argmax
u

Q (u|θn)

= Argmax
u

∫
Hu (z) πθn (dz) (4.12)

where Z = (z1, . . . , zp) are the latent variables with zi ∈ {1, . . . , K}, πθn is the

conditional probability measure of the latent variables given the observed data at the

nth iteration and

Hθ (z) =
∑
i<j

[
Aijθzizj − log

(
1 + eθzizj

)]
(4.13)

After some algebraic calculations we arrive at

[
eM(θn)

]
rs

=

∑
i<j

AijS
rs
ij∑

i<j

(1− Aij)Srsij
, r = 1, . . . , K; s = 1, . . . , K

⇒M (θn) = log

∑
i<j

AijS
rs
ij∑

i<j

(1− Aij)Srsij

 n = 1, 2, . . . (4.14)

where

Srsij =

∫
1 (zi = r, zj = s)πθn (dz) .

In case of blockmodel with covariate such a compact representation of the true map

M is hard to find since the parameters θ and β are entangled in the complete data

log-likelihood given in Eq. (4.6). Further, the approximate random map Mi,j based

on random subsampling in the ith machine involves two other layers of approxima-

tion -(1) due to case-control approximation of the log-likelihood given in Eq. (4.9)

and (2) due to Monte Carlo sampling of the latent node labels in the E-step of the

MCEM. This additional approximations make derivation of result such as Theorem

3.3 difficult.

85

4.4.1 Review of Some Convergence Results related to MCEM

We discuss here some of the results available in the literature related to the con-

vergence of MCEM. The first serious effort in establishing convergence properties

of MCEM is that of Chan and Ledolter (1995) , who treat the data as fixed, and

hold the Monte Carlo sample size m constant across MCEM iterations. They then

let m go to infinity, and study the asymptotic properties of the MCEM sequence as

a Monte Carlo approximation to the ordinary EM sequence with the same starting

value (whose convergence properties are well understood). For the sake of complete-

ness we will discuss Chan and Ledolter (1995) result below.

Chan and Ledolter (1995) showed that, given a suitable starting value, a sequence

of parameter values generated by the MCEM algorithm will get arbitrarily close to

a maximizer of the observed likelihood with high probability. Their main result is

given as Theorem 4.1 below.

We denote Θ to be the parameter space and θ ∈ Θ be the underlying parameters in

the model. Let MEM : Θ → Θ denote the mapping given by the deterministic EM

update rule, that is, MEM(θ̃) = ArgmaxQ(θ|θ̃; y).

Theorem 4.1. (Theorem 1 of Chan and Ledolter, 1995). Let
{
θ(t)
}

denote a Monte

Carlo EM sequence based on Monte Carlo sample sizes mt ≡ m, and suppose that the

MCEM update Mm(θ̃) := ArgmaxQm(θ|θ̃; y) converges in probability to MEM(θ̃) as

m→∞. Further suppose that this convergence is uniform on compact subsets of Θ.

Let θ∗ be an isolated local maximizer of l(θ; y), a continous function of θ. Then there

exists a neighborhood of θ∗ such that for any starting value θ(0) in that neighborhood

and for any ε > 0, there exists T0 such that

Pr
{
||θ(t) − θ∗|| < ε for some t ≤ T0

}
→ 1 (4.15)

as the Monte Carlo sample size m→∞.

The conclusion of Theorem 4.1, while interesting, is unsatisfying in at least one

respect: It does not guarantee the convergence of an MCEM sequence in any mean-

ingful sense. Practically, what this theorem tells us is that if you run the algorithm

long enough (at least T0 iterations), the resulting sequence will, with high probability,

at some point get arbitrarily close to the MLE. A more powerful result would be one

that specifies conditions under which the algorithm gets close to the MLE and stays

there.

86

Fort and Moulines (2003) treat the data as fixed, the Monte Carlo sample size as in-

creasing (deterministically) across MCEM iterations, and establish a.s. convergence

of the sequence as the iteration count goes to infinity. We consider this the strongest

known result on the asymptotic properties of MCEM, as this notion of convergence

seems the most consistent with that of ordinary (deterministic) EM. Further under

certain assumptions on the fluctuations of the Lp norm of the Monte Carlo approxi-

mations of the EM map MEM they showed linear rate of convergence for MCEM.

4.5 Numerical Results

Here we investigate the performance of both our parallel MCEM algorithm ap-

plied to SBM with covariate. We simulate observations from the SBM Eq. (4.3). We

initialize with spectral clustering with perturbations and evaluate the performance

on estimating the link probability matrix (’θ’), class probabilities (’π’), covariate

paramter (’β’) and the latent node labels (’z’).

Throughout this section we fix number of communities K=3, network size n = 1000.

We vary the “out-in-ratio”(OIR) (Decelle et al. (2011)) β as (0.04, 0.08, 0.2) which we

term as low OIR,medium OIR and high OIR respectively.. Similarly average degree

λ is varied as (4, 8, 14) which we term as low degree, medium degree and high degree

respectively. We also experiment with two different class probabilities for the 3 com-

munities viz. π = (1/3, 1/3, 1/3) (balanced community size) and π = (0.5, 0.3, 0.2)

(unbalanced community size) We choose global case-to-control rate r = 7 so that

case-control sample size for our MCEM algorithm is λr.

The link probability matrix θ is generated as discussed in the numerical results sec-

tion in Amini et al. (2013). For our algorithm we choose subsample size ns = 50.

We evaluate the performance of our algorithm by tabulating relative mean squared

error (MSE) of the parameters and the Normalized Mutual Information (NMI) values

(Amini et al. (2013)) for the latent node labels. All the simulations were performed

over 30 replications.

Table 4.1 and 4.2 shows performance of the algorithm by varying the OIR over bal-

anced and unbalanced community size. For Table 4.1 and 4.2 average degree is kept

at 7. It clearly shows that as one moves from low to high regime in OIR value, there

is a clear decrease in the NMI values for the latent node labels which is intuitive

because with increase in the number of connections among groups clustering becomes

harder and hence NMI becomes smaller. On the other hand, the estimation errors for

87

the parameter is affected by lesser extent with increase in OIR value. Further NMI

is decreased to a larger extent in unbalanced community size relative to balanced

community size when OIR is high. Table 4.3 and 4.4 shows performance of Algo-

rithm 4.2 when average degre λ is varied from low to high regime. The OIR is kept

at 0.04 for Table 4.3 and 4.4. We expect clustering problem to be easier for large λ

and one sees that improvement in NMI values for larger λ. For smaller λ, the NMI

is decreased to a larger extent in unbalanced community size (Table 4.4) compared

to balanced community size (Table 4.3). The estimation errors for the parameters is

affected by lesser extent compared to the NMI values with the decrement of λ values.

Table 4.1: Estimation Errors and NMI Values for Balanced Community Size with
Varying OIR

p OIR estimation

error(π)

estimation

error(θ)

estimation

error (β)

NMI(c)

1000 0.04 0.0340 0.0987 0.0232 1.000

0.08 0.0349 0.1042 0.0320 0.9830

0.2 0.0406 0.1061 0.0476 0.7596

Table 4.2: Estimation Errors and NMI Values for Unbalanced Community Size with
Varying OIR

p OIR estimation

error(π)

estimation

error(θ)

estimation

error (β)

NMI(c)

1000 0.04 0.0704 0.0762 0.0644 0.9327

0.08 0.0786 0.0778 0.1032 0.8852

0.2 0.0803 0.1243 0.1149 0.6068

Table 4.3: Estimation Errors and NMI Values for Balanced Community Size with
Varying λ

p λ estimation

error(π)

estimation

error(θ)

estimation

error (β)

NMI(c)

1000 4 0.0508 0.0948 0.0516 0.8240

8 0.0451 0.0721 0.0487 0.9670

14 0.0340 0.0540 0.0354 0.9868

Table 4.4: Estimation Errors and NMI Values for Unbalanced Community Size with
Varying λ

88

p λ estimation

error(π)

estimation

error(θ)

estimation

error (β)

NMI(c)

1000 4 0.0853 0.1637 0.0706 0.7343

8 0.0628 0.1329 0.0612 0.8337

14 0.0433 0.1147 0.0478 0.9668

4.6 Application to Collegiate Facebook Data

To illustrate the performance of our algorithm we use a publicly available social

network data set (https://archive.org/details/oxford-2005-facebook-matrix)

containing the social structure of Facebook friendship networks at one hundred Amer-

ican colleges and universities at a single point in time. This data set was analyzed

by Traud et al. (2012) . The focus of their study was to illustrate how the relative

importance of different characteristics of individuals vary across different institutions.

They examine the influence of the common attributes at the dyad level in terms of

assortativity coefficients and regression models. We on the other hand pick a data set

corresponding to a particular university and show the performance of our algorithm

and Pseudo-likelihood based method on it. We also fit a SBM with covariate via our

algorithm and compare the clusters obtained from it with the ones obtained in case

of fitting SBM without covariate.

We examine the Rice University data set from the list of one hundred American

Colleges and Universities and use our K-class SBM with and without covariate to

identify group/community structures in the data set. We examine the role of the user

attributes- dorm/house number, gender and class year along with the latent struc-

ture.

Dorm/house number is a multi-category variable taking values as 202, 203, 204 etc.,

gender is a binary ({0, 1}) variable and class year is a integer valued variable (e.g.

“2004”, “2005”, “2006” etc.). We evalauate the performance of Algorithm 4.2 fitted

to SBM with covariate viz. (4.3).

There are some missing values in the dataset although it is only around 5%. Since the

network size is 4087 i.e. which is large enough, we discard the missing value cases. We

also consider the covariate values only between year 2004 to 2010. Further, we drop

those nodes with degree less than or equal to 1. After this initial cleaning up the ad-

jacency matrix in this case is of order 3160×3160. We choose number of communities

K = 20. The choice of the number of the communities is made by employing Bayesian

89

Information Criterion (BIC) (Schwarz et al. (1978)) where the observed data likeli-

hood is computed by path sampling (Gelman and Meng (1998)). The corresponding

figure is given in Figure 4.1 where the possible number of communities are plotted

along x-axis and the BIC values are along y-axis.

The K-class SBM with covariate as per (4.3) is the following

log
Pij

1− Pij
= θ̃zizj + βTX(i, j) i = 1, . . . , N ; j = i+ 1, . . . , n (4.16)

where P is the matrix describing the probability of the edges between any two in-

dividuals in the network and the probability of a link between i and j is assumed

to be composed of the “latent” part given by θ̃zizj and the “covariate” part given by

βTX(i, j) where β is a parameter of size 20×1 and X(i, j) a vector of covariates of the

same order indicating shared group membership. The vector β is implemented here

with sum to zero identifiability constraints. We first do a basic plot (see Figure4.2)

of the degree distribution of the network which clearly shows that the network has a

skewed degree distribution. We apply Algorithm 4.2 to fit model 4.16 to the Rice

university facebook network with three covariates dorm/house number, gender and

class year. In the following figure we present the heatmap of the edge probabilities

in estimated θ (latent part in Eq. (4.16)) matrix and a bar diagram showing the

estimated class probabilities. We observe from Figure 4.3 that the block 9 has the

largest proportion of individuals but do not have a strong tie among the individuals

present there as the corresponding entry in the diagonal of the θ matrix is very small.

We also plot the communities found by fitting a SBM without covariate and a block-

model with covariate (model (4.2) to the given data. We arrange the adjacency matrix

rows according to the clusters/communities found by the two methods.

Further we use a information based criterion generally used to compare two dif-

ferent sets of clustering when the ground truth is not known. We use a metric called

variation of information (VI) to compare the two sets of clusters. (For any two sets

C and C ′ of clusters, VI is given as V I = H(C) +H(C ′)− I(C,C ′) where H(.) is the

entropy function and I(., .) is the mutual information between the two sets of clus-

ters.). We now present a table which describes how similar the two cluster labels are

viz. the one obtained via fitting without covariate blockmodel and the other obtained

via fitting the covariate blockmodel. We also indicate in the last column of the table

the effect of the possible covariates if the similarity percentage drops below 70%. The

90

0 10 20 30 40 50 60
4.75

4.8

4.85

4.9

4.95

5

5.05

5.1

5.15

5.2
x 10

6

Number of Communities

B
IC

 v
al

ue
s

Figure 4.1: Plot of BIC values for possible number of communities in the Rice Uni-
versity dataset

91

0 100 200 300 400 500 600
0

50

100

150

200

250

degree

N
um

be
r

of
 N

od
es

Figure 4.2: Plot of the degree distribution of the Rice University network

92

Number of Communities

N
um

be
r

of
 C

om
m

un
iti

es

5 10 15 20

2

4

6

8

10

12

14

16

18

20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Communities
2 4 6 8 10 12 14 16 18 20

C
la

ss
 P

ro
ba

bi
lit

ie
s

0

0.05

0.1

0.15

0.2

Figure 4.3: Heatmap plots for the edge probability matrix and the bar plot of the
class probabilities for parallel MCEM applied to SBM with covariate

estimate of the parameter beta linked with the covariate effects is given by

β̂ = [0.7956,−0.1738,−0.6218]′

We compute the metric VI and it is calculated to be 0.1245 which tells us that the

two sets of clustering do not differ much. Further Figure 4.5 also indicates that two

sets of clustering obtained from without covariate and with covariate model differs

only in few specific instances.

4.7 Discussion

We present here a covariate blockmodeling framework in the class of blockmod-

els that has been widely used in analyzing social networks. The edge probability

among individuals in the network is modeled by combining the block effect with the

covariate effect. To do likelihood inference in large stochastic blockmodels we devise

a novel algorithm based on case-control approximation of the log-likelihood along

with a subsampling approach. The numerical examples and the real data application

validate the use of our parallel algorithm in the context of analyzing large networks

by blockmodels with covariates.

93

0 500 1000 1500 2000 2500 3000

0

500

1000

1500

2000

2500

3000

Number of Nodes

N
um

be
r

of
 N

od
es

0 500 1000 1500 2000 2500 3000

0

500

1000

1500

2000

2500

3000

Number of Individuals

N
um

be
r

of
 In

di
vi

du
al

s

Figure 4.4: Community detection plots for parallel MCEM with and without covariate
respectively.

94

Group Size of the Group Similarity Percentage Possible Cause of deviation

1 102 94.12% -

2 604 82.28% -

3 183 100% -

4 129 62.79% Possible effect of class year

5 79 96.20% -

6 124 97.58% -

7 61 100% -

8 170 38.24% effect of dorm and a little effect of gender as well

9 176 92.61% -

10 168 97.02% -

11 134 91.04% -

12 44 93.18% -

13 208 65.87% effect of dorm and little effect of class year as well

14 189 58.73% effect of class year

15 170 100% -

16 58 100% -

17 70 100% -

18 221 75.57% -

19 70 100% -

20 201 98.51% -

Figure 4.5: Table showing difference in the communities found by without covariate
and with covariate SBM

95

BIBLIOGRAPHY

96

BIBLIOGRAPHY

Agarwal, A. and J. C. Duchi (2011). Distributed delayed stochastic optimization. In
Advances in Neural Information Processing Systems, pp. 873–881.

Airoldi, E. M., D. M. Blei, S. E. Fienberg, and E. P. Xing (2008). Mixed membership
stochastic blockmodels. Journal of Machine Learning Research 9, 1981–2014.

Amini, A. A., A. Chen, P. J. Bickel, and E. Levina (2013, 08). Pseudo-likelihood
methods for community detection in large sparse networks. Ann. Statist. 41 (4),
2097–2122.

Atchade, Y. F. (2014). Estimation of high-dimensional partially-observed discrete
markov random fields. Electron. J. Statist. 8 (2), 2242–2263.

Bach, F. et al. (2010). Self-concordant analysis for logistic regression. Electronic
Journal of Statistics 4, 384–414.

Bai, J. (1997). Estimation of a change point in multiple regression models. Review
of Economics and Statistics 79 (4), 551–563.

Banerjee, O., L. El Ghaoui, and A. d’Aspremont (2008). Model selection through
sparse maximum likelihood estimation for multivariate gaussian or binary data.
The Journal of Machine Learning Research 9, 485–516.

Basu, S. and G. Michailidis (2015). Estimation in high-dimensional vector autore-
gressive models. Ann. Statist.(to appear).

Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems.
Journal of the Royal Statistical Society. Series B (Methodological), 192–236.

Bhattacharya, P. K. (1987). Maximum likelihood estimation of a change-point in
the distribution of independent random variables: general multiparameter case.
Journal of Multivariate Analysis 23 (2), 183–208.

Bickel, P. J. and E. Levina (2008). Regularized estimation of large covariance matri-
ces. The Annals of Statistics , 199–227.

Bickel, P. J., Y. Ritov, and A. B. Tsybakov (2009). Simultaneous analysis of lasso
and dantzig selector. The Annals of Statistics , 1705–1732.

97

Boyd, S. and L. Vandenberghe (2004). Convex optimization. Cambridge university
press.

Buja, A., T. Hastie, and R. Tibshirani (1989). Linear smoothers and additive models.
The Annals of Statistics , 453–510.

Carlstein, E. (1988). Nonparametric change-point estimation. The Annals of Statis-
tics , 188–197.

Chan, K. and J. Ledolter (1995). Monte carlo em estimation for time series models
involving counts. Journal of the American Statistical Association 90 (429), 242–252.

Choi, D. S., P. J. Wolfe, and E. M. Airoldi (2012). Stochastic blockmodels with a
growing number of classes. Biometrika, asr053.

Copic, J., M. O. Jackson, and A. Kirman (2009). Identifying community structures
from network data via maximum likelihood methods. The BE Journal of Theoretical
Economics 9 (1).

Decelle, A., F. Krzakala, C. Moore, and L. Zdeborová (2011). Asymptotic analysis of
the stochastic block model for modular networks and its algorithmic applications.
Physical Review E 84 (6), 066106.

Dekel, O., R. Gilad-Bachrach, O. Shamir, and L. Xiao (2012). Optimal distributed
online prediction using mini-batches. The Journal of Machine Learning Re-
search 13 (1), 165–202.

Dempster, A. P., N. M. Laird, and D. B. Rubin (1977). Maximum likelihood from
incomplete data via the em algorithm. Journal of the royal statistical society. Series
B (methodological), 1–38.

Drton, M. and M. D. Perlman (2004). Model selection for gaussian concentration
graphs. Biometrika 91 (3), 591–602.

Duchi, J. C., A. Agarwal, and M. J. Wainwright (2012). Dual averaging for distributed
optimization: convergence analysis and network scaling. Automatic Control, IEEE
Transactions on 57 (3), 592–606.

Duchi, J. C., P. L. Bartlett, and M. J. Wainwright (2012). Randomized smoothing
for stochastic optimization. SIAM Journal on Optimization 22 (2), 674–701.

Fan, J., F. Han, and H. Liu (2014). Challenges of big data analysis. National science
review 1 (2), 293–314.

Fienberg, S. E., M. M. Meyer, and S. S. Wasserman (1985). Statistical analysis of mul-
tiple sociometric relations. Journal of the american Statistical association 80 (389),
51–67.

Fithian, W. and T. Hastie (2014). Local case-control sampling: Efficient subsampling
in imbalanced data sets. Annals of statistics 42 (5), 1693.

98

Fort, G. and E. Moulines (2003, 08). Convergence of the monte carlo expectation
maximization for curved exponential families. Ann. Statist. 31 (4), 1220–1259.

Friedman, J., T. Hastie, and R. Tibshirani (2010). Regularization paths for gener-
alized linear models via coordinate descent. Journal of statistical software 33 (1),
1.

Gelman, A. and X.-L. Meng (1998). Simulating normalizing constants: From impor-
tance sampling to bridge sampling to path sampling. Statistical science, 163–185.

Ghahramani, Z. and M. I. Jordan (1994). Function approximation via density es-
timation using the em approach. In Advances in Neural Information Processing
Systems, pp. 120–127.

Girvan, M. and M. E. Newman (2002). Community structure in social and biological
networks. Proceedings of the National Academy of Sciences 99 (12), 7821–7826.

Guo, J., E. Levina, G. Michailidis, and J. Zhu (2010). Joint structure estimation for
categorical markov networks. Unpublished manuscript 3 (5.2), 6.

Han, F. and H. Liu (2013). A direct estimation of high dimensional stationary vector
autoregressions. arXiv preprint arXiv:1307.0293 .

Handcock, M. S., A. E. Raftery, and J. M. Tantrum (2007). Model-based clustering
for social networks. Journal of the Royal Statistical Society: Series A (Statistics in
Society) 170 (2), 301–354.

Hanneke, S., W. Fu, E. P. Xing, et al. (2010). Discrete temporal models of social
networks. Electronic Journal of Statistics 4, 585–605.

Hinkley, D. (1972). Time-ordered classification. Biometrika 59 (3), 509–523.

Hinkley, D. V. (1970). Inference about the change-point in a sequence of random
variables. Biometrika 57 (1), 1–17.

Hoefling, H. (2010). BMN: The pseudo-likelihood method for pairwise binary markov
networks. R package version 1.02.

Hoff, P. (2008). Modeling homophily and stochastic equivalence in symmetric rela-
tional data. In Advances in Neural Information Processing Systems, pp. 657–664.

Hoff, P. D., A. E. Raftery, and M. S. Handcock (2002). Latent space approaches to
social network analysis. Journal of the american Statistical association 97 (460),
1090–1098.

Höfling, H. and R. Tibshirani (2009). Estimation of sparse binary pairwise markov
networks using pseudo-likelihoods. The Journal of Machine Learning Research 10,
883–906.

99

Holland, P. W., K. B. Laskey, and S. Leinhardt (1983). Stochastic blockmodels: First
steps. Social networks 5 (2), 109–137.

Hurvich, C. M., J. S. Simonoff, and C.-L. Tsai (1998). Smoothing parameter selec-
tion in nonparametric regression using an improved akaike information criterion.
Journal of the Royal Statistical Society: Series B (Statistical Methodology) 60 (2),
271–293.

Johansson, B., M. Rabi, and M. Johansson (2009). A randomized incremental sub-
gradient method for distributed optimization in networked systems. SIAM Journal
on Optimization 20 (3), 1157–1170.

Karrer, B. and M. E. Newman (2011). Stochastic blockmodels and community struc-
ture in networks. Physical Review E 83 (1), 016107.

Kleiner, A., A. Talwalkar, P. Sarkar, and M. I. Jordan (2014). A scalable bootstrap
for massive data. Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 76 (4), 795–816.

Kolar, M., L. Song, A. Ahmed, and E. P. Xing (2010). Estimating time-varying
networks. The Annals of Applied Statistics , 94–123.

Kolar, M. and E. P. Xing (2012). Estimating networks with jumps. Electron. J.
Statist. 6, 2069–2106.

Kosorok, M. R. (2007). Introduction to empirical processes and semiparametric in-
ference. Springer Science & Business Media.

Lam, C. and J. Fan (2009). Sparsistency and rates of convergence in large covariance
matrix estimation. Annals of statistics 37 (6B), 4254.

Lan, Y., M. Banerjee, G. Michailidis, et al. (2009). Change-point estimation under
adaptive sampling. The Annals of Statistics 37 (4), 1752–1791.

Loader, C. R. et al. (1996). Change point estimation using nonparametric regression.
The Annals of Statistics 24 (4), 1667–1678.

Lorrain, F. and H. C. White (1971). Structural equivalence of individuals in social
networks. The Journal of mathematical sociology 1 (1), 49–80.

Ma, J., L. Xu, and M. I. Jordan (2000). Asymptotic convergence rate of the em
algorithm for gaussian mixtures. Neural Computation 12 (12), 2881–2907.

Mariadassou, M., S. Robin, and C. Vacher (2010). Uncovering latent structure in
valued graphs: a variational approach. The Annals of Applied Statistics , 715–742.

McDonald, R., K. Hall, and G. Mann (2010). Distributed training strategies for
the structured perceptron. In Human Language Technologies: The 2010 Annual
Conference of the North American Chapter of the Association for Computational
Linguistics, pp. 456–464. Association for Computational Linguistics.

100

Mcdonald, R., M. Mohri, N. Silberman, D. Walker, and G. S. Mann (2009). Effi-
cient large-scale distributed training of conditional maximum entropy models. In
Advances in Neural Information Processing Systems, pp. 1231–1239.

McLachlan, G. and D. Peel (2004). Finite mixture models. John Wiley & Sons.

Meinshausen, N. and P. Bühlmann (2006). High-dimensional graphs and variable
selection with the lasso. The Annals of Statistics , 1436–1462.

Meinshausen, N. and P. Bühlmann (2010). Stability selection. Journal of the Royal
Statistical Society: Series B (Statistical Methodology) 72 (4), 417–473.

Melnykov, V., W.-C. Chen, and R. Maitra (2012a). Mixsim: An r package for sim-
ulating data to study performance of clustering algorithms. Journal of Statistical
Software 51 (12), 1–25.

Melnykov, V., W.-C. Chen, and R. Maitra (2012b). MixSim: An R package for
simulating data to study performance of clustering algorithms. Journal of Statistical
Software 51 (12), 1–25.

Melnykov, V., R. Maitra, et al. (2010). Finite mixture models and model-based
clustering. Statistics Surveys 4, 80–116.

Moody, J. and P. J. Mucha (2013). Portrait of political party polarization. Network
Science 1 (01), 119–121.

Muller, H.-G. (1992). Change-points in nonparametric regression analysis. The Annals
of Statistics , 737–761.

Nadaraya, E. (1965). On non-parametric estimates of density functions and regression
curves. Theory of Probability & Its Applications 10 (1), 186–190.

Neath, R. C. et al. (2013). On convergence properties of the monte carlo em algorithm.
In Advances in Modern Statistical Theory and Applications: A Festschrift in Honor
of Morris L. Eaton, pp. 43–62. Institute of Mathematical Statistics.

Nedic, A. and A. Ozdaglar (2009). Distributed subgradient methods for multi-agent
optimization. Automatic Control, IEEE Transactions on 54 (1), 48–61.

Neghaban, S., P. Ravikumar, M. Wainwright, and B. Yu (2012). A unified frame-
work for high-dimensional analysis of m-estimators with decomposable regularizers.
Statistical Science 27 (4), 538–557.

Nielsen, S. F. (2000). The stochastic em algorithm: estimation and asymptotic results.
Bernoulli , 457–489.

Nowicki, K. and T. A. B. Snijders (2001). Estimation and prediction for stochastic
blockstructures. Journal of the American Statistical Association 96 (455), 1077–
1087.

101

Nowlan, S. J. (1991). Soft competitive adaptation: neural network learning algorithms
based on fitting statistical mixtures.

Raftery, A. E., X. Niu, P. D. Hoff, and K. Y. Yeung (2012). Fast inference for the
latent space network model using a case-control approximate likelihood. Journal
of Computational and Graphical Statistics 21 (4), 901–919.

Raimondo, M. (1998). Minimax estimation of sharp change points. Annals of statis-
tics , 1379–1397.

Ram, S. S., A. Nedić, and V. V. Veeravalli (2010). Distributed stochastic subgradient
projection algorithms for convex optimization. Journal of optimization theory and
applications 147 (3), 516–545.

Ravikumar, P., M. J. Wainwright, J. D. Lafferty, et al. (2010). High-dimensional
ising model selection using l1-regularized logistic regression. The Annals of Statis-
tics 38 (3), 1287–1319.

Recht, B., C. Re, S. Wright, and F. Niu (2011). Hogwild: A lock-free approach
to parallelizing stochastic gradient descent. In Advances in Neural Information
Processing Systems, pp. 693–701.

Redner, R. A. and H. F. Walker (1984). Mixture densities, maximum likelihood and
the em algorithm. SIAM review 26 (2), 195–239.

Robbins, H. and S. Monro (1951). A stochastic approximation method. The annals
of mathematical statistics , 400–407.

Rothman, A. J., P. J. Bickel, E. Levina, J. Zhu, et al. (2008). Sparse permutation
invariant covariance estimation. Electronic Journal of Statistics 2, 494–515.

Schwarz, G. et al. (1978). Estimating the dimension of a model. The annals of
statistics 6 (2), 461–464.

Spall, J. C. (1998). Implementation of the simultaneous perturbation algorithm for
stochastic optimization. Aerospace and Electronic Systems, IEEE Transactions
on 34 (3), 817–823.

Tallberg, C. (2004). A bayesian approach to modeling stochastic blockstructures with
covariates. Journal of Mathematical Sociology 29 (1), 1–23.

Traud, A. L., P. J. Mucha, and M. A. Porter (2012). Social structure of facebook
networks. Physica A: Statistical Mechanics and its Applications 391 (16), 4165–
4180.

Tresp, V., S. Ahmad, R. Neuneier, et al. (1994). Training neural networks with
deficient data. Advances in neural information processing systems , 128–128.

Van De Geer, S. A., P. Bühlmann, et al. (2009). On the conditions used to prove
oracle results for the lasso. Electronic Journal of Statistics 3, 1360–1392.

102

Wainwright, M. J. and M. I. Jordan (2008). Graphical models, exponential families,
and variational inference. Foundations and Trends R© in Machine Learning 1 (1-2),
1–305.

Wei, G. C. and M. A. Tanner (1990). A monte carlo implementation of the em algo-
rithm and the poor man’s data augmentation algorithms. Journal of the American
statistical Association 85 (411), 699–704.

Wu, C. J. (1983). On the convergence properties of the em algorithm. The Annals of
statistics , 95–103.

Xu, L. (1997). Comparative analysis on convergence rates of the em algorithm and
its two modifications for gaussian mixtures. Neural Processing Letters 6 (3), 69–76.

Xu, L., M. Jordan, and G. Hinton (1994). A modified gating network for the mixtures
of experts architecture. In World Congress on Neural Networks II, San Diego CA,
June, pp. 405–410.

Xu, L. and M. I. Jordan (1993a). Em learning on a generalized finite mixture model
for combining multiple classifiers. In Proc. of WCNN, pp. 227–230.

Xu, L. and M. I. Jordan (1993b). Unsupervised learning by em algorithm based on
finite mixture of gaussians. In Proc. of WCNN, pp. 431–434.

Xu, L. and M. I. Jordan (1996). On convergence properties of the em algorithm for
gaussian mixtures. Neural computation 8 (1), 129–151.

Xue, L., H. Zou, T. Cai, et al. (2012). Nonconcave penalized composite conditional
likelihood estimation of sparse ising models. The Annals of Statistics 40 (3), 1403–
1429.

Yuan, M. and Y. Lin (2007). Model selection and estimation in the gaussian graphical
model. Biometrika 94 (1), 19–35.

Zhang, Y., J. C. Duchi, and M. J. Wainwright (2013). Communication-efficient al-
gorithms for statistical optimization. Journal of Machine Learning Research 14,
3321–3363.

Zhou, S., J. Lafferty, and L. Wasserman (2010). Time varying undirected graphs.
Machine Learning 80 (2-3), 295–319.

Zinkevich, M., M. Weimer, L. Li, and A. J. Smola (2010). Parallelized stochastic
gradient descent. In Advances in Neural Information Processing Systems, pp. 2595–
2603.

103

